1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 sqlite3ExprDelete(db, p->pOffset); 78 if( p->pWith ) sqlite3WithDelete(db, p->pWith); 79 if( bFree ) sqlite3DbFreeNN(db, p); 80 p = pPrior; 81 bFree = 1; 82 } 83 } 84 85 /* 86 ** Initialize a SelectDest structure. 87 */ 88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 89 pDest->eDest = (u8)eDest; 90 pDest->iSDParm = iParm; 91 pDest->zAffSdst = 0; 92 pDest->iSdst = 0; 93 pDest->nSdst = 0; 94 } 95 96 97 /* 98 ** Allocate a new Select structure and return a pointer to that 99 ** structure. 100 */ 101 Select *sqlite3SelectNew( 102 Parse *pParse, /* Parsing context */ 103 ExprList *pEList, /* which columns to include in the result */ 104 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 105 Expr *pWhere, /* the WHERE clause */ 106 ExprList *pGroupBy, /* the GROUP BY clause */ 107 Expr *pHaving, /* the HAVING clause */ 108 ExprList *pOrderBy, /* the ORDER BY clause */ 109 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 110 Expr *pLimit, /* LIMIT value. NULL means not used */ 111 Expr *pOffset /* OFFSET value. NULL means no offset */ 112 ){ 113 Select *pNew; 114 Select standin; 115 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 116 if( pNew==0 ){ 117 assert( pParse->db->mallocFailed ); 118 pNew = &standin; 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0)); 122 } 123 pNew->pEList = pEList; 124 pNew->op = TK_SELECT; 125 pNew->selFlags = selFlags; 126 pNew->iLimit = 0; 127 pNew->iOffset = 0; 128 #if SELECTTRACE_ENABLED 129 pNew->zSelName[0] = 0; 130 #endif 131 pNew->addrOpenEphm[0] = -1; 132 pNew->addrOpenEphm[1] = -1; 133 pNew->nSelectRow = 0; 134 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 135 pNew->pSrc = pSrc; 136 pNew->pWhere = pWhere; 137 pNew->pGroupBy = pGroupBy; 138 pNew->pHaving = pHaving; 139 pNew->pOrderBy = pOrderBy; 140 pNew->pPrior = 0; 141 pNew->pNext = 0; 142 pNew->pLimit = pLimit; 143 pNew->pOffset = pOffset; 144 pNew->pWith = 0; 145 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 ); 146 if( pParse->db->mallocFailed ) { 147 clearSelect(pParse->db, pNew, pNew!=&standin); 148 pNew = 0; 149 }else{ 150 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 151 } 152 assert( pNew!=&standin ); 153 return pNew; 154 } 155 156 #if SELECTTRACE_ENABLED 157 /* 158 ** Set the name of a Select object 159 */ 160 void sqlite3SelectSetName(Select *p, const char *zName){ 161 if( p && zName ){ 162 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 163 } 164 } 165 #endif 166 167 168 /* 169 ** Delete the given Select structure and all of its substructures. 170 */ 171 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 172 if( p ) clearSelect(db, p, 1); 173 } 174 175 /* 176 ** Return a pointer to the right-most SELECT statement in a compound. 177 */ 178 static Select *findRightmost(Select *p){ 179 while( p->pNext ) p = p->pNext; 180 return p; 181 } 182 183 /* 184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 185 ** type of join. Return an integer constant that expresses that type 186 ** in terms of the following bit values: 187 ** 188 ** JT_INNER 189 ** JT_CROSS 190 ** JT_OUTER 191 ** JT_NATURAL 192 ** JT_LEFT 193 ** JT_RIGHT 194 ** 195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 196 ** 197 ** If an illegal or unsupported join type is seen, then still return 198 ** a join type, but put an error in the pParse structure. 199 */ 200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 201 int jointype = 0; 202 Token *apAll[3]; 203 Token *p; 204 /* 0123456789 123456789 123456789 123 */ 205 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 206 static const struct { 207 u8 i; /* Beginning of keyword text in zKeyText[] */ 208 u8 nChar; /* Length of the keyword in characters */ 209 u8 code; /* Join type mask */ 210 } aKeyword[] = { 211 /* natural */ { 0, 7, JT_NATURAL }, 212 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 213 /* outer */ { 10, 5, JT_OUTER }, 214 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 215 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 216 /* inner */ { 23, 5, JT_INNER }, 217 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 218 }; 219 int i, j; 220 apAll[0] = pA; 221 apAll[1] = pB; 222 apAll[2] = pC; 223 for(i=0; i<3 && apAll[i]; i++){ 224 p = apAll[i]; 225 for(j=0; j<ArraySize(aKeyword); j++){ 226 if( p->n==aKeyword[j].nChar 227 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 228 jointype |= aKeyword[j].code; 229 break; 230 } 231 } 232 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 233 if( j>=ArraySize(aKeyword) ){ 234 jointype |= JT_ERROR; 235 break; 236 } 237 } 238 if( 239 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 240 (jointype & JT_ERROR)!=0 241 ){ 242 const char *zSp = " "; 243 assert( pB!=0 ); 244 if( pC==0 ){ zSp++; } 245 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 246 "%T %T%s%T", pA, pB, zSp, pC); 247 jointype = JT_INNER; 248 }else if( (jointype & JT_OUTER)!=0 249 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 250 sqlite3ErrorMsg(pParse, 251 "RIGHT and FULL OUTER JOINs are not currently supported"); 252 jointype = JT_INNER; 253 } 254 return jointype; 255 } 256 257 /* 258 ** Return the index of a column in a table. Return -1 if the column 259 ** is not contained in the table. 260 */ 261 static int columnIndex(Table *pTab, const char *zCol){ 262 int i; 263 for(i=0; i<pTab->nCol; i++){ 264 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 265 } 266 return -1; 267 } 268 269 /* 270 ** Search the first N tables in pSrc, from left to right, looking for a 271 ** table that has a column named zCol. 272 ** 273 ** When found, set *piTab and *piCol to the table index and column index 274 ** of the matching column and return TRUE. 275 ** 276 ** If not found, return FALSE. 277 */ 278 static int tableAndColumnIndex( 279 SrcList *pSrc, /* Array of tables to search */ 280 int N, /* Number of tables in pSrc->a[] to search */ 281 const char *zCol, /* Name of the column we are looking for */ 282 int *piTab, /* Write index of pSrc->a[] here */ 283 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 284 ){ 285 int i; /* For looping over tables in pSrc */ 286 int iCol; /* Index of column matching zCol */ 287 288 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 289 for(i=0; i<N; i++){ 290 iCol = columnIndex(pSrc->a[i].pTab, zCol); 291 if( iCol>=0 ){ 292 if( piTab ){ 293 *piTab = i; 294 *piCol = iCol; 295 } 296 return 1; 297 } 298 } 299 return 0; 300 } 301 302 /* 303 ** This function is used to add terms implied by JOIN syntax to the 304 ** WHERE clause expression of a SELECT statement. The new term, which 305 ** is ANDed with the existing WHERE clause, is of the form: 306 ** 307 ** (tab1.col1 = tab2.col2) 308 ** 309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 311 ** column iColRight of tab2. 312 */ 313 static void addWhereTerm( 314 Parse *pParse, /* Parsing context */ 315 SrcList *pSrc, /* List of tables in FROM clause */ 316 int iLeft, /* Index of first table to join in pSrc */ 317 int iColLeft, /* Index of column in first table */ 318 int iRight, /* Index of second table in pSrc */ 319 int iColRight, /* Index of column in second table */ 320 int isOuterJoin, /* True if this is an OUTER join */ 321 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 322 ){ 323 sqlite3 *db = pParse->db; 324 Expr *pE1; 325 Expr *pE2; 326 Expr *pEq; 327 328 assert( iLeft<iRight ); 329 assert( pSrc->nSrc>iRight ); 330 assert( pSrc->a[iLeft].pTab ); 331 assert( pSrc->a[iRight].pTab ); 332 333 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 334 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 335 336 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 337 if( pEq && isOuterJoin ){ 338 ExprSetProperty(pEq, EP_FromJoin); 339 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(pEq, EP_NoReduce); 341 pEq->iRightJoinTable = (i16)pE2->iTable; 342 } 343 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 344 } 345 346 /* 347 ** Set the EP_FromJoin property on all terms of the given expression. 348 ** And set the Expr.iRightJoinTable to iTable for every term in the 349 ** expression. 350 ** 351 ** The EP_FromJoin property is used on terms of an expression to tell 352 ** the LEFT OUTER JOIN processing logic that this term is part of the 353 ** join restriction specified in the ON or USING clause and not a part 354 ** of the more general WHERE clause. These terms are moved over to the 355 ** WHERE clause during join processing but we need to remember that they 356 ** originated in the ON or USING clause. 357 ** 358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 359 ** expression depends on table iRightJoinTable even if that table is not 360 ** explicitly mentioned in the expression. That information is needed 361 ** for cases like this: 362 ** 363 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 364 ** 365 ** The where clause needs to defer the handling of the t1.x=5 366 ** term until after the t2 loop of the join. In that way, a 367 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 368 ** defer the handling of t1.x=5, it will be processed immediately 369 ** after the t1 loop and rows with t1.x!=5 will never appear in 370 ** the output, which is incorrect. 371 */ 372 static void setJoinExpr(Expr *p, int iTable){ 373 while( p ){ 374 ExprSetProperty(p, EP_FromJoin); 375 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 376 ExprSetVVAProperty(p, EP_NoReduce); 377 p->iRightJoinTable = (i16)iTable; 378 if( p->op==TK_FUNCTION && p->x.pList ){ 379 int i; 380 for(i=0; i<p->x.pList->nExpr; i++){ 381 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 382 } 383 } 384 setJoinExpr(p->pLeft, iTable); 385 p = p->pRight; 386 } 387 } 388 389 /* 390 ** This routine processes the join information for a SELECT statement. 391 ** ON and USING clauses are converted into extra terms of the WHERE clause. 392 ** NATURAL joins also create extra WHERE clause terms. 393 ** 394 ** The terms of a FROM clause are contained in the Select.pSrc structure. 395 ** The left most table is the first entry in Select.pSrc. The right-most 396 ** table is the last entry. The join operator is held in the entry to 397 ** the left. Thus entry 0 contains the join operator for the join between 398 ** entries 0 and 1. Any ON or USING clauses associated with the join are 399 ** also attached to the left entry. 400 ** 401 ** This routine returns the number of errors encountered. 402 */ 403 static int sqliteProcessJoin(Parse *pParse, Select *p){ 404 SrcList *pSrc; /* All tables in the FROM clause */ 405 int i, j; /* Loop counters */ 406 struct SrcList_item *pLeft; /* Left table being joined */ 407 struct SrcList_item *pRight; /* Right table being joined */ 408 409 pSrc = p->pSrc; 410 pLeft = &pSrc->a[0]; 411 pRight = &pLeft[1]; 412 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 413 Table *pLeftTab = pLeft->pTab; 414 Table *pRightTab = pRight->pTab; 415 int isOuter; 416 417 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 418 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 419 420 /* When the NATURAL keyword is present, add WHERE clause terms for 421 ** every column that the two tables have in common. 422 */ 423 if( pRight->fg.jointype & JT_NATURAL ){ 424 if( pRight->pOn || pRight->pUsing ){ 425 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 426 "an ON or USING clause", 0); 427 return 1; 428 } 429 for(j=0; j<pRightTab->nCol; j++){ 430 char *zName; /* Name of column in the right table */ 431 int iLeft; /* Matching left table */ 432 int iLeftCol; /* Matching column in the left table */ 433 434 zName = pRightTab->aCol[j].zName; 435 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 436 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 437 isOuter, &p->pWhere); 438 } 439 } 440 } 441 442 /* Disallow both ON and USING clauses in the same join 443 */ 444 if( pRight->pOn && pRight->pUsing ){ 445 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 446 "clauses in the same join"); 447 return 1; 448 } 449 450 /* Add the ON clause to the end of the WHERE clause, connected by 451 ** an AND operator. 452 */ 453 if( pRight->pOn ){ 454 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 455 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 456 pRight->pOn = 0; 457 } 458 459 /* Create extra terms on the WHERE clause for each column named 460 ** in the USING clause. Example: If the two tables to be joined are 461 ** A and B and the USING clause names X, Y, and Z, then add this 462 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 463 ** Report an error if any column mentioned in the USING clause is 464 ** not contained in both tables to be joined. 465 */ 466 if( pRight->pUsing ){ 467 IdList *pList = pRight->pUsing; 468 for(j=0; j<pList->nId; j++){ 469 char *zName; /* Name of the term in the USING clause */ 470 int iLeft; /* Table on the left with matching column name */ 471 int iLeftCol; /* Column number of matching column on the left */ 472 int iRightCol; /* Column number of matching column on the right */ 473 474 zName = pList->a[j].zName; 475 iRightCol = columnIndex(pRightTab, zName); 476 if( iRightCol<0 477 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 478 ){ 479 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 480 "not present in both tables", zName); 481 return 1; 482 } 483 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 484 isOuter, &p->pWhere); 485 } 486 } 487 } 488 return 0; 489 } 490 491 /* Forward reference */ 492 static KeyInfo *keyInfoFromExprList( 493 Parse *pParse, /* Parsing context */ 494 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 495 int iStart, /* Begin with this column of pList */ 496 int nExtra /* Add this many extra columns to the end */ 497 ); 498 499 /* 500 ** Generate code that will push the record in registers regData 501 ** through regData+nData-1 onto the sorter. 502 */ 503 static void pushOntoSorter( 504 Parse *pParse, /* Parser context */ 505 SortCtx *pSort, /* Information about the ORDER BY clause */ 506 Select *pSelect, /* The whole SELECT statement */ 507 int regData, /* First register holding data to be sorted */ 508 int regOrigData, /* First register holding data before packing */ 509 int nData, /* Number of elements in the data array */ 510 int nPrefixReg /* No. of reg prior to regData available for use */ 511 ){ 512 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 513 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 514 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 515 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 516 int regBase; /* Regs for sorter record */ 517 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 518 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 519 int op; /* Opcode to add sorter record to sorter */ 520 int iLimit; /* LIMIT counter */ 521 522 assert( bSeq==0 || bSeq==1 ); 523 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 524 if( nPrefixReg ){ 525 assert( nPrefixReg==nExpr+bSeq ); 526 regBase = regData - nExpr - bSeq; 527 }else{ 528 regBase = pParse->nMem + 1; 529 pParse->nMem += nBase; 530 } 531 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 532 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 533 pSort->labelDone = sqlite3VdbeMakeLabel(v); 534 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 535 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 536 if( bSeq ){ 537 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 538 } 539 if( nPrefixReg==0 && nData>0 ){ 540 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 541 } 542 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 543 if( nOBSat>0 ){ 544 int regPrevKey; /* The first nOBSat columns of the previous row */ 545 int addrFirst; /* Address of the OP_IfNot opcode */ 546 int addrJmp; /* Address of the OP_Jump opcode */ 547 VdbeOp *pOp; /* Opcode that opens the sorter */ 548 int nKey; /* Number of sorting key columns, including OP_Sequence */ 549 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 550 551 regPrevKey = pParse->nMem+1; 552 pParse->nMem += pSort->nOBSat; 553 nKey = nExpr - pSort->nOBSat + bSeq; 554 if( bSeq ){ 555 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 556 }else{ 557 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 558 } 559 VdbeCoverage(v); 560 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 561 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 562 if( pParse->db->mallocFailed ) return; 563 pOp->p2 = nKey + nData; 564 pKI = pOp->p4.pKeyInfo; 565 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 566 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 567 testcase( pKI->nAllField > pKI->nKeyField+2 ); 568 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 569 pKI->nAllField-pKI->nKeyField-1); 570 addrJmp = sqlite3VdbeCurrentAddr(v); 571 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 572 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 573 pSort->regReturn = ++pParse->nMem; 574 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 575 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 576 if( iLimit ){ 577 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 578 VdbeCoverage(v); 579 } 580 sqlite3VdbeJumpHere(v, addrFirst); 581 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 582 sqlite3VdbeJumpHere(v, addrJmp); 583 } 584 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 585 op = OP_SorterInsert; 586 }else{ 587 op = OP_IdxInsert; 588 } 589 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 590 regBase+nOBSat, nBase-nOBSat); 591 if( iLimit ){ 592 int addr; 593 int r1 = 0; 594 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 595 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 596 ** fills up, delete the least entry in the sorter after each insert. 597 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 598 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 599 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 600 if( pSort->bOrderedInnerLoop ){ 601 r1 = ++pParse->nMem; 602 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 603 VdbeComment((v, "seq")); 604 } 605 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 606 if( pSort->bOrderedInnerLoop ){ 607 /* If the inner loop is driven by an index such that values from 608 ** the same iteration of the inner loop are in sorted order, then 609 ** immediately jump to the next iteration of an inner loop if the 610 ** entry from the current iteration does not fit into the top 611 ** LIMIT+OFFSET entries of the sorter. */ 612 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 613 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 614 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 615 VdbeCoverage(v); 616 } 617 sqlite3VdbeJumpHere(v, addr); 618 } 619 } 620 621 /* 622 ** Add code to implement the OFFSET 623 */ 624 static void codeOffset( 625 Vdbe *v, /* Generate code into this VM */ 626 int iOffset, /* Register holding the offset counter */ 627 int iContinue /* Jump here to skip the current record */ 628 ){ 629 if( iOffset>0 ){ 630 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 631 VdbeComment((v, "OFFSET")); 632 } 633 } 634 635 /* 636 ** Add code that will check to make sure the N registers starting at iMem 637 ** form a distinct entry. iTab is a sorting index that holds previously 638 ** seen combinations of the N values. A new entry is made in iTab 639 ** if the current N values are new. 640 ** 641 ** A jump to addrRepeat is made and the N+1 values are popped from the 642 ** stack if the top N elements are not distinct. 643 */ 644 static void codeDistinct( 645 Parse *pParse, /* Parsing and code generating context */ 646 int iTab, /* A sorting index used to test for distinctness */ 647 int addrRepeat, /* Jump to here if not distinct */ 648 int N, /* Number of elements */ 649 int iMem /* First element */ 650 ){ 651 Vdbe *v; 652 int r1; 653 654 v = pParse->pVdbe; 655 r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 657 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 658 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 659 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 660 sqlite3ReleaseTempReg(pParse, r1); 661 } 662 663 /* 664 ** This routine generates the code for the inside of the inner loop 665 ** of a SELECT. 666 ** 667 ** If srcTab is negative, then the p->pEList expressions 668 ** are evaluated in order to get the data for this row. If srcTab is 669 ** zero or more, then data is pulled from srcTab and p->pEList is used only 670 ** to get the number of columns and the collation sequence for each column. 671 */ 672 static void selectInnerLoop( 673 Parse *pParse, /* The parser context */ 674 Select *p, /* The complete select statement being coded */ 675 int srcTab, /* Pull data from this table if non-negative */ 676 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 677 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 678 SelectDest *pDest, /* How to dispose of the results */ 679 int iContinue, /* Jump here to continue with next row */ 680 int iBreak /* Jump here to break out of the inner loop */ 681 ){ 682 Vdbe *v = pParse->pVdbe; 683 int i; 684 int hasDistinct; /* True if the DISTINCT keyword is present */ 685 int eDest = pDest->eDest; /* How to dispose of results */ 686 int iParm = pDest->iSDParm; /* First argument to disposal method */ 687 int nResultCol; /* Number of result columns */ 688 int nPrefixReg = 0; /* Number of extra registers before regResult */ 689 690 /* Usually, regResult is the first cell in an array of memory cells 691 ** containing the current result row. In this case regOrig is set to the 692 ** same value. However, if the results are being sent to the sorter, the 693 ** values for any expressions that are also part of the sort-key are omitted 694 ** from this array. In this case regOrig is set to zero. */ 695 int regResult; /* Start of memory holding current results */ 696 int regOrig; /* Start of memory holding full result (or 0) */ 697 698 assert( v ); 699 assert( p->pEList!=0 ); 700 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 701 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 702 if( pSort==0 && !hasDistinct ){ 703 assert( iContinue!=0 ); 704 codeOffset(v, p->iOffset, iContinue); 705 } 706 707 /* Pull the requested columns. 708 */ 709 nResultCol = p->pEList->nExpr; 710 711 if( pDest->iSdst==0 ){ 712 if( pSort ){ 713 nPrefixReg = pSort->pOrderBy->nExpr; 714 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 715 pParse->nMem += nPrefixReg; 716 } 717 pDest->iSdst = pParse->nMem+1; 718 pParse->nMem += nResultCol; 719 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 720 /* This is an error condition that can result, for example, when a SELECT 721 ** on the right-hand side of an INSERT contains more result columns than 722 ** there are columns in the table on the left. The error will be caught 723 ** and reported later. But we need to make sure enough memory is allocated 724 ** to avoid other spurious errors in the meantime. */ 725 pParse->nMem += nResultCol; 726 } 727 pDest->nSdst = nResultCol; 728 regOrig = regResult = pDest->iSdst; 729 if( srcTab>=0 ){ 730 for(i=0; i<nResultCol; i++){ 731 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 732 VdbeComment((v, "%s", p->pEList->a[i].zName)); 733 } 734 }else if( eDest!=SRT_Exists ){ 735 /* If the destination is an EXISTS(...) expression, the actual 736 ** values returned by the SELECT are not required. 737 */ 738 u8 ecelFlags; 739 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 740 ecelFlags = SQLITE_ECEL_DUP; 741 }else{ 742 ecelFlags = 0; 743 } 744 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 745 /* For each expression in p->pEList that is a copy of an expression in 746 ** the ORDER BY clause (pSort->pOrderBy), set the associated 747 ** iOrderByCol value to one more than the index of the ORDER BY 748 ** expression within the sort-key that pushOntoSorter() will generate. 749 ** This allows the p->pEList field to be omitted from the sorted record, 750 ** saving space and CPU cycles. */ 751 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 752 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 753 int j; 754 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 755 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 756 } 757 } 758 regOrig = 0; 759 assert( eDest==SRT_Set || eDest==SRT_Mem 760 || eDest==SRT_Coroutine || eDest==SRT_Output ); 761 } 762 nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,0,ecelFlags); 763 } 764 765 /* If the DISTINCT keyword was present on the SELECT statement 766 ** and this row has been seen before, then do not make this row 767 ** part of the result. 768 */ 769 if( hasDistinct ){ 770 switch( pDistinct->eTnctType ){ 771 case WHERE_DISTINCT_ORDERED: { 772 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 773 int iJump; /* Jump destination */ 774 int regPrev; /* Previous row content */ 775 776 /* Allocate space for the previous row */ 777 regPrev = pParse->nMem+1; 778 pParse->nMem += nResultCol; 779 780 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 781 ** sets the MEM_Cleared bit on the first register of the 782 ** previous value. This will cause the OP_Ne below to always 783 ** fail on the first iteration of the loop even if the first 784 ** row is all NULLs. 785 */ 786 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 787 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 788 pOp->opcode = OP_Null; 789 pOp->p1 = 1; 790 pOp->p2 = regPrev; 791 792 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 793 for(i=0; i<nResultCol; i++){ 794 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 795 if( i<nResultCol-1 ){ 796 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 797 VdbeCoverage(v); 798 }else{ 799 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 800 VdbeCoverage(v); 801 } 802 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 803 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 804 } 805 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 806 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 807 break; 808 } 809 810 case WHERE_DISTINCT_UNIQUE: { 811 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 812 break; 813 } 814 815 default: { 816 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 817 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 818 regResult); 819 break; 820 } 821 } 822 if( pSort==0 ){ 823 codeOffset(v, p->iOffset, iContinue); 824 } 825 } 826 827 switch( eDest ){ 828 /* In this mode, write each query result to the key of the temporary 829 ** table iParm. 