1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 78 if( bFree ) sqlite3DbFreeNN(db, p); 79 p = pPrior; 80 bFree = 1; 81 } 82 } 83 84 /* 85 ** Initialize a SelectDest structure. 86 */ 87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 88 pDest->eDest = (u8)eDest; 89 pDest->iSDParm = iParm; 90 pDest->zAffSdst = 0; 91 pDest->iSdst = 0; 92 pDest->nSdst = 0; 93 } 94 95 96 /* 97 ** Allocate a new Select structure and return a pointer to that 98 ** structure. 99 */ 100 Select *sqlite3SelectNew( 101 Parse *pParse, /* Parsing context */ 102 ExprList *pEList, /* which columns to include in the result */ 103 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 104 Expr *pWhere, /* the WHERE clause */ 105 ExprList *pGroupBy, /* the GROUP BY clause */ 106 Expr *pHaving, /* the HAVING clause */ 107 ExprList *pOrderBy, /* the ORDER BY clause */ 108 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 109 Expr *pLimit /* LIMIT value. NULL means not used */ 110 ){ 111 Select *pNew; 112 Select standin; 113 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 114 if( pNew==0 ){ 115 assert( pParse->db->mallocFailed ); 116 pNew = &standin; 117 } 118 if( pEList==0 ){ 119 pEList = sqlite3ExprListAppend(pParse, 0, 120 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 121 } 122 pNew->pEList = pEList; 123 pNew->op = TK_SELECT; 124 pNew->selFlags = selFlags; 125 pNew->iLimit = 0; 126 pNew->iOffset = 0; 127 #if SELECTTRACE_ENABLED 128 pNew->zSelName[0] = 0; 129 #endif 130 pNew->addrOpenEphm[0] = -1; 131 pNew->addrOpenEphm[1] = -1; 132 pNew->nSelectRow = 0; 133 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 134 pNew->pSrc = pSrc; 135 pNew->pWhere = pWhere; 136 pNew->pGroupBy = pGroupBy; 137 pNew->pHaving = pHaving; 138 pNew->pOrderBy = pOrderBy; 139 pNew->pPrior = 0; 140 pNew->pNext = 0; 141 pNew->pLimit = pLimit; 142 pNew->pWith = 0; 143 if( pParse->db->mallocFailed ) { 144 clearSelect(pParse->db, pNew, pNew!=&standin); 145 pNew = 0; 146 }else{ 147 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 148 } 149 assert( pNew!=&standin ); 150 return pNew; 151 } 152 153 #if SELECTTRACE_ENABLED 154 /* 155 ** Set the name of a Select object 156 */ 157 void sqlite3SelectSetName(Select *p, const char *zName){ 158 if( p && zName ){ 159 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 160 } 161 } 162 #endif 163 164 165 /* 166 ** Delete the given Select structure and all of its substructures. 167 */ 168 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 169 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 170 } 171 172 /* 173 ** Return a pointer to the right-most SELECT statement in a compound. 174 */ 175 static Select *findRightmost(Select *p){ 176 while( p->pNext ) p = p->pNext; 177 return p; 178 } 179 180 /* 181 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 182 ** type of join. Return an integer constant that expresses that type 183 ** in terms of the following bit values: 184 ** 185 ** JT_INNER 186 ** JT_CROSS 187 ** JT_OUTER 188 ** JT_NATURAL 189 ** JT_LEFT 190 ** JT_RIGHT 191 ** 192 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 193 ** 194 ** If an illegal or unsupported join type is seen, then still return 195 ** a join type, but put an error in the pParse structure. 196 */ 197 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 198 int jointype = 0; 199 Token *apAll[3]; 200 Token *p; 201 /* 0123456789 123456789 123456789 123 */ 202 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 203 static const struct { 204 u8 i; /* Beginning of keyword text in zKeyText[] */ 205 u8 nChar; /* Length of the keyword in characters */ 206 u8 code; /* Join type mask */ 207 } aKeyword[] = { 208 /* natural */ { 0, 7, JT_NATURAL }, 209 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 210 /* outer */ { 10, 5, JT_OUTER }, 211 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 212 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 213 /* inner */ { 23, 5, JT_INNER }, 214 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 215 }; 216 int i, j; 217 apAll[0] = pA; 218 apAll[1] = pB; 219 apAll[2] = pC; 220 for(i=0; i<3 && apAll[i]; i++){ 221 p = apAll[i]; 222 for(j=0; j<ArraySize(aKeyword); j++){ 223 if( p->n==aKeyword[j].nChar 224 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 225 jointype |= aKeyword[j].code; 226 break; 227 } 228 } 229 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 230 if( j>=ArraySize(aKeyword) ){ 231 jointype |= JT_ERROR; 232 break; 233 } 234 } 235 if( 236 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 237 (jointype & JT_ERROR)!=0 238 ){ 239 const char *zSp = " "; 240 assert( pB!=0 ); 241 if( pC==0 ){ zSp++; } 242 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 243 "%T %T%s%T", pA, pB, zSp, pC); 244 jointype = JT_INNER; 245 }else if( (jointype & JT_OUTER)!=0 246 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 247 sqlite3ErrorMsg(pParse, 248 "RIGHT and FULL OUTER JOINs are not currently supported"); 249 jointype = JT_INNER; 250 } 251 return jointype; 252 } 253 254 /* 255 ** Return the index of a column in a table. Return -1 if the column 256 ** is not contained in the table. 257 */ 258 static int columnIndex(Table *pTab, const char *zCol){ 259 int i; 260 for(i=0; i<pTab->nCol; i++){ 261 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 262 } 263 return -1; 264 } 265 266 /* 267 ** Search the first N tables in pSrc, from left to right, looking for a 268 ** table that has a column named zCol. 269 ** 270 ** When found, set *piTab and *piCol to the table index and column index 271 ** of the matching column and return TRUE. 272 ** 273 ** If not found, return FALSE. 274 */ 275 static int tableAndColumnIndex( 276 SrcList *pSrc, /* Array of tables to search */ 277 int N, /* Number of tables in pSrc->a[] to search */ 278 const char *zCol, /* Name of the column we are looking for */ 279 int *piTab, /* Write index of pSrc->a[] here */ 280 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 281 ){ 282 int i; /* For looping over tables in pSrc */ 283 int iCol; /* Index of column matching zCol */ 284 285 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 286 for(i=0; i<N; i++){ 287 iCol = columnIndex(pSrc->a[i].pTab, zCol); 288 if( iCol>=0 ){ 289 if( piTab ){ 290 *piTab = i; 291 *piCol = iCol; 292 } 293 return 1; 294 } 295 } 296 return 0; 297 } 298 299 /* 300 ** This function is used to add terms implied by JOIN syntax to the 301 ** WHERE clause expression of a SELECT statement. The new term, which 302 ** is ANDed with the existing WHERE clause, is of the form: 303 ** 304 ** (tab1.col1 = tab2.col2) 305 ** 306 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 307 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 308 ** column iColRight of tab2. 309 */ 310 static void addWhereTerm( 311 Parse *pParse, /* Parsing context */ 312 SrcList *pSrc, /* List of tables in FROM clause */ 313 int iLeft, /* Index of first table to join in pSrc */ 314 int iColLeft, /* Index of column in first table */ 315 int iRight, /* Index of second table in pSrc */ 316 int iColRight, /* Index of column in second table */ 317 int isOuterJoin, /* True if this is an OUTER join */ 318 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 319 ){ 320 sqlite3 *db = pParse->db; 321 Expr *pE1; 322 Expr *pE2; 323 Expr *pEq; 324 325 assert( iLeft<iRight ); 326 assert( pSrc->nSrc>iRight ); 327 assert( pSrc->a[iLeft].pTab ); 328 assert( pSrc->a[iRight].pTab ); 329 330 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 331 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 332 333 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 334 if( pEq && isOuterJoin ){ 335 ExprSetProperty(pEq, EP_FromJoin); 336 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 337 ExprSetVVAProperty(pEq, EP_NoReduce); 338 pEq->iRightJoinTable = (i16)pE2->iTable; 339 } 340 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 341 } 342 343 /* 344 ** Set the EP_FromJoin property on all terms of the given expression. 345 ** And set the Expr.iRightJoinTable to iTable for every term in the 346 ** expression. 347 ** 348 ** The EP_FromJoin property is used on terms of an expression to tell 349 ** the LEFT OUTER JOIN processing logic that this term is part of the 350 ** join restriction specified in the ON or USING clause and not a part 351 ** of the more general WHERE clause. These terms are moved over to the 352 ** WHERE clause during join processing but we need to remember that they 353 ** originated in the ON or USING clause. 354 ** 355 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 356 ** expression depends on table iRightJoinTable even if that table is not 357 ** explicitly mentioned in the expression. That information is needed 358 ** for cases like this: 359 ** 360 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 361 ** 362 ** The where clause needs to defer the handling of the t1.x=5 363 ** term until after the t2 loop of the join. In that way, a 364 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 365 ** defer the handling of t1.x=5, it will be processed immediately 366 ** after the t1 loop and rows with t1.x!=5 will never appear in 367 ** the output, which is incorrect. 368 */ 369 static void setJoinExpr(Expr *p, int iTable){ 370 while( p ){ 371 ExprSetProperty(p, EP_FromJoin); 372 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 373 ExprSetVVAProperty(p, EP_NoReduce); 374 p->iRightJoinTable = (i16)iTable; 375 if( p->op==TK_FUNCTION && p->x.pList ){ 376 int i; 377 for(i=0; i<p->x.pList->nExpr; i++){ 378 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 379 } 380 } 381 setJoinExpr(p->pLeft, iTable); 382 p = p->pRight; 383 } 384 } 385 386 /* 387 ** This routine processes the join information for a SELECT statement. 388 ** ON and USING clauses are converted into extra terms of the WHERE clause. 389 ** NATURAL joins also create extra WHERE clause terms. 390 ** 391 ** The terms of a FROM clause are contained in the Select.pSrc structure. 392 ** The left most table is the first entry in Select.pSrc. The right-most 393 ** table is the last entry. The join operator is held in the entry to 394 ** the left. Thus entry 0 contains the join operator for the join between 395 ** entries 0 and 1. Any ON or USING clauses associated with the join are 396 ** also attached to the left entry. 397 ** 398 ** This routine returns the number of errors encountered. 399 */ 400 static int sqliteProcessJoin(Parse *pParse, Select *p){ 401 SrcList *pSrc; /* All tables in the FROM clause */ 402 int i, j; /* Loop counters */ 403 struct SrcList_item *pLeft; /* Left table being joined */ 404 struct SrcList_item *pRight; /* Right table being joined */ 405 406 pSrc = p->pSrc; 407 pLeft = &pSrc->a[0]; 408 pRight = &pLeft[1]; 409 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 410 Table *pRightTab = pRight->pTab; 411 int isOuter; 412 413 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 414 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 415 416 /* When the NATURAL keyword is present, add WHERE clause terms for 417 ** every column that the two tables have in common. 418 */ 419 if( pRight->fg.jointype & JT_NATURAL ){ 420 if( pRight->pOn || pRight->pUsing ){ 421 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 422 "an ON or USING clause", 0); 423 return 1; 424 } 425 for(j=0; j<pRightTab->nCol; j++){ 426 char *zName; /* Name of column in the right table */ 427 int iLeft; /* Matching left table */ 428 int iLeftCol; /* Matching column in the left table */ 429 430 zName = pRightTab->aCol[j].zName; 431 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 432 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 433 isOuter, &p->pWhere); 434 } 435 } 436 } 437 438 /* Disallow both ON and USING clauses in the same join 439 */ 440 if( pRight->pOn && pRight->pUsing ){ 441 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 442 "clauses in the same join"); 443 return 1; 444 } 445 446 /* Add the ON clause to the end of the WHERE clause, connected by 447 ** an AND operator. 448 */ 449 if( pRight->pOn ){ 450 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 451 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 452 pRight->pOn = 0; 453 } 454 455 /* Create extra terms on the WHERE clause for each column named 456 ** in the USING clause. Example: If the two tables to be joined are 457 ** A and B and the USING clause names X, Y, and Z, then add this 458 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 459 ** Report an error if any column mentioned in the USING clause is 460 ** not contained in both tables to be joined. 461 */ 462 if( pRight->pUsing ){ 463 IdList *pList = pRight->pUsing; 464 for(j=0; j<pList->nId; j++){ 465 char *zName; /* Name of the term in the USING clause */ 466 int iLeft; /* Table on the left with matching column name */ 467 int iLeftCol; /* Column number of matching column on the left */ 468 int iRightCol; /* Column number of matching column on the right */ 469 470 zName = pList->a[j].zName; 471 iRightCol = columnIndex(pRightTab, zName); 472 if( iRightCol<0 473 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 474 ){ 475 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 476 "not present in both tables", zName); 477 return 1; 478 } 479 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 480 isOuter, &p->pWhere); 481 } 482 } 483 } 484 return 0; 485 } 486 487 /* Forward reference */ 488 static KeyInfo *keyInfoFromExprList( 489 Parse *pParse, /* Parsing context */ 490 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 491 int iStart, /* Begin with this column of pList */ 492 int nExtra /* Add this many extra columns to the end */ 493 ); 494 495 /* 496 ** Generate code that will push the record in registers regData 497 ** through regData+nData-1 onto the sorter. 498 */ 499 static void pushOntoSorter( 500 Parse *pParse, /* Parser context */ 501 SortCtx *pSort, /* Information about the ORDER BY clause */ 502 Select *pSelect, /* The whole SELECT statement */ 503 int regData, /* First register holding data to be sorted */ 504 int regOrigData, /* First register holding data before packing */ 505 int nData, /* Number of elements in the data array */ 506 int nPrefixReg /* No. of reg prior to regData available for use */ 507 ){ 508 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 509 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 510 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 511 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 512 int regBase; /* Regs for sorter record */ 513 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 514 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 515 int op; /* Opcode to add sorter record to sorter */ 516 int iLimit; /* LIMIT counter */ 517 518 assert( bSeq==0 || bSeq==1 ); 519 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 520 if( nPrefixReg ){ 521 assert( nPrefixReg==nExpr+bSeq ); 522 regBase = regData - nExpr - bSeq; 523 }else{ 524 regBase = pParse->nMem + 1; 525 pParse->nMem += nBase; 526 } 527 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 528 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 529 pSort->labelDone = sqlite3VdbeMakeLabel(v); 530 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 531 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 532 if( bSeq ){ 533 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 534 } 535 if( nPrefixReg==0 && nData>0 ){ 536 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 537 } 538 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 539 if( nOBSat>0 ){ 540 int regPrevKey; /* The first nOBSat columns of the previous row */ 541 int addrFirst; /* Address of the OP_IfNot opcode */ 542 int addrJmp; /* Address of the OP_Jump opcode */ 543 VdbeOp *pOp; /* Opcode that opens the sorter */ 544 int nKey; /* Number of sorting key columns, including OP_Sequence */ 545 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 546 547 regPrevKey = pParse->nMem+1; 548 pParse->nMem += pSort->nOBSat; 549 nKey = nExpr - pSort->nOBSat + bSeq; 550 if( bSeq ){ 551 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 552 }else{ 553 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 554 } 555 VdbeCoverage(v); 556 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 557 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 558 if( pParse->db->mallocFailed ) return; 559 pOp->p2 = nKey + nData; 560 pKI = pOp->p4.pKeyInfo; 561 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 562 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 563 testcase( pKI->nAllField > pKI->nKeyField+2 ); 564 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 565 pKI->nAllField-pKI->nKeyField-1); 566 addrJmp = sqlite3VdbeCurrentAddr(v); 567 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 568 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 569 pSort->regReturn = ++pParse->nMem; 570 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 571 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 572 if( iLimit ){ 573 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 574 VdbeCoverage(v); 575 } 576 sqlite3VdbeJumpHere(v, addrFirst); 577 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 578 sqlite3VdbeJumpHere(v, addrJmp); 579 } 580 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 581 op = OP_SorterInsert; 582 }else{ 583 op = OP_IdxInsert; 584 } 585 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 586 regBase+nOBSat, nBase-nOBSat); 587 if( iLimit ){ 588 int addr; 589 int r1 = 0; 590 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 591 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 592 ** fills up, delete the least entry in the sorter after each insert. 593 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 594 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 595 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 596 if( pSort->bOrderedInnerLoop ){ 597 r1 = ++pParse->nMem; 598 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 599 VdbeComment((v, "seq")); 600 } 601 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 602 if( pSort->bOrderedInnerLoop ){ 603 /* If the inner loop is driven by an index such that values from 604 ** the same iteration of the inner loop are in sorted order, then 605 ** immediately jump to the next iteration of an inner loop if the 606 ** entry from the current iteration does not fit into the top 607 ** LIMIT+OFFSET entries of the sorter. */ 608 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 609 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 610 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 611 VdbeCoverage(v); 612 } 613 sqlite3VdbeJumpHere(v, addr); 614 } 615 } 616 617 /* 618 ** Add code to implement the OFFSET 619 */ 620 static void codeOffset( 621 Vdbe *v, /* Generate code into this VM */ 622 int iOffset, /* Register holding the offset counter */ 623 int iContinue /* Jump here to skip the current record */ 624 ){ 625 if( iOffset>0 ){ 626 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 627 VdbeComment((v, "OFFSET")); 628 } 629 } 630 631 /* 632 ** Add code that will check to make sure the N registers starting at iMem 633 ** form a distinct entry. iTab is a sorting index that holds previously 634 ** seen combinations of the N values. A new entry is made in iTab 635 ** if the current N values are new. 636 ** 637 ** A jump to addrRepeat is made and the N+1 values are popped from the 638 ** stack if the top N elements are not distinct. 639 */ 640 static void codeDistinct( 641 Parse *pParse, /* Parsing and code generating context */ 642 int iTab, /* A sorting index used to test for distinctness */ 643 int addrRepeat, /* Jump to here if not distinct */ 644 int N, /* Number of elements */ 645 int iMem /* First element */ 646 ){ 647 Vdbe *v; 648 int r1; 649 650 v = pParse->pVdbe; 651 r1 = sqlite3GetTempReg(pParse); 652 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 653 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 654 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 655 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 656 sqlite3ReleaseTempReg(pParse, r1); 657 } 658 659 /* 660 ** This routine generates the code for the inside of the inner loop 661 ** of a SELECT. 662 ** 663 ** If srcTab is negative, then the p->pEList expressions 664 ** are evaluated in order to get the data for this row. If srcTab is 665 ** zero or more, then data is pulled from srcTab and p->pEList is used only 666 ** to get the number of columns and the collation sequence for each column. 667 */ 668 static void selectInnerLoop( 669 Parse *pParse, /* The parser context */ 670 Select *p, /* The complete select statement being coded */ 671 int srcTab, /* Pull data from this table if non-negative */ 672 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 673 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 674 SelectDest *pDest, /* How to dispose of the results */ 675 int iContinue, /* Jump here to continue with next row */ 676 int iBreak /* Jump here to break out of the inner loop */ 677 ){ 678 Vdbe *v = pParse->pVdbe; 679 int i; 680 int hasDistinct; /* True if the DISTINCT keyword is present */ 681 int eDest = pDest->eDest; /* How to dispose of results */ 682 int iParm = pDest->iSDParm; /* First argument to disposal method */ 683 int nResultCol; /* Number of result columns */ 684 int nPrefixReg = 0; /* Number of extra registers before regResult */ 685 686 /* Usually, regResult is the first cell in an array of memory cells 687 ** containing the current result row. In this case regOrig is set to the 688 ** same value. However, if the results are being sent to the sorter, the 689 ** values for any expressions that are also part of the sort-key are omitted 690 ** from this array. In this case regOrig is set to zero. */ 691 int regResult; /* Start of memory holding current results */ 692 int regOrig; /* Start of memory holding full result (or 0) */ 693 694 assert( v ); 695 assert( p->pEList!=0 ); 696 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 697 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 698 if( pSort==0 && !hasDistinct ){ 699 assert( iContinue!=0 ); 700 codeOffset(v, p->iOffset, iContinue); 701 } 702 703 /* Pull the requested columns. 704 */ 705 nResultCol = p->pEList->nExpr; 706 707 if( pDest->iSdst==0 ){ 708 if( pSort ){ 709 nPrefixReg = pSort->pOrderBy->nExpr; 710 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 711 pParse->nMem += nPrefixReg; 712 } 713 pDest->iSdst = pParse->nMem+1; 714 pParse->nMem += nResultCol; 715 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 716 /* This is an error condition that can result, for example, when a SELECT 717 ** on the right-hand side of an INSERT contains more result columns than 718 ** there are columns in the table on the left. The error will be caught 719 ** and reported later. But we need to make sure enough memory is allocated 720 ** to avoid other spurious errors in the meantime. */ 721 pParse->nMem += nResultCol; 722 } 723 pDest->nSdst = nResultCol; 724 regOrig = regResult = pDest->iSdst; 725 if( srcTab>=0 ){ 726 for(i=0; i<nResultCol; i++){ 727 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 728 VdbeComment((v, "%s", p->pEList->a[i].zName)); 729 } 730 }else if( eDest!=SRT_Exists ){ 731 /* If the destination is an EXISTS(...) expression, the actual 732 ** values returned by the SELECT are not required. 733 */ 734 u8 ecelFlags; 735 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 736 ecelFlags = SQLITE_ECEL_DUP; 737 }else{ 738 ecelFlags = 0; 739 } 740 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 741 /* For each expression in p->pEList that is a copy of an expression in 742 ** the ORDER BY clause (pSort->pOrderBy), set the associated 743 ** iOrderByCol value to one more than the index of the ORDER BY 744 ** expression within the sort-key that pushOntoSorter() will generate. 745 ** This allows the p->pEList field to be omitted from the sorted record, 746 ** saving space and CPU cycles. */ 747 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 748 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 749 int j; 750 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 751 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 752 } 753 } 754 regOrig = 0; 755 assert( eDest==SRT_Set || eDest==SRT_Mem 756 || eDest==SRT_Coroutine || eDest==SRT_Output ); 757 } 758 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult, 759 0,ecelFlags); 760 } 761 762 /* If the DISTINCT keyword was present on the SELECT statement 763 ** and this row has been seen before, then do not make this row 764 ** part of the result. 765 */ 766 if( hasDistinct ){ 767 switch( pDistinct->eTnctType ){ 768 case WHERE_DISTINCT_ORDERED: { 769 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 770 int iJump; /* Jump destination */ 771 int regPrev; /* Previous row content */ 772 773 /* Allocate space for the previous row */ 774 regPrev = pParse->nMem+1; 775 pParse->nMem += nResultCol; 776 777 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 778 ** sets the MEM_Cleared bit on the first register of the 779 ** previous value. This will cause the OP_Ne below to always 780 ** fail on the first iteration of the loop even if the first 781 ** row is all NULLs. 782 */ 783 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 784 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 785 pOp->opcode = OP_Null; 786 pOp->p1 = 1; 787 pOp->p2 = regPrev; 788 789 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 790 for(i=0; i<nResultCol; i++){ 791 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 792 if( i<nResultCol-1 ){ 793 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 794 VdbeCoverage(v); 795 }else{ 796 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 797 VdbeCoverage(v); 798 } 799 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 800 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 801 } 802 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 803 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 804 break; 805 } 806 807 case WHERE_DISTINCT_UNIQUE: { 808 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 809 break; 810 } 811 812 default: { 813 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 814 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 815 regResult); 816 break; 817 } 818 } 819 if( pSort==0 ){ 820 codeOffset(v, p->iOffset, iContinue); 821 } 822 } 823 824 switch( eDest ){ 825 /* In this mode, write each query result to the key of the temporary 826 ** table iParm. 827 */ 828 #ifndef SQLITE_OMIT_COMPOUND_SELECT 829 case SRT_Union: { 830 int r1; 831 r1 = sqlite3GetTempReg(pParse); 832 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 833 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 834 sqlite3ReleaseTempReg(pParse, r1); 835 break; 836 } 837 838 /* Construct a record from the query result, but instead of 839 ** saving that record, use it as a key to delete elements from 840 ** the temporary table iParm. 