1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 }; 60 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 61 62 /* 63 ** Delete all the content of a Select structure. Deallocate the structure 64 ** itself only if bFree is true. 65 */ 66 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 67 while( p ){ 68 Select *pPrior = p->pPrior; 69 sqlite3ExprListDelete(db, p->pEList); 70 sqlite3SrcListDelete(db, p->pSrc); 71 sqlite3ExprDelete(db, p->pWhere); 72 sqlite3ExprListDelete(db, p->pGroupBy); 73 sqlite3ExprDelete(db, p->pHaving); 74 sqlite3ExprListDelete(db, p->pOrderBy); 75 sqlite3ExprDelete(db, p->pLimit); 76 sqlite3ExprDelete(db, p->pOffset); 77 sqlite3WithDelete(db, p->pWith); 78 if( bFree ) sqlite3DbFree(db, p); 79 p = pPrior; 80 bFree = 1; 81 } 82 } 83 84 /* 85 ** Initialize a SelectDest structure. 86 */ 87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 88 pDest->eDest = (u8)eDest; 89 pDest->iSDParm = iParm; 90 pDest->affSdst = 0; 91 pDest->iSdst = 0; 92 pDest->nSdst = 0; 93 } 94 95 96 /* 97 ** Allocate a new Select structure and return a pointer to that 98 ** structure. 99 */ 100 Select *sqlite3SelectNew( 101 Parse *pParse, /* Parsing context */ 102 ExprList *pEList, /* which columns to include in the result */ 103 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 104 Expr *pWhere, /* the WHERE clause */ 105 ExprList *pGroupBy, /* the GROUP BY clause */ 106 Expr *pHaving, /* the HAVING clause */ 107 ExprList *pOrderBy, /* the ORDER BY clause */ 108 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 109 Expr *pLimit, /* LIMIT value. NULL means not used */ 110 Expr *pOffset /* OFFSET value. NULL means no offset */ 111 ){ 112 Select *pNew; 113 Select standin; 114 sqlite3 *db = pParse->db; 115 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 116 if( pNew==0 ){ 117 assert( db->mallocFailed ); 118 pNew = &standin; 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0)); 122 } 123 pNew->pEList = pEList; 124 pNew->op = TK_SELECT; 125 pNew->selFlags = selFlags; 126 pNew->iLimit = 0; 127 pNew->iOffset = 0; 128 #if SELECTTRACE_ENABLED 129 pNew->zSelName[0] = 0; 130 #endif 131 pNew->addrOpenEphm[0] = -1; 132 pNew->addrOpenEphm[1] = -1; 133 pNew->nSelectRow = 0; 134 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 135 pNew->pSrc = pSrc; 136 pNew->pWhere = pWhere; 137 pNew->pGroupBy = pGroupBy; 138 pNew->pHaving = pHaving; 139 pNew->pOrderBy = pOrderBy; 140 pNew->pPrior = 0; 141 pNew->pNext = 0; 142 pNew->pLimit = pLimit; 143 pNew->pOffset = pOffset; 144 pNew->pWith = 0; 145 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 146 if( db->mallocFailed ) { 147 clearSelect(db, pNew, pNew!=&standin); 148 pNew = 0; 149 }else{ 150 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 151 } 152 assert( pNew!=&standin ); 153 return pNew; 154 } 155 156 #if SELECTTRACE_ENABLED 157 /* 158 ** Set the name of a Select object 159 */ 160 void sqlite3SelectSetName(Select *p, const char *zName){ 161 if( p && zName ){ 162 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 163 } 164 } 165 #endif 166 167 168 /* 169 ** Delete the given Select structure and all of its substructures. 170 */ 171 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 172 clearSelect(db, p, 1); 173 } 174 175 /* 176 ** Return a pointer to the right-most SELECT statement in a compound. 177 */ 178 static Select *findRightmost(Select *p){ 179 while( p->pNext ) p = p->pNext; 180 return p; 181 } 182 183 /* 184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 185 ** type of join. Return an integer constant that expresses that type 186 ** in terms of the following bit values: 187 ** 188 ** JT_INNER 189 ** JT_CROSS 190 ** JT_OUTER 191 ** JT_NATURAL 192 ** JT_LEFT 193 ** JT_RIGHT 194 ** 195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 196 ** 197 ** If an illegal or unsupported join type is seen, then still return 198 ** a join type, but put an error in the pParse structure. 199 */ 200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 201 int jointype = 0; 202 Token *apAll[3]; 203 Token *p; 204 /* 0123456789 123456789 123456789 123 */ 205 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 206 static const struct { 207 u8 i; /* Beginning of keyword text in zKeyText[] */ 208 u8 nChar; /* Length of the keyword in characters */ 209 u8 code; /* Join type mask */ 210 } aKeyword[] = { 211 /* natural */ { 0, 7, JT_NATURAL }, 212 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 213 /* outer */ { 10, 5, JT_OUTER }, 214 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 215 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 216 /* inner */ { 23, 5, JT_INNER }, 217 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 218 }; 219 int i, j; 220 apAll[0] = pA; 221 apAll[1] = pB; 222 apAll[2] = pC; 223 for(i=0; i<3 && apAll[i]; i++){ 224 p = apAll[i]; 225 for(j=0; j<ArraySize(aKeyword); j++){ 226 if( p->n==aKeyword[j].nChar 227 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 228 jointype |= aKeyword[j].code; 229 break; 230 } 231 } 232 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 233 if( j>=ArraySize(aKeyword) ){ 234 jointype |= JT_ERROR; 235 break; 236 } 237 } 238 if( 239 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 240 (jointype & JT_ERROR)!=0 241 ){ 242 const char *zSp = " "; 243 assert( pB!=0 ); 244 if( pC==0 ){ zSp++; } 245 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 246 "%T %T%s%T", pA, pB, zSp, pC); 247 jointype = JT_INNER; 248 }else if( (jointype & JT_OUTER)!=0 249 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 250 sqlite3ErrorMsg(pParse, 251 "RIGHT and FULL OUTER JOINs are not currently supported"); 252 jointype = JT_INNER; 253 } 254 return jointype; 255 } 256 257 /* 258 ** Return the index of a column in a table. Return -1 if the column 259 ** is not contained in the table. 260 */ 261 static int columnIndex(Table *pTab, const char *zCol){ 262 int i; 263 for(i=0; i<pTab->nCol; i++){ 264 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 265 } 266 return -1; 267 } 268 269 /* 270 ** Search the first N tables in pSrc, from left to right, looking for a 271 ** table that has a column named zCol. 272 ** 273 ** When found, set *piTab and *piCol to the table index and column index 274 ** of the matching column and return TRUE. 275 ** 276 ** If not found, return FALSE. 277 */ 278 static int tableAndColumnIndex( 279 SrcList *pSrc, /* Array of tables to search */ 280 int N, /* Number of tables in pSrc->a[] to search */ 281 const char *zCol, /* Name of the column we are looking for */ 282 int *piTab, /* Write index of pSrc->a[] here */ 283 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 284 ){ 285 int i; /* For looping over tables in pSrc */ 286 int iCol; /* Index of column matching zCol */ 287 288 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 289 for(i=0; i<N; i++){ 290 iCol = columnIndex(pSrc->a[i].pTab, zCol); 291 if( iCol>=0 ){ 292 if( piTab ){ 293 *piTab = i; 294 *piCol = iCol; 295 } 296 return 1; 297 } 298 } 299 return 0; 300 } 301 302 /* 303 ** This function is used to add terms implied by JOIN syntax to the 304 ** WHERE clause expression of a SELECT statement. The new term, which 305 ** is ANDed with the existing WHERE clause, is of the form: 306 ** 307 ** (tab1.col1 = tab2.col2) 308 ** 309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 311 ** column iColRight of tab2. 312 */ 313 static void addWhereTerm( 314 Parse *pParse, /* Parsing context */ 315 SrcList *pSrc, /* List of tables in FROM clause */ 316 int iLeft, /* Index of first table to join in pSrc */ 317 int iColLeft, /* Index of column in first table */ 318 int iRight, /* Index of second table in pSrc */ 319 int iColRight, /* Index of column in second table */ 320 int isOuterJoin, /* True if this is an OUTER join */ 321 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 322 ){ 323 sqlite3 *db = pParse->db; 324 Expr *pE1; 325 Expr *pE2; 326 Expr *pEq; 327 328 assert( iLeft<iRight ); 329 assert( pSrc->nSrc>iRight ); 330 assert( pSrc->a[iLeft].pTab ); 331 assert( pSrc->a[iRight].pTab ); 332 333 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 334 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 335 336 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 337 if( pEq && isOuterJoin ){ 338 ExprSetProperty(pEq, EP_FromJoin); 339 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(pEq, EP_NoReduce); 341 pEq->iRightJoinTable = (i16)pE2->iTable; 342 } 343 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 344 } 345 346 /* 347 ** Set the EP_FromJoin property on all terms of the given expression. 348 ** And set the Expr.iRightJoinTable to iTable for every term in the 349 ** expression. 350 ** 351 ** The EP_FromJoin property is used on terms of an expression to tell 352 ** the LEFT OUTER JOIN processing logic that this term is part of the 353 ** join restriction specified in the ON or USING clause and not a part 354 ** of the more general WHERE clause. These terms are moved over to the 355 ** WHERE clause during join processing but we need to remember that they 356 ** originated in the ON or USING clause. 357 ** 358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 359 ** expression depends on table iRightJoinTable even if that table is not 360 ** explicitly mentioned in the expression. That information is needed 361 ** for cases like this: 362 ** 363 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 364 ** 365 ** The where clause needs to defer the handling of the t1.x=5 366 ** term until after the t2 loop of the join. In that way, a 367 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 368 ** defer the handling of t1.x=5, it will be processed immediately 369 ** after the t1 loop and rows with t1.x!=5 will never appear in 370 ** the output, which is incorrect. 371 */ 372 static void setJoinExpr(Expr *p, int iTable){ 373 while( p ){ 374 ExprSetProperty(p, EP_FromJoin); 375 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(p, EP_NoReduce); 377 p->iRightJoinTable = (i16)iTable; 378 if( p->op==TK_FUNCTION && p->x.pList ){ 379 int i; 380 for(i=0; i<p->x.pList->nExpr; i++){ 381 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 382 } 383 } 384 setJoinExpr(p->pLeft, iTable); 385 p = p->pRight; 386 } 387 } 388 389 /* 390 ** This routine processes the join information for a SELECT statement. 391 ** ON and USING clauses are converted into extra terms of the WHERE clause. 392 ** NATURAL joins also create extra WHERE clause terms. 393 ** 394 ** The terms of a FROM clause are contained in the Select.pSrc structure. 395 ** The left most table is the first entry in Select.pSrc. The right-most 396 ** table is the last entry. The join operator is held in the entry to 397 ** the left. Thus entry 0 contains the join operator for the join between 398 ** entries 0 and 1. Any ON or USING clauses associated with the join are 399 ** also attached to the left entry. 400 ** 401 ** This routine returns the number of errors encountered. 402 */ 403 static int sqliteProcessJoin(Parse *pParse, Select *p){ 404 SrcList *pSrc; /* All tables in the FROM clause */ 405 int i, j; /* Loop counters */ 406 struct SrcList_item *pLeft; /* Left table being joined */ 407 struct SrcList_item *pRight; /* Right table being joined */ 408 409 pSrc = p->pSrc; 410 pLeft = &pSrc->a[0]; 411 pRight = &pLeft[1]; 412 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 413 Table *pLeftTab = pLeft->pTab; 414 Table *pRightTab = pRight->pTab; 415 int isOuter; 416 417 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 418 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 419 420 /* When the NATURAL keyword is present, add WHERE clause terms for 421 ** every column that the two tables have in common. 422 */ 423 if( pRight->fg.jointype & JT_NATURAL ){ 424 if( pRight->pOn || pRight->pUsing ){ 425 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 426 "an ON or USING clause", 0); 427 return 1; 428 } 429 for(j=0; j<pRightTab->nCol; j++){ 430 char *zName; /* Name of column in the right table */ 431 int iLeft; /* Matching left table */ 432 int iLeftCol; /* Matching column in the left table */ 433 434 zName = pRightTab->aCol[j].zName; 435 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 436 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 437 isOuter, &p->pWhere); 438 } 439 } 440 } 441 442 /* Disallow both ON and USING clauses in the same join 443 */ 444 if( pRight->pOn && pRight->pUsing ){ 445 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 446 "clauses in the same join"); 447 return 1; 448 } 449 450 /* Add the ON clause to the end of the WHERE clause, connected by 451 ** an AND operator. 452 */ 453 if( pRight->pOn ){ 454 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 455 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 456 pRight->pOn = 0; 457 } 458 459 /* Create extra terms on the WHERE clause for each column named 460 ** in the USING clause. Example: If the two tables to be joined are 461 ** A and B and the USING clause names X, Y, and Z, then add this 462 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 463 ** Report an error if any column mentioned in the USING clause is 464 ** not contained in both tables to be joined. 465 */ 466 if( pRight->pUsing ){ 467 IdList *pList = pRight->pUsing; 468 for(j=0; j<pList->nId; j++){ 469 char *zName; /* Name of the term in the USING clause */ 470 int iLeft; /* Table on the left with matching column name */ 471 int iLeftCol; /* Column number of matching column on the left */ 472 int iRightCol; /* Column number of matching column on the right */ 473 474 zName = pList->a[j].zName; 475 iRightCol = columnIndex(pRightTab, zName); 476 if( iRightCol<0 477 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 478 ){ 479 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 480 "not present in both tables", zName); 481 return 1; 482 } 483 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 484 isOuter, &p->pWhere); 485 } 486 } 487 } 488 return 0; 489 } 490 491 /* Forward reference */ 492 static KeyInfo *keyInfoFromExprList( 493 Parse *pParse, /* Parsing context */ 494 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 495 int iStart, /* Begin with this column of pList */ 496 int nExtra /* Add this many extra columns to the end */ 497 ); 498 499 /* 500 ** Generate code that will push the record in registers regData 501 ** through regData+nData-1 onto the sorter. 502 */ 503 static void pushOntoSorter( 504 Parse *pParse, /* Parser context */ 505 SortCtx *pSort, /* Information about the ORDER BY clause */ 506 Select *pSelect, /* The whole SELECT statement */ 507 int regData, /* First register holding data to be sorted */ 508 int regOrigData, /* First register holding data before packing */ 509 int nData, /* Number of elements in the data array */ 510 int nPrefixReg /* No. of reg prior to regData available for use */ 511 ){ 512 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 513 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 514 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 515 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 516 int regBase; /* Regs for sorter record */ 517 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 518 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 519 int op; /* Opcode to add sorter record to sorter */ 520 int iLimit; /* LIMIT counter */ 521 522 assert( bSeq==0 || bSeq==1 ); 523 assert( nData==1 || regData==regOrigData ); 524 if( nPrefixReg ){ 525 assert( nPrefixReg==nExpr+bSeq ); 526 regBase = regData - nExpr - bSeq; 527 }else{ 528 regBase = pParse->nMem + 1; 529 pParse->nMem += nBase; 530 } 531 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 532 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 533 pSort->labelDone = sqlite3VdbeMakeLabel(v); 534 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 535 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); 536 if( bSeq ){ 537 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 538 } 539 if( nPrefixReg==0 ){ 540 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 541 } 542 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 543 if( nOBSat>0 ){ 544 int regPrevKey; /* The first nOBSat columns of the previous row */ 545 int addrFirst; /* Address of the OP_IfNot opcode */ 546 int addrJmp; /* Address of the OP_Jump opcode */ 547 VdbeOp *pOp; /* Opcode that opens the sorter */ 548 int nKey; /* Number of sorting key columns, including OP_Sequence */ 549 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 550 551 regPrevKey = pParse->nMem+1; 552 pParse->nMem += pSort->nOBSat; 553 nKey = nExpr - pSort->nOBSat + bSeq; 554 if( bSeq ){ 555 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 556 }else{ 557 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 558 } 559 VdbeCoverage(v); 560 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 561 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 562 if( pParse->db->mallocFailed ) return; 563 pOp->p2 = nKey + nData; 564 pKI = pOp->p4.pKeyInfo; 565 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 566 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 567 testcase( pKI->nXField>2 ); 568 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 569 pKI->nXField-1); 570 addrJmp = sqlite3VdbeCurrentAddr(v); 571 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 572 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 573 pSort->regReturn = ++pParse->nMem; 574 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 575 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 576 if( iLimit ){ 577 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 578 VdbeCoverage(v); 579 } 580 sqlite3VdbeJumpHere(v, addrFirst); 581 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 582 sqlite3VdbeJumpHere(v, addrJmp); 583 } 584 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 585 op = OP_SorterInsert; 586 }else{ 587 op = OP_IdxInsert; 588 } 589 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 590 if( iLimit ){ 591 int addr; 592 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); 593 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 594 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 595 sqlite3VdbeJumpHere(v, addr); 596 } 597 } 598 599 /* 600 ** Add code to implement the OFFSET 601 */ 602 static void codeOffset( 603 Vdbe *v, /* Generate code into this VM */ 604 int iOffset, /* Register holding the offset counter */ 605 int iContinue /* Jump here to skip the current record */ 606 ){ 607 if( iOffset>0 ){ 608 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 609 VdbeComment((v, "OFFSET")); 610 } 611 } 612 613 /* 614 ** Add code that will check to make sure the N registers starting at iMem 615 ** form a distinct entry. iTab is a sorting index that holds previously 616 ** seen combinations of the N values. A new entry is made in iTab 617 ** if the current N values are new. 618 ** 619 ** A jump to addrRepeat is made and the N+1 values are popped from the 620 ** stack if the top N elements are not distinct. 621 */ 622 static void codeDistinct( 623 Parse *pParse, /* Parsing and code generating context */ 624 int iTab, /* A sorting index used to test for distinctness */ 625 int addrRepeat, /* Jump to here if not distinct */ 626 int N, /* Number of elements */ 627 int iMem /* First element */ 628 ){ 629 Vdbe *v; 630 int r1; 631 632 v = pParse->pVdbe; 633 r1 = sqlite3GetTempReg(pParse); 634 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 635 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 636 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 637 sqlite3ReleaseTempReg(pParse, r1); 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* 642 ** Generate an error message when a SELECT is used within a subexpression 643 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 644 ** column. We do this in a subroutine because the error used to occur 645 ** in multiple places. (The error only occurs in one place now, but we 646 ** retain the subroutine to minimize code disruption.) 647 */ 648 static int checkForMultiColumnSelectError( 649 Parse *pParse, /* Parse context. */ 650 SelectDest *pDest, /* Destination of SELECT results */ 651 int nExpr /* Number of result columns returned by SELECT */ 652 ){ 653 int eDest = pDest->eDest; 654 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 655 sqlite3ErrorMsg(pParse, "only a single result allowed for " 656 "a SELECT that is part of an expression"); 657 return 1; 658 }else{ 659 return 0; 660 } 661 } 662 #endif 663 664 /* 665 ** This routine generates the code for the inside of the inner loop 666 ** of a SELECT. 667 ** 668 ** If srcTab is negative, then the pEList expressions 669 ** are evaluated in order to get the data for this row. If srcTab is 670 ** zero or more, then data is pulled from srcTab and pEList is used only 671 ** to get number columns and the datatype for each column. 672 */ 673 static void selectInnerLoop( 674 Parse *pParse, /* The parser context */ 675 Select *p, /* The complete select statement being coded */ 676 ExprList *pEList, /* List of values being extracted */ 677 int srcTab, /* Pull data from this table */ 678 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 679 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 680 SelectDest *pDest, /* How to dispose of the results */ 681 int iContinue, /* Jump here to continue with next row */ 682 int iBreak /* Jump here to break out of the inner loop */ 683 ){ 684 Vdbe *v = pParse->pVdbe; 685 int i; 686 int hasDistinct; /* True if the DISTINCT keyword is present */ 687 int regResult; /* Start of memory holding result set */ 688 int eDest = pDest->eDest; /* How to dispose of results */ 689 int iParm = pDest->iSDParm; /* First argument to disposal method */ 690 int nResultCol; /* Number of result columns */ 691 int nPrefixReg = 0; /* Number of extra registers before regResult */ 692 693 assert( v ); 694 assert( pEList!=0 ); 695 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 696 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 697 if( pSort==0 && !hasDistinct ){ 698 assert( iContinue!=0 ); 699 codeOffset(v, p->iOffset, iContinue); 700 } 701 702 /* Pull the requested columns. 703 */ 704 nResultCol = pEList->nExpr; 705 706 if( pDest->iSdst==0 ){ 707 if( pSort ){ 708 nPrefixReg = pSort->pOrderBy->nExpr; 709 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 710 pParse->nMem += nPrefixReg; 711 } 712 pDest->iSdst = pParse->nMem+1; 713 pParse->nMem += nResultCol; 714 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 715 /* This is an error condition that can result, for example, when a SELECT 716 ** on the right-hand side of an INSERT contains more result columns than 717 ** there are columns in the table on the left. The error will be caught 718 ** and reported later. But we need to make sure enough memory is allocated 719 ** to avoid other spurious errors in the meantime. */ 720 pParse->nMem += nResultCol; 721 } 722 pDest->nSdst = nResultCol; 723 regResult = pDest->iSdst; 724 if( srcTab>=0 ){ 725 for(i=0; i<nResultCol; i++){ 726 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 727 VdbeComment((v, "%s", pEList->a[i].zName)); 728 } 729 }else if( eDest!=SRT_Exists ){ 730 /* If the destination is an EXISTS(...) expression, the actual 731 ** values returned by the SELECT are not required. 732 */ 733 u8 ecelFlags; 734 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 735 ecelFlags = SQLITE_ECEL_DUP; 736 }else{ 737 ecelFlags = 0; 738 } 739 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); 740 } 741 742 /* If the DISTINCT keyword was present on the SELECT statement 743 ** and this row has been seen before, then do not make this row 744 ** part of the result. 745 */ 746 if( hasDistinct ){ 747 switch( pDistinct->eTnctType ){ 748 case WHERE_DISTINCT_ORDERED: { 749 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 750 int iJump; /* Jump destination */ 751 int regPrev; /* Previous row content */ 752 753 /* Allocate space for the previous row */ 754 regPrev = pParse->nMem+1; 755 pParse->nMem += nResultCol; 756 757 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 758 ** sets the MEM_Cleared bit on the first register of the 759 ** previous value. This will cause the OP_Ne below to always 760 ** fail on the first iteration of the loop even if the first 761 ** row is all NULLs. 762 */ 763 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 764 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 765 pOp->opcode = OP_Null; 766 pOp->p1 = 1; 767 pOp->p2 = regPrev; 768 769 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 770 for(i=0; i<nResultCol; i++){ 771 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 772 if( i<nResultCol-1 ){ 773 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 774 VdbeCoverage(v); 775 }else{ 776 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 777 VdbeCoverage(v); 778 } 779 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 780 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 781 } 782 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 783 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 784 break; 785 } 786 787 case WHERE_DISTINCT_UNIQUE: { 788 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 789 break; 790 } 791 792 default: { 793 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 794 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 795 regResult); 796 break; 797 } 798 } 799 if( pSort==0 ){ 800 codeOffset(v, p->iOffset, iContinue); 801 } 802 } 803 804 switch( eDest ){ 805 /* In this mode, write each query result to the key of the temporary 806 ** table iParm. 