1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 if( pEq && isOuterJoin ){ 351 ExprSetProperty(pEq, EP_FromJoin); 352 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 353 ExprSetVVAProperty(pEq, EP_NoReduce); 354 pEq->iRightJoinTable = pE2->iTable; 355 } 356 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 357 } 358 359 /* 360 ** Set the EP_FromJoin property on all terms of the given expression. 361 ** And set the Expr.iRightJoinTable to iTable for every term in the 362 ** expression. 363 ** 364 ** The EP_FromJoin property is used on terms of an expression to tell 365 ** the LEFT OUTER JOIN processing logic that this term is part of the 366 ** join restriction specified in the ON or USING clause and not a part 367 ** of the more general WHERE clause. These terms are moved over to the 368 ** WHERE clause during join processing but we need to remember that they 369 ** originated in the ON or USING clause. 370 ** 371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 372 ** expression depends on table iRightJoinTable even if that table is not 373 ** explicitly mentioned in the expression. That information is needed 374 ** for cases like this: 375 ** 376 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 377 ** 378 ** The where clause needs to defer the handling of the t1.x=5 379 ** term until after the t2 loop of the join. In that way, a 380 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 381 ** defer the handling of t1.x=5, it will be processed immediately 382 ** after the t1 loop and rows with t1.x!=5 will never appear in 383 ** the output, which is incorrect. 384 */ 385 void sqlite3SetJoinExpr(Expr *p, int iTable){ 386 while( p ){ 387 ExprSetProperty(p, EP_FromJoin); 388 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 389 ExprSetVVAProperty(p, EP_NoReduce); 390 p->iRightJoinTable = iTable; 391 if( p->op==TK_FUNCTION && p->x.pList ){ 392 int i; 393 for(i=0; i<p->x.pList->nExpr; i++){ 394 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 395 } 396 } 397 sqlite3SetJoinExpr(p->pLeft, iTable); 398 p = p->pRight; 399 } 400 } 401 402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 404 ** an ordinary term that omits the EP_FromJoin mark. 405 ** 406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 407 */ 408 static void unsetJoinExpr(Expr *p, int iTable){ 409 while( p ){ 410 if( ExprHasProperty(p, EP_FromJoin) 411 && (iTable<0 || p->iRightJoinTable==iTable) ){ 412 ExprClearProperty(p, EP_FromJoin); 413 } 414 if( p->op==TK_COLUMN && p->iTable==iTable ){ 415 ExprClearProperty(p, EP_CanBeNull); 416 } 417 if( p->op==TK_FUNCTION && p->x.pList ){ 418 int i; 419 for(i=0; i<p->x.pList->nExpr; i++){ 420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 421 } 422 } 423 unsetJoinExpr(p->pLeft, iTable); 424 p = p->pRight; 425 } 426 } 427 428 /* 429 ** This routine processes the join information for a SELECT statement. 430 ** ON and USING clauses are converted into extra terms of the WHERE clause. 431 ** NATURAL joins also create extra WHERE clause terms. 432 ** 433 ** The terms of a FROM clause are contained in the Select.pSrc structure. 434 ** The left most table is the first entry in Select.pSrc. The right-most 435 ** table is the last entry. The join operator is held in the entry to 436 ** the left. Thus entry 0 contains the join operator for the join between 437 ** entries 0 and 1. Any ON or USING clauses associated with the join are 438 ** also attached to the left entry. 439 ** 440 ** This routine returns the number of errors encountered. 441 */ 442 static int sqliteProcessJoin(Parse *pParse, Select *p){ 443 SrcList *pSrc; /* All tables in the FROM clause */ 444 int i, j; /* Loop counters */ 445 SrcItem *pLeft; /* Left table being joined */ 446 SrcItem *pRight; /* Right table being joined */ 447 448 pSrc = p->pSrc; 449 pLeft = &pSrc->a[0]; 450 pRight = &pLeft[1]; 451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 452 Table *pRightTab = pRight->pTab; 453 int isOuter; 454 455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 457 458 /* When the NATURAL keyword is present, add WHERE clause terms for 459 ** every column that the two tables have in common. 460 */ 461 if( pRight->fg.jointype & JT_NATURAL ){ 462 if( pRight->pOn || pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 464 "an ON or USING clause", 0); 465 return 1; 466 } 467 for(j=0; j<pRightTab->nCol; j++){ 468 char *zName; /* Name of column in the right table */ 469 int iLeft; /* Matching left table */ 470 int iLeftCol; /* Matching column in the left table */ 471 472 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 473 zName = pRightTab->aCol[j].zName; 474 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 475 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 476 isOuter, &p->pWhere); 477 } 478 } 479 } 480 481 /* Disallow both ON and USING clauses in the same join 482 */ 483 if( pRight->pOn && pRight->pUsing ){ 484 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 485 "clauses in the same join"); 486 return 1; 487 } 488 489 /* Add the ON clause to the end of the WHERE clause, connected by 490 ** an AND operator. 491 */ 492 if( pRight->pOn ){ 493 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 494 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 495 pRight->pOn = 0; 496 } 497 498 /* Create extra terms on the WHERE clause for each column named 499 ** in the USING clause. Example: If the two tables to be joined are 500 ** A and B and the USING clause names X, Y, and Z, then add this 501 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 502 ** Report an error if any column mentioned in the USING clause is 503 ** not contained in both tables to be joined. 504 */ 505 if( pRight->pUsing ){ 506 IdList *pList = pRight->pUsing; 507 for(j=0; j<pList->nId; j++){ 508 char *zName; /* Name of the term in the USING clause */ 509 int iLeft; /* Table on the left with matching column name */ 510 int iLeftCol; /* Column number of matching column on the left */ 511 int iRightCol; /* Column number of matching column on the right */ 512 513 zName = pList->a[j].zName; 514 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 515 if( iRightCol<0 516 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 517 ){ 518 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 519 "not present in both tables", zName); 520 return 1; 521 } 522 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 523 isOuter, &p->pWhere); 524 } 525 } 526 } 527 return 0; 528 } 529 530 /* 531 ** An instance of this object holds information (beyond pParse and pSelect) 532 ** needed to load the next result row that is to be added to the sorter. 533 */ 534 typedef struct RowLoadInfo RowLoadInfo; 535 struct RowLoadInfo { 536 int regResult; /* Store results in array of registers here */ 537 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 539 ExprList *pExtra; /* Extra columns needed by sorter refs */ 540 int regExtraResult; /* Where to load the extra columns */ 541 #endif 542 }; 543 544 /* 545 ** This routine does the work of loading query data into an array of 546 ** registers so that it can be added to the sorter. 547 */ 548 static void innerLoopLoadRow( 549 Parse *pParse, /* Statement under construction */ 550 Select *pSelect, /* The query being coded */ 551 RowLoadInfo *pInfo /* Info needed to complete the row load */ 552 ){ 553 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 554 0, pInfo->ecelFlags); 555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 556 if( pInfo->pExtra ){ 557 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 558 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 559 } 560 #endif 561 } 562 563 /* 564 ** Code the OP_MakeRecord instruction that generates the entry to be 565 ** added into the sorter. 566 ** 567 ** Return the register in which the result is stored. 568 */ 569 static int makeSorterRecord( 570 Parse *pParse, 571 SortCtx *pSort, 572 Select *pSelect, 573 int regBase, 574 int nBase 575 ){ 576 int nOBSat = pSort->nOBSat; 577 Vdbe *v = pParse->pVdbe; 578 int regOut = ++pParse->nMem; 579 if( pSort->pDeferredRowLoad ){ 580 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 581 } 582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 583 return regOut; 584 } 585 586 /* 587 ** Generate code that will push the record in registers regData 588 ** through regData+nData-1 onto the sorter. 589 */ 590 static void pushOntoSorter( 591 Parse *pParse, /* Parser context */ 592 SortCtx *pSort, /* Information about the ORDER BY clause */ 593 Select *pSelect, /* The whole SELECT statement */ 594 int regData, /* First register holding data to be sorted */ 595 int regOrigData, /* First register holding data before packing */ 596 int nData, /* Number of elements in the regData data array */ 597 int nPrefixReg /* No. of reg prior to regData available for use */ 598 ){ 599 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 600 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 601 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 602 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 603 int regBase; /* Regs for sorter record */ 604 int regRecord = 0; /* Assembled sorter record */ 605 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 606 int op; /* Opcode to add sorter record to sorter */ 607 int iLimit; /* LIMIT counter */ 608 int iSkip = 0; /* End of the sorter insert loop */ 609 610 assert( bSeq==0 || bSeq==1 ); 611 612 /* Three cases: 613 ** (1) The data to be sorted has already been packed into a Record 614 ** by a prior OP_MakeRecord. In this case nData==1 and regData 615 ** will be completely unrelated to regOrigData. 616 ** (2) All output columns are included in the sort record. In that 617 ** case regData==regOrigData. 618 ** (3) Some output columns are omitted from the sort record due to 619 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 620 ** SQLITE_ECEL_OMITREF optimization, or due to the 621 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 622 ** regOrigData is 0 to prevent this routine from trying to copy 623 ** values that might not yet exist. 624 */ 625 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 626 627 if( nPrefixReg ){ 628 assert( nPrefixReg==nExpr+bSeq ); 629 regBase = regData - nPrefixReg; 630 }else{ 631 regBase = pParse->nMem + 1; 632 pParse->nMem += nBase; 633 } 634 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 635 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 636 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 637 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 638 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 639 if( bSeq ){ 640 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 641 } 642 if( nPrefixReg==0 && nData>0 ){ 643 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 644 } 645 if( nOBSat>0 ){ 646 int regPrevKey; /* The first nOBSat columns of the previous row */ 647 int addrFirst; /* Address of the OP_IfNot opcode */ 648 int addrJmp; /* Address of the OP_Jump opcode */ 649 VdbeOp *pOp; /* Opcode that opens the sorter */ 650 int nKey; /* Number of sorting key columns, including OP_Sequence */ 651 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 652 653 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 654 regPrevKey = pParse->nMem+1; 655 pParse->nMem += pSort->nOBSat; 656 nKey = nExpr - pSort->nOBSat + bSeq; 657 if( bSeq ){ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 659 }else{ 660 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 661 } 662 VdbeCoverage(v); 663 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 664 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 665 if( pParse->db->mallocFailed ) return; 666 pOp->p2 = nKey + nData; 667 pKI = pOp->p4.pKeyInfo; 668 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 669 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 670 testcase( pKI->nAllField > pKI->nKeyField+2 ); 671 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 672 pKI->nAllField-pKI->nKeyField-1); 673 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 674 addrJmp = sqlite3VdbeCurrentAddr(v); 675 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 676 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 677 pSort->regReturn = ++pParse->nMem; 678 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 679 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 680 if( iLimit ){ 681 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 682 VdbeCoverage(v); 683 } 684 sqlite3VdbeJumpHere(v, addrFirst); 685 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 686 sqlite3VdbeJumpHere(v, addrJmp); 687 } 688 if( iLimit ){ 689 /* At this point the values for the new sorter entry are stored 690 ** in an array of registers. They need to be composed into a record 691 ** and inserted into the sorter if either (a) there are currently 692 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 693 ** the largest record currently in the sorter. If (b) is true and there 694 ** are already LIMIT+OFFSET items in the sorter, delete the largest 695 ** entry before inserting the new one. This way there are never more 696 ** than LIMIT+OFFSET items in the sorter. 697 ** 698 ** If the new record does not need to be inserted into the sorter, 699 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 700 ** value is not zero, then it is a label of where to jump. Otherwise, 701 ** just bypass the row insert logic. See the header comment on the 702 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 703 */ 704 int iCsr = pSort->iECursor; 705 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 706 VdbeCoverage(v); 707 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 708 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 709 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 710 VdbeCoverage(v); 711 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 712 } 713 if( regRecord==0 ){ 714 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 715 } 716 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 717 op = OP_SorterInsert; 718 }else{ 719 op = OP_IdxInsert; 720 } 721 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 722 regBase+nOBSat, nBase-nOBSat); 723 if( iSkip ){ 724 sqlite3VdbeChangeP2(v, iSkip, 725 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 726 } 727 } 728 729 /* 730 ** Add code to implement the OFFSET 731 */ 732 static void codeOffset( 733 Vdbe *v, /* Generate code into this VM */ 734 int iOffset, /* Register holding the offset counter */ 735 int iContinue /* Jump here to skip the current record */ 736 ){ 737 if( iOffset>0 ){ 738 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 739 VdbeComment((v, "OFFSET")); 740 } 741 } 742 743 /* 744 ** Add code that will check to make sure the array of registers starting at 745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 747 ** are available. Which is used depends on the value of parameter eTnctType, 748 ** as follows: 749 ** 750 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 751 ** Build an ephemeral table that contains all entries seen before and 752 ** skip entries which have been seen before. 753 ** 754 ** Parameter iTab is the cursor number of an ephemeral table that must 755 ** be opened before the VM code generated by this routine is executed. 756 ** The ephemeral cursor table is queried for a record identical to the 757 ** record formed by the current array of registers. If one is found, 758 ** jump to VM address addrRepeat. Otherwise, insert a new record into 759 ** the ephemeral cursor and proceed. 760 ** 761 ** The returned value in this case is a copy of parameter iTab. 762 ** 763 ** WHERE_DISTINCT_ORDERED: 764 ** In this case rows are being delivered sorted order. The ephermal 765 ** table is not required. Instead, the current set of values 766 ** is compared against previous row. If they match, the new row 767 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 768 ** the VM program proceeds with processing the new row. 769 ** 770 ** The returned value in this case is the register number of the first 771 ** in an array of registers used to store the previous result row so that 772 ** it can be compared to the next. The caller must ensure that this 773 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 774 ** will take care of this initialization.) 775 ** 776 ** WHERE_DISTINCT_UNIQUE: 777 ** In this case it has already been determined that the rows are distinct. 778 ** No special action is required. The return value is zero. 779 ** 780 ** Parameter pEList is the list of expressions used to generated the 781 ** contents of each row. It is used by this routine to determine (a) 782 ** how many elements there are in the array of registers and (b) the 783 ** collation sequences that should be used for the comparisons if 784 ** eTnctType is WHERE_DISTINCT_ORDERED. 785 */ 786 static int codeDistinct( 787 Parse *pParse, /* Parsing and code generating context */ 788 int eTnctType, /* WHERE_DISTINCT_* value */ 789 int iTab, /* A sorting index used to test for distinctness */ 790 int addrRepeat, /* Jump to here if not distinct */ 791 ExprList *pEList, /* Expression for each element */ 792 int regElem /* First element */ 793 ){ 794 int iRet = 0; 795 int nResultCol = pEList->nExpr; 796 Vdbe *v = pParse->pVdbe; 797 798 switch( eTnctType ){ 799 case WHERE_DISTINCT_ORDERED: { 800 int i; 801 int iJump; /* Jump destination */ 802 int regPrev; /* Previous row content */ 803 804 /* Allocate space for the previous row */ 805 iRet = regPrev = pParse->nMem+1; 806 pParse->nMem += nResultCol; 807 808 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 809 for(i=0; i<nResultCol; i++){ 810 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 811 if( i<nResultCol-1 ){ 812 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 813 VdbeCoverage(v); 814 }else{ 815 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 816 VdbeCoverage(v); 817 } 818 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 819 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 820 } 821 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 822 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 823 break; 824 } 825 826 case WHERE_DISTINCT_UNIQUE: { 827 /* nothing to do */ 828 break; 829 } 830 831 default: { 832 int r1 = sqlite3GetTempReg(pParse); 833 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 834 VdbeCoverage(v); 835 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 836 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 837 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 838 sqlite3ReleaseTempReg(pParse, r1); 839 iRet = iTab; 840 break; 841 } 842 } 843 844 return iRet; 845 } 846 847 /* 848 ** This routine runs after codeDistinct(). It makes necessary 849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 850 ** routine made use of. This processing must be done separately since 851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 852 ** laid down. 853 ** 854 ** WHERE_DISTINCT_NOOP: 855 ** WHERE_DISTINCT_UNORDERED: 856 ** 857 ** No adjustments necessary. This function is a no-op. 858 ** 859 ** WHERE_DISTINCT_UNIQUE: 860 ** 861 ** The ephemeral table is not needed. So change the 862 ** OP_OpenEphemeral opcode into an OP_Noop. 863 ** 864 ** WHERE_DISTINCT_ORDERED: 865 ** 866 ** The ephemeral table is not needed. But we do need register 867 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 868 ** into an OP_Null on the iVal register. 869 */ 870 static void fixDistinctOpenEph( 871 Parse *pParse, /* Parsing and code generating context */ 872 int eTnctType, /* WHERE_DISTINCT_* value */ 873 int iVal, /* Value returned by codeDistinct() */ 874 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 875 ){ 876 if( eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED ){ 877 Vdbe *v = pParse->pVdbe; 878 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 879 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 880 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 881 } 882 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 883 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 884 ** bit on the first register of the previous value. This will cause the 885 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 886 ** the loop even if the first row is all NULLs. */ 887 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 888 pOp->opcode = OP_Null; 889 pOp->p1 = 1; 890 pOp->p2 = iVal; 891 } 892 } 893 } 894 895 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 896 /* 897 ** This function is called as part of inner-loop generation for a SELECT 898 ** statement with an ORDER BY that is not optimized by an index. It 899 ** determines the expressions, if any, that the sorter-reference 900 ** optimization should be used for. The sorter-reference optimization 901 ** is used for SELECT queries like: 902 ** 903 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 904 ** 905 ** If the optimization is used for expression "bigblob", then instead of 906 ** storing values read from that column in the sorter records, the PK of 907 ** the row from table t1 is stored instead. Then, as records are extracted from 908 ** the sorter to return to the user, the required value of bigblob is 909 ** retrieved directly from table t1. If the values are very large, this 910 ** can be more efficient than storing them directly in the sorter records. 911 ** 912 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 913 ** for which the sorter-reference optimization should be enabled. 914 ** Additionally, the pSort->aDefer[] array is populated with entries 915 ** for all cursors required to evaluate all selected expressions. Finally. 916 ** output variable (*ppExtra) is set to an expression list containing 917 ** expressions for all extra PK values that should be stored in the 918 ** sorter records. 919 */ 920 static void selectExprDefer( 921 Parse *pParse, /* Leave any error here */ 922 SortCtx *pSort, /* Sorter context */ 923 ExprList *pEList, /* Expressions destined for sorter */ 924 ExprList **ppExtra /* Expressions to append to sorter record */ 925 ){ 926 int i; 927 int nDefer = 0; 928 ExprList *pExtra = 0; 929 for(i=0; i<pEList->nExpr; i++){ 930 struct ExprList_item *pItem = &pEList->a[i]; 931 if( pItem->u.x.iOrderByCol==0 ){ 932 Expr *pExpr = pItem->pExpr; 933 Table *pTab = pExpr->y.pTab; 934 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 935 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 936 ){ 937 int j; 938 for(j=0; j<nDefer; j++){ 939 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 940 } 941 if( j==nDefer ){ 942 if( nDefer==ArraySize(pSort->aDefer) ){ 943 continue; 944 }else{ 945 int nKey = 1; 946 int k; 947 Index *pPk = 0; 948 if( !HasRowid(pTab) ){ 949 pPk = sqlite3PrimaryKeyIndex(pTab); 950 nKey = pPk->nKeyCol; 951 } 952 for(k=0; k<nKey; k++){ 953 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 954 if( pNew ){ 955 pNew->iTable = pExpr->iTable; 956 pNew->y.pTab = pExpr->y.pTab; 957 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 958 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 959 } 960 } 961 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 962 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 963 pSort->aDefer[nDefer].nKey = nKey; 964 nDefer++; 965 } 966 } 967 pItem->bSorterRef = 1; 968 } 969 } 970 } 971 pSort->nDefer = (u8)nDefer; 972 *ppExtra = pExtra; 973 } 974 #endif 975 976 /* 977 ** This routine generates the code for the inside of the inner loop 978 ** of a SELECT. 979 ** 980 ** If srcTab is negative, then the p->pEList expressions 981 ** are evaluated in order to get the data for this row. If srcTab is 982 ** zero or more, then data is pulled from srcTab and p->pEList is used only 983 ** to get the number of columns and the collation sequence for each column. 984 */ 985 static void selectInnerLoop( 986 Parse *pParse, /* The parser context */ 987 Select *p, /* The complete select statement being coded */ 988 int srcTab, /* Pull data from this table if non-negative */ 989 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 990 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 991 SelectDest *pDest, /* How to dispose of the results */ 992 int iContinue, /* Jump here to continue with next row */ 993 int iBreak /* Jump here to break out of the inner loop */ 994 ){ 995 Vdbe *v = pParse->pVdbe; 996 int i; 997 int hasDistinct; /* True if the DISTINCT keyword is present */ 998 int eDest = pDest->eDest; /* How to dispose of results */ 999 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1000 int nResultCol; /* Number of result columns */ 1001 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1002 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1003 1004 /* Usually, regResult is the first cell in an array of memory cells 1005 ** containing the current result row. In this case regOrig is set to the 1006 ** same value. However, if the results are being sent to the sorter, the 1007 ** values for any expressions that are also part of the sort-key are omitted 1008 ** from this array. In this case regOrig is set to zero. */ 1009 int regResult; /* Start of memory holding current results */ 1010 int regOrig; /* Start of memory holding full result (or 0) */ 1011 1012 assert( v ); 1013 assert( p->pEList!=0 ); 1014 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1015 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1016 if( pSort==0 && !hasDistinct ){ 1017 assert( iContinue!=0 ); 1018 codeOffset(v, p->iOffset, iContinue); 1019 } 1020 1021 /* Pull the requested columns. 1022 */ 1023 nResultCol = p->pEList->nExpr; 1024 1025 if( pDest->iSdst==0 ){ 1026 if( pSort ){ 1027 nPrefixReg = pSort->pOrderBy->nExpr; 1028 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1029 pParse->nMem += nPrefixReg; 1030 } 1031 pDest->iSdst = pParse->nMem+1; 1032 pParse->nMem += nResultCol; 1033 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1034 /* This is an error condition that can result, for example, when a SELECT 1035 ** on the right-hand side of an INSERT contains more result columns than 1036 ** there are columns in the table on the left. The error will be caught 1037 ** and reported later. But we need to make sure enough memory is allocated 1038 ** to avoid other spurious errors in the meantime. */ 1039 pParse->nMem += nResultCol; 1040 } 1041 pDest->nSdst = nResultCol; 1042 regOrig = regResult = pDest->iSdst; 1043 if( srcTab>=0 ){ 1044 for(i=0; i<nResultCol; i++){ 1045 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1046 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1047 } 1048 }else if( eDest!=SRT_Exists ){ 1049 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1050 ExprList *pExtra = 0; 1051 #endif 1052 /* If the destination is an EXISTS(...) expression, the actual 1053 ** values returned by the SELECT are not required. 1054 */ 1055 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1056 ExprList *pEList; 1057 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1058 ecelFlags = SQLITE_ECEL_DUP; 1059 }else{ 1060 ecelFlags = 0; 1061 } 1062 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1063 /* For each expression in p->pEList that is a copy of an expression in 1064 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1065 ** iOrderByCol value to one more than the index of the ORDER BY 1066 ** expression within the sort-key that pushOntoSorter() will generate. 1067 ** This allows the p->pEList field to be omitted from the sorted record, 1068 ** saving space and CPU cycles. */ 1069 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1070 1071 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1072 int j; 1073 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1074 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1075 } 1076 } 1077 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1078 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1079 if( pExtra && pParse->db->mallocFailed==0 ){ 1080 /* If there are any extra PK columns to add to the sorter records, 1081 ** allocate extra memory cells and adjust the OpenEphemeral 1082 ** instruction to account for the larger records. This is only 1083 ** required if there are one or more WITHOUT ROWID tables with 1084 ** composite primary keys in the SortCtx.aDefer[] array. */ 1085 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1086 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1087 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1088 pParse->nMem += pExtra->nExpr; 1089 } 1090 #endif 1091 1092 /* Adjust nResultCol to account for columns that are omitted 1093 ** from the sorter by the optimizations in this branch */ 1094 pEList = p->pEList; 1095 for(i=0; i<pEList->nExpr; i++){ 1096 if( pEList->a[i].u.x.iOrderByCol>0 1097 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1098 || pEList->a[i].bSorterRef 1099 #endif 1100 ){ 1101 nResultCol--; 1102 regOrig = 0; 1103 } 1104 } 1105 1106 testcase( regOrig ); 1107 testcase( eDest==SRT_Set ); 1108 testcase( eDest==SRT_Mem ); 1109 testcase( eDest==SRT_Coroutine ); 1110 testcase( eDest==SRT_Output ); 1111 assert( eDest==SRT_Set || eDest==SRT_Mem 1112 || eDest==SRT_Coroutine || eDest==SRT_Output 1113 || eDest==SRT_Upfrom ); 1114 } 1115 sRowLoadInfo.regResult = regResult; 1116 sRowLoadInfo.ecelFlags = ecelFlags; 1117 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1118 sRowLoadInfo.pExtra = pExtra; 1119 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1120 if( pExtra ) nResultCol += pExtra->nExpr; 1121 #endif 1122 if( p->iLimit 1123 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1124 && nPrefixReg>0 1125 ){ 1126 assert( pSort!=0 ); 1127 assert( hasDistinct==0 ); 1128 pSort->pDeferredRowLoad = &sRowLoadInfo; 1129 regOrig = 0; 1130 }else{ 1131 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1132 } 1133 } 1134 1135 /* If the DISTINCT keyword was present on the SELECT statement 1136 ** and this row has been seen before, then do not make this row 1137 ** part of the result. 1138 */ 1139 if( hasDistinct ){ 1140 int eType = pDistinct->eTnctType; 1141 int iTab = pDistinct->tabTnct; 1142 assert( nResultCol==p->pEList->nExpr ); 1143 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1144 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1145 if( pSort==0 ){ 1146 codeOffset(v, p->iOffset, iContinue); 1147 } 1148 } 1149 1150 switch( eDest ){ 1151 /* In this mode, write each query result to the key of the temporary 1152 ** table iParm. 1153 */ 1154 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1155 case SRT_Union: { 1156 int r1; 1157 r1 = sqlite3GetTempReg(pParse); 1158 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1159 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1160 sqlite3ReleaseTempReg(pParse, r1); 1161 break; 1162 } 1163 1164 /* Construct a record from the query result, but instead of 1165 ** saving that record, use it as a key to delete elements from 1166 ** the temporary table iParm. 