1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 if( pEq && isOuterJoin ){ 351 ExprSetProperty(pEq, EP_FromJoin); 352 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 353 ExprSetVVAProperty(pEq, EP_NoReduce); 354 pEq->iRightJoinTable = pE2->iTable; 355 } 356 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 357 } 358 359 /* 360 ** Set the EP_FromJoin property on all terms of the given expression. 361 ** And set the Expr.iRightJoinTable to iTable for every term in the 362 ** expression. 363 ** 364 ** The EP_FromJoin property is used on terms of an expression to tell 365 ** the LEFT OUTER JOIN processing logic that this term is part of the 366 ** join restriction specified in the ON or USING clause and not a part 367 ** of the more general WHERE clause. These terms are moved over to the 368 ** WHERE clause during join processing but we need to remember that they 369 ** originated in the ON or USING clause. 370 ** 371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 372 ** expression depends on table iRightJoinTable even if that table is not 373 ** explicitly mentioned in the expression. That information is needed 374 ** for cases like this: 375 ** 376 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 377 ** 378 ** The where clause needs to defer the handling of the t1.x=5 379 ** term until after the t2 loop of the join. In that way, a 380 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 381 ** defer the handling of t1.x=5, it will be processed immediately 382 ** after the t1 loop and rows with t1.x!=5 will never appear in 383 ** the output, which is incorrect. 384 */ 385 void sqlite3SetJoinExpr(Expr *p, int iTable){ 386 while( p ){ 387 ExprSetProperty(p, EP_FromJoin); 388 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 389 ExprSetVVAProperty(p, EP_NoReduce); 390 p->iRightJoinTable = iTable; 391 if( p->op==TK_FUNCTION && p->x.pList ){ 392 int i; 393 for(i=0; i<p->x.pList->nExpr; i++){ 394 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 395 } 396 } 397 sqlite3SetJoinExpr(p->pLeft, iTable); 398 p = p->pRight; 399 } 400 } 401 402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 404 ** an ordinary term that omits the EP_FromJoin mark. 405 ** 406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 407 */ 408 static void unsetJoinExpr(Expr *p, int iTable){ 409 while( p ){ 410 if( ExprHasProperty(p, EP_FromJoin) 411 && (iTable<0 || p->iRightJoinTable==iTable) ){ 412 ExprClearProperty(p, EP_FromJoin); 413 } 414 if( p->op==TK_COLUMN && p->iTable==iTable ){ 415 ExprClearProperty(p, EP_CanBeNull); 416 } 417 if( p->op==TK_FUNCTION && p->x.pList ){ 418 int i; 419 for(i=0; i<p->x.pList->nExpr; i++){ 420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 421 } 422 } 423 unsetJoinExpr(p->pLeft, iTable); 424 p = p->pRight; 425 } 426 } 427 428 /* 429 ** This routine processes the join information for a SELECT statement. 430 ** ON and USING clauses are converted into extra terms of the WHERE clause. 431 ** NATURAL joins also create extra WHERE clause terms. 432 ** 433 ** The terms of a FROM clause are contained in the Select.pSrc structure. 434 ** The left most table is the first entry in Select.pSrc. The right-most 435 ** table is the last entry. The join operator is held in the entry to 436 ** the left. Thus entry 0 contains the join operator for the join between 437 ** entries 0 and 1. Any ON or USING clauses associated with the join are 438 ** also attached to the left entry. 439 ** 440 ** This routine returns the number of errors encountered. 441 */ 442 static int sqliteProcessJoin(Parse *pParse, Select *p){ 443 SrcList *pSrc; /* All tables in the FROM clause */ 444 int i, j; /* Loop counters */ 445 SrcItem *pLeft; /* Left table being joined */ 446 SrcItem *pRight; /* Right table being joined */ 447 448 pSrc = p->pSrc; 449 pLeft = &pSrc->a[0]; 450 pRight = &pLeft[1]; 451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 452 Table *pRightTab = pRight->pTab; 453 int isOuter; 454 455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 457 458 /* When the NATURAL keyword is present, add WHERE clause terms for 459 ** every column that the two tables have in common. 460 */ 461 if( pRight->fg.jointype & JT_NATURAL ){ 462 if( pRight->pOn || pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 464 "an ON or USING clause", 0); 465 return 1; 466 } 467 for(j=0; j<pRightTab->nCol; j++){ 468 char *zName; /* Name of column in the right table */ 469 int iLeft; /* Matching left table */ 470 int iLeftCol; /* Matching column in the left table */ 471 472 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 473 zName = pRightTab->aCol[j].zName; 474 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 475 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 476 isOuter, &p->pWhere); 477 } 478 } 479 } 480 481 /* Disallow both ON and USING clauses in the same join 482 */ 483 if( pRight->pOn && pRight->pUsing ){ 484 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 485 "clauses in the same join"); 486 return 1; 487 } 488 489 /* Add the ON clause to the end of the WHERE clause, connected by 490 ** an AND operator. 491 */ 492 if( pRight->pOn ){ 493 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 494 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 495 pRight->pOn = 0; 496 } 497 498 /* Create extra terms on the WHERE clause for each column named 499 ** in the USING clause. Example: If the two tables to be joined are 500 ** A and B and the USING clause names X, Y, and Z, then add this 501 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 502 ** Report an error if any column mentioned in the USING clause is 503 ** not contained in both tables to be joined. 504 */ 505 if( pRight->pUsing ){ 506 IdList *pList = pRight->pUsing; 507 for(j=0; j<pList->nId; j++){ 508 char *zName; /* Name of the term in the USING clause */ 509 int iLeft; /* Table on the left with matching column name */ 510 int iLeftCol; /* Column number of matching column on the left */ 511 int iRightCol; /* Column number of matching column on the right */ 512 513 zName = pList->a[j].zName; 514 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 515 if( iRightCol<0 516 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 517 ){ 518 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 519 "not present in both tables", zName); 520 return 1; 521 } 522 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 523 isOuter, &p->pWhere); 524 } 525 } 526 } 527 return 0; 528 } 529 530 /* 531 ** An instance of this object holds information (beyond pParse and pSelect) 532 ** needed to load the next result row that is to be added to the sorter. 533 */ 534 typedef struct RowLoadInfo RowLoadInfo; 535 struct RowLoadInfo { 536 int regResult; /* Store results in array of registers here */ 537 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 539 ExprList *pExtra; /* Extra columns needed by sorter refs */ 540 int regExtraResult; /* Where to load the extra columns */ 541 #endif 542 }; 543 544 /* 545 ** This routine does the work of loading query data into an array of 546 ** registers so that it can be added to the sorter. 547 */ 548 static void innerLoopLoadRow( 549 Parse *pParse, /* Statement under construction */ 550 Select *pSelect, /* The query being coded */ 551 RowLoadInfo *pInfo /* Info needed to complete the row load */ 552 ){ 553 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 554 0, pInfo->ecelFlags); 555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 556 if( pInfo->pExtra ){ 557 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 558 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 559 } 560 #endif 561 } 562 563 /* 564 ** Code the OP_MakeRecord instruction that generates the entry to be 565 ** added into the sorter. 566 ** 567 ** Return the register in which the result is stored. 568 */ 569 static int makeSorterRecord( 570 Parse *pParse, 571 SortCtx *pSort, 572 Select *pSelect, 573 int regBase, 574 int nBase 575 ){ 576 int nOBSat = pSort->nOBSat; 577 Vdbe *v = pParse->pVdbe; 578 int regOut = ++pParse->nMem; 579 if( pSort->pDeferredRowLoad ){ 580 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 581 } 582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 583 return regOut; 584 } 585 586 /* 587 ** Generate code that will push the record in registers regData 588 ** through regData+nData-1 onto the sorter. 589 */ 590 static void pushOntoSorter( 591 Parse *pParse, /* Parser context */ 592 SortCtx *pSort, /* Information about the ORDER BY clause */ 593 Select *pSelect, /* The whole SELECT statement */ 594 int regData, /* First register holding data to be sorted */ 595 int regOrigData, /* First register holding data before packing */ 596 int nData, /* Number of elements in the regData data array */ 597 int nPrefixReg /* No. of reg prior to regData available for use */ 598 ){ 599 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 600 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 601 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 602 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 603 int regBase; /* Regs for sorter record */ 604 int regRecord = 0; /* Assembled sorter record */ 605 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 606 int op; /* Opcode to add sorter record to sorter */ 607 int iLimit; /* LIMIT counter */ 608 int iSkip = 0; /* End of the sorter insert loop */ 609 610 assert( bSeq==0 || bSeq==1 ); 611 612 /* Three cases: 613 ** (1) The data to be sorted has already been packed into a Record 614 ** by a prior OP_MakeRecord. In this case nData==1 and regData 615 ** will be completely unrelated to regOrigData. 616 ** (2) All output columns are included in the sort record. In that 617 ** case regData==regOrigData. 618 ** (3) Some output columns are omitted from the sort record due to 619 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 620 ** SQLITE_ECEL_OMITREF optimization, or due to the 621 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 622 ** regOrigData is 0 to prevent this routine from trying to copy 623 ** values that might not yet exist. 624 */ 625 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 626 627 if( nPrefixReg ){ 628 assert( nPrefixReg==nExpr+bSeq ); 629 regBase = regData - nPrefixReg; 630 }else{ 631 regBase = pParse->nMem + 1; 632 pParse->nMem += nBase; 633 } 634 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 635 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 636 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 637 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 638 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 639 if( bSeq ){ 640 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 641 } 642 if( nPrefixReg==0 && nData>0 ){ 643 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 644 } 645 if( nOBSat>0 ){ 646 int regPrevKey; /* The first nOBSat columns of the previous row */ 647 int addrFirst; /* Address of the OP_IfNot opcode */ 648 int addrJmp; /* Address of the OP_Jump opcode */ 649 VdbeOp *pOp; /* Opcode that opens the sorter */ 650 int nKey; /* Number of sorting key columns, including OP_Sequence */ 651 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 652 653 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 654 regPrevKey = pParse->nMem+1; 655 pParse->nMem += pSort->nOBSat; 656 nKey = nExpr - pSort->nOBSat + bSeq; 657 if( bSeq ){ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 659 }else{ 660 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 661 } 662 VdbeCoverage(v); 663 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 664 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 665 if( pParse->db->mallocFailed ) return; 666 pOp->p2 = nKey + nData; 667 pKI = pOp->p4.pKeyInfo; 668 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 669 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 670 testcase( pKI->nAllField > pKI->nKeyField+2 ); 671 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 672 pKI->nAllField-pKI->nKeyField-1); 673 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 674 addrJmp = sqlite3VdbeCurrentAddr(v); 675 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 676 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 677 pSort->regReturn = ++pParse->nMem; 678 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 679 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 680 if( iLimit ){ 681 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 682 VdbeCoverage(v); 683 } 684 sqlite3VdbeJumpHere(v, addrFirst); 685 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 686 sqlite3VdbeJumpHere(v, addrJmp); 687 } 688 if( iLimit ){ 689 /* At this point the values for the new sorter entry are stored 690 ** in an array of registers. They need to be composed into a record 691 ** and inserted into the sorter if either (a) there are currently 692 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 693 ** the largest record currently in the sorter. If (b) is true and there 694 ** are already LIMIT+OFFSET items in the sorter, delete the largest 695 ** entry before inserting the new one. This way there are never more 696 ** than LIMIT+OFFSET items in the sorter. 697 ** 698 ** If the new record does not need to be inserted into the sorter, 699 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 700 ** value is not zero, then it is a label of where to jump. Otherwise, 701 ** just bypass the row insert logic. See the header comment on the 702 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 703 */ 704 int iCsr = pSort->iECursor; 705 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 706 VdbeCoverage(v); 707 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 708 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 709 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 710 VdbeCoverage(v); 711 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 712 } 713 if( regRecord==0 ){ 714 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 715 } 716 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 717 op = OP_SorterInsert; 718 }else{ 719 op = OP_IdxInsert; 720 } 721 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 722 regBase+nOBSat, nBase-nOBSat); 723 if( iSkip ){ 724 sqlite3VdbeChangeP2(v, iSkip, 725 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 726 } 727 } 728 729 /* 730 ** Add code to implement the OFFSET 731 */ 732 static void codeOffset( 733 Vdbe *v, /* Generate code into this VM */ 734 int iOffset, /* Register holding the offset counter */ 735 int iContinue /* Jump here to skip the current record */ 736 ){ 737 if( iOffset>0 ){ 738 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 739 VdbeComment((v, "OFFSET")); 740 } 741 } 742 743 /* 744 ** Add code that will check to make sure the N registers starting at iMem 745 ** form a distinct entry. iTab is a sorting index that holds previously 746 ** seen combinations of the N values. A new entry is made in iTab 747 ** if the current N values are new. 748 ** 749 ** A jump to addrRepeat is made and the N+1 values are popped from the 750 ** stack if the top N elements are not distinct. 751 */ 752 static void codeDistinct( 753 Parse *pParse, /* Parsing and code generating context */ 754 int iTab, /* A sorting index used to test for distinctness */ 755 int addrRepeat, /* Jump to here if not distinct */ 756 int N, /* Number of elements */ 757 int iMem /* First element */ 758 ){ 759 Vdbe *v; 760 int r1; 761 762 v = pParse->pVdbe; 763 r1 = sqlite3GetTempReg(pParse); 764 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 765 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 766 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 767 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 768 sqlite3ReleaseTempReg(pParse, r1); 769 } 770 771 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 772 /* 773 ** This function is called as part of inner-loop generation for a SELECT 774 ** statement with an ORDER BY that is not optimized by an index. It 775 ** determines the expressions, if any, that the sorter-reference 776 ** optimization should be used for. The sorter-reference optimization 777 ** is used for SELECT queries like: 778 ** 779 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 780 ** 781 ** If the optimization is used for expression "bigblob", then instead of 782 ** storing values read from that column in the sorter records, the PK of 783 ** the row from table t1 is stored instead. Then, as records are extracted from 784 ** the sorter to return to the user, the required value of bigblob is 785 ** retrieved directly from table t1. If the values are very large, this 786 ** can be more efficient than storing them directly in the sorter records. 787 ** 788 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 789 ** for which the sorter-reference optimization should be enabled. 790 ** Additionally, the pSort->aDefer[] array is populated with entries 791 ** for all cursors required to evaluate all selected expressions. Finally. 792 ** output variable (*ppExtra) is set to an expression list containing 793 ** expressions for all extra PK values that should be stored in the 794 ** sorter records. 795 */ 796 static void selectExprDefer( 797 Parse *pParse, /* Leave any error here */ 798 SortCtx *pSort, /* Sorter context */ 799 ExprList *pEList, /* Expressions destined for sorter */ 800 ExprList **ppExtra /* Expressions to append to sorter record */ 801 ){ 802 int i; 803 int nDefer = 0; 804 ExprList *pExtra = 0; 805 for(i=0; i<pEList->nExpr; i++){ 806 struct ExprList_item *pItem = &pEList->a[i]; 807 if( pItem->u.x.iOrderByCol==0 ){ 808 Expr *pExpr = pItem->pExpr; 809 Table *pTab = pExpr->y.pTab; 810 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 811 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 812 ){ 813 int j; 814 for(j=0; j<nDefer; j++){ 815 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 816 } 817 if( j==nDefer ){ 818 if( nDefer==ArraySize(pSort->aDefer) ){ 819 continue; 820 }else{ 821 int nKey = 1; 822 int k; 823 Index *pPk = 0; 824 if( !HasRowid(pTab) ){ 825 pPk = sqlite3PrimaryKeyIndex(pTab); 826 nKey = pPk->nKeyCol; 827 } 828 for(k=0; k<nKey; k++){ 829 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 830 if( pNew ){ 831 pNew->iTable = pExpr->iTable; 832 pNew->y.pTab = pExpr->y.pTab; 833 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 834 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 835 } 836 } 837 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 838 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 839 pSort->aDefer[nDefer].nKey = nKey; 840 nDefer++; 841 } 842 } 843 pItem->bSorterRef = 1; 844 } 845 } 846 } 847 pSort->nDefer = (u8)nDefer; 848 *ppExtra = pExtra; 849 } 850 #endif 851 852 /* 853 ** This routine generates the code for the inside of the inner loop 854 ** of a SELECT. 855 ** 856 ** If srcTab is negative, then the p->pEList expressions 857 ** are evaluated in order to get the data for this row. If srcTab is 858 ** zero or more, then data is pulled from srcTab and p->pEList is used only 859 ** to get the number of columns and the collation sequence for each column. 860 */ 861 static void selectInnerLoop( 862 Parse *pParse, /* The parser context */ 863 Select *p, /* The complete select statement being coded */ 864 int srcTab, /* Pull data from this table if non-negative */ 865 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 866 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 867 SelectDest *pDest, /* How to dispose of the results */ 868 int iContinue, /* Jump here to continue with next row */ 869 int iBreak /* Jump here to break out of the inner loop */ 870 ){ 871 Vdbe *v = pParse->pVdbe; 872 int i; 873 int hasDistinct; /* True if the DISTINCT keyword is present */ 874 int eDest = pDest->eDest; /* How to dispose of results */ 875 int iParm = pDest->iSDParm; /* First argument to disposal method */ 876 int nResultCol; /* Number of result columns */ 877 int nPrefixReg = 0; /* Number of extra registers before regResult */ 878 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 879 880 /* Usually, regResult is the first cell in an array of memory cells 881 ** containing the current result row. In this case regOrig is set to the 882 ** same value. However, if the results are being sent to the sorter, the 883 ** values for any expressions that are also part of the sort-key are omitted 884 ** from this array. In this case regOrig is set to zero. */ 885 int regResult; /* Start of memory holding current results */ 886 int regOrig; /* Start of memory holding full result (or 0) */ 887 888 assert( v ); 889 assert( p->pEList!=0 ); 890 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 891 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 892 if( pSort==0 && !hasDistinct ){ 893 assert( iContinue!=0 ); 894 codeOffset(v, p->iOffset, iContinue); 895 } 896 897 /* Pull the requested columns. 898 */ 899 nResultCol = p->pEList->nExpr; 900 901 if( pDest->iSdst==0 ){ 902 if( pSort ){ 903 nPrefixReg = pSort->pOrderBy->nExpr; 904 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 905 pParse->nMem += nPrefixReg; 906 } 907 pDest->iSdst = pParse->nMem+1; 908 pParse->nMem += nResultCol; 909 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 910 /* This is an error condition that can result, for example, when a SELECT 911 ** on the right-hand side of an INSERT contains more result columns than 912 ** there are columns in the table on the left. The error will be caught 913 ** and reported later. But we need to make sure enough memory is allocated 914 ** to avoid other spurious errors in the meantime. */ 915 pParse->nMem += nResultCol; 916 } 917 pDest->nSdst = nResultCol; 918 regOrig = regResult = pDest->iSdst; 919 if( srcTab>=0 ){ 920 for(i=0; i<nResultCol; i++){ 921 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 922 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 923 } 924 }else if( eDest!=SRT_Exists ){ 925 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 926 ExprList *pExtra = 0; 927 #endif 928 /* If the destination is an EXISTS(...) expression, the actual 929 ** values returned by the SELECT are not required. 930 */ 931 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 932 ExprList *pEList; 933 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 934 ecelFlags = SQLITE_ECEL_DUP; 935 }else{ 936 ecelFlags = 0; 937 } 938 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 939 /* For each expression in p->pEList that is a copy of an expression in 940 ** the ORDER BY clause (pSort->pOrderBy), set the associated 941 ** iOrderByCol value to one more than the index of the ORDER BY 942 ** expression within the sort-key that pushOntoSorter() will generate. 943 ** This allows the p->pEList field to be omitted from the sorted record, 944 ** saving space and CPU cycles. */ 945 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 946 947 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 948 int j; 949 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 950 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 951 } 952 } 953 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 954 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 955 if( pExtra && pParse->db->mallocFailed==0 ){ 956 /* If there are any extra PK columns to add to the sorter records, 957 ** allocate extra memory cells and adjust the OpenEphemeral 958 ** instruction to account for the larger records. This is only 959 ** required if there are one or more WITHOUT ROWID tables with 960 ** composite primary keys in the SortCtx.aDefer[] array. */ 961 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 962 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 963 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 964 pParse->nMem += pExtra->nExpr; 965 } 966 #endif 967 968 /* Adjust nResultCol to account for columns that are omitted 969 ** from the sorter by the optimizations in this branch */ 970 pEList = p->pEList; 971 for(i=0; i<pEList->nExpr; i++){ 972 if( pEList->a[i].u.x.iOrderByCol>0 973 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 974 || pEList->a[i].bSorterRef 975 #endif 976 ){ 977 nResultCol--; 978 regOrig = 0; 979 } 980 } 981 982 testcase( regOrig ); 983 testcase( eDest==SRT_Set ); 984 testcase( eDest==SRT_Mem ); 985 testcase( eDest==SRT_Coroutine ); 986 testcase( eDest==SRT_Output ); 987 assert( eDest==SRT_Set || eDest==SRT_Mem 988 || eDest==SRT_Coroutine || eDest==SRT_Output 989 || eDest==SRT_Upfrom ); 990 } 991 sRowLoadInfo.regResult = regResult; 992 sRowLoadInfo.ecelFlags = ecelFlags; 993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 994 sRowLoadInfo.pExtra = pExtra; 995 sRowLoadInfo.regExtraResult = regResult + nResultCol; 996 if( pExtra ) nResultCol += pExtra->nExpr; 997 #endif 998 if( p->iLimit 999 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1000 && nPrefixReg>0 1001 ){ 1002 assert( pSort!=0 ); 1003 assert( hasDistinct==0 ); 1004 pSort->pDeferredRowLoad = &sRowLoadInfo; 1005 regOrig = 0; 1006 }else{ 1007 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1008 } 1009 } 1010 1011 /* If the DISTINCT keyword was present on the SELECT statement 1012 ** and this row has been seen before, then do not make this row 1013 ** part of the result. 1014 */ 1015 if( hasDistinct ){ 1016 switch( pDistinct->eTnctType ){ 1017 case WHERE_DISTINCT_ORDERED: { 1018 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1019 int iJump; /* Jump destination */ 1020 int regPrev; /* Previous row content */ 1021 1022 /* Allocate space for the previous row */ 1023 regPrev = pParse->nMem+1; 1024 pParse->nMem += nResultCol; 1025 1026 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1027 ** sets the MEM_Cleared bit on the first register of the 1028 ** previous value. This will cause the OP_Ne below to always 1029 ** fail on the first iteration of the loop even if the first 1030 ** row is all NULLs. 1031 */ 1032 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1033 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1034 pOp->opcode = OP_Null; 1035 pOp->p1 = 1; 1036 pOp->p2 = regPrev; 1037 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1038 1039 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1040 for(i=0; i<nResultCol; i++){ 1041 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1042 if( i<nResultCol-1 ){ 1043 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1044 VdbeCoverage(v); 1045 }else{ 1046 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1047 VdbeCoverage(v); 1048 } 1049 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1050 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1051 } 1052 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1053 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1054 break; 1055 } 1056 1057 case WHERE_DISTINCT_UNIQUE: { 1058 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1059 break; 1060 } 1061 1062 default: { 1063 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1064 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1065 regResult); 1066 break; 1067 } 1068 } 1069 if( pSort==0 ){ 1070 codeOffset(v, p->iOffset, iContinue); 1071 } 1072 } 1073 1074 switch( eDest ){ 1075 /* In this mode, write each query result to the key of the temporary 1076 ** table iParm. 1077 */ 1078 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1079 case SRT_Union: { 1080 int r1; 1081 r1 = sqlite3GetTempReg(pParse); 1082 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1083 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1084 sqlite3ReleaseTempReg(pParse, r1); 1085 break; 1086 } 1087 1088 /* Construct a record from the query result, but instead of 1089 ** saving that record, use it as a key to delete elements from 1090 ** the temporary table iParm. 1091 */ 1092 case SRT_Except: { 1093 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1094 break; 1095 } 1096 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1097 1098 /* Store the result as data using a unique key. 1099 */ 1100 case SRT_Fifo: 1101 case SRT_DistFifo: 1102 case SRT_Table: 1103 case SRT_EphemTab: { 1104 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1105 testcase( eDest==SRT_Table ); 1106 testcase( eDest==SRT_EphemTab ); 1107 testcase( eDest==SRT_Fifo ); 1108 testcase( eDest==SRT_DistFifo ); 1109 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1110 #ifndef SQLITE_OMIT_CTE 1111 if( eDest==SRT_DistFifo ){ 1112 /* If the destination is DistFifo, then cursor (iParm+1) is open 1113 ** on an ephemeral index. If the current row is already present 1114 ** in the index, do not write it to the output. If not, add the 1115 ** current row to the index and proceed with writing it to the 1116 ** output table as well. */ 1117 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1118 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1119 VdbeCoverage(v); 1120 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1121 assert( pSort==0 ); 1122 } 1123 #endif 1124 if( pSort ){ 1125 assert( regResult==regOrig ); 1126 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1127 }else{ 1128 int r2 = sqlite3GetTempReg(pParse); 1129 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1130 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1131 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1132 sqlite3ReleaseTempReg(pParse, r2); 1133 } 1134 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1135 break; 1136 } 1137 1138 case SRT_Upfrom: { 1139 if( pSort ){ 1140 pushOntoSorter( 1141 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1142 }else{ 1143 int i2 = pDest->iSDParm2; 1144 int r1 = sqlite3GetTempReg(pParse); 1145 1146 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1147 ** might still be trying to return one row, because that is what 1148 ** aggregates do. Don't record that empty row in the output table. */ 1149 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1150 1151 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1152 regResult+(i2<0), nResultCol-(i2<0), r1); 1153 if( i2<0 ){ 1154 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1155 }else{ 1156 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1157 } 1158 } 1159 break; 1160 } 1161 1162 #ifndef SQLITE_OMIT_SUBQUERY 1163 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1164 ** then there should be a single item on the stack. Write this 1165 ** item into the set table with bogus data. 1166 */ 1167 case SRT_Set: { 1168 if( pSort ){ 1169 /* At first glance you would think we could optimize out the 1170 ** ORDER BY in this case since the order of entries in the set 1171 ** does not matter. But there might be a LIMIT clause, in which 1172 ** case the order does matter */ 1173 pushOntoSorter( 1174 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1175 }else{ 1176 int r1 = sqlite3GetTempReg(pParse); 1177 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1178 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1179 r1, pDest->zAffSdst, nResultCol); 1180 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1181 sqlite3ReleaseTempReg(pParse, r1); 1182 } 1183 break; 1184 } 1185 1186 1187 /* If any row exist in the result set, record that fact and abort. 