807 */ 808 #ifndef SQLITE_OMIT_COMPOUND_SELECT 809 case SRT_Union: { 810 int r1; 811 r1 = sqlite3GetTempReg(pParse); 812 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 813 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 814 sqlite3ReleaseTempReg(pParse, r1); 815 break; 816 } 817 818 /* Construct a record from the query result, but instead of 819 ** saving that record, use it as a key to delete elements from 820 ** the temporary table iParm. 821 */ 822 case SRT_Except: { 823 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 824 break; 825 } 826 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 827 828 /* Store the result as data using a unique key. 829 */ 830 case SRT_Fifo: 831 case SRT_DistFifo: 832 case SRT_Table: 833 case SRT_EphemTab: { 834 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 835 testcase( eDest==SRT_Table ); 836 testcase( eDest==SRT_EphemTab ); 837 testcase( eDest==SRT_Fifo ); 838 testcase( eDest==SRT_DistFifo ); 839 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 840 #ifndef SQLITE_OMIT_CTE 841 if( eDest==SRT_DistFifo ){ 842 /* If the destination is DistFifo, then cursor (iParm+1) is open 843 ** on an ephemeral index. If the current row is already present 844 ** in the index, do not write it to the output. If not, add the 845 ** current row to the index and proceed with writing it to the 846 ** output table as well. */ 847 int addr = sqlite3VdbeCurrentAddr(v) + 4; 848 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 849 VdbeCoverage(v); 850 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 851 assert( pSort==0 ); 852 } 853 #endif 854 if( pSort ){ 855 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 856 }else{ 857 int r2 = sqlite3GetTempReg(pParse); 858 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 859 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 860 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 861 sqlite3ReleaseTempReg(pParse, r2); 862 } 863 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 864 break; 865 } 866 867 #ifndef SQLITE_OMIT_SUBQUERY 868 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 869 ** then there should be a single item on the stack. Write this 870 ** item into the set table with bogus data. 871 */ 872 case SRT_Set: { 873 assert( nResultCol==1 ); 874 pDest->affSdst = 875 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 876 if( pSort ){ 877 /* At first glance you would think we could optimize out the 878 ** ORDER BY in this case since the order of entries in the set 879 ** does not matter. But there might be a LIMIT clause, in which 880 ** case the order does matter */ 881 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 882 }else{ 883 int r1 = sqlite3GetTempReg(pParse); 884 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 885 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 886 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 887 sqlite3ReleaseTempReg(pParse, r1); 888 } 889 break; 890 } 891 892 /* If any row exist in the result set, record that fact and abort. 893 */ 894 case SRT_Exists: { 895 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 896 /* The LIMIT clause will terminate the loop for us */ 897 break; 898 } 899 900 /* If this is a scalar select that is part of an expression, then 901 ** store the results in the appropriate memory cell and break out 902 ** of the scan loop. 903 */ 904 case SRT_Mem: { 905 assert( nResultCol==1 ); 906 if( pSort ){ 907 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 908 }else{ 909 assert( regResult==iParm ); 910 /* The LIMIT clause will jump out of the loop for us */ 911 } 912 break; 913 } 914 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 915 916 case SRT_Coroutine: /* Send data to a co-routine */ 917 case SRT_Output: { /* Return the results */ 918 testcase( eDest==SRT_Coroutine ); 919 testcase( eDest==SRT_Output ); 920 if( pSort ){ 921 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, 922 nPrefixReg); 923 }else if( eDest==SRT_Coroutine ){ 924 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 925 }else{ 926 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 927 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 928 } 929 break; 930 } 931 932 #ifndef SQLITE_OMIT_CTE 933 /* Write the results into a priority queue that is order according to 934 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 935 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 936 ** pSO->nExpr columns, then make sure all keys are unique by adding a 937 ** final OP_Sequence column. The last column is the record as a blob. 938 */ 939 case SRT_DistQueue: 940 case SRT_Queue: { 941 int nKey; 942 int r1, r2, r3; 943 int addrTest = 0; 944 ExprList *pSO; 945 pSO = pDest->pOrderBy; 946 assert( pSO ); 947 nKey = pSO->nExpr; 948 r1 = sqlite3GetTempReg(pParse); 949 r2 = sqlite3GetTempRange(pParse, nKey+2); 950 r3 = r2+nKey+1; 951 if( eDest==SRT_DistQueue ){ 952 /* If the destination is DistQueue, then cursor (iParm+1) is open 953 ** on a second ephemeral index that holds all values every previously 954 ** added to the queue. */ 955 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 956 regResult, nResultCol); 957 VdbeCoverage(v); 958 } 959 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 960 if( eDest==SRT_DistQueue ){ 961 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 962 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 963 } 964 for(i=0; i<nKey; i++){ 965 sqlite3VdbeAddOp2(v, OP_SCopy, 966 regResult + pSO->a[i].u.x.iOrderByCol - 1, 967 r2+i); 968 } 969 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 970 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 971 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 972 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 973 sqlite3ReleaseTempReg(pParse, r1); 974 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 975 break; 976 } 977 #endif /* SQLITE_OMIT_CTE */ 978 979 980 981 #if !defined(SQLITE_OMIT_TRIGGER) 982 /* Discard the results. This is used for SELECT statements inside 983 ** the body of a TRIGGER. The purpose of such selects is to call 984 ** user-defined functions that have side effects. We do not care 985 ** about the actual results of the select. 986 */ 987 default: { 988 assert( eDest==SRT_Discard ); 989 break; 990 } 991 #endif 992 } 993 994 /* Jump to the end of the loop if the LIMIT is reached. Except, if 995 ** there is a sorter, in which case the sorter has already limited 996 ** the output for us. 997 */ 998 if( pSort==0 && p->iLimit ){ 999 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1000 } 1001 } 1002 1003 /* 1004 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1005 ** X extra columns. 1006 */ 1007 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1008 int nExtra = (N+X)*(sizeof(CollSeq*)+1); 1009 KeyInfo *p = sqlite3Malloc(sizeof(KeyInfo) + nExtra); 1010 if( p ){ 1011 p->aSortOrder = (u8*)&p->aColl[N+X]; 1012 p->nField = (u16)N; 1013 p->nXField = (u16)X; 1014 p->enc = ENC(db); 1015 p->db = db; 1016 p->nRef = 1; 1017 memset(&p[1], 0, nExtra); 1018 }else{ 1019 sqlite3OomFault(db); 1020 } 1021 return p; 1022 } 1023 1024 /* 1025 ** Deallocate a KeyInfo object 1026 */ 1027 void sqlite3KeyInfoUnref(KeyInfo *p){ 1028 if( p ){ 1029 assert( p->nRef>0 ); 1030 p->nRef--; 1031 if( p->nRef==0 ) sqlite3DbFree(0, p); 1032 } 1033 } 1034 1035 /* 1036 ** Make a new pointer to a KeyInfo object 1037 */ 1038 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1039 if( p ){ 1040 assert( p->nRef>0 ); 1041 p->nRef++; 1042 } 1043 return p; 1044 } 1045 1046 #ifdef SQLITE_DEBUG 1047 /* 1048 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1049 ** can only be changed if this is just a single reference to the object. 1050 ** 1051 ** This routine is used only inside of assert() statements. 1052 */ 1053 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1054 #endif /* SQLITE_DEBUG */ 1055 1056 /* 1057 ** Given an expression list, generate a KeyInfo structure that records 1058 ** the collating sequence for each expression in that expression list. 1059 ** 1060 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1061 ** KeyInfo structure is appropriate for initializing a virtual index to 1062 ** implement that clause. If the ExprList is the result set of a SELECT 1063 ** then the KeyInfo structure is appropriate for initializing a virtual 1064 ** index to implement a DISTINCT test. 1065 ** 1066 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1067 ** function is responsible for seeing that this structure is eventually 1068 ** freed. 1069 */ 1070 static KeyInfo *keyInfoFromExprList( 1071 Parse *pParse, /* Parsing context */ 1072 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1073 int iStart, /* Begin with this column of pList */ 1074 int nExtra /* Add this many extra columns to the end */ 1075 ){ 1076 int nExpr; 1077 KeyInfo *pInfo; 1078 struct ExprList_item *pItem; 1079 sqlite3 *db = pParse->db; 1080 int i; 1081 1082 nExpr = pList->nExpr; 1083 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1084 if( pInfo ){ 1085 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1086 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1087 CollSeq *pColl; 1088 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1089 if( !pColl ) pColl = db->pDfltColl; 1090 pInfo->aColl[i-iStart] = pColl; 1091 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1092 } 1093 } 1094 return pInfo; 1095 } 1096 1097 /* 1098 ** Name of the connection operator, used for error messages. 1099 */ 1100 static const char *selectOpName(int id){ 1101 char *z; 1102 switch( id ){ 1103 case TK_ALL: z = "UNION ALL"; break; 1104 case TK_INTERSECT: z = "INTERSECT"; break; 1105 case TK_EXCEPT: z = "EXCEPT"; break; 1106 default: z = "UNION"; break; 1107 } 1108 return z; 1109 } 1110 1111 #ifndef SQLITE_OMIT_EXPLAIN 1112 /* 1113 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1114 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1115 ** where the caption is of the form: 1116 ** 1117 ** "USE TEMP B-TREE FOR xxx" 1118 ** 1119 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1120 ** is determined by the zUsage argument. 1121 */ 1122 static void explainTempTable(Parse *pParse, const char *zUsage){ 1123 if( pParse->explain==2 ){ 1124 Vdbe *v = pParse->pVdbe; 1125 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1126 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1127 } 1128 } 1129 1130 /* 1131 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1132 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1133 ** in sqlite3Select() to assign values to structure member variables that 1134 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1135 ** code with #ifndef directives. 1136 */ 1137 # define explainSetInteger(a, b) a = b 1138 1139 #else 1140 /* No-op versions of the explainXXX() functions and macros. */ 1141 # define explainTempTable(y,z) 1142 # define explainSetInteger(y,z) 1143 #endif 1144 1145 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1146 /* 1147 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1148 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1149 ** where the caption is of one of the two forms: 1150 ** 1151 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1152 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1153 ** 1154 ** where iSub1 and iSub2 are the integers passed as the corresponding 1155 ** function parameters, and op is the text representation of the parameter 1156 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1157 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1158 ** false, or the second form if it is true. 1159 */ 1160 static void explainComposite( 1161 Parse *pParse, /* Parse context */ 1162 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1163 int iSub1, /* Subquery id 1 */ 1164 int iSub2, /* Subquery id 2 */ 1165 int bUseTmp /* True if a temp table was used */ 1166 ){ 1167 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1168 if( pParse->explain==2 ){ 1169 Vdbe *v = pParse->pVdbe; 1170 char *zMsg = sqlite3MPrintf( 1171 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1172 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1173 ); 1174 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1175 } 1176 } 1177 #else 1178 /* No-op versions of the explainXXX() functions and macros. */ 1179 # define explainComposite(v,w,x,y,z) 1180 #endif 1181 1182 /* 1183 ** If the inner loop was generated using a non-null pOrderBy argument, 1184 ** then the results were placed in a sorter. After the loop is terminated 1185 ** we need to run the sorter and output the results. The following 1186 ** routine generates the code needed to do that. 1187 */ 1188 static void generateSortTail( 1189 Parse *pParse, /* Parsing context */ 1190 Select *p, /* The SELECT statement */ 1191 SortCtx *pSort, /* Information on the ORDER BY clause */ 1192 int nColumn, /* Number of columns of data */ 1193 SelectDest *pDest /* Write the sorted results here */ 1194 ){ 1195 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1196 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1197 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1198 int addr; 1199 int addrOnce = 0; 1200 int iTab; 1201 ExprList *pOrderBy = pSort->pOrderBy; 1202 int eDest = pDest->eDest; 1203 int iParm = pDest->iSDParm; 1204 int regRow; 1205 int regRowid; 1206 int nKey; 1207 int iSortTab; /* Sorter cursor to read from */ 1208 int nSortData; /* Trailing values to read from sorter */ 1209 int i; 1210 int bSeq; /* True if sorter record includes seq. no. */ 1211 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1212 struct ExprList_item *aOutEx = p->pEList->a; 1213 #endif 1214 1215 assert( addrBreak<0 ); 1216 if( pSort->labelBkOut ){ 1217 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1218 sqlite3VdbeGoto(v, addrBreak); 1219 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1220 } 1221 iTab = pSort->iECursor; 1222 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1223 regRowid = 0; 1224 regRow = pDest->iSdst; 1225 nSortData = nColumn; 1226 }else{ 1227 regRowid = sqlite3GetTempReg(pParse); 1228 regRow = sqlite3GetTempReg(pParse); 1229 nSortData = 1; 1230 } 1231 nKey = pOrderBy->nExpr - pSort->nOBSat; 1232 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1233 int regSortOut = ++pParse->nMem; 1234 iSortTab = pParse->nTab++; 1235 if( pSort->labelBkOut ){ 1236 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1237 } 1238 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1239 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1240 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1241 VdbeCoverage(v); 1242 codeOffset(v, p->iOffset, addrContinue); 1243 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1244 bSeq = 0; 1245 }else{ 1246 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1247 codeOffset(v, p->iOffset, addrContinue); 1248 iSortTab = iTab; 1249 bSeq = 1; 1250 } 1251 for(i=0; i<nSortData; i++){ 1252 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1253 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1254 } 1255 switch( eDest ){ 1256 case SRT_EphemTab: { 1257 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1258 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1259 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1260 break; 1261 } 1262 #ifndef SQLITE_OMIT_SUBQUERY 1263 case SRT_Set: { 1264 assert( nColumn==1 ); 1265 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1266 &pDest->affSdst, 1); 1267 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1268 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1269 break; 1270 } 1271 case SRT_Mem: { 1272 assert( nColumn==1 ); 1273 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1274 /* The LIMIT clause will terminate the loop for us */ 1275 break; 1276 } 1277 #endif 1278 default: { 1279 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1280 testcase( eDest==SRT_Output ); 1281 testcase( eDest==SRT_Coroutine ); 1282 if( eDest==SRT_Output ){ 1283 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1284 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1285 }else{ 1286 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1287 } 1288 break; 1289 } 1290 } 1291 if( regRowid ){ 1292 sqlite3ReleaseTempReg(pParse, regRow); 1293 sqlite3ReleaseTempReg(pParse, regRowid); 1294 } 1295 /* The bottom of the loop 1296 */ 1297 sqlite3VdbeResolveLabel(v, addrContinue); 1298 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1299 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1300 }else{ 1301 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1302 } 1303 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1304 sqlite3VdbeResolveLabel(v, addrBreak); 1305 } 1306 1307 /* 1308 ** Return a pointer to a string containing the 'declaration type' of the 1309 ** expression pExpr. The string may be treated as static by the caller. 1310 ** 1311 ** Also try to estimate the size of the returned value and return that 1312 ** result in *pEstWidth. 1313 ** 1314 ** The declaration type is the exact datatype definition extracted from the 1315 ** original CREATE TABLE statement if the expression is a column. The 1316 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1317 ** is considered a column can be complex in the presence of subqueries. The 1318 ** result-set expression in all of the following SELECT statements is 1319 ** considered a column by this function. 1320 ** 1321 ** SELECT col FROM tbl; 1322 ** SELECT (SELECT col FROM tbl; 1323 ** SELECT (SELECT col FROM tbl); 1324 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1325 ** 1326 ** The declaration type for any expression other than a column is NULL. 1327 ** 1328 ** This routine has either 3 or 6 parameters depending on whether or not 1329 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1330 */ 1331 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1332 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1333 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1334 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1335 #endif 1336 static const char *columnTypeImpl( 1337 NameContext *pNC, 1338 Expr *pExpr, 1339 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1340 const char **pzOrigDb, 1341 const char **pzOrigTab, 1342 const char **pzOrigCol, 1343 #endif 1344 u8 *pEstWidth 1345 ){ 1346 char const *zType = 0; 1347 int j; 1348 u8 estWidth = 1; 1349 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1350 char const *zOrigDb = 0; 1351 char const *zOrigTab = 0; 1352 char const *zOrigCol = 0; 1353 #endif 1354 1355 assert( pExpr!=0 ); 1356 assert( pNC->pSrcList!=0 ); 1357 switch( pExpr->op ){ 1358 case TK_AGG_COLUMN: 1359 case TK_COLUMN: { 1360 /* The expression is a column. Locate the table the column is being 1361 ** extracted from in NameContext.pSrcList. This table may be real 1362 ** database table or a subquery. 1363 */ 1364 Table *pTab = 0; /* Table structure column is extracted from */ 1365 Select *pS = 0; /* Select the column is extracted from */ 1366 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1367 testcase( pExpr->op==TK_AGG_COLUMN ); 1368 testcase( pExpr->op==TK_COLUMN ); 1369 while( pNC && !pTab ){ 1370 SrcList *pTabList = pNC->pSrcList; 1371 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1372 if( j<pTabList->nSrc ){ 1373 pTab = pTabList->a[j].pTab; 1374 pS = pTabList->a[j].pSelect; 1375 }else{ 1376 pNC = pNC->pNext; 1377 } 1378 } 1379 1380 if( pTab==0 ){ 1381 /* At one time, code such as "SELECT new.x" within a trigger would 1382 ** cause this condition to run. Since then, we have restructured how 1383 ** trigger code is generated and so this condition is no longer 1384 ** possible. However, it can still be true for statements like 1385 ** the following: 1386 ** 1387 ** CREATE TABLE t1(col INTEGER); 1388 ** SELECT (SELECT t1.col) FROM FROM t1; 1389 ** 1390 ** when columnType() is called on the expression "t1.col" in the 1391 ** sub-select. In this case, set the column type to NULL, even 1392 ** though it should really be "INTEGER". 1393 ** 1394 ** This is not a problem, as the column type of "t1.col" is never 1395 ** used. When columnType() is called on the expression 1396 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1397 ** branch below. */ 1398 break; 1399 } 1400 1401 assert( pTab && pExpr->pTab==pTab ); 1402 if( pS ){ 1403 /* The "table" is actually a sub-select or a view in the FROM clause 1404 ** of the SELECT statement. Return the declaration type and origin 1405 ** data for the result-set column of the sub-select. 1406 */ 1407 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1408 /* If iCol is less than zero, then the expression requests the 1409 ** rowid of the sub-select or view. This expression is legal (see 1410 ** test case misc2.2.2) - it always evaluates to NULL. 1411 ** 1412 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1413 ** caught already by name resolution. 1414 */ 1415 NameContext sNC; 1416 Expr *p = pS->pEList->a[iCol].pExpr; 1417 sNC.pSrcList = pS->pSrc; 1418 sNC.pNext = pNC; 1419 sNC.pParse = pNC->pParse; 1420 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1421 } 1422 }else if( pTab->pSchema ){ 1423 /* A real table */ 1424 assert( !pS ); 1425 if( iCol<0 ) iCol = pTab->iPKey; 1426 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1427 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1428 if( iCol<0 ){ 1429 zType = "INTEGER"; 1430 zOrigCol = "rowid"; 1431 }else{ 1432 zOrigCol = pTab->aCol[iCol].zName; 1433 zType = sqlite3StrNext(zOrigCol); 1434 estWidth = pTab->aCol[iCol].szEst; 1435 } 1436 zOrigTab = pTab->zName; 1437 if( pNC->pParse ){ 1438 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1439 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1440 } 1441 #else 1442 if( iCol<0 ){ 1443 zType = "INTEGER"; 1444 }else{ 1445 zType = sqlite3StrNext(pTab->aCol[iCol].zName); 1446 estWidth = pTab->aCol[iCol].szEst; 1447 } 1448 #endif 1449 } 1450 break; 1451 } 1452 #ifndef SQLITE_OMIT_SUBQUERY 1453 case TK_SELECT: { 1454 /* The expression is a sub-select. Return the declaration type and 1455 ** origin info for the single column in the result set of the SELECT 1456 ** statement. 1457 */ 1458 NameContext sNC; 1459 Select *pS = pExpr->x.pSelect; 1460 Expr *p = pS->pEList->a[0].pExpr; 1461 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1462 sNC.pSrcList = pS->pSrc; 1463 sNC.pNext = pNC; 1464 sNC.pParse = pNC->pParse; 1465 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1466 break; 1467 } 1468 #endif 1469 } 1470 1471 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1472 if( pzOrigDb ){ 1473 assert( pzOrigTab && pzOrigCol ); 1474 *pzOrigDb = zOrigDb; 1475 *pzOrigTab = zOrigTab; 1476 *pzOrigCol = zOrigCol; 1477 } 1478 #endif 1479 if( pEstWidth ) *pEstWidth = estWidth; 1480 return zType; 1481 } 1482 1483 /* 1484 ** Generate code that will tell the VDBE the declaration types of columns 1485 ** in the result set. 1486 */ 1487 static void generateColumnTypes( 1488 Parse *pParse, /* Parser context */ 1489 SrcList *pTabList, /* List of tables */ 1490 ExprList *pEList /* Expressions defining the result set */ 1491 ){ 1492 #ifndef SQLITE_OMIT_DECLTYPE 1493 Vdbe *v = pParse->pVdbe; 1494 int i; 1495 NameContext sNC; 1496 sNC.pSrcList = pTabList; 1497 sNC.pParse = pParse; 1498 for(i=0; i<pEList->nExpr; i++){ 1499 Expr *p = pEList->a[i].pExpr; 1500 const char *zType; 1501 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1502 const char *zOrigDb = 0; 1503 const char *zOrigTab = 0; 1504 const char *zOrigCol = 0; 1505 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1506 1507 /* The vdbe must make its own copy of the column-type and other 1508 ** column specific strings, in case the schema is reset before this 1509 ** virtual machine is deleted. 1510 */ 1511 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1512 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1513 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1514 #else 1515 zType = columnType(&sNC, p, 0, 0, 0, 0); 1516 #endif 1517 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1518 } 1519 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1520 } 1521 1522 /* 1523 ** Generate code that will tell the VDBE the names of columns 1524 ** in the result set. This information is used to provide the 1525 ** azCol[] values in the callback. 