830 */ 831 #ifndef SQLITE_OMIT_COMPOUND_SELECT 832 case SRT_Union: { 833 int r1; 834 r1 = sqlite3GetTempReg(pParse); 835 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 836 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 837 sqlite3ReleaseTempReg(pParse, r1); 838 break; 839 } 840 841 /* Construct a record from the query result, but instead of 842 ** saving that record, use it as a key to delete elements from 843 ** the temporary table iParm. 844 */ 845 case SRT_Except: { 846 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 847 break; 848 } 849 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 850 851 /* Store the result as data using a unique key. 852 */ 853 case SRT_Fifo: 854 case SRT_DistFifo: 855 case SRT_Table: 856 case SRT_EphemTab: { 857 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 858 testcase( eDest==SRT_Table ); 859 testcase( eDest==SRT_EphemTab ); 860 testcase( eDest==SRT_Fifo ); 861 testcase( eDest==SRT_DistFifo ); 862 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 863 #ifndef SQLITE_OMIT_CTE 864 if( eDest==SRT_DistFifo ){ 865 /* If the destination is DistFifo, then cursor (iParm+1) is open 866 ** on an ephemeral index. If the current row is already present 867 ** in the index, do not write it to the output. If not, add the 868 ** current row to the index and proceed with writing it to the 869 ** output table as well. */ 870 int addr = sqlite3VdbeCurrentAddr(v) + 4; 871 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 872 VdbeCoverage(v); 873 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 874 assert( pSort==0 ); 875 } 876 #endif 877 if( pSort ){ 878 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 879 }else{ 880 int r2 = sqlite3GetTempReg(pParse); 881 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 882 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 883 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 884 sqlite3ReleaseTempReg(pParse, r2); 885 } 886 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 887 break; 888 } 889 890 #ifndef SQLITE_OMIT_SUBQUERY 891 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 892 ** then there should be a single item on the stack. Write this 893 ** item into the set table with bogus data. 894 */ 895 case SRT_Set: { 896 if( pSort ){ 897 /* At first glance you would think we could optimize out the 898 ** ORDER BY in this case since the order of entries in the set 899 ** does not matter. But there might be a LIMIT clause, in which 900 ** case the order does matter */ 901 pushOntoSorter( 902 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 903 }else{ 904 int r1 = sqlite3GetTempReg(pParse); 905 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 906 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 907 r1, pDest->zAffSdst, nResultCol); 908 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 909 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 910 sqlite3ReleaseTempReg(pParse, r1); 911 } 912 break; 913 } 914 915 /* If any row exist in the result set, record that fact and abort. 916 */ 917 case SRT_Exists: { 918 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 919 /* The LIMIT clause will terminate the loop for us */ 920 break; 921 } 922 923 /* If this is a scalar select that is part of an expression, then 924 ** store the results in the appropriate memory cell or array of 925 ** memory cells and break out of the scan loop. 926 */ 927 case SRT_Mem: { 928 if( pSort ){ 929 assert( nResultCol<=pDest->nSdst ); 930 pushOntoSorter( 931 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 932 }else{ 933 assert( nResultCol==pDest->nSdst ); 934 assert( regResult==iParm ); 935 /* The LIMIT clause will jump out of the loop for us */ 936 } 937 break; 938 } 939 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 940 941 case SRT_Coroutine: /* Send data to a co-routine */ 942 case SRT_Output: { /* Return the results */ 943 testcase( eDest==SRT_Coroutine ); 944 testcase( eDest==SRT_Output ); 945 if( pSort ){ 946 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 947 nPrefixReg); 948 }else if( eDest==SRT_Coroutine ){ 949 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 950 }else{ 951 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 952 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 953 } 954 break; 955 } 956 957 #ifndef SQLITE_OMIT_CTE 958 /* Write the results into a priority queue that is order according to 959 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 960 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 961 ** pSO->nExpr columns, then make sure all keys are unique by adding a 962 ** final OP_Sequence column. The last column is the record as a blob. 963 */ 964 case SRT_DistQueue: 965 case SRT_Queue: { 966 int nKey; 967 int r1, r2, r3; 968 int addrTest = 0; 969 ExprList *pSO; 970 pSO = pDest->pOrderBy; 971 assert( pSO ); 972 nKey = pSO->nExpr; 973 r1 = sqlite3GetTempReg(pParse); 974 r2 = sqlite3GetTempRange(pParse, nKey+2); 975 r3 = r2+nKey+1; 976 if( eDest==SRT_DistQueue ){ 977 /* If the destination is DistQueue, then cursor (iParm+1) is open 978 ** on a second ephemeral index that holds all values every previously 979 ** added to the queue. */ 980 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 981 regResult, nResultCol); 982 VdbeCoverage(v); 983 } 984 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 985 if( eDest==SRT_DistQueue ){ 986 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 987 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 988 } 989 for(i=0; i<nKey; i++){ 990 sqlite3VdbeAddOp2(v, OP_SCopy, 991 regResult + pSO->a[i].u.x.iOrderByCol - 1, 992 r2+i); 993 } 994 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 995 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 996 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 997 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 998 sqlite3ReleaseTempReg(pParse, r1); 999 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1000 break; 1001 } 1002 #endif /* SQLITE_OMIT_CTE */ 1003 1004 1005 1006 #if !defined(SQLITE_OMIT_TRIGGER) 1007 /* Discard the results. This is used for SELECT statements inside 1008 ** the body of a TRIGGER. The purpose of such selects is to call 1009 ** user-defined functions that have side effects. We do not care 1010 ** about the actual results of the select. 1011 */ 1012 default: { 1013 assert( eDest==SRT_Discard ); 1014 break; 1015 } 1016 #endif 1017 } 1018 1019 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1020 ** there is a sorter, in which case the sorter has already limited 1021 ** the output for us. 1022 */ 1023 if( pSort==0 && p->iLimit ){ 1024 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1025 } 1026 } 1027 1028 /* 1029 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1030 ** X extra columns. 1031 */ 1032 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1033 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1034 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1035 if( p ){ 1036 p->aSortOrder = (u8*)&p->aColl[N+X]; 1037 p->nKeyField = (u16)N; 1038 p->nAllField = (u16)(N+X); 1039 p->enc = ENC(db); 1040 p->db = db; 1041 p->nRef = 1; 1042 memset(&p[1], 0, nExtra); 1043 }else{ 1044 sqlite3OomFault(db); 1045 } 1046 return p; 1047 } 1048 1049 /* 1050 ** Deallocate a KeyInfo object 1051 */ 1052 void sqlite3KeyInfoUnref(KeyInfo *p){ 1053 if( p ){ 1054 assert( p->nRef>0 ); 1055 p->nRef--; 1056 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1057 } 1058 } 1059 1060 /* 1061 ** Make a new pointer to a KeyInfo object 1062 */ 1063 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1064 if( p ){ 1065 assert( p->nRef>0 ); 1066 p->nRef++; 1067 } 1068 return p; 1069 } 1070 1071 #ifdef SQLITE_DEBUG 1072 /* 1073 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1074 ** can only be changed if this is just a single reference to the object. 1075 ** 1076 ** This routine is used only inside of assert() statements. 1077 */ 1078 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1079 #endif /* SQLITE_DEBUG */ 1080 1081 /* 1082 ** Given an expression list, generate a KeyInfo structure that records 1083 ** the collating sequence for each expression in that expression list. 1084 ** 1085 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1086 ** KeyInfo structure is appropriate for initializing a virtual index to 1087 ** implement that clause. If the ExprList is the result set of a SELECT 1088 ** then the KeyInfo structure is appropriate for initializing a virtual 1089 ** index to implement a DISTINCT test. 1090 ** 1091 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1092 ** function is responsible for seeing that this structure is eventually 1093 ** freed. 1094 */ 1095 static KeyInfo *keyInfoFromExprList( 1096 Parse *pParse, /* Parsing context */ 1097 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1098 int iStart, /* Begin with this column of pList */ 1099 int nExtra /* Add this many extra columns to the end */ 1100 ){ 1101 int nExpr; 1102 KeyInfo *pInfo; 1103 struct ExprList_item *pItem; 1104 sqlite3 *db = pParse->db; 1105 int i; 1106 1107 nExpr = pList->nExpr; 1108 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1109 if( pInfo ){ 1110 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1111 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1112 CollSeq *pColl; 1113 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1114 if( !pColl ) pColl = db->pDfltColl; 1115 pInfo->aColl[i-iStart] = pColl; 1116 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1117 } 1118 } 1119 return pInfo; 1120 } 1121 1122 /* 1123 ** Name of the connection operator, used for error messages. 1124 */ 1125 static const char *selectOpName(int id){ 1126 char *z; 1127 switch( id ){ 1128 case TK_ALL: z = "UNION ALL"; break; 1129 case TK_INTERSECT: z = "INTERSECT"; break; 1130 case TK_EXCEPT: z = "EXCEPT"; break; 1131 default: z = "UNION"; break; 1132 } 1133 return z; 1134 } 1135 1136 #ifndef SQLITE_OMIT_EXPLAIN 1137 /* 1138 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1139 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1140 ** where the caption is of the form: 1141 ** 1142 ** "USE TEMP B-TREE FOR xxx" 1143 ** 1144 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1145 ** is determined by the zUsage argument. 1146 */ 1147 static void explainTempTable(Parse *pParse, const char *zUsage){ 1148 if( pParse->explain==2 ){ 1149 Vdbe *v = pParse->pVdbe; 1150 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1151 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1152 } 1153 } 1154 1155 /* 1156 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1157 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1158 ** in sqlite3Select() to assign values to structure member variables that 1159 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1160 ** code with #ifndef directives. 1161 */ 1162 # define explainSetInteger(a, b) a = b 1163 1164 #else 1165 /* No-op versions of the explainXXX() functions and macros. */ 1166 # define explainTempTable(y,z) 1167 # define explainSetInteger(y,z) 1168 #endif 1169 1170 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1171 /* 1172 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1173 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1174 ** where the caption is of one of the two forms: 1175 ** 1176 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1177 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1178 ** 1179 ** where iSub1 and iSub2 are the integers passed as the corresponding 1180 ** function parameters, and op is the text representation of the parameter 1181 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1182 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1183 ** false, or the second form if it is true. 1184 */ 1185 static void explainComposite( 1186 Parse *pParse, /* Parse context */ 1187 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1188 int iSub1, /* Subquery id 1 */ 1189 int iSub2, /* Subquery id 2 */ 1190 int bUseTmp /* True if a temp table was used */ 1191 ){ 1192 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1193 if( pParse->explain==2 ){ 1194 Vdbe *v = pParse->pVdbe; 1195 char *zMsg = sqlite3MPrintf( 1196 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1197 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1198 ); 1199 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1200 } 1201 } 1202 #else 1203 /* No-op versions of the explainXXX() functions and macros. */ 1204 # define explainComposite(v,w,x,y,z) 1205 #endif 1206 1207 /* 1208 ** If the inner loop was generated using a non-null pOrderBy argument, 1209 ** then the results were placed in a sorter. After the loop is terminated 1210 ** we need to run the sorter and output the results. The following 1211 ** routine generates the code needed to do that. 1212 */ 1213 static void generateSortTail( 1214 Parse *pParse, /* Parsing context */ 1215 Select *p, /* The SELECT statement */ 1216 SortCtx *pSort, /* Information on the ORDER BY clause */ 1217 int nColumn, /* Number of columns of data */ 1218 SelectDest *pDest /* Write the sorted results here */ 1219 ){ 1220 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1221 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1222 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1223 int addr; 1224 int addrOnce = 0; 1225 int iTab; 1226 ExprList *pOrderBy = pSort->pOrderBy; 1227 int eDest = pDest->eDest; 1228 int iParm = pDest->iSDParm; 1229 int regRow; 1230 int regRowid; 1231 int iCol; 1232 int nKey; 1233 int iSortTab; /* Sorter cursor to read from */ 1234 int nSortData; /* Trailing values to read from sorter */ 1235 int i; 1236 int bSeq; /* True if sorter record includes seq. no. */ 1237 struct ExprList_item *aOutEx = p->pEList->a; 1238 1239 assert( addrBreak<0 ); 1240 if( pSort->labelBkOut ){ 1241 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1242 sqlite3VdbeGoto(v, addrBreak); 1243 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1244 } 1245 iTab = pSort->iECursor; 1246 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1247 regRowid = 0; 1248 regRow = pDest->iSdst; 1249 nSortData = nColumn; 1250 }else{ 1251 regRowid = sqlite3GetTempReg(pParse); 1252 regRow = sqlite3GetTempRange(pParse, nColumn); 1253 nSortData = nColumn; 1254 } 1255 nKey = pOrderBy->nExpr - pSort->nOBSat; 1256 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1257 int regSortOut = ++pParse->nMem; 1258 iSortTab = pParse->nTab++; 1259 if( pSort->labelBkOut ){ 1260 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1261 } 1262 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1263 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1264 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1265 VdbeCoverage(v); 1266 codeOffset(v, p->iOffset, addrContinue); 1267 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1268 bSeq = 0; 1269 }else{ 1270 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1271 codeOffset(v, p->iOffset, addrContinue); 1272 iSortTab = iTab; 1273 bSeq = 1; 1274 } 1275 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){ 1276 int iRead; 1277 if( aOutEx[i].u.x.iOrderByCol ){ 1278 iRead = aOutEx[i].u.x.iOrderByCol-1; 1279 }else{ 1280 iRead = iCol++; 1281 } 1282 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1283 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1284 } 1285 switch( eDest ){ 1286 case SRT_Table: 1287 case SRT_EphemTab: { 1288 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1289 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1290 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1291 break; 1292 } 1293 #ifndef SQLITE_OMIT_SUBQUERY 1294 case SRT_Set: { 1295 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1296 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1297 pDest->zAffSdst, nColumn); 1298 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1299 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1300 break; 1301 } 1302 case SRT_Mem: { 1303 /* The LIMIT clause will terminate the loop for us */ 1304 break; 1305 } 1306 #endif 1307 default: { 1308 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1309 testcase( eDest==SRT_Output ); 1310 testcase( eDest==SRT_Coroutine ); 1311 if( eDest==SRT_Output ){ 1312 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1313 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1314 }else{ 1315 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1316 } 1317 break; 1318 } 1319 } 1320 if( regRowid ){ 1321 if( eDest==SRT_Set ){ 1322 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1323 }else{ 1324 sqlite3ReleaseTempReg(pParse, regRow); 1325 } 1326 sqlite3ReleaseTempReg(pParse, regRowid); 1327 } 1328 /* The bottom of the loop 1329 */ 1330 sqlite3VdbeResolveLabel(v, addrContinue); 1331 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1332 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1333 }else{ 1334 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1335 } 1336 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1337 sqlite3VdbeResolveLabel(v, addrBreak); 1338 } 1339 1340 /* 1341 ** Return a pointer to a string containing the 'declaration type' of the 1342 ** expression pExpr. The string may be treated as static by the caller. 1343 ** 1344 ** Also try to estimate the size of the returned value and return that 1345 ** result in *pEstWidth. 1346 ** 1347 ** The declaration type is the exact datatype definition extracted from the 1348 ** original CREATE TABLE statement if the expression is a column. The 1349 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1350 ** is considered a column can be complex in the presence of subqueries. The 1351 ** result-set expression in all of the following SELECT statements is 1352 ** considered a column by this function. 1353 ** 1354 ** SELECT col FROM tbl; 1355 ** SELECT (SELECT col FROM tbl; 1356 ** SELECT (SELECT col FROM tbl); 1357 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1358 ** 1359 ** The declaration type for any expression other than a column is NULL. 1360 ** 1361 ** This routine has either 3 or 6 parameters depending on whether or not 1362 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1363 */ 1364 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1365 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1366 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1367 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1368 #endif 1369 static const char *columnTypeImpl( 1370 NameContext *pNC, 1371 Expr *pExpr, 1372 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1373 const char **pzOrigDb, 1374 const char **pzOrigTab, 1375 const char **pzOrigCol, 1376 #endif 1377 u8 *pEstWidth 1378 ){ 1379 char const *zType = 0; 1380 int j; 1381 u8 estWidth = 1; 1382 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1383 char const *zOrigDb = 0; 1384 char const *zOrigTab = 0; 1385 char const *zOrigCol = 0; 1386 #endif 1387 1388 assert( pExpr!=0 ); 1389 assert( pNC->pSrcList!=0 ); 1390 switch( pExpr->op ){ 1391 case TK_AGG_COLUMN: 1392 case TK_COLUMN: { 1393 /* The expression is a column. Locate the table the column is being 1394 ** extracted from in NameContext.pSrcList. This table may be real 1395 ** database table or a subquery. 1396 */ 1397 Table *pTab = 0; /* Table structure column is extracted from */ 1398 Select *pS = 0; /* Select the column is extracted from */ 1399 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1400 testcase( pExpr->op==TK_AGG_COLUMN ); 1401 testcase( pExpr->op==TK_COLUMN ); 1402 while( pNC && !pTab ){ 1403 SrcList *pTabList = pNC->pSrcList; 1404 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1405 if( j<pTabList->nSrc ){ 1406 pTab = pTabList->a[j].pTab; 1407 pS = pTabList->a[j].pSelect; 1408 }else{ 1409 pNC = pNC->pNext; 1410 } 1411 } 1412 1413 if( pTab==0 ){ 1414 /* At one time, code such as "SELECT new.x" within a trigger would 1415 ** cause this condition to run. Since then, we have restructured how 1416 ** trigger code is generated and so this condition is no longer 1417 ** possible. However, it can still be true for statements like 1418 ** the following: 1419 ** 1420 ** CREATE TABLE t1(col INTEGER); 1421 ** SELECT (SELECT t1.col) FROM FROM t1; 1422 ** 1423 ** when columnType() is called on the expression "t1.col" in the 1424 ** sub-select. In this case, set the column type to NULL, even 1425 ** though it should really be "INTEGER". 1426 ** 1427 ** This is not a problem, as the column type of "t1.col" is never 1428 ** used. When columnType() is called on the expression 1429 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1430 ** branch below. */ 1431 break; 1432 } 1433 1434 assert( pTab && pExpr->pTab==pTab ); 1435 if( pS ){ 1436 /* The "table" is actually a sub-select or a view in the FROM clause 1437 ** of the SELECT statement. Return the declaration type and origin 1438 ** data for the result-set column of the sub-select. 1439 */ 1440 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1441 /* If iCol is less than zero, then the expression requests the 1442 ** rowid of the sub-select or view. This expression is legal (see 1443 ** test case misc2.2.2) - it always evaluates to NULL. 1444 */ 1445 NameContext sNC; 1446 Expr *p = pS->pEList->a[iCol].pExpr; 1447 sNC.pSrcList = pS->pSrc; 1448 sNC.pNext = pNC; 1449 sNC.pParse = pNC->pParse; 1450 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1451 } 1452 }else if( pTab->pSchema ){ 1453 /* A real table */ 1454 assert( !pS ); 1455 if( iCol<0 ) iCol = pTab->iPKey; 1456 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1457 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1458 if( iCol<0 ){ 1459 zType = "INTEGER"; 1460 zOrigCol = "rowid"; 1461 }else{ 1462 zOrigCol = pTab->aCol[iCol].zName; 1463 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1464 estWidth = pTab->aCol[iCol].szEst; 1465 } 1466 zOrigTab = pTab->zName; 1467 if( pNC->pParse ){ 1468 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1469 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1470 } 1471 #else 1472 if( iCol<0 ){ 1473 zType = "INTEGER"; 1474 }else{ 1475 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1476 estWidth = pTab->aCol[iCol].szEst; 1477 } 1478 #endif 1479 } 1480 break; 1481 } 1482 #ifndef SQLITE_OMIT_SUBQUERY 1483 case TK_SELECT: { 1484 /* The expression is a sub-select. Return the declaration type and 1485 ** origin info for the single column in the result set of the SELECT 1486 ** statement. 1487 */ 1488 NameContext sNC; 1489 Select *pS = pExpr->x.pSelect; 1490 Expr *p = pS->pEList->a[0].pExpr; 1491 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1492 sNC.pSrcList = pS->pSrc; 1493 sNC.pNext = pNC; 1494 sNC.pParse = pNC->pParse; 1495 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1496 break; 1497 } 1498 #endif 1499 } 1500 1501 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1502 if( pzOrigDb ){ 1503 assert( pzOrigTab && pzOrigCol ); 1504 *pzOrigDb = zOrigDb; 1505 *pzOrigTab = zOrigTab; 1506 *pzOrigCol = zOrigCol; 1507 } 1508 #endif 1509 if( pEstWidth ) *pEstWidth = estWidth; 1510 return zType; 1511 } 1512 1513 /* 1514 ** Generate code that will tell the VDBE the declaration types of columns 1515 ** in the result set. 1516 */ 1517 static void generateColumnTypes( 1518 Parse *pParse, /* Parser context */ 1519 SrcList *pTabList, /* List of tables */ 1520 ExprList *pEList /* Expressions defining the result set */ 1521 ){ 1522 #ifndef SQLITE_OMIT_DECLTYPE 1523 Vdbe *v = pParse->pVdbe; 1524 int i; 1525 NameContext sNC; 1526 sNC.pSrcList = pTabList; 1527 sNC.pParse = pParse; 1528 sNC.pNext = 0; 1529 for(i=0; i<pEList->nExpr; i++){ 1530 Expr *p = pEList->a[i].pExpr; 1531 const char *zType; 1532 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1533 const char *zOrigDb = 0; 1534 const char *zOrigTab = 0; 1535 const char *zOrigCol = 0; 1536 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1537 1538 /* The vdbe must make its own copy of the column-type and other 1539 ** column specific strings, in case the schema is reset before this 1540 ** virtual machine is deleted. 1541 */ 1542 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1543 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1544 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1545 #else 1546 zType = columnType(&sNC, p, 0, 0, 0, 0); 1547 #endif 1548 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1549 } 1550 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1551 } 1552 1553 1554 /* 1555 ** Compute the column names for a SELECT statement. 1556 ** 1557 ** The only guarantee that SQLite makes about column names is that if the 1558 ** column has an AS clause assigning it a name, that will be the name used. 1559 ** That is the only documented guarantee. However, countless applications 1560 ** developed over the years have made baseless assumptions about column names 1561 ** and will break if those assumptions changes. Hence, use extreme caution 1562 ** when modifying this routine to avoid breaking legacy. 1563 ** 1564 ** See Also: sqlite3ColumnsFromExprList() 1565 ** 1566 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1567 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1568 ** applications should operate this way. Nevertheless, we need to support the 1569 ** other modes for legacy: 1570 ** 1571 ** short=OFF, full=OFF: Column name is the text of the expression has it 1572 ** originally appears in the SELECT statement. In 1573 ** other words, the zSpan of the result expression. 1574 ** 1575 ** short=ON, full=OFF: (This is the default setting). If the result 1576 ** refers directly to a table column, then the result 1577 ** column name is just the table column name: COLUMN. 1578 ** Otherwise use zSpan. 1579 ** 1580 ** full=ON, short=ANY: If the result refers directly to a table column, 1581 ** then the result column name with the table name 1582 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1583 */ 1584 static void generateColumnNames( 1585 Parse *pParse, /* Parser context */ 1586 Select *pSelect /* Generate column names for this SELECT statement */ 1587 ){ 1588 Vdbe *v = pParse->pVdbe; 1589 int i; 1590 Table *pTab; 1591 SrcList *pTabList; 1592 ExprList *pEList; 1593 sqlite3 *db = pParse->db; 1594 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1595 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1596 1597 #ifndef SQLITE_OMIT_EXPLAIN 1598 /* If this is an EXPLAIN, skip this step */ 1599 if( pParse->explain ){ 1600 return; 1601 } 1602 #endif 1603 1604 if( pParse->colNamesSet || db->mallocFailed ) return; 1605 /* Column names are determined by the left-most term of a compound select */ 1606 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1607 pTabList = pSelect->pSrc; 1608 pEList = pSelect->pEList; 1609 assert( v!