841 */ 842 case SRT_Except: { 843 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 844 break; 845 } 846 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 847 848 /* Store the result as data using a unique key. 849 */ 850 case SRT_Fifo: 851 case SRT_DistFifo: 852 case SRT_Table: 853 case SRT_EphemTab: { 854 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 855 testcase( eDest==SRT_Table ); 856 testcase( eDest==SRT_EphemTab ); 857 testcase( eDest==SRT_Fifo ); 858 testcase( eDest==SRT_DistFifo ); 859 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 860 #ifndef SQLITE_OMIT_CTE 861 if( eDest==SRT_DistFifo ){ 862 /* If the destination is DistFifo, then cursor (iParm+1) is open 863 ** on an ephemeral index. If the current row is already present 864 ** in the index, do not write it to the output. If not, add the 865 ** current row to the index and proceed with writing it to the 866 ** output table as well. */ 867 int addr = sqlite3VdbeCurrentAddr(v) + 4; 868 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 869 VdbeCoverage(v); 870 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 871 assert( pSort==0 ); 872 } 873 #endif 874 if( pSort ){ 875 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 876 }else{ 877 int r2 = sqlite3GetTempReg(pParse); 878 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 879 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 880 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 881 sqlite3ReleaseTempReg(pParse, r2); 882 } 883 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 884 break; 885 } 886 887 #ifndef SQLITE_OMIT_SUBQUERY 888 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 889 ** then there should be a single item on the stack. Write this 890 ** item into the set table with bogus data. 891 */ 892 case SRT_Set: { 893 if( pSort ){ 894 /* At first glance you would think we could optimize out the 895 ** ORDER BY in this case since the order of entries in the set 896 ** does not matter. But there might be a LIMIT clause, in which 897 ** case the order does matter */ 898 pushOntoSorter( 899 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 900 }else{ 901 int r1 = sqlite3GetTempReg(pParse); 902 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 903 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 904 r1, pDest->zAffSdst, nResultCol); 905 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 906 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 907 sqlite3ReleaseTempReg(pParse, r1); 908 } 909 break; 910 } 911 912 /* If any row exist in the result set, record that fact and abort. 913 */ 914 case SRT_Exists: { 915 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 916 /* The LIMIT clause will terminate the loop for us */ 917 break; 918 } 919 920 /* If this is a scalar select that is part of an expression, then 921 ** store the results in the appropriate memory cell or array of 922 ** memory cells and break out of the scan loop. 923 */ 924 case SRT_Mem: { 925 if( pSort ){ 926 assert( nResultCol<=pDest->nSdst ); 927 pushOntoSorter( 928 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 929 }else{ 930 assert( nResultCol==pDest->nSdst ); 931 assert( regResult==iParm ); 932 /* The LIMIT clause will jump out of the loop for us */ 933 } 934 break; 935 } 936 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 937 938 case SRT_Coroutine: /* Send data to a co-routine */ 939 case SRT_Output: { /* Return the results */ 940 testcase( eDest==SRT_Coroutine ); 941 testcase( eDest==SRT_Output ); 942 if( pSort ){ 943 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 944 nPrefixReg); 945 }else if( eDest==SRT_Coroutine ){ 946 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 947 }else{ 948 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 949 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 950 } 951 break; 952 } 953 954 #ifndef SQLITE_OMIT_CTE 955 /* Write the results into a priority queue that is order according to 956 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 957 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 958 ** pSO->nExpr columns, then make sure all keys are unique by adding a 959 ** final OP_Sequence column. The last column is the record as a blob. 960 */ 961 case SRT_DistQueue: 962 case SRT_Queue: { 963 int nKey; 964 int r1, r2, r3; 965 int addrTest = 0; 966 ExprList *pSO; 967 pSO = pDest->pOrderBy; 968 assert( pSO ); 969 nKey = pSO->nExpr; 970 r1 = sqlite3GetTempReg(pParse); 971 r2 = sqlite3GetTempRange(pParse, nKey+2); 972 r3 = r2+nKey+1; 973 if( eDest==SRT_DistQueue ){ 974 /* If the destination is DistQueue, then cursor (iParm+1) is open 975 ** on a second ephemeral index that holds all values every previously 976 ** added to the queue. */ 977 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 978 regResult, nResultCol); 979 VdbeCoverage(v); 980 } 981 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 982 if( eDest==SRT_DistQueue ){ 983 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 984 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 985 } 986 for(i=0; i<nKey; i++){ 987 sqlite3VdbeAddOp2(v, OP_SCopy, 988 regResult + pSO->a[i].u.x.iOrderByCol - 1, 989 r2+i); 990 } 991 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 992 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 993 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 994 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 995 sqlite3ReleaseTempReg(pParse, r1); 996 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 997 break; 998 } 999 #endif /* SQLITE_OMIT_CTE */ 1000 1001 1002 1003 #if !defined(SQLITE_OMIT_TRIGGER) 1004 /* Discard the results. This is used for SELECT statements inside 1005 ** the body of a TRIGGER. The purpose of such selects is to call 1006 ** user-defined functions that have side effects. We do not care 1007 ** about the actual results of the select. 1008 */ 1009 default: { 1010 assert( eDest==SRT_Discard ); 1011 break; 1012 } 1013 #endif 1014 } 1015 1016 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1017 ** there is a sorter, in which case the sorter has already limited 1018 ** the output for us. 1019 */ 1020 if( pSort==0 && p->iLimit ){ 1021 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1022 } 1023 } 1024 1025 /* 1026 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1027 ** X extra columns. 1028 */ 1029 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1030 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1031 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1032 if( p ){ 1033 p->aSortOrder = (u8*)&p->aColl[N+X]; 1034 p->nKeyField = (u16)N; 1035 p->nAllField = (u16)(N+X); 1036 p->enc = ENC(db); 1037 p->db = db; 1038 p->nRef = 1; 1039 memset(&p[1], 0, nExtra); 1040 }else{ 1041 sqlite3OomFault(db); 1042 } 1043 return p; 1044 } 1045 1046 /* 1047 ** Deallocate a KeyInfo object 1048 */ 1049 void sqlite3KeyInfoUnref(KeyInfo *p){ 1050 if( p ){ 1051 assert( p->nRef>0 ); 1052 p->nRef--; 1053 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1054 } 1055 } 1056 1057 /* 1058 ** Make a new pointer to a KeyInfo object 1059 */ 1060 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1061 if( p ){ 1062 assert( p->nRef>0 ); 1063 p->nRef++; 1064 } 1065 return p; 1066 } 1067 1068 #ifdef SQLITE_DEBUG 1069 /* 1070 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1071 ** can only be changed if this is just a single reference to the object. 1072 ** 1073 ** This routine is used only inside of assert() statements. 1074 */ 1075 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1076 #endif /* SQLITE_DEBUG */ 1077 1078 /* 1079 ** Given an expression list, generate a KeyInfo structure that records 1080 ** the collating sequence for each expression in that expression list. 1081 ** 1082 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1083 ** KeyInfo structure is appropriate for initializing a virtual index to 1084 ** implement that clause. If the ExprList is the result set of a SELECT 1085 ** then the KeyInfo structure is appropriate for initializing a virtual 1086 ** index to implement a DISTINCT test. 1087 ** 1088 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1089 ** function is responsible for seeing that this structure is eventually 1090 ** freed. 1091 */ 1092 static KeyInfo *keyInfoFromExprList( 1093 Parse *pParse, /* Parsing context */ 1094 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1095 int iStart, /* Begin with this column of pList */ 1096 int nExtra /* Add this many extra columns to the end */ 1097 ){ 1098 int nExpr; 1099 KeyInfo *pInfo; 1100 struct ExprList_item *pItem; 1101 sqlite3 *db = pParse->db; 1102 int i; 1103 1104 nExpr = pList->nExpr; 1105 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1106 if( pInfo ){ 1107 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1108 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1109 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1110 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1111 } 1112 } 1113 return pInfo; 1114 } 1115 1116 /* 1117 ** Name of the connection operator, used for error messages. 1118 */ 1119 static const char *selectOpName(int id){ 1120 char *z; 1121 switch( id ){ 1122 case TK_ALL: z = "UNION ALL"; break; 1123 case TK_INTERSECT: z = "INTERSECT"; break; 1124 case TK_EXCEPT: z = "EXCEPT"; break; 1125 default: z = "UNION"; break; 1126 } 1127 return z; 1128 } 1129 1130 #ifndef SQLITE_OMIT_EXPLAIN 1131 /* 1132 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1133 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1134 ** where the caption is of the form: 1135 ** 1136 ** "USE TEMP B-TREE FOR xxx" 1137 ** 1138 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1139 ** is determined by the zUsage argument. 1140 */ 1141 static void explainTempTable(Parse *pParse, const char *zUsage){ 1142 if( pParse->explain==2 ){ 1143 Vdbe *v = pParse->pVdbe; 1144 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1145 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1146 } 1147 } 1148 1149 /* 1150 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1151 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1152 ** in sqlite3Select() to assign values to structure member variables that 1153 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1154 ** code with #ifndef directives. 1155 */ 1156 # define explainSetInteger(a, b) a = b 1157 1158 #else 1159 /* No-op versions of the explainXXX() functions and macros. */ 1160 # define explainTempTable(y,z) 1161 # define explainSetInteger(y,z) 1162 #endif 1163 1164 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1165 /* 1166 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1167 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1168 ** where the caption is of one of the two forms: 1169 ** 1170 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1171 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1172 ** 1173 ** where iSub1 and iSub2 are the integers passed as the corresponding 1174 ** function parameters, and op is the text representation of the parameter 1175 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1176 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1177 ** false, or the second form if it is true. 1178 */ 1179 static void explainComposite( 1180 Parse *pParse, /* Parse context */ 1181 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1182 int iSub1, /* Subquery id 1 */ 1183 int iSub2, /* Subquery id 2 */ 1184 int bUseTmp /* True if a temp table was used */ 1185 ){ 1186 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1187 if( pParse->explain==2 ){ 1188 Vdbe *v = pParse->pVdbe; 1189 char *zMsg = sqlite3MPrintf( 1190 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1191 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1192 ); 1193 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1194 } 1195 } 1196 #else 1197 /* No-op versions of the explainXXX() functions and macros. */ 1198 # define explainComposite(v,w,x,y,z) 1199 #endif 1200 1201 /* 1202 ** If the inner loop was generated using a non-null pOrderBy argument, 1203 ** then the results were placed in a sorter. After the loop is terminated 1204 ** we need to run the sorter and output the results. The following 1205 ** routine generates the code needed to do that. 1206 */ 1207 static void generateSortTail( 1208 Parse *pParse, /* Parsing context */ 1209 Select *p, /* The SELECT statement */ 1210 SortCtx *pSort, /* Information on the ORDER BY clause */ 1211 int nColumn, /* Number of columns of data */ 1212 SelectDest *pDest /* Write the sorted results here */ 1213 ){ 1214 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1215 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1216 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1217 int addr; 1218 int addrOnce = 0; 1219 int iTab; 1220 ExprList *pOrderBy = pSort->pOrderBy; 1221 int eDest = pDest->eDest; 1222 int iParm = pDest->iSDParm; 1223 int regRow; 1224 int regRowid; 1225 int iCol; 1226 int nKey; 1227 int iSortTab; /* Sorter cursor to read from */ 1228 int nSortData; /* Trailing values to read from sorter */ 1229 int i; 1230 int bSeq; /* True if sorter record includes seq. no. */ 1231 struct ExprList_item *aOutEx = p->pEList->a; 1232 1233 assert( addrBreak<0 ); 1234 if( pSort->labelBkOut ){ 1235 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1236 sqlite3VdbeGoto(v, addrBreak); 1237 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1238 } 1239 iTab = pSort->iECursor; 1240 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1241 regRowid = 0; 1242 regRow = pDest->iSdst; 1243 nSortData = nColumn; 1244 }else{ 1245 regRowid = sqlite3GetTempReg(pParse); 1246 regRow = sqlite3GetTempRange(pParse, nColumn); 1247 nSortData = nColumn; 1248 } 1249 nKey = pOrderBy->nExpr - pSort->nOBSat; 1250 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1251 int regSortOut = ++pParse->nMem; 1252 iSortTab = pParse->nTab++; 1253 if( pSort->labelBkOut ){ 1254 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1255 } 1256 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1257 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1258 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1259 VdbeCoverage(v); 1260 codeOffset(v, p->iOffset, addrContinue); 1261 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1262 bSeq = 0; 1263 }else{ 1264 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1265 codeOffset(v, p->iOffset, addrContinue); 1266 iSortTab = iTab; 1267 bSeq = 1; 1268 } 1269 for(i=0, iCol=nKey+bSeq-1; i<nSortData; i++){ 1270 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1271 } 1272 for(i=nSortData-1; i>=0; i--){ 1273 int iRead; 1274 if( aOutEx[i].u.x.iOrderByCol ){ 1275 iRead = aOutEx[i].u.x.iOrderByCol-1; 1276 }else{ 1277 iRead = iCol--; 1278 } 1279 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1280 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1281 } 1282 switch( eDest ){ 1283 case SRT_Table: 1284 case SRT_EphemTab: { 1285 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1286 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1287 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1288 break; 1289 } 1290 #ifndef SQLITE_OMIT_SUBQUERY 1291 case SRT_Set: { 1292 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1293 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1294 pDest->zAffSdst, nColumn); 1295 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1296 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1297 break; 1298 } 1299 case SRT_Mem: { 1300 /* The LIMIT clause will terminate the loop for us */ 1301 break; 1302 } 1303 #endif 1304 default: { 1305 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1306 testcase( eDest==SRT_Output ); 1307 testcase( eDest==SRT_Coroutine ); 1308 if( eDest==SRT_Output ){ 1309 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1310 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1311 }else{ 1312 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1313 } 1314 break; 1315 } 1316 } 1317 if( regRowid ){ 1318 if( eDest==SRT_Set ){ 1319 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1320 }else{ 1321 sqlite3ReleaseTempReg(pParse, regRow); 1322 } 1323 sqlite3ReleaseTempReg(pParse, regRowid); 1324 } 1325 /* The bottom of the loop 1326 */ 1327 sqlite3VdbeResolveLabel(v, addrContinue); 1328 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1329 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1330 }else{ 1331 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1332 } 1333 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1334 sqlite3VdbeResolveLabel(v, addrBreak); 1335 } 1336 1337 /* 1338 ** Return a pointer to a string containing the 'declaration type' of the 1339 ** expression pExpr. The string may be treated as static by the caller. 1340 ** 1341 ** Also try to estimate the size of the returned value and return that 1342 ** result in *pEstWidth. 1343 ** 1344 ** The declaration type is the exact datatype definition extracted from the 1345 ** original CREATE TABLE statement if the expression is a column. The 1346 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1347 ** is considered a column can be complex in the presence of subqueries. The 1348 ** result-set expression in all of the following SELECT statements is 1349 ** considered a column by this function. 1350 ** 1351 ** SELECT col FROM tbl; 1352 ** SELECT (SELECT col FROM tbl; 1353 ** SELECT (SELECT col FROM tbl); 1354 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1355 ** 1356 ** The declaration type for any expression other than a column is NULL. 1357 ** 1358 ** This routine has either 3 or 6 parameters depending on whether or not 1359 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1360 */ 1361 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1362 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1363 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1364 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1365 #endif 1366 static const char *columnTypeImpl( 1367 NameContext *pNC, 1368 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1369 Expr *pExpr 1370 #else 1371 Expr *pExpr, 1372 const char **pzOrigDb, 1373 const char **pzOrigTab, 1374 const char **pzOrigCol 1375 #endif 1376 ){ 1377 char const *zType = 0; 1378 int j; 1379 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1380 char const *zOrigDb = 0; 1381 char const *zOrigTab = 0; 1382 char const *zOrigCol = 0; 1383 #endif 1384 1385 assert( pExpr!=0 ); 1386 assert( pNC->pSrcList!=0 ); 1387 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1388 ** are processed */ 1389 switch( pExpr->op ){ 1390 case TK_COLUMN: { 1391 /* The expression is a column. Locate the table the column is being 1392 ** extracted from in NameContext.pSrcList. This table may be real 1393 ** database table or a subquery. 1394 */ 1395 Table *pTab = 0; /* Table structure column is extracted from */ 1396 Select *pS = 0; /* Select the column is extracted from */ 1397 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1398 while( pNC && !pTab ){ 1399 SrcList *pTabList = pNC->pSrcList; 1400 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1401 if( j<pTabList->nSrc ){ 1402 pTab = pTabList->a[j].pTab; 1403 pS = pTabList->a[j].pSelect; 1404 }else{ 1405 pNC = pNC->pNext; 1406 } 1407 } 1408 1409 if( pTab==0 ){ 1410 /* At one time, code such as "SELECT new.x" within a trigger would 1411 ** cause this condition to run. Since then, we have restructured how 1412 ** trigger code is generated and so this condition is no longer 1413 ** possible. However, it can still be true for statements like 1414 ** the following: 1415 ** 1416 ** CREATE TABLE t1(col INTEGER); 1417 ** SELECT (SELECT t1.col) FROM FROM t1; 1418 ** 1419 ** when columnType() is called on the expression "t1.col" in the 1420 ** sub-select. In this case, set the column type to NULL, even 1421 ** though it should really be "INTEGER". 1422 ** 1423 ** This is not a problem, as the column type of "t1.col" is never 1424 ** used. When columnType() is called on the expression 1425 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1426 ** branch below. */ 1427 break; 1428 } 1429 1430 assert( pTab && pExpr->pTab==pTab ); 1431 if( pS ){ 1432 /* The "table" is actually a sub-select or a view in the FROM clause 1433 ** of the SELECT statement. Return the declaration type and origin 1434 ** data for the result-set column of the sub-select. 1435 */ 1436 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1437 /* If iCol is less than zero, then the expression requests the 1438 ** rowid of the sub-select or view. This expression is legal (see 1439 ** test case misc2.2.2) - it always evaluates to NULL. 1440 */ 1441 NameContext sNC; 1442 Expr *p = pS->pEList->a[iCol].pExpr; 1443 sNC.pSrcList = pS->pSrc; 1444 sNC.pNext = pNC; 1445 sNC.pParse = pNC->pParse; 1446 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1447 } 1448 }else{ 1449 /* A real table or a CTE table */ 1450 assert( !pS ); 1451 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1452 if( iCol<0 ) iCol = pTab->iPKey; 1453 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1454 if( iCol<0 ){ 1455 zType = "INTEGER"; 1456 zOrigCol = "rowid"; 1457 }else{ 1458 zOrigCol = pTab->aCol[iCol].zName; 1459 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1460 } 1461 zOrigTab = pTab->zName; 1462 if( pNC->pParse && pTab->pSchema ){ 1463 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1464 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1465 } 1466 #else 1467 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1468 if( iCol<0 ){ 1469 zType = "INTEGER"; 1470 }else{ 1471 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1472 } 1473 #endif 1474 } 1475 break; 1476 } 1477 #ifndef SQLITE_OMIT_SUBQUERY 1478 case TK_SELECT: { 1479 /* The expression is a sub-select. Return the declaration type and 1480 ** origin info for the single column in the result set of the SELECT 1481 ** statement. 1482 */ 1483 NameContext sNC; 1484 Select *pS = pExpr->x.pSelect; 1485 Expr *p = pS->pEList->a[0].pExpr; 1486 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1487 sNC.pSrcList = pS->pSrc; 1488 sNC.pNext = pNC; 1489 sNC.pParse = pNC->pParse; 1490 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1491 break; 1492 } 1493 #endif 1494 } 1495 1496 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1497 if( pzOrigDb ){ 1498 assert( pzOrigTab && pzOrigCol ); 1499 *pzOrigDb = zOrigDb; 1500 *pzOrigTab = zOrigTab; 1501 *pzOrigCol = zOrigCol; 1502 } 1503 #endif 1504 return zType; 1505 } 1506 1507 /* 1508 ** Generate code that will tell the VDBE the declaration types of columns 1509 ** in the result set. 1510 */ 1511 static void generateColumnTypes( 1512 Parse *pParse, /* Parser context */ 1513 SrcList *pTabList, /* List of tables */ 1514 ExprList *pEList /* Expressions defining the result set */ 1515 ){ 1516 #ifndef SQLITE_OMIT_DECLTYPE 1517 Vdbe *v = pParse->pVdbe; 1518 int i; 1519 NameContext sNC; 1520 sNC.pSrcList = pTabList; 1521 sNC.pParse = pParse; 1522 sNC.pNext = 0; 1523 for(i=0; i<pEList->nExpr; i++){ 1524 Expr *p = pEList->a[i].pExpr; 1525 const char *zType; 1526 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1527 const char *zOrigDb = 0; 1528 const char *zOrigTab = 0; 1529 const char *zOrigCol = 0; 1530 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1531 1532 /* The vdbe must make its own copy of the column-type and other 1533 ** column specific strings, in case the schema is reset before this 1534 ** virtual machine is deleted. 1535 */ 1536 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1537 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1538 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1539 #else 1540 zType = columnType(&sNC, p, 0, 0, 0); 1541 #endif 1542 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1543 } 1544 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1545 } 1546 1547 1548 /* 1549 ** Compute the column names for a SELECT statement. 1550 ** 1551 ** The only guarantee that SQLite makes about column names is that if the 1552 ** column has an AS clause assigning it a name, that will be the name used. 1553 ** That is the only documented guarantee. However, countless applications 1554 ** developed over the years have made baseless assumptions about column names 1555 ** and will break if those assumptions changes. Hence, use extreme caution 1556 ** when modifying this routine to avoid breaking legacy. 1557 ** 1558 ** See Also: sqlite3ColumnsFromExprList() 1559 ** 1560 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1561 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1562 ** applications should operate this way. Nevertheless, we need to support the 1563 ** other modes for legacy: 1564 ** 1565 ** short=OFF, full=OFF: Column name is the text of the expression has it 1566 ** originally appears in the SELECT statement. In 1567 ** other words, the zSpan of the result expression. 1568 ** 1569 ** short=ON, full=OFF: (This is the default setting). If the result 1570 ** refers directly to a table column, then the 1571 ** result column name is just the table column 1572 ** name: COLUMN. Otherwise use zSpan. 1573 ** 1574 ** full=ON, short=ANY: If the result refers directly to a table column, 1575 ** then the result column name with the table name 1576 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1577 */ 1578 static void generateColumnNames( 1579 Parse *pParse, /* Parser context */ 1580 Select *pSelect /* Generate column names for this SELECT statement */ 1581 ){ 1582 Vdbe *v = pParse->pVdbe; 1583 int i; 1584 Table *pTab; 1585 SrcList *pTabList; 1586 ExprList *pEList; 1587 sqlite3 *db = pParse->db; 1588 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1589 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1590 1591 #ifndef SQLITE_OMIT_EXPLAIN 1592 /* If this is an EXPLAIN, skip this step */ 1593 if( pParse->explain ){ 1594 return; 1595 } 1596 #endif 1597 1598 if( pParse->colNamesSet || db->mallocFailed ) return; 1599 /* Column names are determined by the left-most term of a compound select */ 1600 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1601 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1602 pTabList = pSelect->pSrc; 1603 pEList = pSelect->pEList; 1604 assert( v!=0 ); 1605 assert( pTabList!=0 ); 1606 pParse->colNamesSet = 1; 1607 fullName = (db->flags & SQLITE_FullColNames)!=0; 1608 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1609 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1610 for(i=0; i<pEList->nExpr; i++){ 1611 Expr *p = pEList->a[i].pExpr; 1612 1613 assert( p!