1526 */ 1527 static void generateColumnNames( 1528 Parse *pParse, /* Parser context */ 1529 SrcList *pTabList, /* List of tables */ 1530 ExprList *pEList /* Expressions defining the result set */ 1531 ){ 1532 Vdbe *v = pParse->pVdbe; 1533 int i, j; 1534 sqlite3 *db = pParse->db; 1535 int fullNames, shortNames; 1536 1537 #ifndef SQLITE_OMIT_EXPLAIN 1538 /* If this is an EXPLAIN, skip this step */ 1539 if( pParse->explain ){ 1540 return; 1541 } 1542 #endif 1543 1544 if( pParse->colNamesSet || db->mallocFailed ) return; 1545 assert( v!=0 ); 1546 assert( pTabList!=0 ); 1547 pParse->colNamesSet = 1; 1548 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1549 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1550 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1551 for(i=0; i<pEList->nExpr; i++){ 1552 Expr *p; 1553 p = pEList->a[i].pExpr; 1554 if( NEVER(p==0) ) continue; 1555 if( pEList->a[i].zName ){ 1556 char *zName = pEList->a[i].zName; 1557 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1558 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){ 1559 Table *pTab; 1560 char *zCol; 1561 int iCol = p->iColumn; 1562 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1563 if( pTabList->a[j].iCursor==p->iTable ) break; 1564 } 1565 assert( j<pTabList->nSrc ); 1566 pTab = pTabList->a[j].pTab; 1567 if( iCol<0 ) iCol = pTab->iPKey; 1568 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1569 if( iCol<0 ){ 1570 zCol = "rowid"; 1571 }else{ 1572 zCol = pTab->aCol[iCol].zName; 1573 } 1574 if( !shortNames && !fullNames ){ 1575 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1576 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1577 }else if( fullNames ){ 1578 char *zName = 0; 1579 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1580 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1581 }else{ 1582 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1583 } 1584 }else{ 1585 const char *z = pEList->a[i].zSpan; 1586 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1587 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1588 } 1589 } 1590 generateColumnTypes(pParse, pTabList, pEList); 1591 } 1592 1593 /* 1594 ** Given an expression list (which is really the list of expressions 1595 ** that form the result set of a SELECT statement) compute appropriate 1596 ** column names for a table that would hold the expression list. 1597 ** 1598 ** All column names will be unique. 1599 ** 1600 ** Only the column names are computed. Column.zType, Column.zColl, 1601 ** and other fields of Column are zeroed. 1602 ** 1603 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1604 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1605 */ 1606 int sqlite3ColumnsFromExprList( 1607 Parse *pParse, /* Parsing context */ 1608 ExprList *pEList, /* Expr list from which to derive column names */ 1609 i16 *pnCol, /* Write the number of columns here */ 1610 Column **paCol /* Write the new column list here */ 1611 ){ 1612 sqlite3 *db = pParse->db; /* Database connection */ 1613 int i, j; /* Loop counters */ 1614 u32 cnt; /* Index added to make the name unique */ 1615 Column *aCol, *pCol; /* For looping over result columns */ 1616 int nCol; /* Number of columns in the result set */ 1617 Expr *p; /* Expression for a single result column */ 1618 char *zName; /* Column name */ 1619 int nName; /* Size of name in zName[] */ 1620 Hash ht; /* Hash table of column names */ 1621 1622 sqlite3HashInit(&ht); 1623 if( pEList ){ 1624 nCol = pEList->nExpr; 1625 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1626 testcase( aCol==0 ); 1627 }else{ 1628 nCol = 0; 1629 aCol = 0; 1630 } 1631 assert( nCol==(i16)nCol ); 1632 *pnCol = nCol; 1633 *paCol = aCol; 1634 1635 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1636 /* Get an appropriate name for the column 1637 */ 1638 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1639 if( (zName = pEList->a[i].zName)!=0 ){ 1640 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1641 }else{ 1642 Expr *pColExpr = p; /* The expression that is the result column name */ 1643 Table *pTab; /* Table associated with this expression */ 1644 while( pColExpr->op==TK_DOT ){ 1645 pColExpr = pColExpr->pRight; 1646 assert( pColExpr!=0 ); 1647 } 1648 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1649 /* For columns use the column name name */ 1650 int iCol = pColExpr->iColumn; 1651 pTab = pColExpr->pTab; 1652 if( iCol<0 ) iCol = pTab->iPKey; 1653 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1654 }else if( pColExpr->op==TK_ID ){ 1655 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1656 zName = pColExpr->u.zToken; 1657 }else{ 1658 /* Use the original text of the column expression as its name */ 1659 zName = pEList->a[i].zSpan; 1660 } 1661 } 1662 zName = sqlite3MPrintf(db, "%s", zName); 1663 1664 /* Make sure the column name is unique. If the name is not unique, 1665 ** append an integer to the name so that it becomes unique. 1666 */ 1667 cnt = 0; 1668 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1669 nName = sqlite3Strlen30(zName); 1670 if( nName>0 ){ 1671 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1672 if( zName[j]==':' ) nName = j; 1673 } 1674 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1675 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1676 } 1677 pCol->zName = zName; 1678 sqlite3ColumnPropertiesFromName(0, pCol); 1679 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1680 sqlite3OomFault(db); 1681 } 1682 } 1683 sqlite3HashClear(&ht); 1684 if( db->mallocFailed ){ 1685 for(j=0; j<i; j++){ 1686 sqlite3DbFree(db, aCol[j].zName); 1687 } 1688 sqlite3DbFree(db, aCol); 1689 *paCol = 0; 1690 *pnCol = 0; 1691 return SQLITE_NOMEM_BKPT; 1692 } 1693 return SQLITE_OK; 1694 } 1695 1696 /* 1697 ** Add type and collation information to a column list based on 1698 ** a SELECT statement. 1699 ** 1700 ** The column list presumably came from selectColumnNamesFromExprList(). 1701 ** The column list has only names, not types or collations. This 1702 ** routine goes through and adds the types and collations. 1703 ** 1704 ** This routine requires that all identifiers in the SELECT 1705 ** statement be resolved. 1706 */ 1707 static void selectAddColumnTypeAndCollation( 1708 Parse *pParse, /* Parsing contexts */ 1709 Table *pTab, /* Add column type information to this table */ 1710 Select *pSelect /* SELECT used to determine types and collations */ 1711 ){ 1712 sqlite3 *db = pParse->db; 1713 NameContext sNC; 1714 Column *pCol; 1715 CollSeq *pColl; 1716 int i; 1717 Expr *p; 1718 struct ExprList_item *a; 1719 u64 szAll = 0; 1720 1721 assert( pSelect!=0 ); 1722 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1723 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1724 if( db->mallocFailed ) return; 1725 memset(&sNC, 0, sizeof(sNC)); 1726 sNC.pSrcList = pSelect->pSrc; 1727 a = pSelect->pEList->a; 1728 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1729 p = a[i].pExpr; 1730 columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1731 szAll += pCol->szEst; 1732 pCol->affinity = sqlite3ExprAffinity(p); 1733 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1734 pColl = sqlite3ExprCollSeq(pParse, p); 1735 if( pColl && pCol->zColl==0 ){ 1736 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1737 } 1738 } 1739 pTab->szTabRow = sqlite3LogEst(szAll*4); 1740 } 1741 1742 /* 1743 ** Given a SELECT statement, generate a Table structure that describes 1744 ** the result set of that SELECT. 1745 */ 1746 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1747 Table *pTab; 1748 sqlite3 *db = pParse->db; 1749 int savedFlags; 1750 1751 savedFlags = db->flags; 1752 db->flags &= ~SQLITE_FullColNames; 1753 db->flags |= SQLITE_ShortColNames; 1754 sqlite3SelectPrep(pParse, pSelect, 0); 1755 if( pParse->nErr ) return 0; 1756 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1757 db->flags = savedFlags; 1758 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1759 if( pTab==0 ){ 1760 return 0; 1761 } 1762 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1763 ** is disabled */ 1764 assert( db->lookaside.bDisable ); 1765 pTab->nRef = 1; 1766 pTab->zName = 0; 1767 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1768 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1769 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1770 pTab->iPKey = -1; 1771 if( db->mallocFailed ){ 1772 sqlite3DeleteTable(db, pTab); 1773 return 0; 1774 } 1775 return pTab; 1776 } 1777 1778 /* 1779 ** Get a VDBE for the given parser context. Create a new one if necessary. 1780 ** If an error occurs, return NULL and leave a message in pParse. 1781 */ 1782 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1783 Vdbe *v = pParse->pVdbe; 1784 if( v==0 ){ 1785 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1786 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1787 if( pParse->pToplevel==0 1788 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1789 ){ 1790 pParse->okConstFactor = 1; 1791 } 1792 1793 } 1794 return v; 1795 } 1796 1797 1798 /* 1799 ** Compute the iLimit and iOffset fields of the SELECT based on the 1800 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1801 ** that appear in the original SQL statement after the LIMIT and OFFSET 1802 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1803 ** are the integer memory register numbers for counters used to compute 1804 ** the limit and offset. If there is no limit and/or offset, then 1805 ** iLimit and iOffset are negative. 1806 ** 1807 ** This routine changes the values of iLimit and iOffset only if 1808 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1809 ** iOffset should have been preset to appropriate default values (zero) 1810 ** prior to calling this routine. 1811 ** 1812 ** The iOffset register (if it exists) is initialized to the value 1813 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1814 ** iOffset+1 is initialized to LIMIT+OFFSET. 1815 ** 1816 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1817 ** redefined. The UNION ALL operator uses this property to force 1818 ** the reuse of the same limit and offset registers across multiple 1819 ** SELECT statements. 1820 */ 1821 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1822 Vdbe *v = 0; 1823 int iLimit = 0; 1824 int iOffset; 1825 int n; 1826 if( p->iLimit ) return; 1827 1828 /* 1829 ** "LIMIT -1" always shows all rows. There is some 1830 ** controversy about what the correct behavior should be. 1831 ** The current implementation interprets "LIMIT 0" to mean 1832 ** no rows. 1833 */ 1834 sqlite3ExprCacheClear(pParse); 1835 assert( p->pOffset==0 || p->pLimit!=0 ); 1836 if( p->pLimit ){ 1837 p->iLimit = iLimit = ++pParse->nMem; 1838 v = sqlite3GetVdbe(pParse); 1839 assert( v!=0 ); 1840 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1841 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1842 VdbeComment((v, "LIMIT counter")); 1843 if( n==0 ){ 1844 sqlite3VdbeGoto(v, iBreak); 1845 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1846 p->nSelectRow = sqlite3LogEst((u64)n); 1847 p->selFlags |= SF_FixedLimit; 1848 } 1849 }else{ 1850 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1851 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1852 VdbeComment((v, "LIMIT counter")); 1853 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1854 } 1855 if( p->pOffset ){ 1856 p->iOffset = iOffset = ++pParse->nMem; 1857 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1858 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1859 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1860 VdbeComment((v, "OFFSET counter")); 1861 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1862 VdbeComment((v, "LIMIT+OFFSET")); 1863 } 1864 } 1865 } 1866 1867 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1868 /* 1869 ** Return the appropriate collating sequence for the iCol-th column of 1870 ** the result set for the compound-select statement "p". Return NULL if 1871 ** the column has no default collating sequence. 1872 ** 1873 ** The collating sequence for the compound select is taken from the 1874 ** left-most term of the select that has a collating sequence. 1875 */ 1876 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1877 CollSeq *pRet; 1878 if( p->pPrior ){ 1879 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1880 }else{ 1881 pRet = 0; 1882 } 1883 assert( iCol>=0 ); 1884 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1885 ** have been thrown during name resolution and we would not have gotten 1886 ** this far */ 1887 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1888 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1889 } 1890 return pRet; 1891 } 1892 1893 /* 1894 ** The select statement passed as the second parameter is a compound SELECT 1895 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1896 ** structure suitable for implementing the ORDER BY. 1897 ** 1898 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1899 ** function is responsible for ensuring that this structure is eventually 1900 ** freed. 1901 */ 1902 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1903 ExprList *pOrderBy = p->pOrderBy; 1904 int nOrderBy = p->pOrderBy->nExpr; 1905 sqlite3 *db = pParse->db; 1906 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1907 if( pRet ){ 1908 int i; 1909 for(i=0; i<nOrderBy; i++){ 1910 struct ExprList_item *pItem = &pOrderBy->a[i]; 1911 Expr *pTerm = pItem->pExpr; 1912 CollSeq *pColl; 1913 1914 if( pTerm->flags & EP_Collate ){ 1915 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1916 }else{ 1917 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1918 if( pColl==0 ) pColl = db->pDfltColl; 1919 pOrderBy->a[i].pExpr = 1920 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1921 } 1922 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1923 pRet->aColl[i] = pColl; 1924 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1925 } 1926 } 1927 1928 return pRet; 1929 } 1930 1931 #ifndef SQLITE_OMIT_CTE 1932 /* 1933 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1934 ** query of the form: 1935 ** 1936 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1937 ** \___________/ \_______________/ 1938 ** p->pPrior p 1939 ** 1940 ** 1941 ** There is exactly one reference to the recursive-table in the FROM clause 1942 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1943 ** 1944 ** The setup-query runs once to generate an initial set of rows that go 1945 ** into a Queue table. Rows are extracted from the Queue table one by 1946 ** one. Each row extracted from Queue is output to pDest. Then the single 1947 ** extracted row (now in the iCurrent table) becomes the content of the 1948 ** recursive-table for a recursive-query run. The output of the recursive-query 1949 ** is added back into the Queue table. Then another row is extracted from Queue 1950 ** and the iteration continues until the Queue table is empty. 1951 ** 1952 ** If the compound query operator is UNION then no duplicate rows are ever 1953 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1954 ** that have ever been inserted into Queue and causes duplicates to be 1955 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1956 ** 1957 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1958 ** ORDER BY order and the first entry is extracted for each cycle. Without 1959 ** an ORDER BY, the Queue table is just a FIFO. 1960 ** 1961 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1962 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1963 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1964 ** with a positive value, then the first OFFSET outputs are discarded rather 1965 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1966 ** rows have been skipped. 1967 */ 1968 static void generateWithRecursiveQuery( 1969 Parse *pParse, /* Parsing context */ 1970 Select *p, /* The recursive SELECT to be coded */ 1971 SelectDest *pDest /* What to do with query results */ 1972 ){ 1973 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1974 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1975 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1976 Select *pSetup = p->pPrior; /* The setup query */ 1977 int addrTop; /* Top of the loop */ 1978 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1979 int iCurrent = 0; /* The Current table */ 1980 int regCurrent; /* Register holding Current table */ 1981 int iQueue; /* The Queue table */ 1982 int iDistinct = 0; /* To ensure unique results if UNION */ 1983 int eDest = SRT_Fifo; /* How to write to Queue */ 1984 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1985 int i; /* Loop counter */ 1986 int rc; /* Result code */ 1987 ExprList *pOrderBy; /* The ORDER BY clause */ 1988 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1989 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1990 1991 /* Obtain authorization to do a recursive query */ 1992 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1993 1994 /* Process the LIMIT and OFFSET clauses, if they exist */ 1995 addrBreak = sqlite3VdbeMakeLabel(v); 1996 computeLimitRegisters(pParse, p, addrBreak); 1997 pLimit = p->pLimit; 1998 pOffset = p->pOffset; 1999 regLimit = p->iLimit; 2000 regOffset = p->iOffset; 2001 p->pLimit = p->pOffset = 0; 2002 p->iLimit = p->iOffset = 0; 2003 pOrderBy = p->pOrderBy; 2004 2005 /* Locate the cursor number of the Current table */ 2006 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2007 if( pSrc->a[i].fg.isRecursive ){ 2008 iCurrent = pSrc->a[i].iCursor; 2009 break; 2010 } 2011 } 2012 2013 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2014 ** the Distinct table must be exactly one greater than Queue in order 2015 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2016 iQueue = pParse->nTab++; 2017 if( p->op==TK_UNION ){ 2018 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2019 iDistinct = pParse->nTab++; 2020 }else{ 2021 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2022 } 2023 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2024 2025 /* Allocate cursors for Current, Queue, and Distinct. */ 2026 regCurrent = ++pParse->nMem; 2027 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2028 if( pOrderBy ){ 2029 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2030 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2031 (char*)pKeyInfo, P4_KEYINFO); 2032 destQueue.pOrderBy = pOrderBy; 2033 }else{ 2034 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2035 } 2036 VdbeComment((v, "Queue table")); 2037 if( iDistinct ){ 2038 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2039 p->selFlags |= SF_UsesEphemeral; 2040 } 2041 2042 /* Detach the ORDER BY clause from the compound SELECT */ 2043 p->pOrderBy = 0; 2044 2045 /* Store the results of the setup-query in Queue. */ 2046 pSetup->pNext = 0; 2047 rc = sqlite3Select(pParse, pSetup, &destQueue); 2048 pSetup->pNext = p; 2049 if( rc ) goto end_of_recursive_query; 2050 2051 /* Find the next row in the Queue and output that row */ 2052 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2053 2054 /* Transfer the next row in Queue over to Current */ 2055 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2056 if( pOrderBy ){ 2057 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2058 }else{ 2059 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2060 } 2061 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2062 2063 /* Output the single row in Current */ 2064 addrCont = sqlite3VdbeMakeLabel(v); 2065 codeOffset(v, regOffset, addrCont); 2066 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2067 0, 0, pDest, addrCont, addrBreak); 2068 if( regLimit ){ 2069 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2070 VdbeCoverage(v); 2071 } 2072 sqlite3VdbeResolveLabel(v, addrCont); 2073 2074 /* Execute the recursive SELECT taking the single row in Current as 2075 ** the value for the recursive-table. Store the results in the Queue. 2076 */ 2077 if( p->selFlags & SF_Aggregate ){ 2078 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2079 }else{ 2080 p->pPrior = 0; 2081 sqlite3Select(pParse, p, &destQueue); 2082 assert( p->pPrior==0 ); 2083 p->pPrior = pSetup; 2084 } 2085 2086 /* Keep running the loop until the Queue is empty */ 2087 sqlite3VdbeGoto(v, addrTop); 2088 sqlite3VdbeResolveLabel(v, addrBreak); 2089 2090 end_of_recursive_query: 2091 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2092 p->pOrderBy = pOrderBy; 2093 p->pLimit = pLimit; 2094 p->pOffset = pOffset; 2095 return; 2096 } 2097 #endif /* SQLITE_OMIT_CTE */ 2098 2099 /* Forward references */ 2100 static int multiSelectOrderBy( 2101 Parse *pParse, /* Parsing context */ 2102 Select *p, /* The right-most of SELECTs to be coded */ 2103 SelectDest *pDest /* What to do with query results */ 2104 ); 2105 2106 /* 2107 ** Handle the special case of a compound-select that originates from a 2108 ** VALUES clause. By handling this as a special case, we avoid deep 2109 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2110 ** on a VALUES clause. 2111 ** 2112 ** Because the Select object originates from a VALUES clause: 2113 ** (1) It has no LIMIT or OFFSET 2114 ** (2) All terms are UNION ALL 2115 ** (3) There is no ORDER BY clause 2116 */ 2117 static int multiSelectValues( 2118 Parse *pParse, /* Parsing context */ 2119 Select *p, /* The right-most of SELECTs to be coded */ 2120 SelectDest *pDest /* What to do with query results */ 2121 ){ 2122 Select *pPrior; 2123 int nRow = 1; 2124 int rc = 0; 2125 assert( p->selFlags & SF_MultiValue ); 2126 do{ 2127 assert( p->selFlags & SF_Values ); 2128 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2129 assert( p->pLimit==0 ); 2130 assert( p->pOffset==0 ); 2131 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2132 if( p->pPrior==0 ) break; 2133 assert( p->pPrior->pNext==p ); 2134 p = p->pPrior; 2135 nRow++; 2136 }while(1); 2137 while( p ){ 2138 pPrior = p->pPrior; 2139 p->pPrior = 0; 2140 rc = sqlite3Select(pParse, p, pDest); 2141 p->pPrior = pPrior; 2142 if( rc ) break; 2143 p->nSelectRow = nRow; 2144 p = p->pNext; 2145 } 2146 return rc; 2147 } 2148 2149 /* 2150 ** This routine is called to process a compound query form from 2151 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2152 ** INTERSECT 2153 ** 2154 ** "p" points to the right-most of the two queries. the query on the 2155 ** left is p->pPrior. The left query could also be a compound query 2156 ** in which case this routine will be called recursively. 2157 ** 2158 ** The results of the total query are to be written into a destination 2159 ** of type eDest with parameter iParm. 2160 ** 2161 ** Example 1: Consider a three-way compound SQL statement. 2162 ** 2163 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2164 ** 2165 ** This statement is parsed up as follows: 2166 ** 2167 ** SELECT c FROM t3 2168 ** | 2169 ** `-----> SELECT b FROM t2 2170 ** | 2171 ** `------> SELECT a FROM t1 2172 ** 2173 ** The arrows in the diagram above represent the Select.pPrior pointer. 2174 ** So if this routine is called with p equal to the t3 query, then 2175 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2176 ** 2177 ** Notice that because of the way SQLite parses compound SELECTs, the 2178 ** individual selects always group from left to right. 2179 */ 2180 static int multiSelect( 2181 Parse *pParse, /* Parsing context */ 2182 Select *p, /* The right-most of SELECTs to be coded */ 2183 SelectDest *pDest /* What to do with query results */ 2184 ){ 2185 int rc = SQLITE_OK; /* Success code from a subroutine */ 2186 Select *pPrior; /* Another SELECT immediately to our left */ 2187 Vdbe *v; /* Generate code to this VDBE */ 2188 SelectDest dest; /* Alternative data destination */ 2189 Select *pDelete = 0; /* Chain of simple selects to delete */ 2190 sqlite3 *db; /* Database connection */ 2191 #ifndef SQLITE_OMIT_EXPLAIN 2192 int iSub1 = 0; /* EQP id of left-hand query */ 2193 int iSub2 = 0; /* EQP id of right-hand query */ 2194 #endif 2195 2196 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2197 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2198 */ 2199 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2200 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2201 db = pParse->db; 2202 pPrior = p->pPrior; 2203 dest = *pDest; 2204 if( pPrior->pOrderBy ){ 2205 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2206 selectOpName(p->op)); 2207 rc = 1; 2208 goto multi_select_end; 2209 } 2210 if( pPrior->pLimit ){ 2211 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2212 selectOpName(p->op)); 2213 rc = 1; 2214 goto multi_select_end; 2215 } 2216 2217 v = sqlite3GetVdbe(pParse); 2218 assert( v!=0 ); /* The VDBE already created by calling function */ 2219 2220 /* Create the destination temporary table if necessary 2221 */ 2222 if( dest.eDest==SRT_EphemTab ){ 2223 assert( p->pEList ); 2224 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2225 dest.eDest = SRT_Table; 2226 } 2227 2228 /* Special handling for a compound-select that originates as a VALUES clause. 