1188 */ 1189 case SRT_Exists: { 1190 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1191 /* The LIMIT clause will terminate the loop for us */ 1192 break; 1193 } 1194 1195 /* If this is a scalar select that is part of an expression, then 1196 ** store the results in the appropriate memory cell or array of 1197 ** memory cells and break out of the scan loop. 1198 */ 1199 case SRT_Mem: { 1200 if( pSort ){ 1201 assert( nResultCol<=pDest->nSdst ); 1202 pushOntoSorter( 1203 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1204 }else{ 1205 assert( nResultCol==pDest->nSdst ); 1206 assert( regResult==iParm ); 1207 /* The LIMIT clause will jump out of the loop for us */ 1208 } 1209 break; 1210 } 1211 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1212 1213 case SRT_Coroutine: /* Send data to a co-routine */ 1214 case SRT_Output: { /* Return the results */ 1215 testcase( eDest==SRT_Coroutine ); 1216 testcase( eDest==SRT_Output ); 1217 if( pSort ){ 1218 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1219 nPrefixReg); 1220 }else if( eDest==SRT_Coroutine ){ 1221 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1222 }else{ 1223 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1224 } 1225 break; 1226 } 1227 1228 #ifndef SQLITE_OMIT_CTE 1229 /* Write the results into a priority queue that is order according to 1230 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1231 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1232 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1233 ** final OP_Sequence column. The last column is the record as a blob. 1234 */ 1235 case SRT_DistQueue: 1236 case SRT_Queue: { 1237 int nKey; 1238 int r1, r2, r3; 1239 int addrTest = 0; 1240 ExprList *pSO; 1241 pSO = pDest->pOrderBy; 1242 assert( pSO ); 1243 nKey = pSO->nExpr; 1244 r1 = sqlite3GetTempReg(pParse); 1245 r2 = sqlite3GetTempRange(pParse, nKey+2); 1246 r3 = r2+nKey+1; 1247 if( eDest==SRT_DistQueue ){ 1248 /* If the destination is DistQueue, then cursor (iParm+1) is open 1249 ** on a second ephemeral index that holds all values every previously 1250 ** added to the queue. */ 1251 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1252 regResult, nResultCol); 1253 VdbeCoverage(v); 1254 } 1255 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1256 if( eDest==SRT_DistQueue ){ 1257 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1258 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1259 } 1260 for(i=0; i<nKey; i++){ 1261 sqlite3VdbeAddOp2(v, OP_SCopy, 1262 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1263 r2+i); 1264 } 1265 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1266 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1267 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1268 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1269 sqlite3ReleaseTempReg(pParse, r1); 1270 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1271 break; 1272 } 1273 #endif /* SQLITE_OMIT_CTE */ 1274 1275 1276 1277 #if !defined(SQLITE_OMIT_TRIGGER) 1278 /* Discard the results. This is used for SELECT statements inside 1279 ** the body of a TRIGGER. The purpose of such selects is to call 1280 ** user-defined functions that have side effects. We do not care 1281 ** about the actual results of the select. 1282 */ 1283 default: { 1284 assert( eDest==SRT_Discard ); 1285 break; 1286 } 1287 #endif 1288 } 1289 1290 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1291 ** there is a sorter, in which case the sorter has already limited 1292 ** the output for us. 1293 */ 1294 if( pSort==0 && p->iLimit ){ 1295 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1296 } 1297 } 1298 1299 /* 1300 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1301 ** X extra columns. 1302 */ 1303 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1304 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1305 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1306 if( p ){ 1307 p->aSortFlags = (u8*)&p->aColl[N+X]; 1308 p->nKeyField = (u16)N; 1309 p->nAllField = (u16)(N+X); 1310 p->enc = ENC(db); 1311 p->db = db; 1312 p->nRef = 1; 1313 memset(&p[1], 0, nExtra); 1314 }else{ 1315 sqlite3OomFault(db); 1316 } 1317 return p; 1318 } 1319 1320 /* 1321 ** Deallocate a KeyInfo object 1322 */ 1323 void sqlite3KeyInfoUnref(KeyInfo *p){ 1324 if( p ){ 1325 assert( p->nRef>0 ); 1326 p->nRef--; 1327 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1328 } 1329 } 1330 1331 /* 1332 ** Make a new pointer to a KeyInfo object 1333 */ 1334 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1335 if( p ){ 1336 assert( p->nRef>0 ); 1337 p->nRef++; 1338 } 1339 return p; 1340 } 1341 1342 #ifdef SQLITE_DEBUG 1343 /* 1344 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1345 ** can only be changed if this is just a single reference to the object. 1346 ** 1347 ** This routine is used only inside of assert() statements. 1348 */ 1349 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1350 #endif /* SQLITE_DEBUG */ 1351 1352 /* 1353 ** Given an expression list, generate a KeyInfo structure that records 1354 ** the collating sequence for each expression in that expression list. 1355 ** 1356 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1357 ** KeyInfo structure is appropriate for initializing a virtual index to 1358 ** implement that clause. If the ExprList is the result set of a SELECT 1359 ** then the KeyInfo structure is appropriate for initializing a virtual 1360 ** index to implement a DISTINCT test. 1361 ** 1362 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1363 ** function is responsible for seeing that this structure is eventually 1364 ** freed. 1365 */ 1366 KeyInfo *sqlite3KeyInfoFromExprList( 1367 Parse *pParse, /* Parsing context */ 1368 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1369 int iStart, /* Begin with this column of pList */ 1370 int nExtra /* Add this many extra columns to the end */ 1371 ){ 1372 int nExpr; 1373 KeyInfo *pInfo; 1374 struct ExprList_item *pItem; 1375 sqlite3 *db = pParse->db; 1376 int i; 1377 1378 nExpr = pList->nExpr; 1379 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1380 if( pInfo ){ 1381 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1382 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1383 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1384 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1385 } 1386 } 1387 return pInfo; 1388 } 1389 1390 /* 1391 ** Name of the connection operator, used for error messages. 1392 */ 1393 const char *sqlite3SelectOpName(int id){ 1394 char *z; 1395 switch( id ){ 1396 case TK_ALL: z = "UNION ALL"; break; 1397 case TK_INTERSECT: z = "INTERSECT"; break; 1398 case TK_EXCEPT: z = "EXCEPT"; break; 1399 default: z = "UNION"; break; 1400 } 1401 return z; 1402 } 1403 1404 #ifndef SQLITE_OMIT_EXPLAIN 1405 /* 1406 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1407 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1408 ** where the caption is of the form: 1409 ** 1410 ** "USE TEMP B-TREE FOR xxx" 1411 ** 1412 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1413 ** is determined by the zUsage argument. 1414 */ 1415 static void explainTempTable(Parse *pParse, const char *zUsage){ 1416 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1417 } 1418 1419 /* 1420 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1421 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1422 ** in sqlite3Select() to assign values to structure member variables that 1423 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1424 ** code with #ifndef directives. 1425 */ 1426 # define explainSetInteger(a, b) a = b 1427 1428 #else 1429 /* No-op versions of the explainXXX() functions and macros. */ 1430 # define explainTempTable(y,z) 1431 # define explainSetInteger(y,z) 1432 #endif 1433 1434 1435 /* 1436 ** If the inner loop was generated using a non-null pOrderBy argument, 1437 ** then the results were placed in a sorter. After the loop is terminated 1438 ** we need to run the sorter and output the results. The following 1439 ** routine generates the code needed to do that. 1440 */ 1441 static void generateSortTail( 1442 Parse *pParse, /* Parsing context */ 1443 Select *p, /* The SELECT statement */ 1444 SortCtx *pSort, /* Information on the ORDER BY clause */ 1445 int nColumn, /* Number of columns of data */ 1446 SelectDest *pDest /* Write the sorted results here */ 1447 ){ 1448 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1449 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1450 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1451 int addr; /* Top of output loop. Jump for Next. */ 1452 int addrOnce = 0; 1453 int iTab; 1454 ExprList *pOrderBy = pSort->pOrderBy; 1455 int eDest = pDest->eDest; 1456 int iParm = pDest->iSDParm; 1457 int regRow; 1458 int regRowid; 1459 int iCol; 1460 int nKey; /* Number of key columns in sorter record */ 1461 int iSortTab; /* Sorter cursor to read from */ 1462 int i; 1463 int bSeq; /* True if sorter record includes seq. no. */ 1464 int nRefKey = 0; 1465 struct ExprList_item *aOutEx = p->pEList->a; 1466 1467 assert( addrBreak<0 ); 1468 if( pSort->labelBkOut ){ 1469 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1470 sqlite3VdbeGoto(v, addrBreak); 1471 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1472 } 1473 1474 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1475 /* Open any cursors needed for sorter-reference expressions */ 1476 for(i=0; i<pSort->nDefer; i++){ 1477 Table *pTab = pSort->aDefer[i].pTab; 1478 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1479 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1480 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1481 } 1482 #endif 1483 1484 iTab = pSort->iECursor; 1485 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1486 regRowid = 0; 1487 regRow = pDest->iSdst; 1488 }else{ 1489 regRowid = sqlite3GetTempReg(pParse); 1490 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1491 regRow = sqlite3GetTempReg(pParse); 1492 nColumn = 0; 1493 }else{ 1494 regRow = sqlite3GetTempRange(pParse, nColumn); 1495 } 1496 } 1497 nKey = pOrderBy->nExpr - pSort->nOBSat; 1498 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1499 int regSortOut = ++pParse->nMem; 1500 iSortTab = pParse->nTab++; 1501 if( pSort->labelBkOut ){ 1502 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1503 } 1504 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1505 nKey+1+nColumn+nRefKey); 1506 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1507 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1508 VdbeCoverage(v); 1509 codeOffset(v, p->iOffset, addrContinue); 1510 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1511 bSeq = 0; 1512 }else{ 1513 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1514 codeOffset(v, p->iOffset, addrContinue); 1515 iSortTab = iTab; 1516 bSeq = 1; 1517 } 1518 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1519 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1520 if( aOutEx[i].bSorterRef ) continue; 1521 #endif 1522 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1523 } 1524 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1525 if( pSort->nDefer ){ 1526 int iKey = iCol+1; 1527 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1528 1529 for(i=0; i<pSort->nDefer; i++){ 1530 int iCsr = pSort->aDefer[i].iCsr; 1531 Table *pTab = pSort->aDefer[i].pTab; 1532 int nKey = pSort->aDefer[i].nKey; 1533 1534 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1535 if( HasRowid(pTab) ){ 1536 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1537 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1538 sqlite3VdbeCurrentAddr(v)+1, regKey); 1539 }else{ 1540 int k; 1541 int iJmp; 1542 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1543 for(k=0; k<nKey; k++){ 1544 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1545 } 1546 iJmp = sqlite3VdbeCurrentAddr(v); 1547 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1548 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1549 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1550 } 1551 } 1552 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1553 } 1554 #endif 1555 for(i=nColumn-1; i>=0; i--){ 1556 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1557 if( aOutEx[i].bSorterRef ){ 1558 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1559 }else 1560 #endif 1561 { 1562 int iRead; 1563 if( aOutEx[i].u.x.iOrderByCol ){ 1564 iRead = aOutEx[i].u.x.iOrderByCol-1; 1565 }else{ 1566 iRead = iCol--; 1567 } 1568 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1569 VdbeComment((v, "%s", aOutEx[i].zEName)); 1570 } 1571 } 1572 switch( eDest ){ 1573 case SRT_Table: 1574 case SRT_EphemTab: { 1575 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1576 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1577 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1578 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1579 break; 1580 } 1581 #ifndef SQLITE_OMIT_SUBQUERY 1582 case SRT_Set: { 1583 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1584 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1585 pDest->zAffSdst, nColumn); 1586 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1587 break; 1588 } 1589 case SRT_Mem: { 1590 /* The LIMIT clause will terminate the loop for us */ 1591 break; 1592 } 1593 #endif 1594 case SRT_Upfrom: { 1595 int i2 = pDest->iSDParm2; 1596 int r1 = sqlite3GetTempReg(pParse); 1597 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1598 if( i2<0 ){ 1599 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1600 }else{ 1601 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1602 } 1603 break; 1604 } 1605 default: { 1606 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1607 testcase( eDest==SRT_Output ); 1608 testcase( eDest==SRT_Coroutine ); 1609 if( eDest==SRT_Output ){ 1610 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1611 }else{ 1612 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1613 } 1614 break; 1615 } 1616 } 1617 if( regRowid ){ 1618 if( eDest==SRT_Set ){ 1619 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1620 }else{ 1621 sqlite3ReleaseTempReg(pParse, regRow); 1622 } 1623 sqlite3ReleaseTempReg(pParse, regRowid); 1624 } 1625 /* The bottom of the loop 1626 */ 1627 sqlite3VdbeResolveLabel(v, addrContinue); 1628 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1629 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1630 }else{ 1631 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1632 } 1633 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1634 sqlite3VdbeResolveLabel(v, addrBreak); 1635 } 1636 1637 /* 1638 ** Return a pointer to a string containing the 'declaration type' of the 1639 ** expression pExpr. The string may be treated as static by the caller. 1640 ** 1641 ** Also try to estimate the size of the returned value and return that 1642 ** result in *pEstWidth. 1643 ** 1644 ** The declaration type is the exact datatype definition extracted from the 1645 ** original CREATE TABLE statement if the expression is a column. The 1646 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1647 ** is considered a column can be complex in the presence of subqueries. The 1648 ** result-set expression in all of the following SELECT statements is 1649 ** considered a column by this function. 1650 ** 1651 ** SELECT col FROM tbl; 1652 ** SELECT (SELECT col FROM tbl; 1653 ** SELECT (SELECT col FROM tbl); 1654 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1655 ** 1656 ** The declaration type for any expression other than a column is NULL. 1657 ** 1658 ** This routine has either 3 or 6 parameters depending on whether or not 1659 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1660 */ 1661 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1662 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1663 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1664 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1665 #endif 1666 static const char *columnTypeImpl( 1667 NameContext *pNC, 1668 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1669 Expr *pExpr 1670 #else 1671 Expr *pExpr, 1672 const char **pzOrigDb, 1673 const char **pzOrigTab, 1674 const char **pzOrigCol 1675 #endif 1676 ){ 1677 char const *zType = 0; 1678 int j; 1679 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1680 char const *zOrigDb = 0; 1681 char const *zOrigTab = 0; 1682 char const *zOrigCol = 0; 1683 #endif 1684 1685 assert( pExpr!=0 ); 1686 assert( pNC->pSrcList!=0 ); 1687 switch( pExpr->op ){ 1688 case TK_COLUMN: { 1689 /* The expression is a column. Locate the table the column is being 1690 ** extracted from in NameContext.pSrcList. This table may be real 1691 ** database table or a subquery. 1692 */ 1693 Table *pTab = 0; /* Table structure column is extracted from */ 1694 Select *pS = 0; /* Select the column is extracted from */ 1695 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1696 while( pNC && !pTab ){ 1697 SrcList *pTabList = pNC->pSrcList; 1698 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1699 if( j<pTabList->nSrc ){ 1700 pTab = pTabList->a[j].pTab; 1701 pS = pTabList->a[j].pSelect; 1702 }else{ 1703 pNC = pNC->pNext; 1704 } 1705 } 1706 1707 if( pTab==0 ){ 1708 /* At one time, code such as "SELECT new.x" within a trigger would 1709 ** cause this condition to run. Since then, we have restructured how 1710 ** trigger code is generated and so this condition is no longer 1711 ** possible. However, it can still be true for statements like 1712 ** the following: 1713 ** 1714 ** CREATE TABLE t1(col INTEGER); 1715 ** SELECT (SELECT t1.col) FROM FROM t1; 1716 ** 1717 ** when columnType() is called on the expression "t1.col" in the 1718 ** sub-select. In this case, set the column type to NULL, even 1719 ** though it should really be "INTEGER". 1720 ** 1721 ** This is not a problem, as the column type of "t1.col" is never 1722 ** used. When columnType() is called on the expression 1723 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1724 ** branch below. */ 1725 break; 1726 } 1727 1728 assert( pTab && pExpr->y.pTab==pTab ); 1729 if( pS ){ 1730 /* The "table" is actually a sub-select or a view in the FROM clause 1731 ** of the SELECT statement. Return the declaration type and origin 1732 ** data for the result-set column of the sub-select. 1733 */ 1734 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1735 /* If iCol is less than zero, then the expression requests the 1736 ** rowid of the sub-select or view. This expression is legal (see 1737 ** test case misc2.2.2) - it always evaluates to NULL. 1738 */ 1739 NameContext sNC; 1740 Expr *p = pS->pEList->a[iCol].pExpr; 1741 sNC.pSrcList = pS->pSrc; 1742 sNC.pNext = pNC; 1743 sNC.pParse = pNC->pParse; 1744 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1745 } 1746 }else{ 1747 /* A real table or a CTE table */ 1748 assert( !pS ); 1749 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1750 if( iCol<0 ) iCol = pTab->iPKey; 1751 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1752 if( iCol<0 ){ 1753 zType = "INTEGER"; 1754 zOrigCol = "rowid"; 1755 }else{ 1756 zOrigCol = pTab->aCol[iCol].zName; 1757 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1758 } 1759 zOrigTab = pTab->zName; 1760 if( pNC->pParse && pTab->pSchema ){ 1761 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1762 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1763 } 1764 #else 1765 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1766 if( iCol<0 ){ 1767 zType = "INTEGER"; 1768 }else{ 1769 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1770 } 1771 #endif 1772 } 1773 break; 1774 } 1775 #ifndef SQLITE_OMIT_SUBQUERY 1776 case TK_SELECT: { 1777 /* The expression is a sub-select. Return the declaration type and 1778 ** origin info for the single column in the result set of the SELECT 1779 ** statement. 1780 */ 1781 NameContext sNC; 1782 Select *pS = pExpr->x.pSelect; 1783 Expr *p = pS->pEList->a[0].pExpr; 1784 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1785 sNC.pSrcList = pS->pSrc; 1786 sNC.pNext = pNC; 1787 sNC.pParse = pNC->pParse; 1788 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1789 break; 1790 } 1791 #endif 1792 } 1793 1794 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1795 if( pzOrigDb ){ 1796 assert( pzOrigTab && pzOrigCol ); 1797 *pzOrigDb = zOrigDb; 1798 *pzOrigTab = zOrigTab; 1799 *pzOrigCol = zOrigCol; 1800 } 1801 #endif 1802 return zType; 1803 } 1804 1805 /* 1806 ** Generate code that will tell the VDBE the declaration types of columns 1807 ** in the result set. 1808 */ 1809 static void generateColumnTypes( 1810 Parse *pParse, /* Parser context */ 1811 SrcList *pTabList, /* List of tables */ 1812 ExprList *pEList /* Expressions defining the result set */ 1813 ){ 1814 #ifndef SQLITE_OMIT_DECLTYPE 1815 Vdbe *v = pParse->pVdbe; 1816 int i; 1817 NameContext sNC; 1818 sNC.pSrcList = pTabList; 1819 sNC.pParse = pParse; 1820 sNC.pNext = 0; 1821 for(i=0; i<pEList->nExpr; i++){ 1822 Expr *p = pEList->a[i].pExpr; 1823 const char *zType; 1824 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1825 const char *zOrigDb = 0; 1826 const char *zOrigTab = 0; 1827 const char *zOrigCol = 0; 1828 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1829 1830 /* The vdbe must make its own copy of the column-type and other 1831 ** column specific strings, in case the schema is reset before this 1832 ** virtual machine is deleted. 1833 */ 1834 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1835 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1836 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1837 #else 1838 zType = columnType(&sNC, p, 0, 0, 0); 1839 #endif 1840 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1841 } 1842 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1843 } 1844 1845 1846 /* 1847 ** Compute the column names for a SELECT statement. 1848 ** 1849 ** The only guarantee that SQLite makes about column names is that if the 1850 ** column has an AS clause assigning it a name, that will be the name used. 1851 ** That is the only documented guarantee. However, countless applications 1852 ** developed over the years have made baseless assumptions about column names 1853 ** and will break if those assumptions changes. Hence, use extreme caution 1854 ** when modifying this routine to avoid breaking legacy. 1855 ** 1856 ** See Also: sqlite3ColumnsFromExprList() 1857 ** 1858 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1859 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1860 ** applications should operate this way. Nevertheless, we need to support the 1861 ** other modes for legacy: 1862 ** 1863 ** short=OFF, full=OFF: Column name is the text of the expression has it 1864 ** originally appears in the SELECT statement. In 1865 ** other words, the zSpan of the result expression. 1866 ** 1867 ** short=ON, full=OFF: (This is the default setting). If the result 1868 ** refers directly to a table column, then the 1869 ** result column name is just the table column 1870 ** name: COLUMN. Otherwise use zSpan. 1871 ** 1872 ** full=ON, short=ANY: If the result refers directly to a table column, 1873 ** then the result column name with the table name 1874 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1875 */ 1876 static void generateColumnNames( 1877 Parse *pParse, /* Parser context */ 1878 Select *pSelect /* Generate column names for this SELECT statement */ 1879 ){ 1880 Vdbe *v = pParse->pVdbe; 1881 int i; 1882 Table *pTab; 1883 SrcList *pTabList; 1884 ExprList *pEList; 1885 sqlite3 *db = pParse->db; 1886 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1887 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1888 1889 #ifndef SQLITE_OMIT_EXPLAIN 1890 /* If this is an EXPLAIN, skip this step */ 1891 if( pParse->explain ){ 1892 return; 1893 } 1894 #endif 1895 1896 if( pParse->colNamesSet ) return; 1897 /* Column names are determined by the left-most term of a compound select */ 1898 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1899 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1900 pTabList = pSelect->pSrc; 1901 pEList = pSelect->pEList; 1902 assert( v!=0 ); 1903 assert( pTabList!=0 ); 1904 pParse->colNamesSet = 1; 1905 fullName = (db->flags & SQLITE_FullColNames)!=0; 1906 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1907 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1908 for(i=0; i<pEList->nExpr; i++){ 1909 Expr *p = pEList->a[i].pExpr; 1910 1911 assert( p!=0 ); 1912 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1913 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1914 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1915 /* An AS clause always takes first priority */ 1916 char *zName = pEList->a[i].zEName; 1917 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1918 }else if( srcName && p->op==TK_COLUMN ){ 1919 char *zCol; 1920 int iCol = p->iColumn; 1921 pTab = p->y.pTab; 1922 assert( pTab!=0 ); 1923 if( iCol<0 ) iCol = pTab->iPKey; 1924 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1925 if( iCol<0 ){ 1926 zCol = "rowid"; 1927 }else{ 1928 zCol = pTab->aCol[iCol].zName; 1929 } 1930 if( fullName ){ 1931 char *zName = 0; 1932 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1933 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1934 }else{ 1935 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1936 } 1937 }else{ 1938 const char *z = pEList->a[i].zEName; 1939 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1940 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1941 } 1942 } 1943 generateColumnTypes(pParse, pTabList, pEList); 1944 } 1945 1946 /* 1947 ** Given an expression list (which is really the list of expressions 1948 ** that form the result set of a SELECT statement) compute appropriate 1949 ** column names for a table that would hold the expression list. 1950 ** 1951 ** All column names will be unique. 1952 ** 1953 ** Only the column names are computed. Column.zType, Column.zColl, 1954 ** and other fields of Column are zeroed. 1955 ** 1956 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1957 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1958 ** 1959 ** The only guarantee that SQLite makes about column names is that if the 1960 ** column has an AS clause assigning it a name, that will be the name used. 1961 ** That is the only documented guarantee. However, countless applications 1962 ** developed over the years have made baseless assumptions about column names 1963 ** and will break if those assumptions changes. Hence, use extreme caution 1964 ** when modifying this routine to avoid breaking legacy. 1965 ** 1966 ** See Also: generateColumnNames() 1967 */ 1968 int sqlite3ColumnsFromExprList( 1969 Parse *pParse, /* Parsing context */ 1970 ExprList *pEList, /* Expr list from which to derive column names */ 1971 i16 *pnCol, /* Write the number of columns here */ 1972 Column **paCol /* Write the new column list here */ 1973 ){ 1974 sqlite3 *db = pParse->db; /* Database connection */ 1975 int i, j; /* Loop counters */ 1976 u32 cnt; /* Index added to make the name unique */ 1977 Column *aCol, *pCol; /* For looping over result columns */ 1978 int nCol; /* Number of columns in the result set */ 1979 char *zName; /* Column name */ 1980 int nName; /* Size of name in zName[] */ 1981 Hash ht; /* Hash table of column names */ 1982 Table *pTab; 1983 1984 sqlite3HashInit(&ht); 1985 if( pEList ){ 1986 nCol = pEList->nExpr; 1987 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1988 testcase( aCol==0 ); 1989 if( nCol>32767 ) nCol = 32767; 1990 }else{ 1991 nCol = 0; 1992 aCol = 0; 1993 } 1994 assert( nCol==(i16)nCol ); 1995 *pnCol = nCol; 1996 *paCol = aCol; 1997 1998 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1999 /* Get an appropriate name for the column 2000 */ 2001 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2002 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2003 }else{ 2004 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2005 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2006 pColExpr = pColExpr->pRight; 2007 assert( pColExpr!=0 ); 2008 } 2009 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2010 /* For columns use the column name name */ 2011 int iCol = pColExpr->iColumn; 2012 if( iCol<0 ) iCol = pTab->iPKey; 2013 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 2014 }else if( pColExpr->op==TK_ID ){ 2015 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2016 zName = pColExpr->u.zToken; 2017 }else{ 2018 /* Use the original text of the column expression as its name */ 2019 zName = pEList->a[i].zEName; 2020 } 2021 } 2022 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2023 zName = sqlite3DbStrDup(db, zName); 2024 }else{ 2025 zName = sqlite3MPrintf(db,"column%d",i+1); 2026 } 2027 2028 /* Make sure the column name is unique. If the name is not unique, 2029 ** append an integer to the name so that it becomes unique. 2030 */ 2031 cnt = 0; 2032 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2033 nName = sqlite3Strlen30(zName); 2034 if( nName>0 ){ 2035 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2036 if( zName[j]==':' ) nName = j; 2037 } 2038 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2039 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2040 } 2041 pCol->zName = zName; 2042 pCol->hName = sqlite3StrIHash(zName); 2043 sqlite3ColumnPropertiesFromName(0, pCol); 2044 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2045 sqlite3OomFault(db); 2046 } 2047 } 2048 sqlite3HashClear(&ht); 2049 if( db->mallocFailed ){ 2050 for(j=0; j<i; j++){ 2051 sqlite3DbFree(db, aCol[j].zName); 2052 } 2053 sqlite3DbFree(db, aCol); 2054 *paCol = 0; 2055 *pnCol = 0; 2056 return SQLITE_NOMEM_BKPT; 2057 } 2058 return SQLITE_OK; 2059 } 2060 2061 /* 2062 ** Add type and collation information to a column list based on 2063 ** a SELECT statement. 2064 ** 2065 ** The column list presumably came from selectColumnNamesFromExprList(). 2066 ** The column list has only names, not types or collations. This 2067 ** routine goes through and adds the types and collations. 2068 ** 2069 ** This routine requires that all identifiers in the SELECT 2070 ** statement be resolved. 