1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself depending on the value of bFree 88 ** 89 ** If bFree==1, call sqlite3DbFree() on the p object. 90 ** If bFree==0, Leave the first Select object unfreed 91 */ 92 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 93 while( p ){ 94 Select *pPrior = p->pPrior; 95 sqlite3ExprListDelete(db, p->pEList); 96 sqlite3SrcListDelete(db, p->pSrc); 97 sqlite3ExprDelete(db, p->pWhere); 98 sqlite3ExprListDelete(db, p->pGroupBy); 99 sqlite3ExprDelete(db, p->pHaving); 100 sqlite3ExprListDelete(db, p->pOrderBy); 101 sqlite3ExprDelete(db, p->pLimit); 102 #ifndef SQLITE_OMIT_WINDOWFUNC 103 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 104 sqlite3WindowListDelete(db, p->pWinDefn); 105 } 106 assert( p->pWin==0 ); 107 #endif 108 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 109 if( bFree ) sqlite3DbFreeNN(db, p); 110 p = pPrior; 111 bFree = 1; 112 } 113 } 114 115 /* 116 ** Initialize a SelectDest structure. 117 */ 118 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 119 pDest->eDest = (u8)eDest; 120 pDest->iSDParm = iParm; 121 pDest->zAffSdst = 0; 122 pDest->iSdst = 0; 123 pDest->nSdst = 0; 124 } 125 126 127 /* 128 ** Allocate a new Select structure and return a pointer to that 129 ** structure. 130 */ 131 Select *sqlite3SelectNew( 132 Parse *pParse, /* Parsing context */ 133 ExprList *pEList, /* which columns to include in the result */ 134 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 135 Expr *pWhere, /* the WHERE clause */ 136 ExprList *pGroupBy, /* the GROUP BY clause */ 137 Expr *pHaving, /* the HAVING clause */ 138 ExprList *pOrderBy, /* the ORDER BY clause */ 139 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 140 Expr *pLimit /* LIMIT value. NULL means not used */ 141 ){ 142 Select *pNew; 143 Select standin; 144 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 145 if( pNew==0 ){ 146 assert( pParse->db->mallocFailed ); 147 pNew = &standin; 148 } 149 if( pEList==0 ){ 150 pEList = sqlite3ExprListAppend(pParse, 0, 151 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 152 } 153 pNew->pEList = pEList; 154 pNew->op = TK_SELECT; 155 pNew->selFlags = selFlags; 156 pNew->iLimit = 0; 157 pNew->iOffset = 0; 158 pNew->selId = ++pParse->nSelect; 159 pNew->addrOpenEphm[0] = -1; 160 pNew->addrOpenEphm[1] = -1; 161 pNew->nSelectRow = 0; 162 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 163 pNew->pSrc = pSrc; 164 pNew->pWhere = pWhere; 165 pNew->pGroupBy = pGroupBy; 166 pNew->pHaving = pHaving; 167 pNew->pOrderBy = pOrderBy; 168 pNew->pPrior = 0; 169 pNew->pNext = 0; 170 pNew->pLimit = pLimit; 171 pNew->pWith = 0; 172 #ifndef SQLITE_OMIT_WINDOWFUNC 173 pNew->pWin = 0; 174 pNew->pWinDefn = 0; 175 #endif 176 if( pParse->db->mallocFailed ) { 177 clearSelect(pParse->db, pNew, pNew!=&standin); 178 pNew = 0; 179 }else{ 180 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 181 } 182 assert( pNew!=&standin ); 183 return pNew; 184 } 185 186 187 /* 188 ** Delete the given Select structure and all of its substructures. 189 */ 190 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 191 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 192 } 193 194 /* 195 ** Delete all the substructure for p, but keep p allocated. Redefine 196 ** p to be a single SELECT where every column of the result set has a 197 ** value of NULL. 198 */ 199 void sqlite3SelectReset(Parse *pParse, Select *p){ 200 if( ALWAYS(p) ){ 201 clearSelect(pParse->db, p, 0); 202 memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit)); 203 p->pEList = sqlite3ExprListAppend(pParse, 0, 204 sqlite3ExprAlloc(pParse->db,TK_NULL,0,0)); 205 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList)); 206 } 207 } 208 209 /* 210 ** Return a pointer to the right-most SELECT statement in a compound. 211 */ 212 static Select *findRightmost(Select *p){ 213 while( p->pNext ) p = p->pNext; 214 return p; 215 } 216 217 /* 218 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 219 ** type of join. Return an integer constant that expresses that type 220 ** in terms of the following bit values: 221 ** 222 ** JT_INNER 223 ** JT_CROSS 224 ** JT_OUTER 225 ** JT_NATURAL 226 ** JT_LEFT 227 ** JT_RIGHT 228 ** 229 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 230 ** 231 ** If an illegal or unsupported join type is seen, then still return 232 ** a join type, but put an error in the pParse structure. 233 */ 234 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 235 int jointype = 0; 236 Token *apAll[3]; 237 Token *p; 238 /* 0123456789 123456789 123456789 123 */ 239 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 240 static const struct { 241 u8 i; /* Beginning of keyword text in zKeyText[] */ 242 u8 nChar; /* Length of the keyword in characters */ 243 u8 code; /* Join type mask */ 244 } aKeyword[] = { 245 /* natural */ { 0, 7, JT_NATURAL }, 246 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 247 /* outer */ { 10, 5, JT_OUTER }, 248 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 249 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 250 /* inner */ { 23, 5, JT_INNER }, 251 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 252 }; 253 int i, j; 254 apAll[0] = pA; 255 apAll[1] = pB; 256 apAll[2] = pC; 257 for(i=0; i<3 && apAll[i]; i++){ 258 p = apAll[i]; 259 for(j=0; j<ArraySize(aKeyword); j++){ 260 if( p->n==aKeyword[j].nChar 261 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 262 jointype |= aKeyword[j].code; 263 break; 264 } 265 } 266 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 267 if( j>=ArraySize(aKeyword) ){ 268 jointype |= JT_ERROR; 269 break; 270 } 271 } 272 if( 273 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 274 (jointype & JT_ERROR)!=0 275 ){ 276 const char *zSp = " "; 277 assert( pB!=0 ); 278 if( pC==0 ){ zSp++; } 279 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 280 "%T %T%s%T", pA, pB, zSp, pC); 281 jointype = JT_INNER; 282 }else if( (jointype & JT_OUTER)!=0 283 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 284 sqlite3ErrorMsg(pParse, 285 "RIGHT and FULL OUTER JOINs are not currently supported"); 286 jointype = JT_INNER; 287 } 288 return jointype; 289 } 290 291 /* 292 ** Return the index of a column in a table. Return -1 if the column 293 ** is not contained in the table. 294 */ 295 static int columnIndex(Table *pTab, const char *zCol){ 296 int i; 297 for(i=0; i<pTab->nCol; i++){ 298 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 299 } 300 return -1; 301 } 302 303 /* 304 ** Search the first N tables in pSrc, from left to right, looking for a 305 ** table that has a column named zCol. 306 ** 307 ** When found, set *piTab and *piCol to the table index and column index 308 ** of the matching column and return TRUE. 309 ** 310 ** If not found, return FALSE. 311 */ 312 static int tableAndColumnIndex( 313 SrcList *pSrc, /* Array of tables to search */ 314 int N, /* Number of tables in pSrc->a[] to search */ 315 const char *zCol, /* Name of the column we are looking for */ 316 int *piTab, /* Write index of pSrc->a[] here */ 317 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 318 int bIgnoreHidden /* True to ignore hidden columns */ 319 ){ 320 int i; /* For looping over tables in pSrc */ 321 int iCol; /* Index of column matching zCol */ 322 323 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 324 for(i=0; i<N; i++){ 325 iCol = columnIndex(pSrc->a[i].pTab, zCol); 326 if( iCol>=0 327 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 328 ){ 329 if( piTab ){ 330 *piTab = i; 331 *piCol = iCol; 332 } 333 return 1; 334 } 335 } 336 return 0; 337 } 338 339 /* 340 ** This function is used to add terms implied by JOIN syntax to the 341 ** WHERE clause expression of a SELECT statement. The new term, which 342 ** is ANDed with the existing WHERE clause, is of the form: 343 ** 344 ** (tab1.col1 = tab2.col2) 345 ** 346 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 347 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 348 ** column iColRight of tab2. 349 */ 350 static void addWhereTerm( 351 Parse *pParse, /* Parsing context */ 352 SrcList *pSrc, /* List of tables in FROM clause */ 353 int iLeft, /* Index of first table to join in pSrc */ 354 int iColLeft, /* Index of column in first table */ 355 int iRight, /* Index of second table in pSrc */ 356 int iColRight, /* Index of column in second table */ 357 int isOuterJoin, /* True if this is an OUTER join */ 358 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 359 ){ 360 sqlite3 *db = pParse->db; 361 Expr *pE1; 362 Expr *pE2; 363 Expr *pEq; 364 365 assert( iLeft<iRight ); 366 assert( pSrc->nSrc>iRight ); 367 assert( pSrc->a[iLeft].pTab ); 368 assert( pSrc->a[iRight].pTab ); 369 370 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 371 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 372 373 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 374 if( pEq && isOuterJoin ){ 375 ExprSetProperty(pEq, EP_FromJoin); 376 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 377 ExprSetVVAProperty(pEq, EP_NoReduce); 378 pEq->iRightJoinTable = (i16)pE2->iTable; 379 } 380 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 381 } 382 383 /* 384 ** Set the EP_FromJoin property on all terms of the given expression. 385 ** And set the Expr.iRightJoinTable to iTable for every term in the 386 ** expression. 387 ** 388 ** The EP_FromJoin property is used on terms of an expression to tell 389 ** the LEFT OUTER JOIN processing logic that this term is part of the 390 ** join restriction specified in the ON or USING clause and not a part 391 ** of the more general WHERE clause. These terms are moved over to the 392 ** WHERE clause during join processing but we need to remember that they 393 ** originated in the ON or USING clause. 394 ** 395 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 396 ** expression depends on table iRightJoinTable even if that table is not 397 ** explicitly mentioned in the expression. That information is needed 398 ** for cases like this: 399 ** 400 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 401 ** 402 ** The where clause needs to defer the handling of the t1.x=5 403 ** term until after the t2 loop of the join. In that way, a 404 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 405 ** defer the handling of t1.x=5, it will be processed immediately 406 ** after the t1 loop and rows with t1.x!=5 will never appear in 407 ** the output, which is incorrect. 408 */ 409 void sqlite3SetJoinExpr(Expr *p, int iTable){ 410 while( p ){ 411 ExprSetProperty(p, EP_FromJoin); 412 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 413 ExprSetVVAProperty(p, EP_NoReduce); 414 p->iRightJoinTable = (i16)iTable; 415 if( p->op==TK_FUNCTION && p->x.pList ){ 416 int i; 417 for(i=0; i<p->x.pList->nExpr; i++){ 418 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 419 } 420 } 421 sqlite3SetJoinExpr(p->pLeft, iTable); 422 p = p->pRight; 423 } 424 } 425 426 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 427 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 428 ** an ordinary term that omits the EP_FromJoin mark. 429 ** 430 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 431 */ 432 static void unsetJoinExpr(Expr *p, int iTable){ 433 while( p ){ 434 if( ExprHasProperty(p, EP_FromJoin) 435 && (iTable<0 || p->iRightJoinTable==iTable) ){ 436 ExprClearProperty(p, EP_FromJoin); 437 } 438 if( p->op==TK_FUNCTION && p->x.pList ){ 439 int i; 440 for(i=0; i<p->x.pList->nExpr; i++){ 441 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 442 } 443 } 444 unsetJoinExpr(p->pLeft, iTable); 445 p = p->pRight; 446 } 447 } 448 449 /* 450 ** This routine processes the join information for a SELECT statement. 451 ** ON and USING clauses are converted into extra terms of the WHERE clause. 452 ** NATURAL joins also create extra WHERE clause terms. 453 ** 454 ** The terms of a FROM clause are contained in the Select.pSrc structure. 455 ** The left most table is the first entry in Select.pSrc. The right-most 456 ** table is the last entry. The join operator is held in the entry to 457 ** the left. Thus entry 0 contains the join operator for the join between 458 ** entries 0 and 1. Any ON or USING clauses associated with the join are 459 ** also attached to the left entry. 460 ** 461 ** This routine returns the number of errors encountered. 462 */ 463 static int sqliteProcessJoin(Parse *pParse, Select *p){ 464 SrcList *pSrc; /* All tables in the FROM clause */ 465 int i, j; /* Loop counters */ 466 struct SrcList_item *pLeft; /* Left table being joined */ 467 struct SrcList_item *pRight; /* Right table being joined */ 468 469 pSrc = p->pSrc; 470 pLeft = &pSrc->a[0]; 471 pRight = &pLeft[1]; 472 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 473 Table *pRightTab = pRight->pTab; 474 int isOuter; 475 476 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 477 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 478 479 /* When the NATURAL keyword is present, add WHERE clause terms for 480 ** every column that the two tables have in common. 481 */ 482 if( pRight->fg.jointype & JT_NATURAL ){ 483 if( pRight->pOn || pRight->pUsing ){ 484 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 485 "an ON or USING clause", 0); 486 return 1; 487 } 488 for(j=0; j<pRightTab->nCol; j++){ 489 char *zName; /* Name of column in the right table */ 490 int iLeft; /* Matching left table */ 491 int iLeftCol; /* Matching column in the left table */ 492 493 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 494 zName = pRightTab->aCol[j].zName; 495 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 496 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 497 isOuter, &p->pWhere); 498 } 499 } 500 } 501 502 /* Disallow both ON and USING clauses in the same join 503 */ 504 if( pRight->pOn && pRight->pUsing ){ 505 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 506 "clauses in the same join"); 507 return 1; 508 } 509 510 /* Add the ON clause to the end of the WHERE clause, connected by 511 ** an AND operator. 512 */ 513 if( pRight->pOn ){ 514 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 515 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 516 pRight->pOn = 0; 517 } 518 519 /* Create extra terms on the WHERE clause for each column named 520 ** in the USING clause. Example: If the two tables to be joined are 521 ** A and B and the USING clause names X, Y, and Z, then add this 522 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 523 ** Report an error if any column mentioned in the USING clause is 524 ** not contained in both tables to be joined. 525 */ 526 if( pRight->pUsing ){ 527 IdList *pList = pRight->pUsing; 528 for(j=0; j<pList->nId; j++){ 529 char *zName; /* Name of the term in the USING clause */ 530 int iLeft; /* Table on the left with matching column name */ 531 int iLeftCol; /* Column number of matching column on the left */ 532 int iRightCol; /* Column number of matching column on the right */ 533 534 zName = pList->a[j].zName; 535 iRightCol = columnIndex(pRightTab, zName); 536 if( iRightCol<0 537 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 538 ){ 539 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 540 "not present in both tables", zName); 541 return 1; 542 } 543 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 544 isOuter, &p->pWhere); 545 } 546 } 547 } 548 return 0; 549 } 550 551 /* 552 ** An instance of this object holds information (beyond pParse and pSelect) 553 ** needed to load the next result row that is to be added to the sorter. 554 */ 555 typedef struct RowLoadInfo RowLoadInfo; 556 struct RowLoadInfo { 557 int regResult; /* Store results in array of registers here */ 558 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 559 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 560 ExprList *pExtra; /* Extra columns needed by sorter refs */ 561 int regExtraResult; /* Where to load the extra columns */ 562 #endif 563 }; 564 565 /* 566 ** This routine does the work of loading query data into an array of 567 ** registers so that it can be added to the sorter. 568 */ 569 static void innerLoopLoadRow( 570 Parse *pParse, /* Statement under construction */ 571 Select *pSelect, /* The query being coded */ 572 RowLoadInfo *pInfo /* Info needed to complete the row load */ 573 ){ 574 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 575 0, pInfo->ecelFlags); 576 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 577 if( pInfo->pExtra ){ 578 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 579 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 580 } 581 #endif 582 } 583 584 /* 585 ** Code the OP_MakeRecord instruction that generates the entry to be 586 ** added into the sorter. 587 ** 588 ** Return the register in which the result is stored. 589 */ 590 static int makeSorterRecord( 591 Parse *pParse, 592 SortCtx *pSort, 593 Select *pSelect, 594 int regBase, 595 int nBase 596 ){ 597 int nOBSat = pSort->nOBSat; 598 Vdbe *v = pParse->pVdbe; 599 int regOut = ++pParse->nMem; 600 if( pSort->pDeferredRowLoad ){ 601 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 602 } 603 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 604 return regOut; 605 } 606 607 /* 608 ** Generate code that will push the record in registers regData 609 ** through regData+nData-1 onto the sorter. 610 */ 611 static void pushOntoSorter( 612 Parse *pParse, /* Parser context */ 613 SortCtx *pSort, /* Information about the ORDER BY clause */ 614 Select *pSelect, /* The whole SELECT statement */ 615 int regData, /* First register holding data to be sorted */ 616 int regOrigData, /* First register holding data before packing */ 617 int nData, /* Number of elements in the regData data array */ 618 int nPrefixReg /* No. of reg prior to regData available for use */ 619 ){ 620 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 621 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 622 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 623 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 624 int regBase; /* Regs for sorter record */ 625 int regRecord = 0; /* Assembled sorter record */ 626 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 627 int op; /* Opcode to add sorter record to sorter */ 628 int iLimit; /* LIMIT counter */ 629 int iSkip = 0; /* End of the sorter insert loop */ 630 631 assert( bSeq==0 || bSeq==1 ); 632 633 /* Three cases: 634 ** (1) The data to be sorted has already been packed into a Record 635 ** by a prior OP_MakeRecord. In this case nData==1 and regData 636 ** will be completely unrelated to regOrigData. 637 ** (2) All output columns are included in the sort record. In that 638 ** case regData==regOrigData. 639 ** (3) Some output columns are omitted from the sort record due to 640 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 641 ** SQLITE_ECEL_OMITREF optimization, or due to the 642 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 643 ** regOrigData is 0 to prevent this routine from trying to copy 644 ** values that might not yet exist. 645 */ 646 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 647 648 if( nPrefixReg ){ 649 assert( nPrefixReg==nExpr+bSeq ); 650 regBase = regData - nPrefixReg; 651 }else{ 652 regBase = pParse->nMem + 1; 653 pParse->nMem += nBase; 654 } 655 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 656 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 657 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 658 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 659 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 660 if( bSeq ){ 661 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 662 } 663 if( nPrefixReg==0 && nData>0 ){ 664 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 665 } 666 if( nOBSat>0 ){ 667 int regPrevKey; /* The first nOBSat columns of the previous row */ 668 int addrFirst; /* Address of the OP_IfNot opcode */ 669 int addrJmp; /* Address of the OP_Jump opcode */ 670 VdbeOp *pOp; /* Opcode that opens the sorter */ 671 int nKey; /* Number of sorting key columns, including OP_Sequence */ 672 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 673 674 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 675 regPrevKey = pParse->nMem+1; 676 pParse->nMem += pSort->nOBSat; 677 nKey = nExpr - pSort->nOBSat + bSeq; 678 if( bSeq ){ 679 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 680 }else{ 681 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 682 } 683 VdbeCoverage(v); 684 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 685 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 686 if( pParse->db->mallocFailed ) return; 687 pOp->p2 = nKey + nData; 688 pKI = pOp->p4.pKeyInfo; 689 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 690 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 691 testcase( pKI->nAllField > pKI->nKeyField+2 ); 692 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 693 pKI->nAllField-pKI->nKeyField-1); 694 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 695 addrJmp = sqlite3VdbeCurrentAddr(v); 696 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 697 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 698 pSort->regReturn = ++pParse->nMem; 699 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 700 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 701 if( iLimit ){ 702 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 703 VdbeCoverage(v); 704 } 705 sqlite3VdbeJumpHere(v, addrFirst); 706 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 707 sqlite3VdbeJumpHere(v, addrJmp); 708 } 709 if( iLimit ){ 710 /* At this point the values for the new sorter entry are stored 711 ** in an array of registers. They need to be composed into a record 712 ** and inserted into the sorter if either (a) there are currently 713 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 714 ** the largest record currently in the sorter. If (b) is true and there 715 ** are already LIMIT+OFFSET items in the sorter, delete the largest 716 ** entry before inserting the new one. This way there are never more 717 ** than LIMIT+OFFSET items in the sorter. 718 ** 719 ** If the new record does not need to be inserted into the sorter, 720 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 721 ** value is not zero, then it is a label of where to jump. Otherwise, 722 ** just bypass the row insert logic. See the header comment on the 723 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 724 */ 725 int iCsr = pSort->iECursor; 726 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 727 VdbeCoverage(v); 728 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 729 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 730 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 731 VdbeCoverage(v); 732 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 733 } 734 if( regRecord==0 ){ 735 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 736 } 737 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 738 op = OP_SorterInsert; 739 }else{ 740 op = OP_IdxInsert; 741 } 742 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 743 regBase+nOBSat, nBase-nOBSat); 744 if( iSkip ){ 745 sqlite3VdbeChangeP2(v, iSkip, 746 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 747 } 748 } 749 750 /* 751 ** Add code to implement the OFFSET 752 */ 753 static void codeOffset( 754 Vdbe *v, /* Generate code into this VM */ 755 int iOffset, /* Register holding the offset counter */ 756 int iContinue /* Jump here to skip the current record */ 757 ){ 758 if( iOffset>0 ){ 759 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 760 VdbeComment((v, "OFFSET")); 761 } 762 } 763 764 /* 765 ** Add code that will check to make sure the N registers starting at iMem 766 ** form a distinct entry. iTab is a sorting index that holds previously 767 ** seen combinations of the N values. A new entry is made in iTab 768 ** if the current N values are new. 769 ** 770 ** A jump to addrRepeat is made and the N+1 values are popped from the 771 ** stack if the top N elements are not distinct. 772 */ 773 static void codeDistinct( 774 Parse *pParse, /* Parsing and code generating context */ 775 int iTab, /* A sorting index used to test for distinctness */ 776 int addrRepeat, /* Jump to here if not distinct */ 777 int N, /* Number of elements */ 778 int iMem /* First element */ 779 ){ 780 Vdbe *v; 781 int r1; 782 783 v = pParse->pVdbe; 784 r1 = sqlite3GetTempReg(pParse); 785 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 786 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 787 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 788 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 789 sqlite3ReleaseTempReg(pParse, r1); 790 } 791 792 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 793 /* 794 ** This function is called as part of inner-loop generation for a SELECT 795 ** statement with an ORDER BY that is not optimized by an index. It 796 ** determines the expressions, if any, that the sorter-reference 797 ** optimization should be used for. The sorter-reference optimization 798 ** is used for SELECT queries like: 799 ** 800 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 801 ** 802 ** If the optimization is used for expression "bigblob", then instead of 803 ** storing values read from that column in the sorter records, the PK of 804 ** the row from table t1 is stored instead. Then, as records are extracted from 805 ** the sorter to return to the user, the required value of bigblob is 806 ** retrieved directly from table t1. If the values are very large, this 807 ** can be more efficient than storing them directly in the sorter records. 808 ** 809 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 810 ** for which the sorter-reference optimization should be enabled. 811 ** Additionally, the pSort->aDefer[] array is populated with entries 812 ** for all cursors required to evaluate all selected expressions. Finally. 813 ** output variable (*ppExtra) is set to an expression list containing 814 ** expressions for all extra PK values that should be stored in the 815 ** sorter records. 816 */ 817 static void selectExprDefer( 818 Parse *pParse, /* Leave any error here */ 819 SortCtx *pSort, /* Sorter context */ 820 ExprList *pEList, /* Expressions destined for sorter */ 821 ExprList **ppExtra /* Expressions to append to sorter record */ 822 ){ 823 int i; 824 int nDefer = 0; 825 ExprList *pExtra = 0; 826 for(i=0; i<pEList->nExpr; i++){ 827 struct ExprList_item *pItem = &pEList->a[i]; 828 if( pItem->u.x.iOrderByCol==0 ){ 829 Expr *pExpr = pItem->pExpr; 830 Table *pTab = pExpr->y.pTab; 831 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 832 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 833 ){ 834 int j; 835 for(j=0; j<nDefer; j++){ 836 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 837 } 838 if( j==nDefer ){ 839 if( nDefer==ArraySize(pSort->aDefer) ){ 840 continue; 841 }else{ 842 int nKey = 1; 843 int k; 844 Index *pPk = 0; 845 if( !HasRowid(pTab) ){ 846 pPk = sqlite3PrimaryKeyIndex(pTab); 847 nKey = pPk->nKeyCol; 848 } 849 for(k=0; k<nKey; k++){ 850 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 851 if( pNew ){ 852 pNew->iTable = pExpr->iTable; 853 pNew->y.pTab = pExpr->y.pTab; 854 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 855 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 856 } 857 } 858 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 859 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 860 pSort->aDefer[nDefer].nKey = nKey; 861 nDefer++; 862 } 863 } 864 pItem->bSorterRef = 1; 865 } 866 } 867 } 868 pSort->nDefer = (u8)nDefer; 869 *ppExtra = pExtra; 870 } 871 #endif 872 873 /* 874 ** This routine generates the code for the inside of the inner loop 875 ** of a SELECT. 876 ** 877 ** If srcTab is negative, then the p->pEList expressions 878 ** are evaluated in order to get the data for this row. If srcTab is 879 ** zero or more, then data is pulled from srcTab and p->pEList is used only 880 ** to get the number of columns and the collation sequence for each column. 881 */ 882 static void selectInnerLoop( 883 Parse *pParse, /* The parser context */ 884 Select *p, /* The complete select statement being coded */ 885 int srcTab, /* Pull data from this table if non-negative */ 886 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 887 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 888 SelectDest *pDest, /* How to dispose of the results */ 889 int iContinue, /* Jump here to continue with next row */ 890 int iBreak /* Jump here to break out of the inner loop */ 891 ){ 892 Vdbe *v = pParse->pVdbe; 893 int i; 894 int hasDistinct; /* True if the DISTINCT keyword is present */ 895 int eDest = pDest->eDest; /* How to dispose of results */ 896 int iParm = pDest->iSDParm; /* First argument to disposal method */ 897 int nResultCol; /* Number of result columns */ 898 int nPrefixReg = 0; /* Number of extra registers before regResult */ 899 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 900 901 /* Usually, regResult is the first cell in an array of memory cells 902 ** containing the current result row. In this case regOrig is set to the 903 ** same value. However, if the results are being sent to the sorter, the 904 ** values for any expressions that are also part of the sort-key are omitted 905 ** from this array. In this case regOrig is set to zero. */ 906 int regResult; /* Start of memory holding current results */ 907 int regOrig; /* Start of memory holding full result (or 0) */ 908 909 assert( v ); 910 assert( p->pEList!=0 ); 911 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 912 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 913 if( pSort==0 && !hasDistinct ){ 914 assert( iContinue!=0 ); 915 codeOffset(v, p->iOffset, iContinue); 916 } 917 918 /* Pull the requested columns. 