2229 */ 2230 if( p->selFlags & SF_MultiValue ){ 2231 rc = multiSelectValues(pParse, p, &dest); 2232 goto multi_select_end; 2233 } 2234 2235 /* Make sure all SELECTs in the statement have the same number of elements 2236 ** in their result sets. 2237 */ 2238 assert( p->pEList && pPrior->pEList ); 2239 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2240 2241 #ifndef SQLITE_OMIT_CTE 2242 if( p->selFlags & SF_Recursive ){ 2243 generateWithRecursiveQuery(pParse, p, &dest); 2244 }else 2245 #endif 2246 2247 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2248 */ 2249 if( p->pOrderBy ){ 2250 return multiSelectOrderBy(pParse, p, pDest); 2251 }else 2252 2253 /* Generate code for the left and right SELECT statements. 2254 */ 2255 switch( p->op ){ 2256 case TK_ALL: { 2257 int addr = 0; 2258 int nLimit; 2259 assert( !pPrior->pLimit ); 2260 pPrior->iLimit = p->iLimit; 2261 pPrior->iOffset = p->iOffset; 2262 pPrior->pLimit = p->pLimit; 2263 pPrior->pOffset = p->pOffset; 2264 explainSetInteger(iSub1, pParse->iNextSelectId); 2265 rc = sqlite3Select(pParse, pPrior, &dest); 2266 p->pLimit = 0; 2267 p->pOffset = 0; 2268 if( rc ){ 2269 goto multi_select_end; 2270 } 2271 p->pPrior = 0; 2272 p->iLimit = pPrior->iLimit; 2273 p->iOffset = pPrior->iOffset; 2274 if( p->iLimit ){ 2275 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2276 VdbeComment((v, "Jump ahead if LIMIT reached")); 2277 if( p->iOffset ){ 2278 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2279 p->iLimit, p->iOffset+1, p->iOffset); 2280 } 2281 } 2282 explainSetInteger(iSub2, pParse->iNextSelectId); 2283 rc = sqlite3Select(pParse, p, &dest); 2284 testcase( rc!=SQLITE_OK ); 2285 pDelete = p->pPrior; 2286 p->pPrior = pPrior; 2287 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2288 if( pPrior->pLimit 2289 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2290 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2291 ){ 2292 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2293 } 2294 if( addr ){ 2295 sqlite3VdbeJumpHere(v, addr); 2296 } 2297 break; 2298 } 2299 case TK_EXCEPT: 2300 case TK_UNION: { 2301 int unionTab; /* Cursor number of the temporary table holding result */ 2302 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2303 int priorOp; /* The SRT_ operation to apply to prior selects */ 2304 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2305 int addr; 2306 SelectDest uniondest; 2307 2308 testcase( p->op==TK_EXCEPT ); 2309 testcase( p->op==TK_UNION ); 2310 priorOp = SRT_Union; 2311 if( dest.eDest==priorOp ){ 2312 /* We can reuse a temporary table generated by a SELECT to our 2313 ** right. 2314 */ 2315 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2316 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2317 unionTab = dest.iSDParm; 2318 }else{ 2319 /* We will need to create our own temporary table to hold the 2320 ** intermediate results. 2321 */ 2322 unionTab = pParse->nTab++; 2323 assert( p->pOrderBy==0 ); 2324 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2325 assert( p->addrOpenEphm[0] == -1 ); 2326 p->addrOpenEphm[0] = addr; 2327 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2328 assert( p->pEList ); 2329 } 2330 2331 /* Code the SELECT statements to our left 2332 */ 2333 assert( !pPrior->pOrderBy ); 2334 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2335 explainSetInteger(iSub1, pParse->iNextSelectId); 2336 rc = sqlite3Select(pParse, pPrior, &uniondest); 2337 if( rc ){ 2338 goto multi_select_end; 2339 } 2340 2341 /* Code the current SELECT statement 2342 */ 2343 if( p->op==TK_EXCEPT ){ 2344 op = SRT_Except; 2345 }else{ 2346 assert( p->op==TK_UNION ); 2347 op = SRT_Union; 2348 } 2349 p->pPrior = 0; 2350 pLimit = p->pLimit; 2351 p->pLimit = 0; 2352 pOffset = p->pOffset; 2353 p->pOffset = 0; 2354 uniondest.eDest = op; 2355 explainSetInteger(iSub2, pParse->iNextSelectId); 2356 rc = sqlite3Select(pParse, p, &uniondest); 2357 testcase( rc!=SQLITE_OK ); 2358 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2359 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2360 sqlite3ExprListDelete(db, p->pOrderBy); 2361 pDelete = p->pPrior; 2362 p->pPrior = pPrior; 2363 p->pOrderBy = 0; 2364 if( p->op==TK_UNION ){ 2365 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2366 } 2367 sqlite3ExprDelete(db, p->pLimit); 2368 p->pLimit = pLimit; 2369 p->pOffset = pOffset; 2370 p->iLimit = 0; 2371 p->iOffset = 0; 2372 2373 /* Convert the data in the temporary table into whatever form 2374 ** it is that we currently need. 2375 */ 2376 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2377 if( dest.eDest!=priorOp ){ 2378 int iCont, iBreak, iStart; 2379 assert( p->pEList ); 2380 if( dest.eDest==SRT_Output ){ 2381 Select *pFirst = p; 2382 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2383 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2384 } 2385 iBreak = sqlite3VdbeMakeLabel(v); 2386 iCont = sqlite3VdbeMakeLabel(v); 2387 computeLimitRegisters(pParse, p, iBreak); 2388 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2389 iStart = sqlite3VdbeCurrentAddr(v); 2390 selectInnerLoop(pParse, p, p->pEList, unionTab, 2391 0, 0, &dest, iCont, iBreak); 2392 sqlite3VdbeResolveLabel(v, iCont); 2393 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2394 sqlite3VdbeResolveLabel(v, iBreak); 2395 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2396 } 2397 break; 2398 } 2399 default: assert( p->op==TK_INTERSECT ); { 2400 int tab1, tab2; 2401 int iCont, iBreak, iStart; 2402 Expr *pLimit, *pOffset; 2403 int addr; 2404 SelectDest intersectdest; 2405 int r1; 2406 2407 /* INTERSECT is different from the others since it requires 2408 ** two temporary tables. Hence it has its own case. Begin 2409 ** by allocating the tables we will need. 2410 */ 2411 tab1 = pParse->nTab++; 2412 tab2 = pParse->nTab++; 2413 assert( p->pOrderBy==0 ); 2414 2415 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2416 assert( p->addrOpenEphm[0] == -1 ); 2417 p->addrOpenEphm[0] = addr; 2418 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2419 assert( p->pEList ); 2420 2421 /* Code the SELECTs to our left into temporary table "tab1". 2422 */ 2423 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2424 explainSetInteger(iSub1, pParse->iNextSelectId); 2425 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2426 if( rc ){ 2427 goto multi_select_end; 2428 } 2429 2430 /* Code the current SELECT into temporary table "tab2" 2431 */ 2432 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2433 assert( p->addrOpenEphm[1] == -1 ); 2434 p->addrOpenEphm[1] = addr; 2435 p->pPrior = 0; 2436 pLimit = p->pLimit; 2437 p->pLimit = 0; 2438 pOffset = p->pOffset; 2439 p->pOffset = 0; 2440 intersectdest.iSDParm = tab2; 2441 explainSetInteger(iSub2, pParse->iNextSelectId); 2442 rc = sqlite3Select(pParse, p, &intersectdest); 2443 testcase( rc!=SQLITE_OK ); 2444 pDelete = p->pPrior; 2445 p->pPrior = pPrior; 2446 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2447 sqlite3ExprDelete(db, p->pLimit); 2448 p->pLimit = pLimit; 2449 p->pOffset = pOffset; 2450 2451 /* Generate code to take the intersection of the two temporary 2452 ** tables. 2453 */ 2454 assert( p->pEList ); 2455 if( dest.eDest==SRT_Output ){ 2456 Select *pFirst = p; 2457 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2458 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2459 } 2460 iBreak = sqlite3VdbeMakeLabel(v); 2461 iCont = sqlite3VdbeMakeLabel(v); 2462 computeLimitRegisters(pParse, p, iBreak); 2463 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2464 r1 = sqlite3GetTempReg(pParse); 2465 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2466 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2467 sqlite3ReleaseTempReg(pParse, r1); 2468 selectInnerLoop(pParse, p, p->pEList, tab1, 2469 0, 0, &dest, iCont, iBreak); 2470 sqlite3VdbeResolveLabel(v, iCont); 2471 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2472 sqlite3VdbeResolveLabel(v, iBreak); 2473 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2474 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2475 break; 2476 } 2477 } 2478 2479 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2480 2481 /* Compute collating sequences used by 2482 ** temporary tables needed to implement the compound select. 2483 ** Attach the KeyInfo structure to all temporary tables. 2484 ** 2485 ** This section is run by the right-most SELECT statement only. 2486 ** SELECT statements to the left always skip this part. The right-most 2487 ** SELECT might also skip this part if it has no ORDER BY clause and 2488 ** no temp tables are required. 2489 */ 2490 if( p->selFlags & SF_UsesEphemeral ){ 2491 int i; /* Loop counter */ 2492 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2493 Select *pLoop; /* For looping through SELECT statements */ 2494 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2495 int nCol; /* Number of columns in result set */ 2496 2497 assert( p->pNext==0 ); 2498 nCol = p->pEList->nExpr; 2499 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2500 if( !pKeyInfo ){ 2501 rc = SQLITE_NOMEM_BKPT; 2502 goto multi_select_end; 2503 } 2504 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2505 *apColl = multiSelectCollSeq(pParse, p, i); 2506 if( 0==*apColl ){ 2507 *apColl = db->pDfltColl; 2508 } 2509 } 2510 2511 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2512 for(i=0; i<2; i++){ 2513 int addr = pLoop->addrOpenEphm[i]; 2514 if( addr<0 ){ 2515 /* If [0] is unused then [1] is also unused. So we can 2516 ** always safely abort as soon as the first unused slot is found */ 2517 assert( pLoop->addrOpenEphm[1]<0 ); 2518 break; 2519 } 2520 sqlite3VdbeChangeP2(v, addr, nCol); 2521 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2522 P4_KEYINFO); 2523 pLoop->addrOpenEphm[i] = -1; 2524 } 2525 } 2526 sqlite3KeyInfoUnref(pKeyInfo); 2527 } 2528 2529 multi_select_end: 2530 pDest->iSdst = dest.iSdst; 2531 pDest->nSdst = dest.nSdst; 2532 sqlite3SelectDelete(db, pDelete); 2533 return rc; 2534 } 2535 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2536 2537 /* 2538 ** Error message for when two or more terms of a compound select have different 2539 ** size result sets. 2540 */ 2541 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2542 if( p->selFlags & SF_Values ){ 2543 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2544 }else{ 2545 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2546 " do not have the same number of result columns", selectOpName(p->op)); 2547 } 2548 } 2549 2550 /* 2551 ** Code an output subroutine for a coroutine implementation of a 2552 ** SELECT statment. 2553 ** 2554 ** The data to be output is contained in pIn->iSdst. There are 2555 ** pIn->nSdst columns to be output. pDest is where the output should 2556 ** be sent. 2557 ** 2558 ** regReturn is the number of the register holding the subroutine 2559 ** return address. 2560 ** 2561 ** If regPrev>0 then it is the first register in a vector that 2562 ** records the previous output. mem[regPrev] is a flag that is false 2563 ** if there has been no previous output. If regPrev>0 then code is 2564 ** generated to suppress duplicates. pKeyInfo is used for comparing 2565 ** keys. 2566 ** 2567 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2568 ** iBreak. 2569 */ 2570 static int generateOutputSubroutine( 2571 Parse *pParse, /* Parsing context */ 2572 Select *p, /* The SELECT statement */ 2573 SelectDest *pIn, /* Coroutine supplying data */ 2574 SelectDest *pDest, /* Where to send the data */ 2575 int regReturn, /* The return address register */ 2576 int regPrev, /* Previous result register. No uniqueness if 0 */ 2577 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2578 int iBreak /* Jump here if we hit the LIMIT */ 2579 ){ 2580 Vdbe *v = pParse->pVdbe; 2581 int iContinue; 2582 int addr; 2583 2584 addr = sqlite3VdbeCurrentAddr(v); 2585 iContinue = sqlite3VdbeMakeLabel(v); 2586 2587 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2588 */ 2589 if( regPrev ){ 2590 int addr1, addr2; 2591 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2592 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2593 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2594 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2595 sqlite3VdbeJumpHere(v, addr1); 2596 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2597 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2598 } 2599 if( pParse->db->mallocFailed ) return 0; 2600 2601 /* Suppress the first OFFSET entries if there is an OFFSET clause 2602 */ 2603 codeOffset(v, p->iOffset, iContinue); 2604 2605 assert( pDest->eDest!=SRT_Exists ); 2606 assert( pDest->eDest!=SRT_Table ); 2607 switch( pDest->eDest ){ 2608 /* Store the result as data using a unique key. 2609 */ 2610 case SRT_EphemTab: { 2611 int r1 = sqlite3GetTempReg(pParse); 2612 int r2 = sqlite3GetTempReg(pParse); 2613 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2614 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2615 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2616 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2617 sqlite3ReleaseTempReg(pParse, r2); 2618 sqlite3ReleaseTempReg(pParse, r1); 2619 break; 2620 } 2621 2622 #ifndef SQLITE_OMIT_SUBQUERY 2623 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2624 ** then there should be a single item on the stack. Write this 2625 ** item into the set table with bogus data. 2626 */ 2627 case SRT_Set: { 2628 int r1; 2629 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2630 pDest->affSdst = 2631 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2632 r1 = sqlite3GetTempReg(pParse); 2633 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2634 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2635 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2636 sqlite3ReleaseTempReg(pParse, r1); 2637 break; 2638 } 2639 2640 /* If this is a scalar select that is part of an expression, then 2641 ** store the results in the appropriate memory cell and break out 2642 ** of the scan loop. 2643 */ 2644 case SRT_Mem: { 2645 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2646 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2647 /* The LIMIT clause will jump out of the loop for us */ 2648 break; 2649 } 2650 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2651 2652 /* The results are stored in a sequence of registers 2653 ** starting at pDest->iSdst. Then the co-routine yields. 2654 */ 2655 case SRT_Coroutine: { 2656 if( pDest->iSdst==0 ){ 2657 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2658 pDest->nSdst = pIn->nSdst; 2659 } 2660 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2661 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2662 break; 2663 } 2664 2665 /* If none of the above, then the result destination must be 2666 ** SRT_Output. This routine is never called with any other 2667 ** destination other than the ones handled above or SRT_Output. 2668 ** 2669 ** For SRT_Output, results are stored in a sequence of registers. 2670 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2671 ** return the next row of result. 2672 */ 2673 default: { 2674 assert( pDest->eDest==SRT_Output ); 2675 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2676 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2677 break; 2678 } 2679 } 2680 2681 /* Jump to the end of the loop if the LIMIT is reached. 2682 */ 2683 if( p->iLimit ){ 2684 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2685 } 2686 2687 /* Generate the subroutine return 2688 */ 2689 sqlite3VdbeResolveLabel(v, iContinue); 2690 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2691 2692 return addr; 2693 } 2694 2695 /* 2696 ** Alternative compound select code generator for cases when there 2697 ** is an ORDER BY clause. 2698 ** 2699 ** We assume a query of the following form: 2700 ** 2701 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2702 ** 2703 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2704 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2705 ** co-routines. Then run the co-routines in parallel and merge the results 2706 ** into the output. In addition to the two coroutines (called selectA and 2707 ** selectB) there are 7 subroutines: 2708 ** 2709 ** outA: Move the output of the selectA coroutine into the output 2710 ** of the compound query. 2711 ** 2712 ** outB: Move the output of the selectB coroutine into the output 2713 ** of the compound query. (Only generated for UNION and 2714 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2715 ** appears only in B.) 2716 ** 2717 ** AltB: Called when there is data from both coroutines and A<B. 2718 ** 2719 ** AeqB: Called when there is data from both coroutines and A==B. 2720 ** 2721 ** AgtB: Called when there is data from both coroutines and A>B. 2722 ** 2723 ** EofA: Called when data is exhausted from selectA. 2724 ** 2725 ** EofB: Called when data is exhausted from selectB. 2726 ** 2727 ** The implementation of the latter five subroutines depend on which 2728 ** <operator> is used: 2729 ** 2730 ** 2731 ** UNION ALL UNION EXCEPT INTERSECT 2732 ** ------------- ----------------- -------------- ----------------- 2733 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2734 ** 2735 ** AeqB: outA, nextA nextA nextA outA, nextA 2736 ** 2737 ** AgtB: outB, nextB outB, nextB nextB nextB 2738 ** 2739 ** EofA: outB, nextB outB, nextB halt halt 2740 ** 2741 ** EofB: outA, nextA outA, nextA outA, nextA halt 2742 ** 2743 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2744 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2745 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2746 ** following nextX causes a jump to the end of the select processing. 2747 ** 2748 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2749 ** within the output subroutine. The regPrev register set holds the previously 2750 ** output value. A comparison is made against this value and the output 2751 ** is skipped if the next results would be the same as the previous. 2752 ** 2753 ** The implementation plan is to implement the two coroutines and seven 2754 ** subroutines first, then put the control logic at the bottom. Like this: 2755 ** 2756 ** goto Init 2757 ** coA: coroutine for left query (A) 2758 ** coB: coroutine for right query (B) 2759 ** outA: output one row of A 2760 ** outB: output one row of B (UNION and UNION ALL only) 2761 ** EofA: ... 2762 ** EofB: ... 2763 ** AltB: ... 2764 ** AeqB: ... 2765 ** AgtB: ... 2766 ** Init: initialize coroutine registers 2767 ** yield coA 2768 ** if eof(A) goto EofA 2769 ** yield coB 2770 ** if eof(B) goto EofB 2771 ** Cmpr: Compare A, B 2772 ** Jump AltB, AeqB, AgtB 2773 ** End: ... 2774 ** 2775 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2776 ** actually called using Gosub and they do not Return. EofA and EofB loop 2777 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2778 ** and AgtB jump to either L2 or to one of EofA or EofB. 2779 */ 2780 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2781 static int multiSelectOrderBy( 2782 Parse *pParse, /* Parsing context */ 2783 Select *p, /* The right-most of SELECTs to be coded */ 2784 SelectDest *pDest /* What to do with query results */ 2785 ){ 2786 int i, j; /* Loop counters */ 2787 Select *pPrior; /* Another SELECT immediately to our left */ 2788 Vdbe *v; /* Generate code to this VDBE */ 2789 SelectDest destA; /* Destination for coroutine A */ 2790 SelectDest destB; /* Destination for coroutine B */ 2791 int regAddrA; /* Address register for select-A coroutine */ 2792 int regAddrB; /* Address register for select-B coroutine */ 2793 int addrSelectA; /* Address of the select-A coroutine */ 2794 int addrSelectB; /* Address of the select-B coroutine */ 2795 int regOutA; /* Address register for the output-A subroutine */ 2796 int regOutB; /* Address register for the output-B subroutine */ 2797 int addrOutA; /* Address of the output-A subroutine */ 2798 int addrOutB = 0; /* Address of the output-B subroutine */ 2799 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2800 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2801 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2802 int addrAltB; /* Address of the A<B subroutine */ 2803 int addrAeqB; /* Address of the A==B subroutine */ 2804 int addrAgtB; /* Address of the A>B subroutine */ 2805 int regLimitA; /* Limit register for select-A */ 2806 int regLimitB; /* Limit register for select-A */ 2807 int regPrev; /* A range of registers to hold previous output */ 2808 int savedLimit; /* Saved value of p->iLimit */ 2809 int savedOffset; /* Saved value of p->iOffset */ 2810 int labelCmpr; /* Label for the start of the merge algorithm */ 2811 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2812 int addr1; /* Jump instructions that get retargetted */ 2813 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2814 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2815 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2816 sqlite3 *db; /* Database connection */ 2817 ExprList *pOrderBy; /* The ORDER BY clause */ 2818 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2819 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2820 #ifndef SQLITE_OMIT_EXPLAIN 2821 int iSub1; /* EQP id of left-hand query */ 2822 int iSub2; /* EQP id of right-hand query */ 2823 #endif 2824 2825 assert( p->pOrderBy!=0 ); 2826 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2827 db = pParse->db; 2828 v = pParse->pVdbe; 2829 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2830 labelEnd = sqlite3VdbeMakeLabel(v); 2831 labelCmpr = sqlite3VdbeMakeLabel(v); 2832 2833 2834 /* Patch up the ORDER BY clause 2835 */ 2836 op = p->op; 2837 pPrior = p->pPrior; 2838 assert( pPrior->pOrderBy==0 ); 2839 pOrderBy = p->pOrderBy; 2840 assert( pOrderBy ); 2841 nOrderBy = pOrderBy->nExpr; 2842 2843 /* For operators other than UNION ALL we have to make sure that 2844 ** the ORDER BY clause covers every term of the result set. Add 2845 ** terms to the ORDER BY clause as necessary. 2846 */ 2847 if( op!=TK_ALL ){ 2848 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2849 struct ExprList_item *pItem; 2850 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2851 assert( pItem->u.x.iOrderByCol>0 ); 2852 if( pItem->u.x.iOrderByCol==i ) break; 2853 } 2854 if( j==nOrderBy ){ 2855 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2856 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2857 pNew->flags |= EP_IntValue; 2858 pNew->u.iValue = i; 2859 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2860 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2861 } 2862 } 2863 } 2864 2865 /* Compute the comparison permutation and keyinfo that is used with 2866 ** the permutation used to determine if the next 2867 ** row of results comes from selectA or selectB. Also add explicit 2868 ** collations to the ORDER BY clause terms so that when the subqueries 2869 ** to the right and the left are evaluated, they use the correct 2870 ** collation. 2871 */ 2872 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2873 if( aPermute ){ 2874 struct ExprList_item *pItem; 2875 aPermute[0] = nOrderBy; 2876 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2877 assert( pItem->u.x.iOrderByCol>0 ); 2878 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2879 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2880 } 2881 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2882 }else{ 2883 pKeyMerge = 0; 2884 } 2885 2886 /* Reattach the ORDER BY clause to the query. 2887 */ 2888 p->pOrderBy = pOrderBy; 2889 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2890 2891 /* Allocate a range of temporary registers and the KeyInfo needed 2892 ** for the logic that removes duplicate result rows when the 2893 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2894 */ 2895 if( op==TK_ALL ){ 2896 regPrev = 0; 2897 }else{ 2898 int nExpr = p->pEList->nExpr; 2899 assert( nOrderBy>=nExpr || db->mallocFailed ); 2900 regPrev = pParse->nMem+1; 2901 pParse->nMem += nExpr+1; 2902 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2903 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2904 if( pKeyDup ){ 2905 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2906 for(i=0; i<nExpr; i++){ 2907 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2908 pKeyDup->aSortOrder[i] = 0; 2909 } 2910 } 2911 } 2912 2913 /* Separate the left and the right query from one another 2914 */ 2915 p->pPrior = 0; 2916 pPrior->pNext = 0; 2917 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2918 if( pPrior->pPrior==0 ){ 2919 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2920 } 2921 2922 /* Compute the limit registers */ 2923 computeLimitRegisters(pParse, p, labelEnd); 2924 if( p->iLimit && op==TK_ALL ){ 2925 regLimitA = ++pParse->nMem; 2926 regLimitB = ++pParse->nMem; 2927 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2928 regLimitA); 2929 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2930 }else{ 2931 regLimitA = regLimitB = 0; 2932 } 2933 sqlite3ExprDelete(db, p->pLimit); 2934 p->pLimit = 0; 2935 sqlite3ExprDelete(db, p->pOffset); 2936 p->pOffset = 0; 2937 2938 regAddrA = ++pParse->nMem; 2939 regAddrB = ++pParse->nMem; 2940 regOutA = ++pParse->nMem; 2941 regOutB = ++pParse->nMem; 2942 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2943 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2944 2945 /* Generate a coroutine to evaluate the SELECT statement to the 2946 ** left of the compound operator - the "A" select. 