=0 ); 1614 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1615 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1616 if( pEList->a[i].zName ){ 1617 /* An AS clause always takes first priority */ 1618 char *zName = pEList->a[i].zName; 1619 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1620 }else if( srcName && p->op==TK_COLUMN ){ 1621 char *zCol; 1622 int iCol = p->iColumn; 1623 pTab = p->pTab; 1624 assert( pTab!=0 ); 1625 if( iCol<0 ) iCol = pTab->iPKey; 1626 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1627 if( iCol<0 ){ 1628 zCol = "rowid"; 1629 }else{ 1630 zCol = pTab->aCol[iCol].zName; 1631 } 1632 if( fullName ){ 1633 char *zName = 0; 1634 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1635 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1636 }else{ 1637 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1638 } 1639 }else{ 1640 const char *z = pEList->a[i].zSpan; 1641 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1642 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1643 } 1644 } 1645 generateColumnTypes(pParse, pTabList, pEList); 1646 } 1647 1648 /* 1649 ** Given an expression list (which is really the list of expressions 1650 ** that form the result set of a SELECT statement) compute appropriate 1651 ** column names for a table that would hold the expression list. 1652 ** 1653 ** All column names will be unique. 1654 ** 1655 ** Only the column names are computed. Column.zType, Column.zColl, 1656 ** and other fields of Column are zeroed. 1657 ** 1658 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1659 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1660 ** 1661 ** The only guarantee that SQLite makes about column names is that if the 1662 ** column has an AS clause assigning it a name, that will be the name used. 1663 ** That is the only documented guarantee. However, countless applications 1664 ** developed over the years have made baseless assumptions about column names 1665 ** and will break if those assumptions changes. Hence, use extreme caution 1666 ** when modifying this routine to avoid breaking legacy. 1667 ** 1668 ** See Also: generateColumnNames() 1669 */ 1670 int sqlite3ColumnsFromExprList( 1671 Parse *pParse, /* Parsing context */ 1672 ExprList *pEList, /* Expr list from which to derive column names */ 1673 i16 *pnCol, /* Write the number of columns here */ 1674 Column **paCol /* Write the new column list here */ 1675 ){ 1676 sqlite3 *db = pParse->db; /* Database connection */ 1677 int i, j; /* Loop counters */ 1678 u32 cnt; /* Index added to make the name unique */ 1679 Column *aCol, *pCol; /* For looping over result columns */ 1680 int nCol; /* Number of columns in the result set */ 1681 char *zName; /* Column name */ 1682 int nName; /* Size of name in zName[] */ 1683 Hash ht; /* Hash table of column names */ 1684 1685 sqlite3HashInit(&ht); 1686 if( pEList ){ 1687 nCol = pEList->nExpr; 1688 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1689 testcase( aCol==0 ); 1690 if( nCol>32767 ) nCol = 32767; 1691 }else{ 1692 nCol = 0; 1693 aCol = 0; 1694 } 1695 assert( nCol==(i16)nCol ); 1696 *pnCol = nCol; 1697 *paCol = aCol; 1698 1699 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1700 /* Get an appropriate name for the column 1701 */ 1702 if( (zName = pEList->a[i].zName)!=0 ){ 1703 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1704 }else{ 1705 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1706 while( pColExpr->op==TK_DOT ){ 1707 pColExpr = pColExpr->pRight; 1708 assert( pColExpr!=0 ); 1709 } 1710 assert( pColExpr->op!=TK_AGG_COLUMN ); 1711 if( pColExpr->op==TK_COLUMN ){ 1712 /* For columns use the column name name */ 1713 int iCol = pColExpr->iColumn; 1714 Table *pTab = pColExpr->pTab; 1715 assert( pTab!=0 ); 1716 if( iCol<0 ) iCol = pTab->iPKey; 1717 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1718 }else if( pColExpr->op==TK_ID ){ 1719 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1720 zName = pColExpr->u.zToken; 1721 }else{ 1722 /* Use the original text of the column expression as its name */ 1723 zName = pEList->a[i].zSpan; 1724 } 1725 } 1726 if( zName ){ 1727 zName = sqlite3DbStrDup(db, zName); 1728 }else{ 1729 zName = sqlite3MPrintf(db,"column%d",i+1); 1730 } 1731 1732 /* Make sure the column name is unique. If the name is not unique, 1733 ** append an integer to the name so that it becomes unique. 1734 */ 1735 cnt = 0; 1736 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1737 nName = sqlite3Strlen30(zName); 1738 if( nName>0 ){ 1739 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1740 if( zName[j]==':' ) nName = j; 1741 } 1742 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1743 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1744 } 1745 pCol->zName = zName; 1746 sqlite3ColumnPropertiesFromName(0, pCol); 1747 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1748 sqlite3OomFault(db); 1749 } 1750 } 1751 sqlite3HashClear(&ht); 1752 if( db->mallocFailed ){ 1753 for(j=0; j<i; j++){ 1754 sqlite3DbFree(db, aCol[j].zName); 1755 } 1756 sqlite3DbFree(db, aCol); 1757 *paCol = 0; 1758 *pnCol = 0; 1759 return SQLITE_NOMEM_BKPT; 1760 } 1761 return SQLITE_OK; 1762 } 1763 1764 /* 1765 ** Add type and collation information to a column list based on 1766 ** a SELECT statement. 1767 ** 1768 ** The column list presumably came from selectColumnNamesFromExprList(). 1769 ** The column list has only names, not types or collations. This 1770 ** routine goes through and adds the types and collations. 1771 ** 1772 ** This routine requires that all identifiers in the SELECT 1773 ** statement be resolved. 1774 */ 1775 void sqlite3SelectAddColumnTypeAndCollation( 1776 Parse *pParse, /* Parsing contexts */ 1777 Table *pTab, /* Add column type information to this table */ 1778 Select *pSelect /* SELECT used to determine types and collations */ 1779 ){ 1780 sqlite3 *db = pParse->db; 1781 NameContext sNC; 1782 Column *pCol; 1783 CollSeq *pColl; 1784 int i; 1785 Expr *p; 1786 struct ExprList_item *a; 1787 1788 assert( pSelect!=0 ); 1789 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1790 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1791 if( db->mallocFailed ) return; 1792 memset(&sNC, 0, sizeof(sNC)); 1793 sNC.pSrcList = pSelect->pSrc; 1794 a = pSelect->pEList->a; 1795 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1796 const char *zType; 1797 int n, m; 1798 p = a[i].pExpr; 1799 zType = columnType(&sNC, p, 0, 0, 0); 1800 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 1801 pCol->affinity = sqlite3ExprAffinity(p); 1802 if( zType ){ 1803 m = sqlite3Strlen30(zType); 1804 n = sqlite3Strlen30(pCol->zName); 1805 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1806 if( pCol->zName ){ 1807 memcpy(&pCol->zName[n+1], zType, m+1); 1808 pCol->colFlags |= COLFLAG_HASTYPE; 1809 } 1810 } 1811 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1812 pColl = sqlite3ExprCollSeq(pParse, p); 1813 if( pColl && pCol->zColl==0 ){ 1814 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1815 } 1816 } 1817 pTab->szTabRow = 1; /* Any non-zero value works */ 1818 } 1819 1820 /* 1821 ** Given a SELECT statement, generate a Table structure that describes 1822 ** the result set of that SELECT. 1823 */ 1824 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1825 Table *pTab; 1826 sqlite3 *db = pParse->db; 1827 int savedFlags; 1828 1829 savedFlags = db->flags; 1830 db->flags &= ~SQLITE_FullColNames; 1831 db->flags |= SQLITE_ShortColNames; 1832 sqlite3SelectPrep(pParse, pSelect, 0); 1833 if( pParse->nErr ) return 0; 1834 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1835 db->flags = savedFlags; 1836 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1837 if( pTab==0 ){ 1838 return 0; 1839 } 1840 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1841 ** is disabled */ 1842 assert( db->lookaside.bDisable ); 1843 pTab->nTabRef = 1; 1844 pTab->zName = 0; 1845 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1846 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1847 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1848 pTab->iPKey = -1; 1849 if( db->mallocFailed ){ 1850 sqlite3DeleteTable(db, pTab); 1851 return 0; 1852 } 1853 return pTab; 1854 } 1855 1856 /* 1857 ** Get a VDBE for the given parser context. Create a new one if necessary. 1858 ** If an error occurs, return NULL and leave a message in pParse. 1859 */ 1860 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1861 if( pParse->pVdbe ){ 1862 return pParse->pVdbe; 1863 } 1864 if( pParse->pToplevel==0 1865 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1866 ){ 1867 pParse->okConstFactor = 1; 1868 } 1869 return sqlite3VdbeCreate(pParse); 1870 } 1871 1872 1873 /* 1874 ** Compute the iLimit and iOffset fields of the SELECT based on the 1875 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 1876 ** that appear in the original SQL statement after the LIMIT and OFFSET 1877 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1878 ** are the integer memory register numbers for counters used to compute 1879 ** the limit and offset. If there is no limit and/or offset, then 1880 ** iLimit and iOffset are negative. 1881 ** 1882 ** This routine changes the values of iLimit and iOffset only if 1883 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 1884 ** and iOffset should have been preset to appropriate default values (zero) 1885 ** prior to calling this routine. 1886 ** 1887 ** The iOffset register (if it exists) is initialized to the value 1888 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1889 ** iOffset+1 is initialized to LIMIT+OFFSET. 1890 ** 1891 ** Only if pLimit->pLeft!=0 do the limit registers get 1892 ** redefined. The UNION ALL operator uses this property to force 1893 ** the reuse of the same limit and offset registers across multiple 1894 ** SELECT statements. 1895 */ 1896 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1897 Vdbe *v = 0; 1898 int iLimit = 0; 1899 int iOffset; 1900 int n; 1901 Expr *pLimit = p->pLimit; 1902 1903 if( p->iLimit ) return; 1904 1905 /* 1906 ** "LIMIT -1" always shows all rows. There is some 1907 ** controversy about what the correct behavior should be. 1908 ** The current implementation interprets "LIMIT 0" to mean 1909 ** no rows. 1910 */ 1911 sqlite3ExprCacheClear(pParse); 1912 if( pLimit ){ 1913 assert( pLimit->op==TK_LIMIT ); 1914 assert( pLimit->pLeft!=0 ); 1915 p->iLimit = iLimit = ++pParse->nMem; 1916 v = sqlite3GetVdbe(pParse); 1917 assert( v!=0 ); 1918 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 1919 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1920 VdbeComment((v, "LIMIT counter")); 1921 if( n==0 ){ 1922 sqlite3VdbeGoto(v, iBreak); 1923 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1924 p->nSelectRow = sqlite3LogEst((u64)n); 1925 p->selFlags |= SF_FixedLimit; 1926 } 1927 }else{ 1928 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 1929 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1930 VdbeComment((v, "LIMIT counter")); 1931 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1932 } 1933 if( pLimit->pRight ){ 1934 p->iOffset = iOffset = ++pParse->nMem; 1935 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1936 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 1937 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1938 VdbeComment((v, "OFFSET counter")); 1939 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1940 VdbeComment((v, "LIMIT+OFFSET")); 1941 } 1942 } 1943 } 1944 1945 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1946 /* 1947 ** Return the appropriate collating sequence for the iCol-th column of 1948 ** the result set for the compound-select statement "p". Return NULL if 1949 ** the column has no default collating sequence. 1950 ** 1951 ** The collating sequence for the compound select is taken from the 1952 ** left-most term of the select that has a collating sequence. 1953 */ 1954 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1955 CollSeq *pRet; 1956 if( p->pPrior ){ 1957 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1958 }else{ 1959 pRet = 0; 1960 } 1961 assert( iCol>=0 ); 1962 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1963 ** have been thrown during name resolution and we would not have gotten 1964 ** this far */ 1965 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1966 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1967 } 1968 return pRet; 1969 } 1970 1971 /* 1972 ** The select statement passed as the second parameter is a compound SELECT 1973 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1974 ** structure suitable for implementing the ORDER BY. 1975 ** 1976 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1977 ** function is responsible for ensuring that this structure is eventually 1978 ** freed. 1979 */ 1980 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1981 ExprList *pOrderBy = p->pOrderBy; 1982 int nOrderBy = p->pOrderBy->nExpr; 1983 sqlite3 *db = pParse->db; 1984 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1985 if( pRet ){ 1986 int i; 1987 for(i=0; i<nOrderBy; i++){ 1988 struct ExprList_item *pItem = &pOrderBy->a[i]; 1989 Expr *pTerm = pItem->pExpr; 1990 CollSeq *pColl; 1991 1992 if( pTerm->flags & EP_Collate ){ 1993 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1994 }else{ 1995 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1996 if( pColl==0 ) pColl = db->pDfltColl; 1997 pOrderBy->a[i].pExpr = 1998 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1999 } 2000 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2001 pRet->aColl[i] = pColl; 2002 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2003 } 2004 } 2005 2006 return pRet; 2007 } 2008 2009 #ifndef SQLITE_OMIT_CTE 2010 /* 2011 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2012 ** query of the form: 2013 ** 2014 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2015 ** \___________/ \_______________/ 2016 ** p->pPrior p 2017 ** 2018 ** 2019 ** There is exactly one reference to the recursive-table in the FROM clause 2020 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2021 ** 2022 ** The setup-query runs once to generate an initial set of rows that go 2023 ** into a Queue table. Rows are extracted from the Queue table one by 2024 ** one. Each row extracted from Queue is output to pDest. Then the single 2025 ** extracted row (now in the iCurrent table) becomes the content of the 2026 ** recursive-table for a recursive-query run. The output of the recursive-query 2027 ** is added back into the Queue table. Then another row is extracted from Queue 2028 ** and the iteration continues until the Queue table is empty. 2029 ** 2030 ** If the compound query operator is UNION then no duplicate rows are ever 2031 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2032 ** that have ever been inserted into Queue and causes duplicates to be 2033 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2034 ** 2035 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2036 ** ORDER BY order and the first entry is extracted for each cycle. Without 2037 ** an ORDER BY, the Queue table is just a FIFO. 2038 ** 2039 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2040 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2041 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2042 ** with a positive value, then the first OFFSET outputs are discarded rather 2043 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2044 ** rows have been skipped. 2045 */ 2046 static void generateWithRecursiveQuery( 2047 Parse *pParse, /* Parsing context */ 2048 Select *p, /* The recursive SELECT to be coded */ 2049 SelectDest *pDest /* What to do with query results */ 2050 ){ 2051 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2052 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2053 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2054 Select *pSetup = p->pPrior; /* The setup query */ 2055 int addrTop; /* Top of the loop */ 2056 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2057 int iCurrent = 0; /* The Current table */ 2058 int regCurrent; /* Register holding Current table */ 2059 int iQueue; /* The Queue table */ 2060 int iDistinct = 0; /* To ensure unique results if UNION */ 2061 int eDest = SRT_Fifo; /* How to write to Queue */ 2062 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2063 int i; /* Loop counter */ 2064 int rc; /* Result code */ 2065 ExprList *pOrderBy; /* The ORDER BY clause */ 2066 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2067 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2068 2069 /* Obtain authorization to do a recursive query */ 2070 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2071 2072 /* Process the LIMIT and OFFSET clauses, if they exist */ 2073 addrBreak = sqlite3VdbeMakeLabel(v); 2074 p->nSelectRow = 320; /* 4 billion rows */ 2075 computeLimitRegisters(pParse, p, addrBreak); 2076 pLimit = p->pLimit; 2077 regLimit = p->iLimit; 2078 regOffset = p->iOffset; 2079 p->pLimit = 0; 2080 p->iLimit = p->iOffset = 0; 2081 pOrderBy = p->pOrderBy; 2082 2083 /* Locate the cursor number of the Current table */ 2084 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2085 if( pSrc->a[i].fg.isRecursive ){ 2086 iCurrent = pSrc->a[i].iCursor; 2087 break; 2088 } 2089 } 2090 2091 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2092 ** the Distinct table must be exactly one greater than Queue in order 2093 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2094 iQueue = pParse->nTab++; 2095 if( p->op==TK_UNION ){ 2096 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2097 iDistinct = pParse->nTab++; 2098 }else{ 2099 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2100 } 2101 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2102 2103 /* Allocate cursors for Current, Queue, and Distinct. */ 2104 regCurrent = ++pParse->nMem; 2105 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2106 if( pOrderBy ){ 2107 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2108 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2109 (char*)pKeyInfo, P4_KEYINFO); 2110 destQueue.pOrderBy = pOrderBy; 2111 }else{ 2112 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2113 } 2114 VdbeComment((v, "Queue table")); 2115 if( iDistinct ){ 2116 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2117 p->selFlags |= SF_UsesEphemeral; 2118 } 2119 2120 /* Detach the ORDER BY clause from the compound SELECT */ 2121 p->pOrderBy = 0; 2122 2123 /* Store the results of the setup-query in Queue. */ 2124 pSetup->pNext = 0; 2125 rc = sqlite3Select(pParse, pSetup, &destQueue); 2126 pSetup->pNext = p; 2127 if( rc ) goto end_of_recursive_query; 2128 2129 /* Find the next row in the Queue and output that row */ 2130 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2131 2132 /* Transfer the next row in Queue over to Current */ 2133 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2134 if( pOrderBy ){ 2135 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2136 }else{ 2137 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2138 } 2139 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2140 2141 /* Output the single row in Current */ 2142 addrCont = sqlite3VdbeMakeLabel(v); 2143 codeOffset(v, regOffset, addrCont); 2144 selectInnerLoop(pParse, p, iCurrent, 2145 0, 0, pDest, addrCont, addrBreak); 2146 if( regLimit ){ 2147 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2148 VdbeCoverage(v); 2149 } 2150 sqlite3VdbeResolveLabel(v, addrCont); 2151 2152 /* Execute the recursive SELECT taking the single row in Current as 2153 ** the value for the recursive-table. Store the results in the Queue. 2154 */ 2155 if( p->selFlags & SF_Aggregate ){ 2156 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2157 }else{ 2158 p->pPrior = 0; 2159 sqlite3Select(pParse, p, &destQueue); 2160 assert( p->pPrior==0 ); 2161 p->pPrior = pSetup; 2162 } 2163 2164 /* Keep running the loop until the Queue is empty */ 2165 sqlite3VdbeGoto(v, addrTop); 2166 sqlite3VdbeResolveLabel(v, addrBreak); 2167 2168 end_of_recursive_query: 2169 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2170 p->pOrderBy = pOrderBy; 2171 p->pLimit = pLimit; 2172 return; 2173 } 2174 #endif /* SQLITE_OMIT_CTE */ 2175 2176 /* Forward references */ 2177 static int multiSelectOrderBy( 2178 Parse *pParse, /* Parsing context */ 2179 Select *p, /* The right-most of SELECTs to be coded */ 2180 SelectDest *pDest /* What to do with query results */ 2181 ); 2182 2183 /* 2184 ** Handle the special case of a compound-select that originates from a 2185 ** VALUES clause. By handling this as a special case, we avoid deep 2186 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2187 ** on a VALUES clause. 2188 ** 2189 ** Because the Select object originates from a VALUES clause: 2190 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2191 ** (2) All terms are UNION ALL 2192 ** (3) There is no ORDER BY clause 2193 ** 2194 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2195 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2196 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2197 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2198 */ 2199 static int multiSelectValues( 2200 Parse *pParse, /* Parsing context */ 2201 Select *p, /* The right-most of SELECTs to be coded */ 2202 SelectDest *pDest /* What to do with query results */ 2203 ){ 2204 Select *pPrior; 2205 Select *pRightmost = p; 2206 int nRow = 1; 2207 int rc = 0; 2208 assert( p->selFlags & SF_MultiValue ); 2209 do{ 2210 assert( p->selFlags & SF_Values ); 2211 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2212 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2213 if( p->pPrior==0 ) break; 2214 assert( p->pPrior->pNext==p ); 2215 p = p->pPrior; 2216 nRow++; 2217 }while(1); 2218 while( p ){ 2219 pPrior = p->pPrior; 2220 p->pPrior = 0; 2221 rc = sqlite3Select(pParse, p, pDest); 2222 p->pPrior = pPrior; 2223 if( rc || pRightmost->pLimit ) break; 2224 p->nSelectRow = nRow; 2225 p = p->pNext; 2226 } 2227 return rc; 2228 } 2229 2230 /* 2231 ** This routine is called to process a compound query form from 2232 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2233 ** INTERSECT 2234 ** 2235 ** "p" points to the right-most of the two queries. the query on the 2236 ** left is p->pPrior. The left query could also be a compound query 2237 ** in which case this routine will be called recursively. 2238 ** 2239 ** The results of the total query are to be written into a destination 2240 ** of type eDest with parameter iParm. 2241 ** 2242 ** Example 1: Consider a three-way compound SQL statement. 2243 ** 2244 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2245 ** 2246 ** This statement is parsed up as follows: 2247 ** 2248 ** SELECT c FROM t3 2249 ** | 2250 ** `-----> SELECT b FROM t2 2251 ** | 2252 ** `------> SELECT a FROM t1 2253 ** 2254 ** The arrows in the diagram above represent the Select.pPrior pointer. 2255 ** So if this routine is called with p equal to the t3 query, then 2256 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2257 ** 2258 ** Notice that because of the way SQLite parses compound SELECTs, the 2259 ** individual selects always group from left to right. 2260 */ 2261 static int multiSelect( 2262 Parse *pParse, /* Parsing context */ 2263 Select *p, /* The right-most of SELECTs to be coded */ 2264 SelectDest *pDest /* What to do with query results */ 2265 ){ 2266 int rc = SQLITE_OK; /* Success code from a subroutine */ 2267 Select *pPrior; /* Another SELECT immediately to our left */ 2268 Vdbe *v; /* Generate code to this VDBE */ 2269 SelectDest dest; /* Alternative data destination */ 2270 Select *pDelete = 0; /* Chain of simple selects to delete */ 2271 sqlite3 *db; /* Database connection */ 2272 #ifndef SQLITE_OMIT_EXPLAIN 2273 int iSub1 = 0; /* EQP id of left-hand query */ 2274 int iSub2 = 0; /* EQP id of right-hand query */ 2275 #endif 2276 2277 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2278 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2279 */ 2280 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2281 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2282 db = pParse->db; 2283 pPrior = p->pPrior; 2284 dest = *pDest; 2285 if( pPrior->pOrderBy || pPrior->pLimit ){ 2286 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2287 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2288 rc = 1; 2289 goto multi_select_end; 2290 } 2291 2292 v = sqlite3GetVdbe(pParse); 2293 assert( v!=0 ); /* The VDBE already created by calling function */ 2294 2295 /* Create the destination temporary table if necessary 2296 */ 2297 if( dest.eDest==SRT_EphemTab ){ 2298 assert( p->pEList ); 2299 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2300 dest.eDest = SRT_Table; 2301 } 2302 2303 /* Special handling for a compound-select that originates as a VALUES clause. 2304 */ 2305 if( p->selFlags & SF_MultiValue ){ 2306 rc = multiSelectValues(pParse, p, &dest); 2307 goto multi_select_end; 2308 } 2309 2310 /* Make sure all SELECTs in the statement have the same number of elements 2311 ** in their result sets. 2312 */ 2313 assert( p->pEList && pPrior->pEList ); 2314 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2315 2316 #ifndef SQLITE_OMIT_CTE 2317 if( p->selFlags & SF_Recursive ){ 2318 generateWithRecursiveQuery(pParse, p, &dest); 2319 }else 2320 #endif 2321 2322 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2323 */ 2324 if( p->pOrderBy ){ 2325 return multiSelectOrderBy(pParse, p, pDest); 2326 }else 2327 2328 /* Generate code for the left and right SELECT statements. 2329 */ 2330 switch( p->op ){ 2331 case TK_ALL: { 2332 int addr = 0; 2333 int nLimit; 2334 assert( !pPrior->pLimit ); 2335 pPrior->iLimit = p->iLimit; 2336 pPrior->iOffset = p->iOffset; 2337 pPrior->pLimit = p->pLimit; 2338 explainSetInteger(iSub1, pParse->iNextSelectId); 2339 rc = sqlite3Select(pParse, pPrior, &dest); 2340 p->pLimit = 0; 2341 if( rc ){ 2342 goto multi_select_end; 2343 } 2344 p->pPrior = 0; 2345 p->iLimit = pPrior->iLimit; 2346 p->iOffset = pPrior->iOffset; 2347 if( p->iLimit ){ 2348 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2349 VdbeComment((v, "Jump ahead if LIMIT reached")); 2350 if( p->iOffset ){ 2351 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2352 p->iLimit, p->iOffset+1, p->iOffset); 2353 } 2354 } 2355 explainSetInteger(iSub2, pParse->iNextSelectId); 2356 rc = sqlite3Select(pParse, p, &dest); 2357 testcase( rc!