919 */ 920 nResultCol = p->pEList->nExpr; 921 922 if( pDest->iSdst==0 ){ 923 if( pSort ){ 924 nPrefixReg = pSort->pOrderBy->nExpr; 925 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 926 pParse->nMem += nPrefixReg; 927 } 928 pDest->iSdst = pParse->nMem+1; 929 pParse->nMem += nResultCol; 930 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 931 /* This is an error condition that can result, for example, when a SELECT 932 ** on the right-hand side of an INSERT contains more result columns than 933 ** there are columns in the table on the left. The error will be caught 934 ** and reported later. But we need to make sure enough memory is allocated 935 ** to avoid other spurious errors in the meantime. */ 936 pParse->nMem += nResultCol; 937 } 938 pDest->nSdst = nResultCol; 939 regOrig = regResult = pDest->iSdst; 940 if( srcTab>=0 ){ 941 for(i=0; i<nResultCol; i++){ 942 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 943 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 944 } 945 }else if( eDest!=SRT_Exists ){ 946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 947 ExprList *pExtra = 0; 948 #endif 949 /* If the destination is an EXISTS(...) expression, the actual 950 ** values returned by the SELECT are not required. 951 */ 952 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 953 ExprList *pEList; 954 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 955 ecelFlags = SQLITE_ECEL_DUP; 956 }else{ 957 ecelFlags = 0; 958 } 959 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 960 /* For each expression in p->pEList that is a copy of an expression in 961 ** the ORDER BY clause (pSort->pOrderBy), set the associated 962 ** iOrderByCol value to one more than the index of the ORDER BY 963 ** expression within the sort-key that pushOntoSorter() will generate. 964 ** This allows the p->pEList field to be omitted from the sorted record, 965 ** saving space and CPU cycles. */ 966 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 967 968 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 969 int j; 970 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 971 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 972 } 973 } 974 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 975 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 976 if( pExtra && pParse->db->mallocFailed==0 ){ 977 /* If there are any extra PK columns to add to the sorter records, 978 ** allocate extra memory cells and adjust the OpenEphemeral 979 ** instruction to account for the larger records. This is only 980 ** required if there are one or more WITHOUT ROWID tables with 981 ** composite primary keys in the SortCtx.aDefer[] array. */ 982 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 983 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 984 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 985 pParse->nMem += pExtra->nExpr; 986 } 987 #endif 988 989 /* Adjust nResultCol to account for columns that are omitted 990 ** from the sorter by the optimizations in this branch */ 991 pEList = p->pEList; 992 for(i=0; i<pEList->nExpr; i++){ 993 if( pEList->a[i].u.x.iOrderByCol>0 994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 995 || pEList->a[i].bSorterRef 996 #endif 997 ){ 998 nResultCol--; 999 regOrig = 0; 1000 } 1001 } 1002 1003 testcase( regOrig ); 1004 testcase( eDest==SRT_Set ); 1005 testcase( eDest==SRT_Mem ); 1006 testcase( eDest==SRT_Coroutine ); 1007 testcase( eDest==SRT_Output ); 1008 assert( eDest==SRT_Set || eDest==SRT_Mem 1009 || eDest==SRT_Coroutine || eDest==SRT_Output ); 1010 } 1011 sRowLoadInfo.regResult = regResult; 1012 sRowLoadInfo.ecelFlags = ecelFlags; 1013 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1014 sRowLoadInfo.pExtra = pExtra; 1015 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1016 if( pExtra ) nResultCol += pExtra->nExpr; 1017 #endif 1018 if( p->iLimit 1019 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1020 && nPrefixReg>0 1021 ){ 1022 assert( pSort!=0 ); 1023 assert( hasDistinct==0 ); 1024 pSort->pDeferredRowLoad = &sRowLoadInfo; 1025 regOrig = 0; 1026 }else{ 1027 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1028 } 1029 } 1030 1031 /* If the DISTINCT keyword was present on the SELECT statement 1032 ** and this row has been seen before, then do not make this row 1033 ** part of the result. 1034 */ 1035 if( hasDistinct ){ 1036 switch( pDistinct->eTnctType ){ 1037 case WHERE_DISTINCT_ORDERED: { 1038 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1039 int iJump; /* Jump destination */ 1040 int regPrev; /* Previous row content */ 1041 1042 /* Allocate space for the previous row */ 1043 regPrev = pParse->nMem+1; 1044 pParse->nMem += nResultCol; 1045 1046 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1047 ** sets the MEM_Cleared bit on the first register of the 1048 ** previous value. This will cause the OP_Ne below to always 1049 ** fail on the first iteration of the loop even if the first 1050 ** row is all NULLs. 1051 */ 1052 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1053 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1054 pOp->opcode = OP_Null; 1055 pOp->p1 = 1; 1056 pOp->p2 = regPrev; 1057 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1058 1059 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1060 for(i=0; i<nResultCol; i++){ 1061 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1062 if( i<nResultCol-1 ){ 1063 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1064 VdbeCoverage(v); 1065 }else{ 1066 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1067 VdbeCoverage(v); 1068 } 1069 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1070 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1071 } 1072 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1073 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1074 break; 1075 } 1076 1077 case WHERE_DISTINCT_UNIQUE: { 1078 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1079 break; 1080 } 1081 1082 default: { 1083 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1084 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1085 regResult); 1086 break; 1087 } 1088 } 1089 if( pSort==0 ){ 1090 codeOffset(v, p->iOffset, iContinue); 1091 } 1092 } 1093 1094 switch( eDest ){ 1095 /* In this mode, write each query result to the key of the temporary 1096 ** table iParm. 1097 */ 1098 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1099 case SRT_Union: { 1100 int r1; 1101 r1 = sqlite3GetTempReg(pParse); 1102 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1103 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1104 sqlite3ReleaseTempReg(pParse, r1); 1105 break; 1106 } 1107 1108 /* Construct a record from the query result, but instead of 1109 ** saving that record, use it as a key to delete elements from 1110 ** the temporary table iParm. 1111 */ 1112 case SRT_Except: { 1113 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1114 break; 1115 } 1116 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1117 1118 /* Store the result as data using a unique key. 1119 */ 1120 case SRT_Fifo: 1121 case SRT_DistFifo: 1122 case SRT_Table: 1123 case SRT_EphemTab: { 1124 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1125 testcase( eDest==SRT_Table ); 1126 testcase( eDest==SRT_EphemTab ); 1127 testcase( eDest==SRT_Fifo ); 1128 testcase( eDest==SRT_DistFifo ); 1129 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1130 #ifndef SQLITE_OMIT_CTE 1131 if( eDest==SRT_DistFifo ){ 1132 /* If the destination is DistFifo, then cursor (iParm+1) is open 1133 ** on an ephemeral index. If the current row is already present 1134 ** in the index, do not write it to the output. If not, add the 1135 ** current row to the index and proceed with writing it to the 1136 ** output table as well. */ 1137 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1138 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1139 VdbeCoverage(v); 1140 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1141 assert( pSort==0 ); 1142 } 1143 #endif 1144 if( pSort ){ 1145 assert( regResult==regOrig ); 1146 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1147 }else{ 1148 int r2 = sqlite3GetTempReg(pParse); 1149 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1150 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1151 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1152 sqlite3ReleaseTempReg(pParse, r2); 1153 } 1154 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1155 break; 1156 } 1157 1158 #ifndef SQLITE_OMIT_SUBQUERY 1159 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1160 ** then there should be a single item on the stack. Write this 1161 ** item into the set table with bogus data. 1162 */ 1163 case SRT_Set: { 1164 if( pSort ){ 1165 /* At first glance you would think we could optimize out the 1166 ** ORDER BY in this case since the order of entries in the set 1167 ** does not matter. But there might be a LIMIT clause, in which 1168 ** case the order does matter */ 1169 pushOntoSorter( 1170 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1171 }else{ 1172 int r1 = sqlite3GetTempReg(pParse); 1173 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1174 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1175 r1, pDest->zAffSdst, nResultCol); 1176 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1177 sqlite3ReleaseTempReg(pParse, r1); 1178 } 1179 break; 1180 } 1181 1182 /* If any row exist in the result set, record that fact and abort. 1183 */ 1184 case SRT_Exists: { 1185 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1186 /* The LIMIT clause will terminate the loop for us */ 1187 break; 1188 } 1189 1190 /* If this is a scalar select that is part of an expression, then 1191 ** store the results in the appropriate memory cell or array of 1192 ** memory cells and break out of the scan loop. 1193 */ 1194 case SRT_Mem: { 1195 if( pSort ){ 1196 assert( nResultCol<=pDest->nSdst ); 1197 pushOntoSorter( 1198 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1199 }else{ 1200 assert( nResultCol==pDest->nSdst ); 1201 assert( regResult==iParm ); 1202 /* The LIMIT clause will jump out of the loop for us */ 1203 } 1204 break; 1205 } 1206 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1207 1208 case SRT_Coroutine: /* Send data to a co-routine */ 1209 case SRT_Output: { /* Return the results */ 1210 testcase( eDest==SRT_Coroutine ); 1211 testcase( eDest==SRT_Output ); 1212 if( pSort ){ 1213 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1214 nPrefixReg); 1215 }else if( eDest==SRT_Coroutine ){ 1216 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1217 }else{ 1218 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1219 } 1220 break; 1221 } 1222 1223 #ifndef SQLITE_OMIT_CTE 1224 /* Write the results into a priority queue that is order according to 1225 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1226 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1227 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1228 ** final OP_Sequence column. The last column is the record as a blob. 1229 */ 1230 case SRT_DistQueue: 1231 case SRT_Queue: { 1232 int nKey; 1233 int r1, r2, r3; 1234 int addrTest = 0; 1235 ExprList *pSO; 1236 pSO = pDest->pOrderBy; 1237 assert( pSO ); 1238 nKey = pSO->nExpr; 1239 r1 = sqlite3GetTempReg(pParse); 1240 r2 = sqlite3GetTempRange(pParse, nKey+2); 1241 r3 = r2+nKey+1; 1242 if( eDest==SRT_DistQueue ){ 1243 /* If the destination is DistQueue, then cursor (iParm+1) is open 1244 ** on a second ephemeral index that holds all values every previously 1245 ** added to the queue. */ 1246 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1247 regResult, nResultCol); 1248 VdbeCoverage(v); 1249 } 1250 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1251 if( eDest==SRT_DistQueue ){ 1252 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1253 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1254 } 1255 for(i=0; i<nKey; i++){ 1256 sqlite3VdbeAddOp2(v, OP_SCopy, 1257 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1258 r2+i); 1259 } 1260 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1261 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1262 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1263 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1264 sqlite3ReleaseTempReg(pParse, r1); 1265 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1266 break; 1267 } 1268 #endif /* SQLITE_OMIT_CTE */ 1269 1270 1271 1272 #if !defined(SQLITE_OMIT_TRIGGER) 1273 /* Discard the results. This is used for SELECT statements inside 1274 ** the body of a TRIGGER. The purpose of such selects is to call 1275 ** user-defined functions that have side effects. We do not care 1276 ** about the actual results of the select. 1277 */ 1278 default: { 1279 assert( eDest==SRT_Discard ); 1280 break; 1281 } 1282 #endif 1283 } 1284 1285 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1286 ** there is a sorter, in which case the sorter has already limited 1287 ** the output for us. 1288 */ 1289 if( pSort==0 && p->iLimit ){ 1290 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1291 } 1292 } 1293 1294 /* 1295 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1296 ** X extra columns. 1297 */ 1298 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1299 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1300 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1301 if( p ){ 1302 p->aSortFlags = (u8*)&p->aColl[N+X]; 1303 p->nKeyField = (u16)N; 1304 p->nAllField = (u16)(N+X); 1305 p->enc = ENC(db); 1306 p->db = db; 1307 p->nRef = 1; 1308 memset(&p[1], 0, nExtra); 1309 }else{ 1310 sqlite3OomFault(db); 1311 } 1312 return p; 1313 } 1314 1315 /* 1316 ** Deallocate a KeyInfo object 1317 */ 1318 void sqlite3KeyInfoUnref(KeyInfo *p){ 1319 if( p ){ 1320 assert( p->nRef>0 ); 1321 p->nRef--; 1322 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1323 } 1324 } 1325 1326 /* 1327 ** Make a new pointer to a KeyInfo object 1328 */ 1329 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1330 if( p ){ 1331 assert( p->nRef>0 ); 1332 p->nRef++; 1333 } 1334 return p; 1335 } 1336 1337 #ifdef SQLITE_DEBUG 1338 /* 1339 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1340 ** can only be changed if this is just a single reference to the object. 1341 ** 1342 ** This routine is used only inside of assert() statements. 1343 */ 1344 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1345 #endif /* SQLITE_DEBUG */ 1346 1347 /* 1348 ** Given an expression list, generate a KeyInfo structure that records 1349 ** the collating sequence for each expression in that expression list. 1350 ** 1351 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1352 ** KeyInfo structure is appropriate for initializing a virtual index to 1353 ** implement that clause. If the ExprList is the result set of a SELECT 1354 ** then the KeyInfo structure is appropriate for initializing a virtual 1355 ** index to implement a DISTINCT test. 1356 ** 1357 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1358 ** function is responsible for seeing that this structure is eventually 1359 ** freed. 1360 */ 1361 KeyInfo *sqlite3KeyInfoFromExprList( 1362 Parse *pParse, /* Parsing context */ 1363 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1364 int iStart, /* Begin with this column of pList */ 1365 int nExtra /* Add this many extra columns to the end */ 1366 ){ 1367 int nExpr; 1368 KeyInfo *pInfo; 1369 struct ExprList_item *pItem; 1370 sqlite3 *db = pParse->db; 1371 int i; 1372 1373 nExpr = pList->nExpr; 1374 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1375 if( pInfo ){ 1376 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1377 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1378 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1379 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1380 } 1381 } 1382 return pInfo; 1383 } 1384 1385 /* 1386 ** Name of the connection operator, used for error messages. 1387 */ 1388 static const char *selectOpName(int id){ 1389 char *z; 1390 switch( id ){ 1391 case TK_ALL: z = "UNION ALL"; break; 1392 case TK_INTERSECT: z = "INTERSECT"; break; 1393 case TK_EXCEPT: z = "EXCEPT"; break; 1394 default: z = "UNION"; break; 1395 } 1396 return z; 1397 } 1398 1399 #ifndef SQLITE_OMIT_EXPLAIN 1400 /* 1401 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1402 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1403 ** where the caption is of the form: 1404 ** 1405 ** "USE TEMP B-TREE FOR xxx" 1406 ** 1407 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1408 ** is determined by the zUsage argument. 1409 */ 1410 static void explainTempTable(Parse *pParse, const char *zUsage){ 1411 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1412 } 1413 1414 /* 1415 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1416 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1417 ** in sqlite3Select() to assign values to structure member variables that 1418 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1419 ** code with #ifndef directives. 1420 */ 1421 # define explainSetInteger(a, b) a = b 1422 1423 #else 1424 /* No-op versions of the explainXXX() functions and macros. */ 1425 # define explainTempTable(y,z) 1426 # define explainSetInteger(y,z) 1427 #endif 1428 1429 1430 /* 1431 ** If the inner loop was generated using a non-null pOrderBy argument, 1432 ** then the results were placed in a sorter. After the loop is terminated 1433 ** we need to run the sorter and output the results. The following 1434 ** routine generates the code needed to do that. 1435 */ 1436 static void generateSortTail( 1437 Parse *pParse, /* Parsing context */ 1438 Select *p, /* The SELECT statement */ 1439 SortCtx *pSort, /* Information on the ORDER BY clause */ 1440 int nColumn, /* Number of columns of data */ 1441 SelectDest *pDest /* Write the sorted results here */ 1442 ){ 1443 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1444 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1445 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1446 int addr; /* Top of output loop. Jump for Next. */ 1447 int addrOnce = 0; 1448 int iTab; 1449 ExprList *pOrderBy = pSort->pOrderBy; 1450 int eDest = pDest->eDest; 1451 int iParm = pDest->iSDParm; 1452 int regRow; 1453 int regRowid; 1454 int iCol; 1455 int nKey; /* Number of key columns in sorter record */ 1456 int iSortTab; /* Sorter cursor to read from */ 1457 int i; 1458 int bSeq; /* True if sorter record includes seq. no. */ 1459 int nRefKey = 0; 1460 struct ExprList_item *aOutEx = p->pEList->a; 1461 1462 assert( addrBreak<0 ); 1463 if( pSort->labelBkOut ){ 1464 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1465 sqlite3VdbeGoto(v, addrBreak); 1466 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1467 } 1468 1469 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1470 /* Open any cursors needed for sorter-reference expressions */ 1471 for(i=0; i<pSort->nDefer; i++){ 1472 Table *pTab = pSort->aDefer[i].pTab; 1473 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1474 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1475 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1476 } 1477 #endif 1478 1479 iTab = pSort->iECursor; 1480 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1481 regRowid = 0; 1482 regRow = pDest->iSdst; 1483 }else{ 1484 regRowid = sqlite3GetTempReg(pParse); 1485 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1486 regRow = sqlite3GetTempReg(pParse); 1487 nColumn = 0; 1488 }else{ 1489 regRow = sqlite3GetTempRange(pParse, nColumn); 1490 } 1491 } 1492 nKey = pOrderBy->nExpr - pSort->nOBSat; 1493 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1494 int regSortOut = ++pParse->nMem; 1495 iSortTab = pParse->nTab++; 1496 if( pSort->labelBkOut ){ 1497 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1498 } 1499 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1500 nKey+1+nColumn+nRefKey); 1501 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1502 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1503 VdbeCoverage(v); 1504 codeOffset(v, p->iOffset, addrContinue); 1505 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1506 bSeq = 0; 1507 }else{ 1508 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1509 codeOffset(v, p->iOffset, addrContinue); 1510 iSortTab = iTab; 1511 bSeq = 1; 1512 } 1513 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1514 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1515 if( aOutEx[i].bSorterRef ) continue; 1516 #endif 1517 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1518 } 1519 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1520 if( pSort->nDefer ){ 1521 int iKey = iCol+1; 1522 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1523 1524 for(i=0; i<pSort->nDefer; i++){ 1525 int iCsr = pSort->aDefer[i].iCsr; 1526 Table *pTab = pSort->aDefer[i].pTab; 1527 int nKey = pSort->aDefer[i].nKey; 1528 1529 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1530 if( HasRowid(pTab) ){ 1531 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1532 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1533 sqlite3VdbeCurrentAddr(v)+1, regKey); 1534 }else{ 1535 int k; 1536 int iJmp; 1537 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1538 for(k=0; k<nKey; k++){ 1539 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1540 } 1541 iJmp = sqlite3VdbeCurrentAddr(v); 1542 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1543 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1544 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1545 } 1546 } 1547 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1548 } 1549 #endif 1550 for(i=nColumn-1; i>=0; i--){ 1551 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1552 if( aOutEx[i].bSorterRef ){ 1553 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1554 }else 1555 #endif 1556 { 1557 int iRead; 1558 if( aOutEx[i].u.x.iOrderByCol ){ 1559 iRead = aOutEx[i].u.x.iOrderByCol-1; 1560 }else{ 1561 iRead = iCol--; 1562 } 1563 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1564 VdbeComment((v, "%s", aOutEx[i].zEName)); 1565 } 1566 } 1567 switch( eDest ){ 1568 case SRT_Table: 1569 case SRT_EphemTab: { 1570 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1571 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1572 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1573 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1574 break; 1575 } 1576 #ifndef SQLITE_OMIT_SUBQUERY 1577 case SRT_Set: { 1578 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1579 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1580 pDest->zAffSdst, nColumn); 1581 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1582 break; 1583 } 1584 case SRT_Mem: { 1585 /* The LIMIT clause will terminate the loop for us */ 1586 break; 1587 } 1588 #endif 1589 default: { 1590 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1591 testcase( eDest==SRT_Output ); 1592 testcase( eDest==SRT_Coroutine ); 1593 if( eDest==SRT_Output ){ 1594 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1595 }else{ 1596 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1597 } 1598 break; 1599 } 1600 } 1601 if( regRowid ){ 1602 if( eDest==SRT_Set ){ 1603 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1604 }else{ 1605 sqlite3ReleaseTempReg(pParse, regRow); 1606 } 1607 sqlite3ReleaseTempReg(pParse, regRowid); 1608 } 1609 /* The bottom of the loop 1610 */ 1611 sqlite3VdbeResolveLabel(v, addrContinue); 1612 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1613 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1614 }else{ 1615 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1616 } 1617 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1618 sqlite3VdbeResolveLabel(v, addrBreak); 1619 } 1620 1621 /* 1622 ** Return a pointer to a string containing the 'declaration type' of the 1623 ** expression pExpr. The string may be treated as static by the caller. 1624 ** 1625 ** Also try to estimate the size of the returned value and return that 1626 ** result in *pEstWidth. 1627 ** 1628 ** The declaration type is the exact datatype definition extracted from the 1629 ** original CREATE TABLE statement if the expression is a column. The 1630 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1631 ** is considered a column can be complex in the presence of subqueries. The 1632 ** result-set expression in all of the following SELECT statements is 1633 ** considered a column by this function. 1634 ** 1635 ** SELECT col FROM tbl; 1636 ** SELECT (SELECT col FROM tbl; 1637 ** SELECT (SELECT col FROM tbl); 1638 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1639 ** 1640 ** The declaration type for any expression other than a column is NULL. 1641 ** 1642 ** This routine has either 3 or 6 parameters depending on whether or not 1643 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1644 */ 1645 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1646 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1647 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1648 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1649 #endif 1650 static const char *columnTypeImpl( 1651 NameContext *pNC, 1652 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1653 Expr *pExpr 1654 #else 1655 Expr *pExpr, 1656 const char **pzOrigDb, 1657 const char **pzOrigTab, 1658 const char **pzOrigCol 1659 #endif 1660 ){ 1661 char const *zType = 0; 1662 int j; 1663 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1664 char const *zOrigDb = 0; 1665 char const *zOrigTab = 0; 1666 char const *zOrigCol = 0; 1667 #endif 1668 1669 assert( pExpr!=0 ); 1670 assert( pNC->pSrcList!=0 ); 1671 switch( pExpr->op ){ 1672 case TK_COLUMN: { 1673 /* The expression is a column. Locate the table the column is being 1674 ** extracted from in NameContext.pSrcList. This table may be real 1675 ** database table or a subquery. 1676 */ 1677 Table *pTab = 0; /* Table structure column is extracted from */ 1678 Select *pS = 0; /* Select the column is extracted from */ 1679 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1680 while( pNC && !pTab ){ 1681 SrcList *pTabList = pNC->pSrcList; 1682 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1683 if( j<pTabList->nSrc ){ 1684 pTab = pTabList->a[j].pTab; 1685 pS = pTabList->a[j].pSelect; 1686 }else{ 1687 pNC = pNC->pNext; 1688 } 1689 } 1690 1691 if( pTab==0 ){ 1692 /* At one time, code such as "SELECT new.x" within a trigger would 1693 ** cause this condition to run. Since then, we have restructured how 1694 ** trigger code is generated and so this condition is no longer 1695 ** possible. However, it can still be true for statements like 1696 ** the following: 1697 ** 1698 ** CREATE TABLE t1(col INTEGER); 1699 ** SELECT (SELECT t1.col) FROM FROM t1; 1700 ** 1701 ** when columnType() is called on the expression "t1.col" in the 1702 ** sub-select. In this case, set the column type to NULL, even 1703 ** though it should really be "INTEGER". 1704 ** 1705 ** This is not a problem, as the column type of "t1.col" is never 1706 ** used. When columnType() is called on the expression 1707 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1708 ** branch below. */ 1709 break; 1710 } 1711 1712 assert( pTab && pExpr->y.pTab==pTab ); 1713 if( pS ){ 1714 /* The "table" is actually a sub-select or a view in the FROM clause 1715 ** of the SELECT statement. Return the declaration type and origin 1716 ** data for the result-set column of the sub-select. 1717 */ 1718 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1719 /* If iCol is less than zero, then the expression requests the 1720 ** rowid of the sub-select or view. This expression is legal (see 1721 ** test case misc2.2.2) - it always evaluates to NULL. 1722 */ 1723 NameContext sNC; 1724 Expr *p = pS->pEList->a[iCol].pExpr; 1725 sNC.pSrcList = pS->pSrc; 1726 sNC.pNext = pNC; 1727 sNC.pParse = pNC->pParse; 1728 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1729 } 1730 }else{ 1731 /* A real table or a CTE table */ 1732 assert( !pS ); 1733 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1734 if( iCol<0 ) iCol = pTab->iPKey; 1735 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1736 if( iCol<0 ){ 1737 zType = "INTEGER"; 1738 zOrigCol = "rowid"; 1739 }else{ 1740 zOrigCol = pTab->aCol[iCol].zName; 1741 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1742 } 1743 zOrigTab = pTab->zName; 1744 if( pNC->pParse && pTab->pSchema ){ 1745 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1746 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1747 } 1748 #else 1749 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1750 if( iCol<0 ){ 1751 zType = "INTEGER"; 1752 }else{ 1753 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1754 } 1755 #endif 1756 } 1757 break; 1758 } 1759 #ifndef SQLITE_OMIT_SUBQUERY 1760 case TK_SELECT: { 1761 /* The expression is a sub-select. Return the declaration type and 1762 ** origin info for the single column in the result set of the SELECT 1763 ** statement. 1764 */ 1765 NameContext sNC; 1766 Select *pS = pExpr->x.pSelect; 1767 Expr *p = pS->pEList->a[0].pExpr; 1768 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1769 sNC.pSrcList = pS->pSrc; 1770 sNC.pNext = pNC; 1771 sNC.pParse = pNC->pParse; 1772 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1773 break; 1774 } 1775 #endif 1776 } 1777 1778 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1779 if( pzOrigDb ){ 1780 assert( pzOrigTab && pzOrigCol ); 1781 *pzOrigDb = zOrigDb; 1782 *pzOrigTab = zOrigTab; 1783 *pzOrigCol = zOrigCol; 1784 } 1785 #endif 1786 return zType; 1787 } 1788 1789 /* 1790 ** Generate code that will tell the VDBE the declaration types of columns 1791 ** in the result set. 1792 */ 1793 static void generateColumnTypes( 1794 Parse *pParse, /* Parser context */ 1795 SrcList *pTabList, /* List of tables */ 1796 ExprList *pEList /* Expressions defining the result set */ 1797 ){ 1798 #ifndef SQLITE_OMIT_DECLTYPE 1799 Vdbe *v = pParse->pVdbe; 1800 int i; 1801 NameContext sNC; 1802 sNC.pSrcList = pTabList; 1803 sNC.pParse = pParse; 1804 sNC.pNext = 0; 1805 for(i=0; i<pEList->nExpr; i++){ 1806 Expr *p = pEList->a[i].pExpr; 1807 const char *zType; 1808 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1809 const char *zOrigDb = 0; 1810 const char *zOrigTab = 0; 1811 const char *zOrigCol = 0; 1812 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1813 1814 /* The vdbe must make its own copy of the column-type and other 1815 ** column specific strings, in case the schema is reset before this 1816 ** virtual machine is deleted. 