2947 */ 2948 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2949 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2950 VdbeComment((v, "left SELECT")); 2951 pPrior->iLimit = regLimitA; 2952 explainSetInteger(iSub1, pParse->iNextSelectId); 2953 sqlite3Select(pParse, pPrior, &destA); 2954 sqlite3VdbeEndCoroutine(v, regAddrA); 2955 sqlite3VdbeJumpHere(v, addr1); 2956 2957 /* Generate a coroutine to evaluate the SELECT statement on 2958 ** the right - the "B" select 2959 */ 2960 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2961 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2962 VdbeComment((v, "right SELECT")); 2963 savedLimit = p->iLimit; 2964 savedOffset = p->iOffset; 2965 p->iLimit = regLimitB; 2966 p->iOffset = 0; 2967 explainSetInteger(iSub2, pParse->iNextSelectId); 2968 sqlite3Select(pParse, p, &destB); 2969 p->iLimit = savedLimit; 2970 p->iOffset = savedOffset; 2971 sqlite3VdbeEndCoroutine(v, regAddrB); 2972 2973 /* Generate a subroutine that outputs the current row of the A 2974 ** select as the next output row of the compound select. 2975 */ 2976 VdbeNoopComment((v, "Output routine for A")); 2977 addrOutA = generateOutputSubroutine(pParse, 2978 p, &destA, pDest, regOutA, 2979 regPrev, pKeyDup, labelEnd); 2980 2981 /* Generate a subroutine that outputs the current row of the B 2982 ** select as the next output row of the compound select. 2983 */ 2984 if( op==TK_ALL || op==TK_UNION ){ 2985 VdbeNoopComment((v, "Output routine for B")); 2986 addrOutB = generateOutputSubroutine(pParse, 2987 p, &destB, pDest, regOutB, 2988 regPrev, pKeyDup, labelEnd); 2989 } 2990 sqlite3KeyInfoUnref(pKeyDup); 2991 2992 /* Generate a subroutine to run when the results from select A 2993 ** are exhausted and only data in select B remains. 2994 */ 2995 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2996 addrEofA_noB = addrEofA = labelEnd; 2997 }else{ 2998 VdbeNoopComment((v, "eof-A subroutine")); 2999 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3000 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3001 VdbeCoverage(v); 3002 sqlite3VdbeGoto(v, addrEofA); 3003 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3004 } 3005 3006 /* Generate a subroutine to run when the results from select B 3007 ** are exhausted and only data in select A remains. 3008 */ 3009 if( op==TK_INTERSECT ){ 3010 addrEofB = addrEofA; 3011 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3012 }else{ 3013 VdbeNoopComment((v, "eof-B subroutine")); 3014 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3015 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3016 sqlite3VdbeGoto(v, addrEofB); 3017 } 3018 3019 /* Generate code to handle the case of A<B 3020 */ 3021 VdbeNoopComment((v, "A-lt-B subroutine")); 3022 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3023 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3024 sqlite3VdbeGoto(v, labelCmpr); 3025 3026 /* Generate code to handle the case of A==B 3027 */ 3028 if( op==TK_ALL ){ 3029 addrAeqB = addrAltB; 3030 }else if( op==TK_INTERSECT ){ 3031 addrAeqB = addrAltB; 3032 addrAltB++; 3033 }else{ 3034 VdbeNoopComment((v, "A-eq-B subroutine")); 3035 addrAeqB = 3036 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3037 sqlite3VdbeGoto(v, labelCmpr); 3038 } 3039 3040 /* Generate code to handle the case of A>B 3041 */ 3042 VdbeNoopComment((v, "A-gt-B subroutine")); 3043 addrAgtB = sqlite3VdbeCurrentAddr(v); 3044 if( op==TK_ALL || op==TK_UNION ){ 3045 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3046 } 3047 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3048 sqlite3VdbeGoto(v, labelCmpr); 3049 3050 /* This code runs once to initialize everything. 3051 */ 3052 sqlite3VdbeJumpHere(v, addr1); 3053 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3054 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3055 3056 /* Implement the main merge loop 3057 */ 3058 sqlite3VdbeResolveLabel(v, labelCmpr); 3059 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3060 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3061 (char*)pKeyMerge, P4_KEYINFO); 3062 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3063 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3064 3065 /* Jump to the this point in order to terminate the query. 3066 */ 3067 sqlite3VdbeResolveLabel(v, labelEnd); 3068 3069 /* Set the number of output columns 3070 */ 3071 if( pDest->eDest==SRT_Output ){ 3072 Select *pFirst = pPrior; 3073 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3074 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3075 } 3076 3077 /* Reassembly the compound query so that it will be freed correctly 3078 ** by the calling function */ 3079 if( p->pPrior ){ 3080 sqlite3SelectDelete(db, p->pPrior); 3081 } 3082 p->pPrior = pPrior; 3083 pPrior->pNext = p; 3084 3085 /*** TBD: Insert subroutine calls to close cursors on incomplete 3086 **** subqueries ****/ 3087 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3088 return pParse->nErr!=0; 3089 } 3090 #endif 3091 3092 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3093 /* Forward Declarations */ 3094 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3095 static void substSelect(sqlite3*, Select *, int, ExprList*, int); 3096 3097 /* 3098 ** Scan through the expression pExpr. Replace every reference to 3099 ** a column in table number iTable with a copy of the iColumn-th 3100 ** entry in pEList. (But leave references to the ROWID column 3101 ** unchanged.) 3102 ** 3103 ** This routine is part of the flattening procedure. A subquery 3104 ** whose result set is defined by pEList appears as entry in the 3105 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3106 ** FORM clause entry is iTable. This routine make the necessary 3107 ** changes to pExpr so that it refers directly to the source table 3108 ** of the subquery rather the result set of the subquery. 3109 */ 3110 static Expr *substExpr( 3111 sqlite3 *db, /* Report malloc errors to this connection */ 3112 Expr *pExpr, /* Expr in which substitution occurs */ 3113 int iTable, /* Table to be substituted */ 3114 ExprList *pEList /* Substitute expressions */ 3115 ){ 3116 if( pExpr==0 ) return 0; 3117 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3118 if( pExpr->iColumn<0 ){ 3119 pExpr->op = TK_NULL; 3120 }else{ 3121 Expr *pNew; 3122 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3123 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3124 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3125 sqlite3ExprDelete(db, pExpr); 3126 pExpr = pNew; 3127 } 3128 }else{ 3129 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3130 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3131 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3132 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1); 3133 }else{ 3134 substExprList(db, pExpr->x.pList, iTable, pEList); 3135 } 3136 } 3137 return pExpr; 3138 } 3139 static void substExprList( 3140 sqlite3 *db, /* Report malloc errors here */ 3141 ExprList *pList, /* List to scan and in which to make substitutes */ 3142 int iTable, /* Table to be substituted */ 3143 ExprList *pEList /* Substitute values */ 3144 ){ 3145 int i; 3146 if( pList==0 ) return; 3147 for(i=0; i<pList->nExpr; i++){ 3148 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3149 } 3150 } 3151 static void substSelect( 3152 sqlite3 *db, /* Report malloc errors here */ 3153 Select *p, /* SELECT statement in which to make substitutions */ 3154 int iTable, /* Table to be replaced */ 3155 ExprList *pEList, /* Substitute values */ 3156 int doPrior /* Do substitutes on p->pPrior too */ 3157 ){ 3158 SrcList *pSrc; 3159 struct SrcList_item *pItem; 3160 int i; 3161 if( !p ) return; 3162 do{ 3163 substExprList(db, p->pEList, iTable, pEList); 3164 substExprList(db, p->pGroupBy, iTable, pEList); 3165 substExprList(db, p->pOrderBy, iTable, pEList); 3166 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3167 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3168 pSrc = p->pSrc; 3169 assert( pSrc!=0 ); 3170 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3171 substSelect(db, pItem->pSelect, iTable, pEList, 1); 3172 if( pItem->fg.isTabFunc ){ 3173 substExprList(db, pItem->u1.pFuncArg, iTable, pEList); 3174 } 3175 } 3176 }while( doPrior && (p = p->pPrior)!=0 ); 3177 } 3178 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3179 3180 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3181 /* 3182 ** This routine attempts to flatten subqueries as a performance optimization. 3183 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3184 ** 3185 ** To understand the concept of flattening, consider the following 3186 ** query: 3187 ** 3188 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3189 ** 3190 ** The default way of implementing this query is to execute the 3191 ** subquery first and store the results in a temporary table, then 3192 ** run the outer query on that temporary table. This requires two 3193 ** passes over the data. Furthermore, because the temporary table 3194 ** has no indices, the WHERE clause on the outer query cannot be 3195 ** optimized. 3196 ** 3197 ** This routine attempts to rewrite queries such as the above into 3198 ** a single flat select, like this: 3199 ** 3200 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3201 ** 3202 ** The code generated for this simplification gives the same result 3203 ** but only has to scan the data once. And because indices might 3204 ** exist on the table t1, a complete scan of the data might be 3205 ** avoided. 3206 ** 3207 ** Flattening is only attempted if all of the following are true: 3208 ** 3209 ** (1) The subquery and the outer query do not both use aggregates. 3210 ** 3211 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3212 ** and (2b) the outer query does not use subqueries other than the one 3213 ** FROM-clause subquery that is a candidate for flattening. (2b is 3214 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3215 ** 3216 ** (3) The subquery is not the right operand of a left outer join 3217 ** (Originally ticket #306. Strengthened by ticket #3300) 3218 ** 3219 ** (4) The subquery is not DISTINCT. 3220 ** 3221 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3222 ** sub-queries that were excluded from this optimization. Restriction 3223 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3224 ** 3225 ** (6) The subquery does not use aggregates or the outer query is not 3226 ** DISTINCT. 3227 ** 3228 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3229 ** A FROM clause, consider adding a FROM close with the special 3230 ** table sqlite_once that consists of a single row containing a 3231 ** single NULL. 3232 ** 3233 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3234 ** 3235 ** (9) The subquery does not use LIMIT or the outer query does not use 3236 ** aggregates. 3237 ** 3238 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3239 ** accidently carried the comment forward until 2014-09-15. Original 3240 ** text: "The subquery does not use aggregates or the outer query 3241 ** does not use LIMIT." 3242 ** 3243 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3244 ** 3245 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3246 ** a separate restriction deriving from ticket #350. 3247 ** 3248 ** (13) The subquery and outer query do not both use LIMIT. 3249 ** 3250 ** (14) The subquery does not use OFFSET. 3251 ** 3252 ** (15) The outer query is not part of a compound select or the 3253 ** subquery does not have a LIMIT clause. 3254 ** (See ticket #2339 and ticket [02a8e81d44]). 3255 ** 3256 ** (16) The outer query is not an aggregate or the subquery does 3257 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3258 ** until we introduced the group_concat() function. 3259 ** 3260 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3261 ** compound clause made up entirely of non-aggregate queries, and 3262 ** the parent query: 3263 ** 3264 ** * is not itself part of a compound select, 3265 ** * is not an aggregate or DISTINCT query, and 3266 ** * is not a join 3267 ** 3268 ** The parent and sub-query may contain WHERE clauses. Subject to 3269 ** rules (11), (13) and (14), they may also contain ORDER BY, 3270 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3271 ** operator other than UNION ALL because all the other compound 3272 ** operators have an implied DISTINCT which is disallowed by 3273 ** restriction (4). 3274 ** 3275 ** Also, each component of the sub-query must return the same number 3276 ** of result columns. This is actually a requirement for any compound 3277 ** SELECT statement, but all the code here does is make sure that no 3278 ** such (illegal) sub-query is flattened. The caller will detect the 3279 ** syntax error and return a detailed message. 3280 ** 3281 ** (18) If the sub-query is a compound select, then all terms of the 3282 ** ORDER by clause of the parent must be simple references to 3283 ** columns of the sub-query. 3284 ** 3285 ** (19) The subquery does not use LIMIT or the outer query does not 3286 ** have a WHERE clause. 3287 ** 3288 ** (20) If the sub-query is a compound select, then it must not use 3289 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3290 ** somewhat by saying that the terms of the ORDER BY clause must 3291 ** appear as unmodified result columns in the outer query. But we 3292 ** have other optimizations in mind to deal with that case. 3293 ** 3294 ** (21) The subquery does not use LIMIT or the outer query is not 3295 ** DISTINCT. (See ticket [752e1646fc]). 3296 ** 3297 ** (22) The subquery is not a recursive CTE. 3298 ** 3299 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3300 ** compound query. This restriction is because transforming the 3301 ** parent to a compound query confuses the code that handles 3302 ** recursive queries in multiSelect(). 3303 ** 3304 ** (24) The subquery is not an aggregate that uses the built-in min() or 3305 ** or max() functions. (Without this restriction, a query like: 3306 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3307 ** return the value X for which Y was maximal.) 3308 ** 3309 ** 3310 ** In this routine, the "p" parameter is a pointer to the outer query. 3311 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3312 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3313 ** 3314 ** If flattening is not attempted, this routine is a no-op and returns 0. 3315 ** If flattening is attempted this routine returns 1. 3316 ** 3317 ** All of the expression analysis must occur on both the outer query and 3318 ** the subquery before this routine runs. 3319 */ 3320 static int flattenSubquery( 3321 Parse *pParse, /* Parsing context */ 3322 Select *p, /* The parent or outer SELECT statement */ 3323 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3324 int isAgg, /* True if outer SELECT uses aggregate functions */ 3325 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3326 ){ 3327 const char *zSavedAuthContext = pParse->zAuthContext; 3328 Select *pParent; /* Current UNION ALL term of the other query */ 3329 Select *pSub; /* The inner query or "subquery" */ 3330 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3331 SrcList *pSrc; /* The FROM clause of the outer query */ 3332 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3333 ExprList *pList; /* The result set of the outer query */ 3334 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3335 int i; /* Loop counter */ 3336 Expr *pWhere; /* The WHERE clause */ 3337 struct SrcList_item *pSubitem; /* The subquery */ 3338 sqlite3 *db = pParse->db; 3339 3340 /* Check to see if flattening is permitted. Return 0 if not. 3341 */ 3342 assert( p!=0 ); 3343 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3344 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3345 pSrc = p->pSrc; 3346 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3347 pSubitem = &pSrc->a[iFrom]; 3348 iParent = pSubitem->iCursor; 3349 pSub = pSubitem->pSelect; 3350 assert( pSub!=0 ); 3351 if( subqueryIsAgg ){ 3352 if( isAgg ) return 0; /* Restriction (1) */ 3353 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3354 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3355 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3356 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3357 ){ 3358 return 0; /* Restriction (2b) */ 3359 } 3360 } 3361 3362 pSubSrc = pSub->pSrc; 3363 assert( pSubSrc ); 3364 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3365 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3366 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3367 ** became arbitrary expressions, we were forced to add restrictions (13) 3368 ** and (14). */ 3369 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3370 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3371 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3372 return 0; /* Restriction (15) */ 3373 } 3374 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3375 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3376 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3377 return 0; /* Restrictions (8)(9) */ 3378 } 3379 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3380 return 0; /* Restriction (6) */ 3381 } 3382 if( p->pOrderBy && pSub->pOrderBy ){ 3383 return 0; /* Restriction (11) */ 3384 } 3385 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3386 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3387 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3388 return 0; /* Restriction (21) */ 3389 } 3390 testcase( pSub->selFlags & SF_Recursive ); 3391 testcase( pSub->selFlags & SF_MinMaxAgg ); 3392 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3393 return 0; /* Restrictions (22) and (24) */ 3394 } 3395 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3396 return 0; /* Restriction (23) */ 3397 } 3398 3399 /* OBSOLETE COMMENT 1: 3400 ** Restriction 3: If the subquery is a join, make sure the subquery is 3401 ** not used as the right operand of an outer join. Examples of why this 3402 ** is not allowed: 3403 ** 3404 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3405 ** 3406 ** If we flatten the above, we would get 3407 ** 3408 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3409 ** 3410 ** which is not at all the same thing. 3411 ** 3412 ** OBSOLETE COMMENT 2: 3413 ** Restriction 12: If the subquery is the right operand of a left outer 3414 ** join, make sure the subquery has no WHERE clause. 3415 ** An examples of why this is not allowed: 3416 ** 3417 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3418 ** 3419 ** If we flatten the above, we would get 3420 ** 3421 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3422 ** 3423 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3424 ** effectively converts the OUTER JOIN into an INNER JOIN. 3425 ** 3426 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3427 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3428 ** is fraught with danger. Best to avoid the whole thing. If the 3429 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3430 */ 3431 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3432 return 0; 3433 } 3434 3435 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3436 ** use only the UNION ALL operator. And none of the simple select queries 3437 ** that make up the compound SELECT are allowed to be aggregate or distinct 3438 ** queries. 3439 */ 3440 if( pSub->pPrior ){ 3441 if( pSub->pOrderBy ){ 3442 return 0; /* Restriction 20 */ 3443 } 3444 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3445 return 0; 3446 } 3447 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3448 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3449 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3450 assert( pSub->pSrc!=0 ); 3451 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3452 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3453 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3454 || pSub1->pSrc->nSrc<1 3455 ){ 3456 return 0; 3457 } 3458 testcase( pSub1->pSrc->nSrc>1 ); 3459 } 3460 3461 /* Restriction 18. */ 3462 if( p->pOrderBy ){ 3463 int ii; 3464 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3465 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3466 } 3467 } 3468 } 3469 3470 /***** If we reach this point, flattening is permitted. *****/ 3471 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3472 pSub->zSelName, pSub, iFrom)); 3473 3474 /* Authorize the subquery */ 3475 pParse->zAuthContext = pSubitem->zName; 3476 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3477 testcase( i==SQLITE_DENY ); 3478 pParse->zAuthContext = zSavedAuthContext; 3479 3480 /* If the sub-query is a compound SELECT statement, then (by restrictions 3481 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3482 ** be of the form: 3483 ** 3484 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3485 ** 3486 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3487 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3488 ** OFFSET clauses and joins them to the left-hand-side of the original 3489 ** using UNION ALL operators. In this case N is the number of simple 3490 ** select statements in the compound sub-query. 3491 ** 3492 ** Example: 3493 ** 3494 ** SELECT a+1 FROM ( 3495 ** SELECT x FROM tab 3496 ** UNION ALL 3497 ** SELECT y FROM tab 3498 ** UNION ALL 3499 ** SELECT abs(z*2) FROM tab2 3500 ** ) WHERE a!=5 ORDER BY 1 3501 ** 3502 ** Transformed into: 3503 ** 3504 ** SELECT x+1 FROM tab WHERE x+1!=5 3505 ** UNION ALL 3506 ** SELECT y+1 FROM tab WHERE y+1!=5 3507 ** UNION ALL 3508 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3509 ** ORDER BY 1 3510 ** 3511 ** We call this the "compound-subquery flattening". 3512 */ 3513 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3514 Select *pNew; 3515 ExprList *pOrderBy = p->pOrderBy; 3516 Expr *pLimit = p->pLimit; 3517 Expr *pOffset = p->pOffset; 3518 Select *pPrior = p->pPrior; 3519 p->pOrderBy = 0; 3520 p->pSrc = 0; 3521 p->pPrior = 0; 3522 p->pLimit = 0; 3523 p->pOffset = 0; 3524 pNew = sqlite3SelectDup(db, p, 0); 3525 sqlite3SelectSetName(pNew, pSub->zSelName); 3526 p->pOffset = pOffset; 3527 p->pLimit = pLimit; 3528 p->pOrderBy = pOrderBy; 3529 p->pSrc = pSrc; 3530 p->op = TK_ALL; 3531 if( pNew==0 ){ 3532 p->pPrior = pPrior; 3533 }else{ 3534 pNew->pPrior = pPrior; 3535 if( pPrior ) pPrior->pNext = pNew; 3536 pNew->pNext = p; 3537 p->pPrior = pNew; 3538 SELECTTRACE(2,pParse,p, 3539 ("compound-subquery flattener creates %s.%p as peer\n", 3540 pNew->zSelName, pNew)); 3541 } 3542 if( db->mallocFailed ) return 1; 3543 } 3544 3545 /* Begin flattening the iFrom-th entry of the FROM clause 3546 ** in the outer query. 3547 */ 3548 pSub = pSub1 = pSubitem->pSelect; 3549 3550 /* Delete the transient table structure associated with the 3551 ** subquery 3552 */ 3553 sqlite3DbFree(db, pSubitem->zDatabase); 3554 sqlite3DbFree(db, pSubitem->zName); 3555 sqlite3DbFree(db, pSubitem->zAlias); 3556 pSubitem->zDatabase = 0; 3557 pSubitem->zName = 0; 3558 pSubitem->zAlias = 0; 3559 pSubitem->pSelect = 0; 3560 3561 /* Defer deleting the Table object associated with the 3562 ** subquery until code generation is 3563 ** complete, since there may still exist Expr.pTab entries that 3564 ** refer to the subquery even after flattening. Ticket #3346. 3565 ** 3566 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3567 */ 3568 if( ALWAYS(pSubitem->pTab!=0) ){ 3569 Table *pTabToDel = pSubitem->pTab; 3570 if( pTabToDel->nRef==1 ){ 3571 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3572 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3573 pToplevel->pZombieTab = pTabToDel; 3574 }else{ 3575 pTabToDel->nRef--; 3576 } 3577 pSubitem->pTab = 0; 3578 } 3579 3580 /* The following loop runs once for each term in a compound-subquery 3581 ** flattening (as described above). If we are doing a different kind 3582 ** of flattening - a flattening other than a compound-subquery flattening - 3583 ** then this loop only runs once. 3584 ** 3585 ** This loop moves all of the FROM elements of the subquery into the 3586 ** the FROM clause of the outer query. Before doing this, remember 3587 ** the cursor number for the original outer query FROM element in 3588 ** iParent. The iParent cursor will never be used. Subsequent code 3589 ** will scan expressions looking for iParent references and replace 3590 ** those references with expressions that resolve to the subquery FROM 3591 ** elements we are now copying in. 3592 */ 3593 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3594 int nSubSrc; 3595 u8 jointype = 0; 3596 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3597 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3598 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3599 3600 if( pSrc ){ 3601 assert( pParent==p ); /* First time through the loop */ 3602 jointype = pSubitem->fg.jointype; 3603 }else{ 3604 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3605 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3606 if( pSrc==0 ){ 3607 assert( db->mallocFailed ); 3608 break; 3609 } 3610 } 3611 3612 /* The subquery uses a single slot of the FROM clause of the outer 3613 ** query. If the subquery has more than one element in its FROM clause, 3614 ** then expand the outer query to make space for it to hold all elements 3615 ** of the subquery. 