=SQLITE_OK ); 2358 pDelete = p->pPrior; 2359 p->pPrior = pPrior; 2360 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2361 if( pPrior->pLimit 2362 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2363 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2364 ){ 2365 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2366 } 2367 if( addr ){ 2368 sqlite3VdbeJumpHere(v, addr); 2369 } 2370 break; 2371 } 2372 case TK_EXCEPT: 2373 case TK_UNION: { 2374 int unionTab; /* Cursor number of the temporary table holding result */ 2375 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2376 int priorOp; /* The SRT_ operation to apply to prior selects */ 2377 Expr *pLimit; /* Saved values of p->nLimit */ 2378 int addr; 2379 SelectDest uniondest; 2380 2381 testcase( p->op==TK_EXCEPT ); 2382 testcase( p->op==TK_UNION ); 2383 priorOp = SRT_Union; 2384 if( dest.eDest==priorOp ){ 2385 /* We can reuse a temporary table generated by a SELECT to our 2386 ** right. 2387 */ 2388 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2389 unionTab = dest.iSDParm; 2390 }else{ 2391 /* We will need to create our own temporary table to hold the 2392 ** intermediate results. 2393 */ 2394 unionTab = pParse->nTab++; 2395 assert( p->pOrderBy==0 ); 2396 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2397 assert( p->addrOpenEphm[0] == -1 ); 2398 p->addrOpenEphm[0] = addr; 2399 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2400 assert( p->pEList ); 2401 } 2402 2403 /* Code the SELECT statements to our left 2404 */ 2405 assert( !pPrior->pOrderBy ); 2406 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2407 explainSetInteger(iSub1, pParse->iNextSelectId); 2408 rc = sqlite3Select(pParse, pPrior, &uniondest); 2409 if( rc ){ 2410 goto multi_select_end; 2411 } 2412 2413 /* Code the current SELECT statement 2414 */ 2415 if( p->op==TK_EXCEPT ){ 2416 op = SRT_Except; 2417 }else{ 2418 assert( p->op==TK_UNION ); 2419 op = SRT_Union; 2420 } 2421 p->pPrior = 0; 2422 pLimit = p->pLimit; 2423 p->pLimit = 0; 2424 uniondest.eDest = op; 2425 explainSetInteger(iSub2, pParse->iNextSelectId); 2426 rc = sqlite3Select(pParse, p, &uniondest); 2427 testcase( rc!=SQLITE_OK ); 2428 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2429 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2430 sqlite3ExprListDelete(db, p->pOrderBy); 2431 pDelete = p->pPrior; 2432 p->pPrior = pPrior; 2433 p->pOrderBy = 0; 2434 if( p->op==TK_UNION ){ 2435 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2436 } 2437 sqlite3ExprDelete(db, p->pLimit); 2438 p->pLimit = pLimit; 2439 p->iLimit = 0; 2440 p->iOffset = 0; 2441 2442 /* Convert the data in the temporary table into whatever form 2443 ** it is that we currently need. 2444 */ 2445 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2446 if( dest.eDest!=priorOp ){ 2447 int iCont, iBreak, iStart; 2448 assert( p->pEList ); 2449 iBreak = sqlite3VdbeMakeLabel(v); 2450 iCont = sqlite3VdbeMakeLabel(v); 2451 computeLimitRegisters(pParse, p, iBreak); 2452 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2453 iStart = sqlite3VdbeCurrentAddr(v); 2454 selectInnerLoop(pParse, p, unionTab, 2455 0, 0, &dest, iCont, iBreak); 2456 sqlite3VdbeResolveLabel(v, iCont); 2457 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2458 sqlite3VdbeResolveLabel(v, iBreak); 2459 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2460 } 2461 break; 2462 } 2463 default: assert( p->op==TK_INTERSECT ); { 2464 int tab1, tab2; 2465 int iCont, iBreak, iStart; 2466 Expr *pLimit; 2467 int addr; 2468 SelectDest intersectdest; 2469 int r1; 2470 2471 /* INTERSECT is different from the others since it requires 2472 ** two temporary tables. Hence it has its own case. Begin 2473 ** by allocating the tables we will need. 2474 */ 2475 tab1 = pParse->nTab++; 2476 tab2 = pParse->nTab++; 2477 assert( p->pOrderBy==0 ); 2478 2479 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2480 assert( p->addrOpenEphm[0] == -1 ); 2481 p->addrOpenEphm[0] = addr; 2482 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2483 assert( p->pEList ); 2484 2485 /* Code the SELECTs to our left into temporary table "tab1". 2486 */ 2487 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2488 explainSetInteger(iSub1, pParse->iNextSelectId); 2489 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2490 if( rc ){ 2491 goto multi_select_end; 2492 } 2493 2494 /* Code the current SELECT into temporary table "tab2" 2495 */ 2496 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2497 assert( p->addrOpenEphm[1] == -1 ); 2498 p->addrOpenEphm[1] = addr; 2499 p->pPrior = 0; 2500 pLimit = p->pLimit; 2501 p->pLimit = 0; 2502 intersectdest.iSDParm = tab2; 2503 explainSetInteger(iSub2, pParse->iNextSelectId); 2504 rc = sqlite3Select(pParse, p, &intersectdest); 2505 testcase( rc!=SQLITE_OK ); 2506 pDelete = p->pPrior; 2507 p->pPrior = pPrior; 2508 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2509 sqlite3ExprDelete(db, p->pLimit); 2510 p->pLimit = pLimit; 2511 2512 /* Generate code to take the intersection of the two temporary 2513 ** tables. 2514 */ 2515 assert( p->pEList ); 2516 iBreak = sqlite3VdbeMakeLabel(v); 2517 iCont = sqlite3VdbeMakeLabel(v); 2518 computeLimitRegisters(pParse, p, iBreak); 2519 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2520 r1 = sqlite3GetTempReg(pParse); 2521 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2522 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2523 sqlite3ReleaseTempReg(pParse, r1); 2524 selectInnerLoop(pParse, p, tab1, 2525 0, 0, &dest, iCont, iBreak); 2526 sqlite3VdbeResolveLabel(v, iCont); 2527 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2528 sqlite3VdbeResolveLabel(v, iBreak); 2529 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2530 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2531 break; 2532 } 2533 } 2534 2535 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2536 2537 /* Compute collating sequences used by 2538 ** temporary tables needed to implement the compound select. 2539 ** Attach the KeyInfo structure to all temporary tables. 2540 ** 2541 ** This section is run by the right-most SELECT statement only. 2542 ** SELECT statements to the left always skip this part. The right-most 2543 ** SELECT might also skip this part if it has no ORDER BY clause and 2544 ** no temp tables are required. 2545 */ 2546 if( p->selFlags & SF_UsesEphemeral ){ 2547 int i; /* Loop counter */ 2548 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2549 Select *pLoop; /* For looping through SELECT statements */ 2550 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2551 int nCol; /* Number of columns in result set */ 2552 2553 assert( p->pNext==0 ); 2554 nCol = p->pEList->nExpr; 2555 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2556 if( !pKeyInfo ){ 2557 rc = SQLITE_NOMEM_BKPT; 2558 goto multi_select_end; 2559 } 2560 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2561 *apColl = multiSelectCollSeq(pParse, p, i); 2562 if( 0==*apColl ){ 2563 *apColl = db->pDfltColl; 2564 } 2565 } 2566 2567 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2568 for(i=0; i<2; i++){ 2569 int addr = pLoop->addrOpenEphm[i]; 2570 if( addr<0 ){ 2571 /* If [0] is unused then [1] is also unused. So we can 2572 ** always safely abort as soon as the first unused slot is found */ 2573 assert( pLoop->addrOpenEphm[1]<0 ); 2574 break; 2575 } 2576 sqlite3VdbeChangeP2(v, addr, nCol); 2577 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2578 P4_KEYINFO); 2579 pLoop->addrOpenEphm[i] = -1; 2580 } 2581 } 2582 sqlite3KeyInfoUnref(pKeyInfo); 2583 } 2584 2585 multi_select_end: 2586 pDest->iSdst = dest.iSdst; 2587 pDest->nSdst = dest.nSdst; 2588 sqlite3SelectDelete(db, pDelete); 2589 return rc; 2590 } 2591 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2592 2593 /* 2594 ** Error message for when two or more terms of a compound select have different 2595 ** size result sets. 2596 */ 2597 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2598 if( p->selFlags & SF_Values ){ 2599 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2600 }else{ 2601 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2602 " do not have the same number of result columns", selectOpName(p->op)); 2603 } 2604 } 2605 2606 /* 2607 ** Code an output subroutine for a coroutine implementation of a 2608 ** SELECT statment. 2609 ** 2610 ** The data to be output is contained in pIn->iSdst. There are 2611 ** pIn->nSdst columns to be output. pDest is where the output should 2612 ** be sent. 2613 ** 2614 ** regReturn is the number of the register holding the subroutine 2615 ** return address. 2616 ** 2617 ** If regPrev>0 then it is the first register in a vector that 2618 ** records the previous output. mem[regPrev] is a flag that is false 2619 ** if there has been no previous output. If regPrev>0 then code is 2620 ** generated to suppress duplicates. pKeyInfo is used for comparing 2621 ** keys. 2622 ** 2623 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2624 ** iBreak. 2625 */ 2626 static int generateOutputSubroutine( 2627 Parse *pParse, /* Parsing context */ 2628 Select *p, /* The SELECT statement */ 2629 SelectDest *pIn, /* Coroutine supplying data */ 2630 SelectDest *pDest, /* Where to send the data */ 2631 int regReturn, /* The return address register */ 2632 int regPrev, /* Previous result register. No uniqueness if 0 */ 2633 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2634 int iBreak /* Jump here if we hit the LIMIT */ 2635 ){ 2636 Vdbe *v = pParse->pVdbe; 2637 int iContinue; 2638 int addr; 2639 2640 addr = sqlite3VdbeCurrentAddr(v); 2641 iContinue = sqlite3VdbeMakeLabel(v); 2642 2643 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2644 */ 2645 if( regPrev ){ 2646 int addr1, addr2; 2647 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2648 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2649 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2650 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2651 sqlite3VdbeJumpHere(v, addr1); 2652 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2653 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2654 } 2655 if( pParse->db->mallocFailed ) return 0; 2656 2657 /* Suppress the first OFFSET entries if there is an OFFSET clause 2658 */ 2659 codeOffset(v, p->iOffset, iContinue); 2660 2661 assert( pDest->eDest!=SRT_Exists ); 2662 assert( pDest->eDest!=SRT_Table ); 2663 switch( pDest->eDest ){ 2664 /* Store the result as data using a unique key. 2665 */ 2666 case SRT_EphemTab: { 2667 int r1 = sqlite3GetTempReg(pParse); 2668 int r2 = sqlite3GetTempReg(pParse); 2669 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2670 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2671 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2672 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2673 sqlite3ReleaseTempReg(pParse, r2); 2674 sqlite3ReleaseTempReg(pParse, r1); 2675 break; 2676 } 2677 2678 #ifndef SQLITE_OMIT_SUBQUERY 2679 /* If we are creating a set for an "expr IN (SELECT ...)". 2680 */ 2681 case SRT_Set: { 2682 int r1; 2683 testcase( pIn->nSdst>1 ); 2684 r1 = sqlite3GetTempReg(pParse); 2685 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2686 r1, pDest->zAffSdst, pIn->nSdst); 2687 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2688 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2689 pIn->iSdst, pIn->nSdst); 2690 sqlite3ReleaseTempReg(pParse, r1); 2691 break; 2692 } 2693 2694 /* If this is a scalar select that is part of an expression, then 2695 ** store the results in the appropriate memory cell and break out 2696 ** of the scan loop. 2697 */ 2698 case SRT_Mem: { 2699 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2700 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2701 /* The LIMIT clause will jump out of the loop for us */ 2702 break; 2703 } 2704 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2705 2706 /* The results are stored in a sequence of registers 2707 ** starting at pDest->iSdst. Then the co-routine yields. 2708 */ 2709 case SRT_Coroutine: { 2710 if( pDest->iSdst==0 ){ 2711 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2712 pDest->nSdst = pIn->nSdst; 2713 } 2714 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2715 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2716 break; 2717 } 2718 2719 /* If none of the above, then the result destination must be 2720 ** SRT_Output. This routine is never called with any other 2721 ** destination other than the ones handled above or SRT_Output. 2722 ** 2723 ** For SRT_Output, results are stored in a sequence of registers. 2724 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2725 ** return the next row of result. 2726 */ 2727 default: { 2728 assert( pDest->eDest==SRT_Output ); 2729 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2730 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2731 break; 2732 } 2733 } 2734 2735 /* Jump to the end of the loop if the LIMIT is reached. 2736 */ 2737 if( p->iLimit ){ 2738 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2739 } 2740 2741 /* Generate the subroutine return 2742 */ 2743 sqlite3VdbeResolveLabel(v, iContinue); 2744 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2745 2746 return addr; 2747 } 2748 2749 /* 2750 ** Alternative compound select code generator for cases when there 2751 ** is an ORDER BY clause. 2752 ** 2753 ** We assume a query of the following form: 2754 ** 2755 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2756 ** 2757 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2758 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2759 ** co-routines. Then run the co-routines in parallel and merge the results 2760 ** into the output. In addition to the two coroutines (called selectA and 2761 ** selectB) there are 7 subroutines: 2762 ** 2763 ** outA: Move the output of the selectA coroutine into the output 2764 ** of the compound query. 2765 ** 2766 ** outB: Move the output of the selectB coroutine into the output 2767 ** of the compound query. (Only generated for UNION and 2768 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2769 ** appears only in B.) 2770 ** 2771 ** AltB: Called when there is data from both coroutines and A<B. 2772 ** 2773 ** AeqB: Called when there is data from both coroutines and A==B. 2774 ** 2775 ** AgtB: Called when there is data from both coroutines and A>B. 2776 ** 2777 ** EofA: Called when data is exhausted from selectA. 2778 ** 2779 ** EofB: Called when data is exhausted from selectB. 2780 ** 2781 ** The implementation of the latter five subroutines depend on which 2782 ** <operator> is used: 2783 ** 2784 ** 2785 ** UNION ALL UNION EXCEPT INTERSECT 2786 ** ------------- ----------------- -------------- ----------------- 2787 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2788 ** 2789 ** AeqB: outA, nextA nextA nextA outA, nextA 2790 ** 2791 ** AgtB: outB, nextB outB, nextB nextB nextB 2792 ** 2793 ** EofA: outB, nextB outB, nextB halt halt 2794 ** 2795 ** EofB: outA, nextA outA, nextA outA, nextA halt 2796 ** 2797 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2798 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2799 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2800 ** following nextX causes a jump to the end of the select processing. 2801 ** 2802 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2803 ** within the output subroutine. The regPrev register set holds the previously 2804 ** output value. A comparison is made against this value and the output 2805 ** is skipped if the next results would be the same as the previous. 2806 ** 2807 ** The implementation plan is to implement the two coroutines and seven 2808 ** subroutines first, then put the control logic at the bottom. Like this: 2809 ** 2810 ** goto Init 2811 ** coA: coroutine for left query (A) 2812 ** coB: coroutine for right query (B) 2813 ** outA: output one row of A 2814 ** outB: output one row of B (UNION and UNION ALL only) 2815 ** EofA: ... 2816 ** EofB: ... 2817 ** AltB: ... 2818 ** AeqB: ... 2819 ** AgtB: ... 2820 ** Init: initialize coroutine registers 2821 ** yield coA 2822 ** if eof(A) goto EofA 2823 ** yield coB 2824 ** if eof(B) goto EofB 2825 ** Cmpr: Compare A, B 2826 ** Jump AltB, AeqB, AgtB 2827 ** End: ... 2828 ** 2829 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2830 ** actually called using Gosub and they do not Return. EofA and EofB loop 2831 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2832 ** and AgtB jump to either L2 or to one of EofA or EofB. 2833 */ 2834 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2835 static int multiSelectOrderBy( 2836 Parse *pParse, /* Parsing context */ 2837 Select *p, /* The right-most of SELECTs to be coded */ 2838 SelectDest *pDest /* What to do with query results */ 2839 ){ 2840 int i, j; /* Loop counters */ 2841 Select *pPrior; /* Another SELECT immediately to our left */ 2842 Vdbe *v; /* Generate code to this VDBE */ 2843 SelectDest destA; /* Destination for coroutine A */ 2844 SelectDest destB; /* Destination for coroutine B */ 2845 int regAddrA; /* Address register for select-A coroutine */ 2846 int regAddrB; /* Address register for select-B coroutine */ 2847 int addrSelectA; /* Address of the select-A coroutine */ 2848 int addrSelectB; /* Address of the select-B coroutine */ 2849 int regOutA; /* Address register for the output-A subroutine */ 2850 int regOutB; /* Address register for the output-B subroutine */ 2851 int addrOutA; /* Address of the output-A subroutine */ 2852 int addrOutB = 0; /* Address of the output-B subroutine */ 2853 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2854 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2855 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2856 int addrAltB; /* Address of the A<B subroutine */ 2857 int addrAeqB; /* Address of the A==B subroutine */ 2858 int addrAgtB; /* Address of the A>B subroutine */ 2859 int regLimitA; /* Limit register for select-A */ 2860 int regLimitB; /* Limit register for select-A */ 2861 int regPrev; /* A range of registers to hold previous output */ 2862 int savedLimit; /* Saved value of p->iLimit */ 2863 int savedOffset; /* Saved value of p->iOffset */ 2864 int labelCmpr; /* Label for the start of the merge algorithm */ 2865 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2866 int addr1; /* Jump instructions that get retargetted */ 2867 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2868 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2869 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2870 sqlite3 *db; /* Database connection */ 2871 ExprList *pOrderBy; /* The ORDER BY clause */ 2872 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2873 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2874 #ifndef SQLITE_OMIT_EXPLAIN 2875 int iSub1; /* EQP id of left-hand query */ 2876 int iSub2; /* EQP id of right-hand query */ 2877 #endif 2878 2879 assert( p->pOrderBy!=0 ); 2880 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2881 db = pParse->db; 2882 v = pParse->pVdbe; 2883 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2884 labelEnd = sqlite3VdbeMakeLabel(v); 2885 labelCmpr = sqlite3VdbeMakeLabel(v); 2886 2887 2888 /* Patch up the ORDER BY clause 2889 */ 2890 op = p->op; 2891 pPrior = p->pPrior; 2892 assert( pPrior->pOrderBy==0 ); 2893 pOrderBy = p->pOrderBy; 2894 assert( pOrderBy ); 2895 nOrderBy = pOrderBy->nExpr; 2896 2897 /* For operators other than UNION ALL we have to make sure that 2898 ** the ORDER BY clause covers every term of the result set. Add 2899 ** terms to the ORDER BY clause as necessary. 2900 */ 2901 if( op!=TK_ALL ){ 2902 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2903 struct ExprList_item *pItem; 2904 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2905 assert( pItem->u.x.iOrderByCol>0 ); 2906 if( pItem->u.x.iOrderByCol==i ) break; 2907 } 2908 if( j==nOrderBy ){ 2909 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2910 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2911 pNew->flags |= EP_IntValue; 2912 pNew->u.iValue = i; 2913 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2914 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2915 } 2916 } 2917 } 2918 2919 /* Compute the comparison permutation and keyinfo that is used with 2920 ** the permutation used to determine if the next 2921 ** row of results comes from selectA or selectB. Also add explicit 2922 ** collations to the ORDER BY clause terms so that when the subqueries 2923 ** to the right and the left are evaluated, they use the correct 2924 ** collation. 2925 */ 2926 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2927 if( aPermute ){ 2928 struct ExprList_item *pItem; 2929 aPermute[0] = nOrderBy; 2930 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2931 assert( pItem->u.x.iOrderByCol>0 ); 2932 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2933 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2934 } 2935 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2936 }else{ 2937 pKeyMerge = 0; 2938 } 2939 2940 /* Reattach the ORDER BY clause to the query. 2941 */ 2942 p->pOrderBy = pOrderBy; 2943 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2944 2945 /* Allocate a range of temporary registers and the KeyInfo needed 2946 ** for the logic that removes duplicate result rows when the 2947 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2948 */ 2949 if( op==TK_ALL ){ 2950 regPrev = 0; 2951 }else{ 2952 int nExpr = p->pEList->nExpr; 2953 assert( nOrderBy>=nExpr || db->mallocFailed ); 2954 regPrev = pParse->nMem+1; 2955 pParse->nMem += nExpr+1; 2956 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2957 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2958 if( pKeyDup ){ 2959 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2960 for(i=0; i<nExpr; i++){ 2961 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2962 pKeyDup->aSortOrder[i] = 0; 2963 } 2964 } 2965 } 2966 2967 /* Separate the left and the right query from one another 2968 */ 2969 p->pPrior = 0; 2970 pPrior->pNext = 0; 2971 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2972 if( pPrior->pPrior==0 ){ 2973 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2974 } 2975 2976 /* Compute the limit registers */ 2977 computeLimitRegisters(pParse, p, labelEnd); 2978 if( p->iLimit && op==TK_ALL ){ 2979 regLimitA = ++pParse->nMem; 2980 regLimitB = ++pParse->nMem; 2981 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2982 regLimitA); 2983 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2984 }else{ 2985 regLimitA = regLimitB = 0; 2986 } 2987 sqlite3ExprDelete(db, p->pLimit); 2988 p->pLimit = 0; 2989 2990 regAddrA = ++pParse->nMem; 2991 regAddrB = ++pParse->nMem; 2992 regOutA = ++pParse->nMem; 2993 regOutB = ++pParse->nMem; 2994 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2995 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2996 2997 /* Generate a coroutine to evaluate the SELECT statement to the 2998 ** left of the compound operator - the "A" select. 2999 */ 3000 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3001 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3002 VdbeComment((v, "left SELECT")); 3003 pPrior->iLimit = regLimitA; 3004 explainSetInteger(iSub1, pParse->iNextSelectId); 3005 sqlite3Select(pParse, pPrior, &destA); 3006 sqlite3VdbeEndCoroutine(v, regAddrA); 3007 sqlite3VdbeJumpHere(v, addr1); 3008 3009 /* Generate a coroutine to evaluate the SELECT statement on 3010 ** the right - the "B" select 3011 */ 3012 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3013 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3014 VdbeComment((v, "right SELECT")); 3015 savedLimit = p->iLimit; 3016 savedOffset = p->iOffset; 3017 p->iLimit = regLimitB; 3018 p->iOffset = 0; 3019 explainSetInteger(iSub2, pParse->iNextSelectId); 3020 sqlite3Select(pParse, p, &destB); 3021 p->iLimit = savedLimit; 3022 p->iOffset = savedOffset; 3023 sqlite3VdbeEndCoroutine(v, regAddrB); 3024 3025 /* Generate a subroutine that outputs the current row of the A 3026 ** select as the next output row of the compound select. 3027 */ 3028 VdbeNoopComment((v, "Output routine for A")); 3029 addrOutA = generateOutputSubroutine(pParse, 3030 p, &destA, pDest, regOutA, 3031 regPrev, pKeyDup, labelEnd); 3032 3033 /* Generate a subroutine that outputs the current row of the B 3034 ** select as the next output row of the compound select. 3035 */ 3036 if( op==TK_ALL || op==TK_UNION ){ 3037 VdbeNoopComment((v, "Output routine for B")); 3038 addrOutB = generateOutputSubroutine(pParse, 3039 p, &destB, pDest, regOutB, 3040 regPrev, pKeyDup, labelEnd); 3041 } 3042 sqlite3KeyInfoUnref(pKeyDup); 3043 3044 /* Generate a subroutine to run when the results from select A 3045 ** are exhausted and only data in select B remains. 3046 */ 3047 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3048 addrEofA_noB = addrEofA = labelEnd; 3049 }else{ 3050 VdbeNoopComment((v, "eof-A subroutine")); 3051 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3052 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3053 VdbeCoverage(v); 3054 sqlite3VdbeGoto(v, addrEofA); 3055 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3056 } 3057 3058 /* Generate a subroutine to run when the results from select B 3059 ** are exhausted and only data in select A remains. 3060 */ 3061 if( op==TK_INTERSECT ){ 3062 addrEofB = addrEofA; 3063 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3064 }else{ 3065 VdbeNoopComment((v, "eof-B subroutine")); 3066 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3067 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3068 sqlite3VdbeGoto(v, addrEofB); 3069 } 3070 3071 /* Generate code to handle the case of A<B 3072 */ 3073 VdbeNoopComment((v, "A-lt-B subroutine")); 3074 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3075 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3076 sqlite3VdbeGoto(v, labelCmpr); 3077 3078 /* Generate code to handle the case of A==B 3079 */ 3080 if( op==TK_ALL ){ 3081 addrAeqB = addrAltB; 3082 }else if( op==TK_INTERSECT ){ 3083 addrAeqB = addrAltB; 3084 addrAltB++; 3085 }else{ 3086 VdbeNoopComment((v, "A-eq-B subroutine")); 3087 addrAeqB = 3088 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3089 sqlite3VdbeGoto(v, labelCmpr); 3090 } 3091 3092 /* Generate code to handle the case of A>B 3093 */ 3094 VdbeNoopComment((v, "A-gt-B subroutine")); 3095 addrAgtB = sqlite3VdbeCurrentAddr(v); 3096 if( op==TK_ALL || op==TK_UNION ){ 3097 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3098 } 3099 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3100 sqlite3VdbeGoto(v, labelCmpr); 3101 3102 /* This code runs once to initialize everything. 3103 */ 3104 sqlite3VdbeJumpHere(v, addr1); 3105 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3106 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3107 3108 /* Implement the main merge loop 3109 */ 3110 sqlite3VdbeResolveLabel(v, labelCmpr); 3111 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3112 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3113 (char*)pKeyMerge, P4_KEYINFO); 3114 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3115 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3116 3117 /* Jump to the this point in order to terminate the query. 