xref: /sqlite-3.40.0/src/select.c (revision 9cffb0ff)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 */
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209   int jointype = 0;
210   Token *apAll[3];
211   Token *p;
212                              /*   0123456789 123456789 123456789 123 */
213   static const char zKeyText[] = "naturaleftouterightfullinnercross";
214   static const struct {
215     u8 i;        /* Beginning of keyword text in zKeyText[] */
216     u8 nChar;    /* Length of the keyword in characters */
217     u8 code;     /* Join type mask */
218   } aKeyword[] = {
219     /* natural */ { 0,  7, JT_NATURAL                },
220     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
221     /* outer   */ { 10, 5, JT_OUTER                  },
222     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
223     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224     /* inner   */ { 23, 5, JT_INNER                  },
225     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
226   };
227   int i, j;
228   apAll[0] = pA;
229   apAll[1] = pB;
230   apAll[2] = pC;
231   for(i=0; i<3 && apAll[i]; i++){
232     p = apAll[i];
233     for(j=0; j<ArraySize(aKeyword); j++){
234       if( p->n==aKeyword[j].nChar
235           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236         jointype |= aKeyword[j].code;
237         break;
238       }
239     }
240     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241     if( j>=ArraySize(aKeyword) ){
242       jointype |= JT_ERROR;
243       break;
244     }
245   }
246   if(
247      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248      (jointype & JT_ERROR)!=0
249   ){
250     const char *zSp = " ";
251     assert( pB!=0 );
252     if( pC==0 ){ zSp++; }
253     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254        "%T %T%s%T", pA, pB, zSp, pC);
255     jointype = JT_INNER;
256   }else if( (jointype & JT_OUTER)!=0
257          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258     sqlite3ErrorMsg(pParse,
259       "RIGHT and FULL OUTER JOINs are not currently supported");
260     jointype = JT_INNER;
261   }
262   return jointype;
263 }
264 
265 /*
266 ** Return the index of a column in a table.  Return -1 if the column
267 ** is not contained in the table.
268 */
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270   int i;
271   u8 h = sqlite3StrIHash(zCol);
272   Column *pCol;
273   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274     if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
275   }
276   return -1;
277 }
278 
279 /*
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
282 **
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
285 **
286 ** If not found, return FALSE.
287 */
288 static int tableAndColumnIndex(
289   SrcList *pSrc,       /* Array of tables to search */
290   int N,               /* Number of tables in pSrc->a[] to search */
291   const char *zCol,    /* Name of the column we are looking for */
292   int *piTab,          /* Write index of pSrc->a[] here */
293   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294   int bIgnoreHidden    /* True to ignore hidden columns */
295 ){
296   int i;               /* For looping over tables in pSrc */
297   int iCol;            /* Index of column matching zCol */
298 
299   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
300   for(i=0; i<N; i++){
301     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302     if( iCol>=0
303      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
304     ){
305       if( piTab ){
306         *piTab = i;
307         *piCol = iCol;
308       }
309       return 1;
310     }
311   }
312   return 0;
313 }
314 
315 /*
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
319 **
320 **    (tab1.col1 = tab2.col2)
321 **
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
325 */
326 static void addWhereTerm(
327   Parse *pParse,                  /* Parsing context */
328   SrcList *pSrc,                  /* List of tables in FROM clause */
329   int iLeft,                      /* Index of first table to join in pSrc */
330   int iColLeft,                   /* Index of column in first table */
331   int iRight,                     /* Index of second table in pSrc */
332   int iColRight,                  /* Index of column in second table */
333   int isOuterJoin,                /* True if this is an OUTER join */
334   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
335 ){
336   sqlite3 *db = pParse->db;
337   Expr *pE1;
338   Expr *pE2;
339   Expr *pEq;
340 
341   assert( iLeft<iRight );
342   assert( pSrc->nSrc>iRight );
343   assert( pSrc->a[iLeft].pTab );
344   assert( pSrc->a[iRight].pTab );
345 
346   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
348 
349   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350   if( pEq && isOuterJoin ){
351     ExprSetProperty(pEq, EP_FromJoin);
352     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
353     ExprSetVVAProperty(pEq, EP_NoReduce);
354     pEq->iRightJoinTable = pE2->iTable;
355   }
356   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
357 }
358 
359 /*
360 ** Set the EP_FromJoin property on all terms of the given expression.
361 ** And set the Expr.iRightJoinTable to iTable for every term in the
362 ** expression.
363 **
364 ** The EP_FromJoin property is used on terms of an expression to tell
365 ** the LEFT OUTER JOIN processing logic that this term is part of the
366 ** join restriction specified in the ON or USING clause and not a part
367 ** of the more general WHERE clause.  These terms are moved over to the
368 ** WHERE clause during join processing but we need to remember that they
369 ** originated in the ON or USING clause.
370 **
371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
372 ** expression depends on table iRightJoinTable even if that table is not
373 ** explicitly mentioned in the expression.  That information is needed
374 ** for cases like this:
375 **
376 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
377 **
378 ** The where clause needs to defer the handling of the t1.x=5
379 ** term until after the t2 loop of the join.  In that way, a
380 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
381 ** defer the handling of t1.x=5, it will be processed immediately
382 ** after the t1 loop and rows with t1.x!=5 will never appear in
383 ** the output, which is incorrect.
384 */
385 void sqlite3SetJoinExpr(Expr *p, int iTable){
386   while( p ){
387     ExprSetProperty(p, EP_FromJoin);
388     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
389     ExprSetVVAProperty(p, EP_NoReduce);
390     p->iRightJoinTable = iTable;
391     if( p->op==TK_FUNCTION && p->x.pList ){
392       int i;
393       for(i=0; i<p->x.pList->nExpr; i++){
394         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
395       }
396     }
397     sqlite3SetJoinExpr(p->pLeft, iTable);
398     p = p->pRight;
399   }
400 }
401 
402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
404 ** an ordinary term that omits the EP_FromJoin mark.
405 **
406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
407 */
408 static void unsetJoinExpr(Expr *p, int iTable){
409   while( p ){
410     if( ExprHasProperty(p, EP_FromJoin)
411      && (iTable<0 || p->iRightJoinTable==iTable) ){
412       ExprClearProperty(p, EP_FromJoin);
413     }
414     if( p->op==TK_COLUMN && p->iTable==iTable ){
415       ExprClearProperty(p, EP_CanBeNull);
416     }
417     if( p->op==TK_FUNCTION && p->x.pList ){
418       int i;
419       for(i=0; i<p->x.pList->nExpr; i++){
420         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
421       }
422     }
423     unsetJoinExpr(p->pLeft, iTable);
424     p = p->pRight;
425   }
426 }
427 
428 /*
429 ** This routine processes the join information for a SELECT statement.
430 ** ON and USING clauses are converted into extra terms of the WHERE clause.
431 ** NATURAL joins also create extra WHERE clause terms.
432 **
433 ** The terms of a FROM clause are contained in the Select.pSrc structure.
434 ** The left most table is the first entry in Select.pSrc.  The right-most
435 ** table is the last entry.  The join operator is held in the entry to
436 ** the left.  Thus entry 0 contains the join operator for the join between
437 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
438 ** also attached to the left entry.
439 **
440 ** This routine returns the number of errors encountered.
441 */
442 static int sqliteProcessJoin(Parse *pParse, Select *p){
443   SrcList *pSrc;                  /* All tables in the FROM clause */
444   int i, j;                       /* Loop counters */
445   SrcItem *pLeft;                 /* Left table being joined */
446   SrcItem *pRight;                /* Right table being joined */
447 
448   pSrc = p->pSrc;
449   pLeft = &pSrc->a[0];
450   pRight = &pLeft[1];
451   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
452     Table *pRightTab = pRight->pTab;
453     int isOuter;
454 
455     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
456     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
457 
458     /* When the NATURAL keyword is present, add WHERE clause terms for
459     ** every column that the two tables have in common.
460     */
461     if( pRight->fg.jointype & JT_NATURAL ){
462       if( pRight->pOn || pRight->pUsing ){
463         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
464            "an ON or USING clause", 0);
465         return 1;
466       }
467       for(j=0; j<pRightTab->nCol; j++){
468         char *zName;   /* Name of column in the right table */
469         int iLeft;     /* Matching left table */
470         int iLeftCol;  /* Matching column in the left table */
471 
472         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
473         zName = pRightTab->aCol[j].zName;
474         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
475           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
476                 isOuter, &p->pWhere);
477         }
478       }
479     }
480 
481     /* Disallow both ON and USING clauses in the same join
482     */
483     if( pRight->pOn && pRight->pUsing ){
484       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
485         "clauses in the same join");
486       return 1;
487     }
488 
489     /* Add the ON clause to the end of the WHERE clause, connected by
490     ** an AND operator.
491     */
492     if( pRight->pOn ){
493       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
494       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
495       pRight->pOn = 0;
496     }
497 
498     /* Create extra terms on the WHERE clause for each column named
499     ** in the USING clause.  Example: If the two tables to be joined are
500     ** A and B and the USING clause names X, Y, and Z, then add this
501     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
502     ** Report an error if any column mentioned in the USING clause is
503     ** not contained in both tables to be joined.
504     */
505     if( pRight->pUsing ){
506       IdList *pList = pRight->pUsing;
507       for(j=0; j<pList->nId; j++){
508         char *zName;     /* Name of the term in the USING clause */
509         int iLeft;       /* Table on the left with matching column name */
510         int iLeftCol;    /* Column number of matching column on the left */
511         int iRightCol;   /* Column number of matching column on the right */
512 
513         zName = pList->a[j].zName;
514         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
515         if( iRightCol<0
516          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
517         ){
518           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
519             "not present in both tables", zName);
520           return 1;
521         }
522         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
523                      isOuter, &p->pWhere);
524       }
525     }
526   }
527   return 0;
528 }
529 
530 /*
531 ** An instance of this object holds information (beyond pParse and pSelect)
532 ** needed to load the next result row that is to be added to the sorter.
533 */
534 typedef struct RowLoadInfo RowLoadInfo;
535 struct RowLoadInfo {
536   int regResult;               /* Store results in array of registers here */
537   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
539   ExprList *pExtra;            /* Extra columns needed by sorter refs */
540   int regExtraResult;          /* Where to load the extra columns */
541 #endif
542 };
543 
544 /*
545 ** This routine does the work of loading query data into an array of
546 ** registers so that it can be added to the sorter.
547 */
548 static void innerLoopLoadRow(
549   Parse *pParse,             /* Statement under construction */
550   Select *pSelect,           /* The query being coded */
551   RowLoadInfo *pInfo         /* Info needed to complete the row load */
552 ){
553   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
554                           0, pInfo->ecelFlags);
555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
556   if( pInfo->pExtra ){
557     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
558     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
559   }
560 #endif
561 }
562 
563 /*
564 ** Code the OP_MakeRecord instruction that generates the entry to be
565 ** added into the sorter.
566 **
567 ** Return the register in which the result is stored.
568 */
569 static int makeSorterRecord(
570   Parse *pParse,
571   SortCtx *pSort,
572   Select *pSelect,
573   int regBase,
574   int nBase
575 ){
576   int nOBSat = pSort->nOBSat;
577   Vdbe *v = pParse->pVdbe;
578   int regOut = ++pParse->nMem;
579   if( pSort->pDeferredRowLoad ){
580     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
581   }
582   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
583   return regOut;
584 }
585 
586 /*
587 ** Generate code that will push the record in registers regData
588 ** through regData+nData-1 onto the sorter.
589 */
590 static void pushOntoSorter(
591   Parse *pParse,         /* Parser context */
592   SortCtx *pSort,        /* Information about the ORDER BY clause */
593   Select *pSelect,       /* The whole SELECT statement */
594   int regData,           /* First register holding data to be sorted */
595   int regOrigData,       /* First register holding data before packing */
596   int nData,             /* Number of elements in the regData data array */
597   int nPrefixReg         /* No. of reg prior to regData available for use */
598 ){
599   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
600   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
601   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
602   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
603   int regBase;                                     /* Regs for sorter record */
604   int regRecord = 0;                               /* Assembled sorter record */
605   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
606   int op;                            /* Opcode to add sorter record to sorter */
607   int iLimit;                        /* LIMIT counter */
608   int iSkip = 0;                     /* End of the sorter insert loop */
609 
610   assert( bSeq==0 || bSeq==1 );
611 
612   /* Three cases:
613   **   (1) The data to be sorted has already been packed into a Record
614   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
615   **       will be completely unrelated to regOrigData.
616   **   (2) All output columns are included in the sort record.  In that
617   **       case regData==regOrigData.
618   **   (3) Some output columns are omitted from the sort record due to
619   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
620   **       SQLITE_ECEL_OMITREF optimization, or due to the
621   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
622   **       regOrigData is 0 to prevent this routine from trying to copy
623   **       values that might not yet exist.
624   */
625   assert( nData==1 || regData==regOrigData || regOrigData==0 );
626 
627   if( nPrefixReg ){
628     assert( nPrefixReg==nExpr+bSeq );
629     regBase = regData - nPrefixReg;
630   }else{
631     regBase = pParse->nMem + 1;
632     pParse->nMem += nBase;
633   }
634   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
635   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
636   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
637   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
638                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
639   if( bSeq ){
640     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
641   }
642   if( nPrefixReg==0 && nData>0 ){
643     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
644   }
645   if( nOBSat>0 ){
646     int regPrevKey;   /* The first nOBSat columns of the previous row */
647     int addrFirst;    /* Address of the OP_IfNot opcode */
648     int addrJmp;      /* Address of the OP_Jump opcode */
649     VdbeOp *pOp;      /* Opcode that opens the sorter */
650     int nKey;         /* Number of sorting key columns, including OP_Sequence */
651     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
652 
653     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
654     regPrevKey = pParse->nMem+1;
655     pParse->nMem += pSort->nOBSat;
656     nKey = nExpr - pSort->nOBSat + bSeq;
657     if( bSeq ){
658       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
659     }else{
660       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
661     }
662     VdbeCoverage(v);
663     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
664     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
665     if( pParse->db->mallocFailed ) return;
666     pOp->p2 = nKey + nData;
667     pKI = pOp->p4.pKeyInfo;
668     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
669     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
670     testcase( pKI->nAllField > pKI->nKeyField+2 );
671     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
672                                            pKI->nAllField-pKI->nKeyField-1);
673     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
674     addrJmp = sqlite3VdbeCurrentAddr(v);
675     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
676     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
677     pSort->regReturn = ++pParse->nMem;
678     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
679     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
680     if( iLimit ){
681       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
682       VdbeCoverage(v);
683     }
684     sqlite3VdbeJumpHere(v, addrFirst);
685     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
686     sqlite3VdbeJumpHere(v, addrJmp);
687   }
688   if( iLimit ){
689     /* At this point the values for the new sorter entry are stored
690     ** in an array of registers. They need to be composed into a record
691     ** and inserted into the sorter if either (a) there are currently
692     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
693     ** the largest record currently in the sorter. If (b) is true and there
694     ** are already LIMIT+OFFSET items in the sorter, delete the largest
695     ** entry before inserting the new one. This way there are never more
696     ** than LIMIT+OFFSET items in the sorter.
697     **
698     ** If the new record does not need to be inserted into the sorter,
699     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
700     ** value is not zero, then it is a label of where to jump.  Otherwise,
701     ** just bypass the row insert logic.  See the header comment on the
702     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
703     */
704     int iCsr = pSort->iECursor;
705     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
706     VdbeCoverage(v);
707     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
708     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
709                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
710     VdbeCoverage(v);
711     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
712   }
713   if( regRecord==0 ){
714     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
715   }
716   if( pSort->sortFlags & SORTFLAG_UseSorter ){
717     op = OP_SorterInsert;
718   }else{
719     op = OP_IdxInsert;
720   }
721   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
722                        regBase+nOBSat, nBase-nOBSat);
723   if( iSkip ){
724     sqlite3VdbeChangeP2(v, iSkip,
725          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
726   }
727 }
728 
729 /*
730 ** Add code to implement the OFFSET
731 */
732 static void codeOffset(
733   Vdbe *v,          /* Generate code into this VM */
734   int iOffset,      /* Register holding the offset counter */
735   int iContinue     /* Jump here to skip the current record */
736 ){
737   if( iOffset>0 ){
738     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
739     VdbeComment((v, "OFFSET"));
740   }
741 }
742 
743 /*
744 ** Add code that will check to make sure the array of registers starting at
745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
747 ** are available. Which is used depends on the value of parameter eTnctType,
748 ** as follows:
749 **
750 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
751 **     Build an ephemeral table that contains all entries seen before and
752 **     skip entries which have been seen before.
753 **
754 **     Parameter iTab is the cursor number of an ephemeral table that must
755 **     be opened before the VM code generated by this routine is executed.
756 **     The ephemeral cursor table is queried for a record identical to the
757 **     record formed by the current array of registers. If one is found,
758 **     jump to VM address addrRepeat. Otherwise, insert a new record into
759 **     the ephemeral cursor and proceed.
760 **
761 **     The returned value in this case is a copy of parameter iTab.
762 **
763 **   WHERE_DISTINCT_ORDERED:
764 **     In this case rows are being delivered sorted order. The ephermal
765 **     table is not required. Instead, the current set of values
766 **     is compared against previous row. If they match, the new row
767 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
768 **     the VM program proceeds with processing the new row.
769 **
770 **     The returned value in this case is the register number of the first
771 **     in an array of registers used to store the previous result row so that
772 **     it can be compared to the next. The caller must ensure that this
773 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
774 **     will take care of this initialization.)
775 **
776 **   WHERE_DISTINCT_UNIQUE:
777 **     In this case it has already been determined that the rows are distinct.
778 **     No special action is required. The return value is zero.
779 **
780 ** Parameter pEList is the list of expressions used to generated the
781 ** contents of each row. It is used by this routine to determine (a)
782 ** how many elements there are in the array of registers and (b) the
783 ** collation sequences that should be used for the comparisons if
784 ** eTnctType is WHERE_DISTINCT_ORDERED.
785 */
786 static int codeDistinct(
787   Parse *pParse,     /* Parsing and code generating context */
788   int eTnctType,     /* WHERE_DISTINCT_* value */
789   int iTab,          /* A sorting index used to test for distinctness */
790   int addrRepeat,    /* Jump to here if not distinct */
791   ExprList *pEList,  /* Expression for each element */
792   int regElem        /* First element */
793 ){
794   int iRet = 0;
795   int nResultCol = pEList->nExpr;
796   Vdbe *v = pParse->pVdbe;
797 
798   switch( eTnctType ){
799     case WHERE_DISTINCT_ORDERED: {
800       int i;
801       int iJump;              /* Jump destination */
802       int regPrev;            /* Previous row content */
803 
804       /* Allocate space for the previous row */
805       iRet = regPrev = pParse->nMem+1;
806       pParse->nMem += nResultCol;
807 
808       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
809       for(i=0; i<nResultCol; i++){
810         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
811         if( i<nResultCol-1 ){
812           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
813           VdbeCoverage(v);
814         }else{
815           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
816           VdbeCoverage(v);
817          }
818         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
819         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
820       }
821       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
822       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
823       break;
824     }
825 
826     case WHERE_DISTINCT_UNIQUE: {
827       /* nothing to do */
828       break;
829     }
830 
831     default: {
832       int r1 = sqlite3GetTempReg(pParse);
833       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
834       VdbeCoverage(v);
835       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
836       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
837       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
838       sqlite3ReleaseTempReg(pParse, r1);
839       iRet = iTab;
840       break;
841     }
842   }
843 
844   return iRet;
845 }
846 
847 /*
848 ** This routine runs after codeDistinct().  It makes necessary
849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
850 ** routine made use of.  This processing must be done separately since
851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
852 ** laid down.
853 **
854 ** WHERE_DISTINCT_NOOP:
855 ** WHERE_DISTINCT_UNORDERED:
856 **
857 **     No adjustments necessary.  This function is a no-op.
858 **
859 ** WHERE_DISTINCT_UNIQUE:
860 **
861 **     The ephemeral table is not needed.  So change the
862 **     OP_OpenEphemeral opcode into an OP_Noop.
863 **
864 ** WHERE_DISTINCT_ORDERED:
865 **
866 **     The ephemeral table is not needed.  But we do need register
867 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
868 **     into an OP_Null on the iVal register.
869 */
870 static void fixDistinctOpenEph(
871   Parse *pParse,     /* Parsing and code generating context */
872   int eTnctType,     /* WHERE_DISTINCT_* value */
873   int iVal,          /* Value returned by codeDistinct() */
874   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
875 ){
876   if( eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED ){
877     Vdbe *v = pParse->pVdbe;
878     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
879     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
880       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
881     }
882     if( eTnctType==WHERE_DISTINCT_ORDERED ){
883       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
884       ** bit on the first register of the previous value.  This will cause the
885       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
886       ** the loop even if the first row is all NULLs.  */
887       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
888       pOp->opcode = OP_Null;
889       pOp->p1 = 1;
890       pOp->p2 = iVal;
891     }
892   }
893 }
894 
895 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
896 /*
897 ** This function is called as part of inner-loop generation for a SELECT
898 ** statement with an ORDER BY that is not optimized by an index. It
899 ** determines the expressions, if any, that the sorter-reference
900 ** optimization should be used for. The sorter-reference optimization
901 ** is used for SELECT queries like:
902 **
903 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
904 **
905 ** If the optimization is used for expression "bigblob", then instead of
906 ** storing values read from that column in the sorter records, the PK of
907 ** the row from table t1 is stored instead. Then, as records are extracted from
908 ** the sorter to return to the user, the required value of bigblob is
909 ** retrieved directly from table t1. If the values are very large, this
910 ** can be more efficient than storing them directly in the sorter records.
911 **
912 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
913 ** for which the sorter-reference optimization should be enabled.
914 ** Additionally, the pSort->aDefer[] array is populated with entries
915 ** for all cursors required to evaluate all selected expressions. Finally.
916 ** output variable (*ppExtra) is set to an expression list containing
917 ** expressions for all extra PK values that should be stored in the
918 ** sorter records.
919 */
920 static void selectExprDefer(
921   Parse *pParse,                  /* Leave any error here */
922   SortCtx *pSort,                 /* Sorter context */
923   ExprList *pEList,               /* Expressions destined for sorter */
924   ExprList **ppExtra              /* Expressions to append to sorter record */
925 ){
926   int i;
927   int nDefer = 0;
928   ExprList *pExtra = 0;
929   for(i=0; i<pEList->nExpr; i++){
930     struct ExprList_item *pItem = &pEList->a[i];
931     if( pItem->u.x.iOrderByCol==0 ){
932       Expr *pExpr = pItem->pExpr;
933       Table *pTab = pExpr->y.pTab;
934       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
935        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
936       ){
937         int j;
938         for(j=0; j<nDefer; j++){
939           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
940         }
941         if( j==nDefer ){
942           if( nDefer==ArraySize(pSort->aDefer) ){
943             continue;
944           }else{
945             int nKey = 1;
946             int k;
947             Index *pPk = 0;
948             if( !HasRowid(pTab) ){
949               pPk = sqlite3PrimaryKeyIndex(pTab);
950               nKey = pPk->nKeyCol;
951             }
952             for(k=0; k<nKey; k++){
953               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
954               if( pNew ){
955                 pNew->iTable = pExpr->iTable;
956                 pNew->y.pTab = pExpr->y.pTab;
957                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
958                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
959               }
960             }
961             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
962             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
963             pSort->aDefer[nDefer].nKey = nKey;
964             nDefer++;
965           }
966         }
967         pItem->bSorterRef = 1;
968       }
969     }
970   }
971   pSort->nDefer = (u8)nDefer;
972   *ppExtra = pExtra;
973 }
974 #endif
975 
976 /*
977 ** This routine generates the code for the inside of the inner loop
978 ** of a SELECT.
979 **
980 ** If srcTab is negative, then the p->pEList expressions
981 ** are evaluated in order to get the data for this row.  If srcTab is
982 ** zero or more, then data is pulled from srcTab and p->pEList is used only
983 ** to get the number of columns and the collation sequence for each column.
984 */
985 static void selectInnerLoop(
986   Parse *pParse,          /* The parser context */
987   Select *p,              /* The complete select statement being coded */
988   int srcTab,             /* Pull data from this table if non-negative */
989   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
990   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
991   SelectDest *pDest,      /* How to dispose of the results */
992   int iContinue,          /* Jump here to continue with next row */
993   int iBreak              /* Jump here to break out of the inner loop */
994 ){
995   Vdbe *v = pParse->pVdbe;
996   int i;
997   int hasDistinct;            /* True if the DISTINCT keyword is present */
998   int eDest = pDest->eDest;   /* How to dispose of results */
999   int iParm = pDest->iSDParm; /* First argument to disposal method */
1000   int nResultCol;             /* Number of result columns */
1001   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1002   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1003 
1004   /* Usually, regResult is the first cell in an array of memory cells
1005   ** containing the current result row. In this case regOrig is set to the
1006   ** same value. However, if the results are being sent to the sorter, the
1007   ** values for any expressions that are also part of the sort-key are omitted
1008   ** from this array. In this case regOrig is set to zero.  */
1009   int regResult;              /* Start of memory holding current results */
1010   int regOrig;                /* Start of memory holding full result (or 0) */
1011 
1012   assert( v );
1013   assert( p->pEList!=0 );
1014   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1015   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1016   if( pSort==0 && !hasDistinct ){
1017     assert( iContinue!=0 );
1018     codeOffset(v, p->iOffset, iContinue);
1019   }
1020 
1021   /* Pull the requested columns.
1022   */
1023   nResultCol = p->pEList->nExpr;
1024 
1025   if( pDest->iSdst==0 ){
1026     if( pSort ){
1027       nPrefixReg = pSort->pOrderBy->nExpr;
1028       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1029       pParse->nMem += nPrefixReg;
1030     }
1031     pDest->iSdst = pParse->nMem+1;
1032     pParse->nMem += nResultCol;
1033   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1034     /* This is an error condition that can result, for example, when a SELECT
1035     ** on the right-hand side of an INSERT contains more result columns than
1036     ** there are columns in the table on the left.  The error will be caught
1037     ** and reported later.  But we need to make sure enough memory is allocated
1038     ** to avoid other spurious errors in the meantime. */
1039     pParse->nMem += nResultCol;
1040   }
1041   pDest->nSdst = nResultCol;
1042   regOrig = regResult = pDest->iSdst;
1043   if( srcTab>=0 ){
1044     for(i=0; i<nResultCol; i++){
1045       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1046       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1047     }
1048   }else if( eDest!=SRT_Exists ){
1049 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1050     ExprList *pExtra = 0;
1051 #endif
1052     /* If the destination is an EXISTS(...) expression, the actual
1053     ** values returned by the SELECT are not required.
1054     */
1055     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1056     ExprList *pEList;
1057     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1058       ecelFlags = SQLITE_ECEL_DUP;
1059     }else{
1060       ecelFlags = 0;
1061     }
1062     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1063       /* For each expression in p->pEList that is a copy of an expression in
1064       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1065       ** iOrderByCol value to one more than the index of the ORDER BY
1066       ** expression within the sort-key that pushOntoSorter() will generate.
1067       ** This allows the p->pEList field to be omitted from the sorted record,
1068       ** saving space and CPU cycles.  */
1069       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1070 
1071       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1072         int j;
1073         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1074           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1075         }
1076       }
1077 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1078       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1079       if( pExtra && pParse->db->mallocFailed==0 ){
1080         /* If there are any extra PK columns to add to the sorter records,
1081         ** allocate extra memory cells and adjust the OpenEphemeral
1082         ** instruction to account for the larger records. This is only
1083         ** required if there are one or more WITHOUT ROWID tables with
1084         ** composite primary keys in the SortCtx.aDefer[] array.  */
1085         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1086         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1087         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1088         pParse->nMem += pExtra->nExpr;
1089       }
1090 #endif
1091 
1092       /* Adjust nResultCol to account for columns that are omitted
1093       ** from the sorter by the optimizations in this branch */
1094       pEList = p->pEList;
1095       for(i=0; i<pEList->nExpr; i++){
1096         if( pEList->a[i].u.x.iOrderByCol>0
1097 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1098          || pEList->a[i].bSorterRef
1099 #endif
1100         ){
1101           nResultCol--;
1102           regOrig = 0;
1103         }
1104       }
1105 
1106       testcase( regOrig );
1107       testcase( eDest==SRT_Set );
1108       testcase( eDest==SRT_Mem );
1109       testcase( eDest==SRT_Coroutine );
1110       testcase( eDest==SRT_Output );
1111       assert( eDest==SRT_Set || eDest==SRT_Mem
1112            || eDest==SRT_Coroutine || eDest==SRT_Output
1113            || eDest==SRT_Upfrom );
1114     }
1115     sRowLoadInfo.regResult = regResult;
1116     sRowLoadInfo.ecelFlags = ecelFlags;
1117 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1118     sRowLoadInfo.pExtra = pExtra;
1119     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1120     if( pExtra ) nResultCol += pExtra->nExpr;
1121 #endif
1122     if( p->iLimit
1123      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1124      && nPrefixReg>0
1125     ){
1126       assert( pSort!=0 );
1127       assert( hasDistinct==0 );
1128       pSort->pDeferredRowLoad = &sRowLoadInfo;
1129       regOrig = 0;
1130     }else{
1131       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1132     }
1133   }
1134 
1135   /* If the DISTINCT keyword was present on the SELECT statement
1136   ** and this row has been seen before, then do not make this row
1137   ** part of the result.