=0 ); 1610 assert( pTabList!=0 ); 1611 pParse->colNamesSet = 1; 1612 fullName = (db->flags & SQLITE_FullColNames)!=0; 1613 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1614 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1615 for(i=0; i<pEList->nExpr; i++){ 1616 Expr *p = pEList->a[i].pExpr; 1617 1618 assert( p!=0 ); 1619 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1620 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering indexes not yet coded */ 1621 if( pEList->a[i].zName ){ 1622 /* An AS clause always takes first priority */ 1623 char *zName = pEList->a[i].zName; 1624 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1625 }else if( srcName && p->op==TK_COLUMN ){ 1626 char *zCol; 1627 int iCol = p->iColumn; 1628 pTab = p->pTab; 1629 assert( pTab!=0 ); 1630 if( iCol<0 ) iCol = pTab->iPKey; 1631 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1632 if( iCol<0 ){ 1633 zCol = "rowid"; 1634 }else{ 1635 zCol = pTab->aCol[iCol].zName; 1636 } 1637 if( fullName ){ 1638 char *zName = 0; 1639 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1640 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1641 }else{ 1642 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1643 } 1644 }else{ 1645 const char *z = pEList->a[i].zSpan; 1646 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1647 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1648 } 1649 } 1650 generateColumnTypes(pParse, pTabList, pEList); 1651 } 1652 1653 /* 1654 ** Given an expression list (which is really the list of expressions 1655 ** that form the result set of a SELECT statement) compute appropriate 1656 ** column names for a table that would hold the expression list. 1657 ** 1658 ** All column names will be unique. 1659 ** 1660 ** Only the column names are computed. Column.zType, Column.zColl, 1661 ** and other fields of Column are zeroed. 1662 ** 1663 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1664 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1665 ** 1666 ** The only guarantee that SQLite makes about column names is that if the 1667 ** column has an AS clause assigning it a name, that will be the name used. 1668 ** That is the only documented guarantee. However, countless applications 1669 ** developed over the years have made baseless assumptions about column names 1670 ** and will break if those assumptions changes. Hence, use extreme caution 1671 ** when modifying this routine to avoid breaking legacy. 1672 ** 1673 ** See Also: generateColumnNames() 1674 */ 1675 int sqlite3ColumnsFromExprList( 1676 Parse *pParse, /* Parsing context */ 1677 ExprList *pEList, /* Expr list from which to derive column names */ 1678 i16 *pnCol, /* Write the number of columns here */ 1679 Column **paCol /* Write the new column list here */ 1680 ){ 1681 sqlite3 *db = pParse->db; /* Database connection */ 1682 int i, j; /* Loop counters */ 1683 u32 cnt; /* Index added to make the name unique */ 1684 Column *aCol, *pCol; /* For looping over result columns */ 1685 int nCol; /* Number of columns in the result set */ 1686 char *zName; /* Column name */ 1687 int nName; /* Size of name in zName[] */ 1688 Hash ht; /* Hash table of column names */ 1689 1690 sqlite3HashInit(&ht); 1691 if( pEList ){ 1692 nCol = pEList->nExpr; 1693 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1694 testcase( aCol==0 ); 1695 }else{ 1696 nCol = 0; 1697 aCol = 0; 1698 } 1699 assert( nCol==(i16)nCol ); 1700 *pnCol = nCol; 1701 *paCol = aCol; 1702 1703 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1704 /* Get an appropriate name for the column 1705 */ 1706 if( (zName = pEList->a[i].zName)!=0 ){ 1707 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1708 }else{ 1709 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1710 while( pColExpr->op==TK_DOT ){ 1711 pColExpr = pColExpr->pRight; 1712 assert( pColExpr!=0 ); 1713 } 1714 if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN) 1715 && pColExpr->pTab!=0 1716 ){ 1717 /* For columns use the column name name */ 1718 int iCol = pColExpr->iColumn; 1719 Table *pTab = pColExpr->pTab; 1720 if( iCol<0 ) iCol = pTab->iPKey; 1721 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1722 }else if( pColExpr->op==TK_ID ){ 1723 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1724 zName = pColExpr->u.zToken; 1725 }else{ 1726 /* Use the original text of the column expression as its name */ 1727 zName = pEList->a[i].zSpan; 1728 } 1729 } 1730 if( zName ){ 1731 zName = sqlite3DbStrDup(db, zName); 1732 }else{ 1733 zName = sqlite3MPrintf(db,"column%d",i+1); 1734 } 1735 1736 /* Make sure the column name is unique. If the name is not unique, 1737 ** append an integer to the name so that it becomes unique. 1738 */ 1739 cnt = 0; 1740 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1741 nName = sqlite3Strlen30(zName); 1742 if( nName>0 ){ 1743 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1744 if( zName[j]==':' ) nName = j; 1745 } 1746 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1747 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1748 } 1749 pCol->zName = zName; 1750 sqlite3ColumnPropertiesFromName(0, pCol); 1751 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1752 sqlite3OomFault(db); 1753 } 1754 } 1755 sqlite3HashClear(&ht); 1756 if( db->mallocFailed ){ 1757 for(j=0; j<i; j++){ 1758 sqlite3DbFree(db, aCol[j].zName); 1759 } 1760 sqlite3DbFree(db, aCol); 1761 *paCol = 0; 1762 *pnCol = 0; 1763 return SQLITE_NOMEM_BKPT; 1764 } 1765 return SQLITE_OK; 1766 } 1767 1768 /* 1769 ** Add type and collation information to a column list based on 1770 ** a SELECT statement. 1771 ** 1772 ** The column list presumably came from selectColumnNamesFromExprList(). 1773 ** The column list has only names, not types or collations. This 1774 ** routine goes through and adds the types and collations. 1775 ** 1776 ** This routine requires that all identifiers in the SELECT 1777 ** statement be resolved. 1778 */ 1779 void sqlite3SelectAddColumnTypeAndCollation( 1780 Parse *pParse, /* Parsing contexts */ 1781 Table *pTab, /* Add column type information to this table */ 1782 Select *pSelect /* SELECT used to determine types and collations */ 1783 ){ 1784 sqlite3 *db = pParse->db; 1785 NameContext sNC; 1786 Column *pCol; 1787 CollSeq *pColl; 1788 int i; 1789 Expr *p; 1790 struct ExprList_item *a; 1791 u64 szAll = 0; 1792 1793 assert( pSelect!=0 ); 1794 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1795 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1796 if( db->mallocFailed ) return; 1797 memset(&sNC, 0, sizeof(sNC)); 1798 sNC.pSrcList = pSelect->pSrc; 1799 a = pSelect->pEList->a; 1800 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1801 const char *zType; 1802 int n, m; 1803 p = a[i].pExpr; 1804 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1805 szAll += pCol->szEst; 1806 pCol->affinity = sqlite3ExprAffinity(p); 1807 if( zType && (m = sqlite3Strlen30(zType))>0 ){ 1808 n = sqlite3Strlen30(pCol->zName); 1809 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1810 if( pCol->zName ){ 1811 memcpy(&pCol->zName[n+1], zType, m+1); 1812 pCol->colFlags |= COLFLAG_HASTYPE; 1813 } 1814 } 1815 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1816 pColl = sqlite3ExprCollSeq(pParse, p); 1817 if( pColl && pCol->zColl==0 ){ 1818 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1819 } 1820 } 1821 pTab->szTabRow = sqlite3LogEst(szAll*4); 1822 } 1823 1824 /* 1825 ** Given a SELECT statement, generate a Table structure that describes 1826 ** the result set of that SELECT. 1827 */ 1828 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1829 Table *pTab; 1830 sqlite3 *db = pParse->db; 1831 int savedFlags; 1832 1833 savedFlags = db->flags; 1834 db->flags &= ~SQLITE_FullColNames; 1835 db->flags |= SQLITE_ShortColNames; 1836 sqlite3SelectPrep(pParse, pSelect, 0); 1837 if( pParse->nErr ) return 0; 1838 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1839 db->flags = savedFlags; 1840 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1841 if( pTab==0 ){ 1842 return 0; 1843 } 1844 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1845 ** is disabled */ 1846 assert( db->lookaside.bDisable ); 1847 pTab->nTabRef = 1; 1848 pTab->zName = 0; 1849 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1850 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1851 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1852 pTab->iPKey = -1; 1853 if( db->mallocFailed ){ 1854 sqlite3DeleteTable(db, pTab); 1855 return 0; 1856 } 1857 return pTab; 1858 } 1859 1860 /* 1861 ** Get a VDBE for the given parser context. Create a new one if necessary. 1862 ** If an error occurs, return NULL and leave a message in pParse. 1863 */ 1864 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1865 if( pParse->pVdbe ){ 1866 return pParse->pVdbe; 1867 } 1868 if( pParse->pToplevel==0 1869 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1870 ){ 1871 pParse->okConstFactor = 1; 1872 } 1873 return sqlite3VdbeCreate(pParse); 1874 } 1875 1876 1877 /* 1878 ** Compute the iLimit and iOffset fields of the SELECT based on the 1879 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1880 ** that appear in the original SQL statement after the LIMIT and OFFSET 1881 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1882 ** are the integer memory register numbers for counters used to compute 1883 ** the limit and offset. If there is no limit and/or offset, then 1884 ** iLimit and iOffset are negative. 1885 ** 1886 ** This routine changes the values of iLimit and iOffset only if 1887 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1888 ** iOffset should have been preset to appropriate default values (zero) 1889 ** prior to calling this routine. 1890 ** 1891 ** The iOffset register (if it exists) is initialized to the value 1892 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1893 ** iOffset+1 is initialized to LIMIT+OFFSET. 1894 ** 1895 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1896 ** redefined. The UNION ALL operator uses this property to force 1897 ** the reuse of the same limit and offset registers across multiple 1898 ** SELECT statements. 1899 */ 1900 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1901 Vdbe *v = 0; 1902 int iLimit = 0; 1903 int iOffset; 1904 int n; 1905 if( p->iLimit ) return; 1906 1907 /* 1908 ** "LIMIT -1" always shows all rows. There is some 1909 ** controversy about what the correct behavior should be. 1910 ** The current implementation interprets "LIMIT 0" to mean 1911 ** no rows. 1912 */ 1913 sqlite3ExprCacheClear(pParse); 1914 assert( p->pOffset==0 || p->pLimit!=0 ); 1915 if( p->pLimit ){ 1916 p->iLimit = iLimit = ++pParse->nMem; 1917 v = sqlite3GetVdbe(pParse); 1918 assert( v!=0 ); 1919 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1920 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1921 VdbeComment((v, "LIMIT counter")); 1922 if( n==0 ){ 1923 sqlite3VdbeGoto(v, iBreak); 1924 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1925 p->nSelectRow = sqlite3LogEst((u64)n); 1926 p->selFlags |= SF_FixedLimit; 1927 } 1928 }else{ 1929 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1930 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1931 VdbeComment((v, "LIMIT counter")); 1932 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1933 } 1934 if( p->pOffset ){ 1935 p->iOffset = iOffset = ++pParse->nMem; 1936 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1937 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1938 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1939 VdbeComment((v, "OFFSET counter")); 1940 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1941 VdbeComment((v, "LIMIT+OFFSET")); 1942 } 1943 } 1944 } 1945 1946 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1947 /* 1948 ** Return the appropriate collating sequence for the iCol-th column of 1949 ** the result set for the compound-select statement "p". Return NULL if 1950 ** the column has no default collating sequence. 1951 ** 1952 ** The collating sequence for the compound select is taken from the 1953 ** left-most term of the select that has a collating sequence. 1954 */ 1955 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1956 CollSeq *pRet; 1957 if( p->pPrior ){ 1958 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1959 }else{ 1960 pRet = 0; 1961 } 1962 assert( iCol>=0 ); 1963 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1964 ** have been thrown during name resolution and we would not have gotten 1965 ** this far */ 1966 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1967 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1968 } 1969 return pRet; 1970 } 1971 1972 /* 1973 ** The select statement passed as the second parameter is a compound SELECT 1974 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1975 ** structure suitable for implementing the ORDER BY. 1976 ** 1977 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1978 ** function is responsible for ensuring that this structure is eventually 1979 ** freed. 1980 */ 1981 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1982 ExprList *pOrderBy = p->pOrderBy; 1983 int nOrderBy = p->pOrderBy->nExpr; 1984 sqlite3 *db = pParse->db; 1985 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1986 if( pRet ){ 1987 int i; 1988 for(i=0; i<nOrderBy; i++){ 1989 struct ExprList_item *pItem = &pOrderBy->a[i]; 1990 Expr *pTerm = pItem->pExpr; 1991 CollSeq *pColl; 1992 1993 if( pTerm->flags & EP_Collate ){ 1994 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1995 }else{ 1996 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1997 if( pColl==0 ) pColl = db->pDfltColl; 1998 pOrderBy->a[i].pExpr = 1999 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2000 } 2001 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2002 pRet->aColl[i] = pColl; 2003 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2004 } 2005 } 2006 2007 return pRet; 2008 } 2009 2010 #ifndef SQLITE_OMIT_CTE 2011 /* 2012 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2013 ** query of the form: 2014 ** 2015 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2016 ** \___________/ \_______________/ 2017 ** p->pPrior p 2018 ** 2019 ** 2020 ** There is exactly one reference to the recursive-table in the FROM clause 2021 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2022 ** 2023 ** The setup-query runs once to generate an initial set of rows that go 2024 ** into a Queue table. Rows are extracted from the Queue table one by 2025 ** one. Each row extracted from Queue is output to pDest. Then the single 2026 ** extracted row (now in the iCurrent table) becomes the content of the 2027 ** recursive-table for a recursive-query run. The output of the recursive-query 2028 ** is added back into the Queue table. Then another row is extracted from Queue 2029 ** and the iteration continues until the Queue table is empty. 2030 ** 2031 ** If the compound query operator is UNION then no duplicate rows are ever 2032 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2033 ** that have ever been inserted into Queue and causes duplicates to be 2034 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2035 ** 2036 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2037 ** ORDER BY order and the first entry is extracted for each cycle. Without 2038 ** an ORDER BY, the Queue table is just a FIFO. 2039 ** 2040 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2041 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2042 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2043 ** with a positive value, then the first OFFSET outputs are discarded rather 2044 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2045 ** rows have been skipped. 2046 */ 2047 static void generateWithRecursiveQuery( 2048 Parse *pParse, /* Parsing context */ 2049 Select *p, /* The recursive SELECT to be coded */ 2050 SelectDest *pDest /* What to do with query results */ 2051 ){ 2052 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2053 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2054 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2055 Select *pSetup = p->pPrior; /* The setup query */ 2056 int addrTop; /* Top of the loop */ 2057 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2058 int iCurrent = 0; /* The Current table */ 2059 int regCurrent; /* Register holding Current table */ 2060 int iQueue; /* The Queue table */ 2061 int iDistinct = 0; /* To ensure unique results if UNION */ 2062 int eDest = SRT_Fifo; /* How to write to Queue */ 2063 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2064 int i; /* Loop counter */ 2065 int rc; /* Result code */ 2066 ExprList *pOrderBy; /* The ORDER BY clause */ 2067 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 2068 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2069 2070 /* Obtain authorization to do a recursive query */ 2071 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2072 2073 /* Process the LIMIT and OFFSET clauses, if they exist */ 2074 addrBreak = sqlite3VdbeMakeLabel(v); 2075 p->nSelectRow = 320; /* 4 billion rows */ 2076 computeLimitRegisters(pParse, p, addrBreak); 2077 pLimit = p->pLimit; 2078 pOffset = p->pOffset; 2079 regLimit = p->iLimit; 2080 regOffset = p->iOffset; 2081 p->pLimit = p->pOffset = 0; 2082 p->iLimit = p->iOffset = 0; 2083 pOrderBy = p->pOrderBy; 2084 2085 /* Locate the cursor number of the Current table */ 2086 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2087 if( pSrc->a[i].fg.isRecursive ){ 2088 iCurrent = pSrc->a[i].iCursor; 2089 break; 2090 } 2091 } 2092 2093 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2094 ** the Distinct table must be exactly one greater than Queue in order 2095 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2096 iQueue = pParse->nTab++; 2097 if( p->op==TK_UNION ){ 2098 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2099 iDistinct = pParse->nTab++; 2100 }else{ 2101 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2102 } 2103 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2104 2105 /* Allocate cursors for Current, Queue, and Distinct. */ 2106 regCurrent = ++pParse->nMem; 2107 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2108 if( pOrderBy ){ 2109 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2110 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2111 (char*)pKeyInfo, P4_KEYINFO); 2112 destQueue.pOrderBy = pOrderBy; 2113 }else{ 2114 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2115 } 2116 VdbeComment((v, "Queue table")); 2117 if( iDistinct ){ 2118 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2119 p->selFlags |= SF_UsesEphemeral; 2120 } 2121 2122 /* Detach the ORDER BY clause from the compound SELECT */ 2123 p->pOrderBy = 0; 2124 2125 /* Store the results of the setup-query in Queue. */ 2126 pSetup->pNext = 0; 2127 rc = sqlite3Select(pParse, pSetup, &destQueue); 2128 pSetup->pNext = p; 2129 if( rc ) goto end_of_recursive_query; 2130 2131 /* Find the next row in the Queue and output that row */ 2132 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2133 2134 /* Transfer the next row in Queue over to Current */ 2135 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2136 if( pOrderBy ){ 2137 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2138 }else{ 2139 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2140 } 2141 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2142 2143 /* Output the single row in Current */ 2144 addrCont = sqlite3VdbeMakeLabel(v); 2145 codeOffset(v, regOffset, addrCont); 2146 selectInnerLoop(pParse, p, iCurrent, 2147 0, 0, pDest, addrCont, addrBreak); 2148 if( regLimit ){ 2149 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2150 VdbeCoverage(v); 2151 } 2152 sqlite3VdbeResolveLabel(v, addrCont); 2153 2154 /* Execute the recursive SELECT taking the single row in Current as 2155 ** the value for the recursive-table. Store the results in the Queue. 2156 */ 2157 if( p->selFlags & SF_Aggregate ){ 2158 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2159 }else{ 2160 p->pPrior = 0; 2161 sqlite3Select(pParse, p, &destQueue); 2162 assert( p->pPrior==0 ); 2163 p->pPrior = pSetup; 2164 } 2165 2166 /* Keep running the loop until the Queue is empty */ 2167 sqlite3VdbeGoto(v, addrTop); 2168 sqlite3VdbeResolveLabel(v, addrBreak); 2169 2170 end_of_recursive_query: 2171 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2172 p->pOrderBy = pOrderBy; 2173 p->pLimit = pLimit; 2174 p->pOffset = pOffset; 2175 return; 2176 } 2177 #endif /* SQLITE_OMIT_CTE */ 2178 2179 /* Forward references */ 2180 static int multiSelectOrderBy( 2181 Parse *pParse, /* Parsing context */ 2182 Select *p, /* The right-most of SELECTs to be coded */ 2183 SelectDest *pDest /* What to do with query results */ 2184 ); 2185 2186 /* 2187 ** Handle the special case of a compound-select that originates from a 2188 ** VALUES clause. By handling this as a special case, we avoid deep 2189 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2190 ** on a VALUES clause. 2191 ** 2192 ** Because the Select object originates from a VALUES clause: 2193 ** (1) It has no LIMIT or OFFSET 2194 ** (2) All terms are UNION ALL 2195 ** (3) There is no ORDER BY clause 2196 */ 2197 static int multiSelectValues( 2198 Parse *pParse, /* Parsing context */ 2199 Select *p, /* The right-most of SELECTs to be coded */ 2200 SelectDest *pDest /* What to do with query results */ 2201 ){ 2202 Select *pPrior; 2203 int nRow = 1; 2204 int rc = 0; 2205 assert( p->selFlags & SF_MultiValue ); 2206 do{ 2207 assert( p->selFlags & SF_Values ); 2208 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2209 assert( p->pLimit==0 ); 2210 assert( p->pOffset==0 ); 2211 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2212 if( p->pPrior==0 ) break; 2213 assert( p->pPrior->pNext==p ); 2214 p = p->pPrior; 2215 nRow++; 2216 }while(1); 2217 while( p ){ 2218 pPrior = p->pPrior; 2219 p->pPrior = 0; 2220 rc = sqlite3Select(pParse, p, pDest); 2221 p->pPrior = pPrior; 2222 if( rc ) break; 2223 p->nSelectRow = nRow; 2224 p = p->pNext; 2225 } 2226 return rc; 2227 } 2228 2229 /* 2230 ** This routine is called to process a compound query form from 2231 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2232 ** INTERSECT 2233 ** 2234 ** "p" points to the right-most of the two queries. the query on the 2235 ** left is p->pPrior. The left query could also be a compound query 2236 ** in which case this routine will be called recursively. 2237 ** 2238 ** The results of the total query are to be written into a destination 2239 ** of type eDest with parameter iParm. 2240 ** 2241 ** Example 1: Consider a three-way compound SQL statement. 2242 ** 2243 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2244 ** 2245 ** This statement is parsed up as follows: 2246 ** 2247 ** SELECT c FROM t3 2248 ** | 2249 ** `-----> SELECT b FROM t2 2250 ** | 2251 ** `------> SELECT a FROM t1 2252 ** 2253 ** The arrows in the diagram above represent the Select.pPrior pointer. 2254 ** So if this routine is called with p equal to the t3 query, then 2255 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2256 ** 2257 ** Notice that because of the way SQLite parses compound SELECTs, the 2258 ** individual selects always group from left to right. 2259 */ 2260 static int multiSelect( 2261 Parse *pParse, /* Parsing context */ 2262 Select *p, /* The right-most of SELECTs to be coded */ 2263 SelectDest *pDest /* What to do with query results */ 2264 ){ 2265 int rc = SQLITE_OK; /* Success code from a subroutine */ 2266 Select *pPrior; /* Another SELECT immediately to our left */ 2267 Vdbe *v; /* Generate code to this VDBE */ 2268 SelectDest dest; /* Alternative data destination */ 2269 Select *pDelete = 0; /* Chain of simple selects to delete */ 2270 sqlite3 *db; /* Database connection */ 2271 #ifndef SQLITE_OMIT_EXPLAIN 2272 int iSub1 = 0; /* EQP id of left-hand query */ 2273 int iSub2 = 0; /* EQP id of right-hand query */ 2274 #endif 2275 2276 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2277 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2278 */ 2279 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2280 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2281 db = pParse->db; 2282 pPrior = p->pPrior; 2283 dest = *pDest; 2284 if( pPrior->pOrderBy || pPrior->pLimit ){ 2285 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2286 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2287 rc = 1; 2288 goto multi_select_end; 2289 } 2290 2291 v = sqlite3GetVdbe(pParse); 2292 assert( v!=0 ); /* The VDBE already created by calling function */ 2293 2294 /* Create the destination temporary table if necessary 2295 */ 2296 if( dest.eDest==SRT_EphemTab ){ 2297 assert( p->pEList ); 2298 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2299 dest.eDest = SRT_Table; 2300 } 2301 2302 /* Special handling for a compound-select that originates as a VALUES clause. 2303 */ 2304 if( p->selFlags & SF_MultiValue ){ 2305 rc = multiSelectValues(pParse, p, &dest); 2306 goto multi_select_end; 2307 } 2308 2309 /* Make sure all SELECTs in the statement have the same number of elements 2310 ** in their result sets. 2311 */ 2312 assert( p->pEList && pPrior->pEList ); 2313 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2314 2315 #ifndef SQLITE_OMIT_CTE 2316 if( p->selFlags & SF_Recursive ){ 2317 generateWithRecursiveQuery(pParse, p, &dest); 2318 }else 2319 #endif 2320 2321 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2322 */ 2323 if( p->pOrderBy ){ 2324 return multiSelectOrderBy(pParse, p, pDest); 2325 }else 2326 2327 /* Generate code for the left and right SELECT statements. 2328 */ 2329 switch( p->op ){ 2330 case TK_ALL: { 2331 int addr = 0; 2332 int nLimit; 2333 assert( !pPrior->pLimit ); 2334 pPrior->iLimit = p->iLimit; 2335 pPrior->iOffset = p->iOffset; 2336 pPrior->pLimit = p->pLimit; 2337 pPrior->pOffset = p->pOffset; 2338 explainSetInteger(iSub1, pParse->iNextSelectId); 2339 rc = sqlite3Select(pParse, pPrior, &dest); 2340 p->pLimit = 0; 2341 p->pOffset = 0; 2342 if( rc ){ 2343 goto multi_select_end; 2344 } 2345 p->pPrior = 0; 2346 p->iLimit = pPrior->iLimit; 2347 p->iOffset = pPrior->iOffset; 2348 if( p->iLimit ){ 2349 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2350 VdbeComment((v, "Jump ahead if LIMIT reached")); 2351 if( p->iOffset ){ 2352 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2353 p->iLimit, p->iOffset+1, p->iOffset); 2354 } 2355 } 2356 explainSetInteger(iSub2, pParse->iNextSelectId); 2357 rc = sqlite3Select(pParse, p, &dest); 2358 testcase( rc!