3118 */ 3119 sqlite3VdbeResolveLabel(v, labelEnd); 3120 3121 /* Reassembly the compound query so that it will be freed correctly 3122 ** by the calling function */ 3123 if( p->pPrior ){ 3124 sqlite3SelectDelete(db, p->pPrior); 3125 } 3126 p->pPrior = pPrior; 3127 pPrior->pNext = p; 3128 3129 /*** TBD: Insert subroutine calls to close cursors on incomplete 3130 **** subqueries ****/ 3131 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3132 return pParse->nErr!=0; 3133 } 3134 #endif 3135 3136 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3137 3138 /* An instance of the SubstContext object describes an substitution edit 3139 ** to be performed on a parse tree. 3140 ** 3141 ** All references to columns in table iTable are to be replaced by corresponding 3142 ** expressions in pEList. 3143 */ 3144 typedef struct SubstContext { 3145 Parse *pParse; /* The parsing context */ 3146 int iTable; /* Replace references to this table */ 3147 int iNewTable; /* New table number */ 3148 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3149 ExprList *pEList; /* Replacement expressions */ 3150 } SubstContext; 3151 3152 /* Forward Declarations */ 3153 static void substExprList(SubstContext*, ExprList*); 3154 static void substSelect(SubstContext*, Select*, int); 3155 3156 /* 3157 ** Scan through the expression pExpr. Replace every reference to 3158 ** a column in table number iTable with a copy of the iColumn-th 3159 ** entry in pEList. (But leave references to the ROWID column 3160 ** unchanged.) 3161 ** 3162 ** This routine is part of the flattening procedure. A subquery 3163 ** whose result set is defined by pEList appears as entry in the 3164 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3165 ** FORM clause entry is iTable. This routine makes the necessary 3166 ** changes to pExpr so that it refers directly to the source table 3167 ** of the subquery rather the result set of the subquery. 3168 */ 3169 static Expr *substExpr( 3170 SubstContext *pSubst, /* Description of the substitution */ 3171 Expr *pExpr /* Expr in which substitution occurs */ 3172 ){ 3173 if( pExpr==0 ) return 0; 3174 if( ExprHasProperty(pExpr, EP_FromJoin) 3175 && pExpr->iRightJoinTable==pSubst->iTable 3176 ){ 3177 pExpr->iRightJoinTable = pSubst->iNewTable; 3178 } 3179 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3180 if( pExpr->iColumn<0 ){ 3181 pExpr->op = TK_NULL; 3182 }else{ 3183 Expr *pNew; 3184 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3185 Expr ifNullRow; 3186 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3187 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3188 if( sqlite3ExprIsVector(pCopy) ){ 3189 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3190 }else{ 3191 sqlite3 *db = pSubst->pParse->db; 3192 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3193 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3194 ifNullRow.op = TK_IF_NULL_ROW; 3195 ifNullRow.pLeft = pCopy; 3196 ifNullRow.iTable = pSubst->iNewTable; 3197 pCopy = &ifNullRow; 3198 } 3199 pNew = sqlite3ExprDup(db, pCopy, 0); 3200 if( pNew && pSubst->isLeftJoin ){ 3201 ExprSetProperty(pNew, EP_CanBeNull); 3202 } 3203 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3204 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3205 ExprSetProperty(pNew, EP_FromJoin); 3206 } 3207 sqlite3ExprDelete(db, pExpr); 3208 pExpr = pNew; 3209 } 3210 } 3211 }else{ 3212 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3213 pExpr->iTable = pSubst->iNewTable; 3214 } 3215 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3216 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3217 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3218 substSelect(pSubst, pExpr->x.pSelect, 1); 3219 }else{ 3220 substExprList(pSubst, pExpr->x.pList); 3221 } 3222 } 3223 return pExpr; 3224 } 3225 static void substExprList( 3226 SubstContext *pSubst, /* Description of the substitution */ 3227 ExprList *pList /* List to scan and in which to make substitutes */ 3228 ){ 3229 int i; 3230 if( pList==0 ) return; 3231 for(i=0; i<pList->nExpr; i++){ 3232 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3233 } 3234 } 3235 static void substSelect( 3236 SubstContext *pSubst, /* Description of the substitution */ 3237 Select *p, /* SELECT statement in which to make substitutions */ 3238 int doPrior /* Do substitutes on p->pPrior too */ 3239 ){ 3240 SrcList *pSrc; 3241 struct SrcList_item *pItem; 3242 int i; 3243 if( !p ) return; 3244 do{ 3245 substExprList(pSubst, p->pEList); 3246 substExprList(pSubst, p->pGroupBy); 3247 substExprList(pSubst, p->pOrderBy); 3248 p->pHaving = substExpr(pSubst, p->pHaving); 3249 p->pWhere = substExpr(pSubst, p->pWhere); 3250 pSrc = p->pSrc; 3251 assert( pSrc!=0 ); 3252 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3253 substSelect(pSubst, pItem->pSelect, 1); 3254 if( pItem->fg.isTabFunc ){ 3255 substExprList(pSubst, pItem->u1.pFuncArg); 3256 } 3257 } 3258 }while( doPrior && (p = p->pPrior)!=0 ); 3259 } 3260 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3261 3262 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3263 /* 3264 ** This routine attempts to flatten subqueries as a performance optimization. 3265 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3266 ** 3267 ** To understand the concept of flattening, consider the following 3268 ** query: 3269 ** 3270 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3271 ** 3272 ** The default way of implementing this query is to execute the 3273 ** subquery first and store the results in a temporary table, then 3274 ** run the outer query on that temporary table. This requires two 3275 ** passes over the data. Furthermore, because the temporary table 3276 ** has no indices, the WHERE clause on the outer query cannot be 3277 ** optimized. 3278 ** 3279 ** This routine attempts to rewrite queries such as the above into 3280 ** a single flat select, like this: 3281 ** 3282 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3283 ** 3284 ** The code generated for this simplification gives the same result 3285 ** but only has to scan the data once. And because indices might 3286 ** exist on the table t1, a complete scan of the data might be 3287 ** avoided. 3288 ** 3289 ** Flattening is subject to the following constraints: 3290 ** 3291 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3292 ** The subquery and the outer query cannot both be aggregates. 3293 ** 3294 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3295 ** (2) If the subquery is an aggregate then 3296 ** (2a) the outer query must not be a join and 3297 ** (2b) the outer query must not use subqueries 3298 ** other than the one FROM-clause subquery that is a candidate 3299 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3300 ** from 2015-02-09.) 3301 ** 3302 ** (3) If the subquery is the right operand of a LEFT JOIN then 3303 ** (3a) the subquery may not be a join and 3304 ** (3b) the FROM clause of the subquery may not contain a virtual 3305 ** table and 3306 ** (3c) the outer query may not be an aggregate. 3307 ** 3308 ** (4) The subquery can not be DISTINCT. 3309 ** 3310 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3311 ** sub-queries that were excluded from this optimization. Restriction 3312 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3313 ** 3314 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3315 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3316 ** 3317 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3318 ** A FROM clause, consider adding a FROM clause with the special 3319 ** table sqlite_once that consists of a single row containing a 3320 ** single NULL. 3321 ** 3322 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3323 ** 3324 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3325 ** 3326 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3327 ** accidently carried the comment forward until 2014-09-15. Original 3328 ** constraint: "If the subquery is aggregate then the outer query 3329 ** may not use LIMIT." 3330 ** 3331 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3332 ** 3333 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3334 ** a separate restriction deriving from ticket #350. 3335 ** 3336 ** (13) The subquery and outer query may not both use LIMIT. 3337 ** 3338 ** (14) The subquery may not use OFFSET. 3339 ** 3340 ** (15) If the outer query is part of a compound select, then the 3341 ** subquery may not use LIMIT. 3342 ** (See ticket #2339 and ticket [02a8e81d44]). 3343 ** 3344 ** (16) If the outer query is aggregate, then the subquery may not 3345 ** use ORDER BY. (Ticket #2942) This used to not matter 3346 ** until we introduced the group_concat() function. 3347 ** 3348 ** (17) If the subquery is a compound select, then 3349 ** (17a) all compound operators must be a UNION ALL, and 3350 ** (17b) no terms within the subquery compound may be aggregate 3351 ** or DISTINCT, and 3352 ** (17c) every term within the subquery compound must have a FROM clause 3353 ** (17d) the outer query may not be 3354 ** (17d1) aggregate, or 3355 ** (17d2) DISTINCT, or 3356 ** (17d3) a join. 3357 ** 3358 ** The parent and sub-query may contain WHERE clauses. Subject to 3359 ** rules (11), (13) and (14), they may also contain ORDER BY, 3360 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3361 ** operator other than UNION ALL because all the other compound 3362 ** operators have an implied DISTINCT which is disallowed by 3363 ** restriction (4). 3364 ** 3365 ** Also, each component of the sub-query must return the same number 3366 ** of result columns. This is actually a requirement for any compound 3367 ** SELECT statement, but all the code here does is make sure that no 3368 ** such (illegal) sub-query is flattened. The caller will detect the 3369 ** syntax error and return a detailed message. 3370 ** 3371 ** (18) If the sub-query is a compound select, then all terms of the 3372 ** ORDER BY clause of the parent must be simple references to 3373 ** columns of the sub-query. 3374 ** 3375 ** (19) If the subquery uses LIMIT then the outer query may not 3376 ** have a WHERE clause. 3377 ** 3378 ** (20) If the sub-query is a compound select, then it must not use 3379 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3380 ** somewhat by saying that the terms of the ORDER BY clause must 3381 ** appear as unmodified result columns in the outer query. But we 3382 ** have other optimizations in mind to deal with that case. 3383 ** 3384 ** (21) If the subquery uses LIMIT then the outer query may not be 3385 ** DISTINCT. (See ticket [752e1646fc]). 3386 ** 3387 ** (22) The subquery may not be a recursive CTE. 3388 ** 3389 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3390 ** a recursive CTE, then the sub-query may not be a compound query. 3391 ** This restriction is because transforming the 3392 ** parent to a compound query confuses the code that handles 3393 ** recursive queries in multiSelect(). 3394 ** 3395 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3396 ** The subquery may not be an aggregate that uses the built-in min() or 3397 ** or max() functions. (Without this restriction, a query like: 3398 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3399 ** return the value X for which Y was maximal.) 3400 ** 3401 ** 3402 ** In this routine, the "p" parameter is a pointer to the outer query. 3403 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3404 ** uses aggregates. 3405 ** 3406 ** If flattening is not attempted, this routine is a no-op and returns 0. 3407 ** If flattening is attempted this routine returns 1. 3408 ** 3409 ** All of the expression analysis must occur on both the outer query and 3410 ** the subquery before this routine runs. 3411 */ 3412 static int flattenSubquery( 3413 Parse *pParse, /* Parsing context */ 3414 Select *p, /* The parent or outer SELECT statement */ 3415 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3416 int isAgg /* True if outer SELECT uses aggregate functions */ 3417 ){ 3418 const char *zSavedAuthContext = pParse->zAuthContext; 3419 Select *pParent; /* Current UNION ALL term of the other query */ 3420 Select *pSub; /* The inner query or "subquery" */ 3421 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3422 SrcList *pSrc; /* The FROM clause of the outer query */ 3423 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3424 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3425 int iNewParent = -1;/* Replacement table for iParent */ 3426 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3427 int i; /* Loop counter */ 3428 Expr *pWhere; /* The WHERE clause */ 3429 struct SrcList_item *pSubitem; /* The subquery */ 3430 sqlite3 *db = pParse->db; 3431 3432 /* Check to see if flattening is permitted. Return 0 if not. 3433 */ 3434 assert( p!=0 ); 3435 assert( p->pPrior==0 ); 3436 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3437 pSrc = p->pSrc; 3438 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3439 pSubitem = &pSrc->a[iFrom]; 3440 iParent = pSubitem->iCursor; 3441 pSub = pSubitem->pSelect; 3442 assert( pSub!=0 ); 3443 3444 pSubSrc = pSub->pSrc; 3445 assert( pSubSrc ); 3446 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3447 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3448 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3449 ** became arbitrary expressions, we were forced to add restrictions (13) 3450 ** and (14). */ 3451 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3452 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3453 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3454 return 0; /* Restriction (15) */ 3455 } 3456 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3457 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3458 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3459 return 0; /* Restrictions (8)(9) */ 3460 } 3461 if( p->pOrderBy && pSub->pOrderBy ){ 3462 return 0; /* Restriction (11) */ 3463 } 3464 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3465 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3466 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3467 return 0; /* Restriction (21) */ 3468 } 3469 if( pSub->selFlags & (SF_Recursive) ){ 3470 return 0; /* Restrictions (22) */ 3471 } 3472 3473 /* 3474 ** If the subquery is the right operand of a LEFT JOIN, then the 3475 ** subquery may not be a join itself (3a). Example of why this is not 3476 ** allowed: 3477 ** 3478 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3479 ** 3480 ** If we flatten the above, we would get 3481 ** 3482 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3483 ** 3484 ** which is not at all the same thing. 3485 ** 3486 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3487 ** query cannot be an aggregate. (3c) This is an artifact of the way 3488 ** aggregates are processed - there is no mechanism to determine if 3489 ** the LEFT JOIN table should be all-NULL. 3490 ** 3491 ** See also tickets #306, #350, and #3300. 3492 */ 3493 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3494 isLeftJoin = 1; 3495 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3496 /* (3a) (3c) (3b) */ 3497 return 0; 3498 } 3499 } 3500 #ifdef SQLITE_EXTRA_IFNULLROW 3501 else if( iFrom>0 && !isAgg ){ 3502 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3503 ** every reference to any result column from subquery in a join, even 3504 ** though they are not necessary. This will stress-test the OP_IfNullRow 3505 ** opcode. */ 3506 isLeftJoin = -1; 3507 } 3508 #endif 3509 3510 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3511 ** use only the UNION ALL operator. And none of the simple select queries 3512 ** that make up the compound SELECT are allowed to be aggregate or distinct 3513 ** queries. 3514 */ 3515 if( pSub->pPrior ){ 3516 if( pSub->pOrderBy ){ 3517 return 0; /* Restriction (20) */ 3518 } 3519 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3520 return 0; /* (17d1), (17d2), or (17d3) */ 3521 } 3522 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3523 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3524 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3525 assert( pSub->pSrc!=0 ); 3526 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3527 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3528 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3529 || pSub1->pSrc->nSrc<1 /* (17c) */ 3530 ){ 3531 return 0; 3532 } 3533 testcase( pSub1->pSrc->nSrc>1 ); 3534 } 3535 3536 /* Restriction (18). */ 3537 if( p->pOrderBy ){ 3538 int ii; 3539 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3540 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3541 } 3542 } 3543 } 3544 3545 /* Ex-restriction (23): 3546 ** The only way that the recursive part of a CTE can contain a compound 3547 ** subquery is for the subquery to be one term of a join. But if the 3548 ** subquery is a join, then the flattening has already been stopped by 3549 ** restriction (17d3) 3550 */ 3551 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3552 3553 /***** If we reach this point, flattening is permitted. *****/ 3554 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3555 pSub->zSelName, pSub, iFrom)); 3556 3557 /* Authorize the subquery */ 3558 pParse->zAuthContext = pSubitem->zName; 3559 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3560 testcase( i==SQLITE_DENY ); 3561 pParse->zAuthContext = zSavedAuthContext; 3562 3563 /* If the sub-query is a compound SELECT statement, then (by restrictions 3564 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3565 ** be of the form: 3566 ** 3567 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3568 ** 3569 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3570 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3571 ** OFFSET clauses and joins them to the left-hand-side of the original 3572 ** using UNION ALL operators. In this case N is the number of simple 3573 ** select statements in the compound sub-query. 3574 ** 3575 ** Example: 3576 ** 3577 ** SELECT a+1 FROM ( 3578 ** SELECT x FROM tab 3579 ** UNION ALL 3580 ** SELECT y FROM tab 3581 ** UNION ALL 3582 ** SELECT abs(z*2) FROM tab2 3583 ** ) WHERE a!=5 ORDER BY 1 3584 ** 3585 ** Transformed into: 3586 ** 3587 ** SELECT x+1 FROM tab WHERE x+1!=5 3588 ** UNION ALL 3589 ** SELECT y+1 FROM tab WHERE y+1!=5 3590 ** UNION ALL 3591 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3592 ** ORDER BY 1 3593 ** 3594 ** We call this the "compound-subquery flattening". 3595 */ 3596 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3597 Select *pNew; 3598 ExprList *pOrderBy = p->pOrderBy; 3599 Expr *pLimit = p->pLimit; 3600 Select *pPrior = p->pPrior; 3601 p->pOrderBy = 0; 3602 p->pSrc = 0; 3603 p->pPrior = 0; 3604 p->pLimit = 0; 3605 pNew = sqlite3SelectDup(db, p, 0); 3606 sqlite3SelectSetName(pNew, pSub->zSelName); 3607 p->pLimit = pLimit; 3608 p->pOrderBy = pOrderBy; 3609 p->pSrc = pSrc; 3610 p->op = TK_ALL; 3611 if( pNew==0 ){ 3612 p->pPrior = pPrior; 3613 }else{ 3614 pNew->pPrior = pPrior; 3615 if( pPrior ) pPrior->pNext = pNew; 3616 pNew->pNext = p; 3617 p->pPrior = pNew; 3618 SELECTTRACE(2,pParse,p, 3619 ("compound-subquery flattener creates %s.%p as peer\n", 3620 pNew->zSelName, pNew)); 3621 } 3622 if( db->mallocFailed ) return 1; 3623 } 3624 3625 /* Begin flattening the iFrom-th entry of the FROM clause 3626 ** in the outer query. 3627 */ 3628 pSub = pSub1 = pSubitem->pSelect; 3629 3630 /* Delete the transient table structure associated with the 3631 ** subquery 3632 */ 3633 sqlite3DbFree(db, pSubitem->zDatabase); 3634 sqlite3DbFree(db, pSubitem->zName); 3635 sqlite3DbFree(db, pSubitem->zAlias); 3636 pSubitem->zDatabase = 0; 3637 pSubitem->zName = 0; 3638 pSubitem->zAlias = 0; 3639 pSubitem->pSelect = 0; 3640 3641 /* Defer deleting the Table object associated with the 3642 ** subquery until code generation is 3643 ** complete, since there may still exist Expr.pTab entries that 3644 ** refer to the subquery even after flattening. Ticket #3346. 3645 ** 3646 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3647 */ 3648 if( ALWAYS(pSubitem->pTab!=0) ){ 3649 Table *pTabToDel = pSubitem->pTab; 3650 if( pTabToDel->nTabRef==1 ){ 3651 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3652 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3653 pToplevel->pZombieTab = pTabToDel; 3654 }else{ 3655 pTabToDel->nTabRef--; 3656 } 3657 pSubitem->pTab = 0; 3658 } 3659 3660 /* The following loop runs once for each term in a compound-subquery 3661 ** flattening (as described above). If we are doing a different kind 3662 ** of flattening - a flattening other than a compound-subquery flattening - 3663 ** then this loop only runs once. 3664 ** 3665 ** This loop moves all of the FROM elements of the subquery into the 3666 ** the FROM clause of the outer query. Before doing this, remember 3667 ** the cursor number for the original outer query FROM element in 3668 ** iParent. The iParent cursor will never be used. Subsequent code 3669 ** will scan expressions looking for iParent references and replace 3670 ** those references with expressions that resolve to the subquery FROM 3671 ** elements we are now copying in. 3672 */ 3673 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3674 int nSubSrc; 3675 u8 jointype = 0; 3676 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3677 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3678 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3679 3680 if( pSrc ){ 3681 assert( pParent==p ); /* First time through the loop */ 3682 jointype = pSubitem->fg.jointype; 3683 }else{ 3684 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3685 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3686 if( pSrc==0 ){ 3687 assert( db->mallocFailed ); 3688 break; 3689 } 3690 } 3691 3692 /* The subquery uses a single slot of the FROM clause of the outer 3693 ** query. If the subquery has more than one element in its FROM clause, 3694 ** then expand the outer query to make space for it to hold all elements 3695 ** of the subquery. 3696 ** 3697 ** Example: 3698 ** 3699 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3700 ** 3701 ** The outer query has 3 slots in its FROM clause. One slot of the 3702 ** outer query (the middle slot) is used by the subquery. The next 3703 ** block of code will expand the outer query FROM clause to 4 slots. 3704 ** The middle slot is expanded to two slots in order to make space 3705 ** for the two elements in the FROM clause of the subquery. 3706 */ 3707 if( nSubSrc>1 ){ 3708 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3709 if( db->mallocFailed ){ 3710 break; 3711 } 3712 } 3713 3714 /* Transfer the FROM clause terms from the subquery into the 3715 ** outer query. 3716 */ 3717 for(i=0; i<nSubSrc; i++){ 3718 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3719 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3720 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3721 iNewParent = pSubSrc->a[i].iCursor; 3722 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3723 } 3724 pSrc->a[iFrom].fg.jointype = jointype; 3725 3726 /* Now begin substituting subquery result set expressions for 3727 ** references to the iParent in the outer query. 3728 ** 3729 ** Example: 3730 ** 3731 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3732 ** \ \_____________ subquery __________/ / 3733 ** \_____________________ outer query ______________________________/ 3734 ** 3735 ** We look at every expression in the outer query and every place we see 3736 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3737 */ 3738 if( pSub->pOrderBy ){ 3739 /* At this point, any non-zero iOrderByCol values indicate that the 3740 ** ORDER BY column expression is identical to the iOrderByCol'th 3741 ** expression returned by SELECT statement pSub. Since these values 3742 ** do not necessarily correspond to columns in SELECT statement pParent, 3743 ** zero them before transfering the ORDER BY clause. 3744 ** 3745 ** Not doing this may cause an error if a subsequent call to this 3746 ** function attempts to flatten a compound sub-query into pParent 3747 ** (the only way this can happen is if the compound sub-query is 3748 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3749 ExprList *pOrderBy = pSub->pOrderBy; 3750 for(i=0; i<pOrderBy->nExpr; i++){ 3751 pOrderBy->a[i].u.x.iOrderByCol = 0; 3752 } 3753 assert( pParent->pOrderBy==0 ); 3754 assert( pSub->pPrior==0 ); 3755 pParent->pOrderBy = pOrderBy; 3756 pSub->pOrderBy = 0; 3757 } 3758 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3759 if( isLeftJoin>0 ){ 3760 setJoinExpr(pWhere, iNewParent); 3761 } 3762 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3763 if( db->mallocFailed==0 ){ 3764 SubstContext x; 3765 x.pParse = pParse; 3766 x.iTable = iParent; 3767 x.iNewTable = iNewParent; 3768 x.isLeftJoin = isLeftJoin; 3769 x.pEList = pSub->pEList; 3770 substSelect(&x, pParent, 0); 3771 } 3772 3773 /* The flattened query is distinct if either the inner or the 3774 ** outer query is distinct. 3775 */ 3776 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3777 3778 /* 3779 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3780 ** 3781 ** One is tempted to try to add a and b to combine the limits. But this 3782 ** does not work if either limit is negative. 3783 */ 3784 if( pSub->pLimit ){ 3785 pParent->pLimit = pSub->pLimit; 3786 pSub->pLimit = 0; 3787 } 3788 } 3789 3790 /* Finially, delete what is left of the subquery and return 3791 ** success. 3792 */ 3793 sqlite3SelectDelete(db, pSub1); 3794 3795 #if SELECTTRACE_ENABLED 3796 if( sqlite3SelectTrace & 0x100 ){ 3797 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3798 sqlite3TreeViewSelect(0, p, 0); 3799 } 3800 #endif 3801 3802 return 1; 3803 } 3804 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3805 3806 3807 3808 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3809 /* 3810 ** Make copies of relevant WHERE clause terms of the outer query into 3811 ** the WHERE clause of subquery. Example: 3812 ** 3813 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3814 ** 3815 ** Transformed into: 3816 ** 3817 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3818 ** WHERE x=5 AND y=10; 3819 ** 3820 ** The hope is that the terms added to the inner query will make it more 3821 ** efficient. 3822 ** 3823 ** Do not attempt this optimization if: 3824 ** 3825 ** (1) (** This restriction was removed on 2017-09-29. We used to 3826 ** disallow this optimization for aggregate subqueries, but now 3827 ** it is allowed by putting the extra terms on the HAVING clause. 