2071 */ 2072 void sqlite3SelectAddColumnTypeAndCollation( 2073 Parse *pParse, /* Parsing contexts */ 2074 Table *pTab, /* Add column type information to this table */ 2075 Select *pSelect, /* SELECT used to determine types and collations */ 2076 char aff /* Default affinity for columns */ 2077 ){ 2078 sqlite3 *db = pParse->db; 2079 NameContext sNC; 2080 Column *pCol; 2081 CollSeq *pColl; 2082 int i; 2083 Expr *p; 2084 struct ExprList_item *a; 2085 2086 assert( pSelect!=0 ); 2087 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2088 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2089 if( db->mallocFailed ) return; 2090 memset(&sNC, 0, sizeof(sNC)); 2091 sNC.pSrcList = pSelect->pSrc; 2092 a = pSelect->pEList->a; 2093 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2094 const char *zType; 2095 int n, m; 2096 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2097 p = a[i].pExpr; 2098 zType = columnType(&sNC, p, 0, 0, 0); 2099 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2100 pCol->affinity = sqlite3ExprAffinity(p); 2101 if( zType ){ 2102 m = sqlite3Strlen30(zType); 2103 n = sqlite3Strlen30(pCol->zName); 2104 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2105 if( pCol->zName ){ 2106 memcpy(&pCol->zName[n+1], zType, m+1); 2107 pCol->colFlags |= COLFLAG_HASTYPE; 2108 } 2109 } 2110 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2111 pColl = sqlite3ExprCollSeq(pParse, p); 2112 if( pColl && pCol->zColl==0 ){ 2113 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2114 } 2115 } 2116 pTab->szTabRow = 1; /* Any non-zero value works */ 2117 } 2118 2119 /* 2120 ** Given a SELECT statement, generate a Table structure that describes 2121 ** the result set of that SELECT. 2122 */ 2123 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2124 Table *pTab; 2125 sqlite3 *db = pParse->db; 2126 u64 savedFlags; 2127 2128 savedFlags = db->flags; 2129 db->flags &= ~(u64)SQLITE_FullColNames; 2130 db->flags |= SQLITE_ShortColNames; 2131 sqlite3SelectPrep(pParse, pSelect, 0); 2132 db->flags = savedFlags; 2133 if( pParse->nErr ) return 0; 2134 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2135 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2136 if( pTab==0 ){ 2137 return 0; 2138 } 2139 pTab->nTabRef = 1; 2140 pTab->zName = 0; 2141 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2142 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2143 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2144 pTab->iPKey = -1; 2145 if( db->mallocFailed ){ 2146 sqlite3DeleteTable(db, pTab); 2147 return 0; 2148 } 2149 return pTab; 2150 } 2151 2152 /* 2153 ** Get a VDBE for the given parser context. Create a new one if necessary. 2154 ** If an error occurs, return NULL and leave a message in pParse. 2155 */ 2156 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2157 if( pParse->pVdbe ){ 2158 return pParse->pVdbe; 2159 } 2160 if( pParse->pToplevel==0 2161 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2162 ){ 2163 pParse->okConstFactor = 1; 2164 } 2165 return sqlite3VdbeCreate(pParse); 2166 } 2167 2168 2169 /* 2170 ** Compute the iLimit and iOffset fields of the SELECT based on the 2171 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2172 ** that appear in the original SQL statement after the LIMIT and OFFSET 2173 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2174 ** are the integer memory register numbers for counters used to compute 2175 ** the limit and offset. If there is no limit and/or offset, then 2176 ** iLimit and iOffset are negative. 2177 ** 2178 ** This routine changes the values of iLimit and iOffset only if 2179 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2180 ** and iOffset should have been preset to appropriate default values (zero) 2181 ** prior to calling this routine. 2182 ** 2183 ** The iOffset register (if it exists) is initialized to the value 2184 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2185 ** iOffset+1 is initialized to LIMIT+OFFSET. 2186 ** 2187 ** Only if pLimit->pLeft!=0 do the limit registers get 2188 ** redefined. The UNION ALL operator uses this property to force 2189 ** the reuse of the same limit and offset registers across multiple 2190 ** SELECT statements. 2191 */ 2192 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2193 Vdbe *v = 0; 2194 int iLimit = 0; 2195 int iOffset; 2196 int n; 2197 Expr *pLimit = p->pLimit; 2198 2199 if( p->iLimit ) return; 2200 2201 /* 2202 ** "LIMIT -1" always shows all rows. There is some 2203 ** controversy about what the correct behavior should be. 2204 ** The current implementation interprets "LIMIT 0" to mean 2205 ** no rows. 2206 */ 2207 if( pLimit ){ 2208 assert( pLimit->op==TK_LIMIT ); 2209 assert( pLimit->pLeft!=0 ); 2210 p->iLimit = iLimit = ++pParse->nMem; 2211 v = sqlite3GetVdbe(pParse); 2212 assert( v!=0 ); 2213 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2214 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2215 VdbeComment((v, "LIMIT counter")); 2216 if( n==0 ){ 2217 sqlite3VdbeGoto(v, iBreak); 2218 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2219 p->nSelectRow = sqlite3LogEst((u64)n); 2220 p->selFlags |= SF_FixedLimit; 2221 } 2222 }else{ 2223 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2224 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2225 VdbeComment((v, "LIMIT counter")); 2226 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2227 } 2228 if( pLimit->pRight ){ 2229 p->iOffset = iOffset = ++pParse->nMem; 2230 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2231 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2232 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2233 VdbeComment((v, "OFFSET counter")); 2234 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2235 VdbeComment((v, "LIMIT+OFFSET")); 2236 } 2237 } 2238 } 2239 2240 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2241 /* 2242 ** Return the appropriate collating sequence for the iCol-th column of 2243 ** the result set for the compound-select statement "p". Return NULL if 2244 ** the column has no default collating sequence. 2245 ** 2246 ** The collating sequence for the compound select is taken from the 2247 ** left-most term of the select that has a collating sequence. 2248 */ 2249 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2250 CollSeq *pRet; 2251 if( p->pPrior ){ 2252 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2253 }else{ 2254 pRet = 0; 2255 } 2256 assert( iCol>=0 ); 2257 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2258 ** have been thrown during name resolution and we would not have gotten 2259 ** this far */ 2260 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2261 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2262 } 2263 return pRet; 2264 } 2265 2266 /* 2267 ** The select statement passed as the second parameter is a compound SELECT 2268 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2269 ** structure suitable for implementing the ORDER BY. 2270 ** 2271 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2272 ** function is responsible for ensuring that this structure is eventually 2273 ** freed. 2274 */ 2275 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2276 ExprList *pOrderBy = p->pOrderBy; 2277 int nOrderBy = p->pOrderBy->nExpr; 2278 sqlite3 *db = pParse->db; 2279 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2280 if( pRet ){ 2281 int i; 2282 for(i=0; i<nOrderBy; i++){ 2283 struct ExprList_item *pItem = &pOrderBy->a[i]; 2284 Expr *pTerm = pItem->pExpr; 2285 CollSeq *pColl; 2286 2287 if( pTerm->flags & EP_Collate ){ 2288 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2289 }else{ 2290 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2291 if( pColl==0 ) pColl = db->pDfltColl; 2292 pOrderBy->a[i].pExpr = 2293 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2294 } 2295 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2296 pRet->aColl[i] = pColl; 2297 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2298 } 2299 } 2300 2301 return pRet; 2302 } 2303 2304 #ifndef SQLITE_OMIT_CTE 2305 /* 2306 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2307 ** query of the form: 2308 ** 2309 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2310 ** \___________/ \_______________/ 2311 ** p->pPrior p 2312 ** 2313 ** 2314 ** There is exactly one reference to the recursive-table in the FROM clause 2315 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2316 ** 2317 ** The setup-query runs once to generate an initial set of rows that go 2318 ** into a Queue table. Rows are extracted from the Queue table one by 2319 ** one. Each row extracted from Queue is output to pDest. Then the single 2320 ** extracted row (now in the iCurrent table) becomes the content of the 2321 ** recursive-table for a recursive-query run. The output of the recursive-query 2322 ** is added back into the Queue table. Then another row is extracted from Queue 2323 ** and the iteration continues until the Queue table is empty. 2324 ** 2325 ** If the compound query operator is UNION then no duplicate rows are ever 2326 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2327 ** that have ever been inserted into Queue and causes duplicates to be 2328 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2329 ** 2330 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2331 ** ORDER BY order and the first entry is extracted for each cycle. Without 2332 ** an ORDER BY, the Queue table is just a FIFO. 2333 ** 2334 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2335 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2336 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2337 ** with a positive value, then the first OFFSET outputs are discarded rather 2338 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2339 ** rows have been skipped. 2340 */ 2341 static void generateWithRecursiveQuery( 2342 Parse *pParse, /* Parsing context */ 2343 Select *p, /* The recursive SELECT to be coded */ 2344 SelectDest *pDest /* What to do with query results */ 2345 ){ 2346 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2347 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2348 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2349 Select *pSetup = p->pPrior; /* The setup query */ 2350 Select *pFirstRec; /* Left-most recursive term */ 2351 int addrTop; /* Top of the loop */ 2352 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2353 int iCurrent = 0; /* The Current table */ 2354 int regCurrent; /* Register holding Current table */ 2355 int iQueue; /* The Queue table */ 2356 int iDistinct = 0; /* To ensure unique results if UNION */ 2357 int eDest = SRT_Fifo; /* How to write to Queue */ 2358 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2359 int i; /* Loop counter */ 2360 int rc; /* Result code */ 2361 ExprList *pOrderBy; /* The ORDER BY clause */ 2362 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2363 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2364 2365 #ifndef SQLITE_OMIT_WINDOWFUNC 2366 if( p->pWin ){ 2367 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2368 return; 2369 } 2370 #endif 2371 2372 /* Obtain authorization to do a recursive query */ 2373 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2374 2375 /* Process the LIMIT and OFFSET clauses, if they exist */ 2376 addrBreak = sqlite3VdbeMakeLabel(pParse); 2377 p->nSelectRow = 320; /* 4 billion rows */ 2378 computeLimitRegisters(pParse, p, addrBreak); 2379 pLimit = p->pLimit; 2380 regLimit = p->iLimit; 2381 regOffset = p->iOffset; 2382 p->pLimit = 0; 2383 p->iLimit = p->iOffset = 0; 2384 pOrderBy = p->pOrderBy; 2385 2386 /* Locate the cursor number of the Current table */ 2387 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2388 if( pSrc->a[i].fg.isRecursive ){ 2389 iCurrent = pSrc->a[i].iCursor; 2390 break; 2391 } 2392 } 2393 2394 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2395 ** the Distinct table must be exactly one greater than Queue in order 2396 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2397 iQueue = pParse->nTab++; 2398 if( p->op==TK_UNION ){ 2399 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2400 iDistinct = pParse->nTab++; 2401 }else{ 2402 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2403 } 2404 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2405 2406 /* Allocate cursors for Current, Queue, and Distinct. */ 2407 regCurrent = ++pParse->nMem; 2408 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2409 if( pOrderBy ){ 2410 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2411 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2412 (char*)pKeyInfo, P4_KEYINFO); 2413 destQueue.pOrderBy = pOrderBy; 2414 }else{ 2415 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2416 } 2417 VdbeComment((v, "Queue table")); 2418 if( iDistinct ){ 2419 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2420 p->selFlags |= SF_UsesEphemeral; 2421 } 2422 2423 /* Detach the ORDER BY clause from the compound SELECT */ 2424 p->pOrderBy = 0; 2425 2426 /* Figure out how many elements of the compound SELECT are part of the 2427 ** recursive query. Make sure no recursive elements use aggregate 2428 ** functions. Mark the recursive elements as UNION ALL even if they 2429 ** are really UNION because the distinctness will be enforced by the 2430 ** iDistinct table. pFirstRec is left pointing to the left-most 2431 ** recursive term of the CTE. 2432 */ 2433 pFirstRec = p; 2434 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2435 if( pFirstRec->selFlags & SF_Aggregate ){ 2436 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2437 goto end_of_recursive_query; 2438 } 2439 pFirstRec->op = TK_ALL; 2440 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2441 } 2442 2443 /* Store the results of the setup-query in Queue. */ 2444 pSetup = pFirstRec->pPrior; 2445 pSetup->pNext = 0; 2446 ExplainQueryPlan((pParse, 1, "SETUP")); 2447 rc = sqlite3Select(pParse, pSetup, &destQueue); 2448 pSetup->pNext = p; 2449 if( rc ) goto end_of_recursive_query; 2450 2451 /* Find the next row in the Queue and output that row */ 2452 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2453 2454 /* Transfer the next row in Queue over to Current */ 2455 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2456 if( pOrderBy ){ 2457 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2458 }else{ 2459 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2460 } 2461 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2462 2463 /* Output the single row in Current */ 2464 addrCont = sqlite3VdbeMakeLabel(pParse); 2465 codeOffset(v, regOffset, addrCont); 2466 selectInnerLoop(pParse, p, iCurrent, 2467 0, 0, pDest, addrCont, addrBreak); 2468 if( regLimit ){ 2469 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2470 VdbeCoverage(v); 2471 } 2472 sqlite3VdbeResolveLabel(v, addrCont); 2473 2474 /* Execute the recursive SELECT taking the single row in Current as 2475 ** the value for the recursive-table. Store the results in the Queue. 2476 */ 2477 pFirstRec->pPrior = 0; 2478 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2479 sqlite3Select(pParse, p, &destQueue); 2480 assert( pFirstRec->pPrior==0 ); 2481 pFirstRec->pPrior = pSetup; 2482 2483 /* Keep running the loop until the Queue is empty */ 2484 sqlite3VdbeGoto(v, addrTop); 2485 sqlite3VdbeResolveLabel(v, addrBreak); 2486 2487 end_of_recursive_query: 2488 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2489 p->pOrderBy = pOrderBy; 2490 p->pLimit = pLimit; 2491 return; 2492 } 2493 #endif /* SQLITE_OMIT_CTE */ 2494 2495 /* Forward references */ 2496 static int multiSelectOrderBy( 2497 Parse *pParse, /* Parsing context */ 2498 Select *p, /* The right-most of SELECTs to be coded */ 2499 SelectDest *pDest /* What to do with query results */ 2500 ); 2501 2502 /* 2503 ** Handle the special case of a compound-select that originates from a 2504 ** VALUES clause. By handling this as a special case, we avoid deep 2505 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2506 ** on a VALUES clause. 2507 ** 2508 ** Because the Select object originates from a VALUES clause: 2509 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2510 ** (2) All terms are UNION ALL 2511 ** (3) There is no ORDER BY clause 2512 ** 2513 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2514 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2515 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2516 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2517 */ 2518 static int multiSelectValues( 2519 Parse *pParse, /* Parsing context */ 2520 Select *p, /* The right-most of SELECTs to be coded */ 2521 SelectDest *pDest /* What to do with query results */ 2522 ){ 2523 int nRow = 1; 2524 int rc = 0; 2525 int bShowAll = p->pLimit==0; 2526 assert( p->selFlags & SF_MultiValue ); 2527 do{ 2528 assert( p->selFlags & SF_Values ); 2529 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2530 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2531 #ifndef SQLITE_OMIT_WINDOWFUNC 2532 if( p->pWin ) return -1; 2533 #endif 2534 if( p->pPrior==0 ) break; 2535 assert( p->pPrior->pNext==p ); 2536 p = p->pPrior; 2537 nRow += bShowAll; 2538 }while(1); 2539 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2540 nRow==1 ? "" : "S")); 2541 while( p ){ 2542 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2543 if( !bShowAll ) break; 2544 p->nSelectRow = nRow; 2545 p = p->pNext; 2546 } 2547 return rc; 2548 } 2549 2550 /* 2551 ** Return true if the SELECT statement which is known to be the recursive 2552 ** part of a recursive CTE still has its anchor terms attached. If the 2553 ** anchor terms have already been removed, then return false. 2554 */ 2555 static int hasAnchor(Select *p){ 2556 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2557 return p!=0; 2558 } 2559 2560 /* 2561 ** This routine is called to process a compound query form from 2562 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2563 ** INTERSECT 2564 ** 2565 ** "p" points to the right-most of the two queries. the query on the 2566 ** left is p->pPrior. The left query could also be a compound query 2567 ** in which case this routine will be called recursively. 2568 ** 2569 ** The results of the total query are to be written into a destination 2570 ** of type eDest with parameter iParm. 2571 ** 2572 ** Example 1: Consider a three-way compound SQL statement. 2573 ** 2574 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2575 ** 2576 ** This statement is parsed up as follows: 2577 ** 2578 ** SELECT c FROM t3 2579 ** | 2580 ** `-----> SELECT b FROM t2 2581 ** | 2582 ** `------> SELECT a FROM t1 2583 ** 2584 ** The arrows in the diagram above represent the Select.pPrior pointer. 2585 ** So if this routine is called with p equal to the t3 query, then 2586 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2587 ** 2588 ** Notice that because of the way SQLite parses compound SELECTs, the 2589 ** individual selects always group from left to right. 2590 */ 2591 static int multiSelect( 2592 Parse *pParse, /* Parsing context */ 2593 Select *p, /* The right-most of SELECTs to be coded */ 2594 SelectDest *pDest /* What to do with query results */ 2595 ){ 2596 int rc = SQLITE_OK; /* Success code from a subroutine */ 2597 Select *pPrior; /* Another SELECT immediately to our left */ 2598 Vdbe *v; /* Generate code to this VDBE */ 2599 SelectDest dest; /* Alternative data destination */ 2600 Select *pDelete = 0; /* Chain of simple selects to delete */ 2601 sqlite3 *db; /* Database connection */ 2602 2603 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2604 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2605 */ 2606 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2607 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2608 assert( p->selFlags & SF_Compound ); 2609 db = pParse->db; 2610 pPrior = p->pPrior; 2611 dest = *pDest; 2612 assert( pPrior->pOrderBy==0 ); 2613 assert( pPrior->pLimit==0 ); 2614 2615 v = sqlite3GetVdbe(pParse); 2616 assert( v!=0 ); /* The VDBE already created by calling function */ 2617 2618 /* Create the destination temporary table if necessary 2619 */ 2620 if( dest.eDest==SRT_EphemTab ){ 2621 assert( p->pEList ); 2622 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2623 dest.eDest = SRT_Table; 2624 } 2625 2626 /* Special handling for a compound-select that originates as a VALUES clause. 2627 */ 2628 if( p->selFlags & SF_MultiValue ){ 2629 rc = multiSelectValues(pParse, p, &dest); 2630 if( rc>=0 ) goto multi_select_end; 2631 rc = SQLITE_OK; 2632 } 2633 2634 /* Make sure all SELECTs in the statement have the same number of elements 2635 ** in their result sets. 2636 */ 2637 assert( p->pEList && pPrior->pEList ); 2638 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2639 2640 #ifndef SQLITE_OMIT_CTE 2641 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2642 generateWithRecursiveQuery(pParse, p, &dest); 2643 }else 2644 #endif 2645 2646 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2647 */ 2648 if( p->pOrderBy ){ 2649 return multiSelectOrderBy(pParse, p, pDest); 2650 }else{ 2651 2652 #ifndef SQLITE_OMIT_EXPLAIN 2653 if( pPrior->pPrior==0 ){ 2654 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2655 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2656 } 2657 #endif 2658 2659 /* Generate code for the left and right SELECT statements. 2660 */ 2661 switch( p->op ){ 2662 case TK_ALL: { 2663 int addr = 0; 2664 int nLimit; 2665 assert( !pPrior->pLimit ); 2666 pPrior->iLimit = p->iLimit; 2667 pPrior->iOffset = p->iOffset; 2668 pPrior->pLimit = p->pLimit; 2669 rc = sqlite3Select(pParse, pPrior, &dest); 2670 pPrior->pLimit = 0; 2671 if( rc ){ 2672 goto multi_select_end; 2673 } 2674 p->pPrior = 0; 2675 p->iLimit = pPrior->iLimit; 2676 p->iOffset = pPrior->iOffset; 2677 if( p->iLimit ){ 2678 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2679 VdbeComment((v, "Jump ahead if LIMIT reached")); 2680 if( p->iOffset ){ 2681 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2682 p->iLimit, p->iOffset+1, p->iOffset); 2683 } 2684 } 2685 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2686 rc = sqlite3Select(pParse, p, &dest); 2687 testcase( rc!=SQLITE_OK ); 2688 pDelete = p->pPrior; 2689 p->pPrior = pPrior; 2690 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2691 if( p->pLimit 2692 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2693 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2694 ){ 2695 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2696 } 2697 if( addr ){ 2698 sqlite3VdbeJumpHere(v, addr); 2699 } 2700 break; 2701 } 2702 case TK_EXCEPT: 2703 case TK_UNION: { 2704 int unionTab; /* Cursor number of the temp table holding result */ 2705 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2706 int priorOp; /* The SRT_ operation to apply to prior selects */ 2707 Expr *pLimit; /* Saved values of p->nLimit */ 2708 int addr; 2709 SelectDest uniondest; 2710 2711 testcase( p->op==TK_EXCEPT ); 2712 testcase( p->op==TK_UNION ); 2713 priorOp = SRT_Union; 2714 if( dest.eDest==priorOp ){ 2715 /* We can reuse a temporary table generated by a SELECT to our 2716 ** right. 2717 */ 2718 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2719 unionTab = dest.iSDParm; 2720 }else{ 2721 /* We will need to create our own temporary table to hold the 2722 ** intermediate results. 2723 */ 2724 unionTab = pParse->nTab++; 2725 assert( p->pOrderBy==0 ); 2726 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2727 assert( p->addrOpenEphm[0] == -1 ); 2728 p->addrOpenEphm[0] = addr; 2729 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2730 assert( p->pEList ); 2731 } 2732 2733 2734 /* Code the SELECT statements to our left 2735 */ 2736 assert( !pPrior->pOrderBy ); 2737 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2738 rc = sqlite3Select(pParse, pPrior, &uniondest); 2739 if( rc ){ 2740 goto multi_select_end; 2741 } 2742 2743 /* Code the current SELECT statement 2744 */ 2745 if( p->op==TK_EXCEPT ){ 2746 op = SRT_Except; 2747 }else{ 2748 assert( p->op==TK_UNION ); 2749 op = SRT_Union; 2750 } 2751 p->pPrior = 0; 2752 pLimit = p->pLimit; 2753 p->pLimit = 0; 2754 uniondest.eDest = op; 2755 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2756 sqlite3SelectOpName(p->op))); 2757 rc = sqlite3Select(pParse, p, &uniondest); 2758 testcase( rc!=SQLITE_OK ); 2759 assert( p->pOrderBy==0 ); 2760 pDelete = p->pPrior; 2761 p->pPrior = pPrior; 2762 p->pOrderBy = 0; 2763 if( p->op==TK_UNION ){ 2764 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2765 } 2766 sqlite3ExprDelete(db, p->pLimit); 2767 p->pLimit = pLimit; 2768 p->iLimit = 0; 2769 p->iOffset = 0; 2770 2771 /* Convert the data in the temporary table into whatever form 2772 ** it is that we currently need. 2773 */ 2774 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2775 assert( p->pEList || db->mallocFailed ); 2776 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2777 int iCont, iBreak, iStart; 2778 iBreak = sqlite3VdbeMakeLabel(pParse); 2779 iCont = sqlite3VdbeMakeLabel(pParse); 2780 computeLimitRegisters(pParse, p, iBreak); 2781 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2782 iStart = sqlite3VdbeCurrentAddr(v); 2783 selectInnerLoop(pParse, p, unionTab, 2784 0, 0, &dest, iCont, iBreak); 2785 sqlite3VdbeResolveLabel(v, iCont); 2786 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2787 sqlite3VdbeResolveLabel(v, iBreak); 2788 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2789 } 2790 break; 2791 } 2792 default: assert( p->op==TK_INTERSECT ); { 2793 int tab1, tab2; 2794 int iCont, iBreak, iStart; 2795 Expr *pLimit; 2796 int addr; 2797 SelectDest intersectdest; 2798 int r1; 2799 2800 /* INTERSECT is different from the others since it requires 2801 ** two temporary tables. Hence it has its own case. Begin 2802 ** by allocating the tables we will need. 2803 */ 2804 tab1 = pParse->nTab++; 2805 tab2 = pParse->nTab++; 2806 assert( p->pOrderBy==0 ); 2807 2808 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2809 assert( p->addrOpenEphm[0] == -1 ); 2810 p->addrOpenEphm[0] = addr; 2811 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2812 assert( p->pEList ); 2813 2814 /* Code the SELECTs to our left into temporary table "tab1". 2815 */ 2816 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2817 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2818 if( rc ){ 2819 goto multi_select_end; 2820 } 2821 2822 /* Code the current SELECT into temporary table "tab2" 2823 */ 2824 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2825 assert( p->addrOpenEphm[1] == -1 ); 2826 p->addrOpenEphm[1] = addr; 2827 p->pPrior = 0; 2828 pLimit = p->pLimit; 2829 p->pLimit = 0; 2830 intersectdest.iSDParm = tab2; 2831 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2832 sqlite3SelectOpName(p->op))); 2833 rc = sqlite3Select(pParse, p, &intersectdest); 2834 testcase( rc!=SQLITE_OK ); 2835 pDelete = p->pPrior; 2836 p->pPrior = pPrior; 2837 if( p->nSelectRow>pPrior->nSelectRow ){ 2838 p->nSelectRow = pPrior->nSelectRow; 2839 } 2840 sqlite3ExprDelete(db, p->pLimit); 2841 p->pLimit = pLimit; 2842 2843 /* Generate code to take the intersection of the two temporary 2844 ** tables. 2845 */ 2846 if( rc ) break; 2847 assert( p->pEList ); 2848 iBreak = sqlite3VdbeMakeLabel(pParse); 2849 iCont = sqlite3VdbeMakeLabel(pParse); 2850 computeLimitRegisters(pParse, p, iBreak); 2851 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2852 r1 = sqlite3GetTempReg(pParse); 2853 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2854 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2855 VdbeCoverage(v); 2856 sqlite3ReleaseTempReg(pParse, r1); 2857 selectInnerLoop(pParse, p, tab1, 2858 0, 0, &dest, iCont, iBreak); 2859 sqlite3VdbeResolveLabel(v, iCont); 2860 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2861 sqlite3VdbeResolveLabel(v, iBreak); 2862 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2863 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2864 break; 2865 } 2866 } 2867 2868 #ifndef SQLITE_OMIT_EXPLAIN 2869 if( p->pNext==0 ){ 2870 ExplainQueryPlanPop(pParse); 2871 } 2872 #endif 2873 } 2874 if( pParse->nErr ) goto multi_select_end; 2875 2876 /* Compute collating sequences used by 2877 ** temporary tables needed to implement the compound select. 2878 ** Attach the KeyInfo structure to all temporary tables. 2879 ** 2880 ** This section is run by the right-most SELECT statement only. 2881 ** SELECT statements to the left always skip this part. The right-most 2882 ** SELECT might also skip this part if it has no ORDER BY clause and 2883 ** no temp tables are required. 2884 */ 2885 if( p->selFlags & SF_UsesEphemeral ){ 2886 int i; /* Loop counter */ 2887 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2888 Select *pLoop; /* For looping through SELECT statements */ 2889 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2890 int nCol; /* Number of columns in result set */ 2891 2892 assert( p->pNext==0 ); 2893 nCol = p->pEList->nExpr; 2894 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2895 if( !pKeyInfo ){ 2896 rc = SQLITE_NOMEM_BKPT; 2897 goto multi_select_end; 2898 } 2899 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2900 *apColl = multiSelectCollSeq(pParse, p, i); 2901 if( 0==*apColl ){ 2902 *apColl = db->pDfltColl; 2903 } 2904 } 2905 2906 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2907 for(i=0; i<2; i++){ 2908 int addr = pLoop->addrOpenEphm[i]; 2909 if( addr<0 ){ 2910 /* If [0] is unused then [1] is also unused. So we can 2911 ** always safely abort as soon as the first unused slot is found */ 2912 assert( pLoop->addrOpenEphm[1]<0 ); 2913 break; 2914 } 2915 sqlite3VdbeChangeP2(v, addr, nCol); 2916 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2917 P4_KEYINFO); 2918 pLoop->addrOpenEphm[i] = -1; 2919 } 2920 } 2921 sqlite3KeyInfoUnref(pKeyInfo); 2922 } 2923 2924 multi_select_end: 2925 pDest->iSdst = dest.iSdst; 2926 pDest->nSdst = dest.nSdst; 2927 sqlite3SelectDelete(db, pDelete); 2928 return rc; 2929 } 2930 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2931 2932 /* 2933 ** Error message for when two or more terms of a compound select have different 2934 ** size result sets. 2935 */ 2936 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2937 if( p->selFlags & SF_Values ){ 2938 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2939 }else{ 2940 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2941 " do not have the same number of result columns", 2942 sqlite3SelectOpName(p->op)); 2943 } 2944 } 2945 2946 /* 2947 ** Code an output subroutine for a coroutine implementation of a 2948 ** SELECT statment. 2949 ** 2950 ** The data to be output is contained in pIn->iSdst. There are 2951 ** pIn->nSdst columns to be output. pDest is where the output should 2952 ** be sent. 2953 ** 2954 ** regReturn is the number of the register holding the subroutine 2955 ** return address. 