=SQLITE_OK ); 2359 pDelete = p->pPrior; 2360 p->pPrior = pPrior; 2361 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2362 if( pPrior->pLimit 2363 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2364 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2365 ){ 2366 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2367 } 2368 if( addr ){ 2369 sqlite3VdbeJumpHere(v, addr); 2370 } 2371 break; 2372 } 2373 case TK_EXCEPT: 2374 case TK_UNION: { 2375 int unionTab; /* Cursor number of the temporary table holding result */ 2376 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2377 int priorOp; /* The SRT_ operation to apply to prior selects */ 2378 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2379 int addr; 2380 SelectDest uniondest; 2381 2382 testcase( p->op==TK_EXCEPT ); 2383 testcase( p->op==TK_UNION ); 2384 priorOp = SRT_Union; 2385 if( dest.eDest==priorOp ){ 2386 /* We can reuse a temporary table generated by a SELECT to our 2387 ** right. 2388 */ 2389 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2390 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2391 unionTab = dest.iSDParm; 2392 }else{ 2393 /* We will need to create our own temporary table to hold the 2394 ** intermediate results. 2395 */ 2396 unionTab = pParse->nTab++; 2397 assert( p->pOrderBy==0 ); 2398 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2399 assert( p->addrOpenEphm[0] == -1 ); 2400 p->addrOpenEphm[0] = addr; 2401 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2402 assert( p->pEList ); 2403 } 2404 2405 /* Code the SELECT statements to our left 2406 */ 2407 assert( !pPrior->pOrderBy ); 2408 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2409 explainSetInteger(iSub1, pParse->iNextSelectId); 2410 rc = sqlite3Select(pParse, pPrior, &uniondest); 2411 if( rc ){ 2412 goto multi_select_end; 2413 } 2414 2415 /* Code the current SELECT statement 2416 */ 2417 if( p->op==TK_EXCEPT ){ 2418 op = SRT_Except; 2419 }else{ 2420 assert( p->op==TK_UNION ); 2421 op = SRT_Union; 2422 } 2423 p->pPrior = 0; 2424 pLimit = p->pLimit; 2425 p->pLimit = 0; 2426 pOffset = p->pOffset; 2427 p->pOffset = 0; 2428 uniondest.eDest = op; 2429 explainSetInteger(iSub2, pParse->iNextSelectId); 2430 rc = sqlite3Select(pParse, p, &uniondest); 2431 testcase( rc!=SQLITE_OK ); 2432 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2433 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2434 sqlite3ExprListDelete(db, p->pOrderBy); 2435 pDelete = p->pPrior; 2436 p->pPrior = pPrior; 2437 p->pOrderBy = 0; 2438 if( p->op==TK_UNION ){ 2439 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2440 } 2441 sqlite3ExprDelete(db, p->pLimit); 2442 p->pLimit = pLimit; 2443 p->pOffset = pOffset; 2444 p->iLimit = 0; 2445 p->iOffset = 0; 2446 2447 /* Convert the data in the temporary table into whatever form 2448 ** it is that we currently need. 2449 */ 2450 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2451 if( dest.eDest!=priorOp ){ 2452 int iCont, iBreak, iStart; 2453 assert( p->pEList ); 2454 iBreak = sqlite3VdbeMakeLabel(v); 2455 iCont = sqlite3VdbeMakeLabel(v); 2456 computeLimitRegisters(pParse, p, iBreak); 2457 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2458 iStart = sqlite3VdbeCurrentAddr(v); 2459 selectInnerLoop(pParse, p, unionTab, 2460 0, 0, &dest, iCont, iBreak); 2461 sqlite3VdbeResolveLabel(v, iCont); 2462 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2463 sqlite3VdbeResolveLabel(v, iBreak); 2464 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2465 } 2466 break; 2467 } 2468 default: assert( p->op==TK_INTERSECT ); { 2469 int tab1, tab2; 2470 int iCont, iBreak, iStart; 2471 Expr *pLimit, *pOffset; 2472 int addr; 2473 SelectDest intersectdest; 2474 int r1; 2475 2476 /* INTERSECT is different from the others since it requires 2477 ** two temporary tables. Hence it has its own case. Begin 2478 ** by allocating the tables we will need. 2479 */ 2480 tab1 = pParse->nTab++; 2481 tab2 = pParse->nTab++; 2482 assert( p->pOrderBy==0 ); 2483 2484 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2485 assert( p->addrOpenEphm[0] == -1 ); 2486 p->addrOpenEphm[0] = addr; 2487 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2488 assert( p->pEList ); 2489 2490 /* Code the SELECTs to our left into temporary table "tab1". 2491 */ 2492 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2493 explainSetInteger(iSub1, pParse->iNextSelectId); 2494 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2495 if( rc ){ 2496 goto multi_select_end; 2497 } 2498 2499 /* Code the current SELECT into temporary table "tab2" 2500 */ 2501 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2502 assert( p->addrOpenEphm[1] == -1 ); 2503 p->addrOpenEphm[1] = addr; 2504 p->pPrior = 0; 2505 pLimit = p->pLimit; 2506 p->pLimit = 0; 2507 pOffset = p->pOffset; 2508 p->pOffset = 0; 2509 intersectdest.iSDParm = tab2; 2510 explainSetInteger(iSub2, pParse->iNextSelectId); 2511 rc = sqlite3Select(pParse, p, &intersectdest); 2512 testcase( rc!=SQLITE_OK ); 2513 pDelete = p->pPrior; 2514 p->pPrior = pPrior; 2515 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2516 sqlite3ExprDelete(db, p->pLimit); 2517 p->pLimit = pLimit; 2518 p->pOffset = pOffset; 2519 2520 /* Generate code to take the intersection of the two temporary 2521 ** tables. 2522 */ 2523 assert( p->pEList ); 2524 iBreak = sqlite3VdbeMakeLabel(v); 2525 iCont = sqlite3VdbeMakeLabel(v); 2526 computeLimitRegisters(pParse, p, iBreak); 2527 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2528 r1 = sqlite3GetTempReg(pParse); 2529 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2530 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2531 sqlite3ReleaseTempReg(pParse, r1); 2532 selectInnerLoop(pParse, p, tab1, 2533 0, 0, &dest, iCont, iBreak); 2534 sqlite3VdbeResolveLabel(v, iCont); 2535 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2536 sqlite3VdbeResolveLabel(v, iBreak); 2537 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2538 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2539 break; 2540 } 2541 } 2542 2543 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2544 2545 /* Compute collating sequences used by 2546 ** temporary tables needed to implement the compound select. 2547 ** Attach the KeyInfo structure to all temporary tables. 2548 ** 2549 ** This section is run by the right-most SELECT statement only. 2550 ** SELECT statements to the left always skip this part. The right-most 2551 ** SELECT might also skip this part if it has no ORDER BY clause and 2552 ** no temp tables are required. 2553 */ 2554 if( p->selFlags & SF_UsesEphemeral ){ 2555 int i; /* Loop counter */ 2556 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2557 Select *pLoop; /* For looping through SELECT statements */ 2558 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2559 int nCol; /* Number of columns in result set */ 2560 2561 assert( p->pNext==0 ); 2562 nCol = p->pEList->nExpr; 2563 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2564 if( !pKeyInfo ){ 2565 rc = SQLITE_NOMEM_BKPT; 2566 goto multi_select_end; 2567 } 2568 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2569 *apColl = multiSelectCollSeq(pParse, p, i); 2570 if( 0==*apColl ){ 2571 *apColl = db->pDfltColl; 2572 } 2573 } 2574 2575 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2576 for(i=0; i<2; i++){ 2577 int addr = pLoop->addrOpenEphm[i]; 2578 if( addr<0 ){ 2579 /* If [0] is unused then [1] is also unused. So we can 2580 ** always safely abort as soon as the first unused slot is found */ 2581 assert( pLoop->addrOpenEphm[1]<0 ); 2582 break; 2583 } 2584 sqlite3VdbeChangeP2(v, addr, nCol); 2585 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2586 P4_KEYINFO); 2587 pLoop->addrOpenEphm[i] = -1; 2588 } 2589 } 2590 sqlite3KeyInfoUnref(pKeyInfo); 2591 } 2592 2593 multi_select_end: 2594 pDest->iSdst = dest.iSdst; 2595 pDest->nSdst = dest.nSdst; 2596 sqlite3SelectDelete(db, pDelete); 2597 return rc; 2598 } 2599 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2600 2601 /* 2602 ** Error message for when two or more terms of a compound select have different 2603 ** size result sets. 2604 */ 2605 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2606 if( p->selFlags & SF_Values ){ 2607 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2608 }else{ 2609 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2610 " do not have the same number of result columns", selectOpName(p->op)); 2611 } 2612 } 2613 2614 /* 2615 ** Code an output subroutine for a coroutine implementation of a 2616 ** SELECT statment. 2617 ** 2618 ** The data to be output is contained in pIn->iSdst. There are 2619 ** pIn->nSdst columns to be output. pDest is where the output should 2620 ** be sent. 2621 ** 2622 ** regReturn is the number of the register holding the subroutine 2623 ** return address. 2624 ** 2625 ** If regPrev>0 then it is the first register in a vector that 2626 ** records the previous output. mem[regPrev] is a flag that is false 2627 ** if there has been no previous output. If regPrev>0 then code is 2628 ** generated to suppress duplicates. pKeyInfo is used for comparing 2629 ** keys. 2630 ** 2631 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2632 ** iBreak. 2633 */ 2634 static int generateOutputSubroutine( 2635 Parse *pParse, /* Parsing context */ 2636 Select *p, /* The SELECT statement */ 2637 SelectDest *pIn, /* Coroutine supplying data */ 2638 SelectDest *pDest, /* Where to send the data */ 2639 int regReturn, /* The return address register */ 2640 int regPrev, /* Previous result register. No uniqueness if 0 */ 2641 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2642 int iBreak /* Jump here if we hit the LIMIT */ 2643 ){ 2644 Vdbe *v = pParse->pVdbe; 2645 int iContinue; 2646 int addr; 2647 2648 addr = sqlite3VdbeCurrentAddr(v); 2649 iContinue = sqlite3VdbeMakeLabel(v); 2650 2651 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2652 */ 2653 if( regPrev ){ 2654 int addr1, addr2; 2655 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2656 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2657 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2658 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2659 sqlite3VdbeJumpHere(v, addr1); 2660 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2661 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2662 } 2663 if( pParse->db->mallocFailed ) return 0; 2664 2665 /* Suppress the first OFFSET entries if there is an OFFSET clause 2666 */ 2667 codeOffset(v, p->iOffset, iContinue); 2668 2669 assert( pDest->eDest!=SRT_Exists ); 2670 assert( pDest->eDest!=SRT_Table ); 2671 switch( pDest->eDest ){ 2672 /* Store the result as data using a unique key. 2673 */ 2674 case SRT_EphemTab: { 2675 int r1 = sqlite3GetTempReg(pParse); 2676 int r2 = sqlite3GetTempReg(pParse); 2677 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2678 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2679 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2680 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2681 sqlite3ReleaseTempReg(pParse, r2); 2682 sqlite3ReleaseTempReg(pParse, r1); 2683 break; 2684 } 2685 2686 #ifndef SQLITE_OMIT_SUBQUERY 2687 /* If we are creating a set for an "expr IN (SELECT ...)". 2688 */ 2689 case SRT_Set: { 2690 int r1; 2691 testcase( pIn->nSdst>1 ); 2692 r1 = sqlite3GetTempReg(pParse); 2693 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2694 r1, pDest->zAffSdst, pIn->nSdst); 2695 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2696 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2697 pIn->iSdst, pIn->nSdst); 2698 sqlite3ReleaseTempReg(pParse, r1); 2699 break; 2700 } 2701 2702 /* If this is a scalar select that is part of an expression, then 2703 ** store the results in the appropriate memory cell and break out 2704 ** of the scan loop. 2705 */ 2706 case SRT_Mem: { 2707 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2708 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2709 /* The LIMIT clause will jump out of the loop for us */ 2710 break; 2711 } 2712 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2713 2714 /* The results are stored in a sequence of registers 2715 ** starting at pDest->iSdst. Then the co-routine yields. 2716 */ 2717 case SRT_Coroutine: { 2718 if( pDest->iSdst==0 ){ 2719 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2720 pDest->nSdst = pIn->nSdst; 2721 } 2722 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2723 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2724 break; 2725 } 2726 2727 /* If none of the above, then the result destination must be 2728 ** SRT_Output. This routine is never called with any other 2729 ** destination other than the ones handled above or SRT_Output. 2730 ** 2731 ** For SRT_Output, results are stored in a sequence of registers. 2732 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2733 ** return the next row of result. 2734 */ 2735 default: { 2736 assert( pDest->eDest==SRT_Output ); 2737 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2738 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2739 break; 2740 } 2741 } 2742 2743 /* Jump to the end of the loop if the LIMIT is reached. 2744 */ 2745 if( p->iLimit ){ 2746 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2747 } 2748 2749 /* Generate the subroutine return 2750 */ 2751 sqlite3VdbeResolveLabel(v, iContinue); 2752 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2753 2754 return addr; 2755 } 2756 2757 /* 2758 ** Alternative compound select code generator for cases when there 2759 ** is an ORDER BY clause. 2760 ** 2761 ** We assume a query of the following form: 2762 ** 2763 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2764 ** 2765 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2766 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2767 ** co-routines. Then run the co-routines in parallel and merge the results 2768 ** into the output. In addition to the two coroutines (called selectA and 2769 ** selectB) there are 7 subroutines: 2770 ** 2771 ** outA: Move the output of the selectA coroutine into the output 2772 ** of the compound query. 2773 ** 2774 ** outB: Move the output of the selectB coroutine into the output 2775 ** of the compound query. (Only generated for UNION and 2776 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2777 ** appears only in B.) 2778 ** 2779 ** AltB: Called when there is data from both coroutines and A<B. 2780 ** 2781 ** AeqB: Called when there is data from both coroutines and A==B. 2782 ** 2783 ** AgtB: Called when there is data from both coroutines and A>B. 2784 ** 2785 ** EofA: Called when data is exhausted from selectA. 2786 ** 2787 ** EofB: Called when data is exhausted from selectB. 2788 ** 2789 ** The implementation of the latter five subroutines depend on which 2790 ** <operator> is used: 2791 ** 2792 ** 2793 ** UNION ALL UNION EXCEPT INTERSECT 2794 ** ------------- ----------------- -------------- ----------------- 2795 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2796 ** 2797 ** AeqB: outA, nextA nextA nextA outA, nextA 2798 ** 2799 ** AgtB: outB, nextB outB, nextB nextB nextB 2800 ** 2801 ** EofA: outB, nextB outB, nextB halt halt 2802 ** 2803 ** EofB: outA, nextA outA, nextA outA, nextA halt 2804 ** 2805 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2806 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2807 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2808 ** following nextX causes a jump to the end of the select processing. 2809 ** 2810 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2811 ** within the output subroutine. The regPrev register set holds the previously 2812 ** output value. A comparison is made against this value and the output 2813 ** is skipped if the next results would be the same as the previous. 2814 ** 2815 ** The implementation plan is to implement the two coroutines and seven 2816 ** subroutines first, then put the control logic at the bottom. Like this: 2817 ** 2818 ** goto Init 2819 ** coA: coroutine for left query (A) 2820 ** coB: coroutine for right query (B) 2821 ** outA: output one row of A 2822 ** outB: output one row of B (UNION and UNION ALL only) 2823 ** EofA: ... 2824 ** EofB: ... 2825 ** AltB: ... 2826 ** AeqB: ... 2827 ** AgtB: ... 2828 ** Init: initialize coroutine registers 2829 ** yield coA 2830 ** if eof(A) goto EofA 2831 ** yield coB 2832 ** if eof(B) goto EofB 2833 ** Cmpr: Compare A, B 2834 ** Jump AltB, AeqB, AgtB 2835 ** End: ... 2836 ** 2837 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2838 ** actually called using Gosub and they do not Return. EofA and EofB loop 2839 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2840 ** and AgtB jump to either L2 or to one of EofA or EofB. 2841 */ 2842 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2843 static int multiSelectOrderBy( 2844 Parse *pParse, /* Parsing context */ 2845 Select *p, /* The right-most of SELECTs to be coded */ 2846 SelectDest *pDest /* What to do with query results */ 2847 ){ 2848 int i, j; /* Loop counters */ 2849 Select *pPrior; /* Another SELECT immediately to our left */ 2850 Vdbe *v; /* Generate code to this VDBE */ 2851 SelectDest destA; /* Destination for coroutine A */ 2852 SelectDest destB; /* Destination for coroutine B */ 2853 int regAddrA; /* Address register for select-A coroutine */ 2854 int regAddrB; /* Address register for select-B coroutine */ 2855 int addrSelectA; /* Address of the select-A coroutine */ 2856 int addrSelectB; /* Address of the select-B coroutine */ 2857 int regOutA; /* Address register for the output-A subroutine */ 2858 int regOutB; /* Address register for the output-B subroutine */ 2859 int addrOutA; /* Address of the output-A subroutine */ 2860 int addrOutB = 0; /* Address of the output-B subroutine */ 2861 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2862 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2863 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2864 int addrAltB; /* Address of the A<B subroutine */ 2865 int addrAeqB; /* Address of the A==B subroutine */ 2866 int addrAgtB; /* Address of the A>B subroutine */ 2867 int regLimitA; /* Limit register for select-A */ 2868 int regLimitB; /* Limit register for select-A */ 2869 int regPrev; /* A range of registers to hold previous output */ 2870 int savedLimit; /* Saved value of p->iLimit */ 2871 int savedOffset; /* Saved value of p->iOffset */ 2872 int labelCmpr; /* Label for the start of the merge algorithm */ 2873 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2874 int addr1; /* Jump instructions that get retargetted */ 2875 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2876 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2877 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2878 sqlite3 *db; /* Database connection */ 2879 ExprList *pOrderBy; /* The ORDER BY clause */ 2880 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2881 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2882 #ifndef SQLITE_OMIT_EXPLAIN 2883 int iSub1; /* EQP id of left-hand query */ 2884 int iSub2; /* EQP id of right-hand query */ 2885 #endif 2886 2887 assert( p->pOrderBy!=0 ); 2888 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2889 db = pParse->db; 2890 v = pParse->pVdbe; 2891 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2892 labelEnd = sqlite3VdbeMakeLabel(v); 2893 labelCmpr = sqlite3VdbeMakeLabel(v); 2894 2895 2896 /* Patch up the ORDER BY clause 2897 */ 2898 op = p->op; 2899 pPrior = p->pPrior; 2900 assert( pPrior->pOrderBy==0 ); 2901 pOrderBy = p->pOrderBy; 2902 assert( pOrderBy ); 2903 nOrderBy = pOrderBy->nExpr; 2904 2905 /* For operators other than UNION ALL we have to make sure that 2906 ** the ORDER BY clause covers every term of the result set. Add 2907 ** terms to the ORDER BY clause as necessary. 2908 */ 2909 if( op!=TK_ALL ){ 2910 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2911 struct ExprList_item *pItem; 2912 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2913 assert( pItem->u.x.iOrderByCol>0 ); 2914 if( pItem->u.x.iOrderByCol==i ) break; 2915 } 2916 if( j==nOrderBy ){ 2917 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2918 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2919 pNew->flags |= EP_IntValue; 2920 pNew->u.iValue = i; 2921 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2922 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2923 } 2924 } 2925 } 2926 2927 /* Compute the comparison permutation and keyinfo that is used with 2928 ** the permutation used to determine if the next 2929 ** row of results comes from selectA or selectB. Also add explicit 2930 ** collations to the ORDER BY clause terms so that when the subqueries 2931 ** to the right and the left are evaluated, they use the correct 2932 ** collation. 2933 */ 2934 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2935 if( aPermute ){ 2936 struct ExprList_item *pItem; 2937 aPermute[0] = nOrderBy; 2938 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2939 assert( pItem->u.x.iOrderByCol>0 ); 2940 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2941 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2942 } 2943 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2944 }else{ 2945 pKeyMerge = 0; 2946 } 2947 2948 /* Reattach the ORDER BY clause to the query. 2949 */ 2950 p->pOrderBy = pOrderBy; 2951 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2952 2953 /* Allocate a range of temporary registers and the KeyInfo needed 2954 ** for the logic that removes duplicate result rows when the 2955 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2956 */ 2957 if( op==TK_ALL ){ 2958 regPrev = 0; 2959 }else{ 2960 int nExpr = p->pEList->nExpr; 2961 assert( nOrderBy>=nExpr || db->mallocFailed ); 2962 regPrev = pParse->nMem+1; 2963 pParse->nMem += nExpr+1; 2964 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2965 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2966 if( pKeyDup ){ 2967 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2968 for(i=0; i<nExpr; i++){ 2969 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2970 pKeyDup->aSortOrder[i] = 0; 2971 } 2972 } 2973 } 2974 2975 /* Separate the left and the right query from one another 2976 */ 2977 p->pPrior = 0; 2978 pPrior->pNext = 0; 2979 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2980 if( pPrior->pPrior==0 ){ 2981 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2982 } 2983 2984 /* Compute the limit registers */ 2985 computeLimitRegisters(pParse, p, labelEnd); 2986 if( p->iLimit && op==TK_ALL ){ 2987 regLimitA = ++pParse->nMem; 2988 regLimitB = ++pParse->nMem; 2989 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2990 regLimitA); 2991 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2992 }else{ 2993 regLimitA = regLimitB = 0; 2994 } 2995 sqlite3ExprDelete(db, p->pLimit); 2996 p->pLimit = 0; 2997 sqlite3ExprDelete(db, p->pOffset); 2998 p->pOffset = 0; 2999 3000 regAddrA = ++pParse->nMem; 3001 regAddrB = ++pParse->nMem; 3002 regOutA = ++pParse->nMem; 3003 regOutB = ++pParse->nMem; 3004 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3005 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3006 3007 /* Generate a coroutine to evaluate the SELECT statement to the 3008 ** left of the compound operator - the "A" select. 3009 */ 3010 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3011 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3012 VdbeComment((v, "left SELECT")); 3013 pPrior->iLimit = regLimitA; 3014 explainSetInteger(iSub1, pParse->iNextSelectId); 3015 sqlite3Select(pParse, pPrior, &destA); 3016 sqlite3VdbeEndCoroutine(v, regAddrA); 3017 sqlite3VdbeJumpHere(v, addr1); 3018 3019 /* Generate a coroutine to evaluate the SELECT statement on 3020 ** the right - the "B" select 3021 */ 3022 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3023 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3024 VdbeComment((v, "right SELECT")); 3025 savedLimit = p->iLimit; 3026 savedOffset = p->iOffset; 3027 p->iLimit = regLimitB; 3028 p->iOffset = 0; 3029 explainSetInteger(iSub2, pParse->iNextSelectId); 3030 sqlite3Select(pParse, p, &destB); 3031 p->iLimit = savedLimit; 3032 p->iOffset = savedOffset; 3033 sqlite3VdbeEndCoroutine(v, regAddrB); 3034 3035 /* Generate a subroutine that outputs the current row of the A 3036 ** select as the next output row of the compound select. 3037 */ 3038 VdbeNoopComment((v, "Output routine for A")); 3039 addrOutA = generateOutputSubroutine(pParse, 3040 p, &destA, pDest, regOutA, 3041 regPrev, pKeyDup, labelEnd); 3042 3043 /* Generate a subroutine that outputs the current row of the B 3044 ** select as the next output row of the compound select. 3045 */ 3046 if( op==TK_ALL || op==TK_UNION ){ 3047 VdbeNoopComment((v, "Output routine for B")); 3048 addrOutB = generateOutputSubroutine(pParse, 3049 p, &destB, pDest, regOutB, 3050 regPrev, pKeyDup, labelEnd); 3051 } 3052 sqlite3KeyInfoUnref(pKeyDup); 3053 3054 /* Generate a subroutine to run when the results from select A 3055 ** are exhausted and only data in select B remains. 3056 */ 3057 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3058 addrEofA_noB = addrEofA = labelEnd; 3059 }else{ 3060 VdbeNoopComment((v, "eof-A subroutine")); 3061 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3062 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3063 VdbeCoverage(v); 3064 sqlite3VdbeGoto(v, addrEofA); 3065 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3066 } 3067 3068 /* Generate a subroutine to run when the results from select B 3069 ** are exhausted and only data in select A remains. 3070 */ 3071 if( op==TK_INTERSECT ){ 3072 addrEofB = addrEofA; 3073 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3074 }else{ 3075 VdbeNoopComment((v, "eof-B subroutine")); 3076 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3077 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3078 sqlite3VdbeGoto(v, addrEofB); 3079 } 3080 3081 /* Generate code to handle the case of A<B 3082 */ 3083 VdbeNoopComment((v, "A-lt-B subroutine")); 3084 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3085 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3086 sqlite3VdbeGoto(v, labelCmpr); 3087 3088 /* Generate code to handle the case of A==B 3089 */ 3090 if( op==TK_ALL ){ 3091 addrAeqB = addrAltB; 3092 }else if( op==TK_INTERSECT ){ 3093 addrAeqB = addrAltB; 3094 addrAltB++; 3095 }else{ 3096 VdbeNoopComment((v, "A-eq-B subroutine")); 3097 addrAeqB = 3098 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3099 sqlite3VdbeGoto(v, labelCmpr); 3100 } 3101 3102 /* Generate code to handle the case of A>B 3103 */ 3104 VdbeNoopComment((v, "A-gt-B subroutine")); 3105 addrAgtB = sqlite3VdbeCurrentAddr(v); 3106 if( op==TK_ALL || op==TK_UNION ){ 3107 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3108 } 3109 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3110 sqlite3VdbeGoto(v, labelCmpr); 3111 3112 /* This code runs once to initialize everything. 