1167 */ 1168 case SRT_Except: { 1169 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1170 break; 1171 } 1172 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1173 1174 /* Store the result as data using a unique key. 1175 */ 1176 case SRT_Fifo: 1177 case SRT_DistFifo: 1178 case SRT_Table: 1179 case SRT_EphemTab: { 1180 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1181 testcase( eDest==SRT_Table ); 1182 testcase( eDest==SRT_EphemTab ); 1183 testcase( eDest==SRT_Fifo ); 1184 testcase( eDest==SRT_DistFifo ); 1185 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1186 #ifndef SQLITE_OMIT_CTE 1187 if( eDest==SRT_DistFifo ){ 1188 /* If the destination is DistFifo, then cursor (iParm+1) is open 1189 ** on an ephemeral index. If the current row is already present 1190 ** in the index, do not write it to the output. If not, add the 1191 ** current row to the index and proceed with writing it to the 1192 ** output table as well. */ 1193 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1194 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1195 VdbeCoverage(v); 1196 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1197 assert( pSort==0 ); 1198 } 1199 #endif 1200 if( pSort ){ 1201 assert( regResult==regOrig ); 1202 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1203 }else{ 1204 int r2 = sqlite3GetTempReg(pParse); 1205 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1206 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1207 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1208 sqlite3ReleaseTempReg(pParse, r2); 1209 } 1210 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1211 break; 1212 } 1213 1214 case SRT_Upfrom: { 1215 if( pSort ){ 1216 pushOntoSorter( 1217 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1218 }else{ 1219 int i2 = pDest->iSDParm2; 1220 int r1 = sqlite3GetTempReg(pParse); 1221 1222 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1223 ** might still be trying to return one row, because that is what 1224 ** aggregates do. Don't record that empty row in the output table. */ 1225 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1226 1227 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1228 regResult+(i2<0), nResultCol-(i2<0), r1); 1229 if( i2<0 ){ 1230 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1231 }else{ 1232 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1233 } 1234 } 1235 break; 1236 } 1237 1238 #ifndef SQLITE_OMIT_SUBQUERY 1239 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1240 ** then there should be a single item on the stack. Write this 1241 ** item into the set table with bogus data. 1242 */ 1243 case SRT_Set: { 1244 if( pSort ){ 1245 /* At first glance you would think we could optimize out the 1246 ** ORDER BY in this case since the order of entries in the set 1247 ** does not matter. But there might be a LIMIT clause, in which 1248 ** case the order does matter */ 1249 pushOntoSorter( 1250 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1251 }else{ 1252 int r1 = sqlite3GetTempReg(pParse); 1253 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1254 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1255 r1, pDest->zAffSdst, nResultCol); 1256 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1257 sqlite3ReleaseTempReg(pParse, r1); 1258 } 1259 break; 1260 } 1261 1262 1263 /* If any row exist in the result set, record that fact and abort. 1264 */ 1265 case SRT_Exists: { 1266 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1267 /* The LIMIT clause will terminate the loop for us */ 1268 break; 1269 } 1270 1271 /* If this is a scalar select that is part of an expression, then 1272 ** store the results in the appropriate memory cell or array of 1273 ** memory cells and break out of the scan loop. 1274 */ 1275 case SRT_Mem: { 1276 if( pSort ){ 1277 assert( nResultCol<=pDest->nSdst ); 1278 pushOntoSorter( 1279 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1280 }else{ 1281 assert( nResultCol==pDest->nSdst ); 1282 assert( regResult==iParm ); 1283 /* The LIMIT clause will jump out of the loop for us */ 1284 } 1285 break; 1286 } 1287 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1288 1289 case SRT_Coroutine: /* Send data to a co-routine */ 1290 case SRT_Output: { /* Return the results */ 1291 testcase( eDest==SRT_Coroutine ); 1292 testcase( eDest==SRT_Output ); 1293 if( pSort ){ 1294 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1295 nPrefixReg); 1296 }else if( eDest==SRT_Coroutine ){ 1297 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1298 }else{ 1299 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1300 } 1301 break; 1302 } 1303 1304 #ifndef SQLITE_OMIT_CTE 1305 /* Write the results into a priority queue that is order according to 1306 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1307 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1308 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1309 ** final OP_Sequence column. The last column is the record as a blob. 1310 */ 1311 case SRT_DistQueue: 1312 case SRT_Queue: { 1313 int nKey; 1314 int r1, r2, r3; 1315 int addrTest = 0; 1316 ExprList *pSO; 1317 pSO = pDest->pOrderBy; 1318 assert( pSO ); 1319 nKey = pSO->nExpr; 1320 r1 = sqlite3GetTempReg(pParse); 1321 r2 = sqlite3GetTempRange(pParse, nKey+2); 1322 r3 = r2+nKey+1; 1323 if( eDest==SRT_DistQueue ){ 1324 /* If the destination is DistQueue, then cursor (iParm+1) is open 1325 ** on a second ephemeral index that holds all values every previously 1326 ** added to the queue. */ 1327 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1328 regResult, nResultCol); 1329 VdbeCoverage(v); 1330 } 1331 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1332 if( eDest==SRT_DistQueue ){ 1333 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1334 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1335 } 1336 for(i=0; i<nKey; i++){ 1337 sqlite3VdbeAddOp2(v, OP_SCopy, 1338 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1339 r2+i); 1340 } 1341 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1342 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1343 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1344 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1345 sqlite3ReleaseTempReg(pParse, r1); 1346 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1347 break; 1348 } 1349 #endif /* SQLITE_OMIT_CTE */ 1350 1351 1352 1353 #if !defined(SQLITE_OMIT_TRIGGER) 1354 /* Discard the results. This is used for SELECT statements inside 1355 ** the body of a TRIGGER. The purpose of such selects is to call 1356 ** user-defined functions that have side effects. We do not care 1357 ** about the actual results of the select. 1358 */ 1359 default: { 1360 assert( eDest==SRT_Discard ); 1361 break; 1362 } 1363 #endif 1364 } 1365 1366 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1367 ** there is a sorter, in which case the sorter has already limited 1368 ** the output for us. 1369 */ 1370 if( pSort==0 && p->iLimit ){ 1371 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1372 } 1373 } 1374 1375 /* 1376 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1377 ** X extra columns. 1378 */ 1379 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1380 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1381 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1382 if( p ){ 1383 p->aSortFlags = (u8*)&p->aColl[N+X]; 1384 p->nKeyField = (u16)N; 1385 p->nAllField = (u16)(N+X); 1386 p->enc = ENC(db); 1387 p->db = db; 1388 p->nRef = 1; 1389 memset(&p[1], 0, nExtra); 1390 }else{ 1391 sqlite3OomFault(db); 1392 } 1393 return p; 1394 } 1395 1396 /* 1397 ** Deallocate a KeyInfo object 1398 */ 1399 void sqlite3KeyInfoUnref(KeyInfo *p){ 1400 if( p ){ 1401 assert( p->nRef>0 ); 1402 p->nRef--; 1403 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1404 } 1405 } 1406 1407 /* 1408 ** Make a new pointer to a KeyInfo object 1409 */ 1410 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1411 if( p ){ 1412 assert( p->nRef>0 ); 1413 p->nRef++; 1414 } 1415 return p; 1416 } 1417 1418 #ifdef SQLITE_DEBUG 1419 /* 1420 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1421 ** can only be changed if this is just a single reference to the object. 1422 ** 1423 ** This routine is used only inside of assert() statements. 1424 */ 1425 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1426 #endif /* SQLITE_DEBUG */ 1427 1428 /* 1429 ** Given an expression list, generate a KeyInfo structure that records 1430 ** the collating sequence for each expression in that expression list. 1431 ** 1432 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1433 ** KeyInfo structure is appropriate for initializing a virtual index to 1434 ** implement that clause. If the ExprList is the result set of a SELECT 1435 ** then the KeyInfo structure is appropriate for initializing a virtual 1436 ** index to implement a DISTINCT test. 1437 ** 1438 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1439 ** function is responsible for seeing that this structure is eventually 1440 ** freed. 1441 */ 1442 KeyInfo *sqlite3KeyInfoFromExprList( 1443 Parse *pParse, /* Parsing context */ 1444 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1445 int iStart, /* Begin with this column of pList */ 1446 int nExtra /* Add this many extra columns to the end */ 1447 ){ 1448 int nExpr; 1449 KeyInfo *pInfo; 1450 struct ExprList_item *pItem; 1451 sqlite3 *db = pParse->db; 1452 int i; 1453 1454 nExpr = pList->nExpr; 1455 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1456 if( pInfo ){ 1457 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1458 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1459 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1460 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1461 } 1462 } 1463 return pInfo; 1464 } 1465 1466 /* 1467 ** Name of the connection operator, used for error messages. 1468 */ 1469 const char *sqlite3SelectOpName(int id){ 1470 char *z; 1471 switch( id ){ 1472 case TK_ALL: z = "UNION ALL"; break; 1473 case TK_INTERSECT: z = "INTERSECT"; break; 1474 case TK_EXCEPT: z = "EXCEPT"; break; 1475 default: z = "UNION"; break; 1476 } 1477 return z; 1478 } 1479 1480 #ifndef SQLITE_OMIT_EXPLAIN 1481 /* 1482 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1483 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1484 ** where the caption is of the form: 1485 ** 1486 ** "USE TEMP B-TREE FOR xxx" 1487 ** 1488 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1489 ** is determined by the zUsage argument. 1490 */ 1491 static void explainTempTable(Parse *pParse, const char *zUsage){ 1492 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1493 } 1494 1495 /* 1496 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1497 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1498 ** in sqlite3Select() to assign values to structure member variables that 1499 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1500 ** code with #ifndef directives. 1501 */ 1502 # define explainSetInteger(a, b) a = b 1503 1504 #else 1505 /* No-op versions of the explainXXX() functions and macros. */ 1506 # define explainTempTable(y,z) 1507 # define explainSetInteger(y,z) 1508 #endif 1509 1510 1511 /* 1512 ** If the inner loop was generated using a non-null pOrderBy argument, 1513 ** then the results were placed in a sorter. After the loop is terminated 1514 ** we need to run the sorter and output the results. The following 1515 ** routine generates the code needed to do that. 1516 */ 1517 static void generateSortTail( 1518 Parse *pParse, /* Parsing context */ 1519 Select *p, /* The SELECT statement */ 1520 SortCtx *pSort, /* Information on the ORDER BY clause */ 1521 int nColumn, /* Number of columns of data */ 1522 SelectDest *pDest /* Write the sorted results here */ 1523 ){ 1524 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1525 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1526 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1527 int addr; /* Top of output loop. Jump for Next. */ 1528 int addrOnce = 0; 1529 int iTab; 1530 ExprList *pOrderBy = pSort->pOrderBy; 1531 int eDest = pDest->eDest; 1532 int iParm = pDest->iSDParm; 1533 int regRow; 1534 int regRowid; 1535 int iCol; 1536 int nKey; /* Number of key columns in sorter record */ 1537 int iSortTab; /* Sorter cursor to read from */ 1538 int i; 1539 int bSeq; /* True if sorter record includes seq. no. */ 1540 int nRefKey = 0; 1541 struct ExprList_item *aOutEx = p->pEList->a; 1542 1543 assert( addrBreak<0 ); 1544 if( pSort->labelBkOut ){ 1545 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1546 sqlite3VdbeGoto(v, addrBreak); 1547 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1548 } 1549 1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1551 /* Open any cursors needed for sorter-reference expressions */ 1552 for(i=0; i<pSort->nDefer; i++){ 1553 Table *pTab = pSort->aDefer[i].pTab; 1554 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1555 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1556 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1557 } 1558 #endif 1559 1560 iTab = pSort->iECursor; 1561 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1562 regRowid = 0; 1563 regRow = pDest->iSdst; 1564 }else{ 1565 regRowid = sqlite3GetTempReg(pParse); 1566 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1567 regRow = sqlite3GetTempReg(pParse); 1568 nColumn = 0; 1569 }else{ 1570 regRow = sqlite3GetTempRange(pParse, nColumn); 1571 } 1572 } 1573 nKey = pOrderBy->nExpr - pSort->nOBSat; 1574 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1575 int regSortOut = ++pParse->nMem; 1576 iSortTab = pParse->nTab++; 1577 if( pSort->labelBkOut ){ 1578 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1579 } 1580 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1581 nKey+1+nColumn+nRefKey); 1582 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1583 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1584 VdbeCoverage(v); 1585 codeOffset(v, p->iOffset, addrContinue); 1586 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1587 bSeq = 0; 1588 }else{ 1589 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1590 codeOffset(v, p->iOffset, addrContinue); 1591 iSortTab = iTab; 1592 bSeq = 1; 1593 } 1594 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1595 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1596 if( aOutEx[i].bSorterRef ) continue; 1597 #endif 1598 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1599 } 1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1601 if( pSort->nDefer ){ 1602 int iKey = iCol+1; 1603 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1604 1605 for(i=0; i<pSort->nDefer; i++){ 1606 int iCsr = pSort->aDefer[i].iCsr; 1607 Table *pTab = pSort->aDefer[i].pTab; 1608 int nKey = pSort->aDefer[i].nKey; 1609 1610 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1611 if( HasRowid(pTab) ){ 1612 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1613 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1614 sqlite3VdbeCurrentAddr(v)+1, regKey); 1615 }else{ 1616 int k; 1617 int iJmp; 1618 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1619 for(k=0; k<nKey; k++){ 1620 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1621 } 1622 iJmp = sqlite3VdbeCurrentAddr(v); 1623 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1624 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1625 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1626 } 1627 } 1628 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1629 } 1630 #endif 1631 for(i=nColumn-1; i>=0; i--){ 1632 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1633 if( aOutEx[i].bSorterRef ){ 1634 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1635 }else 1636 #endif 1637 { 1638 int iRead; 1639 if( aOutEx[i].u.x.iOrderByCol ){ 1640 iRead = aOutEx[i].u.x.iOrderByCol-1; 1641 }else{ 1642 iRead = iCol--; 1643 } 1644 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1645 VdbeComment((v, "%s", aOutEx[i].zEName)); 1646 } 1647 } 1648 switch( eDest ){ 1649 case SRT_Table: 1650 case SRT_EphemTab: { 1651 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1652 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1653 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1654 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1655 break; 1656 } 1657 #ifndef SQLITE_OMIT_SUBQUERY 1658 case SRT_Set: { 1659 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1660 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1661 pDest->zAffSdst, nColumn); 1662 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1663 break; 1664 } 1665 case SRT_Mem: { 1666 /* The LIMIT clause will terminate the loop for us */ 1667 break; 1668 } 1669 #endif 1670 case SRT_Upfrom: { 1671 int i2 = pDest->iSDParm2; 1672 int r1 = sqlite3GetTempReg(pParse); 1673 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1674 if( i2<0 ){ 1675 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1676 }else{ 1677 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1678 } 1679 break; 1680 } 1681 default: { 1682 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1683 testcase( eDest==SRT_Output ); 1684 testcase( eDest==SRT_Coroutine ); 1685 if( eDest==SRT_Output ){ 1686 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1687 }else{ 1688 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1689 } 1690 break; 1691 } 1692 } 1693 if( regRowid ){ 1694 if( eDest==SRT_Set ){ 1695 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1696 }else{ 1697 sqlite3ReleaseTempReg(pParse, regRow); 1698 } 1699 sqlite3ReleaseTempReg(pParse, regRowid); 1700 } 1701 /* The bottom of the loop 1702 */ 1703 sqlite3VdbeResolveLabel(v, addrContinue); 1704 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1705 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1706 }else{ 1707 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1708 } 1709 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1710 sqlite3VdbeResolveLabel(v, addrBreak); 1711 } 1712 1713 /* 1714 ** Return a pointer to a string containing the 'declaration type' of the 1715 ** expression pExpr. The string may be treated as static by the caller. 1716 ** 1717 ** Also try to estimate the size of the returned value and return that 1718 ** result in *pEstWidth. 1719 ** 1720 ** The declaration type is the exact datatype definition extracted from the 1721 ** original CREATE TABLE statement if the expression is a column. The 1722 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1723 ** is considered a column can be complex in the presence of subqueries. The 1724 ** result-set expression in all of the following SELECT statements is 1725 ** considered a column by this function. 1726 ** 1727 ** SELECT col FROM tbl; 1728 ** SELECT (SELECT col FROM tbl; 1729 ** SELECT (SELECT col FROM tbl); 1730 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1731 ** 1732 ** The declaration type for any expression other than a column is NULL. 1733 ** 1734 ** This routine has either 3 or 6 parameters depending on whether or not 1735 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1736 */ 1737 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1738 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1739 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1741 #endif 1742 static const char *columnTypeImpl( 1743 NameContext *pNC, 1744 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1745 Expr *pExpr 1746 #else 1747 Expr *pExpr, 1748 const char **pzOrigDb, 1749 const char **pzOrigTab, 1750 const char **pzOrigCol 1751 #endif 1752 ){ 1753 char const *zType = 0; 1754 int j; 1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1756 char const *zOrigDb = 0; 1757 char const *zOrigTab = 0; 1758 char const *zOrigCol = 0; 1759 #endif 1760 1761 assert( pExpr!=0 ); 1762 assert( pNC->pSrcList!=0 ); 1763 switch( pExpr->op ){ 1764 case TK_COLUMN: { 1765 /* The expression is a column. Locate the table the column is being 1766 ** extracted from in NameContext.pSrcList. This table may be real 1767 ** database table or a subquery. 1768 */ 1769 Table *pTab = 0; /* Table structure column is extracted from */ 1770 Select *pS = 0; /* Select the column is extracted from */ 1771 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1772 while( pNC && !pTab ){ 1773 SrcList *pTabList = pNC->pSrcList; 1774 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1775 if( j<pTabList->nSrc ){ 1776 pTab = pTabList->a[j].pTab; 1777 pS = pTabList->a[j].pSelect; 1778 }else{ 1779 pNC = pNC->pNext; 1780 } 1781 } 1782 1783 if( pTab==0 ){ 1784 /* At one time, code such as "SELECT new.x" within a trigger would 1785 ** cause this condition to run. Since then, we have restructured how 1786 ** trigger code is generated and so this condition is no longer 1787 ** possible. However, it can still be true for statements like 1788 ** the following: 1789 ** 1790 ** CREATE TABLE t1(col INTEGER); 1791 ** SELECT (SELECT t1.col) FROM FROM t1; 1792 ** 1793 ** when columnType() is called on the expression "t1.col" in the 1794 ** sub-select. In this case, set the column type to NULL, even 1795 ** though it should really be "INTEGER". 1796 ** 1797 ** This is not a problem, as the column type of "t1.col" is never 1798 ** used. When columnType() is called on the expression 1799 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1800 ** branch below. */ 1801 break; 1802 } 1803 1804 assert( pTab && pExpr->y.pTab==pTab ); 1805 if( pS ){ 1806 /* The "table" is actually a sub-select or a view in the FROM clause 1807 ** of the SELECT statement. Return the declaration type and origin 1808 ** data for the result-set column of the sub-select. 1809 */ 1810 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1811 /* If iCol is less than zero, then the expression requests the 1812 ** rowid of the sub-select or view. This expression is legal (see 1813 ** test case misc2.2.2) - it always evaluates to NULL. 1814 */ 1815 NameContext sNC; 1816 Expr *p = pS->pEList->a[iCol].pExpr; 1817 sNC.pSrcList = pS->pSrc; 1818 sNC.pNext = pNC; 1819 sNC.pParse = pNC->pParse; 1820 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1821 } 1822 }else{ 1823 /* A real table or a CTE table */ 1824 assert( !pS ); 1825 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1826 if( iCol<0 ) iCol = pTab->iPKey; 1827 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1828 if( iCol<0 ){ 1829 zType = "INTEGER"; 1830 zOrigCol = "rowid"; 1831 }else{ 1832 zOrigCol = pTab->aCol[iCol].zName; 1833 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1834 } 1835 zOrigTab = pTab->zName; 1836 if( pNC->pParse && pTab->pSchema ){ 1837 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1838 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1839 } 1840 #else 1841 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1842 if( iCol<0 ){ 1843 zType = "INTEGER"; 1844 }else{ 1845 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1846 } 1847 #endif 1848 } 1849 break; 1850 } 1851 #ifndef SQLITE_OMIT_SUBQUERY 1852 case TK_SELECT: { 1853 /* The expression is a sub-select. Return the declaration type and 1854 ** origin info for the single column in the result set of the SELECT 1855 ** statement. 1856 */ 1857 NameContext sNC; 1858 Select *pS = pExpr->x.pSelect; 1859 Expr *p = pS->pEList->a[0].pExpr; 1860 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1861 sNC.pSrcList = pS->pSrc; 1862 sNC.pNext = pNC; 1863 sNC.pParse = pNC->pParse; 1864 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1865 break; 1866 } 1867 #endif 1868 } 1869 1870 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1871 if( pzOrigDb ){ 1872 assert( pzOrigTab && pzOrigCol ); 1873 *pzOrigDb = zOrigDb; 1874 *pzOrigTab = zOrigTab; 1875 *pzOrigCol = zOrigCol; 1876 } 1877 #endif 1878 return zType; 1879 } 1880 1881 /* 1882 ** Generate code that will tell the VDBE the declaration types of columns 1883 ** in the result set. 1884 */ 1885 static void generateColumnTypes( 1886 Parse *pParse, /* Parser context */ 1887 SrcList *pTabList, /* List of tables */ 1888 ExprList *pEList /* Expressions defining the result set */ 1889 ){ 1890 #ifndef SQLITE_OMIT_DECLTYPE 1891 Vdbe *v = pParse->pVdbe; 1892 int i; 1893 NameContext sNC; 1894 sNC.pSrcList = pTabList; 1895 sNC.pParse = pParse; 1896 sNC.pNext = 0; 1897 for(i=0; i<pEList->nExpr; i++){ 1898 Expr *p = pEList->a[i].pExpr; 1899 const char *zType; 1900 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1901 const char *zOrigDb = 0; 1902 const char *zOrigTab = 0; 1903 const char *zOrigCol = 0; 1904 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1905 1906 /* The vdbe must make its own copy of the column-type and other 1907 ** column specific strings, in case the schema is reset before this 1908 ** virtual machine is deleted. 1909 */ 1910 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1911 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1912 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1913 #else 1914 zType = columnType(&sNC, p, 0, 0, 0); 1915 #endif 1916 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1917 } 1918 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1919 } 1920 1921 1922 /* 1923 ** Compute the column names for a SELECT statement. 1924 ** 1925 ** The only guarantee that SQLite makes about column names is that if the 1926 ** column has an AS clause assigning it a name, that will be the name used. 1927 ** That is the only documented guarantee. However, countless applications 1928 ** developed over the years have made baseless assumptions about column names 1929 ** and will break if those assumptions changes. Hence, use extreme caution 1930 ** when modifying this routine to avoid breaking legacy. 1931 ** 1932 ** See Also: sqlite3ColumnsFromExprList() 1933 ** 1934 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1935 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1936 ** applications should operate this way. Nevertheless, we need to support the 1937 ** other modes for legacy: 1938 ** 1939 ** short=OFF, full=OFF: Column name is the text of the expression has it 1940 ** originally appears in the SELECT statement. In 1941 ** other words, the zSpan of the result expression. 1942 ** 1943 ** short=ON, full=OFF: (This is the default setting). If the result 1944 ** refers directly to a table column, then the 1945 ** result column name is just the table column 1946 ** name: COLUMN. Otherwise use zSpan. 1947 ** 1948 ** full=ON, short=ANY: If the result refers directly to a table column, 1949 ** then the result column name with the table name 1950 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1951 */ 1952 static void generateColumnNames( 1953 Parse *pParse, /* Parser context */ 1954 Select *pSelect /* Generate column names for this SELECT statement */ 1955 ){ 1956 Vdbe *v = pParse->pVdbe; 1957 int i; 1958 Table *pTab; 1959 SrcList *pTabList; 1960 ExprList *pEList; 1961 sqlite3 *db = pParse->db; 1962 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1963 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1964 1965 #ifndef SQLITE_OMIT_EXPLAIN 1966 /* If this is an EXPLAIN, skip this step */ 1967 if( pParse->explain ){ 1968 return; 1969 } 1970 #endif 1971 1972 if( pParse->colNamesSet ) return; 1973 /* Column names are determined by the left-most term of a compound select */ 1974 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1975 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1976 pTabList = pSelect->pSrc; 1977 pEList = pSelect->pEList; 1978 assert( v!=0 ); 1979 assert( pTabList!=0 ); 1980 pParse->colNamesSet = 1; 1981 fullName = (db->flags & SQLITE_FullColNames)!=0; 1982 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1983 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1984 for(i=0; i<pEList->nExpr; i++){ 1985 Expr *p = pEList->a[i].pExpr; 1986 1987 assert( p!=0 ); 1988 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1989 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1990 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1991 /* An AS clause always takes first priority */ 1992 char *zName = pEList->a[i].zEName; 1993 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1994 }else if( srcName && p->op==TK_COLUMN ){ 1995 char *zCol; 1996 int iCol = p->iColumn; 1997 pTab = p->y.pTab; 1998 assert( pTab!=0 ); 1999 if( iCol<0 ) iCol = pTab->iPKey; 2000 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2001 if( iCol<0 ){ 2002 zCol = "rowid"; 2003 }else{ 2004 zCol = pTab->aCol[iCol].zName; 2005 } 2006 if( fullName ){ 2007 char *zName = 0; 2008 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2009 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2010 }else{ 2011 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2012 } 2013 }else{ 2014 const char *z = pEList->a[i].zEName; 2015 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2016 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2017 } 2018 } 2019 generateColumnTypes(pParse, pTabList, pEList); 2020 } 2021 2022 /* 2023 ** Given an expression list (which is really the list of expressions 2024 ** that form the result set of a SELECT statement) compute appropriate 2025 ** column names for a table that would hold the expression list. 2026 ** 2027 ** All column names will be unique. 2028 ** 2029 ** Only the column names are computed. Column.zType, Column.zColl, 2030 ** and other fields of Column are zeroed. 2031 ** 2032 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2033 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2034 ** 2035 ** The only guarantee that SQLite makes about column names is that if the 2036 ** column has an AS clause assigning it a name, that will be the name used. 2037 ** That is the only documented guarantee. However, countless applications 2038 ** developed over the years have made baseless assumptions about column names 2039 ** and will break if those assumptions changes. Hence, use extreme caution 2040 ** when modifying this routine to avoid breaking legacy. 2041 ** 2042 ** See Also: generateColumnNames() 2043 */ 2044 int sqlite3ColumnsFromExprList( 2045 Parse *pParse, /* Parsing context */ 2046 ExprList *pEList, /* Expr list from which to derive column names */ 2047 i16 *pnCol, /* Write the number of columns here */ 2048 Column **paCol /* Write the new column list here */ 2049 ){ 2050 sqlite3 *db = pParse->db; /* Database connection */ 2051 int i, j; /* Loop counters */ 2052 u32 cnt; /* Index added to make the name unique */ 2053 Column *aCol, *pCol; /* For looping over result columns */ 2054 int nCol; /* Number of columns in the result set */ 2055 char *zName; /* Column name */ 2056 int nName; /* Size of name in zName[] */ 2057 Hash ht; /* Hash table of column names */ 2058 Table *pTab; 2059 2060 sqlite3HashInit(&ht); 2061 if( pEList ){ 2062 nCol = pEList->nExpr; 2063 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2064 testcase( aCol==0 ); 2065 if( NEVER(nCol>32767) ) nCol = 32767; 2066 }else{ 2067 nCol = 0; 2068 aCol = 0; 2069 } 2070 assert( nCol==(i16)nCol ); 2071 *pnCol = nCol; 2072 *paCol = aCol; 2073 2074 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2075 /* Get an appropriate name for the column 2076 */ 2077 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2078 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2079 }else{ 2080 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2081 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2082 pColExpr = pColExpr->pRight; 2083 assert( pColExpr!