3828 ** The added HAVING clause is pointless if the subquery lacks 3829 ** a GROUP BY clause. But such a HAVING clause is also harmless 3830 ** so there does not appear to be any reason to add extra logic 3831 ** to suppress it. **) 3832 ** 3833 ** (2) The inner query is the recursive part of a common table expression. 3834 ** 3835 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3836 ** close would change the meaning of the LIMIT). 3837 ** 3838 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3839 ** enforces this restriction since this routine does not have enough 3840 ** information to know.) 3841 ** 3842 ** (5) The WHERE clause expression originates in the ON or USING clause 3843 ** of a LEFT JOIN. 3844 ** 3845 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3846 ** terms are duplicated into the subquery. 3847 */ 3848 static int pushDownWhereTerms( 3849 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3850 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3851 Expr *pWhere, /* The WHERE clause of the outer query */ 3852 int iCursor /* Cursor number of the subquery */ 3853 ){ 3854 Expr *pNew; 3855 int nChng = 0; 3856 if( pWhere==0 ) return 0; 3857 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 3858 3859 #ifdef SQLITE_DEBUG 3860 /* Only the first term of a compound can have a WITH clause. But make 3861 ** sure no other terms are marked SF_Recursive in case something changes 3862 ** in the future. 3863 */ 3864 { 3865 Select *pX; 3866 for(pX=pSubq; pX; pX=pX->pPrior){ 3867 assert( (pX->selFlags & (SF_Recursive))==0 ); 3868 } 3869 } 3870 #endif 3871 3872 if( pSubq->pLimit!=0 ){ 3873 return 0; /* restriction (3) */ 3874 } 3875 while( pWhere->op==TK_AND ){ 3876 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); 3877 pWhere = pWhere->pLeft; 3878 } 3879 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction (5) */ 3880 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3881 nChng++; 3882 while( pSubq ){ 3883 SubstContext x; 3884 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3885 x.pParse = pParse; 3886 x.iTable = iCursor; 3887 x.iNewTable = iCursor; 3888 x.isLeftJoin = 0; 3889 x.pEList = pSubq->pEList; 3890 pNew = substExpr(&x, pNew); 3891 if( pSubq->selFlags & SF_Aggregate ){ 3892 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 3893 }else{ 3894 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3895 } 3896 pSubq = pSubq->pPrior; 3897 } 3898 } 3899 return nChng; 3900 } 3901 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3902 3903 /* 3904 ** The pFunc is the only aggregate function in the query. Check to see 3905 ** if the query is a candidate for the min/max optimization. 3906 ** 3907 ** If the query is a candidate for the min/max optimization, then set 3908 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 3909 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 3910 ** whether pFunc is a min() or max() function. 3911 ** 3912 ** If the query is not a candidate for the min/max optimization, return 3913 ** WHERE_ORDERBY_NORMAL (which must be zero). 3914 ** 3915 ** This routine must be called after aggregate functions have been 3916 ** located but before their arguments have been subjected to aggregate 3917 ** analysis. 3918 */ 3919 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 3920 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3921 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 3922 const char *zFunc; /* Name of aggregate function pFunc */ 3923 ExprList *pOrderBy; 3924 u8 sortOrder; 3925 3926 assert( *ppMinMax==0 ); 3927 assert( pFunc->op==TK_AGG_FUNCTION ); 3928 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 3929 zFunc = pFunc->u.zToken; 3930 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3931 eRet = WHERE_ORDERBY_MIN; 3932 sortOrder = SQLITE_SO_ASC; 3933 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3934 eRet = WHERE_ORDERBY_MAX; 3935 sortOrder = SQLITE_SO_DESC; 3936 }else{ 3937 return eRet; 3938 } 3939 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 3940 assert( pOrderBy!=0 || db->mallocFailed ); 3941 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 3942 return eRet; 3943 } 3944 3945 /* 3946 ** The select statement passed as the first argument is an aggregate query. 3947 ** The second argument is the associated aggregate-info object. This 3948 ** function tests if the SELECT is of the form: 3949 ** 3950 ** SELECT count(*) FROM <tbl> 3951 ** 3952 ** where table is a database table, not a sub-select or view. If the query 3953 ** does match this pattern, then a pointer to the Table object representing 3954 ** <tbl> is returned. Otherwise, 0 is returned. 3955 */ 3956 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3957 Table *pTab; 3958 Expr *pExpr; 3959 3960 assert( !p->pGroupBy ); 3961 3962 if( p->pWhere || p->pEList->nExpr!=1 3963 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3964 ){ 3965 return 0; 3966 } 3967 pTab = p->pSrc->a[0].pTab; 3968 pExpr = p->pEList->a[0].pExpr; 3969 assert( pTab && !pTab->pSelect && pExpr ); 3970 3971 if( IsVirtual(pTab) ) return 0; 3972 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3973 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3974 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3975 if( pExpr->flags&EP_Distinct ) return 0; 3976 3977 return pTab; 3978 } 3979 3980 /* 3981 ** If the source-list item passed as an argument was augmented with an 3982 ** INDEXED BY clause, then try to locate the specified index. If there 3983 ** was such a clause and the named index cannot be found, return 3984 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3985 ** pFrom->pIndex and return SQLITE_OK. 3986 */ 3987 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3988 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3989 Table *pTab = pFrom->pTab; 3990 char *zIndexedBy = pFrom->u1.zIndexedBy; 3991 Index *pIdx; 3992 for(pIdx=pTab->pIndex; 3993 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3994 pIdx=pIdx->pNext 3995 ); 3996 if( !pIdx ){ 3997 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3998 pParse->checkSchema = 1; 3999 return SQLITE_ERROR; 4000 } 4001 pFrom->pIBIndex = pIdx; 4002 } 4003 return SQLITE_OK; 4004 } 4005 /* 4006 ** Detect compound SELECT statements that use an ORDER BY clause with 4007 ** an alternative collating sequence. 4008 ** 4009 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4010 ** 4011 ** These are rewritten as a subquery: 4012 ** 4013 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4014 ** ORDER BY ... COLLATE ... 4015 ** 4016 ** This transformation is necessary because the multiSelectOrderBy() routine 4017 ** above that generates the code for a compound SELECT with an ORDER BY clause 4018 ** uses a merge algorithm that requires the same collating sequence on the 4019 ** result columns as on the ORDER BY clause. See ticket 4020 ** http://www.sqlite.org/src/info/6709574d2a 4021 ** 4022 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4023 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4024 ** there are COLLATE terms in the ORDER BY. 4025 */ 4026 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4027 int i; 4028 Select *pNew; 4029 Select *pX; 4030 sqlite3 *db; 4031 struct ExprList_item *a; 4032 SrcList *pNewSrc; 4033 Parse *pParse; 4034 Token dummy; 4035 4036 if( p->pPrior==0 ) return WRC_Continue; 4037 if( p->pOrderBy==0 ) return WRC_Continue; 4038 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4039 if( pX==0 ) return WRC_Continue; 4040 a = p->pOrderBy->a; 4041 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4042 if( a[i].pExpr->flags & EP_Collate ) break; 4043 } 4044 if( i<0 ) return WRC_Continue; 4045 4046 /* If we reach this point, that means the transformation is required. */ 4047 4048 pParse = pWalker->pParse; 4049 db = pParse->db; 4050 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4051 if( pNew==0 ) return WRC_Abort; 4052 memset(&dummy, 0, sizeof(dummy)); 4053 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4054 if( pNewSrc==0 ) return WRC_Abort; 4055 *pNew = *p; 4056 p->pSrc = pNewSrc; 4057 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4058 p->op = TK_SELECT; 4059 p->pWhere = 0; 4060 pNew->pGroupBy = 0; 4061 pNew->pHaving = 0; 4062 pNew->pOrderBy = 0; 4063 p->pPrior = 0; 4064 p->pNext = 0; 4065 p->pWith = 0; 4066 p->selFlags &= ~SF_Compound; 4067 assert( (p->selFlags & SF_Converted)==0 ); 4068 p->selFlags |= SF_Converted; 4069 assert( pNew->pPrior!=0 ); 4070 pNew->pPrior->pNext = pNew; 4071 pNew->pLimit = 0; 4072 return WRC_Continue; 4073 } 4074 4075 /* 4076 ** Check to see if the FROM clause term pFrom has table-valued function 4077 ** arguments. If it does, leave an error message in pParse and return 4078 ** non-zero, since pFrom is not allowed to be a table-valued function. 4079 */ 4080 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4081 if( pFrom->fg.isTabFunc ){ 4082 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4083 return 1; 4084 } 4085 return 0; 4086 } 4087 4088 #ifndef SQLITE_OMIT_CTE 4089 /* 4090 ** Argument pWith (which may be NULL) points to a linked list of nested 4091 ** WITH contexts, from inner to outermost. If the table identified by 4092 ** FROM clause element pItem is really a common-table-expression (CTE) 4093 ** then return a pointer to the CTE definition for that table. Otherwise 4094 ** return NULL. 4095 ** 4096 ** If a non-NULL value is returned, set *ppContext to point to the With 4097 ** object that the returned CTE belongs to. 4098 */ 4099 static struct Cte *searchWith( 4100 With *pWith, /* Current innermost WITH clause */ 4101 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4102 With **ppContext /* OUT: WITH clause return value belongs to */ 4103 ){ 4104 const char *zName; 4105 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4106 With *p; 4107 for(p=pWith; p; p=p->pOuter){ 4108 int i; 4109 for(i=0; i<p->nCte; i++){ 4110 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4111 *ppContext = p; 4112 return &p->a[i]; 4113 } 4114 } 4115 } 4116 } 4117 return 0; 4118 } 4119 4120 /* The code generator maintains a stack of active WITH clauses 4121 ** with the inner-most WITH clause being at the top of the stack. 4122 ** 4123 ** This routine pushes the WITH clause passed as the second argument 4124 ** onto the top of the stack. If argument bFree is true, then this 4125 ** WITH clause will never be popped from the stack. In this case it 4126 ** should be freed along with the Parse object. In other cases, when 4127 ** bFree==0, the With object will be freed along with the SELECT 4128 ** statement with which it is associated. 4129 */ 4130 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4131 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4132 if( pWith ){ 4133 assert( pParse->pWith!=pWith ); 4134 pWith->pOuter = pParse->pWith; 4135 pParse->pWith = pWith; 4136 if( bFree ) pParse->pWithToFree = pWith; 4137 } 4138 } 4139 4140 /* 4141 ** This function checks if argument pFrom refers to a CTE declared by 4142 ** a WITH clause on the stack currently maintained by the parser. And, 4143 ** if currently processing a CTE expression, if it is a recursive 4144 ** reference to the current CTE. 4145 ** 4146 ** If pFrom falls into either of the two categories above, pFrom->pTab 4147 ** and other fields are populated accordingly. The caller should check 4148 ** (pFrom->pTab!=0) to determine whether or not a successful match 4149 ** was found. 4150 ** 4151 ** Whether or not a match is found, SQLITE_OK is returned if no error 4152 ** occurs. If an error does occur, an error message is stored in the 4153 ** parser and some error code other than SQLITE_OK returned. 4154 */ 4155 static int withExpand( 4156 Walker *pWalker, 4157 struct SrcList_item *pFrom 4158 ){ 4159 Parse *pParse = pWalker->pParse; 4160 sqlite3 *db = pParse->db; 4161 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4162 With *pWith; /* WITH clause that pCte belongs to */ 4163 4164 assert( pFrom->pTab==0 ); 4165 4166 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4167 if( pCte ){ 4168 Table *pTab; 4169 ExprList *pEList; 4170 Select *pSel; 4171 Select *pLeft; /* Left-most SELECT statement */ 4172 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4173 With *pSavedWith; /* Initial value of pParse->pWith */ 4174 4175 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4176 ** recursive reference to CTE pCte. Leave an error in pParse and return 4177 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4178 ** In this case, proceed. */ 4179 if( pCte->zCteErr ){ 4180 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4181 return SQLITE_ERROR; 4182 } 4183 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4184 4185 assert( pFrom->pTab==0 ); 4186 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4187 if( pTab==0 ) return WRC_Abort; 4188 pTab->nTabRef = 1; 4189 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4190 pTab->iPKey = -1; 4191 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4192 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4193 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4194 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4195 assert( pFrom->pSelect ); 4196 4197 /* Check if this is a recursive CTE. */ 4198 pSel = pFrom->pSelect; 4199 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4200 if( bMayRecursive ){ 4201 int i; 4202 SrcList *pSrc = pFrom->pSelect->pSrc; 4203 for(i=0; i<pSrc->nSrc; i++){ 4204 struct SrcList_item *pItem = &pSrc->a[i]; 4205 if( pItem->zDatabase==0 4206 && pItem->zName!=0 4207 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4208 ){ 4209 pItem->pTab = pTab; 4210 pItem->fg.isRecursive = 1; 4211 pTab->nTabRef++; 4212 pSel->selFlags |= SF_Recursive; 4213 } 4214 } 4215 } 4216 4217 /* Only one recursive reference is permitted. */ 4218 if( pTab->nTabRef>2 ){ 4219 sqlite3ErrorMsg( 4220 pParse, "multiple references to recursive table: %s", pCte->zName 4221 ); 4222 return SQLITE_ERROR; 4223 } 4224 assert( pTab->nTabRef==1 || 4225 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4226 4227 pCte->zCteErr = "circular reference: %s"; 4228 pSavedWith = pParse->pWith; 4229 pParse->pWith = pWith; 4230 if( bMayRecursive ){ 4231 Select *pPrior = pSel->pPrior; 4232 assert( pPrior->pWith==0 ); 4233 pPrior->pWith = pSel->pWith; 4234 sqlite3WalkSelect(pWalker, pPrior); 4235 pPrior->pWith = 0; 4236 }else{ 4237 sqlite3WalkSelect(pWalker, pSel); 4238 } 4239 pParse->pWith = pWith; 4240 4241 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4242 pEList = pLeft->pEList; 4243 if( pCte->pCols ){ 4244 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4245 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4246 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4247 ); 4248 pParse->pWith = pSavedWith; 4249 return SQLITE_ERROR; 4250 } 4251 pEList = pCte->pCols; 4252 } 4253 4254 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4255 if( bMayRecursive ){ 4256 if( pSel->selFlags & SF_Recursive ){ 4257 pCte->zCteErr = "multiple recursive references: %s"; 4258 }else{ 4259 pCte->zCteErr = "recursive reference in a subquery: %s"; 4260 } 4261 sqlite3WalkSelect(pWalker, pSel); 4262 } 4263 pCte->zCteErr = 0; 4264 pParse->pWith = pSavedWith; 4265 } 4266 4267 return SQLITE_OK; 4268 } 4269 #endif 4270 4271 #ifndef SQLITE_OMIT_CTE 4272 /* 4273 ** If the SELECT passed as the second argument has an associated WITH 4274 ** clause, pop it from the stack stored as part of the Parse object. 4275 ** 4276 ** This function is used as the xSelectCallback2() callback by 4277 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4278 ** names and other FROM clause elements. 4279 */ 4280 static void selectPopWith(Walker *pWalker, Select *p){ 4281 Parse *pParse = pWalker->pParse; 4282 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4283 With *pWith = findRightmost(p)->pWith; 4284 if( pWith!=0 ){ 4285 assert( pParse->pWith==pWith ); 4286 pParse->pWith = pWith->pOuter; 4287 } 4288 } 4289 } 4290 #else 4291 #define selectPopWith 0 4292 #endif 4293 4294 /* 4295 ** This routine is a Walker callback for "expanding" a SELECT statement. 4296 ** "Expanding" means to do the following: 4297 ** 4298 ** (1) Make sure VDBE cursor numbers have been assigned to every 4299 ** element of the FROM clause. 4300 ** 4301 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4302 ** defines FROM clause. When views appear in the FROM clause, 4303 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4304 ** that implements the view. A copy is made of the view's SELECT 4305 ** statement so that we can freely modify or delete that statement 4306 ** without worrying about messing up the persistent representation 4307 ** of the view. 4308 ** 4309 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4310 ** on joins and the ON and USING clause of joins. 4311 ** 4312 ** (4) Scan the list of columns in the result set (pEList) looking 4313 ** for instances of the "*" operator or the TABLE.* operator. 4314 ** If found, expand each "*" to be every column in every table 4315 ** and TABLE.* to be every column in TABLE. 4316 ** 4317 */ 4318 static int selectExpander(Walker *pWalker, Select *p){ 4319 Parse *pParse = pWalker->pParse; 4320 int i, j, k; 4321 SrcList *pTabList; 4322 ExprList *pEList; 4323 struct SrcList_item *pFrom; 4324 sqlite3 *db = pParse->db; 4325 Expr *pE, *pRight, *pExpr; 4326 u16 selFlags = p->selFlags; 4327 u32 elistFlags = 0; 4328 4329 p->selFlags |= SF_Expanded; 4330 if( db->mallocFailed ){ 4331 return WRC_Abort; 4332 } 4333 assert( p->pSrc!=0 ); 4334 if( (selFlags & SF_Expanded)!=0 ){ 4335 return WRC_Prune; 4336 } 4337 pTabList = p->pSrc; 4338 pEList = p->pEList; 4339 if( OK_IF_ALWAYS_TRUE(p->pWith) ){ 4340 sqlite3WithPush(pParse, p->pWith, 0); 4341 } 4342 4343 /* Make sure cursor numbers have been assigned to all entries in 4344 ** the FROM clause of the SELECT statement. 4345 */ 4346 sqlite3SrcListAssignCursors(pParse, pTabList); 4347 4348 /* Look up every table named in the FROM clause of the select. If 4349 ** an entry of the FROM clause is a subquery instead of a table or view, 4350 ** then create a transient table structure to describe the subquery. 4351 */ 4352 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4353 Table *pTab; 4354 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4355 if( pFrom->fg.isRecursive ) continue; 4356 assert( pFrom->pTab==0 ); 4357 #ifndef SQLITE_OMIT_CTE 4358 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4359 if( pFrom->pTab ) {} else 4360 #endif 4361 if( pFrom->zName==0 ){ 4362 #ifndef SQLITE_OMIT_SUBQUERY 4363 Select *pSel = pFrom->pSelect; 4364 /* A sub-query in the FROM clause of a SELECT */ 4365 assert( pSel!=0 ); 4366 assert( pFrom->pTab==0 ); 4367 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4368 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4369 if( pTab==0 ) return WRC_Abort; 4370 pTab->nTabRef = 1; 4371 if( pFrom->zAlias ){ 4372 pTab->zName = sqlite3DbStrDup(db, pFrom->zAlias); 4373 }else{ 4374 pTab->zName = sqlite3MPrintf(db, "subquery_%p", (void*)pTab); 4375 } 4376 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4377 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4378 pTab->iPKey = -1; 4379 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4380 pTab->tabFlags |= TF_Ephemeral; 4381 #endif 4382 }else{ 4383 /* An ordinary table or view name in the FROM clause */ 4384 assert( pFrom->pTab==0 ); 4385 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4386 if( pTab==0 ) return WRC_Abort; 4387 if( pTab->nTabRef>=0xffff ){ 4388 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4389 pTab->zName); 4390 pFrom->pTab = 0; 4391 return WRC_Abort; 4392 } 4393 pTab->nTabRef++; 4394 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4395 return WRC_Abort; 4396 } 4397 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4398 if( IsVirtual(pTab) || pTab->pSelect ){ 4399 i16 nCol; 4400 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4401 assert( pFrom->pSelect==0 ); 4402 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4403 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4404 nCol = pTab->nCol; 4405 pTab->nCol = -1; 4406 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4407 pTab->nCol = nCol; 4408 } 4409 #endif 4410 } 4411 4412 /* Locate the index named by the INDEXED BY clause, if any. */ 4413 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4414 return WRC_Abort; 4415 } 4416 } 4417 4418 /* Process NATURAL keywords, and ON and USING clauses of joins. 4419 */ 4420 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4421 return WRC_Abort; 4422 } 4423 4424 /* For every "*" that occurs in the column list, insert the names of 4425 ** all columns in all tables. And for every TABLE.* insert the names 4426 ** of all columns in TABLE. The parser inserted a special expression 4427 ** with the TK_ASTERISK operator for each "*" that it found in the column 4428 ** list. The following code just has to locate the TK_ASTERISK 4429 ** expressions and expand each one to the list of all columns in 4430 ** all tables. 4431 ** 4432 ** The first loop just checks to see if there are any "*" operators 4433 ** that need expanding. 4434 */ 4435 for(k=0; k<pEList->nExpr; k++){ 4436 pE = pEList->a[k].pExpr; 4437 if( pE->op==TK_ASTERISK ) break; 4438 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4439 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4440 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4441 elistFlags |= pE->flags; 4442 } 4443 if( k<pEList->nExpr ){ 4444 /* 4445 ** If we get here it means the result set contains one or more "*" 4446 ** operators that need to be expanded. Loop through each expression 4447 ** in the result set and expand them one by one. 4448 */ 4449 struct ExprList_item *a = pEList->a; 4450 ExprList *pNew = 0; 4451 int flags = pParse->db->flags; 4452 int longNames = (flags & SQLITE_FullColNames)!=0 4453 && (flags & SQLITE_ShortColNames)==0; 4454 4455 for(k=0; k<pEList->nExpr; k++){ 4456 pE = a[k].pExpr; 4457 elistFlags |= pE->flags; 4458 pRight = pE->pRight; 4459 assert( pE->op!=TK_DOT || pRight!=0 ); 4460 if( pE->op!=TK_ASTERISK 4461 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4462 ){ 4463 /* This particular expression does not need to be expanded. 4464 */ 4465 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4466 if( pNew ){ 4467 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4468 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4469 a[k].zName = 0; 4470 a[k].zSpan = 0; 4471 } 4472 a[k].pExpr = 0; 4473 }else{ 4474 /* This expression is a "*" or a "TABLE.*" and needs to be 4475 ** expanded. */ 4476 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4477 char *zTName = 0; /* text of name of TABLE */ 4478 if( pE->op==TK_DOT ){ 4479 assert( pE->pLeft!=0 ); 4480 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4481 zTName = pE->pLeft->u.zToken; 4482 } 4483 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4484 Table *pTab = pFrom->pTab; 4485 Select *pSub = pFrom->pSelect; 4486 char *zTabName = pFrom->zAlias; 4487 const char *zSchemaName = 0; 4488 int iDb; 4489 if( zTabName==0 ){ 4490 zTabName = pTab->zName; 4491 } 4492 if( db->mallocFailed ) break; 4493 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4494 pSub = 0; 4495 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4496 continue; 4497 } 4498 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4499 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4500 } 4501 for(j=0; j<pTab->nCol; j++){ 4502 char *zName = pTab->aCol[j].zName; 4503 char *zColname; /* The computed column name */ 4504 char *zToFree; /* Malloced string that needs to be freed */ 4505 Token sColname; /* Computed column name as a token */ 4506 4507 assert( zName ); 4508 if( zTName && pSub 4509 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4510 ){ 4511 continue; 4512 } 4513 4514 /* If a column is marked as 'hidden', omit it from the expanded 4515 ** result-set list unless the SELECT has the SF_IncludeHidden 4516 ** bit set. 4517 */ 4518 if( (p->selFlags & SF_IncludeHidden)==0 4519 && IsHiddenColumn(&pTab->aCol[j]) 4520 ){ 4521 continue; 4522 } 4523 tableSeen = 1; 4524 4525 if( i>0 && zTName==0 ){ 4526 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4527 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4528 ){ 4529 /* In a NATURAL join, omit the join columns from the 4530 ** table to the right of the join */ 4531 continue; 4532 } 4533 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4534 /* In a join with a USING clause, omit columns in the 4535 ** using clause from the table on the right. */ 4536 continue; 4537 } 4538 } 4539 pRight = sqlite3Expr(db, TK_ID, zName); 4540 zColname = zName; 4541 zToFree = 0; 4542 if( longNames || pTabList->nSrc>1 ){ 4543 Expr *pLeft; 4544 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4545 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4546 if( zSchemaName ){ 4547 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4548 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4549 } 4550 if( longNames ){ 4551 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4552 zToFree = zColname; 4553 } 4554 }else{ 4555 pExpr = pRight; 4556 } 4557 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4558 sqlite3TokenInit(&sColname, zColname); 4559 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4560 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4561 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4562 if( pSub ){ 4563 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4564 testcase( pX->zSpan==0 ); 4565 }else{ 4566 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4567 zSchemaName, zTabName, zColname); 4568 testcase( pX->zSpan==0 ); 4569 } 4570 pX->bSpanIsTab = 1; 4571 } 4572 sqlite3DbFree(db, zToFree); 4573 } 4574 } 4575 if( !tableSeen ){ 4576 if( zTName ){ 4577 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4578 }else{ 4579 sqlite3ErrorMsg(pParse, "no tables specified"); 4580 } 4581 } 4582 } 4583 } 4584 sqlite3ExprListDelete(db, pEList); 4585 p->pEList = pNew; 4586 } 4587 if( p->pEList ){ 4588 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4589 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4590 return WRC_Abort; 4591 } 4592 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4593 p->selFlags |= SF_ComplexResult; 4594 } 4595 } 4596 return WRC_Continue; 4597 } 4598 4599 /* 4600 ** No-op routine for the parse-tree walker. 