1817 */ 1818 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1819 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1820 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1821 #else 1822 zType = columnType(&sNC, p, 0, 0, 0); 1823 #endif 1824 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1825 } 1826 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1827 } 1828 1829 1830 /* 1831 ** Compute the column names for a SELECT statement. 1832 ** 1833 ** The only guarantee that SQLite makes about column names is that if the 1834 ** column has an AS clause assigning it a name, that will be the name used. 1835 ** That is the only documented guarantee. However, countless applications 1836 ** developed over the years have made baseless assumptions about column names 1837 ** and will break if those assumptions changes. Hence, use extreme caution 1838 ** when modifying this routine to avoid breaking legacy. 1839 ** 1840 ** See Also: sqlite3ColumnsFromExprList() 1841 ** 1842 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1843 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1844 ** applications should operate this way. Nevertheless, we need to support the 1845 ** other modes for legacy: 1846 ** 1847 ** short=OFF, full=OFF: Column name is the text of the expression has it 1848 ** originally appears in the SELECT statement. In 1849 ** other words, the zSpan of the result expression. 1850 ** 1851 ** short=ON, full=OFF: (This is the default setting). If the result 1852 ** refers directly to a table column, then the 1853 ** result column name is just the table column 1854 ** name: COLUMN. Otherwise use zSpan. 1855 ** 1856 ** full=ON, short=ANY: If the result refers directly to a table column, 1857 ** then the result column name with the table name 1858 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1859 */ 1860 static void generateColumnNames( 1861 Parse *pParse, /* Parser context */ 1862 Select *pSelect /* Generate column names for this SELECT statement */ 1863 ){ 1864 Vdbe *v = pParse->pVdbe; 1865 int i; 1866 Table *pTab; 1867 SrcList *pTabList; 1868 ExprList *pEList; 1869 sqlite3 *db = pParse->db; 1870 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1871 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1872 1873 #ifndef SQLITE_OMIT_EXPLAIN 1874 /* If this is an EXPLAIN, skip this step */ 1875 if( pParse->explain ){ 1876 return; 1877 } 1878 #endif 1879 1880 if( pParse->colNamesSet ) return; 1881 /* Column names are determined by the left-most term of a compound select */ 1882 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1883 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1884 pTabList = pSelect->pSrc; 1885 pEList = pSelect->pEList; 1886 assert( v!=0 ); 1887 assert( pTabList!=0 ); 1888 pParse->colNamesSet = 1; 1889 fullName = (db->flags & SQLITE_FullColNames)!=0; 1890 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1891 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1892 for(i=0; i<pEList->nExpr; i++){ 1893 Expr *p = pEList->a[i].pExpr; 1894 1895 assert( p!=0 ); 1896 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1897 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1898 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1899 /* An AS clause always takes first priority */ 1900 char *zName = pEList->a[i].zEName; 1901 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1902 }else if( srcName && p->op==TK_COLUMN ){ 1903 char *zCol; 1904 int iCol = p->iColumn; 1905 pTab = p->y.pTab; 1906 assert( pTab!=0 ); 1907 if( iCol<0 ) iCol = pTab->iPKey; 1908 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1909 if( iCol<0 ){ 1910 zCol = "rowid"; 1911 }else{ 1912 zCol = pTab->aCol[iCol].zName; 1913 } 1914 if( fullName ){ 1915 char *zName = 0; 1916 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1917 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1918 }else{ 1919 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1920 } 1921 }else{ 1922 const char *z = pEList->a[i].zEName; 1923 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1924 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1925 } 1926 } 1927 generateColumnTypes(pParse, pTabList, pEList); 1928 } 1929 1930 /* 1931 ** Given an expression list (which is really the list of expressions 1932 ** that form the result set of a SELECT statement) compute appropriate 1933 ** column names for a table that would hold the expression list. 1934 ** 1935 ** All column names will be unique. 1936 ** 1937 ** Only the column names are computed. Column.zType, Column.zColl, 1938 ** and other fields of Column are zeroed. 1939 ** 1940 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1941 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1942 ** 1943 ** The only guarantee that SQLite makes about column names is that if the 1944 ** column has an AS clause assigning it a name, that will be the name used. 1945 ** That is the only documented guarantee. However, countless applications 1946 ** developed over the years have made baseless assumptions about column names 1947 ** and will break if those assumptions changes. Hence, use extreme caution 1948 ** when modifying this routine to avoid breaking legacy. 1949 ** 1950 ** See Also: generateColumnNames() 1951 */ 1952 int sqlite3ColumnsFromExprList( 1953 Parse *pParse, /* Parsing context */ 1954 ExprList *pEList, /* Expr list from which to derive column names */ 1955 i16 *pnCol, /* Write the number of columns here */ 1956 Column **paCol /* Write the new column list here */ 1957 ){ 1958 sqlite3 *db = pParse->db; /* Database connection */ 1959 int i, j; /* Loop counters */ 1960 u32 cnt; /* Index added to make the name unique */ 1961 Column *aCol, *pCol; /* For looping over result columns */ 1962 int nCol; /* Number of columns in the result set */ 1963 char *zName; /* Column name */ 1964 int nName; /* Size of name in zName[] */ 1965 Hash ht; /* Hash table of column names */ 1966 1967 sqlite3HashInit(&ht); 1968 if( pEList ){ 1969 nCol = pEList->nExpr; 1970 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1971 testcase( aCol==0 ); 1972 if( nCol>32767 ) nCol = 32767; 1973 }else{ 1974 nCol = 0; 1975 aCol = 0; 1976 } 1977 assert( nCol==(i16)nCol ); 1978 *pnCol = nCol; 1979 *paCol = aCol; 1980 1981 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1982 /* Get an appropriate name for the column 1983 */ 1984 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 1985 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1986 }else{ 1987 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1988 while( pColExpr->op==TK_DOT ){ 1989 pColExpr = pColExpr->pRight; 1990 assert( pColExpr!=0 ); 1991 } 1992 if( pColExpr->op==TK_COLUMN ){ 1993 /* For columns use the column name name */ 1994 int iCol = pColExpr->iColumn; 1995 Table *pTab = pColExpr->y.pTab; 1996 assert( pTab!=0 ); 1997 if( iCol<0 ) iCol = pTab->iPKey; 1998 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1999 }else if( pColExpr->op==TK_ID ){ 2000 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2001 zName = pColExpr->u.zToken; 2002 }else{ 2003 /* Use the original text of the column expression as its name */ 2004 zName = pEList->a[i].zEName; 2005 } 2006 } 2007 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2008 zName = sqlite3DbStrDup(db, zName); 2009 }else{ 2010 zName = sqlite3MPrintf(db,"column%d",i+1); 2011 } 2012 2013 /* Make sure the column name is unique. If the name is not unique, 2014 ** append an integer to the name so that it becomes unique. 2015 */ 2016 cnt = 0; 2017 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2018 nName = sqlite3Strlen30(zName); 2019 if( nName>0 ){ 2020 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2021 if( zName[j]==':' ) nName = j; 2022 } 2023 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2024 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2025 } 2026 pCol->zName = zName; 2027 sqlite3ColumnPropertiesFromName(0, pCol); 2028 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2029 sqlite3OomFault(db); 2030 } 2031 } 2032 sqlite3HashClear(&ht); 2033 if( db->mallocFailed ){ 2034 for(j=0; j<i; j++){ 2035 sqlite3DbFree(db, aCol[j].zName); 2036 } 2037 sqlite3DbFree(db, aCol); 2038 *paCol = 0; 2039 *pnCol = 0; 2040 return SQLITE_NOMEM_BKPT; 2041 } 2042 return SQLITE_OK; 2043 } 2044 2045 /* 2046 ** Add type and collation information to a column list based on 2047 ** a SELECT statement. 2048 ** 2049 ** The column list presumably came from selectColumnNamesFromExprList(). 2050 ** The column list has only names, not types or collations. This 2051 ** routine goes through and adds the types and collations. 2052 ** 2053 ** This routine requires that all identifiers in the SELECT 2054 ** statement be resolved. 2055 */ 2056 void sqlite3SelectAddColumnTypeAndCollation( 2057 Parse *pParse, /* Parsing contexts */ 2058 Table *pTab, /* Add column type information to this table */ 2059 Select *pSelect, /* SELECT used to determine types and collations */ 2060 char aff /* Default affinity for columns */ 2061 ){ 2062 sqlite3 *db = pParse->db; 2063 NameContext sNC; 2064 Column *pCol; 2065 CollSeq *pColl; 2066 int i; 2067 Expr *p; 2068 struct ExprList_item *a; 2069 2070 assert( pSelect!=0 ); 2071 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2072 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2073 if( db->mallocFailed ) return; 2074 memset(&sNC, 0, sizeof(sNC)); 2075 sNC.pSrcList = pSelect->pSrc; 2076 a = pSelect->pEList->a; 2077 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2078 const char *zType; 2079 int n, m; 2080 p = a[i].pExpr; 2081 zType = columnType(&sNC, p, 0, 0, 0); 2082 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2083 pCol->affinity = sqlite3ExprAffinity(p); 2084 if( zType ){ 2085 m = sqlite3Strlen30(zType); 2086 n = sqlite3Strlen30(pCol->zName); 2087 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2088 if( pCol->zName ){ 2089 memcpy(&pCol->zName[n+1], zType, m+1); 2090 pCol->colFlags |= COLFLAG_HASTYPE; 2091 } 2092 } 2093 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2094 pColl = sqlite3ExprCollSeq(pParse, p); 2095 if( pColl && pCol->zColl==0 ){ 2096 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2097 } 2098 } 2099 pTab->szTabRow = 1; /* Any non-zero value works */ 2100 } 2101 2102 /* 2103 ** Given a SELECT statement, generate a Table structure that describes 2104 ** the result set of that SELECT. 2105 */ 2106 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2107 Table *pTab; 2108 sqlite3 *db = pParse->db; 2109 u64 savedFlags; 2110 2111 savedFlags = db->flags; 2112 db->flags &= ~(u64)SQLITE_FullColNames; 2113 db->flags |= SQLITE_ShortColNames; 2114 sqlite3SelectPrep(pParse, pSelect, 0); 2115 db->flags = savedFlags; 2116 if( pParse->nErr ) return 0; 2117 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2118 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2119 if( pTab==0 ){ 2120 return 0; 2121 } 2122 pTab->nTabRef = 1; 2123 pTab->zName = 0; 2124 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2125 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2126 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2127 pTab->iPKey = -1; 2128 if( db->mallocFailed ){ 2129 sqlite3DeleteTable(db, pTab); 2130 return 0; 2131 } 2132 return pTab; 2133 } 2134 2135 /* 2136 ** Get a VDBE for the given parser context. Create a new one if necessary. 2137 ** If an error occurs, return NULL and leave a message in pParse. 2138 */ 2139 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2140 if( pParse->pVdbe ){ 2141 return pParse->pVdbe; 2142 } 2143 if( pParse->pToplevel==0 2144 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2145 ){ 2146 pParse->okConstFactor = 1; 2147 } 2148 return sqlite3VdbeCreate(pParse); 2149 } 2150 2151 2152 /* 2153 ** Compute the iLimit and iOffset fields of the SELECT based on the 2154 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2155 ** that appear in the original SQL statement after the LIMIT and OFFSET 2156 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2157 ** are the integer memory register numbers for counters used to compute 2158 ** the limit and offset. If there is no limit and/or offset, then 2159 ** iLimit and iOffset are negative. 2160 ** 2161 ** This routine changes the values of iLimit and iOffset only if 2162 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2163 ** and iOffset should have been preset to appropriate default values (zero) 2164 ** prior to calling this routine. 2165 ** 2166 ** The iOffset register (if it exists) is initialized to the value 2167 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2168 ** iOffset+1 is initialized to LIMIT+OFFSET. 2169 ** 2170 ** Only if pLimit->pLeft!=0 do the limit registers get 2171 ** redefined. The UNION ALL operator uses this property to force 2172 ** the reuse of the same limit and offset registers across multiple 2173 ** SELECT statements. 2174 */ 2175 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2176 Vdbe *v = 0; 2177 int iLimit = 0; 2178 int iOffset; 2179 int n; 2180 Expr *pLimit = p->pLimit; 2181 2182 if( p->iLimit ) return; 2183 2184 /* 2185 ** "LIMIT -1" always shows all rows. There is some 2186 ** controversy about what the correct behavior should be. 2187 ** The current implementation interprets "LIMIT 0" to mean 2188 ** no rows. 2189 */ 2190 if( pLimit ){ 2191 assert( pLimit->op==TK_LIMIT ); 2192 assert( pLimit->pLeft!=0 ); 2193 p->iLimit = iLimit = ++pParse->nMem; 2194 v = sqlite3GetVdbe(pParse); 2195 assert( v!=0 ); 2196 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2197 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2198 VdbeComment((v, "LIMIT counter")); 2199 if( n==0 ){ 2200 sqlite3VdbeGoto(v, iBreak); 2201 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2202 p->nSelectRow = sqlite3LogEst((u64)n); 2203 p->selFlags |= SF_FixedLimit; 2204 } 2205 }else{ 2206 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2207 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2208 VdbeComment((v, "LIMIT counter")); 2209 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2210 } 2211 if( pLimit->pRight ){ 2212 p->iOffset = iOffset = ++pParse->nMem; 2213 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2214 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2215 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2216 VdbeComment((v, "OFFSET counter")); 2217 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2218 VdbeComment((v, "LIMIT+OFFSET")); 2219 } 2220 } 2221 } 2222 2223 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2224 /* 2225 ** Return the appropriate collating sequence for the iCol-th column of 2226 ** the result set for the compound-select statement "p". Return NULL if 2227 ** the column has no default collating sequence. 2228 ** 2229 ** The collating sequence for the compound select is taken from the 2230 ** left-most term of the select that has a collating sequence. 2231 */ 2232 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2233 CollSeq *pRet; 2234 if( p->pPrior ){ 2235 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2236 }else{ 2237 pRet = 0; 2238 } 2239 assert( iCol>=0 ); 2240 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2241 ** have been thrown during name resolution and we would not have gotten 2242 ** this far */ 2243 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2244 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2245 } 2246 return pRet; 2247 } 2248 2249 /* 2250 ** The select statement passed as the second parameter is a compound SELECT 2251 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2252 ** structure suitable for implementing the ORDER BY. 2253 ** 2254 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2255 ** function is responsible for ensuring that this structure is eventually 2256 ** freed. 2257 */ 2258 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2259 ExprList *pOrderBy = p->pOrderBy; 2260 int nOrderBy = p->pOrderBy->nExpr; 2261 sqlite3 *db = pParse->db; 2262 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2263 if( pRet ){ 2264 int i; 2265 for(i=0; i<nOrderBy; i++){ 2266 struct ExprList_item *pItem = &pOrderBy->a[i]; 2267 Expr *pTerm = pItem->pExpr; 2268 CollSeq *pColl; 2269 2270 if( pTerm->flags & EP_Collate ){ 2271 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2272 }else{ 2273 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2274 if( pColl==0 ) pColl = db->pDfltColl; 2275 pOrderBy->a[i].pExpr = 2276 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2277 } 2278 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2279 pRet->aColl[i] = pColl; 2280 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2281 } 2282 } 2283 2284 return pRet; 2285 } 2286 2287 #ifndef SQLITE_OMIT_CTE 2288 /* 2289 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2290 ** query of the form: 2291 ** 2292 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2293 ** \___________/ \_______________/ 2294 ** p->pPrior p 2295 ** 2296 ** 2297 ** There is exactly one reference to the recursive-table in the FROM clause 2298 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2299 ** 2300 ** The setup-query runs once to generate an initial set of rows that go 2301 ** into a Queue table. Rows are extracted from the Queue table one by 2302 ** one. Each row extracted from Queue is output to pDest. Then the single 2303 ** extracted row (now in the iCurrent table) becomes the content of the 2304 ** recursive-table for a recursive-query run. The output of the recursive-query 2305 ** is added back into the Queue table. Then another row is extracted from Queue 2306 ** and the iteration continues until the Queue table is empty. 2307 ** 2308 ** If the compound query operator is UNION then no duplicate rows are ever 2309 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2310 ** that have ever been inserted into Queue and causes duplicates to be 2311 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2312 ** 2313 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2314 ** ORDER BY order and the first entry is extracted for each cycle. Without 2315 ** an ORDER BY, the Queue table is just a FIFO. 2316 ** 2317 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2318 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2319 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2320 ** with a positive value, then the first OFFSET outputs are discarded rather 2321 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2322 ** rows have been skipped. 2323 */ 2324 static void generateWithRecursiveQuery( 2325 Parse *pParse, /* Parsing context */ 2326 Select *p, /* The recursive SELECT to be coded */ 2327 SelectDest *pDest /* What to do with query results */ 2328 ){ 2329 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2330 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2331 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2332 Select *pSetup = p->pPrior; /* The setup query */ 2333 int addrTop; /* Top of the loop */ 2334 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2335 int iCurrent = 0; /* The Current table */ 2336 int regCurrent; /* Register holding Current table */ 2337 int iQueue; /* The Queue table */ 2338 int iDistinct = 0; /* To ensure unique results if UNION */ 2339 int eDest = SRT_Fifo; /* How to write to Queue */ 2340 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2341 int i; /* Loop counter */ 2342 int rc; /* Result code */ 2343 ExprList *pOrderBy; /* The ORDER BY clause */ 2344 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2345 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2346 2347 #ifndef SQLITE_OMIT_WINDOWFUNC 2348 if( p->pWin ){ 2349 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2350 return; 2351 } 2352 #endif 2353 2354 /* Obtain authorization to do a recursive query */ 2355 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2356 2357 /* Process the LIMIT and OFFSET clauses, if they exist */ 2358 addrBreak = sqlite3VdbeMakeLabel(pParse); 2359 p->nSelectRow = 320; /* 4 billion rows */ 2360 computeLimitRegisters(pParse, p, addrBreak); 2361 pLimit = p->pLimit; 2362 regLimit = p->iLimit; 2363 regOffset = p->iOffset; 2364 p->pLimit = 0; 2365 p->iLimit = p->iOffset = 0; 2366 pOrderBy = p->pOrderBy; 2367 2368 /* Locate the cursor number of the Current table */ 2369 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2370 if( pSrc->a[i].fg.isRecursive ){ 2371 iCurrent = pSrc->a[i].iCursor; 2372 break; 2373 } 2374 } 2375 2376 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2377 ** the Distinct table must be exactly one greater than Queue in order 2378 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2379 iQueue = pParse->nTab++; 2380 if( p->op==TK_UNION ){ 2381 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2382 iDistinct = pParse->nTab++; 2383 }else{ 2384 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2385 } 2386 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2387 2388 /* Allocate cursors for Current, Queue, and Distinct. */ 2389 regCurrent = ++pParse->nMem; 2390 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2391 if( pOrderBy ){ 2392 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2393 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2394 (char*)pKeyInfo, P4_KEYINFO); 2395 destQueue.pOrderBy = pOrderBy; 2396 }else{ 2397 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2398 } 2399 VdbeComment((v, "Queue table")); 2400 if( iDistinct ){ 2401 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2402 p->selFlags |= SF_UsesEphemeral; 2403 } 2404 2405 /* Detach the ORDER BY clause from the compound SELECT */ 2406 p->pOrderBy = 0; 2407 2408 /* Store the results of the setup-query in Queue. */ 2409 pSetup->pNext = 0; 2410 ExplainQueryPlan((pParse, 1, "SETUP")); 2411 rc = sqlite3Select(pParse, pSetup, &destQueue); 2412 pSetup->pNext = p; 2413 if( rc ) goto end_of_recursive_query; 2414 2415 /* Find the next row in the Queue and output that row */ 2416 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2417 2418 /* Transfer the next row in Queue over to Current */ 2419 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2420 if( pOrderBy ){ 2421 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2422 }else{ 2423 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2424 } 2425 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2426 2427 /* Output the single row in Current */ 2428 addrCont = sqlite3VdbeMakeLabel(pParse); 2429 codeOffset(v, regOffset, addrCont); 2430 selectInnerLoop(pParse, p, iCurrent, 2431 0, 0, pDest, addrCont, addrBreak); 2432 if( regLimit ){ 2433 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2434 VdbeCoverage(v); 2435 } 2436 sqlite3VdbeResolveLabel(v, addrCont); 2437 2438 /* Execute the recursive SELECT taking the single row in Current as 2439 ** the value for the recursive-table. Store the results in the Queue. 2440 */ 2441 if( p->selFlags & SF_Aggregate ){ 2442 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2443 }else{ 2444 p->pPrior = 0; 2445 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2446 sqlite3Select(pParse, p, &destQueue); 2447 assert( p->pPrior==0 ); 2448 p->pPrior = pSetup; 2449 } 2450 2451 /* Keep running the loop until the Queue is empty */ 2452 sqlite3VdbeGoto(v, addrTop); 2453 sqlite3VdbeResolveLabel(v, addrBreak); 2454 2455 end_of_recursive_query: 2456 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2457 p->pOrderBy = pOrderBy; 2458 p->pLimit = pLimit; 2459 return; 2460 } 2461 #endif /* SQLITE_OMIT_CTE */ 2462 2463 /* Forward references */ 2464 static int multiSelectOrderBy( 2465 Parse *pParse, /* Parsing context */ 2466 Select *p, /* The right-most of SELECTs to be coded */ 2467 SelectDest *pDest /* What to do with query results */ 2468 ); 2469 2470 /* 2471 ** Handle the special case of a compound-select that originates from a 2472 ** VALUES clause. By handling this as a special case, we avoid deep 2473 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2474 ** on a VALUES clause. 2475 ** 2476 ** Because the Select object originates from a VALUES clause: 2477 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2478 ** (2) All terms are UNION ALL 2479 ** (3) There is no ORDER BY clause 2480 ** 2481 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2482 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2483 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2484 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2485 */ 2486 static int multiSelectValues( 2487 Parse *pParse, /* Parsing context */ 2488 Select *p, /* The right-most of SELECTs to be coded */ 2489 SelectDest *pDest /* What to do with query results */ 2490 ){ 2491 int nRow = 1; 2492 int rc = 0; 2493 int bShowAll = p->pLimit==0; 2494 assert( p->selFlags & SF_MultiValue ); 2495 do{ 2496 assert( p->selFlags & SF_Values ); 2497 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2498 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2499 #ifndef SQLITE_OMIT_WINDOWFUNC 2500 if( p->pWin ) return -1; 2501 #endif 2502 if( p->pPrior==0 ) break; 2503 assert( p->pPrior->pNext==p ); 2504 p = p->pPrior; 2505 nRow += bShowAll; 2506 }while(1); 2507 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2508 nRow==1 ? "" : "S")); 2509 while( p ){ 2510 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2511 if( !bShowAll ) break; 2512 p->nSelectRow = nRow; 2513 p = p->pNext; 2514 } 2515 return rc; 2516 } 2517 2518 /* 2519 ** This routine is called to process a compound query form from 2520 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2521 ** INTERSECT 2522 ** 2523 ** "p" points to the right-most of the two queries. the query on the 2524 ** left is p->pPrior. The left query could also be a compound query 2525 ** in which case this routine will be called recursively. 2526 ** 2527 ** The results of the total query are to be written into a destination 2528 ** of type eDest with parameter iParm. 2529 ** 2530 ** Example 1: Consider a three-way compound SQL statement. 2531 ** 2532 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2533 ** 2534 ** This statement is parsed up as follows: 2535 ** 2536 ** SELECT c FROM t3 2537 ** | 2538 ** `-----> SELECT b FROM t2 2539 ** | 2540 ** `------> SELECT a FROM t1 2541 ** 2542 ** The arrows in the diagram above represent the Select.pPrior pointer. 2543 ** So if this routine is called with p equal to the t3 query, then 2544 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2545 ** 2546 ** Notice that because of the way SQLite parses compound SELECTs, the 2547 ** individual selects always group from left to right. 2548 */ 2549 static int multiSelect( 2550 Parse *pParse, /* Parsing context */ 2551 Select *p, /* The right-most of SELECTs to be coded */ 2552 SelectDest *pDest /* What to do with query results */ 2553 ){ 2554 int rc = SQLITE_OK; /* Success code from a subroutine */ 2555 Select *pPrior; /* Another SELECT immediately to our left */ 2556 Vdbe *v; /* Generate code to this VDBE */ 2557 SelectDest dest; /* Alternative data destination */ 2558 Select *pDelete = 0; /* Chain of simple selects to delete */ 2559 sqlite3 *db; /* Database connection */ 2560 2561 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2562 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2563 */ 2564 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2565 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2566 assert( p->selFlags & SF_Compound ); 2567 db = pParse->db; 2568 pPrior = p->pPrior; 2569 dest = *pDest; 2570 if( pPrior->pOrderBy || pPrior->pLimit ){ 2571 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2572 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2573 rc = 1; 2574 goto multi_select_end; 2575 } 2576 2577 v = sqlite3GetVdbe(pParse); 2578 assert( v!=0 ); /* The VDBE already created by calling function */ 2579 2580 /* Create the destination temporary table if necessary 2581 */ 2582 if( dest.eDest==SRT_EphemTab ){ 2583 assert( p->pEList ); 2584 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2585 dest.eDest = SRT_Table; 2586 } 2587 2588 /* Special handling for a compound-select that originates as a VALUES clause. 2589 */ 2590 if( p->selFlags & SF_MultiValue ){ 2591 rc = multiSelectValues(pParse, p, &dest); 2592 if( rc>=0 ) goto multi_select_end; 2593 rc = SQLITE_OK; 2594 } 2595 2596 /* Make sure all SELECTs in the statement have the same number of elements 2597 ** in their result sets. 2598 */ 2599 assert( p->pEList && pPrior->pEList ); 2600 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2601 2602 #ifndef SQLITE_OMIT_CTE 2603 if( p->selFlags & SF_Recursive ){ 2604 generateWithRecursiveQuery(pParse, p, &dest); 2605 }else 2606 #endif 2607 2608 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2609 */ 2610 if( p->pOrderBy ){ 2611 return multiSelectOrderBy(pParse, p, pDest); 2612 }else{ 2613 2614 #ifndef SQLITE_OMIT_EXPLAIN 2615 if( pPrior->pPrior==0 ){ 2616 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2617 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2618 } 2619 #endif 2620 2621 /* Generate code for the left and right SELECT statements. 2622 */ 2623 switch( p->op ){ 2624 case TK_ALL: { 2625 int addr = 0; 2626 int nLimit; 2627 assert( !pPrior->pLimit ); 2628 pPrior->iLimit = p->iLimit; 2629 pPrior->iOffset = p->iOffset; 2630 pPrior->pLimit = p->pLimit; 2631 rc = sqlite3Select(pParse, pPrior, &dest); 2632 p->pLimit = 0; 2633 if( rc ){ 2634 goto multi_select_end; 2635 } 2636 p->pPrior = 0; 2637 p->iLimit = pPrior->iLimit; 2638 p->iOffset = pPrior->iOffset; 2639 if( p->iLimit ){ 2640 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2641 VdbeComment((v, "Jump ahead if LIMIT reached")); 2642 if( p->iOffset ){ 2643 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2644 p->iLimit, p->iOffset+1, p->iOffset); 2645 } 2646 } 2647 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2648 rc = sqlite3Select(pParse, p, &dest); 2649 testcase( rc!