=0 ); 2084 } 2085 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2086 /* For columns use the column name name */ 2087 int iCol = pColExpr->iColumn; 2088 if( iCol<0 ) iCol = pTab->iPKey; 2089 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 2090 }else if( pColExpr->op==TK_ID ){ 2091 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2092 zName = pColExpr->u.zToken; 2093 }else{ 2094 /* Use the original text of the column expression as its name */ 2095 zName = pEList->a[i].zEName; 2096 } 2097 } 2098 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2099 zName = sqlite3DbStrDup(db, zName); 2100 }else{ 2101 zName = sqlite3MPrintf(db,"column%d",i+1); 2102 } 2103 2104 /* Make sure the column name is unique. If the name is not unique, 2105 ** append an integer to the name so that it becomes unique. 2106 */ 2107 cnt = 0; 2108 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2109 nName = sqlite3Strlen30(zName); 2110 if( nName>0 ){ 2111 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2112 if( zName[j]==':' ) nName = j; 2113 } 2114 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2115 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2116 } 2117 pCol->zName = zName; 2118 pCol->hName = sqlite3StrIHash(zName); 2119 sqlite3ColumnPropertiesFromName(0, pCol); 2120 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2121 sqlite3OomFault(db); 2122 } 2123 } 2124 sqlite3HashClear(&ht); 2125 if( db->mallocFailed ){ 2126 for(j=0; j<i; j++){ 2127 sqlite3DbFree(db, aCol[j].zName); 2128 } 2129 sqlite3DbFree(db, aCol); 2130 *paCol = 0; 2131 *pnCol = 0; 2132 return SQLITE_NOMEM_BKPT; 2133 } 2134 return SQLITE_OK; 2135 } 2136 2137 /* 2138 ** Add type and collation information to a column list based on 2139 ** a SELECT statement. 2140 ** 2141 ** The column list presumably came from selectColumnNamesFromExprList(). 2142 ** The column list has only names, not types or collations. This 2143 ** routine goes through and adds the types and collations. 2144 ** 2145 ** This routine requires that all identifiers in the SELECT 2146 ** statement be resolved. 2147 */ 2148 void sqlite3SelectAddColumnTypeAndCollation( 2149 Parse *pParse, /* Parsing contexts */ 2150 Table *pTab, /* Add column type information to this table */ 2151 Select *pSelect, /* SELECT used to determine types and collations */ 2152 char aff /* Default affinity for columns */ 2153 ){ 2154 sqlite3 *db = pParse->db; 2155 NameContext sNC; 2156 Column *pCol; 2157 CollSeq *pColl; 2158 int i; 2159 Expr *p; 2160 struct ExprList_item *a; 2161 2162 assert( pSelect!=0 ); 2163 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2164 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2165 if( db->mallocFailed ) return; 2166 memset(&sNC, 0, sizeof(sNC)); 2167 sNC.pSrcList = pSelect->pSrc; 2168 a = pSelect->pEList->a; 2169 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2170 const char *zType; 2171 int n, m; 2172 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2173 p = a[i].pExpr; 2174 zType = columnType(&sNC, p, 0, 0, 0); 2175 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2176 pCol->affinity = sqlite3ExprAffinity(p); 2177 if( zType ){ 2178 m = sqlite3Strlen30(zType); 2179 n = sqlite3Strlen30(pCol->zName); 2180 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2181 if( pCol->zName ){ 2182 memcpy(&pCol->zName[n+1], zType, m+1); 2183 pCol->colFlags |= COLFLAG_HASTYPE; 2184 } 2185 } 2186 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2187 pColl = sqlite3ExprCollSeq(pParse, p); 2188 if( pColl && pCol->zColl==0 ){ 2189 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2190 } 2191 } 2192 pTab->szTabRow = 1; /* Any non-zero value works */ 2193 } 2194 2195 /* 2196 ** Given a SELECT statement, generate a Table structure that describes 2197 ** the result set of that SELECT. 2198 */ 2199 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2200 Table *pTab; 2201 sqlite3 *db = pParse->db; 2202 u64 savedFlags; 2203 2204 savedFlags = db->flags; 2205 db->flags &= ~(u64)SQLITE_FullColNames; 2206 db->flags |= SQLITE_ShortColNames; 2207 sqlite3SelectPrep(pParse, pSelect, 0); 2208 db->flags = savedFlags; 2209 if( pParse->nErr ) return 0; 2210 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2211 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2212 if( pTab==0 ){ 2213 return 0; 2214 } 2215 pTab->nTabRef = 1; 2216 pTab->zName = 0; 2217 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2218 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2219 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2220 pTab->iPKey = -1; 2221 if( db->mallocFailed ){ 2222 sqlite3DeleteTable(db, pTab); 2223 return 0; 2224 } 2225 return pTab; 2226 } 2227 2228 /* 2229 ** Get a VDBE for the given parser context. Create a new one if necessary. 2230 ** If an error occurs, return NULL and leave a message in pParse. 2231 */ 2232 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2233 if( pParse->pVdbe ){ 2234 return pParse->pVdbe; 2235 } 2236 if( pParse->pToplevel==0 2237 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2238 ){ 2239 pParse->okConstFactor = 1; 2240 } 2241 return sqlite3VdbeCreate(pParse); 2242 } 2243 2244 2245 /* 2246 ** Compute the iLimit and iOffset fields of the SELECT based on the 2247 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2248 ** that appear in the original SQL statement after the LIMIT and OFFSET 2249 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2250 ** are the integer memory register numbers for counters used to compute 2251 ** the limit and offset. If there is no limit and/or offset, then 2252 ** iLimit and iOffset are negative. 2253 ** 2254 ** This routine changes the values of iLimit and iOffset only if 2255 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2256 ** and iOffset should have been preset to appropriate default values (zero) 2257 ** prior to calling this routine. 2258 ** 2259 ** The iOffset register (if it exists) is initialized to the value 2260 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2261 ** iOffset+1 is initialized to LIMIT+OFFSET. 2262 ** 2263 ** Only if pLimit->pLeft!=0 do the limit registers get 2264 ** redefined. The UNION ALL operator uses this property to force 2265 ** the reuse of the same limit and offset registers across multiple 2266 ** SELECT statements. 2267 */ 2268 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2269 Vdbe *v = 0; 2270 int iLimit = 0; 2271 int iOffset; 2272 int n; 2273 Expr *pLimit = p->pLimit; 2274 2275 if( p->iLimit ) return; 2276 2277 /* 2278 ** "LIMIT -1" always shows all rows. There is some 2279 ** controversy about what the correct behavior should be. 2280 ** The current implementation interprets "LIMIT 0" to mean 2281 ** no rows. 2282 */ 2283 if( pLimit ){ 2284 assert( pLimit->op==TK_LIMIT ); 2285 assert( pLimit->pLeft!=0 ); 2286 p->iLimit = iLimit = ++pParse->nMem; 2287 v = sqlite3GetVdbe(pParse); 2288 assert( v!=0 ); 2289 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2290 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2291 VdbeComment((v, "LIMIT counter")); 2292 if( n==0 ){ 2293 sqlite3VdbeGoto(v, iBreak); 2294 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2295 p->nSelectRow = sqlite3LogEst((u64)n); 2296 p->selFlags |= SF_FixedLimit; 2297 } 2298 }else{ 2299 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2300 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2301 VdbeComment((v, "LIMIT counter")); 2302 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2303 } 2304 if( pLimit->pRight ){ 2305 p->iOffset = iOffset = ++pParse->nMem; 2306 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2307 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2308 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2309 VdbeComment((v, "OFFSET counter")); 2310 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2311 VdbeComment((v, "LIMIT+OFFSET")); 2312 } 2313 } 2314 } 2315 2316 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2317 /* 2318 ** Return the appropriate collating sequence for the iCol-th column of 2319 ** the result set for the compound-select statement "p". Return NULL if 2320 ** the column has no default collating sequence. 2321 ** 2322 ** The collating sequence for the compound select is taken from the 2323 ** left-most term of the select that has a collating sequence. 2324 */ 2325 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2326 CollSeq *pRet; 2327 if( p->pPrior ){ 2328 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2329 }else{ 2330 pRet = 0; 2331 } 2332 assert( iCol>=0 ); 2333 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2334 ** have been thrown during name resolution and we would not have gotten 2335 ** this far */ 2336 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2337 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2338 } 2339 return pRet; 2340 } 2341 2342 /* 2343 ** The select statement passed as the second parameter is a compound SELECT 2344 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2345 ** structure suitable for implementing the ORDER BY. 2346 ** 2347 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2348 ** function is responsible for ensuring that this structure is eventually 2349 ** freed. 2350 */ 2351 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2352 ExprList *pOrderBy = p->pOrderBy; 2353 int nOrderBy = p->pOrderBy->nExpr; 2354 sqlite3 *db = pParse->db; 2355 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2356 if( pRet ){ 2357 int i; 2358 for(i=0; i<nOrderBy; i++){ 2359 struct ExprList_item *pItem = &pOrderBy->a[i]; 2360 Expr *pTerm = pItem->pExpr; 2361 CollSeq *pColl; 2362 2363 if( pTerm->flags & EP_Collate ){ 2364 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2365 }else{ 2366 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2367 if( pColl==0 ) pColl = db->pDfltColl; 2368 pOrderBy->a[i].pExpr = 2369 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2370 } 2371 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2372 pRet->aColl[i] = pColl; 2373 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2374 } 2375 } 2376 2377 return pRet; 2378 } 2379 2380 #ifndef SQLITE_OMIT_CTE 2381 /* 2382 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2383 ** query of the form: 2384 ** 2385 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2386 ** \___________/ \_______________/ 2387 ** p->pPrior p 2388 ** 2389 ** 2390 ** There is exactly one reference to the recursive-table in the FROM clause 2391 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2392 ** 2393 ** The setup-query runs once to generate an initial set of rows that go 2394 ** into a Queue table. Rows are extracted from the Queue table one by 2395 ** one. Each row extracted from Queue is output to pDest. Then the single 2396 ** extracted row (now in the iCurrent table) becomes the content of the 2397 ** recursive-table for a recursive-query run. The output of the recursive-query 2398 ** is added back into the Queue table. Then another row is extracted from Queue 2399 ** and the iteration continues until the Queue table is empty. 2400 ** 2401 ** If the compound query operator is UNION then no duplicate rows are ever 2402 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2403 ** that have ever been inserted into Queue and causes duplicates to be 2404 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2405 ** 2406 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2407 ** ORDER BY order and the first entry is extracted for each cycle. Without 2408 ** an ORDER BY, the Queue table is just a FIFO. 2409 ** 2410 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2411 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2412 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2413 ** with a positive value, then the first OFFSET outputs are discarded rather 2414 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2415 ** rows have been skipped. 2416 */ 2417 static void generateWithRecursiveQuery( 2418 Parse *pParse, /* Parsing context */ 2419 Select *p, /* The recursive SELECT to be coded */ 2420 SelectDest *pDest /* What to do with query results */ 2421 ){ 2422 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2423 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2424 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2425 Select *pSetup = p->pPrior; /* The setup query */ 2426 Select *pFirstRec; /* Left-most recursive term */ 2427 int addrTop; /* Top of the loop */ 2428 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2429 int iCurrent = 0; /* The Current table */ 2430 int regCurrent; /* Register holding Current table */ 2431 int iQueue; /* The Queue table */ 2432 int iDistinct = 0; /* To ensure unique results if UNION */ 2433 int eDest = SRT_Fifo; /* How to write to Queue */ 2434 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2435 int i; /* Loop counter */ 2436 int rc; /* Result code */ 2437 ExprList *pOrderBy; /* The ORDER BY clause */ 2438 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2439 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2440 2441 #ifndef SQLITE_OMIT_WINDOWFUNC 2442 if( p->pWin ){ 2443 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2444 return; 2445 } 2446 #endif 2447 2448 /* Obtain authorization to do a recursive query */ 2449 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2450 2451 /* Process the LIMIT and OFFSET clauses, if they exist */ 2452 addrBreak = sqlite3VdbeMakeLabel(pParse); 2453 p->nSelectRow = 320; /* 4 billion rows */ 2454 computeLimitRegisters(pParse, p, addrBreak); 2455 pLimit = p->pLimit; 2456 regLimit = p->iLimit; 2457 regOffset = p->iOffset; 2458 p->pLimit = 0; 2459 p->iLimit = p->iOffset = 0; 2460 pOrderBy = p->pOrderBy; 2461 2462 /* Locate the cursor number of the Current table */ 2463 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2464 if( pSrc->a[i].fg.isRecursive ){ 2465 iCurrent = pSrc->a[i].iCursor; 2466 break; 2467 } 2468 } 2469 2470 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2471 ** the Distinct table must be exactly one greater than Queue in order 2472 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2473 iQueue = pParse->nTab++; 2474 if( p->op==TK_UNION ){ 2475 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2476 iDistinct = pParse->nTab++; 2477 }else{ 2478 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2479 } 2480 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2481 2482 /* Allocate cursors for Current, Queue, and Distinct. */ 2483 regCurrent = ++pParse->nMem; 2484 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2485 if( pOrderBy ){ 2486 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2487 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2488 (char*)pKeyInfo, P4_KEYINFO); 2489 destQueue.pOrderBy = pOrderBy; 2490 }else{ 2491 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2492 } 2493 VdbeComment((v, "Queue table")); 2494 if( iDistinct ){ 2495 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2496 p->selFlags |= SF_UsesEphemeral; 2497 } 2498 2499 /* Detach the ORDER BY clause from the compound SELECT */ 2500 p->pOrderBy = 0; 2501 2502 /* Figure out how many elements of the compound SELECT are part of the 2503 ** recursive query. Make sure no recursive elements use aggregate 2504 ** functions. Mark the recursive elements as UNION ALL even if they 2505 ** are really UNION because the distinctness will be enforced by the 2506 ** iDistinct table. pFirstRec is left pointing to the left-most 2507 ** recursive term of the CTE. 2508 */ 2509 pFirstRec = p; 2510 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2511 if( pFirstRec->selFlags & SF_Aggregate ){ 2512 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2513 goto end_of_recursive_query; 2514 } 2515 pFirstRec->op = TK_ALL; 2516 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2517 } 2518 2519 /* Store the results of the setup-query in Queue. */ 2520 pSetup = pFirstRec->pPrior; 2521 pSetup->pNext = 0; 2522 ExplainQueryPlan((pParse, 1, "SETUP")); 2523 rc = sqlite3Select(pParse, pSetup, &destQueue); 2524 pSetup->pNext = p; 2525 if( rc ) goto end_of_recursive_query; 2526 2527 /* Find the next row in the Queue and output that row */ 2528 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2529 2530 /* Transfer the next row in Queue over to Current */ 2531 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2532 if( pOrderBy ){ 2533 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2534 }else{ 2535 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2536 } 2537 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2538 2539 /* Output the single row in Current */ 2540 addrCont = sqlite3VdbeMakeLabel(pParse); 2541 codeOffset(v, regOffset, addrCont); 2542 selectInnerLoop(pParse, p, iCurrent, 2543 0, 0, pDest, addrCont, addrBreak); 2544 if( regLimit ){ 2545 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2546 VdbeCoverage(v); 2547 } 2548 sqlite3VdbeResolveLabel(v, addrCont); 2549 2550 /* Execute the recursive SELECT taking the single row in Current as 2551 ** the value for the recursive-table. Store the results in the Queue. 2552 */ 2553 pFirstRec->pPrior = 0; 2554 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2555 sqlite3Select(pParse, p, &destQueue); 2556 assert( pFirstRec->pPrior==0 ); 2557 pFirstRec->pPrior = pSetup; 2558 2559 /* Keep running the loop until the Queue is empty */ 2560 sqlite3VdbeGoto(v, addrTop); 2561 sqlite3VdbeResolveLabel(v, addrBreak); 2562 2563 end_of_recursive_query: 2564 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2565 p->pOrderBy = pOrderBy; 2566 p->pLimit = pLimit; 2567 return; 2568 } 2569 #endif /* SQLITE_OMIT_CTE */ 2570 2571 /* Forward references */ 2572 static int multiSelectOrderBy( 2573 Parse *pParse, /* Parsing context */ 2574 Select *p, /* The right-most of SELECTs to be coded */ 2575 SelectDest *pDest /* What to do with query results */ 2576 ); 2577 2578 /* 2579 ** Handle the special case of a compound-select that originates from a 2580 ** VALUES clause. By handling this as a special case, we avoid deep 2581 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2582 ** on a VALUES clause. 2583 ** 2584 ** Because the Select object originates from a VALUES clause: 2585 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2586 ** (2) All terms are UNION ALL 2587 ** (3) There is no ORDER BY clause 2588 ** 2589 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2590 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2591 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2592 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2593 */ 2594 static int multiSelectValues( 2595 Parse *pParse, /* Parsing context */ 2596 Select *p, /* The right-most of SELECTs to be coded */ 2597 SelectDest *pDest /* What to do with query results */ 2598 ){ 2599 int nRow = 1; 2600 int rc = 0; 2601 int bShowAll = p->pLimit==0; 2602 assert( p->selFlags & SF_MultiValue ); 2603 do{ 2604 assert( p->selFlags & SF_Values ); 2605 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2606 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2607 #ifndef SQLITE_OMIT_WINDOWFUNC 2608 if( p->pWin ) return -1; 2609 #endif 2610 if( p->pPrior==0 ) break; 2611 assert( p->pPrior->pNext==p ); 2612 p = p->pPrior; 2613 nRow += bShowAll; 2614 }while(1); 2615 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2616 nRow==1 ? "" : "S")); 2617 while( p ){ 2618 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2619 if( !bShowAll ) break; 2620 p->nSelectRow = nRow; 2621 p = p->pNext; 2622 } 2623 return rc; 2624 } 2625 2626 /* 2627 ** Return true if the SELECT statement which is known to be the recursive 2628 ** part of a recursive CTE still has its anchor terms attached. If the 2629 ** anchor terms have already been removed, then return false. 2630 */ 2631 static int hasAnchor(Select *p){ 2632 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2633 return p!=0; 2634 } 2635 2636 /* 2637 ** This routine is called to process a compound query form from 2638 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2639 ** INTERSECT 2640 ** 2641 ** "p" points to the right-most of the two queries. the query on the 2642 ** left is p->pPrior. The left query could also be a compound query 2643 ** in which case this routine will be called recursively. 2644 ** 2645 ** The results of the total query are to be written into a destination 2646 ** of type eDest with parameter iParm. 2647 ** 2648 ** Example 1: Consider a three-way compound SQL statement. 2649 ** 2650 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2651 ** 2652 ** This statement is parsed up as follows: 2653 ** 2654 ** SELECT c FROM t3 2655 ** | 2656 ** `-----> SELECT b FROM t2 2657 ** | 2658 ** `------> SELECT a FROM t1 2659 ** 2660 ** The arrows in the diagram above represent the Select.pPrior pointer. 2661 ** So if this routine is called with p equal to the t3 query, then 2662 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2663 ** 2664 ** Notice that because of the way SQLite parses compound SELECTs, the 2665 ** individual selects always group from left to right. 2666 */ 2667 static int multiSelect( 2668 Parse *pParse, /* Parsing context */ 2669 Select *p, /* The right-most of SELECTs to be coded */ 2670 SelectDest *pDest /* What to do with query results */ 2671 ){ 2672 int rc = SQLITE_OK; /* Success code from a subroutine */ 2673 Select *pPrior; /* Another SELECT immediately to our left */ 2674 Vdbe *v; /* Generate code to this VDBE */ 2675 SelectDest dest; /* Alternative data destination */ 2676 Select *pDelete = 0; /* Chain of simple selects to delete */ 2677 sqlite3 *db; /* Database connection */ 2678 2679 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2680 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2681 */ 2682 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2683 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2684 assert( p->selFlags & SF_Compound ); 2685 db = pParse->db; 2686 pPrior = p->pPrior; 2687 dest = *pDest; 2688 assert( pPrior->pOrderBy==0 ); 2689 assert( pPrior->pLimit==0 ); 2690 2691 v = sqlite3GetVdbe(pParse); 2692 assert( v!=0 ); /* The VDBE already created by calling function */ 2693 2694 /* Create the destination temporary table if necessary 2695 */ 2696 if( dest.eDest==SRT_EphemTab ){ 2697 assert( p->pEList ); 2698 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2699 dest.eDest = SRT_Table; 2700 } 2701 2702 /* Special handling for a compound-select that originates as a VALUES clause. 2703 */ 2704 if( p->selFlags & SF_MultiValue ){ 2705 rc = multiSelectValues(pParse, p, &dest); 2706 if( rc>=0 ) goto multi_select_end; 2707 rc = SQLITE_OK; 2708 } 2709 2710 /* Make sure all SELECTs in the statement have the same number of elements 2711 ** in their result sets. 2712 */ 2713 assert( p->pEList && pPrior->pEList ); 2714 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2715 2716 #ifndef SQLITE_OMIT_CTE 2717 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2718 generateWithRecursiveQuery(pParse, p, &dest); 2719 }else 2720 #endif 2721 2722 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2723 */ 2724 if( p->pOrderBy ){ 2725 return multiSelectOrderBy(pParse, p, pDest); 2726 }else{ 2727 2728 #ifndef SQLITE_OMIT_EXPLAIN 2729 if( pPrior->pPrior==0 ){ 2730 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2731 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2732 } 2733 #endif 2734 2735 /* Generate code for the left and right SELECT statements. 2736 */ 2737 switch( p->op ){ 2738 case TK_ALL: { 2739 int addr = 0; 2740 int nLimit; 2741 assert( !pPrior->pLimit ); 2742 pPrior->iLimit = p->iLimit; 2743 pPrior->iOffset = p->iOffset; 2744 pPrior->pLimit = p->pLimit; 2745 rc = sqlite3Select(pParse, pPrior, &dest); 2746 pPrior->pLimit = 0; 2747 if( rc ){ 2748 goto multi_select_end; 2749 } 2750 p->pPrior = 0; 2751 p->iLimit = pPrior->iLimit; 2752 p->iOffset = pPrior->iOffset; 2753 if( p->iLimit ){ 2754 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2755 VdbeComment((v, "Jump ahead if LIMIT reached")); 2756 if( p->iOffset ){ 2757 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2758 p->iLimit, p->iOffset+1, p->iOffset); 2759 } 2760 } 2761 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2762 rc = sqlite3Select(pParse, p, &dest); 2763 testcase( rc!=SQLITE_OK ); 2764 pDelete = p->pPrior; 2765 p->pPrior = pPrior; 2766 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2767 if( p->pLimit 2768 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2769 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2770 ){ 2771 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2772 } 2773 if( addr ){ 2774 sqlite3VdbeJumpHere(v, addr); 2775 } 2776 break; 2777 } 2778 case TK_EXCEPT: 2779 case TK_UNION: { 2780 int unionTab; /* Cursor number of the temp table holding result */ 2781 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2782 int priorOp; /* The SRT_ operation to apply to prior selects */ 2783 Expr *pLimit; /* Saved values of p->nLimit */ 2784 int addr; 2785 SelectDest uniondest; 2786 2787 testcase( p->op==TK_EXCEPT ); 2788 testcase( p->op==TK_UNION ); 2789 priorOp = SRT_Union; 2790 if( dest.eDest==priorOp ){ 2791 /* We can reuse a temporary table generated by a SELECT to our 2792 ** right. 2793 */ 2794 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2795 unionTab = dest.iSDParm; 2796 }else{ 2797 /* We will need to create our own temporary table to hold the 2798 ** intermediate results. 2799 */ 2800 unionTab = pParse->nTab++; 2801 assert( p->pOrderBy==0 ); 2802 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2803 assert( p->addrOpenEphm[0] == -1 ); 2804 p->addrOpenEphm[0] = addr; 2805 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2806 assert( p->pEList ); 2807 } 2808 2809 2810 /* Code the SELECT statements to our left 2811 */ 2812 assert( !pPrior->pOrderBy ); 2813 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2814 rc = sqlite3Select(pParse, pPrior, &uniondest); 2815 if( rc ){ 2816 goto multi_select_end; 2817 } 2818 2819 /* Code the current SELECT statement 2820 */ 2821 if( p->op==TK_EXCEPT ){ 2822 op = SRT_Except; 2823 }else{ 2824 assert( p->op==TK_UNION ); 2825 op = SRT_Union; 2826 } 2827 p->pPrior = 0; 2828 pLimit = p->pLimit; 2829 p->pLimit = 0; 2830 uniondest.eDest = op; 2831 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2832 sqlite3SelectOpName(p->op))); 2833 rc = sqlite3Select(pParse, p, &uniondest); 2834 testcase( rc!=SQLITE_OK ); 2835 assert( p->pOrderBy==0 ); 2836 pDelete = p->pPrior; 2837 p->pPrior = pPrior; 2838 p->pOrderBy = 0; 2839 if( p->op==TK_UNION ){ 2840 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2841 } 2842 sqlite3ExprDelete(db, p->pLimit); 2843 p->pLimit = pLimit; 2844 p->iLimit = 0; 2845 p->iOffset = 0; 2846 2847 /* Convert the data in the temporary table into whatever form 2848 ** it is that we currently need. 2849 */ 2850 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2851 assert( p->pEList || db->mallocFailed ); 2852 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2853 int iCont, iBreak, iStart; 2854 iBreak = sqlite3VdbeMakeLabel(pParse); 2855 iCont = sqlite3VdbeMakeLabel(pParse); 2856 computeLimitRegisters(pParse, p, iBreak); 2857 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2858 iStart = sqlite3VdbeCurrentAddr(v); 2859 selectInnerLoop(pParse, p, unionTab, 2860 0, 0, &dest, iCont, iBreak); 2861 sqlite3VdbeResolveLabel(v, iCont); 2862 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2863 sqlite3VdbeResolveLabel(v, iBreak); 2864 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2865 } 2866 break; 2867 } 2868 default: assert( p->op==TK_INTERSECT ); { 2869 int tab1, tab2; 2870 int iCont, iBreak, iStart; 2871 Expr *pLimit; 2872 int addr; 2873 SelectDest intersectdest; 2874 int r1; 2875 2876 /* INTERSECT is different from the others since it requires 2877 ** two temporary tables. Hence it has its own case. Begin 2878 ** by allocating the tables we will need. 2879 */ 2880 tab1 = pParse->nTab++; 2881 tab2 = pParse->nTab++; 2882 assert( p->pOrderBy==0 ); 2883 2884 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2885 assert( p->addrOpenEphm[0] == -1 ); 2886 p->addrOpenEphm[0] = addr; 2887 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2888 assert( p->pEList ); 2889 2890 /* Code the SELECTs to our left into temporary table "tab1". 2891 */ 2892 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2893 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2894 if( rc ){ 2895 goto multi_select_end; 2896 } 2897 2898 /* Code the current SELECT into temporary table "tab2" 2899 */ 2900 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2901 assert( p->addrOpenEphm[1] == -1 ); 2902 p->addrOpenEphm[1] = addr; 2903 p->pPrior = 0; 2904 pLimit = p->pLimit; 2905 p->pLimit = 0; 2906 intersectdest.iSDParm = tab2; 2907 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2908 sqlite3SelectOpName(p->op))); 2909 rc = sqlite3Select(pParse, p, &intersectdest); 2910 testcase( rc!=SQLITE_OK ); 2911 pDelete = p->pPrior; 2912 p->pPrior = pPrior; 2913 if( p->nSelectRow>pPrior->nSelectRow ){ 2914 p->nSelectRow = pPrior->nSelectRow; 2915 } 2916 sqlite3ExprDelete(db, p->pLimit); 2917 p->pLimit = pLimit; 2918 2919 /* Generate code to take the intersection of the two temporary 2920 ** tables. 2921 */ 2922 if( rc ) break; 2923 assert( p->pEList ); 2924 iBreak = sqlite3VdbeMakeLabel(pParse); 2925 iCont = sqlite3VdbeMakeLabel(pParse); 2926 computeLimitRegisters(pParse, p, iBreak); 2927 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2928 r1 = sqlite3GetTempReg(pParse); 2929 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2930 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2931 VdbeCoverage(v); 2932 sqlite3ReleaseTempReg(pParse, r1); 2933 selectInnerLoop(pParse, p, tab1, 2934 0, 0, &dest, iCont, iBreak); 2935 sqlite3VdbeResolveLabel(v, iCont); 2936 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2937 sqlite3VdbeResolveLabel(v, iBreak); 2938 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2939 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2940 break; 2941 } 2942 } 2943 2944 #ifndef SQLITE_OMIT_EXPLAIN 2945 if( p->pNext==0 ){ 2946 ExplainQueryPlanPop(pParse); 2947 } 2948 #endif 2949 } 2950 if( pParse->nErr ) goto multi_select_end; 2951 2952 /* Compute collating sequences used by 2953 ** temporary tables needed to implement the compound select. 2954 ** Attach the KeyInfo structure to all temporary tables. 2955 ** 2956 ** This section is run by the right-most SELECT statement only. 2957 ** SELECT statements to the left always skip this part. The right-most 2958 ** SELECT might also skip this part if it has no ORDER BY clause and 2959 ** no temp tables are required. 