3113 */ 3114 sqlite3VdbeJumpHere(v, addr1); 3115 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3116 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3117 3118 /* Implement the main merge loop 3119 */ 3120 sqlite3VdbeResolveLabel(v, labelCmpr); 3121 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3122 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3123 (char*)pKeyMerge, P4_KEYINFO); 3124 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3125 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3126 3127 /* Jump to the this point in order to terminate the query. 3128 */ 3129 sqlite3VdbeResolveLabel(v, labelEnd); 3130 3131 /* Reassembly the compound query so that it will be freed correctly 3132 ** by the calling function */ 3133 if( p->pPrior ){ 3134 sqlite3SelectDelete(db, p->pPrior); 3135 } 3136 p->pPrior = pPrior; 3137 pPrior->pNext = p; 3138 3139 /*** TBD: Insert subroutine calls to close cursors on incomplete 3140 **** subqueries ****/ 3141 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3142 return pParse->nErr!=0; 3143 } 3144 #endif 3145 3146 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3147 3148 /* An instance of the SubstContext object describes an substitution edit 3149 ** to be performed on a parse tree. 3150 ** 3151 ** All references to columns in table iTable are to be replaced by corresponding 3152 ** expressions in pEList. 3153 */ 3154 typedef struct SubstContext { 3155 Parse *pParse; /* The parsing context */ 3156 int iTable; /* Replace references to this table */ 3157 int iNewTable; /* New table number */ 3158 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3159 ExprList *pEList; /* Replacement expressions */ 3160 } SubstContext; 3161 3162 /* Forward Declarations */ 3163 static void substExprList(SubstContext*, ExprList*); 3164 static void substSelect(SubstContext*, Select*, int); 3165 3166 /* 3167 ** Scan through the expression pExpr. Replace every reference to 3168 ** a column in table number iTable with a copy of the iColumn-th 3169 ** entry in pEList. (But leave references to the ROWID column 3170 ** unchanged.) 3171 ** 3172 ** This routine is part of the flattening procedure. A subquery 3173 ** whose result set is defined by pEList appears as entry in the 3174 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3175 ** FORM clause entry is iTable. This routine makes the necessary 3176 ** changes to pExpr so that it refers directly to the source table 3177 ** of the subquery rather the result set of the subquery. 3178 */ 3179 static Expr *substExpr( 3180 SubstContext *pSubst, /* Description of the substitution */ 3181 Expr *pExpr /* Expr in which substitution occurs */ 3182 ){ 3183 if( pExpr==0 ) return 0; 3184 if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){ 3185 pExpr->iRightJoinTable = pSubst->iNewTable; 3186 } 3187 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3188 if( pExpr->iColumn<0 ){ 3189 pExpr->op = TK_NULL; 3190 }else{ 3191 Expr *pNew; 3192 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3193 Expr ifNullRow; 3194 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3195 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3196 if( sqlite3ExprIsVector(pCopy) ){ 3197 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3198 }else{ 3199 sqlite3 *db = pSubst->pParse->db; 3200 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3201 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3202 ifNullRow.op = TK_IF_NULL_ROW; 3203 ifNullRow.pLeft = pCopy; 3204 ifNullRow.iTable = pSubst->iNewTable; 3205 pCopy = &ifNullRow; 3206 } 3207 pNew = sqlite3ExprDup(db, pCopy, 0); 3208 if( pNew && pSubst->isLeftJoin ){ 3209 ExprSetProperty(pNew, EP_CanBeNull); 3210 } 3211 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3212 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3213 ExprSetProperty(pNew, EP_FromJoin); 3214 } 3215 sqlite3ExprDelete(db, pExpr); 3216 pExpr = pNew; 3217 } 3218 } 3219 }else{ 3220 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3221 pExpr->iTable = pSubst->iNewTable; 3222 } 3223 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3224 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3225 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3226 substSelect(pSubst, pExpr->x.pSelect, 1); 3227 }else{ 3228 substExprList(pSubst, pExpr->x.pList); 3229 } 3230 } 3231 return pExpr; 3232 } 3233 static void substExprList( 3234 SubstContext *pSubst, /* Description of the substitution */ 3235 ExprList *pList /* List to scan and in which to make substitutes */ 3236 ){ 3237 int i; 3238 if( pList==0 ) return; 3239 for(i=0; i<pList->nExpr; i++){ 3240 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3241 } 3242 } 3243 static void substSelect( 3244 SubstContext *pSubst, /* Description of the substitution */ 3245 Select *p, /* SELECT statement in which to make substitutions */ 3246 int doPrior /* Do substitutes on p->pPrior too */ 3247 ){ 3248 SrcList *pSrc; 3249 struct SrcList_item *pItem; 3250 int i; 3251 if( !p ) return; 3252 do{ 3253 substExprList(pSubst, p->pEList); 3254 substExprList(pSubst, p->pGroupBy); 3255 substExprList(pSubst, p->pOrderBy); 3256 p->pHaving = substExpr(pSubst, p->pHaving); 3257 p->pWhere = substExpr(pSubst, p->pWhere); 3258 pSrc = p->pSrc; 3259 assert( pSrc!=0 ); 3260 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3261 substSelect(pSubst, pItem->pSelect, 1); 3262 if( pItem->fg.isTabFunc ){ 3263 substExprList(pSubst, pItem->u1.pFuncArg); 3264 } 3265 } 3266 }while( doPrior && (p = p->pPrior)!=0 ); 3267 } 3268 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3269 3270 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3271 /* 3272 ** This routine attempts to flatten subqueries as a performance optimization. 3273 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3274 ** 3275 ** To understand the concept of flattening, consider the following 3276 ** query: 3277 ** 3278 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3279 ** 3280 ** The default way of implementing this query is to execute the 3281 ** subquery first and store the results in a temporary table, then 3282 ** run the outer query on that temporary table. This requires two 3283 ** passes over the data. Furthermore, because the temporary table 3284 ** has no indices, the WHERE clause on the outer query cannot be 3285 ** optimized. 3286 ** 3287 ** This routine attempts to rewrite queries such as the above into 3288 ** a single flat select, like this: 3289 ** 3290 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3291 ** 3292 ** The code generated for this simplification gives the same result 3293 ** but only has to scan the data once. And because indices might 3294 ** exist on the table t1, a complete scan of the data might be 3295 ** avoided. 3296 ** 3297 ** Flattening is only attempted if all of the following are true: 3298 ** 3299 ** (1) The subquery and the outer query do not both use aggregates. 3300 ** 3301 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3302 ** and (2b) the outer query does not use subqueries other than the one 3303 ** FROM-clause subquery that is a candidate for flattening. (2b is 3304 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3305 ** 3306 ** (3) The subquery is not the right operand of a LEFT JOIN 3307 ** or (a) the subquery is not itself a join and (b) the FROM clause 3308 ** of the subquery does not contain a virtual table and (c) the 3309 ** outer query is not an aggregate. 3310 ** 3311 ** (4) The subquery is not DISTINCT. 3312 ** 3313 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3314 ** sub-queries that were excluded from this optimization. Restriction 3315 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3316 ** 3317 ** (6) The subquery does not use aggregates or the outer query is not 3318 ** DISTINCT. 3319 ** 3320 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3321 ** A FROM clause, consider adding a FROM clause with the special 3322 ** table sqlite_once that consists of a single row containing a 3323 ** single NULL. 3324 ** 3325 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3326 ** 3327 ** (9) The subquery does not use LIMIT or the outer query does not use 3328 ** aggregates. 3329 ** 3330 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3331 ** accidently carried the comment forward until 2014-09-15. Original 3332 ** text: "The subquery does not use aggregates or the outer query 3333 ** does not use LIMIT." 3334 ** 3335 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3336 ** 3337 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3338 ** a separate restriction deriving from ticket #350. 3339 ** 3340 ** (13) The subquery and outer query do not both use LIMIT. 3341 ** 3342 ** (14) The subquery does not use OFFSET. 3343 ** 3344 ** (15) The outer query is not part of a compound select or the 3345 ** subquery does not have a LIMIT clause. 3346 ** (See ticket #2339 and ticket [02a8e81d44]). 3347 ** 3348 ** (16) The outer query is not an aggregate or the subquery does 3349 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3350 ** until we introduced the group_concat() function. 3351 ** 3352 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3353 ** compound clause made up entirely of non-aggregate queries, and 3354 ** the parent query: 3355 ** 3356 ** * is not itself part of a compound select, 3357 ** * is not an aggregate or DISTINCT query, and 3358 ** * is not a join 3359 ** 3360 ** The parent and sub-query may contain WHERE clauses. Subject to 3361 ** rules (11), (13) and (14), they may also contain ORDER BY, 3362 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3363 ** operator other than UNION ALL because all the other compound 3364 ** operators have an implied DISTINCT which is disallowed by 3365 ** restriction (4). 3366 ** 3367 ** Also, each component of the sub-query must return the same number 3368 ** of result columns. This is actually a requirement for any compound 3369 ** SELECT statement, but all the code here does is make sure that no 3370 ** such (illegal) sub-query is flattened. The caller will detect the 3371 ** syntax error and return a detailed message. 3372 ** 3373 ** (18) If the sub-query is a compound select, then all terms of the 3374 ** ORDER by clause of the parent must be simple references to 3375 ** columns of the sub-query. 3376 ** 3377 ** (19) The subquery does not use LIMIT or the outer query does not 3378 ** have a WHERE clause. 3379 ** 3380 ** (20) If the sub-query is a compound select, then it must not use 3381 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3382 ** somewhat by saying that the terms of the ORDER BY clause must 3383 ** appear as unmodified result columns in the outer query. But we 3384 ** have other optimizations in mind to deal with that case. 3385 ** 3386 ** (21) The subquery does not use LIMIT or the outer query is not 3387 ** DISTINCT. (See ticket [752e1646fc]). 3388 ** 3389 ** (22) The subquery is not a recursive CTE. 3390 ** 3391 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3392 ** compound query. This restriction is because transforming the 3393 ** parent to a compound query confuses the code that handles 3394 ** recursive queries in multiSelect(). 3395 ** 3396 ** (24) The subquery is not an aggregate that uses the built-in min() or 3397 ** or max() functions. (Without this restriction, a query like: 3398 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3399 ** return the value X for which Y was maximal.) 3400 ** 3401 ** 3402 ** In this routine, the "p" parameter is a pointer to the outer query. 3403 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3404 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3405 ** 3406 ** If flattening is not attempted, this routine is a no-op and returns 0. 3407 ** If flattening is attempted this routine returns 1. 3408 ** 3409 ** All of the expression analysis must occur on both the outer query and 3410 ** the subquery before this routine runs. 3411 */ 3412 static int flattenSubquery( 3413 Parse *pParse, /* Parsing context */ 3414 Select *p, /* The parent or outer SELECT statement */ 3415 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3416 int isAgg, /* True if outer SELECT uses aggregate functions */ 3417 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3418 ){ 3419 const char *zSavedAuthContext = pParse->zAuthContext; 3420 Select *pParent; /* Current UNION ALL term of the other query */ 3421 Select *pSub; /* The inner query or "subquery" */ 3422 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3423 SrcList *pSrc; /* The FROM clause of the outer query */ 3424 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3425 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3426 int iNewParent = -1;/* Replacement table for iParent */ 3427 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3428 int i; /* Loop counter */ 3429 Expr *pWhere; /* The WHERE clause */ 3430 struct SrcList_item *pSubitem; /* The subquery */ 3431 sqlite3 *db = pParse->db; 3432 3433 /* Check to see if flattening is permitted. Return 0 if not. 3434 */ 3435 assert( p!=0 ); 3436 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3437 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3438 pSrc = p->pSrc; 3439 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3440 pSubitem = &pSrc->a[iFrom]; 3441 iParent = pSubitem->iCursor; 3442 pSub = pSubitem->pSelect; 3443 assert( pSub!=0 ); 3444 if( subqueryIsAgg ){ 3445 if( isAgg ) return 0; /* Restriction (1) */ 3446 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3447 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3448 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3449 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3450 ){ 3451 return 0; /* Restriction (2b) */ 3452 } 3453 } 3454 3455 pSubSrc = pSub->pSrc; 3456 assert( pSubSrc ); 3457 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3458 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3459 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3460 ** became arbitrary expressions, we were forced to add restrictions (13) 3461 ** and (14). */ 3462 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3463 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3464 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3465 return 0; /* Restriction (15) */ 3466 } 3467 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3468 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3469 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3470 return 0; /* Restrictions (8)(9) */ 3471 } 3472 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3473 return 0; /* Restriction (6) */ 3474 } 3475 if( p->pOrderBy && pSub->pOrderBy ){ 3476 return 0; /* Restriction (11) */ 3477 } 3478 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3479 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3480 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3481 return 0; /* Restriction (21) */ 3482 } 3483 testcase( pSub->selFlags & SF_Recursive ); 3484 testcase( pSub->selFlags & SF_MinMaxAgg ); 3485 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3486 return 0; /* Restrictions (22) and (24) */ 3487 } 3488 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3489 return 0; /* Restriction (23) */ 3490 } 3491 3492 /* 3493 ** If the subquery is the right operand of a LEFT JOIN, then the 3494 ** subquery may not be a join itself. Example of why this is not allowed: 3495 ** 3496 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3497 ** 3498 ** If we flatten the above, we would get 3499 ** 3500 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3501 ** 3502 ** which is not at all the same thing. 3503 ** 3504 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3505 ** query cannot be an aggregate. This is an artifact of the way aggregates 3506 ** are processed - there is no mechanism to determine if the LEFT JOIN 3507 ** table should be all-NULL. 3508 ** 3509 ** See also tickets #306, #350, and #3300. 3510 */ 3511 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3512 isLeftJoin = 1; 3513 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3514 return 0; /* Restriction (3) */ 3515 } 3516 } 3517 #ifdef SQLITE_EXTRA_IFNULLROW 3518 else if( iFrom>0 && !isAgg ){ 3519 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3520 ** every reference to any result column from subquery in a join, even though 3521 ** they are not necessary. This will stress-test the OP_IfNullRow opcode. */ 3522 isLeftJoin = -1; 3523 } 3524 #endif 3525 3526 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3527 ** use only the UNION ALL operator. And none of the simple select queries 3528 ** that make up the compound SELECT are allowed to be aggregate or distinct 3529 ** queries. 3530 */ 3531 if( pSub->pPrior ){ 3532 if( pSub->pOrderBy ){ 3533 return 0; /* Restriction 20 */ 3534 } 3535 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3536 return 0; 3537 } 3538 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3539 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3540 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3541 assert( pSub->pSrc!=0 ); 3542 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3543 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3544 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3545 || pSub1->pSrc->nSrc<1 3546 ){ 3547 return 0; 3548 } 3549 testcase( pSub1->pSrc->nSrc>1 ); 3550 } 3551 3552 /* Restriction 18. */ 3553 if( p->pOrderBy ){ 3554 int ii; 3555 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3556 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3557 } 3558 } 3559 } 3560 3561 /***** If we reach this point, flattening is permitted. *****/ 3562 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3563 pSub->zSelName, pSub, iFrom)); 3564 3565 /* Authorize the subquery */ 3566 pParse->zAuthContext = pSubitem->zName; 3567 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3568 testcase( i==SQLITE_DENY ); 3569 pParse->zAuthContext = zSavedAuthContext; 3570 3571 /* If the sub-query is a compound SELECT statement, then (by restrictions 3572 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3573 ** be of the form: 3574 ** 3575 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3576 ** 3577 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3578 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3579 ** OFFSET clauses and joins them to the left-hand-side of the original 3580 ** using UNION ALL operators. In this case N is the number of simple 3581 ** select statements in the compound sub-query. 3582 ** 3583 ** Example: 3584 ** 3585 ** SELECT a+1 FROM ( 3586 ** SELECT x FROM tab 3587 ** UNION ALL 3588 ** SELECT y FROM tab 3589 ** UNION ALL 3590 ** SELECT abs(z*2) FROM tab2 3591 ** ) WHERE a!=5 ORDER BY 1 3592 ** 3593 ** Transformed into: 3594 ** 3595 ** SELECT x+1 FROM tab WHERE x+1!=5 3596 ** UNION ALL 3597 ** SELECT y+1 FROM tab WHERE y+1!=5 3598 ** UNION ALL 3599 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3600 ** ORDER BY 1 3601 ** 3602 ** We call this the "compound-subquery flattening". 3603 */ 3604 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3605 Select *pNew; 3606 ExprList *pOrderBy = p->pOrderBy; 3607 Expr *pLimit = p->pLimit; 3608 Expr *pOffset = p->pOffset; 3609 Select *pPrior = p->pPrior; 3610 p->pOrderBy = 0; 3611 p->pSrc = 0; 3612 p->pPrior = 0; 3613 p->pLimit = 0; 3614 p->pOffset = 0; 3615 pNew = sqlite3SelectDup(db, p, 0); 3616 sqlite3SelectSetName(pNew, pSub->zSelName); 3617 p->pOffset = pOffset; 3618 p->pLimit = pLimit; 3619 p->pOrderBy = pOrderBy; 3620 p->pSrc = pSrc; 3621 p->op = TK_ALL; 3622 if( pNew==0 ){ 3623 p->pPrior = pPrior; 3624 }else{ 3625 pNew->pPrior = pPrior; 3626 if( pPrior ) pPrior->pNext = pNew; 3627 pNew->pNext = p; 3628 p->pPrior = pNew; 3629 SELECTTRACE(2,pParse,p, 3630 ("compound-subquery flattener creates %s.%p as peer\n", 3631 pNew->zSelName, pNew)); 3632 } 3633 if( db->mallocFailed ) return 1; 3634 } 3635 3636 /* Begin flattening the iFrom-th entry of the FROM clause 3637 ** in the outer query. 3638 */ 3639 pSub = pSub1 = pSubitem->pSelect; 3640 3641 /* Delete the transient table structure associated with the 3642 ** subquery 3643 */ 3644 sqlite3DbFree(db, pSubitem->zDatabase); 3645 sqlite3DbFree(db, pSubitem->zName); 3646 sqlite3DbFree(db, pSubitem->zAlias); 3647 pSubitem->zDatabase = 0; 3648 pSubitem->zName = 0; 3649 pSubitem->zAlias = 0; 3650 pSubitem->pSelect = 0; 3651 3652 /* Defer deleting the Table object associated with the 3653 ** subquery until code generation is 3654 ** complete, since there may still exist Expr.pTab entries that 3655 ** refer to the subquery even after flattening. Ticket #3346. 3656 ** 3657 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3658 */ 3659 if( ALWAYS(pSubitem->pTab!=0) ){ 3660 Table *pTabToDel = pSubitem->pTab; 3661 if( pTabToDel->nTabRef==1 ){ 3662 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3663 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3664 pToplevel->pZombieTab = pTabToDel; 3665 }else{ 3666 pTabToDel->nTabRef--; 3667 } 3668 pSubitem->pTab = 0; 3669 } 3670 3671 /* The following loop runs once for each term in a compound-subquery 3672 ** flattening (as described above). If we are doing a different kind 3673 ** of flattening - a flattening other than a compound-subquery flattening - 3674 ** then this loop only runs once. 3675 ** 3676 ** This loop moves all of the FROM elements of the subquery into the 3677 ** the FROM clause of the outer query. Before doing this, remember 3678 ** the cursor number for the original outer query FROM element in 3679 ** iParent. The iParent cursor will never be used. Subsequent code 3680 ** will scan expressions looking for iParent references and replace 3681 ** those references with expressions that resolve to the subquery FROM 3682 ** elements we are now copying in. 3683 */ 3684 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3685 int nSubSrc; 3686 u8 jointype = 0; 3687 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3688 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3689 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3690 3691 if( pSrc ){ 3692 assert( pParent==p ); /* First time through the loop */ 3693 jointype = pSubitem->fg.jointype; 3694 }else{ 3695 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3696 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3697 if( pSrc==0 ){ 3698 assert( db->mallocFailed ); 3699 break; 3700 } 3701 } 3702 3703 /* The subquery uses a single slot of the FROM clause of the outer 3704 ** query. If the subquery has more than one element in its FROM clause, 3705 ** then expand the outer query to make space for it to hold all elements 3706 ** of the subquery. 3707 ** 3708 ** Example: 3709 ** 3710 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3711 ** 3712 ** The outer query has 3 slots in its FROM clause. One slot of the 3713 ** outer query (the middle slot) is used by the subquery. The next 3714 ** block of code will expand the outer query FROM clause to 4 slots. 3715 ** The middle slot is expanded to two slots in order to make space 3716 ** for the two elements in the FROM clause of the subquery. 3717 */ 3718 if( nSubSrc>1 ){ 3719 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3720 if( db->mallocFailed ){ 3721 break; 3722 } 3723 } 3724 3725 /* Transfer the FROM clause terms from the subquery into the 3726 ** outer query. 3727 */ 3728 for(i=0; i<nSubSrc; i++){ 3729 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3730 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3731 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3732 iNewParent = pSubSrc->a[i].iCursor; 3733 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3734 } 3735 pSrc->a[iFrom].fg.jointype = jointype; 3736 3737 /* Now begin substituting subquery result set expressions for 3738 ** references to the iParent in the outer query. 3739 ** 3740 ** Example: 3741 ** 3742 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3743 ** \ \_____________ subquery __________/ / 3744 ** \_____________________ outer query ______________________________/ 3745 ** 3746 ** We look at every expression in the outer query and every place we see 3747 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3748 */ 3749 if( pSub->pOrderBy ){ 3750 /* At this point, any non-zero iOrderByCol values indicate that the 3751 ** ORDER BY column expression is identical to the iOrderByCol'th 3752 ** expression returned by SELECT statement pSub. Since these values 3753 ** do not necessarily correspond to columns in SELECT statement pParent, 3754 ** zero them before transfering the ORDER BY clause. 3755 ** 3756 ** Not doing this may cause an error if a subsequent call to this 3757 ** function attempts to flatten a compound sub-query into pParent 3758 ** (the only way this can happen is if the compound sub-query is 3759 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3760 ExprList *pOrderBy = pSub->pOrderBy; 3761 for(i=0; i<pOrderBy->nExpr; i++){ 3762 pOrderBy->a[i].u.x.iOrderByCol = 0; 3763 } 3764 assert( pParent->pOrderBy==0 ); 3765 assert( pSub->pPrior==0 ); 3766 pParent->pOrderBy = pOrderBy; 3767 pSub->pOrderBy = 0; 3768 } 3769 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3770 if( isLeftJoin>0 ){ 3771 setJoinExpr(pWhere, iNewParent); 3772 } 3773 if( subqueryIsAgg ){ 3774 assert( pParent->pHaving==0 ); 3775 pParent->pHaving = pParent->pWhere; 3776 pParent->pWhere = pWhere; 3777 pParent->pHaving = sqlite3ExprAnd(db, 3778 sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving 3779 ); 3780 assert( pParent->pGroupBy==0 ); 3781 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3782 }else{ 3783 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3784 } 3785 if( db->mallocFailed==0 ){ 3786 SubstContext x; 3787 x.pParse = pParse; 3788 x.iTable = iParent; 3789 x.iNewTable = iNewParent; 3790 x.isLeftJoin = isLeftJoin; 3791 x.pEList = pSub->pEList; 3792 substSelect(&x, pParent, 0); 3793 } 3794 3795 /* The flattened query is distinct if either the inner or the 3796 ** outer query is distinct. 3797 */ 3798 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3799 3800 /* 3801 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3802 ** 3803 ** One is tempted to try to add a and b to combine the limits. But this 3804 ** does not work if either limit is negative. 