=SQLITE_OK ); 2650 pDelete = p->pPrior; 2651 p->pPrior = pPrior; 2652 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2653 if( pPrior->pLimit 2654 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2655 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2656 ){ 2657 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2658 } 2659 if( addr ){ 2660 sqlite3VdbeJumpHere(v, addr); 2661 } 2662 break; 2663 } 2664 case TK_EXCEPT: 2665 case TK_UNION: { 2666 int unionTab; /* Cursor number of the temp table holding result */ 2667 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2668 int priorOp; /* The SRT_ operation to apply to prior selects */ 2669 Expr *pLimit; /* Saved values of p->nLimit */ 2670 int addr; 2671 SelectDest uniondest; 2672 2673 testcase( p->op==TK_EXCEPT ); 2674 testcase( p->op==TK_UNION ); 2675 priorOp = SRT_Union; 2676 if( dest.eDest==priorOp ){ 2677 /* We can reuse a temporary table generated by a SELECT to our 2678 ** right. 2679 */ 2680 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2681 unionTab = dest.iSDParm; 2682 }else{ 2683 /* We will need to create our own temporary table to hold the 2684 ** intermediate results. 2685 */ 2686 unionTab = pParse->nTab++; 2687 assert( p->pOrderBy==0 ); 2688 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2689 assert( p->addrOpenEphm[0] == -1 ); 2690 p->addrOpenEphm[0] = addr; 2691 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2692 assert( p->pEList ); 2693 } 2694 2695 /* Code the SELECT statements to our left 2696 */ 2697 assert( !pPrior->pOrderBy ); 2698 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2699 rc = sqlite3Select(pParse, pPrior, &uniondest); 2700 if( rc ){ 2701 goto multi_select_end; 2702 } 2703 2704 /* Code the current SELECT statement 2705 */ 2706 if( p->op==TK_EXCEPT ){ 2707 op = SRT_Except; 2708 }else{ 2709 assert( p->op==TK_UNION ); 2710 op = SRT_Union; 2711 } 2712 p->pPrior = 0; 2713 pLimit = p->pLimit; 2714 p->pLimit = 0; 2715 uniondest.eDest = op; 2716 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2717 selectOpName(p->op))); 2718 rc = sqlite3Select(pParse, p, &uniondest); 2719 testcase( rc!=SQLITE_OK ); 2720 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2721 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2722 sqlite3ExprListDelete(db, p->pOrderBy); 2723 pDelete = p->pPrior; 2724 p->pPrior = pPrior; 2725 p->pOrderBy = 0; 2726 if( p->op==TK_UNION ){ 2727 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2728 } 2729 sqlite3ExprDelete(db, p->pLimit); 2730 p->pLimit = pLimit; 2731 p->iLimit = 0; 2732 p->iOffset = 0; 2733 2734 /* Convert the data in the temporary table into whatever form 2735 ** it is that we currently need. 2736 */ 2737 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2738 assert( p->pEList || db->mallocFailed ); 2739 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2740 int iCont, iBreak, iStart; 2741 iBreak = sqlite3VdbeMakeLabel(pParse); 2742 iCont = sqlite3VdbeMakeLabel(pParse); 2743 computeLimitRegisters(pParse, p, iBreak); 2744 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2745 iStart = sqlite3VdbeCurrentAddr(v); 2746 selectInnerLoop(pParse, p, unionTab, 2747 0, 0, &dest, iCont, iBreak); 2748 sqlite3VdbeResolveLabel(v, iCont); 2749 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2750 sqlite3VdbeResolveLabel(v, iBreak); 2751 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2752 } 2753 break; 2754 } 2755 default: assert( p->op==TK_INTERSECT ); { 2756 int tab1, tab2; 2757 int iCont, iBreak, iStart; 2758 Expr *pLimit; 2759 int addr; 2760 SelectDest intersectdest; 2761 int r1; 2762 2763 /* INTERSECT is different from the others since it requires 2764 ** two temporary tables. Hence it has its own case. Begin 2765 ** by allocating the tables we will need. 2766 */ 2767 tab1 = pParse->nTab++; 2768 tab2 = pParse->nTab++; 2769 assert( p->pOrderBy==0 ); 2770 2771 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2772 assert( p->addrOpenEphm[0] == -1 ); 2773 p->addrOpenEphm[0] = addr; 2774 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2775 assert( p->pEList ); 2776 2777 /* Code the SELECTs to our left into temporary table "tab1". 2778 */ 2779 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2780 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2781 if( rc ){ 2782 goto multi_select_end; 2783 } 2784 2785 /* Code the current SELECT into temporary table "tab2" 2786 */ 2787 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2788 assert( p->addrOpenEphm[1] == -1 ); 2789 p->addrOpenEphm[1] = addr; 2790 p->pPrior = 0; 2791 pLimit = p->pLimit; 2792 p->pLimit = 0; 2793 intersectdest.iSDParm = tab2; 2794 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2795 selectOpName(p->op))); 2796 rc = sqlite3Select(pParse, p, &intersectdest); 2797 testcase( rc!=SQLITE_OK ); 2798 pDelete = p->pPrior; 2799 p->pPrior = pPrior; 2800 if( p->nSelectRow>pPrior->nSelectRow ){ 2801 p->nSelectRow = pPrior->nSelectRow; 2802 } 2803 sqlite3ExprDelete(db, p->pLimit); 2804 p->pLimit = pLimit; 2805 2806 /* Generate code to take the intersection of the two temporary 2807 ** tables. 2808 */ 2809 if( rc ) break; 2810 assert( p->pEList ); 2811 iBreak = sqlite3VdbeMakeLabel(pParse); 2812 iCont = sqlite3VdbeMakeLabel(pParse); 2813 computeLimitRegisters(pParse, p, iBreak); 2814 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2815 r1 = sqlite3GetTempReg(pParse); 2816 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2817 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2818 VdbeCoverage(v); 2819 sqlite3ReleaseTempReg(pParse, r1); 2820 selectInnerLoop(pParse, p, tab1, 2821 0, 0, &dest, iCont, iBreak); 2822 sqlite3VdbeResolveLabel(v, iCont); 2823 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2824 sqlite3VdbeResolveLabel(v, iBreak); 2825 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2826 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2827 break; 2828 } 2829 } 2830 2831 #ifndef SQLITE_OMIT_EXPLAIN 2832 if( p->pNext==0 ){ 2833 ExplainQueryPlanPop(pParse); 2834 } 2835 #endif 2836 } 2837 if( pParse->nErr ) goto multi_select_end; 2838 2839 /* Compute collating sequences used by 2840 ** temporary tables needed to implement the compound select. 2841 ** Attach the KeyInfo structure to all temporary tables. 2842 ** 2843 ** This section is run by the right-most SELECT statement only. 2844 ** SELECT statements to the left always skip this part. The right-most 2845 ** SELECT might also skip this part if it has no ORDER BY clause and 2846 ** no temp tables are required. 2847 */ 2848 if( p->selFlags & SF_UsesEphemeral ){ 2849 int i; /* Loop counter */ 2850 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2851 Select *pLoop; /* For looping through SELECT statements */ 2852 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2853 int nCol; /* Number of columns in result set */ 2854 2855 assert( p->pNext==0 ); 2856 nCol = p->pEList->nExpr; 2857 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2858 if( !pKeyInfo ){ 2859 rc = SQLITE_NOMEM_BKPT; 2860 goto multi_select_end; 2861 } 2862 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2863 *apColl = multiSelectCollSeq(pParse, p, i); 2864 if( 0==*apColl ){ 2865 *apColl = db->pDfltColl; 2866 } 2867 } 2868 2869 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2870 for(i=0; i<2; i++){ 2871 int addr = pLoop->addrOpenEphm[i]; 2872 if( addr<0 ){ 2873 /* If [0] is unused then [1] is also unused. So we can 2874 ** always safely abort as soon as the first unused slot is found */ 2875 assert( pLoop->addrOpenEphm[1]<0 ); 2876 break; 2877 } 2878 sqlite3VdbeChangeP2(v, addr, nCol); 2879 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2880 P4_KEYINFO); 2881 pLoop->addrOpenEphm[i] = -1; 2882 } 2883 } 2884 sqlite3KeyInfoUnref(pKeyInfo); 2885 } 2886 2887 multi_select_end: 2888 pDest->iSdst = dest.iSdst; 2889 pDest->nSdst = dest.nSdst; 2890 sqlite3SelectDelete(db, pDelete); 2891 return rc; 2892 } 2893 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2894 2895 /* 2896 ** Error message for when two or more terms of a compound select have different 2897 ** size result sets. 2898 */ 2899 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2900 if( p->selFlags & SF_Values ){ 2901 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2902 }else{ 2903 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2904 " do not have the same number of result columns", selectOpName(p->op)); 2905 } 2906 } 2907 2908 /* 2909 ** Code an output subroutine for a coroutine implementation of a 2910 ** SELECT statment. 2911 ** 2912 ** The data to be output is contained in pIn->iSdst. There are 2913 ** pIn->nSdst columns to be output. pDest is where the output should 2914 ** be sent. 2915 ** 2916 ** regReturn is the number of the register holding the subroutine 2917 ** return address. 2918 ** 2919 ** If regPrev>0 then it is the first register in a vector that 2920 ** records the previous output. mem[regPrev] is a flag that is false 2921 ** if there has been no previous output. If regPrev>0 then code is 2922 ** generated to suppress duplicates. pKeyInfo is used for comparing 2923 ** keys. 2924 ** 2925 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2926 ** iBreak. 2927 */ 2928 static int generateOutputSubroutine( 2929 Parse *pParse, /* Parsing context */ 2930 Select *p, /* The SELECT statement */ 2931 SelectDest *pIn, /* Coroutine supplying data */ 2932 SelectDest *pDest, /* Where to send the data */ 2933 int regReturn, /* The return address register */ 2934 int regPrev, /* Previous result register. No uniqueness if 0 */ 2935 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2936 int iBreak /* Jump here if we hit the LIMIT */ 2937 ){ 2938 Vdbe *v = pParse->pVdbe; 2939 int iContinue; 2940 int addr; 2941 2942 addr = sqlite3VdbeCurrentAddr(v); 2943 iContinue = sqlite3VdbeMakeLabel(pParse); 2944 2945 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2946 */ 2947 if( regPrev ){ 2948 int addr1, addr2; 2949 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2950 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2951 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2952 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2953 sqlite3VdbeJumpHere(v, addr1); 2954 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2955 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2956 } 2957 if( pParse->db->mallocFailed ) return 0; 2958 2959 /* Suppress the first OFFSET entries if there is an OFFSET clause 2960 */ 2961 codeOffset(v, p->iOffset, iContinue); 2962 2963 assert( pDest->eDest!=SRT_Exists ); 2964 assert( pDest->eDest!=SRT_Table ); 2965 switch( pDest->eDest ){ 2966 /* Store the result as data using a unique key. 2967 */ 2968 case SRT_EphemTab: { 2969 int r1 = sqlite3GetTempReg(pParse); 2970 int r2 = sqlite3GetTempReg(pParse); 2971 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2972 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2973 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2974 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2975 sqlite3ReleaseTempReg(pParse, r2); 2976 sqlite3ReleaseTempReg(pParse, r1); 2977 break; 2978 } 2979 2980 #ifndef SQLITE_OMIT_SUBQUERY 2981 /* If we are creating a set for an "expr IN (SELECT ...)". 2982 */ 2983 case SRT_Set: { 2984 int r1; 2985 testcase( pIn->nSdst>1 ); 2986 r1 = sqlite3GetTempReg(pParse); 2987 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2988 r1, pDest->zAffSdst, pIn->nSdst); 2989 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2990 pIn->iSdst, pIn->nSdst); 2991 sqlite3ReleaseTempReg(pParse, r1); 2992 break; 2993 } 2994 2995 /* If this is a scalar select that is part of an expression, then 2996 ** store the results in the appropriate memory cell and break out 2997 ** of the scan loop. Note that the select might return multiple columns 2998 ** if it is the RHS of a row-value IN operator. 2999 */ 3000 case SRT_Mem: { 3001 if( pParse->nErr==0 ){ 3002 testcase( pIn->nSdst>1 ); 3003 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3004 } 3005 /* The LIMIT clause will jump out of the loop for us */ 3006 break; 3007 } 3008 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3009 3010 /* The results are stored in a sequence of registers 3011 ** starting at pDest->iSdst. Then the co-routine yields. 3012 */ 3013 case SRT_Coroutine: { 3014 if( pDest->iSdst==0 ){ 3015 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3016 pDest->nSdst = pIn->nSdst; 3017 } 3018 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3019 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3020 break; 3021 } 3022 3023 /* If none of the above, then the result destination must be 3024 ** SRT_Output. This routine is never called with any other 3025 ** destination other than the ones handled above or SRT_Output. 3026 ** 3027 ** For SRT_Output, results are stored in a sequence of registers. 3028 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3029 ** return the next row of result. 3030 */ 3031 default: { 3032 assert( pDest->eDest==SRT_Output ); 3033 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3034 break; 3035 } 3036 } 3037 3038 /* Jump to the end of the loop if the LIMIT is reached. 3039 */ 3040 if( p->iLimit ){ 3041 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3042 } 3043 3044 /* Generate the subroutine return 3045 */ 3046 sqlite3VdbeResolveLabel(v, iContinue); 3047 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3048 3049 return addr; 3050 } 3051 3052 /* 3053 ** Alternative compound select code generator for cases when there 3054 ** is an ORDER BY clause. 3055 ** 3056 ** We assume a query of the following form: 3057 ** 3058 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3059 ** 3060 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3061 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3062 ** co-routines. Then run the co-routines in parallel and merge the results 3063 ** into the output. In addition to the two coroutines (called selectA and 3064 ** selectB) there are 7 subroutines: 3065 ** 3066 ** outA: Move the output of the selectA coroutine into the output 3067 ** of the compound query. 3068 ** 3069 ** outB: Move the output of the selectB coroutine into the output 3070 ** of the compound query. (Only generated for UNION and 3071 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3072 ** appears only in B.) 3073 ** 3074 ** AltB: Called when there is data from both coroutines and A<B. 3075 ** 3076 ** AeqB: Called when there is data from both coroutines and A==B. 3077 ** 3078 ** AgtB: Called when there is data from both coroutines and A>B. 3079 ** 3080 ** EofA: Called when data is exhausted from selectA. 3081 ** 3082 ** EofB: Called when data is exhausted from selectB. 3083 ** 3084 ** The implementation of the latter five subroutines depend on which 3085 ** <operator> is used: 3086 ** 3087 ** 3088 ** UNION ALL UNION EXCEPT INTERSECT 3089 ** ------------- ----------------- -------------- ----------------- 3090 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3091 ** 3092 ** AeqB: outA, nextA nextA nextA outA, nextA 3093 ** 3094 ** AgtB: outB, nextB outB, nextB nextB nextB 3095 ** 3096 ** EofA: outB, nextB outB, nextB halt halt 3097 ** 3098 ** EofB: outA, nextA outA, nextA outA, nextA halt 3099 ** 3100 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3101 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3102 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3103 ** following nextX causes a jump to the end of the select processing. 3104 ** 3105 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3106 ** within the output subroutine. The regPrev register set holds the previously 3107 ** output value. A comparison is made against this value and the output 3108 ** is skipped if the next results would be the same as the previous. 3109 ** 3110 ** The implementation plan is to implement the two coroutines and seven 3111 ** subroutines first, then put the control logic at the bottom. Like this: 3112 ** 3113 ** goto Init 3114 ** coA: coroutine for left query (A) 3115 ** coB: coroutine for right query (B) 3116 ** outA: output one row of A 3117 ** outB: output one row of B (UNION and UNION ALL only) 3118 ** EofA: ... 3119 ** EofB: ... 3120 ** AltB: ... 3121 ** AeqB: ... 3122 ** AgtB: ... 3123 ** Init: initialize coroutine registers 3124 ** yield coA 3125 ** if eof(A) goto EofA 3126 ** yield coB 3127 ** if eof(B) goto EofB 3128 ** Cmpr: Compare A, B 3129 ** Jump AltB, AeqB, AgtB 3130 ** End: ... 3131 ** 3132 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3133 ** actually called using Gosub and they do not Return. EofA and EofB loop 3134 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3135 ** and AgtB jump to either L2 or to one of EofA or EofB. 3136 */ 3137 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3138 static int multiSelectOrderBy( 3139 Parse *pParse, /* Parsing context */ 3140 Select *p, /* The right-most of SELECTs to be coded */ 3141 SelectDest *pDest /* What to do with query results */ 3142 ){ 3143 int i, j; /* Loop counters */ 3144 Select *pPrior; /* Another SELECT immediately to our left */ 3145 Vdbe *v; /* Generate code to this VDBE */ 3146 SelectDest destA; /* Destination for coroutine A */ 3147 SelectDest destB; /* Destination for coroutine B */ 3148 int regAddrA; /* Address register for select-A coroutine */ 3149 int regAddrB; /* Address register for select-B coroutine */ 3150 int addrSelectA; /* Address of the select-A coroutine */ 3151 int addrSelectB; /* Address of the select-B coroutine */ 3152 int regOutA; /* Address register for the output-A subroutine */ 3153 int regOutB; /* Address register for the output-B subroutine */ 3154 int addrOutA; /* Address of the output-A subroutine */ 3155 int addrOutB = 0; /* Address of the output-B subroutine */ 3156 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3157 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3158 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3159 int addrAltB; /* Address of the A<B subroutine */ 3160 int addrAeqB; /* Address of the A==B subroutine */ 3161 int addrAgtB; /* Address of the A>B subroutine */ 3162 int regLimitA; /* Limit register for select-A */ 3163 int regLimitB; /* Limit register for select-A */ 3164 int regPrev; /* A range of registers to hold previous output */ 3165 int savedLimit; /* Saved value of p->iLimit */ 3166 int savedOffset; /* Saved value of p->iOffset */ 3167 int labelCmpr; /* Label for the start of the merge algorithm */ 3168 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3169 int addr1; /* Jump instructions that get retargetted */ 3170 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3171 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3172 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3173 sqlite3 *db; /* Database connection */ 3174 ExprList *pOrderBy; /* The ORDER BY clause */ 3175 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3176 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3177 3178 assert( p->pOrderBy!=0 ); 3179 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3180 db = pParse->db; 3181 v = pParse->pVdbe; 3182 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3183 labelEnd = sqlite3VdbeMakeLabel(pParse); 3184 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3185 3186 3187 /* Patch up the ORDER BY clause 3188 */ 3189 op = p->op; 3190 pPrior = p->pPrior; 3191 assert( pPrior->pOrderBy==0 ); 3192 pOrderBy = p->pOrderBy; 3193 assert( pOrderBy ); 3194 nOrderBy = pOrderBy->nExpr; 3195 3196 /* For operators other than UNION ALL we have to make sure that 3197 ** the ORDER BY clause covers every term of the result set. Add 3198 ** terms to the ORDER BY clause as necessary. 3199 */ 3200 if( op!=TK_ALL ){ 3201 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3202 struct ExprList_item *pItem; 3203 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3204 assert( pItem->u.x.iOrderByCol>0 ); 3205 if( pItem->u.x.iOrderByCol==i ) break; 3206 } 3207 if( j==nOrderBy ){ 3208 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3209 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3210 pNew->flags |= EP_IntValue; 3211 pNew->u.iValue = i; 3212 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3213 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3214 } 3215 } 3216 } 3217 3218 /* Compute the comparison permutation and keyinfo that is used with 3219 ** the permutation used to determine if the next 3220 ** row of results comes from selectA or selectB. Also add explicit 3221 ** collations to the ORDER BY clause terms so that when the subqueries 3222 ** to the right and the left are evaluated, they use the correct 3223 ** collation. 3224 */ 3225 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3226 if( aPermute ){ 3227 struct ExprList_item *pItem; 3228 aPermute[0] = nOrderBy; 3229 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3230 assert( pItem->u.x.iOrderByCol>0 ); 3231 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3232 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3233 } 3234 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3235 }else{ 3236 pKeyMerge = 0; 3237 } 3238 3239 /* Reattach the ORDER BY clause to the query. 3240 */ 3241 p->pOrderBy = pOrderBy; 3242 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3243 3244 /* Allocate a range of temporary registers and the KeyInfo needed 3245 ** for the logic that removes duplicate result rows when the 3246 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3247 */ 3248 if( op==TK_ALL ){ 3249 regPrev = 0; 3250 }else{ 3251 int nExpr = p->pEList->nExpr; 3252 assert( nOrderBy>=nExpr || db->mallocFailed ); 3253 regPrev = pParse->nMem+1; 3254 pParse->nMem += nExpr+1; 3255 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3256 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3257 if( pKeyDup ){ 3258 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3259 for(i=0; i<nExpr; i++){ 3260 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3261 pKeyDup->aSortFlags[i] = 0; 3262 } 3263 } 3264 } 3265 3266 /* Separate the left and the right query from one another 3267 */ 3268 p->pPrior = 0; 3269 pPrior->pNext = 0; 3270 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3271 if( pPrior->pPrior==0 ){ 3272 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3273 } 3274 3275 /* Compute the limit registers */ 3276 computeLimitRegisters(pParse, p, labelEnd); 3277 if( p->iLimit && op==TK_ALL ){ 3278 regLimitA = ++pParse->nMem; 3279 regLimitB = ++pParse->nMem; 3280 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3281 regLimitA); 3282 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3283 }else{ 3284 regLimitA = regLimitB = 0; 3285 } 3286 sqlite3ExprDelete(db, p->pLimit); 3287 p->pLimit = 0; 3288 3289 regAddrA = ++pParse->nMem; 3290 regAddrB = ++pParse->nMem; 3291 regOutA = ++pParse->nMem; 3292 regOutB = ++pParse->nMem; 3293 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3294 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3295 3296 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3297 3298 /* Generate a coroutine to evaluate the SELECT statement to the 3299 ** left of the compound operator - the "A" select. 3300 */ 3301 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3302 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3303 VdbeComment((v, "left SELECT")); 3304 pPrior->iLimit = regLimitA; 3305 ExplainQueryPlan((pParse, 1, "LEFT")); 3306 sqlite3Select(pParse, pPrior, &destA); 3307 sqlite3VdbeEndCoroutine(v, regAddrA); 3308 sqlite3VdbeJumpHere(v, addr1); 3309 3310 /* Generate a coroutine to evaluate the SELECT statement on 3311 ** the right - the "B" select 3312 */ 3313 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3314 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3315 VdbeComment((v, "right SELECT")); 3316 savedLimit = p->iLimit; 3317 savedOffset = p->iOffset; 3318 p->iLimit = regLimitB; 3319 p->iOffset = 0; 3320 ExplainQueryPlan((pParse, 1, "RIGHT")); 3321 sqlite3Select(pParse, p, &destB); 3322 p->iLimit = savedLimit; 3323 p->iOffset = savedOffset; 3324 sqlite3VdbeEndCoroutine(v, regAddrB); 3325 3326 /* Generate a subroutine that outputs the current row of the A 3327 ** select as the next output row of the compound select. 3328 */ 3329 VdbeNoopComment((v, "Output routine for A")); 3330 addrOutA = generateOutputSubroutine(pParse, 3331 p, &destA, pDest, regOutA, 3332 regPrev, pKeyDup, labelEnd); 3333 3334 /* Generate a subroutine that outputs the current row of the B 3335 ** select as the next output row of the compound select. 3336 */ 3337 if( op==TK_ALL || op==TK_UNION ){ 3338 VdbeNoopComment((v, "Output routine for B")); 3339 addrOutB = generateOutputSubroutine(pParse, 3340 p, &destB, pDest, regOutB, 3341 regPrev, pKeyDup, labelEnd); 3342 } 3343 sqlite3KeyInfoUnref(pKeyDup); 3344 3345 /* Generate a subroutine to run when the results from select A 3346 ** are exhausted and only data in select B remains. 3347 */ 3348 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3349 addrEofA_noB = addrEofA = labelEnd; 3350 }else{ 3351 VdbeNoopComment((v, "eof-A subroutine")); 3352 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3353 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3354 VdbeCoverage(v); 3355 sqlite3VdbeGoto(v, addrEofA); 3356 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3357 } 3358 3359 /* Generate a subroutine to run when the results from select B 3360 ** are exhausted and only data in select A remains. 3361 */ 3362 if( op==TK_INTERSECT ){ 3363 addrEofB = addrEofA; 3364 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3365 }else{ 3366 VdbeNoopComment((v, "eof-B subroutine")); 3367 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3368 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3369 sqlite3VdbeGoto(v, addrEofB); 3370 } 3371 3372 /* Generate code to handle the case of A<B 3373 */ 3374 VdbeNoopComment((v, "A-lt-B subroutine")); 3375 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3376 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3377 sqlite3VdbeGoto(v, labelCmpr); 3378 3379 /* Generate code to handle the case of A==B 3380 */ 3381 if( op==TK_ALL ){ 3382 addrAeqB = addrAltB; 3383 }else if( op==TK_INTERSECT ){ 3384 addrAeqB = addrAltB; 3385 addrAltB++; 3386 }else{ 3387 VdbeNoopComment((v, "A-eq-B subroutine")); 3388 addrAeqB = 3389 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3390 sqlite3VdbeGoto(v, labelCmpr); 3391 } 3392 3393 /* Generate code to handle the case of A>B 3394 */ 3395 VdbeNoopComment((v, "A-gt-B subroutine")); 3396 addrAgtB = sqlite3VdbeCurrentAddr(v); 3397 if( op==TK_ALL || op==TK_UNION ){ 3398 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3399 } 3400 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3401 sqlite3VdbeGoto(v, labelCmpr); 3402 3403 /* This code runs once to initialize everything. 3404 */ 3405 sqlite3VdbeJumpHere(v, addr1); 3406 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3407 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3408 3409 /* Implement the main merge loop 3410 */ 3411 sqlite3VdbeResolveLabel(v, labelCmpr); 3412 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3413 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3414 (char*)pKeyMerge, P4_KEYINFO); 3415 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3416 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3417 3418 /* Jump to the this point in order to terminate the query. 3419 */ 3420 sqlite3VdbeResolveLabel(v, labelEnd); 3421 3422 /* Reassembly the compound query so that it will be freed correctly 3423 ** by the calling function */ 3424 if( p->pPrior ){ 3425 sqlite3SelectDelete(db, p->pPrior); 3426 } 3427 p->pPrior = pPrior; 3428 pPrior->pNext = p; 3429 3430 /*** TBD: Insert subroutine calls to close cursors on incomplete 3431 **** subqueries ****/ 3432 ExplainQueryPlanPop(pParse); 3433 return pParse->nErr!=0; 3434 } 3435 #endif 3436 3437 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3438 3439 /* An instance of the SubstContext object describes an substitution edit 3440 ** to be performed on a parse tree. 3441 ** 3442 ** All references to columns in table iTable are to be replaced by corresponding 3443 ** expressions in pEList. 3444 */ 3445 typedef struct SubstContext { 3446 Parse *pParse; /* The parsing context */ 3447 int iTable; /* Replace references to this table */ 3448 int iNewTable; /* New table number */ 3449 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3450 ExprList *pEList; /* Replacement expressions */ 3451 } SubstContext; 3452 3453 /* Forward Declarations */ 3454 static void substExprList(SubstContext*, ExprList*); 3455 static void substSelect(SubstContext*, Select*, int); 3456 3457 /* 3458 ** Scan through the expression pExpr. Replace every reference to 3459 ** a column in table number iTable with a copy of the iColumn-th 3460 ** entry in pEList. (But leave references to the ROWID column 3461 ** unchanged.) 3462 ** 3463 ** This routine is part of the flattening procedure. A subquery 3464 ** whose result set is defined by pEList appears as entry in the 3465 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3466 ** FORM clause entry is iTable. This routine makes the necessary 3467 ** changes to pExpr so that it refers directly to the source table 3468 ** of the subquery rather the result set of the subquery. 