2960 */ 2961 if( p->selFlags & SF_UsesEphemeral ){ 2962 int i; /* Loop counter */ 2963 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2964 Select *pLoop; /* For looping through SELECT statements */ 2965 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2966 int nCol; /* Number of columns in result set */ 2967 2968 assert( p->pNext==0 ); 2969 nCol = p->pEList->nExpr; 2970 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2971 if( !pKeyInfo ){ 2972 rc = SQLITE_NOMEM_BKPT; 2973 goto multi_select_end; 2974 } 2975 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2976 *apColl = multiSelectCollSeq(pParse, p, i); 2977 if( 0==*apColl ){ 2978 *apColl = db->pDfltColl; 2979 } 2980 } 2981 2982 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2983 for(i=0; i<2; i++){ 2984 int addr = pLoop->addrOpenEphm[i]; 2985 if( addr<0 ){ 2986 /* If [0] is unused then [1] is also unused. So we can 2987 ** always safely abort as soon as the first unused slot is found */ 2988 assert( pLoop->addrOpenEphm[1]<0 ); 2989 break; 2990 } 2991 sqlite3VdbeChangeP2(v, addr, nCol); 2992 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2993 P4_KEYINFO); 2994 pLoop->addrOpenEphm[i] = -1; 2995 } 2996 } 2997 sqlite3KeyInfoUnref(pKeyInfo); 2998 } 2999 3000 multi_select_end: 3001 pDest->iSdst = dest.iSdst; 3002 pDest->nSdst = dest.nSdst; 3003 sqlite3SelectDelete(db, pDelete); 3004 return rc; 3005 } 3006 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3007 3008 /* 3009 ** Error message for when two or more terms of a compound select have different 3010 ** size result sets. 3011 */ 3012 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3013 if( p->selFlags & SF_Values ){ 3014 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3015 }else{ 3016 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3017 " do not have the same number of result columns", 3018 sqlite3SelectOpName(p->op)); 3019 } 3020 } 3021 3022 /* 3023 ** Code an output subroutine for a coroutine implementation of a 3024 ** SELECT statment. 3025 ** 3026 ** The data to be output is contained in pIn->iSdst. There are 3027 ** pIn->nSdst columns to be output. pDest is where the output should 3028 ** be sent. 3029 ** 3030 ** regReturn is the number of the register holding the subroutine 3031 ** return address. 3032 ** 3033 ** If regPrev>0 then it is the first register in a vector that 3034 ** records the previous output. mem[regPrev] is a flag that is false 3035 ** if there has been no previous output. If regPrev>0 then code is 3036 ** generated to suppress duplicates. pKeyInfo is used for comparing 3037 ** keys. 3038 ** 3039 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3040 ** iBreak. 3041 */ 3042 static int generateOutputSubroutine( 3043 Parse *pParse, /* Parsing context */ 3044 Select *p, /* The SELECT statement */ 3045 SelectDest *pIn, /* Coroutine supplying data */ 3046 SelectDest *pDest, /* Where to send the data */ 3047 int regReturn, /* The return address register */ 3048 int regPrev, /* Previous result register. No uniqueness if 0 */ 3049 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3050 int iBreak /* Jump here if we hit the LIMIT */ 3051 ){ 3052 Vdbe *v = pParse->pVdbe; 3053 int iContinue; 3054 int addr; 3055 3056 addr = sqlite3VdbeCurrentAddr(v); 3057 iContinue = sqlite3VdbeMakeLabel(pParse); 3058 3059 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3060 */ 3061 if( regPrev ){ 3062 int addr1, addr2; 3063 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3064 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3065 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3066 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3067 sqlite3VdbeJumpHere(v, addr1); 3068 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3069 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3070 } 3071 if( pParse->db->mallocFailed ) return 0; 3072 3073 /* Suppress the first OFFSET entries if there is an OFFSET clause 3074 */ 3075 codeOffset(v, p->iOffset, iContinue); 3076 3077 assert( pDest->eDest!=SRT_Exists ); 3078 assert( pDest->eDest!=SRT_Table ); 3079 switch( pDest->eDest ){ 3080 /* Store the result as data using a unique key. 3081 */ 3082 case SRT_EphemTab: { 3083 int r1 = sqlite3GetTempReg(pParse); 3084 int r2 = sqlite3GetTempReg(pParse); 3085 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3086 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3087 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3088 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3089 sqlite3ReleaseTempReg(pParse, r2); 3090 sqlite3ReleaseTempReg(pParse, r1); 3091 break; 3092 } 3093 3094 #ifndef SQLITE_OMIT_SUBQUERY 3095 /* If we are creating a set for an "expr IN (SELECT ...)". 3096 */ 3097 case SRT_Set: { 3098 int r1; 3099 testcase( pIn->nSdst>1 ); 3100 r1 = sqlite3GetTempReg(pParse); 3101 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3102 r1, pDest->zAffSdst, pIn->nSdst); 3103 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3104 pIn->iSdst, pIn->nSdst); 3105 sqlite3ReleaseTempReg(pParse, r1); 3106 break; 3107 } 3108 3109 /* If this is a scalar select that is part of an expression, then 3110 ** store the results in the appropriate memory cell and break out 3111 ** of the scan loop. Note that the select might return multiple columns 3112 ** if it is the RHS of a row-value IN operator. 3113 */ 3114 case SRT_Mem: { 3115 testcase( pIn->nSdst>1 ); 3116 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3117 /* The LIMIT clause will jump out of the loop for us */ 3118 break; 3119 } 3120 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3121 3122 /* The results are stored in a sequence of registers 3123 ** starting at pDest->iSdst. Then the co-routine yields. 3124 */ 3125 case SRT_Coroutine: { 3126 if( pDest->iSdst==0 ){ 3127 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3128 pDest->nSdst = pIn->nSdst; 3129 } 3130 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3131 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3132 break; 3133 } 3134 3135 /* If none of the above, then the result destination must be 3136 ** SRT_Output. This routine is never called with any other 3137 ** destination other than the ones handled above or SRT_Output. 3138 ** 3139 ** For SRT_Output, results are stored in a sequence of registers. 3140 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3141 ** return the next row of result. 3142 */ 3143 default: { 3144 assert( pDest->eDest==SRT_Output ); 3145 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3146 break; 3147 } 3148 } 3149 3150 /* Jump to the end of the loop if the LIMIT is reached. 3151 */ 3152 if( p->iLimit ){ 3153 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3154 } 3155 3156 /* Generate the subroutine return 3157 */ 3158 sqlite3VdbeResolveLabel(v, iContinue); 3159 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3160 3161 return addr; 3162 } 3163 3164 /* 3165 ** Alternative compound select code generator for cases when there 3166 ** is an ORDER BY clause. 3167 ** 3168 ** We assume a query of the following form: 3169 ** 3170 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3171 ** 3172 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3173 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3174 ** co-routines. Then run the co-routines in parallel and merge the results 3175 ** into the output. In addition to the two coroutines (called selectA and 3176 ** selectB) there are 7 subroutines: 3177 ** 3178 ** outA: Move the output of the selectA coroutine into the output 3179 ** of the compound query. 3180 ** 3181 ** outB: Move the output of the selectB coroutine into the output 3182 ** of the compound query. (Only generated for UNION and 3183 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3184 ** appears only in B.) 3185 ** 3186 ** AltB: Called when there is data from both coroutines and A<B. 3187 ** 3188 ** AeqB: Called when there is data from both coroutines and A==B. 3189 ** 3190 ** AgtB: Called when there is data from both coroutines and A>B. 3191 ** 3192 ** EofA: Called when data is exhausted from selectA. 3193 ** 3194 ** EofB: Called when data is exhausted from selectB. 3195 ** 3196 ** The implementation of the latter five subroutines depend on which 3197 ** <operator> is used: 3198 ** 3199 ** 3200 ** UNION ALL UNION EXCEPT INTERSECT 3201 ** ------------- ----------------- -------------- ----------------- 3202 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3203 ** 3204 ** AeqB: outA, nextA nextA nextA outA, nextA 3205 ** 3206 ** AgtB: outB, nextB outB, nextB nextB nextB 3207 ** 3208 ** EofA: outB, nextB outB, nextB halt halt 3209 ** 3210 ** EofB: outA, nextA outA, nextA outA, nextA halt 3211 ** 3212 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3213 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3214 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3215 ** following nextX causes a jump to the end of the select processing. 3216 ** 3217 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3218 ** within the output subroutine. The regPrev register set holds the previously 3219 ** output value. A comparison is made against this value and the output 3220 ** is skipped if the next results would be the same as the previous. 3221 ** 3222 ** The implementation plan is to implement the two coroutines and seven 3223 ** subroutines first, then put the control logic at the bottom. Like this: 3224 ** 3225 ** goto Init 3226 ** coA: coroutine for left query (A) 3227 ** coB: coroutine for right query (B) 3228 ** outA: output one row of A 3229 ** outB: output one row of B (UNION and UNION ALL only) 3230 ** EofA: ... 3231 ** EofB: ... 3232 ** AltB: ... 3233 ** AeqB: ... 3234 ** AgtB: ... 3235 ** Init: initialize coroutine registers 3236 ** yield coA 3237 ** if eof(A) goto EofA 3238 ** yield coB 3239 ** if eof(B) goto EofB 3240 ** Cmpr: Compare A, B 3241 ** Jump AltB, AeqB, AgtB 3242 ** End: ... 3243 ** 3244 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3245 ** actually called using Gosub and they do not Return. EofA and EofB loop 3246 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3247 ** and AgtB jump to either L2 or to one of EofA or EofB. 3248 */ 3249 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3250 static int multiSelectOrderBy( 3251 Parse *pParse, /* Parsing context */ 3252 Select *p, /* The right-most of SELECTs to be coded */ 3253 SelectDest *pDest /* What to do with query results */ 3254 ){ 3255 int i, j; /* Loop counters */ 3256 Select *pPrior; /* Another SELECT immediately to our left */ 3257 Vdbe *v; /* Generate code to this VDBE */ 3258 SelectDest destA; /* Destination for coroutine A */ 3259 SelectDest destB; /* Destination for coroutine B */ 3260 int regAddrA; /* Address register for select-A coroutine */ 3261 int regAddrB; /* Address register for select-B coroutine */ 3262 int addrSelectA; /* Address of the select-A coroutine */ 3263 int addrSelectB; /* Address of the select-B coroutine */ 3264 int regOutA; /* Address register for the output-A subroutine */ 3265 int regOutB; /* Address register for the output-B subroutine */ 3266 int addrOutA; /* Address of the output-A subroutine */ 3267 int addrOutB = 0; /* Address of the output-B subroutine */ 3268 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3269 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3270 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3271 int addrAltB; /* Address of the A<B subroutine */ 3272 int addrAeqB; /* Address of the A==B subroutine */ 3273 int addrAgtB; /* Address of the A>B subroutine */ 3274 int regLimitA; /* Limit register for select-A */ 3275 int regLimitB; /* Limit register for select-A */ 3276 int regPrev; /* A range of registers to hold previous output */ 3277 int savedLimit; /* Saved value of p->iLimit */ 3278 int savedOffset; /* Saved value of p->iOffset */ 3279 int labelCmpr; /* Label for the start of the merge algorithm */ 3280 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3281 int addr1; /* Jump instructions that get retargetted */ 3282 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3283 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3284 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3285 sqlite3 *db; /* Database connection */ 3286 ExprList *pOrderBy; /* The ORDER BY clause */ 3287 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3288 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3289 3290 assert( p->pOrderBy!=0 ); 3291 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3292 db = pParse->db; 3293 v = pParse->pVdbe; 3294 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3295 labelEnd = sqlite3VdbeMakeLabel(pParse); 3296 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3297 3298 3299 /* Patch up the ORDER BY clause 3300 */ 3301 op = p->op; 3302 pPrior = p->pPrior; 3303 assert( pPrior->pOrderBy==0 ); 3304 pOrderBy = p->pOrderBy; 3305 assert( pOrderBy ); 3306 nOrderBy = pOrderBy->nExpr; 3307 3308 /* For operators other than UNION ALL we have to make sure that 3309 ** the ORDER BY clause covers every term of the result set. Add 3310 ** terms to the ORDER BY clause as necessary. 3311 */ 3312 if( op!=TK_ALL ){ 3313 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3314 struct ExprList_item *pItem; 3315 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3316 assert( pItem->u.x.iOrderByCol>0 ); 3317 if( pItem->u.x.iOrderByCol==i ) break; 3318 } 3319 if( j==nOrderBy ){ 3320 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3321 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3322 pNew->flags |= EP_IntValue; 3323 pNew->u.iValue = i; 3324 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3325 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3326 } 3327 } 3328 } 3329 3330 /* Compute the comparison permutation and keyinfo that is used with 3331 ** the permutation used to determine if the next 3332 ** row of results comes from selectA or selectB. Also add explicit 3333 ** collations to the ORDER BY clause terms so that when the subqueries 3334 ** to the right and the left are evaluated, they use the correct 3335 ** collation. 3336 */ 3337 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3338 if( aPermute ){ 3339 struct ExprList_item *pItem; 3340 aPermute[0] = nOrderBy; 3341 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3342 assert( pItem->u.x.iOrderByCol>0 ); 3343 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3344 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3345 } 3346 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3347 }else{ 3348 pKeyMerge = 0; 3349 } 3350 3351 /* Reattach the ORDER BY clause to the query. 3352 */ 3353 p->pOrderBy = pOrderBy; 3354 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3355 3356 /* Allocate a range of temporary registers and the KeyInfo needed 3357 ** for the logic that removes duplicate result rows when the 3358 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3359 */ 3360 if( op==TK_ALL ){ 3361 regPrev = 0; 3362 }else{ 3363 int nExpr = p->pEList->nExpr; 3364 assert( nOrderBy>=nExpr || db->mallocFailed ); 3365 regPrev = pParse->nMem+1; 3366 pParse->nMem += nExpr+1; 3367 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3368 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3369 if( pKeyDup ){ 3370 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3371 for(i=0; i<nExpr; i++){ 3372 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3373 pKeyDup->aSortFlags[i] = 0; 3374 } 3375 } 3376 } 3377 3378 /* Separate the left and the right query from one another 3379 */ 3380 p->pPrior = 0; 3381 pPrior->pNext = 0; 3382 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3383 if( pPrior->pPrior==0 ){ 3384 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3385 } 3386 3387 /* Compute the limit registers */ 3388 computeLimitRegisters(pParse, p, labelEnd); 3389 if( p->iLimit && op==TK_ALL ){ 3390 regLimitA = ++pParse->nMem; 3391 regLimitB = ++pParse->nMem; 3392 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3393 regLimitA); 3394 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3395 }else{ 3396 regLimitA = regLimitB = 0; 3397 } 3398 sqlite3ExprDelete(db, p->pLimit); 3399 p->pLimit = 0; 3400 3401 regAddrA = ++pParse->nMem; 3402 regAddrB = ++pParse->nMem; 3403 regOutA = ++pParse->nMem; 3404 regOutB = ++pParse->nMem; 3405 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3406 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3407 3408 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3409 3410 /* Generate a coroutine to evaluate the SELECT statement to the 3411 ** left of the compound operator - the "A" select. 3412 */ 3413 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3414 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3415 VdbeComment((v, "left SELECT")); 3416 pPrior->iLimit = regLimitA; 3417 ExplainQueryPlan((pParse, 1, "LEFT")); 3418 sqlite3Select(pParse, pPrior, &destA); 3419 sqlite3VdbeEndCoroutine(v, regAddrA); 3420 sqlite3VdbeJumpHere(v, addr1); 3421 3422 /* Generate a coroutine to evaluate the SELECT statement on 3423 ** the right - the "B" select 3424 */ 3425 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3426 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3427 VdbeComment((v, "right SELECT")); 3428 savedLimit = p->iLimit; 3429 savedOffset = p->iOffset; 3430 p->iLimit = regLimitB; 3431 p->iOffset = 0; 3432 ExplainQueryPlan((pParse, 1, "RIGHT")); 3433 sqlite3Select(pParse, p, &destB); 3434 p->iLimit = savedLimit; 3435 p->iOffset = savedOffset; 3436 sqlite3VdbeEndCoroutine(v, regAddrB); 3437 3438 /* Generate a subroutine that outputs the current row of the A 3439 ** select as the next output row of the compound select. 3440 */ 3441 VdbeNoopComment((v, "Output routine for A")); 3442 addrOutA = generateOutputSubroutine(pParse, 3443 p, &destA, pDest, regOutA, 3444 regPrev, pKeyDup, labelEnd); 3445 3446 /* Generate a subroutine that outputs the current row of the B 3447 ** select as the next output row of the compound select. 3448 */ 3449 if( op==TK_ALL || op==TK_UNION ){ 3450 VdbeNoopComment((v, "Output routine for B")); 3451 addrOutB = generateOutputSubroutine(pParse, 3452 p, &destB, pDest, regOutB, 3453 regPrev, pKeyDup, labelEnd); 3454 } 3455 sqlite3KeyInfoUnref(pKeyDup); 3456 3457 /* Generate a subroutine to run when the results from select A 3458 ** are exhausted and only data in select B remains. 3459 */ 3460 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3461 addrEofA_noB = addrEofA = labelEnd; 3462 }else{ 3463 VdbeNoopComment((v, "eof-A subroutine")); 3464 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3465 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3466 VdbeCoverage(v); 3467 sqlite3VdbeGoto(v, addrEofA); 3468 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3469 } 3470 3471 /* Generate a subroutine to run when the results from select B 3472 ** are exhausted and only data in select A remains. 3473 */ 3474 if( op==TK_INTERSECT ){ 3475 addrEofB = addrEofA; 3476 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3477 }else{ 3478 VdbeNoopComment((v, "eof-B subroutine")); 3479 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3480 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3481 sqlite3VdbeGoto(v, addrEofB); 3482 } 3483 3484 /* Generate code to handle the case of A<B 3485 */ 3486 VdbeNoopComment((v, "A-lt-B subroutine")); 3487 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3488 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3489 sqlite3VdbeGoto(v, labelCmpr); 3490 3491 /* Generate code to handle the case of A==B 3492 */ 3493 if( op==TK_ALL ){ 3494 addrAeqB = addrAltB; 3495 }else if( op==TK_INTERSECT ){ 3496 addrAeqB = addrAltB; 3497 addrAltB++; 3498 }else{ 3499 VdbeNoopComment((v, "A-eq-B subroutine")); 3500 addrAeqB = 3501 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3502 sqlite3VdbeGoto(v, labelCmpr); 3503 } 3504 3505 /* Generate code to handle the case of A>B 3506 */ 3507 VdbeNoopComment((v, "A-gt-B subroutine")); 3508 addrAgtB = sqlite3VdbeCurrentAddr(v); 3509 if( op==TK_ALL || op==TK_UNION ){ 3510 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3511 } 3512 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3513 sqlite3VdbeGoto(v, labelCmpr); 3514 3515 /* This code runs once to initialize everything. 3516 */ 3517 sqlite3VdbeJumpHere(v, addr1); 3518 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3519 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3520 3521 /* Implement the main merge loop 3522 */ 3523 sqlite3VdbeResolveLabel(v, labelCmpr); 3524 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3525 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3526 (char*)pKeyMerge, P4_KEYINFO); 3527 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3528 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3529 3530 /* Jump to the this point in order to terminate the query. 3531 */ 3532 sqlite3VdbeResolveLabel(v, labelEnd); 3533 3534 /* Reassembly the compound query so that it will be freed correctly 3535 ** by the calling function */ 3536 if( p->pPrior ){ 3537 sqlite3SelectDelete(db, p->pPrior); 3538 } 3539 p->pPrior = pPrior; 3540 pPrior->pNext = p; 3541 3542 /*** TBD: Insert subroutine calls to close cursors on incomplete 3543 **** subqueries ****/ 3544 ExplainQueryPlanPop(pParse); 3545 return pParse->nErr!=0; 3546 } 3547 #endif 3548 3549 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3550 3551 /* An instance of the SubstContext object describes an substitution edit 3552 ** to be performed on a parse tree. 3553 ** 3554 ** All references to columns in table iTable are to be replaced by corresponding 3555 ** expressions in pEList. 3556 */ 3557 typedef struct SubstContext { 3558 Parse *pParse; /* The parsing context */ 3559 int iTable; /* Replace references to this table */ 3560 int iNewTable; /* New table number */ 3561 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3562 ExprList *pEList; /* Replacement expressions */ 3563 } SubstContext; 3564 3565 /* Forward Declarations */ 3566 static void substExprList(SubstContext*, ExprList*); 3567 static void substSelect(SubstContext*, Select*, int); 3568 3569 /* 3570 ** Scan through the expression pExpr. Replace every reference to 3571 ** a column in table number iTable with a copy of the iColumn-th 3572 ** entry in pEList. (But leave references to the ROWID column 3573 ** unchanged.) 3574 ** 3575 ** This routine is part of the flattening procedure. A subquery 3576 ** whose result set is defined by pEList appears as entry in the 3577 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3578 ** FORM clause entry is iTable. This routine makes the necessary 3579 ** changes to pExpr so that it refers directly to the source table 3580 ** of the subquery rather the result set of the subquery. 3581 */ 3582 static Expr *substExpr( 3583 SubstContext *pSubst, /* Description of the substitution */ 3584 Expr *pExpr /* Expr in which substitution occurs */ 3585 ){ 3586 if( pExpr==0 ) return 0; 3587 if( ExprHasProperty(pExpr, EP_FromJoin) 3588 && pExpr->iRightJoinTable==pSubst->iTable 3589 ){ 3590 pExpr->iRightJoinTable = pSubst->iNewTable; 3591 } 3592 if( pExpr->op==TK_COLUMN 3593 && pExpr->iTable==pSubst->iTable 3594 && !ExprHasProperty(pExpr, EP_FixedCol) 3595 ){ 3596 if( pExpr->iColumn<0 ){ 3597 pExpr->op = TK_NULL; 3598 }else{ 3599 Expr *pNew; 3600 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3601 Expr ifNullRow; 3602 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3603 assert( pExpr->pRight==0 ); 3604 if( sqlite3ExprIsVector(pCopy) ){ 3605 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3606 }else{ 3607 sqlite3 *db = pSubst->pParse->db; 3608 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3609 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3610 ifNullRow.op = TK_IF_NULL_ROW; 3611 ifNullRow.pLeft = pCopy; 3612 ifNullRow.iTable = pSubst->iNewTable; 3613 ifNullRow.flags = EP_IfNullRow; 3614 pCopy = &ifNullRow; 3615 } 3616 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3617 pNew = sqlite3ExprDup(db, pCopy, 0); 3618 if( pNew && pSubst->isLeftJoin ){ 3619 ExprSetProperty(pNew, EP_CanBeNull); 3620 } 3621 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3622 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3623 } 3624 sqlite3ExprDelete(db, pExpr); 3625 pExpr = pNew; 3626 3627 /* Ensure that the expression now has an implicit collation sequence, 3628 ** just as it did when it was a column of a view or sub-query. */ 3629 if( pExpr ){ 3630 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3631 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3632 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3633 (pColl ? pColl->zName : "BINARY") 3634 ); 3635 } 3636 ExprClearProperty(pExpr, EP_Collate); 3637 } 3638 } 3639 } 3640 }else{ 3641 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3642 pExpr->iTable = pSubst->iNewTable; 3643 } 3644 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3645 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3646 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3647 substSelect(pSubst, pExpr->x.pSelect, 1); 3648 }else{ 3649 substExprList(pSubst, pExpr->x.pList); 3650 } 3651 #ifndef SQLITE_OMIT_WINDOWFUNC 3652 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3653 Window *pWin = pExpr->y.pWin; 3654 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3655 substExprList(pSubst, pWin->pPartition); 3656 substExprList(pSubst, pWin->pOrderBy); 3657 } 3658 #endif 3659 } 3660 return pExpr; 3661 } 3662 static void substExprList( 3663 SubstContext *pSubst, /* Description of the substitution */ 3664 ExprList *pList /* List to scan and in which to make substitutes */ 3665 ){ 3666 int i; 3667 if( pList==0 ) return; 3668 for(i=0; i<pList->nExpr; i++){ 3669 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3670 } 3671 } 3672 static void substSelect( 3673 SubstContext *pSubst, /* Description of the substitution */ 3674 Select *p, /* SELECT statement in which to make substitutions */ 3675 int doPrior /* Do substitutes on p->pPrior too */ 3676 ){ 3677 SrcList *pSrc; 3678 SrcItem *pItem; 3679 int i; 3680 if( !p ) return; 3681 do{ 3682 substExprList(pSubst, p->pEList); 3683 substExprList(pSubst, p->pGroupBy); 3684 substExprList(pSubst, p->pOrderBy); 3685 p->pHaving = substExpr(pSubst, p->pHaving); 3686 p->pWhere = substExpr(pSubst, p->pWhere); 3687 pSrc = p->pSrc; 3688 assert( pSrc!=0 ); 3689 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3690 substSelect(pSubst, pItem->pSelect, 1); 3691 if( pItem->fg.isTabFunc ){ 3692 substExprList(pSubst, pItem->u1.pFuncArg); 3693 } 3694 } 3695 }while( doPrior && (p = p->pPrior)!=0 ); 3696 } 3697 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3698 3699 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3700 /* 3701 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3702 ** clause of that SELECT. 3703 ** 3704 ** This routine scans the entire SELECT statement and recomputes the 3705 ** pSrcItem->colUsed mask. 3706 */ 3707 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3708 SrcItem *pItem; 3709 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3710 pItem = pWalker->u.pSrcItem; 3711 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3712 if( pExpr->iColumn<0 ) return WRC_Continue; 3713 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3714 return WRC_Continue; 3715 } 3716 static void recomputeColumnsUsed( 3717 Select *pSelect, /* The complete SELECT statement */ 3718 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3719 ){ 3720 Walker w; 3721 if( NEVER(pSrcItem->pTab==0) ) return; 3722 memset(&w, 0, sizeof(w)); 3723 w.xExprCallback = recomputeColumnsUsedExpr; 3724 w.xSelectCallback = sqlite3SelectWalkNoop; 3725 w.u.pSrcItem = pSrcItem; 3726 pSrcItem->colUsed = 0; 3727 sqlite3WalkSelect(&w, pSelect); 3728 } 3729 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3730 3731 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3732 /* 3733 ** Assign new cursor numbers to each of the items in pSrc. For each 3734 ** new cursor number assigned, set an entry in the aCsrMap[] array 3735 ** to map the old cursor number to the new: 3736 ** 3737 ** aCsrMap[iOld] = iNew; 3738 ** 3739 ** The array is guaranteed by the caller to be large enough for all 3740 ** existing cursor numbers in pSrc. 3741 ** 3742 ** If pSrc contains any sub-selects, call this routine recursively 3743 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3744 */ 3745 static void srclistRenumberCursors( 3746 Parse *pParse, /* Parse context */ 3747 int *aCsrMap, /* Array to store cursor mappings in */ 3748 SrcList *pSrc, /* FROM clause to renumber */ 3749 int iExcept /* FROM clause item to skip */ 3750 ){ 3751 int i; 3752 SrcItem *pItem; 3753 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3754 if( i!=iExcept ){ 3755 Select *p; 3756 pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++; 3757 for(p=pItem->pSelect; p; p=p->pPrior){ 3758 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3759 } 3760 } 3761 } 3762 } 3763 3764 /* 3765 ** Expression walker callback used by renumberCursors() to update 3766 ** Expr objects to match newly assigned cursor numbers. 3767 */ 3768 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3769 int *aCsrMap = pWalker->u.aiCol; 3770 int op = pExpr->op; 3771 if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){ 3772 pExpr->iTable = aCsrMap[pExpr->iTable]; 3773 } 3774 if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){ 3775 pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable]; 3776 } 3777 return WRC_Continue; 3778 } 3779 3780 /* 3781 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3782 ** of the SELECT statement passed as the second argument, and to each 3783 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3784 ** Except, do not assign a new cursor number to the iExcept'th element in 3785 ** the FROM clause of (*p). Update all expressions and other references 3786 ** to refer to the new cursor numbers. 3787 ** 3788 ** Argument aCsrMap is an array that may be used for temporary working 3789 ** space. Two guarantees are made by the caller: 3790 ** 3791 ** * the array is larger than the largest cursor number used within the 3792 ** select statement passed as an argument, and 3793 ** 3794 ** * the array entries for all cursor numbers that do *not* appear in 3795 ** FROM clauses of the select statement as described above are 3796 ** initialized to zero. 3797 */ 3798 static void renumberCursors( 3799 Parse *pParse, /* Parse context */ 3800 Select *p, /* Select to renumber cursors within */ 3801 int iExcept, /* FROM clause item to skip */ 3802 int *aCsrMap /* Working space */ 3803 ){ 3804 Walker w; 3805 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3806 memset(&w, 0, sizeof(w)); 3807 w.u.aiCol = aCsrMap; 3808 w.xExprCallback = renumberCursorsCb; 3809 w.xSelectCallback = sqlite3SelectWalkNoop; 3810 sqlite3WalkSelect(&w, p); 3811 } 3812 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3813 3814 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3815 /* 3816 ** This routine attempts to flatten subqueries as a performance optimization. 3817 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3818 ** 3819 ** To understand the concept of flattening, consider the following 3820 ** query: 3821 ** 3822 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3823 ** 3824 ** The default way of implementing this query is to execute the 3825 ** subquery first and store the results in a temporary table, then 3826 ** run the outer query on that temporary table. This requires two 3827 ** passes over the data. Furthermore, because the temporary table 3828 ** has no indices, the WHERE clause on the outer query cannot be 3829 ** optimized. 3830 ** 3831 ** This routine attempts to rewrite queries such as the above into 3832 ** a single flat select, like this: 3833 ** 3834 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3835 ** 3836 ** The code generated for this simplification gives the same result 3837 ** but only has to scan the data once. And because indices might 3838 ** exist on the table t1, a complete scan of the data might be 3839 ** avoided. 3840 ** 3841 ** Flattening is subject to the following constraints: 3842 ** 3843 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3844 ** The subquery and the outer query cannot both be aggregates. 