2956 ** 2957 ** If regPrev>0 then it is the first register in a vector that 2958 ** records the previous output. mem[regPrev] is a flag that is false 2959 ** if there has been no previous output. If regPrev>0 then code is 2960 ** generated to suppress duplicates. pKeyInfo is used for comparing 2961 ** keys. 2962 ** 2963 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2964 ** iBreak. 2965 */ 2966 static int generateOutputSubroutine( 2967 Parse *pParse, /* Parsing context */ 2968 Select *p, /* The SELECT statement */ 2969 SelectDest *pIn, /* Coroutine supplying data */ 2970 SelectDest *pDest, /* Where to send the data */ 2971 int regReturn, /* The return address register */ 2972 int regPrev, /* Previous result register. No uniqueness if 0 */ 2973 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2974 int iBreak /* Jump here if we hit the LIMIT */ 2975 ){ 2976 Vdbe *v = pParse->pVdbe; 2977 int iContinue; 2978 int addr; 2979 2980 addr = sqlite3VdbeCurrentAddr(v); 2981 iContinue = sqlite3VdbeMakeLabel(pParse); 2982 2983 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2984 */ 2985 if( regPrev ){ 2986 int addr1, addr2; 2987 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2988 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2989 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2990 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2991 sqlite3VdbeJumpHere(v, addr1); 2992 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2993 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2994 } 2995 if( pParse->db->mallocFailed ) return 0; 2996 2997 /* Suppress the first OFFSET entries if there is an OFFSET clause 2998 */ 2999 codeOffset(v, p->iOffset, iContinue); 3000 3001 assert( pDest->eDest!=SRT_Exists ); 3002 assert( pDest->eDest!=SRT_Table ); 3003 switch( pDest->eDest ){ 3004 /* Store the result as data using a unique key. 3005 */ 3006 case SRT_EphemTab: { 3007 int r1 = sqlite3GetTempReg(pParse); 3008 int r2 = sqlite3GetTempReg(pParse); 3009 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3010 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3011 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3012 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3013 sqlite3ReleaseTempReg(pParse, r2); 3014 sqlite3ReleaseTempReg(pParse, r1); 3015 break; 3016 } 3017 3018 #ifndef SQLITE_OMIT_SUBQUERY 3019 /* If we are creating a set for an "expr IN (SELECT ...)". 3020 */ 3021 case SRT_Set: { 3022 int r1; 3023 testcase( pIn->nSdst>1 ); 3024 r1 = sqlite3GetTempReg(pParse); 3025 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3026 r1, pDest->zAffSdst, pIn->nSdst); 3027 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3028 pIn->iSdst, pIn->nSdst); 3029 sqlite3ReleaseTempReg(pParse, r1); 3030 break; 3031 } 3032 3033 /* If this is a scalar select that is part of an expression, then 3034 ** store the results in the appropriate memory cell and break out 3035 ** of the scan loop. Note that the select might return multiple columns 3036 ** if it is the RHS of a row-value IN operator. 3037 */ 3038 case SRT_Mem: { 3039 testcase( pIn->nSdst>1 ); 3040 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3041 /* The LIMIT clause will jump out of the loop for us */ 3042 break; 3043 } 3044 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3045 3046 /* The results are stored in a sequence of registers 3047 ** starting at pDest->iSdst. Then the co-routine yields. 3048 */ 3049 case SRT_Coroutine: { 3050 if( pDest->iSdst==0 ){ 3051 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3052 pDest->nSdst = pIn->nSdst; 3053 } 3054 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3055 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3056 break; 3057 } 3058 3059 /* If none of the above, then the result destination must be 3060 ** SRT_Output. This routine is never called with any other 3061 ** destination other than the ones handled above or SRT_Output. 3062 ** 3063 ** For SRT_Output, results are stored in a sequence of registers. 3064 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3065 ** return the next row of result. 3066 */ 3067 default: { 3068 assert( pDest->eDest==SRT_Output ); 3069 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3070 break; 3071 } 3072 } 3073 3074 /* Jump to the end of the loop if the LIMIT is reached. 3075 */ 3076 if( p->iLimit ){ 3077 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3078 } 3079 3080 /* Generate the subroutine return 3081 */ 3082 sqlite3VdbeResolveLabel(v, iContinue); 3083 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3084 3085 return addr; 3086 } 3087 3088 /* 3089 ** Alternative compound select code generator for cases when there 3090 ** is an ORDER BY clause. 3091 ** 3092 ** We assume a query of the following form: 3093 ** 3094 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3095 ** 3096 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3097 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3098 ** co-routines. Then run the co-routines in parallel and merge the results 3099 ** into the output. In addition to the two coroutines (called selectA and 3100 ** selectB) there are 7 subroutines: 3101 ** 3102 ** outA: Move the output of the selectA coroutine into the output 3103 ** of the compound query. 3104 ** 3105 ** outB: Move the output of the selectB coroutine into the output 3106 ** of the compound query. (Only generated for UNION and 3107 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3108 ** appears only in B.) 3109 ** 3110 ** AltB: Called when there is data from both coroutines and A<B. 3111 ** 3112 ** AeqB: Called when there is data from both coroutines and A==B. 3113 ** 3114 ** AgtB: Called when there is data from both coroutines and A>B. 3115 ** 3116 ** EofA: Called when data is exhausted from selectA. 3117 ** 3118 ** EofB: Called when data is exhausted from selectB. 3119 ** 3120 ** The implementation of the latter five subroutines depend on which 3121 ** <operator> is used: 3122 ** 3123 ** 3124 ** UNION ALL UNION EXCEPT INTERSECT 3125 ** ------------- ----------------- -------------- ----------------- 3126 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3127 ** 3128 ** AeqB: outA, nextA nextA nextA outA, nextA 3129 ** 3130 ** AgtB: outB, nextB outB, nextB nextB nextB 3131 ** 3132 ** EofA: outB, nextB outB, nextB halt halt 3133 ** 3134 ** EofB: outA, nextA outA, nextA outA, nextA halt 3135 ** 3136 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3137 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3138 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3139 ** following nextX causes a jump to the end of the select processing. 3140 ** 3141 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3142 ** within the output subroutine. The regPrev register set holds the previously 3143 ** output value. A comparison is made against this value and the output 3144 ** is skipped if the next results would be the same as the previous. 3145 ** 3146 ** The implementation plan is to implement the two coroutines and seven 3147 ** subroutines first, then put the control logic at the bottom. Like this: 3148 ** 3149 ** goto Init 3150 ** coA: coroutine for left query (A) 3151 ** coB: coroutine for right query (B) 3152 ** outA: output one row of A 3153 ** outB: output one row of B (UNION and UNION ALL only) 3154 ** EofA: ... 3155 ** EofB: ... 3156 ** AltB: ... 3157 ** AeqB: ... 3158 ** AgtB: ... 3159 ** Init: initialize coroutine registers 3160 ** yield coA 3161 ** if eof(A) goto EofA 3162 ** yield coB 3163 ** if eof(B) goto EofB 3164 ** Cmpr: Compare A, B 3165 ** Jump AltB, AeqB, AgtB 3166 ** End: ... 3167 ** 3168 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3169 ** actually called using Gosub and they do not Return. EofA and EofB loop 3170 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3171 ** and AgtB jump to either L2 or to one of EofA or EofB. 3172 */ 3173 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3174 static int multiSelectOrderBy( 3175 Parse *pParse, /* Parsing context */ 3176 Select *p, /* The right-most of SELECTs to be coded */ 3177 SelectDest *pDest /* What to do with query results */ 3178 ){ 3179 int i, j; /* Loop counters */ 3180 Select *pPrior; /* Another SELECT immediately to our left */ 3181 Vdbe *v; /* Generate code to this VDBE */ 3182 SelectDest destA; /* Destination for coroutine A */ 3183 SelectDest destB; /* Destination for coroutine B */ 3184 int regAddrA; /* Address register for select-A coroutine */ 3185 int regAddrB; /* Address register for select-B coroutine */ 3186 int addrSelectA; /* Address of the select-A coroutine */ 3187 int addrSelectB; /* Address of the select-B coroutine */ 3188 int regOutA; /* Address register for the output-A subroutine */ 3189 int regOutB; /* Address register for the output-B subroutine */ 3190 int addrOutA; /* Address of the output-A subroutine */ 3191 int addrOutB = 0; /* Address of the output-B subroutine */ 3192 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3193 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3194 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3195 int addrAltB; /* Address of the A<B subroutine */ 3196 int addrAeqB; /* Address of the A==B subroutine */ 3197 int addrAgtB; /* Address of the A>B subroutine */ 3198 int regLimitA; /* Limit register for select-A */ 3199 int regLimitB; /* Limit register for select-A */ 3200 int regPrev; /* A range of registers to hold previous output */ 3201 int savedLimit; /* Saved value of p->iLimit */ 3202 int savedOffset; /* Saved value of p->iOffset */ 3203 int labelCmpr; /* Label for the start of the merge algorithm */ 3204 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3205 int addr1; /* Jump instructions that get retargetted */ 3206 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3207 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3208 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3209 sqlite3 *db; /* Database connection */ 3210 ExprList *pOrderBy; /* The ORDER BY clause */ 3211 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3212 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3213 3214 assert( p->pOrderBy!=0 ); 3215 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3216 db = pParse->db; 3217 v = pParse->pVdbe; 3218 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3219 labelEnd = sqlite3VdbeMakeLabel(pParse); 3220 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3221 3222 3223 /* Patch up the ORDER BY clause 3224 */ 3225 op = p->op; 3226 pPrior = p->pPrior; 3227 assert( pPrior->pOrderBy==0 ); 3228 pOrderBy = p->pOrderBy; 3229 assert( pOrderBy ); 3230 nOrderBy = pOrderBy->nExpr; 3231 3232 /* For operators other than UNION ALL we have to make sure that 3233 ** the ORDER BY clause covers every term of the result set. Add 3234 ** terms to the ORDER BY clause as necessary. 3235 */ 3236 if( op!=TK_ALL ){ 3237 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3238 struct ExprList_item *pItem; 3239 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3240 assert( pItem->u.x.iOrderByCol>0 ); 3241 if( pItem->u.x.iOrderByCol==i ) break; 3242 } 3243 if( j==nOrderBy ){ 3244 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3245 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3246 pNew->flags |= EP_IntValue; 3247 pNew->u.iValue = i; 3248 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3249 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3250 } 3251 } 3252 } 3253 3254 /* Compute the comparison permutation and keyinfo that is used with 3255 ** the permutation used to determine if the next 3256 ** row of results comes from selectA or selectB. Also add explicit 3257 ** collations to the ORDER BY clause terms so that when the subqueries 3258 ** to the right and the left are evaluated, they use the correct 3259 ** collation. 3260 */ 3261 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3262 if( aPermute ){ 3263 struct ExprList_item *pItem; 3264 aPermute[0] = nOrderBy; 3265 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3266 assert( pItem->u.x.iOrderByCol>0 ); 3267 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3268 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3269 } 3270 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3271 }else{ 3272 pKeyMerge = 0; 3273 } 3274 3275 /* Reattach the ORDER BY clause to the query. 3276 */ 3277 p->pOrderBy = pOrderBy; 3278 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3279 3280 /* Allocate a range of temporary registers and the KeyInfo needed 3281 ** for the logic that removes duplicate result rows when the 3282 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3283 */ 3284 if( op==TK_ALL ){ 3285 regPrev = 0; 3286 }else{ 3287 int nExpr = p->pEList->nExpr; 3288 assert( nOrderBy>=nExpr || db->mallocFailed ); 3289 regPrev = pParse->nMem+1; 3290 pParse->nMem += nExpr+1; 3291 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3292 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3293 if( pKeyDup ){ 3294 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3295 for(i=0; i<nExpr; i++){ 3296 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3297 pKeyDup->aSortFlags[i] = 0; 3298 } 3299 } 3300 } 3301 3302 /* Separate the left and the right query from one another 3303 */ 3304 p->pPrior = 0; 3305 pPrior->pNext = 0; 3306 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3307 if( pPrior->pPrior==0 ){ 3308 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3309 } 3310 3311 /* Compute the limit registers */ 3312 computeLimitRegisters(pParse, p, labelEnd); 3313 if( p->iLimit && op==TK_ALL ){ 3314 regLimitA = ++pParse->nMem; 3315 regLimitB = ++pParse->nMem; 3316 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3317 regLimitA); 3318 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3319 }else{ 3320 regLimitA = regLimitB = 0; 3321 } 3322 sqlite3ExprDelete(db, p->pLimit); 3323 p->pLimit = 0; 3324 3325 regAddrA = ++pParse->nMem; 3326 regAddrB = ++pParse->nMem; 3327 regOutA = ++pParse->nMem; 3328 regOutB = ++pParse->nMem; 3329 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3330 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3331 3332 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3333 3334 /* Generate a coroutine to evaluate the SELECT statement to the 3335 ** left of the compound operator - the "A" select. 3336 */ 3337 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3338 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3339 VdbeComment((v, "left SELECT")); 3340 pPrior->iLimit = regLimitA; 3341 ExplainQueryPlan((pParse, 1, "LEFT")); 3342 sqlite3Select(pParse, pPrior, &destA); 3343 sqlite3VdbeEndCoroutine(v, regAddrA); 3344 sqlite3VdbeJumpHere(v, addr1); 3345 3346 /* Generate a coroutine to evaluate the SELECT statement on 3347 ** the right - the "B" select 3348 */ 3349 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3350 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3351 VdbeComment((v, "right SELECT")); 3352 savedLimit = p->iLimit; 3353 savedOffset = p->iOffset; 3354 p->iLimit = regLimitB; 3355 p->iOffset = 0; 3356 ExplainQueryPlan((pParse, 1, "RIGHT")); 3357 sqlite3Select(pParse, p, &destB); 3358 p->iLimit = savedLimit; 3359 p->iOffset = savedOffset; 3360 sqlite3VdbeEndCoroutine(v, regAddrB); 3361 3362 /* Generate a subroutine that outputs the current row of the A 3363 ** select as the next output row of the compound select. 3364 */ 3365 VdbeNoopComment((v, "Output routine for A")); 3366 addrOutA = generateOutputSubroutine(pParse, 3367 p, &destA, pDest, regOutA, 3368 regPrev, pKeyDup, labelEnd); 3369 3370 /* Generate a subroutine that outputs the current row of the B 3371 ** select as the next output row of the compound select. 3372 */ 3373 if( op==TK_ALL || op==TK_UNION ){ 3374 VdbeNoopComment((v, "Output routine for B")); 3375 addrOutB = generateOutputSubroutine(pParse, 3376 p, &destB, pDest, regOutB, 3377 regPrev, pKeyDup, labelEnd); 3378 } 3379 sqlite3KeyInfoUnref(pKeyDup); 3380 3381 /* Generate a subroutine to run when the results from select A 3382 ** are exhausted and only data in select B remains. 3383 */ 3384 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3385 addrEofA_noB = addrEofA = labelEnd; 3386 }else{ 3387 VdbeNoopComment((v, "eof-A subroutine")); 3388 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3389 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3390 VdbeCoverage(v); 3391 sqlite3VdbeGoto(v, addrEofA); 3392 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3393 } 3394 3395 /* Generate a subroutine to run when the results from select B 3396 ** are exhausted and only data in select A remains. 3397 */ 3398 if( op==TK_INTERSECT ){ 3399 addrEofB = addrEofA; 3400 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3401 }else{ 3402 VdbeNoopComment((v, "eof-B subroutine")); 3403 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3404 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3405 sqlite3VdbeGoto(v, addrEofB); 3406 } 3407 3408 /* Generate code to handle the case of A<B 3409 */ 3410 VdbeNoopComment((v, "A-lt-B subroutine")); 3411 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3412 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3413 sqlite3VdbeGoto(v, labelCmpr); 3414 3415 /* Generate code to handle the case of A==B 3416 */ 3417 if( op==TK_ALL ){ 3418 addrAeqB = addrAltB; 3419 }else if( op==TK_INTERSECT ){ 3420 addrAeqB = addrAltB; 3421 addrAltB++; 3422 }else{ 3423 VdbeNoopComment((v, "A-eq-B subroutine")); 3424 addrAeqB = 3425 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3426 sqlite3VdbeGoto(v, labelCmpr); 3427 } 3428 3429 /* Generate code to handle the case of A>B 3430 */ 3431 VdbeNoopComment((v, "A-gt-B subroutine")); 3432 addrAgtB = sqlite3VdbeCurrentAddr(v); 3433 if( op==TK_ALL || op==TK_UNION ){ 3434 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3435 } 3436 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3437 sqlite3VdbeGoto(v, labelCmpr); 3438 3439 /* This code runs once to initialize everything. 3440 */ 3441 sqlite3VdbeJumpHere(v, addr1); 3442 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3443 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3444 3445 /* Implement the main merge loop 3446 */ 3447 sqlite3VdbeResolveLabel(v, labelCmpr); 3448 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3449 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3450 (char*)pKeyMerge, P4_KEYINFO); 3451 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3452 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3453 3454 /* Jump to the this point in order to terminate the query. 3455 */ 3456 sqlite3VdbeResolveLabel(v, labelEnd); 3457 3458 /* Reassembly the compound query so that it will be freed correctly 3459 ** by the calling function */ 3460 if( p->pPrior ){ 3461 sqlite3SelectDelete(db, p->pPrior); 3462 } 3463 p->pPrior = pPrior; 3464 pPrior->pNext = p; 3465 3466 /*** TBD: Insert subroutine calls to close cursors on incomplete 3467 **** subqueries ****/ 3468 ExplainQueryPlanPop(pParse); 3469 return pParse->nErr!=0; 3470 } 3471 #endif 3472 3473 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3474 3475 /* An instance of the SubstContext object describes an substitution edit 3476 ** to be performed on a parse tree. 3477 ** 3478 ** All references to columns in table iTable are to be replaced by corresponding 3479 ** expressions in pEList. 3480 */ 3481 typedef struct SubstContext { 3482 Parse *pParse; /* The parsing context */ 3483 int iTable; /* Replace references to this table */ 3484 int iNewTable; /* New table number */ 3485 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3486 ExprList *pEList; /* Replacement expressions */ 3487 } SubstContext; 3488 3489 /* Forward Declarations */ 3490 static void substExprList(SubstContext*, ExprList*); 3491 static void substSelect(SubstContext*, Select*, int); 3492 3493 /* 3494 ** Scan through the expression pExpr. Replace every reference to 3495 ** a column in table number iTable with a copy of the iColumn-th 3496 ** entry in pEList. (But leave references to the ROWID column 3497 ** unchanged.) 3498 ** 3499 ** This routine is part of the flattening procedure. A subquery 3500 ** whose result set is defined by pEList appears as entry in the 3501 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3502 ** FORM clause entry is iTable. This routine makes the necessary 3503 ** changes to pExpr so that it refers directly to the source table 3504 ** of the subquery rather the result set of the subquery. 3505 */ 3506 static Expr *substExpr( 3507 SubstContext *pSubst, /* Description of the substitution */ 3508 Expr *pExpr /* Expr in which substitution occurs */ 3509 ){ 3510 if( pExpr==0 ) return 0; 3511 if( ExprHasProperty(pExpr, EP_FromJoin) 3512 && pExpr->iRightJoinTable==pSubst->iTable 3513 ){ 3514 pExpr->iRightJoinTable = pSubst->iNewTable; 3515 } 3516 if( pExpr->op==TK_COLUMN 3517 && pExpr->iTable==pSubst->iTable 3518 && !ExprHasProperty(pExpr, EP_FixedCol) 3519 ){ 3520 if( pExpr->iColumn<0 ){ 3521 pExpr->op = TK_NULL; 3522 }else{ 3523 Expr *pNew; 3524 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3525 Expr ifNullRow; 3526 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3527 assert( pExpr->pRight==0 ); 3528 if( sqlite3ExprIsVector(pCopy) ){ 3529 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3530 }else{ 3531 sqlite3 *db = pSubst->pParse->db; 3532 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3533 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3534 ifNullRow.op = TK_IF_NULL_ROW; 3535 ifNullRow.pLeft = pCopy; 3536 ifNullRow.iTable = pSubst->iNewTable; 3537 ifNullRow.flags = EP_IfNullRow; 3538 pCopy = &ifNullRow; 3539 } 3540 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3541 pNew = sqlite3ExprDup(db, pCopy, 0); 3542 if( pNew && pSubst->isLeftJoin ){ 3543 ExprSetProperty(pNew, EP_CanBeNull); 3544 } 3545 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3546 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3547 } 3548 sqlite3ExprDelete(db, pExpr); 3549 pExpr = pNew; 3550 3551 /* Ensure that the expression now has an implicit collation sequence, 3552 ** just as it did when it was a column of a view or sub-query. */ 3553 if( pExpr ){ 3554 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3555 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3556 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3557 (pColl ? pColl->zName : "BINARY") 3558 ); 3559 } 3560 ExprClearProperty(pExpr, EP_Collate); 3561 } 3562 } 3563 } 3564 }else{ 3565 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3566 pExpr->iTable = pSubst->iNewTable; 3567 } 3568 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3569 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3570 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3571 substSelect(pSubst, pExpr->x.pSelect, 1); 3572 }else{ 3573 substExprList(pSubst, pExpr->x.pList); 3574 } 3575 #ifndef SQLITE_OMIT_WINDOWFUNC 3576 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3577 Window *pWin = pExpr->y.pWin; 3578 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3579 substExprList(pSubst, pWin->pPartition); 3580 substExprList(pSubst, pWin->pOrderBy); 3581 } 3582 #endif 3583 } 3584 return pExpr; 3585 } 3586 static void substExprList( 3587 SubstContext *pSubst, /* Description of the substitution */ 3588 ExprList *pList /* List to scan and in which to make substitutes */ 3589 ){ 3590 int i; 3591 if( pList==0 ) return; 3592 for(i=0; i<pList->nExpr; i++){ 3593 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3594 } 3595 } 3596 static void substSelect( 3597 SubstContext *pSubst, /* Description of the substitution */ 3598 Select *p, /* SELECT statement in which to make substitutions */ 3599 int doPrior /* Do substitutes on p->pPrior too */ 3600 ){ 3601 SrcList *pSrc; 3602 SrcItem *pItem; 3603 int i; 3604 if( !p ) return; 3605 do{ 3606 substExprList(pSubst, p->pEList); 3607 substExprList(pSubst, p->pGroupBy); 3608 substExprList(pSubst, p->pOrderBy); 3609 p->pHaving = substExpr(pSubst, p->pHaving); 3610 p->pWhere = substExpr(pSubst, p->pWhere); 3611 pSrc = p->pSrc; 3612 assert( pSrc!=0 ); 3613 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3614 substSelect(pSubst, pItem->pSelect, 1); 3615 if( pItem->fg.isTabFunc ){ 3616 substExprList(pSubst, pItem->u1.pFuncArg); 3617 } 3618 } 3619 }while( doPrior && (p = p->pPrior)!=0 ); 3620 } 3621 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3622 3623 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3624 /* 3625 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3626 ** clause of that SELECT. 3627 ** 3628 ** This routine scans the entire SELECT statement and recomputes the 3629 ** pSrcItem->colUsed mask. 3630 */ 3631 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3632 SrcItem *pItem; 3633 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3634 pItem = pWalker->u.pSrcItem; 3635 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3636 if( pExpr->iColumn<0 ) return WRC_Continue; 3637 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3638 return WRC_Continue; 3639 } 3640 static void recomputeColumnsUsed( 3641 Select *pSelect, /* The complete SELECT statement */ 3642 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3643 ){ 3644 Walker w; 3645 if( NEVER(pSrcItem->pTab==0) ) return; 3646 memset(&w, 0, sizeof(w)); 3647 w.xExprCallback = recomputeColumnsUsedExpr; 3648 w.xSelectCallback = sqlite3SelectWalkNoop; 3649 w.u.pSrcItem = pSrcItem; 3650 pSrcItem->colUsed = 0; 3651 sqlite3WalkSelect(&w, pSelect); 3652 } 3653 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3654 3655 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3656 /* 3657 ** Assign new cursor numbers to each of the items in pSrc. For each 3658 ** new cursor number assigned, set an entry in the aCsrMap[] array 3659 ** to map the old cursor number to the new: 3660 ** 3661 ** aCsrMap[iOld] = iNew; 3662 ** 3663 ** The array is guaranteed by the caller to be large enough for all 3664 ** existing cursor numbers in pSrc. 3665 ** 3666 ** If pSrc contains any sub-selects, call this routine recursively 3667 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3668 */ 3669 static void srclistRenumberCursors( 3670 Parse *pParse, /* Parse context */ 3671 int *aCsrMap, /* Array to store cursor mappings in */ 3672 SrcList *pSrc, /* FROM clause to renumber */ 3673 int iExcept /* FROM clause item to skip */ 3674 ){ 3675 int i; 3676 SrcItem *pItem; 3677 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3678 if( i!=iExcept ){ 3679 Select *p; 3680 pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++; 3681 for(p=pItem->pSelect; p; p=p->pPrior){ 3682 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3683 } 3684 } 3685 } 3686 } 3687 3688 /* 3689 ** Expression walker callback used by renumberCursors() to update 3690 ** Expr objects to match newly assigned cursor numbers. 3691 */ 3692 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3693 int *aCsrMap = pWalker->u.aiCol; 3694 int op = pExpr->op; 3695 if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){ 3696 pExpr->iTable = aCsrMap[pExpr->iTable]; 3697 } 3698 if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){ 3699 pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable]; 3700 } 3701 return WRC_Continue; 3702 } 3703 3704 /* 3705 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3706 ** of the SELECT statement passed as the second argument, and to each 3707 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3708 ** Except, do not assign a new cursor number to the iExcept'th element in 3709 ** the FROM clause of (*p). Update all expressions and other references 3710 ** to refer to the new cursor numbers. 3711 ** 3712 ** Argument aCsrMap is an array that may be used for temporary working 3713 ** space. Two guarantees are made by the caller: 3714 ** 3715 ** * the array is larger than the largest cursor number used within the 3716 ** select statement passed as an argument, and 3717 ** 3718 ** * the array entries for all cursor numbers that do *not* appear in 3719 ** FROM clauses of the select statement as described above are 3720 ** initialized to zero. 3721 */ 3722 static void renumberCursors( 3723 Parse *pParse, /* Parse context */ 3724 Select *p, /* Select to renumber cursors within */ 3725 int iExcept, /* FROM clause item to skip */ 3726 int *aCsrMap /* Working space */ 3727 ){ 3728 Walker w; 3729 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3730 memset(&w, 0, sizeof(w)); 3731 w.u.aiCol = aCsrMap; 3732 w.xExprCallback = renumberCursorsCb; 3733 w.xSelectCallback = sqlite3SelectWalkNoop; 3734 sqlite3WalkSelect(&w, p); 3735 } 3736 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3737 3738 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3739 /* 3740 ** This routine attempts to flatten subqueries as a performance optimization. 3741 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3742 ** 3743 ** To understand the concept of flattening, consider the following 3744 ** query: 3745 ** 3746 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3747 ** 3748 ** The default way of implementing this query is to execute the 3749 ** subquery first and store the results in a temporary table, then 3750 ** run the outer query on that temporary table. This requires two 3751 ** passes over the data. Furthermore, because the temporary table 3752 ** has no indices, the WHERE clause on the outer query cannot be 3753 ** optimized. 3754 ** 3755 ** This routine attempts to rewrite queries such as the above into 3756 ** a single flat select, like this: 3757 ** 3758 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3759 ** 3760 ** The code generated for this simplification gives the same result 3761 ** but only has to scan the data once. And because indices might 3762 ** exist on the table t1, a complete scan of the data might be 3763 ** avoided. 3764 ** 3765 ** Flattening is subject to the following constraints: 3766 ** 3767 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3768 ** The subquery and the outer query cannot both be aggregates. 3769 ** 3770 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3771 ** (2) If the subquery is an aggregate then 3772 ** (2a) the outer query must not be a join and 3773 ** (2b) the outer query must not use subqueries 3774 ** other than the one FROM-clause subquery that is a candidate 3775 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3776 ** from 2015-02-09.) 3777 ** 3778 ** (3) If the subquery is the right operand of a LEFT JOIN then 3779 ** (3a) the subquery may not be a join and 3780 ** (3b) the FROM clause of the subquery may not contain a virtual 3781 ** table and 3782 ** (3c) the outer query may not be an aggregate. 