1138   */
1139   if( hasDistinct ){
1140     int eType = pDistinct->eTnctType;
1141     int iTab = pDistinct->tabTnct;
1142     assert( nResultCol==p->pEList->nExpr );
1143     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1144     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1145     if( pSort==0 ){
1146       codeOffset(v, p->iOffset, iContinue);
1147     }
1148   }
1149 
1150   switch( eDest ){
1151     /* In this mode, write each query result to the key of the temporary
1152     ** table iParm.
1153     */
1154 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1155     case SRT_Union: {
1156       int r1;
1157       r1 = sqlite3GetTempReg(pParse);
1158       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1159       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1160       sqlite3ReleaseTempReg(pParse, r1);
1161       break;
1162     }
1163 
1164     /* Construct a record from the query result, but instead of
1165     ** saving that record, use it as a key to delete elements from
1166     ** the temporary table iParm.
1167     */
1168     case SRT_Except: {
1169       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1170       break;
1171     }
1172 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1173 
1174     /* Store the result as data using a unique key.
1175     */
1176     case SRT_Fifo:
1177     case SRT_DistFifo:
1178     case SRT_Table:
1179     case SRT_EphemTab: {
1180       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1181       testcase( eDest==SRT_Table );
1182       testcase( eDest==SRT_EphemTab );
1183       testcase( eDest==SRT_Fifo );
1184       testcase( eDest==SRT_DistFifo );
1185       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1186 #ifndef SQLITE_OMIT_CTE
1187       if( eDest==SRT_DistFifo ){
1188         /* If the destination is DistFifo, then cursor (iParm+1) is open
1189         ** on an ephemeral index. If the current row is already present
1190         ** in the index, do not write it to the output. If not, add the
1191         ** current row to the index and proceed with writing it to the
1192         ** output table as well.  */
1193         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1194         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1195         VdbeCoverage(v);
1196         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1197         assert( pSort==0 );
1198       }
1199 #endif
1200       if( pSort ){
1201         assert( regResult==regOrig );
1202         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1203       }else{
1204         int r2 = sqlite3GetTempReg(pParse);
1205         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1206         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1207         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1208         sqlite3ReleaseTempReg(pParse, r2);
1209       }
1210       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1211       break;
1212     }
1213 
1214     case SRT_Upfrom: {
1215       if( pSort ){
1216         pushOntoSorter(
1217             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1218       }else{
1219         int i2 = pDest->iSDParm2;
1220         int r1 = sqlite3GetTempReg(pParse);
1221 
1222         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1223         ** might still be trying to return one row, because that is what
1224         ** aggregates do.  Don't record that empty row in the output table. */
1225         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1226 
1227         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1228                           regResult+(i2<0), nResultCol-(i2<0), r1);
1229         if( i2<0 ){
1230           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1231         }else{
1232           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1233         }
1234       }
1235       break;
1236     }
1237 
1238 #ifndef SQLITE_OMIT_SUBQUERY
1239     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1240     ** then there should be a single item on the stack.  Write this
1241     ** item into the set table with bogus data.
1242     */
1243     case SRT_Set: {
1244       if( pSort ){
1245         /* At first glance you would think we could optimize out the
1246         ** ORDER BY in this case since the order of entries in the set
1247         ** does not matter.  But there might be a LIMIT clause, in which
1248         ** case the order does matter */
1249         pushOntoSorter(
1250             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1251       }else{
1252         int r1 = sqlite3GetTempReg(pParse);
1253         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1254         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1255             r1, pDest->zAffSdst, nResultCol);
1256         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1257         sqlite3ReleaseTempReg(pParse, r1);
1258       }
1259       break;
1260     }
1261 
1262 
1263     /* If any row exist in the result set, record that fact and abort.
1264     */
1265     case SRT_Exists: {
1266       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1267       /* The LIMIT clause will terminate the loop for us */
1268       break;
1269     }
1270 
1271     /* If this is a scalar select that is part of an expression, then
1272     ** store the results in the appropriate memory cell or array of
1273     ** memory cells and break out of the scan loop.
1274     */
1275     case SRT_Mem: {
1276       if( pSort ){
1277         assert( nResultCol<=pDest->nSdst );
1278         pushOntoSorter(
1279             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1280       }else{
1281         assert( nResultCol==pDest->nSdst );
1282         assert( regResult==iParm );
1283         /* The LIMIT clause will jump out of the loop for us */
1284       }
1285       break;
1286     }
1287 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1288 
1289     case SRT_Coroutine:       /* Send data to a co-routine */
1290     case SRT_Output: {        /* Return the results */
1291       testcase( eDest==SRT_Coroutine );
1292       testcase( eDest==SRT_Output );
1293       if( pSort ){
1294         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1295                        nPrefixReg);
1296       }else if( eDest==SRT_Coroutine ){
1297         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1298       }else{
1299         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1300       }
1301       break;
1302     }
1303 
1304 #ifndef SQLITE_OMIT_CTE
1305     /* Write the results into a priority queue that is order according to
1306     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1307     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1308     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1309     ** final OP_Sequence column.  The last column is the record as a blob.
1310     */
1311     case SRT_DistQueue:
1312     case SRT_Queue: {
1313       int nKey;
1314       int r1, r2, r3;
1315       int addrTest = 0;
1316       ExprList *pSO;
1317       pSO = pDest->pOrderBy;
1318       assert( pSO );
1319       nKey = pSO->nExpr;
1320       r1 = sqlite3GetTempReg(pParse);
1321       r2 = sqlite3GetTempRange(pParse, nKey+2);
1322       r3 = r2+nKey+1;
1323       if( eDest==SRT_DistQueue ){
1324         /* If the destination is DistQueue, then cursor (iParm+1) is open
1325         ** on a second ephemeral index that holds all values every previously
1326         ** added to the queue. */
1327         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1328                                         regResult, nResultCol);
1329         VdbeCoverage(v);
1330       }
1331       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1332       if( eDest==SRT_DistQueue ){
1333         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1334         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1335       }
1336       for(i=0; i<nKey; i++){
1337         sqlite3VdbeAddOp2(v, OP_SCopy,
1338                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1339                           r2+i);
1340       }
1341       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1342       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1343       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1344       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1345       sqlite3ReleaseTempReg(pParse, r1);
1346       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1347       break;
1348     }
1349 #endif /* SQLITE_OMIT_CTE */
1350 
1351 
1352 
1353 #if !defined(SQLITE_OMIT_TRIGGER)
1354     /* Discard the results.  This is used for SELECT statements inside
1355     ** the body of a TRIGGER.  The purpose of such selects is to call
1356     ** user-defined functions that have side effects.  We do not care
1357     ** about the actual results of the select.
1358     */
1359     default: {
1360       assert( eDest==SRT_Discard );
1361       break;
1362     }
1363 #endif
1364   }
1365 
1366   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1367   ** there is a sorter, in which case the sorter has already limited
1368   ** the output for us.
1369   */
1370   if( pSort==0 && p->iLimit ){
1371     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1372   }
1373 }
1374 
1375 /*
1376 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1377 ** X extra columns.
1378 */
1379 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1380   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1381   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1382   if( p ){
1383     p->aSortFlags = (u8*)&p->aColl[N+X];
1384     p->nKeyField = (u16)N;
1385     p->nAllField = (u16)(N+X);
1386     p->enc = ENC(db);
1387     p->db = db;
1388     p->nRef = 1;
1389     memset(&p[1], 0, nExtra);
1390   }else{
1391     sqlite3OomFault(db);
1392   }
1393   return p;
1394 }
1395 
1396 /*
1397 ** Deallocate a KeyInfo object
1398 */
1399 void sqlite3KeyInfoUnref(KeyInfo *p){
1400   if( p ){
1401     assert( p->nRef>0 );
1402     p->nRef--;
1403     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1404   }
1405 }
1406 
1407 /*
1408 ** Make a new pointer to a KeyInfo object
1409 */
1410 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1411   if( p ){
1412     assert( p->nRef>0 );
1413     p->nRef++;
1414   }
1415   return p;
1416 }
1417 
1418 #ifdef SQLITE_DEBUG
1419 /*
1420 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1421 ** can only be changed if this is just a single reference to the object.
1422 **
1423 ** This routine is used only inside of assert() statements.
1424 */
1425 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1426 #endif /* SQLITE_DEBUG */
1427 
1428 /*
1429 ** Given an expression list, generate a KeyInfo structure that records
1430 ** the collating sequence for each expression in that expression list.
1431 **
1432 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1433 ** KeyInfo structure is appropriate for initializing a virtual index to
1434 ** implement that clause.  If the ExprList is the result set of a SELECT
1435 ** then the KeyInfo structure is appropriate for initializing a virtual
1436 ** index to implement a DISTINCT test.
1437 **
1438 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1439 ** function is responsible for seeing that this structure is eventually
1440 ** freed.
1441 */
1442 KeyInfo *sqlite3KeyInfoFromExprList(
1443   Parse *pParse,       /* Parsing context */
1444   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1445   int iStart,          /* Begin with this column of pList */
1446   int nExtra           /* Add this many extra columns to the end */
1447 ){
1448   int nExpr;
1449   KeyInfo *pInfo;
1450   struct ExprList_item *pItem;
1451   sqlite3 *db = pParse->db;
1452   int i;
1453 
1454   nExpr = pList->nExpr;
1455   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1456   if( pInfo ){
1457     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1458     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1459       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1460       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1461     }
1462   }
1463   return pInfo;
1464 }
1465 
1466 /*
1467 ** Name of the connection operator, used for error messages.
1468 */
1469 const char *sqlite3SelectOpName(int id){
1470   char *z;
1471   switch( id ){
1472     case TK_ALL:       z = "UNION ALL";   break;
1473     case TK_INTERSECT: z = "INTERSECT";   break;
1474     case TK_EXCEPT:    z = "EXCEPT";      break;
1475     default:           z = "UNION";       break;
1476   }
1477   return z;
1478 }
1479 
1480 #ifndef SQLITE_OMIT_EXPLAIN
1481 /*
1482 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1483 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1484 ** where the caption is of the form:
1485 **
1486 **   "USE TEMP B-TREE FOR xxx"
1487 **
1488 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1489 ** is determined by the zUsage argument.
1490 */
1491 static void explainTempTable(Parse *pParse, const char *zUsage){
1492   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1493 }
1494 
1495 /*
1496 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1497 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1498 ** in sqlite3Select() to assign values to structure member variables that
1499 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1500 ** code with #ifndef directives.
1501 */
1502 # define explainSetInteger(a, b) a = b
1503 
1504 #else
1505 /* No-op versions of the explainXXX() functions and macros. */
1506 # define explainTempTable(y,z)
1507 # define explainSetInteger(y,z)
1508 #endif
1509 
1510 
1511 /*
1512 ** If the inner loop was generated using a non-null pOrderBy argument,
1513 ** then the results were placed in a sorter.  After the loop is terminated
1514 ** we need to run the sorter and output the results.  The following
1515 ** routine generates the code needed to do that.
1516 */
1517 static void generateSortTail(
1518   Parse *pParse,    /* Parsing context */
1519   Select *p,        /* The SELECT statement */
1520   SortCtx *pSort,   /* Information on the ORDER BY clause */
1521   int nColumn,      /* Number of columns of data */
1522   SelectDest *pDest /* Write the sorted results here */
1523 ){
1524   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1525   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1526   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1527   int addr;                       /* Top of output loop. Jump for Next. */
1528   int addrOnce = 0;
1529   int iTab;
1530   ExprList *pOrderBy = pSort->pOrderBy;
1531   int eDest = pDest->eDest;
1532   int iParm = pDest->iSDParm;
1533   int regRow;
1534   int regRowid;
1535   int iCol;
1536   int nKey;                       /* Number of key columns in sorter record */
1537   int iSortTab;                   /* Sorter cursor to read from */
1538   int i;
1539   int bSeq;                       /* True if sorter record includes seq. no. */
1540   int nRefKey = 0;
1541   struct ExprList_item *aOutEx = p->pEList->a;
1542 
1543   assert( addrBreak<0 );
1544   if( pSort->labelBkOut ){
1545     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1546     sqlite3VdbeGoto(v, addrBreak);
1547     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1548   }
1549 
1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1551   /* Open any cursors needed for sorter-reference expressions */
1552   for(i=0; i<pSort->nDefer; i++){
1553     Table *pTab = pSort->aDefer[i].pTab;
1554     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1555     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1556     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1557   }
1558 #endif
1559 
1560   iTab = pSort->iECursor;
1561   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1562     regRowid = 0;
1563     regRow = pDest->iSdst;
1564   }else{
1565     regRowid = sqlite3GetTempReg(pParse);
1566     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1567       regRow = sqlite3GetTempReg(pParse);
1568       nColumn = 0;
1569     }else{
1570       regRow = sqlite3GetTempRange(pParse, nColumn);
1571     }
1572   }
1573   nKey = pOrderBy->nExpr - pSort->nOBSat;
1574   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1575     int regSortOut = ++pParse->nMem;
1576     iSortTab = pParse->nTab++;
1577     if( pSort->labelBkOut ){
1578       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1579     }
1580     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1581         nKey+1+nColumn+nRefKey);
1582     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1583     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1584     VdbeCoverage(v);
1585     codeOffset(v, p->iOffset, addrContinue);
1586     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1587     bSeq = 0;
1588   }else{
1589     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1590     codeOffset(v, p->iOffset, addrContinue);
1591     iSortTab = iTab;
1592     bSeq = 1;
1593   }
1594   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1595 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1596     if( aOutEx[i].bSorterRef ) continue;
1597 #endif
1598     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1599   }
1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1601   if( pSort->nDefer ){
1602     int iKey = iCol+1;
1603     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1604 
1605     for(i=0; i<pSort->nDefer; i++){
1606       int iCsr = pSort->aDefer[i].iCsr;
1607       Table *pTab = pSort->aDefer[i].pTab;
1608       int nKey = pSort->aDefer[i].nKey;
1609 
1610       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1611       if( HasRowid(pTab) ){
1612         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1613         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1614             sqlite3VdbeCurrentAddr(v)+1, regKey);
1615       }else{
1616         int k;
1617         int iJmp;
1618         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1619         for(k=0; k<nKey; k++){
1620           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1621         }
1622         iJmp = sqlite3VdbeCurrentAddr(v);
1623         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1624         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1625         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1626       }
1627     }
1628     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1629   }
1630 #endif
1631   for(i=nColumn-1; i>=0; i--){
1632 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1633     if( aOutEx[i].bSorterRef ){
1634       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1635     }else
1636 #endif
1637     {
1638       int iRead;
1639       if( aOutEx[i].u.x.iOrderByCol ){
1640         iRead = aOutEx[i].u.x.iOrderByCol-1;
1641       }else{
1642         iRead = iCol--;
1643       }
1644       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1645       VdbeComment((v, "%s", aOutEx[i].zEName));
1646     }
1647   }
1648   switch( eDest ){
1649     case SRT_Table:
1650     case SRT_EphemTab: {
1651       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1652       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1653       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1654       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1655       break;
1656     }
1657 #ifndef SQLITE_OMIT_SUBQUERY
1658     case SRT_Set: {
1659       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1660       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1661                         pDest->zAffSdst, nColumn);
1662       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1663       break;
1664     }
1665     case SRT_Mem: {
1666       /* The LIMIT clause will terminate the loop for us */
1667       break;
1668     }
1669 #endif
1670     case SRT_Upfrom: {
1671       int i2 = pDest->iSDParm2;
1672       int r1 = sqlite3GetTempReg(pParse);
1673       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1674       if( i2<0 ){
1675         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1676       }else{
1677         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1678       }
1679       break;
1680     }
1681     default: {
1682       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1683       testcase( eDest==SRT_Output );
1684       testcase( eDest==SRT_Coroutine );
1685       if( eDest==SRT_Output ){
1686         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1687       }else{
1688         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1689       }
1690       break;
1691     }
1692   }
1693   if( regRowid ){
1694     if( eDest==SRT_Set ){
1695       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1696     }else{
1697       sqlite3ReleaseTempReg(pParse, regRow);
1698     }
1699     sqlite3ReleaseTempReg(pParse, regRowid);
1700   }
1701   /* The bottom of the loop
1702   */
1703   sqlite3VdbeResolveLabel(v, addrContinue);
1704   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1705     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1706   }else{
1707     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1708   }
1709   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1710   sqlite3VdbeResolveLabel(v, addrBreak);
1711 }
1712 
1713 /*
1714 ** Return a pointer to a string containing the 'declaration type' of the
1715 ** expression pExpr. The string may be treated as static by the caller.
1716 **
1717 ** Also try to estimate the size of the returned value and return that
1718 ** result in *pEstWidth.
1719 **
1720 ** The declaration type is the exact datatype definition extracted from the
1721 ** original CREATE TABLE statement if the expression is a column. The
1722 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1723 ** is considered a column can be complex in the presence of subqueries. The
1724 ** result-set expression in all of the following SELECT statements is
1725 ** considered a column by this function.
1726 **
1727 **   SELECT col FROM tbl;
1728 **   SELECT (SELECT col FROM tbl;
1729 **   SELECT (SELECT col FROM tbl);
1730 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1731 **
1732 ** The declaration type for any expression other than a column is NULL.
1733 **
1734 ** This routine has either 3 or 6 parameters depending on whether or not
1735 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1736 */
1737 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1738 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1739 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1741 #endif
1742 static const char *columnTypeImpl(
1743   NameContext *pNC,
1744 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1745   Expr *pExpr
1746 #else
1747   Expr *pExpr,
1748   const char **pzOrigDb,
1749   const char **pzOrigTab,
1750   const char **pzOrigCol
1751 #endif
1752 ){
1753   char const *zType = 0;
1754   int j;
1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1756   char const *zOrigDb = 0;
1757   char const *zOrigTab = 0;
1758   char const *zOrigCol = 0;
1759 #endif
1760 
1761   assert( pExpr!=0 );
1762   assert( pNC->pSrcList!=0 );
1763   switch( pExpr->op ){
1764     case TK_COLUMN: {
1765       /* The expression is a column. Locate the table the column is being
1766       ** extracted from in NameContext.pSrcList. This table may be real
1767       ** database table or a subquery.
1768       */
1769       Table *pTab = 0;            /* Table structure column is extracted from */
1770       Select *pS = 0;             /* Select the column is extracted from */
1771       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1772       while( pNC && !pTab ){
1773         SrcList *pTabList = pNC->pSrcList;
1774         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1775         if( j<pTabList->nSrc ){
1776           pTab = pTabList->a[j].pTab;
1777           pS = pTabList->a[j].pSelect;
1778         }else{
1779           pNC = pNC->pNext;
1780         }
1781       }
1782 
1783       if( pTab==0 ){
1784         /* At one time, code such as "SELECT new.x" within a trigger would
1785         ** cause this condition to run.  Since then, we have restructured how
1786         ** trigger code is generated and so this condition is no longer
1787         ** possible. However, it can still be true for statements like
1788         ** the following:
1789         **
1790         **   CREATE TABLE t1(col INTEGER);
1791         **   SELECT (SELECT t1.col) FROM FROM t1;
1792         **
1793         ** when columnType() is called on the expression "t1.col" in the
1794         ** sub-select. In this case, set the column type to NULL, even
1795         ** though it should really be "INTEGER".
1796         **
1797         ** This is not a problem, as the column type of "t1.col" is never
1798         ** used. When columnType() is called on the expression
1799         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1800         ** branch below.  */
1801         break;
1802       }
1803 
1804       assert( pTab && pExpr->y.pTab==pTab );
1805       if( pS ){
1806         /* The "table" is actually a sub-select or a view in the FROM clause
1807         ** of the SELECT statement. Return the declaration type and origin
1808         ** data for the result-set column of the sub-select.
1809         */
1810         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1811           /* If iCol is less than zero, then the expression requests the
1812           ** rowid of the sub-select or view. This expression is legal (see
1813           ** test case misc2.2.2) - it always evaluates to NULL.
1814           */
1815           NameContext sNC;
1816           Expr *p = pS->pEList->a[iCol].pExpr;
1817           sNC.pSrcList = pS->pSrc;
1818           sNC.pNext = pNC;
1819           sNC.pParse = pNC->pParse;
1820           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1821         }
1822       }else{
1823         /* A real table or a CTE table */
1824         assert( !pS );
1825 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1826         if( iCol<0 ) iCol = pTab->iPKey;
1827         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1828         if( iCol<0 ){
1829           zType = "INTEGER";
1830           zOrigCol = "rowid";
1831         }else{
1832           zOrigCol = pTab->aCol[iCol].zName;
1833           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1834         }
1835         zOrigTab = pTab->zName;
1836         if( pNC->pParse && pTab->pSchema ){
1837           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1838           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1839         }
1840 #else
1841         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1842         if( iCol<0 ){
1843           zType = "INTEGER";
1844         }else{
1845           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1846         }
1847 #endif
1848       }
1849       break;
1850     }
1851 #ifndef SQLITE_OMIT_SUBQUERY
1852     case TK_SELECT: {
1853       /* The expression is a sub-select. Return the declaration type and
1854       ** origin info for the single column in the result set of the SELECT
1855       ** statement.
1856       */
1857       NameContext sNC;
1858       Select *pS = pExpr->x.pSelect;
1859       Expr *p = pS->pEList->a[0].pExpr;
1860       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1861       sNC.pSrcList = pS->pSrc;
1862       sNC.pNext = pNC;
1863       sNC.pParse = pNC->pParse;
1864       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1865       break;
1866     }
1867 #endif
1868   }
1869 
1870 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1871   if( pzOrigDb ){
1872     assert( pzOrigTab && pzOrigCol );
1873     *pzOrigDb = zOrigDb;
1874     *pzOrigTab = zOrigTab;
1875     *pzOrigCol = zOrigCol;
1876   }
1877 #endif
1878   return zType;
1879 }
1880 
1881 /*
1882 ** Generate code that will tell the VDBE the declaration types of columns
1883 ** in the result set.
1884 */
1885 static void generateColumnTypes(
1886   Parse *pParse,      /* Parser context */
1887   SrcList *pTabList,  /* List of tables */
1888   ExprList *pEList    /* Expressions defining the result set */
1889 ){
1890 #ifndef SQLITE_OMIT_DECLTYPE
1891   Vdbe *v = pParse->pVdbe;
1892   int i;
1893   NameContext sNC;
1894   sNC.pSrcList = pTabList;
1895   sNC.pParse = pParse;
1896   sNC.pNext = 0;
1897   for(i=0; i<pEList->nExpr; i++){
1898     Expr *p = pEList->a[i].pExpr;
1899     const char *zType;
1900 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1901     const char *zOrigDb = 0;
1902     const char *zOrigTab = 0;
1903     const char *zOrigCol = 0;
1904     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1905 
1906     /* The vdbe must make its own copy of the column-type and other
1907     ** column specific strings, in case the schema is reset before this
1908     ** virtual machine is deleted.
1909     */
1910     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1911     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1912     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1913 #else
1914     zType = columnType(&sNC, p, 0, 0, 0);
1915 #endif
1916     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1917   }
1918 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1919 }
1920 
1921 
1922 /*
1923 ** Compute the column names for a SELECT statement.
1924 **
1925 ** The only guarantee that SQLite makes about column names is that if the
1926 ** column has an AS clause assigning it a name, that will be the name used.
1927 ** That is the only documented guarantee.  However, countless applications
1928 ** developed over the years have made baseless assumptions about column names
1929 ** and will break if those assumptions changes.  Hence, use extreme caution
1930 ** when modifying this routine to avoid breaking legacy.
1931 **
1932 ** See Also: sqlite3ColumnsFromExprList()
1933 **
1934 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1935 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1936 ** applications should operate this way.  Nevertheless, we need to support the
1937 ** other modes for legacy:
1938 **
1939 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1940 **                              originally appears in the SELECT statement.  In
1941 **                              other words, the zSpan of the result expression.
1942 **
1943 **    short=ON, full=OFF:       (This is the default setting).  If the result
1944 **                              refers directly to a table column, then the
1945 **                              result column name is just the table column
1946 **                              name: COLUMN.  Otherwise use zSpan.
1947 **
1948 **    full=ON, short=ANY:       If the result refers directly to a table column,
1949 **                              then the result column name with the table name
1950 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1951 */
1952 static void generateColumnNames(
1953   Parse *pParse,      /* Parser context */
1954   Select *pSelect     /* Generate column names for this SELECT statement */
1955 ){
1956   Vdbe *v = pParse->pVdbe;
1957   int i;
1958   Table *pTab;
1959   SrcList *pTabList;
1960   ExprList *pEList;
1961   sqlite3 *db = pParse->db;
1962   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1963   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1964 
1965 #ifndef SQLITE_OMIT_EXPLAIN
1966   /* If this is an EXPLAIN, skip this step */
1967   if( pParse->explain ){
1968     return;
1969   }
1970 #endif
1971 
1972   if( pParse->colNamesSet ) return;
1973   /* Column names are determined by the left-most term of a compound select */
1974   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1975   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1976   pTabList = pSelect->pSrc;
1977   pEList = pSelect->pEList;
1978   assert( v!=0 );
1979   assert( pTabList!=0 );
1980   pParse->colNamesSet = 1;
1981   fullName = (db->flags & SQLITE_FullColNames)!=0;
1982   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1983   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1984   for(i=0; i<pEList->nExpr; i++){
1985     Expr *p = pEList->a[i].pExpr;
1986 
1987     assert( p!=0 );
1988     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1989     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1990     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1991       /* An AS clause always takes first priority */
1992       char *zName = pEList->a[i].zEName;
1993       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1994     }else if( srcName && p->op==TK_COLUMN ){
1995       char *zCol;
1996       int iCol = p->iColumn;
1997       pTab = p->y.pTab;
1998       assert( pTab!=0 );
1999       if( iCol<0 ) iCol = pTab->iPKey;
2000       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2001       if( iCol<0 ){
2002         zCol = "rowid";
2003       }else{
2004         zCol = pTab->aCol[iCol].zName;
2005       }
2006       if( fullName ){
2007         char *zName = 0;
2008         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2009         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2010       }else{
2011         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2012       }
2013     }else{
2014       const char *z = pEList->a[i].zEName;
2015       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2016       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2017     }
2018   }
2019   generateColumnTypes(pParse, pTabList, pEList);
2020 }
2021 
2022 /*
2023 ** Given an expression list (which is really the list of expressions
2024 ** that form the result set of a SELECT statement) compute appropriate
2025 ** column names for a table that would hold the expression list.
2026 **
2027 ** All column names will be unique.
2028 **
2029 ** Only the column names are computed.  Column.zType, Column.zColl,
2030 ** and other fields of Column are zeroed.
2031 **
2032 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2033 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2034 **
2035 ** The only guarantee that SQLite makes about column names is that if the
2036 ** column has an AS clause assigning it a name, that will be the name used.
2037 ** That is the only documented guarantee.  However, countless applications
2038 ** developed over the years have made baseless assumptions about column names
2039 ** and will break if those assumptions changes.  Hence, use extreme caution
2040 ** when modifying this routine to avoid breaking legacy.