3845 ** 3846 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3847 ** (2) If the subquery is an aggregate then 3848 ** (2a) the outer query must not be a join and 3849 ** (2b) the outer query must not use subqueries 3850 ** other than the one FROM-clause subquery that is a candidate 3851 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3852 ** from 2015-02-09.) 3853 ** 3854 ** (3) If the subquery is the right operand of a LEFT JOIN then 3855 ** (3a) the subquery may not be a join and 3856 ** (3b) the FROM clause of the subquery may not contain a virtual 3857 ** table and 3858 ** (3c) the outer query may not be an aggregate. 3859 ** (3d) the outer query may not be DISTINCT. 3860 ** 3861 ** (4) The subquery can not be DISTINCT. 3862 ** 3863 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3864 ** sub-queries that were excluded from this optimization. Restriction 3865 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3866 ** 3867 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3868 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3869 ** 3870 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3871 ** A FROM clause, consider adding a FROM clause with the special 3872 ** table sqlite_once that consists of a single row containing a 3873 ** single NULL. 3874 ** 3875 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3876 ** 3877 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3878 ** 3879 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3880 ** accidently carried the comment forward until 2014-09-15. Original 3881 ** constraint: "If the subquery is aggregate then the outer query 3882 ** may not use LIMIT." 3883 ** 3884 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3885 ** 3886 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3887 ** a separate restriction deriving from ticket #350. 3888 ** 3889 ** (13) The subquery and outer query may not both use LIMIT. 3890 ** 3891 ** (14) The subquery may not use OFFSET. 3892 ** 3893 ** (15) If the outer query is part of a compound select, then the 3894 ** subquery may not use LIMIT. 3895 ** (See ticket #2339 and ticket [02a8e81d44]). 3896 ** 3897 ** (16) If the outer query is aggregate, then the subquery may not 3898 ** use ORDER BY. (Ticket #2942) This used to not matter 3899 ** until we introduced the group_concat() function. 3900 ** 3901 ** (17) If the subquery is a compound select, then 3902 ** (17a) all compound operators must be a UNION ALL, and 3903 ** (17b) no terms within the subquery compound may be aggregate 3904 ** or DISTINCT, and 3905 ** (17c) every term within the subquery compound must have a FROM clause 3906 ** (17d) the outer query may not be 3907 ** (17d1) aggregate, or 3908 ** (17d2) DISTINCT 3909 ** (17e) the subquery may not contain window functions, and 3910 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3911 ** 3912 ** The parent and sub-query may contain WHERE clauses. Subject to 3913 ** rules (11), (13) and (14), they may also contain ORDER BY, 3914 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3915 ** operator other than UNION ALL because all the other compound 3916 ** operators have an implied DISTINCT which is disallowed by 3917 ** restriction (4). 3918 ** 3919 ** Also, each component of the sub-query must return the same number 3920 ** of result columns. This is actually a requirement for any compound 3921 ** SELECT statement, but all the code here does is make sure that no 3922 ** such (illegal) sub-query is flattened. The caller will detect the 3923 ** syntax error and return a detailed message. 3924 ** 3925 ** (18) If the sub-query is a compound select, then all terms of the 3926 ** ORDER BY clause of the parent must be copies of a term returned 3927 ** by the parent query. 3928 ** 3929 ** (19) If the subquery uses LIMIT then the outer query may not 3930 ** have a WHERE clause. 3931 ** 3932 ** (20) If the sub-query is a compound select, then it must not use 3933 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3934 ** somewhat by saying that the terms of the ORDER BY clause must 3935 ** appear as unmodified result columns in the outer query. But we 3936 ** have other optimizations in mind to deal with that case. 3937 ** 3938 ** (21) If the subquery uses LIMIT then the outer query may not be 3939 ** DISTINCT. (See ticket [752e1646fc]). 3940 ** 3941 ** (22) The subquery may not be a recursive CTE. 3942 ** 3943 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3944 ** a compound query. This restriction is because transforming the 3945 ** parent to a compound query confuses the code that handles 3946 ** recursive queries in multiSelect(). 3947 ** 3948 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3949 ** The subquery may not be an aggregate that uses the built-in min() or 3950 ** or max() functions. (Without this restriction, a query like: 3951 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3952 ** return the value X for which Y was maximal.) 3953 ** 3954 ** (25) If either the subquery or the parent query contains a window 3955 ** function in the select list or ORDER BY clause, flattening 3956 ** is not attempted. 3957 ** 3958 ** 3959 ** In this routine, the "p" parameter is a pointer to the outer query. 3960 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3961 ** uses aggregates. 3962 ** 3963 ** If flattening is not attempted, this routine is a no-op and returns 0. 3964 ** If flattening is attempted this routine returns 1. 3965 ** 3966 ** All of the expression analysis must occur on both the outer query and 3967 ** the subquery before this routine runs. 3968 */ 3969 static int flattenSubquery( 3970 Parse *pParse, /* Parsing context */ 3971 Select *p, /* The parent or outer SELECT statement */ 3972 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3973 int isAgg /* True if outer SELECT uses aggregate functions */ 3974 ){ 3975 const char *zSavedAuthContext = pParse->zAuthContext; 3976 Select *pParent; /* Current UNION ALL term of the other query */ 3977 Select *pSub; /* The inner query or "subquery" */ 3978 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3979 SrcList *pSrc; /* The FROM clause of the outer query */ 3980 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3981 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3982 int iNewParent = -1;/* Replacement table for iParent */ 3983 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3984 int i; /* Loop counter */ 3985 Expr *pWhere; /* The WHERE clause */ 3986 SrcItem *pSubitem; /* The subquery */ 3987 sqlite3 *db = pParse->db; 3988 Walker w; /* Walker to persist agginfo data */ 3989 int *aCsrMap = 0; 3990 3991 /* Check to see if flattening is permitted. Return 0 if not. 3992 */ 3993 assert( p!=0 ); 3994 assert( p->pPrior==0 ); 3995 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3996 pSrc = p->pSrc; 3997 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3998 pSubitem = &pSrc->a[iFrom]; 3999 iParent = pSubitem->iCursor; 4000 pSub = pSubitem->pSelect; 4001 assert( pSub!=0 ); 4002 4003 #ifndef SQLITE_OMIT_WINDOWFUNC 4004 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4005 #endif 4006 4007 pSubSrc = pSub->pSrc; 4008 assert( pSubSrc ); 4009 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4010 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4011 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4012 ** became arbitrary expressions, we were forced to add restrictions (13) 4013 ** and (14). */ 4014 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4015 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4016 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4017 return 0; /* Restriction (15) */ 4018 } 4019 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4020 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4021 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4022 return 0; /* Restrictions (8)(9) */ 4023 } 4024 if( p->pOrderBy && pSub->pOrderBy ){ 4025 return 0; /* Restriction (11) */ 4026 } 4027 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4028 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4029 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4030 return 0; /* Restriction (21) */ 4031 } 4032 if( pSub->selFlags & (SF_Recursive) ){ 4033 return 0; /* Restrictions (22) */ 4034 } 4035 4036 /* 4037 ** If the subquery is the right operand of a LEFT JOIN, then the 4038 ** subquery may not be a join itself (3a). Example of why this is not 4039 ** allowed: 4040 ** 4041 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4042 ** 4043 ** If we flatten the above, we would get 4044 ** 4045 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4046 ** 4047 ** which is not at all the same thing. 4048 ** 4049 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4050 ** query cannot be an aggregate. (3c) This is an artifact of the way 4051 ** aggregates are processed - there is no mechanism to determine if 4052 ** the LEFT JOIN table should be all-NULL. 4053 ** 4054 ** See also tickets #306, #350, and #3300. 4055 */ 4056 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4057 isLeftJoin = 1; 4058 if( pSubSrc->nSrc>1 /* (3a) */ 4059 || isAgg /* (3b) */ 4060 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4061 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4062 ){ 4063 return 0; 4064 } 4065 } 4066 #ifdef SQLITE_EXTRA_IFNULLROW 4067 else if( iFrom>0 && !isAgg ){ 4068 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4069 ** every reference to any result column from subquery in a join, even 4070 ** though they are not necessary. This will stress-test the OP_IfNullRow 4071 ** opcode. */ 4072 isLeftJoin = -1; 4073 } 4074 #endif 4075 4076 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4077 ** use only the UNION ALL operator. And none of the simple select queries 4078 ** that make up the compound SELECT are allowed to be aggregate or distinct 4079 ** queries. 4080 */ 4081 if( pSub->pPrior ){ 4082 if( pSub->pOrderBy ){ 4083 return 0; /* Restriction (20) */ 4084 } 4085 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4086 return 0; /* (17d1), (17d2), or (17f) */ 4087 } 4088 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4089 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4090 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4091 assert( pSub->pSrc!=0 ); 4092 assert( (pSub->selFlags & SF_Recursive)==0 ); 4093 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4094 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4095 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4096 || pSub1->pSrc->nSrc<1 /* (17c) */ 4097 #ifndef SQLITE_OMIT_WINDOWFUNC 4098 || pSub1->pWin /* (17e) */ 4099 #endif 4100 ){ 4101 return 0; 4102 } 4103 testcase( pSub1->pSrc->nSrc>1 ); 4104 } 4105 4106 /* Restriction (18). */ 4107 if( p->pOrderBy ){ 4108 int ii; 4109 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4110 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4111 } 4112 } 4113 4114 /* Restriction (23) */ 4115 if( (p->selFlags & SF_Recursive) ) return 0; 4116 4117 if( pSrc->nSrc>1 ){ 4118 if( pParse->nSelect>500 ) return 0; 4119 aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int)); 4120 } 4121 } 4122 4123 /***** If we reach this point, flattening is permitted. *****/ 4124 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4125 pSub->selId, pSub, iFrom)); 4126 4127 /* Authorize the subquery */ 4128 pParse->zAuthContext = pSubitem->zName; 4129 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4130 testcase( i==SQLITE_DENY ); 4131 pParse->zAuthContext = zSavedAuthContext; 4132 4133 /* Delete the transient structures associated with thesubquery */ 4134 pSub1 = pSubitem->pSelect; 4135 sqlite3DbFree(db, pSubitem->zDatabase); 4136 sqlite3DbFree(db, pSubitem->zName); 4137 sqlite3DbFree(db, pSubitem->zAlias); 4138 pSubitem->zDatabase = 0; 4139 pSubitem->zName = 0; 4140 pSubitem->zAlias = 0; 4141 pSubitem->pSelect = 0; 4142 assert( pSubitem->pOn==0 ); 4143 4144 /* If the sub-query is a compound SELECT statement, then (by restrictions 4145 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4146 ** be of the form: 4147 ** 4148 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4149 ** 4150 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4151 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4152 ** OFFSET clauses and joins them to the left-hand-side of the original 4153 ** using UNION ALL operators. In this case N is the number of simple 4154 ** select statements in the compound sub-query. 4155 ** 4156 ** Example: 4157 ** 4158 ** SELECT a+1 FROM ( 4159 ** SELECT x FROM tab 4160 ** UNION ALL 4161 ** SELECT y FROM tab 4162 ** UNION ALL 4163 ** SELECT abs(z*2) FROM tab2 4164 ** ) WHERE a!=5 ORDER BY 1 4165 ** 4166 ** Transformed into: 4167 ** 4168 ** SELECT x+1 FROM tab WHERE x+1!=5 4169 ** UNION ALL 4170 ** SELECT y+1 FROM tab WHERE y+1!=5 4171 ** UNION ALL 4172 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4173 ** ORDER BY 1 4174 ** 4175 ** We call this the "compound-subquery flattening". 4176 */ 4177 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4178 Select *pNew; 4179 ExprList *pOrderBy = p->pOrderBy; 4180 Expr *pLimit = p->pLimit; 4181 Select *pPrior = p->pPrior; 4182 Table *pItemTab = pSubitem->pTab; 4183 pSubitem->pTab = 0; 4184 p->pOrderBy = 0; 4185 p->pPrior = 0; 4186 p->pLimit = 0; 4187 pNew = sqlite3SelectDup(db, p, 0); 4188 p->pLimit = pLimit; 4189 p->pOrderBy = pOrderBy; 4190 p->op = TK_ALL; 4191 pSubitem->pTab = pItemTab; 4192 if( pNew==0 ){ 4193 p->pPrior = pPrior; 4194 }else{ 4195 pNew->selId = ++pParse->nSelect; 4196 if( aCsrMap && db->mallocFailed==0 ){ 4197 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4198 } 4199 pNew->pPrior = pPrior; 4200 if( pPrior ) pPrior->pNext = pNew; 4201 pNew->pNext = p; 4202 p->pPrior = pNew; 4203 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4204 " creates %u as peer\n",pNew->selId)); 4205 } 4206 assert( pSubitem->pSelect==0 ); 4207 } 4208 sqlite3DbFree(db, aCsrMap); 4209 if( db->mallocFailed ){ 4210 pSubitem->pSelect = pSub1; 4211 return 1; 4212 } 4213 4214 /* Defer deleting the Table object associated with the 4215 ** subquery until code generation is 4216 ** complete, since there may still exist Expr.pTab entries that 4217 ** refer to the subquery even after flattening. Ticket #3346. 4218 ** 4219 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4220 */ 4221 if( ALWAYS(pSubitem->pTab!=0) ){ 4222 Table *pTabToDel = pSubitem->pTab; 4223 if( pTabToDel->nTabRef==1 ){ 4224 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4225 sqlite3ParserAddCleanup(pToplevel, 4226 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4227 pTabToDel); 4228 testcase( pToplevel->earlyCleanup ); 4229 }else{ 4230 pTabToDel->nTabRef--; 4231 } 4232 pSubitem->pTab = 0; 4233 } 4234 4235 /* The following loop runs once for each term in a compound-subquery 4236 ** flattening (as described above). If we are doing a different kind 4237 ** of flattening - a flattening other than a compound-subquery flattening - 4238 ** then this loop only runs once. 4239 ** 4240 ** This loop moves all of the FROM elements of the subquery into the 4241 ** the FROM clause of the outer query. Before doing this, remember 4242 ** the cursor number for the original outer query FROM element in 4243 ** iParent. The iParent cursor will never be used. Subsequent code 4244 ** will scan expressions looking for iParent references and replace 4245 ** those references with expressions that resolve to the subquery FROM 4246 ** elements we are now copying in. 4247 */ 4248 pSub = pSub1; 4249 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4250 int nSubSrc; 4251 u8 jointype = 0; 4252 assert( pSub!=0 ); 4253 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4254 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4255 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4256 4257 if( pParent==p ){ 4258 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4259 } 4260 4261 /* The subquery uses a single slot of the FROM clause of the outer 4262 ** query. If the subquery has more than one element in its FROM clause, 4263 ** then expand the outer query to make space for it to hold all elements 4264 ** of the subquery. 4265 ** 4266 ** Example: 4267 ** 4268 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4269 ** 4270 ** The outer query has 3 slots in its FROM clause. One slot of the 4271 ** outer query (the middle slot) is used by the subquery. The next 4272 ** block of code will expand the outer query FROM clause to 4 slots. 4273 ** The middle slot is expanded to two slots in order to make space 4274 ** for the two elements in the FROM clause of the subquery. 4275 */ 4276 if( nSubSrc>1 ){ 4277 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4278 if( pSrc==0 ) break; 4279 pParent->pSrc = pSrc; 4280 } 4281 4282 /* Transfer the FROM clause terms from the subquery into the 4283 ** outer query. 4284 */ 4285 for(i=0; i<nSubSrc; i++){ 4286 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4287 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4288 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4289 iNewParent = pSubSrc->a[i].iCursor; 4290 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4291 } 4292 pSrc->a[iFrom].fg.jointype = jointype; 4293 4294 /* Now begin substituting subquery result set expressions for 4295 ** references to the iParent in the outer query. 4296 ** 4297 ** Example: 4298 ** 4299 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4300 ** \ \_____________ subquery __________/ / 4301 ** \_____________________ outer query ______________________________/ 4302 ** 4303 ** We look at every expression in the outer query and every place we see 4304 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4305 */ 4306 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4307 /* At this point, any non-zero iOrderByCol values indicate that the 4308 ** ORDER BY column expression is identical to the iOrderByCol'th 4309 ** expression returned by SELECT statement pSub. Since these values 4310 ** do not necessarily correspond to columns in SELECT statement pParent, 4311 ** zero them before transfering the ORDER BY clause. 4312 ** 4313 ** Not doing this may cause an error if a subsequent call to this 4314 ** function attempts to flatten a compound sub-query into pParent 4315 ** (the only way this can happen is if the compound sub-query is 4316 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4317 ExprList *pOrderBy = pSub->pOrderBy; 4318 for(i=0; i<pOrderBy->nExpr; i++){ 4319 pOrderBy->a[i].u.x.iOrderByCol = 0; 4320 } 4321 assert( pParent->pOrderBy==0 ); 4322 pParent->pOrderBy = pOrderBy; 4323 pSub->pOrderBy = 0; 4324 } 4325 pWhere = pSub->pWhere; 4326 pSub->pWhere = 0; 4327 if( isLeftJoin>0 ){ 4328 sqlite3SetJoinExpr(pWhere, iNewParent); 4329 } 4330 if( pWhere ){ 4331 if( pParent->pWhere ){ 4332 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4333 }else{ 4334 pParent->pWhere = pWhere; 4335 } 4336 } 4337 if( db->mallocFailed==0 ){ 4338 SubstContext x; 4339 x.pParse = pParse; 4340 x.iTable = iParent; 4341 x.iNewTable = iNewParent; 4342 x.isLeftJoin = isLeftJoin; 4343 x.pEList = pSub->pEList; 4344 substSelect(&x, pParent, 0); 4345 } 4346 4347 /* The flattened query is a compound if either the inner or the 4348 ** outer query is a compound. */ 4349 pParent->selFlags |= pSub->selFlags & SF_Compound; 4350 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4351 4352 /* 4353 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4354 ** 4355 ** One is tempted to try to add a and b to combine the limits. But this 4356 ** does not work if either limit is negative. 4357 */ 4358 if( pSub->pLimit ){ 4359 pParent->pLimit = pSub->pLimit; 4360 pSub->pLimit = 0; 4361 } 4362 4363 /* Recompute the SrcList_item.colUsed masks for the flattened 4364 ** tables. */ 4365 for(i=0; i<nSubSrc; i++){ 4366 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4367 } 4368 } 4369 4370 /* Finially, delete what is left of the subquery and return 4371 ** success. 4372 */ 4373 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4374 sqlite3WalkSelect(&w,pSub1); 4375 sqlite3SelectDelete(db, pSub1); 4376 4377 #if SELECTTRACE_ENABLED 4378 if( sqlite3SelectTrace & 0x100 ){ 4379 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4380 sqlite3TreeViewSelect(0, p, 0); 4381 } 4382 #endif 4383 4384 return 1; 4385 } 4386 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4387 4388 /* 4389 ** A structure to keep track of all of the column values that are fixed to 4390 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4391 */ 4392 typedef struct WhereConst WhereConst; 4393 struct WhereConst { 4394 Parse *pParse; /* Parsing context */ 4395 int nConst; /* Number for COLUMN=CONSTANT terms */ 4396 int nChng; /* Number of times a constant is propagated */ 4397 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4398 }; 4399 4400 /* 4401 ** Add a new entry to the pConst object. Except, do not add duplicate 4402 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4403 ** 4404 ** The caller guarantees the pColumn is a column and pValue is a constant. 4405 ** This routine has to do some additional checks before completing the 4406 ** insert. 4407 */ 4408 static void constInsert( 4409 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4410 Expr *pColumn, /* The COLUMN part of the constraint */ 4411 Expr *pValue, /* The VALUE part of the constraint */ 4412 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4413 ){ 4414 int i; 4415 assert( pColumn->op==TK_COLUMN ); 4416 assert( sqlite3ExprIsConstant(pValue) ); 4417 4418 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4419 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4420 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4421 return; 4422 } 4423 4424 /* 2018-10-25 ticket [cf5ed20f] 4425 ** Make sure the same pColumn is not inserted more than once */ 4426 for(i=0; i<pConst->nConst; i++){ 4427 const Expr *pE2 = pConst->apExpr[i*2]; 4428 assert( pE2->op==TK_COLUMN ); 4429 if( pE2->iTable==pColumn->iTable 4430 && pE2->iColumn==pColumn->iColumn 4431 ){ 4432 return; /* Already present. Return without doing anything. */ 4433 } 4434 } 4435 4436 pConst->nConst++; 4437 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4438 pConst->nConst*2*sizeof(Expr*)); 4439 if( pConst->apExpr==0 ){ 4440 pConst->nConst = 0; 4441 }else{ 4442 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4443 pConst->apExpr[pConst->nConst*2-1] = pValue; 4444 } 4445 } 4446 4447 /* 4448 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4449 ** is a constant expression and where the term must be true because it 4450 ** is part of the AND-connected terms of the expression. For each term 4451 ** found, add it to the pConst structure. 4452 */ 4453 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4454 Expr *pRight, *pLeft; 4455 if( pExpr==0 ) return; 4456 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4457 if( pExpr->op==TK_AND ){ 4458 findConstInWhere(pConst, pExpr->pRight); 4459 findConstInWhere(pConst, pExpr->pLeft); 4460 return; 4461 } 4462 if( pExpr->op!=TK_EQ ) return; 4463 pRight = pExpr->pRight; 4464 pLeft = pExpr->pLeft; 4465 assert( pRight!=0 ); 4466 assert( pLeft!=0 ); 4467 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4468 constInsert(pConst,pRight,pLeft,pExpr); 4469 } 4470 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4471 constInsert(pConst,pLeft,pRight,pExpr); 4472 } 4473 } 4474 4475 /* 4476 ** This is a Walker expression callback. pExpr is a candidate expression 4477 ** to be replaced by a value. If pExpr is equivalent to one of the 4478 ** columns named in pWalker->u.pConst, then overwrite it with its 4479 ** corresponding value. 4480 */ 4481 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4482 int i; 4483 WhereConst *pConst; 4484 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4485 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4486 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4487 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4488 return WRC_Continue; 4489 } 4490 pConst = pWalker->u.pConst; 4491 for(i=0; i<pConst->nConst; i++){ 4492 Expr *pColumn = pConst->apExpr[i*2]; 4493 if( pColumn==pExpr ) continue; 4494 if( pColumn->iTable!=pExpr->iTable ) continue; 4495 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4496 /* A match is found. Add the EP_FixedCol property */ 4497 pConst->nChng++; 4498 ExprClearProperty(pExpr, EP_Leaf); 4499 ExprSetProperty(pExpr, EP_FixedCol); 4500 assert( pExpr->pLeft==0 ); 4501 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4502 break; 4503 } 4504 return WRC_Prune; 4505 } 4506 4507 /* 4508 ** The WHERE-clause constant propagation optimization. 4509 ** 4510 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4511 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4512 ** part of a ON clause from a LEFT JOIN, then throughout the query 4513 ** replace all other occurrences of COLUMN with CONSTANT. 4514 ** 4515 ** For example, the query: 4516 ** 4517 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4518 ** 4519 ** Is transformed into 4520 ** 4521 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4522 ** 4523 ** Return true if any transformations where made and false if not. 4524 ** 4525 ** Implementation note: Constant propagation is tricky due to affinity 4526 ** and collating sequence interactions. Consider this example: 4527 ** 4528 ** CREATE TABLE t1(a INT,b TEXT); 4529 ** INSERT INTO t1 VALUES(123,'0123'); 4530 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4531 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4532 ** 4533 ** The two SELECT statements above should return different answers. b=a 4534 ** is alway true because the comparison uses numeric affinity, but b=123 4535 ** is false because it uses text affinity and '0123' is not the same as '123'. 4536 ** To work around this, the expression tree is not actually changed from 4537 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4538 ** and the "123" value is hung off of the pLeft pointer. Code generator 4539 ** routines know to generate the constant "123" instead of looking up the 4540 ** column value. Also, to avoid collation problems, this optimization is 4541 ** only attempted if the "a=123" term uses the default BINARY collation. 4542 */ 4543 static int propagateConstants( 4544 Parse *pParse, /* The parsing context */ 4545 Select *p /* The query in which to propagate constants */ 4546 ){ 4547 WhereConst x; 4548 Walker w; 4549 int nChng = 0; 4550 x.pParse = pParse; 4551 do{ 4552 x.nConst = 0; 4553 x.nChng = 0; 4554 x.apExpr = 0; 4555 findConstInWhere(&x, p->pWhere); 4556 if( x.nConst ){ 4557 memset(&w, 0, sizeof(w)); 4558 w.pParse = pParse; 4559 w.xExprCallback = propagateConstantExprRewrite; 4560 w.xSelectCallback = sqlite3SelectWalkNoop; 4561 w.xSelectCallback2 = 0; 4562 w.walkerDepth = 0; 4563 w.u.pConst = &x; 4564 sqlite3WalkExpr(&w, p->pWhere); 4565 sqlite3DbFree(x.pParse->db, x.apExpr); 4566 nChng += x.nChng; 4567 } 4568 }while( x.nChng ); 4569 return nChng; 4570 } 4571 4572 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4573 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4574 /* 4575 ** This function is called to determine whether or not it is safe to 4576 ** push WHERE clause expression pExpr down to FROM clause sub-query 4577 ** pSubq, which contains at least one window function. Return 1 4578 ** if it is safe and the expression should be pushed down, or 0 4579 ** otherwise. 4580 ** 4581 ** It is only safe to push the expression down if it consists only 4582 ** of constants and copies of expressions that appear in the PARTITION 4583 ** BY clause of all window function used by the sub-query. It is safe 4584 ** to filter out entire partitions, but not rows within partitions, as 4585 ** this may change the results of the window functions. 4586 ** 4587 ** At the time this function is called it is guaranteed that 4588 ** 4589 ** * the sub-query uses only one distinct window frame, and 4590 ** * that the window frame has a PARTITION BY clase. 4591 */ 4592 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4593 assert( pSubq->pWin->pPartition ); 4594 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4595 assert( pSubq->pPrior==0 ); 4596 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4597 } 4598 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4599 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4600 4601 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4602 /* 4603 ** Make copies of relevant WHERE clause terms of the outer query into 4604 ** the WHERE clause of subquery. Example: 4605 ** 4606 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4607 ** 4608 ** Transformed into: 4609 ** 4610 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4611 ** WHERE x=5 AND y=10; 4612 ** 4613 ** The hope is that the terms added to the inner query will make it more 4614 ** efficient. 4615 ** 4616 ** Do not attempt this optimization if: 4617 ** 4618 ** (1) (** This restriction was removed on 2017-09-29. We used to 4619 ** disallow this optimization for aggregate subqueries, but now 4620 ** it is allowed by putting the extra terms on the HAVING clause. 4621 ** The added HAVING clause is pointless if the subquery lacks 4622 ** a GROUP BY clause. But such a HAVING clause is also harmless 4623 ** so there does not appear to be any reason to add extra logic 4624 ** to suppress it. **) 4625 ** 4626 ** (2) The inner query is the recursive part of a common table expression. 4627 ** 4628 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4629 ** clause would change the meaning of the LIMIT). 4630 ** 4631 ** (4) The inner query is the right operand of a LEFT JOIN and the 4632 ** expression to be pushed down does not come from the ON clause 4633 ** on that LEFT JOIN. 4634 ** 4635 ** (5) The WHERE clause expression originates in the ON or USING clause 4636 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4637 ** left join. An example: 4638 ** 4639 ** SELECT * 4640 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4641 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4642 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4643 ** 4644 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4645 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4646 ** then the (1,1,NULL) row would be suppressed. 4647 ** 4648 ** (6) Window functions make things tricky as changes to the WHERE clause 4649 ** of the inner query could change the window over which window 4650 ** functions are calculated. Therefore, do not attempt the optimization 4651 ** if: 4652 ** 4653 ** (6a) The inner query uses multiple incompatible window partitions. 4654 ** 4655 ** (6b) The inner query is a compound and uses window-functions. 4656 ** 4657 ** (6c) The WHERE clause does not consist entirely of constants and 4658 ** copies of expressions found in the PARTITION BY clause of 4659 ** all window-functions used by the sub-query. It is safe to 4660 ** filter out entire partitions, as this does not change the 4661 ** window over which any window-function is calculated. 4662 ** 4663 ** (7) The inner query is a Common Table Expression (CTE) that should 4664 ** be materialized. (This restriction is implemented in the calling 4665 ** routine.) 