3783 ** (3d) the outer query may not be DISTINCT. 3784 ** 3785 ** (4) The subquery can not be DISTINCT. 3786 ** 3787 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3788 ** sub-queries that were excluded from this optimization. Restriction 3789 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3790 ** 3791 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3792 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3793 ** 3794 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3795 ** A FROM clause, consider adding a FROM clause with the special 3796 ** table sqlite_once that consists of a single row containing a 3797 ** single NULL. 3798 ** 3799 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3800 ** 3801 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3802 ** 3803 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3804 ** accidently carried the comment forward until 2014-09-15. Original 3805 ** constraint: "If the subquery is aggregate then the outer query 3806 ** may not use LIMIT." 3807 ** 3808 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3809 ** 3810 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3811 ** a separate restriction deriving from ticket #350. 3812 ** 3813 ** (13) The subquery and outer query may not both use LIMIT. 3814 ** 3815 ** (14) The subquery may not use OFFSET. 3816 ** 3817 ** (15) If the outer query is part of a compound select, then the 3818 ** subquery may not use LIMIT. 3819 ** (See ticket #2339 and ticket [02a8e81d44]). 3820 ** 3821 ** (16) If the outer query is aggregate, then the subquery may not 3822 ** use ORDER BY. (Ticket #2942) This used to not matter 3823 ** until we introduced the group_concat() function. 3824 ** 3825 ** (17) If the subquery is a compound select, then 3826 ** (17a) all compound operators must be a UNION ALL, and 3827 ** (17b) no terms within the subquery compound may be aggregate 3828 ** or DISTINCT, and 3829 ** (17c) every term within the subquery compound must have a FROM clause 3830 ** (17d) the outer query may not be 3831 ** (17d1) aggregate, or 3832 ** (17d2) DISTINCT 3833 ** (17e) the subquery may not contain window functions, and 3834 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3835 ** 3836 ** The parent and sub-query may contain WHERE clauses. Subject to 3837 ** rules (11), (13) and (14), they may also contain ORDER BY, 3838 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3839 ** operator other than UNION ALL because all the other compound 3840 ** operators have an implied DISTINCT which is disallowed by 3841 ** restriction (4). 3842 ** 3843 ** Also, each component of the sub-query must return the same number 3844 ** of result columns. This is actually a requirement for any compound 3845 ** SELECT statement, but all the code here does is make sure that no 3846 ** such (illegal) sub-query is flattened. The caller will detect the 3847 ** syntax error and return a detailed message. 3848 ** 3849 ** (18) If the sub-query is a compound select, then all terms of the 3850 ** ORDER BY clause of the parent must be copies of a term returned 3851 ** by the parent query. 3852 ** 3853 ** (19) If the subquery uses LIMIT then the outer query may not 3854 ** have a WHERE clause. 3855 ** 3856 ** (20) If the sub-query is a compound select, then it must not use 3857 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3858 ** somewhat by saying that the terms of the ORDER BY clause must 3859 ** appear as unmodified result columns in the outer query. But we 3860 ** have other optimizations in mind to deal with that case. 3861 ** 3862 ** (21) If the subquery uses LIMIT then the outer query may not be 3863 ** DISTINCT. (See ticket [752e1646fc]). 3864 ** 3865 ** (22) The subquery may not be a recursive CTE. 3866 ** 3867 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3868 ** a compound query. This restriction is because transforming the 3869 ** parent to a compound query confuses the code that handles 3870 ** recursive queries in multiSelect(). 3871 ** 3872 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3873 ** The subquery may not be an aggregate that uses the built-in min() or 3874 ** or max() functions. (Without this restriction, a query like: 3875 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3876 ** return the value X for which Y was maximal.) 3877 ** 3878 ** (25) If either the subquery or the parent query contains a window 3879 ** function in the select list or ORDER BY clause, flattening 3880 ** is not attempted. 3881 ** 3882 ** 3883 ** In this routine, the "p" parameter is a pointer to the outer query. 3884 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3885 ** uses aggregates. 3886 ** 3887 ** If flattening is not attempted, this routine is a no-op and returns 0. 3888 ** If flattening is attempted this routine returns 1. 3889 ** 3890 ** All of the expression analysis must occur on both the outer query and 3891 ** the subquery before this routine runs. 3892 */ 3893 static int flattenSubquery( 3894 Parse *pParse, /* Parsing context */ 3895 Select *p, /* The parent or outer SELECT statement */ 3896 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3897 int isAgg /* True if outer SELECT uses aggregate functions */ 3898 ){ 3899 const char *zSavedAuthContext = pParse->zAuthContext; 3900 Select *pParent; /* Current UNION ALL term of the other query */ 3901 Select *pSub; /* The inner query or "subquery" */ 3902 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3903 SrcList *pSrc; /* The FROM clause of the outer query */ 3904 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3905 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3906 int iNewParent = -1;/* Replacement table for iParent */ 3907 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3908 int i; /* Loop counter */ 3909 Expr *pWhere; /* The WHERE clause */ 3910 SrcItem *pSubitem; /* The subquery */ 3911 sqlite3 *db = pParse->db; 3912 Walker w; /* Walker to persist agginfo data */ 3913 int *aCsrMap = 0; 3914 3915 /* Check to see if flattening is permitted. Return 0 if not. 3916 */ 3917 assert( p!=0 ); 3918 assert( p->pPrior==0 ); 3919 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3920 pSrc = p->pSrc; 3921 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3922 pSubitem = &pSrc->a[iFrom]; 3923 iParent = pSubitem->iCursor; 3924 pSub = pSubitem->pSelect; 3925 assert( pSub!=0 ); 3926 3927 #ifndef SQLITE_OMIT_WINDOWFUNC 3928 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3929 #endif 3930 3931 pSubSrc = pSub->pSrc; 3932 assert( pSubSrc ); 3933 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3934 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3935 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3936 ** became arbitrary expressions, we were forced to add restrictions (13) 3937 ** and (14). */ 3938 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3939 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3940 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3941 return 0; /* Restriction (15) */ 3942 } 3943 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3944 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3945 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3946 return 0; /* Restrictions (8)(9) */ 3947 } 3948 if( p->pOrderBy && pSub->pOrderBy ){ 3949 return 0; /* Restriction (11) */ 3950 } 3951 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3952 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3953 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3954 return 0; /* Restriction (21) */ 3955 } 3956 if( pSub->selFlags & (SF_Recursive) ){ 3957 return 0; /* Restrictions (22) */ 3958 } 3959 3960 /* 3961 ** If the subquery is the right operand of a LEFT JOIN, then the 3962 ** subquery may not be a join itself (3a). Example of why this is not 3963 ** allowed: 3964 ** 3965 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3966 ** 3967 ** If we flatten the above, we would get 3968 ** 3969 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3970 ** 3971 ** which is not at all the same thing. 3972 ** 3973 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3974 ** query cannot be an aggregate. (3c) This is an artifact of the way 3975 ** aggregates are processed - there is no mechanism to determine if 3976 ** the LEFT JOIN table should be all-NULL. 3977 ** 3978 ** See also tickets #306, #350, and #3300. 3979 */ 3980 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3981 isLeftJoin = 1; 3982 if( pSubSrc->nSrc>1 /* (3a) */ 3983 || isAgg /* (3b) */ 3984 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3985 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3986 ){ 3987 return 0; 3988 } 3989 } 3990 #ifdef SQLITE_EXTRA_IFNULLROW 3991 else if( iFrom>0 && !isAgg ){ 3992 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3993 ** every reference to any result column from subquery in a join, even 3994 ** though they are not necessary. This will stress-test the OP_IfNullRow 3995 ** opcode. */ 3996 isLeftJoin = -1; 3997 } 3998 #endif 3999 4000 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4001 ** use only the UNION ALL operator. And none of the simple select queries 4002 ** that make up the compound SELECT are allowed to be aggregate or distinct 4003 ** queries. 4004 */ 4005 if( pSub->pPrior ){ 4006 if( pSub->pOrderBy ){ 4007 return 0; /* Restriction (20) */ 4008 } 4009 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4010 return 0; /* (17d1), (17d2), or (17f) */ 4011 } 4012 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4013 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4014 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4015 assert( pSub->pSrc!=0 ); 4016 assert( (pSub->selFlags & SF_Recursive)==0 ); 4017 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4018 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4019 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4020 || pSub1->pSrc->nSrc<1 /* (17c) */ 4021 #ifndef SQLITE_OMIT_WINDOWFUNC 4022 || pSub1->pWin /* (17e) */ 4023 #endif 4024 ){ 4025 return 0; 4026 } 4027 testcase( pSub1->pSrc->nSrc>1 ); 4028 } 4029 4030 /* Restriction (18). */ 4031 if( p->pOrderBy ){ 4032 int ii; 4033 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4034 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4035 } 4036 } 4037 4038 /* Restriction (23) */ 4039 if( (p->selFlags & SF_Recursive) ) return 0; 4040 4041 if( pSrc->nSrc>1 ){ 4042 aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int)); 4043 } 4044 } 4045 4046 /***** If we reach this point, flattening is permitted. *****/ 4047 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4048 pSub->selId, pSub, iFrom)); 4049 4050 /* Authorize the subquery */ 4051 pParse->zAuthContext = pSubitem->zName; 4052 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4053 testcase( i==SQLITE_DENY ); 4054 pParse->zAuthContext = zSavedAuthContext; 4055 4056 /* Delete the transient structures associated with thesubquery */ 4057 pSub1 = pSubitem->pSelect; 4058 sqlite3DbFree(db, pSubitem->zDatabase); 4059 sqlite3DbFree(db, pSubitem->zName); 4060 sqlite3DbFree(db, pSubitem->zAlias); 4061 pSubitem->zDatabase = 0; 4062 pSubitem->zName = 0; 4063 pSubitem->zAlias = 0; 4064 pSubitem->pSelect = 0; 4065 assert( pSubitem->pOn==0 ); 4066 4067 /* If the sub-query is a compound SELECT statement, then (by restrictions 4068 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4069 ** be of the form: 4070 ** 4071 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4072 ** 4073 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4074 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4075 ** OFFSET clauses and joins them to the left-hand-side of the original 4076 ** using UNION ALL operators. In this case N is the number of simple 4077 ** select statements in the compound sub-query. 4078 ** 4079 ** Example: 4080 ** 4081 ** SELECT a+1 FROM ( 4082 ** SELECT x FROM tab 4083 ** UNION ALL 4084 ** SELECT y FROM tab 4085 ** UNION ALL 4086 ** SELECT abs(z*2) FROM tab2 4087 ** ) WHERE a!=5 ORDER BY 1 4088 ** 4089 ** Transformed into: 4090 ** 4091 ** SELECT x+1 FROM tab WHERE x+1!=5 4092 ** UNION ALL 4093 ** SELECT y+1 FROM tab WHERE y+1!=5 4094 ** UNION ALL 4095 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4096 ** ORDER BY 1 4097 ** 4098 ** We call this the "compound-subquery flattening". 4099 */ 4100 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4101 Select *pNew; 4102 ExprList *pOrderBy = p->pOrderBy; 4103 Expr *pLimit = p->pLimit; 4104 Select *pPrior = p->pPrior; 4105 Table *pItemTab = pSubitem->pTab; 4106 pSubitem->pTab = 0; 4107 p->pOrderBy = 0; 4108 p->pPrior = 0; 4109 p->pLimit = 0; 4110 pNew = sqlite3SelectDup(db, p, 0); 4111 p->pLimit = pLimit; 4112 p->pOrderBy = pOrderBy; 4113 p->op = TK_ALL; 4114 pSubitem->pTab = pItemTab; 4115 if( pNew==0 ){ 4116 p->pPrior = pPrior; 4117 }else{ 4118 if( aCsrMap && db->mallocFailed==0 ){ 4119 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4120 } 4121 pNew->pPrior = pPrior; 4122 if( pPrior ) pPrior->pNext = pNew; 4123 pNew->pNext = p; 4124 p->pPrior = pNew; 4125 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4126 " creates %u as peer\n",pNew->selId)); 4127 } 4128 assert( pSubitem->pSelect==0 ); 4129 } 4130 sqlite3DbFree(db, aCsrMap); 4131 if( db->mallocFailed ){ 4132 pSubitem->pSelect = pSub1; 4133 return 1; 4134 } 4135 4136 /* Defer deleting the Table object associated with the 4137 ** subquery until code generation is 4138 ** complete, since there may still exist Expr.pTab entries that 4139 ** refer to the subquery even after flattening. Ticket #3346. 4140 ** 4141 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4142 */ 4143 if( ALWAYS(pSubitem->pTab!=0) ){ 4144 Table *pTabToDel = pSubitem->pTab; 4145 if( pTabToDel->nTabRef==1 ){ 4146 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4147 sqlite3ParserAddCleanup(pToplevel, 4148 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4149 pTabToDel); 4150 testcase( pToplevel->earlyCleanup ); 4151 }else{ 4152 pTabToDel->nTabRef--; 4153 } 4154 pSubitem->pTab = 0; 4155 } 4156 4157 /* The following loop runs once for each term in a compound-subquery 4158 ** flattening (as described above). If we are doing a different kind 4159 ** of flattening - a flattening other than a compound-subquery flattening - 4160 ** then this loop only runs once. 4161 ** 4162 ** This loop moves all of the FROM elements of the subquery into the 4163 ** the FROM clause of the outer query. Before doing this, remember 4164 ** the cursor number for the original outer query FROM element in 4165 ** iParent. The iParent cursor will never be used. Subsequent code 4166 ** will scan expressions looking for iParent references and replace 4167 ** those references with expressions that resolve to the subquery FROM 4168 ** elements we are now copying in. 4169 */ 4170 pSub = pSub1; 4171 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4172 int nSubSrc; 4173 u8 jointype = 0; 4174 assert( pSub!=0 ); 4175 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4176 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4177 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4178 4179 if( pParent==p ){ 4180 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4181 } 4182 4183 /* The subquery uses a single slot of the FROM clause of the outer 4184 ** query. If the subquery has more than one element in its FROM clause, 4185 ** then expand the outer query to make space for it to hold all elements 4186 ** of the subquery. 4187 ** 4188 ** Example: 4189 ** 4190 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4191 ** 4192 ** The outer query has 3 slots in its FROM clause. One slot of the 4193 ** outer query (the middle slot) is used by the subquery. The next 4194 ** block of code will expand the outer query FROM clause to 4 slots. 4195 ** The middle slot is expanded to two slots in order to make space 4196 ** for the two elements in the FROM clause of the subquery. 4197 */ 4198 if( nSubSrc>1 ){ 4199 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4200 if( pSrc==0 ) break; 4201 pParent->pSrc = pSrc; 4202 } 4203 4204 /* Transfer the FROM clause terms from the subquery into the 4205 ** outer query. 4206 */ 4207 for(i=0; i<nSubSrc; i++){ 4208 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4209 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4210 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4211 iNewParent = pSubSrc->a[i].iCursor; 4212 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4213 } 4214 pSrc->a[iFrom].fg.jointype = jointype; 4215 4216 /* Now begin substituting subquery result set expressions for 4217 ** references to the iParent in the outer query. 4218 ** 4219 ** Example: 4220 ** 4221 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4222 ** \ \_____________ subquery __________/ / 4223 ** \_____________________ outer query ______________________________/ 4224 ** 4225 ** We look at every expression in the outer query and every place we see 4226 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4227 */ 4228 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4229 /* At this point, any non-zero iOrderByCol values indicate that the 4230 ** ORDER BY column expression is identical to the iOrderByCol'th 4231 ** expression returned by SELECT statement pSub. Since these values 4232 ** do not necessarily correspond to columns in SELECT statement pParent, 4233 ** zero them before transfering the ORDER BY clause. 4234 ** 4235 ** Not doing this may cause an error if a subsequent call to this 4236 ** function attempts to flatten a compound sub-query into pParent 4237 ** (the only way this can happen is if the compound sub-query is 4238 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4239 ExprList *pOrderBy = pSub->pOrderBy; 4240 for(i=0; i<pOrderBy->nExpr; i++){ 4241 pOrderBy->a[i].u.x.iOrderByCol = 0; 4242 } 4243 assert( pParent->pOrderBy==0 ); 4244 pParent->pOrderBy = pOrderBy; 4245 pSub->pOrderBy = 0; 4246 } 4247 pWhere = pSub->pWhere; 4248 pSub->pWhere = 0; 4249 if( isLeftJoin>0 ){ 4250 sqlite3SetJoinExpr(pWhere, iNewParent); 4251 } 4252 if( pWhere ){ 4253 if( pParent->pWhere ){ 4254 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4255 }else{ 4256 pParent->pWhere = pWhere; 4257 } 4258 } 4259 if( db->mallocFailed==0 ){ 4260 SubstContext x; 4261 x.pParse = pParse; 4262 x.iTable = iParent; 4263 x.iNewTable = iNewParent; 4264 x.isLeftJoin = isLeftJoin; 4265 x.pEList = pSub->pEList; 4266 substSelect(&x, pParent, 0); 4267 } 4268 4269 /* The flattened query is a compound if either the inner or the 4270 ** outer query is a compound. */ 4271 pParent->selFlags |= pSub->selFlags & SF_Compound; 4272 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4273 4274 /* 4275 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4276 ** 4277 ** One is tempted to try to add a and b to combine the limits. But this 4278 ** does not work if either limit is negative. 4279 */ 4280 if( pSub->pLimit ){ 4281 pParent->pLimit = pSub->pLimit; 4282 pSub->pLimit = 0; 4283 } 4284 4285 /* Recompute the SrcList_item.colUsed masks for the flattened 4286 ** tables. */ 4287 for(i=0; i<nSubSrc; i++){ 4288 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4289 } 4290 } 4291 4292 /* Finially, delete what is left of the subquery and return 4293 ** success. 4294 */ 4295 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4296 sqlite3WalkSelect(&w,pSub1); 4297 sqlite3SelectDelete(db, pSub1); 4298 4299 #if SELECTTRACE_ENABLED 4300 if( sqlite3SelectTrace & 0x100 ){ 4301 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4302 sqlite3TreeViewSelect(0, p, 0); 4303 } 4304 #endif 4305 4306 return 1; 4307 } 4308 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4309 4310 /* 4311 ** A structure to keep track of all of the column values that are fixed to 4312 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4313 */ 4314 typedef struct WhereConst WhereConst; 4315 struct WhereConst { 4316 Parse *pParse; /* Parsing context */ 4317 int nConst; /* Number for COLUMN=CONSTANT terms */ 4318 int nChng; /* Number of times a constant is propagated */ 4319 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4320 }; 4321 4322 /* 4323 ** Add a new entry to the pConst object. Except, do not add duplicate 4324 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4325 ** 4326 ** The caller guarantees the pColumn is a column and pValue is a constant. 4327 ** This routine has to do some additional checks before completing the 4328 ** insert. 4329 */ 4330 static void constInsert( 4331 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4332 Expr *pColumn, /* The COLUMN part of the constraint */ 4333 Expr *pValue, /* The VALUE part of the constraint */ 4334 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4335 ){ 4336 int i; 4337 assert( pColumn->op==TK_COLUMN ); 4338 assert( sqlite3ExprIsConstant(pValue) ); 4339 4340 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4341 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4342 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4343 return; 4344 } 4345 4346 /* 2018-10-25 ticket [cf5ed20f] 4347 ** Make sure the same pColumn is not inserted more than once */ 4348 for(i=0; i<pConst->nConst; i++){ 4349 const Expr *pE2 = pConst->apExpr[i*2]; 4350 assert( pE2->op==TK_COLUMN ); 4351 if( pE2->iTable==pColumn->iTable 4352 && pE2->iColumn==pColumn->iColumn 4353 ){ 4354 return; /* Already present. Return without doing anything. */ 4355 } 4356 } 4357 4358 pConst->nConst++; 4359 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4360 pConst->nConst*2*sizeof(Expr*)); 4361 if( pConst->apExpr==0 ){ 4362 pConst->nConst = 0; 4363 }else{ 4364 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4365 pConst->apExpr[pConst->nConst*2-1] = pValue; 4366 } 4367 } 4368 4369 /* 4370 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4371 ** is a constant expression and where the term must be true because it 4372 ** is part of the AND-connected terms of the expression. For each term 4373 ** found, add it to the pConst structure. 4374 */ 4375 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4376 Expr *pRight, *pLeft; 4377 if( pExpr==0 ) return; 4378 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4379 if( pExpr->op==TK_AND ){ 4380 findConstInWhere(pConst, pExpr->pRight); 4381 findConstInWhere(pConst, pExpr->pLeft); 4382 return; 4383 } 4384 if( pExpr->op!=TK_EQ ) return; 4385 pRight = pExpr->pRight; 4386 pLeft = pExpr->pLeft; 4387 assert( pRight!=0 ); 4388 assert( pLeft!=0 ); 4389 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4390 constInsert(pConst,pRight,pLeft,pExpr); 4391 } 4392 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4393 constInsert(pConst,pLeft,pRight,pExpr); 4394 } 4395 } 4396 4397 /* 4398 ** This is a Walker expression callback. pExpr is a candidate expression 4399 ** to be replaced by a value. If pExpr is equivalent to one of the 4400 ** columns named in pWalker->u.pConst, then overwrite it with its 4401 ** corresponding value. 4402 */ 4403 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4404 int i; 4405 WhereConst *pConst; 4406 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4407 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4408 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4409 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4410 return WRC_Continue; 4411 } 4412 pConst = pWalker->u.pConst; 4413 for(i=0; i<pConst->nConst; i++){ 4414 Expr *pColumn = pConst->apExpr[i*2]; 4415 if( pColumn==pExpr ) continue; 4416 if( pColumn->iTable!=pExpr->iTable ) continue; 4417 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4418 /* A match is found. Add the EP_FixedCol property */ 4419 pConst->nChng++; 4420 ExprClearProperty(pExpr, EP_Leaf); 4421 ExprSetProperty(pExpr, EP_FixedCol); 4422 assert( pExpr->pLeft==0 ); 4423 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4424 break; 4425 } 4426 return WRC_Prune; 4427 } 4428 4429 /* 4430 ** The WHERE-clause constant propagation optimization. 4431 ** 4432 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4433 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4434 ** part of a ON clause from a LEFT JOIN, then throughout the query 4435 ** replace all other occurrences of COLUMN with CONSTANT. 4436 ** 4437 ** For example, the query: 4438 ** 4439 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4440 ** 4441 ** Is transformed into 4442 ** 4443 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4444 ** 4445 ** Return true if any transformations where made and false if not. 4446 ** 4447 ** Implementation note: Constant propagation is tricky due to affinity 4448 ** and collating sequence interactions. Consider this example: 4449 ** 4450 ** CREATE TABLE t1(a INT,b TEXT); 4451 ** INSERT INTO t1 VALUES(123,'0123'); 4452 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4453 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4454 ** 4455 ** The two SELECT statements above should return different answers. b=a 4456 ** is alway true because the comparison uses numeric affinity, but b=123 4457 ** is false because it uses text affinity and '0123' is not the same as '123'. 4458 ** To work around this, the expression tree is not actually changed from 4459 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4460 ** and the "123" value is hung off of the pLeft pointer. Code generator 4461 ** routines know to generate the constant "123" instead of looking up the 4462 ** column value. Also, to avoid collation problems, this optimization is 4463 ** only attempted if the "a=123" term uses the default BINARY collation. 4464 */ 4465 static int propagateConstants( 4466 Parse *pParse, /* The parsing context */ 4467 Select *p /* The query in which to propagate constants */ 4468 ){ 4469 WhereConst x; 4470 Walker w; 4471 int nChng = 0; 4472 x.pParse = pParse; 4473 do{ 4474 x.nConst = 0; 4475 x.nChng = 0; 4476 x.apExpr = 0; 4477 findConstInWhere(&x, p->pWhere); 4478 if( x.nConst ){ 4479 memset(&w, 0, sizeof(w)); 4480 w.pParse = pParse; 4481 w.xExprCallback = propagateConstantExprRewrite; 4482 w.xSelectCallback = sqlite3SelectWalkNoop; 4483 w.xSelectCallback2 = 0; 4484 w.walkerDepth = 0; 4485 w.u.pConst = &x; 4486 sqlite3WalkExpr(&w, p->pWhere); 4487 sqlite3DbFree(x.pParse->db, x.apExpr); 4488 nChng += x.nChng; 4489 } 4490 }while( x.nChng ); 4491 return nChng; 4492 } 4493 4494 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4495 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4496 /* 4497 ** This function is called to determine whether or not it is safe to 4498 ** push WHERE clause expression pExpr down to FROM clause sub-query 4499 ** pSubq, which contains at least one window function. Return 1 4500 ** if it is safe and the expression should be pushed down, or 0 4501 ** otherwise. 4502 ** 4503 ** It is only safe to push the expression down if it consists only 4504 ** of constants and copies of expressions that appear in the PARTITION 4505 ** BY clause of all window function used by the sub-query. It is safe 4506 ** to filter out entire partitions, but not rows within partitions, as 4507 ** this may change the results of the window functions. 4508 ** 4509 ** At the time this function is called it is guaranteed that 4510 ** 4511 ** * the sub-query uses only one distinct window frame, and 4512 ** * that the window frame has a PARTITION BY clase. 4513 */ 4514 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4515 assert( pSubq->pWin->pPartition ); 4516 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4517 assert( pSubq->pPrior==0 ); 4518 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4519 } 4520 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4521 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4522 4523 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4524 /* 4525 ** Make copies of relevant WHERE clause terms of the outer query into 4526 ** the WHERE clause of subquery. Example: 4527 ** 4528 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4529 ** 4530 ** Transformed into: 4531 ** 4532 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4533 ** WHERE x=5 AND y=10; 4534 ** 4535 ** The hope is that the terms added to the inner query will make it more 4536 ** efficient. 4537 ** 4538 ** Do not attempt this optimization if: 4539 ** 4540 ** (1) (** This restriction was removed on 2017-09-29. We used to 4541 ** disallow this optimization for aggregate subqueries, but now 4542 ** it is allowed by putting the extra terms on the HAVING clause. 4543 ** The added HAVING clause is pointless if the subquery lacks 4544 ** a GROUP BY clause. But such a HAVING clause is also harmless 4545 ** so there does not appear to be any reason to add extra logic 4546 ** to suppress it. **) 4547 ** 4548 ** (2) The inner query is the recursive part of a common table expression. 4549 ** 4550 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4551 ** clause would change the meaning of the LIMIT). 4552 ** 4553 ** (4) The inner query is the right operand of a LEFT JOIN and the 4554 ** expression to be pushed down does not come from the ON clause 4555 ** on that LEFT JOIN. 4556 ** 4557 ** (5) The WHERE clause expression originates in the ON or USING clause 4558 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4559 ** left join. An example: 4560 ** 4561 ** SELECT * 4562 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4563 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4564 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4565 ** 4566 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4567 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4568 ** then the (1,1,NULL) row would be suppressed. 4569 ** 4570 ** (6) Window functions make things tricky as changes to the WHERE clause 4571 ** of the inner query could change the window over which window 4572 ** functions are calculated. Therefore, do not attempt the optimization 4573 ** if: 4574 ** 4575 ** (6a) The inner query uses multiple incompatible window partitions. 4576 ** 4577 ** (6b) The inner query is a compound and uses window-functions. 4578 ** 4579 ** (6c) The WHERE clause does not consist entirely of constants and 4580 ** copies of expressions found in the PARTITION BY clause of 4581 ** all window-functions used by the sub-query. It is safe to 4582 ** filter out entire partitions, as this does not change the 4583 ** window over which any window-function is calculated. 4584 ** 4585 ** (7) The inner query is a Common Table Expression (CTE) that should 4586 ** be materialized. (This restriction is implemented in the calling 4587 ** routine.) 4588 ** 4589 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4590 ** terms are duplicated into the subquery. 