2041 **
2042 ** See Also: generateColumnNames()
2043 */
2044 int sqlite3ColumnsFromExprList(
2045   Parse *pParse,          /* Parsing context */
2046   ExprList *pEList,       /* Expr list from which to derive column names */
2047   i16 *pnCol,             /* Write the number of columns here */
2048   Column **paCol          /* Write the new column list here */
2049 ){
2050   sqlite3 *db = pParse->db;   /* Database connection */
2051   int i, j;                   /* Loop counters */
2052   u32 cnt;                    /* Index added to make the name unique */
2053   Column *aCol, *pCol;        /* For looping over result columns */
2054   int nCol;                   /* Number of columns in the result set */
2055   char *zName;                /* Column name */
2056   int nName;                  /* Size of name in zName[] */
2057   Hash ht;                    /* Hash table of column names */
2058   Table *pTab;
2059 
2060   sqlite3HashInit(&ht);
2061   if( pEList ){
2062     nCol = pEList->nExpr;
2063     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2064     testcase( aCol==0 );
2065     if( NEVER(nCol>32767) ) nCol = 32767;
2066   }else{
2067     nCol = 0;
2068     aCol = 0;
2069   }
2070   assert( nCol==(i16)nCol );
2071   *pnCol = nCol;
2072   *paCol = aCol;
2073 
2074   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2075     /* Get an appropriate name for the column
2076     */
2077     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2078       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2079     }else{
2080       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2081       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2082         pColExpr = pColExpr->pRight;
2083         assert( pColExpr!=0 );
2084       }
2085       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2086         /* For columns use the column name name */
2087         int iCol = pColExpr->iColumn;
2088         if( iCol<0 ) iCol = pTab->iPKey;
2089         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2090       }else if( pColExpr->op==TK_ID ){
2091         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2092         zName = pColExpr->u.zToken;
2093       }else{
2094         /* Use the original text of the column expression as its name */
2095         zName = pEList->a[i].zEName;
2096       }
2097     }
2098     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2099       zName = sqlite3DbStrDup(db, zName);
2100     }else{
2101       zName = sqlite3MPrintf(db,"column%d",i+1);
2102     }
2103 
2104     /* Make sure the column name is unique.  If the name is not unique,
2105     ** append an integer to the name so that it becomes unique.
2106     */
2107     cnt = 0;
2108     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2109       nName = sqlite3Strlen30(zName);
2110       if( nName>0 ){
2111         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2112         if( zName[j]==':' ) nName = j;
2113       }
2114       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2115       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2116     }
2117     pCol->zName = zName;
2118     pCol->hName = sqlite3StrIHash(zName);
2119     sqlite3ColumnPropertiesFromName(0, pCol);
2120     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2121       sqlite3OomFault(db);
2122     }
2123   }
2124   sqlite3HashClear(&ht);
2125   if( db->mallocFailed ){
2126     for(j=0; j<i; j++){
2127       sqlite3DbFree(db, aCol[j].zName);
2128     }
2129     sqlite3DbFree(db, aCol);
2130     *paCol = 0;
2131     *pnCol = 0;
2132     return SQLITE_NOMEM_BKPT;
2133   }
2134   return SQLITE_OK;
2135 }
2136 
2137 /*
2138 ** Add type and collation information to a column list based on
2139 ** a SELECT statement.
2140 **
2141 ** The column list presumably came from selectColumnNamesFromExprList().
2142 ** The column list has only names, not types or collations.  This
2143 ** routine goes through and adds the types and collations.
2144 **
2145 ** This routine requires that all identifiers in the SELECT
2146 ** statement be resolved.
2147 */
2148 void sqlite3SelectAddColumnTypeAndCollation(
2149   Parse *pParse,        /* Parsing contexts */
2150   Table *pTab,          /* Add column type information to this table */
2151   Select *pSelect,      /* SELECT used to determine types and collations */
2152   char aff              /* Default affinity for columns */
2153 ){
2154   sqlite3 *db = pParse->db;
2155   NameContext sNC;
2156   Column *pCol;
2157   CollSeq *pColl;
2158   int i;
2159   Expr *p;
2160   struct ExprList_item *a;
2161 
2162   assert( pSelect!=0 );
2163   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2164   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2165   if( db->mallocFailed ) return;
2166   memset(&sNC, 0, sizeof(sNC));
2167   sNC.pSrcList = pSelect->pSrc;
2168   a = pSelect->pEList->a;
2169   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2170     const char *zType;
2171     int n, m;
2172     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2173     p = a[i].pExpr;
2174     zType = columnType(&sNC, p, 0, 0, 0);
2175     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2176     pCol->affinity = sqlite3ExprAffinity(p);
2177     if( zType ){
2178       m = sqlite3Strlen30(zType);
2179       n = sqlite3Strlen30(pCol->zName);
2180       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2181       if( pCol->zName ){
2182         memcpy(&pCol->zName[n+1], zType, m+1);
2183         pCol->colFlags |= COLFLAG_HASTYPE;
2184       }
2185     }
2186     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2187     pColl = sqlite3ExprCollSeq(pParse, p);
2188     if( pColl && pCol->zColl==0 ){
2189       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2190     }
2191   }
2192   pTab->szTabRow = 1; /* Any non-zero value works */
2193 }
2194 
2195 /*
2196 ** Given a SELECT statement, generate a Table structure that describes
2197 ** the result set of that SELECT.
2198 */
2199 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2200   Table *pTab;
2201   sqlite3 *db = pParse->db;
2202   u64 savedFlags;
2203 
2204   savedFlags = db->flags;
2205   db->flags &= ~(u64)SQLITE_FullColNames;
2206   db->flags |= SQLITE_ShortColNames;
2207   sqlite3SelectPrep(pParse, pSelect, 0);
2208   db->flags = savedFlags;
2209   if( pParse->nErr ) return 0;
2210   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2211   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2212   if( pTab==0 ){
2213     return 0;
2214   }
2215   pTab->nTabRef = 1;
2216   pTab->zName = 0;
2217   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2218   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2219   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2220   pTab->iPKey = -1;
2221   if( db->mallocFailed ){
2222     sqlite3DeleteTable(db, pTab);
2223     return 0;
2224   }
2225   return pTab;
2226 }
2227 
2228 /*
2229 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2230 ** If an error occurs, return NULL and leave a message in pParse.
2231 */
2232 Vdbe *sqlite3GetVdbe(Parse *pParse){
2233   if( pParse->pVdbe ){
2234     return pParse->pVdbe;
2235   }
2236   if( pParse->pToplevel==0
2237    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2238   ){
2239     pParse->okConstFactor = 1;
2240   }
2241   return sqlite3VdbeCreate(pParse);
2242 }
2243 
2244 
2245 /*
2246 ** Compute the iLimit and iOffset fields of the SELECT based on the
2247 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2248 ** that appear in the original SQL statement after the LIMIT and OFFSET
2249 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2250 ** are the integer memory register numbers for counters used to compute
2251 ** the limit and offset.  If there is no limit and/or offset, then
2252 ** iLimit and iOffset are negative.
2253 **
2254 ** This routine changes the values of iLimit and iOffset only if
2255 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2256 ** and iOffset should have been preset to appropriate default values (zero)
2257 ** prior to calling this routine.
2258 **
2259 ** The iOffset register (if it exists) is initialized to the value
2260 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2261 ** iOffset+1 is initialized to LIMIT+OFFSET.
2262 **
2263 ** Only if pLimit->pLeft!=0 do the limit registers get
2264 ** redefined.  The UNION ALL operator uses this property to force
2265 ** the reuse of the same limit and offset registers across multiple
2266 ** SELECT statements.
2267 */
2268 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2269   Vdbe *v = 0;
2270   int iLimit = 0;
2271   int iOffset;
2272   int n;
2273   Expr *pLimit = p->pLimit;
2274 
2275   if( p->iLimit ) return;
2276 
2277   /*
2278   ** "LIMIT -1" always shows all rows.  There is some
2279   ** controversy about what the correct behavior should be.
2280   ** The current implementation interprets "LIMIT 0" to mean
2281   ** no rows.
2282   */
2283   if( pLimit ){
2284     assert( pLimit->op==TK_LIMIT );
2285     assert( pLimit->pLeft!=0 );
2286     p->iLimit = iLimit = ++pParse->nMem;
2287     v = sqlite3GetVdbe(pParse);
2288     assert( v!=0 );
2289     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2290       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2291       VdbeComment((v, "LIMIT counter"));
2292       if( n==0 ){
2293         sqlite3VdbeGoto(v, iBreak);
2294       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2295         p->nSelectRow = sqlite3LogEst((u64)n);
2296         p->selFlags |= SF_FixedLimit;
2297       }
2298     }else{
2299       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2300       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2301       VdbeComment((v, "LIMIT counter"));
2302       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2303     }
2304     if( pLimit->pRight ){
2305       p->iOffset = iOffset = ++pParse->nMem;
2306       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2307       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2308       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2309       VdbeComment((v, "OFFSET counter"));
2310       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2311       VdbeComment((v, "LIMIT+OFFSET"));
2312     }
2313   }
2314 }
2315 
2316 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2317 /*
2318 ** Return the appropriate collating sequence for the iCol-th column of
2319 ** the result set for the compound-select statement "p".  Return NULL if
2320 ** the column has no default collating sequence.
2321 **
2322 ** The collating sequence for the compound select is taken from the
2323 ** left-most term of the select that has a collating sequence.
2324 */
2325 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2326   CollSeq *pRet;
2327   if( p->pPrior ){
2328     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2329   }else{
2330     pRet = 0;
2331   }
2332   assert( iCol>=0 );
2333   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2334   ** have been thrown during name resolution and we would not have gotten
2335   ** this far */
2336   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2337     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2338   }
2339   return pRet;
2340 }
2341 
2342 /*
2343 ** The select statement passed as the second parameter is a compound SELECT
2344 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2345 ** structure suitable for implementing the ORDER BY.
2346 **
2347 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2348 ** function is responsible for ensuring that this structure is eventually
2349 ** freed.
2350 */
2351 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2352   ExprList *pOrderBy = p->pOrderBy;
2353   int nOrderBy = p->pOrderBy->nExpr;
2354   sqlite3 *db = pParse->db;
2355   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2356   if( pRet ){
2357     int i;
2358     for(i=0; i<nOrderBy; i++){
2359       struct ExprList_item *pItem = &pOrderBy->a[i];
2360       Expr *pTerm = pItem->pExpr;
2361       CollSeq *pColl;
2362 
2363       if( pTerm->flags & EP_Collate ){
2364         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2365       }else{
2366         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2367         if( pColl==0 ) pColl = db->pDfltColl;
2368         pOrderBy->a[i].pExpr =
2369           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2370       }
2371       assert( sqlite3KeyInfoIsWriteable(pRet) );
2372       pRet->aColl[i] = pColl;
2373       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2374     }
2375   }
2376 
2377   return pRet;
2378 }
2379 
2380 #ifndef SQLITE_OMIT_CTE
2381 /*
2382 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2383 ** query of the form:
2384 **
2385 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2386 **                         \___________/             \_______________/
2387 **                           p->pPrior                      p
2388 **
2389 **
2390 ** There is exactly one reference to the recursive-table in the FROM clause
2391 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2392 **
2393 ** The setup-query runs once to generate an initial set of rows that go
2394 ** into a Queue table.  Rows are extracted from the Queue table one by
2395 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2396 ** extracted row (now in the iCurrent table) becomes the content of the
2397 ** recursive-table for a recursive-query run.  The output of the recursive-query
2398 ** is added back into the Queue table.  Then another row is extracted from Queue
2399 ** and the iteration continues until the Queue table is empty.
2400 **
2401 ** If the compound query operator is UNION then no duplicate rows are ever
2402 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2403 ** that have ever been inserted into Queue and causes duplicates to be
2404 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2405 **
2406 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2407 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2408 ** an ORDER BY, the Queue table is just a FIFO.
2409 **
2410 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2411 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2412 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2413 ** with a positive value, then the first OFFSET outputs are discarded rather
2414 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2415 ** rows have been skipped.
2416 */
2417 static void generateWithRecursiveQuery(
2418   Parse *pParse,        /* Parsing context */
2419   Select *p,            /* The recursive SELECT to be coded */
2420   SelectDest *pDest     /* What to do with query results */
2421 ){
2422   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2423   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2424   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2425   Select *pSetup = p->pPrior;   /* The setup query */
2426   Select *pFirstRec;            /* Left-most recursive term */
2427   int addrTop;                  /* Top of the loop */
2428   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2429   int iCurrent = 0;             /* The Current table */
2430   int regCurrent;               /* Register holding Current table */
2431   int iQueue;                   /* The Queue table */
2432   int iDistinct = 0;            /* To ensure unique results if UNION */
2433   int eDest = SRT_Fifo;         /* How to write to Queue */
2434   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2435   int i;                        /* Loop counter */
2436   int rc;                       /* Result code */
2437   ExprList *pOrderBy;           /* The ORDER BY clause */
2438   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2439   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2440 
2441 #ifndef SQLITE_OMIT_WINDOWFUNC
2442   if( p->pWin ){
2443     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2444     return;
2445   }
2446 #endif
2447 
2448   /* Obtain authorization to do a recursive query */
2449   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2450 
2451   /* Process the LIMIT and OFFSET clauses, if they exist */
2452   addrBreak = sqlite3VdbeMakeLabel(pParse);
2453   p->nSelectRow = 320;  /* 4 billion rows */
2454   computeLimitRegisters(pParse, p, addrBreak);
2455   pLimit = p->pLimit;
2456   regLimit = p->iLimit;
2457   regOffset = p->iOffset;
2458   p->pLimit = 0;
2459   p->iLimit = p->iOffset = 0;
2460   pOrderBy = p->pOrderBy;
2461 
2462   /* Locate the cursor number of the Current table */
2463   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2464     if( pSrc->a[i].fg.isRecursive ){
2465       iCurrent = pSrc->a[i].iCursor;
2466       break;
2467     }
2468   }
2469 
2470   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2471   ** the Distinct table must be exactly one greater than Queue in order
2472   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2473   iQueue = pParse->nTab++;
2474   if( p->op==TK_UNION ){
2475     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2476     iDistinct = pParse->nTab++;
2477   }else{
2478     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2479   }
2480   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2481 
2482   /* Allocate cursors for Current, Queue, and Distinct. */
2483   regCurrent = ++pParse->nMem;
2484   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2485   if( pOrderBy ){
2486     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2487     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2488                       (char*)pKeyInfo, P4_KEYINFO);
2489     destQueue.pOrderBy = pOrderBy;
2490   }else{
2491     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2492   }
2493   VdbeComment((v, "Queue table"));
2494   if( iDistinct ){
2495     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2496     p->selFlags |= SF_UsesEphemeral;
2497   }
2498 
2499   /* Detach the ORDER BY clause from the compound SELECT */
2500   p->pOrderBy = 0;
2501 
2502   /* Figure out how many elements of the compound SELECT are part of the
2503   ** recursive query.  Make sure no recursive elements use aggregate
2504   ** functions.  Mark the recursive elements as UNION ALL even if they
2505   ** are really UNION because the distinctness will be enforced by the
2506   ** iDistinct table.  pFirstRec is left pointing to the left-most
2507   ** recursive term of the CTE.
2508   */
2509   pFirstRec = p;
2510   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2511     if( pFirstRec->selFlags & SF_Aggregate ){
2512       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2513       goto end_of_recursive_query;
2514     }
2515     pFirstRec->op = TK_ALL;
2516     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2517   }
2518 
2519   /* Store the results of the setup-query in Queue. */
2520   pSetup = pFirstRec->pPrior;
2521   pSetup->pNext = 0;
2522   ExplainQueryPlan((pParse, 1, "SETUP"));
2523   rc = sqlite3Select(pParse, pSetup, &destQueue);
2524   pSetup->pNext = p;
2525   if( rc ) goto end_of_recursive_query;
2526 
2527   /* Find the next row in the Queue and output that row */
2528   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2529 
2530   /* Transfer the next row in Queue over to Current */
2531   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2532   if( pOrderBy ){
2533     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2534   }else{
2535     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2536   }
2537   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2538 
2539   /* Output the single row in Current */
2540   addrCont = sqlite3VdbeMakeLabel(pParse);
2541   codeOffset(v, regOffset, addrCont);
2542   selectInnerLoop(pParse, p, iCurrent,
2543       0, 0, pDest, addrCont, addrBreak);
2544   if( regLimit ){
2545     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2546     VdbeCoverage(v);
2547   }
2548   sqlite3VdbeResolveLabel(v, addrCont);
2549 
2550   /* Execute the recursive SELECT taking the single row in Current as
2551   ** the value for the recursive-table. Store the results in the Queue.
2552   */
2553   pFirstRec->pPrior = 0;
2554   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2555   sqlite3Select(pParse, p, &destQueue);
2556   assert( pFirstRec->pPrior==0 );
2557   pFirstRec->pPrior = pSetup;
2558 
2559   /* Keep running the loop until the Queue is empty */
2560   sqlite3VdbeGoto(v, addrTop);
2561   sqlite3VdbeResolveLabel(v, addrBreak);
2562 
2563 end_of_recursive_query:
2564   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2565   p->pOrderBy = pOrderBy;
2566   p->pLimit = pLimit;
2567   return;
2568 }
2569 #endif /* SQLITE_OMIT_CTE */
2570 
2571 /* Forward references */
2572 static int multiSelectOrderBy(
2573   Parse *pParse,        /* Parsing context */
2574   Select *p,            /* The right-most of SELECTs to be coded */
2575   SelectDest *pDest     /* What to do with query results */
2576 );
2577 
2578 /*
2579 ** Handle the special case of a compound-select that originates from a
2580 ** VALUES clause.  By handling this as a special case, we avoid deep
2581 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2582 ** on a VALUES clause.
2583 **
2584 ** Because the Select object originates from a VALUES clause:
2585 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2586 **   (2) All terms are UNION ALL
2587 **   (3) There is no ORDER BY clause
2588 **
2589 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2590 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2591 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2592 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2593 */
2594 static int multiSelectValues(
2595   Parse *pParse,        /* Parsing context */
2596   Select *p,            /* The right-most of SELECTs to be coded */
2597   SelectDest *pDest     /* What to do with query results */
2598 ){
2599   int nRow = 1;
2600   int rc = 0;
2601   int bShowAll = p->pLimit==0;
2602   assert( p->selFlags & SF_MultiValue );
2603   do{
2604     assert( p->selFlags & SF_Values );
2605     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2606     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2607 #ifndef SQLITE_OMIT_WINDOWFUNC
2608     if( p->pWin ) return -1;
2609 #endif
2610     if( p->pPrior==0 ) break;
2611     assert( p->pPrior->pNext==p );
2612     p = p->pPrior;
2613     nRow += bShowAll;
2614   }while(1);
2615   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2616                     nRow==1 ? "" : "S"));
2617   while( p ){
2618     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2619     if( !bShowAll ) break;
2620     p->nSelectRow = nRow;
2621     p = p->pNext;
2622   }
2623   return rc;
2624 }
2625 
2626 /*
2627 ** Return true if the SELECT statement which is known to be the recursive
2628 ** part of a recursive CTE still has its anchor terms attached.  If the
2629 ** anchor terms have already been removed, then return false.
2630 */
2631 static int hasAnchor(Select *p){
2632   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2633   return p!=0;
2634 }
2635 
2636 /*
2637 ** This routine is called to process a compound query form from
2638 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2639 ** INTERSECT
2640 **
2641 ** "p" points to the right-most of the two queries.  the query on the
2642 ** left is p->pPrior.  The left query could also be a compound query
2643 ** in which case this routine will be called recursively.
2644 **
2645 ** The results of the total query are to be written into a destination
2646 ** of type eDest with parameter iParm.
2647 **
2648 ** Example 1:  Consider a three-way compound SQL statement.
2649 **
2650 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2651 **
2652 ** This statement is parsed up as follows:
2653 **
2654 **     SELECT c FROM t3
2655 **      |
2656 **      `----->  SELECT b FROM t2
2657 **                |
2658 **                `------>  SELECT a FROM t1
2659 **
2660 ** The arrows in the diagram above represent the Select.pPrior pointer.
2661 ** So if this routine is called with p equal to the t3 query, then
2662 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2663 **
2664 ** Notice that because of the way SQLite parses compound SELECTs, the
2665 ** individual selects always group from left to right.
2666 */
2667 static int multiSelect(
2668   Parse *pParse,        /* Parsing context */
2669   Select *p,            /* The right-most of SELECTs to be coded */
2670   SelectDest *pDest     /* What to do with query results */
2671 ){
2672   int rc = SQLITE_OK;   /* Success code from a subroutine */
2673   Select *pPrior;       /* Another SELECT immediately to our left */
2674   Vdbe *v;              /* Generate code to this VDBE */
2675   SelectDest dest;      /* Alternative data destination */
2676   Select *pDelete = 0;  /* Chain of simple selects to delete */
2677   sqlite3 *db;          /* Database connection */
2678 
2679   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2680   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2681   */
2682   assert( p && p->pPrior );  /* Calling function guarantees this much */
2683   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2684   assert( p->selFlags & SF_Compound );
2685   db = pParse->db;
2686   pPrior = p->pPrior;
2687   dest = *pDest;
2688   assert( pPrior->pOrderBy==0 );
2689   assert( pPrior->pLimit==0 );
2690 
2691   v = sqlite3GetVdbe(pParse);
2692   assert( v!=0 );  /* The VDBE already created by calling function */
2693 
2694   /* Create the destination temporary table if necessary
2695   */
2696   if( dest.eDest==SRT_EphemTab ){
2697     assert( p->pEList );
2698     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2699     dest.eDest = SRT_Table;
2700   }
2701 
2702   /* Special handling for a compound-select that originates as a VALUES clause.
2703   */
2704   if( p->selFlags & SF_MultiValue ){
2705     rc = multiSelectValues(pParse, p, &dest);
2706     if( rc>=0 ) goto multi_select_end;
2707     rc = SQLITE_OK;
2708   }
2709 
2710   /* Make sure all SELECTs in the statement have the same number of elements
2711   ** in their result sets.
2712   */
2713   assert( p->pEList && pPrior->pEList );
2714   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2715 
2716 #ifndef SQLITE_OMIT_CTE
2717   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2718     generateWithRecursiveQuery(pParse, p, &dest);
2719   }else
2720 #endif
2721 
2722   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2723   */
2724   if( p->pOrderBy ){
2725     return multiSelectOrderBy(pParse, p, pDest);
2726   }else{
2727 
2728 #ifndef SQLITE_OMIT_EXPLAIN
2729     if( pPrior->pPrior==0 ){
2730       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2731       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2732     }
2733 #endif
2734 
2735     /* Generate code for the left and right SELECT statements.
2736     */
2737     switch( p->op ){
2738       case TK_ALL: {
2739         int addr = 0;
2740         int nLimit;
2741         assert( !pPrior->pLimit );
2742         pPrior->iLimit = p->iLimit;
2743         pPrior->iOffset = p->iOffset;
2744         pPrior->pLimit = p->pLimit;
2745         rc = sqlite3Select(pParse, pPrior, &dest);
2746         pPrior->pLimit = 0;
2747         if( rc ){
2748           goto multi_select_end;
2749         }
2750         p->pPrior = 0;
2751         p->iLimit = pPrior->iLimit;
2752         p->iOffset = pPrior->iOffset;
2753         if( p->iLimit ){
2754           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2755           VdbeComment((v, "Jump ahead if LIMIT reached"));
2756           if( p->iOffset ){
2757             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2758                               p->iLimit, p->iOffset+1, p->iOffset);
2759           }
2760         }
2761         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2762         rc = sqlite3Select(pParse, p, &dest);
2763         testcase( rc!=SQLITE_OK );
2764         pDelete = p->pPrior;
2765         p->pPrior = pPrior;
2766         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2767         if( p->pLimit
2768          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2769          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2770         ){
2771           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2772         }
2773         if( addr ){
2774           sqlite3VdbeJumpHere(v, addr);
2775         }
2776         break;
2777       }
2778       case TK_EXCEPT:
2779       case TK_UNION: {
2780         int unionTab;    /* Cursor number of the temp table holding result */
2781         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2782         int priorOp;     /* The SRT_ operation to apply to prior selects */
2783         Expr *pLimit;    /* Saved values of p->nLimit  */
2784         int addr;
2785         SelectDest uniondest;
2786 
2787         testcase( p->op==TK_EXCEPT );
2788         testcase( p->op==TK_UNION );
2789         priorOp = SRT_Union;
2790         if( dest.eDest==priorOp ){
2791           /* We can reuse a temporary table generated by a SELECT to our
2792           ** right.
2793           */
2794           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2795           unionTab = dest.iSDParm;
2796         }else{
2797           /* We will need to create our own temporary table to hold the
2798           ** intermediate results.
2799           */
2800           unionTab = pParse->nTab++;
2801           assert( p->pOrderBy==0 );
2802           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2803           assert( p->addrOpenEphm[0] == -1 );
2804           p->addrOpenEphm[0] = addr;
2805           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2806           assert( p->pEList );
2807         }
2808 
2809 
2810         /* Code the SELECT statements to our left
2811         */
2812         assert( !pPrior->pOrderBy );
2813         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2814         rc = sqlite3Select(pParse, pPrior, &uniondest);
2815         if( rc ){
2816           goto multi_select_end;
2817         }
2818 
2819         /* Code the current SELECT statement
2820         */
2821         if( p->op==TK_EXCEPT ){
2822           op = SRT_Except;
2823         }else{
2824           assert( p->op==TK_UNION );
2825           op = SRT_Union;
2826         }
2827         p->pPrior = 0;
2828         pLimit = p->pLimit;
2829         p->pLimit = 0;
2830         uniondest.eDest = op;
2831         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2832                           sqlite3SelectOpName(p->op)));
2833         rc = sqlite3Select(pParse, p, &uniondest);
2834         testcase( rc!=SQLITE_OK );
2835         assert( p->pOrderBy==0 );
2836         pDelete = p->pPrior;
2837         p->pPrior = pPrior;
2838         p->pOrderBy = 0;
2839         if( p->op==TK_UNION ){
2840           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2841         }
2842         sqlite3ExprDelete(db, p->pLimit);
2843         p->pLimit = pLimit;
2844         p->iLimit = 0;
2845         p->iOffset = 0;
2846 
2847         /* Convert the data in the temporary table into whatever form
2848         ** it is that we currently need.
2849         */
2850         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2851         assert( p->pEList || db->mallocFailed );
2852         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2853           int iCont, iBreak, iStart;
2854           iBreak = sqlite3VdbeMakeLabel(pParse);
2855           iCont = sqlite3VdbeMakeLabel(pParse);
2856           computeLimitRegisters(pParse, p, iBreak);
2857           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2858           iStart = sqlite3VdbeCurrentAddr(v);
2859           selectInnerLoop(pParse, p, unionTab,
2860                           0, 0, &dest, iCont, iBreak);
2861           sqlite3VdbeResolveLabel(v, iCont);
2862           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2863           sqlite3VdbeResolveLabel(v, iBreak);
2864           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2865         }
2866         break;
2867       }
2868       default: assert( p->op==TK_INTERSECT ); {
2869         int tab1, tab2;
2870         int iCont, iBreak, iStart;
2871         Expr *pLimit;
2872         int addr;
2873         SelectDest intersectdest;
2874         int r1;
2875 
2876         /* INTERSECT is different from the others since it requires
2877         ** two temporary tables.  Hence it has its own case.  Begin
2878         ** by allocating the tables we will need.
2879         */
2880         tab1 = pParse->nTab++;
2881         tab2 = pParse->nTab++;
2882         assert( p->pOrderBy==0 );
2883 
2884         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2885         assert( p->addrOpenEphm[0] == -1 );
2886         p->addrOpenEphm[0] = addr;
2887         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2888         assert( p->pEList );
2889 
2890         /* Code the SELECTs to our left into temporary table "tab1".
2891         */
2892         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2893         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2894         if( rc ){
2895           goto multi_select_end;
2896         }
2897 
2898         /* Code the current SELECT into temporary table "tab2"
2899         */
2900         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2901         assert( p->addrOpenEphm[1] == -1 );
2902         p->addrOpenEphm[1] = addr;
2903         p->pPrior = 0;
2904         pLimit = p->pLimit;
2905         p->pLimit = 0;
2906         intersectdest.iSDParm = tab2;
2907         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2908                           sqlite3SelectOpName(p->op)));
2909         rc = sqlite3Select(pParse, p, &intersectdest);
2910         testcase( rc!=SQLITE_OK );
2911         pDelete = p->pPrior;
2912         p->pPrior = pPrior;
2913         if( p->nSelectRow>pPrior->nSelectRow ){
2914           p->nSelectRow = pPrior->nSelectRow;
2915         }
2916         sqlite3ExprDelete(db, p->pLimit);
2917         p->pLimit = pLimit;
2918 
2919         /* Generate code to take the intersection of the two temporary
2920         ** tables.
