xref: /sqlite-3.40.0/src/select.c (revision 9a243e69)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   int labelDone;        /* Jump here when done, ex: LIMIT reached */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
60 };
61 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
62 
63 /*
64 ** Delete all the content of a Select structure.  Deallocate the structure
65 ** itself only if bFree is true.
66 */
67 static void clearSelect(sqlite3 *db, Select *p, int bFree){
68   while( p ){
69     Select *pPrior = p->pPrior;
70     sqlite3ExprListDelete(db, p->pEList);
71     sqlite3SrcListDelete(db, p->pSrc);
72     sqlite3ExprDelete(db, p->pWhere);
73     sqlite3ExprListDelete(db, p->pGroupBy);
74     sqlite3ExprDelete(db, p->pHaving);
75     sqlite3ExprListDelete(db, p->pOrderBy);
76     sqlite3ExprDelete(db, p->pLimit);
77     sqlite3ExprDelete(db, p->pOffset);
78     if( p->pWith ) sqlite3WithDelete(db, p->pWith);
79     if( bFree ) sqlite3DbFreeNN(db, p);
80     p = pPrior;
81     bFree = 1;
82   }
83 }
84 
85 /*
86 ** Initialize a SelectDest structure.
87 */
88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
89   pDest->eDest = (u8)eDest;
90   pDest->iSDParm = iParm;
91   pDest->zAffSdst = 0;
92   pDest->iSdst = 0;
93   pDest->nSdst = 0;
94 }
95 
96 
97 /*
98 ** Allocate a new Select structure and return a pointer to that
99 ** structure.
100 */
101 Select *sqlite3SelectNew(
102   Parse *pParse,        /* Parsing context */
103   ExprList *pEList,     /* which columns to include in the result */
104   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
105   Expr *pWhere,         /* the WHERE clause */
106   ExprList *pGroupBy,   /* the GROUP BY clause */
107   Expr *pHaving,        /* the HAVING clause */
108   ExprList *pOrderBy,   /* the ORDER BY clause */
109   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
110   Expr *pLimit,         /* LIMIT value.  NULL means not used */
111   Expr *pOffset         /* OFFSET value.  NULL means no offset */
112 ){
113   Select *pNew;
114   Select standin;
115   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
116   if( pNew==0 ){
117     assert( pParse->db->mallocFailed );
118     pNew = &standin;
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(pParse->db,TK_ASTERISK,0));
122   }
123   pNew->pEList = pEList;
124   pNew->op = TK_SELECT;
125   pNew->selFlags = selFlags;
126   pNew->iLimit = 0;
127   pNew->iOffset = 0;
128 #if SELECTTRACE_ENABLED
129   pNew->zSelName[0] = 0;
130 #endif
131   pNew->addrOpenEphm[0] = -1;
132   pNew->addrOpenEphm[1] = -1;
133   pNew->nSelectRow = 0;
134   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
135   pNew->pSrc = pSrc;
136   pNew->pWhere = pWhere;
137   pNew->pGroupBy = pGroupBy;
138   pNew->pHaving = pHaving;
139   pNew->pOrderBy = pOrderBy;
140   pNew->pPrior = 0;
141   pNew->pNext = 0;
142   pNew->pLimit = pLimit;
143   pNew->pOffset = pOffset;
144   pNew->pWith = 0;
145   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || pParse->db->mallocFailed!=0 );
146   if( pParse->db->mallocFailed ) {
147     clearSelect(pParse->db, pNew, pNew!=&standin);
148     pNew = 0;
149   }else{
150     assert( pNew->pSrc!=0 || pParse->nErr>0 );
151   }
152   assert( pNew!=&standin );
153   return pNew;
154 }
155 
156 #if SELECTTRACE_ENABLED
157 /*
158 ** Set the name of a Select object
159 */
160 void sqlite3SelectSetName(Select *p, const char *zName){
161   if( p && zName ){
162     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
163   }
164 }
165 #endif
166 
167 
168 /*
169 ** Delete the given Select structure and all of its substructures.
170 */
171 void sqlite3SelectDelete(sqlite3 *db, Select *p){
172   if( p ) clearSelect(db, p, 1);
173 }
174 
175 /*
176 ** Return a pointer to the right-most SELECT statement in a compound.
177 */
178 static Select *findRightmost(Select *p){
179   while( p->pNext ) p = p->pNext;
180   return p;
181 }
182 
183 /*
184 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
185 ** type of join.  Return an integer constant that expresses that type
186 ** in terms of the following bit values:
187 **
188 **     JT_INNER
189 **     JT_CROSS
190 **     JT_OUTER
191 **     JT_NATURAL
192 **     JT_LEFT
193 **     JT_RIGHT
194 **
195 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
196 **
197 ** If an illegal or unsupported join type is seen, then still return
198 ** a join type, but put an error in the pParse structure.
199 */
200 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
201   int jointype = 0;
202   Token *apAll[3];
203   Token *p;
204                              /*   0123456789 123456789 123456789 123 */
205   static const char zKeyText[] = "naturaleftouterightfullinnercross";
206   static const struct {
207     u8 i;        /* Beginning of keyword text in zKeyText[] */
208     u8 nChar;    /* Length of the keyword in characters */
209     u8 code;     /* Join type mask */
210   } aKeyword[] = {
211     /* natural */ { 0,  7, JT_NATURAL                },
212     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
213     /* outer   */ { 10, 5, JT_OUTER                  },
214     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
215     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
216     /* inner   */ { 23, 5, JT_INNER                  },
217     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
218   };
219   int i, j;
220   apAll[0] = pA;
221   apAll[1] = pB;
222   apAll[2] = pC;
223   for(i=0; i<3 && apAll[i]; i++){
224     p = apAll[i];
225     for(j=0; j<ArraySize(aKeyword); j++){
226       if( p->n==aKeyword[j].nChar
227           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
228         jointype |= aKeyword[j].code;
229         break;
230       }
231     }
232     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
233     if( j>=ArraySize(aKeyword) ){
234       jointype |= JT_ERROR;
235       break;
236     }
237   }
238   if(
239      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
240      (jointype & JT_ERROR)!=0
241   ){
242     const char *zSp = " ";
243     assert( pB!=0 );
244     if( pC==0 ){ zSp++; }
245     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
246        "%T %T%s%T", pA, pB, zSp, pC);
247     jointype = JT_INNER;
248   }else if( (jointype & JT_OUTER)!=0
249          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
250     sqlite3ErrorMsg(pParse,
251       "RIGHT and FULL OUTER JOINs are not currently supported");
252     jointype = JT_INNER;
253   }
254   return jointype;
255 }
256 
257 /*
258 ** Return the index of a column in a table.  Return -1 if the column
259 ** is not contained in the table.
260 */
261 static int columnIndex(Table *pTab, const char *zCol){
262   int i;
263   for(i=0; i<pTab->nCol; i++){
264     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
265   }
266   return -1;
267 }
268 
269 /*
270 ** Search the first N tables in pSrc, from left to right, looking for a
271 ** table that has a column named zCol.
272 **
273 ** When found, set *piTab and *piCol to the table index and column index
274 ** of the matching column and return TRUE.
275 **
276 ** If not found, return FALSE.
277 */
278 static int tableAndColumnIndex(
279   SrcList *pSrc,       /* Array of tables to search */
280   int N,               /* Number of tables in pSrc->a[] to search */
281   const char *zCol,    /* Name of the column we are looking for */
282   int *piTab,          /* Write index of pSrc->a[] here */
283   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
284 ){
285   int i;               /* For looping over tables in pSrc */
286   int iCol;            /* Index of column matching zCol */
287 
288   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
289   for(i=0; i<N; i++){
290     iCol = columnIndex(pSrc->a[i].pTab, zCol);
291     if( iCol>=0 ){
292       if( piTab ){
293         *piTab = i;
294         *piCol = iCol;
295       }
296       return 1;
297     }
298   }
299   return 0;
300 }
301 
302 /*
303 ** This function is used to add terms implied by JOIN syntax to the
304 ** WHERE clause expression of a SELECT statement. The new term, which
305 ** is ANDed with the existing WHERE clause, is of the form:
306 **
307 **    (tab1.col1 = tab2.col2)
308 **
309 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
310 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
311 ** column iColRight of tab2.
312 */
313 static void addWhereTerm(
314   Parse *pParse,                  /* Parsing context */
315   SrcList *pSrc,                  /* List of tables in FROM clause */
316   int iLeft,                      /* Index of first table to join in pSrc */
317   int iColLeft,                   /* Index of column in first table */
318   int iRight,                     /* Index of second table in pSrc */
319   int iColRight,                  /* Index of column in second table */
320   int isOuterJoin,                /* True if this is an OUTER join */
321   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
322 ){
323   sqlite3 *db = pParse->db;
324   Expr *pE1;
325   Expr *pE2;
326   Expr *pEq;
327 
328   assert( iLeft<iRight );
329   assert( pSrc->nSrc>iRight );
330   assert( pSrc->a[iLeft].pTab );
331   assert( pSrc->a[iRight].pTab );
332 
333   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
334   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
335 
336   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
337   if( pEq && isOuterJoin ){
338     ExprSetProperty(pEq, EP_FromJoin);
339     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(pEq, EP_NoReduce);
341     pEq->iRightJoinTable = (i16)pE2->iTable;
342   }
343   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
344 }
345 
346 /*
347 ** Set the EP_FromJoin property on all terms of the given expression.
348 ** And set the Expr.iRightJoinTable to iTable for every term in the
349 ** expression.
350 **
351 ** The EP_FromJoin property is used on terms of an expression to tell
352 ** the LEFT OUTER JOIN processing logic that this term is part of the
353 ** join restriction specified in the ON or USING clause and not a part
354 ** of the more general WHERE clause.  These terms are moved over to the
355 ** WHERE clause during join processing but we need to remember that they
356 ** originated in the ON or USING clause.
357 **
358 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
359 ** expression depends on table iRightJoinTable even if that table is not
360 ** explicitly mentioned in the expression.  That information is needed
361 ** for cases like this:
362 **
363 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
364 **
365 ** The where clause needs to defer the handling of the t1.x=5
366 ** term until after the t2 loop of the join.  In that way, a
367 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
368 ** defer the handling of t1.x=5, it will be processed immediately
369 ** after the t1 loop and rows with t1.x!=5 will never appear in
370 ** the output, which is incorrect.
371 */
372 static void setJoinExpr(Expr *p, int iTable){
373   while( p ){
374     ExprSetProperty(p, EP_FromJoin);
375     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
376     ExprSetVVAProperty(p, EP_NoReduce);
377     p->iRightJoinTable = (i16)iTable;
378     if( p->op==TK_FUNCTION && p->x.pList ){
379       int i;
380       for(i=0; i<p->x.pList->nExpr; i++){
381         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
382       }
383     }
384     setJoinExpr(p->pLeft, iTable);
385     p = p->pRight;
386   }
387 }
388 
389 /*
390 ** This routine processes the join information for a SELECT statement.
391 ** ON and USING clauses are converted into extra terms of the WHERE clause.
392 ** NATURAL joins also create extra WHERE clause terms.
393 **
394 ** The terms of a FROM clause are contained in the Select.pSrc structure.
395 ** The left most table is the first entry in Select.pSrc.  The right-most
396 ** table is the last entry.  The join operator is held in the entry to
397 ** the left.  Thus entry 0 contains the join operator for the join between
398 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
399 ** also attached to the left entry.
400 **
401 ** This routine returns the number of errors encountered.
402 */
403 static int sqliteProcessJoin(Parse *pParse, Select *p){
404   SrcList *pSrc;                  /* All tables in the FROM clause */
405   int i, j;                       /* Loop counters */
406   struct SrcList_item *pLeft;     /* Left table being joined */
407   struct SrcList_item *pRight;    /* Right table being joined */
408 
409   pSrc = p->pSrc;
410   pLeft = &pSrc->a[0];
411   pRight = &pLeft[1];
412   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
413     Table *pLeftTab = pLeft->pTab;
414     Table *pRightTab = pRight->pTab;
415     int isOuter;
416 
417     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
418     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
419 
420     /* When the NATURAL keyword is present, add WHERE clause terms for
421     ** every column that the two tables have in common.
422     */
423     if( pRight->fg.jointype & JT_NATURAL ){
424       if( pRight->pOn || pRight->pUsing ){
425         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
426            "an ON or USING clause", 0);
427         return 1;
428       }
429       for(j=0; j<pRightTab->nCol; j++){
430         char *zName;   /* Name of column in the right table */
431         int iLeft;     /* Matching left table */
432         int iLeftCol;  /* Matching column in the left table */
433 
434         zName = pRightTab->aCol[j].zName;
435         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
436           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
437                        isOuter, &p->pWhere);
438         }
439       }
440     }
441 
442     /* Disallow both ON and USING clauses in the same join
443     */
444     if( pRight->pOn && pRight->pUsing ){
445       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
446         "clauses in the same join");
447       return 1;
448     }
449 
450     /* Add the ON clause to the end of the WHERE clause, connected by
451     ** an AND operator.
452     */
453     if( pRight->pOn ){
454       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
455       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
456       pRight->pOn = 0;
457     }
458 
459     /* Create extra terms on the WHERE clause for each column named
460     ** in the USING clause.  Example: If the two tables to be joined are
461     ** A and B and the USING clause names X, Y, and Z, then add this
462     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
463     ** Report an error if any column mentioned in the USING clause is
464     ** not contained in both tables to be joined.
465     */
466     if( pRight->pUsing ){
467       IdList *pList = pRight->pUsing;
468       for(j=0; j<pList->nId; j++){
469         char *zName;     /* Name of the term in the USING clause */
470         int iLeft;       /* Table on the left with matching column name */
471         int iLeftCol;    /* Column number of matching column on the left */
472         int iRightCol;   /* Column number of matching column on the right */
473 
474         zName = pList->a[j].zName;
475         iRightCol = columnIndex(pRightTab, zName);
476         if( iRightCol<0
477          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
478         ){
479           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
480             "not present in both tables", zName);
481           return 1;
482         }
483         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
484                      isOuter, &p->pWhere);
485       }
486     }
487   }
488   return 0;
489 }
490 
491 /* Forward reference */
492 static KeyInfo *keyInfoFromExprList(
493   Parse *pParse,       /* Parsing context */
494   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
495   int iStart,          /* Begin with this column of pList */
496   int nExtra           /* Add this many extra columns to the end */
497 );
498 
499 /*
500 ** Generate code that will push the record in registers regData
501 ** through regData+nData-1 onto the sorter.
502 */
503 static void pushOntoSorter(
504   Parse *pParse,         /* Parser context */
505   SortCtx *pSort,        /* Information about the ORDER BY clause */
506   Select *pSelect,       /* The whole SELECT statement */
507   int regData,           /* First register holding data to be sorted */
508   int regOrigData,       /* First register holding data before packing */
509   int nData,             /* Number of elements in the data array */
510   int nPrefixReg         /* No. of reg prior to regData available for use */
511 ){
512   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
513   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
514   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
515   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
516   int regBase;                                     /* Regs for sorter record */
517   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
518   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
519   int op;                            /* Opcode to add sorter record to sorter */
520   int iLimit;                        /* LIMIT counter */
521 
522   assert( bSeq==0 || bSeq==1 );
523   assert( nData==1 || regData==regOrigData || regOrigData==0 );
524   if( nPrefixReg ){
525     assert( nPrefixReg==nExpr+bSeq );
526     regBase = regData - nExpr - bSeq;
527   }else{
528     regBase = pParse->nMem + 1;
529     pParse->nMem += nBase;
530   }
531   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
532   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
533   pSort->labelDone = sqlite3VdbeMakeLabel(v);
534   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
535                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
536   if( bSeq ){
537     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
538   }
539   if( nPrefixReg==0 && nData>0 ){
540     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
541   }
542   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
543   if( nOBSat>0 ){
544     int regPrevKey;   /* The first nOBSat columns of the previous row */
545     int addrFirst;    /* Address of the OP_IfNot opcode */
546     int addrJmp;      /* Address of the OP_Jump opcode */
547     VdbeOp *pOp;      /* Opcode that opens the sorter */
548     int nKey;         /* Number of sorting key columns, including OP_Sequence */
549     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
550 
551     regPrevKey = pParse->nMem+1;
552     pParse->nMem += pSort->nOBSat;
553     nKey = nExpr - pSort->nOBSat + bSeq;
554     if( bSeq ){
555       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
556     }else{
557       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
558     }
559     VdbeCoverage(v);
560     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
561     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
562     if( pParse->db->mallocFailed ) return;
563     pOp->p2 = nKey + nData;
564     pKI = pOp->p4.pKeyInfo;
565     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
566     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
567     testcase( pKI->nAllField > pKI->nKeyField+2 );
568     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
569                                            pKI->nAllField-pKI->nKeyField-1);
570     addrJmp = sqlite3VdbeCurrentAddr(v);
571     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
572     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
573     pSort->regReturn = ++pParse->nMem;
574     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
575     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
576     if( iLimit ){
577       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
578       VdbeCoverage(v);
579     }
580     sqlite3VdbeJumpHere(v, addrFirst);
581     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
582     sqlite3VdbeJumpHere(v, addrJmp);
583   }
584   if( pSort->sortFlags & SORTFLAG_UseSorter ){
585     op = OP_SorterInsert;
586   }else{
587     op = OP_IdxInsert;
588   }
589   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
590                        regBase+nOBSat, nBase-nOBSat);
591   if( iLimit ){
592     int addr;
593     int r1 = 0;
594     /* Fill the sorter until it contains LIMIT+OFFSET entries.  (The iLimit
595     ** register is initialized with value of LIMIT+OFFSET.)  After the sorter
596     ** fills up, delete the least entry in the sorter after each insert.
597     ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */
598     addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v);
599     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
600     if( pSort->bOrderedInnerLoop ){
601       r1 = ++pParse->nMem;
602       sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1);
603       VdbeComment((v, "seq"));
604     }
605     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
606     if( pSort->bOrderedInnerLoop ){
607       /* If the inner loop is driven by an index such that values from
608       ** the same iteration of the inner loop are in sorted order, then
609       ** immediately jump to the next iteration of an inner loop if the
610       ** entry from the current iteration does not fit into the top
611       ** LIMIT+OFFSET entries of the sorter. */
612       int iBrk = sqlite3VdbeCurrentAddr(v) + 2;
613       sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1);
614       sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
615       VdbeCoverage(v);
616     }
617     sqlite3VdbeJumpHere(v, addr);
618   }
619 }
620 
621 /*
622 ** Add code to implement the OFFSET
623 */
624 static void codeOffset(
625   Vdbe *v,          /* Generate code into this VM */
626   int iOffset,      /* Register holding the offset counter */
627   int iContinue     /* Jump here to skip the current record */
628 ){
629   if( iOffset>0 ){
630     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
631     VdbeComment((v, "OFFSET"));
632   }
633 }
634 
635 /*
636 ** Add code that will check to make sure the N registers starting at iMem
637 ** form a distinct entry.  iTab is a sorting index that holds previously
638 ** seen combinations of the N values.  A new entry is made in iTab
639 ** if the current N values are new.
640 **
641 ** A jump to addrRepeat is made and the N+1 values are popped from the
642 ** stack if the top N elements are not distinct.
643 */
644 static void codeDistinct(
645   Parse *pParse,     /* Parsing and code generating context */
646   int iTab,          /* A sorting index used to test for distinctness */
647   int addrRepeat,    /* Jump to here if not distinct */
648   int N,             /* Number of elements */
649   int iMem           /* First element */
650 ){
651   Vdbe *v;
652   int r1;
653 
654   v = pParse->pVdbe;
655   r1 = sqlite3GetTempReg(pParse);
656   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
657   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
658   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
659   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
660   sqlite3ReleaseTempReg(pParse, r1);
661 }
662 
663 /*
664 ** This routine generates the code for the inside of the inner loop
665 ** of a SELECT.
666 **
667 ** If srcTab is negative, then the p->pEList expressions
668 ** are evaluated in order to get the data for this row.  If srcTab is
669 ** zero or more, then data is pulled from srcTab and p->pEList is used only
670 ** to get the number of columns and the collation sequence for each column.
671 */
672 static void selectInnerLoop(
673   Parse *pParse,          /* The parser context */
674   Select *p,              /* The complete select statement being coded */
675   int srcTab,             /* Pull data from this table if non-negative */
676   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
677   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
678   SelectDest *pDest,      /* How to dispose of the results */
679   int iContinue,          /* Jump here to continue with next row */
680   int iBreak              /* Jump here to break out of the inner loop */
681 ){
682   Vdbe *v = pParse->pVdbe;
683   int i;
684   int hasDistinct;            /* True if the DISTINCT keyword is present */
685   int eDest = pDest->eDest;   /* How to dispose of results */
686   int iParm = pDest->iSDParm; /* First argument to disposal method */
687   int nResultCol;             /* Number of result columns */
688   int nPrefixReg = 0;         /* Number of extra registers before regResult */
689 
690   /* Usually, regResult is the first cell in an array of memory cells
691   ** containing the current result row. In this case regOrig is set to the
692   ** same value. However, if the results are being sent to the sorter, the
693   ** values for any expressions that are also part of the sort-key are omitted
694   ** from this array. In this case regOrig is set to zero.  */
695   int regResult;              /* Start of memory holding current results */
696   int regOrig;                /* Start of memory holding full result (or 0) */
697 
698   assert( v );
699   assert( p->pEList!=0 );
700   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
701   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
702   if( pSort==0 && !hasDistinct ){
703     assert( iContinue!=0 );
704     codeOffset(v, p->iOffset, iContinue);
705   }
706 
707   /* Pull the requested columns.
708   */
709   nResultCol = p->pEList->nExpr;
710 
711   if( pDest->iSdst==0 ){
712     if( pSort ){
713       nPrefixReg = pSort->pOrderBy->nExpr;
714       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
715       pParse->nMem += nPrefixReg;
716     }
717     pDest->iSdst = pParse->nMem+1;
718     pParse->nMem += nResultCol;
719   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
720     /* This is an error condition that can result, for example, when a SELECT
721     ** on the right-hand side of an INSERT contains more result columns than
722     ** there are columns in the table on the left.  The error will be caught
723     ** and reported later.  But we need to make sure enough memory is allocated
724     ** to avoid other spurious errors in the meantime. */
725     pParse->nMem += nResultCol;
726   }
727   pDest->nSdst = nResultCol;
728   regOrig = regResult = pDest->iSdst;
729   if( srcTab>=0 ){
730     for(i=0; i<nResultCol; i++){
731       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
732       VdbeComment((v, "%s", p->pEList->a[i].zName));
733     }
734   }else if( eDest!=SRT_Exists ){
735     /* If the destination is an EXISTS(...) expression, the actual
736     ** values returned by the SELECT are not required.
737     */
738     u8 ecelFlags;
739     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
740       ecelFlags = SQLITE_ECEL_DUP;
741     }else{
742       ecelFlags = 0;
743     }
744     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
745       /* For each expression in p->pEList that is a copy of an expression in
746       ** the ORDER BY clause (pSort->pOrderBy), set the associated
747       ** iOrderByCol value to one more than the index of the ORDER BY
748       ** expression within the sort-key that pushOntoSorter() will generate.
749       ** This allows the p->pEList field to be omitted from the sorted record,
750       ** saving space and CPU cycles.  */
751       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
752       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
753         int j;
754         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
755           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
756         }
757       }
758       regOrig = 0;
759       assert( eDest==SRT_Set || eDest==SRT_Mem
760            || eDest==SRT_Coroutine || eDest==SRT_Output );
761     }
762     nResultCol = sqlite3ExprCodeExprList(pParse,p->pEList,regResult,0,ecelFlags);
763   }
764 
765   /* If the DISTINCT keyword was present on the SELECT statement
766   ** and this row has been seen before, then do not make this row
767   ** part of the result.
768   */
769   if( hasDistinct ){
770     switch( pDistinct->eTnctType ){
771       case WHERE_DISTINCT_ORDERED: {
772         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
773         int iJump;              /* Jump destination */
774         int regPrev;            /* Previous row content */
775 
776         /* Allocate space for the previous row */
777         regPrev = pParse->nMem+1;
778         pParse->nMem += nResultCol;
779 
780         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
781         ** sets the MEM_Cleared bit on the first register of the
782         ** previous value.  This will cause the OP_Ne below to always
783         ** fail on the first iteration of the loop even if the first
784         ** row is all NULLs.