4591 */ 4592 static int pushDownWhereTerms( 4593 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4594 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4595 Expr *pWhere, /* The WHERE clause of the outer query */ 4596 int iCursor, /* Cursor number of the subquery */ 4597 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4598 ){ 4599 Expr *pNew; 4600 int nChng = 0; 4601 if( pWhere==0 ) return 0; 4602 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4603 4604 #ifndef SQLITE_OMIT_WINDOWFUNC 4605 if( pSubq->pPrior ){ 4606 Select *pSel; 4607 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4608 if( pSel->pWin ) return 0; /* restriction (6b) */ 4609 } 4610 }else{ 4611 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4612 } 4613 #endif 4614 4615 #ifdef SQLITE_DEBUG 4616 /* Only the first term of a compound can have a WITH clause. But make 4617 ** sure no other terms are marked SF_Recursive in case something changes 4618 ** in the future. 4619 */ 4620 { 4621 Select *pX; 4622 for(pX=pSubq; pX; pX=pX->pPrior){ 4623 assert( (pX->selFlags & (SF_Recursive))==0 ); 4624 } 4625 } 4626 #endif 4627 4628 if( pSubq->pLimit!=0 ){ 4629 return 0; /* restriction (3) */ 4630 } 4631 while( pWhere->op==TK_AND ){ 4632 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4633 iCursor, isLeftJoin); 4634 pWhere = pWhere->pLeft; 4635 } 4636 if( isLeftJoin 4637 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4638 || pWhere->iRightJoinTable!=iCursor) 4639 ){ 4640 return 0; /* restriction (4) */ 4641 } 4642 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4643 return 0; /* restriction (5) */ 4644 } 4645 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4646 nChng++; 4647 pSubq->selFlags |= SF_PushDown; 4648 while( pSubq ){ 4649 SubstContext x; 4650 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4651 unsetJoinExpr(pNew, -1); 4652 x.pParse = pParse; 4653 x.iTable = iCursor; 4654 x.iNewTable = iCursor; 4655 x.isLeftJoin = 0; 4656 x.pEList = pSubq->pEList; 4657 pNew = substExpr(&x, pNew); 4658 #ifndef SQLITE_OMIT_WINDOWFUNC 4659 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4660 /* Restriction 6c has prevented push-down in this case */ 4661 sqlite3ExprDelete(pParse->db, pNew); 4662 nChng--; 4663 break; 4664 } 4665 #endif 4666 if( pSubq->selFlags & SF_Aggregate ){ 4667 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4668 }else{ 4669 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4670 } 4671 pSubq = pSubq->pPrior; 4672 } 4673 } 4674 return nChng; 4675 } 4676 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4677 4678 /* 4679 ** The pFunc is the only aggregate function in the query. Check to see 4680 ** if the query is a candidate for the min/max optimization. 4681 ** 4682 ** If the query is a candidate for the min/max optimization, then set 4683 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4684 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4685 ** whether pFunc is a min() or max() function. 4686 ** 4687 ** If the query is not a candidate for the min/max optimization, return 4688 ** WHERE_ORDERBY_NORMAL (which must be zero). 4689 ** 4690 ** This routine must be called after aggregate functions have been 4691 ** located but before their arguments have been subjected to aggregate 4692 ** analysis. 4693 */ 4694 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4695 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4696 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4697 const char *zFunc; /* Name of aggregate function pFunc */ 4698 ExprList *pOrderBy; 4699 u8 sortFlags = 0; 4700 4701 assert( *ppMinMax==0 ); 4702 assert( pFunc->op==TK_AGG_FUNCTION ); 4703 assert( !IsWindowFunc(pFunc) ); 4704 if( pEList==0 4705 || pEList->nExpr!=1 4706 || ExprHasProperty(pFunc, EP_WinFunc) 4707 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4708 ){ 4709 return eRet; 4710 } 4711 zFunc = pFunc->u.zToken; 4712 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4713 eRet = WHERE_ORDERBY_MIN; 4714 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4715 sortFlags = KEYINFO_ORDER_BIGNULL; 4716 } 4717 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4718 eRet = WHERE_ORDERBY_MAX; 4719 sortFlags = KEYINFO_ORDER_DESC; 4720 }else{ 4721 return eRet; 4722 } 4723 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4724 assert( pOrderBy!=0 || db->mallocFailed ); 4725 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4726 return eRet; 4727 } 4728 4729 /* 4730 ** The select statement passed as the first argument is an aggregate query. 4731 ** The second argument is the associated aggregate-info object. This 4732 ** function tests if the SELECT is of the form: 4733 ** 4734 ** SELECT count(*) FROM <tbl> 4735 ** 4736 ** where table is a database table, not a sub-select or view. If the query 4737 ** does match this pattern, then a pointer to the Table object representing 4738 ** <tbl> is returned. Otherwise, 0 is returned. 4739 */ 4740 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4741 Table *pTab; 4742 Expr *pExpr; 4743 4744 assert( !p->pGroupBy ); 4745 4746 if( p->pWhere || p->pEList->nExpr!=1 4747 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4748 ){ 4749 return 0; 4750 } 4751 pTab = p->pSrc->a[0].pTab; 4752 pExpr = p->pEList->a[0].pExpr; 4753 assert( pTab && !pTab->pSelect && pExpr ); 4754 4755 if( IsVirtual(pTab) ) return 0; 4756 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4757 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4758 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4759 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4760 4761 return pTab; 4762 } 4763 4764 /* 4765 ** If the source-list item passed as an argument was augmented with an 4766 ** INDEXED BY clause, then try to locate the specified index. If there 4767 ** was such a clause and the named index cannot be found, return 4768 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4769 ** pFrom->pIndex and return SQLITE_OK. 4770 */ 4771 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4772 Table *pTab = pFrom->pTab; 4773 char *zIndexedBy = pFrom->u1.zIndexedBy; 4774 Index *pIdx; 4775 assert( pTab!=0 ); 4776 assert( pFrom->fg.isIndexedBy!=0 ); 4777 4778 for(pIdx=pTab->pIndex; 4779 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4780 pIdx=pIdx->pNext 4781 ); 4782 if( !pIdx ){ 4783 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4784 pParse->checkSchema = 1; 4785 return SQLITE_ERROR; 4786 } 4787 pFrom->u2.pIBIndex = pIdx; 4788 return SQLITE_OK; 4789 } 4790 4791 /* 4792 ** Detect compound SELECT statements that use an ORDER BY clause with 4793 ** an alternative collating sequence. 4794 ** 4795 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4796 ** 4797 ** These are rewritten as a subquery: 4798 ** 4799 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4800 ** ORDER BY ... COLLATE ... 4801 ** 4802 ** This transformation is necessary because the multiSelectOrderBy() routine 4803 ** above that generates the code for a compound SELECT with an ORDER BY clause 4804 ** uses a merge algorithm that requires the same collating sequence on the 4805 ** result columns as on the ORDER BY clause. See ticket 4806 ** http://www.sqlite.org/src/info/6709574d2a 4807 ** 4808 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4809 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4810 ** there are COLLATE terms in the ORDER BY. 4811 */ 4812 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4813 int i; 4814 Select *pNew; 4815 Select *pX; 4816 sqlite3 *db; 4817 struct ExprList_item *a; 4818 SrcList *pNewSrc; 4819 Parse *pParse; 4820 Token dummy; 4821 4822 if( p->pPrior==0 ) return WRC_Continue; 4823 if( p->pOrderBy==0 ) return WRC_Continue; 4824 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4825 if( pX==0 ) return WRC_Continue; 4826 a = p->pOrderBy->a; 4827 #ifndef SQLITE_OMIT_WINDOWFUNC 4828 /* If iOrderByCol is already non-zero, then it has already been matched 4829 ** to a result column of the SELECT statement. This occurs when the 4830 ** SELECT is rewritten for window-functions processing and then passed 4831 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 4832 ** by this function is not required in this case. */ 4833 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 4834 #endif 4835 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4836 if( a[i].pExpr->flags & EP_Collate ) break; 4837 } 4838 if( i<0 ) return WRC_Continue; 4839 4840 /* If we reach this point, that means the transformation is required. */ 4841 4842 pParse = pWalker->pParse; 4843 db = pParse->db; 4844 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4845 if( pNew==0 ) return WRC_Abort; 4846 memset(&dummy, 0, sizeof(dummy)); 4847 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4848 if( pNewSrc==0 ) return WRC_Abort; 4849 *pNew = *p; 4850 p->pSrc = pNewSrc; 4851 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4852 p->op = TK_SELECT; 4853 p->pWhere = 0; 4854 pNew->pGroupBy = 0; 4855 pNew->pHaving = 0; 4856 pNew->pOrderBy = 0; 4857 p->pPrior = 0; 4858 p->pNext = 0; 4859 p->pWith = 0; 4860 #ifndef SQLITE_OMIT_WINDOWFUNC 4861 p->pWinDefn = 0; 4862 #endif 4863 p->selFlags &= ~SF_Compound; 4864 assert( (p->selFlags & SF_Converted)==0 ); 4865 p->selFlags |= SF_Converted; 4866 assert( pNew->pPrior!=0 ); 4867 pNew->pPrior->pNext = pNew; 4868 pNew->pLimit = 0; 4869 return WRC_Continue; 4870 } 4871 4872 /* 4873 ** Check to see if the FROM clause term pFrom has table-valued function 4874 ** arguments. If it does, leave an error message in pParse and return 4875 ** non-zero, since pFrom is not allowed to be a table-valued function. 4876 */ 4877 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 4878 if( pFrom->fg.isTabFunc ){ 4879 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4880 return 1; 4881 } 4882 return 0; 4883 } 4884 4885 #ifndef SQLITE_OMIT_CTE 4886 /* 4887 ** Argument pWith (which may be NULL) points to a linked list of nested 4888 ** WITH contexts, from inner to outermost. If the table identified by 4889 ** FROM clause element pItem is really a common-table-expression (CTE) 4890 ** then return a pointer to the CTE definition for that table. Otherwise 4891 ** return NULL. 4892 ** 4893 ** If a non-NULL value is returned, set *ppContext to point to the With 4894 ** object that the returned CTE belongs to. 4895 */ 4896 static struct Cte *searchWith( 4897 With *pWith, /* Current innermost WITH clause */ 4898 SrcItem *pItem, /* FROM clause element to resolve */ 4899 With **ppContext /* OUT: WITH clause return value belongs to */ 4900 ){ 4901 const char *zName = pItem->zName; 4902 With *p; 4903 assert( pItem->zDatabase==0 ); 4904 assert( zName!=0 ); 4905 for(p=pWith; p; p=p->pOuter){ 4906 int i; 4907 for(i=0; i<p->nCte; i++){ 4908 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4909 *ppContext = p; 4910 return &p->a[i]; 4911 } 4912 } 4913 } 4914 return 0; 4915 } 4916 4917 /* The code generator maintains a stack of active WITH clauses 4918 ** with the inner-most WITH clause being at the top of the stack. 4919 ** 4920 ** This routine pushes the WITH clause passed as the second argument 4921 ** onto the top of the stack. If argument bFree is true, then this 4922 ** WITH clause will never be popped from the stack. In this case it 4923 ** should be freed along with the Parse object. In other cases, when 4924 ** bFree==0, the With object will be freed along with the SELECT 4925 ** statement with which it is associated. 4926 */ 4927 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4928 if( pWith ){ 4929 assert( pParse->pWith!=pWith ); 4930 pWith->pOuter = pParse->pWith; 4931 pParse->pWith = pWith; 4932 if( bFree ){ 4933 sqlite3ParserAddCleanup(pParse, 4934 (void(*)(sqlite3*,void*))sqlite3WithDelete, 4935 pWith); 4936 testcase( pParse->earlyCleanup ); 4937 } 4938 } 4939 } 4940 4941 /* 4942 ** This function checks if argument pFrom refers to a CTE declared by 4943 ** a WITH clause on the stack currently maintained by the parser (on the 4944 ** pParse->pWith linked list). And if currently processing a CTE 4945 ** CTE expression, through routine checks to see if the reference is 4946 ** a recursive reference to the CTE. 4947 ** 4948 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 4949 ** and other fields are populated accordingly. 4950 ** 4951 ** Return 0 if no match is found. 4952 ** Return 1 if a match is found. 4953 ** Return 2 if an error condition is detected. 4954 */ 4955 static int resolveFromTermToCte( 4956 Parse *pParse, /* The parsing context */ 4957 Walker *pWalker, /* Current tree walker */ 4958 SrcItem *pFrom /* The FROM clause term to check */ 4959 ){ 4960 Cte *pCte; /* Matched CTE (or NULL if no match) */ 4961 With *pWith; /* The matching WITH */ 4962 4963 assert( pFrom->pTab==0 ); 4964 if( pParse->pWith==0 ){ 4965 /* There are no WITH clauses in the stack. No match is possible */ 4966 return 0; 4967 } 4968 if( pFrom->zDatabase!=0 ){ 4969 /* The FROM term contains a schema qualifier (ex: main.t1) and so 4970 ** it cannot possibly be a CTE reference. */ 4971 return 0; 4972 } 4973 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4974 if( pCte ){ 4975 sqlite3 *db = pParse->db; 4976 Table *pTab; 4977 ExprList *pEList; 4978 Select *pSel; 4979 Select *pLeft; /* Left-most SELECT statement */ 4980 Select *pRecTerm; /* Left-most recursive term */ 4981 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4982 With *pSavedWith; /* Initial value of pParse->pWith */ 4983 int iRecTab = -1; /* Cursor for recursive table */ 4984 CteUse *pCteUse; 4985 4986 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4987 ** recursive reference to CTE pCte. Leave an error in pParse and return 4988 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4989 ** In this case, proceed. */ 4990 if( pCte->zCteErr ){ 4991 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4992 return 2; 4993 } 4994 if( cannotBeFunction(pParse, pFrom) ) return 2; 4995 4996 assert( pFrom->pTab==0 ); 4997 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4998 if( pTab==0 ) return 2; 4999 pCteUse = pCte->pUse; 5000 if( pCteUse==0 ){ 5001 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5002 if( pCteUse==0 5003 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5004 ){ 5005 sqlite3DbFree(db, pTab); 5006 return 2; 5007 } 5008 pCteUse->eM10d = pCte->eM10d; 5009 } 5010 pFrom->pTab = pTab; 5011 pTab->nTabRef = 1; 5012 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5013 pTab->iPKey = -1; 5014 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5015 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5016 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5017 if( db->mallocFailed ) return 2; 5018 assert( pFrom->pSelect ); 5019 pFrom->fg.isCte = 1; 5020 pFrom->u2.pCteUse = pCteUse; 5021 pCteUse->nUse++; 5022 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5023 pCteUse->eM10d = M10d_Yes; 5024 } 5025 5026 /* Check if this is a recursive CTE. */ 5027 pRecTerm = pSel = pFrom->pSelect; 5028 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5029 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5030 int i; 5031 SrcList *pSrc = pRecTerm->pSrc; 5032 assert( pRecTerm->pPrior!=0 ); 5033 for(i=0; i<pSrc->nSrc; i++){ 5034 SrcItem *pItem = &pSrc->a[i]; 5035 if( pItem->zDatabase==0 5036 && pItem->zName!=0 5037 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5038 ){ 5039 pItem->pTab = pTab; 5040 pTab->nTabRef++; 5041 pItem->fg.isRecursive = 1; 5042 if( pRecTerm->selFlags & SF_Recursive ){ 5043 sqlite3ErrorMsg(pParse, 5044 "multiple references to recursive table: %s", pCte->zName 5045 ); 5046 return 2; 5047 } 5048 pRecTerm->selFlags |= SF_Recursive; 5049 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5050 pItem->iCursor = iRecTab; 5051 } 5052 } 5053 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5054 pRecTerm = pRecTerm->pPrior; 5055 } 5056 5057 pCte->zCteErr = "circular reference: %s"; 5058 pSavedWith = pParse->pWith; 5059 pParse->pWith = pWith; 5060 if( pSel->selFlags & SF_Recursive ){ 5061 assert( pRecTerm!=0 ); 5062 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5063 assert( pRecTerm->pNext!=0 ); 5064 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5065 assert( pRecTerm->pWith==0 ); 5066 pRecTerm->pWith = pSel->pWith; 5067 sqlite3WalkSelect(pWalker, pRecTerm); 5068 pRecTerm->pWith = 0; 5069 }else{ 5070 sqlite3WalkSelect(pWalker, pSel); 5071 } 5072 pParse->pWith = pWith; 5073 5074 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5075 pEList = pLeft->pEList; 5076 if( pCte->pCols ){ 5077 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5078 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5079 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5080 ); 5081 pParse->pWith = pSavedWith; 5082 return 2; 5083 } 5084 pEList = pCte->pCols; 5085 } 5086 5087 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5088 if( bMayRecursive ){ 5089 if( pSel->selFlags & SF_Recursive ){ 5090 pCte->zCteErr = "multiple recursive references: %s"; 5091 }else{ 5092 pCte->zCteErr = "recursive reference in a subquery: %s"; 5093 } 5094 sqlite3WalkSelect(pWalker, pSel); 5095 } 5096 pCte->zCteErr = 0; 5097 pParse->pWith = pSavedWith; 5098 return 1; /* Success */ 5099 } 5100 return 0; /* No match */ 5101 } 5102 #endif 5103 5104 #ifndef SQLITE_OMIT_CTE 5105 /* 5106 ** If the SELECT passed as the second argument has an associated WITH 5107 ** clause, pop it from the stack stored as part of the Parse object. 5108 ** 5109 ** This function is used as the xSelectCallback2() callback by 5110 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5111 ** names and other FROM clause elements. 5112 */ 5113 static void selectPopWith(Walker *pWalker, Select *p){ 5114 Parse *pParse = pWalker->pParse; 5115 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5116 With *pWith = findRightmost(p)->pWith; 5117 if( pWith!=0 ){ 5118 assert( pParse->pWith==pWith || pParse->nErr ); 5119 pParse->pWith = pWith->pOuter; 5120 } 5121 } 5122 } 5123 #else 5124 #define selectPopWith 0 5125 #endif 5126 5127 /* 5128 ** The SrcList_item structure passed as the second argument represents a 5129 ** sub-query in the FROM clause of a SELECT statement. This function 5130 ** allocates and populates the SrcList_item.pTab object. If successful, 5131 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5132 ** SQLITE_NOMEM. 5133 */ 5134 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5135 Select *pSel = pFrom->pSelect; 5136 Table *pTab; 5137 5138 assert( pSel ); 5139 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5140 if( pTab==0 ) return SQLITE_NOMEM; 5141 pTab->nTabRef = 1; 5142 if( pFrom->zAlias ){ 5143 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5144 }else{ 5145 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5146 } 5147 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5148 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5149 pTab->iPKey = -1; 5150 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5151 pTab->tabFlags |= TF_Ephemeral; 5152 5153 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5154 } 5155 5156 /* 5157 ** This routine is a Walker callback for "expanding" a SELECT statement. 5158 ** "Expanding" means to do the following: 5159 ** 5160 ** (1) Make sure VDBE cursor numbers have been assigned to every 5161 ** element of the FROM clause. 5162 ** 5163 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5164 ** defines FROM clause. When views appear in the FROM clause, 5165 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5166 ** that implements the view. A copy is made of the view's SELECT 5167 ** statement so that we can freely modify or delete that statement 5168 ** without worrying about messing up the persistent representation 5169 ** of the view. 5170 ** 5171 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5172 ** on joins and the ON and USING clause of joins. 5173 ** 5174 ** (4) Scan the list of columns in the result set (pEList) looking 5175 ** for instances of the "*" operator or the TABLE.* operator. 5176 ** If found, expand each "*" to be every column in every table 5177 ** and TABLE.* to be every column in TABLE. 5178 ** 5179 */ 5180 static int selectExpander(Walker *pWalker, Select *p){ 5181 Parse *pParse = pWalker->pParse; 5182 int i, j, k, rc; 5183 SrcList *pTabList; 5184 ExprList *pEList; 5185 SrcItem *pFrom; 5186 sqlite3 *db = pParse->db; 5187 Expr *pE, *pRight, *pExpr; 5188 u16 selFlags = p->selFlags; 5189 u32 elistFlags = 0; 5190 5191 p->selFlags |= SF_Expanded; 5192 if( db->mallocFailed ){ 5193 return WRC_Abort; 5194 } 5195 assert( p->pSrc!=0 ); 5196 if( (selFlags & SF_Expanded)!=0 ){ 5197 return WRC_Prune; 5198 } 5199 if( pWalker->eCode ){ 5200 /* Renumber selId because it has been copied from a view */ 5201 p->selId = ++pParse->nSelect; 5202 } 5203 pTabList = p->pSrc; 5204 pEList = p->pEList; 5205 sqlite3WithPush(pParse, p->pWith, 0); 5206 5207 /* Make sure cursor numbers have been assigned to all entries in 5208 ** the FROM clause of the SELECT statement. 5209 */ 5210 sqlite3SrcListAssignCursors(pParse, pTabList); 5211 5212 /* Look up every table named in the FROM clause of the select. If 5213 ** an entry of the FROM clause is a subquery instead of a table or view, 5214 ** then create a transient table structure to describe the subquery. 5215 */ 5216 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5217 Table *pTab; 5218 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5219 if( pFrom->pTab ) continue; 5220 assert( pFrom->fg.isRecursive==0 ); 5221 if( pFrom->zName==0 ){ 5222 #ifndef SQLITE_OMIT_SUBQUERY 5223 Select *pSel = pFrom->pSelect; 5224 /* A sub-query in the FROM clause of a SELECT */ 5225 assert( pSel!=0 ); 5226 assert( pFrom->pTab==0 ); 5227 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5228 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5229 #endif 5230 #ifndef SQLITE_OMIT_CTE 5231 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5232 if( rc>1 ) return WRC_Abort; 5233 pTab = pFrom->pTab; 5234 assert( pTab!=0 ); 5235 #endif 5236 }else{ 5237 /* An ordinary table or view name in the FROM clause */ 5238 assert( pFrom->pTab==0 ); 5239 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5240 if( pTab==0 ) return WRC_Abort; 5241 if( pTab->nTabRef>=0xffff ){ 5242 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5243 pTab->zName); 5244 pFrom->pTab = 0; 5245 return WRC_Abort; 5246 } 5247 pTab->nTabRef++; 5248 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5249 return WRC_Abort; 5250 } 5251 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5252 if( IsVirtual(pTab) || pTab->pSelect ){ 5253 i16 nCol; 5254 u8 eCodeOrig = pWalker->eCode; 5255 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5256 assert( pFrom->pSelect==0 ); 5257 if( pTab->pSelect 5258 && (db->flags & SQLITE_EnableView)==0 5259 && pTab->pSchema!=db->aDb[1].pSchema 5260 ){ 5261 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5262 pTab->zName); 5263 } 5264 #ifndef SQLITE_OMIT_VIRTUALTABLE 5265 if( IsVirtual(pTab) 5266 && pFrom->fg.fromDDL 5267 && ALWAYS(pTab->pVTable!=0) 5268 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5269 ){ 5270 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5271 pTab->zName); 5272 } 5273 #endif 5274 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5275 nCol = pTab->nCol; 5276 pTab->nCol = -1; 5277 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5278 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5279 pWalker->eCode = eCodeOrig; 5280 pTab->nCol = nCol; 5281 } 5282 #endif 5283 } 5284 5285 /* Locate the index named by the INDEXED BY clause, if any. */ 5286 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5287 return WRC_Abort; 5288 } 5289 } 5290 5291 /* Process NATURAL keywords, and ON and USING clauses of joins. 5292 */ 5293 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5294 return WRC_Abort; 5295 } 5296 5297 /* For every "*" that occurs in the column list, insert the names of 5298 ** all columns in all tables. And for every TABLE.* insert the names 5299 ** of all columns in TABLE. The parser inserted a special expression 5300 ** with the TK_ASTERISK operator for each "*" that it found in the column 5301 ** list. The following code just has to locate the TK_ASTERISK 5302 ** expressions and expand each one to the list of all columns in 5303 ** all tables. 5304 ** 5305 ** The first loop just checks to see if there are any "*" operators 5306 ** that need expanding. 5307 */ 5308 for(k=0; k<pEList->nExpr; k++){ 5309 pE = pEList->a[k].pExpr; 5310 if( pE->op==TK_ASTERISK ) break; 5311 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5312 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5313 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5314 elistFlags |= pE->flags; 5315 } 5316 if( k<pEList->nExpr ){ 5317 /* 5318 ** If we get here it means the result set contains one or more "*" 5319 ** operators that need to be expanded. Loop through each expression 5320 ** in the result set and expand them one by one. 5321 */ 5322 struct ExprList_item *a = pEList->a; 5323 ExprList *pNew = 0; 5324 int flags = pParse->db->flags; 5325 int longNames = (flags & SQLITE_FullColNames)!=0 5326 && (flags & SQLITE_ShortColNames)==0; 5327 5328 for(k=0; k<pEList->nExpr; k++){ 5329 pE = a[k].pExpr; 5330 elistFlags |= pE->flags; 5331 pRight = pE->pRight; 5332 assert( pE->op!=TK_DOT || pRight!=0 ); 5333 if( pE->op!=TK_ASTERISK 5334 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5335 ){ 5336 /* This particular expression does not need to be expanded. 5337 */ 5338 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5339 if( pNew ){ 5340 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5341 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5342 a[k].zEName = 0; 5343 } 5344 a[k].pExpr = 0; 5345 }else{ 5346 /* This expression is a "*" or a "TABLE.*" and needs to be 5347 ** expanded. */ 5348 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5349 char *zTName = 0; /* text of name of TABLE */ 5350 if( pE->op==TK_DOT ){ 5351 assert( pE->pLeft!=0 ); 5352 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5353 zTName = pE->pLeft->u.zToken; 5354 } 5355 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5356 Table *pTab = pFrom->pTab; 5357 Select *pSub = pFrom->pSelect; 5358 char *zTabName = pFrom->zAlias; 5359 const char *zSchemaName = 0; 5360 int iDb; 5361 if( zTabName==0 ){ 5362 zTabName = pTab->zName; 5363 } 5364 if( db->mallocFailed ) break; 5365 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5366 pSub = 0; 5367 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5368 continue; 5369 } 5370 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5371 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5372 } 5373 for(j=0; j<pTab->nCol; j++){ 5374 char *zName = pTab->aCol[j].zName; 5375 char *zColname; /* The computed column name */ 5376 char *zToFree; /* Malloced string that needs to be freed */ 5377 Token sColname; /* Computed column name as a token */ 5378 5379 assert( zName ); 5380 if( zTName && pSub 5381 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5382 ){ 5383 continue; 5384 } 5385 5386 /* If a column is marked as 'hidden', omit it from the expanded 5387 ** result-set list unless the SELECT has the SF_IncludeHidden 5388 ** bit set. 5389 */ 5390 if( (p->selFlags & SF_IncludeHidden)==0 5391 && IsHiddenColumn(&pTab->aCol[j]) 5392 ){ 5393 continue; 5394 } 5395 tableSeen = 1; 5396 5397 if( i>0 && zTName==0 ){ 5398 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5399 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5400 ){ 5401 /* In a NATURAL join, omit the join columns from the 5402 ** table to the right of the join */ 5403 continue; 5404 } 5405 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5406 /* In a join with a USING clause, omit columns in the 5407 ** using clause from the table on the right. */ 5408 continue; 5409 } 5410 } 5411 pRight = sqlite3Expr(db, TK_ID, zName); 5412 zColname = zName; 5413 zToFree = 0; 5414 if( longNames || pTabList->nSrc>1 ){ 5415 Expr *pLeft; 5416 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5417 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5418 if( zSchemaName ){ 5419 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5420 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5421 } 5422 if( longNames ){ 5423 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5424 zToFree = zColname; 5425 } 5426 }else{ 5427 pExpr = pRight; 5428 } 5429 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5430 sqlite3TokenInit(&sColname, zColname); 5431 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5432 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5433 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5434 sqlite3DbFree(db, pX->zEName); 5435 if( pSub ){ 5436 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5437 testcase( pX->zEName==0 ); 5438 }else{ 5439 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5440 zSchemaName, zTabName, zColname); 5441 testcase( pX->zEName==0 ); 5442 } 5443 pX->eEName = ENAME_TAB; 5444 } 5445 sqlite3DbFree(db, zToFree); 5446 } 5447 } 5448 if( !tableSeen ){ 5449 if( zTName ){ 5450 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5451 }else{ 5452 sqlite3ErrorMsg(pParse, "no tables specified"); 5453 } 5454 } 5455 } 5456 } 5457 sqlite3ExprListDelete(db, pEList); 5458 p->pEList = pNew; 5459 } 5460 if( p->pEList ){ 5461 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5462 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5463 return WRC_Abort; 5464 } 5465 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5466 p->selFlags |= SF_ComplexResult; 5467 } 5468 } 5469 return WRC_Continue; 5470 } 5471 5472 #if SQLITE_DEBUG 5473 /* 5474 ** Always assert. This xSelectCallback2 implementation proves that the 5475 ** xSelectCallback2 is never invoked. 5476 */ 5477 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5478 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5479 assert( 0 ); 5480 } 5481 #endif 5482 /* 5483 ** This routine "expands" a SELECT statement and all of its subqueries. 5484 ** For additional information on what it means to "expand" a SELECT 5485 ** statement, see the comment on the selectExpand worker callback above. 5486 ** 5487 ** Expanding a SELECT statement is the first step in processing a 5488 ** SELECT statement. The SELECT statement must be expanded before 5489 ** name resolution is performed. 5490 ** 5491 ** If anything goes wrong, an error message is written into pParse. 5492 ** The calling function can detect the problem by looking at pParse->nErr 5493 ** and/or pParse->db->mallocFailed. 