3616 ** 3617 ** Example: 3618 ** 3619 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3620 ** 3621 ** The outer query has 3 slots in its FROM clause. One slot of the 3622 ** outer query (the middle slot) is used by the subquery. The next 3623 ** block of code will expand the outer query FROM clause to 4 slots. 3624 ** The middle slot is expanded to two slots in order to make space 3625 ** for the two elements in the FROM clause of the subquery. 3626 */ 3627 if( nSubSrc>1 ){ 3628 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3629 if( db->mallocFailed ){ 3630 break; 3631 } 3632 } 3633 3634 /* Transfer the FROM clause terms from the subquery into the 3635 ** outer query. 3636 */ 3637 for(i=0; i<nSubSrc; i++){ 3638 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3639 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3640 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3641 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3642 } 3643 pSrc->a[iFrom].fg.jointype = jointype; 3644 3645 /* Now begin substituting subquery result set expressions for 3646 ** references to the iParent in the outer query. 3647 ** 3648 ** Example: 3649 ** 3650 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3651 ** \ \_____________ subquery __________/ / 3652 ** \_____________________ outer query ______________________________/ 3653 ** 3654 ** We look at every expression in the outer query and every place we see 3655 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3656 */ 3657 pList = pParent->pEList; 3658 for(i=0; i<pList->nExpr; i++){ 3659 if( pList->a[i].zName==0 ){ 3660 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3661 sqlite3Dequote(zName); 3662 pList->a[i].zName = zName; 3663 } 3664 } 3665 if( pSub->pOrderBy ){ 3666 /* At this point, any non-zero iOrderByCol values indicate that the 3667 ** ORDER BY column expression is identical to the iOrderByCol'th 3668 ** expression returned by SELECT statement pSub. Since these values 3669 ** do not necessarily correspond to columns in SELECT statement pParent, 3670 ** zero them before transfering the ORDER BY clause. 3671 ** 3672 ** Not doing this may cause an error if a subsequent call to this 3673 ** function attempts to flatten a compound sub-query into pParent 3674 ** (the only way this can happen is if the compound sub-query is 3675 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3676 ExprList *pOrderBy = pSub->pOrderBy; 3677 for(i=0; i<pOrderBy->nExpr; i++){ 3678 pOrderBy->a[i].u.x.iOrderByCol = 0; 3679 } 3680 assert( pParent->pOrderBy==0 ); 3681 assert( pSub->pPrior==0 ); 3682 pParent->pOrderBy = pOrderBy; 3683 pSub->pOrderBy = 0; 3684 } 3685 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3686 if( subqueryIsAgg ){ 3687 assert( pParent->pHaving==0 ); 3688 pParent->pHaving = pParent->pWhere; 3689 pParent->pWhere = pWhere; 3690 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3691 sqlite3ExprDup(db, pSub->pHaving, 0)); 3692 assert( pParent->pGroupBy==0 ); 3693 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3694 }else{ 3695 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3696 } 3697 substSelect(db, pParent, iParent, pSub->pEList, 0); 3698 3699 /* The flattened query is distinct if either the inner or the 3700 ** outer query is distinct. 3701 */ 3702 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3703 3704 /* 3705 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3706 ** 3707 ** One is tempted to try to add a and b to combine the limits. But this 3708 ** does not work if either limit is negative. 3709 */ 3710 if( pSub->pLimit ){ 3711 pParent->pLimit = pSub->pLimit; 3712 pSub->pLimit = 0; 3713 } 3714 } 3715 3716 /* Finially, delete what is left of the subquery and return 3717 ** success. 3718 */ 3719 sqlite3SelectDelete(db, pSub1); 3720 3721 #if SELECTTRACE_ENABLED 3722 if( sqlite3SelectTrace & 0x100 ){ 3723 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3724 sqlite3TreeViewSelect(0, p, 0); 3725 } 3726 #endif 3727 3728 return 1; 3729 } 3730 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3731 3732 3733 3734 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3735 /* 3736 ** Make copies of relevant WHERE clause terms of the outer query into 3737 ** the WHERE clause of subquery. Example: 3738 ** 3739 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3740 ** 3741 ** Transformed into: 3742 ** 3743 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3744 ** WHERE x=5 AND y=10; 3745 ** 3746 ** The hope is that the terms added to the inner query will make it more 3747 ** efficient. 3748 ** 3749 ** Do not attempt this optimization if: 3750 ** 3751 ** (1) The inner query is an aggregate. (In that case, we'd really want 3752 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3753 ** inner query. But they probably won't help there so do not bother.) 3754 ** 3755 ** (2) The inner query is the recursive part of a common table expression. 3756 ** 3757 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3758 ** close would change the meaning of the LIMIT). 3759 ** 3760 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3761 ** enforces this restriction since this routine does not have enough 3762 ** information to know.) 3763 ** 3764 ** (5) The WHERE clause expression originates in the ON or USING clause 3765 ** of a LEFT JOIN. 3766 ** 3767 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3768 ** terms are duplicated into the subquery. 3769 */ 3770 static int pushDownWhereTerms( 3771 sqlite3 *db, /* The database connection (for malloc()) */ 3772 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3773 Expr *pWhere, /* The WHERE clause of the outer query */ 3774 int iCursor /* Cursor number of the subquery */ 3775 ){ 3776 Expr *pNew; 3777 int nChng = 0; 3778 if( pWhere==0 ) return 0; 3779 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3780 return 0; /* restrictions (1) and (2) */ 3781 } 3782 if( pSubq->pLimit!=0 ){ 3783 return 0; /* restriction (3) */ 3784 } 3785 while( pWhere->op==TK_AND ){ 3786 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3787 pWhere = pWhere->pLeft; 3788 } 3789 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3790 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3791 nChng++; 3792 while( pSubq ){ 3793 pNew = sqlite3ExprDup(db, pWhere, 0); 3794 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3795 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3796 pSubq = pSubq->pPrior; 3797 } 3798 } 3799 return nChng; 3800 } 3801 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3802 3803 /* 3804 ** Based on the contents of the AggInfo structure indicated by the first 3805 ** argument, this function checks if the following are true: 3806 ** 3807 ** * the query contains just a single aggregate function, 3808 ** * the aggregate function is either min() or max(), and 3809 ** * the argument to the aggregate function is a column value. 3810 ** 3811 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3812 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3813 ** list of arguments passed to the aggregate before returning. 3814 ** 3815 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3816 ** WHERE_ORDERBY_NORMAL is returned. 3817 */ 3818 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3819 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3820 3821 *ppMinMax = 0; 3822 if( pAggInfo->nFunc==1 ){ 3823 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3824 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3825 3826 assert( pExpr->op==TK_AGG_FUNCTION ); 3827 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3828 const char *zFunc = pExpr->u.zToken; 3829 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3830 eRet = WHERE_ORDERBY_MIN; 3831 *ppMinMax = pEList; 3832 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3833 eRet = WHERE_ORDERBY_MAX; 3834 *ppMinMax = pEList; 3835 } 3836 } 3837 } 3838 3839 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3840 return eRet; 3841 } 3842 3843 /* 3844 ** The select statement passed as the first argument is an aggregate query. 3845 ** The second argument is the associated aggregate-info object. This 3846 ** function tests if the SELECT is of the form: 3847 ** 3848 ** SELECT count(*) FROM <tbl> 3849 ** 3850 ** where table is a database table, not a sub-select or view. If the query 3851 ** does match this pattern, then a pointer to the Table object representing 3852 ** <tbl> is returned. Otherwise, 0 is returned. 3853 */ 3854 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3855 Table *pTab; 3856 Expr *pExpr; 3857 3858 assert( !p->pGroupBy ); 3859 3860 if( p->pWhere || p->pEList->nExpr!=1 3861 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3862 ){ 3863 return 0; 3864 } 3865 pTab = p->pSrc->a[0].pTab; 3866 pExpr = p->pEList->a[0].pExpr; 3867 assert( pTab && !pTab->pSelect && pExpr ); 3868 3869 if( IsVirtual(pTab) ) return 0; 3870 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3871 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3872 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3873 if( pExpr->flags&EP_Distinct ) return 0; 3874 3875 return pTab; 3876 } 3877 3878 /* 3879 ** If the source-list item passed as an argument was augmented with an 3880 ** INDEXED BY clause, then try to locate the specified index. If there 3881 ** was such a clause and the named index cannot be found, return 3882 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3883 ** pFrom->pIndex and return SQLITE_OK. 3884 */ 3885 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3886 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3887 Table *pTab = pFrom->pTab; 3888 char *zIndexedBy = pFrom->u1.zIndexedBy; 3889 Index *pIdx; 3890 for(pIdx=pTab->pIndex; 3891 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3892 pIdx=pIdx->pNext 3893 ); 3894 if( !pIdx ){ 3895 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3896 pParse->checkSchema = 1; 3897 return SQLITE_ERROR; 3898 } 3899 pFrom->pIBIndex = pIdx; 3900 } 3901 return SQLITE_OK; 3902 } 3903 /* 3904 ** Detect compound SELECT statements that use an ORDER BY clause with 3905 ** an alternative collating sequence. 3906 ** 3907 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3908 ** 3909 ** These are rewritten as a subquery: 3910 ** 3911 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3912 ** ORDER BY ... COLLATE ... 3913 ** 3914 ** This transformation is necessary because the multiSelectOrderBy() routine 3915 ** above that generates the code for a compound SELECT with an ORDER BY clause 3916 ** uses a merge algorithm that requires the same collating sequence on the 3917 ** result columns as on the ORDER BY clause. See ticket 3918 ** http://www.sqlite.org/src/info/6709574d2a 3919 ** 3920 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3921 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3922 ** there are COLLATE terms in the ORDER BY. 3923 */ 3924 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3925 int i; 3926 Select *pNew; 3927 Select *pX; 3928 sqlite3 *db; 3929 struct ExprList_item *a; 3930 SrcList *pNewSrc; 3931 Parse *pParse; 3932 Token dummy; 3933 3934 if( p->pPrior==0 ) return WRC_Continue; 3935 if( p->pOrderBy==0 ) return WRC_Continue; 3936 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3937 if( pX==0 ) return WRC_Continue; 3938 a = p->pOrderBy->a; 3939 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3940 if( a[i].pExpr->flags & EP_Collate ) break; 3941 } 3942 if( i<0 ) return WRC_Continue; 3943 3944 /* If we reach this point, that means the transformation is required. */ 3945 3946 pParse = pWalker->pParse; 3947 db = pParse->db; 3948 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3949 if( pNew==0 ) return WRC_Abort; 3950 memset(&dummy, 0, sizeof(dummy)); 3951 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3952 if( pNewSrc==0 ) return WRC_Abort; 3953 *pNew = *p; 3954 p->pSrc = pNewSrc; 3955 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 3956 p->op = TK_SELECT; 3957 p->pWhere = 0; 3958 pNew->pGroupBy = 0; 3959 pNew->pHaving = 0; 3960 pNew->pOrderBy = 0; 3961 p->pPrior = 0; 3962 p->pNext = 0; 3963 p->pWith = 0; 3964 p->selFlags &= ~SF_Compound; 3965 assert( (p->selFlags & SF_Converted)==0 ); 3966 p->selFlags |= SF_Converted; 3967 assert( pNew->pPrior!=0 ); 3968 pNew->pPrior->pNext = pNew; 3969 pNew->pLimit = 0; 3970 pNew->pOffset = 0; 3971 return WRC_Continue; 3972 } 3973 3974 /* 3975 ** Check to see if the FROM clause term pFrom has table-valued function 3976 ** arguments. If it does, leave an error message in pParse and return 3977 ** non-zero, since pFrom is not allowed to be a table-valued function. 3978 */ 3979 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 3980 if( pFrom->fg.isTabFunc ){ 3981 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 3982 return 1; 3983 } 3984 return 0; 3985 } 3986 3987 #ifndef SQLITE_OMIT_CTE 3988 /* 3989 ** Argument pWith (which may be NULL) points to a linked list of nested 3990 ** WITH contexts, from inner to outermost. If the table identified by 3991 ** FROM clause element pItem is really a common-table-expression (CTE) 3992 ** then return a pointer to the CTE definition for that table. Otherwise 3993 ** return NULL. 3994 ** 3995 ** If a non-NULL value is returned, set *ppContext to point to the With 3996 ** object that the returned CTE belongs to. 3997 */ 3998 static struct Cte *searchWith( 3999 With *pWith, /* Current innermost WITH clause */ 4000 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4001 With **ppContext /* OUT: WITH clause return value belongs to */ 4002 ){ 4003 const char *zName; 4004 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4005 With *p; 4006 for(p=pWith; p; p=p->pOuter){ 4007 int i; 4008 for(i=0; i<p->nCte; i++){ 4009 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4010 *ppContext = p; 4011 return &p->a[i]; 4012 } 4013 } 4014 } 4015 } 4016 return 0; 4017 } 4018 4019 /* The code generator maintains a stack of active WITH clauses 4020 ** with the inner-most WITH clause being at the top of the stack. 4021 ** 4022 ** This routine pushes the WITH clause passed as the second argument 4023 ** onto the top of the stack. If argument bFree is true, then this 4024 ** WITH clause will never be popped from the stack. In this case it 4025 ** should be freed along with the Parse object. In other cases, when 4026 ** bFree==0, the With object will be freed along with the SELECT 4027 ** statement with which it is associated. 4028 */ 4029 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4030 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4031 if( pWith ){ 4032 assert( pParse->pWith!=pWith ); 4033 pWith->pOuter = pParse->pWith; 4034 pParse->pWith = pWith; 4035 if( bFree ) pParse->pWithToFree = pWith; 4036 } 4037 } 4038 4039 /* 4040 ** This function checks if argument pFrom refers to a CTE declared by 4041 ** a WITH clause on the stack currently maintained by the parser. And, 4042 ** if currently processing a CTE expression, if it is a recursive 4043 ** reference to the current CTE. 4044 ** 4045 ** If pFrom falls into either of the two categories above, pFrom->pTab 4046 ** and other fields are populated accordingly. The caller should check 4047 ** (pFrom->pTab!=0) to determine whether or not a successful match 4048 ** was found. 4049 ** 4050 ** Whether or not a match is found, SQLITE_OK is returned if no error 4051 ** occurs. If an error does occur, an error message is stored in the 4052 ** parser and some error code other than SQLITE_OK returned. 4053 */ 4054 static int withExpand( 4055 Walker *pWalker, 4056 struct SrcList_item *pFrom 4057 ){ 4058 Parse *pParse = pWalker->pParse; 4059 sqlite3 *db = pParse->db; 4060 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4061 With *pWith; /* WITH clause that pCte belongs to */ 4062 4063 assert( pFrom->pTab==0 ); 4064 4065 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4066 if( pCte ){ 4067 Table *pTab; 4068 ExprList *pEList; 4069 Select *pSel; 4070 Select *pLeft; /* Left-most SELECT statement */ 4071 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4072 With *pSavedWith; /* Initial value of pParse->pWith */ 4073 4074 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4075 ** recursive reference to CTE pCte. Leave an error in pParse and return 4076 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4077 ** In this case, proceed. */ 4078 if( pCte->zCteErr ){ 4079 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4080 return SQLITE_ERROR; 4081 } 4082 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4083 4084 assert( pFrom->pTab==0 ); 4085 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4086 if( pTab==0 ) return WRC_Abort; 4087 pTab->nRef = 1; 4088 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4089 pTab->iPKey = -1; 4090 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4091 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4092 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4093 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4094 assert( pFrom->pSelect ); 4095 4096 /* Check if this is a recursive CTE. */ 4097 pSel = pFrom->pSelect; 4098 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4099 if( bMayRecursive ){ 4100 int i; 4101 SrcList *pSrc = pFrom->pSelect->pSrc; 4102 for(i=0; i<pSrc->nSrc; i++){ 4103 struct SrcList_item *pItem = &pSrc->a[i]; 4104 if( pItem->zDatabase==0 4105 && pItem->zName!=0 4106 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4107 ){ 4108 pItem->pTab = pTab; 4109 pItem->fg.isRecursive = 1; 4110 pTab->nRef++; 4111 pSel->selFlags |= SF_Recursive; 4112 } 4113 } 4114 } 4115 4116 /* Only one recursive reference is permitted. */ 4117 if( pTab->nRef>2 ){ 4118 sqlite3ErrorMsg( 4119 pParse, "multiple references to recursive table: %s", pCte->zName 4120 ); 4121 return SQLITE_ERROR; 4122 } 4123 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4124 4125 pCte->zCteErr = "circular reference: %s"; 4126 pSavedWith = pParse->pWith; 4127 pParse->pWith = pWith; 4128 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4129 pParse->pWith = pWith; 4130 4131 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4132 pEList = pLeft->pEList; 4133 if( pCte->pCols ){ 4134 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4135 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4136 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4137 ); 4138 pParse->pWith = pSavedWith; 4139 return SQLITE_ERROR; 4140 } 4141 pEList = pCte->pCols; 4142 } 4143 4144 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4145 if( bMayRecursive ){ 4146 if( pSel->selFlags & SF_Recursive ){ 4147 pCte->zCteErr = "multiple recursive references: %s"; 4148 }else{ 4149 pCte->zCteErr = "recursive reference in a subquery: %s"; 4150 } 4151 sqlite3WalkSelect(pWalker, pSel); 4152 } 4153 pCte->zCteErr = 0; 4154 pParse->pWith = pSavedWith; 4155 } 4156 4157 return SQLITE_OK; 4158 } 4159 #endif 4160 4161 #ifndef SQLITE_OMIT_CTE 4162 /* 4163 ** If the SELECT passed as the second argument has an associated WITH 4164 ** clause, pop it from the stack stored as part of the Parse object. 4165 ** 4166 ** This function is used as the xSelectCallback2() callback by 4167 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4168 ** names and other FROM clause elements. 4169 */ 4170 static void selectPopWith(Walker *pWalker, Select *p){ 4171 Parse *pParse = pWalker->pParse; 4172 With *pWith = findRightmost(p)->pWith; 4173 if( pWith!=0 ){ 4174 assert( pParse->pWith==pWith ); 4175 pParse->pWith = pWith->pOuter; 4176 } 4177 } 4178 #else 4179 #define selectPopWith 0 4180 #endif 4181 4182 /* 4183 ** This routine is a Walker callback for "expanding" a SELECT statement. 4184 ** "Expanding" means to do the following: 4185 ** 4186 ** (1) Make sure VDBE cursor numbers have been assigned to every 4187 ** element of the FROM clause. 4188 ** 4189 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4190 ** defines FROM clause. When views appear in the FROM clause, 4191 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4192 ** that implements the view. A copy is made of the view's SELECT 4193 ** statement so that we can freely modify or delete that statement 4194 ** without worrying about messing up the persistent representation 4195 ** of the view. 4196 ** 4197 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4198 ** on joins and the ON and USING clause of joins. 4199 ** 4200 ** (4) Scan the list of columns in the result set (pEList) looking 4201 ** for instances of the "*" operator or the TABLE.* operator. 4202 ** If found, expand each "*" to be every column in every table 4203 ** and TABLE.* to be every column in TABLE. 4204 ** 4205 */ 4206 static int selectExpander(Walker *pWalker, Select *p){ 4207 Parse *pParse = pWalker->pParse; 4208 int i, j, k; 4209 SrcList *pTabList; 4210 ExprList *pEList; 4211 struct SrcList_item *pFrom; 4212 sqlite3 *db = pParse->db; 4213 Expr *pE, *pRight, *pExpr; 4214 u16 selFlags = p->selFlags; 4215 4216 p->selFlags |= SF_Expanded; 4217 if( db->mallocFailed ){ 4218 return WRC_Abort; 4219 } 4220 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4221 return WRC_Prune; 4222 } 4223 pTabList = p->pSrc; 4224 pEList = p->pEList; 4225 if( pWalker->xSelectCallback2==selectPopWith ){ 4226 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4227 } 4228 4229 /* Make sure cursor numbers have been assigned to all entries in 4230 ** the FROM clause of the SELECT statement. 4231 */ 4232 sqlite3SrcListAssignCursors(pParse, pTabList); 4233 4234 /* Look up every table named in the FROM clause of the select. If 4235 ** an entry of the FROM clause is a subquery instead of a table or view, 4236 ** then create a transient table structure to describe the subquery. 4237 */ 4238 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4239 Table *pTab; 4240 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4241 if( pFrom->fg.isRecursive ) continue; 4242 assert( pFrom->pTab==0 ); 4243 #ifndef SQLITE_OMIT_CTE 4244 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4245 if( pFrom->pTab ) {} else 4246 #endif 4247 if( pFrom->zName==0 ){ 4248 #ifndef SQLITE_OMIT_SUBQUERY 4249 Select *pSel = pFrom->pSelect; 4250 /* A sub-query in the FROM clause of a SELECT */ 4251 assert( pSel!=0 ); 4252 assert( pFrom->pTab==0 ); 4253 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4254 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4255 if( pTab==0 ) return WRC_Abort; 4256 pTab->nRef = 1; 4257 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4258 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4259 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4260 pTab->iPKey = -1; 4261 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4262 pTab->tabFlags |= TF_Ephemeral; 4263 #endif 4264 }else{ 4265 /* An ordinary table or view name in the FROM clause */ 4266 assert( pFrom->pTab==0 ); 4267 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4268 if( pTab==0 ) return WRC_Abort; 4269 if( pTab->nRef==0xffff ){ 4270 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4271 pTab->zName); 4272 pFrom->pTab = 0; 4273 return WRC_Abort; 4274 } 4275 pTab->nRef++; 4276 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4277 return WRC_Abort; 4278 } 4279 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4280 if( IsVirtual(pTab) || pTab->pSelect ){ 4281 i16 nCol; 4282 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4283 assert( pFrom->pSelect==0 ); 4284 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4285 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4286 nCol = pTab->nCol; 4287 pTab->nCol = -1; 4288 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4289 pTab->nCol = nCol; 4290 } 4291 #endif 4292 } 4293 4294 /* Locate the index named by the INDEXED BY clause, if any. */ 4295 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4296 return WRC_Abort; 4297 } 4298 } 4299 4300 /* Process NATURAL keywords, and ON and USING clauses of joins. 