4601 ** 4602 ** When this routine is the Walker.xExprCallback then expression trees 4603 ** are walked without any actions being taken at each node. Presumably, 4604 ** when this routine is used for Walker.xExprCallback then 4605 ** Walker.xSelectCallback is set to do something useful for every 4606 ** subquery in the parser tree. 4607 */ 4608 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4609 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4610 return WRC_Continue; 4611 } 4612 4613 /* 4614 ** No-op routine for the parse-tree walker for SELECT statements. 4615 ** subquery in the parser tree. 4616 */ 4617 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4618 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4619 return WRC_Continue; 4620 } 4621 4622 #if SQLITE_DEBUG 4623 /* 4624 ** Always assert. This xSelectCallback2 implementation proves that the 4625 ** xSelectCallback2 is never invoked. 4626 */ 4627 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4628 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4629 assert( 0 ); 4630 } 4631 #endif 4632 /* 4633 ** This routine "expands" a SELECT statement and all of its subqueries. 4634 ** For additional information on what it means to "expand" a SELECT 4635 ** statement, see the comment on the selectExpand worker callback above. 4636 ** 4637 ** Expanding a SELECT statement is the first step in processing a 4638 ** SELECT statement. The SELECT statement must be expanded before 4639 ** name resolution is performed. 4640 ** 4641 ** If anything goes wrong, an error message is written into pParse. 4642 ** The calling function can detect the problem by looking at pParse->nErr 4643 ** and/or pParse->db->mallocFailed. 4644 */ 4645 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4646 Walker w; 4647 w.xExprCallback = sqlite3ExprWalkNoop; 4648 w.pParse = pParse; 4649 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4650 w.xSelectCallback = convertCompoundSelectToSubquery; 4651 w.xSelectCallback2 = 0; 4652 sqlite3WalkSelect(&w, pSelect); 4653 } 4654 w.xSelectCallback = selectExpander; 4655 w.xSelectCallback2 = selectPopWith; 4656 sqlite3WalkSelect(&w, pSelect); 4657 } 4658 4659 4660 #ifndef SQLITE_OMIT_SUBQUERY 4661 /* 4662 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4663 ** interface. 4664 ** 4665 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4666 ** information to the Table structure that represents the result set 4667 ** of that subquery. 4668 ** 4669 ** The Table structure that represents the result set was constructed 4670 ** by selectExpander() but the type and collation information was omitted 4671 ** at that point because identifiers had not yet been resolved. This 4672 ** routine is called after identifier resolution. 4673 */ 4674 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4675 Parse *pParse; 4676 int i; 4677 SrcList *pTabList; 4678 struct SrcList_item *pFrom; 4679 4680 assert( p->selFlags & SF_Resolved ); 4681 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4682 p->selFlags |= SF_HasTypeInfo; 4683 pParse = pWalker->pParse; 4684 pTabList = p->pSrc; 4685 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4686 Table *pTab = pFrom->pTab; 4687 assert( pTab!=0 ); 4688 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4689 /* A sub-query in the FROM clause of a SELECT */ 4690 Select *pSel = pFrom->pSelect; 4691 if( pSel ){ 4692 while( pSel->pPrior ) pSel = pSel->pPrior; 4693 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4694 } 4695 } 4696 } 4697 } 4698 #endif 4699 4700 4701 /* 4702 ** This routine adds datatype and collating sequence information to 4703 ** the Table structures of all FROM-clause subqueries in a 4704 ** SELECT statement. 4705 ** 4706 ** Use this routine after name resolution. 4707 */ 4708 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4709 #ifndef SQLITE_OMIT_SUBQUERY 4710 Walker w; 4711 w.xSelectCallback = sqlite3SelectWalkNoop; 4712 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4713 w.xExprCallback = sqlite3ExprWalkNoop; 4714 w.pParse = pParse; 4715 sqlite3WalkSelect(&w, pSelect); 4716 #endif 4717 } 4718 4719 4720 /* 4721 ** This routine sets up a SELECT statement for processing. The 4722 ** following is accomplished: 4723 ** 4724 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4725 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4726 ** * ON and USING clauses are shifted into WHERE statements 4727 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4728 ** * Identifiers in expression are matched to tables. 4729 ** 4730 ** This routine acts recursively on all subqueries within the SELECT. 4731 */ 4732 void sqlite3SelectPrep( 4733 Parse *pParse, /* The parser context */ 4734 Select *p, /* The SELECT statement being coded. */ 4735 NameContext *pOuterNC /* Name context for container */ 4736 ){ 4737 assert( p!=0 || pParse->db->mallocFailed ); 4738 if( pParse->db->mallocFailed ) return; 4739 if( p->selFlags & SF_HasTypeInfo ) return; 4740 sqlite3SelectExpand(pParse, p); 4741 if( pParse->nErr || pParse->db->mallocFailed ) return; 4742 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4743 if( pParse->nErr || pParse->db->mallocFailed ) return; 4744 sqlite3SelectAddTypeInfo(pParse, p); 4745 } 4746 4747 /* 4748 ** Reset the aggregate accumulator. 4749 ** 4750 ** The aggregate accumulator is a set of memory cells that hold 4751 ** intermediate results while calculating an aggregate. This 4752 ** routine generates code that stores NULLs in all of those memory 4753 ** cells. 4754 */ 4755 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4756 Vdbe *v = pParse->pVdbe; 4757 int i; 4758 struct AggInfo_func *pFunc; 4759 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4760 if( nReg==0 ) return; 4761 #ifdef SQLITE_DEBUG 4762 /* Verify that all AggInfo registers are within the range specified by 4763 ** AggInfo.mnReg..AggInfo.mxReg */ 4764 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4765 for(i=0; i<pAggInfo->nColumn; i++){ 4766 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4767 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4768 } 4769 for(i=0; i<pAggInfo->nFunc; i++){ 4770 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4771 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4772 } 4773 #endif 4774 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4775 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4776 if( pFunc->iDistinct>=0 ){ 4777 Expr *pE = pFunc->pExpr; 4778 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4779 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4780 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4781 "argument"); 4782 pFunc->iDistinct = -1; 4783 }else{ 4784 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4785 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4786 (char*)pKeyInfo, P4_KEYINFO); 4787 } 4788 } 4789 } 4790 } 4791 4792 /* 4793 ** Invoke the OP_AggFinalize opcode for every aggregate function 4794 ** in the AggInfo structure. 4795 */ 4796 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4797 Vdbe *v = pParse->pVdbe; 4798 int i; 4799 struct AggInfo_func *pF; 4800 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4801 ExprList *pList = pF->pExpr->x.pList; 4802 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4803 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4804 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4805 } 4806 } 4807 4808 /* 4809 ** Update the accumulator memory cells for an aggregate based on 4810 ** the current cursor position. 4811 */ 4812 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4813 Vdbe *v = pParse->pVdbe; 4814 int i; 4815 int regHit = 0; 4816 int addrHitTest = 0; 4817 struct AggInfo_func *pF; 4818 struct AggInfo_col *pC; 4819 4820 pAggInfo->directMode = 1; 4821 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4822 int nArg; 4823 int addrNext = 0; 4824 int regAgg; 4825 ExprList *pList = pF->pExpr->x.pList; 4826 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4827 if( pList ){ 4828 nArg = pList->nExpr; 4829 regAgg = sqlite3GetTempRange(pParse, nArg); 4830 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4831 }else{ 4832 nArg = 0; 4833 regAgg = 0; 4834 } 4835 if( pF->iDistinct>=0 ){ 4836 addrNext = sqlite3VdbeMakeLabel(v); 4837 testcase( nArg==0 ); /* Error condition */ 4838 testcase( nArg>1 ); /* Also an error */ 4839 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4840 } 4841 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4842 CollSeq *pColl = 0; 4843 struct ExprList_item *pItem; 4844 int j; 4845 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4846 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4847 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4848 } 4849 if( !pColl ){ 4850 pColl = pParse->db->pDfltColl; 4851 } 4852 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4853 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4854 } 4855 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4856 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4857 sqlite3VdbeChangeP5(v, (u8)nArg); 4858 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4859 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4860 if( addrNext ){ 4861 sqlite3VdbeResolveLabel(v, addrNext); 4862 sqlite3ExprCacheClear(pParse); 4863 } 4864 } 4865 4866 /* Before populating the accumulator registers, clear the column cache. 4867 ** Otherwise, if any of the required column values are already present 4868 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4869 ** to pC->iMem. But by the time the value is used, the original register 4870 ** may have been used, invalidating the underlying buffer holding the 4871 ** text or blob value. See ticket [883034dcb5]. 4872 ** 4873 ** Another solution would be to change the OP_SCopy used to copy cached 4874 ** values to an OP_Copy. 4875 */ 4876 if( regHit ){ 4877 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4878 } 4879 sqlite3ExprCacheClear(pParse); 4880 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4881 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4882 } 4883 pAggInfo->directMode = 0; 4884 sqlite3ExprCacheClear(pParse); 4885 if( addrHitTest ){ 4886 sqlite3VdbeJumpHere(v, addrHitTest); 4887 } 4888 } 4889 4890 /* 4891 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4892 ** count(*) query ("SELECT count(*) FROM pTab"). 4893 */ 4894 #ifndef SQLITE_OMIT_EXPLAIN 4895 static void explainSimpleCount( 4896 Parse *pParse, /* Parse context */ 4897 Table *pTab, /* Table being queried */ 4898 Index *pIdx /* Index used to optimize scan, or NULL */ 4899 ){ 4900 if( pParse->explain==2 ){ 4901 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4902 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4903 pTab->zName, 4904 bCover ? " USING COVERING INDEX " : "", 4905 bCover ? pIdx->zName : "" 4906 ); 4907 sqlite3VdbeAddOp4( 4908 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4909 ); 4910 } 4911 } 4912 #else 4913 # define explainSimpleCount(a,b,c) 4914 #endif 4915 4916 /* 4917 ** Context object for havingToWhereExprCb(). 4918 */ 4919 struct HavingToWhereCtx { 4920 Expr **ppWhere; 4921 ExprList *pGroupBy; 4922 }; 4923 4924 /* 4925 ** sqlite3WalkExpr() callback used by havingToWhere(). 4926 ** 4927 ** If the node passed to the callback is a TK_AND node, return 4928 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 4929 ** 4930 ** Otherwise, return WRC_Prune. In this case, also check if the 4931 ** sub-expression matches the criteria for being moved to the WHERE 4932 ** clause. If so, add it to the WHERE clause and replace the sub-expression 4933 ** within the HAVING expression with a constant "1". 4934 */ 4935 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 4936 if( pExpr->op!=TK_AND ){ 4937 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx; 4938 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){ 4939 sqlite3 *db = pWalker->pParse->db; 4940 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 4941 if( pNew ){ 4942 Expr *pWhere = *(p->ppWhere); 4943 SWAP(Expr, *pNew, *pExpr); 4944 pNew = sqlite3ExprAnd(db, pWhere, pNew); 4945 *(p->ppWhere) = pNew; 4946 } 4947 } 4948 return WRC_Prune; 4949 } 4950 return WRC_Continue; 4951 } 4952 4953 /* 4954 ** Transfer eligible terms from the HAVING clause of a query, which is 4955 ** processed after grouping, to the WHERE clause, which is processed before 4956 ** grouping. For example, the query: 4957 ** 4958 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 4959 ** 4960 ** can be rewritten as: 4961 ** 4962 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 4963 ** 4964 ** A term of the HAVING expression is eligible for transfer if it consists 4965 ** entirely of constants and expressions that are also GROUP BY terms that 4966 ** use the "BINARY" collation sequence. 4967 */ 4968 static void havingToWhere( 4969 Parse *pParse, 4970 ExprList *pGroupBy, 4971 Expr *pHaving, 4972 Expr **ppWhere 4973 ){ 4974 struct HavingToWhereCtx sCtx; 4975 Walker sWalker; 4976 4977 sCtx.ppWhere = ppWhere; 4978 sCtx.pGroupBy = pGroupBy; 4979 4980 memset(&sWalker, 0, sizeof(sWalker)); 4981 sWalker.pParse = pParse; 4982 sWalker.xExprCallback = havingToWhereExprCb; 4983 sWalker.u.pHavingCtx = &sCtx; 4984 sqlite3WalkExpr(&sWalker, pHaving); 4985 } 4986 4987 /* 4988 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 4989 ** If it is, then return the SrcList_item for the prior view. If it is not, 4990 ** then return 0. 4991 */ 4992 static struct SrcList_item *isSelfJoinView( 4993 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 4994 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 4995 ){ 4996 struct SrcList_item *pItem; 4997 for(pItem = pTabList->a; pItem<pThis; pItem++){ 4998 if( pItem->pSelect==0 ) continue; 4999 if( pItem->fg.viaCoroutine ) continue; 5000 if( pItem->zName==0 ) continue; 5001 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5002 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5003 if( sqlite3ExprCompare(0, 5004 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5005 ){ 5006 /* The view was modified by some other optimization such as 5007 ** pushDownWhereTerms() */ 5008 continue; 5009 } 5010 return pItem; 5011 } 5012 return 0; 5013 } 5014 5015 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5016 /* 5017 ** Attempt to transform a query of the form 5018 ** 5019 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5020 ** 5021 ** Into this: 5022 ** 5023 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5024 ** 5025 ** The transformation only works if all of the following are true: 5026 ** 5027 ** * The subquery is a UNION ALL of two or more terms 5028 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5029 ** * The outer query is a simple count(*) 5030 ** 5031 ** Return TRUE if the optimization is undertaken. 5032 */ 5033 static int countOfViewOptimization(Parse *pParse, Select *p){ 5034 Select *pSub, *pPrior; 5035 Expr *pExpr; 5036 Expr *pCount; 5037 sqlite3 *db; 5038 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5039 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5040 pExpr = p->pEList->a[0].pExpr; 5041 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5042 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5043 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5044 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5045 pSub = p->pSrc->a[0].pSelect; 5046 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5047 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5048 do{ 5049 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5050 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5051 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5052 pSub = pSub->pPrior; /* Repeat over compound */ 5053 }while( pSub ); 5054 5055 /* If we reach this point then it is OK to perform the transformation */ 5056 5057 db = pParse->db; 5058 pCount = pExpr; 5059 pExpr = 0; 5060 pSub = p->pSrc->a[0].pSelect; 5061 p->pSrc->a[0].pSelect = 0; 5062 sqlite3SrcListDelete(db, p->pSrc); 5063 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5064 while( pSub ){ 5065 Expr *pTerm; 5066 pPrior = pSub->pPrior; 5067 pSub->pPrior = 0; 5068 pSub->pNext = 0; 5069 pSub->selFlags |= SF_Aggregate; 5070 pSub->selFlags &= ~SF_Compound; 5071 pSub->nSelectRow = 0; 5072 sqlite3ExprListDelete(db, pSub->pEList); 5073 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5074 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5075 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5076 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5077 if( pExpr==0 ){ 5078 pExpr = pTerm; 5079 }else{ 5080 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5081 } 5082 pSub = pPrior; 5083 } 5084 p->pEList->a[0].pExpr = pExpr; 5085 p->selFlags &= ~SF_Aggregate; 5086 5087 #if SELECTTRACE_ENABLED 5088 if( sqlite3SelectTrace & 0x400 ){ 5089 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5090 sqlite3TreeViewSelect(0, p, 0); 5091 } 5092 #endif 5093 return 1; 5094 } 5095 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5096 5097 /* 5098 ** Generate code for the SELECT statement given in the p argument. 5099 ** 5100 ** The results are returned according to the SelectDest structure. 5101 ** See comments in sqliteInt.h for further information. 5102 ** 5103 ** This routine returns the number of errors. If any errors are 5104 ** encountered, then an appropriate error message is left in 5105 ** pParse->zErrMsg. 5106 ** 5107 ** This routine does NOT free the Select structure passed in. The 5108 ** calling function needs to do that. 5109 */ 5110 int sqlite3Select( 5111 Parse *pParse, /* The parser context */ 5112 Select *p, /* The SELECT statement being coded. */ 5113 SelectDest *pDest /* What to do with the query results */ 5114 ){ 5115 int i, j; /* Loop counters */ 5116 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5117 Vdbe *v; /* The virtual machine under construction */ 5118 int isAgg; /* True for select lists like "count(*)" */ 5119 ExprList *pEList = 0; /* List of columns to extract. */ 5120 SrcList *pTabList; /* List of tables to select from */ 5121 Expr *pWhere; /* The WHERE clause. May be NULL */ 5122 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5123 Expr *pHaving; /* The HAVING clause. May be NULL */ 5124 int rc = 1; /* Value to return from this function */ 5125 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5126 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5127 AggInfo sAggInfo; /* Information used by aggregate queries */ 5128 int iEnd; /* Address of the end of the query */ 5129 sqlite3 *db; /* The database connection */ 5130 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5131 u8 minMaxFlag; /* Flag for min/max queries */ 5132 5133 #ifndef SQLITE_OMIT_EXPLAIN 5134 int iRestoreSelectId = pParse->iSelectId; 5135 pParse->iSelectId = pParse->iNextSelectId++; 5136 #endif 5137 5138 db = pParse->db; 5139 if( p==0 || db->mallocFailed || pParse->nErr ){ 5140 return 1; 5141 } 5142 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5143 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5144 #if SELECTTRACE_ENABLED 5145 pParse->nSelectIndent++; 5146 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5147 if( sqlite3SelectTrace & 0x100 ){ 5148 sqlite3TreeViewSelect(0, p, 0); 5149 } 5150 #endif 5151 5152 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5153 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5154 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5155 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5156 if( IgnorableOrderby(pDest) ){ 5157 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5158 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5159 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5160 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5161 /* If ORDER BY makes no difference in the output then neither does 5162 ** DISTINCT so it can be removed too. */ 5163 sqlite3ExprListDelete(db, p->pOrderBy); 5164 p->pOrderBy = 0; 5165 p->selFlags &= ~SF_Distinct; 5166 } 5167 sqlite3SelectPrep(pParse, p, 0); 5168 memset(&sSort, 0, sizeof(sSort)); 5169 sSort.pOrderBy = p->pOrderBy; 5170 pTabList = p->pSrc; 5171 if( pParse->nErr || db->mallocFailed ){ 5172 goto select_end; 5173 } 5174 assert( p->pEList!=0 ); 5175 isAgg = (p->selFlags & SF_Aggregate)!=0; 5176 #if SELECTTRACE_ENABLED 5177 if( sqlite3SelectTrace & 0x100 ){ 5178 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5179 sqlite3TreeViewSelect(0, p, 0); 5180 } 5181 #endif 5182 5183 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5184 ** does not already exist */ 5185 v = sqlite3GetVdbe(pParse); 5186 if( v==0 ) goto select_end; 5187 if( pDest->eDest==SRT_Output ){ 5188 generateColumnNames(pParse, p); 5189 } 5190 5191 /* Try to flatten subqueries in the FROM clause up into the main query 5192 */ 5193 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5194 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5195 struct SrcList_item *pItem = &pTabList->a[i]; 5196 Select *pSub = pItem->pSelect; 5197 Table *pTab = pItem->pTab; 5198 if( pSub==0 ) continue; 5199 5200 /* Catch mismatch in the declared columns of a view and the number of 5201 ** columns in the SELECT on the RHS */ 5202 if( pTab->nCol!=pSub->pEList->nExpr ){ 5203 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5204 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5205 goto select_end; 5206 } 5207 5208 /* Do not try to flatten an aggregate subquery. 5209 ** 5210 ** Flattening an aggregate subquery is only possible if the outer query 5211 ** is not a join. But if the outer query is not a join, then the subquery 5212 ** will be implemented as a co-routine and there is no advantage to 5213 ** flattening in that case. 5214 */ 5215 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5216 assert( pSub->pGroupBy==0 ); 5217 5218 /* If the outer query contains a "complex" result set (that is, 5219 ** if the result set of the outer query uses functions or subqueries) 5220 ** and if the subquery contains an ORDER BY clause and if 5221 ** it will be implemented as a co-routine, then do not flatten. This 5222 ** restriction allows SQL constructs like this: 5223 ** 5224 ** SELECT expensive_function(x) 5225 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5226 ** 5227 ** The expensive_function() is only computed on the 10 rows that 5228 ** are output, rather than every row of the table. 5229 ** 5230 ** The requirement that the outer query have a complex result set 5231 ** means that flattening does occur on simpler SQL constraints without 5232 ** the expensive_function() like: 5233 ** 5234 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5235 */ 5236 if( pSub->pOrderBy!=0 5237 && i==0 5238 && (p->selFlags & SF_ComplexResult)!=0 5239 && (pTabList->nSrc==1 5240 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5241 ){ 5242 continue; 5243 } 5244 5245 if( flattenSubquery(pParse, p, i, isAgg) ){ 5246 /* This subquery can be absorbed into its parent. */ 5247 i = -1; 5248 } 5249 pTabList = p->pSrc; 5250 if( db->mallocFailed ) goto select_end; 5251 if( !IgnorableOrderby(pDest) ){ 5252 sSort.pOrderBy = p->pOrderBy; 5253 } 5254 } 5255 #endif 5256 5257 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5258 /* Handle compound SELECT statements using the separate multiSelect() 5259 ** procedure. 5260 */ 5261 if( p->pPrior ){ 5262 rc = multiSelect(pParse, p, pDest); 5263 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5264 #if SELECTTRACE_ENABLED 5265 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5266 pParse->nSelectIndent--; 5267 #endif 5268 return rc; 5269 } 5270 #endif 5271 5272 /* For each term in the FROM clause, do two things: 5273 ** (1) Authorized unreferenced tables 5274 ** (2) Generate code for all sub-queries 5275 */ 5276 for(i=0; i<pTabList->nSrc; i++){ 5277 struct SrcList_item *pItem = &pTabList->a[i]; 5278 SelectDest dest; 5279 Select *pSub; 5280 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5281 const char *zSavedAuthContext; 5282 #endif 5283 5284 /* Issue SQLITE_READ authorizations with a fake column name for any 5285 ** tables that are referenced but from which no values are extracted. 5286 ** Examples of where these kinds of null SQLITE_READ authorizations 5287 ** would occur: 5288 ** 5289 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5290 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5291 ** 5292 ** The fake column name is an empty string. It is possible for a table to 5293 ** have a column named by the empty string, in which case there is no way to 5294 ** distinguish between an unreferenced table and an actual reference to the 5295 ** "" column. The original design was for the fake column name to be a NULL, 5296 ** which would be unambiguous. But legacy authorization callbacks might 5297 ** assume the column name is non-NULL and segfault. The use of an empty 5298 ** string for the fake column name seems safer. 5299 */ 5300 if( pItem->colUsed==0 ){ 5301 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5302 } 5303 5304 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5305 /* Generate code for all sub-queries in the FROM clause 5306 */ 5307 pSub = pItem->pSelect; 5308 if( pSub==0 ) continue; 5309 5310 /* Sometimes the code for a subquery will be generated more than 5311 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5312 ** for example. In that case, do not regenerate the code to manifest 5313 ** a view or the co-routine to implement a view. The first instance 5314 ** is sufficient, though the subroutine to manifest the view does need 5315 ** to be invoked again. */ 5316 if( pItem->addrFillSub ){ 5317 if( pItem->fg.viaCoroutine==0 ){ 5318 /* The subroutine that manifests the view might be a one-time routine, 5319 ** or it might need to be rerun on each iteration because it 5320 ** encodes a correlated subquery. */ 5321 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5322 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5323 } 5324 continue; 5325 } 5326 5327 /* Increment Parse.nHeight by the height of the largest expression 5328 ** tree referred to by this, the parent select. The child select 5329 ** may contain expression trees of at most 5330 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5331 ** more conservative than necessary, but much easier than enforcing 5332 ** an exact limit. 5333 */ 5334 pParse->nHeight += sqlite3SelectExprHeight(p); 5335 5336 /* Make copies of constant WHERE-clause terms in the outer query down 5337 ** inside the subquery. This can help the subquery to run more efficiently. 5338 */ 5339 if( (pItem->fg.jointype & JT_OUTER)==0 5340 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) 5341 ){ 5342 #if SELECTTRACE_ENABLED 5343 if( sqlite3SelectTrace & 0x100 ){ 5344 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5345 sqlite3TreeViewSelect(0, p, 0); 5346 } 5347 #endif 5348 } 5349 5350 zSavedAuthContext = pParse->zAuthContext; 5351 pParse->zAuthContext = pItem->zName; 5352 5353 /* Generate code to implement the subquery 5354 ** 5355 ** The subquery is implemented as a co-routine if the subquery is 5356 ** guaranteed to be the outer loop (so that it does not need to be 5357 ** computed more than once) 5358 ** 5359 ** TODO: Are there other reasons beside (1) to use a co-routine 5360 ** implementation? 