5494 */ 5495 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5496 Walker w; 5497 w.xExprCallback = sqlite3ExprWalkNoop; 5498 w.pParse = pParse; 5499 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5500 w.xSelectCallback = convertCompoundSelectToSubquery; 5501 w.xSelectCallback2 = 0; 5502 sqlite3WalkSelect(&w, pSelect); 5503 } 5504 w.xSelectCallback = selectExpander; 5505 w.xSelectCallback2 = selectPopWith; 5506 w.eCode = 0; 5507 sqlite3WalkSelect(&w, pSelect); 5508 } 5509 5510 5511 #ifndef SQLITE_OMIT_SUBQUERY 5512 /* 5513 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5514 ** interface. 5515 ** 5516 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5517 ** information to the Table structure that represents the result set 5518 ** of that subquery. 5519 ** 5520 ** The Table structure that represents the result set was constructed 5521 ** by selectExpander() but the type and collation information was omitted 5522 ** at that point because identifiers had not yet been resolved. This 5523 ** routine is called after identifier resolution. 5524 */ 5525 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5526 Parse *pParse; 5527 int i; 5528 SrcList *pTabList; 5529 SrcItem *pFrom; 5530 5531 assert( p->selFlags & SF_Resolved ); 5532 if( p->selFlags & SF_HasTypeInfo ) return; 5533 p->selFlags |= SF_HasTypeInfo; 5534 pParse = pWalker->pParse; 5535 pTabList = p->pSrc; 5536 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5537 Table *pTab = pFrom->pTab; 5538 assert( pTab!=0 ); 5539 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5540 /* A sub-query in the FROM clause of a SELECT */ 5541 Select *pSel = pFrom->pSelect; 5542 if( pSel ){ 5543 while( pSel->pPrior ) pSel = pSel->pPrior; 5544 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5545 SQLITE_AFF_NONE); 5546 } 5547 } 5548 } 5549 } 5550 #endif 5551 5552 5553 /* 5554 ** This routine adds datatype and collating sequence information to 5555 ** the Table structures of all FROM-clause subqueries in a 5556 ** SELECT statement. 5557 ** 5558 ** Use this routine after name resolution. 5559 */ 5560 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5561 #ifndef SQLITE_OMIT_SUBQUERY 5562 Walker w; 5563 w.xSelectCallback = sqlite3SelectWalkNoop; 5564 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5565 w.xExprCallback = sqlite3ExprWalkNoop; 5566 w.pParse = pParse; 5567 sqlite3WalkSelect(&w, pSelect); 5568 #endif 5569 } 5570 5571 5572 /* 5573 ** This routine sets up a SELECT statement for processing. The 5574 ** following is accomplished: 5575 ** 5576 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5577 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5578 ** * ON and USING clauses are shifted into WHERE statements 5579 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5580 ** * Identifiers in expression are matched to tables. 5581 ** 5582 ** This routine acts recursively on all subqueries within the SELECT. 5583 */ 5584 void sqlite3SelectPrep( 5585 Parse *pParse, /* The parser context */ 5586 Select *p, /* The SELECT statement being coded. */ 5587 NameContext *pOuterNC /* Name context for container */ 5588 ){ 5589 assert( p!=0 || pParse->db->mallocFailed ); 5590 if( pParse->db->mallocFailed ) return; 5591 if( p->selFlags & SF_HasTypeInfo ) return; 5592 sqlite3SelectExpand(pParse, p); 5593 if( pParse->nErr || pParse->db->mallocFailed ) return; 5594 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5595 if( pParse->nErr || pParse->db->mallocFailed ) return; 5596 sqlite3SelectAddTypeInfo(pParse, p); 5597 } 5598 5599 /* 5600 ** Reset the aggregate accumulator. 5601 ** 5602 ** The aggregate accumulator is a set of memory cells that hold 5603 ** intermediate results while calculating an aggregate. This 5604 ** routine generates code that stores NULLs in all of those memory 5605 ** cells. 5606 */ 5607 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5608 Vdbe *v = pParse->pVdbe; 5609 int i; 5610 struct AggInfo_func *pFunc; 5611 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5612 if( nReg==0 ) return; 5613 if( pParse->nErr || pParse->db->mallocFailed ) return; 5614 #ifdef SQLITE_DEBUG 5615 /* Verify that all AggInfo registers are within the range specified by 5616 ** AggInfo.mnReg..AggInfo.mxReg */ 5617 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5618 for(i=0; i<pAggInfo->nColumn; i++){ 5619 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5620 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5621 } 5622 for(i=0; i<pAggInfo->nFunc; i++){ 5623 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5624 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5625 } 5626 #endif 5627 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5628 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5629 if( pFunc->iDistinct>=0 ){ 5630 Expr *pE = pFunc->pFExpr; 5631 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5632 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5633 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5634 "argument"); 5635 pFunc->iDistinct = -1; 5636 }else{ 5637 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5638 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5639 (char*)pKeyInfo, P4_KEYINFO); 5640 } 5641 } 5642 } 5643 } 5644 5645 /* 5646 ** Invoke the OP_AggFinalize opcode for every aggregate function 5647 ** in the AggInfo structure. 5648 */ 5649 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5650 Vdbe *v = pParse->pVdbe; 5651 int i; 5652 struct AggInfo_func *pF; 5653 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5654 ExprList *pList = pF->pFExpr->x.pList; 5655 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5656 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5657 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5658 } 5659 } 5660 5661 5662 /* 5663 ** Update the accumulator memory cells for an aggregate based on 5664 ** the current cursor position. 5665 ** 5666 ** If regAcc is non-zero and there are no min() or max() aggregates 5667 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5668 ** registers if register regAcc contains 0. The caller will take care 5669 ** of setting and clearing regAcc. 5670 */ 5671 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5672 Vdbe *v = pParse->pVdbe; 5673 int i; 5674 int regHit = 0; 5675 int addrHitTest = 0; 5676 struct AggInfo_func *pF; 5677 struct AggInfo_col *pC; 5678 5679 pAggInfo->directMode = 1; 5680 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5681 int nArg; 5682 int addrNext = 0; 5683 int regAgg; 5684 ExprList *pList = pF->pFExpr->x.pList; 5685 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5686 assert( !IsWindowFunc(pF->pFExpr) ); 5687 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5688 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5689 if( pAggInfo->nAccumulator 5690 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5691 && regAcc 5692 ){ 5693 /* If regAcc==0, there there exists some min() or max() function 5694 ** without a FILTER clause that will ensure the magnet registers 5695 ** are populated. */ 5696 if( regHit==0 ) regHit = ++pParse->nMem; 5697 /* If this is the first row of the group (regAcc contains 0), clear the 5698 ** "magnet" register regHit so that the accumulator registers 5699 ** are populated if the FILTER clause jumps over the the 5700 ** invocation of min() or max() altogether. Or, if this is not 5701 ** the first row (regAcc contains 1), set the magnet register so that 5702 ** the accumulators are not populated unless the min()/max() is invoked 5703 ** and indicates that they should be. */ 5704 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5705 } 5706 addrNext = sqlite3VdbeMakeLabel(pParse); 5707 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5708 } 5709 if( pList ){ 5710 nArg = pList->nExpr; 5711 regAgg = sqlite3GetTempRange(pParse, nArg); 5712 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5713 }else{ 5714 nArg = 0; 5715 regAgg = 0; 5716 } 5717 if( pF->iDistinct>=0 ){ 5718 if( addrNext==0 ){ 5719 addrNext = sqlite3VdbeMakeLabel(pParse); 5720 } 5721 testcase( nArg==0 ); /* Error condition */ 5722 testcase( nArg>1 ); /* Also an error */ 5723 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5724 } 5725 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5726 CollSeq *pColl = 0; 5727 struct ExprList_item *pItem; 5728 int j; 5729 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5730 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5731 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5732 } 5733 if( !pColl ){ 5734 pColl = pParse->db->pDfltColl; 5735 } 5736 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5737 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5738 } 5739 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5740 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5741 sqlite3VdbeChangeP5(v, (u8)nArg); 5742 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5743 if( addrNext ){ 5744 sqlite3VdbeResolveLabel(v, addrNext); 5745 } 5746 } 5747 if( regHit==0 && pAggInfo->nAccumulator ){ 5748 regHit = regAcc; 5749 } 5750 if( regHit ){ 5751 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5752 } 5753 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5754 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5755 } 5756 5757 pAggInfo->directMode = 0; 5758 if( addrHitTest ){ 5759 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5760 } 5761 } 5762 5763 /* 5764 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5765 ** count(*) query ("SELECT count(*) FROM pTab"). 5766 */ 5767 #ifndef SQLITE_OMIT_EXPLAIN 5768 static void explainSimpleCount( 5769 Parse *pParse, /* Parse context */ 5770 Table *pTab, /* Table being queried */ 5771 Index *pIdx /* Index used to optimize scan, or NULL */ 5772 ){ 5773 if( pParse->explain==2 ){ 5774 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5775 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5776 pTab->zName, 5777 bCover ? " USING COVERING INDEX " : "", 5778 bCover ? pIdx->zName : "" 5779 ); 5780 } 5781 } 5782 #else 5783 # define explainSimpleCount(a,b,c) 5784 #endif 5785 5786 /* 5787 ** sqlite3WalkExpr() callback used by havingToWhere(). 5788 ** 5789 ** If the node passed to the callback is a TK_AND node, return 5790 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5791 ** 5792 ** Otherwise, return WRC_Prune. In this case, also check if the 5793 ** sub-expression matches the criteria for being moved to the WHERE 5794 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5795 ** within the HAVING expression with a constant "1". 5796 */ 5797 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5798 if( pExpr->op!=TK_AND ){ 5799 Select *pS = pWalker->u.pSelect; 5800 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 5801 && ExprAlwaysFalse(pExpr)==0 5802 ){ 5803 sqlite3 *db = pWalker->pParse->db; 5804 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5805 if( pNew ){ 5806 Expr *pWhere = pS->pWhere; 5807 SWAP(Expr, *pNew, *pExpr); 5808 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5809 pS->pWhere = pNew; 5810 pWalker->eCode = 1; 5811 } 5812 } 5813 return WRC_Prune; 5814 } 5815 return WRC_Continue; 5816 } 5817 5818 /* 5819 ** Transfer eligible terms from the HAVING clause of a query, which is 5820 ** processed after grouping, to the WHERE clause, which is processed before 5821 ** grouping. For example, the query: 5822 ** 5823 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5824 ** 5825 ** can be rewritten as: 5826 ** 5827 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5828 ** 5829 ** A term of the HAVING expression is eligible for transfer if it consists 5830 ** entirely of constants and expressions that are also GROUP BY terms that 5831 ** use the "BINARY" collation sequence. 5832 */ 5833 static void havingToWhere(Parse *pParse, Select *p){ 5834 Walker sWalker; 5835 memset(&sWalker, 0, sizeof(sWalker)); 5836 sWalker.pParse = pParse; 5837 sWalker.xExprCallback = havingToWhereExprCb; 5838 sWalker.u.pSelect = p; 5839 sqlite3WalkExpr(&sWalker, p->pHaving); 5840 #if SELECTTRACE_ENABLED 5841 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5842 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5843 sqlite3TreeViewSelect(0, p, 0); 5844 } 5845 #endif 5846 } 5847 5848 /* 5849 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5850 ** If it is, then return the SrcList_item for the prior view. If it is not, 5851 ** then return 0. 5852 */ 5853 static SrcItem *isSelfJoinView( 5854 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5855 SrcItem *pThis /* Search for prior reference to this subquery */ 5856 ){ 5857 SrcItem *pItem; 5858 assert( pThis->pSelect!=0 ); 5859 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 5860 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5861 Select *pS1; 5862 if( pItem->pSelect==0 ) continue; 5863 if( pItem->fg.viaCoroutine ) continue; 5864 if( pItem->zName==0 ) continue; 5865 assert( pItem->pTab!=0 ); 5866 assert( pThis->pTab!=0 ); 5867 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5868 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5869 pS1 = pItem->pSelect; 5870 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5871 /* The query flattener left two different CTE tables with identical 5872 ** names in the same FROM clause. */ 5873 continue; 5874 } 5875 if( pItem->pSelect->selFlags & SF_PushDown ){ 5876 /* The view was modified by some other optimization such as 5877 ** pushDownWhereTerms() */ 5878 continue; 5879 } 5880 return pItem; 5881 } 5882 return 0; 5883 } 5884 5885 /* 5886 ** Deallocate a single AggInfo object 5887 */ 5888 static void agginfoFree(sqlite3 *db, AggInfo *p){ 5889 sqlite3DbFree(db, p->aCol); 5890 sqlite3DbFree(db, p->aFunc); 5891 sqlite3DbFreeNN(db, p); 5892 } 5893 5894 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5895 /* 5896 ** Attempt to transform a query of the form 5897 ** 5898 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5899 ** 5900 ** Into this: 5901 ** 5902 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5903 ** 5904 ** The transformation only works if all of the following are true: 5905 ** 5906 ** * The subquery is a UNION ALL of two or more terms 5907 ** * The subquery does not have a LIMIT clause 5908 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5909 ** * The outer query is a simple count(*) with no WHERE clause or other 5910 ** extraneous syntax. 5911 ** 5912 ** Return TRUE if the optimization is undertaken. 5913 */ 5914 static int countOfViewOptimization(Parse *pParse, Select *p){ 5915 Select *pSub, *pPrior; 5916 Expr *pExpr; 5917 Expr *pCount; 5918 sqlite3 *db; 5919 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5920 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5921 if( p->pWhere ) return 0; 5922 if( p->pGroupBy ) return 0; 5923 pExpr = p->pEList->a[0].pExpr; 5924 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5925 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5926 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5927 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5928 pSub = p->pSrc->a[0].pSelect; 5929 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5930 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5931 do{ 5932 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5933 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5934 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5935 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5936 pSub = pSub->pPrior; /* Repeat over compound */ 5937 }while( pSub ); 5938 5939 /* If we reach this point then it is OK to perform the transformation */ 5940 5941 db = pParse->db; 5942 pCount = pExpr; 5943 pExpr = 0; 5944 pSub = p->pSrc->a[0].pSelect; 5945 p->pSrc->a[0].pSelect = 0; 5946 sqlite3SrcListDelete(db, p->pSrc); 5947 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5948 while( pSub ){ 5949 Expr *pTerm; 5950 pPrior = pSub->pPrior; 5951 pSub->pPrior = 0; 5952 pSub->pNext = 0; 5953 pSub->selFlags |= SF_Aggregate; 5954 pSub->selFlags &= ~SF_Compound; 5955 pSub->nSelectRow = 0; 5956 sqlite3ExprListDelete(db, pSub->pEList); 5957 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5958 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5959 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5960 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5961 if( pExpr==0 ){ 5962 pExpr = pTerm; 5963 }else{ 5964 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5965 } 5966 pSub = pPrior; 5967 } 5968 p->pEList->a[0].pExpr = pExpr; 5969 p->selFlags &= ~SF_Aggregate; 5970 5971 #if SELECTTRACE_ENABLED 5972 if( sqlite3SelectTrace & 0x400 ){ 5973 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5974 sqlite3TreeViewSelect(0, p, 0); 5975 } 5976 #endif 5977 return 1; 5978 } 5979 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5980 5981 /* 5982 ** Generate code for the SELECT statement given in the p argument. 5983 ** 5984 ** The results are returned according to the SelectDest structure. 5985 ** See comments in sqliteInt.h for further information. 5986 ** 5987 ** This routine returns the number of errors. If any errors are 5988 ** encountered, then an appropriate error message is left in 5989 ** pParse->zErrMsg. 5990 ** 5991 ** This routine does NOT free the Select structure passed in. The 5992 ** calling function needs to do that. 5993 */ 5994 int sqlite3Select( 5995 Parse *pParse, /* The parser context */ 5996 Select *p, /* The SELECT statement being coded. */ 5997 SelectDest *pDest /* What to do with the query results */ 5998 ){ 5999 int i, j; /* Loop counters */ 6000 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6001 Vdbe *v; /* The virtual machine under construction */ 6002 int isAgg; /* True for select lists like "count(*)" */ 6003 ExprList *pEList = 0; /* List of columns to extract. */ 6004 SrcList *pTabList; /* List of tables to select from */ 6005 Expr *pWhere; /* The WHERE clause. May be NULL */ 6006 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6007 Expr *pHaving; /* The HAVING clause. May be NULL */ 6008 AggInfo *pAggInfo = 0; /* Aggregate information */ 6009 int rc = 1; /* Value to return from this function */ 6010 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6011 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6012 int iEnd; /* Address of the end of the query */ 6013 sqlite3 *db; /* The database connection */ 6014 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6015 u8 minMaxFlag; /* Flag for min/max queries */ 6016 6017 db = pParse->db; 6018 v = sqlite3GetVdbe(pParse); 6019 if( p==0 || db->mallocFailed || pParse->nErr ){ 6020 return 1; 6021 } 6022 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6023 #if SELECTTRACE_ENABLED 6024 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6025 if( sqlite3SelectTrace & 0x100 ){ 6026 sqlite3TreeViewSelect(0, p, 0); 6027 } 6028 #endif 6029 6030 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6031 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6032 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6033 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6034 if( IgnorableDistinct(pDest) ){ 6035 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6036 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6037 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6038 /* All of these destinations are also able to ignore the ORDER BY clause */ 6039 if( p->pOrderBy ){ 6040 #if SELECTTRACE_ENABLED 6041 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6042 if( sqlite3SelectTrace & 0x100 ){ 6043 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6044 } 6045 #endif 6046 sqlite3ParserAddCleanup(pParse, 6047 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6048 p->pOrderBy); 6049 testcase( pParse->earlyCleanup ); 6050 p->pOrderBy = 0; 6051 } 6052 p->selFlags &= ~SF_Distinct; 6053 p->selFlags |= SF_NoopOrderBy; 6054 } 6055 sqlite3SelectPrep(pParse, p, 0); 6056 if( pParse->nErr || db->mallocFailed ){ 6057 goto select_end; 6058 } 6059 assert( p->pEList!=0 ); 6060 #if SELECTTRACE_ENABLED 6061 if( sqlite3SelectTrace & 0x104 ){ 6062 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6063 sqlite3TreeViewSelect(0, p, 0); 6064 } 6065 #endif 6066 6067 /* If the SF_UpdateFrom flag is set, then this function is being called 6068 ** as part of populating the temp table for an UPDATE...FROM statement. 6069 ** In this case, it is an error if the target object (pSrc->a[0]) name 6070 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */ 6071 if( p->selFlags & SF_UpdateFrom ){ 6072 SrcItem *p0 = &p->pSrc->a[0]; 6073 for(i=1; i<p->pSrc->nSrc; i++){ 6074 SrcItem *p1 = &p->pSrc->a[i]; 6075 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6076 sqlite3ErrorMsg(pParse, 6077 "target object/alias may not appear in FROM clause: %s", 6078 p0->zAlias ? p0->zAlias : p0->pTab->zName 6079 ); 6080 goto select_end; 6081 } 6082 } 6083 } 6084 6085 if( pDest->eDest==SRT_Output ){ 6086 generateColumnNames(pParse, p); 6087 } 6088 6089 #ifndef SQLITE_OMIT_WINDOWFUNC 6090 rc = sqlite3WindowRewrite(pParse, p); 6091 if( rc ){ 6092 assert( db->mallocFailed || pParse->nErr>0 ); 6093 goto select_end; 6094 } 6095 #if SELECTTRACE_ENABLED 6096 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6097 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6098 sqlite3TreeViewSelect(0, p, 0); 6099 } 6100 #endif 6101 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6102 pTabList = p->pSrc; 6103 isAgg = (p->selFlags & SF_Aggregate)!=0; 6104 memset(&sSort, 0, sizeof(sSort)); 6105 sSort.pOrderBy = p->pOrderBy; 6106 6107 /* Try to do various optimizations (flattening subqueries, and strength 6108 ** reduction of join operators) in the FROM clause up into the main query 6109 */ 6110 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6111 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6112 SrcItem *pItem = &pTabList->a[i]; 6113 Select *pSub = pItem->pSelect; 6114 Table *pTab = pItem->pTab; 6115 6116 /* The expander should have already created transient Table objects 6117 ** even for FROM clause elements such as subqueries that do not correspond 6118 ** to a real table */ 6119 assert( pTab!=0 ); 6120 6121 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6122 ** of the LEFT JOIN used in the WHERE clause. 6123 */ 6124 if( (pItem->fg.jointype & JT_LEFT)!=0 6125 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6126 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6127 ){ 6128 SELECTTRACE(0x100,pParse,p, 6129 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6130 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6131 unsetJoinExpr(p->pWhere, pItem->iCursor); 6132 } 6133 6134 /* No futher action if this term of the FROM clause is no a subquery */ 6135 if( pSub==0 ) continue; 6136 6137 /* Catch mismatch in the declared columns of a view and the number of 6138 ** columns in the SELECT on the RHS */ 6139 if( pTab->nCol!=pSub->pEList->nExpr ){ 6140 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6141 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6142 goto select_end; 6143 } 6144 6145 /* Do not try to flatten an aggregate subquery. 6146 ** 6147 ** Flattening an aggregate subquery is only possible if the outer query 6148 ** is not a join. But if the outer query is not a join, then the subquery 6149 ** will be implemented as a co-routine and there is no advantage to 6150 ** flattening in that case. 6151 */ 6152 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6153 assert( pSub->pGroupBy==0 ); 6154 6155 /* If the outer query contains a "complex" result set (that is, 6156 ** if the result set of the outer query uses functions or subqueries) 6157 ** and if the subquery contains an ORDER BY clause and if 6158 ** it will be implemented as a co-routine, then do not flatten. This 6159 ** restriction allows SQL constructs like this: 6160 ** 6161 ** SELECT expensive_function(x) 6162 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6163 ** 6164 ** The expensive_function() is only computed on the 10 rows that 6165 ** are output, rather than every row of the table. 6166 ** 6167 ** The requirement that the outer query have a complex result set 6168 ** means that flattening does occur on simpler SQL constraints without 6169 ** the expensive_function() like: 6170 ** 6171 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6172 */ 6173 if( pSub->pOrderBy!=0 6174 && i==0 6175 && (p->selFlags & SF_ComplexResult)!=0 6176 && (pTabList->nSrc==1 6177 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6178 ){ 6179 continue; 6180 } 6181 6182 if( flattenSubquery(pParse, p, i, isAgg) ){ 6183 if( pParse->nErr ) goto select_end; 6184 /* This subquery can be absorbed into its parent. */ 6185 i = -1; 6186 } 6187 pTabList = p->pSrc; 6188 if( db->mallocFailed ) goto select_end; 6189 if( !IgnorableOrderby(pDest) ){ 6190 sSort.pOrderBy = p->pOrderBy; 6191 } 6192 } 6193 #endif 6194 6195 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6196 /* Handle compound SELECT statements using the separate multiSelect() 6197 ** procedure. 6198 */ 6199 if( p->pPrior ){ 6200 rc = multiSelect(pParse, p, pDest); 6201 #if SELECTTRACE_ENABLED 6202 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6203 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6204 sqlite3TreeViewSelect(0, p, 0); 6205 } 6206 #endif 6207 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6208 return rc; 6209 } 6210 #endif 6211 6212 /* Do the WHERE-clause constant propagation optimization if this is 6213 ** a join. No need to speed time on this operation for non-join queries 6214 ** as the equivalent optimization will be handled by query planner in 6215 ** sqlite3WhereBegin(). 6216 */ 6217 if( pTabList->nSrc>1 6218 && OptimizationEnabled(db, SQLITE_PropagateConst) 6219 && propagateConstants(pParse, p) 6220 ){ 6221 #if SELECTTRACE_ENABLED 6222 if( sqlite3SelectTrace & 0x100 ){ 6223 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6224 sqlite3TreeViewSelect(0, p, 0); 6225 } 6226 #endif 6227 }else{ 6228 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6229 } 6230 6231 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6232 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6233 && countOfViewOptimization(pParse, p) 6234 ){ 6235 if( db->mallocFailed ) goto select_end; 6236 pEList = p->pEList; 6237 pTabList = p->pSrc; 6238 } 6239 #endif 6240 6241 /* For each term in the FROM clause, do two things: 6242 ** (1) Authorized unreferenced tables 6243 ** (2) Generate code for all sub-queries 6244 */ 6245 for(i=0; i<pTabList->nSrc; i++){ 6246 SrcItem *pItem = &pTabList->a[i]; 6247 SrcItem *pPrior; 6248 SelectDest dest; 6249 Select *pSub; 6250 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6251 const char *zSavedAuthContext; 6252 #endif 6253 6254 /* Issue SQLITE_READ authorizations with a fake column name for any 6255 ** tables that are referenced but from which no values are extracted. 6256 ** Examples of where these kinds of null SQLITE_READ authorizations 6257 ** would occur: 6258 ** 6259 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6260 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6261 ** 6262 ** The fake column name is an empty string. It is possible for a table to 6263 ** have a column named by the empty string, in which case there is no way to 6264 ** distinguish between an unreferenced table and an actual reference to the 6265 ** "" column. The original design was for the fake column name to be a NULL, 6266 ** which would be unambiguous. But legacy authorization callbacks might 6267 ** assume the column name is non-NULL and segfault. The use of an empty 6268 ** string for the fake column name seems safer. 6269 */ 6270 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6271 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6272 } 6273 6274 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6275 /* Generate code for all sub-queries in the FROM clause 6276 */ 6277 pSub = pItem->pSelect; 6278 if( pSub==0 ) continue; 6279 6280 /* The code for a subquery should only be generated once, though it is 6281 ** technically harmless for it to be generated multiple times. The 6282 ** following assert() will detect if something changes to cause 6283 ** the same subquery to be coded multiple times, as a signal to the 6284 ** developers to try to optimize the situation. 6285 ** 6286 ** Update 2019-07-24: 6287 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6288 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6289 ** coded twice. So this assert() now becomes a testcase(). It should 6290 ** be very rare, though. 6291 */ 6292 testcase( pItem->addrFillSub!=0 ); 6293 6294 /* Increment Parse.nHeight by the height of the largest expression 6295 ** tree referred to by this, the parent select. The child select 6296 ** may contain expression trees of at most 6297 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6298 ** more conservative than necessary, but much easier than enforcing 6299 ** an exact limit. 6300 */ 6301 pParse->nHeight += sqlite3SelectExprHeight(p); 6302 6303 /* Make copies of constant WHERE-clause terms in the outer query down 6304 ** inside the subquery. This can help the subquery to run more efficiently. 6305 */ 6306 if( OptimizationEnabled(db, SQLITE_PushDown) 6307 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) 6308 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6309 (pItem->fg.jointype & JT_OUTER)!=0) 6310 ){ 6311 #if SELECTTRACE_ENABLED 6312 if( sqlite3SelectTrace & 0x100 ){ 6313 SELECTTRACE(0x100,pParse,p, 6314 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6315 sqlite3TreeViewSelect(0, p, 0); 6316 } 6317 #endif 6318 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6319 }else{ 6320 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6321 } 6322 6323 zSavedAuthContext = pParse->zAuthContext; 6324 pParse->zAuthContext = pItem->zName; 6325 6326 /* Generate code to implement the subquery 6327 ** 6328 ** The subquery is implemented as a co-routine if: 6329 ** (1) the subquery is guaranteed to be the outer loop (so that 6330 ** it does not need to be computed more than once), and 6331 ** (2) the subquery is not a CTE that should be materialized 6332 ** 6333 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6334 ** implementation? 6335 */ 6336 if( i==0 6337 && (pTabList->nSrc==1 6338 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6339 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6340 ){ 6341 /* Implement a co-routine that will return a single row of the result 6342 ** set on each invocation. 