3805 */ 3806 if( pSub->pLimit ){ 3807 pParent->pLimit = pSub->pLimit; 3808 pSub->pLimit = 0; 3809 } 3810 } 3811 3812 /* Finially, delete what is left of the subquery and return 3813 ** success. 3814 */ 3815 sqlite3SelectDelete(db, pSub1); 3816 3817 #if SELECTTRACE_ENABLED 3818 if( sqlite3SelectTrace & 0x100 ){ 3819 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3820 sqlite3TreeViewSelect(0, p, 0); 3821 } 3822 #endif 3823 3824 return 1; 3825 } 3826 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3827 3828 3829 3830 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3831 /* 3832 ** Make copies of relevant WHERE clause terms of the outer query into 3833 ** the WHERE clause of subquery. Example: 3834 ** 3835 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3836 ** 3837 ** Transformed into: 3838 ** 3839 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3840 ** WHERE x=5 AND y=10; 3841 ** 3842 ** The hope is that the terms added to the inner query will make it more 3843 ** efficient. 3844 ** 3845 ** Do not attempt this optimization if: 3846 ** 3847 ** (1) The inner query is an aggregate. (In that case, we'd really want 3848 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3849 ** inner query. But they probably won't help there so do not bother.) 3850 ** 3851 ** (2) The inner query is the recursive part of a common table expression. 3852 ** 3853 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3854 ** close would change the meaning of the LIMIT). 3855 ** 3856 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3857 ** enforces this restriction since this routine does not have enough 3858 ** information to know.) 3859 ** 3860 ** (5) The WHERE clause expression originates in the ON or USING clause 3861 ** of a LEFT JOIN. 3862 ** 3863 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3864 ** terms are duplicated into the subquery. 3865 */ 3866 static int pushDownWhereTerms( 3867 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3868 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3869 Expr *pWhere, /* The WHERE clause of the outer query */ 3870 int iCursor /* Cursor number of the subquery */ 3871 ){ 3872 Expr *pNew; 3873 int nChng = 0; 3874 Select *pX; /* For looping over compound SELECTs in pSubq */ 3875 if( pWhere==0 ) return 0; 3876 for(pX=pSubq; pX; pX=pX->pPrior){ 3877 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3878 testcase( pX->selFlags & SF_Aggregate ); 3879 testcase( pX->selFlags & SF_Recursive ); 3880 testcase( pX!=pSubq ); 3881 return 0; /* restrictions (1) and (2) */ 3882 } 3883 } 3884 if( pSubq->pLimit!=0 ){ 3885 return 0; /* restriction (3) */ 3886 } 3887 while( pWhere->op==TK_AND ){ 3888 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); 3889 pWhere = pWhere->pLeft; 3890 } 3891 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3892 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3893 nChng++; 3894 while( pSubq ){ 3895 SubstContext x; 3896 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3897 x.pParse = pParse; 3898 x.iTable = iCursor; 3899 x.iNewTable = iCursor; 3900 x.isLeftJoin = 0; 3901 x.pEList = pSubq->pEList; 3902 pNew = substExpr(&x, pNew); 3903 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3904 pSubq = pSubq->pPrior; 3905 } 3906 } 3907 return nChng; 3908 } 3909 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3910 3911 /* 3912 ** Based on the contents of the AggInfo structure indicated by the first 3913 ** argument, this function checks if the following are true: 3914 ** 3915 ** * the query contains just a single aggregate function, 3916 ** * the aggregate function is either min() or max(), and 3917 ** * the argument to the aggregate function is a column value. 3918 ** 3919 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3920 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3921 ** list of arguments passed to the aggregate before returning. 3922 ** 3923 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3924 ** WHERE_ORDERBY_NORMAL is returned. 3925 */ 3926 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3927 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3928 3929 *ppMinMax = 0; 3930 if( pAggInfo->nFunc==1 ){ 3931 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3932 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3933 3934 assert( pExpr->op==TK_AGG_FUNCTION ); 3935 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3936 const char *zFunc = pExpr->u.zToken; 3937 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3938 eRet = WHERE_ORDERBY_MIN; 3939 *ppMinMax = pEList; 3940 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3941 eRet = WHERE_ORDERBY_MAX; 3942 *ppMinMax = pEList; 3943 } 3944 } 3945 } 3946 3947 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3948 return eRet; 3949 } 3950 3951 /* 3952 ** The select statement passed as the first argument is an aggregate query. 3953 ** The second argument is the associated aggregate-info object. This 3954 ** function tests if the SELECT is of the form: 3955 ** 3956 ** SELECT count(*) FROM <tbl> 3957 ** 3958 ** where table is a database table, not a sub-select or view. If the query 3959 ** does match this pattern, then a pointer to the Table object representing 3960 ** <tbl> is returned. Otherwise, 0 is returned. 3961 */ 3962 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3963 Table *pTab; 3964 Expr *pExpr; 3965 3966 assert( !p->pGroupBy ); 3967 3968 if( p->pWhere || p->pEList->nExpr!=1 3969 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3970 ){ 3971 return 0; 3972 } 3973 pTab = p->pSrc->a[0].pTab; 3974 pExpr = p->pEList->a[0].pExpr; 3975 assert( pTab && !pTab->pSelect && pExpr ); 3976 3977 if( IsVirtual(pTab) ) return 0; 3978 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3979 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3980 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3981 if( pExpr->flags&EP_Distinct ) return 0; 3982 3983 return pTab; 3984 } 3985 3986 /* 3987 ** If the source-list item passed as an argument was augmented with an 3988 ** INDEXED BY clause, then try to locate the specified index. If there 3989 ** was such a clause and the named index cannot be found, return 3990 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3991 ** pFrom->pIndex and return SQLITE_OK. 3992 */ 3993 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3994 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3995 Table *pTab = pFrom->pTab; 3996 char *zIndexedBy = pFrom->u1.zIndexedBy; 3997 Index *pIdx; 3998 for(pIdx=pTab->pIndex; 3999 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4000 pIdx=pIdx->pNext 4001 ); 4002 if( !pIdx ){ 4003 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4004 pParse->checkSchema = 1; 4005 return SQLITE_ERROR; 4006 } 4007 pFrom->pIBIndex = pIdx; 4008 } 4009 return SQLITE_OK; 4010 } 4011 /* 4012 ** Detect compound SELECT statements that use an ORDER BY clause with 4013 ** an alternative collating sequence. 4014 ** 4015 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4016 ** 4017 ** These are rewritten as a subquery: 4018 ** 4019 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4020 ** ORDER BY ... COLLATE ... 4021 ** 4022 ** This transformation is necessary because the multiSelectOrderBy() routine 4023 ** above that generates the code for a compound SELECT with an ORDER BY clause 4024 ** uses a merge algorithm that requires the same collating sequence on the 4025 ** result columns as on the ORDER BY clause. See ticket 4026 ** http://www.sqlite.org/src/info/6709574d2a 4027 ** 4028 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4029 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4030 ** there are COLLATE terms in the ORDER BY. 4031 */ 4032 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4033 int i; 4034 Select *pNew; 4035 Select *pX; 4036 sqlite3 *db; 4037 struct ExprList_item *a; 4038 SrcList *pNewSrc; 4039 Parse *pParse; 4040 Token dummy; 4041 4042 if( p->pPrior==0 ) return WRC_Continue; 4043 if( p->pOrderBy==0 ) return WRC_Continue; 4044 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4045 if( pX==0 ) return WRC_Continue; 4046 a = p->pOrderBy->a; 4047 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4048 if( a[i].pExpr->flags & EP_Collate ) break; 4049 } 4050 if( i<0 ) return WRC_Continue; 4051 4052 /* If we reach this point, that means the transformation is required. */ 4053 4054 pParse = pWalker->pParse; 4055 db = pParse->db; 4056 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4057 if( pNew==0 ) return WRC_Abort; 4058 memset(&dummy, 0, sizeof(dummy)); 4059 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4060 if( pNewSrc==0 ) return WRC_Abort; 4061 *pNew = *p; 4062 p->pSrc = pNewSrc; 4063 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4064 p->op = TK_SELECT; 4065 p->pWhere = 0; 4066 pNew->pGroupBy = 0; 4067 pNew->pHaving = 0; 4068 pNew->pOrderBy = 0; 4069 p->pPrior = 0; 4070 p->pNext = 0; 4071 p->pWith = 0; 4072 p->selFlags &= ~SF_Compound; 4073 assert( (p->selFlags & SF_Converted)==0 ); 4074 p->selFlags |= SF_Converted; 4075 assert( pNew->pPrior!=0 ); 4076 pNew->pPrior->pNext = pNew; 4077 pNew->pLimit = 0; 4078 pNew->pOffset = 0; 4079 return WRC_Continue; 4080 } 4081 4082 /* 4083 ** Check to see if the FROM clause term pFrom has table-valued function 4084 ** arguments. If it does, leave an error message in pParse and return 4085 ** non-zero, since pFrom is not allowed to be a table-valued function. 4086 */ 4087 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4088 if( pFrom->fg.isTabFunc ){ 4089 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4090 return 1; 4091 } 4092 return 0; 4093 } 4094 4095 #ifndef SQLITE_OMIT_CTE 4096 /* 4097 ** Argument pWith (which may be NULL) points to a linked list of nested 4098 ** WITH contexts, from inner to outermost. If the table identified by 4099 ** FROM clause element pItem is really a common-table-expression (CTE) 4100 ** then return a pointer to the CTE definition for that table. Otherwise 4101 ** return NULL. 4102 ** 4103 ** If a non-NULL value is returned, set *ppContext to point to the With 4104 ** object that the returned CTE belongs to. 4105 */ 4106 static struct Cte *searchWith( 4107 With *pWith, /* Current innermost WITH clause */ 4108 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4109 With **ppContext /* OUT: WITH clause return value belongs to */ 4110 ){ 4111 const char *zName; 4112 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4113 With *p; 4114 for(p=pWith; p; p=p->pOuter){ 4115 int i; 4116 for(i=0; i<p->nCte; i++){ 4117 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4118 *ppContext = p; 4119 return &p->a[i]; 4120 } 4121 } 4122 } 4123 } 4124 return 0; 4125 } 4126 4127 /* The code generator maintains a stack of active WITH clauses 4128 ** with the inner-most WITH clause being at the top of the stack. 4129 ** 4130 ** This routine pushes the WITH clause passed as the second argument 4131 ** onto the top of the stack. If argument bFree is true, then this 4132 ** WITH clause will never be popped from the stack. In this case it 4133 ** should be freed along with the Parse object. In other cases, when 4134 ** bFree==0, the With object will be freed along with the SELECT 4135 ** statement with which it is associated. 4136 */ 4137 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4138 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4139 if( pWith ){ 4140 assert( pParse->pWith!=pWith ); 4141 pWith->pOuter = pParse->pWith; 4142 pParse->pWith = pWith; 4143 if( bFree ) pParse->pWithToFree = pWith; 4144 } 4145 } 4146 4147 /* 4148 ** This function checks if argument pFrom refers to a CTE declared by 4149 ** a WITH clause on the stack currently maintained by the parser. And, 4150 ** if currently processing a CTE expression, if it is a recursive 4151 ** reference to the current CTE. 4152 ** 4153 ** If pFrom falls into either of the two categories above, pFrom->pTab 4154 ** and other fields are populated accordingly. The caller should check 4155 ** (pFrom->pTab!=0) to determine whether or not a successful match 4156 ** was found. 4157 ** 4158 ** Whether or not a match is found, SQLITE_OK is returned if no error 4159 ** occurs. If an error does occur, an error message is stored in the 4160 ** parser and some error code other than SQLITE_OK returned. 4161 */ 4162 static int withExpand( 4163 Walker *pWalker, 4164 struct SrcList_item *pFrom 4165 ){ 4166 Parse *pParse = pWalker->pParse; 4167 sqlite3 *db = pParse->db; 4168 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4169 With *pWith; /* WITH clause that pCte belongs to */ 4170 4171 assert( pFrom->pTab==0 ); 4172 4173 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4174 if( pCte ){ 4175 Table *pTab; 4176 ExprList *pEList; 4177 Select *pSel; 4178 Select *pLeft; /* Left-most SELECT statement */ 4179 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4180 With *pSavedWith; /* Initial value of pParse->pWith */ 4181 4182 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4183 ** recursive reference to CTE pCte. Leave an error in pParse and return 4184 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4185 ** In this case, proceed. */ 4186 if( pCte->zCteErr ){ 4187 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4188 return SQLITE_ERROR; 4189 } 4190 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4191 4192 assert( pFrom->pTab==0 ); 4193 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4194 if( pTab==0 ) return WRC_Abort; 4195 pTab->nTabRef = 1; 4196 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4197 pTab->iPKey = -1; 4198 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4199 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4200 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4201 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4202 assert( pFrom->pSelect ); 4203 4204 /* Check if this is a recursive CTE. */ 4205 pSel = pFrom->pSelect; 4206 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4207 if( bMayRecursive ){ 4208 int i; 4209 SrcList *pSrc = pFrom->pSelect->pSrc; 4210 for(i=0; i<pSrc->nSrc; i++){ 4211 struct SrcList_item *pItem = &pSrc->a[i]; 4212 if( pItem->zDatabase==0 4213 && pItem->zName!=0 4214 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4215 ){ 4216 pItem->pTab = pTab; 4217 pItem->fg.isRecursive = 1; 4218 pTab->nTabRef++; 4219 pSel->selFlags |= SF_Recursive; 4220 } 4221 } 4222 } 4223 4224 /* Only one recursive reference is permitted. */ 4225 if( pTab->nTabRef>2 ){ 4226 sqlite3ErrorMsg( 4227 pParse, "multiple references to recursive table: %s", pCte->zName 4228 ); 4229 return SQLITE_ERROR; 4230 } 4231 assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4232 4233 pCte->zCteErr = "circular reference: %s"; 4234 pSavedWith = pParse->pWith; 4235 pParse->pWith = pWith; 4236 if( bMayRecursive ){ 4237 Select *pPrior = pSel->pPrior; 4238 assert( pPrior->pWith==0 ); 4239 pPrior->pWith = pSel->pWith; 4240 sqlite3WalkSelect(pWalker, pPrior); 4241 pPrior->pWith = 0; 4242 }else{ 4243 sqlite3WalkSelect(pWalker, pSel); 4244 } 4245 pParse->pWith = pWith; 4246 4247 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4248 pEList = pLeft->pEList; 4249 if( pCte->pCols ){ 4250 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4251 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4252 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4253 ); 4254 pParse->pWith = pSavedWith; 4255 return SQLITE_ERROR; 4256 } 4257 pEList = pCte->pCols; 4258 } 4259 4260 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4261 if( bMayRecursive ){ 4262 if( pSel->selFlags & SF_Recursive ){ 4263 pCte->zCteErr = "multiple recursive references: %s"; 4264 }else{ 4265 pCte->zCteErr = "recursive reference in a subquery: %s"; 4266 } 4267 sqlite3WalkSelect(pWalker, pSel); 4268 } 4269 pCte->zCteErr = 0; 4270 pParse->pWith = pSavedWith; 4271 } 4272 4273 return SQLITE_OK; 4274 } 4275 #endif 4276 4277 #ifndef SQLITE_OMIT_CTE 4278 /* 4279 ** If the SELECT passed as the second argument has an associated WITH 4280 ** clause, pop it from the stack stored as part of the Parse object. 4281 ** 4282 ** This function is used as the xSelectCallback2() callback by 4283 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4284 ** names and other FROM clause elements. 4285 */ 4286 static void selectPopWith(Walker *pWalker, Select *p){ 4287 Parse *pParse = pWalker->pParse; 4288 if( pParse->pWith && p->pPrior==0 ){ 4289 With *pWith = findRightmost(p)->pWith; 4290 if( pWith!=0 ){ 4291 assert( pParse->pWith==pWith ); 4292 pParse->pWith = pWith->pOuter; 4293 } 4294 } 4295 } 4296 #else 4297 #define selectPopWith 0 4298 #endif 4299 4300 /* 4301 ** This routine is a Walker callback for "expanding" a SELECT statement. 4302 ** "Expanding" means to do the following: 4303 ** 4304 ** (1) Make sure VDBE cursor numbers have been assigned to every 4305 ** element of the FROM clause. 4306 ** 4307 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4308 ** defines FROM clause. When views appear in the FROM clause, 4309 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4310 ** that implements the view. A copy is made of the view's SELECT 4311 ** statement so that we can freely modify or delete that statement 4312 ** without worrying about messing up the persistent representation 4313 ** of the view. 4314 ** 4315 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4316 ** on joins and the ON and USING clause of joins. 4317 ** 4318 ** (4) Scan the list of columns in the result set (pEList) looking 4319 ** for instances of the "*" operator or the TABLE.* operator. 4320 ** If found, expand each "*" to be every column in every table 4321 ** and TABLE.* to be every column in TABLE. 4322 ** 4323 */ 4324 static int selectExpander(Walker *pWalker, Select *p){ 4325 Parse *pParse = pWalker->pParse; 4326 int i, j, k; 4327 SrcList *pTabList; 4328 ExprList *pEList; 4329 struct SrcList_item *pFrom; 4330 sqlite3 *db = pParse->db; 4331 Expr *pE, *pRight, *pExpr; 4332 u16 selFlags = p->selFlags; 4333 4334 p->selFlags |= SF_Expanded; 4335 if( db->mallocFailed ){ 4336 return WRC_Abort; 4337 } 4338 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4339 return WRC_Prune; 4340 } 4341 pTabList = p->pSrc; 4342 pEList = p->pEList; 4343 if( p->pWith ){ 4344 sqlite3WithPush(pParse, p->pWith, 0); 4345 } 4346 4347 /* Make sure cursor numbers have been assigned to all entries in 4348 ** the FROM clause of the SELECT statement. 4349 */ 4350 sqlite3SrcListAssignCursors(pParse, pTabList); 4351 4352 /* Look up every table named in the FROM clause of the select. If 4353 ** an entry of the FROM clause is a subquery instead of a table or view, 4354 ** then create a transient table structure to describe the subquery. 4355 */ 4356 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4357 Table *pTab; 4358 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4359 if( pFrom->fg.isRecursive ) continue; 4360 assert( pFrom->pTab==0 ); 4361 #ifndef SQLITE_OMIT_CTE 4362 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4363 if( pFrom->pTab ) {} else 4364 #endif 4365 if( pFrom->zName==0 ){ 4366 #ifndef SQLITE_OMIT_SUBQUERY 4367 Select *pSel = pFrom->pSelect; 4368 /* A sub-query in the FROM clause of a SELECT */ 4369 assert( pSel!=0 ); 4370 assert( pFrom->pTab==0 ); 4371 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4372 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4373 if( pTab==0 ) return WRC_Abort; 4374 pTab->nTabRef = 1; 4375 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4376 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4377 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4378 pTab->iPKey = -1; 4379 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4380 pTab->tabFlags |= TF_Ephemeral; 4381 #endif 4382 }else{ 4383 /* An ordinary table or view name in the FROM clause */ 4384 assert( pFrom->pTab==0 ); 4385 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4386 if( pTab==0 ) return WRC_Abort; 4387 if( pTab->nTabRef>=0xffff ){ 4388 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4389 pTab->zName); 4390 pFrom->pTab = 0; 4391 return WRC_Abort; 4392 } 4393 pTab->nTabRef++; 4394 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4395 return WRC_Abort; 4396 } 4397 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4398 if( IsVirtual(pTab) || pTab->pSelect ){ 4399 i16 nCol; 4400 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4401 assert( pFrom->pSelect==0 ); 4402 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4403 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4404 nCol = pTab->nCol; 4405 pTab->nCol = -1; 4406 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4407 pTab->nCol = nCol; 4408 } 4409 #endif 4410 } 4411 4412 /* Locate the index named by the INDEXED BY clause, if any. */ 4413 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4414 return WRC_Abort; 4415 } 4416 } 4417 4418 /* Process NATURAL keywords, and ON and USING clauses of joins. 4419 */ 4420 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4421 return WRC_Abort; 4422 } 4423 4424 /* For every "*" that occurs in the column list, insert the names of 4425 ** all columns in all tables. And for every TABLE.* insert the names 4426 ** of all columns in TABLE. The parser inserted a special expression 4427 ** with the TK_ASTERISK operator for each "*" that it found in the column 4428 ** list. The following code just has to locate the TK_ASTERISK 4429 ** expressions and expand each one to the list of all columns in 4430 ** all tables. 4431 ** 4432 ** The first loop just checks to see if there are any "*" operators 4433 ** that need expanding. 4434 */ 4435 for(k=0; k<pEList->nExpr; k++){ 4436 pE = pEList->a[k].pExpr; 4437 if( pE->op==TK_ASTERISK ) break; 4438 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4439 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4440 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4441 } 4442 if( k<pEList->nExpr ){ 4443 /* 4444 ** If we get here it means the result set contains one or more "*" 4445 ** operators that need to be expanded. Loop through each expression 4446 ** in the result set and expand them one by one. 4447 */ 4448 struct ExprList_item *a = pEList->a; 4449 ExprList *pNew = 0; 4450 int flags = pParse->db->flags; 4451 int longNames = (flags & SQLITE_FullColNames)!=0 4452 && (flags & SQLITE_ShortColNames)==0; 4453 4454 for(k=0; k<pEList->nExpr; k++){ 4455 pE = a[k].pExpr; 4456 pRight = pE->pRight; 4457 assert( pE->op!=TK_DOT || pRight!=0 ); 4458 if( pE->op!=TK_ASTERISK 4459 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4460 ){ 4461 /* This particular expression does not need to be expanded. 4462 */ 4463 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4464 if( pNew ){ 4465 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4466 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4467 a[k].zName = 0; 4468 a[k].zSpan = 0; 4469 } 4470 a[k].pExpr = 0; 4471 }else{ 4472 /* This expression is a "*" or a "TABLE.*" and needs to be 4473 ** expanded. */ 4474 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4475 char *zTName = 0; /* text of name of TABLE */ 4476 if( pE->op==TK_DOT ){ 4477 assert( pE->pLeft!=0 ); 4478 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4479 zTName = pE->pLeft->u.zToken; 4480 } 4481 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4482 Table *pTab = pFrom->pTab; 4483 Select *pSub = pFrom->pSelect; 4484 char *zTabName = pFrom->zAlias; 4485 const char *zSchemaName = 0; 4486 int iDb; 4487 if( zTabName==0 ){ 4488 zTabName = pTab->zName; 4489 } 4490 if( db->mallocFailed ) break; 4491 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4492 pSub = 0; 4493 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4494 continue; 4495 } 4496 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4497 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4498 } 4499 for(j=0; j<pTab->nCol; j++){ 4500 char *zName = pTab->aCol[j].zName; 4501 char *zColname; /* The computed column name */ 4502 char *zToFree; /* Malloced string that needs to be freed */ 4503 Token sColname; /* Computed column name as a token */ 4504 4505 assert( zName ); 4506 if( zTName && pSub 4507 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4508 ){ 4509 continue; 4510 } 4511 4512 /* If a column is marked as 'hidden', omit it from the expanded 4513 ** result-set list unless the SELECT has the SF_IncludeHidden 4514 ** bit set. 4515 */ 4516 if( (p->selFlags & SF_IncludeHidden)==0 4517 && IsHiddenColumn(&pTab->aCol[j]) 4518 ){ 4519 continue; 4520 } 4521 tableSeen = 1; 4522 4523 if( i>0 && zTName==0 ){ 4524 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4525 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4526 ){ 4527 /* In a NATURAL join, omit the join columns from the 4528 ** table to the right of the join */ 4529 continue; 4530 } 4531 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4532 /* In a join with a USING clause, omit columns in the 4533 ** using clause from the table on the right. */ 4534 continue; 4535 } 4536 } 4537 pRight = sqlite3Expr(db, TK_ID, zName); 4538 zColname = zName; 4539 zToFree = 0; 4540 if( longNames || pTabList->nSrc>1 ){ 4541 Expr *pLeft; 4542 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4543 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4544 if( zSchemaName ){ 4545 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4546 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4547 } 4548 if( longNames ){ 4549 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4550 zToFree = zColname; 4551 } 4552 }else{ 4553 pExpr = pRight; 4554 } 4555 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4556 sqlite3TokenInit(&sColname, zColname); 4557 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4558 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4559 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4560 if( pSub ){ 4561 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4562 testcase( pX->zSpan==0 ); 4563 }else{ 4564 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4565 zSchemaName, zTabName, zColname); 4566 testcase( pX->zSpan==0 ); 4567 } 4568 pX->bSpanIsTab = 1; 4569 } 4570 sqlite3DbFree(db, zToFree); 4571 } 4572 } 4573 if( !tableSeen ){ 4574 if( zTName ){ 4575 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4576 }else{ 4577 sqlite3ErrorMsg(pParse, "no tables specified"); 4578 } 4579 } 4580 } 4581 } 4582 sqlite3ExprListDelete(db, pEList); 4583 p->pEList = pNew; 4584 } 4585 #if SQLITE_MAX_COLUMN 4586 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4587 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4588 return WRC_Abort; 4589 } 4590 #endif 4591 return WRC_Continue; 4592 } 4593 4594 /* 4595 ** No-op routine for the parse-tree walker. 