2921         */
2922         if( rc ) break;
2923         assert( p->pEList );
2924         iBreak = sqlite3VdbeMakeLabel(pParse);
2925         iCont = sqlite3VdbeMakeLabel(pParse);
2926         computeLimitRegisters(pParse, p, iBreak);
2927         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2928         r1 = sqlite3GetTempReg(pParse);
2929         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2930         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2931         VdbeCoverage(v);
2932         sqlite3ReleaseTempReg(pParse, r1);
2933         selectInnerLoop(pParse, p, tab1,
2934                         0, 0, &dest, iCont, iBreak);
2935         sqlite3VdbeResolveLabel(v, iCont);
2936         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2937         sqlite3VdbeResolveLabel(v, iBreak);
2938         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2939         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2940         break;
2941       }
2942     }
2943 
2944   #ifndef SQLITE_OMIT_EXPLAIN
2945     if( p->pNext==0 ){
2946       ExplainQueryPlanPop(pParse);
2947     }
2948   #endif
2949   }
2950   if( pParse->nErr ) goto multi_select_end;
2951 
2952   /* Compute collating sequences used by
2953   ** temporary tables needed to implement the compound select.
2954   ** Attach the KeyInfo structure to all temporary tables.
2955   **
2956   ** This section is run by the right-most SELECT statement only.
2957   ** SELECT statements to the left always skip this part.  The right-most
2958   ** SELECT might also skip this part if it has no ORDER BY clause and
2959   ** no temp tables are required.
2960   */
2961   if( p->selFlags & SF_UsesEphemeral ){
2962     int i;                        /* Loop counter */
2963     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2964     Select *pLoop;                /* For looping through SELECT statements */
2965     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2966     int nCol;                     /* Number of columns in result set */
2967 
2968     assert( p->pNext==0 );
2969     nCol = p->pEList->nExpr;
2970     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2971     if( !pKeyInfo ){
2972       rc = SQLITE_NOMEM_BKPT;
2973       goto multi_select_end;
2974     }
2975     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2976       *apColl = multiSelectCollSeq(pParse, p, i);
2977       if( 0==*apColl ){
2978         *apColl = db->pDfltColl;
2979       }
2980     }
2981 
2982     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2983       for(i=0; i<2; i++){
2984         int addr = pLoop->addrOpenEphm[i];
2985         if( addr<0 ){
2986           /* If [0] is unused then [1] is also unused.  So we can
2987           ** always safely abort as soon as the first unused slot is found */
2988           assert( pLoop->addrOpenEphm[1]<0 );
2989           break;
2990         }
2991         sqlite3VdbeChangeP2(v, addr, nCol);
2992         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2993                             P4_KEYINFO);
2994         pLoop->addrOpenEphm[i] = -1;
2995       }
2996     }
2997     sqlite3KeyInfoUnref(pKeyInfo);
2998   }
2999 
3000 multi_select_end:
3001   pDest->iSdst = dest.iSdst;
3002   pDest->nSdst = dest.nSdst;
3003   sqlite3SelectDelete(db, pDelete);
3004   return rc;
3005 }
3006 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3007 
3008 /*
3009 ** Error message for when two or more terms of a compound select have different
3010 ** size result sets.
3011 */
3012 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3013   if( p->selFlags & SF_Values ){
3014     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3015   }else{
3016     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3017       " do not have the same number of result columns",
3018       sqlite3SelectOpName(p->op));
3019   }
3020 }
3021 
3022 /*
3023 ** Code an output subroutine for a coroutine implementation of a
3024 ** SELECT statment.
3025 **
3026 ** The data to be output is contained in pIn->iSdst.  There are
3027 ** pIn->nSdst columns to be output.  pDest is where the output should
3028 ** be sent.
3029 **
3030 ** regReturn is the number of the register holding the subroutine
3031 ** return address.
3032 **
3033 ** If regPrev>0 then it is the first register in a vector that
3034 ** records the previous output.  mem[regPrev] is a flag that is false
3035 ** if there has been no previous output.  If regPrev>0 then code is
3036 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3037 ** keys.
3038 **
3039 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3040 ** iBreak.
3041 */
3042 static int generateOutputSubroutine(
3043   Parse *pParse,          /* Parsing context */
3044   Select *p,              /* The SELECT statement */
3045   SelectDest *pIn,        /* Coroutine supplying data */
3046   SelectDest *pDest,      /* Where to send the data */
3047   int regReturn,          /* The return address register */
3048   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3049   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3050   int iBreak              /* Jump here if we hit the LIMIT */
3051 ){
3052   Vdbe *v = pParse->pVdbe;
3053   int iContinue;
3054   int addr;
3055 
3056   addr = sqlite3VdbeCurrentAddr(v);
3057   iContinue = sqlite3VdbeMakeLabel(pParse);
3058 
3059   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3060   */
3061   if( regPrev ){
3062     int addr1, addr2;
3063     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3064     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3065                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3066     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3067     sqlite3VdbeJumpHere(v, addr1);
3068     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3069     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3070   }
3071   if( pParse->db->mallocFailed ) return 0;
3072 
3073   /* Suppress the first OFFSET entries if there is an OFFSET clause
3074   */
3075   codeOffset(v, p->iOffset, iContinue);
3076 
3077   assert( pDest->eDest!=SRT_Exists );
3078   assert( pDest->eDest!=SRT_Table );
3079   switch( pDest->eDest ){
3080     /* Store the result as data using a unique key.
3081     */
3082     case SRT_EphemTab: {
3083       int r1 = sqlite3GetTempReg(pParse);
3084       int r2 = sqlite3GetTempReg(pParse);
3085       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3086       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3087       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3088       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3089       sqlite3ReleaseTempReg(pParse, r2);
3090       sqlite3ReleaseTempReg(pParse, r1);
3091       break;
3092     }
3093 
3094 #ifndef SQLITE_OMIT_SUBQUERY
3095     /* If we are creating a set for an "expr IN (SELECT ...)".
3096     */
3097     case SRT_Set: {
3098       int r1;
3099       testcase( pIn->nSdst>1 );
3100       r1 = sqlite3GetTempReg(pParse);
3101       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3102           r1, pDest->zAffSdst, pIn->nSdst);
3103       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3104                            pIn->iSdst, pIn->nSdst);
3105       sqlite3ReleaseTempReg(pParse, r1);
3106       break;
3107     }
3108 
3109     /* If this is a scalar select that is part of an expression, then
3110     ** store the results in the appropriate memory cell and break out
3111     ** of the scan loop.  Note that the select might return multiple columns
3112     ** if it is the RHS of a row-value IN operator.
3113     */
3114     case SRT_Mem: {
3115       testcase( pIn->nSdst>1 );
3116       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3117       /* The LIMIT clause will jump out of the loop for us */
3118       break;
3119     }
3120 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3121 
3122     /* The results are stored in a sequence of registers
3123     ** starting at pDest->iSdst.  Then the co-routine yields.
3124     */
3125     case SRT_Coroutine: {
3126       if( pDest->iSdst==0 ){
3127         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3128         pDest->nSdst = pIn->nSdst;
3129       }
3130       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3131       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3132       break;
3133     }
3134 
3135     /* If none of the above, then the result destination must be
3136     ** SRT_Output.  This routine is never called with any other
3137     ** destination other than the ones handled above or SRT_Output.
3138     **
3139     ** For SRT_Output, results are stored in a sequence of registers.
3140     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3141     ** return the next row of result.
3142     */
3143     default: {
3144       assert( pDest->eDest==SRT_Output );
3145       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3146       break;
3147     }
3148   }
3149 
3150   /* Jump to the end of the loop if the LIMIT is reached.
3151   */
3152   if( p->iLimit ){
3153     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3154   }
3155 
3156   /* Generate the subroutine return
3157   */
3158   sqlite3VdbeResolveLabel(v, iContinue);
3159   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3160 
3161   return addr;
3162 }
3163 
3164 /*
3165 ** Alternative compound select code generator for cases when there
3166 ** is an ORDER BY clause.
3167 **
3168 ** We assume a query of the following form:
3169 **
3170 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3171 **
3172 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3173 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3174 ** co-routines.  Then run the co-routines in parallel and merge the results
3175 ** into the output.  In addition to the two coroutines (called selectA and
3176 ** selectB) there are 7 subroutines:
3177 **
3178 **    outA:    Move the output of the selectA coroutine into the output
3179 **             of the compound query.
3180 **
3181 **    outB:    Move the output of the selectB coroutine into the output
3182 **             of the compound query.  (Only generated for UNION and
3183 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3184 **             appears only in B.)
3185 **
3186 **    AltB:    Called when there is data from both coroutines and A<B.
3187 **
3188 **    AeqB:    Called when there is data from both coroutines and A==B.
3189 **
3190 **    AgtB:    Called when there is data from both coroutines and A>B.
3191 **
3192 **    EofA:    Called when data is exhausted from selectA.
3193 **
3194 **    EofB:    Called when data is exhausted from selectB.
3195 **
3196 ** The implementation of the latter five subroutines depend on which
3197 ** <operator> is used:
3198 **
3199 **
3200 **             UNION ALL         UNION            EXCEPT          INTERSECT
3201 **          -------------  -----------------  --------------  -----------------
3202 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3203 **
3204 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3205 **
3206 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3207 **
3208 **   EofA:   outB, nextB      outB, nextB          halt             halt
3209 **
3210 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3211 **
3212 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3213 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3214 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3215 ** following nextX causes a jump to the end of the select processing.
3216 **
3217 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3218 ** within the output subroutine.  The regPrev register set holds the previously
3219 ** output value.  A comparison is made against this value and the output
3220 ** is skipped if the next results would be the same as the previous.
3221 **
3222 ** The implementation plan is to implement the two coroutines and seven
3223 ** subroutines first, then put the control logic at the bottom.  Like this:
3224 **
3225 **          goto Init
3226 **     coA: coroutine for left query (A)
3227 **     coB: coroutine for right query (B)
3228 **    outA: output one row of A
3229 **    outB: output one row of B (UNION and UNION ALL only)
3230 **    EofA: ...
3231 **    EofB: ...
3232 **    AltB: ...
3233 **    AeqB: ...
3234 **    AgtB: ...
3235 **    Init: initialize coroutine registers
3236 **          yield coA
3237 **          if eof(A) goto EofA
3238 **          yield coB
3239 **          if eof(B) goto EofB
3240 **    Cmpr: Compare A, B
3241 **          Jump AltB, AeqB, AgtB
3242 **     End: ...
3243 **
3244 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3245 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3246 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3247 ** and AgtB jump to either L2 or to one of EofA or EofB.
3248 */
3249 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3250 static int multiSelectOrderBy(
3251   Parse *pParse,        /* Parsing context */
3252   Select *p,            /* The right-most of SELECTs to be coded */
3253   SelectDest *pDest     /* What to do with query results */
3254 ){
3255   int i, j;             /* Loop counters */
3256   Select *pPrior;       /* Another SELECT immediately to our left */
3257   Vdbe *v;              /* Generate code to this VDBE */
3258   SelectDest destA;     /* Destination for coroutine A */
3259   SelectDest destB;     /* Destination for coroutine B */
3260   int regAddrA;         /* Address register for select-A coroutine */
3261   int regAddrB;         /* Address register for select-B coroutine */
3262   int addrSelectA;      /* Address of the select-A coroutine */
3263   int addrSelectB;      /* Address of the select-B coroutine */
3264   int regOutA;          /* Address register for the output-A subroutine */
3265   int regOutB;          /* Address register for the output-B subroutine */
3266   int addrOutA;         /* Address of the output-A subroutine */
3267   int addrOutB = 0;     /* Address of the output-B subroutine */
3268   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3269   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3270   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3271   int addrAltB;         /* Address of the A<B subroutine */
3272   int addrAeqB;         /* Address of the A==B subroutine */
3273   int addrAgtB;         /* Address of the A>B subroutine */
3274   int regLimitA;        /* Limit register for select-A */
3275   int regLimitB;        /* Limit register for select-A */
3276   int regPrev;          /* A range of registers to hold previous output */
3277   int savedLimit;       /* Saved value of p->iLimit */
3278   int savedOffset;      /* Saved value of p->iOffset */
3279   int labelCmpr;        /* Label for the start of the merge algorithm */
3280   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3281   int addr1;            /* Jump instructions that get retargetted */
3282   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3283   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3284   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3285   sqlite3 *db;          /* Database connection */
3286   ExprList *pOrderBy;   /* The ORDER BY clause */
3287   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3288   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3289 
3290   assert( p->pOrderBy!=0 );
3291   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3292   db = pParse->db;
3293   v = pParse->pVdbe;
3294   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3295   labelEnd = sqlite3VdbeMakeLabel(pParse);
3296   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3297 
3298 
3299   /* Patch up the ORDER BY clause
3300   */
3301   op = p->op;
3302   pPrior = p->pPrior;
3303   assert( pPrior->pOrderBy==0 );
3304   pOrderBy = p->pOrderBy;
3305   assert( pOrderBy );
3306   nOrderBy = pOrderBy->nExpr;
3307 
3308   /* For operators other than UNION ALL we have to make sure that
3309   ** the ORDER BY clause covers every term of the result set.  Add
3310   ** terms to the ORDER BY clause as necessary.
3311   */
3312   if( op!=TK_ALL ){
3313     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3314       struct ExprList_item *pItem;
3315       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3316         assert( pItem->u.x.iOrderByCol>0 );
3317         if( pItem->u.x.iOrderByCol==i ) break;
3318       }
3319       if( j==nOrderBy ){
3320         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3321         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3322         pNew->flags |= EP_IntValue;
3323         pNew->u.iValue = i;
3324         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3325         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3326       }
3327     }
3328   }
3329 
3330   /* Compute the comparison permutation and keyinfo that is used with
3331   ** the permutation used to determine if the next
3332   ** row of results comes from selectA or selectB.  Also add explicit
3333   ** collations to the ORDER BY clause terms so that when the subqueries
3334   ** to the right and the left are evaluated, they use the correct
3335   ** collation.
3336   */
3337   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3338   if( aPermute ){
3339     struct ExprList_item *pItem;
3340     aPermute[0] = nOrderBy;
3341     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3342       assert( pItem->u.x.iOrderByCol>0 );
3343       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3344       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3345     }
3346     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3347   }else{
3348     pKeyMerge = 0;
3349   }
3350 
3351   /* Reattach the ORDER BY clause to the query.
3352   */
3353   p->pOrderBy = pOrderBy;
3354   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3355 
3356   /* Allocate a range of temporary registers and the KeyInfo needed
3357   ** for the logic that removes duplicate result rows when the
3358   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3359   */
3360   if( op==TK_ALL ){
3361     regPrev = 0;
3362   }else{
3363     int nExpr = p->pEList->nExpr;
3364     assert( nOrderBy>=nExpr || db->mallocFailed );
3365     regPrev = pParse->nMem+1;
3366     pParse->nMem += nExpr+1;
3367     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3368     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3369     if( pKeyDup ){
3370       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3371       for(i=0; i<nExpr; i++){
3372         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3373         pKeyDup->aSortFlags[i] = 0;
3374       }
3375     }
3376   }
3377 
3378   /* Separate the left and the right query from one another
3379   */
3380   p->pPrior = 0;
3381   pPrior->pNext = 0;
3382   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3383   if( pPrior->pPrior==0 ){
3384     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3385   }
3386 
3387   /* Compute the limit registers */
3388   computeLimitRegisters(pParse, p, labelEnd);
3389   if( p->iLimit && op==TK_ALL ){
3390     regLimitA = ++pParse->nMem;
3391     regLimitB = ++pParse->nMem;
3392     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3393                                   regLimitA);
3394     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3395   }else{
3396     regLimitA = regLimitB = 0;
3397   }
3398   sqlite3ExprDelete(db, p->pLimit);
3399   p->pLimit = 0;
3400 
3401   regAddrA = ++pParse->nMem;
3402   regAddrB = ++pParse->nMem;
3403   regOutA = ++pParse->nMem;
3404   regOutB = ++pParse->nMem;
3405   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3406   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3407 
3408   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3409 
3410   /* Generate a coroutine to evaluate the SELECT statement to the
3411   ** left of the compound operator - the "A" select.
3412   */
3413   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3414   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3415   VdbeComment((v, "left SELECT"));
3416   pPrior->iLimit = regLimitA;
3417   ExplainQueryPlan((pParse, 1, "LEFT"));
3418   sqlite3Select(pParse, pPrior, &destA);
3419   sqlite3VdbeEndCoroutine(v, regAddrA);
3420   sqlite3VdbeJumpHere(v, addr1);
3421 
3422   /* Generate a coroutine to evaluate the SELECT statement on
3423   ** the right - the "B" select
3424   */
3425   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3426   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3427   VdbeComment((v, "right SELECT"));
3428   savedLimit = p->iLimit;
3429   savedOffset = p->iOffset;
3430   p->iLimit = regLimitB;
3431   p->iOffset = 0;
3432   ExplainQueryPlan((pParse, 1, "RIGHT"));
3433   sqlite3Select(pParse, p, &destB);
3434   p->iLimit = savedLimit;
3435   p->iOffset = savedOffset;
3436   sqlite3VdbeEndCoroutine(v, regAddrB);
3437 
3438   /* Generate a subroutine that outputs the current row of the A
3439   ** select as the next output row of the compound select.
3440   */
3441   VdbeNoopComment((v, "Output routine for A"));
3442   addrOutA = generateOutputSubroutine(pParse,
3443                  p, &destA, pDest, regOutA,
3444                  regPrev, pKeyDup, labelEnd);
3445 
3446   /* Generate a subroutine that outputs the current row of the B
3447   ** select as the next output row of the compound select.
3448   */
3449   if( op==TK_ALL || op==TK_UNION ){
3450     VdbeNoopComment((v, "Output routine for B"));
3451     addrOutB = generateOutputSubroutine(pParse,
3452                  p, &destB, pDest, regOutB,
3453                  regPrev, pKeyDup, labelEnd);
3454   }
3455   sqlite3KeyInfoUnref(pKeyDup);
3456 
3457   /* Generate a subroutine to run when the results from select A
3458   ** are exhausted and only data in select B remains.
3459   */
3460   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3461     addrEofA_noB = addrEofA = labelEnd;
3462   }else{
3463     VdbeNoopComment((v, "eof-A subroutine"));
3464     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3465     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3466                                      VdbeCoverage(v);
3467     sqlite3VdbeGoto(v, addrEofA);
3468     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3469   }
3470 
3471   /* Generate a subroutine to run when the results from select B
3472   ** are exhausted and only data in select A remains.
3473   */
3474   if( op==TK_INTERSECT ){
3475     addrEofB = addrEofA;
3476     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3477   }else{
3478     VdbeNoopComment((v, "eof-B subroutine"));
3479     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3480     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3481     sqlite3VdbeGoto(v, addrEofB);
3482   }
3483 
3484   /* Generate code to handle the case of A<B
3485   */
3486   VdbeNoopComment((v, "A-lt-B subroutine"));
3487   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3488   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3489   sqlite3VdbeGoto(v, labelCmpr);
3490 
3491   /* Generate code to handle the case of A==B
3492   */
3493   if( op==TK_ALL ){
3494     addrAeqB = addrAltB;
3495   }else if( op==TK_INTERSECT ){
3496     addrAeqB = addrAltB;
3497     addrAltB++;
3498   }else{
3499     VdbeNoopComment((v, "A-eq-B subroutine"));
3500     addrAeqB =
3501     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3502     sqlite3VdbeGoto(v, labelCmpr);
3503   }
3504 
3505   /* Generate code to handle the case of A>B
3506   */
3507   VdbeNoopComment((v, "A-gt-B subroutine"));
3508   addrAgtB = sqlite3VdbeCurrentAddr(v);
3509   if( op==TK_ALL || op==TK_UNION ){
3510     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3511   }
3512   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3513   sqlite3VdbeGoto(v, labelCmpr);
3514 
3515   /* This code runs once to initialize everything.
3516   */
3517   sqlite3VdbeJumpHere(v, addr1);
3518   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3519   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3520 
3521   /* Implement the main merge loop
3522   */
3523   sqlite3VdbeResolveLabel(v, labelCmpr);
3524   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3525   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3526                          (char*)pKeyMerge, P4_KEYINFO);
3527   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3528   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3529 
3530   /* Jump to the this point in order to terminate the query.
3531   */
3532   sqlite3VdbeResolveLabel(v, labelEnd);
3533 
3534   /* Reassembly the compound query so that it will be freed correctly
3535   ** by the calling function */
3536   if( p->pPrior ){
3537     sqlite3SelectDelete(db, p->pPrior);
3538   }
3539   p->pPrior = pPrior;
3540   pPrior->pNext = p;
3541 
3542   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3543   **** subqueries ****/
3544   ExplainQueryPlanPop(pParse);
3545   return pParse->nErr!=0;
3546 }
3547 #endif
3548 
3549 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3550 
3551 /* An instance of the SubstContext object describes an substitution edit
3552 ** to be performed on a parse tree.
3553 **
3554 ** All references to columns in table iTable are to be replaced by corresponding
3555 ** expressions in pEList.
3556 */
3557 typedef struct SubstContext {
3558   Parse *pParse;            /* The parsing context */
3559   int iTable;               /* Replace references to this table */
3560   int iNewTable;            /* New table number */
3561   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3562   ExprList *pEList;         /* Replacement expressions */
3563 } SubstContext;
3564 
3565 /* Forward Declarations */
3566 static void substExprList(SubstContext*, ExprList*);
3567 static void substSelect(SubstContext*, Select*, int);
3568 
3569 /*
3570 ** Scan through the expression pExpr.  Replace every reference to
3571 ** a column in table number iTable with a copy of the iColumn-th
3572 ** entry in pEList.  (But leave references to the ROWID column
3573 ** unchanged.)
3574 **
3575 ** This routine is part of the flattening procedure.  A subquery
3576 ** whose result set is defined by pEList appears as entry in the
3577 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3578 ** FORM clause entry is iTable.  This routine makes the necessary
3579 ** changes to pExpr so that it refers directly to the source table
3580 ** of the subquery rather the result set of the subquery.
3581 */
3582 static Expr *substExpr(
3583   SubstContext *pSubst,  /* Description of the substitution */
3584   Expr *pExpr            /* Expr in which substitution occurs */
3585 ){
3586   if( pExpr==0 ) return 0;
3587   if( ExprHasProperty(pExpr, EP_FromJoin)
3588    && pExpr->iRightJoinTable==pSubst->iTable
3589   ){
3590     pExpr->iRightJoinTable = pSubst->iNewTable;
3591   }
3592   if( pExpr->op==TK_COLUMN
3593    && pExpr->iTable==pSubst->iTable
3594    && !ExprHasProperty(pExpr, EP_FixedCol)
3595   ){
3596     if( pExpr->iColumn<0 ){
3597       pExpr->op = TK_NULL;
3598     }else{
3599       Expr *pNew;
3600       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3601       Expr ifNullRow;
3602       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3603       assert( pExpr->pRight==0 );
3604       if( sqlite3ExprIsVector(pCopy) ){
3605         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3606       }else{
3607         sqlite3 *db = pSubst->pParse->db;
3608         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3609           memset(&ifNullRow, 0, sizeof(ifNullRow));
3610           ifNullRow.op = TK_IF_NULL_ROW;
3611           ifNullRow.pLeft = pCopy;
3612           ifNullRow.iTable = pSubst->iNewTable;
3613           ifNullRow.flags = EP_IfNullRow;
3614           pCopy = &ifNullRow;
3615         }
3616         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3617         pNew = sqlite3ExprDup(db, pCopy, 0);
3618         if( pNew && pSubst->isLeftJoin ){
3619           ExprSetProperty(pNew, EP_CanBeNull);
3620         }
3621         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3622           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3623         }
3624         sqlite3ExprDelete(db, pExpr);
3625         pExpr = pNew;
3626 
3627         /* Ensure that the expression now has an implicit collation sequence,
3628         ** just as it did when it was a column of a view or sub-query. */
3629         if( pExpr ){
3630           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3631             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3632             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3633                 (pColl ? pColl->zName : "BINARY")
3634             );
3635           }
3636           ExprClearProperty(pExpr, EP_Collate);
3637         }
3638       }
3639     }
3640   }else{
3641     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3642       pExpr->iTable = pSubst->iNewTable;
3643     }
3644     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3645     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3646     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3647       substSelect(pSubst, pExpr->x.pSelect, 1);
3648     }else{
3649       substExprList(pSubst, pExpr->x.pList);
3650     }
3651 #ifndef SQLITE_OMIT_WINDOWFUNC
3652     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3653       Window *pWin = pExpr->y.pWin;
3654       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3655       substExprList(pSubst, pWin->pPartition);
3656       substExprList(pSubst, pWin->pOrderBy);
3657     }
3658 #endif
3659   }
3660   return pExpr;
3661 }
3662 static void substExprList(
3663   SubstContext *pSubst, /* Description of the substitution */
3664   ExprList *pList       /* List to scan and in which to make substitutes */
3665 ){
3666   int i;
3667   if( pList==0 ) return;
3668   for(i=0; i<pList->nExpr; i++){
3669     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3670   }
3671 }
3672 static void substSelect(
3673   SubstContext *pSubst, /* Description of the substitution */
3674   Select *p,            /* SELECT statement in which to make substitutions */
3675   int doPrior           /* Do substitutes on p->pPrior too */
3676 ){
3677   SrcList *pSrc;
3678   SrcItem *pItem;
3679   int i;
3680   if( !p ) return;
3681   do{
3682     substExprList(pSubst, p->pEList);
3683     substExprList(pSubst, p->pGroupBy);
3684     substExprList(pSubst, p->pOrderBy);
3685     p->pHaving = substExpr(pSubst, p->pHaving);
3686     p->pWhere = substExpr(pSubst, p->pWhere);
3687     pSrc = p->pSrc;
3688     assert( pSrc!=0 );
3689     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3690       substSelect(pSubst, pItem->pSelect, 1);
3691       if( pItem->fg.isTabFunc ){
3692         substExprList(pSubst, pItem->u1.pFuncArg);
3693       }
3694     }
3695   }while( doPrior && (p = p->pPrior)!=0 );
3696 }
3697 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3698 
3699 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3700 /*
3701 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3702 ** clause of that SELECT.
3703 **
3704 ** This routine scans the entire SELECT statement and recomputes the
3705 ** pSrcItem->colUsed mask.
3706 */
3707 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3708   SrcItem *pItem;
3709   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3710   pItem = pWalker->u.pSrcItem;
3711   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3712   if( pExpr->iColumn<0 ) return WRC_Continue;
3713   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3714   return WRC_Continue;
3715 }
3716 static void recomputeColumnsUsed(
3717   Select *pSelect,                 /* The complete SELECT statement */
3718   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3719 ){
3720   Walker w;
3721   if( NEVER(pSrcItem->pTab==0) ) return;
3722   memset(&w, 0, sizeof(w));
3723   w.xExprCallback = recomputeColumnsUsedExpr;
3724   w.xSelectCallback = sqlite3SelectWalkNoop;
3725   w.u.pSrcItem = pSrcItem;
3726   pSrcItem->colUsed = 0;
3727   sqlite3WalkSelect(&w, pSelect);
3728 }
3729 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3730 
3731 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3732 /*
3733 ** Assign new cursor numbers to each of the items in pSrc. For each
3734 ** new cursor number assigned, set an entry in the aCsrMap[] array
3735 ** to map the old cursor number to the new:
3736 **
3737 **     aCsrMap[iOld] = iNew;
3738 **
3739 ** The array is guaranteed by the caller to be large enough for all
3740 ** existing cursor numbers in pSrc.
3741 **
3742 ** If pSrc contains any sub-selects, call this routine recursively
3743 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3744 */
3745 static void srclistRenumberCursors(
3746   Parse *pParse,                  /* Parse context */
3747   int *aCsrMap,                   /* Array to store cursor mappings in */
3748   SrcList *pSrc,                  /* FROM clause to renumber */
3749   int iExcept                     /* FROM clause item to skip */
3750 ){
3751   int i;
3752   SrcItem *pItem;
3753   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3754     if( i!=iExcept ){
3755       Select *p;
3756       pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++;
3757       for(p=pItem->pSelect; p; p=p->pPrior){
3758         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3759       }
3760     }
3761   }
3762 }
3763 
3764 /*
3765 ** Expression walker callback used by renumberCursors() to update
3766 ** Expr objects to match newly assigned cursor numbers.
3767 */
3768 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3769   int *aCsrMap = pWalker->u.aiCol;
3770   int op = pExpr->op;
3771   if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){
3772     pExpr->iTable = aCsrMap[pExpr->iTable];
3773   }
3774   if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){
3775     pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable];
3776   }
3777   return WRC_Continue;
3778 }
3779 
3780 /*
3781 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3782 ** of the SELECT statement passed as the second argument, and to each
3783 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3784 ** Except, do not assign a new cursor number to the iExcept'th element in
3785 ** the FROM clause of (*p). Update all expressions and other references
3786 ** to refer to the new cursor numbers.