4666 ** 4667 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4668 ** terms are duplicated into the subquery. 4669 */ 4670 static int pushDownWhereTerms( 4671 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4672 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4673 Expr *pWhere, /* The WHERE clause of the outer query */ 4674 int iCursor, /* Cursor number of the subquery */ 4675 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4676 ){ 4677 Expr *pNew; 4678 int nChng = 0; 4679 if( pWhere==0 ) return 0; 4680 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4681 4682 #ifndef SQLITE_OMIT_WINDOWFUNC 4683 if( pSubq->pPrior ){ 4684 Select *pSel; 4685 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4686 if( pSel->pWin ) return 0; /* restriction (6b) */ 4687 } 4688 }else{ 4689 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4690 } 4691 #endif 4692 4693 #ifdef SQLITE_DEBUG 4694 /* Only the first term of a compound can have a WITH clause. But make 4695 ** sure no other terms are marked SF_Recursive in case something changes 4696 ** in the future. 4697 */ 4698 { 4699 Select *pX; 4700 for(pX=pSubq; pX; pX=pX->pPrior){ 4701 assert( (pX->selFlags & (SF_Recursive))==0 ); 4702 } 4703 } 4704 #endif 4705 4706 if( pSubq->pLimit!=0 ){ 4707 return 0; /* restriction (3) */ 4708 } 4709 while( pWhere->op==TK_AND ){ 4710 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4711 iCursor, isLeftJoin); 4712 pWhere = pWhere->pLeft; 4713 } 4714 if( isLeftJoin 4715 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4716 || pWhere->iRightJoinTable!=iCursor) 4717 ){ 4718 return 0; /* restriction (4) */ 4719 } 4720 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4721 return 0; /* restriction (5) */ 4722 } 4723 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4724 nChng++; 4725 pSubq->selFlags |= SF_PushDown; 4726 while( pSubq ){ 4727 SubstContext x; 4728 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4729 unsetJoinExpr(pNew, -1); 4730 x.pParse = pParse; 4731 x.iTable = iCursor; 4732 x.iNewTable = iCursor; 4733 x.isLeftJoin = 0; 4734 x.pEList = pSubq->pEList; 4735 pNew = substExpr(&x, pNew); 4736 #ifndef SQLITE_OMIT_WINDOWFUNC 4737 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4738 /* Restriction 6c has prevented push-down in this case */ 4739 sqlite3ExprDelete(pParse->db, pNew); 4740 nChng--; 4741 break; 4742 } 4743 #endif 4744 if( pSubq->selFlags & SF_Aggregate ){ 4745 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4746 }else{ 4747 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4748 } 4749 pSubq = pSubq->pPrior; 4750 } 4751 } 4752 return nChng; 4753 } 4754 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4755 4756 /* 4757 ** The pFunc is the only aggregate function in the query. Check to see 4758 ** if the query is a candidate for the min/max optimization. 4759 ** 4760 ** If the query is a candidate for the min/max optimization, then set 4761 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4762 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4763 ** whether pFunc is a min() or max() function. 4764 ** 4765 ** If the query is not a candidate for the min/max optimization, return 4766 ** WHERE_ORDERBY_NORMAL (which must be zero). 4767 ** 4768 ** This routine must be called after aggregate functions have been 4769 ** located but before their arguments have been subjected to aggregate 4770 ** analysis. 4771 */ 4772 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4773 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4774 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4775 const char *zFunc; /* Name of aggregate function pFunc */ 4776 ExprList *pOrderBy; 4777 u8 sortFlags = 0; 4778 4779 assert( *ppMinMax==0 ); 4780 assert( pFunc->op==TK_AGG_FUNCTION ); 4781 assert( !IsWindowFunc(pFunc) ); 4782 if( pEList==0 4783 || pEList->nExpr!=1 4784 || ExprHasProperty(pFunc, EP_WinFunc) 4785 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4786 ){ 4787 return eRet; 4788 } 4789 zFunc = pFunc->u.zToken; 4790 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4791 eRet = WHERE_ORDERBY_MIN; 4792 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4793 sortFlags = KEYINFO_ORDER_BIGNULL; 4794 } 4795 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4796 eRet = WHERE_ORDERBY_MAX; 4797 sortFlags = KEYINFO_ORDER_DESC; 4798 }else{ 4799 return eRet; 4800 } 4801 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4802 assert( pOrderBy!=0 || db->mallocFailed ); 4803 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4804 return eRet; 4805 } 4806 4807 /* 4808 ** The select statement passed as the first argument is an aggregate query. 4809 ** The second argument is the associated aggregate-info object. This 4810 ** function tests if the SELECT is of the form: 4811 ** 4812 ** SELECT count(*) FROM <tbl> 4813 ** 4814 ** where table is a database table, not a sub-select or view. If the query 4815 ** does match this pattern, then a pointer to the Table object representing 4816 ** <tbl> is returned. Otherwise, 0 is returned. 4817 */ 4818 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4819 Table *pTab; 4820 Expr *pExpr; 4821 4822 assert( !p->pGroupBy ); 4823 4824 if( p->pWhere || p->pEList->nExpr!=1 4825 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4826 ){ 4827 return 0; 4828 } 4829 pTab = p->pSrc->a[0].pTab; 4830 pExpr = p->pEList->a[0].pExpr; 4831 assert( pTab && !pTab->pSelect && pExpr ); 4832 4833 if( IsVirtual(pTab) ) return 0; 4834 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4835 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4836 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4837 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4838 4839 return pTab; 4840 } 4841 4842 /* 4843 ** If the source-list item passed as an argument was augmented with an 4844 ** INDEXED BY clause, then try to locate the specified index. If there 4845 ** was such a clause and the named index cannot be found, return 4846 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4847 ** pFrom->pIndex and return SQLITE_OK. 4848 */ 4849 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4850 Table *pTab = pFrom->pTab; 4851 char *zIndexedBy = pFrom->u1.zIndexedBy; 4852 Index *pIdx; 4853 assert( pTab!=0 ); 4854 assert( pFrom->fg.isIndexedBy!=0 ); 4855 4856 for(pIdx=pTab->pIndex; 4857 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4858 pIdx=pIdx->pNext 4859 ); 4860 if( !pIdx ){ 4861 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4862 pParse->checkSchema = 1; 4863 return SQLITE_ERROR; 4864 } 4865 pFrom->u2.pIBIndex = pIdx; 4866 return SQLITE_OK; 4867 } 4868 4869 /* 4870 ** Detect compound SELECT statements that use an ORDER BY clause with 4871 ** an alternative collating sequence. 4872 ** 4873 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4874 ** 4875 ** These are rewritten as a subquery: 4876 ** 4877 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4878 ** ORDER BY ... COLLATE ... 4879 ** 4880 ** This transformation is necessary because the multiSelectOrderBy() routine 4881 ** above that generates the code for a compound SELECT with an ORDER BY clause 4882 ** uses a merge algorithm that requires the same collating sequence on the 4883 ** result columns as on the ORDER BY clause. See ticket 4884 ** http://www.sqlite.org/src/info/6709574d2a 4885 ** 4886 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4887 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4888 ** there are COLLATE terms in the ORDER BY. 4889 */ 4890 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4891 int i; 4892 Select *pNew; 4893 Select *pX; 4894 sqlite3 *db; 4895 struct ExprList_item *a; 4896 SrcList *pNewSrc; 4897 Parse *pParse; 4898 Token dummy; 4899 4900 if( p->pPrior==0 ) return WRC_Continue; 4901 if( p->pOrderBy==0 ) return WRC_Continue; 4902 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4903 if( pX==0 ) return WRC_Continue; 4904 a = p->pOrderBy->a; 4905 #ifndef SQLITE_OMIT_WINDOWFUNC 4906 /* If iOrderByCol is already non-zero, then it has already been matched 4907 ** to a result column of the SELECT statement. This occurs when the 4908 ** SELECT is rewritten for window-functions processing and then passed 4909 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 4910 ** by this function is not required in this case. */ 4911 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 4912 #endif 4913 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4914 if( a[i].pExpr->flags & EP_Collate ) break; 4915 } 4916 if( i<0 ) return WRC_Continue; 4917 4918 /* If we reach this point, that means the transformation is required. */ 4919 4920 pParse = pWalker->pParse; 4921 db = pParse->db; 4922 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4923 if( pNew==0 ) return WRC_Abort; 4924 memset(&dummy, 0, sizeof(dummy)); 4925 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4926 if( pNewSrc==0 ) return WRC_Abort; 4927 *pNew = *p; 4928 p->pSrc = pNewSrc; 4929 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4930 p->op = TK_SELECT; 4931 p->pWhere = 0; 4932 pNew->pGroupBy = 0; 4933 pNew->pHaving = 0; 4934 pNew->pOrderBy = 0; 4935 p->pPrior = 0; 4936 p->pNext = 0; 4937 p->pWith = 0; 4938 #ifndef SQLITE_OMIT_WINDOWFUNC 4939 p->pWinDefn = 0; 4940 #endif 4941 p->selFlags &= ~SF_Compound; 4942 assert( (p->selFlags & SF_Converted)==0 ); 4943 p->selFlags |= SF_Converted; 4944 assert( pNew->pPrior!=0 ); 4945 pNew->pPrior->pNext = pNew; 4946 pNew->pLimit = 0; 4947 return WRC_Continue; 4948 } 4949 4950 /* 4951 ** Check to see if the FROM clause term pFrom has table-valued function 4952 ** arguments. If it does, leave an error message in pParse and return 4953 ** non-zero, since pFrom is not allowed to be a table-valued function. 4954 */ 4955 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 4956 if( pFrom->fg.isTabFunc ){ 4957 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4958 return 1; 4959 } 4960 return 0; 4961 } 4962 4963 #ifndef SQLITE_OMIT_CTE 4964 /* 4965 ** Argument pWith (which may be NULL) points to a linked list of nested 4966 ** WITH contexts, from inner to outermost. If the table identified by 4967 ** FROM clause element pItem is really a common-table-expression (CTE) 4968 ** then return a pointer to the CTE definition for that table. Otherwise 4969 ** return NULL. 4970 ** 4971 ** If a non-NULL value is returned, set *ppContext to point to the With 4972 ** object that the returned CTE belongs to. 4973 */ 4974 static struct Cte *searchWith( 4975 With *pWith, /* Current innermost WITH clause */ 4976 SrcItem *pItem, /* FROM clause element to resolve */ 4977 With **ppContext /* OUT: WITH clause return value belongs to */ 4978 ){ 4979 const char *zName = pItem->zName; 4980 With *p; 4981 assert( pItem->zDatabase==0 ); 4982 assert( zName!=0 ); 4983 for(p=pWith; p; p=p->pOuter){ 4984 int i; 4985 for(i=0; i<p->nCte; i++){ 4986 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4987 *ppContext = p; 4988 return &p->a[i]; 4989 } 4990 } 4991 } 4992 return 0; 4993 } 4994 4995 /* The code generator maintains a stack of active WITH clauses 4996 ** with the inner-most WITH clause being at the top of the stack. 4997 ** 4998 ** This routine pushes the WITH clause passed as the second argument 4999 ** onto the top of the stack. If argument bFree is true, then this 5000 ** WITH clause will never be popped from the stack. In this case it 5001 ** should be freed along with the Parse object. In other cases, when 5002 ** bFree==0, the With object will be freed along with the SELECT 5003 ** statement with which it is associated. 5004 */ 5005 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5006 if( pWith ){ 5007 assert( pParse->pWith!=pWith ); 5008 pWith->pOuter = pParse->pWith; 5009 pParse->pWith = pWith; 5010 if( bFree ){ 5011 sqlite3ParserAddCleanup(pParse, 5012 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5013 pWith); 5014 testcase( pParse->earlyCleanup ); 5015 } 5016 } 5017 } 5018 5019 /* 5020 ** This function checks if argument pFrom refers to a CTE declared by 5021 ** a WITH clause on the stack currently maintained by the parser (on the 5022 ** pParse->pWith linked list). And if currently processing a CTE 5023 ** CTE expression, through routine checks to see if the reference is 5024 ** a recursive reference to the CTE. 5025 ** 5026 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5027 ** and other fields are populated accordingly. 5028 ** 5029 ** Return 0 if no match is found. 5030 ** Return 1 if a match is found. 5031 ** Return 2 if an error condition is detected. 5032 */ 5033 static int resolveFromTermToCte( 5034 Parse *pParse, /* The parsing context */ 5035 Walker *pWalker, /* Current tree walker */ 5036 SrcItem *pFrom /* The FROM clause term to check */ 5037 ){ 5038 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5039 With *pWith; /* The matching WITH */ 5040 5041 assert( pFrom->pTab==0 ); 5042 if( pParse->pWith==0 ){ 5043 /* There are no WITH clauses in the stack. No match is possible */ 5044 return 0; 5045 } 5046 if( pFrom->zDatabase!=0 ){ 5047 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5048 ** it cannot possibly be a CTE reference. */ 5049 return 0; 5050 } 5051 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5052 if( pCte ){ 5053 sqlite3 *db = pParse->db; 5054 Table *pTab; 5055 ExprList *pEList; 5056 Select *pSel; 5057 Select *pLeft; /* Left-most SELECT statement */ 5058 Select *pRecTerm; /* Left-most recursive term */ 5059 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5060 With *pSavedWith; /* Initial value of pParse->pWith */ 5061 int iRecTab = -1; /* Cursor for recursive table */ 5062 CteUse *pCteUse; 5063 5064 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5065 ** recursive reference to CTE pCte. Leave an error in pParse and return 5066 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5067 ** In this case, proceed. */ 5068 if( pCte->zCteErr ){ 5069 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5070 return 2; 5071 } 5072 if( cannotBeFunction(pParse, pFrom) ) return 2; 5073 5074 assert( pFrom->pTab==0 ); 5075 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5076 if( pTab==0 ) return 2; 5077 pCteUse = pCte->pUse; 5078 if( pCteUse==0 ){ 5079 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5080 if( pCteUse==0 5081 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5082 ){ 5083 sqlite3DbFree(db, pTab); 5084 return 2; 5085 } 5086 pCteUse->eM10d = pCte->eM10d; 5087 } 5088 pFrom->pTab = pTab; 5089 pTab->nTabRef = 1; 5090 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5091 pTab->iPKey = -1; 5092 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5093 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5094 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5095 if( db->mallocFailed ) return 2; 5096 assert( pFrom->pSelect ); 5097 pFrom->fg.isCte = 1; 5098 pFrom->u2.pCteUse = pCteUse; 5099 pCteUse->nUse++; 5100 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5101 pCteUse->eM10d = M10d_Yes; 5102 } 5103 5104 /* Check if this is a recursive CTE. */ 5105 pRecTerm = pSel = pFrom->pSelect; 5106 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5107 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5108 int i; 5109 SrcList *pSrc = pRecTerm->pSrc; 5110 assert( pRecTerm->pPrior!=0 ); 5111 for(i=0; i<pSrc->nSrc; i++){ 5112 SrcItem *pItem = &pSrc->a[i]; 5113 if( pItem->zDatabase==0 5114 && pItem->zName!=0 5115 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5116 ){ 5117 pItem->pTab = pTab; 5118 pTab->nTabRef++; 5119 pItem->fg.isRecursive = 1; 5120 if( pRecTerm->selFlags & SF_Recursive ){ 5121 sqlite3ErrorMsg(pParse, 5122 "multiple references to recursive table: %s", pCte->zName 5123 ); 5124 return 2; 5125 } 5126 pRecTerm->selFlags |= SF_Recursive; 5127 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5128 pItem->iCursor = iRecTab; 5129 } 5130 } 5131 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5132 pRecTerm = pRecTerm->pPrior; 5133 } 5134 5135 pCte->zCteErr = "circular reference: %s"; 5136 pSavedWith = pParse->pWith; 5137 pParse->pWith = pWith; 5138 if( pSel->selFlags & SF_Recursive ){ 5139 int rc; 5140 assert( pRecTerm!=0 ); 5141 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5142 assert( pRecTerm->pNext!=0 ); 5143 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5144 assert( pRecTerm->pWith==0 ); 5145 pRecTerm->pWith = pSel->pWith; 5146 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5147 pRecTerm->pWith = 0; 5148 if( rc ){ 5149 pParse->pWith = pSavedWith; 5150 return 2; 5151 } 5152 }else{ 5153 if( sqlite3WalkSelect(pWalker, pSel) ){ 5154 pParse->pWith = pSavedWith; 5155 return 2; 5156 } 5157 } 5158 pParse->pWith = pWith; 5159 5160 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5161 pEList = pLeft->pEList; 5162 if( pCte->pCols ){ 5163 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5164 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5165 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5166 ); 5167 pParse->pWith = pSavedWith; 5168 return 2; 5169 } 5170 pEList = pCte->pCols; 5171 } 5172 5173 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5174 if( bMayRecursive ){ 5175 if( pSel->selFlags & SF_Recursive ){ 5176 pCte->zCteErr = "multiple recursive references: %s"; 5177 }else{ 5178 pCte->zCteErr = "recursive reference in a subquery: %s"; 5179 } 5180 sqlite3WalkSelect(pWalker, pSel); 5181 } 5182 pCte->zCteErr = 0; 5183 pParse->pWith = pSavedWith; 5184 return 1; /* Success */ 5185 } 5186 return 0; /* No match */ 5187 } 5188 #endif 5189 5190 #ifndef SQLITE_OMIT_CTE 5191 /* 5192 ** If the SELECT passed as the second argument has an associated WITH 5193 ** clause, pop it from the stack stored as part of the Parse object. 5194 ** 5195 ** This function is used as the xSelectCallback2() callback by 5196 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5197 ** names and other FROM clause elements. 5198 */ 5199 static void selectPopWith(Walker *pWalker, Select *p){ 5200 Parse *pParse = pWalker->pParse; 5201 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5202 With *pWith = findRightmost(p)->pWith; 5203 if( pWith!=0 ){ 5204 assert( pParse->pWith==pWith || pParse->nErr ); 5205 pParse->pWith = pWith->pOuter; 5206 } 5207 } 5208 } 5209 #else 5210 #define selectPopWith 0 5211 #endif 5212 5213 /* 5214 ** The SrcList_item structure passed as the second argument represents a 5215 ** sub-query in the FROM clause of a SELECT statement. This function 5216 ** allocates and populates the SrcList_item.pTab object. If successful, 5217 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5218 ** SQLITE_NOMEM. 5219 */ 5220 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5221 Select *pSel = pFrom->pSelect; 5222 Table *pTab; 5223 5224 assert( pSel ); 5225 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5226 if( pTab==0 ) return SQLITE_NOMEM; 5227 pTab->nTabRef = 1; 5228 if( pFrom->zAlias ){ 5229 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5230 }else{ 5231 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5232 } 5233 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5234 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5235 pTab->iPKey = -1; 5236 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5237 pTab->tabFlags |= TF_Ephemeral; 5238 5239 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5240 } 5241 5242 /* 5243 ** This routine is a Walker callback for "expanding" a SELECT statement. 5244 ** "Expanding" means to do the following: 5245 ** 5246 ** (1) Make sure VDBE cursor numbers have been assigned to every 5247 ** element of the FROM clause. 5248 ** 5249 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5250 ** defines FROM clause. When views appear in the FROM clause, 5251 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5252 ** that implements the view. A copy is made of the view's SELECT 5253 ** statement so that we can freely modify or delete that statement 5254 ** without worrying about messing up the persistent representation 5255 ** of the view. 5256 ** 5257 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5258 ** on joins and the ON and USING clause of joins. 5259 ** 5260 ** (4) Scan the list of columns in the result set (pEList) looking 5261 ** for instances of the "*" operator or the TABLE.* operator. 5262 ** If found, expand each "*" to be every column in every table 5263 ** and TABLE.* to be every column in TABLE. 5264 ** 5265 */ 5266 static int selectExpander(Walker *pWalker, Select *p){ 5267 Parse *pParse = pWalker->pParse; 5268 int i, j, k, rc; 5269 SrcList *pTabList; 5270 ExprList *pEList; 5271 SrcItem *pFrom; 5272 sqlite3 *db = pParse->db; 5273 Expr *pE, *pRight, *pExpr; 5274 u16 selFlags = p->selFlags; 5275 u32 elistFlags = 0; 5276 5277 p->selFlags |= SF_Expanded; 5278 if( db->mallocFailed ){ 5279 return WRC_Abort; 5280 } 5281 assert( p->pSrc!=0 ); 5282 if( (selFlags & SF_Expanded)!=0 ){ 5283 return WRC_Prune; 5284 } 5285 if( pWalker->eCode ){ 5286 /* Renumber selId because it has been copied from a view */ 5287 p->selId = ++pParse->nSelect; 5288 } 5289 pTabList = p->pSrc; 5290 pEList = p->pEList; 5291 sqlite3WithPush(pParse, p->pWith, 0); 5292 5293 /* Make sure cursor numbers have been assigned to all entries in 5294 ** the FROM clause of the SELECT statement. 5295 */ 5296 sqlite3SrcListAssignCursors(pParse, pTabList); 5297 5298 /* Look up every table named in the FROM clause of the select. If 5299 ** an entry of the FROM clause is a subquery instead of a table or view, 5300 ** then create a transient table structure to describe the subquery. 5301 */ 5302 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5303 Table *pTab; 5304 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5305 if( pFrom->pTab ) continue; 5306 assert( pFrom->fg.isRecursive==0 ); 5307 if( pFrom->zName==0 ){ 5308 #ifndef SQLITE_OMIT_SUBQUERY 5309 Select *pSel = pFrom->pSelect; 5310 /* A sub-query in the FROM clause of a SELECT */ 5311 assert( pSel!=0 ); 5312 assert( pFrom->pTab==0 ); 5313 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5314 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5315 #endif 5316 #ifndef SQLITE_OMIT_CTE 5317 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5318 if( rc>1 ) return WRC_Abort; 5319 pTab = pFrom->pTab; 5320 assert( pTab!=0 ); 5321 #endif 5322 }else{ 5323 /* An ordinary table or view name in the FROM clause */ 5324 assert( pFrom->pTab==0 ); 5325 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5326 if( pTab==0 ) return WRC_Abort; 5327 if( pTab->nTabRef>=0xffff ){ 5328 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5329 pTab->zName); 5330 pFrom->pTab = 0; 5331 return WRC_Abort; 5332 } 5333 pTab->nTabRef++; 5334 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5335 return WRC_Abort; 5336 } 5337 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5338 if( IsVirtual(pTab) || pTab->pSelect ){ 5339 i16 nCol; 5340 u8 eCodeOrig = pWalker->eCode; 5341 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5342 assert( pFrom->pSelect==0 ); 5343 if( pTab->pSelect 5344 && (db->flags & SQLITE_EnableView)==0 5345 && pTab->pSchema!=db->aDb[1].pSchema 5346 ){ 5347 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5348 pTab->zName); 5349 } 5350 #ifndef SQLITE_OMIT_VIRTUALTABLE 5351 if( IsVirtual(pTab) 5352 && pFrom->fg.fromDDL 5353 && ALWAYS(pTab->pVTable!=0) 5354 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5355 ){ 5356 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5357 pTab->zName); 5358 } 5359 #endif 5360 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5361 nCol = pTab->nCol; 5362 pTab->nCol = -1; 5363 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5364 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5365 pWalker->eCode = eCodeOrig; 5366 pTab->nCol = nCol; 5367 } 5368 #endif 5369 } 5370 5371 /* Locate the index named by the INDEXED BY clause, if any. */ 5372 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5373 return WRC_Abort; 5374 } 5375 } 5376 5377 /* Process NATURAL keywords, and ON and USING clauses of joins. 5378 */ 5379 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5380 return WRC_Abort; 5381 } 5382 5383 /* For every "*" that occurs in the column list, insert the names of 5384 ** all columns in all tables. And for every TABLE.* insert the names 5385 ** of all columns in TABLE. The parser inserted a special expression 5386 ** with the TK_ASTERISK operator for each "*" that it found in the column 5387 ** list. The following code just has to locate the TK_ASTERISK 5388 ** expressions and expand each one to the list of all columns in 5389 ** all tables. 5390 ** 5391 ** The first loop just checks to see if there are any "*" operators 5392 ** that need expanding. 5393 */ 5394 for(k=0; k<pEList->nExpr; k++){ 5395 pE = pEList->a[k].pExpr; 5396 if( pE->op==TK_ASTERISK ) break; 5397 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5398 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5399 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5400 elistFlags |= pE->flags; 5401 } 5402 if( k<pEList->nExpr ){ 5403 /* 5404 ** If we get here it means the result set contains one or more "*" 5405 ** operators that need to be expanded. Loop through each expression 5406 ** in the result set and expand them one by one. 5407 */ 5408 struct ExprList_item *a = pEList->a; 5409 ExprList *pNew = 0; 5410 int flags = pParse->db->flags; 5411 int longNames = (flags & SQLITE_FullColNames)!=0 5412 && (flags & SQLITE_ShortColNames)==0; 5413 5414 for(k=0; k<pEList->nExpr; k++){ 5415 pE = a[k].pExpr; 5416 elistFlags |= pE->flags; 5417 pRight = pE->pRight; 5418 assert( pE->op!=TK_DOT || pRight!=0 ); 5419 if( pE->op!=TK_ASTERISK 5420 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5421 ){ 5422 /* This particular expression does not need to be expanded. 5423 */ 5424 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5425 if( pNew ){ 5426 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5427 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5428 a[k].zEName = 0; 5429 } 5430 a[k].pExpr = 0; 5431 }else{ 5432 /* This expression is a "*" or a "TABLE.*" and needs to be 5433 ** expanded. */ 5434 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5435 char *zTName = 0; /* text of name of TABLE */ 5436 if( pE->op==TK_DOT ){ 5437 assert( pE->pLeft!=0 ); 5438 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5439 zTName = pE->pLeft->u.zToken; 5440 } 5441 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5442 Table *pTab = pFrom->pTab; 5443 Select *pSub = pFrom->pSelect; 5444 char *zTabName = pFrom->zAlias; 5445 const char *zSchemaName = 0; 5446 int iDb; 5447 if( zTabName==0 ){ 5448 zTabName = pTab->zName; 5449 } 5450 if( db->mallocFailed ) break; 5451 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5452 pSub = 0; 5453 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5454 continue; 5455 } 5456 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5457 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5458 } 5459 for(j=0; j<pTab->nCol; j++){ 5460 char *zName = pTab->aCol[j].zName; 5461 char *zColname; /* The computed column name */ 5462 char *zToFree; /* Malloced string that needs to be freed */ 5463 Token sColname; /* Computed column name as a token */ 5464 5465 assert( zName ); 5466 if( zTName && pSub 5467 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5468 ){ 5469 continue; 5470 } 5471 5472 /* If a column is marked as 'hidden', omit it from the expanded 5473 ** result-set list unless the SELECT has the SF_IncludeHidden 5474 ** bit set. 5475 */ 5476 if( (p->selFlags & SF_IncludeHidden)==0 5477 && IsHiddenColumn(&pTab->aCol[j]) 5478 ){ 5479 continue; 5480 } 5481 tableSeen = 1; 5482 5483 if( i>0 && zTName==0 ){ 5484 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5485 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5486 ){ 5487 /* In a NATURAL join, omit the join columns from the 5488 ** table to the right of the join */ 5489 continue; 5490 } 5491 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5492 /* In a join with a USING clause, omit columns in the 5493 ** using clause from the table on the right. */ 5494 continue; 5495 } 5496 } 5497 pRight = sqlite3Expr(db, TK_ID, zName); 5498 zColname = zName; 5499 zToFree = 0; 5500 if( longNames || pTabList->nSrc>1 ){ 5501 Expr *pLeft; 5502 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5503 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5504 if( zSchemaName ){ 5505 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5506 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5507 } 5508 if( longNames ){ 5509 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5510 zToFree = zColname; 5511 } 5512 }else{ 5513 pExpr = pRight; 5514 } 5515 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5516 sqlite3TokenInit(&sColname, zColname); 5517 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5518 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5519 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5520 sqlite3DbFree(db, pX->zEName); 5521 if( pSub ){ 5522 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5523 testcase( pX->zEName==0 ); 5524 }else{ 5525 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5526 zSchemaName, zTabName, zColname); 5527 testcase( pX->zEName==0 ); 5528 } 5529 pX->eEName = ENAME_TAB; 5530 } 5531 sqlite3DbFree(db, zToFree); 5532 } 5533 } 5534 if( !tableSeen ){ 5535 if( zTName ){ 5536 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5537 }else{ 5538 sqlite3ErrorMsg(pParse, "no tables specified"); 5539 } 5540 } 5541 } 5542 } 5543 sqlite3ExprListDelete(db, pEList); 5544 p->pEList = pNew; 5545 } 5546 if( p->pEList ){ 5547 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5548 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5549 return WRC_Abort; 5550 } 5551 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5552 p->selFlags |= SF_ComplexResult; 5553 } 5554 } 5555 return WRC_Continue; 5556 } 5557 5558 #if SQLITE_DEBUG 5559 /* 5560 ** Always assert. This xSelectCallback2 implementation proves that the 5561 ** xSelectCallback2 is never invoked. 5562 */ 5563 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5564 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5565 assert( 0 ); 5566 } 5567 #endif 5568 /* 5569 ** This routine "expands" a SELECT statement and all of its subqueries. 5570 ** For additional information on what it means to "expand" a SELECT 5571 ** statement, see the comment on the selectExpand worker callback above. 5572 ** 5573 ** Expanding a SELECT statement is the first step in processing a 5574 ** SELECT statement. The SELECT statement must be expanded before 5575 ** name resolution is performed. 5576 ** 5577 ** If anything goes wrong, an error message is written into pParse. 5578 ** The calling function can detect the problem by looking at pParse->nErr 5579 ** and/or pParse->db->mallocFailed. 5580 */ 5581 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5582 Walker w; 5583 w.xExprCallback = sqlite3ExprWalkNoop; 5584 w.pParse = pParse; 5585 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5586 w.xSelectCallback = convertCompoundSelectToSubquery; 5587 w.xSelectCallback2 = 0; 5588 sqlite3WalkSelect(&w, pSelect); 5589 } 5590 w.xSelectCallback = selectExpander; 5591 w.xSelectCallback2 = selectPopWith; 5592 w.eCode = 0; 5593 sqlite3WalkSelect(&w, pSelect); 5594 } 5595 5596 5597 #ifndef SQLITE_OMIT_SUBQUERY 5598 /* 5599 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5600 ** interface. 