5361 */ 5362 if( i==0 5363 && (pTabList->nSrc==1 5364 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5365 ){ 5366 /* Implement a co-routine that will return a single row of the result 5367 ** set on each invocation. 5368 */ 5369 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5370 5371 pItem->regReturn = ++pParse->nMem; 5372 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5373 VdbeComment((v, "%s", pItem->pTab->zName)); 5374 pItem->addrFillSub = addrTop; 5375 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5376 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5377 sqlite3Select(pParse, pSub, &dest); 5378 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5379 pItem->fg.viaCoroutine = 1; 5380 pItem->regResult = dest.iSdst; 5381 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5382 sqlite3VdbeJumpHere(v, addrTop-1); 5383 sqlite3ClearTempRegCache(pParse); 5384 }else{ 5385 /* Generate a subroutine that will fill an ephemeral table with 5386 ** the content of this subquery. pItem->addrFillSub will point 5387 ** to the address of the generated subroutine. pItem->regReturn 5388 ** is a register allocated to hold the subroutine return address 5389 */ 5390 int topAddr; 5391 int onceAddr = 0; 5392 int retAddr; 5393 struct SrcList_item *pPrior; 5394 5395 assert( pItem->addrFillSub==0 ); 5396 pItem->regReturn = ++pParse->nMem; 5397 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5398 pItem->addrFillSub = topAddr+1; 5399 if( pItem->fg.isCorrelated==0 ){ 5400 /* If the subquery is not correlated and if we are not inside of 5401 ** a trigger, then we only need to compute the value of the subquery 5402 ** once. */ 5403 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5404 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5405 }else{ 5406 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5407 } 5408 pPrior = isSelfJoinView(pTabList, pItem); 5409 if( pPrior ){ 5410 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5411 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5412 assert( pPrior->pSelect!=0 ); 5413 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5414 }else{ 5415 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5416 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5417 sqlite3Select(pParse, pSub, &dest); 5418 } 5419 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5420 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5421 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5422 VdbeComment((v, "end %s", pItem->pTab->zName)); 5423 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5424 sqlite3ClearTempRegCache(pParse); 5425 } 5426 if( db->mallocFailed ) goto select_end; 5427 pParse->nHeight -= sqlite3SelectExprHeight(p); 5428 pParse->zAuthContext = zSavedAuthContext; 5429 #endif 5430 } 5431 5432 /* Various elements of the SELECT copied into local variables for 5433 ** convenience */ 5434 pEList = p->pEList; 5435 pWhere = p->pWhere; 5436 pGroupBy = p->pGroupBy; 5437 pHaving = p->pHaving; 5438 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5439 5440 #if SELECTTRACE_ENABLED 5441 if( sqlite3SelectTrace & 0x400 ){ 5442 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5443 sqlite3TreeViewSelect(0, p, 0); 5444 } 5445 #endif 5446 5447 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5448 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5449 && countOfViewOptimization(pParse, p) 5450 ){ 5451 if( db->mallocFailed ) goto select_end; 5452 pEList = p->pEList; 5453 pTabList = p->pSrc; 5454 } 5455 #endif 5456 5457 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5458 ** if the select-list is the same as the ORDER BY list, then this query 5459 ** can be rewritten as a GROUP BY. In other words, this: 5460 ** 5461 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5462 ** 5463 ** is transformed to: 5464 ** 5465 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5466 ** 5467 ** The second form is preferred as a single index (or temp-table) may be 5468 ** used for both the ORDER BY and DISTINCT processing. As originally 5469 ** written the query must use a temp-table for at least one of the ORDER 5470 ** BY and DISTINCT, and an index or separate temp-table for the other. 5471 */ 5472 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5473 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5474 ){ 5475 p->selFlags &= ~SF_Distinct; 5476 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5477 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5478 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5479 ** original setting of the SF_Distinct flag, not the current setting */ 5480 assert( sDistinct.isTnct ); 5481 5482 #if SELECTTRACE_ENABLED 5483 if( sqlite3SelectTrace & 0x400 ){ 5484 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5485 sqlite3TreeViewSelect(0, p, 0); 5486 } 5487 #endif 5488 } 5489 5490 /* If there is an ORDER BY clause, then create an ephemeral index to 5491 ** do the sorting. But this sorting ephemeral index might end up 5492 ** being unused if the data can be extracted in pre-sorted order. 5493 ** If that is the case, then the OP_OpenEphemeral instruction will be 5494 ** changed to an OP_Noop once we figure out that the sorting index is 5495 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5496 ** that change. 5497 */ 5498 if( sSort.pOrderBy ){ 5499 KeyInfo *pKeyInfo; 5500 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5501 sSort.iECursor = pParse->nTab++; 5502 sSort.addrSortIndex = 5503 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5504 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5505 (char*)pKeyInfo, P4_KEYINFO 5506 ); 5507 }else{ 5508 sSort.addrSortIndex = -1; 5509 } 5510 5511 /* If the output is destined for a temporary table, open that table. 5512 */ 5513 if( pDest->eDest==SRT_EphemTab ){ 5514 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5515 } 5516 5517 /* Set the limiter. 5518 */ 5519 iEnd = sqlite3VdbeMakeLabel(v); 5520 if( (p->selFlags & SF_FixedLimit)==0 ){ 5521 p->nSelectRow = 320; /* 4 billion rows */ 5522 } 5523 computeLimitRegisters(pParse, p, iEnd); 5524 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5525 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5526 sSort.sortFlags |= SORTFLAG_UseSorter; 5527 } 5528 5529 /* Open an ephemeral index to use for the distinct set. 5530 */ 5531 if( p->selFlags & SF_Distinct ){ 5532 sDistinct.tabTnct = pParse->nTab++; 5533 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5534 sDistinct.tabTnct, 0, 0, 5535 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5536 P4_KEYINFO); 5537 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5538 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5539 }else{ 5540 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5541 } 5542 5543 if( !isAgg && pGroupBy==0 ){ 5544 /* No aggregate functions and no GROUP BY clause */ 5545 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5546 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5547 wctrlFlags |= p->selFlags & SF_FixedLimit; 5548 5549 /* Begin the database scan. */ 5550 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5551 p->pEList, wctrlFlags, p->nSelectRow); 5552 if( pWInfo==0 ) goto select_end; 5553 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5554 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5555 } 5556 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5557 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5558 } 5559 if( sSort.pOrderBy ){ 5560 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5561 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5562 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5563 sSort.pOrderBy = 0; 5564 } 5565 } 5566 5567 /* If sorting index that was created by a prior OP_OpenEphemeral 5568 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5569 ** into an OP_Noop. 5570 */ 5571 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5572 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5573 } 5574 5575 /* Use the standard inner loop. */ 5576 assert( p->pEList==pEList ); 5577 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5578 sqlite3WhereContinueLabel(pWInfo), 5579 sqlite3WhereBreakLabel(pWInfo)); 5580 5581 /* End the database scan loop. 5582 */ 5583 sqlite3WhereEnd(pWInfo); 5584 }else{ 5585 /* This case when there exist aggregate functions or a GROUP BY clause 5586 ** or both */ 5587 NameContext sNC; /* Name context for processing aggregate information */ 5588 int iAMem; /* First Mem address for storing current GROUP BY */ 5589 int iBMem; /* First Mem address for previous GROUP BY */ 5590 int iUseFlag; /* Mem address holding flag indicating that at least 5591 ** one row of the input to the aggregator has been 5592 ** processed */ 5593 int iAbortFlag; /* Mem address which causes query abort if positive */ 5594 int groupBySort; /* Rows come from source in GROUP BY order */ 5595 int addrEnd; /* End of processing for this SELECT */ 5596 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5597 int sortOut = 0; /* Output register from the sorter */ 5598 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5599 5600 /* Remove any and all aliases between the result set and the 5601 ** GROUP BY clause. 5602 */ 5603 if( pGroupBy ){ 5604 int k; /* Loop counter */ 5605 struct ExprList_item *pItem; /* For looping over expression in a list */ 5606 5607 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5608 pItem->u.x.iAlias = 0; 5609 } 5610 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5611 pItem->u.x.iAlias = 0; 5612 } 5613 assert( 66==sqlite3LogEst(100) ); 5614 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5615 }else{ 5616 assert( 0==sqlite3LogEst(1) ); 5617 p->nSelectRow = 0; 5618 } 5619 5620 /* If there is both a GROUP BY and an ORDER BY clause and they are 5621 ** identical, then it may be possible to disable the ORDER BY clause 5622 ** on the grounds that the GROUP BY will cause elements to come out 5623 ** in the correct order. It also may not - the GROUP BY might use a 5624 ** database index that causes rows to be grouped together as required 5625 ** but not actually sorted. Either way, record the fact that the 5626 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5627 ** variable. */ 5628 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5629 orderByGrp = 1; 5630 } 5631 5632 /* Create a label to jump to when we want to abort the query */ 5633 addrEnd = sqlite3VdbeMakeLabel(v); 5634 5635 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5636 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5637 ** SELECT statement. 5638 */ 5639 memset(&sNC, 0, sizeof(sNC)); 5640 sNC.pParse = pParse; 5641 sNC.pSrcList = pTabList; 5642 sNC.pAggInfo = &sAggInfo; 5643 sAggInfo.mnReg = pParse->nMem+1; 5644 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5645 sAggInfo.pGroupBy = pGroupBy; 5646 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5647 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5648 if( pHaving ){ 5649 if( pGroupBy ){ 5650 assert( pWhere==p->pWhere ); 5651 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere); 5652 pWhere = p->pWhere; 5653 } 5654 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5655 } 5656 sAggInfo.nAccumulator = sAggInfo.nColumn; 5657 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 5658 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 5659 }else{ 5660 minMaxFlag = WHERE_ORDERBY_NORMAL; 5661 } 5662 for(i=0; i<sAggInfo.nFunc; i++){ 5663 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5664 sNC.ncFlags |= NC_InAggFunc; 5665 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5666 sNC.ncFlags &= ~NC_InAggFunc; 5667 } 5668 sAggInfo.mxReg = pParse->nMem; 5669 if( db->mallocFailed ) goto select_end; 5670 #if SELECTTRACE_ENABLED 5671 if( sqlite3SelectTrace & 0x400 ){ 5672 int ii; 5673 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 5674 sqlite3TreeViewSelect(0, p, 0); 5675 for(ii=0; ii<sAggInfo.nColumn; ii++){ 5676 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 5677 ii, sAggInfo.aCol[ii].iMem); 5678 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 5679 } 5680 for(ii=0; ii<sAggInfo.nFunc; ii++){ 5681 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 5682 ii, sAggInfo.aFunc[ii].iMem); 5683 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 5684 } 5685 } 5686 #endif 5687 5688 5689 /* Processing for aggregates with GROUP BY is very different and 5690 ** much more complex than aggregates without a GROUP BY. 5691 */ 5692 if( pGroupBy ){ 5693 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5694 int addr1; /* A-vs-B comparision jump */ 5695 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5696 int regOutputRow; /* Return address register for output subroutine */ 5697 int addrSetAbort; /* Set the abort flag and return */ 5698 int addrTopOfLoop; /* Top of the input loop */ 5699 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5700 int addrReset; /* Subroutine for resetting the accumulator */ 5701 int regReset; /* Return address register for reset subroutine */ 5702 5703 /* If there is a GROUP BY clause we might need a sorting index to 5704 ** implement it. Allocate that sorting index now. If it turns out 5705 ** that we do not need it after all, the OP_SorterOpen instruction 5706 ** will be converted into a Noop. 5707 */ 5708 sAggInfo.sortingIdx = pParse->nTab++; 5709 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5710 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5711 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5712 0, (char*)pKeyInfo, P4_KEYINFO); 5713 5714 /* Initialize memory locations used by GROUP BY aggregate processing 5715 */ 5716 iUseFlag = ++pParse->nMem; 5717 iAbortFlag = ++pParse->nMem; 5718 regOutputRow = ++pParse->nMem; 5719 addrOutputRow = sqlite3VdbeMakeLabel(v); 5720 regReset = ++pParse->nMem; 5721 addrReset = sqlite3VdbeMakeLabel(v); 5722 iAMem = pParse->nMem + 1; 5723 pParse->nMem += pGroupBy->nExpr; 5724 iBMem = pParse->nMem + 1; 5725 pParse->nMem += pGroupBy->nExpr; 5726 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5727 VdbeComment((v, "clear abort flag")); 5728 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5729 VdbeComment((v, "indicate accumulator empty")); 5730 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5731 5732 /* Begin a loop that will extract all source rows in GROUP BY order. 5733 ** This might involve two separate loops with an OP_Sort in between, or 5734 ** it might be a single loop that uses an index to extract information 5735 ** in the right order to begin with. 5736 */ 5737 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5738 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5739 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5740 ); 5741 if( pWInfo==0 ) goto select_end; 5742 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5743 /* The optimizer is able to deliver rows in group by order so 5744 ** we do not have to sort. The OP_OpenEphemeral table will be 5745 ** cancelled later because we still need to use the pKeyInfo 5746 */ 5747 groupBySort = 0; 5748 }else{ 5749 /* Rows are coming out in undetermined order. We have to push 5750 ** each row into a sorting index, terminate the first loop, 5751 ** then loop over the sorting index in order to get the output 5752 ** in sorted order 5753 */ 5754 int regBase; 5755 int regRecord; 5756 int nCol; 5757 int nGroupBy; 5758 5759 explainTempTable(pParse, 5760 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5761 "DISTINCT" : "GROUP BY"); 5762 5763 groupBySort = 1; 5764 nGroupBy = pGroupBy->nExpr; 5765 nCol = nGroupBy; 5766 j = nGroupBy; 5767 for(i=0; i<sAggInfo.nColumn; i++){ 5768 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5769 nCol++; 5770 j++; 5771 } 5772 } 5773 regBase = sqlite3GetTempRange(pParse, nCol); 5774 sqlite3ExprCacheClear(pParse); 5775 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5776 j = nGroupBy; 5777 for(i=0; i<sAggInfo.nColumn; i++){ 5778 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5779 if( pCol->iSorterColumn>=j ){ 5780 int r1 = j + regBase; 5781 sqlite3ExprCodeGetColumnToReg(pParse, 5782 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5783 j++; 5784 } 5785 } 5786 regRecord = sqlite3GetTempReg(pParse); 5787 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5788 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5789 sqlite3ReleaseTempReg(pParse, regRecord); 5790 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5791 sqlite3WhereEnd(pWInfo); 5792 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5793 sortOut = sqlite3GetTempReg(pParse); 5794 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5795 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5796 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5797 sAggInfo.useSortingIdx = 1; 5798 sqlite3ExprCacheClear(pParse); 5799 5800 } 5801 5802 /* If the index or temporary table used by the GROUP BY sort 5803 ** will naturally deliver rows in the order required by the ORDER BY 5804 ** clause, cancel the ephemeral table open coded earlier. 5805 ** 5806 ** This is an optimization - the correct answer should result regardless. 5807 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5808 ** disable this optimization for testing purposes. */ 5809 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5810 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5811 ){ 5812 sSort.pOrderBy = 0; 5813 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5814 } 5815 5816 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5817 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5818 ** Then compare the current GROUP BY terms against the GROUP BY terms 5819 ** from the previous row currently stored in a0, a1, a2... 5820 */ 5821 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5822 sqlite3ExprCacheClear(pParse); 5823 if( groupBySort ){ 5824 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5825 sortOut, sortPTab); 5826 } 5827 for(j=0; j<pGroupBy->nExpr; j++){ 5828 if( groupBySort ){ 5829 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5830 }else{ 5831 sAggInfo.directMode = 1; 5832 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5833 } 5834 } 5835 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5836 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5837 addr1 = sqlite3VdbeCurrentAddr(v); 5838 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5839 5840 /* Generate code that runs whenever the GROUP BY changes. 5841 ** Changes in the GROUP BY are detected by the previous code 5842 ** block. If there were no changes, this block is skipped. 5843 ** 5844 ** This code copies current group by terms in b0,b1,b2,... 5845 ** over to a0,a1,a2. It then calls the output subroutine 5846 ** and resets the aggregate accumulator registers in preparation 5847 ** for the next GROUP BY batch. 5848 */ 5849 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5850 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5851 VdbeComment((v, "output one row")); 5852 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5853 VdbeComment((v, "check abort flag")); 5854 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5855 VdbeComment((v, "reset accumulator")); 5856 5857 /* Update the aggregate accumulators based on the content of 5858 ** the current row 5859 */ 5860 sqlite3VdbeJumpHere(v, addr1); 5861 updateAccumulator(pParse, &sAggInfo); 5862 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5863 VdbeComment((v, "indicate data in accumulator")); 5864 5865 /* End of the loop 5866 */ 5867 if( groupBySort ){ 5868 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5869 VdbeCoverage(v); 5870 }else{ 5871 sqlite3WhereEnd(pWInfo); 5872 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5873 } 5874 5875 /* Output the final row of result 5876 */ 5877 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5878 VdbeComment((v, "output final row")); 5879 5880 /* Jump over the subroutines 5881 */ 5882 sqlite3VdbeGoto(v, addrEnd); 5883 5884 /* Generate a subroutine that outputs a single row of the result 5885 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5886 ** is less than or equal to zero, the subroutine is a no-op. If 5887 ** the processing calls for the query to abort, this subroutine 5888 ** increments the iAbortFlag memory location before returning in 5889 ** order to signal the caller to abort. 5890 */ 5891 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5892 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5893 VdbeComment((v, "set abort flag")); 5894 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5895 sqlite3VdbeResolveLabel(v, addrOutputRow); 5896 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5897 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5898 VdbeCoverage(v); 5899 VdbeComment((v, "Groupby result generator entry point")); 5900 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5901 finalizeAggFunctions(pParse, &sAggInfo); 5902 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5903 selectInnerLoop(pParse, p, -1, &sSort, 5904 &sDistinct, pDest, 5905 addrOutputRow+1, addrSetAbort); 5906 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5907 VdbeComment((v, "end groupby result generator")); 5908 5909 /* Generate a subroutine that will reset the group-by accumulator 5910 */ 5911 sqlite3VdbeResolveLabel(v, addrReset); 5912 resetAccumulator(pParse, &sAggInfo); 5913 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5914 5915 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5916 else { 5917 #ifndef SQLITE_OMIT_BTREECOUNT 5918 Table *pTab; 5919 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5920 /* If isSimpleCount() returns a pointer to a Table structure, then 5921 ** the SQL statement is of the form: 5922 ** 5923 ** SELECT count(*) FROM <tbl> 5924 ** 5925 ** where the Table structure returned represents table <tbl>. 5926 ** 5927 ** This statement is so common that it is optimized specially. The 5928 ** OP_Count instruction is executed either on the intkey table that 5929 ** contains the data for table <tbl> or on one of its indexes. It 5930 ** is better to execute the op on an index, as indexes are almost 5931 ** always spread across less pages than their corresponding tables. 5932 */ 5933 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5934 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5935 Index *pIdx; /* Iterator variable */ 5936 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5937 Index *pBest = 0; /* Best index found so far */ 5938 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5939 5940 sqlite3CodeVerifySchema(pParse, iDb); 5941 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5942 5943 /* Search for the index that has the lowest scan cost. 5944 ** 5945 ** (2011-04-15) Do not do a full scan of an unordered index. 5946 ** 5947 ** (2013-10-03) Do not count the entries in a partial index. 5948 ** 5949 ** In practice the KeyInfo structure will not be used. It is only 5950 ** passed to keep OP_OpenRead happy. 5951 */ 5952 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5953 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5954 if( pIdx->bUnordered==0 5955 && pIdx->szIdxRow<pTab->szTabRow 5956 && pIdx->pPartIdxWhere==0 5957 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5958 ){ 5959 pBest = pIdx; 5960 } 5961 } 5962 if( pBest ){ 5963 iRoot = pBest->tnum; 5964 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5965 } 5966 5967 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5968 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5969 if( pKeyInfo ){ 5970 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5971 } 5972 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5973 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5974 explainSimpleCount(pParse, pTab, pBest); 5975 }else 5976 #endif /* SQLITE_OMIT_BTREECOUNT */ 5977 { 5978 /* This case runs if the aggregate has no GROUP BY clause. The 5979 ** processing is much simpler since there is only a single row 5980 ** of output. 5981 */ 5982 assert( p->pGroupBy==0 ); 5983 resetAccumulator(pParse, &sAggInfo); 5984 5985 /* If this query is a candidate for the min/max optimization, then 5986 ** minMaxFlag will have been previously set to either 5987 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 5988 ** be an appropriate ORDER BY expression for the optimization. 5989 */ 5990 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 5991 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 5992 5993 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 5994 0, minMaxFlag, 0); 5995 if( pWInfo==0 ){ 5996 goto select_end; 5997 } 5998 updateAccumulator(pParse, &sAggInfo); 5999 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6000 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6001 VdbeComment((v, "%s() by index", 6002 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6003 } 6004 sqlite3WhereEnd(pWInfo); 6005 finalizeAggFunctions(pParse, &sAggInfo); 6006 } 6007 6008 sSort.pOrderBy = 0; 6009 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6010 selectInnerLoop(pParse, p, -1, 0, 0, 6011 pDest, addrEnd, addrEnd); 6012 } 6013 sqlite3VdbeResolveLabel(v, addrEnd); 6014 6015 } /* endif aggregate query */ 6016 6017 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6018 explainTempTable(pParse, "DISTINCT"); 6019 } 6020 6021 /* If there is an ORDER BY clause, then we need to sort the results 6022 ** and send them to the callback one by one. 6023 */ 6024 if( sSort.pOrderBy ){ 6025 explainTempTable(pParse, 6026 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6027 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6028 } 6029 6030 /* Jump here to skip this query 6031 */ 6032 sqlite3VdbeResolveLabel(v, iEnd); 6033 6034 /* The SELECT has been coded. If there is an error in the Parse structure, 6035 ** set the return code to 1. Otherwise 0. */ 6036 rc = (pParse->nErr>0); 6037 6038 /* Control jumps to here if an error is encountered above, or upon 6039 ** successful coding of the SELECT. 6040 */ 6041 select_end: 6042 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 6043 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6044 sqlite3DbFree(db, sAggInfo.aCol); 6045 sqlite3DbFree(db, sAggInfo.aFunc); 6046 #if SELECTTRACE_ENABLED 6047 SELECTTRACE(1,pParse,p,("end processing\n")); 6048 pParse->nSelectIndent--; 6049 #endif 6050 return rc; 6051 } 6052