3787 **
3788 ** Argument aCsrMap is an array that may be used for temporary working
3789 ** space. Two guarantees are made by the caller:
3790 **
3791 **   * the array is larger than the largest cursor number used within the
3792 **     select statement passed as an argument, and
3793 **
3794 **   * the array entries for all cursor numbers that do *not* appear in
3795 **     FROM clauses of the select statement as described above are
3796 **     initialized to zero.
3797 */
3798 static void renumberCursors(
3799   Parse *pParse,                  /* Parse context */
3800   Select *p,                      /* Select to renumber cursors within */
3801   int iExcept,                    /* FROM clause item to skip */
3802   int *aCsrMap                    /* Working space */
3803 ){
3804   Walker w;
3805   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3806   memset(&w, 0, sizeof(w));
3807   w.u.aiCol = aCsrMap;
3808   w.xExprCallback = renumberCursorsCb;
3809   w.xSelectCallback = sqlite3SelectWalkNoop;
3810   sqlite3WalkSelect(&w, p);
3811 }
3812 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3813 
3814 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3815 /*
3816 ** This routine attempts to flatten subqueries as a performance optimization.
3817 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3818 **
3819 ** To understand the concept of flattening, consider the following
3820 ** query:
3821 **
3822 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3823 **
3824 ** The default way of implementing this query is to execute the
3825 ** subquery first and store the results in a temporary table, then
3826 ** run the outer query on that temporary table.  This requires two
3827 ** passes over the data.  Furthermore, because the temporary table
3828 ** has no indices, the WHERE clause on the outer query cannot be
3829 ** optimized.
3830 **
3831 ** This routine attempts to rewrite queries such as the above into
3832 ** a single flat select, like this:
3833 **
3834 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3835 **
3836 ** The code generated for this simplification gives the same result
3837 ** but only has to scan the data once.  And because indices might
3838 ** exist on the table t1, a complete scan of the data might be
3839 ** avoided.
3840 **
3841 ** Flattening is subject to the following constraints:
3842 **
3843 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3844 **        The subquery and the outer query cannot both be aggregates.
3845 **
3846 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3847 **        (2) If the subquery is an aggregate then
3848 **        (2a) the outer query must not be a join and
3849 **        (2b) the outer query must not use subqueries
3850 **             other than the one FROM-clause subquery that is a candidate
3851 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3852 **             from 2015-02-09.)
3853 **
3854 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3855 **        (3a) the subquery may not be a join and
3856 **        (3b) the FROM clause of the subquery may not contain a virtual
3857 **             table and
3858 **        (3c) the outer query may not be an aggregate.
3859 **        (3d) the outer query may not be DISTINCT.
3860 **
3861 **   (4)  The subquery can not be DISTINCT.
3862 **
3863 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3864 **        sub-queries that were excluded from this optimization. Restriction
3865 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3866 **
3867 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3868 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3869 **
3870 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3871 **        A FROM clause, consider adding a FROM clause with the special
3872 **        table sqlite_once that consists of a single row containing a
3873 **        single NULL.
3874 **
3875 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3876 **
3877 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3878 **
3879 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3880 **        accidently carried the comment forward until 2014-09-15.  Original
3881 **        constraint: "If the subquery is aggregate then the outer query
3882 **        may not use LIMIT."
3883 **
3884 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3885 **
3886 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3887 **        a separate restriction deriving from ticket #350.
3888 **
3889 **  (13)  The subquery and outer query may not both use LIMIT.
3890 **
3891 **  (14)  The subquery may not use OFFSET.
3892 **
3893 **  (15)  If the outer query is part of a compound select, then the
3894 **        subquery may not use LIMIT.
3895 **        (See ticket #2339 and ticket [02a8e81d44]).
3896 **
3897 **  (16)  If the outer query is aggregate, then the subquery may not
3898 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3899 **        until we introduced the group_concat() function.
3900 **
3901 **  (17)  If the subquery is a compound select, then
3902 **        (17a) all compound operators must be a UNION ALL, and
3903 **        (17b) no terms within the subquery compound may be aggregate
3904 **              or DISTINCT, and
3905 **        (17c) every term within the subquery compound must have a FROM clause
3906 **        (17d) the outer query may not be
3907 **              (17d1) aggregate, or
3908 **              (17d2) DISTINCT
3909 **        (17e) the subquery may not contain window functions, and
3910 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3911 **
3912 **        The parent and sub-query may contain WHERE clauses. Subject to
3913 **        rules (11), (13) and (14), they may also contain ORDER BY,
3914 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3915 **        operator other than UNION ALL because all the other compound
3916 **        operators have an implied DISTINCT which is disallowed by
3917 **        restriction (4).
3918 **
3919 **        Also, each component of the sub-query must return the same number
3920 **        of result columns. This is actually a requirement for any compound
3921 **        SELECT statement, but all the code here does is make sure that no
3922 **        such (illegal) sub-query is flattened. The caller will detect the
3923 **        syntax error and return a detailed message.
3924 **
3925 **  (18)  If the sub-query is a compound select, then all terms of the
3926 **        ORDER BY clause of the parent must be copies of a term returned
3927 **        by the parent query.
3928 **
3929 **  (19)  If the subquery uses LIMIT then the outer query may not
3930 **        have a WHERE clause.
3931 **
3932 **  (20)  If the sub-query is a compound select, then it must not use
3933 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3934 **        somewhat by saying that the terms of the ORDER BY clause must
3935 **        appear as unmodified result columns in the outer query.  But we
3936 **        have other optimizations in mind to deal with that case.
3937 **
3938 **  (21)  If the subquery uses LIMIT then the outer query may not be
3939 **        DISTINCT.  (See ticket [752e1646fc]).
3940 **
3941 **  (22)  The subquery may not be a recursive CTE.
3942 **
3943 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
3944 **        a compound query.  This restriction is because transforming the
3945 **        parent to a compound query confuses the code that handles
3946 **        recursive queries in multiSelect().
3947 **
3948 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3949 **        The subquery may not be an aggregate that uses the built-in min() or
3950 **        or max() functions.  (Without this restriction, a query like:
3951 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3952 **        return the value X for which Y was maximal.)
3953 **
3954 **  (25)  If either the subquery or the parent query contains a window
3955 **        function in the select list or ORDER BY clause, flattening
3956 **        is not attempted.
3957 **
3958 **
3959 ** In this routine, the "p" parameter is a pointer to the outer query.
3960 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3961 ** uses aggregates.
3962 **
3963 ** If flattening is not attempted, this routine is a no-op and returns 0.
3964 ** If flattening is attempted this routine returns 1.
3965 **
3966 ** All of the expression analysis must occur on both the outer query and
3967 ** the subquery before this routine runs.
3968 */
3969 static int flattenSubquery(
3970   Parse *pParse,       /* Parsing context */
3971   Select *p,           /* The parent or outer SELECT statement */
3972   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3973   int isAgg            /* True if outer SELECT uses aggregate functions */
3974 ){
3975   const char *zSavedAuthContext = pParse->zAuthContext;
3976   Select *pParent;    /* Current UNION ALL term of the other query */
3977   Select *pSub;       /* The inner query or "subquery" */
3978   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3979   SrcList *pSrc;      /* The FROM clause of the outer query */
3980   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3981   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3982   int iNewParent = -1;/* Replacement table for iParent */
3983   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3984   int i;              /* Loop counter */
3985   Expr *pWhere;                    /* The WHERE clause */
3986   SrcItem *pSubitem;               /* The subquery */
3987   sqlite3 *db = pParse->db;
3988   Walker w;                        /* Walker to persist agginfo data */
3989   int *aCsrMap = 0;
3990 
3991   /* Check to see if flattening is permitted.  Return 0 if not.
3992   */
3993   assert( p!=0 );
3994   assert( p->pPrior==0 );
3995   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3996   pSrc = p->pSrc;
3997   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3998   pSubitem = &pSrc->a[iFrom];
3999   iParent = pSubitem->iCursor;
4000   pSub = pSubitem->pSelect;
4001   assert( pSub!=0 );
4002 
4003 #ifndef SQLITE_OMIT_WINDOWFUNC
4004   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4005 #endif
4006 
4007   pSubSrc = pSub->pSrc;
4008   assert( pSubSrc );
4009   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4010   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4011   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4012   ** became arbitrary expressions, we were forced to add restrictions (13)
4013   ** and (14). */
4014   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4015   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4016   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4017     return 0;                                            /* Restriction (15) */
4018   }
4019   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4020   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4021   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4022      return 0;         /* Restrictions (8)(9) */
4023   }
4024   if( p->pOrderBy && pSub->pOrderBy ){
4025      return 0;                                           /* Restriction (11) */
4026   }
4027   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4028   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4029   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4030      return 0;         /* Restriction (21) */
4031   }
4032   if( pSub->selFlags & (SF_Recursive) ){
4033     return 0; /* Restrictions (22) */
4034   }
4035 
4036   /*
4037   ** If the subquery is the right operand of a LEFT JOIN, then the
4038   ** subquery may not be a join itself (3a). Example of why this is not
4039   ** allowed:
4040   **
4041   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4042   **
4043   ** If we flatten the above, we would get
4044   **
4045   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4046   **
4047   ** which is not at all the same thing.
4048   **
4049   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4050   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4051   ** aggregates are processed - there is no mechanism to determine if
4052   ** the LEFT JOIN table should be all-NULL.
4053   **
4054   ** See also tickets #306, #350, and #3300.
4055   */
4056   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4057     isLeftJoin = 1;
4058     if( pSubSrc->nSrc>1                   /* (3a) */
4059      || isAgg                             /* (3b) */
4060      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
4061      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
4062     ){
4063       return 0;
4064     }
4065   }
4066 #ifdef SQLITE_EXTRA_IFNULLROW
4067   else if( iFrom>0 && !isAgg ){
4068     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4069     ** every reference to any result column from subquery in a join, even
4070     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4071     ** opcode. */
4072     isLeftJoin = -1;
4073   }
4074 #endif
4075 
4076   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4077   ** use only the UNION ALL operator. And none of the simple select queries
4078   ** that make up the compound SELECT are allowed to be aggregate or distinct
4079   ** queries.
4080   */
4081   if( pSub->pPrior ){
4082     if( pSub->pOrderBy ){
4083       return 0;  /* Restriction (20) */
4084     }
4085     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4086       return 0; /* (17d1), (17d2), or (17f) */
4087     }
4088     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4089       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4090       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4091       assert( pSub->pSrc!=0 );
4092       assert( (pSub->selFlags & SF_Recursive)==0 );
4093       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4094       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4095        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4096        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4097 #ifndef SQLITE_OMIT_WINDOWFUNC
4098        || pSub1->pWin                                          /* (17e) */
4099 #endif
4100       ){
4101         return 0;
4102       }
4103       testcase( pSub1->pSrc->nSrc>1 );
4104     }
4105 
4106     /* Restriction (18). */
4107     if( p->pOrderBy ){
4108       int ii;
4109       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4110         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4111       }
4112     }
4113 
4114     /* Restriction (23) */
4115     if( (p->selFlags & SF_Recursive) ) return 0;
4116 
4117     if( pSrc->nSrc>1 ){
4118       if( pParse->nSelect>500 ) return 0;
4119       aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int));
4120     }
4121   }
4122 
4123   /***** If we reach this point, flattening is permitted. *****/
4124   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4125                    pSub->selId, pSub, iFrom));
4126 
4127   /* Authorize the subquery */
4128   pParse->zAuthContext = pSubitem->zName;
4129   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4130   testcase( i==SQLITE_DENY );
4131   pParse->zAuthContext = zSavedAuthContext;
4132 
4133   /* Delete the transient structures associated with thesubquery */
4134   pSub1 = pSubitem->pSelect;
4135   sqlite3DbFree(db, pSubitem->zDatabase);
4136   sqlite3DbFree(db, pSubitem->zName);
4137   sqlite3DbFree(db, pSubitem->zAlias);
4138   pSubitem->zDatabase = 0;
4139   pSubitem->zName = 0;
4140   pSubitem->zAlias = 0;
4141   pSubitem->pSelect = 0;
4142   assert( pSubitem->pOn==0 );
4143 
4144   /* If the sub-query is a compound SELECT statement, then (by restrictions
4145   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4146   ** be of the form:
4147   **
4148   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4149   **
4150   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4151   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4152   ** OFFSET clauses and joins them to the left-hand-side of the original
4153   ** using UNION ALL operators. In this case N is the number of simple
4154   ** select statements in the compound sub-query.
4155   **
4156   ** Example:
4157   **
4158   **     SELECT a+1 FROM (
4159   **        SELECT x FROM tab
4160   **        UNION ALL
4161   **        SELECT y FROM tab
4162   **        UNION ALL
4163   **        SELECT abs(z*2) FROM tab2
4164   **     ) WHERE a!=5 ORDER BY 1
4165   **
4166   ** Transformed into:
4167   **
4168   **     SELECT x+1 FROM tab WHERE x+1!=5
4169   **     UNION ALL
4170   **     SELECT y+1 FROM tab WHERE y+1!=5
4171   **     UNION ALL
4172   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4173   **     ORDER BY 1
4174   **
4175   ** We call this the "compound-subquery flattening".
4176   */
4177   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4178     Select *pNew;
4179     ExprList *pOrderBy = p->pOrderBy;
4180     Expr *pLimit = p->pLimit;
4181     Select *pPrior = p->pPrior;
4182     Table *pItemTab = pSubitem->pTab;
4183     pSubitem->pTab = 0;
4184     p->pOrderBy = 0;
4185     p->pPrior = 0;
4186     p->pLimit = 0;
4187     pNew = sqlite3SelectDup(db, p, 0);
4188     p->pLimit = pLimit;
4189     p->pOrderBy = pOrderBy;
4190     p->op = TK_ALL;
4191     pSubitem->pTab = pItemTab;
4192     if( pNew==0 ){
4193       p->pPrior = pPrior;
4194     }else{
4195       pNew->selId = ++pParse->nSelect;
4196       if( aCsrMap && db->mallocFailed==0 ){
4197         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4198       }
4199       pNew->pPrior = pPrior;
4200       if( pPrior ) pPrior->pNext = pNew;
4201       pNew->pNext = p;
4202       p->pPrior = pNew;
4203       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4204                               " creates %u as peer\n",pNew->selId));
4205     }
4206     assert( pSubitem->pSelect==0 );
4207   }
4208   sqlite3DbFree(db, aCsrMap);
4209   if( db->mallocFailed ){
4210     pSubitem->pSelect = pSub1;
4211     return 1;
4212   }
4213 
4214   /* Defer deleting the Table object associated with the
4215   ** subquery until code generation is
4216   ** complete, since there may still exist Expr.pTab entries that
4217   ** refer to the subquery even after flattening.  Ticket #3346.
4218   **
4219   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4220   */
4221   if( ALWAYS(pSubitem->pTab!=0) ){
4222     Table *pTabToDel = pSubitem->pTab;
4223     if( pTabToDel->nTabRef==1 ){
4224       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4225       sqlite3ParserAddCleanup(pToplevel,
4226          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4227          pTabToDel);
4228       testcase( pToplevel->earlyCleanup );
4229     }else{
4230       pTabToDel->nTabRef--;
4231     }
4232     pSubitem->pTab = 0;
4233   }
4234 
4235   /* The following loop runs once for each term in a compound-subquery
4236   ** flattening (as described above).  If we are doing a different kind
4237   ** of flattening - a flattening other than a compound-subquery flattening -
4238   ** then this loop only runs once.
4239   **
4240   ** This loop moves all of the FROM elements of the subquery into the
4241   ** the FROM clause of the outer query.  Before doing this, remember
4242   ** the cursor number for the original outer query FROM element in
4243   ** iParent.  The iParent cursor will never be used.  Subsequent code
4244   ** will scan expressions looking for iParent references and replace
4245   ** those references with expressions that resolve to the subquery FROM
4246   ** elements we are now copying in.
4247   */
4248   pSub = pSub1;
4249   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4250     int nSubSrc;
4251     u8 jointype = 0;
4252     assert( pSub!=0 );
4253     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4254     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4255     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4256 
4257     if( pParent==p ){
4258       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4259     }
4260 
4261     /* The subquery uses a single slot of the FROM clause of the outer
4262     ** query.  If the subquery has more than one element in its FROM clause,
4263     ** then expand the outer query to make space for it to hold all elements
4264     ** of the subquery.
4265     **
4266     ** Example:
4267     **
4268     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4269     **
4270     ** The outer query has 3 slots in its FROM clause.  One slot of the
4271     ** outer query (the middle slot) is used by the subquery.  The next
4272     ** block of code will expand the outer query FROM clause to 4 slots.
4273     ** The middle slot is expanded to two slots in order to make space
4274     ** for the two elements in the FROM clause of the subquery.
4275     */
4276     if( nSubSrc>1 ){
4277       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4278       if( pSrc==0 ) break;
4279       pParent->pSrc = pSrc;
4280     }
4281 
4282     /* Transfer the FROM clause terms from the subquery into the
4283     ** outer query.
4284     */
4285     for(i=0; i<nSubSrc; i++){
4286       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4287       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4288       pSrc->a[i+iFrom] = pSubSrc->a[i];
4289       iNewParent = pSubSrc->a[i].iCursor;
4290       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4291     }
4292     pSrc->a[iFrom].fg.jointype = jointype;
4293 
4294     /* Now begin substituting subquery result set expressions for
4295     ** references to the iParent in the outer query.
4296     **
4297     ** Example:
4298     **
4299     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4300     **   \                     \_____________ subquery __________/          /
4301     **    \_____________________ outer query ______________________________/
4302     **
4303     ** We look at every expression in the outer query and every place we see
4304     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4305     */
4306     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4307       /* At this point, any non-zero iOrderByCol values indicate that the
4308       ** ORDER BY column expression is identical to the iOrderByCol'th
4309       ** expression returned by SELECT statement pSub. Since these values
4310       ** do not necessarily correspond to columns in SELECT statement pParent,
4311       ** zero them before transfering the ORDER BY clause.
4312       **
4313       ** Not doing this may cause an error if a subsequent call to this
4314       ** function attempts to flatten a compound sub-query into pParent
4315       ** (the only way this can happen is if the compound sub-query is
4316       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4317       ExprList *pOrderBy = pSub->pOrderBy;
4318       for(i=0; i<pOrderBy->nExpr; i++){
4319         pOrderBy->a[i].u.x.iOrderByCol = 0;
4320       }
4321       assert( pParent->pOrderBy==0 );
4322       pParent->pOrderBy = pOrderBy;
4323       pSub->pOrderBy = 0;
4324     }
4325     pWhere = pSub->pWhere;
4326     pSub->pWhere = 0;
4327     if( isLeftJoin>0 ){
4328       sqlite3SetJoinExpr(pWhere, iNewParent);
4329     }
4330     if( pWhere ){
4331       if( pParent->pWhere ){
4332         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4333       }else{
4334         pParent->pWhere = pWhere;
4335       }
4336     }
4337     if( db->mallocFailed==0 ){
4338       SubstContext x;
4339       x.pParse = pParse;
4340       x.iTable = iParent;
4341       x.iNewTable = iNewParent;
4342       x.isLeftJoin = isLeftJoin;
4343       x.pEList = pSub->pEList;
4344       substSelect(&x, pParent, 0);
4345     }
4346 
4347     /* The flattened query is a compound if either the inner or the
4348     ** outer query is a compound. */
4349     pParent->selFlags |= pSub->selFlags & SF_Compound;
4350     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4351 
4352     /*
4353     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4354     **
4355     ** One is tempted to try to add a and b to combine the limits.  But this
4356     ** does not work if either limit is negative.
4357     */
4358     if( pSub->pLimit ){
4359       pParent->pLimit = pSub->pLimit;
4360       pSub->pLimit = 0;
4361     }
4362 
4363     /* Recompute the SrcList_item.colUsed masks for the flattened
4364     ** tables. */
4365     for(i=0; i<nSubSrc; i++){
4366       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4367     }
4368   }
4369 
4370   /* Finially, delete what is left of the subquery and return
4371   ** success.
4372   */
4373   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4374   sqlite3WalkSelect(&w,pSub1);
4375   sqlite3SelectDelete(db, pSub1);
4376 
4377 #if SELECTTRACE_ENABLED
4378   if( sqlite3SelectTrace & 0x100 ){
4379     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4380     sqlite3TreeViewSelect(0, p, 0);
4381   }
4382 #endif
4383 
4384   return 1;
4385 }
4386 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4387 
4388 /*
4389 ** A structure to keep track of all of the column values that are fixed to
4390 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4391 */
4392 typedef struct WhereConst WhereConst;
4393 struct WhereConst {
4394   Parse *pParse;   /* Parsing context */
4395   int nConst;      /* Number for COLUMN=CONSTANT terms */
4396   int nChng;       /* Number of times a constant is propagated */
4397   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4398 };
4399 
4400 /*
4401 ** Add a new entry to the pConst object.  Except, do not add duplicate
4402 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4403 **
4404 ** The caller guarantees the pColumn is a column and pValue is a constant.
4405 ** This routine has to do some additional checks before completing the
4406 ** insert.
4407 */
4408 static void constInsert(
4409   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4410   Expr *pColumn,       /* The COLUMN part of the constraint */
4411   Expr *pValue,        /* The VALUE part of the constraint */
4412   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4413 ){
4414   int i;
4415   assert( pColumn->op==TK_COLUMN );
4416   assert( sqlite3ExprIsConstant(pValue) );
4417 
4418   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4419   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4420   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4421     return;
4422   }
4423 
4424   /* 2018-10-25 ticket [cf5ed20f]
4425   ** Make sure the same pColumn is not inserted more than once */
4426   for(i=0; i<pConst->nConst; i++){
4427     const Expr *pE2 = pConst->apExpr[i*2];
4428     assert( pE2->op==TK_COLUMN );
4429     if( pE2->iTable==pColumn->iTable
4430      && pE2->iColumn==pColumn->iColumn
4431     ){
4432       return;  /* Already present.  Return without doing anything. */
4433     }
4434   }
4435 
4436   pConst->nConst++;
4437   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4438                          pConst->nConst*2*sizeof(Expr*));
4439   if( pConst->apExpr==0 ){
4440     pConst->nConst = 0;
4441   }else{
4442     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4443     pConst->apExpr[pConst->nConst*2-1] = pValue;
4444   }
4445 }
4446 
4447 /*
4448 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4449 ** is a constant expression and where the term must be true because it
4450 ** is part of the AND-connected terms of the expression.  For each term
4451 ** found, add it to the pConst structure.
4452 */
4453 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4454   Expr *pRight, *pLeft;
4455   if( pExpr==0 ) return;
4456   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4457   if( pExpr->op==TK_AND ){
4458     findConstInWhere(pConst, pExpr->pRight);
4459     findConstInWhere(pConst, pExpr->pLeft);
4460     return;
4461   }
4462   if( pExpr->op!=TK_EQ ) return;
4463   pRight = pExpr->pRight;
4464   pLeft = pExpr->pLeft;
4465   assert( pRight!=0 );
4466   assert( pLeft!=0 );
4467   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4468     constInsert(pConst,pRight,pLeft,pExpr);
4469   }
4470   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4471     constInsert(pConst,pLeft,pRight,pExpr);
4472   }
4473 }
4474 
4475 /*
4476 ** This is a Walker expression callback.  pExpr is a candidate expression
4477 ** to be replaced by a value.  If pExpr is equivalent to one of the
4478 ** columns named in pWalker->u.pConst, then overwrite it with its
4479 ** corresponding value.
4480 */
4481 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4482   int i;
4483   WhereConst *pConst;
4484   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4485   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4486     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4487     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4488     return WRC_Continue;
4489   }
4490   pConst = pWalker->u.pConst;
4491   for(i=0; i<pConst->nConst; i++){
4492     Expr *pColumn = pConst->apExpr[i*2];
4493     if( pColumn==pExpr ) continue;
4494     if( pColumn->iTable!=pExpr->iTable ) continue;
4495     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4496     /* A match is found.  Add the EP_FixedCol property */
4497     pConst->nChng++;
4498     ExprClearProperty(pExpr, EP_Leaf);
4499     ExprSetProperty(pExpr, EP_FixedCol);
4500     assert( pExpr->pLeft==0 );
4501     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4502     break;
4503   }
4504   return WRC_Prune;
4505 }
4506 
4507 /*
4508 ** The WHERE-clause constant propagation optimization.
4509 **
4510 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4511 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4512 ** part of a ON clause from a LEFT JOIN, then throughout the query
4513 ** replace all other occurrences of COLUMN with CONSTANT.
4514 **
4515 ** For example, the query:
4516 **
4517 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4518 **
4519 ** Is transformed into
4520 **
4521 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4522 **
4523 ** Return true if any transformations where made and false if not.
4524 **
4525 ** Implementation note:  Constant propagation is tricky due to affinity
4526 ** and collating sequence interactions.  Consider this example:
4527 **
4528 **    CREATE TABLE t1(a INT,b TEXT);
4529 **    INSERT INTO t1 VALUES(123,'0123');
4530 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4531 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4532 **
4533 ** The two SELECT statements above should return different answers.  b=a
4534 ** is alway true because the comparison uses numeric affinity, but b=123
4535 ** is false because it uses text affinity and '0123' is not the same as '123'.
4536 ** To work around this, the expression tree is not actually changed from
4537 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4538 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4539 ** routines know to generate the constant "123" instead of looking up the
4540 ** column value.  Also, to avoid collation problems, this optimization is
4541 ** only attempted if the "a=123" term uses the default BINARY collation.
4542 */
4543 static int propagateConstants(
4544   Parse *pParse,   /* The parsing context */
4545   Select *p        /* The query in which to propagate constants */
4546 ){
4547   WhereConst x;
4548   Walker w;
4549   int nChng = 0;
4550   x.pParse = pParse;
4551   do{
4552     x.nConst = 0;
4553     x.nChng = 0;
4554     x.apExpr = 0;
4555     findConstInWhere(&x, p->pWhere);
4556     if( x.nConst ){
4557       memset(&w, 0, sizeof(w));
4558       w.pParse = pParse;
4559       w.xExprCallback = propagateConstantExprRewrite;
4560       w.xSelectCallback = sqlite3SelectWalkNoop;
4561       w.xSelectCallback2 = 0;
4562       w.walkerDepth = 0;
4563       w.u.pConst = &x;
4564       sqlite3WalkExpr(&w, p->pWhere);
4565       sqlite3DbFree(x.pParse->db, x.apExpr);
4566       nChng += x.nChng;
4567     }
4568   }while( x.nChng );
4569   return nChng;
4570 }
4571 
4572 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4573 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4574 /*
4575 ** This function is called to determine whether or not it is safe to
4576 ** push WHERE clause expression pExpr down to FROM clause sub-query
4577 ** pSubq, which contains at least one window function. Return 1
4578 ** if it is safe and the expression should be pushed down, or 0
4579 ** otherwise.
4580 **
4581 ** It is only safe to push the expression down if it consists only
4582 ** of constants and copies of expressions that appear in the PARTITION
4583 ** BY clause of all window function used by the sub-query. It is safe
4584 ** to filter out entire partitions, but not rows within partitions, as
4585 ** this may change the results of the window functions.
4586 **
4587 ** At the time this function is called it is guaranteed that
4588 **
4589 **   * the sub-query uses only one distinct window frame, and
4590 **   * that the window frame has a PARTITION BY clase.
4591 */
4592 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4593   assert( pSubq->pWin->pPartition );
4594   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4595   assert( pSubq->pPrior==0 );
4596   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4597 }
4598 # endif /* SQLITE_OMIT_WINDOWFUNC */
4599 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4600 
4601 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4602 /*
4603 ** Make copies of relevant WHERE clause terms of the outer query into
4604 ** the WHERE clause of subquery.  Example:
4605 **
4606 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4607 **
4608 ** Transformed into:
4609 **
4610 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4611 **     WHERE x=5 AND y=10;
4612 **
4613 ** The hope is that the terms added to the inner query will make it more
4614 ** efficient.
4615 **
4616 ** Do not attempt this optimization if:
4617 **
4618 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4619 **           disallow this optimization for aggregate subqueries, but now
4620 **           it is allowed by putting the extra terms on the HAVING clause.
4621 **           The added HAVING clause is pointless if the subquery lacks
4622 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4623 **           so there does not appear to be any reason to add extra logic
4624 **           to suppress it. **)
4625 **
4626 **   (2) The inner query is the recursive part of a common table expression.
4627 **
4628 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4629 **       clause would change the meaning of the LIMIT).
4630 **
4631 **   (4) The inner query is the right operand of a LEFT JOIN and the
4632 **       expression to be pushed down does not come from the ON clause
4633 **       on that LEFT JOIN.