785         */
786         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
787         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
788         pOp->opcode = OP_Null;
789         pOp->p1 = 1;
790         pOp->p2 = regPrev;
791 
792         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
793         for(i=0; i<nResultCol; i++){
794           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
795           if( i<nResultCol-1 ){
796             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
797             VdbeCoverage(v);
798           }else{
799             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
800             VdbeCoverage(v);
801            }
802           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
803           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
804         }
805         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
806         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
807         break;
808       }
809 
810       case WHERE_DISTINCT_UNIQUE: {
811         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
812         break;
813       }
814 
815       default: {
816         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
817         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
818                      regResult);
819         break;
820       }
821     }
822     if( pSort==0 ){
823       codeOffset(v, p->iOffset, iContinue);
824     }
825   }
826 
827   switch( eDest ){
828     /* In this mode, write each query result to the key of the temporary
829     ** table iParm.
830     */
831 #ifndef SQLITE_OMIT_COMPOUND_SELECT
832     case SRT_Union: {
833       int r1;
834       r1 = sqlite3GetTempReg(pParse);
835       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
836       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
837       sqlite3ReleaseTempReg(pParse, r1);
838       break;
839     }
840 
841     /* Construct a record from the query result, but instead of
842     ** saving that record, use it as a key to delete elements from
843     ** the temporary table iParm.
844     */
845     case SRT_Except: {
846       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
847       break;
848     }
849 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
850 
851     /* Store the result as data using a unique key.
852     */
853     case SRT_Fifo:
854     case SRT_DistFifo:
855     case SRT_Table:
856     case SRT_EphemTab: {
857       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
858       testcase( eDest==SRT_Table );
859       testcase( eDest==SRT_EphemTab );
860       testcase( eDest==SRT_Fifo );
861       testcase( eDest==SRT_DistFifo );
862       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
863 #ifndef SQLITE_OMIT_CTE
864       if( eDest==SRT_DistFifo ){
865         /* If the destination is DistFifo, then cursor (iParm+1) is open
866         ** on an ephemeral index. If the current row is already present
867         ** in the index, do not write it to the output. If not, add the
868         ** current row to the index and proceed with writing it to the
869         ** output table as well.  */
870         int addr = sqlite3VdbeCurrentAddr(v) + 4;
871         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
872         VdbeCoverage(v);
873         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
874         assert( pSort==0 );
875       }
876 #endif
877       if( pSort ){
878         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
879       }else{
880         int r2 = sqlite3GetTempReg(pParse);
881         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
882         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
883         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
884         sqlite3ReleaseTempReg(pParse, r2);
885       }
886       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
887       break;
888     }
889 
890 #ifndef SQLITE_OMIT_SUBQUERY
891     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
892     ** then there should be a single item on the stack.  Write this
893     ** item into the set table with bogus data.
894     */
895     case SRT_Set: {
896       if( pSort ){
897         /* At first glance you would think we could optimize out the
898         ** ORDER BY in this case since the order of entries in the set
899         ** does not matter.  But there might be a LIMIT clause, in which
900         ** case the order does matter */
901         pushOntoSorter(
902             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
903       }else{
904         int r1 = sqlite3GetTempReg(pParse);
905         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
906         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
907             r1, pDest->zAffSdst, nResultCol);
908         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
909         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
910         sqlite3ReleaseTempReg(pParse, r1);
911       }
912       break;
913     }
914 
915     /* If any row exist in the result set, record that fact and abort.
916     */
917     case SRT_Exists: {
918       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
919       /* The LIMIT clause will terminate the loop for us */
920       break;
921     }
922 
923     /* If this is a scalar select that is part of an expression, then
924     ** store the results in the appropriate memory cell or array of
925     ** memory cells and break out of the scan loop.
926     */
927     case SRT_Mem: {
928       if( pSort ){
929         assert( nResultCol<=pDest->nSdst );
930         pushOntoSorter(
931             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
932       }else{
933         assert( nResultCol==pDest->nSdst );
934         assert( regResult==iParm );
935         /* The LIMIT clause will jump out of the loop for us */
936       }
937       break;
938     }
939 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
940 
941     case SRT_Coroutine:       /* Send data to a co-routine */
942     case SRT_Output: {        /* Return the results */
943       testcase( eDest==SRT_Coroutine );
944       testcase( eDest==SRT_Output );
945       if( pSort ){
946         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
947                        nPrefixReg);
948       }else if( eDest==SRT_Coroutine ){
949         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
950       }else{
951         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
952         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
953       }
954       break;
955     }
956 
957 #ifndef SQLITE_OMIT_CTE
958     /* Write the results into a priority queue that is order according to
959     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
960     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
961     ** pSO->nExpr columns, then make sure all keys are unique by adding a
962     ** final OP_Sequence column.  The last column is the record as a blob.
963     */
964     case SRT_DistQueue:
965     case SRT_Queue: {
966       int nKey;
967       int r1, r2, r3;
968       int addrTest = 0;
969       ExprList *pSO;
970       pSO = pDest->pOrderBy;
971       assert( pSO );
972       nKey = pSO->nExpr;
973       r1 = sqlite3GetTempReg(pParse);
974       r2 = sqlite3GetTempRange(pParse, nKey+2);
975       r3 = r2+nKey+1;
976       if( eDest==SRT_DistQueue ){
977         /* If the destination is DistQueue, then cursor (iParm+1) is open
978         ** on a second ephemeral index that holds all values every previously
979         ** added to the queue. */
980         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
981                                         regResult, nResultCol);
982         VdbeCoverage(v);
983       }
984       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
985       if( eDest==SRT_DistQueue ){
986         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
987         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
988       }
989       for(i=0; i<nKey; i++){
990         sqlite3VdbeAddOp2(v, OP_SCopy,
991                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
992                           r2+i);
993       }
994       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
995       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
996       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
997       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
998       sqlite3ReleaseTempReg(pParse, r1);
999       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1000       break;
1001     }
1002 #endif /* SQLITE_OMIT_CTE */
1003 
1004 
1005 
1006 #if !defined(SQLITE_OMIT_TRIGGER)
1007     /* Discard the results.  This is used for SELECT statements inside
1008     ** the body of a TRIGGER.  The purpose of such selects is to call
1009     ** user-defined functions that have side effects.  We do not care
1010     ** about the actual results of the select.
1011     */
1012     default: {
1013       assert( eDest==SRT_Discard );
1014       break;
1015     }
1016 #endif
1017   }
1018 
1019   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1020   ** there is a sorter, in which case the sorter has already limited
1021   ** the output for us.
1022   */
1023   if( pSort==0 && p->iLimit ){
1024     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1025   }
1026 }
1027 
1028 /*
1029 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1030 ** X extra columns.
1031 */
1032 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1033   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1034   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1035   if( p ){
1036     p->aSortOrder = (u8*)&p->aColl[N+X];
1037     p->nKeyField = (u16)N;
1038     p->nAllField = (u16)(N+X);
1039     p->enc = ENC(db);
1040     p->db = db;
1041     p->nRef = 1;
1042     memset(&p[1], 0, nExtra);
1043   }else{
1044     sqlite3OomFault(db);
1045   }
1046   return p;
1047 }
1048 
1049 /*
1050 ** Deallocate a KeyInfo object
1051 */
1052 void sqlite3KeyInfoUnref(KeyInfo *p){
1053   if( p ){
1054     assert( p->nRef>0 );
1055     p->nRef--;
1056     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1057   }
1058 }
1059 
1060 /*
1061 ** Make a new pointer to a KeyInfo object
1062 */
1063 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1064   if( p ){
1065     assert( p->nRef>0 );
1066     p->nRef++;
1067   }
1068   return p;
1069 }
1070 
1071 #ifdef SQLITE_DEBUG
1072 /*
1073 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1074 ** can only be changed if this is just a single reference to the object.
1075 **
1076 ** This routine is used only inside of assert() statements.
1077 */
1078 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1079 #endif /* SQLITE_DEBUG */
1080 
1081 /*
1082 ** Given an expression list, generate a KeyInfo structure that records
1083 ** the collating sequence for each expression in that expression list.
1084 **
1085 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1086 ** KeyInfo structure is appropriate for initializing a virtual index to
1087 ** implement that clause.  If the ExprList is the result set of a SELECT
1088 ** then the KeyInfo structure is appropriate for initializing a virtual
1089 ** index to implement a DISTINCT test.
1090 **
1091 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1092 ** function is responsible for seeing that this structure is eventually
1093 ** freed.
1094 */
1095 static KeyInfo *keyInfoFromExprList(
1096   Parse *pParse,       /* Parsing context */
1097   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1098   int iStart,          /* Begin with this column of pList */
1099   int nExtra           /* Add this many extra columns to the end */
1100 ){
1101   int nExpr;
1102   KeyInfo *pInfo;
1103   struct ExprList_item *pItem;
1104   sqlite3 *db = pParse->db;
1105   int i;
1106 
1107   nExpr = pList->nExpr;
1108   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1109   if( pInfo ){
1110     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1111     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1112       CollSeq *pColl;
1113       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1114       if( !pColl ) pColl = db->pDfltColl;
1115       pInfo->aColl[i-iStart] = pColl;
1116       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1117     }
1118   }
1119   return pInfo;
1120 }
1121 
1122 /*
1123 ** Name of the connection operator, used for error messages.
1124 */
1125 static const char *selectOpName(int id){
1126   char *z;
1127   switch( id ){
1128     case TK_ALL:       z = "UNION ALL";   break;
1129     case TK_INTERSECT: z = "INTERSECT";   break;
1130     case TK_EXCEPT:    z = "EXCEPT";      break;
1131     default:           z = "UNION";       break;
1132   }
1133   return z;
1134 }
1135 
1136 #ifndef SQLITE_OMIT_EXPLAIN
1137 /*
1138 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1139 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1140 ** where the caption is of the form:
1141 **
1142 **   "USE TEMP B-TREE FOR xxx"
1143 **
1144 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1145 ** is determined by the zUsage argument.
1146 */
1147 static void explainTempTable(Parse *pParse, const char *zUsage){
1148   if( pParse->explain==2 ){
1149     Vdbe *v = pParse->pVdbe;
1150     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1151     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1152   }
1153 }
1154 
1155 /*
1156 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1157 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1158 ** in sqlite3Select() to assign values to structure member variables that
1159 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1160 ** code with #ifndef directives.
1161 */
1162 # define explainSetInteger(a, b) a = b
1163 
1164 #else
1165 /* No-op versions of the explainXXX() functions and macros. */
1166 # define explainTempTable(y,z)
1167 # define explainSetInteger(y,z)
1168 #endif
1169 
1170 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1171 /*
1172 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1173 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1174 ** where the caption is of one of the two forms:
1175 **
1176 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1177 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1178 **
1179 ** where iSub1 and iSub2 are the integers passed as the corresponding
1180 ** function parameters, and op is the text representation of the parameter
1181 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1182 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1183 ** false, or the second form if it is true.
1184 */
1185 static void explainComposite(
1186   Parse *pParse,                  /* Parse context */
1187   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1188   int iSub1,                      /* Subquery id 1 */
1189   int iSub2,                      /* Subquery id 2 */
1190   int bUseTmp                     /* True if a temp table was used */
1191 ){
1192   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1193   if( pParse->explain==2 ){
1194     Vdbe *v = pParse->pVdbe;
1195     char *zMsg = sqlite3MPrintf(
1196         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1197         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1198     );
1199     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1200   }
1201 }
1202 #else
1203 /* No-op versions of the explainXXX() functions and macros. */
1204 # define explainComposite(v,w,x,y,z)
1205 #endif
1206 
1207 /*
1208 ** If the inner loop was generated using a non-null pOrderBy argument,
1209 ** then the results were placed in a sorter.  After the loop is terminated
1210 ** we need to run the sorter and output the results.  The following
1211 ** routine generates the code needed to do that.
1212 */
1213 static void generateSortTail(
1214   Parse *pParse,    /* Parsing context */
1215   Select *p,        /* The SELECT statement */
1216   SortCtx *pSort,   /* Information on the ORDER BY clause */
1217   int nColumn,      /* Number of columns of data */
1218   SelectDest *pDest /* Write the sorted results here */
1219 ){
1220   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1221   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1222   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1223   int addr;
1224   int addrOnce = 0;
1225   int iTab;
1226   ExprList *pOrderBy = pSort->pOrderBy;
1227   int eDest = pDest->eDest;
1228   int iParm = pDest->iSDParm;
1229   int regRow;
1230   int regRowid;
1231   int iCol;
1232   int nKey;
1233   int iSortTab;                   /* Sorter cursor to read from */
1234   int nSortData;                  /* Trailing values to read from sorter */
1235   int i;
1236   int bSeq;                       /* True if sorter record includes seq. no. */
1237   struct ExprList_item *aOutEx = p->pEList->a;
1238 
1239   assert( addrBreak<0 );
1240   if( pSort->labelBkOut ){
1241     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1242     sqlite3VdbeGoto(v, addrBreak);
1243     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1244   }
1245   iTab = pSort->iECursor;
1246   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1247     regRowid = 0;
1248     regRow = pDest->iSdst;
1249     nSortData = nColumn;
1250   }else{
1251     regRowid = sqlite3GetTempReg(pParse);
1252     regRow = sqlite3GetTempRange(pParse, nColumn);
1253     nSortData = nColumn;
1254   }
1255   nKey = pOrderBy->nExpr - pSort->nOBSat;
1256   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1257     int regSortOut = ++pParse->nMem;
1258     iSortTab = pParse->nTab++;
1259     if( pSort->labelBkOut ){
1260       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1261     }
1262     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1263     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1264     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1265     VdbeCoverage(v);
1266     codeOffset(v, p->iOffset, addrContinue);
1267     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1268     bSeq = 0;
1269   }else{
1270     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1271     codeOffset(v, p->iOffset, addrContinue);
1272     iSortTab = iTab;
1273     bSeq = 1;
1274   }
1275   for(i=0, iCol=nKey+bSeq; i<nSortData; i++){
1276     int iRead;
1277     if( aOutEx[i].u.x.iOrderByCol ){
1278       iRead = aOutEx[i].u.x.iOrderByCol-1;
1279     }else{
1280       iRead = iCol++;
1281     }
1282     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1283     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1284   }
1285   switch( eDest ){
1286     case SRT_Table:
1287     case SRT_EphemTab: {
1288       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1289       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1290       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1291       break;
1292     }
1293 #ifndef SQLITE_OMIT_SUBQUERY
1294     case SRT_Set: {
1295       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1296       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1297                         pDest->zAffSdst, nColumn);
1298       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1299       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1300       break;
1301     }
1302     case SRT_Mem: {
1303       /* The LIMIT clause will terminate the loop for us */
1304       break;
1305     }
1306 #endif
1307     default: {
1308       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1309       testcase( eDest==SRT_Output );
1310       testcase( eDest==SRT_Coroutine );
1311       if( eDest==SRT_Output ){
1312         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1313         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1314       }else{
1315         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1316       }
1317       break;
1318     }
1319   }
1320   if( regRowid ){
1321     if( eDest==SRT_Set ){
1322       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1323     }else{
1324       sqlite3ReleaseTempReg(pParse, regRow);
1325     }
1326     sqlite3ReleaseTempReg(pParse, regRowid);
1327   }
1328   /* The bottom of the loop
1329   */
1330   sqlite3VdbeResolveLabel(v, addrContinue);
1331   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1332     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1333   }else{
1334     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1335   }
1336   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1337   sqlite3VdbeResolveLabel(v, addrBreak);
1338 }
1339 
1340 /*
1341 ** Return a pointer to a string containing the 'declaration type' of the
1342 ** expression pExpr. The string may be treated as static by the caller.
1343 **
1344 ** Also try to estimate the size of the returned value and return that
1345 ** result in *pEstWidth.
1346 **
1347 ** The declaration type is the exact datatype definition extracted from the
1348 ** original CREATE TABLE statement if the expression is a column. The
1349 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1350 ** is considered a column can be complex in the presence of subqueries. The
1351 ** result-set expression in all of the following SELECT statements is
1352 ** considered a column by this function.
1353 **
1354 **   SELECT col FROM tbl;
1355 **   SELECT (SELECT col FROM tbl;
1356 **   SELECT (SELECT col FROM tbl);
1357 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1358 **
1359 ** The declaration type for any expression other than a column is NULL.
1360 **
1361 ** This routine has either 3 or 6 parameters depending on whether or not
1362 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1363 */
1364 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1365 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1366 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1367 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1368 #endif
1369 static const char *columnTypeImpl(
1370   NameContext *pNC,
1371   Expr *pExpr,
1372 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1373   const char **pzOrigDb,
1374   const char **pzOrigTab,
1375   const char **pzOrigCol,
1376 #endif
1377   u8 *pEstWidth
1378 ){
1379   char const *zType = 0;
1380   int j;
1381   u8 estWidth = 1;
1382 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1383   char const *zOrigDb = 0;
1384   char const *zOrigTab = 0;
1385   char const *zOrigCol = 0;
1386 #endif
1387 
1388   assert( pExpr!=0 );
1389   assert( pNC->pSrcList!=0 );
1390   switch( pExpr->op ){
1391     case TK_AGG_COLUMN:
1392     case TK_COLUMN: {
1393       /* The expression is a column. Locate the table the column is being
1394       ** extracted from in NameContext.pSrcList. This table may be real
1395       ** database table or a subquery.
1396       */
1397       Table *pTab = 0;            /* Table structure column is extracted from */
1398       Select *pS = 0;             /* Select the column is extracted from */
1399       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1400       testcase( pExpr->op==TK_AGG_COLUMN );
1401       testcase( pExpr->op==TK_COLUMN );
1402       while( pNC && !pTab ){
1403         SrcList *pTabList = pNC->pSrcList;
1404         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1405         if( j<pTabList->nSrc ){
1406           pTab = pTabList->a[j].pTab;
1407           pS = pTabList->a[j].pSelect;
1408         }else{
1409           pNC = pNC->pNext;
1410         }
1411       }
1412 
1413       if( pTab==0 ){
1414         /* At one time, code such as "SELECT new.x" within a trigger would
1415         ** cause this condition to run.  Since then, we have restructured how
1416         ** trigger code is generated and so this condition is no longer
1417         ** possible. However, it can still be true for statements like
1418         ** the following:
1419         **
1420         **   CREATE TABLE t1(col INTEGER);
1421         **   SELECT (SELECT t1.col) FROM FROM t1;
1422         **
1423         ** when columnType() is called on the expression "t1.col" in the
1424         ** sub-select. In this case, set the column type to NULL, even
1425         ** though it should really be "INTEGER".
1426         **
1427         ** This is not a problem, as the column type of "t1.col" is never
1428         ** used. When columnType() is called on the expression
1429         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1430         ** branch below.  */
1431         break;
1432       }
1433 
1434       assert( pTab && pExpr->pTab==pTab );
1435       if( pS ){
1436         /* The "table" is actually a sub-select or a view in the FROM clause
1437         ** of the SELECT statement. Return the declaration type and origin
1438         ** data for the result-set column of the sub-select.
1439         */
1440         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1441           /* If iCol is less than zero, then the expression requests the
1442           ** rowid of the sub-select or view. This expression is legal (see
1443           ** test case misc2.2.2) - it always evaluates to NULL.
1444           */
1445           NameContext sNC;
1446           Expr *p = pS->pEList->a[iCol].pExpr;
1447           sNC.pSrcList = pS->pSrc;
1448           sNC.pNext = pNC;
1449           sNC.pParse = pNC->pParse;
1450           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1451         }
1452       }else if( pTab->pSchema ){
1453         /* A real table */
1454         assert( !pS );
1455         if( iCol<0 ) iCol = pTab->iPKey;
1456         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1457 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1458         if( iCol<0 ){
1459           zType = "INTEGER";
1460           zOrigCol = "rowid";
1461         }else{
1462           zOrigCol = pTab->aCol[iCol].zName;
1463           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1464           estWidth = pTab->aCol[iCol].szEst;
1465         }
1466         zOrigTab = pTab->zName;
1467         if( pNC->pParse ){
1468           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1469           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1470         }
1471 #else
1472         if( iCol<0 ){
1473           zType = "INTEGER";
1474         }else{
1475           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1476           estWidth = pTab->aCol[iCol].szEst;
1477         }
1478 #endif
1479       }
1480       break;
1481     }
1482 #ifndef SQLITE_OMIT_SUBQUERY
1483     case TK_SELECT: {
1484       /* The expression is a sub-select. Return the declaration type and
1485       ** origin info for the single column in the result set of the SELECT
1486       ** statement.
1487       */
1488       NameContext sNC;
1489       Select *pS = pExpr->x.pSelect;
1490       Expr *p = pS->pEList->a[0].pExpr;
1491       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1492       sNC.pSrcList = pS->pSrc;
1493       sNC.pNext = pNC;
1494       sNC.pParse = pNC->pParse;
1495       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1496       break;
1497     }
1498 #endif
1499   }
1500 
1501 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1502   if( pzOrigDb ){
1503     assert( pzOrigTab && pzOrigCol );
1504     *pzOrigDb = zOrigDb;
1505     *pzOrigTab = zOrigTab;
1506     *pzOrigCol = zOrigCol;
1507   }
1508 #endif
1509   if( pEstWidth ) *pEstWidth = estWidth;
1510   return zType;
1511 }
1512 
1513 /*
1514 ** Generate code that will tell the VDBE the declaration types of columns
1515 ** in the result set.
1516 */
1517 static void generateColumnTypes(
1518   Parse *pParse,      /* Parser context */
1519   SrcList *pTabList,  /* List of tables */
1520   ExprList *pEList    /* Expressions defining the result set */
1521 ){
1522 #ifndef SQLITE_OMIT_DECLTYPE
1523   Vdbe *v = pParse->pVdbe;
1524   int i;
1525   NameContext sNC;
1526   sNC.pSrcList = pTabList;
1527   sNC.pParse = pParse;
1528   sNC.pNext = 0;
1529   for(i=0; i<pEList->nExpr; i++){
1530     Expr *p = pEList->a[i].pExpr;
1531     const char *zType;
1532 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1533     const char *zOrigDb = 0;
1534     const char *zOrigTab = 0;
1535     const char *zOrigCol = 0;
1536     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1537 
1538     /* The vdbe must make its own copy of the column-type and other
1539     ** column specific strings, in case the schema is reset before this
1540     ** virtual machine is deleted.
1541     */
1542     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1543     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1544     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1545 #else
1546     zType = columnType(&sNC, p, 0, 0, 0, 0);
1547 #endif
1548     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1549   }
1550 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1551 }
1552 
1553 
1554 /*
1555 ** Compute the column names for a SELECT statement.
1556 **
1557 ** The only guarantee that SQLite makes about column names is that if the
1558 ** column has an AS clause assigning it a name, that will be the name used.
1559 ** That is the only documented guarantee.  However, countless applications
1560 ** developed over the years have made baseless assumptions about column names
1561 ** and will break if those assumptions changes.  Hence, use extreme caution
1562 ** when modifying this routine to avoid breaking legacy.
1563 **
1564 ** See Also: sqlite3ColumnsFromExprList()
1565 **
1566 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1567 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1568 ** applications should operate this way.  Nevertheless, we need to support the
1569 ** other modes for legacy:
1570 **
1571 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1572 **                              originally appears in the SELECT statement.  In
1573 **                              other words, the zSpan of the result expression.
1574 **
1575 **    short=ON, full=OFF:       (This is the default setting).  If the result
1576 **                              refers directly to a table column, then the result
1577 **                              column name is just the table column name: COLUMN.
1578 **                              Otherwise use zSpan.