3469 */ 3470 static Expr *substExpr( 3471 SubstContext *pSubst, /* Description of the substitution */ 3472 Expr *pExpr /* Expr in which substitution occurs */ 3473 ){ 3474 if( pExpr==0 ) return 0; 3475 if( ExprHasProperty(pExpr, EP_FromJoin) 3476 && pExpr->iRightJoinTable==pSubst->iTable 3477 ){ 3478 pExpr->iRightJoinTable = pSubst->iNewTable; 3479 } 3480 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3481 if( pExpr->iColumn<0 ){ 3482 pExpr->op = TK_NULL; 3483 }else{ 3484 Expr *pNew; 3485 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3486 Expr ifNullRow; 3487 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3488 assert( pExpr->pRight==0 ); 3489 if( sqlite3ExprIsVector(pCopy) ){ 3490 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3491 }else{ 3492 sqlite3 *db = pSubst->pParse->db; 3493 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3494 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3495 ifNullRow.op = TK_IF_NULL_ROW; 3496 ifNullRow.pLeft = pCopy; 3497 ifNullRow.iTable = pSubst->iNewTable; 3498 pCopy = &ifNullRow; 3499 } 3500 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3501 pNew = sqlite3ExprDup(db, pCopy, 0); 3502 if( pNew && pSubst->isLeftJoin ){ 3503 ExprSetProperty(pNew, EP_CanBeNull); 3504 } 3505 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3506 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3507 ExprSetProperty(pNew, EP_FromJoin); 3508 } 3509 sqlite3ExprDelete(db, pExpr); 3510 pExpr = pNew; 3511 3512 /* Ensure that the expression now has an implicit collation sequence, 3513 ** just as it did when it was a column of a view or sub-query. */ 3514 if( pExpr ){ 3515 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3516 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3517 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3518 (pColl ? pColl->zName : "BINARY") 3519 ); 3520 } 3521 ExprClearProperty(pExpr, EP_Collate); 3522 } 3523 } 3524 } 3525 }else{ 3526 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3527 pExpr->iTable = pSubst->iNewTable; 3528 } 3529 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3530 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3531 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3532 substSelect(pSubst, pExpr->x.pSelect, 1); 3533 }else{ 3534 substExprList(pSubst, pExpr->x.pList); 3535 } 3536 #ifndef SQLITE_OMIT_WINDOWFUNC 3537 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3538 Window *pWin = pExpr->y.pWin; 3539 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3540 substExprList(pSubst, pWin->pPartition); 3541 substExprList(pSubst, pWin->pOrderBy); 3542 } 3543 #endif 3544 } 3545 return pExpr; 3546 } 3547 static void substExprList( 3548 SubstContext *pSubst, /* Description of the substitution */ 3549 ExprList *pList /* List to scan and in which to make substitutes */ 3550 ){ 3551 int i; 3552 if( pList==0 ) return; 3553 for(i=0; i<pList->nExpr; i++){ 3554 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3555 } 3556 } 3557 static void substSelect( 3558 SubstContext *pSubst, /* Description of the substitution */ 3559 Select *p, /* SELECT statement in which to make substitutions */ 3560 int doPrior /* Do substitutes on p->pPrior too */ 3561 ){ 3562 SrcList *pSrc; 3563 struct SrcList_item *pItem; 3564 int i; 3565 if( !p ) return; 3566 do{ 3567 substExprList(pSubst, p->pEList); 3568 substExprList(pSubst, p->pGroupBy); 3569 substExprList(pSubst, p->pOrderBy); 3570 p->pHaving = substExpr(pSubst, p->pHaving); 3571 p->pWhere = substExpr(pSubst, p->pWhere); 3572 pSrc = p->pSrc; 3573 assert( pSrc!=0 ); 3574 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3575 substSelect(pSubst, pItem->pSelect, 1); 3576 if( pItem->fg.isTabFunc ){ 3577 substExprList(pSubst, pItem->u1.pFuncArg); 3578 } 3579 } 3580 }while( doPrior && (p = p->pPrior)!=0 ); 3581 } 3582 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3583 3584 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3585 /* 3586 ** This routine attempts to flatten subqueries as a performance optimization. 3587 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3588 ** 3589 ** To understand the concept of flattening, consider the following 3590 ** query: 3591 ** 3592 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3593 ** 3594 ** The default way of implementing this query is to execute the 3595 ** subquery first and store the results in a temporary table, then 3596 ** run the outer query on that temporary table. This requires two 3597 ** passes over the data. Furthermore, because the temporary table 3598 ** has no indices, the WHERE clause on the outer query cannot be 3599 ** optimized. 3600 ** 3601 ** This routine attempts to rewrite queries such as the above into 3602 ** a single flat select, like this: 3603 ** 3604 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3605 ** 3606 ** The code generated for this simplification gives the same result 3607 ** but only has to scan the data once. And because indices might 3608 ** exist on the table t1, a complete scan of the data might be 3609 ** avoided. 3610 ** 3611 ** Flattening is subject to the following constraints: 3612 ** 3613 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3614 ** The subquery and the outer query cannot both be aggregates. 3615 ** 3616 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3617 ** (2) If the subquery is an aggregate then 3618 ** (2a) the outer query must not be a join and 3619 ** (2b) the outer query must not use subqueries 3620 ** other than the one FROM-clause subquery that is a candidate 3621 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3622 ** from 2015-02-09.) 3623 ** 3624 ** (3) If the subquery is the right operand of a LEFT JOIN then 3625 ** (3a) the subquery may not be a join and 3626 ** (3b) the FROM clause of the subquery may not contain a virtual 3627 ** table and 3628 ** (3c) the outer query may not be an aggregate. 3629 ** (3d) the outer query may not be DISTINCT. 3630 ** 3631 ** (4) The subquery can not be DISTINCT. 3632 ** 3633 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3634 ** sub-queries that were excluded from this optimization. Restriction 3635 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3636 ** 3637 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3638 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3639 ** 3640 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3641 ** A FROM clause, consider adding a FROM clause with the special 3642 ** table sqlite_once that consists of a single row containing a 3643 ** single NULL. 3644 ** 3645 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3646 ** 3647 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3648 ** 3649 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3650 ** accidently carried the comment forward until 2014-09-15. Original 3651 ** constraint: "If the subquery is aggregate then the outer query 3652 ** may not use LIMIT." 3653 ** 3654 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3655 ** 3656 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3657 ** a separate restriction deriving from ticket #350. 3658 ** 3659 ** (13) The subquery and outer query may not both use LIMIT. 3660 ** 3661 ** (14) The subquery may not use OFFSET. 3662 ** 3663 ** (15) If the outer query is part of a compound select, then the 3664 ** subquery may not use LIMIT. 3665 ** (See ticket #2339 and ticket [02a8e81d44]). 3666 ** 3667 ** (16) If the outer query is aggregate, then the subquery may not 3668 ** use ORDER BY. (Ticket #2942) This used to not matter 3669 ** until we introduced the group_concat() function. 3670 ** 3671 ** (17) If the subquery is a compound select, then 3672 ** (17a) all compound operators must be a UNION ALL, and 3673 ** (17b) no terms within the subquery compound may be aggregate 3674 ** or DISTINCT, and 3675 ** (17c) every term within the subquery compound must have a FROM clause 3676 ** (17d) the outer query may not be 3677 ** (17d1) aggregate, or 3678 ** (17d2) DISTINCT, or 3679 ** (17d3) a join. 3680 ** (17e) the subquery may not contain window functions 3681 ** 3682 ** The parent and sub-query may contain WHERE clauses. Subject to 3683 ** rules (11), (13) and (14), they may also contain ORDER BY, 3684 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3685 ** operator other than UNION ALL because all the other compound 3686 ** operators have an implied DISTINCT which is disallowed by 3687 ** restriction (4). 3688 ** 3689 ** Also, each component of the sub-query must return the same number 3690 ** of result columns. This is actually a requirement for any compound 3691 ** SELECT statement, but all the code here does is make sure that no 3692 ** such (illegal) sub-query is flattened. The caller will detect the 3693 ** syntax error and return a detailed message. 3694 ** 3695 ** (18) If the sub-query is a compound select, then all terms of the 3696 ** ORDER BY clause of the parent must be simple references to 3697 ** columns of the sub-query. 3698 ** 3699 ** (19) If the subquery uses LIMIT then the outer query may not 3700 ** have a WHERE clause. 3701 ** 3702 ** (20) If the sub-query is a compound select, then it must not use 3703 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3704 ** somewhat by saying that the terms of the ORDER BY clause must 3705 ** appear as unmodified result columns in the outer query. But we 3706 ** have other optimizations in mind to deal with that case. 3707 ** 3708 ** (21) If the subquery uses LIMIT then the outer query may not be 3709 ** DISTINCT. (See ticket [752e1646fc]). 3710 ** 3711 ** (22) The subquery may not be a recursive CTE. 3712 ** 3713 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3714 ** a recursive CTE, then the sub-query may not be a compound query. 3715 ** This restriction is because transforming the 3716 ** parent to a compound query confuses the code that handles 3717 ** recursive queries in multiSelect(). 3718 ** 3719 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3720 ** The subquery may not be an aggregate that uses the built-in min() or 3721 ** or max() functions. (Without this restriction, a query like: 3722 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3723 ** return the value X for which Y was maximal.) 3724 ** 3725 ** (25) If either the subquery or the parent query contains a window 3726 ** function in the select list or ORDER BY clause, flattening 3727 ** is not attempted. 3728 ** 3729 ** 3730 ** In this routine, the "p" parameter is a pointer to the outer query. 3731 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3732 ** uses aggregates. 3733 ** 3734 ** If flattening is not attempted, this routine is a no-op and returns 0. 3735 ** If flattening is attempted this routine returns 1. 3736 ** 3737 ** All of the expression analysis must occur on both the outer query and 3738 ** the subquery before this routine runs. 3739 */ 3740 static int flattenSubquery( 3741 Parse *pParse, /* Parsing context */ 3742 Select *p, /* The parent or outer SELECT statement */ 3743 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3744 int isAgg /* True if outer SELECT uses aggregate functions */ 3745 ){ 3746 const char *zSavedAuthContext = pParse->zAuthContext; 3747 Select *pParent; /* Current UNION ALL term of the other query */ 3748 Select *pSub; /* The inner query or "subquery" */ 3749 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3750 SrcList *pSrc; /* The FROM clause of the outer query */ 3751 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3752 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3753 int iNewParent = -1;/* Replacement table for iParent */ 3754 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3755 int i; /* Loop counter */ 3756 Expr *pWhere; /* The WHERE clause */ 3757 struct SrcList_item *pSubitem; /* The subquery */ 3758 sqlite3 *db = pParse->db; 3759 3760 /* Check to see if flattening is permitted. Return 0 if not. 3761 */ 3762 assert( p!=0 ); 3763 assert( p->pPrior==0 ); 3764 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3765 pSrc = p->pSrc; 3766 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3767 pSubitem = &pSrc->a[iFrom]; 3768 iParent = pSubitem->iCursor; 3769 pSub = pSubitem->pSelect; 3770 assert( pSub!=0 ); 3771 3772 #ifndef SQLITE_OMIT_WINDOWFUNC 3773 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3774 #endif 3775 3776 pSubSrc = pSub->pSrc; 3777 assert( pSubSrc ); 3778 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3779 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3780 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3781 ** became arbitrary expressions, we were forced to add restrictions (13) 3782 ** and (14). */ 3783 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3784 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3785 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3786 return 0; /* Restriction (15) */ 3787 } 3788 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3789 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3790 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3791 return 0; /* Restrictions (8)(9) */ 3792 } 3793 if( p->pOrderBy && pSub->pOrderBy ){ 3794 return 0; /* Restriction (11) */ 3795 } 3796 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3797 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3798 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3799 return 0; /* Restriction (21) */ 3800 } 3801 if( pSub->selFlags & (SF_Recursive) ){ 3802 return 0; /* Restrictions (22) */ 3803 } 3804 3805 /* 3806 ** If the subquery is the right operand of a LEFT JOIN, then the 3807 ** subquery may not be a join itself (3a). Example of why this is not 3808 ** allowed: 3809 ** 3810 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3811 ** 3812 ** If we flatten the above, we would get 3813 ** 3814 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3815 ** 3816 ** which is not at all the same thing. 3817 ** 3818 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3819 ** query cannot be an aggregate. (3c) This is an artifact of the way 3820 ** aggregates are processed - there is no mechanism to determine if 3821 ** the LEFT JOIN table should be all-NULL. 3822 ** 3823 ** See also tickets #306, #350, and #3300. 3824 */ 3825 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3826 isLeftJoin = 1; 3827 if( pSubSrc->nSrc>1 /* (3a) */ 3828 || isAgg /* (3b) */ 3829 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3830 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3831 ){ 3832 return 0; 3833 } 3834 } 3835 #ifdef SQLITE_EXTRA_IFNULLROW 3836 else if( iFrom>0 && !isAgg ){ 3837 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3838 ** every reference to any result column from subquery in a join, even 3839 ** though they are not necessary. This will stress-test the OP_IfNullRow 3840 ** opcode. */ 3841 isLeftJoin = -1; 3842 } 3843 #endif 3844 3845 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3846 ** use only the UNION ALL operator. And none of the simple select queries 3847 ** that make up the compound SELECT are allowed to be aggregate or distinct 3848 ** queries. 3849 */ 3850 if( pSub->pPrior ){ 3851 if( pSub->pOrderBy ){ 3852 return 0; /* Restriction (20) */ 3853 } 3854 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3855 return 0; /* (17d1), (17d2), or (17d3) */ 3856 } 3857 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3858 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3859 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3860 assert( pSub->pSrc!=0 ); 3861 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3862 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3863 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3864 || pSub1->pSrc->nSrc<1 /* (17c) */ 3865 #ifndef SQLITE_OMIT_WINDOWFUNC 3866 || pSub1->pWin /* (17e) */ 3867 #endif 3868 ){ 3869 return 0; 3870 } 3871 testcase( pSub1->pSrc->nSrc>1 ); 3872 } 3873 3874 /* Restriction (18). */ 3875 if( p->pOrderBy ){ 3876 int ii; 3877 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3878 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3879 } 3880 } 3881 } 3882 3883 /* Ex-restriction (23): 3884 ** The only way that the recursive part of a CTE can contain a compound 3885 ** subquery is for the subquery to be one term of a join. But if the 3886 ** subquery is a join, then the flattening has already been stopped by 3887 ** restriction (17d3) 3888 */ 3889 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3890 3891 /***** If we reach this point, flattening is permitted. *****/ 3892 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3893 pSub->selId, pSub, iFrom)); 3894 3895 /* Authorize the subquery */ 3896 pParse->zAuthContext = pSubitem->zName; 3897 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3898 testcase( i==SQLITE_DENY ); 3899 pParse->zAuthContext = zSavedAuthContext; 3900 3901 /* If the sub-query is a compound SELECT statement, then (by restrictions 3902 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3903 ** be of the form: 3904 ** 3905 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3906 ** 3907 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3908 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3909 ** OFFSET clauses and joins them to the left-hand-side of the original 3910 ** using UNION ALL operators. In this case N is the number of simple 3911 ** select statements in the compound sub-query. 3912 ** 3913 ** Example: 3914 ** 3915 ** SELECT a+1 FROM ( 3916 ** SELECT x FROM tab 3917 ** UNION ALL 3918 ** SELECT y FROM tab 3919 ** UNION ALL 3920 ** SELECT abs(z*2) FROM tab2 3921 ** ) WHERE a!=5 ORDER BY 1 3922 ** 3923 ** Transformed into: 3924 ** 3925 ** SELECT x+1 FROM tab WHERE x+1!=5 3926 ** UNION ALL 3927 ** SELECT y+1 FROM tab WHERE y+1!=5 3928 ** UNION ALL 3929 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3930 ** ORDER BY 1 3931 ** 3932 ** We call this the "compound-subquery flattening". 3933 */ 3934 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3935 Select *pNew; 3936 ExprList *pOrderBy = p->pOrderBy; 3937 Expr *pLimit = p->pLimit; 3938 Select *pPrior = p->pPrior; 3939 p->pOrderBy = 0; 3940 p->pSrc = 0; 3941 p->pPrior = 0; 3942 p->pLimit = 0; 3943 pNew = sqlite3SelectDup(db, p, 0); 3944 p->pLimit = pLimit; 3945 p->pOrderBy = pOrderBy; 3946 p->pSrc = pSrc; 3947 p->op = TK_ALL; 3948 if( pNew==0 ){ 3949 p->pPrior = pPrior; 3950 }else{ 3951 pNew->pPrior = pPrior; 3952 if( pPrior ) pPrior->pNext = pNew; 3953 pNew->pNext = p; 3954 p->pPrior = pNew; 3955 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3956 " creates %u as peer\n",pNew->selId)); 3957 } 3958 if( db->mallocFailed ) return 1; 3959 } 3960 3961 /* Begin flattening the iFrom-th entry of the FROM clause 3962 ** in the outer query. 3963 */ 3964 pSub = pSub1 = pSubitem->pSelect; 3965 3966 /* Delete the transient table structure associated with the 3967 ** subquery 3968 */ 3969 sqlite3DbFree(db, pSubitem->zDatabase); 3970 sqlite3DbFree(db, pSubitem->zName); 3971 sqlite3DbFree(db, pSubitem->zAlias); 3972 pSubitem->zDatabase = 0; 3973 pSubitem->zName = 0; 3974 pSubitem->zAlias = 0; 3975 pSubitem->pSelect = 0; 3976 3977 /* Defer deleting the Table object associated with the 3978 ** subquery until code generation is 3979 ** complete, since there may still exist Expr.pTab entries that 3980 ** refer to the subquery even after flattening. Ticket #3346. 3981 ** 3982 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3983 */ 3984 if( ALWAYS(pSubitem->pTab!=0) ){ 3985 Table *pTabToDel = pSubitem->pTab; 3986 if( pTabToDel->nTabRef==1 ){ 3987 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3988 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3989 pToplevel->pZombieTab = pTabToDel; 3990 }else{ 3991 pTabToDel->nTabRef--; 3992 } 3993 pSubitem->pTab = 0; 3994 } 3995 3996 /* The following loop runs once for each term in a compound-subquery 3997 ** flattening (as described above). If we are doing a different kind 3998 ** of flattening - a flattening other than a compound-subquery flattening - 3999 ** then this loop only runs once. 4000 ** 4001 ** This loop moves all of the FROM elements of the subquery into the 4002 ** the FROM clause of the outer query. Before doing this, remember 4003 ** the cursor number for the original outer query FROM element in 4004 ** iParent. The iParent cursor will never be used. Subsequent code 4005 ** will scan expressions looking for iParent references and replace 4006 ** those references with expressions that resolve to the subquery FROM 4007 ** elements we are now copying in. 4008 */ 4009 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4010 int nSubSrc; 4011 u8 jointype = 0; 4012 assert( pSub!=0 ); 4013 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4014 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4015 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4016 4017 if( pSrc ){ 4018 assert( pParent==p ); /* First time through the loop */ 4019 jointype = pSubitem->fg.jointype; 4020 }else{ 4021 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 4022 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 4023 if( pSrc==0 ) break; 4024 pParent->pSrc = pSrc; 4025 } 4026 4027 /* The subquery uses a single slot of the FROM clause of the outer 4028 ** query. If the subquery has more than one element in its FROM clause, 4029 ** then expand the outer query to make space for it to hold all elements 4030 ** of the subquery. 4031 ** 4032 ** Example: 4033 ** 4034 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4035 ** 4036 ** The outer query has 3 slots in its FROM clause. One slot of the 4037 ** outer query (the middle slot) is used by the subquery. The next 4038 ** block of code will expand the outer query FROM clause to 4 slots. 4039 ** The middle slot is expanded to two slots in order to make space 4040 ** for the two elements in the FROM clause of the subquery. 4041 */ 4042 if( nSubSrc>1 ){ 4043 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4044 if( pSrc==0 ) break; 4045 pParent->pSrc = pSrc; 4046 } 4047 4048 /* Transfer the FROM clause terms from the subquery into the 4049 ** outer query. 4050 */ 4051 for(i=0; i<nSubSrc; i++){ 4052 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4053 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4054 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4055 iNewParent = pSubSrc->a[i].iCursor; 4056 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4057 } 4058 pSrc->a[iFrom].fg.jointype = jointype; 4059 4060 /* Now begin substituting subquery result set expressions for 4061 ** references to the iParent in the outer query. 4062 ** 4063 ** Example: 4064 ** 4065 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4066 ** \ \_____________ subquery __________/ / 4067 ** \_____________________ outer query ______________________________/ 4068 ** 4069 ** We look at every expression in the outer query and every place we see 4070 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4071 */ 4072 if( pSub->pOrderBy ){ 4073 /* At this point, any non-zero iOrderByCol values indicate that the 4074 ** ORDER BY column expression is identical to the iOrderByCol'th 4075 ** expression returned by SELECT statement pSub. Since these values 4076 ** do not necessarily correspond to columns in SELECT statement pParent, 4077 ** zero them before transfering the ORDER BY clause. 4078 ** 4079 ** Not doing this may cause an error if a subsequent call to this 4080 ** function attempts to flatten a compound sub-query into pParent 4081 ** (the only way this can happen is if the compound sub-query is 4082 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4083 ExprList *pOrderBy = pSub->pOrderBy; 4084 for(i=0; i<pOrderBy->nExpr; i++){ 4085 pOrderBy->a[i].u.x.iOrderByCol = 0; 4086 } 4087 assert( pParent->pOrderBy==0 ); 4088 pParent->pOrderBy = pOrderBy; 4089 pSub->pOrderBy = 0; 4090 } 4091 pWhere = pSub->pWhere; 4092 pSub->pWhere = 0; 4093 if( isLeftJoin>0 ){ 4094 sqlite3SetJoinExpr(pWhere, iNewParent); 4095 } 4096 pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere); 4097 if( db->mallocFailed==0 ){ 4098 SubstContext x; 4099 x.pParse = pParse; 4100 x.iTable = iParent; 4101 x.iNewTable = iNewParent; 4102 x.isLeftJoin = isLeftJoin; 4103 x.pEList = pSub->pEList; 4104 substSelect(&x, pParent, 0); 4105 } 4106 4107 /* The flattened query is a compound if either the inner or the 4108 ** outer query is a compound. */ 4109 pParent->selFlags |= pSub->selFlags & SF_Compound; 4110 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4111 4112 /* 4113 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4114 ** 4115 ** One is tempted to try to add a and b to combine the limits. But this 4116 ** does not work if either limit is negative. 4117 */ 4118 if( pSub->pLimit ){ 4119 pParent->pLimit = pSub->pLimit; 4120 pSub->pLimit = 0; 4121 } 4122 } 4123 4124 /* Finially, delete what is left of the subquery and return 4125 ** success. 4126 */ 4127 sqlite3SelectDelete(db, pSub1); 4128 4129 #if SELECTTRACE_ENABLED 4130 if( sqlite3SelectTrace & 0x100 ){ 4131 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4132 sqlite3TreeViewSelect(0, p, 0); 4133 } 4134 #endif 4135 4136 return 1; 4137 } 4138 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4139 4140 /* 4141 ** A structure to keep track of all of the column values that are fixed to 4142 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4143 */ 4144 typedef struct WhereConst WhereConst; 4145 struct WhereConst { 4146 Parse *pParse; /* Parsing context */ 4147 int nConst; /* Number for COLUMN=CONSTANT terms */ 4148 int nChng; /* Number of times a constant is propagated */ 4149 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4150 }; 4151 4152 /* 4153 ** Add a new entry to the pConst object. Except, do not add duplicate 4154 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4155 ** 4156 ** The caller guarantees the pColumn is a column and pValue is a constant. 4157 ** This routine has to do some additional checks before completing the 4158 ** insert. 4159 */ 4160 static void constInsert( 4161 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4162 Expr *pColumn, /* The COLUMN part of the constraint */ 4163 Expr *pValue, /* The VALUE part of the constraint */ 4164 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4165 ){ 4166 int i; 4167 assert( pColumn->op==TK_COLUMN ); 4168 assert( sqlite3ExprIsConstant(pValue) ); 4169 4170 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4171 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4172 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4173 return; 4174 } 4175 4176 /* 2018-10-25 ticket [cf5ed20f] 4177 ** Make sure the same pColumn is not inserted more than once */ 4178 for(i=0; i<pConst->nConst; i++){ 4179 const Expr *pE2 = pConst->apExpr[i*2]; 4180 assert( pE2->op==TK_COLUMN ); 4181 if( pE2->iTable==pColumn->iTable 4182 && pE2->iColumn==pColumn->iColumn 4183 ){ 4184 return; /* Already present. Return without doing anything. */ 4185 } 4186 } 4187 4188 pConst->nConst++; 4189 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4190 pConst->nConst*2*sizeof(Expr*)); 4191 if( pConst->apExpr==0 ){ 4192 pConst->nConst = 0; 4193 }else{ 4194 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4195 pConst->apExpr[pConst->nConst*2-1] = pValue; 4196 } 4197 } 4198 4199 /* 4200 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4201 ** is a constant expression and where the term must be true because it 4202 ** is part of the AND-connected terms of the expression. For each term 4203 ** found, add it to the pConst structure. 4204 */ 4205 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4206 Expr *pRight, *pLeft; 4207 if( pExpr==0 ) return; 4208 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4209 if( pExpr->op==TK_AND ){ 4210 findConstInWhere(pConst, pExpr->pRight); 4211 findConstInWhere(pConst, pExpr->pLeft); 4212 return; 4213 } 4214 if( pExpr->op!=TK_EQ ) return; 4215 pRight = pExpr->pRight; 4216 pLeft = pExpr->pLeft; 4217 assert( pRight!=0 ); 4218 assert( pLeft!=0 ); 4219 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4220 constInsert(pConst,pRight,pLeft,pExpr); 4221 } 4222 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4223 constInsert(pConst,pLeft,pRight,pExpr); 4224 } 4225 } 4226 4227 /* 4228 ** This is a Walker expression callback. pExpr is a candidate expression 4229 ** to be replaced by a value. If pExpr is equivalent to one of the 4230 ** columns named in pWalker->u.pConst, then overwrite it with its 4231 ** corresponding value. 4232 */ 4233 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4234 int i; 4235 WhereConst *pConst; 4236 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4237 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4238 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4239 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4240 return WRC_Continue; 4241 } 4242 pConst = pWalker->u.pConst; 4243 for(i=0; i<pConst->nConst; i++){ 4244 Expr *pColumn = pConst->apExpr[i*2]; 4245 if( pColumn==pExpr ) continue; 4246 if( pColumn->iTable!=pExpr->iTable ) continue; 4247 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4248 /* A match is found. Add the EP_FixedCol property */ 4249 pConst->nChng++; 4250 ExprClearProperty(pExpr, EP_Leaf); 4251 ExprSetProperty(pExpr, EP_FixedCol); 4252 assert( pExpr->pLeft==0 ); 4253 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4254 break; 4255 } 4256 return WRC_Prune; 4257 } 4258 4259 /* 4260 ** The WHERE-clause constant propagation optimization. 4261 ** 4262 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4263 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4264 ** part of a ON clause from a LEFT JOIN, then throughout the query 4265 ** replace all other occurrences of COLUMN with CONSTANT. 4266 ** 4267 ** For example, the query: 4268 ** 4269 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4270 ** 4271 ** Is transformed into 4272 ** 4273 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4274 ** 4275 ** Return true if any transformations where made and false if not. 4276 ** 4277 ** Implementation note: Constant propagation is tricky due to affinity 4278 ** and collating sequence interactions. Consider this example: 4279 ** 4280 ** CREATE TABLE t1(a INT,b TEXT); 4281 ** INSERT INTO t1 VALUES(123,'0123'); 4282 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4283 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4284 ** 4285 ** The two SELECT statements above should return different answers. b=a 4286 ** is alway true because the comparison uses numeric affinity, but b=123 4287 ** is false because it uses text affinity and '0123' is not the same as '123'. 