4634 **
4635 **   (5) The WHERE clause expression originates in the ON or USING clause
4636 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4637 **       left join.  An example:
4638 **
4639 **           SELECT *
4640 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4641 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4642 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4643 **
4644 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4645 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4646 **       then the (1,1,NULL) row would be suppressed.
4647 **
4648 **   (6) Window functions make things tricky as changes to the WHERE clause
4649 **       of the inner query could change the window over which window
4650 **       functions are calculated. Therefore, do not attempt the optimization
4651 **       if:
4652 **
4653 **     (6a) The inner query uses multiple incompatible window partitions.
4654 **
4655 **     (6b) The inner query is a compound and uses window-functions.
4656 **
4657 **     (6c) The WHERE clause does not consist entirely of constants and
4658 **          copies of expressions found in the PARTITION BY clause of
4659 **          all window-functions used by the sub-query. It is safe to
4660 **          filter out entire partitions, as this does not change the
4661 **          window over which any window-function is calculated.
4662 **
4663 **   (7) The inner query is a Common Table Expression (CTE) that should
4664 **       be materialized.  (This restriction is implemented in the calling
4665 **       routine.)
4666 **
4667 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4668 ** terms are duplicated into the subquery.
4669 */
4670 static int pushDownWhereTerms(
4671   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4672   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4673   Expr *pWhere,         /* The WHERE clause of the outer query */
4674   int iCursor,          /* Cursor number of the subquery */
4675   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4676 ){
4677   Expr *pNew;
4678   int nChng = 0;
4679   if( pWhere==0 ) return 0;
4680   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4681 
4682 #ifndef SQLITE_OMIT_WINDOWFUNC
4683   if( pSubq->pPrior ){
4684     Select *pSel;
4685     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4686       if( pSel->pWin ) return 0;    /* restriction (6b) */
4687     }
4688   }else{
4689     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4690   }
4691 #endif
4692 
4693 #ifdef SQLITE_DEBUG
4694   /* Only the first term of a compound can have a WITH clause.  But make
4695   ** sure no other terms are marked SF_Recursive in case something changes
4696   ** in the future.
4697   */
4698   {
4699     Select *pX;
4700     for(pX=pSubq; pX; pX=pX->pPrior){
4701       assert( (pX->selFlags & (SF_Recursive))==0 );
4702     }
4703   }
4704 #endif
4705 
4706   if( pSubq->pLimit!=0 ){
4707     return 0; /* restriction (3) */
4708   }
4709   while( pWhere->op==TK_AND ){
4710     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4711                                 iCursor, isLeftJoin);
4712     pWhere = pWhere->pLeft;
4713   }
4714   if( isLeftJoin
4715    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4716          || pWhere->iRightJoinTable!=iCursor)
4717   ){
4718     return 0; /* restriction (4) */
4719   }
4720   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4721     return 0; /* restriction (5) */
4722   }
4723   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4724     nChng++;
4725     pSubq->selFlags |= SF_PushDown;
4726     while( pSubq ){
4727       SubstContext x;
4728       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4729       unsetJoinExpr(pNew, -1);
4730       x.pParse = pParse;
4731       x.iTable = iCursor;
4732       x.iNewTable = iCursor;
4733       x.isLeftJoin = 0;
4734       x.pEList = pSubq->pEList;
4735       pNew = substExpr(&x, pNew);
4736 #ifndef SQLITE_OMIT_WINDOWFUNC
4737       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4738         /* Restriction 6c has prevented push-down in this case */
4739         sqlite3ExprDelete(pParse->db, pNew);
4740         nChng--;
4741         break;
4742       }
4743 #endif
4744       if( pSubq->selFlags & SF_Aggregate ){
4745         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4746       }else{
4747         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4748       }
4749       pSubq = pSubq->pPrior;
4750     }
4751   }
4752   return nChng;
4753 }
4754 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4755 
4756 /*
4757 ** The pFunc is the only aggregate function in the query.  Check to see
4758 ** if the query is a candidate for the min/max optimization.
4759 **
4760 ** If the query is a candidate for the min/max optimization, then set
4761 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4762 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4763 ** whether pFunc is a min() or max() function.
4764 **
4765 ** If the query is not a candidate for the min/max optimization, return
4766 ** WHERE_ORDERBY_NORMAL (which must be zero).
4767 **
4768 ** This routine must be called after aggregate functions have been
4769 ** located but before their arguments have been subjected to aggregate
4770 ** analysis.
4771 */
4772 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4773   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4774   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4775   const char *zFunc;                    /* Name of aggregate function pFunc */
4776   ExprList *pOrderBy;
4777   u8 sortFlags = 0;
4778 
4779   assert( *ppMinMax==0 );
4780   assert( pFunc->op==TK_AGG_FUNCTION );
4781   assert( !IsWindowFunc(pFunc) );
4782   if( pEList==0
4783    || pEList->nExpr!=1
4784    || ExprHasProperty(pFunc, EP_WinFunc)
4785    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4786   ){
4787     return eRet;
4788   }
4789   zFunc = pFunc->u.zToken;
4790   if( sqlite3StrICmp(zFunc, "min")==0 ){
4791     eRet = WHERE_ORDERBY_MIN;
4792     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4793       sortFlags = KEYINFO_ORDER_BIGNULL;
4794     }
4795   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4796     eRet = WHERE_ORDERBY_MAX;
4797     sortFlags = KEYINFO_ORDER_DESC;
4798   }else{
4799     return eRet;
4800   }
4801   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4802   assert( pOrderBy!=0 || db->mallocFailed );
4803   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4804   return eRet;
4805 }
4806 
4807 /*
4808 ** The select statement passed as the first argument is an aggregate query.
4809 ** The second argument is the associated aggregate-info object. This
4810 ** function tests if the SELECT is of the form:
4811 **
4812 **   SELECT count(*) FROM <tbl>
4813 **
4814 ** where table is a database table, not a sub-select or view. If the query
4815 ** does match this pattern, then a pointer to the Table object representing
4816 ** <tbl> is returned. Otherwise, 0 is returned.
4817 */
4818 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4819   Table *pTab;
4820   Expr *pExpr;
4821 
4822   assert( !p->pGroupBy );
4823 
4824   if( p->pWhere || p->pEList->nExpr!=1
4825    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4826   ){
4827     return 0;
4828   }
4829   pTab = p->pSrc->a[0].pTab;
4830   pExpr = p->pEList->a[0].pExpr;
4831   assert( pTab && !pTab->pSelect && pExpr );
4832 
4833   if( IsVirtual(pTab) ) return 0;
4834   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4835   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4836   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4837   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4838 
4839   return pTab;
4840 }
4841 
4842 /*
4843 ** If the source-list item passed as an argument was augmented with an
4844 ** INDEXED BY clause, then try to locate the specified index. If there
4845 ** was such a clause and the named index cannot be found, return
4846 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4847 ** pFrom->pIndex and return SQLITE_OK.
4848 */
4849 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
4850   Table *pTab = pFrom->pTab;
4851   char *zIndexedBy = pFrom->u1.zIndexedBy;
4852   Index *pIdx;
4853   assert( pTab!=0 );
4854   assert( pFrom->fg.isIndexedBy!=0 );
4855 
4856   for(pIdx=pTab->pIndex;
4857       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4858       pIdx=pIdx->pNext
4859   );
4860   if( !pIdx ){
4861     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4862     pParse->checkSchema = 1;
4863     return SQLITE_ERROR;
4864   }
4865   pFrom->u2.pIBIndex = pIdx;
4866   return SQLITE_OK;
4867 }
4868 
4869 /*
4870 ** Detect compound SELECT statements that use an ORDER BY clause with
4871 ** an alternative collating sequence.
4872 **
4873 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4874 **
4875 ** These are rewritten as a subquery:
4876 **
4877 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4878 **     ORDER BY ... COLLATE ...
4879 **
4880 ** This transformation is necessary because the multiSelectOrderBy() routine
4881 ** above that generates the code for a compound SELECT with an ORDER BY clause
4882 ** uses a merge algorithm that requires the same collating sequence on the
4883 ** result columns as on the ORDER BY clause.  See ticket
4884 ** http://www.sqlite.org/src/info/6709574d2a
4885 **
4886 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4887 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4888 ** there are COLLATE terms in the ORDER BY.
4889 */
4890 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4891   int i;
4892   Select *pNew;
4893   Select *pX;
4894   sqlite3 *db;
4895   struct ExprList_item *a;
4896   SrcList *pNewSrc;
4897   Parse *pParse;
4898   Token dummy;
4899 
4900   if( p->pPrior==0 ) return WRC_Continue;
4901   if( p->pOrderBy==0 ) return WRC_Continue;
4902   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4903   if( pX==0 ) return WRC_Continue;
4904   a = p->pOrderBy->a;
4905 #ifndef SQLITE_OMIT_WINDOWFUNC
4906   /* If iOrderByCol is already non-zero, then it has already been matched
4907   ** to a result column of the SELECT statement. This occurs when the
4908   ** SELECT is rewritten for window-functions processing and then passed
4909   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4910   ** by this function is not required in this case. */
4911   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
4912 #endif
4913   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4914     if( a[i].pExpr->flags & EP_Collate ) break;
4915   }
4916   if( i<0 ) return WRC_Continue;
4917 
4918   /* If we reach this point, that means the transformation is required. */
4919 
4920   pParse = pWalker->pParse;
4921   db = pParse->db;
4922   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4923   if( pNew==0 ) return WRC_Abort;
4924   memset(&dummy, 0, sizeof(dummy));
4925   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4926   if( pNewSrc==0 ) return WRC_Abort;
4927   *pNew = *p;
4928   p->pSrc = pNewSrc;
4929   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4930   p->op = TK_SELECT;
4931   p->pWhere = 0;
4932   pNew->pGroupBy = 0;
4933   pNew->pHaving = 0;
4934   pNew->pOrderBy = 0;
4935   p->pPrior = 0;
4936   p->pNext = 0;
4937   p->pWith = 0;
4938 #ifndef SQLITE_OMIT_WINDOWFUNC
4939   p->pWinDefn = 0;
4940 #endif
4941   p->selFlags &= ~SF_Compound;
4942   assert( (p->selFlags & SF_Converted)==0 );
4943   p->selFlags |= SF_Converted;
4944   assert( pNew->pPrior!=0 );
4945   pNew->pPrior->pNext = pNew;
4946   pNew->pLimit = 0;
4947   return WRC_Continue;
4948 }
4949 
4950 /*
4951 ** Check to see if the FROM clause term pFrom has table-valued function
4952 ** arguments.  If it does, leave an error message in pParse and return
4953 ** non-zero, since pFrom is not allowed to be a table-valued function.
4954 */
4955 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
4956   if( pFrom->fg.isTabFunc ){
4957     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4958     return 1;
4959   }
4960   return 0;
4961 }
4962 
4963 #ifndef SQLITE_OMIT_CTE
4964 /*
4965 ** Argument pWith (which may be NULL) points to a linked list of nested
4966 ** WITH contexts, from inner to outermost. If the table identified by
4967 ** FROM clause element pItem is really a common-table-expression (CTE)
4968 ** then return a pointer to the CTE definition for that table. Otherwise
4969 ** return NULL.
4970 **
4971 ** If a non-NULL value is returned, set *ppContext to point to the With
4972 ** object that the returned CTE belongs to.
4973 */
4974 static struct Cte *searchWith(
4975   With *pWith,                    /* Current innermost WITH clause */
4976   SrcItem *pItem,                 /* FROM clause element to resolve */
4977   With **ppContext                /* OUT: WITH clause return value belongs to */
4978 ){
4979   const char *zName = pItem->zName;
4980   With *p;
4981   assert( pItem->zDatabase==0 );
4982   assert( zName!=0 );
4983   for(p=pWith; p; p=p->pOuter){
4984     int i;
4985     for(i=0; i<p->nCte; i++){
4986       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4987         *ppContext = p;
4988         return &p->a[i];
4989       }
4990     }
4991   }
4992   return 0;
4993 }
4994 
4995 /* The code generator maintains a stack of active WITH clauses
4996 ** with the inner-most WITH clause being at the top of the stack.
4997 **
4998 ** This routine pushes the WITH clause passed as the second argument
4999 ** onto the top of the stack. If argument bFree is true, then this
5000 ** WITH clause will never be popped from the stack. In this case it
5001 ** should be freed along with the Parse object. In other cases, when
5002 ** bFree==0, the With object will be freed along with the SELECT
5003 ** statement with which it is associated.
5004 */
5005 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5006   if( pWith ){
5007     assert( pParse->pWith!=pWith );
5008     pWith->pOuter = pParse->pWith;
5009     pParse->pWith = pWith;
5010     if( bFree ){
5011       sqlite3ParserAddCleanup(pParse,
5012          (void(*)(sqlite3*,void*))sqlite3WithDelete,
5013          pWith);
5014       testcase( pParse->earlyCleanup );
5015     }
5016   }
5017 }
5018 
5019 /*
5020 ** This function checks if argument pFrom refers to a CTE declared by
5021 ** a WITH clause on the stack currently maintained by the parser (on the
5022 ** pParse->pWith linked list).  And if currently processing a CTE
5023 ** CTE expression, through routine checks to see if the reference is
5024 ** a recursive reference to the CTE.
5025 **
5026 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5027 ** and other fields are populated accordingly.
5028 **
5029 ** Return 0 if no match is found.
5030 ** Return 1 if a match is found.
5031 ** Return 2 if an error condition is detected.
5032 */
5033 static int resolveFromTermToCte(
5034   Parse *pParse,                  /* The parsing context */
5035   Walker *pWalker,                /* Current tree walker */
5036   SrcItem *pFrom                  /* The FROM clause term to check */
5037 ){
5038   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5039   With *pWith;             /* The matching WITH */
5040 
5041   assert( pFrom->pTab==0 );
5042   if( pParse->pWith==0 ){
5043     /* There are no WITH clauses in the stack.  No match is possible */
5044     return 0;
5045   }
5046   if( pFrom->zDatabase!=0 ){
5047     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5048     ** it cannot possibly be a CTE reference. */
5049     return 0;
5050   }
5051   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5052   if( pCte ){
5053     sqlite3 *db = pParse->db;
5054     Table *pTab;
5055     ExprList *pEList;
5056     Select *pSel;
5057     Select *pLeft;                /* Left-most SELECT statement */
5058     Select *pRecTerm;             /* Left-most recursive term */
5059     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5060     With *pSavedWith;             /* Initial value of pParse->pWith */
5061     int iRecTab = -1;             /* Cursor for recursive table */
5062     CteUse *pCteUse;
5063 
5064     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5065     ** recursive reference to CTE pCte. Leave an error in pParse and return
5066     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5067     ** In this case, proceed.  */
5068     if( pCte->zCteErr ){
5069       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5070       return 2;
5071     }
5072     if( cannotBeFunction(pParse, pFrom) ) return 2;
5073 
5074     assert( pFrom->pTab==0 );
5075     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5076     if( pTab==0 ) return 2;
5077     pCteUse = pCte->pUse;
5078     if( pCteUse==0 ){
5079       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5080       if( pCteUse==0
5081        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5082       ){
5083         sqlite3DbFree(db, pTab);
5084         return 2;
5085       }
5086       pCteUse->eM10d = pCte->eM10d;
5087     }
5088     pFrom->pTab = pTab;
5089     pTab->nTabRef = 1;
5090     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5091     pTab->iPKey = -1;
5092     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5093     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5094     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5095     if( db->mallocFailed ) return 2;
5096     assert( pFrom->pSelect );
5097     pFrom->fg.isCte = 1;
5098     pFrom->u2.pCteUse = pCteUse;
5099     pCteUse->nUse++;
5100     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5101       pCteUse->eM10d = M10d_Yes;
5102     }
5103 
5104     /* Check if this is a recursive CTE. */
5105     pRecTerm = pSel = pFrom->pSelect;
5106     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5107     while( bMayRecursive && pRecTerm->op==pSel->op ){
5108       int i;
5109       SrcList *pSrc = pRecTerm->pSrc;
5110       assert( pRecTerm->pPrior!=0 );
5111       for(i=0; i<pSrc->nSrc; i++){
5112         SrcItem *pItem = &pSrc->a[i];
5113         if( pItem->zDatabase==0
5114          && pItem->zName!=0
5115          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5116         ){
5117           pItem->pTab = pTab;
5118           pTab->nTabRef++;
5119           pItem->fg.isRecursive = 1;
5120           if( pRecTerm->selFlags & SF_Recursive ){
5121             sqlite3ErrorMsg(pParse,
5122                "multiple references to recursive table: %s", pCte->zName
5123             );
5124             return 2;
5125           }
5126           pRecTerm->selFlags |= SF_Recursive;
5127           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5128           pItem->iCursor = iRecTab;
5129         }
5130       }
5131       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5132       pRecTerm = pRecTerm->pPrior;
5133     }
5134 
5135     pCte->zCteErr = "circular reference: %s";
5136     pSavedWith = pParse->pWith;
5137     pParse->pWith = pWith;
5138     if( pSel->selFlags & SF_Recursive ){
5139       int rc;
5140       assert( pRecTerm!=0 );
5141       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5142       assert( pRecTerm->pNext!=0 );
5143       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5144       assert( pRecTerm->pWith==0 );
5145       pRecTerm->pWith = pSel->pWith;
5146       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5147       pRecTerm->pWith = 0;
5148       if( rc ){
5149         pParse->pWith = pSavedWith;
5150         return 2;
5151       }
5152     }else{
5153       if( sqlite3WalkSelect(pWalker, pSel) ){
5154         pParse->pWith = pSavedWith;
5155         return 2;
5156       }
5157     }
5158     pParse->pWith = pWith;
5159 
5160     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5161     pEList = pLeft->pEList;
5162     if( pCte->pCols ){
5163       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5164         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5165             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5166         );
5167         pParse->pWith = pSavedWith;
5168         return 2;
5169       }
5170       pEList = pCte->pCols;
5171     }
5172 
5173     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5174     if( bMayRecursive ){
5175       if( pSel->selFlags & SF_Recursive ){
5176         pCte->zCteErr = "multiple recursive references: %s";
5177       }else{
5178         pCte->zCteErr = "recursive reference in a subquery: %s";
5179       }
5180       sqlite3WalkSelect(pWalker, pSel);
5181     }
5182     pCte->zCteErr = 0;
5183     pParse->pWith = pSavedWith;
5184     return 1;  /* Success */
5185   }
5186   return 0;  /* No match */
5187 }
5188 #endif
5189 
5190 #ifndef SQLITE_OMIT_CTE
5191 /*
5192 ** If the SELECT passed as the second argument has an associated WITH
5193 ** clause, pop it from the stack stored as part of the Parse object.
5194 **
5195 ** This function is used as the xSelectCallback2() callback by
5196 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5197 ** names and other FROM clause elements.
5198 */
5199 static void selectPopWith(Walker *pWalker, Select *p){
5200   Parse *pParse = pWalker->pParse;
5201   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5202     With *pWith = findRightmost(p)->pWith;
5203     if( pWith!=0 ){
5204       assert( pParse->pWith==pWith || pParse->nErr );
5205       pParse->pWith = pWith->pOuter;
5206     }
5207   }
5208 }
5209 #else
5210 #define selectPopWith 0
5211 #endif
5212 
5213 /*
5214 ** The SrcList_item structure passed as the second argument represents a
5215 ** sub-query in the FROM clause of a SELECT statement. This function
5216 ** allocates and populates the SrcList_item.pTab object. If successful,
5217 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5218 ** SQLITE_NOMEM.
5219 */
5220 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5221   Select *pSel = pFrom->pSelect;
5222   Table *pTab;
5223 
5224   assert( pSel );
5225   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5226   if( pTab==0 ) return SQLITE_NOMEM;
5227   pTab->nTabRef = 1;
5228   if( pFrom->zAlias ){
5229     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5230   }else{
5231     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5232   }
5233   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5234   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5235   pTab->iPKey = -1;
5236   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5237   pTab->tabFlags |= TF_Ephemeral;
5238 
5239   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5240 }
5241 
5242 /*
5243 ** This routine is a Walker callback for "expanding" a SELECT statement.
5244 ** "Expanding" means to do the following:
5245 **
5246 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5247 **         element of the FROM clause.
5248 **
5249 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5250 **         defines FROM clause.  When views appear in the FROM clause,
5251 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5252 **         that implements the view.  A copy is made of the view's SELECT
5253 **         statement so that we can freely modify or delete that statement
5254 **         without worrying about messing up the persistent representation
5255 **         of the view.
5256 **
5257 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5258 **         on joins and the ON and USING clause of joins.
5259 **
5260 **    (4)  Scan the list of columns in the result set (pEList) looking
5261 **         for instances of the "*" operator or the TABLE.* operator.
5262 **         If found, expand each "*" to be every column in every table
5263 **         and TABLE.* to be every column in TABLE.
5264 **
5265 */
5266 static int selectExpander(Walker *pWalker, Select *p){
5267   Parse *pParse = pWalker->pParse;
5268   int i, j, k, rc;
5269   SrcList *pTabList;
5270   ExprList *pEList;
5271   SrcItem *pFrom;
5272   sqlite3 *db = pParse->db;
5273   Expr *pE, *pRight, *pExpr;
5274   u16 selFlags = p->selFlags;
5275   u32 elistFlags = 0;
5276 
5277   p->selFlags |= SF_Expanded;
5278   if( db->mallocFailed  ){
5279     return WRC_Abort;
5280   }
5281   assert( p->pSrc!=0 );
5282   if( (selFlags & SF_Expanded)!=0 ){
5283     return WRC_Prune;
5284   }
5285   if( pWalker->eCode ){
5286     /* Renumber selId because it has been copied from a view */
5287     p->selId = ++pParse->nSelect;
5288   }
5289   pTabList = p->pSrc;
5290   pEList = p->pEList;
5291   sqlite3WithPush(pParse, p->pWith, 0);
5292 
5293   /* Make sure cursor numbers have been assigned to all entries in
5294   ** the FROM clause of the SELECT statement.
5295   */
5296   sqlite3SrcListAssignCursors(pParse, pTabList);
5297 
5298   /* Look up every table named in the FROM clause of the select.  If
5299   ** an entry of the FROM clause is a subquery instead of a table or view,
5300   ** then create a transient table structure to describe the subquery.
5301   */
5302   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5303     Table *pTab;
5304     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5305     if( pFrom->pTab ) continue;
5306     assert( pFrom->fg.isRecursive==0 );
5307     if( pFrom->zName==0 ){
5308 #ifndef SQLITE_OMIT_SUBQUERY
5309       Select *pSel = pFrom->pSelect;
5310       /* A sub-query in the FROM clause of a SELECT */
5311       assert( pSel!=0 );
5312       assert( pFrom->pTab==0 );
5313       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5314       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5315 #endif
5316 #ifndef SQLITE_OMIT_CTE
5317     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5318       if( rc>1 ) return WRC_Abort;
5319       pTab = pFrom->pTab;
5320       assert( pTab!=0 );
5321 #endif
5322     }else{
5323       /* An ordinary table or view name in the FROM clause */
5324       assert( pFrom->pTab==0 );
5325       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5326       if( pTab==0 ) return WRC_Abort;
5327       if( pTab->nTabRef>=0xffff ){
5328         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5329            pTab->zName);
5330         pFrom->pTab = 0;
5331         return WRC_Abort;
5332       }
5333       pTab->nTabRef++;
5334       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5335         return WRC_Abort;
5336       }
5337 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5338       if( IsVirtual(pTab) || pTab->pSelect ){
5339         i16 nCol;
5340         u8 eCodeOrig = pWalker->eCode;
5341         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5342         assert( pFrom->pSelect==0 );
5343         if( pTab->pSelect
5344          && (db->flags & SQLITE_EnableView)==0
5345          && pTab->pSchema!=db->aDb[1].pSchema
5346         ){
5347           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5348             pTab->zName);
5349         }
5350 #ifndef SQLITE_OMIT_VIRTUALTABLE
5351         if( IsVirtual(pTab)
5352          && pFrom->fg.fromDDL
5353          && ALWAYS(pTab->pVTable!=0)
5354          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5355         ){
5356           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5357                                   pTab->zName);
5358         }
5359 #endif
5360         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5361         nCol = pTab->nCol;
5362         pTab->nCol = -1;
5363         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5364         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5365         pWalker->eCode = eCodeOrig;
5366         pTab->nCol = nCol;
5367       }
5368 #endif
5369     }
5370 
5371     /* Locate the index named by the INDEXED BY clause, if any. */
5372     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5373       return WRC_Abort;
5374     }
5375   }
5376 
5377   /* Process NATURAL keywords, and ON and USING clauses of joins.
5378   */
5379   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5380     return WRC_Abort;
5381   }
5382 
5383   /* For every "*" that occurs in the column list, insert the names of
5384   ** all columns in all tables.  And for every TABLE.* insert the names
5385   ** of all columns in TABLE.  The parser inserted a special expression
5386   ** with the TK_ASTERISK operator for each "*" that it found in the column
5387   ** list.  The following code just has to locate the TK_ASTERISK
5388   ** expressions and expand each one to the list of all columns in
5389   ** all tables.
5390   **
5391   ** The first loop just checks to see if there are any "*" operators
5392   ** that need expanding.
5393   */
5394   for(k=0; k<pEList->nExpr; k++){
5395     pE = pEList->a[k].pExpr;
5396     if( pE->op==TK_ASTERISK ) break;
5397     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5398     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5399     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5400     elistFlags |= pE->flags;
5401   }
5402   if( k<pEList->nExpr ){
5403     /*
5404     ** If we get here it means the result set contains one or more "*"
5405     ** operators that need to be expanded.  Loop through each expression
5406     ** in the result set and expand them one by one.
5407     */
5408     struct ExprList_item *a = pEList->a;
5409     ExprList *pNew = 0;
5410     int flags = pParse->db->flags;
5411     int longNames = (flags & SQLITE_FullColNames)!=0
5412                       && (flags & SQLITE_ShortColNames)==0;
5413 
5414     for(k=0; k<pEList->nExpr; k++){
5415       pE = a[k].pExpr;
5416       elistFlags |= pE->flags;
5417       pRight = pE->pRight;
5418       assert( pE->op!=TK_DOT || pRight!=0 );
5419       if( pE->op!=TK_ASTERISK
5420        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5421       ){
5422         /* This particular expression does not need to be expanded.
5423         */
5424         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5425         if( pNew ){
5426           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5427           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5428           a[k].zEName = 0;
5429         }
5430         a[k].pExpr = 0;
5431       }else{
5432         /* This expression is a "*" or a "TABLE.*" and needs to be
5433         ** expanded. */
5434         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5435         char *zTName = 0;       /* text of name of TABLE */
5436         if( pE->op==TK_DOT ){
5437           assert( pE->pLeft!=0 );
5438           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5439           zTName = pE->pLeft->u.zToken;
5440         }
5441         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5442           Table *pTab = pFrom->pTab;
5443           Select *pSub = pFrom->pSelect;
5444           char *zTabName = pFrom->zAlias;
5445           const char *zSchemaName = 0;
5446           int iDb;
5447           if( zTabName==0 ){
5448             zTabName = pTab->zName;
5449           }
5450           if( db->mallocFailed ) break;
5451           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5452             pSub = 0;
5453             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5454               continue;
5455             }
5456             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5457             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5458           }
5459           for(j=0; j<pTab->nCol; j++){
5460             char *zName = pTab->aCol[j].zName;
5461             char *zColname;  /* The computed column name */
5462             char *zToFree;   /* Malloced string that needs to be freed */
5463             Token sColname;  /* Computed column name as a token */
5464 
5465             assert( zName );
5466             if( zTName && pSub
5467              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5468             ){
5469               continue;
5470             }
5471 
5472             /* If a column is marked as 'hidden', omit it from the expanded
5473             ** result-set list unless the SELECT has the SF_IncludeHidden
5474             ** bit set.