4596 ** 4597 ** When this routine is the Walker.xExprCallback then expression trees 4598 ** are walked without any actions being taken at each node. Presumably, 4599 ** when this routine is used for Walker.xExprCallback then 4600 ** Walker.xSelectCallback is set to do something useful for every 4601 ** subquery in the parser tree. 4602 */ 4603 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4604 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4605 return WRC_Continue; 4606 } 4607 4608 /* 4609 ** No-op routine for the parse-tree walker for SELECT statements. 4610 ** subquery in the parser tree. 4611 */ 4612 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4613 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4614 return WRC_Continue; 4615 } 4616 4617 #if SQLITE_DEBUG 4618 /* 4619 ** Always assert. This xSelectCallback2 implementation proves that the 4620 ** xSelectCallback2 is never invoked. 4621 */ 4622 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4623 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4624 assert( 0 ); 4625 } 4626 #endif 4627 /* 4628 ** This routine "expands" a SELECT statement and all of its subqueries. 4629 ** For additional information on what it means to "expand" a SELECT 4630 ** statement, see the comment on the selectExpand worker callback above. 4631 ** 4632 ** Expanding a SELECT statement is the first step in processing a 4633 ** SELECT statement. The SELECT statement must be expanded before 4634 ** name resolution is performed. 4635 ** 4636 ** If anything goes wrong, an error message is written into pParse. 4637 ** The calling function can detect the problem by looking at pParse->nErr 4638 ** and/or pParse->db->mallocFailed. 4639 */ 4640 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4641 Walker w; 4642 w.xExprCallback = sqlite3ExprWalkNoop; 4643 w.pParse = pParse; 4644 if( pParse->hasCompound ){ 4645 w.xSelectCallback = convertCompoundSelectToSubquery; 4646 w.xSelectCallback2 = 0; 4647 sqlite3WalkSelect(&w, pSelect); 4648 } 4649 w.xSelectCallback = selectExpander; 4650 w.xSelectCallback2 = selectPopWith; 4651 sqlite3WalkSelect(&w, pSelect); 4652 } 4653 4654 4655 #ifndef SQLITE_OMIT_SUBQUERY 4656 /* 4657 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4658 ** interface. 4659 ** 4660 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4661 ** information to the Table structure that represents the result set 4662 ** of that subquery. 4663 ** 4664 ** The Table structure that represents the result set was constructed 4665 ** by selectExpander() but the type and collation information was omitted 4666 ** at that point because identifiers had not yet been resolved. This 4667 ** routine is called after identifier resolution. 4668 */ 4669 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4670 Parse *pParse; 4671 int i; 4672 SrcList *pTabList; 4673 struct SrcList_item *pFrom; 4674 4675 assert( p->selFlags & SF_Resolved ); 4676 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4677 p->selFlags |= SF_HasTypeInfo; 4678 pParse = pWalker->pParse; 4679 pTabList = p->pSrc; 4680 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4681 Table *pTab = pFrom->pTab; 4682 assert( pTab!=0 ); 4683 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4684 /* A sub-query in the FROM clause of a SELECT */ 4685 Select *pSel = pFrom->pSelect; 4686 if( pSel ){ 4687 while( pSel->pPrior ) pSel = pSel->pPrior; 4688 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4689 } 4690 } 4691 } 4692 } 4693 #endif 4694 4695 4696 /* 4697 ** This routine adds datatype and collating sequence information to 4698 ** the Table structures of all FROM-clause subqueries in a 4699 ** SELECT statement. 4700 ** 4701 ** Use this routine after name resolution. 4702 */ 4703 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4704 #ifndef SQLITE_OMIT_SUBQUERY 4705 Walker w; 4706 w.xSelectCallback = sqlite3SelectWalkNoop; 4707 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4708 w.xExprCallback = sqlite3ExprWalkNoop; 4709 w.pParse = pParse; 4710 sqlite3WalkSelect(&w, pSelect); 4711 #endif 4712 } 4713 4714 4715 /* 4716 ** This routine sets up a SELECT statement for processing. The 4717 ** following is accomplished: 4718 ** 4719 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4720 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4721 ** * ON and USING clauses are shifted into WHERE statements 4722 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4723 ** * Identifiers in expression are matched to tables. 4724 ** 4725 ** This routine acts recursively on all subqueries within the SELECT. 4726 */ 4727 void sqlite3SelectPrep( 4728 Parse *pParse, /* The parser context */ 4729 Select *p, /* The SELECT statement being coded. */ 4730 NameContext *pOuterNC /* Name context for container */ 4731 ){ 4732 sqlite3 *db; 4733 if( NEVER(p==0) ) return; 4734 db = pParse->db; 4735 if( db->mallocFailed ) return; 4736 if( p->selFlags & SF_HasTypeInfo ) return; 4737 sqlite3SelectExpand(pParse, p); 4738 if( pParse->nErr || db->mallocFailed ) return; 4739 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4740 if( pParse->nErr || db->mallocFailed ) return; 4741 sqlite3SelectAddTypeInfo(pParse, p); 4742 } 4743 4744 /* 4745 ** Reset the aggregate accumulator. 4746 ** 4747 ** The aggregate accumulator is a set of memory cells that hold 4748 ** intermediate results while calculating an aggregate. This 4749 ** routine generates code that stores NULLs in all of those memory 4750 ** cells. 4751 */ 4752 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4753 Vdbe *v = pParse->pVdbe; 4754 int i; 4755 struct AggInfo_func *pFunc; 4756 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4757 if( nReg==0 ) return; 4758 #ifdef SQLITE_DEBUG 4759 /* Verify that all AggInfo registers are within the range specified by 4760 ** AggInfo.mnReg..AggInfo.mxReg */ 4761 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4762 for(i=0; i<pAggInfo->nColumn; i++){ 4763 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4764 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4765 } 4766 for(i=0; i<pAggInfo->nFunc; i++){ 4767 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4768 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4769 } 4770 #endif 4771 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4772 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4773 if( pFunc->iDistinct>=0 ){ 4774 Expr *pE = pFunc->pExpr; 4775 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4776 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4777 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4778 "argument"); 4779 pFunc->iDistinct = -1; 4780 }else{ 4781 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4782 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4783 (char*)pKeyInfo, P4_KEYINFO); 4784 } 4785 } 4786 } 4787 } 4788 4789 /* 4790 ** Invoke the OP_AggFinalize opcode for every aggregate function 4791 ** in the AggInfo structure. 4792 */ 4793 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4794 Vdbe *v = pParse->pVdbe; 4795 int i; 4796 struct AggInfo_func *pF; 4797 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4798 ExprList *pList = pF->pExpr->x.pList; 4799 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4800 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4801 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4802 } 4803 } 4804 4805 /* 4806 ** Update the accumulator memory cells for an aggregate based on 4807 ** the current cursor position. 4808 */ 4809 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4810 Vdbe *v = pParse->pVdbe; 4811 int i; 4812 int regHit = 0; 4813 int addrHitTest = 0; 4814 struct AggInfo_func *pF; 4815 struct AggInfo_col *pC; 4816 4817 pAggInfo->directMode = 1; 4818 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4819 int nArg; 4820 int addrNext = 0; 4821 int regAgg; 4822 ExprList *pList = pF->pExpr->x.pList; 4823 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4824 if( pList ){ 4825 nArg = pList->nExpr; 4826 regAgg = sqlite3GetTempRange(pParse, nArg); 4827 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4828 }else{ 4829 nArg = 0; 4830 regAgg = 0; 4831 } 4832 if( pF->iDistinct>=0 ){ 4833 addrNext = sqlite3VdbeMakeLabel(v); 4834 testcase( nArg==0 ); /* Error condition */ 4835 testcase( nArg>1 ); /* Also an error */ 4836 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4837 } 4838 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4839 CollSeq *pColl = 0; 4840 struct ExprList_item *pItem; 4841 int j; 4842 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4843 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4844 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4845 } 4846 if( !pColl ){ 4847 pColl = pParse->db->pDfltColl; 4848 } 4849 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4850 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4851 } 4852 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4853 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4854 sqlite3VdbeChangeP5(v, (u8)nArg); 4855 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4856 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4857 if( addrNext ){ 4858 sqlite3VdbeResolveLabel(v, addrNext); 4859 sqlite3ExprCacheClear(pParse); 4860 } 4861 } 4862 4863 /* Before populating the accumulator registers, clear the column cache. 4864 ** Otherwise, if any of the required column values are already present 4865 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4866 ** to pC->iMem. But by the time the value is used, the original register 4867 ** may have been used, invalidating the underlying buffer holding the 4868 ** text or blob value. See ticket [883034dcb5]. 4869 ** 4870 ** Another solution would be to change the OP_SCopy used to copy cached 4871 ** values to an OP_Copy. 4872 */ 4873 if( regHit ){ 4874 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4875 } 4876 sqlite3ExprCacheClear(pParse); 4877 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4878 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4879 } 4880 pAggInfo->directMode = 0; 4881 sqlite3ExprCacheClear(pParse); 4882 if( addrHitTest ){ 4883 sqlite3VdbeJumpHere(v, addrHitTest); 4884 } 4885 } 4886 4887 /* 4888 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4889 ** count(*) query ("SELECT count(*) FROM pTab"). 4890 */ 4891 #ifndef SQLITE_OMIT_EXPLAIN 4892 static void explainSimpleCount( 4893 Parse *pParse, /* Parse context */ 4894 Table *pTab, /* Table being queried */ 4895 Index *pIdx /* Index used to optimize scan, or NULL */ 4896 ){ 4897 if( pParse->explain==2 ){ 4898 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4899 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4900 pTab->zName, 4901 bCover ? " USING COVERING INDEX " : "", 4902 bCover ? pIdx->zName : "" 4903 ); 4904 sqlite3VdbeAddOp4( 4905 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4906 ); 4907 } 4908 } 4909 #else 4910 # define explainSimpleCount(a,b,c) 4911 #endif 4912 4913 /* 4914 ** Context object for havingToWhereExprCb(). 4915 */ 4916 struct HavingToWhereCtx { 4917 Expr **ppWhere; 4918 ExprList *pGroupBy; 4919 }; 4920 4921 /* 4922 ** sqlite3WalkExpr() callback used by havingToWhere(). 4923 ** 4924 ** If the node passed to the callback is a TK_AND node, return 4925 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 4926 ** 4927 ** Otherwise, return WRC_Prune. In this case, also check if the 4928 ** sub-expression matches the criteria for being moved to the WHERE 4929 ** clause. If so, add it to the WHERE clause and replace the sub-expression 4930 ** within the HAVING expression with a constant "1". 4931 */ 4932 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 4933 if( pExpr->op!=TK_AND ){ 4934 struct HavingToWhereCtx *p = pWalker->u.pHavingCtx; 4935 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){ 4936 sqlite3 *db = pWalker->pParse->db; 4937 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 4938 if( pNew ){ 4939 Expr *pWhere = *(p->ppWhere); 4940 SWAP(Expr, *pNew, *pExpr); 4941 pNew = sqlite3ExprAnd(db, pWhere, pNew); 4942 *(p->ppWhere) = pNew; 4943 } 4944 } 4945 return WRC_Prune; 4946 } 4947 return WRC_Continue; 4948 } 4949 4950 /* 4951 ** Transfer eligible terms from the HAVING clause of a query, which is 4952 ** processed after grouping, to the WHERE clause, which is processed before 4953 ** grouping. For example, the query: 4954 ** 4955 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 4956 ** 4957 ** can be rewritten as: 4958 ** 4959 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 4960 ** 4961 ** A term of the HAVING expression is eligible for transfer if it consists 4962 ** entirely of constants and expressions that are also GROUP BY terms that 4963 ** use the "BINARY" collation sequence. 4964 */ 4965 static void havingToWhere( 4966 Parse *pParse, 4967 ExprList *pGroupBy, 4968 Expr *pHaving, 4969 Expr **ppWhere 4970 ){ 4971 struct HavingToWhereCtx sCtx; 4972 Walker sWalker; 4973 4974 sCtx.ppWhere = ppWhere; 4975 sCtx.pGroupBy = pGroupBy; 4976 4977 memset(&sWalker, 0, sizeof(sWalker)); 4978 sWalker.pParse = pParse; 4979 sWalker.xExprCallback = havingToWhereExprCb; 4980 sWalker.u.pHavingCtx = &sCtx; 4981 sqlite3WalkExpr(&sWalker, pHaving); 4982 } 4983 4984 /* 4985 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 4986 ** If it is, then return the SrcList_item for the prior view. If it is not, 4987 ** then return 0. 4988 */ 4989 static struct SrcList_item *isSelfJoinView( 4990 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 4991 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 4992 ){ 4993 struct SrcList_item *pItem; 4994 for(pItem = pTabList->a; pItem<pThis; pItem++){ 4995 if( pItem->pSelect==0 ) continue; 4996 if( pItem->fg.viaCoroutine ) continue; 4997 if( pItem->zName==0 ) continue; 4998 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 4999 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5000 if( sqlite3ExprCompare(0, 5001 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5002 ){ 5003 /* The view was modified by some other optimization such as 5004 ** pushDownWhereTerms() */ 5005 continue; 5006 } 5007 return pItem; 5008 } 5009 return 0; 5010 } 5011 5012 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5013 /* 5014 ** Attempt to transform a query of the form 5015 ** 5016 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5017 ** 5018 ** Into this: 5019 ** 5020 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5021 ** 5022 ** The transformation only works if all of the following are true: 5023 ** 5024 ** * The subquery is a UNION ALL of two or more terms 5025 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5026 ** * The outer query is a simple count(*) 5027 ** 5028 ** Return TRUE if the optimization is undertaken. 5029 */ 5030 static int countOfViewOptimization(Parse *pParse, Select *p){ 5031 Select *pSub, *pPrior; 5032 Expr *pExpr; 5033 Expr *pCount; 5034 sqlite3 *db; 5035 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate query */ 5036 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5037 pExpr = p->pEList->a[0].pExpr; 5038 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5039 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Must be count() */ 5040 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5041 if( p->pSrc->nSrc!=1 ) return 0; /* One table in the FROM clause */ 5042 pSub = p->pSrc->a[0].pSelect; 5043 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5044 if( pSub->pPrior==0 ) return 0; /* Must be a compound subquery */ 5045 do{ 5046 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5047 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5048 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5049 pSub = pSub->pPrior; /* Repeat over compound terms */ 5050 }while( pSub ); 5051 5052 /* If we reach this point, that means it is OK to perform the transformation */ 5053 5054 db = pParse->db; 5055 pCount = pExpr; 5056 pExpr = 0; 5057 pSub = p->pSrc->a[0].pSelect; 5058 p->pSrc->a[0].pSelect = 0; 5059 sqlite3SrcListDelete(db, p->pSrc); 5060 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5061 while( pSub ){ 5062 Expr *pTerm; 5063 pPrior = pSub->pPrior; 5064 pSub->pPrior = 0; 5065 pSub->pNext = 0; 5066 pSub->selFlags |= SF_Aggregate; 5067 pSub->selFlags &= ~SF_Compound; 5068 pSub->nSelectRow = 0; 5069 sqlite3ExprListDelete(db, pSub->pEList); 5070 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5071 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5072 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5073 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5074 if( pExpr==0 ){ 5075 pExpr = pTerm; 5076 }else{ 5077 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5078 } 5079 pSub = pPrior; 5080 } 5081 p->pEList->a[0].pExpr = pExpr; 5082 p->selFlags &= ~SF_Aggregate; 5083 5084 #if SELECTTRACE_ENABLED 5085 if( sqlite3SelectTrace & 0x400 ){ 5086 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5087 sqlite3TreeViewSelect(0, p, 0); 5088 } 5089 #endif 5090 return 1; 5091 } 5092 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5093 5094 /* 5095 ** Generate code for the SELECT statement given in the p argument. 5096 ** 5097 ** The results are returned according to the SelectDest structure. 5098 ** See comments in sqliteInt.h for further information. 5099 ** 5100 ** This routine returns the number of errors. If any errors are 5101 ** encountered, then an appropriate error message is left in 5102 ** pParse->zErrMsg. 5103 ** 5104 ** This routine does NOT free the Select structure passed in. The 5105 ** calling function needs to do that. 5106 */ 5107 int sqlite3Select( 5108 Parse *pParse, /* The parser context */ 5109 Select *p, /* The SELECT statement being coded. */ 5110 SelectDest *pDest /* What to do with the query results */ 5111 ){ 5112 int i, j; /* Loop counters */ 5113 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5114 Vdbe *v; /* The virtual machine under construction */ 5115 int isAgg; /* True for select lists like "count(*)" */ 5116 ExprList *pEList = 0; /* List of columns to extract. */ 5117 SrcList *pTabList; /* List of tables to select from */ 5118 Expr *pWhere; /* The WHERE clause. May be NULL */ 5119 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5120 Expr *pHaving; /* The HAVING clause. May be NULL */ 5121 int rc = 1; /* Value to return from this function */ 5122 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5123 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5124 AggInfo sAggInfo; /* Information used by aggregate queries */ 5125 int iEnd; /* Address of the end of the query */ 5126 sqlite3 *db; /* The database connection */ 5127 5128 #ifndef SQLITE_OMIT_EXPLAIN 5129 int iRestoreSelectId = pParse->iSelectId; 5130 pParse->iSelectId = pParse->iNextSelectId++; 5131 #endif 5132 5133 db = pParse->db; 5134 if( p==0 || db->mallocFailed || pParse->nErr ){ 5135 return 1; 5136 } 5137 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5138 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5139 #if SELECTTRACE_ENABLED 5140 pParse->nSelectIndent++; 5141 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 5142 if( sqlite3SelectTrace & 0x100 ){ 5143 sqlite3TreeViewSelect(0, p, 0); 5144 } 5145 #endif 5146 5147 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5148 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5149 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5150 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5151 if( IgnorableOrderby(pDest) ){ 5152 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5153 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5154 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5155 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5156 /* If ORDER BY makes no difference in the output then neither does 5157 ** DISTINCT so it can be removed too. */ 5158 sqlite3ExprListDelete(db, p->pOrderBy); 5159 p->pOrderBy = 0; 5160 p->selFlags &= ~SF_Distinct; 5161 } 5162 sqlite3SelectPrep(pParse, p, 0); 5163 memset(&sSort, 0, sizeof(sSort)); 5164 sSort.pOrderBy = p->pOrderBy; 5165 pTabList = p->pSrc; 5166 if( pParse->nErr || db->mallocFailed ){ 5167 goto select_end; 5168 } 5169 assert( p->pEList!=0 ); 5170 isAgg = (p->selFlags & SF_Aggregate)!=0; 5171 #if SELECTTRACE_ENABLED 5172 if( sqlite3SelectTrace & 0x100 ){ 5173 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 5174 sqlite3TreeViewSelect(0, p, 0); 5175 } 5176 #endif 5177 5178 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 5179 ** does not already exist */ 5180 v = sqlite3GetVdbe(pParse); 5181 if( v==0 ) goto select_end; 5182 if( pDest->eDest==SRT_Output ){ 5183 generateColumnNames(pParse, p); 5184 } 5185 5186 /* Try to flatten subqueries in the FROM clause up into the main query 5187 */ 5188 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5189 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5190 struct SrcList_item *pItem = &pTabList->a[i]; 5191 Select *pSub = pItem->pSelect; 5192 int isAggSub; 5193 Table *pTab = pItem->pTab; 5194 if( pSub==0 ) continue; 5195 5196 /* Catch mismatch in the declared columns of a view and the number of 5197 ** columns in the SELECT on the RHS */ 5198 if( pTab->nCol!=pSub->pEList->nExpr ){ 5199 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5200 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5201 goto select_end; 5202 } 5203 5204 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 5205 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 5206 /* This subquery can be absorbed into its parent. */ 5207 if( isAggSub ){ 5208 isAgg = 1; 5209 p->selFlags |= SF_Aggregate; 5210 } 5211 i = -1; 5212 } 5213 pTabList = p->pSrc; 5214 if( db->mallocFailed ) goto select_end; 5215 if( !IgnorableOrderby(pDest) ){ 5216 sSort.pOrderBy = p->pOrderBy; 5217 } 5218 } 5219 #endif 5220 5221 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5222 /* Handle compound SELECT statements using the separate multiSelect() 5223 ** procedure. 5224 */ 5225 if( p->pPrior ){ 5226 rc = multiSelect(pParse, p, pDest); 5227 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5228 #if SELECTTRACE_ENABLED 5229 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 5230 pParse->nSelectIndent--; 5231 #endif 5232 return rc; 5233 } 5234 #endif 5235 5236 /* For each term in the FROM clause, do two things: 5237 ** (1) Authorized unreferenced tables 5238 ** (2) Generate code for all sub-queries 5239 */ 5240 for(i=0; i<pTabList->nSrc; i++){ 5241 struct SrcList_item *pItem = &pTabList->a[i]; 5242 SelectDest dest; 5243 Select *pSub; 5244 5245 /* Issue SQLITE_READ authorizations with a fake column name for any tables that 5246 ** are referenced but from which no values are extracted. Examples of where these 5247 ** kinds of null SQLITE_READ authorizations would occur: 5248 ** 5249 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5250 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5251 ** 5252 ** The fake column name is an empty string. It is possible for a table to 5253 ** have a column named by the empty string, in which case there is no way to 5254 ** distinguish between an unreferenced table and an actual reference to the 5255 ** "" column. The original design was for the fake column name to be a NULL, 5256 ** which would be unambiguous. But legacy authorization callbacks might 5257 ** assume the column name is non-NULL and segfault. The use of an empty string 5258 ** for the fake column name seems safer. 5259 */ 5260 if( pItem->colUsed==0 ){ 5261 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5262 } 5263 5264 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5265 /* Generate code for all sub-queries in the FROM clause 5266 */ 5267 pSub = pItem->pSelect; 5268 if( pSub==0 ) continue; 5269 5270 /* Sometimes the code for a subquery will be generated more than 5271 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5272 ** for example. In that case, do not regenerate the code to manifest 5273 ** a view or the co-routine to implement a view. The first instance 5274 ** is sufficient, though the subroutine to manifest the view does need 5275 ** to be invoked again. */ 5276 if( pItem->addrFillSub ){ 5277 if( pItem->fg.viaCoroutine==0 ){ 5278 /* The subroutine that manifests the view might be a one-time routine, 5279 ** or it might need to be rerun on each iteration because it 5280 ** encodes a correlated subquery. */ 5281 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5282 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5283 } 5284 continue; 5285 } 5286 5287 /* Increment Parse.nHeight by the height of the largest expression 5288 ** tree referred to by this, the parent select. The child select 5289 ** may contain expression trees of at most 5290 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5291 ** more conservative than necessary, but much easier than enforcing 5292 ** an exact limit. 5293 */ 5294 pParse->nHeight += sqlite3SelectExprHeight(p); 5295 5296 /* Make copies of constant WHERE-clause terms in the outer query down 5297 ** inside the subquery. This can help the subquery to run more efficiently. 5298 */ 5299 if( (pItem->fg.jointype & JT_OUTER)==0 5300 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) 5301 ){ 5302 #if SELECTTRACE_ENABLED 5303 if( sqlite3SelectTrace & 0x100 ){ 5304 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5305 sqlite3TreeViewSelect(0, p, 0); 5306 } 5307 #endif 5308 } 5309 5310 /* Generate code to implement the subquery 5311 ** 5312 ** The subquery is implemented as a co-routine if all of these are true: 5313 ** (1) The subquery is guaranteed to be the outer loop (so that it 5314 ** does not need to be computed more than once) 5315 ** (2) The ALL keyword after SELECT is omitted. (Applications are 5316 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 5317 ** the use of co-routines.) 5318 ** (3) Co-routines are not disabled using sqlite3_test_control() 5319 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 5320 ** 5321 ** TODO: Are there other reasons beside (1) to use a co-routine 5322 ** implementation? 5323 */ 5324 if( i==0 5325 && (pTabList->nSrc==1 5326 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5327 && (p->selFlags & SF_All)==0 /* (2) */ 5328 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 5329 ){ 5330 /* Implement a co-routine that will return a single row of the result 5331 ** set on each invocation. 