1579 **
1580 **    full=ON, short=ANY:       If the result refers directly to a table column,
1581 **                              then the result column name with the table name
1582 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1583 */
1584 static void generateColumnNames(
1585   Parse *pParse,      /* Parser context */
1586   Select *pSelect     /* Generate column names for this SELECT statement */
1587 ){
1588   Vdbe *v = pParse->pVdbe;
1589   int i;
1590   Table *pTab;
1591   SrcList *pTabList;
1592   ExprList *pEList;
1593   sqlite3 *db = pParse->db;
1594   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1595   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1596 
1597 #ifndef SQLITE_OMIT_EXPLAIN
1598   /* If this is an EXPLAIN, skip this step */
1599   if( pParse->explain ){
1600     return;
1601   }
1602 #endif
1603 
1604   if( pParse->colNamesSet || db->mallocFailed ) return;
1605   /* Column names are determined by the left-most term of a compound select */
1606   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1607   pTabList = pSelect->pSrc;
1608   pEList = pSelect->pEList;
1609   assert( v!=0 );
1610   assert( pTabList!=0 );
1611   pParse->colNamesSet = 1;
1612   fullName = (db->flags & SQLITE_FullColNames)!=0;
1613   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1614   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1615   for(i=0; i<pEList->nExpr; i++){
1616     Expr *p = pEList->a[i].pExpr;
1617 
1618     assert( p!=0 );
1619     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1620     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering indexes not yet coded */
1621     if( pEList->a[i].zName ){
1622       /* An AS clause always takes first priority */
1623       char *zName = pEList->a[i].zName;
1624       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1625     }else if( srcName && p->op==TK_COLUMN ){
1626       char *zCol;
1627       int iCol = p->iColumn;
1628       pTab = p->pTab;
1629       assert( pTab!=0 );
1630       if( iCol<0 ) iCol = pTab->iPKey;
1631       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1632       if( iCol<0 ){
1633         zCol = "rowid";
1634       }else{
1635         zCol = pTab->aCol[iCol].zName;
1636       }
1637       if( fullName ){
1638         char *zName = 0;
1639         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1640         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1641       }else{
1642         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1643       }
1644     }else{
1645       const char *z = pEList->a[i].zSpan;
1646       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1647       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1648     }
1649   }
1650   generateColumnTypes(pParse, pTabList, pEList);
1651 }
1652 
1653 /*
1654 ** Given an expression list (which is really the list of expressions
1655 ** that form the result set of a SELECT statement) compute appropriate
1656 ** column names for a table that would hold the expression list.
1657 **
1658 ** All column names will be unique.
1659 **
1660 ** Only the column names are computed.  Column.zType, Column.zColl,
1661 ** and other fields of Column are zeroed.
1662 **
1663 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1664 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1665 **
1666 ** The only guarantee that SQLite makes about column names is that if the
1667 ** column has an AS clause assigning it a name, that will be the name used.
1668 ** That is the only documented guarantee.  However, countless applications
1669 ** developed over the years have made baseless assumptions about column names
1670 ** and will break if those assumptions changes.  Hence, use extreme caution
1671 ** when modifying this routine to avoid breaking legacy.
1672 **
1673 ** See Also: generateColumnNames()
1674 */
1675 int sqlite3ColumnsFromExprList(
1676   Parse *pParse,          /* Parsing context */
1677   ExprList *pEList,       /* Expr list from which to derive column names */
1678   i16 *pnCol,             /* Write the number of columns here */
1679   Column **paCol          /* Write the new column list here */
1680 ){
1681   sqlite3 *db = pParse->db;   /* Database connection */
1682   int i, j;                   /* Loop counters */
1683   u32 cnt;                    /* Index added to make the name unique */
1684   Column *aCol, *pCol;        /* For looping over result columns */
1685   int nCol;                   /* Number of columns in the result set */
1686   char *zName;                /* Column name */
1687   int nName;                  /* Size of name in zName[] */
1688   Hash ht;                    /* Hash table of column names */
1689 
1690   sqlite3HashInit(&ht);
1691   if( pEList ){
1692     nCol = pEList->nExpr;
1693     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1694     testcase( aCol==0 );
1695   }else{
1696     nCol = 0;
1697     aCol = 0;
1698   }
1699   assert( nCol==(i16)nCol );
1700   *pnCol = nCol;
1701   *paCol = aCol;
1702 
1703   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1704     /* Get an appropriate name for the column
1705     */
1706     if( (zName = pEList->a[i].zName)!=0 ){
1707       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1708     }else{
1709       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1710       while( pColExpr->op==TK_DOT ){
1711         pColExpr = pColExpr->pRight;
1712         assert( pColExpr!=0 );
1713       }
1714       if( (pColExpr->op==TK_COLUMN || pColExpr->op==TK_AGG_COLUMN)
1715        && pColExpr->pTab!=0
1716       ){
1717         /* For columns use the column name name */
1718         int iCol = pColExpr->iColumn;
1719         Table *pTab = pColExpr->pTab;
1720         if( iCol<0 ) iCol = pTab->iPKey;
1721         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1722       }else if( pColExpr->op==TK_ID ){
1723         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1724         zName = pColExpr->u.zToken;
1725       }else{
1726         /* Use the original text of the column expression as its name */
1727         zName = pEList->a[i].zSpan;
1728       }
1729     }
1730     if( zName ){
1731       zName = sqlite3DbStrDup(db, zName);
1732     }else{
1733       zName = sqlite3MPrintf(db,"column%d",i+1);
1734     }
1735 
1736     /* Make sure the column name is unique.  If the name is not unique,
1737     ** append an integer to the name so that it becomes unique.
1738     */
1739     cnt = 0;
1740     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1741       nName = sqlite3Strlen30(zName);
1742       if( nName>0 ){
1743         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1744         if( zName[j]==':' ) nName = j;
1745       }
1746       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1747       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1748     }
1749     pCol->zName = zName;
1750     sqlite3ColumnPropertiesFromName(0, pCol);
1751     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1752       sqlite3OomFault(db);
1753     }
1754   }
1755   sqlite3HashClear(&ht);
1756   if( db->mallocFailed ){
1757     for(j=0; j<i; j++){
1758       sqlite3DbFree(db, aCol[j].zName);
1759     }
1760     sqlite3DbFree(db, aCol);
1761     *paCol = 0;
1762     *pnCol = 0;
1763     return SQLITE_NOMEM_BKPT;
1764   }
1765   return SQLITE_OK;
1766 }
1767 
1768 /*
1769 ** Add type and collation information to a column list based on
1770 ** a SELECT statement.
1771 **
1772 ** The column list presumably came from selectColumnNamesFromExprList().
1773 ** The column list has only names, not types or collations.  This
1774 ** routine goes through and adds the types and collations.
1775 **
1776 ** This routine requires that all identifiers in the SELECT
1777 ** statement be resolved.
1778 */
1779 void sqlite3SelectAddColumnTypeAndCollation(
1780   Parse *pParse,        /* Parsing contexts */
1781   Table *pTab,          /* Add column type information to this table */
1782   Select *pSelect       /* SELECT used to determine types and collations */
1783 ){
1784   sqlite3 *db = pParse->db;
1785   NameContext sNC;
1786   Column *pCol;
1787   CollSeq *pColl;
1788   int i;
1789   Expr *p;
1790   struct ExprList_item *a;
1791   u64 szAll = 0;
1792 
1793   assert( pSelect!=0 );
1794   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1795   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1796   if( db->mallocFailed ) return;
1797   memset(&sNC, 0, sizeof(sNC));
1798   sNC.pSrcList = pSelect->pSrc;
1799   a = pSelect->pEList->a;
1800   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1801     const char *zType;
1802     int n, m;
1803     p = a[i].pExpr;
1804     zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst);
1805     szAll += pCol->szEst;
1806     pCol->affinity = sqlite3ExprAffinity(p);
1807     if( zType && (m = sqlite3Strlen30(zType))>0 ){
1808       n = sqlite3Strlen30(pCol->zName);
1809       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
1810       if( pCol->zName ){
1811         memcpy(&pCol->zName[n+1], zType, m+1);
1812         pCol->colFlags |= COLFLAG_HASTYPE;
1813       }
1814     }
1815     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1816     pColl = sqlite3ExprCollSeq(pParse, p);
1817     if( pColl && pCol->zColl==0 ){
1818       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1819     }
1820   }
1821   pTab->szTabRow = sqlite3LogEst(szAll*4);
1822 }
1823 
1824 /*
1825 ** Given a SELECT statement, generate a Table structure that describes
1826 ** the result set of that SELECT.
1827 */
1828 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1829   Table *pTab;
1830   sqlite3 *db = pParse->db;
1831   int savedFlags;
1832 
1833   savedFlags = db->flags;
1834   db->flags &= ~SQLITE_FullColNames;
1835   db->flags |= SQLITE_ShortColNames;
1836   sqlite3SelectPrep(pParse, pSelect, 0);
1837   if( pParse->nErr ) return 0;
1838   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1839   db->flags = savedFlags;
1840   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1841   if( pTab==0 ){
1842     return 0;
1843   }
1844   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1845   ** is disabled */
1846   assert( db->lookaside.bDisable );
1847   pTab->nTabRef = 1;
1848   pTab->zName = 0;
1849   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1850   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1851   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1852   pTab->iPKey = -1;
1853   if( db->mallocFailed ){
1854     sqlite3DeleteTable(db, pTab);
1855     return 0;
1856   }
1857   return pTab;
1858 }
1859 
1860 /*
1861 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1862 ** If an error occurs, return NULL and leave a message in pParse.
1863 */
1864 Vdbe *sqlite3GetVdbe(Parse *pParse){
1865   if( pParse->pVdbe ){
1866     return pParse->pVdbe;
1867   }
1868   if( pParse->pToplevel==0
1869    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1870   ){
1871     pParse->okConstFactor = 1;
1872   }
1873   return sqlite3VdbeCreate(pParse);
1874 }
1875 
1876 
1877 /*
1878 ** Compute the iLimit and iOffset fields of the SELECT based on the
1879 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1880 ** that appear in the original SQL statement after the LIMIT and OFFSET
1881 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1882 ** are the integer memory register numbers for counters used to compute
1883 ** the limit and offset.  If there is no limit and/or offset, then
1884 ** iLimit and iOffset are negative.
1885 **
1886 ** This routine changes the values of iLimit and iOffset only if
1887 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1888 ** iOffset should have been preset to appropriate default values (zero)
1889 ** prior to calling this routine.
1890 **
1891 ** The iOffset register (if it exists) is initialized to the value
1892 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1893 ** iOffset+1 is initialized to LIMIT+OFFSET.
1894 **
1895 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1896 ** redefined.  The UNION ALL operator uses this property to force
1897 ** the reuse of the same limit and offset registers across multiple
1898 ** SELECT statements.
1899 */
1900 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1901   Vdbe *v = 0;
1902   int iLimit = 0;
1903   int iOffset;
1904   int n;
1905   if( p->iLimit ) return;
1906 
1907   /*
1908   ** "LIMIT -1" always shows all rows.  There is some
1909   ** controversy about what the correct behavior should be.
1910   ** The current implementation interprets "LIMIT 0" to mean
1911   ** no rows.
1912   */
1913   sqlite3ExprCacheClear(pParse);
1914   assert( p->pOffset==0 || p->pLimit!=0 );
1915   if( p->pLimit ){
1916     p->iLimit = iLimit = ++pParse->nMem;
1917     v = sqlite3GetVdbe(pParse);
1918     assert( v!=0 );
1919     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1920       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1921       VdbeComment((v, "LIMIT counter"));
1922       if( n==0 ){
1923         sqlite3VdbeGoto(v, iBreak);
1924       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
1925         p->nSelectRow = sqlite3LogEst((u64)n);
1926         p->selFlags |= SF_FixedLimit;
1927       }
1928     }else{
1929       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1930       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1931       VdbeComment((v, "LIMIT counter"));
1932       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1933     }
1934     if( p->pOffset ){
1935       p->iOffset = iOffset = ++pParse->nMem;
1936       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1937       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1938       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1939       VdbeComment((v, "OFFSET counter"));
1940       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
1941       VdbeComment((v, "LIMIT+OFFSET"));
1942     }
1943   }
1944 }
1945 
1946 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1947 /*
1948 ** Return the appropriate collating sequence for the iCol-th column of
1949 ** the result set for the compound-select statement "p".  Return NULL if
1950 ** the column has no default collating sequence.
1951 **
1952 ** The collating sequence for the compound select is taken from the
1953 ** left-most term of the select that has a collating sequence.
1954 */
1955 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1956   CollSeq *pRet;
1957   if( p->pPrior ){
1958     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1959   }else{
1960     pRet = 0;
1961   }
1962   assert( iCol>=0 );
1963   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1964   ** have been thrown during name resolution and we would not have gotten
1965   ** this far */
1966   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1967     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1968   }
1969   return pRet;
1970 }
1971 
1972 /*
1973 ** The select statement passed as the second parameter is a compound SELECT
1974 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1975 ** structure suitable for implementing the ORDER BY.
1976 **
1977 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1978 ** function is responsible for ensuring that this structure is eventually
1979 ** freed.
1980 */
1981 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1982   ExprList *pOrderBy = p->pOrderBy;
1983   int nOrderBy = p->pOrderBy->nExpr;
1984   sqlite3 *db = pParse->db;
1985   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1986   if( pRet ){
1987     int i;
1988     for(i=0; i<nOrderBy; i++){
1989       struct ExprList_item *pItem = &pOrderBy->a[i];
1990       Expr *pTerm = pItem->pExpr;
1991       CollSeq *pColl;
1992 
1993       if( pTerm->flags & EP_Collate ){
1994         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1995       }else{
1996         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1997         if( pColl==0 ) pColl = db->pDfltColl;
1998         pOrderBy->a[i].pExpr =
1999           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2000       }
2001       assert( sqlite3KeyInfoIsWriteable(pRet) );
2002       pRet->aColl[i] = pColl;
2003       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2004     }
2005   }
2006 
2007   return pRet;
2008 }
2009 
2010 #ifndef SQLITE_OMIT_CTE
2011 /*
2012 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2013 ** query of the form:
2014 **
2015 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2016 **                         \___________/             \_______________/
2017 **                           p->pPrior                      p
2018 **
2019 **
2020 ** There is exactly one reference to the recursive-table in the FROM clause
2021 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2022 **
2023 ** The setup-query runs once to generate an initial set of rows that go
2024 ** into a Queue table.  Rows are extracted from the Queue table one by
2025 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2026 ** extracted row (now in the iCurrent table) becomes the content of the
2027 ** recursive-table for a recursive-query run.  The output of the recursive-query
2028 ** is added back into the Queue table.  Then another row is extracted from Queue
2029 ** and the iteration continues until the Queue table is empty.
2030 **
2031 ** If the compound query operator is UNION then no duplicate rows are ever
2032 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2033 ** that have ever been inserted into Queue and causes duplicates to be
2034 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2035 **
2036 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2037 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2038 ** an ORDER BY, the Queue table is just a FIFO.
2039 **
2040 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2041 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2042 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2043 ** with a positive value, then the first OFFSET outputs are discarded rather
2044 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2045 ** rows have been skipped.
2046 */
2047 static void generateWithRecursiveQuery(
2048   Parse *pParse,        /* Parsing context */
2049   Select *p,            /* The recursive SELECT to be coded */
2050   SelectDest *pDest     /* What to do with query results */
2051 ){
2052   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2053   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2054   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2055   Select *pSetup = p->pPrior;   /* The setup query */
2056   int addrTop;                  /* Top of the loop */
2057   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2058   int iCurrent = 0;             /* The Current table */
2059   int regCurrent;               /* Register holding Current table */
2060   int iQueue;                   /* The Queue table */
2061   int iDistinct = 0;            /* To ensure unique results if UNION */
2062   int eDest = SRT_Fifo;         /* How to write to Queue */
2063   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2064   int i;                        /* Loop counter */
2065   int rc;                       /* Result code */
2066   ExprList *pOrderBy;           /* The ORDER BY clause */
2067   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
2068   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2069 
2070   /* Obtain authorization to do a recursive query */
2071   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2072 
2073   /* Process the LIMIT and OFFSET clauses, if they exist */
2074   addrBreak = sqlite3VdbeMakeLabel(v);
2075   p->nSelectRow = 320;  /* 4 billion rows */
2076   computeLimitRegisters(pParse, p, addrBreak);
2077   pLimit = p->pLimit;
2078   pOffset = p->pOffset;
2079   regLimit = p->iLimit;
2080   regOffset = p->iOffset;
2081   p->pLimit = p->pOffset = 0;
2082   p->iLimit = p->iOffset = 0;
2083   pOrderBy = p->pOrderBy;
2084 
2085   /* Locate the cursor number of the Current table */
2086   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2087     if( pSrc->a[i].fg.isRecursive ){
2088       iCurrent = pSrc->a[i].iCursor;
2089       break;
2090     }
2091   }
2092 
2093   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2094   ** the Distinct table must be exactly one greater than Queue in order
2095   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2096   iQueue = pParse->nTab++;
2097   if( p->op==TK_UNION ){
2098     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2099     iDistinct = pParse->nTab++;
2100   }else{
2101     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2102   }
2103   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2104 
2105   /* Allocate cursors for Current, Queue, and Distinct. */
2106   regCurrent = ++pParse->nMem;
2107   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2108   if( pOrderBy ){
2109     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2110     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2111                       (char*)pKeyInfo, P4_KEYINFO);
2112     destQueue.pOrderBy = pOrderBy;
2113   }else{
2114     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2115   }
2116   VdbeComment((v, "Queue table"));
2117   if( iDistinct ){
2118     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2119     p->selFlags |= SF_UsesEphemeral;
2120   }
2121 
2122   /* Detach the ORDER BY clause from the compound SELECT */
2123   p->pOrderBy = 0;
2124 
2125   /* Store the results of the setup-query in Queue. */
2126   pSetup->pNext = 0;
2127   rc = sqlite3Select(pParse, pSetup, &destQueue);
2128   pSetup->pNext = p;
2129   if( rc ) goto end_of_recursive_query;
2130 
2131   /* Find the next row in the Queue and output that row */
2132   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2133 
2134   /* Transfer the next row in Queue over to Current */
2135   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2136   if( pOrderBy ){
2137     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2138   }else{
2139     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2140   }
2141   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2142 
2143   /* Output the single row in Current */
2144   addrCont = sqlite3VdbeMakeLabel(v);
2145   codeOffset(v, regOffset, addrCont);
2146   selectInnerLoop(pParse, p, iCurrent,
2147       0, 0, pDest, addrCont, addrBreak);
2148   if( regLimit ){
2149     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2150     VdbeCoverage(v);
2151   }
2152   sqlite3VdbeResolveLabel(v, addrCont);
2153 
2154   /* Execute the recursive SELECT taking the single row in Current as
2155   ** the value for the recursive-table. Store the results in the Queue.
2156   */
2157   if( p->selFlags & SF_Aggregate ){
2158     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2159   }else{
2160     p->pPrior = 0;
2161     sqlite3Select(pParse, p, &destQueue);
2162     assert( p->pPrior==0 );
2163     p->pPrior = pSetup;
2164   }
2165 
2166   /* Keep running the loop until the Queue is empty */
2167   sqlite3VdbeGoto(v, addrTop);
2168   sqlite3VdbeResolveLabel(v, addrBreak);
2169 
2170 end_of_recursive_query:
2171   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2172   p->pOrderBy = pOrderBy;
2173   p->pLimit = pLimit;
2174   p->pOffset = pOffset;
2175   return;
2176 }
2177 #endif /* SQLITE_OMIT_CTE */
2178 
2179 /* Forward references */
2180 static int multiSelectOrderBy(
2181   Parse *pParse,        /* Parsing context */
2182   Select *p,            /* The right-most of SELECTs to be coded */
2183   SelectDest *pDest     /* What to do with query results */
2184 );
2185 
2186 /*
2187 ** Handle the special case of a compound-select that originates from a
2188 ** VALUES clause.  By handling this as a special case, we avoid deep
2189 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2190 ** on a VALUES clause.
2191 **
2192 ** Because the Select object originates from a VALUES clause:
2193 **   (1) It has no LIMIT or OFFSET
2194 **   (2) All terms are UNION ALL
2195 **   (3) There is no ORDER BY clause
2196 */
2197 static int multiSelectValues(
2198   Parse *pParse,        /* Parsing context */
2199   Select *p,            /* The right-most of SELECTs to be coded */
2200   SelectDest *pDest     /* What to do with query results */
2201 ){
2202   Select *pPrior;
2203   int nRow = 1;
2204   int rc = 0;
2205   assert( p->selFlags & SF_MultiValue );
2206   do{
2207     assert( p->selFlags & SF_Values );
2208     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2209     assert( p->pLimit==0 );
2210     assert( p->pOffset==0 );
2211     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2212     if( p->pPrior==0 ) break;
2213     assert( p->pPrior->pNext==p );
2214     p = p->pPrior;
2215     nRow++;
2216   }while(1);
2217   while( p ){
2218     pPrior = p->pPrior;
2219     p->pPrior = 0;
2220     rc = sqlite3Select(pParse, p, pDest);
2221     p->pPrior = pPrior;
2222     if( rc ) break;
2223     p->nSelectRow = nRow;
2224     p = p->pNext;
2225   }
2226   return rc;
2227 }
2228 
2229 /*
2230 ** This routine is called to process a compound query form from
2231 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2232 ** INTERSECT
2233 **
2234 ** "p" points to the right-most of the two queries.  the query on the
2235 ** left is p->pPrior.  The left query could also be a compound query
2236 ** in which case this routine will be called recursively.
2237 **
2238 ** The results of the total query are to be written into a destination
2239 ** of type eDest with parameter iParm.
2240 **
2241 ** Example 1:  Consider a three-way compound SQL statement.
2242 **
2243 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2244 **
2245 ** This statement is parsed up as follows:
2246 **
2247 **     SELECT c FROM t3
2248 **      |
2249 **      `----->  SELECT b FROM t2
2250 **                |
2251 **                `------>  SELECT a FROM t1
2252 **
2253 ** The arrows in the diagram above represent the Select.pPrior pointer.
2254 ** So if this routine is called with p equal to the t3 query, then
2255 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2256 **
2257 ** Notice that because of the way SQLite parses compound SELECTs, the
2258 ** individual selects always group from left to right.
2259 */
2260 static int multiSelect(
2261   Parse *pParse,        /* Parsing context */
2262   Select *p,            /* The right-most of SELECTs to be coded */
2263   SelectDest *pDest     /* What to do with query results */
2264 ){
2265   int rc = SQLITE_OK;   /* Success code from a subroutine */
2266   Select *pPrior;       /* Another SELECT immediately to our left */
2267   Vdbe *v;              /* Generate code to this VDBE */
2268   SelectDest dest;      /* Alternative data destination */
2269   Select *pDelete = 0;  /* Chain of simple selects to delete */
2270   sqlite3 *db;          /* Database connection */
2271 #ifndef SQLITE_OMIT_EXPLAIN
2272   int iSub1 = 0;        /* EQP id of left-hand query */
2273   int iSub2 = 0;        /* EQP id of right-hand query */
2274 #endif
2275 
2276   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2277   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2278   */
2279   assert( p && p->pPrior );  /* Calling function guarantees this much */
2280   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2281   db = pParse->db;
2282   pPrior = p->pPrior;
2283   dest = *pDest;
2284   if( pPrior->pOrderBy || pPrior->pLimit ){
2285     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2286       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2287     rc = 1;
2288     goto multi_select_end;
2289   }
2290 
2291   v = sqlite3GetVdbe(pParse);
2292   assert( v!=0 );  /* The VDBE already created by calling function */
2293 
2294   /* Create the destination temporary table if necessary
2295   */
2296   if( dest.eDest==SRT_EphemTab ){
2297     assert( p->pEList );
2298     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2299     dest.eDest = SRT_Table;
2300   }
2301 
2302   /* Special handling for a compound-select that originates as a VALUES clause.
2303   */
2304   if( p->selFlags & SF_MultiValue ){
2305     rc = multiSelectValues(pParse, p, &dest);
2306     goto multi_select_end;
2307   }
2308 
2309   /* Make sure all SELECTs in the statement have the same number of elements
2310   ** in their result sets.
2311   */
2312   assert( p->pEList && pPrior->pEList );
2313   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2314 
2315 #ifndef SQLITE_OMIT_CTE
2316   if( p->selFlags & SF_Recursive ){
2317     generateWithRecursiveQuery(pParse, p, &dest);
2318   }else
2319 #endif
2320 
2321   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2322   */
2323   if( p->pOrderBy ){
2324     return multiSelectOrderBy(pParse, p, pDest);
2325   }else
2326 
2327   /* Generate code for the left and right SELECT statements.