5475             */
5476             if( (p->selFlags & SF_IncludeHidden)==0
5477              && IsHiddenColumn(&pTab->aCol[j])
5478             ){
5479               continue;
5480             }
5481             tableSeen = 1;
5482 
5483             if( i>0 && zTName==0 ){
5484               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5485                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5486               ){
5487                 /* In a NATURAL join, omit the join columns from the
5488                 ** table to the right of the join */
5489                 continue;
5490               }
5491               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5492                 /* In a join with a USING clause, omit columns in the
5493                 ** using clause from the table on the right. */
5494                 continue;
5495               }
5496             }
5497             pRight = sqlite3Expr(db, TK_ID, zName);
5498             zColname = zName;
5499             zToFree = 0;
5500             if( longNames || pTabList->nSrc>1 ){
5501               Expr *pLeft;
5502               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5503               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5504               if( zSchemaName ){
5505                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5506                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5507               }
5508               if( longNames ){
5509                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5510                 zToFree = zColname;
5511               }
5512             }else{
5513               pExpr = pRight;
5514             }
5515             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5516             sqlite3TokenInit(&sColname, zColname);
5517             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5518             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5519               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5520               sqlite3DbFree(db, pX->zEName);
5521               if( pSub ){
5522                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5523                 testcase( pX->zEName==0 );
5524               }else{
5525                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5526                                            zSchemaName, zTabName, zColname);
5527                 testcase( pX->zEName==0 );
5528               }
5529               pX->eEName = ENAME_TAB;
5530             }
5531             sqlite3DbFree(db, zToFree);
5532           }
5533         }
5534         if( !tableSeen ){
5535           if( zTName ){
5536             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5537           }else{
5538             sqlite3ErrorMsg(pParse, "no tables specified");
5539           }
5540         }
5541       }
5542     }
5543     sqlite3ExprListDelete(db, pEList);
5544     p->pEList = pNew;
5545   }
5546   if( p->pEList ){
5547     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5548       sqlite3ErrorMsg(pParse, "too many columns in result set");
5549       return WRC_Abort;
5550     }
5551     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5552       p->selFlags |= SF_ComplexResult;
5553     }
5554   }
5555   return WRC_Continue;
5556 }
5557 
5558 #if SQLITE_DEBUG
5559 /*
5560 ** Always assert.  This xSelectCallback2 implementation proves that the
5561 ** xSelectCallback2 is never invoked.
5562 */
5563 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5564   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5565   assert( 0 );
5566 }
5567 #endif
5568 /*
5569 ** This routine "expands" a SELECT statement and all of its subqueries.
5570 ** For additional information on what it means to "expand" a SELECT
5571 ** statement, see the comment on the selectExpand worker callback above.
5572 **
5573 ** Expanding a SELECT statement is the first step in processing a
5574 ** SELECT statement.  The SELECT statement must be expanded before
5575 ** name resolution is performed.
5576 **
5577 ** If anything goes wrong, an error message is written into pParse.
5578 ** The calling function can detect the problem by looking at pParse->nErr
5579 ** and/or pParse->db->mallocFailed.
5580 */
5581 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5582   Walker w;
5583   w.xExprCallback = sqlite3ExprWalkNoop;
5584   w.pParse = pParse;
5585   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5586     w.xSelectCallback = convertCompoundSelectToSubquery;
5587     w.xSelectCallback2 = 0;
5588     sqlite3WalkSelect(&w, pSelect);
5589   }
5590   w.xSelectCallback = selectExpander;
5591   w.xSelectCallback2 = selectPopWith;
5592   w.eCode = 0;
5593   sqlite3WalkSelect(&w, pSelect);
5594 }
5595 
5596 
5597 #ifndef SQLITE_OMIT_SUBQUERY
5598 /*
5599 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5600 ** interface.
5601 **
5602 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5603 ** information to the Table structure that represents the result set
5604 ** of that subquery.
5605 **
5606 ** The Table structure that represents the result set was constructed
5607 ** by selectExpander() but the type and collation information was omitted
5608 ** at that point because identifiers had not yet been resolved.  This
5609 ** routine is called after identifier resolution.
5610 */
5611 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5612   Parse *pParse;
5613   int i;
5614   SrcList *pTabList;
5615   SrcItem *pFrom;
5616 
5617   assert( p->selFlags & SF_Resolved );
5618   if( p->selFlags & SF_HasTypeInfo ) return;
5619   p->selFlags |= SF_HasTypeInfo;
5620   pParse = pWalker->pParse;
5621   pTabList = p->pSrc;
5622   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5623     Table *pTab = pFrom->pTab;
5624     assert( pTab!=0 );
5625     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5626       /* A sub-query in the FROM clause of a SELECT */
5627       Select *pSel = pFrom->pSelect;
5628       if( pSel ){
5629         while( pSel->pPrior ) pSel = pSel->pPrior;
5630         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5631                                                SQLITE_AFF_NONE);
5632       }
5633     }
5634   }
5635 }
5636 #endif
5637 
5638 
5639 /*
5640 ** This routine adds datatype and collating sequence information to
5641 ** the Table structures of all FROM-clause subqueries in a
5642 ** SELECT statement.
5643 **
5644 ** Use this routine after name resolution.
5645 */
5646 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5647 #ifndef SQLITE_OMIT_SUBQUERY
5648   Walker w;
5649   w.xSelectCallback = sqlite3SelectWalkNoop;
5650   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5651   w.xExprCallback = sqlite3ExprWalkNoop;
5652   w.pParse = pParse;
5653   sqlite3WalkSelect(&w, pSelect);
5654 #endif
5655 }
5656 
5657 
5658 /*
5659 ** This routine sets up a SELECT statement for processing.  The
5660 ** following is accomplished:
5661 **
5662 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5663 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5664 **     *  ON and USING clauses are shifted into WHERE statements
5665 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5666 **     *  Identifiers in expression are matched to tables.
5667 **
5668 ** This routine acts recursively on all subqueries within the SELECT.
5669 */
5670 void sqlite3SelectPrep(
5671   Parse *pParse,         /* The parser context */
5672   Select *p,             /* The SELECT statement being coded. */
5673   NameContext *pOuterNC  /* Name context for container */
5674 ){
5675   assert( p!=0 || pParse->db->mallocFailed );
5676   if( pParse->db->mallocFailed ) return;
5677   if( p->selFlags & SF_HasTypeInfo ) return;
5678   sqlite3SelectExpand(pParse, p);
5679   if( pParse->nErr || pParse->db->mallocFailed ) return;
5680   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5681   if( pParse->nErr || pParse->db->mallocFailed ) return;
5682   sqlite3SelectAddTypeInfo(pParse, p);
5683 }
5684 
5685 /*
5686 ** Reset the aggregate accumulator.
5687 **
5688 ** The aggregate accumulator is a set of memory cells that hold
5689 ** intermediate results while calculating an aggregate.  This
5690 ** routine generates code that stores NULLs in all of those memory
5691 ** cells.
5692 */
5693 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5694   Vdbe *v = pParse->pVdbe;
5695   int i;
5696   struct AggInfo_func *pFunc;
5697   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5698   if( nReg==0 ) return;
5699   if( pParse->nErr || pParse->db->mallocFailed ) return;
5700 #ifdef SQLITE_DEBUG
5701   /* Verify that all AggInfo registers are within the range specified by
5702   ** AggInfo.mnReg..AggInfo.mxReg */
5703   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5704   for(i=0; i<pAggInfo->nColumn; i++){
5705     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5706          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5707   }
5708   for(i=0; i<pAggInfo->nFunc; i++){
5709     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5710          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5711   }
5712 #endif
5713   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5714   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5715     if( pFunc->iDistinct>=0 ){
5716       Expr *pE = pFunc->pFExpr;
5717       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5718       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5719         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5720            "argument");
5721         pFunc->iDistinct = -1;
5722       }else{
5723         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5724         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5725             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5726         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5727                           pFunc->pFunc->zName));
5728       }
5729     }
5730   }
5731 }
5732 
5733 /*
5734 ** Invoke the OP_AggFinalize opcode for every aggregate function
5735 ** in the AggInfo structure.
5736 */
5737 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5738   Vdbe *v = pParse->pVdbe;
5739   int i;
5740   struct AggInfo_func *pF;
5741   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5742     ExprList *pList = pF->pFExpr->x.pList;
5743     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5744     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5745     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5746   }
5747 }
5748 
5749 
5750 /*
5751 ** Update the accumulator memory cells for an aggregate based on
5752 ** the current cursor position.
5753 **
5754 ** If regAcc is non-zero and there are no min() or max() aggregates
5755 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5756 ** registers if register regAcc contains 0. The caller will take care
5757 ** of setting and clearing regAcc.
5758 */
5759 static void updateAccumulator(
5760   Parse *pParse,
5761   int regAcc,
5762   AggInfo *pAggInfo,
5763   int eDistinctType
5764 ){
5765   Vdbe *v = pParse->pVdbe;
5766   int i;
5767   int regHit = 0;
5768   int addrHitTest = 0;
5769   struct AggInfo_func *pF;
5770   struct AggInfo_col *pC;
5771 
5772   pAggInfo->directMode = 1;
5773   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5774     int nArg;
5775     int addrNext = 0;
5776     int regAgg;
5777     ExprList *pList = pF->pFExpr->x.pList;
5778     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5779     assert( !IsWindowFunc(pF->pFExpr) );
5780     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5781       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5782       if( pAggInfo->nAccumulator
5783        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5784        && regAcc
5785       ){
5786         /* If regAcc==0, there there exists some min() or max() function
5787         ** without a FILTER clause that will ensure the magnet registers
5788         ** are populated. */
5789         if( regHit==0 ) regHit = ++pParse->nMem;
5790         /* If this is the first row of the group (regAcc contains 0), clear the
5791         ** "magnet" register regHit so that the accumulator registers
5792         ** are populated if the FILTER clause jumps over the the
5793         ** invocation of min() or max() altogether. Or, if this is not
5794         ** the first row (regAcc contains 1), set the magnet register so that
5795         ** the accumulators are not populated unless the min()/max() is invoked
5796         ** and indicates that they should be.  */
5797         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5798       }
5799       addrNext = sqlite3VdbeMakeLabel(pParse);
5800       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5801     }
5802     if( pList ){
5803       nArg = pList->nExpr;
5804       regAgg = sqlite3GetTempRange(pParse, nArg);
5805       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5806     }else{
5807       nArg = 0;
5808       regAgg = 0;
5809     }
5810     if( pF->iDistinct>=0 && pList ){
5811       if( addrNext==0 ){
5812         addrNext = sqlite3VdbeMakeLabel(pParse);
5813       }
5814       pF->iDistinct = codeDistinct(pParse, eDistinctType,
5815           pF->iDistinct, addrNext, pList, regAgg);
5816     }
5817     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5818       CollSeq *pColl = 0;
5819       struct ExprList_item *pItem;
5820       int j;
5821       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5822       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5823         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5824       }
5825       if( !pColl ){
5826         pColl = pParse->db->pDfltColl;
5827       }
5828       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5829       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5830     }
5831     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5832     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5833     sqlite3VdbeChangeP5(v, (u8)nArg);
5834     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5835     if( addrNext ){
5836       sqlite3VdbeResolveLabel(v, addrNext);
5837     }
5838   }
5839   if( regHit==0 && pAggInfo->nAccumulator ){
5840     regHit = regAcc;
5841   }
5842   if( regHit ){
5843     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5844   }
5845   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5846     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5847   }
5848 
5849   pAggInfo->directMode = 0;
5850   if( addrHitTest ){
5851     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5852   }
5853 }
5854 
5855 /*
5856 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5857 ** count(*) query ("SELECT count(*) FROM pTab").
5858 */
5859 #ifndef SQLITE_OMIT_EXPLAIN
5860 static void explainSimpleCount(
5861   Parse *pParse,                  /* Parse context */
5862   Table *pTab,                    /* Table being queried */
5863   Index *pIdx                     /* Index used to optimize scan, or NULL */
5864 ){
5865   if( pParse->explain==2 ){
5866     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5867     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
5868         pTab->zName,
5869         bCover ? " USING COVERING INDEX " : "",
5870         bCover ? pIdx->zName : ""
5871     );
5872   }
5873 }
5874 #else
5875 # define explainSimpleCount(a,b,c)
5876 #endif
5877 
5878 /*
5879 ** sqlite3WalkExpr() callback used by havingToWhere().
5880 **
5881 ** If the node passed to the callback is a TK_AND node, return
5882 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5883 **
5884 ** Otherwise, return WRC_Prune. In this case, also check if the
5885 ** sub-expression matches the criteria for being moved to the WHERE
5886 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5887 ** within the HAVING expression with a constant "1".
5888 */
5889 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5890   if( pExpr->op!=TK_AND ){
5891     Select *pS = pWalker->u.pSelect;
5892     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
5893      && ExprAlwaysFalse(pExpr)==0
5894     ){
5895       sqlite3 *db = pWalker->pParse->db;
5896       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5897       if( pNew ){
5898         Expr *pWhere = pS->pWhere;
5899         SWAP(Expr, *pNew, *pExpr);
5900         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5901         pS->pWhere = pNew;
5902         pWalker->eCode = 1;
5903       }
5904     }
5905     return WRC_Prune;
5906   }
5907   return WRC_Continue;
5908 }
5909 
5910 /*
5911 ** Transfer eligible terms from the HAVING clause of a query, which is
5912 ** processed after grouping, to the WHERE clause, which is processed before
5913 ** grouping. For example, the query:
5914 **
5915 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5916 **
5917 ** can be rewritten as:
5918 **
5919 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5920 **
5921 ** A term of the HAVING expression is eligible for transfer if it consists
5922 ** entirely of constants and expressions that are also GROUP BY terms that
5923 ** use the "BINARY" collation sequence.
5924 */
5925 static void havingToWhere(Parse *pParse, Select *p){
5926   Walker sWalker;
5927   memset(&sWalker, 0, sizeof(sWalker));
5928   sWalker.pParse = pParse;
5929   sWalker.xExprCallback = havingToWhereExprCb;
5930   sWalker.u.pSelect = p;
5931   sqlite3WalkExpr(&sWalker, p->pHaving);
5932 #if SELECTTRACE_ENABLED
5933   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5934     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5935     sqlite3TreeViewSelect(0, p, 0);
5936   }
5937 #endif
5938 }
5939 
5940 /*
5941 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5942 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5943 ** then return 0.
5944 */
5945 static SrcItem *isSelfJoinView(
5946   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5947   SrcItem *pThis               /* Search for prior reference to this subquery */
5948 ){
5949   SrcItem *pItem;
5950   assert( pThis->pSelect!=0 );
5951   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
5952   for(pItem = pTabList->a; pItem<pThis; pItem++){
5953     Select *pS1;
5954     if( pItem->pSelect==0 ) continue;
5955     if( pItem->fg.viaCoroutine ) continue;
5956     if( pItem->zName==0 ) continue;
5957     assert( pItem->pTab!=0 );
5958     assert( pThis->pTab!=0 );
5959     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5960     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5961     pS1 = pItem->pSelect;
5962     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5963       /* The query flattener left two different CTE tables with identical
5964       ** names in the same FROM clause. */
5965       continue;
5966     }
5967     if( pItem->pSelect->selFlags & SF_PushDown ){
5968       /* The view was modified by some other optimization such as
5969       ** pushDownWhereTerms() */
5970       continue;
5971     }
5972     return pItem;
5973   }
5974   return 0;
5975 }
5976 
5977 /*
5978 ** Deallocate a single AggInfo object
5979 */
5980 static void agginfoFree(sqlite3 *db, AggInfo *p){
5981   sqlite3DbFree(db, p->aCol);
5982   sqlite3DbFree(db, p->aFunc);
5983   sqlite3DbFreeNN(db, p);
5984 }
5985 
5986 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5987 /*
5988 ** Attempt to transform a query of the form
5989 **
5990 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5991 **
5992 ** Into this:
5993 **
5994 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5995 **
5996 ** The transformation only works if all of the following are true:
5997 **
5998 **   *  The subquery is a UNION ALL of two or more terms
5999 **   *  The subquery does not have a LIMIT clause
6000 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6001 **   *  The outer query is a simple count(*) with no WHERE clause or other
6002 **      extraneous syntax.
6003 **
6004 ** Return TRUE if the optimization is undertaken.
6005 */
6006 static int countOfViewOptimization(Parse *pParse, Select *p){
6007   Select *pSub, *pPrior;
6008   Expr *pExpr;
6009   Expr *pCount;
6010   sqlite3 *db;
6011   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6012   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6013   if( p->pWhere ) return 0;
6014   if( p->pGroupBy ) return 0;
6015   pExpr = p->pEList->a[0].pExpr;
6016   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6017   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6018   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6019   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6020   pSub = p->pSrc->a[0].pSelect;
6021   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6022   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6023   do{
6024     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6025     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6026     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6027     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6028     pSub = pSub->pPrior;                              /* Repeat over compound */
6029   }while( pSub );
6030 
6031   /* If we reach this point then it is OK to perform the transformation */
6032 
6033   db = pParse->db;
6034   pCount = pExpr;
6035   pExpr = 0;
6036   pSub = p->pSrc->a[0].pSelect;
6037   p->pSrc->a[0].pSelect = 0;
6038   sqlite3SrcListDelete(db, p->pSrc);
6039   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6040   while( pSub ){
6041     Expr *pTerm;
6042     pPrior = pSub->pPrior;
6043     pSub->pPrior = 0;
6044     pSub->pNext = 0;
6045     pSub->selFlags |= SF_Aggregate;
6046     pSub->selFlags &= ~SF_Compound;
6047     pSub->nSelectRow = 0;
6048     sqlite3ExprListDelete(db, pSub->pEList);
6049     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6050     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6051     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6052     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6053     if( pExpr==0 ){
6054       pExpr = pTerm;
6055     }else{
6056       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6057     }
6058     pSub = pPrior;
6059   }
6060   p->pEList->a[0].pExpr = pExpr;
6061   p->selFlags &= ~SF_Aggregate;
6062 
6063 #if SELECTTRACE_ENABLED
6064   if( sqlite3SelectTrace & 0x400 ){
6065     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6066     sqlite3TreeViewSelect(0, p, 0);
6067   }
6068 #endif
6069   return 1;
6070 }
6071 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6072 
6073 /*
6074 ** Generate code for the SELECT statement given in the p argument.
6075 **
6076 ** The results are returned according to the SelectDest structure.
6077 ** See comments in sqliteInt.h for further information.
6078 **
6079 ** This routine returns the number of errors.  If any errors are
6080 ** encountered, then an appropriate error message is left in
6081 ** pParse->zErrMsg.
6082 **
6083 ** This routine does NOT free the Select structure passed in.  The
6084 ** calling function needs to do that.
6085 */
6086 int sqlite3Select(
6087   Parse *pParse,         /* The parser context */
6088   Select *p,             /* The SELECT statement being coded. */
6089   SelectDest *pDest      /* What to do with the query results */
6090 ){
6091   int i, j;              /* Loop counters */
6092   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6093   Vdbe *v;               /* The virtual machine under construction */
6094   int isAgg;             /* True for select lists like "count(*)" */
6095   ExprList *pEList = 0;  /* List of columns to extract. */
6096   SrcList *pTabList;     /* List of tables to select from */
6097   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6098   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6099   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6100   AggInfo *pAggInfo = 0; /* Aggregate information */
6101   int rc = 1;            /* Value to return from this function */
6102   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6103   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6104   int iEnd;              /* Address of the end of the query */
6105   sqlite3 *db;           /* The database connection */
6106   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6107   u8 minMaxFlag;                 /* Flag for min/max queries */
6108 
6109   db = pParse->db;
6110   v = sqlite3GetVdbe(pParse);
6111   if( p==0 || db->mallocFailed || pParse->nErr ){
6112     return 1;
6113   }
6114   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6115 #if SELECTTRACE_ENABLED
6116   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6117   if( sqlite3SelectTrace & 0x100 ){
6118     sqlite3TreeViewSelect(0, p, 0);
6119   }
6120 #endif
6121 
6122   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6123   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6124   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6125   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6126   if( IgnorableDistinct(pDest) ){
6127     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6128            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6129            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6130     /* All of these destinations are also able to ignore the ORDER BY clause */
6131     if( p->pOrderBy ){
6132 #if SELECTTRACE_ENABLED
6133       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6134       if( sqlite3SelectTrace & 0x100 ){
6135         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6136       }
6137 #endif
6138       sqlite3ParserAddCleanup(pParse,
6139         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6140         p->pOrderBy);
6141       testcase( pParse->earlyCleanup );
6142       p->pOrderBy = 0;
6143     }
6144     p->selFlags &= ~SF_Distinct;
6145     p->selFlags |= SF_NoopOrderBy;
6146   }
6147   sqlite3SelectPrep(pParse, p, 0);
6148   if( pParse->nErr || db->mallocFailed ){
6149     goto select_end;
6150   }
6151   assert( p->pEList!=0 );
6152 #if SELECTTRACE_ENABLED
6153   if( sqlite3SelectTrace & 0x104 ){
6154     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6155     sqlite3TreeViewSelect(0, p, 0);
6156   }
6157 #endif
6158 
6159   /* If the SF_UpdateFrom flag is set, then this function is being called
6160   ** as part of populating the temp table for an UPDATE...FROM statement.
6161   ** In this case, it is an error if the target object (pSrc->a[0]) name
6162   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).  */
6163   if( p->selFlags & SF_UpdateFrom ){
6164     SrcItem *p0 = &p->pSrc->a[0];
6165     for(i=1; i<p->pSrc->nSrc; i++){
6166       SrcItem *p1 = &p->pSrc->a[i];
6167       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6168         sqlite3ErrorMsg(pParse,
6169             "target object/alias may not appear in FROM clause: %s",
6170             p0->zAlias ? p0->zAlias : p0->pTab->zName
6171         );
6172         goto select_end;
6173       }
6174     }
6175   }
6176 
6177   if( pDest->eDest==SRT_Output ){
6178     generateColumnNames(pParse, p);
6179   }
6180 
6181 #ifndef SQLITE_OMIT_WINDOWFUNC
6182   rc = sqlite3WindowRewrite(pParse, p);
6183   if( rc ){
6184     assert( db->mallocFailed || pParse->nErr>0 );
6185     goto select_end;
6186   }
6187 #if SELECTTRACE_ENABLED
6188   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6189     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6190     sqlite3TreeViewSelect(0, p, 0);
6191   }
6192 #endif
6193 #endif /* SQLITE_OMIT_WINDOWFUNC */
6194   pTabList = p->pSrc;
6195   isAgg = (p->selFlags & SF_Aggregate)!=0;
6196   memset(&sSort, 0, sizeof(sSort));
6197   sSort.pOrderBy = p->pOrderBy;
6198 
6199   /* Try to do various optimizations (flattening subqueries, and strength
6200   ** reduction of join operators) in the FROM clause up into the main query
6201   */
6202 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6203   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6204     SrcItem *pItem = &pTabList->a[i];
6205     Select *pSub = pItem->pSelect;
6206     Table *pTab = pItem->pTab;
6207 
6208     /* The expander should have already created transient Table objects
6209     ** even for FROM clause elements such as subqueries that do not correspond
6210     ** to a real table */
6211     assert( pTab!=0 );
6212 
6213     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6214     ** of the LEFT JOIN used in the WHERE clause.
6215     */
6216     if( (pItem->fg.jointype & JT_LEFT)!=0
6217      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6218      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6219     ){
6220       SELECTTRACE(0x100,pParse,p,
6221                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6222       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6223       unsetJoinExpr(p->pWhere, pItem->iCursor);
6224     }
6225 
6226     /* No futher action if this term of the FROM clause is no a subquery */
6227     if( pSub==0 ) continue;
6228 
6229     /* Catch mismatch in the declared columns of a view and the number of
6230     ** columns in the SELECT on the RHS */
6231     if( pTab->nCol!=pSub->pEList->nExpr ){
6232       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6233                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6234       goto select_end;
6235     }
6236 
6237     /* Do not try to flatten an aggregate subquery.
6238     **
6239     ** Flattening an aggregate subquery is only possible if the outer query
6240     ** is not a join.  But if the outer query is not a join, then the subquery
6241     ** will be implemented as a co-routine and there is no advantage to
6242     ** flattening in that case.
6243     */
6244     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6245     assert( pSub->pGroupBy==0 );
6246 
6247     /* If the outer query contains a "complex" result set (that is,
6248     ** if the result set of the outer query uses functions or subqueries)
6249     ** and if the subquery contains an ORDER BY clause and if
6250     ** it will be implemented as a co-routine, then do not flatten.  This
6251     ** restriction allows SQL constructs like this:
6252     **
6253     **  SELECT expensive_function(x)
6254     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6255     **
6256     ** The expensive_function() is only computed on the 10 rows that
6257     ** are output, rather than every row of the table.
6258     **
6259     ** The requirement that the outer query have a complex result set
6260     ** means that flattening does occur on simpler SQL constraints without
6261     ** the expensive_function() like:
6262     **
6263     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6264     */
6265     if( pSub->pOrderBy!=0
6266      && i==0
6267      && (p->selFlags & SF_ComplexResult)!=0
6268      && (pTabList->nSrc==1
6269          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6270     ){
6271       continue;
6272     }
6273 
6274     if( flattenSubquery(pParse, p, i, isAgg) ){
6275       if( pParse->nErr ) goto select_end;
6276       /* This subquery can be absorbed into its parent. */
6277       i = -1;
6278     }
6279     pTabList = p->pSrc;
6280     if( db->mallocFailed ) goto select_end;
6281     if( !IgnorableOrderby(pDest) ){
6282       sSort.pOrderBy = p->pOrderBy;
6283     }
6284   }
6285 #endif
6286 
6287 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6288   /* Handle compound SELECT statements using the separate multiSelect()
6289   ** procedure.
6290   */
6291   if( p->pPrior ){
6292     rc = multiSelect(pParse, p, pDest);
6293 #if SELECTTRACE_ENABLED
6294     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6295     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6296       sqlite3TreeViewSelect(0, p, 0);
6297     }
6298 #endif
6299     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6300     return rc;
6301   }
6302 #endif
6303 
6304   /* Do the WHERE-clause constant propagation optimization if this is
6305   ** a join.  No need to speed time on this operation for non-join queries
6306   ** as the equivalent optimization will be handled by query planner in
6307   ** sqlite3WhereBegin().
6308   */
6309   if( pTabList->nSrc>1
6310    && OptimizationEnabled(db, SQLITE_PropagateConst)
6311    && propagateConstants(pParse, p)
6312   ){
6313 #if SELECTTRACE_ENABLED
6314     if( sqlite3SelectTrace & 0x100 ){
6315       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6316       sqlite3TreeViewSelect(0, p, 0);
6317     }
6318 #endif
6319   }else{
6320     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6321   }
6322 
6323 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6324   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6325    && countOfViewOptimization(pParse, p)
6326   ){
6327     if( db->mallocFailed ) goto select_end;
6328     pEList = p->pEList;
6329     pTabList = p->pSrc;
6330   }
6331 #endif
6332 
6333   /* For each term in the FROM clause, do two things:
6334   ** (1) Authorized unreferenced tables
6335   ** (2) Generate code for all sub-queries
6336   */
6337   for(i=0; i<pTabList->nSrc; i++){
6338     SrcItem *pItem = &pTabList->a[i];
6339     SrcItem *pPrior;
6340     SelectDest dest;
6341     Select *pSub;
6342 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6343     const char *zSavedAuthContext;
6344 #endif
6345 
6346     /* Issue SQLITE_READ authorizations with a fake column name for any
6347     ** tables that are referenced but from which no values are extracted.
6348     ** Examples of where these kinds of null SQLITE_READ authorizations
6349     ** would occur:
6350     **
6351     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6352     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6353     **
6354     ** The fake column name is an empty string.  It is possible for a table to
6355     ** have a column named by the empty string, in which case there is no way to
6356     ** distinguish between an unreferenced table and an actual reference to the
6357     ** "" column. The original design was for the fake column name to be a NULL,
6358     ** which would be unambiguous.  But legacy authorization callbacks might
6359     ** assume the column name is non-NULL and segfault.  The use of an empty
6360     ** string for the fake column name seems safer.
6361     */
6362     if( pItem->colUsed==0 && pItem->zName!=0 ){
6363       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6364     }
6365 
6366 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6367     /* Generate code for all sub-queries in the FROM clause
6368     */
6369     pSub = pItem->pSelect;
6370     if( pSub==0 ) continue;
6371 
6372     /* The code for a subquery should only be generated once, though it is
6373     ** technically harmless for it to be generated multiple times. The
6374     ** following assert() will detect if something changes to cause
6375     ** the same subquery to be coded multiple times, as a signal to the
6376     ** developers to try to optimize the situation.
6377     **
6378     ** Update 2019-07-24:
6379     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6380     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6381     ** coded twice.  So this assert() now becomes a testcase().  It should
6382     ** be very rare, though.
6383     */
6384     testcase( pItem->addrFillSub!=0 );
6385 
6386     /* Increment Parse.nHeight by the height of the largest expression
6387     ** tree referred to by this, the parent select. The child select
6388     ** may contain expression trees of at most
6389     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6390     ** more conservative than necessary, but much easier than enforcing
6391     ** an exact limit.
6392     */
6393     pParse->nHeight += sqlite3SelectExprHeight(p);
6394 
6395     /* Make copies of constant WHERE-clause terms in the outer query down
6396     ** inside the subquery.  This can help the subquery to run more efficiently.