4288 ** To work around this, the expression tree is not actually changed from 4289 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4290 ** and the "123" value is hung off of the pLeft pointer. Code generator 4291 ** routines know to generate the constant "123" instead of looking up the 4292 ** column value. Also, to avoid collation problems, this optimization is 4293 ** only attempted if the "a=123" term uses the default BINARY collation. 4294 */ 4295 static int propagateConstants( 4296 Parse *pParse, /* The parsing context */ 4297 Select *p /* The query in which to propagate constants */ 4298 ){ 4299 WhereConst x; 4300 Walker w; 4301 int nChng = 0; 4302 x.pParse = pParse; 4303 do{ 4304 x.nConst = 0; 4305 x.nChng = 0; 4306 x.apExpr = 0; 4307 findConstInWhere(&x, p->pWhere); 4308 if( x.nConst ){ 4309 memset(&w, 0, sizeof(w)); 4310 w.pParse = pParse; 4311 w.xExprCallback = propagateConstantExprRewrite; 4312 w.xSelectCallback = sqlite3SelectWalkNoop; 4313 w.xSelectCallback2 = 0; 4314 w.walkerDepth = 0; 4315 w.u.pConst = &x; 4316 sqlite3WalkExpr(&w, p->pWhere); 4317 sqlite3DbFree(x.pParse->db, x.apExpr); 4318 nChng += x.nChng; 4319 } 4320 }while( x.nChng ); 4321 return nChng; 4322 } 4323 4324 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4325 /* 4326 ** Make copies of relevant WHERE clause terms of the outer query into 4327 ** the WHERE clause of subquery. Example: 4328 ** 4329 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4330 ** 4331 ** Transformed into: 4332 ** 4333 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4334 ** WHERE x=5 AND y=10; 4335 ** 4336 ** The hope is that the terms added to the inner query will make it more 4337 ** efficient. 4338 ** 4339 ** Do not attempt this optimization if: 4340 ** 4341 ** (1) (** This restriction was removed on 2017-09-29. We used to 4342 ** disallow this optimization for aggregate subqueries, but now 4343 ** it is allowed by putting the extra terms on the HAVING clause. 4344 ** The added HAVING clause is pointless if the subquery lacks 4345 ** a GROUP BY clause. But such a HAVING clause is also harmless 4346 ** so there does not appear to be any reason to add extra logic 4347 ** to suppress it. **) 4348 ** 4349 ** (2) The inner query is the recursive part of a common table expression. 4350 ** 4351 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4352 ** clause would change the meaning of the LIMIT). 4353 ** 4354 ** (4) The inner query is the right operand of a LEFT JOIN and the 4355 ** expression to be pushed down does not come from the ON clause 4356 ** on that LEFT JOIN. 4357 ** 4358 ** (5) The WHERE clause expression originates in the ON or USING clause 4359 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4360 ** left join. An example: 4361 ** 4362 ** SELECT * 4363 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4364 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4365 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4366 ** 4367 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4368 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4369 ** then the (1,1,NULL) row would be suppressed. 4370 ** 4371 ** (6) The inner query features one or more window-functions (since 4372 ** changes to the WHERE clause of the inner query could change the 4373 ** window over which window functions are calculated). 4374 ** 4375 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4376 ** terms are duplicated into the subquery. 4377 */ 4378 static int pushDownWhereTerms( 4379 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4380 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4381 Expr *pWhere, /* The WHERE clause of the outer query */ 4382 int iCursor, /* Cursor number of the subquery */ 4383 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4384 ){ 4385 Expr *pNew; 4386 int nChng = 0; 4387 if( pWhere==0 ) return 0; 4388 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4389 4390 #ifndef SQLITE_OMIT_WINDOWFUNC 4391 if( pSubq->pWin ) return 0; /* restriction (6) */ 4392 #endif 4393 4394 #ifdef SQLITE_DEBUG 4395 /* Only the first term of a compound can have a WITH clause. But make 4396 ** sure no other terms are marked SF_Recursive in case something changes 4397 ** in the future. 4398 */ 4399 { 4400 Select *pX; 4401 for(pX=pSubq; pX; pX=pX->pPrior){ 4402 assert( (pX->selFlags & (SF_Recursive))==0 ); 4403 } 4404 } 4405 #endif 4406 4407 if( pSubq->pLimit!=0 ){ 4408 return 0; /* restriction (3) */ 4409 } 4410 while( pWhere->op==TK_AND ){ 4411 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4412 iCursor, isLeftJoin); 4413 pWhere = pWhere->pLeft; 4414 } 4415 if( isLeftJoin 4416 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4417 || pWhere->iRightJoinTable!=iCursor) 4418 ){ 4419 return 0; /* restriction (4) */ 4420 } 4421 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4422 return 0; /* restriction (5) */ 4423 } 4424 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4425 nChng++; 4426 while( pSubq ){ 4427 SubstContext x; 4428 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4429 unsetJoinExpr(pNew, -1); 4430 x.pParse = pParse; 4431 x.iTable = iCursor; 4432 x.iNewTable = iCursor; 4433 x.isLeftJoin = 0; 4434 x.pEList = pSubq->pEList; 4435 pNew = substExpr(&x, pNew); 4436 if( pSubq->selFlags & SF_Aggregate ){ 4437 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4438 }else{ 4439 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4440 } 4441 pSubq = pSubq->pPrior; 4442 } 4443 } 4444 return nChng; 4445 } 4446 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4447 4448 /* 4449 ** The pFunc is the only aggregate function in the query. Check to see 4450 ** if the query is a candidate for the min/max optimization. 4451 ** 4452 ** If the query is a candidate for the min/max optimization, then set 4453 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4454 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4455 ** whether pFunc is a min() or max() function. 4456 ** 4457 ** If the query is not a candidate for the min/max optimization, return 4458 ** WHERE_ORDERBY_NORMAL (which must be zero). 4459 ** 4460 ** This routine must be called after aggregate functions have been 4461 ** located but before their arguments have been subjected to aggregate 4462 ** analysis. 4463 */ 4464 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4465 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4466 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4467 const char *zFunc; /* Name of aggregate function pFunc */ 4468 ExprList *pOrderBy; 4469 u8 sortFlags = 0; 4470 4471 assert( *ppMinMax==0 ); 4472 assert( pFunc->op==TK_AGG_FUNCTION ); 4473 assert( !IsWindowFunc(pFunc) ); 4474 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4475 return eRet; 4476 } 4477 zFunc = pFunc->u.zToken; 4478 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4479 eRet = WHERE_ORDERBY_MIN; 4480 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4481 sortFlags = KEYINFO_ORDER_BIGNULL; 4482 } 4483 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4484 eRet = WHERE_ORDERBY_MAX; 4485 sortFlags = KEYINFO_ORDER_DESC; 4486 }else{ 4487 return eRet; 4488 } 4489 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4490 assert( pOrderBy!=0 || db->mallocFailed ); 4491 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4492 return eRet; 4493 } 4494 4495 /* 4496 ** The select statement passed as the first argument is an aggregate query. 4497 ** The second argument is the associated aggregate-info object. This 4498 ** function tests if the SELECT is of the form: 4499 ** 4500 ** SELECT count(*) FROM <tbl> 4501 ** 4502 ** where table is a database table, not a sub-select or view. If the query 4503 ** does match this pattern, then a pointer to the Table object representing 4504 ** <tbl> is returned. Otherwise, 0 is returned. 4505 */ 4506 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4507 Table *pTab; 4508 Expr *pExpr; 4509 4510 assert( !p->pGroupBy ); 4511 4512 if( p->pWhere || p->pEList->nExpr!=1 4513 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4514 ){ 4515 return 0; 4516 } 4517 pTab = p->pSrc->a[0].pTab; 4518 pExpr = p->pEList->a[0].pExpr; 4519 assert( pTab && !pTab->pSelect && pExpr ); 4520 4521 if( IsVirtual(pTab) ) return 0; 4522 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4523 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4524 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4525 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4526 4527 return pTab; 4528 } 4529 4530 /* 4531 ** If the source-list item passed as an argument was augmented with an 4532 ** INDEXED BY clause, then try to locate the specified index. If there 4533 ** was such a clause and the named index cannot be found, return 4534 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4535 ** pFrom->pIndex and return SQLITE_OK. 4536 */ 4537 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4538 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4539 Table *pTab = pFrom->pTab; 4540 char *zIndexedBy = pFrom->u1.zIndexedBy; 4541 Index *pIdx; 4542 for(pIdx=pTab->pIndex; 4543 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4544 pIdx=pIdx->pNext 4545 ); 4546 if( !pIdx ){ 4547 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4548 pParse->checkSchema = 1; 4549 return SQLITE_ERROR; 4550 } 4551 pFrom->pIBIndex = pIdx; 4552 } 4553 return SQLITE_OK; 4554 } 4555 /* 4556 ** Detect compound SELECT statements that use an ORDER BY clause with 4557 ** an alternative collating sequence. 4558 ** 4559 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4560 ** 4561 ** These are rewritten as a subquery: 4562 ** 4563 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4564 ** ORDER BY ... COLLATE ... 4565 ** 4566 ** This transformation is necessary because the multiSelectOrderBy() routine 4567 ** above that generates the code for a compound SELECT with an ORDER BY clause 4568 ** uses a merge algorithm that requires the same collating sequence on the 4569 ** result columns as on the ORDER BY clause. See ticket 4570 ** http://www.sqlite.org/src/info/6709574d2a 4571 ** 4572 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4573 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4574 ** there are COLLATE terms in the ORDER BY. 4575 */ 4576 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4577 int i; 4578 Select *pNew; 4579 Select *pX; 4580 sqlite3 *db; 4581 struct ExprList_item *a; 4582 SrcList *pNewSrc; 4583 Parse *pParse; 4584 Token dummy; 4585 4586 if( p->pPrior==0 ) return WRC_Continue; 4587 if( p->pOrderBy==0 ) return WRC_Continue; 4588 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4589 if( pX==0 ) return WRC_Continue; 4590 a = p->pOrderBy->a; 4591 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4592 if( a[i].pExpr->flags & EP_Collate ) break; 4593 } 4594 if( i<0 ) return WRC_Continue; 4595 4596 /* If we reach this point, that means the transformation is required. */ 4597 4598 pParse = pWalker->pParse; 4599 db = pParse->db; 4600 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4601 if( pNew==0 ) return WRC_Abort; 4602 memset(&dummy, 0, sizeof(dummy)); 4603 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4604 if( pNewSrc==0 ) return WRC_Abort; 4605 *pNew = *p; 4606 p->pSrc = pNewSrc; 4607 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4608 p->op = TK_SELECT; 4609 p->pWhere = 0; 4610 pNew->pGroupBy = 0; 4611 pNew->pHaving = 0; 4612 pNew->pOrderBy = 0; 4613 p->pPrior = 0; 4614 p->pNext = 0; 4615 p->pWith = 0; 4616 #ifndef SQLITE_OMIT_WINDOWFUNC 4617 p->pWinDefn = 0; 4618 #endif 4619 p->selFlags &= ~SF_Compound; 4620 assert( (p->selFlags & SF_Converted)==0 ); 4621 p->selFlags |= SF_Converted; 4622 assert( pNew->pPrior!=0 ); 4623 pNew->pPrior->pNext = pNew; 4624 pNew->pLimit = 0; 4625 return WRC_Continue; 4626 } 4627 4628 /* 4629 ** Check to see if the FROM clause term pFrom has table-valued function 4630 ** arguments. If it does, leave an error message in pParse and return 4631 ** non-zero, since pFrom is not allowed to be a table-valued function. 4632 */ 4633 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4634 if( pFrom->fg.isTabFunc ){ 4635 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4636 return 1; 4637 } 4638 return 0; 4639 } 4640 4641 #ifndef SQLITE_OMIT_CTE 4642 /* 4643 ** Argument pWith (which may be NULL) points to a linked list of nested 4644 ** WITH contexts, from inner to outermost. If the table identified by 4645 ** FROM clause element pItem is really a common-table-expression (CTE) 4646 ** then return a pointer to the CTE definition for that table. Otherwise 4647 ** return NULL. 4648 ** 4649 ** If a non-NULL value is returned, set *ppContext to point to the With 4650 ** object that the returned CTE belongs to. 4651 */ 4652 static struct Cte *searchWith( 4653 With *pWith, /* Current innermost WITH clause */ 4654 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4655 With **ppContext /* OUT: WITH clause return value belongs to */ 4656 ){ 4657 const char *zName; 4658 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4659 With *p; 4660 for(p=pWith; p; p=p->pOuter){ 4661 int i; 4662 for(i=0; i<p->nCte; i++){ 4663 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4664 *ppContext = p; 4665 return &p->a[i]; 4666 } 4667 } 4668 } 4669 } 4670 return 0; 4671 } 4672 4673 /* The code generator maintains a stack of active WITH clauses 4674 ** with the inner-most WITH clause being at the top of the stack. 4675 ** 4676 ** This routine pushes the WITH clause passed as the second argument 4677 ** onto the top of the stack. If argument bFree is true, then this 4678 ** WITH clause will never be popped from the stack. In this case it 4679 ** should be freed along with the Parse object. In other cases, when 4680 ** bFree==0, the With object will be freed along with the SELECT 4681 ** statement with which it is associated. 4682 */ 4683 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4684 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4685 if( pWith ){ 4686 assert( pParse->pWith!=pWith ); 4687 pWith->pOuter = pParse->pWith; 4688 pParse->pWith = pWith; 4689 if( bFree ) pParse->pWithToFree = pWith; 4690 } 4691 } 4692 4693 /* 4694 ** This function checks if argument pFrom refers to a CTE declared by 4695 ** a WITH clause on the stack currently maintained by the parser. And, 4696 ** if currently processing a CTE expression, if it is a recursive 4697 ** reference to the current CTE. 4698 ** 4699 ** If pFrom falls into either of the two categories above, pFrom->pTab 4700 ** and other fields are populated accordingly. The caller should check 4701 ** (pFrom->pTab!=0) to determine whether or not a successful match 4702 ** was found. 4703 ** 4704 ** Whether or not a match is found, SQLITE_OK is returned if no error 4705 ** occurs. If an error does occur, an error message is stored in the 4706 ** parser and some error code other than SQLITE_OK returned. 4707 */ 4708 static int withExpand( 4709 Walker *pWalker, 4710 struct SrcList_item *pFrom 4711 ){ 4712 Parse *pParse = pWalker->pParse; 4713 sqlite3 *db = pParse->db; 4714 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4715 With *pWith; /* WITH clause that pCte belongs to */ 4716 4717 assert( pFrom->pTab==0 ); 4718 if( pParse->nErr ){ 4719 return SQLITE_ERROR; 4720 } 4721 4722 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4723 if( pCte ){ 4724 Table *pTab; 4725 ExprList *pEList; 4726 Select *pSel; 4727 Select *pLeft; /* Left-most SELECT statement */ 4728 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4729 With *pSavedWith; /* Initial value of pParse->pWith */ 4730 4731 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4732 ** recursive reference to CTE pCte. Leave an error in pParse and return 4733 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4734 ** In this case, proceed. */ 4735 if( pCte->zCteErr ){ 4736 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4737 return SQLITE_ERROR; 4738 } 4739 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4740 4741 assert( pFrom->pTab==0 ); 4742 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4743 if( pTab==0 ) return WRC_Abort; 4744 pTab->nTabRef = 1; 4745 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4746 pTab->iPKey = -1; 4747 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4748 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4749 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4750 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4751 assert( pFrom->pSelect ); 4752 4753 /* Check if this is a recursive CTE. */ 4754 pSel = pFrom->pSelect; 4755 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4756 if( bMayRecursive ){ 4757 int i; 4758 SrcList *pSrc = pFrom->pSelect->pSrc; 4759 for(i=0; i<pSrc->nSrc; i++){ 4760 struct SrcList_item *pItem = &pSrc->a[i]; 4761 if( pItem->zDatabase==0 4762 && pItem->zName!=0 4763 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4764 ){ 4765 pItem->pTab = pTab; 4766 pItem->fg.isRecursive = 1; 4767 pTab->nTabRef++; 4768 pSel->selFlags |= SF_Recursive; 4769 } 4770 } 4771 } 4772 4773 /* Only one recursive reference is permitted. */ 4774 if( pTab->nTabRef>2 ){ 4775 sqlite3ErrorMsg( 4776 pParse, "multiple references to recursive table: %s", pCte->zName 4777 ); 4778 return SQLITE_ERROR; 4779 } 4780 assert( pTab->nTabRef==1 || 4781 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4782 4783 pCte->zCteErr = "circular reference: %s"; 4784 pSavedWith = pParse->pWith; 4785 pParse->pWith = pWith; 4786 if( bMayRecursive ){ 4787 Select *pPrior = pSel->pPrior; 4788 assert( pPrior->pWith==0 ); 4789 pPrior->pWith = pSel->pWith; 4790 sqlite3WalkSelect(pWalker, pPrior); 4791 pPrior->pWith = 0; 4792 }else{ 4793 sqlite3WalkSelect(pWalker, pSel); 4794 } 4795 pParse->pWith = pWith; 4796 4797 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4798 pEList = pLeft->pEList; 4799 if( pCte->pCols ){ 4800 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4801 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4802 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4803 ); 4804 pParse->pWith = pSavedWith; 4805 return SQLITE_ERROR; 4806 } 4807 pEList = pCte->pCols; 4808 } 4809 4810 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4811 if( bMayRecursive ){ 4812 if( pSel->selFlags & SF_Recursive ){ 4813 pCte->zCteErr = "multiple recursive references: %s"; 4814 }else{ 4815 pCte->zCteErr = "recursive reference in a subquery: %s"; 4816 } 4817 sqlite3WalkSelect(pWalker, pSel); 4818 } 4819 pCte->zCteErr = 0; 4820 pParse->pWith = pSavedWith; 4821 } 4822 4823 return SQLITE_OK; 4824 } 4825 #endif 4826 4827 #ifndef SQLITE_OMIT_CTE 4828 /* 4829 ** If the SELECT passed as the second argument has an associated WITH 4830 ** clause, pop it from the stack stored as part of the Parse object. 4831 ** 4832 ** This function is used as the xSelectCallback2() callback by 4833 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4834 ** names and other FROM clause elements. 4835 */ 4836 static void selectPopWith(Walker *pWalker, Select *p){ 4837 Parse *pParse = pWalker->pParse; 4838 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4839 With *pWith = findRightmost(p)->pWith; 4840 if( pWith!=0 ){ 4841 assert( pParse->pWith==pWith || pParse->nErr ); 4842 pParse->pWith = pWith->pOuter; 4843 } 4844 } 4845 } 4846 #else 4847 #define selectPopWith 0 4848 #endif 4849 4850 /* 4851 ** The SrcList_item structure passed as the second argument represents a 4852 ** sub-query in the FROM clause of a SELECT statement. This function 4853 ** allocates and populates the SrcList_item.pTab object. If successful, 4854 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4855 ** SQLITE_NOMEM. 4856 */ 4857 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4858 Select *pSel = pFrom->pSelect; 4859 Table *pTab; 4860 4861 assert( pSel ); 4862 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4863 if( pTab==0 ) return SQLITE_NOMEM; 4864 pTab->nTabRef = 1; 4865 if( pFrom->zAlias ){ 4866 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4867 }else{ 4868 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4869 } 4870 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4871 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4872 pTab->iPKey = -1; 4873 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4874 pTab->tabFlags |= TF_Ephemeral; 4875 4876 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4877 } 4878 4879 /* 4880 ** This routine is a Walker callback for "expanding" a SELECT statement. 4881 ** "Expanding" means to do the following: 4882 ** 4883 ** (1) Make sure VDBE cursor numbers have been assigned to every 4884 ** element of the FROM clause. 4885 ** 4886 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4887 ** defines FROM clause. When views appear in the FROM clause, 4888 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4889 ** that implements the view. A copy is made of the view's SELECT 4890 ** statement so that we can freely modify or delete that statement 4891 ** without worrying about messing up the persistent representation 4892 ** of the view. 4893 ** 4894 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4895 ** on joins and the ON and USING clause of joins. 4896 ** 4897 ** (4) Scan the list of columns in the result set (pEList) looking 4898 ** for instances of the "*" operator or the TABLE.* operator. 4899 ** If found, expand each "*" to be every column in every table 4900 ** and TABLE.* to be every column in TABLE. 4901 ** 4902 */ 4903 static int selectExpander(Walker *pWalker, Select *p){ 4904 Parse *pParse = pWalker->pParse; 4905 int i, j, k; 4906 SrcList *pTabList; 4907 ExprList *pEList; 4908 struct SrcList_item *pFrom; 4909 sqlite3 *db = pParse->db; 4910 Expr *pE, *pRight, *pExpr; 4911 u16 selFlags = p->selFlags; 4912 u32 elistFlags = 0; 4913 4914 p->selFlags |= SF_Expanded; 4915 if( db->mallocFailed ){ 4916 return WRC_Abort; 4917 } 4918 assert( p->pSrc!=0 ); 4919 if( (selFlags & SF_Expanded)!=0 ){ 4920 return WRC_Prune; 4921 } 4922 if( pWalker->eCode ){ 4923 /* Renumber selId because it has been copied from a view */ 4924 p->selId = ++pParse->nSelect; 4925 } 4926 pTabList = p->pSrc; 4927 pEList = p->pEList; 4928 sqlite3WithPush(pParse, p->pWith, 0); 4929 4930 /* Make sure cursor numbers have been assigned to all entries in 4931 ** the FROM clause of the SELECT statement. 4932 */ 4933 sqlite3SrcListAssignCursors(pParse, pTabList); 4934 4935 /* Look up every table named in the FROM clause of the select. If 4936 ** an entry of the FROM clause is a subquery instead of a table or view, 4937 ** then create a transient table structure to describe the subquery. 4938 */ 4939 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4940 Table *pTab; 4941 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4942 if( pFrom->fg.isRecursive ) continue; 4943 assert( pFrom->pTab==0 ); 4944 #ifndef SQLITE_OMIT_CTE 4945 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4946 if( pFrom->pTab ) {} else 4947 #endif 4948 if( pFrom->zName==0 ){ 4949 #ifndef SQLITE_OMIT_SUBQUERY 4950 Select *pSel = pFrom->pSelect; 4951 /* A sub-query in the FROM clause of a SELECT */ 4952 assert( pSel!=0 ); 4953 assert( pFrom->pTab==0 ); 4954 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4955 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4956 #endif 4957 }else{ 4958 /* An ordinary table or view name in the FROM clause */ 4959 assert( pFrom->pTab==0 ); 4960 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4961 if( pTab==0 ) return WRC_Abort; 4962 if( pTab->nTabRef>=0xffff ){ 4963 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4964 pTab->zName); 4965 pFrom->pTab = 0; 4966 return WRC_Abort; 4967 } 4968 pTab->nTabRef++; 4969 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4970 return WRC_Abort; 4971 } 4972 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 4973 if( IsVirtual(pTab) || pTab->pSelect ){ 4974 i16 nCol; 4975 u8 eCodeOrig = pWalker->eCode; 4976 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4977 assert( pFrom->pSelect==0 ); 4978 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 4979 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 4980 pTab->zName); 4981 } 4982 #ifndef SQLITE_OMIT_VIRTUALTABLE 4983 if( IsVirtual(pTab) 4984 && pFrom->fg.fromDDL 4985 && ALWAYS(pTab->pVTable!=0) 4986 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 4987 ){ 4988 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 4989 pTab->zName); 4990 } 4991 #endif 4992 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4993 nCol = pTab->nCol; 4994 pTab->nCol = -1; 4995 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 4996 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4997 pWalker->eCode = eCodeOrig; 4998 pTab->nCol = nCol; 4999 } 5000 #endif 5001 } 5002 5003 /* Locate the index named by the INDEXED BY clause, if any. */ 5004 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 5005 return WRC_Abort; 5006 } 5007 } 5008 5009 /* Process NATURAL keywords, and ON and USING clauses of joins. 5010 */ 5011 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5012 return WRC_Abort; 5013 } 5014 5015 /* For every "*" that occurs in the column list, insert the names of 5016 ** all columns in all tables. And for every TABLE.* insert the names 5017 ** of all columns in TABLE. The parser inserted a special expression 5018 ** with the TK_ASTERISK operator for each "*" that it found in the column 5019 ** list. The following code just has to locate the TK_ASTERISK 5020 ** expressions and expand each one to the list of all columns in 5021 ** all tables. 5022 ** 5023 ** The first loop just checks to see if there are any "*" operators 5024 ** that need expanding. 5025 */ 5026 for(k=0; k<pEList->nExpr; k++){ 5027 pE = pEList->a[k].pExpr; 5028 if( pE->op==TK_ASTERISK ) break; 5029 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5030 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5031 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5032 elistFlags |= pE->flags; 5033 } 5034 if( k<pEList->nExpr ){ 5035 /* 5036 ** If we get here it means the result set contains one or more "*" 5037 ** operators that need to be expanded. Loop through each expression 5038 ** in the result set and expand them one by one. 5039 */ 5040 struct ExprList_item *a = pEList->a; 5041 ExprList *pNew = 0; 5042 int flags = pParse->db->flags; 5043 int longNames = (flags & SQLITE_FullColNames)!=0 5044 && (flags & SQLITE_ShortColNames)==0; 5045 5046 for(k=0; k<pEList->nExpr; k++){ 5047 pE = a[k].pExpr; 5048 elistFlags |= pE->flags; 5049 pRight = pE->pRight; 5050 assert( pE->op!=TK_DOT || pRight!=0 ); 5051 if( pE->op!=TK_ASTERISK 5052 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5053 ){ 5054 /* This particular expression does not need to be expanded. 5055 */ 5056 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5057 if( pNew ){ 5058 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5059 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5060 a[k].zEName = 0; 5061 } 5062 a[k].pExpr = 0; 5063 }else{ 5064 /* This expression is a "*" or a "TABLE.*" and needs to be 5065 ** expanded. */ 5066 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5067 char *zTName = 0; /* text of name of TABLE */ 5068 if( pE->op==TK_DOT ){ 5069 assert( pE->pLeft!=0 ); 5070 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5071 zTName = pE->pLeft->u.zToken; 5072 } 5073 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5074 Table *pTab = pFrom->pTab; 5075 Select *pSub = pFrom->pSelect; 5076 char *zTabName = pFrom->zAlias; 5077 const char *zSchemaName = 0; 5078 int iDb; 5079 if( zTabName==0 ){ 5080 zTabName = pTab->zName; 5081 } 5082 if( db->mallocFailed ) break; 5083 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5084 pSub = 0; 5085 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5086 continue; 5087 } 5088 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5089 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5090 } 5091 for(j=0; j<pTab->nCol; j++){ 5092 char *zName = pTab->aCol[j].zName; 5093 char *zColname; /* The computed column name */ 5094 char *zToFree; /* Malloced string that needs to be freed */ 5095 Token sColname; /* Computed column name as a token */ 5096 5097 assert( zName ); 5098 if( zTName && pSub 5099 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5100 ){ 5101 continue; 5102 } 5103 5104 /* If a column is marked as 'hidden', omit it from the expanded 5105 ** result-set list unless the SELECT has the SF_IncludeHidden 5106 ** bit set. 5107 */ 5108 if( (p->selFlags & SF_IncludeHidden)==0 5109 && IsHiddenColumn(&pTab->aCol[j]) 5110 ){ 5111 continue; 5112 } 5113 tableSeen = 1; 5114 5115 if( i>0 && zTName==0 ){ 5116 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5117 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5118 ){ 5119 /* In a NATURAL join, omit the join columns from the 5120 ** table to the right of the join */ 5121 continue; 5122 } 5123 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5124 /* In a join with a USING clause, omit columns in the 5125 ** using clause from the table on the right. */ 5126 continue; 5127 } 5128 } 5129 pRight = sqlite3Expr(db, TK_ID, zName); 5130 zColname = zName; 5131 zToFree = 0; 5132 if( longNames || pTabList->nSrc>1 ){ 5133 Expr *pLeft; 5134 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5135 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5136 if( zSchemaName ){ 5137 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5138 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5139 } 5140 if( longNames ){ 5141 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5142 zToFree = zColname; 5143 } 5144 }else{ 5145 pExpr = pRight; 5146 } 5147 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5148 sqlite3TokenInit(&sColname, zColname); 5149 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5150 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5151 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5152 sqlite3DbFree(db, pX->zEName); 5153 if( pSub ){ 5154 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5155 testcase( pX->zEName==0 ); 5156 }else{ 5157 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5158 zSchemaName, zTabName, zColname); 5159 testcase( pX->zEName==0 ); 5160 } 5161 pX->eEName = ENAME_TAB; 5162 } 5163 sqlite3DbFree(db, zToFree); 5164 } 5165 } 5166 if( !tableSeen ){ 5167 if( zTName ){ 5168 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5169 }else{ 5170 sqlite3ErrorMsg(pParse, "no tables specified"); 5171 } 5172 } 5173 } 5174 } 5175 sqlite3ExprListDelete(db, pEList); 5176 p->pEList = pNew; 5177 } 5178 if( p->pEList ){ 5179 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5180 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5181 return WRC_Abort; 5182 } 5183 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5184 p->selFlags |= SF_ComplexResult; 5185 } 5186 } 5187 return WRC_Continue; 5188 } 5189 5190 /* 5191 ** No-op routine for the parse-tree walker. 