2328   */
2329   switch( p->op ){
2330     case TK_ALL: {
2331       int addr = 0;
2332       int nLimit;
2333       assert( !pPrior->pLimit );
2334       pPrior->iLimit = p->iLimit;
2335       pPrior->iOffset = p->iOffset;
2336       pPrior->pLimit = p->pLimit;
2337       pPrior->pOffset = p->pOffset;
2338       explainSetInteger(iSub1, pParse->iNextSelectId);
2339       rc = sqlite3Select(pParse, pPrior, &dest);
2340       p->pLimit = 0;
2341       p->pOffset = 0;
2342       if( rc ){
2343         goto multi_select_end;
2344       }
2345       p->pPrior = 0;
2346       p->iLimit = pPrior->iLimit;
2347       p->iOffset = pPrior->iOffset;
2348       if( p->iLimit ){
2349         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2350         VdbeComment((v, "Jump ahead if LIMIT reached"));
2351         if( p->iOffset ){
2352           sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2353                             p->iLimit, p->iOffset+1, p->iOffset);
2354         }
2355       }
2356       explainSetInteger(iSub2, pParse->iNextSelectId);
2357       rc = sqlite3Select(pParse, p, &dest);
2358       testcase( rc!=SQLITE_OK );
2359       pDelete = p->pPrior;
2360       p->pPrior = pPrior;
2361       p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2362       if( pPrior->pLimit
2363        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2364        && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2365       ){
2366         p->nSelectRow = sqlite3LogEst((u64)nLimit);
2367       }
2368       if( addr ){
2369         sqlite3VdbeJumpHere(v, addr);
2370       }
2371       break;
2372     }
2373     case TK_EXCEPT:
2374     case TK_UNION: {
2375       int unionTab;    /* Cursor number of the temporary table holding result */
2376       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2377       int priorOp;     /* The SRT_ operation to apply to prior selects */
2378       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2379       int addr;
2380       SelectDest uniondest;
2381 
2382       testcase( p->op==TK_EXCEPT );
2383       testcase( p->op==TK_UNION );
2384       priorOp = SRT_Union;
2385       if( dest.eDest==priorOp ){
2386         /* We can reuse a temporary table generated by a SELECT to our
2387         ** right.
2388         */
2389         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2390         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2391         unionTab = dest.iSDParm;
2392       }else{
2393         /* We will need to create our own temporary table to hold the
2394         ** intermediate results.
2395         */
2396         unionTab = pParse->nTab++;
2397         assert( p->pOrderBy==0 );
2398         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2399         assert( p->addrOpenEphm[0] == -1 );
2400         p->addrOpenEphm[0] = addr;
2401         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2402         assert( p->pEList );
2403       }
2404 
2405       /* Code the SELECT statements to our left
2406       */
2407       assert( !pPrior->pOrderBy );
2408       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2409       explainSetInteger(iSub1, pParse->iNextSelectId);
2410       rc = sqlite3Select(pParse, pPrior, &uniondest);
2411       if( rc ){
2412         goto multi_select_end;
2413       }
2414 
2415       /* Code the current SELECT statement
2416       */
2417       if( p->op==TK_EXCEPT ){
2418         op = SRT_Except;
2419       }else{
2420         assert( p->op==TK_UNION );
2421         op = SRT_Union;
2422       }
2423       p->pPrior = 0;
2424       pLimit = p->pLimit;
2425       p->pLimit = 0;
2426       pOffset = p->pOffset;
2427       p->pOffset = 0;
2428       uniondest.eDest = op;
2429       explainSetInteger(iSub2, pParse->iNextSelectId);
2430       rc = sqlite3Select(pParse, p, &uniondest);
2431       testcase( rc!=SQLITE_OK );
2432       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2433       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2434       sqlite3ExprListDelete(db, p->pOrderBy);
2435       pDelete = p->pPrior;
2436       p->pPrior = pPrior;
2437       p->pOrderBy = 0;
2438       if( p->op==TK_UNION ){
2439         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2440       }
2441       sqlite3ExprDelete(db, p->pLimit);
2442       p->pLimit = pLimit;
2443       p->pOffset = pOffset;
2444       p->iLimit = 0;
2445       p->iOffset = 0;
2446 
2447       /* Convert the data in the temporary table into whatever form
2448       ** it is that we currently need.
2449       */
2450       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2451       if( dest.eDest!=priorOp ){
2452         int iCont, iBreak, iStart;
2453         assert( p->pEList );
2454         iBreak = sqlite3VdbeMakeLabel(v);
2455         iCont = sqlite3VdbeMakeLabel(v);
2456         computeLimitRegisters(pParse, p, iBreak);
2457         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2458         iStart = sqlite3VdbeCurrentAddr(v);
2459         selectInnerLoop(pParse, p, unionTab,
2460                         0, 0, &dest, iCont, iBreak);
2461         sqlite3VdbeResolveLabel(v, iCont);
2462         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2463         sqlite3VdbeResolveLabel(v, iBreak);
2464         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2465       }
2466       break;
2467     }
2468     default: assert( p->op==TK_INTERSECT ); {
2469       int tab1, tab2;
2470       int iCont, iBreak, iStart;
2471       Expr *pLimit, *pOffset;
2472       int addr;
2473       SelectDest intersectdest;
2474       int r1;
2475 
2476       /* INTERSECT is different from the others since it requires
2477       ** two temporary tables.  Hence it has its own case.  Begin
2478       ** by allocating the tables we will need.
2479       */
2480       tab1 = pParse->nTab++;
2481       tab2 = pParse->nTab++;
2482       assert( p->pOrderBy==0 );
2483 
2484       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2485       assert( p->addrOpenEphm[0] == -1 );
2486       p->addrOpenEphm[0] = addr;
2487       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2488       assert( p->pEList );
2489 
2490       /* Code the SELECTs to our left into temporary table "tab1".
2491       */
2492       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2493       explainSetInteger(iSub1, pParse->iNextSelectId);
2494       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2495       if( rc ){
2496         goto multi_select_end;
2497       }
2498 
2499       /* Code the current SELECT into temporary table "tab2"
2500       */
2501       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2502       assert( p->addrOpenEphm[1] == -1 );
2503       p->addrOpenEphm[1] = addr;
2504       p->pPrior = 0;
2505       pLimit = p->pLimit;
2506       p->pLimit = 0;
2507       pOffset = p->pOffset;
2508       p->pOffset = 0;
2509       intersectdest.iSDParm = tab2;
2510       explainSetInteger(iSub2, pParse->iNextSelectId);
2511       rc = sqlite3Select(pParse, p, &intersectdest);
2512       testcase( rc!=SQLITE_OK );
2513       pDelete = p->pPrior;
2514       p->pPrior = pPrior;
2515       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2516       sqlite3ExprDelete(db, p->pLimit);
2517       p->pLimit = pLimit;
2518       p->pOffset = pOffset;
2519 
2520       /* Generate code to take the intersection of the two temporary
2521       ** tables.
2522       */
2523       assert( p->pEList );
2524       iBreak = sqlite3VdbeMakeLabel(v);
2525       iCont = sqlite3VdbeMakeLabel(v);
2526       computeLimitRegisters(pParse, p, iBreak);
2527       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2528       r1 = sqlite3GetTempReg(pParse);
2529       iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2530       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2531       sqlite3ReleaseTempReg(pParse, r1);
2532       selectInnerLoop(pParse, p, tab1,
2533                       0, 0, &dest, iCont, iBreak);
2534       sqlite3VdbeResolveLabel(v, iCont);
2535       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2536       sqlite3VdbeResolveLabel(v, iBreak);
2537       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2538       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2539       break;
2540     }
2541   }
2542 
2543   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2544 
2545   /* Compute collating sequences used by
2546   ** temporary tables needed to implement the compound select.
2547   ** Attach the KeyInfo structure to all temporary tables.
2548   **
2549   ** This section is run by the right-most SELECT statement only.
2550   ** SELECT statements to the left always skip this part.  The right-most
2551   ** SELECT might also skip this part if it has no ORDER BY clause and
2552   ** no temp tables are required.
2553   */
2554   if( p->selFlags & SF_UsesEphemeral ){
2555     int i;                        /* Loop counter */
2556     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2557     Select *pLoop;                /* For looping through SELECT statements */
2558     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2559     int nCol;                     /* Number of columns in result set */
2560 
2561     assert( p->pNext==0 );
2562     nCol = p->pEList->nExpr;
2563     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2564     if( !pKeyInfo ){
2565       rc = SQLITE_NOMEM_BKPT;
2566       goto multi_select_end;
2567     }
2568     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2569       *apColl = multiSelectCollSeq(pParse, p, i);
2570       if( 0==*apColl ){
2571         *apColl = db->pDfltColl;
2572       }
2573     }
2574 
2575     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2576       for(i=0; i<2; i++){
2577         int addr = pLoop->addrOpenEphm[i];
2578         if( addr<0 ){
2579           /* If [0] is unused then [1] is also unused.  So we can
2580           ** always safely abort as soon as the first unused slot is found */
2581           assert( pLoop->addrOpenEphm[1]<0 );
2582           break;
2583         }
2584         sqlite3VdbeChangeP2(v, addr, nCol);
2585         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2586                             P4_KEYINFO);
2587         pLoop->addrOpenEphm[i] = -1;
2588       }
2589     }
2590     sqlite3KeyInfoUnref(pKeyInfo);
2591   }
2592 
2593 multi_select_end:
2594   pDest->iSdst = dest.iSdst;
2595   pDest->nSdst = dest.nSdst;
2596   sqlite3SelectDelete(db, pDelete);
2597   return rc;
2598 }
2599 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2600 
2601 /*
2602 ** Error message for when two or more terms of a compound select have different
2603 ** size result sets.
2604 */
2605 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2606   if( p->selFlags & SF_Values ){
2607     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2608   }else{
2609     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2610       " do not have the same number of result columns", selectOpName(p->op));
2611   }
2612 }
2613 
2614 /*
2615 ** Code an output subroutine for a coroutine implementation of a
2616 ** SELECT statment.
2617 **
2618 ** The data to be output is contained in pIn->iSdst.  There are
2619 ** pIn->nSdst columns to be output.  pDest is where the output should
2620 ** be sent.
2621 **
2622 ** regReturn is the number of the register holding the subroutine
2623 ** return address.
2624 **
2625 ** If regPrev>0 then it is the first register in a vector that
2626 ** records the previous output.  mem[regPrev] is a flag that is false
2627 ** if there has been no previous output.  If regPrev>0 then code is
2628 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2629 ** keys.
2630 **
2631 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2632 ** iBreak.
2633 */
2634 static int generateOutputSubroutine(
2635   Parse *pParse,          /* Parsing context */
2636   Select *p,              /* The SELECT statement */
2637   SelectDest *pIn,        /* Coroutine supplying data */
2638   SelectDest *pDest,      /* Where to send the data */
2639   int regReturn,          /* The return address register */
2640   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2641   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2642   int iBreak              /* Jump here if we hit the LIMIT */
2643 ){
2644   Vdbe *v = pParse->pVdbe;
2645   int iContinue;
2646   int addr;
2647 
2648   addr = sqlite3VdbeCurrentAddr(v);
2649   iContinue = sqlite3VdbeMakeLabel(v);
2650 
2651   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2652   */
2653   if( regPrev ){
2654     int addr1, addr2;
2655     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2656     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2657                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2658     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2659     sqlite3VdbeJumpHere(v, addr1);
2660     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2661     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2662   }
2663   if( pParse->db->mallocFailed ) return 0;
2664 
2665   /* Suppress the first OFFSET entries if there is an OFFSET clause
2666   */
2667   codeOffset(v, p->iOffset, iContinue);
2668 
2669   assert( pDest->eDest!=SRT_Exists );
2670   assert( pDest->eDest!=SRT_Table );
2671   switch( pDest->eDest ){
2672     /* Store the result as data using a unique key.
2673     */
2674     case SRT_EphemTab: {
2675       int r1 = sqlite3GetTempReg(pParse);
2676       int r2 = sqlite3GetTempReg(pParse);
2677       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2678       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2679       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2680       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2681       sqlite3ReleaseTempReg(pParse, r2);
2682       sqlite3ReleaseTempReg(pParse, r1);
2683       break;
2684     }
2685 
2686 #ifndef SQLITE_OMIT_SUBQUERY
2687     /* If we are creating a set for an "expr IN (SELECT ...)".
2688     */
2689     case SRT_Set: {
2690       int r1;
2691       testcase( pIn->nSdst>1 );
2692       r1 = sqlite3GetTempReg(pParse);
2693       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2694           r1, pDest->zAffSdst, pIn->nSdst);
2695       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2696       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2697                            pIn->iSdst, pIn->nSdst);
2698       sqlite3ReleaseTempReg(pParse, r1);
2699       break;
2700     }
2701 
2702     /* If this is a scalar select that is part of an expression, then
2703     ** store the results in the appropriate memory cell and break out
2704     ** of the scan loop.
2705     */
2706     case SRT_Mem: {
2707       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2708       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2709       /* The LIMIT clause will jump out of the loop for us */
2710       break;
2711     }
2712 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2713 
2714     /* The results are stored in a sequence of registers
2715     ** starting at pDest->iSdst.  Then the co-routine yields.
2716     */
2717     case SRT_Coroutine: {
2718       if( pDest->iSdst==0 ){
2719         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2720         pDest->nSdst = pIn->nSdst;
2721       }
2722       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2723       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2724       break;
2725     }
2726 
2727     /* If none of the above, then the result destination must be
2728     ** SRT_Output.  This routine is never called with any other
2729     ** destination other than the ones handled above or SRT_Output.
2730     **
2731     ** For SRT_Output, results are stored in a sequence of registers.
2732     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2733     ** return the next row of result.
2734     */
2735     default: {
2736       assert( pDest->eDest==SRT_Output );
2737       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2738       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2739       break;
2740     }
2741   }
2742 
2743   /* Jump to the end of the loop if the LIMIT is reached.
2744   */
2745   if( p->iLimit ){
2746     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2747   }
2748 
2749   /* Generate the subroutine return
2750   */
2751   sqlite3VdbeResolveLabel(v, iContinue);
2752   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2753 
2754   return addr;
2755 }
2756 
2757 /*
2758 ** Alternative compound select code generator for cases when there
2759 ** is an ORDER BY clause.
2760 **
2761 ** We assume a query of the following form:
2762 **
2763 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2764 **
2765 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2766 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2767 ** co-routines.  Then run the co-routines in parallel and merge the results
2768 ** into the output.  In addition to the two coroutines (called selectA and
2769 ** selectB) there are 7 subroutines:
2770 **
2771 **    outA:    Move the output of the selectA coroutine into the output
2772 **             of the compound query.
2773 **
2774 **    outB:    Move the output of the selectB coroutine into the output
2775 **             of the compound query.  (Only generated for UNION and
2776 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2777 **             appears only in B.)
2778 **
2779 **    AltB:    Called when there is data from both coroutines and A<B.
2780 **
2781 **    AeqB:    Called when there is data from both coroutines and A==B.
2782 **
2783 **    AgtB:    Called when there is data from both coroutines and A>B.
2784 **
2785 **    EofA:    Called when data is exhausted from selectA.
2786 **
2787 **    EofB:    Called when data is exhausted from selectB.
2788 **
2789 ** The implementation of the latter five subroutines depend on which
2790 ** <operator> is used:
2791 **
2792 **
2793 **             UNION ALL         UNION            EXCEPT          INTERSECT
2794 **          -------------  -----------------  --------------  -----------------
2795 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2796 **
2797 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2798 **
2799 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2800 **
2801 **   EofA:   outB, nextB      outB, nextB          halt             halt
2802 **
2803 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2804 **
2805 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2806 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2807 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2808 ** following nextX causes a jump to the end of the select processing.
2809 **
2810 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2811 ** within the output subroutine.  The regPrev register set holds the previously
2812 ** output value.  A comparison is made against this value and the output
2813 ** is skipped if the next results would be the same as the previous.
2814 **
2815 ** The implementation plan is to implement the two coroutines and seven
2816 ** subroutines first, then put the control logic at the bottom.  Like this:
2817 **
2818 **          goto Init
2819 **     coA: coroutine for left query (A)
2820 **     coB: coroutine for right query (B)
2821 **    outA: output one row of A
2822 **    outB: output one row of B (UNION and UNION ALL only)
2823 **    EofA: ...
2824 **    EofB: ...
2825 **    AltB: ...
2826 **    AeqB: ...
2827 **    AgtB: ...
2828 **    Init: initialize coroutine registers
2829 **          yield coA
2830 **          if eof(A) goto EofA
2831 **          yield coB
2832 **          if eof(B) goto EofB
2833 **    Cmpr: Compare A, B
2834 **          Jump AltB, AeqB, AgtB
2835 **     End: ...
2836 **
2837 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2838 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2839 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2840 ** and AgtB jump to either L2 or to one of EofA or EofB.
2841 */
2842 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2843 static int multiSelectOrderBy(
2844   Parse *pParse,        /* Parsing context */
2845   Select *p,            /* The right-most of SELECTs to be coded */
2846   SelectDest *pDest     /* What to do with query results */
2847 ){
2848   int i, j;             /* Loop counters */
2849   Select *pPrior;       /* Another SELECT immediately to our left */
2850   Vdbe *v;              /* Generate code to this VDBE */
2851   SelectDest destA;     /* Destination for coroutine A */
2852   SelectDest destB;     /* Destination for coroutine B */
2853   int regAddrA;         /* Address register for select-A coroutine */
2854   int regAddrB;         /* Address register for select-B coroutine */
2855   int addrSelectA;      /* Address of the select-A coroutine */
2856   int addrSelectB;      /* Address of the select-B coroutine */
2857   int regOutA;          /* Address register for the output-A subroutine */
2858   int regOutB;          /* Address register for the output-B subroutine */
2859   int addrOutA;         /* Address of the output-A subroutine */
2860   int addrOutB = 0;     /* Address of the output-B subroutine */
2861   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2862   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2863   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2864   int addrAltB;         /* Address of the A<B subroutine */
2865   int addrAeqB;         /* Address of the A==B subroutine */
2866   int addrAgtB;         /* Address of the A>B subroutine */
2867   int regLimitA;        /* Limit register for select-A */
2868   int regLimitB;        /* Limit register for select-A */
2869   int regPrev;          /* A range of registers to hold previous output */
2870   int savedLimit;       /* Saved value of p->iLimit */
2871   int savedOffset;      /* Saved value of p->iOffset */
2872   int labelCmpr;        /* Label for the start of the merge algorithm */
2873   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2874   int addr1;            /* Jump instructions that get retargetted */
2875   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2876   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2877   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2878   sqlite3 *db;          /* Database connection */
2879   ExprList *pOrderBy;   /* The ORDER BY clause */
2880   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2881   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2882 #ifndef SQLITE_OMIT_EXPLAIN
2883   int iSub1;            /* EQP id of left-hand query */
2884   int iSub2;            /* EQP id of right-hand query */
2885 #endif
2886 
2887   assert( p->pOrderBy!=0 );
2888   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2889   db = pParse->db;
2890   v = pParse->pVdbe;
2891   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2892   labelEnd = sqlite3VdbeMakeLabel(v);
2893   labelCmpr = sqlite3VdbeMakeLabel(v);
2894 
2895 
2896   /* Patch up the ORDER BY clause
2897   */
2898   op = p->op;
2899   pPrior = p->pPrior;
2900   assert( pPrior->pOrderBy==0 );
2901   pOrderBy = p->pOrderBy;
2902   assert( pOrderBy );
2903   nOrderBy = pOrderBy->nExpr;
2904 
2905   /* For operators other than UNION ALL we have to make sure that
2906   ** the ORDER BY clause covers every term of the result set.  Add
2907   ** terms to the ORDER BY clause as necessary.
2908   */
2909   if( op!=TK_ALL ){
2910     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2911       struct ExprList_item *pItem;
2912       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2913         assert( pItem->u.x.iOrderByCol>0 );
2914         if( pItem->u.x.iOrderByCol==i ) break;
2915       }
2916       if( j==nOrderBy ){
2917         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2918         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
2919         pNew->flags |= EP_IntValue;
2920         pNew->u.iValue = i;
2921         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2922         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2923       }
2924     }
2925   }
2926 
2927   /* Compute the comparison permutation and keyinfo that is used with
2928   ** the permutation used to determine if the next
2929   ** row of results comes from selectA or selectB.  Also add explicit
2930   ** collations to the ORDER BY clause terms so that when the subqueries
2931   ** to the right and the left are evaluated, they use the correct
2932   ** collation.
2933   */
2934   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
2935   if( aPermute ){
2936     struct ExprList_item *pItem;
2937     aPermute[0] = nOrderBy;
2938     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
2939       assert( pItem->u.x.iOrderByCol>0 );
2940       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2941       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2942     }
2943     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2944   }else{
2945     pKeyMerge = 0;
2946   }
2947 
2948   /* Reattach the ORDER BY clause to the query.
2949   */
2950   p->pOrderBy = pOrderBy;
2951   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2952 
2953   /* Allocate a range of temporary registers and the KeyInfo needed
2954   ** for the logic that removes duplicate result rows when the
2955   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2956   */
2957   if( op==TK_ALL ){
2958     regPrev = 0;
2959   }else{
2960     int nExpr = p->pEList->nExpr;
2961     assert( nOrderBy>=nExpr || db->mallocFailed );
2962     regPrev = pParse->nMem+1;
2963     pParse->nMem += nExpr+1;
2964     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2965     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2966     if( pKeyDup ){
2967       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2968       for(i=0; i<nExpr; i++){
2969         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2970         pKeyDup->aSortOrder[i] = 0;
2971       }
2972     }
2973   }
2974 
2975   /* Separate the left and the right query from one another
2976   */
2977   p->pPrior = 0;
2978   pPrior->pNext = 0;
2979   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2980   if( pPrior->pPrior==0 ){
2981     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2982   }
2983 
2984   /* Compute the limit registers */
2985   computeLimitRegisters(pParse, p, labelEnd);
2986   if( p->iLimit && op==TK_ALL ){
2987     regLimitA = ++pParse->nMem;
2988     regLimitB = ++pParse->nMem;
2989     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2990                                   regLimitA);
2991     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2992   }else{
2993     regLimitA = regLimitB = 0;
2994   }
2995   sqlite3ExprDelete(db, p->pLimit);
2996   p->pLimit = 0;
2997   sqlite3ExprDelete(db, p->pOffset);
2998   p->pOffset = 0;
2999 
3000   regAddrA = ++pParse->nMem;
3001   regAddrB = ++pParse->nMem;
3002   regOutA = ++pParse->nMem;
3003   regOutB = ++pParse->nMem;
3004   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3005   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3006 
3007   /* Generate a coroutine to evaluate the SELECT statement to the
3008   ** left of the compound operator - the "A" select.
3009   */
3010   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3011   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3012   VdbeComment((v, "left SELECT"));
3013   pPrior->iLimit = regLimitA;
3014   explainSetInteger(iSub1, pParse->iNextSelectId);
3015   sqlite3Select(pParse, pPrior, &destA);
3016   sqlite3VdbeEndCoroutine(v, regAddrA);
3017   sqlite3VdbeJumpHere(v, addr1);
3018 
3019   /* Generate a coroutine to evaluate the SELECT statement on
3020   ** the right - the "B" select
3021   */
3022   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3023   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3024   VdbeComment((v, "right SELECT"));
3025   savedLimit = p->iLimit;
3026   savedOffset = p->iOffset;
3027   p->iLimit = regLimitB;
3028   p->iOffset = 0;
3029   explainSetInteger(iSub2, pParse->iNextSelectId);
3030   sqlite3Select(pParse, p, &destB);
3031   p->iLimit = savedLimit;
3032   p->iOffset = savedOffset;
3033   sqlite3VdbeEndCoroutine(v, regAddrB);
3034 
3035   /* Generate a subroutine that outputs the current row of the A
3036   ** select as the next output row of the compound select.
3037   */
3038   VdbeNoopComment((v, "Output routine for A"));
3039   addrOutA = generateOutputSubroutine(pParse,
3040                  p, &destA, pDest, regOutA,
3041                  regPrev, pKeyDup, labelEnd);
3042 
3043   /* Generate a subroutine that outputs the current row of the B
3044   ** select as the next output row of the compound select.
3045   */
3046   if( op==TK_ALL || op==TK_UNION ){
3047     VdbeNoopComment((v, "Output routine for B"));
3048     addrOutB = generateOutputSubroutine(pParse,
3049                  p, &destB, pDest, regOutB,
3050                  regPrev, pKeyDup, labelEnd);
3051   }
3052   sqlite3KeyInfoUnref(pKeyDup);
3053 
3054   /* Generate a subroutine to run when the results from select A
3055   ** are exhausted and only data in select B remains.