5332 */ 5333 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5334 pItem->regReturn = ++pParse->nMem; 5335 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5336 VdbeComment((v, "%s", pItem->pTab->zName)); 5337 pItem->addrFillSub = addrTop; 5338 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5339 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5340 sqlite3Select(pParse, pSub, &dest); 5341 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5342 pItem->fg.viaCoroutine = 1; 5343 pItem->regResult = dest.iSdst; 5344 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5345 sqlite3VdbeJumpHere(v, addrTop-1); 5346 sqlite3ClearTempRegCache(pParse); 5347 }else{ 5348 /* Generate a subroutine that will fill an ephemeral table with 5349 ** the content of this subquery. pItem->addrFillSub will point 5350 ** to the address of the generated subroutine. pItem->regReturn 5351 ** is a register allocated to hold the subroutine return address 5352 */ 5353 int topAddr; 5354 int onceAddr = 0; 5355 int retAddr; 5356 struct SrcList_item *pPrior; 5357 5358 assert( pItem->addrFillSub==0 ); 5359 pItem->regReturn = ++pParse->nMem; 5360 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5361 pItem->addrFillSub = topAddr+1; 5362 if( pItem->fg.isCorrelated==0 ){ 5363 /* If the subquery is not correlated and if we are not inside of 5364 ** a trigger, then we only need to compute the value of the subquery 5365 ** once. */ 5366 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5367 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5368 }else{ 5369 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5370 } 5371 pPrior = isSelfJoinView(pTabList, pItem); 5372 if( pPrior ){ 5373 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5374 explainSetInteger(pItem->iSelectId, pPrior->iSelectId); 5375 assert( pPrior->pSelect!=0 ); 5376 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5377 }else{ 5378 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5379 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5380 sqlite3Select(pParse, pSub, &dest); 5381 } 5382 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5383 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5384 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5385 VdbeComment((v, "end %s", pItem->pTab->zName)); 5386 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5387 sqlite3ClearTempRegCache(pParse); 5388 } 5389 if( db->mallocFailed ) goto select_end; 5390 pParse->nHeight -= sqlite3SelectExprHeight(p); 5391 #endif 5392 } 5393 5394 /* Various elements of the SELECT copied into local variables for 5395 ** convenience */ 5396 pEList = p->pEList; 5397 pWhere = p->pWhere; 5398 pGroupBy = p->pGroupBy; 5399 pHaving = p->pHaving; 5400 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5401 5402 #if SELECTTRACE_ENABLED 5403 if( sqlite3SelectTrace & 0x400 ){ 5404 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5405 sqlite3TreeViewSelect(0, p, 0); 5406 } 5407 #endif 5408 5409 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5410 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5411 && countOfViewOptimization(pParse, p) 5412 ){ 5413 if( db->mallocFailed ) goto select_end; 5414 pEList = p->pEList; 5415 pTabList = p->pSrc; 5416 } 5417 #endif 5418 5419 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5420 ** if the select-list is the same as the ORDER BY list, then this query 5421 ** can be rewritten as a GROUP BY. In other words, this: 5422 ** 5423 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5424 ** 5425 ** is transformed to: 5426 ** 5427 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5428 ** 5429 ** The second form is preferred as a single index (or temp-table) may be 5430 ** used for both the ORDER BY and DISTINCT processing. As originally 5431 ** written the query must use a temp-table for at least one of the ORDER 5432 ** BY and DISTINCT, and an index or separate temp-table for the other. 5433 */ 5434 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5435 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5436 ){ 5437 p->selFlags &= ~SF_Distinct; 5438 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5439 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5440 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5441 ** original setting of the SF_Distinct flag, not the current setting */ 5442 assert( sDistinct.isTnct ); 5443 5444 #if SELECTTRACE_ENABLED 5445 if( sqlite3SelectTrace & 0x400 ){ 5446 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5447 sqlite3TreeViewSelect(0, p, 0); 5448 } 5449 #endif 5450 } 5451 5452 /* If there is an ORDER BY clause, then create an ephemeral index to 5453 ** do the sorting. But this sorting ephemeral index might end up 5454 ** being unused if the data can be extracted in pre-sorted order. 5455 ** If that is the case, then the OP_OpenEphemeral instruction will be 5456 ** changed to an OP_Noop once we figure out that the sorting index is 5457 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5458 ** that change. 5459 */ 5460 if( sSort.pOrderBy ){ 5461 KeyInfo *pKeyInfo; 5462 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5463 sSort.iECursor = pParse->nTab++; 5464 sSort.addrSortIndex = 5465 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5466 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5467 (char*)pKeyInfo, P4_KEYINFO 5468 ); 5469 }else{ 5470 sSort.addrSortIndex = -1; 5471 } 5472 5473 /* If the output is destined for a temporary table, open that table. 5474 */ 5475 if( pDest->eDest==SRT_EphemTab ){ 5476 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5477 } 5478 5479 /* Set the limiter. 5480 */ 5481 iEnd = sqlite3VdbeMakeLabel(v); 5482 if( (p->selFlags & SF_FixedLimit)==0 ){ 5483 p->nSelectRow = 320; /* 4 billion rows */ 5484 } 5485 computeLimitRegisters(pParse, p, iEnd); 5486 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5487 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5488 sSort.sortFlags |= SORTFLAG_UseSorter; 5489 } 5490 5491 /* Open an ephemeral index to use for the distinct set. 5492 */ 5493 if( p->selFlags & SF_Distinct ){ 5494 sDistinct.tabTnct = pParse->nTab++; 5495 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5496 sDistinct.tabTnct, 0, 0, 5497 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5498 P4_KEYINFO); 5499 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5500 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5501 }else{ 5502 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5503 } 5504 5505 if( !isAgg && pGroupBy==0 ){ 5506 /* No aggregate functions and no GROUP BY clause */ 5507 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5508 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5509 wctrlFlags |= p->selFlags & SF_FixedLimit; 5510 5511 /* Begin the database scan. */ 5512 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5513 p->pEList, wctrlFlags, p->nSelectRow); 5514 if( pWInfo==0 ) goto select_end; 5515 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5516 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5517 } 5518 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5519 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5520 } 5521 if( sSort.pOrderBy ){ 5522 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5523 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5524 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5525 sSort.pOrderBy = 0; 5526 } 5527 } 5528 5529 /* If sorting index that was created by a prior OP_OpenEphemeral 5530 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5531 ** into an OP_Noop. 5532 */ 5533 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5534 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5535 } 5536 5537 /* Use the standard inner loop. */ 5538 assert( p->pEList==pEList ); 5539 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5540 sqlite3WhereContinueLabel(pWInfo), 5541 sqlite3WhereBreakLabel(pWInfo)); 5542 5543 /* End the database scan loop. 5544 */ 5545 sqlite3WhereEnd(pWInfo); 5546 }else{ 5547 /* This case when there exist aggregate functions or a GROUP BY clause 5548 ** or both */ 5549 NameContext sNC; /* Name context for processing aggregate information */ 5550 int iAMem; /* First Mem address for storing current GROUP BY */ 5551 int iBMem; /* First Mem address for previous GROUP BY */ 5552 int iUseFlag; /* Mem address holding flag indicating that at least 5553 ** one row of the input to the aggregator has been 5554 ** processed */ 5555 int iAbortFlag; /* Mem address which causes query abort if positive */ 5556 int groupBySort; /* Rows come from source in GROUP BY order */ 5557 int addrEnd; /* End of processing for this SELECT */ 5558 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5559 int sortOut = 0; /* Output register from the sorter */ 5560 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5561 5562 /* Remove any and all aliases between the result set and the 5563 ** GROUP BY clause. 5564 */ 5565 if( pGroupBy ){ 5566 int k; /* Loop counter */ 5567 struct ExprList_item *pItem; /* For looping over expression in a list */ 5568 5569 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5570 pItem->u.x.iAlias = 0; 5571 } 5572 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5573 pItem->u.x.iAlias = 0; 5574 } 5575 assert( 66==sqlite3LogEst(100) ); 5576 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5577 }else{ 5578 assert( 0==sqlite3LogEst(1) ); 5579 p->nSelectRow = 0; 5580 } 5581 5582 /* If there is both a GROUP BY and an ORDER BY clause and they are 5583 ** identical, then it may be possible to disable the ORDER BY clause 5584 ** on the grounds that the GROUP BY will cause elements to come out 5585 ** in the correct order. It also may not - the GROUP BY might use a 5586 ** database index that causes rows to be grouped together as required 5587 ** but not actually sorted. Either way, record the fact that the 5588 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5589 ** variable. */ 5590 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5591 orderByGrp = 1; 5592 } 5593 5594 /* Create a label to jump to when we want to abort the query */ 5595 addrEnd = sqlite3VdbeMakeLabel(v); 5596 5597 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5598 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5599 ** SELECT statement. 5600 */ 5601 memset(&sNC, 0, sizeof(sNC)); 5602 sNC.pParse = pParse; 5603 sNC.pSrcList = pTabList; 5604 sNC.pAggInfo = &sAggInfo; 5605 sAggInfo.mnReg = pParse->nMem+1; 5606 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5607 sAggInfo.pGroupBy = pGroupBy; 5608 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5609 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5610 if( pHaving ){ 5611 if( pGroupBy ){ 5612 assert( pWhere==p->pWhere ); 5613 havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere); 5614 pWhere = p->pWhere; 5615 } 5616 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5617 } 5618 sAggInfo.nAccumulator = sAggInfo.nColumn; 5619 for(i=0; i<sAggInfo.nFunc; i++){ 5620 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5621 sNC.ncFlags |= NC_InAggFunc; 5622 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5623 sNC.ncFlags &= ~NC_InAggFunc; 5624 } 5625 sAggInfo.mxReg = pParse->nMem; 5626 if( db->mallocFailed ) goto select_end; 5627 5628 /* Processing for aggregates with GROUP BY is very different and 5629 ** much more complex than aggregates without a GROUP BY. 5630 */ 5631 if( pGroupBy ){ 5632 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5633 int addr1; /* A-vs-B comparision jump */ 5634 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5635 int regOutputRow; /* Return address register for output subroutine */ 5636 int addrSetAbort; /* Set the abort flag and return */ 5637 int addrTopOfLoop; /* Top of the input loop */ 5638 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5639 int addrReset; /* Subroutine for resetting the accumulator */ 5640 int regReset; /* Return address register for reset subroutine */ 5641 5642 /* If there is a GROUP BY clause we might need a sorting index to 5643 ** implement it. Allocate that sorting index now. If it turns out 5644 ** that we do not need it after all, the OP_SorterOpen instruction 5645 ** will be converted into a Noop. 5646 */ 5647 sAggInfo.sortingIdx = pParse->nTab++; 5648 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5649 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5650 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5651 0, (char*)pKeyInfo, P4_KEYINFO); 5652 5653 /* Initialize memory locations used by GROUP BY aggregate processing 5654 */ 5655 iUseFlag = ++pParse->nMem; 5656 iAbortFlag = ++pParse->nMem; 5657 regOutputRow = ++pParse->nMem; 5658 addrOutputRow = sqlite3VdbeMakeLabel(v); 5659 regReset = ++pParse->nMem; 5660 addrReset = sqlite3VdbeMakeLabel(v); 5661 iAMem = pParse->nMem + 1; 5662 pParse->nMem += pGroupBy->nExpr; 5663 iBMem = pParse->nMem + 1; 5664 pParse->nMem += pGroupBy->nExpr; 5665 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5666 VdbeComment((v, "clear abort flag")); 5667 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5668 VdbeComment((v, "indicate accumulator empty")); 5669 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5670 5671 /* Begin a loop that will extract all source rows in GROUP BY order. 5672 ** This might involve two separate loops with an OP_Sort in between, or 5673 ** it might be a single loop that uses an index to extract information 5674 ** in the right order to begin with. 5675 */ 5676 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5677 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5678 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5679 ); 5680 if( pWInfo==0 ) goto select_end; 5681 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5682 /* The optimizer is able to deliver rows in group by order so 5683 ** we do not have to sort. The OP_OpenEphemeral table will be 5684 ** cancelled later because we still need to use the pKeyInfo 5685 */ 5686 groupBySort = 0; 5687 }else{ 5688 /* Rows are coming out in undetermined order. We have to push 5689 ** each row into a sorting index, terminate the first loop, 5690 ** then loop over the sorting index in order to get the output 5691 ** in sorted order 5692 */ 5693 int regBase; 5694 int regRecord; 5695 int nCol; 5696 int nGroupBy; 5697 5698 explainTempTable(pParse, 5699 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5700 "DISTINCT" : "GROUP BY"); 5701 5702 groupBySort = 1; 5703 nGroupBy = pGroupBy->nExpr; 5704 nCol = nGroupBy; 5705 j = nGroupBy; 5706 for(i=0; i<sAggInfo.nColumn; i++){ 5707 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5708 nCol++; 5709 j++; 5710 } 5711 } 5712 regBase = sqlite3GetTempRange(pParse, nCol); 5713 sqlite3ExprCacheClear(pParse); 5714 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5715 j = nGroupBy; 5716 for(i=0; i<sAggInfo.nColumn; i++){ 5717 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5718 if( pCol->iSorterColumn>=j ){ 5719 int r1 = j + regBase; 5720 sqlite3ExprCodeGetColumnToReg(pParse, 5721 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5722 j++; 5723 } 5724 } 5725 regRecord = sqlite3GetTempReg(pParse); 5726 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5727 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5728 sqlite3ReleaseTempReg(pParse, regRecord); 5729 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5730 sqlite3WhereEnd(pWInfo); 5731 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5732 sortOut = sqlite3GetTempReg(pParse); 5733 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5734 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5735 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5736 sAggInfo.useSortingIdx = 1; 5737 sqlite3ExprCacheClear(pParse); 5738 5739 } 5740 5741 /* If the index or temporary table used by the GROUP BY sort 5742 ** will naturally deliver rows in the order required by the ORDER BY 5743 ** clause, cancel the ephemeral table open coded earlier. 5744 ** 5745 ** This is an optimization - the correct answer should result regardless. 5746 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5747 ** disable this optimization for testing purposes. */ 5748 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5749 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5750 ){ 5751 sSort.pOrderBy = 0; 5752 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5753 } 5754 5755 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5756 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5757 ** Then compare the current GROUP BY terms against the GROUP BY terms 5758 ** from the previous row currently stored in a0, a1, a2... 5759 */ 5760 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5761 sqlite3ExprCacheClear(pParse); 5762 if( groupBySort ){ 5763 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5764 sortOut, sortPTab); 5765 } 5766 for(j=0; j<pGroupBy->nExpr; j++){ 5767 if( groupBySort ){ 5768 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5769 }else{ 5770 sAggInfo.directMode = 1; 5771 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5772 } 5773 } 5774 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5775 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5776 addr1 = sqlite3VdbeCurrentAddr(v); 5777 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5778 5779 /* Generate code that runs whenever the GROUP BY changes. 5780 ** Changes in the GROUP BY are detected by the previous code 5781 ** block. If there were no changes, this block is skipped. 5782 ** 5783 ** This code copies current group by terms in b0,b1,b2,... 5784 ** over to a0,a1,a2. It then calls the output subroutine 5785 ** and resets the aggregate accumulator registers in preparation 5786 ** for the next GROUP BY batch. 5787 */ 5788 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5789 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5790 VdbeComment((v, "output one row")); 5791 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5792 VdbeComment((v, "check abort flag")); 5793 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5794 VdbeComment((v, "reset accumulator")); 5795 5796 /* Update the aggregate accumulators based on the content of 5797 ** the current row 5798 */ 5799 sqlite3VdbeJumpHere(v, addr1); 5800 updateAccumulator(pParse, &sAggInfo); 5801 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5802 VdbeComment((v, "indicate data in accumulator")); 5803 5804 /* End of the loop 5805 */ 5806 if( groupBySort ){ 5807 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5808 VdbeCoverage(v); 5809 }else{ 5810 sqlite3WhereEnd(pWInfo); 5811 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5812 } 5813 5814 /* Output the final row of result 5815 */ 5816 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5817 VdbeComment((v, "output final row")); 5818 5819 /* Jump over the subroutines 5820 */ 5821 sqlite3VdbeGoto(v, addrEnd); 5822 5823 /* Generate a subroutine that outputs a single row of the result 5824 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5825 ** is less than or equal to zero, the subroutine is a no-op. If 5826 ** the processing calls for the query to abort, this subroutine 5827 ** increments the iAbortFlag memory location before returning in 5828 ** order to signal the caller to abort. 5829 */ 5830 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5831 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5832 VdbeComment((v, "set abort flag")); 5833 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5834 sqlite3VdbeResolveLabel(v, addrOutputRow); 5835 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5836 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5837 VdbeCoverage(v); 5838 VdbeComment((v, "Groupby result generator entry point")); 5839 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5840 finalizeAggFunctions(pParse, &sAggInfo); 5841 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5842 selectInnerLoop(pParse, p, -1, &sSort, 5843 &sDistinct, pDest, 5844 addrOutputRow+1, addrSetAbort); 5845 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5846 VdbeComment((v, "end groupby result generator")); 5847 5848 /* Generate a subroutine that will reset the group-by accumulator 5849 */ 5850 sqlite3VdbeResolveLabel(v, addrReset); 5851 resetAccumulator(pParse, &sAggInfo); 5852 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5853 5854 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5855 else { 5856 ExprList *pDel = 0; 5857 #ifndef SQLITE_OMIT_BTREECOUNT 5858 Table *pTab; 5859 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5860 /* If isSimpleCount() returns a pointer to a Table structure, then 5861 ** the SQL statement is of the form: 5862 ** 5863 ** SELECT count(*) FROM <tbl> 5864 ** 5865 ** where the Table structure returned represents table <tbl>. 5866 ** 5867 ** This statement is so common that it is optimized specially. The 5868 ** OP_Count instruction is executed either on the intkey table that 5869 ** contains the data for table <tbl> or on one of its indexes. It 5870 ** is better to execute the op on an index, as indexes are almost 5871 ** always spread across less pages than their corresponding tables. 5872 */ 5873 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5874 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5875 Index *pIdx; /* Iterator variable */ 5876 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5877 Index *pBest = 0; /* Best index found so far */ 5878 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5879 5880 sqlite3CodeVerifySchema(pParse, iDb); 5881 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5882 5883 /* Search for the index that has the lowest scan cost. 5884 ** 5885 ** (2011-04-15) Do not do a full scan of an unordered index. 5886 ** 5887 ** (2013-10-03) Do not count the entries in a partial index. 5888 ** 5889 ** In practice the KeyInfo structure will not be used. It is only 5890 ** passed to keep OP_OpenRead happy. 5891 */ 5892 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5893 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5894 if( pIdx->bUnordered==0 5895 && pIdx->szIdxRow<pTab->szTabRow 5896 && pIdx->pPartIdxWhere==0 5897 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5898 ){ 5899 pBest = pIdx; 5900 } 5901 } 5902 if( pBest ){ 5903 iRoot = pBest->tnum; 5904 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5905 } 5906 5907 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5908 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5909 if( pKeyInfo ){ 5910 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5911 } 5912 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5913 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5914 explainSimpleCount(pParse, pTab, pBest); 5915 }else 5916 #endif /* SQLITE_OMIT_BTREECOUNT */ 5917 { 5918 /* Check if the query is of one of the following forms: 5919 ** 5920 ** SELECT min(x) FROM ... 5921 ** SELECT max(x) FROM ... 5922 ** 5923 ** If it is, then ask the code in where.c to attempt to sort results 5924 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5925 ** If where.c is able to produce results sorted in this order, then 5926 ** add vdbe code to break out of the processing loop after the 5927 ** first iteration (since the first iteration of the loop is 5928 ** guaranteed to operate on the row with the minimum or maximum 5929 ** value of x, the only row required). 5930 ** 5931 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5932 ** modify behavior as follows: 5933 ** 5934 ** + If the query is a "SELECT min(x)", then the loop coded by 5935 ** where.c should not iterate over any values with a NULL value 5936 ** for x. 5937 ** 5938 ** + The optimizer code in where.c (the thing that decides which 5939 ** index or indices to use) should place a different priority on 5940 ** satisfying the 'ORDER BY' clause than it does in other cases. 5941 ** Refer to code and comments in where.c for details. 5942 */ 5943 ExprList *pMinMax = 0; 5944 u8 flag = WHERE_ORDERBY_NORMAL; 5945 5946 assert( p->pGroupBy==0 ); 5947 assert( flag==0 ); 5948 if( p->pHaving==0 ){ 5949 flag = minMaxQuery(&sAggInfo, &pMinMax); 5950 } 5951 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5952 5953 if( flag ){ 5954 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5955 pDel = pMinMax; 5956 assert( db->mallocFailed || pMinMax!=0 ); 5957 if( !db->mallocFailed ){ 5958 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5959 pMinMax->a[0].pExpr->op = TK_COLUMN; 5960 } 5961 } 5962 5963 /* This case runs if the aggregate has no GROUP BY clause. The 5964 ** processing is much simpler since there is only a single row 5965 ** of output. 5966 */ 5967 resetAccumulator(pParse, &sAggInfo); 5968 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0); 5969 if( pWInfo==0 ){ 5970 sqlite3ExprListDelete(db, pDel); 5971 goto select_end; 5972 } 5973 updateAccumulator(pParse, &sAggInfo); 5974 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5975 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5976 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5977 VdbeComment((v, "%s() by index", 5978 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5979 } 5980 sqlite3WhereEnd(pWInfo); 5981 finalizeAggFunctions(pParse, &sAggInfo); 5982 } 5983 5984 sSort.pOrderBy = 0; 5985 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5986 selectInnerLoop(pParse, p, -1, 0, 0, 5987 pDest, addrEnd, addrEnd); 5988 sqlite3ExprListDelete(db, pDel); 5989 } 5990 sqlite3VdbeResolveLabel(v, addrEnd); 5991 5992 } /* endif aggregate query */ 5993 5994 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5995 explainTempTable(pParse, "DISTINCT"); 5996 } 5997 5998 /* If there is an ORDER BY clause, then we need to sort the results 5999 ** and send them to the callback one by one. 6000 */ 6001 if( sSort.pOrderBy ){ 6002 explainTempTable(pParse, 6003 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6004 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6005 } 6006 6007 /* Jump here to skip this query 6008 */ 6009 sqlite3VdbeResolveLabel(v, iEnd); 6010 6011 /* The SELECT has been coded. If there is an error in the Parse structure, 6012 ** set the return code to 1. Otherwise 0. */ 6013 rc = (pParse->nErr>0); 6014 6015 /* Control jumps to here if an error is encountered above, or upon 6016 ** successful coding of the SELECT. 6017 */ 6018 select_end: 6019 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 6020 6021 sqlite3DbFree(db, sAggInfo.aCol); 6022 sqlite3DbFree(db, sAggInfo.aFunc); 6023 #if SELECTTRACE_ENABLED 6024 SELECTTRACE(1,pParse,p,("end processing\n")); 6025 pParse->nSelectIndent--; 6026 #endif 6027 return rc; 6028 } 6029