6343 */ 6344 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6345 6346 pItem->regReturn = ++pParse->nMem; 6347 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6348 VdbeComment((v, "%s", pItem->pTab->zName)); 6349 pItem->addrFillSub = addrTop; 6350 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6351 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6352 sqlite3Select(pParse, pSub, &dest); 6353 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6354 pItem->fg.viaCoroutine = 1; 6355 pItem->regResult = dest.iSdst; 6356 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6357 sqlite3VdbeJumpHere(v, addrTop-1); 6358 sqlite3ClearTempRegCache(pParse); 6359 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6360 /* This is a CTE for which materialization code has already been 6361 ** generated. Invoke the subroutine to compute the materialization, 6362 ** the make the pItem->iCursor be a copy of the ephemerial table that 6363 ** holds the result of the materialization. */ 6364 CteUse *pCteUse = pItem->u2.pCteUse; 6365 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6366 if( pItem->iCursor!=pCteUse->iCur ){ 6367 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6368 } 6369 pSub->nSelectRow = pCteUse->nRowEst; 6370 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6371 /* This view has already been materialized by a prior entry in 6372 ** this same FROM clause. Reuse it. */ 6373 if( pPrior->addrFillSub ){ 6374 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6375 } 6376 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6377 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6378 }else{ 6379 /* Generate a subroutine that will materialize the view. */ 6380 int topAddr; 6381 int onceAddr = 0; 6382 int retAddr; 6383 6384 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6385 pItem->regReturn = ++pParse->nMem; 6386 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6387 pItem->addrFillSub = topAddr+1; 6388 if( pItem->fg.isCorrelated==0 ){ 6389 /* If the subquery is not correlated and if we are not inside of 6390 ** a trigger, then we only need to compute the value of the subquery 6391 ** once. */ 6392 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6393 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6394 }else{ 6395 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6396 } 6397 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6398 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6399 sqlite3Select(pParse, pSub, &dest); 6400 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6401 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6402 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6403 VdbeComment((v, "end %s", pItem->pTab->zName)); 6404 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6405 sqlite3ClearTempRegCache(pParse); 6406 if( pItem->fg.isCte ){ 6407 CteUse *pCteUse = pItem->u2.pCteUse; 6408 pCteUse->addrM9e = pItem->addrFillSub; 6409 pCteUse->regRtn = pItem->regReturn; 6410 pCteUse->iCur = pItem->iCursor; 6411 pCteUse->nRowEst = pSub->nSelectRow; 6412 } 6413 } 6414 if( db->mallocFailed ) goto select_end; 6415 pParse->nHeight -= sqlite3SelectExprHeight(p); 6416 pParse->zAuthContext = zSavedAuthContext; 6417 #endif 6418 } 6419 6420 /* Various elements of the SELECT copied into local variables for 6421 ** convenience */ 6422 pEList = p->pEList; 6423 pWhere = p->pWhere; 6424 pGroupBy = p->pGroupBy; 6425 pHaving = p->pHaving; 6426 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6427 6428 #if SELECTTRACE_ENABLED 6429 if( sqlite3SelectTrace & 0x400 ){ 6430 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6431 sqlite3TreeViewSelect(0, p, 0); 6432 } 6433 #endif 6434 6435 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6436 ** if the select-list is the same as the ORDER BY list, then this query 6437 ** can be rewritten as a GROUP BY. In other words, this: 6438 ** 6439 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6440 ** 6441 ** is transformed to: 6442 ** 6443 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6444 ** 6445 ** The second form is preferred as a single index (or temp-table) may be 6446 ** used for both the ORDER BY and DISTINCT processing. As originally 6447 ** written the query must use a temp-table for at least one of the ORDER 6448 ** BY and DISTINCT, and an index or separate temp-table for the other. 6449 */ 6450 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6451 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6452 #ifndef SQLITE_OMIT_WINDOWFUNC 6453 && p->pWin==0 6454 #endif 6455 ){ 6456 p->selFlags &= ~SF_Distinct; 6457 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6458 p->selFlags |= SF_Aggregate; 6459 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6460 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6461 ** original setting of the SF_Distinct flag, not the current setting */ 6462 assert( sDistinct.isTnct ); 6463 6464 #if SELECTTRACE_ENABLED 6465 if( sqlite3SelectTrace & 0x400 ){ 6466 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6467 sqlite3TreeViewSelect(0, p, 0); 6468 } 6469 #endif 6470 } 6471 6472 /* If there is an ORDER BY clause, then create an ephemeral index to 6473 ** do the sorting. But this sorting ephemeral index might end up 6474 ** being unused if the data can be extracted in pre-sorted order. 6475 ** If that is the case, then the OP_OpenEphemeral instruction will be 6476 ** changed to an OP_Noop once we figure out that the sorting index is 6477 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6478 ** that change. 6479 */ 6480 if( sSort.pOrderBy ){ 6481 KeyInfo *pKeyInfo; 6482 pKeyInfo = sqlite3KeyInfoFromExprList( 6483 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6484 sSort.iECursor = pParse->nTab++; 6485 sSort.addrSortIndex = 6486 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6487 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6488 (char*)pKeyInfo, P4_KEYINFO 6489 ); 6490 }else{ 6491 sSort.addrSortIndex = -1; 6492 } 6493 6494 /* If the output is destined for a temporary table, open that table. 6495 */ 6496 if( pDest->eDest==SRT_EphemTab ){ 6497 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6498 } 6499 6500 /* Set the limiter. 6501 */ 6502 iEnd = sqlite3VdbeMakeLabel(pParse); 6503 if( (p->selFlags & SF_FixedLimit)==0 ){ 6504 p->nSelectRow = 320; /* 4 billion rows */ 6505 } 6506 computeLimitRegisters(pParse, p, iEnd); 6507 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6508 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6509 sSort.sortFlags |= SORTFLAG_UseSorter; 6510 } 6511 6512 /* Open an ephemeral index to use for the distinct set. 6513 */ 6514 if( p->selFlags & SF_Distinct ){ 6515 sDistinct.tabTnct = pParse->nTab++; 6516 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6517 sDistinct.tabTnct, 0, 0, 6518 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6519 P4_KEYINFO); 6520 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6521 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6522 }else{ 6523 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6524 } 6525 6526 if( !isAgg && pGroupBy==0 ){ 6527 /* No aggregate functions and no GROUP BY clause */ 6528 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6529 | (p->selFlags & SF_FixedLimit); 6530 #ifndef SQLITE_OMIT_WINDOWFUNC 6531 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6532 if( pWin ){ 6533 sqlite3WindowCodeInit(pParse, p); 6534 } 6535 #endif 6536 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6537 6538 6539 /* Begin the database scan. */ 6540 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6541 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6542 p->pEList, wctrlFlags, p->nSelectRow); 6543 if( pWInfo==0 ) goto select_end; 6544 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6545 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6546 } 6547 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6548 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6549 } 6550 if( sSort.pOrderBy ){ 6551 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6552 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6553 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6554 sSort.pOrderBy = 0; 6555 } 6556 } 6557 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6558 6559 /* If sorting index that was created by a prior OP_OpenEphemeral 6560 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6561 ** into an OP_Noop. 6562 */ 6563 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6564 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6565 } 6566 6567 assert( p->pEList==pEList ); 6568 #ifndef SQLITE_OMIT_WINDOWFUNC 6569 if( pWin ){ 6570 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6571 int iCont = sqlite3VdbeMakeLabel(pParse); 6572 int iBreak = sqlite3VdbeMakeLabel(pParse); 6573 int regGosub = ++pParse->nMem; 6574 6575 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6576 6577 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6578 sqlite3VdbeResolveLabel(v, addrGosub); 6579 VdbeNoopComment((v, "inner-loop subroutine")); 6580 sSort.labelOBLopt = 0; 6581 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6582 sqlite3VdbeResolveLabel(v, iCont); 6583 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6584 VdbeComment((v, "end inner-loop subroutine")); 6585 sqlite3VdbeResolveLabel(v, iBreak); 6586 }else 6587 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6588 { 6589 /* Use the standard inner loop. */ 6590 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6591 sqlite3WhereContinueLabel(pWInfo), 6592 sqlite3WhereBreakLabel(pWInfo)); 6593 6594 /* End the database scan loop. 6595 */ 6596 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6597 sqlite3WhereEnd(pWInfo); 6598 } 6599 }else{ 6600 /* This case when there exist aggregate functions or a GROUP BY clause 6601 ** or both */ 6602 NameContext sNC; /* Name context for processing aggregate information */ 6603 int iAMem; /* First Mem address for storing current GROUP BY */ 6604 int iBMem; /* First Mem address for previous GROUP BY */ 6605 int iUseFlag; /* Mem address holding flag indicating that at least 6606 ** one row of the input to the aggregator has been 6607 ** processed */ 6608 int iAbortFlag; /* Mem address which causes query abort if positive */ 6609 int groupBySort; /* Rows come from source in GROUP BY order */ 6610 int addrEnd; /* End of processing for this SELECT */ 6611 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6612 int sortOut = 0; /* Output register from the sorter */ 6613 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6614 6615 /* Remove any and all aliases between the result set and the 6616 ** GROUP BY clause. 6617 */ 6618 if( pGroupBy ){ 6619 int k; /* Loop counter */ 6620 struct ExprList_item *pItem; /* For looping over expression in a list */ 6621 6622 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6623 pItem->u.x.iAlias = 0; 6624 } 6625 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6626 pItem->u.x.iAlias = 0; 6627 } 6628 assert( 66==sqlite3LogEst(100) ); 6629 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6630 6631 /* If there is both a GROUP BY and an ORDER BY clause and they are 6632 ** identical, then it may be possible to disable the ORDER BY clause 6633 ** on the grounds that the GROUP BY will cause elements to come out 6634 ** in the correct order. It also may not - the GROUP BY might use a 6635 ** database index that causes rows to be grouped together as required 6636 ** but not actually sorted. Either way, record the fact that the 6637 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6638 ** variable. */ 6639 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6640 int ii; 6641 /* The GROUP BY processing doesn't care whether rows are delivered in 6642 ** ASC or DESC order - only that each group is returned contiguously. 6643 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6644 ** ORDER BY to maximize the chances of rows being delivered in an 6645 ** order that makes the ORDER BY redundant. */ 6646 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6647 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6648 pGroupBy->a[ii].sortFlags = sortFlags; 6649 } 6650 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6651 orderByGrp = 1; 6652 } 6653 } 6654 }else{ 6655 assert( 0==sqlite3LogEst(1) ); 6656 p->nSelectRow = 0; 6657 } 6658 6659 /* Create a label to jump to when we want to abort the query */ 6660 addrEnd = sqlite3VdbeMakeLabel(pParse); 6661 6662 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6663 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6664 ** SELECT statement. 6665 */ 6666 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6667 if( pAggInfo ){ 6668 sqlite3ParserAddCleanup(pParse, 6669 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6670 testcase( pParse->earlyCleanup ); 6671 } 6672 if( db->mallocFailed ){ 6673 goto select_end; 6674 } 6675 pAggInfo->selId = p->selId; 6676 memset(&sNC, 0, sizeof(sNC)); 6677 sNC.pParse = pParse; 6678 sNC.pSrcList = pTabList; 6679 sNC.uNC.pAggInfo = pAggInfo; 6680 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6681 pAggInfo->mnReg = pParse->nMem+1; 6682 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6683 pAggInfo->pGroupBy = pGroupBy; 6684 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6685 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6686 if( pHaving ){ 6687 if( pGroupBy ){ 6688 assert( pWhere==p->pWhere ); 6689 assert( pHaving==p->pHaving ); 6690 assert( pGroupBy==p->pGroupBy ); 6691 havingToWhere(pParse, p); 6692 pWhere = p->pWhere; 6693 } 6694 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6695 } 6696 pAggInfo->nAccumulator = pAggInfo->nColumn; 6697 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6698 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6699 }else{ 6700 minMaxFlag = WHERE_ORDERBY_NORMAL; 6701 } 6702 for(i=0; i<pAggInfo->nFunc; i++){ 6703 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6704 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6705 sNC.ncFlags |= NC_InAggFunc; 6706 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6707 #ifndef SQLITE_OMIT_WINDOWFUNC 6708 assert( !IsWindowFunc(pExpr) ); 6709 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6710 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6711 } 6712 #endif 6713 sNC.ncFlags &= ~NC_InAggFunc; 6714 } 6715 pAggInfo->mxReg = pParse->nMem; 6716 if( db->mallocFailed ) goto select_end; 6717 #if SELECTTRACE_ENABLED 6718 if( sqlite3SelectTrace & 0x400 ){ 6719 int ii; 6720 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 6721 sqlite3TreeViewSelect(0, p, 0); 6722 if( minMaxFlag ){ 6723 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 6724 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 6725 } 6726 for(ii=0; ii<pAggInfo->nColumn; ii++){ 6727 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6728 ii, pAggInfo->aCol[ii].iMem); 6729 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 6730 } 6731 for(ii=0; ii<pAggInfo->nFunc; ii++){ 6732 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6733 ii, pAggInfo->aFunc[ii].iMem); 6734 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 6735 } 6736 } 6737 #endif 6738 6739 6740 /* Processing for aggregates with GROUP BY is very different and 6741 ** much more complex than aggregates without a GROUP BY. 6742 */ 6743 if( pGroupBy ){ 6744 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6745 int addr1; /* A-vs-B comparision jump */ 6746 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6747 int regOutputRow; /* Return address register for output subroutine */ 6748 int addrSetAbort; /* Set the abort flag and return */ 6749 int addrTopOfLoop; /* Top of the input loop */ 6750 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6751 int addrReset; /* Subroutine for resetting the accumulator */ 6752 int regReset; /* Return address register for reset subroutine */ 6753 6754 /* If there is a GROUP BY clause we might need a sorting index to 6755 ** implement it. Allocate that sorting index now. If it turns out 6756 ** that we do not need it after all, the OP_SorterOpen instruction 6757 ** will be converted into a Noop. 6758 */ 6759 pAggInfo->sortingIdx = pParse->nTab++; 6760 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 6761 0, pAggInfo->nColumn); 6762 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6763 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 6764 0, (char*)pKeyInfo, P4_KEYINFO); 6765 6766 /* Initialize memory locations used by GROUP BY aggregate processing 6767 */ 6768 iUseFlag = ++pParse->nMem; 6769 iAbortFlag = ++pParse->nMem; 6770 regOutputRow = ++pParse->nMem; 6771 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6772 regReset = ++pParse->nMem; 6773 addrReset = sqlite3VdbeMakeLabel(pParse); 6774 iAMem = pParse->nMem + 1; 6775 pParse->nMem += pGroupBy->nExpr; 6776 iBMem = pParse->nMem + 1; 6777 pParse->nMem += pGroupBy->nExpr; 6778 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6779 VdbeComment((v, "clear abort flag")); 6780 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6781 6782 /* Begin a loop that will extract all source rows in GROUP BY order. 6783 ** This might involve two separate loops with an OP_Sort in between, or 6784 ** it might be a single loop that uses an index to extract information 6785 ** in the right order to begin with. 6786 */ 6787 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6788 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6789 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6790 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6791 ); 6792 if( pWInfo==0 ) goto select_end; 6793 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6794 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6795 /* The optimizer is able to deliver rows in group by order so 6796 ** we do not have to sort. The OP_OpenEphemeral table will be 6797 ** cancelled later because we still need to use the pKeyInfo 6798 */ 6799 groupBySort = 0; 6800 }else{ 6801 /* Rows are coming out in undetermined order. We have to push 6802 ** each row into a sorting index, terminate the first loop, 6803 ** then loop over the sorting index in order to get the output 6804 ** in sorted order 6805 */ 6806 int regBase; 6807 int regRecord; 6808 int nCol; 6809 int nGroupBy; 6810 6811 explainTempTable(pParse, 6812 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6813 "DISTINCT" : "GROUP BY"); 6814 6815 groupBySort = 1; 6816 nGroupBy = pGroupBy->nExpr; 6817 nCol = nGroupBy; 6818 j = nGroupBy; 6819 for(i=0; i<pAggInfo->nColumn; i++){ 6820 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 6821 nCol++; 6822 j++; 6823 } 6824 } 6825 regBase = sqlite3GetTempRange(pParse, nCol); 6826 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6827 j = nGroupBy; 6828 for(i=0; i<pAggInfo->nColumn; i++){ 6829 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 6830 if( pCol->iSorterColumn>=j ){ 6831 int r1 = j + regBase; 6832 sqlite3ExprCodeGetColumnOfTable(v, 6833 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6834 j++; 6835 } 6836 } 6837 regRecord = sqlite3GetTempReg(pParse); 6838 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6839 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 6840 sqlite3ReleaseTempReg(pParse, regRecord); 6841 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6842 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6843 sqlite3WhereEnd(pWInfo); 6844 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 6845 sortOut = sqlite3GetTempReg(pParse); 6846 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6847 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 6848 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6849 pAggInfo->useSortingIdx = 1; 6850 } 6851 6852 /* If the index or temporary table used by the GROUP BY sort 6853 ** will naturally deliver rows in the order required by the ORDER BY 6854 ** clause, cancel the ephemeral table open coded earlier. 6855 ** 6856 ** This is an optimization - the correct answer should result regardless. 6857 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6858 ** disable this optimization for testing purposes. */ 6859 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6860 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6861 ){ 6862 sSort.pOrderBy = 0; 6863 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6864 } 6865 6866 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6867 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6868 ** Then compare the current GROUP BY terms against the GROUP BY terms 6869 ** from the previous row currently stored in a0, a1, a2... 6870 */ 6871 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6872 if( groupBySort ){ 6873 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 6874 sortOut, sortPTab); 6875 } 6876 for(j=0; j<pGroupBy->nExpr; j++){ 6877 if( groupBySort ){ 6878 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6879 }else{ 6880 pAggInfo->directMode = 1; 6881 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6882 } 6883 } 6884 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6885 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6886 addr1 = sqlite3VdbeCurrentAddr(v); 6887 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6888 6889 /* Generate code that runs whenever the GROUP BY changes. 6890 ** Changes in the GROUP BY are detected by the previous code 6891 ** block. If there were no changes, this block is skipped. 6892 ** 6893 ** This code copies current group by terms in b0,b1,b2,... 6894 ** over to a0,a1,a2. It then calls the output subroutine 6895 ** and resets the aggregate accumulator registers in preparation 6896 ** for the next GROUP BY batch. 6897 */ 6898 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6899 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6900 VdbeComment((v, "output one row")); 6901 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6902 VdbeComment((v, "check abort flag")); 6903 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6904 VdbeComment((v, "reset accumulator")); 6905 6906 /* Update the aggregate accumulators based on the content of 6907 ** the current row 6908 */ 6909 sqlite3VdbeJumpHere(v, addr1); 6910 updateAccumulator(pParse, iUseFlag, pAggInfo); 6911 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6912 VdbeComment((v, "indicate data in accumulator")); 6913 6914 /* End of the loop 6915 */ 6916 if( groupBySort ){ 6917 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 6918 VdbeCoverage(v); 6919 }else{ 6920 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6921 sqlite3WhereEnd(pWInfo); 6922 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6923 } 6924 6925 /* Output the final row of result 6926 */ 6927 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6928 VdbeComment((v, "output final row")); 6929 6930 /* Jump over the subroutines 6931 */ 6932 sqlite3VdbeGoto(v, addrEnd); 6933 6934 /* Generate a subroutine that outputs a single row of the result 6935 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6936 ** is less than or equal to zero, the subroutine is a no-op. If 6937 ** the processing calls for the query to abort, this subroutine 6938 ** increments the iAbortFlag memory location before returning in 6939 ** order to signal the caller to abort. 6940 */ 6941 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6942 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6943 VdbeComment((v, "set abort flag")); 6944 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6945 sqlite3VdbeResolveLabel(v, addrOutputRow); 6946 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6947 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6948 VdbeCoverage(v); 6949 VdbeComment((v, "Groupby result generator entry point")); 6950 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6951 finalizeAggFunctions(pParse, pAggInfo); 6952 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6953 selectInnerLoop(pParse, p, -1, &sSort, 6954 &sDistinct, pDest, 6955 addrOutputRow+1, addrSetAbort); 6956 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6957 VdbeComment((v, "end groupby result generator")); 6958 6959 /* Generate a subroutine that will reset the group-by accumulator 6960 */ 6961 sqlite3VdbeResolveLabel(v, addrReset); 6962 resetAccumulator(pParse, pAggInfo); 6963 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6964 VdbeComment((v, "indicate accumulator empty")); 6965 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6966 6967 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6968 else { 6969 Table *pTab; 6970 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 6971 /* If isSimpleCount() returns a pointer to a Table structure, then 6972 ** the SQL statement is of the form: 6973 ** 6974 ** SELECT count(*) FROM <tbl> 6975 ** 6976 ** where the Table structure returned represents table <tbl>. 6977 ** 6978 ** This statement is so common that it is optimized specially. The 6979 ** OP_Count instruction is executed either on the intkey table that 6980 ** contains the data for table <tbl> or on one of its indexes. It 6981 ** is better to execute the op on an index, as indexes are almost 6982 ** always spread across less pages than their corresponding tables. 6983 */ 6984 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6985 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6986 Index *pIdx; /* Iterator variable */ 6987 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6988 Index *pBest = 0; /* Best index found so far */ 6989 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6990 6991 sqlite3CodeVerifySchema(pParse, iDb); 6992 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6993 6994 /* Search for the index that has the lowest scan cost. 6995 ** 6996 ** (2011-04-15) Do not do a full scan of an unordered index. 6997 ** 6998 ** (2013-10-03) Do not count the entries in a partial index. 6999 ** 7000 ** In practice the KeyInfo structure will not be used. It is only 7001 ** passed to keep OP_OpenRead happy. 7002 */ 7003 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7004 if( !p->pSrc->a[0].fg.notIndexed ){ 7005 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7006 if( pIdx->bUnordered==0 7007 && pIdx->szIdxRow<pTab->szTabRow 7008 && pIdx->pPartIdxWhere==0 7009 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7010 ){ 7011 pBest = pIdx; 7012 } 7013 } 7014 } 7015 if( pBest ){ 7016 iRoot = pBest->tnum; 7017 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7018 } 7019 7020 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7021 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7022 if( pKeyInfo ){ 7023 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7024 } 7025 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7026 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7027 explainSimpleCount(pParse, pTab, pBest); 7028 }else{ 7029 int regAcc = 0; /* "populate accumulators" flag */ 7030 7031 /* If there are accumulator registers but no min() or max() functions 7032 ** without FILTER clauses, allocate register regAcc. Register regAcc 7033 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7034 ** The code generated by updateAccumulator() uses this to ensure 7035 ** that the accumulator registers are (a) updated only once if 7036 ** there are no min() or max functions or (b) always updated for the 7037 ** first row visited by the aggregate, so that they are updated at 7038 ** least once even if the FILTER clause means the min() or max() 7039 ** function visits zero rows. */ 7040 if( pAggInfo->nAccumulator ){ 7041 for(i=0; i<pAggInfo->nFunc; i++){ 7042 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7043 continue; 7044 } 7045 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7046 break; 7047 } 7048 } 7049 if( i==pAggInfo->nFunc ){ 7050 regAcc = ++pParse->nMem; 7051 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7052 } 7053 } 7054 7055 /* This case runs if the aggregate has no GROUP BY clause. The 7056 ** processing is much simpler since there is only a single row 7057 ** of output. 7058 */ 7059 assert( p->pGroupBy==0 ); 7060 resetAccumulator(pParse, pAggInfo); 7061 7062 /* If this query is a candidate for the min/max optimization, then 7063 ** minMaxFlag will have been previously set to either 7064 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7065 ** be an appropriate ORDER BY expression for the optimization. 7066 */ 7067 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7068 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7069 7070 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7071 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7072 0, minMaxFlag, 0); 7073 if( pWInfo==0 ){ 7074 goto select_end; 7075 } 7076 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7077 updateAccumulator(pParse, regAcc, pAggInfo); 7078 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7079 if( minMaxFlag ){ 7080 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7081 } 7082 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7083 sqlite3WhereEnd(pWInfo); 7084 finalizeAggFunctions(pParse, pAggInfo); 7085 } 7086 7087 sSort.pOrderBy = 0; 7088 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7089 selectInnerLoop(pParse, p, -1, 0, 0, 7090 pDest, addrEnd, addrEnd); 7091 } 7092 sqlite3VdbeResolveLabel(v, addrEnd); 7093 7094 } /* endif aggregate query */ 7095 7096 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7097 explainTempTable(pParse, "DISTINCT"); 7098 } 7099 7100 /* If there is an ORDER BY clause, then we need to sort the results 7101 ** and send them to the callback one by one. 7102 */ 7103 if( sSort.pOrderBy ){ 7104 explainTempTable(pParse, 7105 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7106 assert( p->pEList==pEList ); 7107 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7108 } 7109 7110 /* Jump here to skip this query 7111 */ 7112 sqlite3VdbeResolveLabel(v, iEnd); 7113 7114 /* The SELECT has been coded. If there is an error in the Parse structure, 7115 ** set the return code to 1. Otherwise 0. */ 7116 rc = (pParse->nErr>0); 7117 7118 /* Control jumps to here if an error is encountered above, or upon 7119 ** successful coding of the SELECT. 7120 */ 7121 select_end: 7122 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7123 #ifdef SQLITE_DEBUG 7124 if( pAggInfo && !db->mallocFailed ){ 7125 for(i=0; i<pAggInfo->nColumn; i++){ 7126 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7127 assert( pExpr!=0 ); 7128 assert( pExpr->pAggInfo==pAggInfo ); 7129 assert( pExpr->iAgg==i ); 7130 } 7131 for(i=0; i<pAggInfo->nFunc; i++){ 7132 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7133 assert( pExpr!=0 ); 7134 assert( pExpr->pAggInfo==pAggInfo ); 7135 assert( pExpr->iAgg==i ); 7136 } 7137 } 7138 #endif 7139 7140 #if SELECTTRACE_ENABLED 7141 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7142 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7143 sqlite3TreeViewSelect(0, p, 0); 7144 } 7145 #endif 7146 ExplainQueryPlanPop(pParse); 7147 return rc; 7148 } 7149