4301 */ 4302 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4303 return WRC_Abort; 4304 } 4305 4306 /* For every "*" that occurs in the column list, insert the names of 4307 ** all columns in all tables. And for every TABLE.* insert the names 4308 ** of all columns in TABLE. The parser inserted a special expression 4309 ** with the TK_ASTERISK operator for each "*" that it found in the column 4310 ** list. The following code just has to locate the TK_ASTERISK 4311 ** expressions and expand each one to the list of all columns in 4312 ** all tables. 4313 ** 4314 ** The first loop just checks to see if there are any "*" operators 4315 ** that need expanding. 4316 */ 4317 for(k=0; k<pEList->nExpr; k++){ 4318 pE = pEList->a[k].pExpr; 4319 if( pE->op==TK_ASTERISK ) break; 4320 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4321 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4322 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4323 } 4324 if( k<pEList->nExpr ){ 4325 /* 4326 ** If we get here it means the result set contains one or more "*" 4327 ** operators that need to be expanded. Loop through each expression 4328 ** in the result set and expand them one by one. 4329 */ 4330 struct ExprList_item *a = pEList->a; 4331 ExprList *pNew = 0; 4332 int flags = pParse->db->flags; 4333 int longNames = (flags & SQLITE_FullColNames)!=0 4334 && (flags & SQLITE_ShortColNames)==0; 4335 4336 for(k=0; k<pEList->nExpr; k++){ 4337 pE = a[k].pExpr; 4338 pRight = pE->pRight; 4339 assert( pE->op!=TK_DOT || pRight!=0 ); 4340 if( pE->op!=TK_ASTERISK 4341 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4342 ){ 4343 /* This particular expression does not need to be expanded. 4344 */ 4345 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4346 if( pNew ){ 4347 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4348 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4349 a[k].zName = 0; 4350 a[k].zSpan = 0; 4351 } 4352 a[k].pExpr = 0; 4353 }else{ 4354 /* This expression is a "*" or a "TABLE.*" and needs to be 4355 ** expanded. */ 4356 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4357 char *zTName = 0; /* text of name of TABLE */ 4358 if( pE->op==TK_DOT ){ 4359 assert( pE->pLeft!=0 ); 4360 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4361 zTName = pE->pLeft->u.zToken; 4362 } 4363 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4364 Table *pTab = pFrom->pTab; 4365 Select *pSub = pFrom->pSelect; 4366 char *zTabName = pFrom->zAlias; 4367 const char *zSchemaName = 0; 4368 int iDb; 4369 if( zTabName==0 ){ 4370 zTabName = pTab->zName; 4371 } 4372 if( db->mallocFailed ) break; 4373 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4374 pSub = 0; 4375 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4376 continue; 4377 } 4378 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4379 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4380 } 4381 for(j=0; j<pTab->nCol; j++){ 4382 char *zName = pTab->aCol[j].zName; 4383 char *zColname; /* The computed column name */ 4384 char *zToFree; /* Malloced string that needs to be freed */ 4385 Token sColname; /* Computed column name as a token */ 4386 4387 assert( zName ); 4388 if( zTName && pSub 4389 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4390 ){ 4391 continue; 4392 } 4393 4394 /* If a column is marked as 'hidden', omit it from the expanded 4395 ** result-set list unless the SELECT has the SF_IncludeHidden 4396 ** bit set. 4397 */ 4398 if( (p->selFlags & SF_IncludeHidden)==0 4399 && IsHiddenColumn(&pTab->aCol[j]) 4400 ){ 4401 continue; 4402 } 4403 tableSeen = 1; 4404 4405 if( i>0 && zTName==0 ){ 4406 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4407 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4408 ){ 4409 /* In a NATURAL join, omit the join columns from the 4410 ** table to the right of the join */ 4411 continue; 4412 } 4413 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4414 /* In a join with a USING clause, omit columns in the 4415 ** using clause from the table on the right. */ 4416 continue; 4417 } 4418 } 4419 pRight = sqlite3Expr(db, TK_ID, zName); 4420 zColname = zName; 4421 zToFree = 0; 4422 if( longNames || pTabList->nSrc>1 ){ 4423 Expr *pLeft; 4424 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4425 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4426 if( zSchemaName ){ 4427 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4428 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4429 } 4430 if( longNames ){ 4431 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4432 zToFree = zColname; 4433 } 4434 }else{ 4435 pExpr = pRight; 4436 } 4437 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4438 sqlite3TokenInit(&sColname, zColname); 4439 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4440 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4441 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4442 if( pSub ){ 4443 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4444 testcase( pX->zSpan==0 ); 4445 }else{ 4446 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4447 zSchemaName, zTabName, zColname); 4448 testcase( pX->zSpan==0 ); 4449 } 4450 pX->bSpanIsTab = 1; 4451 } 4452 sqlite3DbFree(db, zToFree); 4453 } 4454 } 4455 if( !tableSeen ){ 4456 if( zTName ){ 4457 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4458 }else{ 4459 sqlite3ErrorMsg(pParse, "no tables specified"); 4460 } 4461 } 4462 } 4463 } 4464 sqlite3ExprListDelete(db, pEList); 4465 p->pEList = pNew; 4466 } 4467 #if SQLITE_MAX_COLUMN 4468 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4469 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4470 return WRC_Abort; 4471 } 4472 #endif 4473 return WRC_Continue; 4474 } 4475 4476 /* 4477 ** No-op routine for the parse-tree walker. 4478 ** 4479 ** When this routine is the Walker.xExprCallback then expression trees 4480 ** are walked without any actions being taken at each node. Presumably, 4481 ** when this routine is used for Walker.xExprCallback then 4482 ** Walker.xSelectCallback is set to do something useful for every 4483 ** subquery in the parser tree. 4484 */ 4485 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4486 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4487 return WRC_Continue; 4488 } 4489 4490 /* 4491 ** This routine "expands" a SELECT statement and all of its subqueries. 4492 ** For additional information on what it means to "expand" a SELECT 4493 ** statement, see the comment on the selectExpand worker callback above. 4494 ** 4495 ** Expanding a SELECT statement is the first step in processing a 4496 ** SELECT statement. The SELECT statement must be expanded before 4497 ** name resolution is performed. 4498 ** 4499 ** If anything goes wrong, an error message is written into pParse. 4500 ** The calling function can detect the problem by looking at pParse->nErr 4501 ** and/or pParse->db->mallocFailed. 4502 */ 4503 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4504 Walker w; 4505 memset(&w, 0, sizeof(w)); 4506 w.xExprCallback = sqlite3ExprWalkNoop; 4507 w.pParse = pParse; 4508 if( pParse->hasCompound ){ 4509 w.xSelectCallback = convertCompoundSelectToSubquery; 4510 sqlite3WalkSelect(&w, pSelect); 4511 } 4512 w.xSelectCallback = selectExpander; 4513 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4514 w.xSelectCallback2 = selectPopWith; 4515 } 4516 sqlite3WalkSelect(&w, pSelect); 4517 } 4518 4519 4520 #ifndef SQLITE_OMIT_SUBQUERY 4521 /* 4522 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4523 ** interface. 4524 ** 4525 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4526 ** information to the Table structure that represents the result set 4527 ** of that subquery. 4528 ** 4529 ** The Table structure that represents the result set was constructed 4530 ** by selectExpander() but the type and collation information was omitted 4531 ** at that point because identifiers had not yet been resolved. This 4532 ** routine is called after identifier resolution. 4533 */ 4534 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4535 Parse *pParse; 4536 int i; 4537 SrcList *pTabList; 4538 struct SrcList_item *pFrom; 4539 4540 assert( p->selFlags & SF_Resolved ); 4541 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4542 p->selFlags |= SF_HasTypeInfo; 4543 pParse = pWalker->pParse; 4544 pTabList = p->pSrc; 4545 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4546 Table *pTab = pFrom->pTab; 4547 assert( pTab!=0 ); 4548 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4549 /* A sub-query in the FROM clause of a SELECT */ 4550 Select *pSel = pFrom->pSelect; 4551 if( pSel ){ 4552 while( pSel->pPrior ) pSel = pSel->pPrior; 4553 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4554 } 4555 } 4556 } 4557 } 4558 #endif 4559 4560 4561 /* 4562 ** This routine adds datatype and collating sequence information to 4563 ** the Table structures of all FROM-clause subqueries in a 4564 ** SELECT statement. 4565 ** 4566 ** Use this routine after name resolution. 4567 */ 4568 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4569 #ifndef SQLITE_OMIT_SUBQUERY 4570 Walker w; 4571 memset(&w, 0, sizeof(w)); 4572 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4573 w.xExprCallback = sqlite3ExprWalkNoop; 4574 w.pParse = pParse; 4575 sqlite3WalkSelect(&w, pSelect); 4576 #endif 4577 } 4578 4579 4580 /* 4581 ** This routine sets up a SELECT statement for processing. The 4582 ** following is accomplished: 4583 ** 4584 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4585 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4586 ** * ON and USING clauses are shifted into WHERE statements 4587 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4588 ** * Identifiers in expression are matched to tables. 4589 ** 4590 ** This routine acts recursively on all subqueries within the SELECT. 4591 */ 4592 void sqlite3SelectPrep( 4593 Parse *pParse, /* The parser context */ 4594 Select *p, /* The SELECT statement being coded. */ 4595 NameContext *pOuterNC /* Name context for container */ 4596 ){ 4597 sqlite3 *db; 4598 if( NEVER(p==0) ) return; 4599 db = pParse->db; 4600 if( db->mallocFailed ) return; 4601 if( p->selFlags & SF_HasTypeInfo ) return; 4602 sqlite3SelectExpand(pParse, p); 4603 if( pParse->nErr || db->mallocFailed ) return; 4604 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4605 if( pParse->nErr || db->mallocFailed ) return; 4606 sqlite3SelectAddTypeInfo(pParse, p); 4607 } 4608 4609 /* 4610 ** Reset the aggregate accumulator. 4611 ** 4612 ** The aggregate accumulator is a set of memory cells that hold 4613 ** intermediate results while calculating an aggregate. This 4614 ** routine generates code that stores NULLs in all of those memory 4615 ** cells. 4616 */ 4617 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4618 Vdbe *v = pParse->pVdbe; 4619 int i; 4620 struct AggInfo_func *pFunc; 4621 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4622 if( nReg==0 ) return; 4623 #ifdef SQLITE_DEBUG 4624 /* Verify that all AggInfo registers are within the range specified by 4625 ** AggInfo.mnReg..AggInfo.mxReg */ 4626 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4627 for(i=0; i<pAggInfo->nColumn; i++){ 4628 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4629 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4630 } 4631 for(i=0; i<pAggInfo->nFunc; i++){ 4632 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4633 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4634 } 4635 #endif 4636 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4637 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4638 if( pFunc->iDistinct>=0 ){ 4639 Expr *pE = pFunc->pExpr; 4640 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4641 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4642 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4643 "argument"); 4644 pFunc->iDistinct = -1; 4645 }else{ 4646 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4647 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4648 (char*)pKeyInfo, P4_KEYINFO); 4649 } 4650 } 4651 } 4652 } 4653 4654 /* 4655 ** Invoke the OP_AggFinalize opcode for every aggregate function 4656 ** in the AggInfo structure. 4657 */ 4658 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4659 Vdbe *v = pParse->pVdbe; 4660 int i; 4661 struct AggInfo_func *pF; 4662 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4663 ExprList *pList = pF->pExpr->x.pList; 4664 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4665 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4666 (void*)pF->pFunc, P4_FUNCDEF); 4667 } 4668 } 4669 4670 /* 4671 ** Update the accumulator memory cells for an aggregate based on 4672 ** the current cursor position. 4673 */ 4674 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4675 Vdbe *v = pParse->pVdbe; 4676 int i; 4677 int regHit = 0; 4678 int addrHitTest = 0; 4679 struct AggInfo_func *pF; 4680 struct AggInfo_col *pC; 4681 4682 pAggInfo->directMode = 1; 4683 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4684 int nArg; 4685 int addrNext = 0; 4686 int regAgg; 4687 ExprList *pList = pF->pExpr->x.pList; 4688 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4689 if( pList ){ 4690 nArg = pList->nExpr; 4691 regAgg = sqlite3GetTempRange(pParse, nArg); 4692 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4693 }else{ 4694 nArg = 0; 4695 regAgg = 0; 4696 } 4697 if( pF->iDistinct>=0 ){ 4698 addrNext = sqlite3VdbeMakeLabel(v); 4699 testcase( nArg==0 ); /* Error condition */ 4700 testcase( nArg>1 ); /* Also an error */ 4701 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4702 } 4703 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4704 CollSeq *pColl = 0; 4705 struct ExprList_item *pItem; 4706 int j; 4707 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4708 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4709 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4710 } 4711 if( !pColl ){ 4712 pColl = pParse->db->pDfltColl; 4713 } 4714 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4715 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4716 } 4717 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4718 (void*)pF->pFunc, P4_FUNCDEF); 4719 sqlite3VdbeChangeP5(v, (u8)nArg); 4720 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4721 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4722 if( addrNext ){ 4723 sqlite3VdbeResolveLabel(v, addrNext); 4724 sqlite3ExprCacheClear(pParse); 4725 } 4726 } 4727 4728 /* Before populating the accumulator registers, clear the column cache. 4729 ** Otherwise, if any of the required column values are already present 4730 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4731 ** to pC->iMem. But by the time the value is used, the original register 4732 ** may have been used, invalidating the underlying buffer holding the 4733 ** text or blob value. See ticket [883034dcb5]. 4734 ** 4735 ** Another solution would be to change the OP_SCopy used to copy cached 4736 ** values to an OP_Copy. 4737 */ 4738 if( regHit ){ 4739 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4740 } 4741 sqlite3ExprCacheClear(pParse); 4742 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4743 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4744 } 4745 pAggInfo->directMode = 0; 4746 sqlite3ExprCacheClear(pParse); 4747 if( addrHitTest ){ 4748 sqlite3VdbeJumpHere(v, addrHitTest); 4749 } 4750 } 4751 4752 /* 4753 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4754 ** count(*) query ("SELECT count(*) FROM pTab"). 4755 */ 4756 #ifndef SQLITE_OMIT_EXPLAIN 4757 static void explainSimpleCount( 4758 Parse *pParse, /* Parse context */ 4759 Table *pTab, /* Table being queried */ 4760 Index *pIdx /* Index used to optimize scan, or NULL */ 4761 ){ 4762 if( pParse->explain==2 ){ 4763 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4764 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4765 pTab->zName, 4766 bCover ? " USING COVERING INDEX " : "", 4767 bCover ? pIdx->zName : "" 4768 ); 4769 sqlite3VdbeAddOp4( 4770 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4771 ); 4772 } 4773 } 4774 #else 4775 # define explainSimpleCount(a,b,c) 4776 #endif 4777 4778 /* 4779 ** Generate code for the SELECT statement given in the p argument. 4780 ** 4781 ** The results are returned according to the SelectDest structure. 4782 ** See comments in sqliteInt.h for further information. 4783 ** 4784 ** This routine returns the number of errors. If any errors are 4785 ** encountered, then an appropriate error message is left in 4786 ** pParse->zErrMsg. 4787 ** 4788 ** This routine does NOT free the Select structure passed in. The 4789 ** calling function needs to do that. 4790 */ 4791 int sqlite3Select( 4792 Parse *pParse, /* The parser context */ 4793 Select *p, /* The SELECT statement being coded. */ 4794 SelectDest *pDest /* What to do with the query results */ 4795 ){ 4796 int i, j; /* Loop counters */ 4797 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4798 Vdbe *v; /* The virtual machine under construction */ 4799 int isAgg; /* True for select lists like "count(*)" */ 4800 ExprList *pEList = 0; /* List of columns to extract. */ 4801 SrcList *pTabList; /* List of tables to select from */ 4802 Expr *pWhere; /* The WHERE clause. May be NULL */ 4803 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4804 Expr *pHaving; /* The HAVING clause. May be NULL */ 4805 int rc = 1; /* Value to return from this function */ 4806 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4807 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4808 AggInfo sAggInfo; /* Information used by aggregate queries */ 4809 int iEnd; /* Address of the end of the query */ 4810 sqlite3 *db; /* The database connection */ 4811 4812 #ifndef SQLITE_OMIT_EXPLAIN 4813 int iRestoreSelectId = pParse->iSelectId; 4814 pParse->iSelectId = pParse->iNextSelectId++; 4815 #endif 4816 4817 db = pParse->db; 4818 if( p==0 || db->mallocFailed || pParse->nErr ){ 4819 return 1; 4820 } 4821 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4822 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4823 #if SELECTTRACE_ENABLED 4824 pParse->nSelectIndent++; 4825 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4826 if( sqlite3SelectTrace & 0x100 ){ 4827 sqlite3TreeViewSelect(0, p, 0); 4828 } 4829 #endif 4830 4831 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4832 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4833 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4834 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4835 if( IgnorableOrderby(pDest) ){ 4836 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4837 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4838 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4839 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4840 /* If ORDER BY makes no difference in the output then neither does 4841 ** DISTINCT so it can be removed too. */ 4842 sqlite3ExprListDelete(db, p->pOrderBy); 4843 p->pOrderBy = 0; 4844 p->selFlags &= ~SF_Distinct; 4845 } 4846 sqlite3SelectPrep(pParse, p, 0); 4847 memset(&sSort, 0, sizeof(sSort)); 4848 sSort.pOrderBy = p->pOrderBy; 4849 pTabList = p->pSrc; 4850 if( pParse->nErr || db->mallocFailed ){ 4851 goto select_end; 4852 } 4853 assert( p->pEList!=0 ); 4854 isAgg = (p->selFlags & SF_Aggregate)!=0; 4855 #if SELECTTRACE_ENABLED 4856 if( sqlite3SelectTrace & 0x100 ){ 4857 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4858 sqlite3TreeViewSelect(0, p, 0); 4859 } 4860 #endif 4861 4862 4863 /* If writing to memory or generating a set 4864 ** only a single column may be output. 4865 */ 4866 #ifndef SQLITE_OMIT_SUBQUERY 4867 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4868 goto select_end; 4869 } 4870 #endif 4871 4872 /* Try to flatten subqueries in the FROM clause up into the main query 4873 */ 4874 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4875 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4876 struct SrcList_item *pItem = &pTabList->a[i]; 4877 Select *pSub = pItem->pSelect; 4878 int isAggSub; 4879 Table *pTab = pItem->pTab; 4880 if( pSub==0 ) continue; 4881 4882 /* Catch mismatch in the declared columns of a view and the number of 4883 ** columns in the SELECT on the RHS */ 4884 if( pTab->nCol!=pSub->pEList->nExpr ){ 4885 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4886 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4887 goto select_end; 4888 } 4889 4890 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4891 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4892 /* This subquery can be absorbed into its parent. */ 4893 if( isAggSub ){ 4894 isAgg = 1; 4895 p->selFlags |= SF_Aggregate; 4896 } 4897 i = -1; 4898 } 4899 pTabList = p->pSrc; 4900 if( db->mallocFailed ) goto select_end; 4901 if( !IgnorableOrderby(pDest) ){ 4902 sSort.pOrderBy = p->pOrderBy; 4903 } 4904 } 4905 #endif 4906 4907 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4908 ** does not already exist */ 4909 v = sqlite3GetVdbe(pParse); 4910 if( v==0 ) goto select_end; 4911 4912 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4913 /* Handle compound SELECT statements using the separate multiSelect() 4914 ** procedure. 4915 */ 4916 if( p->pPrior ){ 4917 rc = multiSelect(pParse, p, pDest); 4918 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4919 #if SELECTTRACE_ENABLED 4920 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4921 pParse->nSelectIndent--; 4922 #endif 4923 return rc; 4924 } 4925 #endif 4926 4927 /* Generate code for all sub-queries in the FROM clause 4928 */ 4929 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4930 for(i=0; i<pTabList->nSrc; i++){ 4931 struct SrcList_item *pItem = &pTabList->a[i]; 4932 SelectDest dest; 4933 Select *pSub = pItem->pSelect; 4934 if( pSub==0 ) continue; 4935 4936 /* Sometimes the code for a subquery will be generated more than 4937 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4938 ** for example. In that case, do not regenerate the code to manifest 4939 ** a view or the co-routine to implement a view. The first instance 4940 ** is sufficient, though the subroutine to manifest the view does need 4941 ** to be invoked again. */ 4942 if( pItem->addrFillSub ){ 4943 if( pItem->fg.viaCoroutine==0 ){ 4944 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4945 } 4946 continue; 4947 } 4948 4949 /* Increment Parse.nHeight by the height of the largest expression 4950 ** tree referred to by this, the parent select. The child select 4951 ** may contain expression trees of at most 4952 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4953 ** more conservative than necessary, but much easier than enforcing 4954 ** an exact limit. 4955 */ 4956 pParse->nHeight += sqlite3SelectExprHeight(p); 4957 4958 /* Make copies of constant WHERE-clause terms in the outer query down 4959 ** inside the subquery. This can help the subquery to run more efficiently. 4960 */ 4961 if( (pItem->fg.jointype & JT_OUTER)==0 4962 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4963 ){ 4964 #if SELECTTRACE_ENABLED 4965 if( sqlite3SelectTrace & 0x100 ){ 4966 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4967 sqlite3TreeViewSelect(0, p, 0); 4968 } 4969 #endif 4970 } 4971 4972 /* Generate code to implement the subquery 4973 ** 4974 ** The subquery is implemented as a co-routine if all of these are true: 4975 ** (1) The subquery is guaranteed to be the outer loop (so that it 4976 ** does not need to be computed more than once) 4977 ** (2) The ALL keyword after SELECT is omitted. (Applications are 4978 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 4979 ** the use of co-routines.) 4980 ** (3) Co-routines are not disabled using sqlite3_test_control() 4981 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 4982 ** 4983 ** TODO: Are there other reasons beside (1) to use a co-routine 4984 ** implementation? 4985 */ 4986 if( i==0 4987 && (pTabList->nSrc==1 4988 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 4989 && (p->selFlags & SF_All)==0 /* (2) */ 4990 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 4991 ){ 4992 /* Implement a co-routine that will return a single row of the result 4993 ** set on each invocation. 