5192 ** 5193 ** When this routine is the Walker.xExprCallback then expression trees 5194 ** are walked without any actions being taken at each node. Presumably, 5195 ** when this routine is used for Walker.xExprCallback then 5196 ** Walker.xSelectCallback is set to do something useful for every 5197 ** subquery in the parser tree. 5198 */ 5199 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5200 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5201 return WRC_Continue; 5202 } 5203 5204 /* 5205 ** No-op routine for the parse-tree walker for SELECT statements. 5206 ** subquery in the parser tree. 5207 */ 5208 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5209 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5210 return WRC_Continue; 5211 } 5212 5213 #if SQLITE_DEBUG 5214 /* 5215 ** Always assert. This xSelectCallback2 implementation proves that the 5216 ** xSelectCallback2 is never invoked. 5217 */ 5218 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5219 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5220 assert( 0 ); 5221 } 5222 #endif 5223 /* 5224 ** This routine "expands" a SELECT statement and all of its subqueries. 5225 ** For additional information on what it means to "expand" a SELECT 5226 ** statement, see the comment on the selectExpand worker callback above. 5227 ** 5228 ** Expanding a SELECT statement is the first step in processing a 5229 ** SELECT statement. The SELECT statement must be expanded before 5230 ** name resolution is performed. 5231 ** 5232 ** If anything goes wrong, an error message is written into pParse. 5233 ** The calling function can detect the problem by looking at pParse->nErr 5234 ** and/or pParse->db->mallocFailed. 5235 */ 5236 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5237 Walker w; 5238 w.xExprCallback = sqlite3ExprWalkNoop; 5239 w.pParse = pParse; 5240 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5241 w.xSelectCallback = convertCompoundSelectToSubquery; 5242 w.xSelectCallback2 = 0; 5243 sqlite3WalkSelect(&w, pSelect); 5244 } 5245 w.xSelectCallback = selectExpander; 5246 w.xSelectCallback2 = selectPopWith; 5247 w.eCode = 0; 5248 sqlite3WalkSelect(&w, pSelect); 5249 } 5250 5251 5252 #ifndef SQLITE_OMIT_SUBQUERY 5253 /* 5254 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5255 ** interface. 5256 ** 5257 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5258 ** information to the Table structure that represents the result set 5259 ** of that subquery. 5260 ** 5261 ** The Table structure that represents the result set was constructed 5262 ** by selectExpander() but the type and collation information was omitted 5263 ** at that point because identifiers had not yet been resolved. This 5264 ** routine is called after identifier resolution. 5265 */ 5266 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5267 Parse *pParse; 5268 int i; 5269 SrcList *pTabList; 5270 struct SrcList_item *pFrom; 5271 5272 assert( p->selFlags & SF_Resolved ); 5273 if( p->selFlags & SF_HasTypeInfo ) return; 5274 p->selFlags |= SF_HasTypeInfo; 5275 pParse = pWalker->pParse; 5276 pTabList = p->pSrc; 5277 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5278 Table *pTab = pFrom->pTab; 5279 assert( pTab!=0 ); 5280 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5281 /* A sub-query in the FROM clause of a SELECT */ 5282 Select *pSel = pFrom->pSelect; 5283 if( pSel ){ 5284 while( pSel->pPrior ) pSel = pSel->pPrior; 5285 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5286 SQLITE_AFF_NONE); 5287 } 5288 } 5289 } 5290 } 5291 #endif 5292 5293 5294 /* 5295 ** This routine adds datatype and collating sequence information to 5296 ** the Table structures of all FROM-clause subqueries in a 5297 ** SELECT statement. 5298 ** 5299 ** Use this routine after name resolution. 5300 */ 5301 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5302 #ifndef SQLITE_OMIT_SUBQUERY 5303 Walker w; 5304 w.xSelectCallback = sqlite3SelectWalkNoop; 5305 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5306 w.xExprCallback = sqlite3ExprWalkNoop; 5307 w.pParse = pParse; 5308 sqlite3WalkSelect(&w, pSelect); 5309 #endif 5310 } 5311 5312 5313 /* 5314 ** This routine sets up a SELECT statement for processing. The 5315 ** following is accomplished: 5316 ** 5317 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5318 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5319 ** * ON and USING clauses are shifted into WHERE statements 5320 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5321 ** * Identifiers in expression are matched to tables. 5322 ** 5323 ** This routine acts recursively on all subqueries within the SELECT. 5324 */ 5325 void sqlite3SelectPrep( 5326 Parse *pParse, /* The parser context */ 5327 Select *p, /* The SELECT statement being coded. */ 5328 NameContext *pOuterNC /* Name context for container */ 5329 ){ 5330 assert( p!=0 || pParse->db->mallocFailed ); 5331 if( pParse->db->mallocFailed ) return; 5332 if( p->selFlags & SF_HasTypeInfo ) return; 5333 sqlite3SelectExpand(pParse, p); 5334 if( pParse->nErr || pParse->db->mallocFailed ) return; 5335 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5336 if( pParse->nErr || pParse->db->mallocFailed ) return; 5337 sqlite3SelectAddTypeInfo(pParse, p); 5338 } 5339 5340 /* 5341 ** Reset the aggregate accumulator. 5342 ** 5343 ** The aggregate accumulator is a set of memory cells that hold 5344 ** intermediate results while calculating an aggregate. This 5345 ** routine generates code that stores NULLs in all of those memory 5346 ** cells. 5347 */ 5348 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5349 Vdbe *v = pParse->pVdbe; 5350 int i; 5351 struct AggInfo_func *pFunc; 5352 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5353 if( nReg==0 ) return; 5354 #ifdef SQLITE_DEBUG 5355 /* Verify that all AggInfo registers are within the range specified by 5356 ** AggInfo.mnReg..AggInfo.mxReg */ 5357 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5358 for(i=0; i<pAggInfo->nColumn; i++){ 5359 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5360 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5361 } 5362 for(i=0; i<pAggInfo->nFunc; i++){ 5363 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5364 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5365 } 5366 #endif 5367 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5368 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5369 if( pFunc->iDistinct>=0 ){ 5370 Expr *pE = pFunc->pExpr; 5371 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5372 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5373 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5374 "argument"); 5375 pFunc->iDistinct = -1; 5376 }else{ 5377 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5378 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5379 (char*)pKeyInfo, P4_KEYINFO); 5380 } 5381 } 5382 } 5383 } 5384 5385 /* 5386 ** Invoke the OP_AggFinalize opcode for every aggregate function 5387 ** in the AggInfo structure. 5388 */ 5389 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5390 Vdbe *v = pParse->pVdbe; 5391 int i; 5392 struct AggInfo_func *pF; 5393 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5394 ExprList *pList = pF->pExpr->x.pList; 5395 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5396 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5397 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5398 } 5399 } 5400 5401 5402 /* 5403 ** Update the accumulator memory cells for an aggregate based on 5404 ** the current cursor position. 5405 ** 5406 ** If regAcc is non-zero and there are no min() or max() aggregates 5407 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5408 ** registers if register regAcc contains 0. The caller will take care 5409 ** of setting and clearing regAcc. 5410 */ 5411 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5412 Vdbe *v = pParse->pVdbe; 5413 int i; 5414 int regHit = 0; 5415 int addrHitTest = 0; 5416 struct AggInfo_func *pF; 5417 struct AggInfo_col *pC; 5418 5419 pAggInfo->directMode = 1; 5420 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5421 int nArg; 5422 int addrNext = 0; 5423 int regAgg; 5424 ExprList *pList = pF->pExpr->x.pList; 5425 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5426 assert( !IsWindowFunc(pF->pExpr) ); 5427 if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){ 5428 Expr *pFilter = pF->pExpr->y.pWin->pFilter; 5429 if( pAggInfo->nAccumulator 5430 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5431 ){ 5432 if( regHit==0 ) regHit = ++pParse->nMem; 5433 /* If this is the first row of the group (regAcc==0), clear the 5434 ** "magnet" register regHit so that the accumulator registers 5435 ** are populated if the FILTER clause jumps over the the 5436 ** invocation of min() or max() altogether. Or, if this is not 5437 ** the first row (regAcc==1), set the magnet register so that the 5438 ** accumulators are not populated unless the min()/max() is invoked and 5439 ** indicates that they should be. */ 5440 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5441 } 5442 addrNext = sqlite3VdbeMakeLabel(pParse); 5443 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5444 } 5445 if( pList ){ 5446 nArg = pList->nExpr; 5447 regAgg = sqlite3GetTempRange(pParse, nArg); 5448 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5449 }else{ 5450 nArg = 0; 5451 regAgg = 0; 5452 } 5453 if( pF->iDistinct>=0 ){ 5454 if( addrNext==0 ){ 5455 addrNext = sqlite3VdbeMakeLabel(pParse); 5456 } 5457 testcase( nArg==0 ); /* Error condition */ 5458 testcase( nArg>1 ); /* Also an error */ 5459 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5460 } 5461 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5462 CollSeq *pColl = 0; 5463 struct ExprList_item *pItem; 5464 int j; 5465 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5466 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5467 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5468 } 5469 if( !pColl ){ 5470 pColl = pParse->db->pDfltColl; 5471 } 5472 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5473 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5474 } 5475 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5476 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5477 sqlite3VdbeChangeP5(v, (u8)nArg); 5478 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5479 if( addrNext ){ 5480 sqlite3VdbeResolveLabel(v, addrNext); 5481 } 5482 } 5483 if( regHit==0 && pAggInfo->nAccumulator ){ 5484 regHit = regAcc; 5485 } 5486 if( regHit ){ 5487 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5488 } 5489 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5490 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5491 } 5492 5493 pAggInfo->directMode = 0; 5494 if( addrHitTest ){ 5495 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5496 } 5497 } 5498 5499 /* 5500 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5501 ** count(*) query ("SELECT count(*) FROM pTab"). 5502 */ 5503 #ifndef SQLITE_OMIT_EXPLAIN 5504 static void explainSimpleCount( 5505 Parse *pParse, /* Parse context */ 5506 Table *pTab, /* Table being queried */ 5507 Index *pIdx /* Index used to optimize scan, or NULL */ 5508 ){ 5509 if( pParse->explain==2 ){ 5510 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5511 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5512 pTab->zName, 5513 bCover ? " USING COVERING INDEX " : "", 5514 bCover ? pIdx->zName : "" 5515 ); 5516 } 5517 } 5518 #else 5519 # define explainSimpleCount(a,b,c) 5520 #endif 5521 5522 /* 5523 ** sqlite3WalkExpr() callback used by havingToWhere(). 5524 ** 5525 ** If the node passed to the callback is a TK_AND node, return 5526 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5527 ** 5528 ** Otherwise, return WRC_Prune. In this case, also check if the 5529 ** sub-expression matches the criteria for being moved to the WHERE 5530 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5531 ** within the HAVING expression with a constant "1". 5532 */ 5533 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5534 if( pExpr->op!=TK_AND ){ 5535 Select *pS = pWalker->u.pSelect; 5536 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5537 sqlite3 *db = pWalker->pParse->db; 5538 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5539 if( pNew ){ 5540 Expr *pWhere = pS->pWhere; 5541 SWAP(Expr, *pNew, *pExpr); 5542 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5543 pS->pWhere = pNew; 5544 pWalker->eCode = 1; 5545 } 5546 } 5547 return WRC_Prune; 5548 } 5549 return WRC_Continue; 5550 } 5551 5552 /* 5553 ** Transfer eligible terms from the HAVING clause of a query, which is 5554 ** processed after grouping, to the WHERE clause, which is processed before 5555 ** grouping. For example, the query: 5556 ** 5557 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5558 ** 5559 ** can be rewritten as: 5560 ** 5561 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5562 ** 5563 ** A term of the HAVING expression is eligible for transfer if it consists 5564 ** entirely of constants and expressions that are also GROUP BY terms that 5565 ** use the "BINARY" collation sequence. 5566 */ 5567 static void havingToWhere(Parse *pParse, Select *p){ 5568 Walker sWalker; 5569 memset(&sWalker, 0, sizeof(sWalker)); 5570 sWalker.pParse = pParse; 5571 sWalker.xExprCallback = havingToWhereExprCb; 5572 sWalker.u.pSelect = p; 5573 sqlite3WalkExpr(&sWalker, p->pHaving); 5574 #if SELECTTRACE_ENABLED 5575 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5576 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5577 sqlite3TreeViewSelect(0, p, 0); 5578 } 5579 #endif 5580 } 5581 5582 /* 5583 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5584 ** If it is, then return the SrcList_item for the prior view. If it is not, 5585 ** then return 0. 5586 */ 5587 static struct SrcList_item *isSelfJoinView( 5588 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5589 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5590 ){ 5591 struct SrcList_item *pItem; 5592 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5593 Select *pS1; 5594 if( pItem->pSelect==0 ) continue; 5595 if( pItem->fg.viaCoroutine ) continue; 5596 if( pItem->zName==0 ) continue; 5597 assert( pItem->pTab!=0 ); 5598 assert( pThis->pTab!=0 ); 5599 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5600 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5601 pS1 = pItem->pSelect; 5602 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5603 /* The query flattener left two different CTE tables with identical 5604 ** names in the same FROM clause. */ 5605 continue; 5606 } 5607 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5608 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5609 ){ 5610 /* The view was modified by some other optimization such as 5611 ** pushDownWhereTerms() */ 5612 continue; 5613 } 5614 return pItem; 5615 } 5616 return 0; 5617 } 5618 5619 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5620 /* 5621 ** Attempt to transform a query of the form 5622 ** 5623 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5624 ** 5625 ** Into this: 5626 ** 5627 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5628 ** 5629 ** The transformation only works if all of the following are true: 5630 ** 5631 ** * The subquery is a UNION ALL of two or more terms 5632 ** * The subquery does not have a LIMIT clause 5633 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5634 ** * The outer query is a simple count(*) with no WHERE clause or other 5635 ** extraneous syntax. 5636 ** 5637 ** Return TRUE if the optimization is undertaken. 5638 */ 5639 static int countOfViewOptimization(Parse *pParse, Select *p){ 5640 Select *pSub, *pPrior; 5641 Expr *pExpr; 5642 Expr *pCount; 5643 sqlite3 *db; 5644 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5645 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5646 if( p->pWhere ) return 0; 5647 if( p->pGroupBy ) return 0; 5648 pExpr = p->pEList->a[0].pExpr; 5649 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5650 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5651 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5652 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5653 pSub = p->pSrc->a[0].pSelect; 5654 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5655 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5656 do{ 5657 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5658 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5659 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5660 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5661 pSub = pSub->pPrior; /* Repeat over compound */ 5662 }while( pSub ); 5663 5664 /* If we reach this point then it is OK to perform the transformation */ 5665 5666 db = pParse->db; 5667 pCount = pExpr; 5668 pExpr = 0; 5669 pSub = p->pSrc->a[0].pSelect; 5670 p->pSrc->a[0].pSelect = 0; 5671 sqlite3SrcListDelete(db, p->pSrc); 5672 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5673 while( pSub ){ 5674 Expr *pTerm; 5675 pPrior = pSub->pPrior; 5676 pSub->pPrior = 0; 5677 pSub->pNext = 0; 5678 pSub->selFlags |= SF_Aggregate; 5679 pSub->selFlags &= ~SF_Compound; 5680 pSub->nSelectRow = 0; 5681 sqlite3ExprListDelete(db, pSub->pEList); 5682 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5683 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5684 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5685 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5686 if( pExpr==0 ){ 5687 pExpr = pTerm; 5688 }else{ 5689 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5690 } 5691 pSub = pPrior; 5692 } 5693 p->pEList->a[0].pExpr = pExpr; 5694 p->selFlags &= ~SF_Aggregate; 5695 5696 #if SELECTTRACE_ENABLED 5697 if( sqlite3SelectTrace & 0x400 ){ 5698 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5699 sqlite3TreeViewSelect(0, p, 0); 5700 } 5701 #endif 5702 return 1; 5703 } 5704 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5705 5706 /* 5707 ** Generate code for the SELECT statement given in the p argument. 5708 ** 5709 ** The results are returned according to the SelectDest structure. 5710 ** See comments in sqliteInt.h for further information. 5711 ** 5712 ** This routine returns the number of errors. If any errors are 5713 ** encountered, then an appropriate error message is left in 5714 ** pParse->zErrMsg. 5715 ** 5716 ** This routine does NOT free the Select structure passed in. The 5717 ** calling function needs to do that. 5718 */ 5719 int sqlite3Select( 5720 Parse *pParse, /* The parser context */ 5721 Select *p, /* The SELECT statement being coded. */ 5722 SelectDest *pDest /* What to do with the query results */ 5723 ){ 5724 int i, j; /* Loop counters */ 5725 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5726 Vdbe *v; /* The virtual machine under construction */ 5727 int isAgg; /* True for select lists like "count(*)" */ 5728 ExprList *pEList = 0; /* List of columns to extract. */ 5729 SrcList *pTabList; /* List of tables to select from */ 5730 Expr *pWhere; /* The WHERE clause. May be NULL */ 5731 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5732 Expr *pHaving; /* The HAVING clause. May be NULL */ 5733 int rc = 1; /* Value to return from this function */ 5734 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5735 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5736 AggInfo sAggInfo; /* Information used by aggregate queries */ 5737 int iEnd; /* Address of the end of the query */ 5738 sqlite3 *db; /* The database connection */ 5739 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5740 u8 minMaxFlag; /* Flag for min/max queries */ 5741 5742 db = pParse->db; 5743 v = sqlite3GetVdbe(pParse); 5744 if( p==0 || db->mallocFailed || pParse->nErr ){ 5745 return 1; 5746 } 5747 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5748 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5749 #if SELECTTRACE_ENABLED 5750 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5751 if( sqlite3SelectTrace & 0x100 ){ 5752 sqlite3TreeViewSelect(0, p, 0); 5753 } 5754 #endif 5755 5756 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5757 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5758 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5759 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5760 if( IgnorableOrderby(pDest) ){ 5761 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5762 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5763 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5764 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5765 /* If ORDER BY makes no difference in the output then neither does 5766 ** DISTINCT so it can be removed too. */ 5767 sqlite3ExprListDelete(db, p->pOrderBy); 5768 p->pOrderBy = 0; 5769 p->selFlags &= ~SF_Distinct; 5770 } 5771 sqlite3SelectPrep(pParse, p, 0); 5772 if( pParse->nErr || db->mallocFailed ){ 5773 goto select_end; 5774 } 5775 assert( p->pEList!=0 ); 5776 #if SELECTTRACE_ENABLED 5777 if( sqlite3SelectTrace & 0x104 ){ 5778 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5779 sqlite3TreeViewSelect(0, p, 0); 5780 } 5781 #endif 5782 5783 if( pDest->eDest==SRT_Output ){ 5784 generateColumnNames(pParse, p); 5785 } 5786 5787 #ifndef SQLITE_OMIT_WINDOWFUNC 5788 rc = sqlite3WindowRewrite(pParse, p); 5789 if( rc ){ 5790 assert( db->mallocFailed || pParse->nErr>0 ); 5791 goto select_end; 5792 } 5793 #if SELECTTRACE_ENABLED 5794 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 5795 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5796 sqlite3TreeViewSelect(0, p, 0); 5797 } 5798 #endif 5799 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5800 pTabList = p->pSrc; 5801 isAgg = (p->selFlags & SF_Aggregate)!=0; 5802 memset(&sSort, 0, sizeof(sSort)); 5803 sSort.pOrderBy = p->pOrderBy; 5804 5805 /* Try to various optimizations (flattening subqueries, and strength 5806 ** reduction of join operators) in the FROM clause up into the main query 5807 */ 5808 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5809 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5810 struct SrcList_item *pItem = &pTabList->a[i]; 5811 Select *pSub = pItem->pSelect; 5812 Table *pTab = pItem->pTab; 5813 5814 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5815 ** of the LEFT JOIN used in the WHERE clause. 5816 */ 5817 if( (pItem->fg.jointype & JT_LEFT)!=0 5818 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5819 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5820 ){ 5821 SELECTTRACE(0x100,pParse,p, 5822 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5823 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5824 unsetJoinExpr(p->pWhere, pItem->iCursor); 5825 } 5826 5827 /* No futher action if this term of the FROM clause is no a subquery */ 5828 if( pSub==0 ) continue; 5829 5830 /* Catch mismatch in the declared columns of a view and the number of 5831 ** columns in the SELECT on the RHS */ 5832 if( pTab->nCol!=pSub->pEList->nExpr ){ 5833 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5834 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5835 goto select_end; 5836 } 5837 5838 /* Do not try to flatten an aggregate subquery. 5839 ** 5840 ** Flattening an aggregate subquery is only possible if the outer query 5841 ** is not a join. But if the outer query is not a join, then the subquery 5842 ** will be implemented as a co-routine and there is no advantage to 5843 ** flattening in that case. 5844 */ 5845 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5846 assert( pSub->pGroupBy==0 ); 5847 5848 /* If the outer query contains a "complex" result set (that is, 5849 ** if the result set of the outer query uses functions or subqueries) 5850 ** and if the subquery contains an ORDER BY clause and if 5851 ** it will be implemented as a co-routine, then do not flatten. This 5852 ** restriction allows SQL constructs like this: 5853 ** 5854 ** SELECT expensive_function(x) 5855 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5856 ** 5857 ** The expensive_function() is only computed on the 10 rows that 5858 ** are output, rather than every row of the table. 5859 ** 5860 ** The requirement that the outer query have a complex result set 5861 ** means that flattening does occur on simpler SQL constraints without 5862 ** the expensive_function() like: 5863 ** 5864 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5865 */ 5866 if( pSub->pOrderBy!=0 5867 && i==0 5868 && (p->selFlags & SF_ComplexResult)!=0 5869 && (pTabList->nSrc==1 5870 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5871 ){ 5872 continue; 5873 } 5874 5875 if( flattenSubquery(pParse, p, i, isAgg) ){ 5876 if( pParse->nErr ) goto select_end; 5877 /* This subquery can be absorbed into its parent. */ 5878 i = -1; 5879 } 5880 pTabList = p->pSrc; 5881 if( db->mallocFailed ) goto select_end; 5882 if( !IgnorableOrderby(pDest) ){ 5883 sSort.pOrderBy = p->pOrderBy; 5884 } 5885 } 5886 #endif 5887 5888 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5889 /* Handle compound SELECT statements using the separate multiSelect() 5890 ** procedure. 5891 */ 5892 if( p->pPrior ){ 5893 rc = multiSelect(pParse, p, pDest); 5894 #if SELECTTRACE_ENABLED 5895 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5896 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5897 sqlite3TreeViewSelect(0, p, 0); 5898 } 5899 #endif 5900 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5901 return rc; 5902 } 5903 #endif 5904 5905 /* Do the WHERE-clause constant propagation optimization if this is 5906 ** a join. No need to speed time on this operation for non-join queries 5907 ** as the equivalent optimization will be handled by query planner in 5908 ** sqlite3WhereBegin(). 5909 */ 5910 if( pTabList->nSrc>1 5911 && OptimizationEnabled(db, SQLITE_PropagateConst) 5912 && propagateConstants(pParse, p) 5913 ){ 5914 #if SELECTTRACE_ENABLED 5915 if( sqlite3SelectTrace & 0x100 ){ 5916 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5917 sqlite3TreeViewSelect(0, p, 0); 5918 } 5919 #endif 5920 }else{ 5921 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5922 } 5923 5924 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5925 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5926 && countOfViewOptimization(pParse, p) 5927 ){ 5928 if( db->mallocFailed ) goto select_end; 5929 pEList = p->pEList; 5930 pTabList = p->pSrc; 5931 } 5932 #endif 5933 5934 /* For each term in the FROM clause, do two things: 5935 ** (1) Authorized unreferenced tables 5936 ** (2) Generate code for all sub-queries 5937 */ 5938 for(i=0; i<pTabList->nSrc; i++){ 5939 struct SrcList_item *pItem = &pTabList->a[i]; 5940 SelectDest dest; 5941 Select *pSub; 5942 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5943 const char *zSavedAuthContext; 5944 #endif 5945 5946 /* Issue SQLITE_READ authorizations with a fake column name for any 5947 ** tables that are referenced but from which no values are extracted. 5948 ** Examples of where these kinds of null SQLITE_READ authorizations 5949 ** would occur: 5950 ** 5951 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5952 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5953 ** 5954 ** The fake column name is an empty string. It is possible for a table to 5955 ** have a column named by the empty string, in which case there is no way to 5956 ** distinguish between an unreferenced table and an actual reference to the 5957 ** "" column. The original design was for the fake column name to be a NULL, 5958 ** which would be unambiguous. But legacy authorization callbacks might 5959 ** assume the column name is non-NULL and segfault. The use of an empty 5960 ** string for the fake column name seems safer. 5961 */ 5962 if( pItem->colUsed==0 && pItem->zName!=0 ){ 5963 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5964 } 5965 5966 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5967 /* Generate code for all sub-queries in the FROM clause 5968 */ 5969 pSub = pItem->pSelect; 5970 if( pSub==0 ) continue; 5971 5972 /* The code for a subquery should only be generated once, though it is 5973 ** technically harmless for it to be generated multiple times. The 5974 ** following assert() will detect if something changes to cause 5975 ** the same subquery to be coded multiple times, as a signal to the 5976 ** developers to try to optimize the situation. 5977 ** 5978 ** Update 2019-07-24: 5979 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 5980 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 5981 ** coded twice. So this assert() now becomes a testcase(). It should 5982 ** be very rare, though. 5983 */ 5984 testcase( pItem->addrFillSub!=0 ); 5985 5986 /* Increment Parse.nHeight by the height of the largest expression 5987 ** tree referred to by this, the parent select. The child select 5988 ** may contain expression trees of at most 5989 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5990 ** more conservative than necessary, but much easier than enforcing 5991 ** an exact limit. 5992 */ 5993 pParse->nHeight += sqlite3SelectExprHeight(p); 5994 5995 /* Make copies of constant WHERE-clause terms in the outer query down 5996 ** inside the subquery. This can help the subquery to run more efficiently. 5997 */ 5998 if( OptimizationEnabled(db, SQLITE_PushDown) 5999 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6000 (pItem->fg.jointype & JT_OUTER)!