5601 ** 5602 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5603 ** information to the Table structure that represents the result set 5604 ** of that subquery. 5605 ** 5606 ** The Table structure that represents the result set was constructed 5607 ** by selectExpander() but the type and collation information was omitted 5608 ** at that point because identifiers had not yet been resolved. This 5609 ** routine is called after identifier resolution. 5610 */ 5611 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5612 Parse *pParse; 5613 int i; 5614 SrcList *pTabList; 5615 SrcItem *pFrom; 5616 5617 assert( p->selFlags & SF_Resolved ); 5618 if( p->selFlags & SF_HasTypeInfo ) return; 5619 p->selFlags |= SF_HasTypeInfo; 5620 pParse = pWalker->pParse; 5621 pTabList = p->pSrc; 5622 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5623 Table *pTab = pFrom->pTab; 5624 assert( pTab!=0 ); 5625 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5626 /* A sub-query in the FROM clause of a SELECT */ 5627 Select *pSel = pFrom->pSelect; 5628 if( pSel ){ 5629 while( pSel->pPrior ) pSel = pSel->pPrior; 5630 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5631 SQLITE_AFF_NONE); 5632 } 5633 } 5634 } 5635 } 5636 #endif 5637 5638 5639 /* 5640 ** This routine adds datatype and collating sequence information to 5641 ** the Table structures of all FROM-clause subqueries in a 5642 ** SELECT statement. 5643 ** 5644 ** Use this routine after name resolution. 5645 */ 5646 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5647 #ifndef SQLITE_OMIT_SUBQUERY 5648 Walker w; 5649 w.xSelectCallback = sqlite3SelectWalkNoop; 5650 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5651 w.xExprCallback = sqlite3ExprWalkNoop; 5652 w.pParse = pParse; 5653 sqlite3WalkSelect(&w, pSelect); 5654 #endif 5655 } 5656 5657 5658 /* 5659 ** This routine sets up a SELECT statement for processing. The 5660 ** following is accomplished: 5661 ** 5662 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5663 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5664 ** * ON and USING clauses are shifted into WHERE statements 5665 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5666 ** * Identifiers in expression are matched to tables. 5667 ** 5668 ** This routine acts recursively on all subqueries within the SELECT. 5669 */ 5670 void sqlite3SelectPrep( 5671 Parse *pParse, /* The parser context */ 5672 Select *p, /* The SELECT statement being coded. */ 5673 NameContext *pOuterNC /* Name context for container */ 5674 ){ 5675 assert( p!=0 || pParse->db->mallocFailed ); 5676 if( pParse->db->mallocFailed ) return; 5677 if( p->selFlags & SF_HasTypeInfo ) return; 5678 sqlite3SelectExpand(pParse, p); 5679 if( pParse->nErr || pParse->db->mallocFailed ) return; 5680 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5681 if( pParse->nErr || pParse->db->mallocFailed ) return; 5682 sqlite3SelectAddTypeInfo(pParse, p); 5683 } 5684 5685 /* 5686 ** Reset the aggregate accumulator. 5687 ** 5688 ** The aggregate accumulator is a set of memory cells that hold 5689 ** intermediate results while calculating an aggregate. This 5690 ** routine generates code that stores NULLs in all of those memory 5691 ** cells. 5692 */ 5693 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5694 Vdbe *v = pParse->pVdbe; 5695 int i; 5696 struct AggInfo_func *pFunc; 5697 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5698 if( nReg==0 ) return; 5699 if( pParse->nErr || pParse->db->mallocFailed ) return; 5700 #ifdef SQLITE_DEBUG 5701 /* Verify that all AggInfo registers are within the range specified by 5702 ** AggInfo.mnReg..AggInfo.mxReg */ 5703 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5704 for(i=0; i<pAggInfo->nColumn; i++){ 5705 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5706 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5707 } 5708 for(i=0; i<pAggInfo->nFunc; i++){ 5709 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5710 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5711 } 5712 #endif 5713 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5714 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5715 if( pFunc->iDistinct>=0 ){ 5716 Expr *pE = pFunc->pFExpr; 5717 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5718 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5719 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5720 "argument"); 5721 pFunc->iDistinct = -1; 5722 }else{ 5723 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5724 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5725 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5726 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5727 pFunc->pFunc->zName)); 5728 } 5729 } 5730 } 5731 } 5732 5733 /* 5734 ** Invoke the OP_AggFinalize opcode for every aggregate function 5735 ** in the AggInfo structure. 5736 */ 5737 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5738 Vdbe *v = pParse->pVdbe; 5739 int i; 5740 struct AggInfo_func *pF; 5741 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5742 ExprList *pList = pF->pFExpr->x.pList; 5743 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5744 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5745 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5746 } 5747 } 5748 5749 5750 /* 5751 ** Update the accumulator memory cells for an aggregate based on 5752 ** the current cursor position. 5753 ** 5754 ** If regAcc is non-zero and there are no min() or max() aggregates 5755 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5756 ** registers if register regAcc contains 0. The caller will take care 5757 ** of setting and clearing regAcc. 5758 */ 5759 static void updateAccumulator( 5760 Parse *pParse, 5761 int regAcc, 5762 AggInfo *pAggInfo, 5763 int eDistinctType 5764 ){ 5765 Vdbe *v = pParse->pVdbe; 5766 int i; 5767 int regHit = 0; 5768 int addrHitTest = 0; 5769 struct AggInfo_func *pF; 5770 struct AggInfo_col *pC; 5771 5772 pAggInfo->directMode = 1; 5773 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5774 int nArg; 5775 int addrNext = 0; 5776 int regAgg; 5777 ExprList *pList = pF->pFExpr->x.pList; 5778 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5779 assert( !IsWindowFunc(pF->pFExpr) ); 5780 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5781 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5782 if( pAggInfo->nAccumulator 5783 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5784 && regAcc 5785 ){ 5786 /* If regAcc==0, there there exists some min() or max() function 5787 ** without a FILTER clause that will ensure the magnet registers 5788 ** are populated. */ 5789 if( regHit==0 ) regHit = ++pParse->nMem; 5790 /* If this is the first row of the group (regAcc contains 0), clear the 5791 ** "magnet" register regHit so that the accumulator registers 5792 ** are populated if the FILTER clause jumps over the the 5793 ** invocation of min() or max() altogether. Or, if this is not 5794 ** the first row (regAcc contains 1), set the magnet register so that 5795 ** the accumulators are not populated unless the min()/max() is invoked 5796 ** and indicates that they should be. */ 5797 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5798 } 5799 addrNext = sqlite3VdbeMakeLabel(pParse); 5800 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5801 } 5802 if( pList ){ 5803 nArg = pList->nExpr; 5804 regAgg = sqlite3GetTempRange(pParse, nArg); 5805 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5806 }else{ 5807 nArg = 0; 5808 regAgg = 0; 5809 } 5810 if( pF->iDistinct>=0 && pList ){ 5811 if( addrNext==0 ){ 5812 addrNext = sqlite3VdbeMakeLabel(pParse); 5813 } 5814 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5815 pF->iDistinct, addrNext, pList, regAgg); 5816 } 5817 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5818 CollSeq *pColl = 0; 5819 struct ExprList_item *pItem; 5820 int j; 5821 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5822 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5823 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5824 } 5825 if( !pColl ){ 5826 pColl = pParse->db->pDfltColl; 5827 } 5828 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5829 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5830 } 5831 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5832 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5833 sqlite3VdbeChangeP5(v, (u8)nArg); 5834 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5835 if( addrNext ){ 5836 sqlite3VdbeResolveLabel(v, addrNext); 5837 } 5838 } 5839 if( regHit==0 && pAggInfo->nAccumulator ){ 5840 regHit = regAcc; 5841 } 5842 if( regHit ){ 5843 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5844 } 5845 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5846 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5847 } 5848 5849 pAggInfo->directMode = 0; 5850 if( addrHitTest ){ 5851 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5852 } 5853 } 5854 5855 /* 5856 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5857 ** count(*) query ("SELECT count(*) FROM pTab"). 5858 */ 5859 #ifndef SQLITE_OMIT_EXPLAIN 5860 static void explainSimpleCount( 5861 Parse *pParse, /* Parse context */ 5862 Table *pTab, /* Table being queried */ 5863 Index *pIdx /* Index used to optimize scan, or NULL */ 5864 ){ 5865 if( pParse->explain==2 ){ 5866 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5867 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 5868 pTab->zName, 5869 bCover ? " USING COVERING INDEX " : "", 5870 bCover ? pIdx->zName : "" 5871 ); 5872 } 5873 } 5874 #else 5875 # define explainSimpleCount(a,b,c) 5876 #endif 5877 5878 /* 5879 ** sqlite3WalkExpr() callback used by havingToWhere(). 5880 ** 5881 ** If the node passed to the callback is a TK_AND node, return 5882 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5883 ** 5884 ** Otherwise, return WRC_Prune. In this case, also check if the 5885 ** sub-expression matches the criteria for being moved to the WHERE 5886 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5887 ** within the HAVING expression with a constant "1". 5888 */ 5889 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5890 if( pExpr->op!=TK_AND ){ 5891 Select *pS = pWalker->u.pSelect; 5892 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 5893 && ExprAlwaysFalse(pExpr)==0 5894 ){ 5895 sqlite3 *db = pWalker->pParse->db; 5896 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5897 if( pNew ){ 5898 Expr *pWhere = pS->pWhere; 5899 SWAP(Expr, *pNew, *pExpr); 5900 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5901 pS->pWhere = pNew; 5902 pWalker->eCode = 1; 5903 } 5904 } 5905 return WRC_Prune; 5906 } 5907 return WRC_Continue; 5908 } 5909 5910 /* 5911 ** Transfer eligible terms from the HAVING clause of a query, which is 5912 ** processed after grouping, to the WHERE clause, which is processed before 5913 ** grouping. For example, the query: 5914 ** 5915 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5916 ** 5917 ** can be rewritten as: 5918 ** 5919 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5920 ** 5921 ** A term of the HAVING expression is eligible for transfer if it consists 5922 ** entirely of constants and expressions that are also GROUP BY terms that 5923 ** use the "BINARY" collation sequence. 5924 */ 5925 static void havingToWhere(Parse *pParse, Select *p){ 5926 Walker sWalker; 5927 memset(&sWalker, 0, sizeof(sWalker)); 5928 sWalker.pParse = pParse; 5929 sWalker.xExprCallback = havingToWhereExprCb; 5930 sWalker.u.pSelect = p; 5931 sqlite3WalkExpr(&sWalker, p->pHaving); 5932 #if SELECTTRACE_ENABLED 5933 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5934 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5935 sqlite3TreeViewSelect(0, p, 0); 5936 } 5937 #endif 5938 } 5939 5940 /* 5941 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5942 ** If it is, then return the SrcList_item for the prior view. If it is not, 5943 ** then return 0. 5944 */ 5945 static SrcItem *isSelfJoinView( 5946 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5947 SrcItem *pThis /* Search for prior reference to this subquery */ 5948 ){ 5949 SrcItem *pItem; 5950 assert( pThis->pSelect!=0 ); 5951 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 5952 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5953 Select *pS1; 5954 if( pItem->pSelect==0 ) continue; 5955 if( pItem->fg.viaCoroutine ) continue; 5956 if( pItem->zName==0 ) continue; 5957 assert( pItem->pTab!=0 ); 5958 assert( pThis->pTab!=0 ); 5959 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5960 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5961 pS1 = pItem->pSelect; 5962 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5963 /* The query flattener left two different CTE tables with identical 5964 ** names in the same FROM clause. */ 5965 continue; 5966 } 5967 if( pItem->pSelect->selFlags & SF_PushDown ){ 5968 /* The view was modified by some other optimization such as 5969 ** pushDownWhereTerms() */ 5970 continue; 5971 } 5972 return pItem; 5973 } 5974 return 0; 5975 } 5976 5977 /* 5978 ** Deallocate a single AggInfo object 5979 */ 5980 static void agginfoFree(sqlite3 *db, AggInfo *p){ 5981 sqlite3DbFree(db, p->aCol); 5982 sqlite3DbFree(db, p->aFunc); 5983 sqlite3DbFreeNN(db, p); 5984 } 5985 5986 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5987 /* 5988 ** Attempt to transform a query of the form 5989 ** 5990 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5991 ** 5992 ** Into this: 5993 ** 5994 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5995 ** 5996 ** The transformation only works if all of the following are true: 5997 ** 5998 ** * The subquery is a UNION ALL of two or more terms 5999 ** * The subquery does not have a LIMIT clause 6000 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6001 ** * The outer query is a simple count(*) with no WHERE clause or other 6002 ** extraneous syntax. 6003 ** 6004 ** Return TRUE if the optimization is undertaken. 6005 */ 6006 static int countOfViewOptimization(Parse *pParse, Select *p){ 6007 Select *pSub, *pPrior; 6008 Expr *pExpr; 6009 Expr *pCount; 6010 sqlite3 *db; 6011 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6012 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6013 if( p->pWhere ) return 0; 6014 if( p->pGroupBy ) return 0; 6015 pExpr = p->pEList->a[0].pExpr; 6016 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6017 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6018 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6019 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6020 pSub = p->pSrc->a[0].pSelect; 6021 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6022 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6023 do{ 6024 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6025 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6026 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6027 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6028 pSub = pSub->pPrior; /* Repeat over compound */ 6029 }while( pSub ); 6030 6031 /* If we reach this point then it is OK to perform the transformation */ 6032 6033 db = pParse->db; 6034 pCount = pExpr; 6035 pExpr = 0; 6036 pSub = p->pSrc->a[0].pSelect; 6037 p->pSrc->a[0].pSelect = 0; 6038 sqlite3SrcListDelete(db, p->pSrc); 6039 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6040 while( pSub ){ 6041 Expr *pTerm; 6042 pPrior = pSub->pPrior; 6043 pSub->pPrior = 0; 6044 pSub->pNext = 0; 6045 pSub->selFlags |= SF_Aggregate; 6046 pSub->selFlags &= ~SF_Compound; 6047 pSub->nSelectRow = 0; 6048 sqlite3ExprListDelete(db, pSub->pEList); 6049 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6050 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6051 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6052 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6053 if( pExpr==0 ){ 6054 pExpr = pTerm; 6055 }else{ 6056 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6057 } 6058 pSub = pPrior; 6059 } 6060 p->pEList->a[0].pExpr = pExpr; 6061 p->selFlags &= ~SF_Aggregate; 6062 6063 #if SELECTTRACE_ENABLED 6064 if( sqlite3SelectTrace & 0x400 ){ 6065 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6066 sqlite3TreeViewSelect(0, p, 0); 6067 } 6068 #endif 6069 return 1; 6070 } 6071 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6072 6073 /* 6074 ** Generate code for the SELECT statement given in the p argument. 6075 ** 6076 ** The results are returned according to the SelectDest structure. 6077 ** See comments in sqliteInt.h for further information. 6078 ** 6079 ** This routine returns the number of errors. If any errors are 6080 ** encountered, then an appropriate error message is left in 6081 ** pParse->zErrMsg. 6082 ** 6083 ** This routine does NOT free the Select structure passed in. The 6084 ** calling function needs to do that. 6085 */ 6086 int sqlite3Select( 6087 Parse *pParse, /* The parser context */ 6088 Select *p, /* The SELECT statement being coded. */ 6089 SelectDest *pDest /* What to do with the query results */ 6090 ){ 6091 int i, j; /* Loop counters */ 6092 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6093 Vdbe *v; /* The virtual machine under construction */ 6094 int isAgg; /* True for select lists like "count(*)" */ 6095 ExprList *pEList = 0; /* List of columns to extract. */ 6096 SrcList *pTabList; /* List of tables to select from */ 6097 Expr *pWhere; /* The WHERE clause. May be NULL */ 6098 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6099 Expr *pHaving; /* The HAVING clause. May be NULL */ 6100 AggInfo *pAggInfo = 0; /* Aggregate information */ 6101 int rc = 1; /* Value to return from this function */ 6102 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6103 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6104 int iEnd; /* Address of the end of the query */ 6105 sqlite3 *db; /* The database connection */ 6106 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6107 u8 minMaxFlag; /* Flag for min/max queries */ 6108 6109 db = pParse->db; 6110 v = sqlite3GetVdbe(pParse); 6111 if( p==0 || db->mallocFailed || pParse->nErr ){ 6112 return 1; 6113 } 6114 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6115 #if SELECTTRACE_ENABLED 6116 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6117 if( sqlite3SelectTrace & 0x100 ){ 6118 sqlite3TreeViewSelect(0, p, 0); 6119 } 6120 #endif 6121 6122 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6123 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6124 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6125 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6126 if( IgnorableDistinct(pDest) ){ 6127 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6128 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6129 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6130 /* All of these destinations are also able to ignore the ORDER BY clause */ 6131 if( p->pOrderBy ){ 6132 #if SELECTTRACE_ENABLED 6133 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6134 if( sqlite3SelectTrace & 0x100 ){ 6135 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6136 } 6137 #endif 6138 sqlite3ParserAddCleanup(pParse, 6139 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6140 p->pOrderBy); 6141 testcase( pParse->earlyCleanup ); 6142 p->pOrderBy = 0; 6143 } 6144 p->selFlags &= ~SF_Distinct; 6145 p->selFlags |= SF_NoopOrderBy; 6146 } 6147 sqlite3SelectPrep(pParse, p, 0); 6148 if( pParse->nErr || db->mallocFailed ){ 6149 goto select_end; 6150 } 6151 assert( p->pEList!=0 ); 6152 #if SELECTTRACE_ENABLED 6153 if( sqlite3SelectTrace & 0x104 ){ 6154 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6155 sqlite3TreeViewSelect(0, p, 0); 6156 } 6157 #endif 6158 6159 /* If the SF_UpdateFrom flag is set, then this function is being called 6160 ** as part of populating the temp table for an UPDATE...FROM statement. 6161 ** In this case, it is an error if the target object (pSrc->a[0]) name 6162 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */ 6163 if( p->selFlags & SF_UpdateFrom ){ 6164 SrcItem *p0 = &p->pSrc->a[0]; 6165 for(i=1; i<p->pSrc->nSrc; i++){ 6166 SrcItem *p1 = &p->pSrc->a[i]; 6167 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6168 sqlite3ErrorMsg(pParse, 6169 "target object/alias may not appear in FROM clause: %s", 6170 p0->zAlias ? p0->zAlias : p0->pTab->zName 6171 ); 6172 goto select_end; 6173 } 6174 } 6175 } 6176 6177 if( pDest->eDest==SRT_Output ){ 6178 generateColumnNames(pParse, p); 6179 } 6180 6181 #ifndef SQLITE_OMIT_WINDOWFUNC 6182 rc = sqlite3WindowRewrite(pParse, p); 6183 if( rc ){ 6184 assert( db->mallocFailed || pParse->nErr>0 ); 6185 goto select_end; 6186 } 6187 #if SELECTTRACE_ENABLED 6188 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6189 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6190 sqlite3TreeViewSelect(0, p, 0); 6191 } 6192 #endif 6193 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6194 pTabList = p->pSrc; 6195 isAgg = (p->selFlags & SF_Aggregate)!=0; 6196 memset(&sSort, 0, sizeof(sSort)); 6197 sSort.pOrderBy = p->pOrderBy; 6198 6199 /* Try to do various optimizations (flattening subqueries, and strength 6200 ** reduction of join operators) in the FROM clause up into the main query 6201 */ 6202 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6203 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6204 SrcItem *pItem = &pTabList->a[i]; 6205 Select *pSub = pItem->pSelect; 6206 Table *pTab = pItem->pTab; 6207 6208 /* The expander should have already created transient Table objects 6209 ** even for FROM clause elements such as subqueries that do not correspond 6210 ** to a real table */ 6211 assert( pTab!=0 ); 6212 6213 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6214 ** of the LEFT JOIN used in the WHERE clause. 6215 */ 6216 if( (pItem->fg.jointype & JT_LEFT)!=0 6217 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6218 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6219 ){ 6220 SELECTTRACE(0x100,pParse,p, 6221 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6222 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6223 unsetJoinExpr(p->pWhere, pItem->iCursor); 6224 } 6225 6226 /* No futher action if this term of the FROM clause is no a subquery */ 6227 if( pSub==0 ) continue; 6228 6229 /* Catch mismatch in the declared columns of a view and the number of 6230 ** columns in the SELECT on the RHS */ 6231 if( pTab->nCol!=pSub->pEList->nExpr ){ 6232 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6233 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6234 goto select_end; 6235 } 6236 6237 /* Do not try to flatten an aggregate subquery. 6238 ** 6239 ** Flattening an aggregate subquery is only possible if the outer query 6240 ** is not a join. But if the outer query is not a join, then the subquery 6241 ** will be implemented as a co-routine and there is no advantage to 6242 ** flattening in that case. 6243 */ 6244 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6245 assert( pSub->pGroupBy==0 ); 6246 6247 /* If the outer query contains a "complex" result set (that is, 6248 ** if the result set of the outer query uses functions or subqueries) 6249 ** and if the subquery contains an ORDER BY clause and if 6250 ** it will be implemented as a co-routine, then do not flatten. This 6251 ** restriction allows SQL constructs like this: 6252 ** 6253 ** SELECT expensive_function(x) 6254 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6255 ** 6256 ** The expensive_function() is only computed on the 10 rows that 6257 ** are output, rather than every row of the table. 6258 ** 6259 ** The requirement that the outer query have a complex result set 6260 ** means that flattening does occur on simpler SQL constraints without 6261 ** the expensive_function() like: 6262 ** 6263 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6264 */ 6265 if( pSub->pOrderBy!=0 6266 && i==0 6267 && (p->selFlags & SF_ComplexResult)!=0 6268 && (pTabList->nSrc==1 6269 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6270 ){ 6271 continue; 6272 } 6273 6274 if( flattenSubquery(pParse, p, i, isAgg) ){ 6275 if( pParse->nErr ) goto select_end; 6276 /* This subquery can be absorbed into its parent. */ 6277 i = -1; 6278 } 6279 pTabList = p->pSrc; 6280 if( db->mallocFailed ) goto select_end; 6281 if( !IgnorableOrderby(pDest) ){ 6282 sSort.pOrderBy = p->pOrderBy; 6283 } 6284 } 6285 #endif 6286 6287 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6288 /* Handle compound SELECT statements using the separate multiSelect() 6289 ** procedure. 6290 */ 6291 if( p->pPrior ){ 6292 rc = multiSelect(pParse, p, pDest); 6293 #if SELECTTRACE_ENABLED 6294 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6295 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6296 sqlite3TreeViewSelect(0, p, 0); 6297 } 6298 #endif 6299 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6300 return rc; 6301 } 6302 #endif 6303 6304 /* Do the WHERE-clause constant propagation optimization if this is 6305 ** a join. No need to speed time on this operation for non-join queries 6306 ** as the equivalent optimization will be handled by query planner in 6307 ** sqlite3WhereBegin(). 6308 */ 6309 if( pTabList->nSrc>1 6310 && OptimizationEnabled(db, SQLITE_PropagateConst) 6311 && propagateConstants(pParse, p) 6312 ){ 6313 #if SELECTTRACE_ENABLED 6314 if( sqlite3SelectTrace & 0x100 ){ 6315 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6316 sqlite3TreeViewSelect(0, p, 0); 6317 } 6318 #endif 6319 }else{ 6320 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6321 } 6322 6323 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6324 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6325 && countOfViewOptimization(pParse, p) 6326 ){ 6327 if( db->mallocFailed ) goto select_end; 6328 pEList = p->pEList; 6329 pTabList = p->pSrc; 6330 } 6331 #endif 6332 6333 /* For each term in the FROM clause, do two things: 6334 ** (1) Authorized unreferenced tables 6335 ** (2) Generate code for all sub-queries 6336 */ 6337 for(i=0; i<pTabList->nSrc; i++){ 6338 SrcItem *pItem = &pTabList->a[i]; 6339 SrcItem *pPrior; 6340 SelectDest dest; 6341 Select *pSub; 6342 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6343 const char *zSavedAuthContext; 6344 #endif 6345 6346 /* Issue SQLITE_READ authorizations with a fake column name for any 6347 ** tables that are referenced but from which no values are extracted. 6348 ** Examples of where these kinds of null SQLITE_READ authorizations 6349 ** would occur: 6350 ** 6351 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6352 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6353 ** 6354 ** The fake column name is an empty string. It is possible for a table to 6355 ** have a column named by the empty string, in which case there is no way to 6356 ** distinguish between an unreferenced table and an actual reference to the 6357 ** "" column. The original design was for the fake column name to be a NULL, 6358 ** which would be unambiguous. But legacy authorization callbacks might 6359 ** assume the column name is non-NULL and segfault. The use of an empty 6360 ** string for the fake column name seems safer. 6361 */ 6362 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6363 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6364 } 6365 6366 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6367 /* Generate code for all sub-queries in the FROM clause 6368 */ 6369 pSub = pItem->pSelect; 6370 if( pSub==0 ) continue; 6371 6372 /* The code for a subquery should only be generated once, though it is 6373 ** technically harmless for it to be generated multiple times. The 6374 ** following assert() will detect if something changes to cause 6375 ** the same subquery to be coded multiple times, as a signal to the 6376 ** developers to try to optimize the situation. 6377 ** 6378 ** Update 2019-07-24: 6379 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6380 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6381 ** coded twice. So this assert() now becomes a testcase(). It should 6382 ** be very rare, though. 6383 */ 6384 testcase( pItem->addrFillSub!=0 ); 6385 6386 /* Increment Parse.nHeight by the height of the largest expression 6387 ** tree referred to by this, the parent select. The child select 6388 ** may contain expression trees of at most 6389 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6390 ** more conservative than necessary, but much easier than enforcing 6391 ** an exact limit. 6392 */ 6393 pParse->nHeight += sqlite3SelectExprHeight(p); 6394 6395 /* Make copies of constant WHERE-clause terms in the outer query down 6396 ** inside the subquery. This can help the subquery to run more efficiently. 6397 */ 6398 if( OptimizationEnabled(db, SQLITE_PushDown) 6399 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) 6400 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6401 (pItem->fg.jointype & JT_OUTER)!=0) 6402 ){ 6403 #if SELECTTRACE_ENABLED 6404 if( sqlite3SelectTrace & 0x100 ){ 6405 SELECTTRACE(0x100,pParse,p, 6406 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6407 sqlite3TreeViewSelect(0, p, 0); 6408 } 6409 #endif 6410 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6411 }else{ 6412 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6413 } 6414 6415 zSavedAuthContext = pParse->zAuthContext; 6416 pParse->zAuthContext = pItem->zName; 6417 6418 /* Generate code to implement the subquery 6419 ** 6420 ** The subquery is implemented as a co-routine if: 6421 ** (1) the subquery is guaranteed to be the outer loop (so that 6422 ** it does not need to be computed more than once), and 6423 ** (2) the subquery is not a CTE that should be materialized 6424 ** 6425 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6426 ** implementation? 6427 */ 6428 if( i==0 6429 && (pTabList->nSrc==1 6430 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6431 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6432 ){ 6433 /* Implement a co-routine that will return a single row of the result 6434 ** set on each invocation. 6435 */ 6436 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6437 6438 pItem->regReturn = ++pParse->nMem; 6439 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6440 VdbeComment((v, "%!S", pItem)); 6441 pItem->addrFillSub = addrTop; 6442 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6443 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6444 sqlite3Select(pParse, pSub, &dest); 6445 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6446 pItem->fg.viaCoroutine = 1; 6447 pItem->regResult = dest.iSdst; 6448 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6449 sqlite3VdbeJumpHere(v, addrTop-1); 6450 sqlite3ClearTempRegCache(pParse); 6451 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6452 /* This is a CTE for which materialization code has already been 6453 ** generated. Invoke the subroutine to compute the materialization, 6454 ** the make the pItem->iCursor be a copy of the ephemerial table that 6455 ** holds the result of the materialization. */ 6456 CteUse *pCteUse = pItem->u2.pCteUse; 6457 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6458 if( pItem->iCursor!