3056   */
3057   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3058     addrEofA_noB = addrEofA = labelEnd;
3059   }else{
3060     VdbeNoopComment((v, "eof-A subroutine"));
3061     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3062     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3063                                      VdbeCoverage(v);
3064     sqlite3VdbeGoto(v, addrEofA);
3065     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3066   }
3067 
3068   /* Generate a subroutine to run when the results from select B
3069   ** are exhausted and only data in select A remains.
3070   */
3071   if( op==TK_INTERSECT ){
3072     addrEofB = addrEofA;
3073     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3074   }else{
3075     VdbeNoopComment((v, "eof-B subroutine"));
3076     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3077     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3078     sqlite3VdbeGoto(v, addrEofB);
3079   }
3080 
3081   /* Generate code to handle the case of A<B
3082   */
3083   VdbeNoopComment((v, "A-lt-B subroutine"));
3084   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3085   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3086   sqlite3VdbeGoto(v, labelCmpr);
3087 
3088   /* Generate code to handle the case of A==B
3089   */
3090   if( op==TK_ALL ){
3091     addrAeqB = addrAltB;
3092   }else if( op==TK_INTERSECT ){
3093     addrAeqB = addrAltB;
3094     addrAltB++;
3095   }else{
3096     VdbeNoopComment((v, "A-eq-B subroutine"));
3097     addrAeqB =
3098     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3099     sqlite3VdbeGoto(v, labelCmpr);
3100   }
3101 
3102   /* Generate code to handle the case of A>B
3103   */
3104   VdbeNoopComment((v, "A-gt-B subroutine"));
3105   addrAgtB = sqlite3VdbeCurrentAddr(v);
3106   if( op==TK_ALL || op==TK_UNION ){
3107     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3108   }
3109   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3110   sqlite3VdbeGoto(v, labelCmpr);
3111 
3112   /* This code runs once to initialize everything.
3113   */
3114   sqlite3VdbeJumpHere(v, addr1);
3115   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3116   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3117 
3118   /* Implement the main merge loop
3119   */
3120   sqlite3VdbeResolveLabel(v, labelCmpr);
3121   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3122   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3123                          (char*)pKeyMerge, P4_KEYINFO);
3124   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3125   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3126 
3127   /* Jump to the this point in order to terminate the query.
3128   */
3129   sqlite3VdbeResolveLabel(v, labelEnd);
3130 
3131   /* Reassembly the compound query so that it will be freed correctly
3132   ** by the calling function */
3133   if( p->pPrior ){
3134     sqlite3SelectDelete(db, p->pPrior);
3135   }
3136   p->pPrior = pPrior;
3137   pPrior->pNext = p;
3138 
3139   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3140   **** subqueries ****/
3141   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3142   return pParse->nErr!=0;
3143 }
3144 #endif
3145 
3146 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3147 
3148 /* An instance of the SubstContext object describes an substitution edit
3149 ** to be performed on a parse tree.
3150 **
3151 ** All references to columns in table iTable are to be replaced by corresponding
3152 ** expressions in pEList.
3153 */
3154 typedef struct SubstContext {
3155   Parse *pParse;            /* The parsing context */
3156   int iTable;               /* Replace references to this table */
3157   int iNewTable;            /* New table number */
3158   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3159   ExprList *pEList;         /* Replacement expressions */
3160 } SubstContext;
3161 
3162 /* Forward Declarations */
3163 static void substExprList(SubstContext*, ExprList*);
3164 static void substSelect(SubstContext*, Select*, int);
3165 
3166 /*
3167 ** Scan through the expression pExpr.  Replace every reference to
3168 ** a column in table number iTable with a copy of the iColumn-th
3169 ** entry in pEList.  (But leave references to the ROWID column
3170 ** unchanged.)
3171 **
3172 ** This routine is part of the flattening procedure.  A subquery
3173 ** whose result set is defined by pEList appears as entry in the
3174 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3175 ** FORM clause entry is iTable.  This routine makes the necessary
3176 ** changes to pExpr so that it refers directly to the source table
3177 ** of the subquery rather the result set of the subquery.
3178 */
3179 static Expr *substExpr(
3180   SubstContext *pSubst,  /* Description of the substitution */
3181   Expr *pExpr            /* Expr in which substitution occurs */
3182 ){
3183   if( pExpr==0 ) return 0;
3184   if( ExprHasProperty(pExpr, EP_FromJoin) && pExpr->iRightJoinTable==pSubst->iTable ){
3185     pExpr->iRightJoinTable = pSubst->iNewTable;
3186   }
3187   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3188     if( pExpr->iColumn<0 ){
3189       pExpr->op = TK_NULL;
3190     }else{
3191       Expr *pNew;
3192       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3193       Expr ifNullRow;
3194       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3195       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3196       if( sqlite3ExprIsVector(pCopy) ){
3197         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3198       }else{
3199         sqlite3 *db = pSubst->pParse->db;
3200         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3201           memset(&ifNullRow, 0, sizeof(ifNullRow));
3202           ifNullRow.op = TK_IF_NULL_ROW;
3203           ifNullRow.pLeft = pCopy;
3204           ifNullRow.iTable = pSubst->iNewTable;
3205           pCopy = &ifNullRow;
3206         }
3207         pNew = sqlite3ExprDup(db, pCopy, 0);
3208         if( pNew && pSubst->isLeftJoin ){
3209           ExprSetProperty(pNew, EP_CanBeNull);
3210         }
3211         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3212           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3213           ExprSetProperty(pNew, EP_FromJoin);
3214         }
3215         sqlite3ExprDelete(db, pExpr);
3216         pExpr = pNew;
3217       }
3218     }
3219   }else{
3220     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3221       pExpr->iTable = pSubst->iNewTable;
3222     }
3223     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3224     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3225     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3226       substSelect(pSubst, pExpr->x.pSelect, 1);
3227     }else{
3228       substExprList(pSubst, pExpr->x.pList);
3229     }
3230   }
3231   return pExpr;
3232 }
3233 static void substExprList(
3234   SubstContext *pSubst, /* Description of the substitution */
3235   ExprList *pList       /* List to scan and in which to make substitutes */
3236 ){
3237   int i;
3238   if( pList==0 ) return;
3239   for(i=0; i<pList->nExpr; i++){
3240     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3241   }
3242 }
3243 static void substSelect(
3244   SubstContext *pSubst, /* Description of the substitution */
3245   Select *p,            /* SELECT statement in which to make substitutions */
3246   int doPrior           /* Do substitutes on p->pPrior too */
3247 ){
3248   SrcList *pSrc;
3249   struct SrcList_item *pItem;
3250   int i;
3251   if( !p ) return;
3252   do{
3253     substExprList(pSubst, p->pEList);
3254     substExprList(pSubst, p->pGroupBy);
3255     substExprList(pSubst, p->pOrderBy);
3256     p->pHaving = substExpr(pSubst, p->pHaving);
3257     p->pWhere = substExpr(pSubst, p->pWhere);
3258     pSrc = p->pSrc;
3259     assert( pSrc!=0 );
3260     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3261       substSelect(pSubst, pItem->pSelect, 1);
3262       if( pItem->fg.isTabFunc ){
3263         substExprList(pSubst, pItem->u1.pFuncArg);
3264       }
3265     }
3266   }while( doPrior && (p = p->pPrior)!=0 );
3267 }
3268 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3269 
3270 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3271 /*
3272 ** This routine attempts to flatten subqueries as a performance optimization.
3273 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3274 **
3275 ** To understand the concept of flattening, consider the following
3276 ** query:
3277 **
3278 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3279 **
3280 ** The default way of implementing this query is to execute the
3281 ** subquery first and store the results in a temporary table, then
3282 ** run the outer query on that temporary table.  This requires two
3283 ** passes over the data.  Furthermore, because the temporary table
3284 ** has no indices, the WHERE clause on the outer query cannot be
3285 ** optimized.
3286 **
3287 ** This routine attempts to rewrite queries such as the above into
3288 ** a single flat select, like this:
3289 **
3290 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3291 **
3292 ** The code generated for this simplification gives the same result
3293 ** but only has to scan the data once.  And because indices might
3294 ** exist on the table t1, a complete scan of the data might be
3295 ** avoided.
3296 **
3297 ** Flattening is only attempted if all of the following are true:
3298 **
3299 **   (1)  The subquery and the outer query do not both use aggregates.
3300 **
3301 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3302 **        and (2b) the outer query does not use subqueries other than the one
3303 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3304 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3305 **
3306 **   (3)  The subquery is not the right operand of a LEFT JOIN
3307 **        or (a) the subquery is not itself a join and (b) the FROM clause
3308 **        of the subquery does not contain a virtual table and (c) the
3309 **        outer query is not an aggregate.
3310 **
3311 **   (4)  The subquery is not DISTINCT.
3312 **
3313 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3314 **        sub-queries that were excluded from this optimization. Restriction
3315 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3316 **
3317 **   (6)  The subquery does not use aggregates or the outer query is not
3318 **        DISTINCT.
3319 **
3320 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3321 **        A FROM clause, consider adding a FROM clause with the special
3322 **        table sqlite_once that consists of a single row containing a
3323 **        single NULL.
3324 **
3325 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3326 **
3327 **   (9)  The subquery does not use LIMIT or the outer query does not use
3328 **        aggregates.
3329 **
3330 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3331 **        accidently carried the comment forward until 2014-09-15.  Original
3332 **        text: "The subquery does not use aggregates or the outer query
3333 **        does not use LIMIT."
3334 **
3335 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3336 **
3337 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3338 **        a separate restriction deriving from ticket #350.
3339 **
3340 **  (13)  The subquery and outer query do not both use LIMIT.
3341 **
3342 **  (14)  The subquery does not use OFFSET.
3343 **
3344 **  (15)  The outer query is not part of a compound select or the
3345 **        subquery does not have a LIMIT clause.
3346 **        (See ticket #2339 and ticket [02a8e81d44]).
3347 **
3348 **  (16)  The outer query is not an aggregate or the subquery does
3349 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3350 **        until we introduced the group_concat() function.
3351 **
3352 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3353 **        compound clause made up entirely of non-aggregate queries, and
3354 **        the parent query:
3355 **
3356 **          * is not itself part of a compound select,
3357 **          * is not an aggregate or DISTINCT query, and
3358 **          * is not a join
3359 **
3360 **        The parent and sub-query may contain WHERE clauses. Subject to
3361 **        rules (11), (13) and (14), they may also contain ORDER BY,
3362 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3363 **        operator other than UNION ALL because all the other compound
3364 **        operators have an implied DISTINCT which is disallowed by
3365 **        restriction (4).
3366 **
3367 **        Also, each component of the sub-query must return the same number
3368 **        of result columns. This is actually a requirement for any compound
3369 **        SELECT statement, but all the code here does is make sure that no
3370 **        such (illegal) sub-query is flattened. The caller will detect the
3371 **        syntax error and return a detailed message.
3372 **
3373 **  (18)  If the sub-query is a compound select, then all terms of the
3374 **        ORDER by clause of the parent must be simple references to
3375 **        columns of the sub-query.
3376 **
3377 **  (19)  The subquery does not use LIMIT or the outer query does not
3378 **        have a WHERE clause.
3379 **
3380 **  (20)  If the sub-query is a compound select, then it must not use
3381 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3382 **        somewhat by saying that the terms of the ORDER BY clause must
3383 **        appear as unmodified result columns in the outer query.  But we
3384 **        have other optimizations in mind to deal with that case.
3385 **
3386 **  (21)  The subquery does not use LIMIT or the outer query is not
3387 **        DISTINCT.  (See ticket [752e1646fc]).
3388 **
3389 **  (22)  The subquery is not a recursive CTE.
3390 **
3391 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3392 **        compound query. This restriction is because transforming the
3393 **        parent to a compound query confuses the code that handles
3394 **        recursive queries in multiSelect().
3395 **
3396 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3397 **        or max() functions.  (Without this restriction, a query like:
3398 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3399 **        return the value X for which Y was maximal.)
3400 **
3401 **
3402 ** In this routine, the "p" parameter is a pointer to the outer query.
3403 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3404 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3405 **
3406 ** If flattening is not attempted, this routine is a no-op and returns 0.
3407 ** If flattening is attempted this routine returns 1.
3408 **
3409 ** All of the expression analysis must occur on both the outer query and
3410 ** the subquery before this routine runs.
3411 */
3412 static int flattenSubquery(
3413   Parse *pParse,       /* Parsing context */
3414   Select *p,           /* The parent or outer SELECT statement */
3415   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3416   int isAgg,           /* True if outer SELECT uses aggregate functions */
3417   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3418 ){
3419   const char *zSavedAuthContext = pParse->zAuthContext;
3420   Select *pParent;    /* Current UNION ALL term of the other query */
3421   Select *pSub;       /* The inner query or "subquery" */
3422   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3423   SrcList *pSrc;      /* The FROM clause of the outer query */
3424   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3425   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3426   int iNewParent = -1;/* Replacement table for iParent */
3427   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3428   int i;              /* Loop counter */
3429   Expr *pWhere;                    /* The WHERE clause */
3430   struct SrcList_item *pSubitem;   /* The subquery */
3431   sqlite3 *db = pParse->db;
3432 
3433   /* Check to see if flattening is permitted.  Return 0 if not.
3434   */
3435   assert( p!=0 );
3436   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3437   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3438   pSrc = p->pSrc;
3439   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3440   pSubitem = &pSrc->a[iFrom];
3441   iParent = pSubitem->iCursor;
3442   pSub = pSubitem->pSelect;
3443   assert( pSub!=0 );
3444   if( subqueryIsAgg ){
3445     if( isAgg ) return 0;                                /* Restriction (1)   */
3446     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3447     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3448      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3449      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3450     ){
3451       return 0;                                          /* Restriction (2b)  */
3452     }
3453   }
3454 
3455   pSubSrc = pSub->pSrc;
3456   assert( pSubSrc );
3457   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3458   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3459   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3460   ** became arbitrary expressions, we were forced to add restrictions (13)
3461   ** and (14). */
3462   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3463   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3464   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3465     return 0;                                            /* Restriction (15) */
3466   }
3467   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3468   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3469   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3470      return 0;         /* Restrictions (8)(9) */
3471   }
3472   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3473      return 0;         /* Restriction (6)  */
3474   }
3475   if( p->pOrderBy && pSub->pOrderBy ){
3476      return 0;                                           /* Restriction (11) */
3477   }
3478   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3479   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3480   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3481      return 0;         /* Restriction (21) */
3482   }
3483   testcase( pSub->selFlags & SF_Recursive );
3484   testcase( pSub->selFlags & SF_MinMaxAgg );
3485   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3486     return 0; /* Restrictions (22) and (24) */
3487   }
3488   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3489     return 0; /* Restriction (23) */
3490   }
3491 
3492   /*
3493   ** If the subquery is the right operand of a LEFT JOIN, then the
3494   ** subquery may not be a join itself.  Example of why this is not allowed:
3495   **
3496   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3497   **
3498   ** If we flatten the above, we would get
3499   **
3500   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3501   **
3502   ** which is not at all the same thing.
3503   **
3504   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3505   ** query cannot be an aggregate.  This is an artifact of the way aggregates
3506   ** are processed - there is no mechanism to determine if the LEFT JOIN
3507   ** table should be all-NULL.
3508   **
3509   ** See also tickets #306, #350, and #3300.
3510   */
3511   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3512     isLeftJoin = 1;
3513     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3514       return 0; /* Restriction (3) */
3515     }
3516   }
3517 #ifdef SQLITE_EXTRA_IFNULLROW
3518   else if( iFrom>0 && !isAgg ){
3519     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3520     ** every reference to any result column from subquery in a join, even though
3521     ** they are not necessary.  This will stress-test the OP_IfNullRow opcode. */
3522     isLeftJoin = -1;
3523   }
3524 #endif
3525 
3526   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3527   ** use only the UNION ALL operator. And none of the simple select queries
3528   ** that make up the compound SELECT are allowed to be aggregate or distinct
3529   ** queries.
3530   */
3531   if( pSub->pPrior ){
3532     if( pSub->pOrderBy ){
3533       return 0;  /* Restriction 20 */
3534     }
3535     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3536       return 0;
3537     }
3538     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3539       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3540       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3541       assert( pSub->pSrc!=0 );
3542       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3543       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3544        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3545        || pSub1->pSrc->nSrc<1
3546       ){
3547         return 0;
3548       }
3549       testcase( pSub1->pSrc->nSrc>1 );
3550     }
3551 
3552     /* Restriction 18. */
3553     if( p->pOrderBy ){
3554       int ii;
3555       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3556         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3557       }
3558     }
3559   }
3560 
3561   /***** If we reach this point, flattening is permitted. *****/
3562   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3563                    pSub->zSelName, pSub, iFrom));
3564 
3565   /* Authorize the subquery */
3566   pParse->zAuthContext = pSubitem->zName;
3567   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3568   testcase( i==SQLITE_DENY );
3569   pParse->zAuthContext = zSavedAuthContext;
3570 
3571   /* If the sub-query is a compound SELECT statement, then (by restrictions
3572   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3573   ** be of the form:
3574   **
3575   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3576   **
3577   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3578   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3579   ** OFFSET clauses and joins them to the left-hand-side of the original
3580   ** using UNION ALL operators. In this case N is the number of simple
3581   ** select statements in the compound sub-query.
3582   **
3583   ** Example:
3584   **
3585   **     SELECT a+1 FROM (
3586   **        SELECT x FROM tab
3587   **        UNION ALL
3588   **        SELECT y FROM tab
3589   **        UNION ALL
3590   **        SELECT abs(z*2) FROM tab2
3591   **     ) WHERE a!=5 ORDER BY 1
3592   **
3593   ** Transformed into:
3594   **
3595   **     SELECT x+1 FROM tab WHERE x+1!=5
3596   **     UNION ALL
3597   **     SELECT y+1 FROM tab WHERE y+1!=5
3598   **     UNION ALL
3599   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3600   **     ORDER BY 1
3601   **
3602   ** We call this the "compound-subquery flattening".
3603   */
3604   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3605     Select *pNew;
3606     ExprList *pOrderBy = p->pOrderBy;
3607     Expr *pLimit = p->pLimit;
3608     Expr *pOffset = p->pOffset;
3609     Select *pPrior = p->pPrior;
3610     p->pOrderBy = 0;
3611     p->pSrc = 0;
3612     p->pPrior = 0;
3613     p->pLimit = 0;
3614     p->pOffset = 0;
3615     pNew = sqlite3SelectDup(db, p, 0);
3616     sqlite3SelectSetName(pNew, pSub->zSelName);
3617     p->pOffset = pOffset;
3618     p->pLimit = pLimit;
3619     p->pOrderBy = pOrderBy;
3620     p->pSrc = pSrc;
3621     p->op = TK_ALL;
3622     if( pNew==0 ){
3623       p->pPrior = pPrior;
3624     }else{
3625       pNew->pPrior = pPrior;
3626       if( pPrior ) pPrior->pNext = pNew;
3627       pNew->pNext = p;
3628       p->pPrior = pNew;
3629       SELECTTRACE(2,pParse,p,
3630          ("compound-subquery flattener creates %s.%p as peer\n",
3631          pNew->zSelName, pNew));
3632     }
3633     if( db->mallocFailed ) return 1;
3634   }
3635 
3636   /* Begin flattening the iFrom-th entry of the FROM clause
3637   ** in the outer query.
3638   */
3639   pSub = pSub1 = pSubitem->pSelect;
3640 
3641   /* Delete the transient table structure associated with the
3642   ** subquery
3643   */
3644   sqlite3DbFree(db, pSubitem->zDatabase);
3645   sqlite3DbFree(db, pSubitem->zName);
3646   sqlite3DbFree(db, pSubitem->zAlias);
3647   pSubitem->zDatabase = 0;
3648   pSubitem->zName = 0;
3649   pSubitem->zAlias = 0;
3650   pSubitem->pSelect = 0;
3651 
3652   /* Defer deleting the Table object associated with the
3653   ** subquery until code generation is
3654   ** complete, since there may still exist Expr.pTab entries that
3655   ** refer to the subquery even after flattening.  Ticket #3346.
3656   **
3657   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3658   */
3659   if( ALWAYS(pSubitem->pTab!=0) ){
3660     Table *pTabToDel = pSubitem->pTab;
3661     if( pTabToDel->nTabRef==1 ){
3662       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3663       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3664       pToplevel->pZombieTab = pTabToDel;
3665     }else{
3666       pTabToDel->nTabRef--;
3667     }
3668     pSubitem->pTab = 0;
3669   }
3670 
3671   /* The following loop runs once for each term in a compound-subquery
3672   ** flattening (as described above).  If we are doing a different kind
3673   ** of flattening - a flattening other than a compound-subquery flattening -
3674   ** then this loop only runs once.
3675   **
3676   ** This loop moves all of the FROM elements of the subquery into the
3677   ** the FROM clause of the outer query.  Before doing this, remember
3678   ** the cursor number for the original outer query FROM element in
3679   ** iParent.  The iParent cursor will never be used.  Subsequent code
3680   ** will scan expressions looking for iParent references and replace
3681   ** those references with expressions that resolve to the subquery FROM
3682   ** elements we are now copying in.
3683   */
3684   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3685     int nSubSrc;
3686     u8 jointype = 0;
3687     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3688     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3689     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3690 
3691     if( pSrc ){
3692       assert( pParent==p );  /* First time through the loop */
3693       jointype = pSubitem->fg.jointype;
3694     }else{
3695       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3696       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3697       if( pSrc==0 ){
3698         assert( db->mallocFailed );
3699         break;
3700       }
3701     }
3702 
3703     /* The subquery uses a single slot of the FROM clause of the outer
3704     ** query.  If the subquery has more than one element in its FROM clause,
3705     ** then expand the outer query to make space for it to hold all elements
3706     ** of the subquery.
3707     **
3708     ** Example:
3709     **
3710     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3711     **
3712     ** The outer query has 3 slots in its FROM clause.  One slot of the
3713     ** outer query (the middle slot) is used by the subquery.  The next
3714     ** block of code will expand the outer query FROM clause to 4 slots.
3715     ** The middle slot is expanded to two slots in order to make space
3716     ** for the two elements in the FROM clause of the subquery.
3717     */
3718     if( nSubSrc>1 ){
3719       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3720       if( db->mallocFailed ){
3721         break;
3722       }
3723     }
3724 
3725     /* Transfer the FROM clause terms from the subquery into the
3726     ** outer query.
3727     */
3728     for(i=0; i<nSubSrc; i++){
3729       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3730       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3731       pSrc->a[i+iFrom] = pSubSrc->a[i];
3732       iNewParent = pSubSrc->a[i].iCursor;
3733       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3734     }
3735     pSrc->a[iFrom].fg.jointype = jointype;
3736 
3737     /* Now begin substituting subquery result set expressions for
3738     ** references to the iParent in the outer query.
3739     **
3740     ** Example:
3741     **
3742     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3743     **   \                     \_____________ subquery __________/          /
3744     **    \_____________________ outer query ______________________________/
3745     **
3746     ** We look at every expression in the outer query and every place we see
3747     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3748     */
3749     if( pSub->pOrderBy ){
3750       /* At this point, any non-zero iOrderByCol values indicate that the
3751       ** ORDER BY column expression is identical to the iOrderByCol'th
3752       ** expression returned by SELECT statement pSub. Since these values
3753       ** do not necessarily correspond to columns in SELECT statement pParent,
3754       ** zero them before transfering the ORDER BY clause.
3755       **
3756       ** Not doing this may cause an error if a subsequent call to this
3757       ** function attempts to flatten a compound sub-query into pParent
3758       ** (the only way this can happen is if the compound sub-query is
3759       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3760       ExprList *pOrderBy = pSub->pOrderBy;
3761       for(i=0; i<pOrderBy->nExpr; i++){
3762         pOrderBy->a[i].u.x.iOrderByCol = 0;
3763       }
3764       assert( pParent->pOrderBy==0 );
3765       assert( pSub->pPrior==0 );
3766       pParent->pOrderBy = pOrderBy;
3767       pSub->pOrderBy = 0;
3768     }
3769     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3770     if( isLeftJoin>0 ){
3771       setJoinExpr(pWhere, iNewParent);
3772     }
3773     if( subqueryIsAgg ){
3774       assert( pParent->pHaving==0 );
3775       pParent->pHaving = pParent->pWhere;
3776       pParent->pWhere = pWhere;
3777       pParent->pHaving = sqlite3ExprAnd(db,
3778           sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving
3779       );
3780       assert( pParent->pGroupBy==0 );
3781       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3782     }else{
3783       pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
3784     }
3785     if( db->mallocFailed==0 ){
3786       SubstContext x;
3787       x.pParse = pParse;
3788       x.iTable = iParent;
3789       x.iNewTable = iNewParent;
3790       x.isLeftJoin = isLeftJoin;
3791       x.pEList = pSub->pEList;
3792       substSelect(&x, pParent, 0);
3793     }
3794 
3795     /* The flattened query is distinct if either the inner or the
3796     ** outer query is distinct.