=0) 6001 ){ 6002 #if SELECTTRACE_ENABLED 6003 if( sqlite3SelectTrace & 0x100 ){ 6004 SELECTTRACE(0x100,pParse,p, 6005 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6006 sqlite3TreeViewSelect(0, p, 0); 6007 } 6008 #endif 6009 }else{ 6010 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6011 } 6012 6013 zSavedAuthContext = pParse->zAuthContext; 6014 pParse->zAuthContext = pItem->zName; 6015 6016 /* Generate code to implement the subquery 6017 ** 6018 ** The subquery is implemented as a co-routine if the subquery is 6019 ** guaranteed to be the outer loop (so that it does not need to be 6020 ** computed more than once) 6021 ** 6022 ** TODO: Are there other reasons beside (1) to use a co-routine 6023 ** implementation? 6024 */ 6025 if( i==0 6026 && (pTabList->nSrc==1 6027 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6028 ){ 6029 /* Implement a co-routine that will return a single row of the result 6030 ** set on each invocation. 6031 */ 6032 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6033 6034 pItem->regReturn = ++pParse->nMem; 6035 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6036 VdbeComment((v, "%s", pItem->pTab->zName)); 6037 pItem->addrFillSub = addrTop; 6038 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6039 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6040 sqlite3Select(pParse, pSub, &dest); 6041 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6042 pItem->fg.viaCoroutine = 1; 6043 pItem->regResult = dest.iSdst; 6044 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6045 sqlite3VdbeJumpHere(v, addrTop-1); 6046 sqlite3ClearTempRegCache(pParse); 6047 }else{ 6048 /* Generate a subroutine that will fill an ephemeral table with 6049 ** the content of this subquery. pItem->addrFillSub will point 6050 ** to the address of the generated subroutine. pItem->regReturn 6051 ** is a register allocated to hold the subroutine return address 6052 */ 6053 int topAddr; 6054 int onceAddr = 0; 6055 int retAddr; 6056 struct SrcList_item *pPrior; 6057 6058 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6059 pItem->regReturn = ++pParse->nMem; 6060 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6061 pItem->addrFillSub = topAddr+1; 6062 if( pItem->fg.isCorrelated==0 ){ 6063 /* If the subquery is not correlated and if we are not inside of 6064 ** a trigger, then we only need to compute the value of the subquery 6065 ** once. */ 6066 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6067 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6068 }else{ 6069 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6070 } 6071 pPrior = isSelfJoinView(pTabList, pItem); 6072 if( pPrior ){ 6073 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6074 assert( pPrior->pSelect!=0 ); 6075 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6076 }else{ 6077 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6078 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6079 sqlite3Select(pParse, pSub, &dest); 6080 } 6081 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6082 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6083 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6084 VdbeComment((v, "end %s", pItem->pTab->zName)); 6085 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6086 sqlite3ClearTempRegCache(pParse); 6087 } 6088 if( db->mallocFailed ) goto select_end; 6089 pParse->nHeight -= sqlite3SelectExprHeight(p); 6090 pParse->zAuthContext = zSavedAuthContext; 6091 #endif 6092 } 6093 6094 /* Various elements of the SELECT copied into local variables for 6095 ** convenience */ 6096 pEList = p->pEList; 6097 pWhere = p->pWhere; 6098 pGroupBy = p->pGroupBy; 6099 pHaving = p->pHaving; 6100 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6101 6102 #if SELECTTRACE_ENABLED 6103 if( sqlite3SelectTrace & 0x400 ){ 6104 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6105 sqlite3TreeViewSelect(0, p, 0); 6106 } 6107 #endif 6108 6109 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6110 ** if the select-list is the same as the ORDER BY list, then this query 6111 ** can be rewritten as a GROUP BY. In other words, this: 6112 ** 6113 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6114 ** 6115 ** is transformed to: 6116 ** 6117 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6118 ** 6119 ** The second form is preferred as a single index (or temp-table) may be 6120 ** used for both the ORDER BY and DISTINCT processing. As originally 6121 ** written the query must use a temp-table for at least one of the ORDER 6122 ** BY and DISTINCT, and an index or separate temp-table for the other. 6123 */ 6124 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6125 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6126 #ifndef SQLITE_OMIT_WINDOWFUNC 6127 && p->pWin==0 6128 #endif 6129 ){ 6130 p->selFlags &= ~SF_Distinct; 6131 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6132 p->selFlags |= SF_Aggregate; 6133 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6134 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6135 ** original setting of the SF_Distinct flag, not the current setting */ 6136 assert( sDistinct.isTnct ); 6137 6138 #if SELECTTRACE_ENABLED 6139 if( sqlite3SelectTrace & 0x400 ){ 6140 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6141 sqlite3TreeViewSelect(0, p, 0); 6142 } 6143 #endif 6144 } 6145 6146 /* If there is an ORDER BY clause, then create an ephemeral index to 6147 ** do the sorting. But this sorting ephemeral index might end up 6148 ** being unused if the data can be extracted in pre-sorted order. 6149 ** If that is the case, then the OP_OpenEphemeral instruction will be 6150 ** changed to an OP_Noop once we figure out that the sorting index is 6151 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6152 ** that change. 6153 */ 6154 if( sSort.pOrderBy ){ 6155 KeyInfo *pKeyInfo; 6156 pKeyInfo = sqlite3KeyInfoFromExprList( 6157 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6158 sSort.iECursor = pParse->nTab++; 6159 sSort.addrSortIndex = 6160 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6161 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6162 (char*)pKeyInfo, P4_KEYINFO 6163 ); 6164 }else{ 6165 sSort.addrSortIndex = -1; 6166 } 6167 6168 /* If the output is destined for a temporary table, open that table. 6169 */ 6170 if( pDest->eDest==SRT_EphemTab ){ 6171 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6172 } 6173 6174 /* Set the limiter. 6175 */ 6176 iEnd = sqlite3VdbeMakeLabel(pParse); 6177 if( (p->selFlags & SF_FixedLimit)==0 ){ 6178 p->nSelectRow = 320; /* 4 billion rows */ 6179 } 6180 computeLimitRegisters(pParse, p, iEnd); 6181 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6182 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6183 sSort.sortFlags |= SORTFLAG_UseSorter; 6184 } 6185 6186 /* Open an ephemeral index to use for the distinct set. 6187 */ 6188 if( p->selFlags & SF_Distinct ){ 6189 sDistinct.tabTnct = pParse->nTab++; 6190 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6191 sDistinct.tabTnct, 0, 0, 6192 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6193 P4_KEYINFO); 6194 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6195 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6196 }else{ 6197 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6198 } 6199 6200 if( !isAgg && pGroupBy==0 ){ 6201 /* No aggregate functions and no GROUP BY clause */ 6202 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6203 | (p->selFlags & SF_FixedLimit); 6204 #ifndef SQLITE_OMIT_WINDOWFUNC 6205 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6206 if( pWin ){ 6207 sqlite3WindowCodeInit(pParse, p); 6208 } 6209 #endif 6210 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6211 6212 6213 /* Begin the database scan. */ 6214 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6215 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6216 p->pEList, wctrlFlags, p->nSelectRow); 6217 if( pWInfo==0 ) goto select_end; 6218 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6219 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6220 } 6221 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6222 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6223 } 6224 if( sSort.pOrderBy ){ 6225 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6226 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6227 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6228 sSort.pOrderBy = 0; 6229 } 6230 } 6231 6232 /* If sorting index that was created by a prior OP_OpenEphemeral 6233 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6234 ** into an OP_Noop. 6235 */ 6236 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6237 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6238 } 6239 6240 assert( p->pEList==pEList ); 6241 #ifndef SQLITE_OMIT_WINDOWFUNC 6242 if( pWin ){ 6243 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6244 int iCont = sqlite3VdbeMakeLabel(pParse); 6245 int iBreak = sqlite3VdbeMakeLabel(pParse); 6246 int regGosub = ++pParse->nMem; 6247 6248 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6249 6250 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6251 sqlite3VdbeResolveLabel(v, addrGosub); 6252 VdbeNoopComment((v, "inner-loop subroutine")); 6253 sSort.labelOBLopt = 0; 6254 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6255 sqlite3VdbeResolveLabel(v, iCont); 6256 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6257 VdbeComment((v, "end inner-loop subroutine")); 6258 sqlite3VdbeResolveLabel(v, iBreak); 6259 }else 6260 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6261 { 6262 /* Use the standard inner loop. */ 6263 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6264 sqlite3WhereContinueLabel(pWInfo), 6265 sqlite3WhereBreakLabel(pWInfo)); 6266 6267 /* End the database scan loop. 6268 */ 6269 sqlite3WhereEnd(pWInfo); 6270 } 6271 }else{ 6272 /* This case when there exist aggregate functions or a GROUP BY clause 6273 ** or both */ 6274 NameContext sNC; /* Name context for processing aggregate information */ 6275 int iAMem; /* First Mem address for storing current GROUP BY */ 6276 int iBMem; /* First Mem address for previous GROUP BY */ 6277 int iUseFlag; /* Mem address holding flag indicating that at least 6278 ** one row of the input to the aggregator has been 6279 ** processed */ 6280 int iAbortFlag; /* Mem address which causes query abort if positive */ 6281 int groupBySort; /* Rows come from source in GROUP BY order */ 6282 int addrEnd; /* End of processing for this SELECT */ 6283 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6284 int sortOut = 0; /* Output register from the sorter */ 6285 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6286 6287 /* Remove any and all aliases between the result set and the 6288 ** GROUP BY clause. 6289 */ 6290 if( pGroupBy ){ 6291 int k; /* Loop counter */ 6292 struct ExprList_item *pItem; /* For looping over expression in a list */ 6293 6294 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6295 pItem->u.x.iAlias = 0; 6296 } 6297 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6298 pItem->u.x.iAlias = 0; 6299 } 6300 assert( 66==sqlite3LogEst(100) ); 6301 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6302 6303 /* If there is both a GROUP BY and an ORDER BY clause and they are 6304 ** identical, then it may be possible to disable the ORDER BY clause 6305 ** on the grounds that the GROUP BY will cause elements to come out 6306 ** in the correct order. It also may not - the GROUP BY might use a 6307 ** database index that causes rows to be grouped together as required 6308 ** but not actually sorted. Either way, record the fact that the 6309 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6310 ** variable. */ 6311 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6312 int ii; 6313 /* The GROUP BY processing doesn't care whether rows are delivered in 6314 ** ASC or DESC order - only that each group is returned contiguously. 6315 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6316 ** ORDER BY to maximize the chances of rows being delivered in an 6317 ** order that makes the ORDER BY redundant. */ 6318 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6319 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6320 pGroupBy->a[ii].sortFlags = sortFlags; 6321 } 6322 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6323 orderByGrp = 1; 6324 } 6325 } 6326 }else{ 6327 assert( 0==sqlite3LogEst(1) ); 6328 p->nSelectRow = 0; 6329 } 6330 6331 /* Create a label to jump to when we want to abort the query */ 6332 addrEnd = sqlite3VdbeMakeLabel(pParse); 6333 6334 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6335 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6336 ** SELECT statement. 6337 */ 6338 memset(&sNC, 0, sizeof(sNC)); 6339 sNC.pParse = pParse; 6340 sNC.pSrcList = pTabList; 6341 sNC.uNC.pAggInfo = &sAggInfo; 6342 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6343 sAggInfo.mnReg = pParse->nMem+1; 6344 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6345 sAggInfo.pGroupBy = pGroupBy; 6346 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6347 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6348 if( pHaving ){ 6349 if( pGroupBy ){ 6350 assert( pWhere==p->pWhere ); 6351 assert( pHaving==p->pHaving ); 6352 assert( pGroupBy==p->pGroupBy ); 6353 havingToWhere(pParse, p); 6354 pWhere = p->pWhere; 6355 } 6356 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6357 } 6358 sAggInfo.nAccumulator = sAggInfo.nColumn; 6359 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6360 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6361 }else{ 6362 minMaxFlag = WHERE_ORDERBY_NORMAL; 6363 } 6364 for(i=0; i<sAggInfo.nFunc; i++){ 6365 Expr *pExpr = sAggInfo.aFunc[i].pExpr; 6366 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6367 sNC.ncFlags |= NC_InAggFunc; 6368 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6369 #ifndef SQLITE_OMIT_WINDOWFUNC 6370 assert( !IsWindowFunc(pExpr) ); 6371 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6372 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6373 } 6374 #endif 6375 sNC.ncFlags &= ~NC_InAggFunc; 6376 } 6377 sAggInfo.mxReg = pParse->nMem; 6378 if( db->mallocFailed ) goto select_end; 6379 #if SELECTTRACE_ENABLED 6380 if( sqlite3SelectTrace & 0x400 ){ 6381 int ii; 6382 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6383 sqlite3TreeViewSelect(0, p, 0); 6384 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6385 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6386 ii, sAggInfo.aCol[ii].iMem); 6387 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6388 } 6389 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6390 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6391 ii, sAggInfo.aFunc[ii].iMem); 6392 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6393 } 6394 } 6395 #endif 6396 6397 6398 /* Processing for aggregates with GROUP BY is very different and 6399 ** much more complex than aggregates without a GROUP BY. 6400 */ 6401 if( pGroupBy ){ 6402 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6403 int addr1; /* A-vs-B comparision jump */ 6404 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6405 int regOutputRow; /* Return address register for output subroutine */ 6406 int addrSetAbort; /* Set the abort flag and return */ 6407 int addrTopOfLoop; /* Top of the input loop */ 6408 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6409 int addrReset; /* Subroutine for resetting the accumulator */ 6410 int regReset; /* Return address register for reset subroutine */ 6411 6412 /* If there is a GROUP BY clause we might need a sorting index to 6413 ** implement it. Allocate that sorting index now. If it turns out 6414 ** that we do not need it after all, the OP_SorterOpen instruction 6415 ** will be converted into a Noop. 6416 */ 6417 sAggInfo.sortingIdx = pParse->nTab++; 6418 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6419 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6420 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6421 0, (char*)pKeyInfo, P4_KEYINFO); 6422 6423 /* Initialize memory locations used by GROUP BY aggregate processing 6424 */ 6425 iUseFlag = ++pParse->nMem; 6426 iAbortFlag = ++pParse->nMem; 6427 regOutputRow = ++pParse->nMem; 6428 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6429 regReset = ++pParse->nMem; 6430 addrReset = sqlite3VdbeMakeLabel(pParse); 6431 iAMem = pParse->nMem + 1; 6432 pParse->nMem += pGroupBy->nExpr; 6433 iBMem = pParse->nMem + 1; 6434 pParse->nMem += pGroupBy->nExpr; 6435 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6436 VdbeComment((v, "clear abort flag")); 6437 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6438 6439 /* Begin a loop that will extract all source rows in GROUP BY order. 6440 ** This might involve two separate loops with an OP_Sort in between, or 6441 ** it might be a single loop that uses an index to extract information 6442 ** in the right order to begin with. 6443 */ 6444 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6445 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6446 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6447 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6448 ); 6449 if( pWInfo==0 ) goto select_end; 6450 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6451 /* The optimizer is able to deliver rows in group by order so 6452 ** we do not have to sort. The OP_OpenEphemeral table will be 6453 ** cancelled later because we still need to use the pKeyInfo 6454 */ 6455 groupBySort = 0; 6456 }else{ 6457 /* Rows are coming out in undetermined order. We have to push 6458 ** each row into a sorting index, terminate the first loop, 6459 ** then loop over the sorting index in order to get the output 6460 ** in sorted order 6461 */ 6462 int regBase; 6463 int regRecord; 6464 int nCol; 6465 int nGroupBy; 6466 6467 explainTempTable(pParse, 6468 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6469 "DISTINCT" : "GROUP BY"); 6470 6471 groupBySort = 1; 6472 nGroupBy = pGroupBy->nExpr; 6473 nCol = nGroupBy; 6474 j = nGroupBy; 6475 for(i=0; i<sAggInfo.nColumn; i++){ 6476 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6477 nCol++; 6478 j++; 6479 } 6480 } 6481 regBase = sqlite3GetTempRange(pParse, nCol); 6482 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6483 j = nGroupBy; 6484 for(i=0; i<sAggInfo.nColumn; i++){ 6485 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6486 if( pCol->iSorterColumn>=j ){ 6487 int r1 = j + regBase; 6488 sqlite3ExprCodeGetColumnOfTable(v, 6489 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6490 j++; 6491 } 6492 } 6493 regRecord = sqlite3GetTempReg(pParse); 6494 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6495 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6496 sqlite3ReleaseTempReg(pParse, regRecord); 6497 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6498 sqlite3WhereEnd(pWInfo); 6499 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6500 sortOut = sqlite3GetTempReg(pParse); 6501 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6502 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6503 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6504 sAggInfo.useSortingIdx = 1; 6505 } 6506 6507 /* If the index or temporary table used by the GROUP BY sort 6508 ** will naturally deliver rows in the order required by the ORDER BY 6509 ** clause, cancel the ephemeral table open coded earlier. 6510 ** 6511 ** This is an optimization - the correct answer should result regardless. 6512 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6513 ** disable this optimization for testing purposes. */ 6514 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6515 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6516 ){ 6517 sSort.pOrderBy = 0; 6518 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6519 } 6520 6521 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6522 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6523 ** Then compare the current GROUP BY terms against the GROUP BY terms 6524 ** from the previous row currently stored in a0, a1, a2... 6525 */ 6526 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6527 if( groupBySort ){ 6528 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6529 sortOut, sortPTab); 6530 } 6531 for(j=0; j<pGroupBy->nExpr; j++){ 6532 if( groupBySort ){ 6533 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6534 }else{ 6535 sAggInfo.directMode = 1; 6536 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6537 } 6538 } 6539 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6540 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6541 addr1 = sqlite3VdbeCurrentAddr(v); 6542 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6543 6544 /* Generate code that runs whenever the GROUP BY changes. 6545 ** Changes in the GROUP BY are detected by the previous code 6546 ** block. If there were no changes, this block is skipped. 6547 ** 6548 ** This code copies current group by terms in b0,b1,b2,... 6549 ** over to a0,a1,a2. It then calls the output subroutine 6550 ** and resets the aggregate accumulator registers in preparation 6551 ** for the next GROUP BY batch. 6552 */ 6553 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6554 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6555 VdbeComment((v, "output one row")); 6556 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6557 VdbeComment((v, "check abort flag")); 6558 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6559 VdbeComment((v, "reset accumulator")); 6560 6561 /* Update the aggregate accumulators based on the content of 6562 ** the current row 6563 */ 6564 sqlite3VdbeJumpHere(v, addr1); 6565 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6566 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6567 VdbeComment((v, "indicate data in accumulator")); 6568 6569 /* End of the loop 6570 */ 6571 if( groupBySort ){ 6572 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6573 VdbeCoverage(v); 6574 }else{ 6575 sqlite3WhereEnd(pWInfo); 6576 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6577 } 6578 6579 /* Output the final row of result 6580 */ 6581 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6582 VdbeComment((v, "output final row")); 6583 6584 /* Jump over the subroutines 6585 */ 6586 sqlite3VdbeGoto(v, addrEnd); 6587 6588 /* Generate a subroutine that outputs a single row of the result 6589 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6590 ** is less than or equal to zero, the subroutine is a no-op. If 6591 ** the processing calls for the query to abort, this subroutine 6592 ** increments the iAbortFlag memory location before returning in 6593 ** order to signal the caller to abort. 6594 */ 6595 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6596 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6597 VdbeComment((v, "set abort flag")); 6598 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6599 sqlite3VdbeResolveLabel(v, addrOutputRow); 6600 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6601 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6602 VdbeCoverage(v); 6603 VdbeComment((v, "Groupby result generator entry point")); 6604 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6605 finalizeAggFunctions(pParse, &sAggInfo); 6606 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6607 selectInnerLoop(pParse, p, -1, &sSort, 6608 &sDistinct, pDest, 6609 addrOutputRow+1, addrSetAbort); 6610 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6611 VdbeComment((v, "end groupby result generator")); 6612 6613 /* Generate a subroutine that will reset the group-by accumulator 6614 */ 6615 sqlite3VdbeResolveLabel(v, addrReset); 6616 resetAccumulator(pParse, &sAggInfo); 6617 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6618 VdbeComment((v, "indicate accumulator empty")); 6619 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6620 6621 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6622 else { 6623 #ifndef SQLITE_OMIT_BTREECOUNT 6624 Table *pTab; 6625 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6626 /* If isSimpleCount() returns a pointer to a Table structure, then 6627 ** the SQL statement is of the form: 6628 ** 6629 ** SELECT count(*) FROM <tbl> 6630 ** 6631 ** where the Table structure returned represents table <tbl>. 6632 ** 6633 ** This statement is so common that it is optimized specially. The 6634 ** OP_Count instruction is executed either on the intkey table that 6635 ** contains the data for table <tbl> or on one of its indexes. It 6636 ** is better to execute the op on an index, as indexes are almost 6637 ** always spread across less pages than their corresponding tables. 6638 */ 6639 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6640 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6641 Index *pIdx; /* Iterator variable */ 6642 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6643 Index *pBest = 0; /* Best index found so far */ 6644 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6645 6646 sqlite3CodeVerifySchema(pParse, iDb); 6647 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6648 6649 /* Search for the index that has the lowest scan cost. 6650 ** 6651 ** (2011-04-15) Do not do a full scan of an unordered index. 6652 ** 6653 ** (2013-10-03) Do not count the entries in a partial index. 6654 ** 6655 ** In practice the KeyInfo structure will not be used. It is only 6656 ** passed to keep OP_OpenRead happy. 6657 */ 6658 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6659 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6660 if( pIdx->bUnordered==0 6661 && pIdx->szIdxRow<pTab->szTabRow 6662 && pIdx->pPartIdxWhere==0 6663 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6664 ){ 6665 pBest = pIdx; 6666 } 6667 } 6668 if( pBest ){ 6669 iRoot = pBest->tnum; 6670 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6671 } 6672 6673 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6674 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6675 if( pKeyInfo ){ 6676 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6677 } 6678 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6679 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6680 explainSimpleCount(pParse, pTab, pBest); 6681 }else 6682 #endif /* SQLITE_OMIT_BTREECOUNT */ 6683 { 6684 int regAcc = 0; /* "populate accumulators" flag */ 6685 6686 /* If there are accumulator registers but no min() or max() functions 6687 ** without FILTER clauses, allocate register regAcc. Register regAcc 6688 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6689 ** The code generated by updateAccumulator() uses this to ensure 6690 ** that the accumulator registers are (a) updated only once if 6691 ** there are no min() or max functions or (b) always updated for the 6692 ** first row visited by the aggregate, so that they are updated at 6693 ** least once even if the FILTER clause means the min() or max() 6694 ** function visits zero rows. */ 6695 if( sAggInfo.nAccumulator ){ 6696 for(i=0; i<sAggInfo.nFunc; i++){ 6697 if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue; 6698 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6699 } 6700 if( i==sAggInfo.nFunc ){ 6701 regAcc = ++pParse->nMem; 6702 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6703 } 6704 } 6705 6706 /* This case runs if the aggregate has no GROUP BY clause. The 6707 ** processing is much simpler since there is only a single row 6708 ** of output. 6709 */ 6710 assert( p->pGroupBy==0 ); 6711 resetAccumulator(pParse, &sAggInfo); 6712 6713 /* If this query is a candidate for the min/max optimization, then 6714 ** minMaxFlag will have been previously set to either 6715 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6716 ** be an appropriate ORDER BY expression for the optimization. 6717 */ 6718 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6719 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6720 6721 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6722 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6723 0, minMaxFlag, 0); 6724 if( pWInfo==0 ){ 6725 goto select_end; 6726 } 6727 updateAccumulator(pParse, regAcc, &sAggInfo); 6728 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6729 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6730 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6731 VdbeComment((v, "%s() by index", 6732 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6733 } 6734 sqlite3WhereEnd(pWInfo); 6735 finalizeAggFunctions(pParse, &sAggInfo); 6736 } 6737 6738 sSort.pOrderBy = 0; 6739 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6740 selectInnerLoop(pParse, p, -1, 0, 0, 6741 pDest, addrEnd, addrEnd); 6742 } 6743 sqlite3VdbeResolveLabel(v, addrEnd); 6744 6745 } /* endif aggregate query */ 6746 6747 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6748 explainTempTable(pParse, "DISTINCT"); 6749 } 6750 6751 /* If there is an ORDER BY clause, then we need to sort the results 6752 ** and send them to the callback one by one. 6753 */ 6754 if( sSort.pOrderBy ){ 6755 explainTempTable(pParse, 6756 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6757 assert( p->pEList==pEList ); 6758 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6759 } 6760 6761 /* Jump here to skip this query 6762 */ 6763 sqlite3VdbeResolveLabel(v, iEnd); 6764 6765 /* The SELECT has been coded. If there is an error in the Parse structure, 6766 ** set the return code to 1. Otherwise 0. */ 6767 rc = (pParse->nErr>0); 6768 6769 /* Control jumps to here if an error is encountered above, or upon 6770 ** successful coding of the SELECT. 6771 */ 6772 select_end: 6773 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6774 sqlite3DbFree(db, sAggInfo.aCol); 6775 sqlite3DbFree(db, sAggInfo.aFunc); 6776 #if SELECTTRACE_ENABLED 6777 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6778 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6779 sqlite3TreeViewSelect(0, p, 0); 6780 } 6781 #endif 6782 ExplainQueryPlanPop(pParse); 6783 return rc; 6784 } 6785