4994 */ 4995 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4996 pItem->regReturn = ++pParse->nMem; 4997 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4998 VdbeComment((v, "%s", pItem->pTab->zName)); 4999 pItem->addrFillSub = addrTop; 5000 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5001 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5002 sqlite3Select(pParse, pSub, &dest); 5003 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5004 pItem->fg.viaCoroutine = 1; 5005 pItem->regResult = dest.iSdst; 5006 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5007 sqlite3VdbeJumpHere(v, addrTop-1); 5008 sqlite3ClearTempRegCache(pParse); 5009 }else{ 5010 /* Generate a subroutine that will fill an ephemeral table with 5011 ** the content of this subquery. pItem->addrFillSub will point 5012 ** to the address of the generated subroutine. pItem->regReturn 5013 ** is a register allocated to hold the subroutine return address 5014 */ 5015 int topAddr; 5016 int onceAddr = 0; 5017 int retAddr; 5018 assert( pItem->addrFillSub==0 ); 5019 pItem->regReturn = ++pParse->nMem; 5020 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5021 pItem->addrFillSub = topAddr+1; 5022 if( pItem->fg.isCorrelated==0 ){ 5023 /* If the subquery is not correlated and if we are not inside of 5024 ** a trigger, then we only need to compute the value of the subquery 5025 ** once. */ 5026 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 5027 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5028 }else{ 5029 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5030 } 5031 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5032 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5033 sqlite3Select(pParse, pSub, &dest); 5034 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5035 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5036 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5037 VdbeComment((v, "end %s", pItem->pTab->zName)); 5038 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5039 sqlite3ClearTempRegCache(pParse); 5040 } 5041 if( db->mallocFailed ) goto select_end; 5042 pParse->nHeight -= sqlite3SelectExprHeight(p); 5043 } 5044 #endif 5045 5046 /* Various elements of the SELECT copied into local variables for 5047 ** convenience */ 5048 pEList = p->pEList; 5049 pWhere = p->pWhere; 5050 pGroupBy = p->pGroupBy; 5051 pHaving = p->pHaving; 5052 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5053 5054 #if SELECTTRACE_ENABLED 5055 if( sqlite3SelectTrace & 0x400 ){ 5056 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5057 sqlite3TreeViewSelect(0, p, 0); 5058 } 5059 #endif 5060 5061 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5062 ** if the select-list is the same as the ORDER BY list, then this query 5063 ** can be rewritten as a GROUP BY. In other words, this: 5064 ** 5065 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5066 ** 5067 ** is transformed to: 5068 ** 5069 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5070 ** 5071 ** The second form is preferred as a single index (or temp-table) may be 5072 ** used for both the ORDER BY and DISTINCT processing. As originally 5073 ** written the query must use a temp-table for at least one of the ORDER 5074 ** BY and DISTINCT, and an index or separate temp-table for the other. 5075 */ 5076 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5077 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5078 ){ 5079 p->selFlags &= ~SF_Distinct; 5080 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5081 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5082 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5083 ** original setting of the SF_Distinct flag, not the current setting */ 5084 assert( sDistinct.isTnct ); 5085 } 5086 5087 /* If there is an ORDER BY clause, then create an ephemeral index to 5088 ** do the sorting. But this sorting ephemeral index might end up 5089 ** being unused if the data can be extracted in pre-sorted order. 5090 ** If that is the case, then the OP_OpenEphemeral instruction will be 5091 ** changed to an OP_Noop once we figure out that the sorting index is 5092 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5093 ** that change. 5094 */ 5095 if( sSort.pOrderBy ){ 5096 KeyInfo *pKeyInfo; 5097 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5098 sSort.iECursor = pParse->nTab++; 5099 sSort.addrSortIndex = 5100 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5101 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5102 (char*)pKeyInfo, P4_KEYINFO 5103 ); 5104 }else{ 5105 sSort.addrSortIndex = -1; 5106 } 5107 5108 /* If the output is destined for a temporary table, open that table. 5109 */ 5110 if( pDest->eDest==SRT_EphemTab ){ 5111 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5112 } 5113 5114 /* Set the limiter. 5115 */ 5116 iEnd = sqlite3VdbeMakeLabel(v); 5117 p->nSelectRow = 320; /* 4 billion rows */ 5118 computeLimitRegisters(pParse, p, iEnd); 5119 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5120 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5121 sSort.sortFlags |= SORTFLAG_UseSorter; 5122 } 5123 5124 /* Open an ephemeral index to use for the distinct set. 5125 */ 5126 if( p->selFlags & SF_Distinct ){ 5127 sDistinct.tabTnct = pParse->nTab++; 5128 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5129 sDistinct.tabTnct, 0, 0, 5130 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5131 P4_KEYINFO); 5132 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5133 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5134 }else{ 5135 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5136 } 5137 5138 if( !isAgg && pGroupBy==0 ){ 5139 /* No aggregate functions and no GROUP BY clause */ 5140 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5141 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5142 wctrlFlags |= p->selFlags & SF_FixedLimit; 5143 5144 /* Begin the database scan. */ 5145 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5146 p->pEList, wctrlFlags, p->nSelectRow); 5147 if( pWInfo==0 ) goto select_end; 5148 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5149 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5150 } 5151 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5152 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5153 } 5154 if( sSort.pOrderBy ){ 5155 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5156 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5157 sSort.pOrderBy = 0; 5158 } 5159 } 5160 5161 /* If sorting index that was created by a prior OP_OpenEphemeral 5162 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5163 ** into an OP_Noop. 5164 */ 5165 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5166 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5167 } 5168 5169 /* Use the standard inner loop. */ 5170 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5171 sqlite3WhereContinueLabel(pWInfo), 5172 sqlite3WhereBreakLabel(pWInfo)); 5173 5174 /* End the database scan loop. 5175 */ 5176 sqlite3WhereEnd(pWInfo); 5177 }else{ 5178 /* This case when there exist aggregate functions or a GROUP BY clause 5179 ** or both */ 5180 NameContext sNC; /* Name context for processing aggregate information */ 5181 int iAMem; /* First Mem address for storing current GROUP BY */ 5182 int iBMem; /* First Mem address for previous GROUP BY */ 5183 int iUseFlag; /* Mem address holding flag indicating that at least 5184 ** one row of the input to the aggregator has been 5185 ** processed */ 5186 int iAbortFlag; /* Mem address which causes query abort if positive */ 5187 int groupBySort; /* Rows come from source in GROUP BY order */ 5188 int addrEnd; /* End of processing for this SELECT */ 5189 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5190 int sortOut = 0; /* Output register from the sorter */ 5191 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5192 5193 /* Remove any and all aliases between the result set and the 5194 ** GROUP BY clause. 5195 */ 5196 if( pGroupBy ){ 5197 int k; /* Loop counter */ 5198 struct ExprList_item *pItem; /* For looping over expression in a list */ 5199 5200 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5201 pItem->u.x.iAlias = 0; 5202 } 5203 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5204 pItem->u.x.iAlias = 0; 5205 } 5206 assert( 66==sqlite3LogEst(100) ); 5207 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5208 }else{ 5209 assert( 0==sqlite3LogEst(1) ); 5210 p->nSelectRow = 0; 5211 } 5212 5213 /* If there is both a GROUP BY and an ORDER BY clause and they are 5214 ** identical, then it may be possible to disable the ORDER BY clause 5215 ** on the grounds that the GROUP BY will cause elements to come out 5216 ** in the correct order. It also may not - the GROUP BY might use a 5217 ** database index that causes rows to be grouped together as required 5218 ** but not actually sorted. Either way, record the fact that the 5219 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5220 ** variable. */ 5221 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5222 orderByGrp = 1; 5223 } 5224 5225 /* Create a label to jump to when we want to abort the query */ 5226 addrEnd = sqlite3VdbeMakeLabel(v); 5227 5228 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5229 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5230 ** SELECT statement. 5231 */ 5232 memset(&sNC, 0, sizeof(sNC)); 5233 sNC.pParse = pParse; 5234 sNC.pSrcList = pTabList; 5235 sNC.pAggInfo = &sAggInfo; 5236 sAggInfo.mnReg = pParse->nMem+1; 5237 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5238 sAggInfo.pGroupBy = pGroupBy; 5239 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5240 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5241 if( pHaving ){ 5242 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5243 } 5244 sAggInfo.nAccumulator = sAggInfo.nColumn; 5245 for(i=0; i<sAggInfo.nFunc; i++){ 5246 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5247 sNC.ncFlags |= NC_InAggFunc; 5248 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5249 sNC.ncFlags &= ~NC_InAggFunc; 5250 } 5251 sAggInfo.mxReg = pParse->nMem; 5252 if( db->mallocFailed ) goto select_end; 5253 5254 /* Processing for aggregates with GROUP BY is very different and 5255 ** much more complex than aggregates without a GROUP BY. 5256 */ 5257 if( pGroupBy ){ 5258 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5259 int addr1; /* A-vs-B comparision jump */ 5260 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5261 int regOutputRow; /* Return address register for output subroutine */ 5262 int addrSetAbort; /* Set the abort flag and return */ 5263 int addrTopOfLoop; /* Top of the input loop */ 5264 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5265 int addrReset; /* Subroutine for resetting the accumulator */ 5266 int regReset; /* Return address register for reset subroutine */ 5267 5268 /* If there is a GROUP BY clause we might need a sorting index to 5269 ** implement it. Allocate that sorting index now. If it turns out 5270 ** that we do not need it after all, the OP_SorterOpen instruction 5271 ** will be converted into a Noop. 5272 */ 5273 sAggInfo.sortingIdx = pParse->nTab++; 5274 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5275 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5276 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5277 0, (char*)pKeyInfo, P4_KEYINFO); 5278 5279 /* Initialize memory locations used by GROUP BY aggregate processing 5280 */ 5281 iUseFlag = ++pParse->nMem; 5282 iAbortFlag = ++pParse->nMem; 5283 regOutputRow = ++pParse->nMem; 5284 addrOutputRow = sqlite3VdbeMakeLabel(v); 5285 regReset = ++pParse->nMem; 5286 addrReset = sqlite3VdbeMakeLabel(v); 5287 iAMem = pParse->nMem + 1; 5288 pParse->nMem += pGroupBy->nExpr; 5289 iBMem = pParse->nMem + 1; 5290 pParse->nMem += pGroupBy->nExpr; 5291 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5292 VdbeComment((v, "clear abort flag")); 5293 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5294 VdbeComment((v, "indicate accumulator empty")); 5295 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5296 5297 /* Begin a loop that will extract all source rows in GROUP BY order. 5298 ** This might involve two separate loops with an OP_Sort in between, or 5299 ** it might be a single loop that uses an index to extract information 5300 ** in the right order to begin with. 5301 */ 5302 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5303 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5304 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5305 ); 5306 if( pWInfo==0 ) goto select_end; 5307 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5308 /* The optimizer is able to deliver rows in group by order so 5309 ** we do not have to sort. The OP_OpenEphemeral table will be 5310 ** cancelled later because we still need to use the pKeyInfo 5311 */ 5312 groupBySort = 0; 5313 }else{ 5314 /* Rows are coming out in undetermined order. We have to push 5315 ** each row into a sorting index, terminate the first loop, 5316 ** then loop over the sorting index in order to get the output 5317 ** in sorted order 5318 */ 5319 int regBase; 5320 int regRecord; 5321 int nCol; 5322 int nGroupBy; 5323 5324 explainTempTable(pParse, 5325 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5326 "DISTINCT" : "GROUP BY"); 5327 5328 groupBySort = 1; 5329 nGroupBy = pGroupBy->nExpr; 5330 nCol = nGroupBy; 5331 j = nGroupBy; 5332 for(i=0; i<sAggInfo.nColumn; i++){ 5333 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5334 nCol++; 5335 j++; 5336 } 5337 } 5338 regBase = sqlite3GetTempRange(pParse, nCol); 5339 sqlite3ExprCacheClear(pParse); 5340 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5341 j = nGroupBy; 5342 for(i=0; i<sAggInfo.nColumn; i++){ 5343 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5344 if( pCol->iSorterColumn>=j ){ 5345 int r1 = j + regBase; 5346 sqlite3ExprCodeGetColumnToReg(pParse, 5347 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5348 j++; 5349 } 5350 } 5351 regRecord = sqlite3GetTempReg(pParse); 5352 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5353 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5354 sqlite3ReleaseTempReg(pParse, regRecord); 5355 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5356 sqlite3WhereEnd(pWInfo); 5357 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5358 sortOut = sqlite3GetTempReg(pParse); 5359 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5360 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5361 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5362 sAggInfo.useSortingIdx = 1; 5363 sqlite3ExprCacheClear(pParse); 5364 5365 } 5366 5367 /* If the index or temporary table used by the GROUP BY sort 5368 ** will naturally deliver rows in the order required by the ORDER BY 5369 ** clause, cancel the ephemeral table open coded earlier. 5370 ** 5371 ** This is an optimization - the correct answer should result regardless. 5372 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5373 ** disable this optimization for testing purposes. */ 5374 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5375 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5376 ){ 5377 sSort.pOrderBy = 0; 5378 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5379 } 5380 5381 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5382 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5383 ** Then compare the current GROUP BY terms against the GROUP BY terms 5384 ** from the previous row currently stored in a0, a1, a2... 5385 */ 5386 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5387 sqlite3ExprCacheClear(pParse); 5388 if( groupBySort ){ 5389 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5390 sortOut, sortPTab); 5391 } 5392 for(j=0; j<pGroupBy->nExpr; j++){ 5393 if( groupBySort ){ 5394 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5395 }else{ 5396 sAggInfo.directMode = 1; 5397 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5398 } 5399 } 5400 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5401 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5402 addr1 = sqlite3VdbeCurrentAddr(v); 5403 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5404 5405 /* Generate code that runs whenever the GROUP BY changes. 5406 ** Changes in the GROUP BY are detected by the previous code 5407 ** block. If there were no changes, this block is skipped. 5408 ** 5409 ** This code copies current group by terms in b0,b1,b2,... 5410 ** over to a0,a1,a2. It then calls the output subroutine 5411 ** and resets the aggregate accumulator registers in preparation 5412 ** for the next GROUP BY batch. 5413 */ 5414 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5415 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5416 VdbeComment((v, "output one row")); 5417 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5418 VdbeComment((v, "check abort flag")); 5419 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5420 VdbeComment((v, "reset accumulator")); 5421 5422 /* Update the aggregate accumulators based on the content of 5423 ** the current row 5424 */ 5425 sqlite3VdbeJumpHere(v, addr1); 5426 updateAccumulator(pParse, &sAggInfo); 5427 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5428 VdbeComment((v, "indicate data in accumulator")); 5429 5430 /* End of the loop 5431 */ 5432 if( groupBySort ){ 5433 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5434 VdbeCoverage(v); 5435 }else{ 5436 sqlite3WhereEnd(pWInfo); 5437 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5438 } 5439 5440 /* Output the final row of result 5441 */ 5442 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5443 VdbeComment((v, "output final row")); 5444 5445 /* Jump over the subroutines 5446 */ 5447 sqlite3VdbeGoto(v, addrEnd); 5448 5449 /* Generate a subroutine that outputs a single row of the result 5450 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5451 ** is less than or equal to zero, the subroutine is a no-op. If 5452 ** the processing calls for the query to abort, this subroutine 5453 ** increments the iAbortFlag memory location before returning in 5454 ** order to signal the caller to abort. 5455 */ 5456 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5457 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5458 VdbeComment((v, "set abort flag")); 5459 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5460 sqlite3VdbeResolveLabel(v, addrOutputRow); 5461 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5462 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5463 VdbeCoverage(v); 5464 VdbeComment((v, "Groupby result generator entry point")); 5465 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5466 finalizeAggFunctions(pParse, &sAggInfo); 5467 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5468 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5469 &sDistinct, pDest, 5470 addrOutputRow+1, addrSetAbort); 5471 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5472 VdbeComment((v, "end groupby result generator")); 5473 5474 /* Generate a subroutine that will reset the group-by accumulator 5475 */ 5476 sqlite3VdbeResolveLabel(v, addrReset); 5477 resetAccumulator(pParse, &sAggInfo); 5478 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5479 5480 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5481 else { 5482 ExprList *pDel = 0; 5483 #ifndef SQLITE_OMIT_BTREECOUNT 5484 Table *pTab; 5485 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5486 /* If isSimpleCount() returns a pointer to a Table structure, then 5487 ** the SQL statement is of the form: 5488 ** 5489 ** SELECT count(*) FROM <tbl> 5490 ** 5491 ** where the Table structure returned represents table <tbl>. 5492 ** 5493 ** This statement is so common that it is optimized specially. The 5494 ** OP_Count instruction is executed either on the intkey table that 5495 ** contains the data for table <tbl> or on one of its indexes. It 5496 ** is better to execute the op on an index, as indexes are almost 5497 ** always spread across less pages than their corresponding tables. 5498 */ 5499 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5500 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5501 Index *pIdx; /* Iterator variable */ 5502 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5503 Index *pBest = 0; /* Best index found so far */ 5504 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5505 5506 sqlite3CodeVerifySchema(pParse, iDb); 5507 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5508 5509 /* Search for the index that has the lowest scan cost. 5510 ** 5511 ** (2011-04-15) Do not do a full scan of an unordered index. 5512 ** 5513 ** (2013-10-03) Do not count the entries in a partial index. 5514 ** 5515 ** In practice the KeyInfo structure will not be used. It is only 5516 ** passed to keep OP_OpenRead happy. 5517 */ 5518 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5519 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5520 if( pIdx->bUnordered==0 5521 && pIdx->szIdxRow<pTab->szTabRow 5522 && pIdx->pPartIdxWhere==0 5523 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5524 ){ 5525 pBest = pIdx; 5526 } 5527 } 5528 if( pBest ){ 5529 iRoot = pBest->tnum; 5530 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5531 } 5532 5533 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5534 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5535 if( pKeyInfo ){ 5536 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5537 } 5538 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5539 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5540 explainSimpleCount(pParse, pTab, pBest); 5541 }else 5542 #endif /* SQLITE_OMIT_BTREECOUNT */ 5543 { 5544 /* Check if the query is of one of the following forms: 5545 ** 5546 ** SELECT min(x) FROM ... 5547 ** SELECT max(x) FROM ... 5548 ** 5549 ** If it is, then ask the code in where.c to attempt to sort results 5550 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5551 ** If where.c is able to produce results sorted in this order, then 5552 ** add vdbe code to break out of the processing loop after the 5553 ** first iteration (since the first iteration of the loop is 5554 ** guaranteed to operate on the row with the minimum or maximum 5555 ** value of x, the only row required). 5556 ** 5557 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5558 ** modify behavior as follows: 5559 ** 5560 ** + If the query is a "SELECT min(x)", then the loop coded by 5561 ** where.c should not iterate over any values with a NULL value 5562 ** for x. 5563 ** 5564 ** + The optimizer code in where.c (the thing that decides which 5565 ** index or indices to use) should place a different priority on 5566 ** satisfying the 'ORDER BY' clause than it does in other cases. 5567 ** Refer to code and comments in where.c for details. 5568 */ 5569 ExprList *pMinMax = 0; 5570 u8 flag = WHERE_ORDERBY_NORMAL; 5571 5572 assert( p->pGroupBy==0 ); 5573 assert( flag==0 ); 5574 if( p->pHaving==0 ){ 5575 flag = minMaxQuery(&sAggInfo, &pMinMax); 5576 } 5577 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5578 5579 if( flag ){ 5580 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5581 pDel = pMinMax; 5582 assert( db->mallocFailed || pMinMax!=0 ); 5583 if( !db->mallocFailed ){ 5584 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5585 pMinMax->a[0].pExpr->op = TK_COLUMN; 5586 } 5587 } 5588 5589 /* This case runs if the aggregate has no GROUP BY clause. The 5590 ** processing is much simpler since there is only a single row 5591 ** of output. 5592 */ 5593 resetAccumulator(pParse, &sAggInfo); 5594 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5595 if( pWInfo==0 ){ 5596 sqlite3ExprListDelete(db, pDel); 5597 goto select_end; 5598 } 5599 updateAccumulator(pParse, &sAggInfo); 5600 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5601 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5602 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5603 VdbeComment((v, "%s() by index", 5604 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5605 } 5606 sqlite3WhereEnd(pWInfo); 5607 finalizeAggFunctions(pParse, &sAggInfo); 5608 } 5609 5610 sSort.pOrderBy = 0; 5611 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5612 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5613 pDest, addrEnd, addrEnd); 5614 sqlite3ExprListDelete(db, pDel); 5615 } 5616 sqlite3VdbeResolveLabel(v, addrEnd); 5617 5618 } /* endif aggregate query */ 5619 5620 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5621 explainTempTable(pParse, "DISTINCT"); 5622 } 5623 5624 /* If there is an ORDER BY clause, then we need to sort the results 5625 ** and send them to the callback one by one. 5626 */ 5627 if( sSort.pOrderBy ){ 5628 explainTempTable(pParse, 5629 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5630 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5631 } 5632 5633 /* Jump here to skip this query 5634 */ 5635 sqlite3VdbeResolveLabel(v, iEnd); 5636 5637 /* The SELECT has been coded. If there is an error in the Parse structure, 5638 ** set the return code to 1. Otherwise 0. */ 5639 rc = (pParse->nErr>0); 5640 5641 /* Control jumps to here if an error is encountered above, or upon 5642 ** successful coding of the SELECT. 5643 */ 5644 select_end: 5645 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5646 5647 /* Identify column names if results of the SELECT are to be output. 5648 */ 5649 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5650 generateColumnNames(pParse, pTabList, pEList); 5651 } 5652 5653 sqlite3DbFree(db, sAggInfo.aCol); 5654 sqlite3DbFree(db, sAggInfo.aFunc); 5655 #if SELECTTRACE_ENABLED 5656 SELECTTRACE(1,pParse,p,("end processing\n")); 5657 pParse->nSelectIndent--; 5658 #endif 5659 return rc; 5660 } 5661