3797     */
3798     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3799 
3800     /*
3801     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3802     **
3803     ** One is tempted to try to add a and b to combine the limits.  But this
3804     ** does not work if either limit is negative.
3805     */
3806     if( pSub->pLimit ){
3807       pParent->pLimit = pSub->pLimit;
3808       pSub->pLimit = 0;
3809     }
3810   }
3811 
3812   /* Finially, delete what is left of the subquery and return
3813   ** success.
3814   */
3815   sqlite3SelectDelete(db, pSub1);
3816 
3817 #if SELECTTRACE_ENABLED
3818   if( sqlite3SelectTrace & 0x100 ){
3819     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3820     sqlite3TreeViewSelect(0, p, 0);
3821   }
3822 #endif
3823 
3824   return 1;
3825 }
3826 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3827 
3828 
3829 
3830 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3831 /*
3832 ** Make copies of relevant WHERE clause terms of the outer query into
3833 ** the WHERE clause of subquery.  Example:
3834 **
3835 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3836 **
3837 ** Transformed into:
3838 **
3839 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3840 **     WHERE x=5 AND y=10;
3841 **
3842 ** The hope is that the terms added to the inner query will make it more
3843 ** efficient.
3844 **
3845 ** Do not attempt this optimization if:
3846 **
3847 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3848 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3849 **       inner query.  But they probably won't help there so do not bother.)
3850 **
3851 **   (2) The inner query is the recursive part of a common table expression.
3852 **
3853 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3854 **       close would change the meaning of the LIMIT).
3855 **
3856 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3857 **       enforces this restriction since this routine does not have enough
3858 **       information to know.)
3859 **
3860 **   (5) The WHERE clause expression originates in the ON or USING clause
3861 **       of a LEFT JOIN.
3862 **
3863 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3864 ** terms are duplicated into the subquery.
3865 */
3866 static int pushDownWhereTerms(
3867   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
3868   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3869   Expr *pWhere,         /* The WHERE clause of the outer query */
3870   int iCursor           /* Cursor number of the subquery */
3871 ){
3872   Expr *pNew;
3873   int nChng = 0;
3874   Select *pX;           /* For looping over compound SELECTs in pSubq */
3875   if( pWhere==0 ) return 0;
3876   for(pX=pSubq; pX; pX=pX->pPrior){
3877     if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3878       testcase( pX->selFlags & SF_Aggregate );
3879       testcase( pX->selFlags & SF_Recursive );
3880       testcase( pX!=pSubq );
3881       return 0; /* restrictions (1) and (2) */
3882     }
3883   }
3884   if( pSubq->pLimit!=0 ){
3885     return 0; /* restriction (3) */
3886   }
3887   while( pWhere->op==TK_AND ){
3888     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
3889     pWhere = pWhere->pLeft;
3890   }
3891   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3892   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3893     nChng++;
3894     while( pSubq ){
3895       SubstContext x;
3896       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
3897       x.pParse = pParse;
3898       x.iTable = iCursor;
3899       x.iNewTable = iCursor;
3900       x.isLeftJoin = 0;
3901       x.pEList = pSubq->pEList;
3902       pNew = substExpr(&x, pNew);
3903       pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
3904       pSubq = pSubq->pPrior;
3905     }
3906   }
3907   return nChng;
3908 }
3909 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3910 
3911 /*
3912 ** Based on the contents of the AggInfo structure indicated by the first
3913 ** argument, this function checks if the following are true:
3914 **
3915 **    * the query contains just a single aggregate function,
3916 **    * the aggregate function is either min() or max(), and
3917 **    * the argument to the aggregate function is a column value.
3918 **
3919 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3920 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3921 ** list of arguments passed to the aggregate before returning.
3922 **
3923 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3924 ** WHERE_ORDERBY_NORMAL is returned.
3925 */
3926 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3927   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3928 
3929   *ppMinMax = 0;
3930   if( pAggInfo->nFunc==1 ){
3931     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3932     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3933 
3934     assert( pExpr->op==TK_AGG_FUNCTION );
3935     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3936       const char *zFunc = pExpr->u.zToken;
3937       if( sqlite3StrICmp(zFunc, "min")==0 ){
3938         eRet = WHERE_ORDERBY_MIN;
3939         *ppMinMax = pEList;
3940       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3941         eRet = WHERE_ORDERBY_MAX;
3942         *ppMinMax = pEList;
3943       }
3944     }
3945   }
3946 
3947   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3948   return eRet;
3949 }
3950 
3951 /*
3952 ** The select statement passed as the first argument is an aggregate query.
3953 ** The second argument is the associated aggregate-info object. This
3954 ** function tests if the SELECT is of the form:
3955 **
3956 **   SELECT count(*) FROM <tbl>
3957 **
3958 ** where table is a database table, not a sub-select or view. If the query
3959 ** does match this pattern, then a pointer to the Table object representing
3960 ** <tbl> is returned. Otherwise, 0 is returned.
3961 */
3962 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3963   Table *pTab;
3964   Expr *pExpr;
3965 
3966   assert( !p->pGroupBy );
3967 
3968   if( p->pWhere || p->pEList->nExpr!=1
3969    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3970   ){
3971     return 0;
3972   }
3973   pTab = p->pSrc->a[0].pTab;
3974   pExpr = p->pEList->a[0].pExpr;
3975   assert( pTab && !pTab->pSelect && pExpr );
3976 
3977   if( IsVirtual(pTab) ) return 0;
3978   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3979   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3980   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3981   if( pExpr->flags&EP_Distinct ) return 0;
3982 
3983   return pTab;
3984 }
3985 
3986 /*
3987 ** If the source-list item passed as an argument was augmented with an
3988 ** INDEXED BY clause, then try to locate the specified index. If there
3989 ** was such a clause and the named index cannot be found, return
3990 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3991 ** pFrom->pIndex and return SQLITE_OK.
3992 */
3993 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3994   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3995     Table *pTab = pFrom->pTab;
3996     char *zIndexedBy = pFrom->u1.zIndexedBy;
3997     Index *pIdx;
3998     for(pIdx=pTab->pIndex;
3999         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4000         pIdx=pIdx->pNext
4001     );
4002     if( !pIdx ){
4003       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4004       pParse->checkSchema = 1;
4005       return SQLITE_ERROR;
4006     }
4007     pFrom->pIBIndex = pIdx;
4008   }
4009   return SQLITE_OK;
4010 }
4011 /*
4012 ** Detect compound SELECT statements that use an ORDER BY clause with
4013 ** an alternative collating sequence.
4014 **
4015 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4016 **
4017 ** These are rewritten as a subquery:
4018 **
4019 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4020 **     ORDER BY ... COLLATE ...
4021 **
4022 ** This transformation is necessary because the multiSelectOrderBy() routine
4023 ** above that generates the code for a compound SELECT with an ORDER BY clause
4024 ** uses a merge algorithm that requires the same collating sequence on the
4025 ** result columns as on the ORDER BY clause.  See ticket
4026 ** http://www.sqlite.org/src/info/6709574d2a
4027 **
4028 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4029 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4030 ** there are COLLATE terms in the ORDER BY.
4031 */
4032 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4033   int i;
4034   Select *pNew;
4035   Select *pX;
4036   sqlite3 *db;
4037   struct ExprList_item *a;
4038   SrcList *pNewSrc;
4039   Parse *pParse;
4040   Token dummy;
4041 
4042   if( p->pPrior==0 ) return WRC_Continue;
4043   if( p->pOrderBy==0 ) return WRC_Continue;
4044   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4045   if( pX==0 ) return WRC_Continue;
4046   a = p->pOrderBy->a;
4047   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4048     if( a[i].pExpr->flags & EP_Collate ) break;
4049   }
4050   if( i<0 ) return WRC_Continue;
4051 
4052   /* If we reach this point, that means the transformation is required. */
4053 
4054   pParse = pWalker->pParse;
4055   db = pParse->db;
4056   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4057   if( pNew==0 ) return WRC_Abort;
4058   memset(&dummy, 0, sizeof(dummy));
4059   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4060   if( pNewSrc==0 ) return WRC_Abort;
4061   *pNew = *p;
4062   p->pSrc = pNewSrc;
4063   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4064   p->op = TK_SELECT;
4065   p->pWhere = 0;
4066   pNew->pGroupBy = 0;
4067   pNew->pHaving = 0;
4068   pNew->pOrderBy = 0;
4069   p->pPrior = 0;
4070   p->pNext = 0;
4071   p->pWith = 0;
4072   p->selFlags &= ~SF_Compound;
4073   assert( (p->selFlags & SF_Converted)==0 );
4074   p->selFlags |= SF_Converted;
4075   assert( pNew->pPrior!=0 );
4076   pNew->pPrior->pNext = pNew;
4077   pNew->pLimit = 0;
4078   pNew->pOffset = 0;
4079   return WRC_Continue;
4080 }
4081 
4082 /*
4083 ** Check to see if the FROM clause term pFrom has table-valued function
4084 ** arguments.  If it does, leave an error message in pParse and return
4085 ** non-zero, since pFrom is not allowed to be a table-valued function.
4086 */
4087 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4088   if( pFrom->fg.isTabFunc ){
4089     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4090     return 1;
4091   }
4092   return 0;
4093 }
4094 
4095 #ifndef SQLITE_OMIT_CTE
4096 /*
4097 ** Argument pWith (which may be NULL) points to a linked list of nested
4098 ** WITH contexts, from inner to outermost. If the table identified by
4099 ** FROM clause element pItem is really a common-table-expression (CTE)
4100 ** then return a pointer to the CTE definition for that table. Otherwise
4101 ** return NULL.
4102 **
4103 ** If a non-NULL value is returned, set *ppContext to point to the With
4104 ** object that the returned CTE belongs to.
4105 */
4106 static struct Cte *searchWith(
4107   With *pWith,                    /* Current innermost WITH clause */
4108   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4109   With **ppContext                /* OUT: WITH clause return value belongs to */
4110 ){
4111   const char *zName;
4112   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4113     With *p;
4114     for(p=pWith; p; p=p->pOuter){
4115       int i;
4116       for(i=0; i<p->nCte; i++){
4117         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4118           *ppContext = p;
4119           return &p->a[i];
4120         }
4121       }
4122     }
4123   }
4124   return 0;
4125 }
4126 
4127 /* The code generator maintains a stack of active WITH clauses
4128 ** with the inner-most WITH clause being at the top of the stack.
4129 **
4130 ** This routine pushes the WITH clause passed as the second argument
4131 ** onto the top of the stack. If argument bFree is true, then this
4132 ** WITH clause will never be popped from the stack. In this case it
4133 ** should be freed along with the Parse object. In other cases, when
4134 ** bFree==0, the With object will be freed along with the SELECT
4135 ** statement with which it is associated.
4136 */
4137 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4138   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4139   if( pWith ){
4140     assert( pParse->pWith!=pWith );
4141     pWith->pOuter = pParse->pWith;
4142     pParse->pWith = pWith;
4143     if( bFree ) pParse->pWithToFree = pWith;
4144   }
4145 }
4146 
4147 /*
4148 ** This function checks if argument pFrom refers to a CTE declared by
4149 ** a WITH clause on the stack currently maintained by the parser. And,
4150 ** if currently processing a CTE expression, if it is a recursive
4151 ** reference to the current CTE.
4152 **
4153 ** If pFrom falls into either of the two categories above, pFrom->pTab
4154 ** and other fields are populated accordingly. The caller should check
4155 ** (pFrom->pTab!=0) to determine whether or not a successful match
4156 ** was found.
4157 **
4158 ** Whether or not a match is found, SQLITE_OK is returned if no error
4159 ** occurs. If an error does occur, an error message is stored in the
4160 ** parser and some error code other than SQLITE_OK returned.
4161 */
4162 static int withExpand(
4163   Walker *pWalker,
4164   struct SrcList_item *pFrom
4165 ){
4166   Parse *pParse = pWalker->pParse;
4167   sqlite3 *db = pParse->db;
4168   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4169   With *pWith;                    /* WITH clause that pCte belongs to */
4170 
4171   assert( pFrom->pTab==0 );
4172 
4173   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4174   if( pCte ){
4175     Table *pTab;
4176     ExprList *pEList;
4177     Select *pSel;
4178     Select *pLeft;                /* Left-most SELECT statement */
4179     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4180     With *pSavedWith;             /* Initial value of pParse->pWith */
4181 
4182     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4183     ** recursive reference to CTE pCte. Leave an error in pParse and return
4184     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4185     ** In this case, proceed.  */
4186     if( pCte->zCteErr ){
4187       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4188       return SQLITE_ERROR;
4189     }
4190     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4191 
4192     assert( pFrom->pTab==0 );
4193     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4194     if( pTab==0 ) return WRC_Abort;
4195     pTab->nTabRef = 1;
4196     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4197     pTab->iPKey = -1;
4198     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4199     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4200     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4201     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4202     assert( pFrom->pSelect );
4203 
4204     /* Check if this is a recursive CTE. */
4205     pSel = pFrom->pSelect;
4206     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4207     if( bMayRecursive ){
4208       int i;
4209       SrcList *pSrc = pFrom->pSelect->pSrc;
4210       for(i=0; i<pSrc->nSrc; i++){
4211         struct SrcList_item *pItem = &pSrc->a[i];
4212         if( pItem->zDatabase==0
4213          && pItem->zName!=0
4214          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4215           ){
4216           pItem->pTab = pTab;
4217           pItem->fg.isRecursive = 1;
4218           pTab->nTabRef++;
4219           pSel->selFlags |= SF_Recursive;
4220         }
4221       }
4222     }
4223 
4224     /* Only one recursive reference is permitted. */
4225     if( pTab->nTabRef>2 ){
4226       sqlite3ErrorMsg(
4227           pParse, "multiple references to recursive table: %s", pCte->zName
4228       );
4229       return SQLITE_ERROR;
4230     }
4231     assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4232 
4233     pCte->zCteErr = "circular reference: %s";
4234     pSavedWith = pParse->pWith;
4235     pParse->pWith = pWith;
4236     if( bMayRecursive ){
4237       Select *pPrior = pSel->pPrior;
4238       assert( pPrior->pWith==0 );
4239       pPrior->pWith = pSel->pWith;
4240       sqlite3WalkSelect(pWalker, pPrior);
4241       pPrior->pWith = 0;
4242     }else{
4243       sqlite3WalkSelect(pWalker, pSel);
4244     }
4245     pParse->pWith = pWith;
4246 
4247     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4248     pEList = pLeft->pEList;
4249     if( pCte->pCols ){
4250       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4251         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4252             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4253         );
4254         pParse->pWith = pSavedWith;
4255         return SQLITE_ERROR;
4256       }
4257       pEList = pCte->pCols;
4258     }
4259 
4260     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4261     if( bMayRecursive ){
4262       if( pSel->selFlags & SF_Recursive ){
4263         pCte->zCteErr = "multiple recursive references: %s";
4264       }else{
4265         pCte->zCteErr = "recursive reference in a subquery: %s";
4266       }
4267       sqlite3WalkSelect(pWalker, pSel);
4268     }
4269     pCte->zCteErr = 0;
4270     pParse->pWith = pSavedWith;
4271   }
4272 
4273   return SQLITE_OK;
4274 }
4275 #endif
4276 
4277 #ifndef SQLITE_OMIT_CTE
4278 /*
4279 ** If the SELECT passed as the second argument has an associated WITH
4280 ** clause, pop it from the stack stored as part of the Parse object.
4281 **
4282 ** This function is used as the xSelectCallback2() callback by
4283 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4284 ** names and other FROM clause elements.
4285 */
4286 static void selectPopWith(Walker *pWalker, Select *p){
4287   Parse *pParse = pWalker->pParse;
4288   if( pParse->pWith && p->pPrior==0 ){
4289     With *pWith = findRightmost(p)->pWith;
4290     if( pWith!=0 ){
4291       assert( pParse->pWith==pWith );
4292       pParse->pWith = pWith->pOuter;
4293     }
4294   }
4295 }
4296 #else
4297 #define selectPopWith 0
4298 #endif
4299 
4300 /*
4301 ** This routine is a Walker callback for "expanding" a SELECT statement.
4302 ** "Expanding" means to do the following:
4303 **
4304 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4305 **         element of the FROM clause.
4306 **
4307 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4308 **         defines FROM clause.  When views appear in the FROM clause,
4309 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4310 **         that implements the view.  A copy is made of the view's SELECT
4311 **         statement so that we can freely modify or delete that statement
4312 **         without worrying about messing up the persistent representation
4313 **         of the view.
4314 **
4315 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4316 **         on joins and the ON and USING clause of joins.
4317 **
4318 **    (4)  Scan the list of columns in the result set (pEList) looking
4319 **         for instances of the "*" operator or the TABLE.* operator.
4320 **         If found, expand each "*" to be every column in every table
4321 **         and TABLE.* to be every column in TABLE.
4322 **
4323 */
4324 static int selectExpander(Walker *pWalker, Select *p){
4325   Parse *pParse = pWalker->pParse;
4326   int i, j, k;
4327   SrcList *pTabList;
4328   ExprList *pEList;
4329   struct SrcList_item *pFrom;
4330   sqlite3 *db = pParse->db;
4331   Expr *pE, *pRight, *pExpr;
4332   u16 selFlags = p->selFlags;
4333 
4334   p->selFlags |= SF_Expanded;
4335   if( db->mallocFailed  ){
4336     return WRC_Abort;
4337   }
4338   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4339     return WRC_Prune;
4340   }
4341   pTabList = p->pSrc;
4342   pEList = p->pEList;
4343   if( p->pWith ){
4344     sqlite3WithPush(pParse, p->pWith, 0);
4345   }
4346 
4347   /* Make sure cursor numbers have been assigned to all entries in
4348   ** the FROM clause of the SELECT statement.
4349   */
4350   sqlite3SrcListAssignCursors(pParse, pTabList);
4351 
4352   /* Look up every table named in the FROM clause of the select.  If
4353   ** an entry of the FROM clause is a subquery instead of a table or view,
4354   ** then create a transient table structure to describe the subquery.
4355   */
4356   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4357     Table *pTab;
4358     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4359     if( pFrom->fg.isRecursive ) continue;
4360     assert( pFrom->pTab==0 );
4361 #ifndef SQLITE_OMIT_CTE
4362     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4363     if( pFrom->pTab ) {} else
4364 #endif
4365     if( pFrom->zName==0 ){
4366 #ifndef SQLITE_OMIT_SUBQUERY
4367       Select *pSel = pFrom->pSelect;
4368       /* A sub-query in the FROM clause of a SELECT */
4369       assert( pSel!=0 );
4370       assert( pFrom->pTab==0 );
4371       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4372       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4373       if( pTab==0 ) return WRC_Abort;
4374       pTab->nTabRef = 1;
4375       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4376       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4377       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4378       pTab->iPKey = -1;
4379       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4380       pTab->tabFlags |= TF_Ephemeral;
4381 #endif
4382     }else{
4383       /* An ordinary table or view name in the FROM clause */
4384       assert( pFrom->pTab==0 );
4385       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4386       if( pTab==0 ) return WRC_Abort;
4387       if( pTab->nTabRef>=0xffff ){
4388         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4389            pTab->zName);
4390         pFrom->pTab = 0;
4391         return WRC_Abort;
4392       }
4393       pTab->nTabRef++;
4394       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4395         return WRC_Abort;
4396       }
4397 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4398       if( IsVirtual(pTab) || pTab->pSelect ){
4399         i16 nCol;
4400         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4401         assert( pFrom->pSelect==0 );
4402         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4403         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4404         nCol = pTab->nCol;
4405         pTab->nCol = -1;
4406         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4407         pTab->nCol = nCol;
4408       }
4409 #endif
4410     }
4411 
4412     /* Locate the index named by the INDEXED BY clause, if any. */
4413     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4414       return WRC_Abort;
4415     }
4416   }
4417 
4418   /* Process NATURAL keywords, and ON and USING clauses of joins.
4419   */
4420   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4421     return WRC_Abort;
4422   }
4423 
4424   /* For every "*" that occurs in the column list, insert the names of
4425   ** all columns in all tables.  And for every TABLE.* insert the names
4426   ** of all columns in TABLE.  The parser inserted a special expression
4427   ** with the TK_ASTERISK operator for each "*" that it found in the column
4428   ** list.  The following code just has to locate the TK_ASTERISK
4429   ** expressions and expand each one to the list of all columns in
4430   ** all tables.
4431   **
4432   ** The first loop just checks to see if there are any "*" operators
4433   ** that need expanding.
4434   */
4435   for(k=0; k<pEList->nExpr; k++){
4436     pE = pEList->a[k].pExpr;
4437     if( pE->op==TK_ASTERISK ) break;
4438     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4439     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4440     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4441   }
4442   if( k<pEList->nExpr ){
4443     /*
4444     ** If we get here it means the result set contains one or more "*"
4445     ** operators that need to be expanded.  Loop through each expression
4446     ** in the result set and expand them one by one.
4447     */
4448     struct ExprList_item *a = pEList->a;
4449     ExprList *pNew = 0;
4450     int flags = pParse->db->flags;
4451     int longNames = (flags & SQLITE_FullColNames)!=0
4452                       && (flags & SQLITE_ShortColNames)==0;
4453 
4454     for(k=0; k<pEList->nExpr; k++){
4455       pE = a[k].pExpr;
4456       pRight = pE->pRight;
4457       assert( pE->op!=TK_DOT || pRight!=0 );
4458       if( pE->op!=TK_ASTERISK
4459        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4460       ){
4461         /* This particular expression does not need to be expanded.
4462         */
4463         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4464         if( pNew ){
4465           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4466           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4467           a[k].zName = 0;
4468           a[k].zSpan = 0;
4469         }
4470         a[k].pExpr = 0;
4471       }else{
4472         /* This expression is a "*" or a "TABLE.*" and needs to be
4473         ** expanded. */
4474         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4475         char *zTName = 0;       /* text of name of TABLE */
4476         if( pE->op==TK_DOT ){
4477           assert( pE->pLeft!=0 );
4478           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4479           zTName = pE->pLeft->u.zToken;
4480         }
4481         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4482           Table *pTab = pFrom->pTab;
4483           Select *pSub = pFrom->pSelect;
4484           char *zTabName = pFrom->zAlias;
4485           const char *zSchemaName = 0;
4486           int iDb;
4487           if( zTabName==0 ){
4488             zTabName = pTab->zName;
4489           }
4490           if( db->mallocFailed ) break;
4491           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4492             pSub = 0;
4493             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4494               continue;
4495             }
4496             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4497             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4498           }
4499           for(j=0; j<pTab->nCol; j++){
4500             char *zName = pTab->aCol[j].zName;
4501             char *zColname;  /* The computed column name */
4502             char *zToFree;   /* Malloced string that needs to be freed */
4503             Token sColname;  /* Computed column name as a token */
4504 
4505             assert( zName );
4506             if( zTName && pSub
4507              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4508             ){
4509               continue;
4510             }
4511 
4512             /* If a column is marked as 'hidden', omit it from the expanded
4513             ** result-set list unless the SELECT has the SF_IncludeHidden
4514             ** bit set.