=pCteUse->iCur ){ 6459 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6460 } 6461 pSub->nSelectRow = pCteUse->nRowEst; 6462 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6463 /* This view has already been materialized by a prior entry in 6464 ** this same FROM clause. Reuse it. */ 6465 if( pPrior->addrFillSub ){ 6466 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6467 } 6468 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6469 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6470 }else{ 6471 /* Materalize the view. If the view is not correlated, generate a 6472 ** subroutine to do the materialization so that subsequent uses of 6473 ** the same view can reuse the materialization. */ 6474 int topAddr; 6475 int onceAddr = 0; 6476 int retAddr; 6477 6478 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6479 pItem->regReturn = ++pParse->nMem; 6480 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6481 pItem->addrFillSub = topAddr+1; 6482 if( pItem->fg.isCorrelated==0 ){ 6483 /* If the subquery is not correlated and if we are not inside of 6484 ** a trigger, then we only need to compute the value of the subquery 6485 ** once. */ 6486 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6487 VdbeComment((v, "materialize %!S", pItem)); 6488 }else{ 6489 VdbeNoopComment((v, "materialize %!S", pItem)); 6490 } 6491 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6492 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6493 sqlite3Select(pParse, pSub, &dest); 6494 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6495 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6496 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6497 VdbeComment((v, "end %!S", pItem)); 6498 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6499 sqlite3ClearTempRegCache(pParse); 6500 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6501 CteUse *pCteUse = pItem->u2.pCteUse; 6502 pCteUse->addrM9e = pItem->addrFillSub; 6503 pCteUse->regRtn = pItem->regReturn; 6504 pCteUse->iCur = pItem->iCursor; 6505 pCteUse->nRowEst = pSub->nSelectRow; 6506 } 6507 } 6508 if( db->mallocFailed ) goto select_end; 6509 pParse->nHeight -= sqlite3SelectExprHeight(p); 6510 pParse->zAuthContext = zSavedAuthContext; 6511 #endif 6512 } 6513 6514 /* Various elements of the SELECT copied into local variables for 6515 ** convenience */ 6516 pEList = p->pEList; 6517 pWhere = p->pWhere; 6518 pGroupBy = p->pGroupBy; 6519 pHaving = p->pHaving; 6520 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6521 6522 #if SELECTTRACE_ENABLED 6523 if( sqlite3SelectTrace & 0x400 ){ 6524 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6525 sqlite3TreeViewSelect(0, p, 0); 6526 } 6527 #endif 6528 6529 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6530 ** if the select-list is the same as the ORDER BY list, then this query 6531 ** can be rewritten as a GROUP BY. In other words, this: 6532 ** 6533 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6534 ** 6535 ** is transformed to: 6536 ** 6537 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6538 ** 6539 ** The second form is preferred as a single index (or temp-table) may be 6540 ** used for both the ORDER BY and DISTINCT processing. As originally 6541 ** written the query must use a temp-table for at least one of the ORDER 6542 ** BY and DISTINCT, and an index or separate temp-table for the other. 6543 */ 6544 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6545 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6546 #ifndef SQLITE_OMIT_WINDOWFUNC 6547 && p->pWin==0 6548 #endif 6549 ){ 6550 p->selFlags &= ~SF_Distinct; 6551 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6552 p->selFlags |= SF_Aggregate; 6553 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6554 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6555 ** original setting of the SF_Distinct flag, not the current setting */ 6556 assert( sDistinct.isTnct ); 6557 6558 #if SELECTTRACE_ENABLED 6559 if( sqlite3SelectTrace & 0x400 ){ 6560 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6561 sqlite3TreeViewSelect(0, p, 0); 6562 } 6563 #endif 6564 } 6565 6566 /* If there is an ORDER BY clause, then create an ephemeral index to 6567 ** do the sorting. But this sorting ephemeral index might end up 6568 ** being unused if the data can be extracted in pre-sorted order. 6569 ** If that is the case, then the OP_OpenEphemeral instruction will be 6570 ** changed to an OP_Noop once we figure out that the sorting index is 6571 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6572 ** that change. 6573 */ 6574 if( sSort.pOrderBy ){ 6575 KeyInfo *pKeyInfo; 6576 pKeyInfo = sqlite3KeyInfoFromExprList( 6577 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6578 sSort.iECursor = pParse->nTab++; 6579 sSort.addrSortIndex = 6580 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6581 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6582 (char*)pKeyInfo, P4_KEYINFO 6583 ); 6584 }else{ 6585 sSort.addrSortIndex = -1; 6586 } 6587 6588 /* If the output is destined for a temporary table, open that table. 6589 */ 6590 if( pDest->eDest==SRT_EphemTab ){ 6591 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6592 } 6593 6594 /* Set the limiter. 6595 */ 6596 iEnd = sqlite3VdbeMakeLabel(pParse); 6597 if( (p->selFlags & SF_FixedLimit)==0 ){ 6598 p->nSelectRow = 320; /* 4 billion rows */ 6599 } 6600 computeLimitRegisters(pParse, p, iEnd); 6601 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6602 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6603 sSort.sortFlags |= SORTFLAG_UseSorter; 6604 } 6605 6606 /* Open an ephemeral index to use for the distinct set. 6607 */ 6608 if( p->selFlags & SF_Distinct ){ 6609 sDistinct.tabTnct = pParse->nTab++; 6610 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6611 sDistinct.tabTnct, 0, 0, 6612 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6613 P4_KEYINFO); 6614 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6615 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6616 }else{ 6617 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6618 } 6619 6620 if( !isAgg && pGroupBy==0 ){ 6621 /* No aggregate functions and no GROUP BY clause */ 6622 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6623 | (p->selFlags & SF_FixedLimit); 6624 #ifndef SQLITE_OMIT_WINDOWFUNC 6625 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6626 if( pWin ){ 6627 sqlite3WindowCodeInit(pParse, p); 6628 } 6629 #endif 6630 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6631 6632 6633 /* Begin the database scan. */ 6634 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6635 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6636 p->pEList, wctrlFlags, p->nSelectRow); 6637 if( pWInfo==0 ) goto select_end; 6638 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6639 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6640 } 6641 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6642 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6643 } 6644 if( sSort.pOrderBy ){ 6645 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6646 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6647 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6648 sSort.pOrderBy = 0; 6649 } 6650 } 6651 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6652 6653 /* If sorting index that was created by a prior OP_OpenEphemeral 6654 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6655 ** into an OP_Noop. 6656 */ 6657 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6658 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6659 } 6660 6661 assert( p->pEList==pEList ); 6662 #ifndef SQLITE_OMIT_WINDOWFUNC 6663 if( pWin ){ 6664 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6665 int iCont = sqlite3VdbeMakeLabel(pParse); 6666 int iBreak = sqlite3VdbeMakeLabel(pParse); 6667 int regGosub = ++pParse->nMem; 6668 6669 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6670 6671 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6672 sqlite3VdbeResolveLabel(v, addrGosub); 6673 VdbeNoopComment((v, "inner-loop subroutine")); 6674 sSort.labelOBLopt = 0; 6675 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6676 sqlite3VdbeResolveLabel(v, iCont); 6677 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6678 VdbeComment((v, "end inner-loop subroutine")); 6679 sqlite3VdbeResolveLabel(v, iBreak); 6680 }else 6681 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6682 { 6683 /* Use the standard inner loop. */ 6684 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6685 sqlite3WhereContinueLabel(pWInfo), 6686 sqlite3WhereBreakLabel(pWInfo)); 6687 6688 /* End the database scan loop. 6689 */ 6690 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6691 sqlite3WhereEnd(pWInfo); 6692 } 6693 }else{ 6694 /* This case when there exist aggregate functions or a GROUP BY clause 6695 ** or both */ 6696 NameContext sNC; /* Name context for processing aggregate information */ 6697 int iAMem; /* First Mem address for storing current GROUP BY */ 6698 int iBMem; /* First Mem address for previous GROUP BY */ 6699 int iUseFlag; /* Mem address holding flag indicating that at least 6700 ** one row of the input to the aggregator has been 6701 ** processed */ 6702 int iAbortFlag; /* Mem address which causes query abort if positive */ 6703 int groupBySort; /* Rows come from source in GROUP BY order */ 6704 int addrEnd; /* End of processing for this SELECT */ 6705 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6706 int sortOut = 0; /* Output register from the sorter */ 6707 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6708 6709 /* Remove any and all aliases between the result set and the 6710 ** GROUP BY clause. 6711 */ 6712 if( pGroupBy ){ 6713 int k; /* Loop counter */ 6714 struct ExprList_item *pItem; /* For looping over expression in a list */ 6715 6716 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6717 pItem->u.x.iAlias = 0; 6718 } 6719 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6720 pItem->u.x.iAlias = 0; 6721 } 6722 assert( 66==sqlite3LogEst(100) ); 6723 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6724 6725 /* If there is both a GROUP BY and an ORDER BY clause and they are 6726 ** identical, then it may be possible to disable the ORDER BY clause 6727 ** on the grounds that the GROUP BY will cause elements to come out 6728 ** in the correct order. It also may not - the GROUP BY might use a 6729 ** database index that causes rows to be grouped together as required 6730 ** but not actually sorted. Either way, record the fact that the 6731 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6732 ** variable. */ 6733 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6734 int ii; 6735 /* The GROUP BY processing doesn't care whether rows are delivered in 6736 ** ASC or DESC order - only that each group is returned contiguously. 6737 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6738 ** ORDER BY to maximize the chances of rows being delivered in an 6739 ** order that makes the ORDER BY redundant. */ 6740 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6741 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6742 pGroupBy->a[ii].sortFlags = sortFlags; 6743 } 6744 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6745 orderByGrp = 1; 6746 } 6747 } 6748 }else{ 6749 assert( 0==sqlite3LogEst(1) ); 6750 p->nSelectRow = 0; 6751 } 6752 6753 /* Create a label to jump to when we want to abort the query */ 6754 addrEnd = sqlite3VdbeMakeLabel(pParse); 6755 6756 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6757 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6758 ** SELECT statement. 6759 */ 6760 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6761 if( pAggInfo ){ 6762 sqlite3ParserAddCleanup(pParse, 6763 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6764 testcase( pParse->earlyCleanup ); 6765 } 6766 if( db->mallocFailed ){ 6767 goto select_end; 6768 } 6769 pAggInfo->selId = p->selId; 6770 memset(&sNC, 0, sizeof(sNC)); 6771 sNC.pParse = pParse; 6772 sNC.pSrcList = pTabList; 6773 sNC.uNC.pAggInfo = pAggInfo; 6774 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6775 pAggInfo->mnReg = pParse->nMem+1; 6776 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6777 pAggInfo->pGroupBy = pGroupBy; 6778 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6779 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6780 if( pHaving ){ 6781 if( pGroupBy ){ 6782 assert( pWhere==p->pWhere ); 6783 assert( pHaving==p->pHaving ); 6784 assert( pGroupBy==p->pGroupBy ); 6785 havingToWhere(pParse, p); 6786 pWhere = p->pWhere; 6787 } 6788 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6789 } 6790 pAggInfo->nAccumulator = pAggInfo->nColumn; 6791 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6792 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6793 }else{ 6794 minMaxFlag = WHERE_ORDERBY_NORMAL; 6795 } 6796 for(i=0; i<pAggInfo->nFunc; i++){ 6797 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6798 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6799 sNC.ncFlags |= NC_InAggFunc; 6800 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6801 #ifndef SQLITE_OMIT_WINDOWFUNC 6802 assert( !IsWindowFunc(pExpr) ); 6803 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6804 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6805 } 6806 #endif 6807 sNC.ncFlags &= ~NC_InAggFunc; 6808 } 6809 pAggInfo->mxReg = pParse->nMem; 6810 if( db->mallocFailed ) goto select_end; 6811 #if SELECTTRACE_ENABLED 6812 if( sqlite3SelectTrace & 0x400 ){ 6813 int ii; 6814 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 6815 sqlite3TreeViewSelect(0, p, 0); 6816 if( minMaxFlag ){ 6817 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 6818 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 6819 } 6820 for(ii=0; ii<pAggInfo->nColumn; ii++){ 6821 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6822 ii, pAggInfo->aCol[ii].iMem); 6823 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 6824 } 6825 for(ii=0; ii<pAggInfo->nFunc; ii++){ 6826 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6827 ii, pAggInfo->aFunc[ii].iMem); 6828 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 6829 } 6830 } 6831 #endif 6832 6833 6834 /* Processing for aggregates with GROUP BY is very different and 6835 ** much more complex than aggregates without a GROUP BY. 6836 */ 6837 if( pGroupBy ){ 6838 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6839 int addr1; /* A-vs-B comparision jump */ 6840 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6841 int regOutputRow; /* Return address register for output subroutine */ 6842 int addrSetAbort; /* Set the abort flag and return */ 6843 int addrTopOfLoop; /* Top of the input loop */ 6844 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6845 int addrReset; /* Subroutine for resetting the accumulator */ 6846 int regReset; /* Return address register for reset subroutine */ 6847 ExprList *pDistinct = 0; 6848 u16 distFlag = 0; 6849 int eDist = WHERE_DISTINCT_NOOP; 6850 6851 if( pAggInfo->nFunc==1 6852 && pAggInfo->aFunc[0].iDistinct>=0 6853 && pAggInfo->aFunc[0].pFExpr->x.pList 6854 ){ 6855 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 6856 pExpr = sqlite3ExprDup(db, pExpr, 0); 6857 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 6858 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 6859 distFlag = pDistinct ? WHERE_WANT_DISTINCT : 0; 6860 } 6861 6862 /* If there is a GROUP BY clause we might need a sorting index to 6863 ** implement it. Allocate that sorting index now. If it turns out 6864 ** that we do not need it after all, the OP_SorterOpen instruction 6865 ** will be converted into a Noop. 6866 */ 6867 pAggInfo->sortingIdx = pParse->nTab++; 6868 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 6869 0, pAggInfo->nColumn); 6870 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6871 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 6872 0, (char*)pKeyInfo, P4_KEYINFO); 6873 6874 /* Initialize memory locations used by GROUP BY aggregate processing 6875 */ 6876 iUseFlag = ++pParse->nMem; 6877 iAbortFlag = ++pParse->nMem; 6878 regOutputRow = ++pParse->nMem; 6879 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6880 regReset = ++pParse->nMem; 6881 addrReset = sqlite3VdbeMakeLabel(pParse); 6882 iAMem = pParse->nMem + 1; 6883 pParse->nMem += pGroupBy->nExpr; 6884 iBMem = pParse->nMem + 1; 6885 pParse->nMem += pGroupBy->nExpr; 6886 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6887 VdbeComment((v, "clear abort flag")); 6888 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6889 6890 /* Begin a loop that will extract all source rows in GROUP BY order. 6891 ** This might involve two separate loops with an OP_Sort in between, or 6892 ** it might be a single loop that uses an index to extract information 6893 ** in the right order to begin with. 6894 */ 6895 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6896 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6897 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 6898 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 6899 ); 6900 sqlite3ExprListDelete(db, pDistinct); 6901 if( pWInfo==0 ) goto select_end; 6902 eDist = sqlite3WhereIsDistinct(pWInfo); 6903 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6904 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6905 /* The optimizer is able to deliver rows in group by order so 6906 ** we do not have to sort. The OP_OpenEphemeral table will be 6907 ** cancelled later because we still need to use the pKeyInfo 6908 */ 6909 groupBySort = 0; 6910 }else{ 6911 /* Rows are coming out in undetermined order. We have to push 6912 ** each row into a sorting index, terminate the first loop, 6913 ** then loop over the sorting index in order to get the output 6914 ** in sorted order 6915 */ 6916 int regBase; 6917 int regRecord; 6918 int nCol; 6919 int nGroupBy; 6920 6921 explainTempTable(pParse, 6922 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6923 "DISTINCT" : "GROUP BY"); 6924 6925 groupBySort = 1; 6926 nGroupBy = pGroupBy->nExpr; 6927 nCol = nGroupBy; 6928 j = nGroupBy; 6929 for(i=0; i<pAggInfo->nColumn; i++){ 6930 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 6931 nCol++; 6932 j++; 6933 } 6934 } 6935 regBase = sqlite3GetTempRange(pParse, nCol); 6936 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6937 j = nGroupBy; 6938 for(i=0; i<pAggInfo->nColumn; i++){ 6939 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 6940 if( pCol->iSorterColumn>=j ){ 6941 int r1 = j + regBase; 6942 sqlite3ExprCodeGetColumnOfTable(v, 6943 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6944 j++; 6945 } 6946 } 6947 regRecord = sqlite3GetTempReg(pParse); 6948 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6949 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 6950 sqlite3ReleaseTempReg(pParse, regRecord); 6951 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6952 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6953 sqlite3WhereEnd(pWInfo); 6954 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 6955 sortOut = sqlite3GetTempReg(pParse); 6956 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6957 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 6958 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6959 pAggInfo->useSortingIdx = 1; 6960 } 6961 6962 /* If the index or temporary table used by the GROUP BY sort 6963 ** will naturally deliver rows in the order required by the ORDER BY 6964 ** clause, cancel the ephemeral table open coded earlier. 6965 ** 6966 ** This is an optimization - the correct answer should result regardless. 6967 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6968 ** disable this optimization for testing purposes. */ 6969 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6970 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6971 ){ 6972 sSort.pOrderBy = 0; 6973 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6974 } 6975 6976 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6977 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6978 ** Then compare the current GROUP BY terms against the GROUP BY terms 6979 ** from the previous row currently stored in a0, a1, a2... 6980 */ 6981 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6982 if( groupBySort ){ 6983 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 6984 sortOut, sortPTab); 6985 } 6986 for(j=0; j<pGroupBy->nExpr; j++){ 6987 if( groupBySort ){ 6988 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6989 }else{ 6990 pAggInfo->directMode = 1; 6991 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6992 } 6993 } 6994 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6995 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6996 addr1 = sqlite3VdbeCurrentAddr(v); 6997 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6998 6999 /* Generate code that runs whenever the GROUP BY changes. 7000 ** Changes in the GROUP BY are detected by the previous code 7001 ** block. If there were no changes, this block is skipped. 7002 ** 7003 ** This code copies current group by terms in b0,b1,b2,... 7004 ** over to a0,a1,a2. It then calls the output subroutine 7005 ** and resets the aggregate accumulator registers in preparation 7006 ** for the next GROUP BY batch. 7007 */ 7008 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7009 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7010 VdbeComment((v, "output one row")); 7011 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7012 VdbeComment((v, "check abort flag")); 7013 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7014 VdbeComment((v, "reset accumulator")); 7015 7016 /* Update the aggregate accumulators based on the content of 7017 ** the current row 7018 */ 7019 sqlite3VdbeJumpHere(v, addr1); 7020 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7021 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7022 VdbeComment((v, "indicate data in accumulator")); 7023 7024 /* End of the loop 7025 */ 7026 if( groupBySort ){ 7027 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7028 VdbeCoverage(v); 7029 }else{ 7030 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7031 sqlite3WhereEnd(pWInfo); 7032 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7033 } 7034 7035 /* Output the final row of result 7036 */ 7037 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7038 VdbeComment((v, "output final row")); 7039 7040 /* Jump over the subroutines 7041 */ 7042 sqlite3VdbeGoto(v, addrEnd); 7043 7044 /* Generate a subroutine that outputs a single row of the result 7045 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7046 ** is less than or equal to zero, the subroutine is a no-op. If 7047 ** the processing calls for the query to abort, this subroutine 7048 ** increments the iAbortFlag memory location before returning in 7049 ** order to signal the caller to abort. 7050 */ 7051 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7052 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7053 VdbeComment((v, "set abort flag")); 7054 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7055 sqlite3VdbeResolveLabel(v, addrOutputRow); 7056 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7057 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7058 VdbeCoverage(v); 7059 VdbeComment((v, "Groupby result generator entry point")); 7060 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7061 finalizeAggFunctions(pParse, pAggInfo); 7062 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7063 selectInnerLoop(pParse, p, -1, &sSort, 7064 &sDistinct, pDest, 7065 addrOutputRow+1, addrSetAbort); 7066 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7067 VdbeComment((v, "end groupby result generator")); 7068 7069 /* Generate a subroutine that will reset the group-by accumulator 7070 */ 7071 sqlite3VdbeResolveLabel(v, addrReset); 7072 resetAccumulator(pParse, pAggInfo); 7073 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7074 VdbeComment((v, "indicate accumulator empty")); 7075 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7076 7077 if( eDist!=WHERE_DISTINCT_NOOP ){ 7078 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7079 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7080 } 7081 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7082 else { 7083 Table *pTab; 7084 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7085 /* If isSimpleCount() returns a pointer to a Table structure, then 7086 ** the SQL statement is of the form: 7087 ** 7088 ** SELECT count(*) FROM <tbl> 7089 ** 7090 ** where the Table structure returned represents table <tbl>. 7091 ** 7092 ** This statement is so common that it is optimized specially. The 7093 ** OP_Count instruction is executed either on the intkey table that 7094 ** contains the data for table <tbl> or on one of its indexes. It 7095 ** is better to execute the op on an index, as indexes are almost 7096 ** always spread across less pages than their corresponding tables. 7097 */ 7098 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7099 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7100 Index *pIdx; /* Iterator variable */ 7101 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7102 Index *pBest = 0; /* Best index found so far */ 7103 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7104 7105 sqlite3CodeVerifySchema(pParse, iDb); 7106 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7107 7108 /* Search for the index that has the lowest scan cost. 7109 ** 7110 ** (2011-04-15) Do not do a full scan of an unordered index. 7111 ** 7112 ** (2013-10-03) Do not count the entries in a partial index. 7113 ** 7114 ** In practice the KeyInfo structure will not be used. It is only 7115 ** passed to keep OP_OpenRead happy. 7116 */ 7117 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7118 if( !p->pSrc->a[0].fg.notIndexed ){ 7119 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7120 if( pIdx->bUnordered==0 7121 && pIdx->szIdxRow<pTab->szTabRow 7122 && pIdx->pPartIdxWhere==0 7123 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7124 ){ 7125 pBest = pIdx; 7126 } 7127 } 7128 } 7129 if( pBest ){ 7130 iRoot = pBest->tnum; 7131 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7132 } 7133 7134 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7135 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7136 if( pKeyInfo ){ 7137 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7138 } 7139 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7140 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7141 explainSimpleCount(pParse, pTab, pBest); 7142 }else{ 7143 int regAcc = 0; /* "populate accumulators" flag */ 7144 ExprList *pDistinct = 0; 7145 u16 distFlag = 0; 7146 int eDist; 7147 7148 /* If there are accumulator registers but no min() or max() functions 7149 ** without FILTER clauses, allocate register regAcc. Register regAcc 7150 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7151 ** The code generated by updateAccumulator() uses this to ensure 7152 ** that the accumulator registers are (a) updated only once if 7153 ** there are no min() or max functions or (b) always updated for the 7154 ** first row visited by the aggregate, so that they are updated at 7155 ** least once even if the FILTER clause means the min() or max() 7156 ** function visits zero rows. */ 7157 if( pAggInfo->nAccumulator ){ 7158 for(i=0; i<pAggInfo->nFunc; i++){ 7159 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7160 continue; 7161 } 7162 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7163 break; 7164 } 7165 } 7166 if( i==pAggInfo->nFunc ){ 7167 regAcc = ++pParse->nMem; 7168 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7169 } 7170 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7171 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7172 distFlag = pDistinct ? WHERE_WANT_DISTINCT : 0; 7173 } 7174 7175 /* This case runs if the aggregate has no GROUP BY clause. The 7176 ** processing is much simpler since there is only a single row 7177 ** of output. 7178 */ 7179 assert( p->pGroupBy==0 ); 7180 resetAccumulator(pParse, pAggInfo); 7181 7182 /* If this query is a candidate for the min/max optimization, then 7183 ** minMaxFlag will have been previously set to either 7184 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7185 ** be an appropriate ORDER BY expression for the optimization. 7186 */ 7187 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7188 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7189 7190 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7191 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7192 pDistinct, minMaxFlag|distFlag, 0); 7193 if( pWInfo==0 ){ 7194 goto select_end; 7195 } 7196 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7197 eDist = sqlite3WhereIsDistinct(pWInfo); 7198 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7199 if( eDist!=WHERE_DISTINCT_NOOP ){ 7200 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7201 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7202 } 7203 7204 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7205 if( minMaxFlag ){ 7206 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7207 } 7208 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7209 sqlite3WhereEnd(pWInfo); 7210 finalizeAggFunctions(pParse, pAggInfo); 7211 } 7212 7213 sSort.pOrderBy = 0; 7214 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7215 selectInnerLoop(pParse, p, -1, 0, 0, 7216 pDest, addrEnd, addrEnd); 7217 } 7218 sqlite3VdbeResolveLabel(v, addrEnd); 7219 7220 } /* endif aggregate query */ 7221 7222 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7223 explainTempTable(pParse, "DISTINCT"); 7224 } 7225 7226 /* If there is an ORDER BY clause, then we need to sort the results 7227 ** and send them to the callback one by one. 7228 */ 7229 if( sSort.pOrderBy ){ 7230 explainTempTable(pParse, 7231 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7232 assert( p->pEList==pEList ); 7233 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7234 } 7235 7236 /* Jump here to skip this query 7237 */ 7238 sqlite3VdbeResolveLabel(v, iEnd); 7239 7240 /* The SELECT has been coded. If there is an error in the Parse structure, 7241 ** set the return code to 1. Otherwise 0. */ 7242 rc = (pParse->nErr>0); 7243 7244 /* Control jumps to here if an error is encountered above, or upon 7245 ** successful coding of the SELECT. 7246 */ 7247 select_end: 7248 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7249 #ifdef SQLITE_DEBUG 7250 if( pAggInfo && !db->mallocFailed ){ 7251 for(i=0; i<pAggInfo->nColumn; i++){ 7252 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7253 assert( pExpr!=0 ); 7254 assert( pExpr->pAggInfo==pAggInfo ); 7255 assert( pExpr->iAgg==i ); 7256 } 7257 for(i=0; i<pAggInfo->nFunc; i++){ 7258 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7259 assert( pExpr!=0 ); 7260 assert( pExpr->pAggInfo==pAggInfo ); 7261 assert( pExpr->iAgg==i ); 7262 } 7263 } 7264 #endif 7265 7266 #if SELECTTRACE_ENABLED 7267 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7268 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7269 sqlite3TreeViewSelect(0, p, 0); 7270 } 7271 #endif 7272 ExplainQueryPlanPop(pParse); 7273 return rc; 7274 } 7275