6397     */
6398     if( OptimizationEnabled(db, SQLITE_PushDown)
6399      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)
6400      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6401                            (pItem->fg.jointype & JT_OUTER)!=0)
6402     ){
6403 #if SELECTTRACE_ENABLED
6404       if( sqlite3SelectTrace & 0x100 ){
6405         SELECTTRACE(0x100,pParse,p,
6406             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6407         sqlite3TreeViewSelect(0, p, 0);
6408       }
6409 #endif
6410       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6411     }else{
6412       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6413     }
6414 
6415     zSavedAuthContext = pParse->zAuthContext;
6416     pParse->zAuthContext = pItem->zName;
6417 
6418     /* Generate code to implement the subquery
6419     **
6420     ** The subquery is implemented as a co-routine if:
6421     **    (1)  the subquery is guaranteed to be the outer loop (so that
6422     **         it does not need to be computed more than once), and
6423     **    (2)  the subquery is not a CTE that should be materialized
6424     **
6425     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6426     ** implementation?
6427     */
6428     if( i==0
6429      && (pTabList->nSrc==1
6430             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6431      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6432     ){
6433       /* Implement a co-routine that will return a single row of the result
6434       ** set on each invocation.
6435       */
6436       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6437 
6438       pItem->regReturn = ++pParse->nMem;
6439       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6440       VdbeComment((v, "%!S", pItem));
6441       pItem->addrFillSub = addrTop;
6442       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6443       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6444       sqlite3Select(pParse, pSub, &dest);
6445       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6446       pItem->fg.viaCoroutine = 1;
6447       pItem->regResult = dest.iSdst;
6448       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6449       sqlite3VdbeJumpHere(v, addrTop-1);
6450       sqlite3ClearTempRegCache(pParse);
6451     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6452       /* This is a CTE for which materialization code has already been
6453       ** generated.  Invoke the subroutine to compute the materialization,
6454       ** the make the pItem->iCursor be a copy of the ephemerial table that
6455       ** holds the result of the materialization. */
6456       CteUse *pCteUse = pItem->u2.pCteUse;
6457       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6458       if( pItem->iCursor!=pCteUse->iCur ){
6459         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6460       }
6461       pSub->nSelectRow = pCteUse->nRowEst;
6462     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6463       /* This view has already been materialized by a prior entry in
6464       ** this same FROM clause.  Reuse it. */
6465       if( pPrior->addrFillSub ){
6466         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6467       }
6468       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6469       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6470     }else{
6471       /* Materalize the view.  If the view is not correlated, generate a
6472       ** subroutine to do the materialization so that subsequent uses of
6473       ** the same view can reuse the materialization. */
6474       int topAddr;
6475       int onceAddr = 0;
6476       int retAddr;
6477 
6478       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6479       pItem->regReturn = ++pParse->nMem;
6480       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6481       pItem->addrFillSub = topAddr+1;
6482       if( pItem->fg.isCorrelated==0 ){
6483         /* If the subquery is not correlated and if we are not inside of
6484         ** a trigger, then we only need to compute the value of the subquery
6485         ** once. */
6486         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6487         VdbeComment((v, "materialize %!S", pItem));
6488       }else{
6489         VdbeNoopComment((v, "materialize %!S", pItem));
6490       }
6491       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6492       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6493       sqlite3Select(pParse, pSub, &dest);
6494       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6495       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6496       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6497       VdbeComment((v, "end %!S", pItem));
6498       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6499       sqlite3ClearTempRegCache(pParse);
6500       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6501         CteUse *pCteUse = pItem->u2.pCteUse;
6502         pCteUse->addrM9e = pItem->addrFillSub;
6503         pCteUse->regRtn = pItem->regReturn;
6504         pCteUse->iCur = pItem->iCursor;
6505         pCteUse->nRowEst = pSub->nSelectRow;
6506       }
6507     }
6508     if( db->mallocFailed ) goto select_end;
6509     pParse->nHeight -= sqlite3SelectExprHeight(p);
6510     pParse->zAuthContext = zSavedAuthContext;
6511 #endif
6512   }
6513 
6514   /* Various elements of the SELECT copied into local variables for
6515   ** convenience */
6516   pEList = p->pEList;
6517   pWhere = p->pWhere;
6518   pGroupBy = p->pGroupBy;
6519   pHaving = p->pHaving;
6520   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6521 
6522 #if SELECTTRACE_ENABLED
6523   if( sqlite3SelectTrace & 0x400 ){
6524     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6525     sqlite3TreeViewSelect(0, p, 0);
6526   }
6527 #endif
6528 
6529   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6530   ** if the select-list is the same as the ORDER BY list, then this query
6531   ** can be rewritten as a GROUP BY. In other words, this:
6532   **
6533   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6534   **
6535   ** is transformed to:
6536   **
6537   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6538   **
6539   ** The second form is preferred as a single index (or temp-table) may be
6540   ** used for both the ORDER BY and DISTINCT processing. As originally
6541   ** written the query must use a temp-table for at least one of the ORDER
6542   ** BY and DISTINCT, and an index or separate temp-table for the other.
6543   */
6544   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6545    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6546 #ifndef SQLITE_OMIT_WINDOWFUNC
6547    && p->pWin==0
6548 #endif
6549   ){
6550     p->selFlags &= ~SF_Distinct;
6551     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6552     p->selFlags |= SF_Aggregate;
6553     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6554     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6555     ** original setting of the SF_Distinct flag, not the current setting */
6556     assert( sDistinct.isTnct );
6557 
6558 #if SELECTTRACE_ENABLED
6559     if( sqlite3SelectTrace & 0x400 ){
6560       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6561       sqlite3TreeViewSelect(0, p, 0);
6562     }
6563 #endif
6564   }
6565 
6566   /* If there is an ORDER BY clause, then create an ephemeral index to
6567   ** do the sorting.  But this sorting ephemeral index might end up
6568   ** being unused if the data can be extracted in pre-sorted order.
6569   ** If that is the case, then the OP_OpenEphemeral instruction will be
6570   ** changed to an OP_Noop once we figure out that the sorting index is
6571   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6572   ** that change.
6573   */
6574   if( sSort.pOrderBy ){
6575     KeyInfo *pKeyInfo;
6576     pKeyInfo = sqlite3KeyInfoFromExprList(
6577         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6578     sSort.iECursor = pParse->nTab++;
6579     sSort.addrSortIndex =
6580       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6581           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6582           (char*)pKeyInfo, P4_KEYINFO
6583       );
6584   }else{
6585     sSort.addrSortIndex = -1;
6586   }
6587 
6588   /* If the output is destined for a temporary table, open that table.
6589   */
6590   if( pDest->eDest==SRT_EphemTab ){
6591     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6592   }
6593 
6594   /* Set the limiter.
6595   */
6596   iEnd = sqlite3VdbeMakeLabel(pParse);
6597   if( (p->selFlags & SF_FixedLimit)==0 ){
6598     p->nSelectRow = 320;  /* 4 billion rows */
6599   }
6600   computeLimitRegisters(pParse, p, iEnd);
6601   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6602     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6603     sSort.sortFlags |= SORTFLAG_UseSorter;
6604   }
6605 
6606   /* Open an ephemeral index to use for the distinct set.
6607   */
6608   if( p->selFlags & SF_Distinct ){
6609     sDistinct.tabTnct = pParse->nTab++;
6610     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6611                        sDistinct.tabTnct, 0, 0,
6612                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6613                        P4_KEYINFO);
6614     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6615     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6616   }else{
6617     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6618   }
6619 
6620   if( !isAgg && pGroupBy==0 ){
6621     /* No aggregate functions and no GROUP BY clause */
6622     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6623                    | (p->selFlags & SF_FixedLimit);
6624 #ifndef SQLITE_OMIT_WINDOWFUNC
6625     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6626     if( pWin ){
6627       sqlite3WindowCodeInit(pParse, p);
6628     }
6629 #endif
6630     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6631 
6632 
6633     /* Begin the database scan. */
6634     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6635     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6636                                p->pEList, wctrlFlags, p->nSelectRow);
6637     if( pWInfo==0 ) goto select_end;
6638     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6639       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6640     }
6641     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6642       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6643     }
6644     if( sSort.pOrderBy ){
6645       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6646       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6647       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6648         sSort.pOrderBy = 0;
6649       }
6650     }
6651     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6652 
6653     /* If sorting index that was created by a prior OP_OpenEphemeral
6654     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6655     ** into an OP_Noop.
6656     */
6657     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6658       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6659     }
6660 
6661     assert( p->pEList==pEList );
6662 #ifndef SQLITE_OMIT_WINDOWFUNC
6663     if( pWin ){
6664       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6665       int iCont = sqlite3VdbeMakeLabel(pParse);
6666       int iBreak = sqlite3VdbeMakeLabel(pParse);
6667       int regGosub = ++pParse->nMem;
6668 
6669       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6670 
6671       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6672       sqlite3VdbeResolveLabel(v, addrGosub);
6673       VdbeNoopComment((v, "inner-loop subroutine"));
6674       sSort.labelOBLopt = 0;
6675       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6676       sqlite3VdbeResolveLabel(v, iCont);
6677       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6678       VdbeComment((v, "end inner-loop subroutine"));
6679       sqlite3VdbeResolveLabel(v, iBreak);
6680     }else
6681 #endif /* SQLITE_OMIT_WINDOWFUNC */
6682     {
6683       /* Use the standard inner loop. */
6684       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6685           sqlite3WhereContinueLabel(pWInfo),
6686           sqlite3WhereBreakLabel(pWInfo));
6687 
6688       /* End the database scan loop.
6689       */
6690       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6691       sqlite3WhereEnd(pWInfo);
6692     }
6693   }else{
6694     /* This case when there exist aggregate functions or a GROUP BY clause
6695     ** or both */
6696     NameContext sNC;    /* Name context for processing aggregate information */
6697     int iAMem;          /* First Mem address for storing current GROUP BY */
6698     int iBMem;          /* First Mem address for previous GROUP BY */
6699     int iUseFlag;       /* Mem address holding flag indicating that at least
6700                         ** one row of the input to the aggregator has been
6701                         ** processed */
6702     int iAbortFlag;     /* Mem address which causes query abort if positive */
6703     int groupBySort;    /* Rows come from source in GROUP BY order */
6704     int addrEnd;        /* End of processing for this SELECT */
6705     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6706     int sortOut = 0;    /* Output register from the sorter */
6707     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6708 
6709     /* Remove any and all aliases between the result set and the
6710     ** GROUP BY clause.
6711     */
6712     if( pGroupBy ){
6713       int k;                        /* Loop counter */
6714       struct ExprList_item *pItem;  /* For looping over expression in a list */
6715 
6716       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6717         pItem->u.x.iAlias = 0;
6718       }
6719       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6720         pItem->u.x.iAlias = 0;
6721       }
6722       assert( 66==sqlite3LogEst(100) );
6723       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6724 
6725       /* If there is both a GROUP BY and an ORDER BY clause and they are
6726       ** identical, then it may be possible to disable the ORDER BY clause
6727       ** on the grounds that the GROUP BY will cause elements to come out
6728       ** in the correct order. It also may not - the GROUP BY might use a
6729       ** database index that causes rows to be grouped together as required
6730       ** but not actually sorted. Either way, record the fact that the
6731       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6732       ** variable.  */
6733       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6734         int ii;
6735         /* The GROUP BY processing doesn't care whether rows are delivered in
6736         ** ASC or DESC order - only that each group is returned contiguously.
6737         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6738         ** ORDER BY to maximize the chances of rows being delivered in an
6739         ** order that makes the ORDER BY redundant.  */
6740         for(ii=0; ii<pGroupBy->nExpr; ii++){
6741           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6742           pGroupBy->a[ii].sortFlags = sortFlags;
6743         }
6744         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6745           orderByGrp = 1;
6746         }
6747       }
6748     }else{
6749       assert( 0==sqlite3LogEst(1) );
6750       p->nSelectRow = 0;
6751     }
6752 
6753     /* Create a label to jump to when we want to abort the query */
6754     addrEnd = sqlite3VdbeMakeLabel(pParse);
6755 
6756     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6757     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6758     ** SELECT statement.
6759     */
6760     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6761     if( pAggInfo ){
6762       sqlite3ParserAddCleanup(pParse,
6763           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6764       testcase( pParse->earlyCleanup );
6765     }
6766     if( db->mallocFailed ){
6767       goto select_end;
6768     }
6769     pAggInfo->selId = p->selId;
6770     memset(&sNC, 0, sizeof(sNC));
6771     sNC.pParse = pParse;
6772     sNC.pSrcList = pTabList;
6773     sNC.uNC.pAggInfo = pAggInfo;
6774     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6775     pAggInfo->mnReg = pParse->nMem+1;
6776     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6777     pAggInfo->pGroupBy = pGroupBy;
6778     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6779     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6780     if( pHaving ){
6781       if( pGroupBy ){
6782         assert( pWhere==p->pWhere );
6783         assert( pHaving==p->pHaving );
6784         assert( pGroupBy==p->pGroupBy );
6785         havingToWhere(pParse, p);
6786         pWhere = p->pWhere;
6787       }
6788       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6789     }
6790     pAggInfo->nAccumulator = pAggInfo->nColumn;
6791     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6792       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6793     }else{
6794       minMaxFlag = WHERE_ORDERBY_NORMAL;
6795     }
6796     for(i=0; i<pAggInfo->nFunc; i++){
6797       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6798       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6799       sNC.ncFlags |= NC_InAggFunc;
6800       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6801 #ifndef SQLITE_OMIT_WINDOWFUNC
6802       assert( !IsWindowFunc(pExpr) );
6803       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6804         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6805       }
6806 #endif
6807       sNC.ncFlags &= ~NC_InAggFunc;
6808     }
6809     pAggInfo->mxReg = pParse->nMem;
6810     if( db->mallocFailed ) goto select_end;
6811 #if SELECTTRACE_ENABLED
6812     if( sqlite3SelectTrace & 0x400 ){
6813       int ii;
6814       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6815       sqlite3TreeViewSelect(0, p, 0);
6816       if( minMaxFlag ){
6817         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
6818         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
6819       }
6820       for(ii=0; ii<pAggInfo->nColumn; ii++){
6821         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6822             ii, pAggInfo->aCol[ii].iMem);
6823         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6824       }
6825       for(ii=0; ii<pAggInfo->nFunc; ii++){
6826         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6827             ii, pAggInfo->aFunc[ii].iMem);
6828         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6829       }
6830     }
6831 #endif
6832 
6833 
6834     /* Processing for aggregates with GROUP BY is very different and
6835     ** much more complex than aggregates without a GROUP BY.
6836     */
6837     if( pGroupBy ){
6838       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6839       int addr1;          /* A-vs-B comparision jump */
6840       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6841       int regOutputRow;   /* Return address register for output subroutine */
6842       int addrSetAbort;   /* Set the abort flag and return */
6843       int addrTopOfLoop;  /* Top of the input loop */
6844       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6845       int addrReset;      /* Subroutine for resetting the accumulator */
6846       int regReset;       /* Return address register for reset subroutine */
6847       ExprList *pDistinct = 0;
6848       u16 distFlag = 0;
6849       int eDist = WHERE_DISTINCT_NOOP;
6850 
6851       if( pAggInfo->nFunc==1
6852        && pAggInfo->aFunc[0].iDistinct>=0
6853        && pAggInfo->aFunc[0].pFExpr->x.pList
6854       ){
6855         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
6856         pExpr = sqlite3ExprDup(db, pExpr, 0);
6857         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
6858         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
6859         distFlag = pDistinct ? WHERE_WANT_DISTINCT : 0;
6860       }
6861 
6862       /* If there is a GROUP BY clause we might need a sorting index to
6863       ** implement it.  Allocate that sorting index now.  If it turns out
6864       ** that we do not need it after all, the OP_SorterOpen instruction
6865       ** will be converted into a Noop.
6866       */
6867       pAggInfo->sortingIdx = pParse->nTab++;
6868       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6869                                             0, pAggInfo->nColumn);
6870       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6871           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6872           0, (char*)pKeyInfo, P4_KEYINFO);
6873 
6874       /* Initialize memory locations used by GROUP BY aggregate processing
6875       */
6876       iUseFlag = ++pParse->nMem;
6877       iAbortFlag = ++pParse->nMem;
6878       regOutputRow = ++pParse->nMem;
6879       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6880       regReset = ++pParse->nMem;
6881       addrReset = sqlite3VdbeMakeLabel(pParse);
6882       iAMem = pParse->nMem + 1;
6883       pParse->nMem += pGroupBy->nExpr;
6884       iBMem = pParse->nMem + 1;
6885       pParse->nMem += pGroupBy->nExpr;
6886       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6887       VdbeComment((v, "clear abort flag"));
6888       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6889 
6890       /* Begin a loop that will extract all source rows in GROUP BY order.
6891       ** This might involve two separate loops with an OP_Sort in between, or
6892       ** it might be a single loop that uses an index to extract information
6893       ** in the right order to begin with.
6894       */
6895       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6896       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6897       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
6898           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
6899       );
6900       sqlite3ExprListDelete(db, pDistinct);
6901       if( pWInfo==0 ) goto select_end;
6902       eDist = sqlite3WhereIsDistinct(pWInfo);
6903       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6904       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6905         /* The optimizer is able to deliver rows in group by order so
6906         ** we do not have to sort.  The OP_OpenEphemeral table will be
6907         ** cancelled later because we still need to use the pKeyInfo
6908         */
6909         groupBySort = 0;
6910       }else{
6911         /* Rows are coming out in undetermined order.  We have to push
6912         ** each row into a sorting index, terminate the first loop,
6913         ** then loop over the sorting index in order to get the output
6914         ** in sorted order
6915         */
6916         int regBase;
6917         int regRecord;
6918         int nCol;
6919         int nGroupBy;
6920 
6921         explainTempTable(pParse,
6922             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6923                     "DISTINCT" : "GROUP BY");
6924 
6925         groupBySort = 1;
6926         nGroupBy = pGroupBy->nExpr;
6927         nCol = nGroupBy;
6928         j = nGroupBy;
6929         for(i=0; i<pAggInfo->nColumn; i++){
6930           if( pAggInfo->aCol[i].iSorterColumn>=j ){
6931             nCol++;
6932             j++;
6933           }
6934         }
6935         regBase = sqlite3GetTempRange(pParse, nCol);
6936         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6937         j = nGroupBy;
6938         for(i=0; i<pAggInfo->nColumn; i++){
6939           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
6940           if( pCol->iSorterColumn>=j ){
6941             int r1 = j + regBase;
6942             sqlite3ExprCodeGetColumnOfTable(v,
6943                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6944             j++;
6945           }
6946         }
6947         regRecord = sqlite3GetTempReg(pParse);
6948         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6949         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
6950         sqlite3ReleaseTempReg(pParse, regRecord);
6951         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6952         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6953         sqlite3WhereEnd(pWInfo);
6954         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
6955         sortOut = sqlite3GetTempReg(pParse);
6956         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6957         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
6958         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6959         pAggInfo->useSortingIdx = 1;
6960       }
6961 
6962       /* If the index or temporary table used by the GROUP BY sort
6963       ** will naturally deliver rows in the order required by the ORDER BY
6964       ** clause, cancel the ephemeral table open coded earlier.
6965       **
6966       ** This is an optimization - the correct answer should result regardless.
6967       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6968       ** disable this optimization for testing purposes.  */
6969       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6970        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6971       ){
6972         sSort.pOrderBy = 0;
6973         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6974       }
6975 
6976       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6977       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6978       ** Then compare the current GROUP BY terms against the GROUP BY terms
6979       ** from the previous row currently stored in a0, a1, a2...
6980       */
6981       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6982       if( groupBySort ){
6983         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
6984                           sortOut, sortPTab);
6985       }
6986       for(j=0; j<pGroupBy->nExpr; j++){
6987         if( groupBySort ){
6988           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6989         }else{
6990           pAggInfo->directMode = 1;
6991           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6992         }
6993       }
6994       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6995                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6996       addr1 = sqlite3VdbeCurrentAddr(v);
6997       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6998 
6999       /* Generate code that runs whenever the GROUP BY changes.
7000       ** Changes in the GROUP BY are detected by the previous code
7001       ** block.  If there were no changes, this block is skipped.
7002       **
7003       ** This code copies current group by terms in b0,b1,b2,...
7004       ** over to a0,a1,a2.  It then calls the output subroutine
7005       ** and resets the aggregate accumulator registers in preparation
7006       ** for the next GROUP BY batch.
7007       */
7008       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7009       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7010       VdbeComment((v, "output one row"));
7011       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7012       VdbeComment((v, "check abort flag"));
7013       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7014       VdbeComment((v, "reset accumulator"));
7015 
7016       /* Update the aggregate accumulators based on the content of
7017       ** the current row
7018       */
7019       sqlite3VdbeJumpHere(v, addr1);
7020       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7021       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7022       VdbeComment((v, "indicate data in accumulator"));
7023 
7024       /* End of the loop
7025       */
7026       if( groupBySort ){
7027         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7028         VdbeCoverage(v);
7029       }else{
7030         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7031         sqlite3WhereEnd(pWInfo);
7032         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7033       }
7034 
7035       /* Output the final row of result
7036       */
7037       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7038       VdbeComment((v, "output final row"));
7039 
7040       /* Jump over the subroutines
7041       */
7042       sqlite3VdbeGoto(v, addrEnd);
7043 
7044       /* Generate a subroutine that outputs a single row of the result
7045       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7046       ** is less than or equal to zero, the subroutine is a no-op.  If
7047       ** the processing calls for the query to abort, this subroutine
7048       ** increments the iAbortFlag memory location before returning in
7049       ** order to signal the caller to abort.
7050       */
7051       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7052       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7053       VdbeComment((v, "set abort flag"));
7054       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7055       sqlite3VdbeResolveLabel(v, addrOutputRow);
7056       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7057       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7058       VdbeCoverage(v);
7059       VdbeComment((v, "Groupby result generator entry point"));
7060       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7061       finalizeAggFunctions(pParse, pAggInfo);
7062       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7063       selectInnerLoop(pParse, p, -1, &sSort,
7064                       &sDistinct, pDest,
7065                       addrOutputRow+1, addrSetAbort);
7066       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7067       VdbeComment((v, "end groupby result generator"));
7068 
7069       /* Generate a subroutine that will reset the group-by accumulator
7070       */
7071       sqlite3VdbeResolveLabel(v, addrReset);
7072       resetAccumulator(pParse, pAggInfo);
7073       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7074       VdbeComment((v, "indicate accumulator empty"));
7075       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7076 
7077       if( eDist!=WHERE_DISTINCT_NOOP ){
7078         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7079         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7080       }
7081     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7082     else {
7083       Table *pTab;
7084       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7085         /* If isSimpleCount() returns a pointer to a Table structure, then
7086         ** the SQL statement is of the form:
7087         **
7088         **   SELECT count(*) FROM <tbl>
7089         **
7090         ** where the Table structure returned represents table <tbl>.
7091         **
7092         ** This statement is so common that it is optimized specially. The
7093         ** OP_Count instruction is executed either on the intkey table that
7094         ** contains the data for table <tbl> or on one of its indexes. It
7095         ** is better to execute the op on an index, as indexes are almost
7096         ** always spread across less pages than their corresponding tables.
7097         */
7098         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7099         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7100         Index *pIdx;                         /* Iterator variable */
7101         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7102         Index *pBest = 0;                    /* Best index found so far */
7103         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7104 
7105         sqlite3CodeVerifySchema(pParse, iDb);
7106         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7107 
7108         /* Search for the index that has the lowest scan cost.
7109         **
7110         ** (2011-04-15) Do not do a full scan of an unordered index.
7111         **
7112         ** (2013-10-03) Do not count the entries in a partial index.
7113         **
7114         ** In practice the KeyInfo structure will not be used. It is only
7115         ** passed to keep OP_OpenRead happy.
7116         */
7117         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7118         if( !p->pSrc->a[0].fg.notIndexed ){
7119           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7120             if( pIdx->bUnordered==0
7121              && pIdx->szIdxRow<pTab->szTabRow
7122              && pIdx->pPartIdxWhere==0
7123              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7124             ){
7125               pBest = pIdx;
7126             }
7127           }
7128         }
7129         if( pBest ){
7130           iRoot = pBest->tnum;
7131           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7132         }
7133 
7134         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7135         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7136         if( pKeyInfo ){
7137           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7138         }
7139         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7140         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7141         explainSimpleCount(pParse, pTab, pBest);
7142       }else{
7143         int regAcc = 0;           /* "populate accumulators" flag */
7144         ExprList *pDistinct = 0;
7145         u16 distFlag = 0;
7146         int eDist;
7147 
7148         /* If there are accumulator registers but no min() or max() functions
7149         ** without FILTER clauses, allocate register regAcc. Register regAcc
7150         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7151         ** The code generated by updateAccumulator() uses this to ensure
7152         ** that the accumulator registers are (a) updated only once if
7153         ** there are no min() or max functions or (b) always updated for the
7154         ** first row visited by the aggregate, so that they are updated at
7155         ** least once even if the FILTER clause means the min() or max()
7156         ** function visits zero rows.  */
7157         if( pAggInfo->nAccumulator ){
7158           for(i=0; i<pAggInfo->nFunc; i++){
7159             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7160               continue;
7161             }
7162             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7163               break;
7164             }
7165           }
7166           if( i==pAggInfo->nFunc ){
7167             regAcc = ++pParse->nMem;
7168             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7169           }
7170         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7171           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7172           distFlag = pDistinct ? WHERE_WANT_DISTINCT : 0;
7173         }
7174 
7175         /* This case runs if the aggregate has no GROUP BY clause.  The
7176         ** processing is much simpler since there is only a single row
7177         ** of output.
7178         */
7179         assert( p->pGroupBy==0 );
7180         resetAccumulator(pParse, pAggInfo);
7181 
7182         /* If this query is a candidate for the min/max optimization, then
7183         ** minMaxFlag will have been previously set to either
7184         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7185         ** be an appropriate ORDER BY expression for the optimization.
7186         */
7187         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7188         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7189 
7190         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7191         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7192                                    pDistinct, minMaxFlag|distFlag, 0);
7193         if( pWInfo==0 ){
7194           goto select_end;
7195         }
7196         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7197         eDist = sqlite3WhereIsDistinct(pWInfo);
7198         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7199         if( eDist!=WHERE_DISTINCT_NOOP ){
7200           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7201           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7202         }
7203 
7204         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7205         if( minMaxFlag ){
7206           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7207         }
7208         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7209         sqlite3WhereEnd(pWInfo);
7210         finalizeAggFunctions(pParse, pAggInfo);
7211       }
7212 
7213       sSort.pOrderBy = 0;
7214       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7215       selectInnerLoop(pParse, p, -1, 0, 0,
7216                       pDest, addrEnd, addrEnd);
7217     }
7218     sqlite3VdbeResolveLabel(v, addrEnd);
7219 
7220   } /* endif aggregate query */
7221 
7222   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7223     explainTempTable(pParse, "DISTINCT");
7224   }
7225 
7226   /* If there is an ORDER BY clause, then we need to sort the results
7227   ** and send them to the callback one by one.
7228   */
7229   if( sSort.pOrderBy ){
7230     explainTempTable(pParse,
7231                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7232     assert( p->pEList==pEList );
7233     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7234   }
7235 
7236   /* Jump here to skip this query
7237   */
7238   sqlite3VdbeResolveLabel(v, iEnd);
7239 
7240   /* The SELECT has been coded. If there is an error in the Parse structure,
7241   ** set the return code to 1. Otherwise 0. */
7242   rc = (pParse->nErr>0);
7243 
7244   /* Control jumps to here if an error is encountered above, or upon
7245   ** successful coding of the SELECT.
7246   */
7247 select_end:
7248   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7249 #ifdef SQLITE_DEBUG
7250   if( pAggInfo && !db->mallocFailed ){
7251     for(i=0; i<pAggInfo->nColumn; i++){
7252       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7253       assert( pExpr!=0 );
7254       assert( pExpr->pAggInfo==pAggInfo );
7255       assert( pExpr->iAgg==i );
7256     }
7257     for(i=0; i<pAggInfo->nFunc; i++){
7258       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7259       assert( pExpr!=0 );
7260       assert( pExpr->pAggInfo==pAggInfo );
7261       assert( pExpr->iAgg==i );
7262     }
7263   }
7264 #endif
7265 
7266 #if SELECTTRACE_ENABLED
7267   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7268   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7269     sqlite3TreeViewSelect(0, p, 0);
7270   }
7271 #endif
7272   ExplainQueryPlanPop(pParse);
7273   return rc;
7274 }
7275