4515             */
4516             if( (p->selFlags & SF_IncludeHidden)==0
4517              && IsHiddenColumn(&pTab->aCol[j])
4518             ){
4519               continue;
4520             }
4521             tableSeen = 1;
4522 
4523             if( i>0 && zTName==0 ){
4524               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4525                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4526               ){
4527                 /* In a NATURAL join, omit the join columns from the
4528                 ** table to the right of the join */
4529                 continue;
4530               }
4531               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4532                 /* In a join with a USING clause, omit columns in the
4533                 ** using clause from the table on the right. */
4534                 continue;
4535               }
4536             }
4537             pRight = sqlite3Expr(db, TK_ID, zName);
4538             zColname = zName;
4539             zToFree = 0;
4540             if( longNames || pTabList->nSrc>1 ){
4541               Expr *pLeft;
4542               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4543               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4544               if( zSchemaName ){
4545                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4546                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4547               }
4548               if( longNames ){
4549                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4550                 zToFree = zColname;
4551               }
4552             }else{
4553               pExpr = pRight;
4554             }
4555             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4556             sqlite3TokenInit(&sColname, zColname);
4557             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4558             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4559               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4560               if( pSub ){
4561                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4562                 testcase( pX->zSpan==0 );
4563               }else{
4564                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4565                                            zSchemaName, zTabName, zColname);
4566                 testcase( pX->zSpan==0 );
4567               }
4568               pX->bSpanIsTab = 1;
4569             }
4570             sqlite3DbFree(db, zToFree);
4571           }
4572         }
4573         if( !tableSeen ){
4574           if( zTName ){
4575             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4576           }else{
4577             sqlite3ErrorMsg(pParse, "no tables specified");
4578           }
4579         }
4580       }
4581     }
4582     sqlite3ExprListDelete(db, pEList);
4583     p->pEList = pNew;
4584   }
4585 #if SQLITE_MAX_COLUMN
4586   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4587     sqlite3ErrorMsg(pParse, "too many columns in result set");
4588     return WRC_Abort;
4589   }
4590 #endif
4591   return WRC_Continue;
4592 }
4593 
4594 /*
4595 ** No-op routine for the parse-tree walker.
4596 **
4597 ** When this routine is the Walker.xExprCallback then expression trees
4598 ** are walked without any actions being taken at each node.  Presumably,
4599 ** when this routine is used for Walker.xExprCallback then
4600 ** Walker.xSelectCallback is set to do something useful for every
4601 ** subquery in the parser tree.
4602 */
4603 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4604   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4605   return WRC_Continue;
4606 }
4607 
4608 /*
4609 ** No-op routine for the parse-tree walker for SELECT statements.
4610 ** subquery in the parser tree.
4611 */
4612 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4613   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4614   return WRC_Continue;
4615 }
4616 
4617 #if SQLITE_DEBUG
4618 /*
4619 ** Always assert.  This xSelectCallback2 implementation proves that the
4620 ** xSelectCallback2 is never invoked.
4621 */
4622 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4623   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4624   assert( 0 );
4625 }
4626 #endif
4627 /*
4628 ** This routine "expands" a SELECT statement and all of its subqueries.
4629 ** For additional information on what it means to "expand" a SELECT
4630 ** statement, see the comment on the selectExpand worker callback above.
4631 **
4632 ** Expanding a SELECT statement is the first step in processing a
4633 ** SELECT statement.  The SELECT statement must be expanded before
4634 ** name resolution is performed.
4635 **
4636 ** If anything goes wrong, an error message is written into pParse.
4637 ** The calling function can detect the problem by looking at pParse->nErr
4638 ** and/or pParse->db->mallocFailed.
4639 */
4640 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4641   Walker w;
4642   w.xExprCallback = sqlite3ExprWalkNoop;
4643   w.pParse = pParse;
4644   if( pParse->hasCompound ){
4645     w.xSelectCallback = convertCompoundSelectToSubquery;
4646     w.xSelectCallback2 = 0;
4647     sqlite3WalkSelect(&w, pSelect);
4648   }
4649   w.xSelectCallback = selectExpander;
4650   w.xSelectCallback2 = selectPopWith;
4651   sqlite3WalkSelect(&w, pSelect);
4652 }
4653 
4654 
4655 #ifndef SQLITE_OMIT_SUBQUERY
4656 /*
4657 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4658 ** interface.
4659 **
4660 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4661 ** information to the Table structure that represents the result set
4662 ** of that subquery.
4663 **
4664 ** The Table structure that represents the result set was constructed
4665 ** by selectExpander() but the type and collation information was omitted
4666 ** at that point because identifiers had not yet been resolved.  This
4667 ** routine is called after identifier resolution.
4668 */
4669 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4670   Parse *pParse;
4671   int i;
4672   SrcList *pTabList;
4673   struct SrcList_item *pFrom;
4674 
4675   assert( p->selFlags & SF_Resolved );
4676   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4677   p->selFlags |= SF_HasTypeInfo;
4678   pParse = pWalker->pParse;
4679   pTabList = p->pSrc;
4680   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4681     Table *pTab = pFrom->pTab;
4682     assert( pTab!=0 );
4683     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4684       /* A sub-query in the FROM clause of a SELECT */
4685       Select *pSel = pFrom->pSelect;
4686       if( pSel ){
4687         while( pSel->pPrior ) pSel = pSel->pPrior;
4688         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
4689       }
4690     }
4691   }
4692 }
4693 #endif
4694 
4695 
4696 /*
4697 ** This routine adds datatype and collating sequence information to
4698 ** the Table structures of all FROM-clause subqueries in a
4699 ** SELECT statement.
4700 **
4701 ** Use this routine after name resolution.
4702 */
4703 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4704 #ifndef SQLITE_OMIT_SUBQUERY
4705   Walker w;
4706   w.xSelectCallback = sqlite3SelectWalkNoop;
4707   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4708   w.xExprCallback = sqlite3ExprWalkNoop;
4709   w.pParse = pParse;
4710   sqlite3WalkSelect(&w, pSelect);
4711 #endif
4712 }
4713 
4714 
4715 /*
4716 ** This routine sets up a SELECT statement for processing.  The
4717 ** following is accomplished:
4718 **
4719 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4720 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4721 **     *  ON and USING clauses are shifted into WHERE statements
4722 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4723 **     *  Identifiers in expression are matched to tables.
4724 **
4725 ** This routine acts recursively on all subqueries within the SELECT.
4726 */
4727 void sqlite3SelectPrep(
4728   Parse *pParse,         /* The parser context */
4729   Select *p,             /* The SELECT statement being coded. */
4730   NameContext *pOuterNC  /* Name context for container */
4731 ){
4732   sqlite3 *db;
4733   if( NEVER(p==0) ) return;
4734   db = pParse->db;
4735   if( db->mallocFailed ) return;
4736   if( p->selFlags & SF_HasTypeInfo ) return;
4737   sqlite3SelectExpand(pParse, p);
4738   if( pParse->nErr || db->mallocFailed ) return;
4739   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4740   if( pParse->nErr || db->mallocFailed ) return;
4741   sqlite3SelectAddTypeInfo(pParse, p);
4742 }
4743 
4744 /*
4745 ** Reset the aggregate accumulator.
4746 **
4747 ** The aggregate accumulator is a set of memory cells that hold
4748 ** intermediate results while calculating an aggregate.  This
4749 ** routine generates code that stores NULLs in all of those memory
4750 ** cells.
4751 */
4752 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4753   Vdbe *v = pParse->pVdbe;
4754   int i;
4755   struct AggInfo_func *pFunc;
4756   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4757   if( nReg==0 ) return;
4758 #ifdef SQLITE_DEBUG
4759   /* Verify that all AggInfo registers are within the range specified by
4760   ** AggInfo.mnReg..AggInfo.mxReg */
4761   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4762   for(i=0; i<pAggInfo->nColumn; i++){
4763     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4764          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4765   }
4766   for(i=0; i<pAggInfo->nFunc; i++){
4767     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4768          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4769   }
4770 #endif
4771   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4772   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4773     if( pFunc->iDistinct>=0 ){
4774       Expr *pE = pFunc->pExpr;
4775       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4776       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4777         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4778            "argument");
4779         pFunc->iDistinct = -1;
4780       }else{
4781         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4782         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4783                           (char*)pKeyInfo, P4_KEYINFO);
4784       }
4785     }
4786   }
4787 }
4788 
4789 /*
4790 ** Invoke the OP_AggFinalize opcode for every aggregate function
4791 ** in the AggInfo structure.
4792 */
4793 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4794   Vdbe *v = pParse->pVdbe;
4795   int i;
4796   struct AggInfo_func *pF;
4797   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4798     ExprList *pList = pF->pExpr->x.pList;
4799     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4800     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
4801     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4802   }
4803 }
4804 
4805 /*
4806 ** Update the accumulator memory cells for an aggregate based on
4807 ** the current cursor position.
4808 */
4809 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4810   Vdbe *v = pParse->pVdbe;
4811   int i;
4812   int regHit = 0;
4813   int addrHitTest = 0;
4814   struct AggInfo_func *pF;
4815   struct AggInfo_col *pC;
4816 
4817   pAggInfo->directMode = 1;
4818   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4819     int nArg;
4820     int addrNext = 0;
4821     int regAgg;
4822     ExprList *pList = pF->pExpr->x.pList;
4823     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4824     if( pList ){
4825       nArg = pList->nExpr;
4826       regAgg = sqlite3GetTempRange(pParse, nArg);
4827       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4828     }else{
4829       nArg = 0;
4830       regAgg = 0;
4831     }
4832     if( pF->iDistinct>=0 ){
4833       addrNext = sqlite3VdbeMakeLabel(v);
4834       testcase( nArg==0 );  /* Error condition */
4835       testcase( nArg>1 );   /* Also an error */
4836       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4837     }
4838     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4839       CollSeq *pColl = 0;
4840       struct ExprList_item *pItem;
4841       int j;
4842       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4843       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4844         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4845       }
4846       if( !pColl ){
4847         pColl = pParse->db->pDfltColl;
4848       }
4849       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4850       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4851     }
4852     sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem);
4853     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
4854     sqlite3VdbeChangeP5(v, (u8)nArg);
4855     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4856     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4857     if( addrNext ){
4858       sqlite3VdbeResolveLabel(v, addrNext);
4859       sqlite3ExprCacheClear(pParse);
4860     }
4861   }
4862 
4863   /* Before populating the accumulator registers, clear the column cache.
4864   ** Otherwise, if any of the required column values are already present
4865   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4866   ** to pC->iMem. But by the time the value is used, the original register
4867   ** may have been used, invalidating the underlying buffer holding the
4868   ** text or blob value. See ticket [883034dcb5].
4869   **
4870   ** Another solution would be to change the OP_SCopy used to copy cached
4871   ** values to an OP_Copy.
4872   */
4873   if( regHit ){
4874     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4875   }
4876   sqlite3ExprCacheClear(pParse);
4877   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4878     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4879   }
4880   pAggInfo->directMode = 0;
4881   sqlite3ExprCacheClear(pParse);
4882   if( addrHitTest ){
4883     sqlite3VdbeJumpHere(v, addrHitTest);
4884   }
4885 }
4886 
4887 /*
4888 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4889 ** count(*) query ("SELECT count(*) FROM pTab").
4890 */
4891 #ifndef SQLITE_OMIT_EXPLAIN
4892 static void explainSimpleCount(
4893   Parse *pParse,                  /* Parse context */
4894   Table *pTab,                    /* Table being queried */
4895   Index *pIdx                     /* Index used to optimize scan, or NULL */
4896 ){
4897   if( pParse->explain==2 ){
4898     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4899     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4900         pTab->zName,
4901         bCover ? " USING COVERING INDEX " : "",
4902         bCover ? pIdx->zName : ""
4903     );
4904     sqlite3VdbeAddOp4(
4905         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4906     );
4907   }
4908 }
4909 #else
4910 # define explainSimpleCount(a,b,c)
4911 #endif
4912 
4913 /*
4914 ** Context object for havingToWhereExprCb().
4915 */
4916 struct HavingToWhereCtx {
4917   Expr **ppWhere;
4918   ExprList *pGroupBy;
4919 };
4920 
4921 /*
4922 ** sqlite3WalkExpr() callback used by havingToWhere().
4923 **
4924 ** If the node passed to the callback is a TK_AND node, return
4925 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
4926 **
4927 ** Otherwise, return WRC_Prune. In this case, also check if the
4928 ** sub-expression matches the criteria for being moved to the WHERE
4929 ** clause. If so, add it to the WHERE clause and replace the sub-expression
4930 ** within the HAVING expression with a constant "1".
4931 */
4932 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
4933   if( pExpr->op!=TK_AND ){
4934     struct HavingToWhereCtx *p = pWalker->u.pHavingCtx;
4935     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, p->pGroupBy) ){
4936       sqlite3 *db = pWalker->pParse->db;
4937       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
4938       if( pNew ){
4939         Expr *pWhere = *(p->ppWhere);
4940         SWAP(Expr, *pNew, *pExpr);
4941         pNew = sqlite3ExprAnd(db, pWhere, pNew);
4942         *(p->ppWhere) = pNew;
4943       }
4944     }
4945     return WRC_Prune;
4946   }
4947   return WRC_Continue;
4948 }
4949 
4950 /*
4951 ** Transfer eligible terms from the HAVING clause of a query, which is
4952 ** processed after grouping, to the WHERE clause, which is processed before
4953 ** grouping. For example, the query:
4954 **
4955 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
4956 **
4957 ** can be rewritten as:
4958 **
4959 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
4960 **
4961 ** A term of the HAVING expression is eligible for transfer if it consists
4962 ** entirely of constants and expressions that are also GROUP BY terms that
4963 ** use the "BINARY" collation sequence.
4964 */
4965 static void havingToWhere(
4966   Parse *pParse,
4967   ExprList *pGroupBy,
4968   Expr *pHaving,
4969   Expr **ppWhere
4970 ){
4971   struct HavingToWhereCtx sCtx;
4972   Walker sWalker;
4973 
4974   sCtx.ppWhere = ppWhere;
4975   sCtx.pGroupBy = pGroupBy;
4976 
4977   memset(&sWalker, 0, sizeof(sWalker));
4978   sWalker.pParse = pParse;
4979   sWalker.xExprCallback = havingToWhereExprCb;
4980   sWalker.u.pHavingCtx = &sCtx;
4981   sqlite3WalkExpr(&sWalker, pHaving);
4982 }
4983 
4984 /*
4985 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
4986 ** If it is, then return the SrcList_item for the prior view.  If it is not,
4987 ** then return 0.
4988 */
4989 static struct SrcList_item *isSelfJoinView(
4990   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
4991   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
4992 ){
4993   struct SrcList_item *pItem;
4994   for(pItem = pTabList->a; pItem<pThis; pItem++){
4995     if( pItem->pSelect==0 ) continue;
4996     if( pItem->fg.viaCoroutine ) continue;
4997     if( pItem->zName==0 ) continue;
4998     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
4999     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5000     if( sqlite3ExprCompare(0,
5001           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5002     ){
5003       /* The view was modified by some other optimization such as
5004       ** pushDownWhereTerms() */
5005       continue;
5006     }
5007     return pItem;
5008   }
5009   return 0;
5010 }
5011 
5012 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5013 /*
5014 ** Attempt to transform a query of the form
5015 **
5016 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5017 **
5018 ** Into this:
5019 **
5020 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5021 **
5022 ** The transformation only works if all of the following are true:
5023 **
5024 **   *  The subquery is a UNION ALL of two or more terms
5025 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5026 **   *  The outer query is a simple count(*)
5027 **
5028 ** Return TRUE if the optimization is undertaken.
5029 */
5030 static int countOfViewOptimization(Parse *pParse, Select *p){
5031   Select *pSub, *pPrior;
5032   Expr *pExpr;
5033   Expr *pCount;
5034   sqlite3 *db;
5035   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate query */
5036   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5037   pExpr = p->pEList->a[0].pExpr;
5038   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5039   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Must be count() */
5040   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5041   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in the FROM clause */
5042   pSub = p->pSrc->a[0].pSelect;
5043   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5044   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound subquery */
5045   do{
5046     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5047     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5048     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5049     pSub = pSub->pPrior;                              /* Repeat over compound terms */
5050   }while( pSub );
5051 
5052   /* If we reach this point, that means it is OK to perform the transformation */
5053 
5054   db = pParse->db;
5055   pCount = pExpr;
5056   pExpr = 0;
5057   pSub = p->pSrc->a[0].pSelect;
5058   p->pSrc->a[0].pSelect = 0;
5059   sqlite3SrcListDelete(db, p->pSrc);
5060   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5061   while( pSub ){
5062     Expr *pTerm;
5063     pPrior = pSub->pPrior;
5064     pSub->pPrior = 0;
5065     pSub->pNext = 0;
5066     pSub->selFlags |= SF_Aggregate;
5067     pSub->selFlags &= ~SF_Compound;
5068     pSub->nSelectRow = 0;
5069     sqlite3ExprListDelete(db, pSub->pEList);
5070     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5071     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5072     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5073     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5074     if( pExpr==0 ){
5075       pExpr = pTerm;
5076     }else{
5077       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5078     }
5079     pSub = pPrior;
5080   }
5081   p->pEList->a[0].pExpr = pExpr;
5082   p->selFlags &= ~SF_Aggregate;
5083 
5084 #if SELECTTRACE_ENABLED
5085   if( sqlite3SelectTrace & 0x400 ){
5086     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5087     sqlite3TreeViewSelect(0, p, 0);
5088   }
5089 #endif
5090   return 1;
5091 }
5092 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5093 
5094 /*
5095 ** Generate code for the SELECT statement given in the p argument.
5096 **
5097 ** The results are returned according to the SelectDest structure.
5098 ** See comments in sqliteInt.h for further information.
5099 **
5100 ** This routine returns the number of errors.  If any errors are
5101 ** encountered, then an appropriate error message is left in
5102 ** pParse->zErrMsg.
5103 **
5104 ** This routine does NOT free the Select structure passed in.  The
5105 ** calling function needs to do that.
5106 */
5107 int sqlite3Select(
5108   Parse *pParse,         /* The parser context */
5109   Select *p,             /* The SELECT statement being coded. */
5110   SelectDest *pDest      /* What to do with the query results */
5111 ){
5112   int i, j;              /* Loop counters */
5113   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5114   Vdbe *v;               /* The virtual machine under construction */
5115   int isAgg;             /* True for select lists like "count(*)" */
5116   ExprList *pEList = 0;  /* List of columns to extract. */
5117   SrcList *pTabList;     /* List of tables to select from */
5118   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5119   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5120   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5121   int rc = 1;            /* Value to return from this function */
5122   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5123   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5124   AggInfo sAggInfo;      /* Information used by aggregate queries */
5125   int iEnd;              /* Address of the end of the query */
5126   sqlite3 *db;           /* The database connection */
5127 
5128 #ifndef SQLITE_OMIT_EXPLAIN
5129   int iRestoreSelectId = pParse->iSelectId;
5130   pParse->iSelectId = pParse->iNextSelectId++;
5131 #endif
5132 
5133   db = pParse->db;
5134   if( p==0 || db->mallocFailed || pParse->nErr ){
5135     return 1;
5136   }
5137   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5138   memset(&sAggInfo, 0, sizeof(sAggInfo));
5139 #if SELECTTRACE_ENABLED
5140   pParse->nSelectIndent++;
5141   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
5142   if( sqlite3SelectTrace & 0x100 ){
5143     sqlite3TreeViewSelect(0, p, 0);
5144   }
5145 #endif
5146 
5147   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5148   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5149   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5150   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5151   if( IgnorableOrderby(pDest) ){
5152     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5153            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5154            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5155            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5156     /* If ORDER BY makes no difference in the output then neither does
5157     ** DISTINCT so it can be removed too. */
5158     sqlite3ExprListDelete(db, p->pOrderBy);
5159     p->pOrderBy = 0;
5160     p->selFlags &= ~SF_Distinct;
5161   }
5162   sqlite3SelectPrep(pParse, p, 0);
5163   memset(&sSort, 0, sizeof(sSort));
5164   sSort.pOrderBy = p->pOrderBy;
5165   pTabList = p->pSrc;
5166   if( pParse->nErr || db->mallocFailed ){
5167     goto select_end;
5168   }
5169   assert( p->pEList!=0 );
5170   isAgg = (p->selFlags & SF_Aggregate)!=0;
5171 #if SELECTTRACE_ENABLED
5172   if( sqlite3SelectTrace & 0x100 ){
5173     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
5174     sqlite3TreeViewSelect(0, p, 0);
5175   }
5176 #endif
5177 
5178   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
5179   ** does not already exist */
5180   v = sqlite3GetVdbe(pParse);
5181   if( v==0 ) goto select_end;
5182   if( pDest->eDest==SRT_Output ){
5183     generateColumnNames(pParse, p);
5184   }
5185 
5186   /* Try to flatten subqueries in the FROM clause up into the main query
5187   */
5188 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5189   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5190     struct SrcList_item *pItem = &pTabList->a[i];
5191     Select *pSub = pItem->pSelect;
5192     int isAggSub;
5193     Table *pTab = pItem->pTab;
5194     if( pSub==0 ) continue;
5195 
5196     /* Catch mismatch in the declared columns of a view and the number of
5197     ** columns in the SELECT on the RHS */
5198     if( pTab->nCol!=pSub->pEList->nExpr ){
5199       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5200                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5201       goto select_end;
5202     }
5203 
5204     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
5205     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
5206       /* This subquery can be absorbed into its parent. */
5207       if( isAggSub ){
5208         isAgg = 1;
5209         p->selFlags |= SF_Aggregate;
5210       }
5211       i = -1;
5212     }
5213     pTabList = p->pSrc;
5214     if( db->mallocFailed ) goto select_end;
5215     if( !IgnorableOrderby(pDest) ){
5216       sSort.pOrderBy = p->pOrderBy;
5217     }
5218   }
5219 #endif
5220 
5221 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5222   /* Handle compound SELECT statements using the separate multiSelect()
5223   ** procedure.
5224   */
5225   if( p->pPrior ){
5226     rc = multiSelect(pParse, p, pDest);
5227     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5228 #if SELECTTRACE_ENABLED
5229     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
5230     pParse->nSelectIndent--;
5231 #endif
5232     return rc;
5233   }
5234 #endif
5235 
5236   /* For each term in the FROM clause, do two things:
5237   ** (1) Authorized unreferenced tables
5238   ** (2) Generate code for all sub-queries
5239   */
5240   for(i=0; i<pTabList->nSrc; i++){
5241     struct SrcList_item *pItem = &pTabList->a[i];
5242     SelectDest dest;
5243     Select *pSub;
5244 
5245     /* Issue SQLITE_READ authorizations with a fake column name for any tables that
5246     ** are referenced but from which no values are extracted. Examples of where these
5247     ** kinds of null SQLITE_READ authorizations would occur:
5248     **
5249     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5250     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5251     **
5252     ** The fake column name is an empty string.  It is possible for a table to
5253     ** have a column named by the empty string, in which case there is no way to
5254     ** distinguish between an unreferenced table and an actual reference to the
5255     ** "" column.  The original design was for the fake column name to be a NULL,
5256     ** which would be unambiguous.  But legacy authorization callbacks might
5257     ** assume the column name is non-NULL and segfault.  The use of an empty string
5258     ** for the fake column name seems safer.
5259     */
5260     if( pItem->colUsed==0 ){
5261       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5262     }
5263 
5264 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5265     /* Generate code for all sub-queries in the FROM clause
5266     */
5267     pSub = pItem->pSelect;
5268     if( pSub==0 ) continue;
5269 
5270     /* Sometimes the code for a subquery will be generated more than
5271     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5272     ** for example.  In that case, do not regenerate the code to manifest
5273     ** a view or the co-routine to implement a view.  The first instance
5274     ** is sufficient, though the subroutine to manifest the view does need
5275     ** to be invoked again. */
5276     if( pItem->addrFillSub ){
5277       if( pItem->fg.viaCoroutine==0 ){
5278         /* The subroutine that manifests the view might be a one-time routine,
5279         ** or it might need to be rerun on each iteration because it
5280         ** encodes a correlated subquery. */
5281         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5282         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5283       }
5284       continue;
5285     }
5286 
5287     /* Increment Parse.nHeight by the height of the largest expression
5288     ** tree referred to by this, the parent select. The child select
5289     ** may contain expression trees of at most
5290     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5291     ** more conservative than necessary, but much easier than enforcing
5292     ** an exact limit.
5293     */
5294     pParse->nHeight += sqlite3SelectExprHeight(p);
5295 
5296     /* Make copies of constant WHERE-clause terms in the outer query down
5297     ** inside the subquery.  This can help the subquery to run more efficiently.
5298     */
5299     if( (pItem->fg.jointype & JT_OUTER)==0
5300      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor)
5301     ){
5302 #if SELECTTRACE_ENABLED
5303       if( sqlite3SelectTrace & 0x100 ){
5304         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5305         sqlite3TreeViewSelect(0, p, 0);
5306       }
5307 #endif
5308     }
5309 
5310     /* Generate code to implement the subquery
5311     **
5312     ** The subquery is implemented as a co-routine if all of these are true:
5313     **   (1)  The subquery is guaranteed to be the outer loop (so that it
5314     **        does not need to be computed more than once)
5315     **   (2)  The ALL keyword after SELECT is omitted.  (Applications are
5316     **        allowed to say "SELECT ALL" instead of just "SELECT" to disable
5317     **        the use of co-routines.)
5318     **   (3)  Co-routines are not disabled using sqlite3_test_control()
5319     **        with SQLITE_TESTCTRL_OPTIMIZATIONS.
5320     **
5321     ** TODO: Are there other reasons beside (1) to use a co-routine
5322     ** implementation?
5323     */
5324     if( i==0
5325      && (pTabList->nSrc==1
5326             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5327      && (p->selFlags & SF_All)==0                                   /* (2) */
5328      && OptimizationEnabled(db, SQLITE_SubqCoroutine)               /* (3) */
5329     ){
5330       /* Implement a co-routine that will return a single row of the result
5331       ** set on each invocation.
5332       */
5333       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5334       pItem->regReturn = ++pParse->nMem;
5335       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5336       VdbeComment((v, "%s", pItem->pTab->zName));
5337       pItem->addrFillSub = addrTop;
5338       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5339       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5340       sqlite3Select(pParse, pSub, &dest);
5341       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5342       pItem->fg.viaCoroutine = 1;
5343       pItem->regResult = dest.iSdst;
5344       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5345       sqlite3VdbeJumpHere(v, addrTop-1);
5346       sqlite3ClearTempRegCache(pParse);
5347     }else{
5348       /* Generate a subroutine that will fill an ephemeral table with
5349       ** the content of this subquery.  pItem->addrFillSub will point
5350       ** to the address of the generated subroutine.  pItem->regReturn
5351       ** is a register allocated to hold the subroutine return address
5352       */
5353       int topAddr;
5354       int onceAddr = 0;
5355       int retAddr;
5356       struct SrcList_item *pPrior;
5357 
5358       assert( pItem->addrFillSub==0 );
5359       pItem->regReturn = ++pParse->nMem;
5360       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5361       pItem->addrFillSub = topAddr+1;
5362       if( pItem->fg.isCorrelated==0 ){
5363         /* If the subquery is not correlated and if we are not inside of
5364         ** a trigger, then we only need to compute the value of the subquery
5365         ** once. */
5366         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5367         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5368       }else{
5369         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5370       }
5371       pPrior = isSelfJoinView(pTabList, pItem);
5372       if( pPrior ){
5373         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5374         explainSetInteger(pItem->iSelectId, pPrior->iSelectId);
5375         assert( pPrior->pSelect!=0 );
5376         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5377       }else{
5378         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5379         explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5380         sqlite3Select(pParse, pSub, &dest);
5381       }
5382       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5383       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5384       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5385       VdbeComment((v, "end %s", pItem->pTab->zName));
5386       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5387       sqlite3ClearTempRegCache(pParse);
5388     }
5389     if( db->mallocFailed ) goto select_end;
5390     pParse->nHeight -= sqlite3SelectExprHeight(p);
5391 #endif
5392   }
5393 
5394   /* Various elements of the SELECT copied into local variables for
5395   ** convenience */
5396   pEList = p->pEList;
5397   pWhere = p->pWhere;
5398   pGroupBy = p->pGroupBy;
5399   pHaving = p->pHaving;
5400   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5401 
5402 #if SELECTTRACE_ENABLED
5403   if( sqlite3SelectTrace & 0x400 ){
5404     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5405     sqlite3TreeViewSelect(0, p, 0);
5406   }
5407 #endif
5408 
5409 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5410   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5411    && countOfViewOptimization(pParse, p)
5412   ){
5413     if( db->mallocFailed ) goto select_end;
5414     pEList = p->pEList;
5415     pTabList = p->pSrc;
5416   }
5417 #endif
5418 
5419   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5420   ** if the select-list is the same as the ORDER BY list, then this query
5421   ** can be rewritten as a GROUP BY. In other words, this:
5422   **
5423   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5424   **
5425   ** is transformed to:
5426   **
5427   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5428   **
5429   ** The second form is preferred as a single index (or temp-table) may be
5430   ** used for both the ORDER BY and DISTINCT processing. As originally
5431   ** written the query must use a temp-table for at least one of the ORDER
5432   ** BY and DISTINCT, and an index or separate temp-table for the other.
5433   */
5434   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5435    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5436   ){
5437     p->selFlags &= ~SF_Distinct;
5438     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5439     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5440     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5441     ** original setting of the SF_Distinct flag, not the current setting */
5442     assert( sDistinct.isTnct );
5443 
5444 #if SELECTTRACE_ENABLED
5445     if( sqlite3SelectTrace & 0x400 ){
5446       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5447       sqlite3TreeViewSelect(0, p, 0);
5448     }
5449 #endif
5450   }
5451 
5452   /* If there is an ORDER BY clause, then create an ephemeral index to
5453   ** do the sorting.  But this sorting ephemeral index might end up
5454   ** being unused if the data can be extracted in pre-sorted order.
5455   ** If that is the case, then the OP_OpenEphemeral instruction will be
5456   ** changed to an OP_Noop once we figure out that the sorting index is
5457   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5458   ** that change.
5459   */
5460   if( sSort.pOrderBy ){
5461     KeyInfo *pKeyInfo;
5462     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5463     sSort.iECursor = pParse->nTab++;
5464     sSort.addrSortIndex =
5465       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5466           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5467           (char*)pKeyInfo, P4_KEYINFO
5468       );
5469   }else{
5470     sSort.addrSortIndex = -1;
5471   }
5472 
5473   /* If the output is destined for a temporary table, open that table.
5474   */
5475   if( pDest->eDest==SRT_EphemTab ){
5476     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5477   }
5478 
5479   /* Set the limiter.
5480   */
5481   iEnd = sqlite3VdbeMakeLabel(v);
5482   if( (p->selFlags & SF_FixedLimit)==0 ){
5483     p->nSelectRow = 320;  /* 4 billion rows */
5484   }
5485   computeLimitRegisters(pParse, p, iEnd);
5486   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5487     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5488     sSort.sortFlags |= SORTFLAG_UseSorter;
5489   }
5490 
5491   /* Open an ephemeral index to use for the distinct set.
5492   */
5493   if( p->selFlags & SF_Distinct ){
5494     sDistinct.tabTnct = pParse->nTab++;
5495     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5496                              sDistinct.tabTnct, 0, 0,
5497                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5498                              P4_KEYINFO);
5499     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5500     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5501   }else{
5502     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5503   }
5504 
5505   if( !isAgg && pGroupBy==0 ){
5506     /* No aggregate functions and no GROUP BY clause */
5507     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5508     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5509     wctrlFlags |= p->selFlags & SF_FixedLimit;
5510 
5511     /* Begin the database scan. */
5512     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5513                                p->pEList, wctrlFlags, p->nSelectRow);
5514     if( pWInfo==0 ) goto select_end;
5515     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5516       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5517     }
5518     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5519       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5520     }
5521     if( sSort.pOrderBy ){
5522       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5523       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5524       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5525         sSort.pOrderBy = 0;
5526       }
5527     }
5528 
5529     /* If sorting index that was created by a prior OP_OpenEphemeral
5530     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5531     ** into an OP_Noop.
5532     */
5533     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5534       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5535     }
5536 
5537     /* Use the standard inner loop. */
5538     assert( p->pEList==pEList );
5539     selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5540                     sqlite3WhereContinueLabel(pWInfo),
5541                     sqlite3WhereBreakLabel(pWInfo));
5542 
5543     /* End the database scan loop.
5544     */
5545     sqlite3WhereEnd(pWInfo);
5546   }else{
5547     /* This case when there exist aggregate functions or a GROUP BY clause
5548     ** or both */
5549     NameContext sNC;    /* Name context for processing aggregate information */
5550     int iAMem;          /* First Mem address for storing current GROUP BY */
5551     int iBMem;          /* First Mem address for previous GROUP BY */
5552     int iUseFlag;       /* Mem address holding flag indicating that at least
5553                         ** one row of the input to the aggregator has been
5554                         ** processed */
5555     int iAbortFlag;     /* Mem address which causes query abort if positive */
5556     int groupBySort;    /* Rows come from source in GROUP BY order */
5557     int addrEnd;        /* End of processing for this SELECT */
5558     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5559     int sortOut = 0;    /* Output register from the sorter */
5560     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5561 
5562     /* Remove any and all aliases between the result set and the
5563     ** GROUP BY clause.
5564     */
5565     if( pGroupBy ){
5566       int k;                        /* Loop counter */
5567       struct ExprList_item *pItem;  /* For looping over expression in a list */
5568 
5569       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5570         pItem->u.x.iAlias = 0;
5571       }
5572       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5573         pItem->u.x.iAlias = 0;
5574       }
5575       assert( 66==sqlite3LogEst(100) );
5576       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5577     }else{
5578       assert( 0==sqlite3LogEst(1) );
5579       p->nSelectRow = 0;
5580     }
5581 
5582     /* If there is both a GROUP BY and an ORDER BY clause and they are
5583     ** identical, then it may be possible to disable the ORDER BY clause
5584     ** on the grounds that the GROUP BY will cause elements to come out
5585     ** in the correct order. It also may not - the GROUP BY might use a
5586     ** database index that causes rows to be grouped together as required
5587     ** but not actually sorted. Either way, record the fact that the
5588     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5589     ** variable.  */
5590     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5591       orderByGrp = 1;
5592     }
5593 
5594     /* Create a label to jump to when we want to abort the query */
5595     addrEnd = sqlite3VdbeMakeLabel(v);
5596 
5597     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5598     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5599     ** SELECT statement.
5600     */
5601     memset(&sNC, 0, sizeof(sNC));
5602     sNC.pParse = pParse;
5603     sNC.pSrcList = pTabList;
5604     sNC.pAggInfo = &sAggInfo;
5605     sAggInfo.mnReg = pParse->nMem+1;
5606     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5607     sAggInfo.pGroupBy = pGroupBy;
5608     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5609     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5610     if( pHaving ){
5611       if( pGroupBy ){
5612         assert( pWhere==p->pWhere );
5613         havingToWhere(pParse, pGroupBy, pHaving, &p->pWhere);
5614         pWhere = p->pWhere;
5615       }
5616       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5617     }
5618     sAggInfo.nAccumulator = sAggInfo.nColumn;
5619     for(i=0; i<sAggInfo.nFunc; i++){
5620       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5621       sNC.ncFlags |= NC_InAggFunc;
5622       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5623       sNC.ncFlags &= ~NC_InAggFunc;
5624     }
5625     sAggInfo.mxReg = pParse->nMem;
5626     if( db->mallocFailed ) goto select_end;
5627 
5628     /* Processing for aggregates with GROUP BY is very different and
5629     ** much more complex than aggregates without a GROUP BY.
5630     */
5631     if( pGroupBy ){
5632       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5633       int addr1;          /* A-vs-B comparision jump */
5634       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5635       int regOutputRow;   /* Return address register for output subroutine */
5636       int addrSetAbort;   /* Set the abort flag and return */
5637       int addrTopOfLoop;  /* Top of the input loop */
5638       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5639       int addrReset;      /* Subroutine for resetting the accumulator */
5640       int regReset;       /* Return address register for reset subroutine */
5641 
5642       /* If there is a GROUP BY clause we might need a sorting index to
5643       ** implement it.  Allocate that sorting index now.  If it turns out
5644       ** that we do not need it after all, the OP_SorterOpen instruction
5645       ** will be converted into a Noop.
5646       */
5647       sAggInfo.sortingIdx = pParse->nTab++;
5648       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5649       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5650           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5651           0, (char*)pKeyInfo, P4_KEYINFO);
5652 
5653       /* Initialize memory locations used by GROUP BY aggregate processing
5654       */
5655       iUseFlag = ++pParse->nMem;
5656       iAbortFlag = ++pParse->nMem;
5657       regOutputRow = ++pParse->nMem;
5658       addrOutputRow = sqlite3VdbeMakeLabel(v);
5659       regReset = ++pParse->nMem;
5660       addrReset = sqlite3VdbeMakeLabel(v);
5661       iAMem = pParse->nMem + 1;
5662       pParse->nMem += pGroupBy->nExpr;
5663       iBMem = pParse->nMem + 1;
5664       pParse->nMem += pGroupBy->nExpr;
5665       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5666       VdbeComment((v, "clear abort flag"));
5667       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5668       VdbeComment((v, "indicate accumulator empty"));
5669       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5670 
5671       /* Begin a loop that will extract all source rows in GROUP BY order.
5672       ** This might involve two separate loops with an OP_Sort in between, or
5673       ** it might be a single loop that uses an index to extract information
5674       ** in the right order to begin with.
5675       */
5676       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5677       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5678           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5679       );
5680       if( pWInfo==0 ) goto select_end;
5681       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5682         /* The optimizer is able to deliver rows in group by order so
5683         ** we do not have to sort.  The OP_OpenEphemeral table will be
5684         ** cancelled later because we still need to use the pKeyInfo
5685         */
5686         groupBySort = 0;
5687       }else{
5688         /* Rows are coming out in undetermined order.  We have to push
5689         ** each row into a sorting index, terminate the first loop,
5690         ** then loop over the sorting index in order to get the output
5691         ** in sorted order
5692         */
5693         int regBase;
5694         int regRecord;
5695         int nCol;
5696         int nGroupBy;
5697 
5698         explainTempTable(pParse,
5699             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5700                     "DISTINCT" : "GROUP BY");
5701 
5702         groupBySort = 1;
5703         nGroupBy = pGroupBy->nExpr;
5704         nCol = nGroupBy;
5705         j = nGroupBy;
5706         for(i=0; i<sAggInfo.nColumn; i++){
5707           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5708             nCol++;
5709             j++;
5710           }
5711         }
5712         regBase = sqlite3GetTempRange(pParse, nCol);
5713         sqlite3ExprCacheClear(pParse);
5714         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5715         j = nGroupBy;
5716         for(i=0; i<sAggInfo.nColumn; i++){
5717           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5718           if( pCol->iSorterColumn>=j ){
5719             int r1 = j + regBase;
5720             sqlite3ExprCodeGetColumnToReg(pParse,
5721                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5722             j++;
5723           }
5724         }
5725         regRecord = sqlite3GetTempReg(pParse);
5726         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5727         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5728         sqlite3ReleaseTempReg(pParse, regRecord);
5729         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5730         sqlite3WhereEnd(pWInfo);
5731         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5732         sortOut = sqlite3GetTempReg(pParse);
5733         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5734         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5735         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5736         sAggInfo.useSortingIdx = 1;
5737         sqlite3ExprCacheClear(pParse);
5738 
5739       }
5740 
5741       /* If the index or temporary table used by the GROUP BY sort
5742       ** will naturally deliver rows in the order required by the ORDER BY
5743       ** clause, cancel the ephemeral table open coded earlier.
5744       **
5745       ** This is an optimization - the correct answer should result regardless.
5746       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5747       ** disable this optimization for testing purposes.  */
5748       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5749        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5750       ){
5751         sSort.pOrderBy = 0;
5752         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5753       }
5754 
5755       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5756       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5757       ** Then compare the current GROUP BY terms against the GROUP BY terms
5758       ** from the previous row currently stored in a0, a1, a2...
5759       */
5760       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5761       sqlite3ExprCacheClear(pParse);
5762       if( groupBySort ){
5763         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5764                           sortOut, sortPTab);
5765       }
5766       for(j=0; j<pGroupBy->nExpr; j++){
5767         if( groupBySort ){
5768           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5769         }else{
5770           sAggInfo.directMode = 1;
5771           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5772         }
5773       }
5774       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5775                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5776       addr1 = sqlite3VdbeCurrentAddr(v);
5777       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5778 
5779       /* Generate code that runs whenever the GROUP BY changes.
5780       ** Changes in the GROUP BY are detected by the previous code
5781       ** block.  If there were no changes, this block is skipped.
5782       **
5783       ** This code copies current group by terms in b0,b1,b2,...
5784       ** over to a0,a1,a2.  It then calls the output subroutine
5785       ** and resets the aggregate accumulator registers in preparation
5786       ** for the next GROUP BY batch.
5787       */
5788       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5789       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5790       VdbeComment((v, "output one row"));
5791       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5792       VdbeComment((v, "check abort flag"));
5793       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5794       VdbeComment((v, "reset accumulator"));
5795 
5796       /* Update the aggregate accumulators based on the content of
5797       ** the current row
5798       */
5799       sqlite3VdbeJumpHere(v, addr1);
5800       updateAccumulator(pParse, &sAggInfo);
5801       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5802       VdbeComment((v, "indicate data in accumulator"));
5803 
5804       /* End of the loop
5805       */
5806       if( groupBySort ){
5807         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5808         VdbeCoverage(v);
5809       }else{
5810         sqlite3WhereEnd(pWInfo);
5811         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5812       }
5813 
5814       /* Output the final row of result
5815       */
5816       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5817       VdbeComment((v, "output final row"));
5818 
5819       /* Jump over the subroutines
5820       */
5821       sqlite3VdbeGoto(v, addrEnd);
5822 
5823       /* Generate a subroutine that outputs a single row of the result
5824       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5825       ** is less than or equal to zero, the subroutine is a no-op.  If
5826       ** the processing calls for the query to abort, this subroutine
5827       ** increments the iAbortFlag memory location before returning in
5828       ** order to signal the caller to abort.
5829       */
5830       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5831       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5832       VdbeComment((v, "set abort flag"));
5833       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5834       sqlite3VdbeResolveLabel(v, addrOutputRow);
5835       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5836       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5837       VdbeCoverage(v);
5838       VdbeComment((v, "Groupby result generator entry point"));
5839       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5840       finalizeAggFunctions(pParse, &sAggInfo);
5841       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5842       selectInnerLoop(pParse, p, -1, &sSort,
5843                       &sDistinct, pDest,
5844                       addrOutputRow+1, addrSetAbort);
5845       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5846       VdbeComment((v, "end groupby result generator"));
5847 
5848       /* Generate a subroutine that will reset the group-by accumulator
5849       */
5850       sqlite3VdbeResolveLabel(v, addrReset);
5851       resetAccumulator(pParse, &sAggInfo);
5852       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5853 
5854     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5855     else {
5856       ExprList *pDel = 0;
5857 #ifndef SQLITE_OMIT_BTREECOUNT
5858       Table *pTab;
5859       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5860         /* If isSimpleCount() returns a pointer to a Table structure, then
5861         ** the SQL statement is of the form:
5862         **
5863         **   SELECT count(*) FROM <tbl>
5864         **
5865         ** where the Table structure returned represents table <tbl>.
5866         **
5867         ** This statement is so common that it is optimized specially. The
5868         ** OP_Count instruction is executed either on the intkey table that
5869         ** contains the data for table <tbl> or on one of its indexes. It
5870         ** is better to execute the op on an index, as indexes are almost
5871         ** always spread across less pages than their corresponding tables.
5872         */
5873         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5874         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5875         Index *pIdx;                         /* Iterator variable */
5876         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5877         Index *pBest = 0;                    /* Best index found so far */
5878         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5879 
5880         sqlite3CodeVerifySchema(pParse, iDb);
5881         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5882 
5883         /* Search for the index that has the lowest scan cost.
5884         **
5885         ** (2011-04-15) Do not do a full scan of an unordered index.
5886         **
5887         ** (2013-10-03) Do not count the entries in a partial index.
5888         **
5889         ** In practice the KeyInfo structure will not be used. It is only
5890         ** passed to keep OP_OpenRead happy.
5891         */
5892         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5893         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5894           if( pIdx->bUnordered==0
5895            && pIdx->szIdxRow<pTab->szTabRow
5896            && pIdx->pPartIdxWhere==0
5897            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5898           ){
5899             pBest = pIdx;
5900           }
5901         }
5902         if( pBest ){
5903           iRoot = pBest->tnum;
5904           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5905         }
5906 
5907         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5908         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5909         if( pKeyInfo ){
5910           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5911         }
5912         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5913         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5914         explainSimpleCount(pParse, pTab, pBest);
5915       }else
5916 #endif /* SQLITE_OMIT_BTREECOUNT */
5917       {
5918         /* Check if the query is of one of the following forms:
5919         **
5920         **   SELECT min(x) FROM ...
5921         **   SELECT max(x) FROM ...
5922         **
5923         ** If it is, then ask the code in where.c to attempt to sort results
5924         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5925         ** If where.c is able to produce results sorted in this order, then
5926         ** add vdbe code to break out of the processing loop after the
5927         ** first iteration (since the first iteration of the loop is
5928         ** guaranteed to operate on the row with the minimum or maximum
5929         ** value of x, the only row required).
5930         **
5931         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5932         ** modify behavior as follows:
5933         **
5934         **   + If the query is a "SELECT min(x)", then the loop coded by
5935         **     where.c should not iterate over any values with a NULL value
5936         **     for x.
5937         **
5938         **   + The optimizer code in where.c (the thing that decides which
5939         **     index or indices to use) should place a different priority on
5940         **     satisfying the 'ORDER BY' clause than it does in other cases.
5941         **     Refer to code and comments in where.c for details.
5942         */
5943         ExprList *pMinMax = 0;
5944         u8 flag = WHERE_ORDERBY_NORMAL;
5945 
5946         assert( p->pGroupBy==0 );
5947         assert( flag==0 );
5948         if( p->pHaving==0 ){
5949           flag = minMaxQuery(&sAggInfo, &pMinMax);
5950         }
5951         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5952 
5953         if( flag ){
5954           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5955           pDel = pMinMax;
5956           assert( db->mallocFailed || pMinMax!=0 );
5957           if( !db->mallocFailed ){
5958             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5959             pMinMax->a[0].pExpr->op = TK_COLUMN;
5960           }
5961         }
5962 
5963         /* This case runs if the aggregate has no GROUP BY clause.  The
5964         ** processing is much simpler since there is only a single row
5965         ** of output.
5966         */
5967         resetAccumulator(pParse, &sAggInfo);
5968         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0);
5969         if( pWInfo==0 ){
5970           sqlite3ExprListDelete(db, pDel);
5971           goto select_end;
5972         }
5973         updateAccumulator(pParse, &sAggInfo);
5974         assert( pMinMax==0 || pMinMax->nExpr==1 );
5975         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5976           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5977           VdbeComment((v, "%s() by index",
5978                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5979         }
5980         sqlite3WhereEnd(pWInfo);
5981         finalizeAggFunctions(pParse, &sAggInfo);
5982       }
5983 
5984       sSort.pOrderBy = 0;
5985       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5986       selectInnerLoop(pParse, p, -1, 0, 0,
5987                       pDest, addrEnd, addrEnd);
5988       sqlite3ExprListDelete(db, pDel);
5989     }
5990     sqlite3VdbeResolveLabel(v, addrEnd);
5991 
5992   } /* endif aggregate query */
5993 
5994   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5995     explainTempTable(pParse, "DISTINCT");
5996   }
5997 
5998   /* If there is an ORDER BY clause, then we need to sort the results
5999   ** and send them to the callback one by one.
6000   */
6001   if( sSort.pOrderBy ){
6002     explainTempTable(pParse,
6003                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6004     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6005   }
6006 
6007   /* Jump here to skip this query
6008   */
6009   sqlite3VdbeResolveLabel(v, iEnd);
6010 
6011   /* The SELECT has been coded. If there is an error in the Parse structure,
6012   ** set the return code to 1. Otherwise 0. */
6013   rc = (pParse->nErr>0);
6014 
6015   /* Control jumps to here if an error is encountered above, or upon
6016   ** successful coding of the SELECT.
6017   */
6018 select_end:
6019   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
6020 
6021   sqlite3DbFree(db, sAggInfo.aCol);
6022   sqlite3DbFree(db, sAggInfo.aFunc);
6023 #if SELECTTRACE_ENABLED
6024   SELECTTRACE(1,pParse,p,("end processing\n"));
6025   pParse->nSelectIndent--;
6026 #endif
6027   return rc;
6028 }
6029