1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 sqlite3WithDelete(db, p->pWith); 33 } 34 35 /* 36 ** Initialize a SelectDest structure. 37 */ 38 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 39 pDest->eDest = (u8)eDest; 40 pDest->iSDParm = iParm; 41 pDest->affSdst = 0; 42 pDest->iSdst = 0; 43 pDest->nSdst = 0; 44 } 45 46 47 /* 48 ** Allocate a new Select structure and return a pointer to that 49 ** structure. 50 */ 51 Select *sqlite3SelectNew( 52 Parse *pParse, /* Parsing context */ 53 ExprList *pEList, /* which columns to include in the result */ 54 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 55 Expr *pWhere, /* the WHERE clause */ 56 ExprList *pGroupBy, /* the GROUP BY clause */ 57 Expr *pHaving, /* the HAVING clause */ 58 ExprList *pOrderBy, /* the ORDER BY clause */ 59 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 60 Expr *pLimit, /* LIMIT value. NULL means not used */ 61 Expr *pOffset /* OFFSET value. NULL means no offset */ 62 ){ 63 Select *pNew; 64 Select standin; 65 sqlite3 *db = pParse->db; 66 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 67 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 68 if( pNew==0 ){ 69 assert( db->mallocFailed ); 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 75 } 76 pNew->pEList = pEList; 77 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 78 pNew->pSrc = pSrc; 79 pNew->pWhere = pWhere; 80 pNew->pGroupBy = pGroupBy; 81 pNew->pHaving = pHaving; 82 pNew->pOrderBy = pOrderBy; 83 pNew->selFlags = selFlags; 84 pNew->op = TK_SELECT; 85 pNew->pLimit = pLimit; 86 pNew->pOffset = pOffset; 87 assert( pOffset==0 || pLimit!=0 ); 88 pNew->addrOpenEphm[0] = -1; 89 pNew->addrOpenEphm[1] = -1; 90 pNew->addrOpenEphm[2] = -1; 91 if( db->mallocFailed ) { 92 clearSelect(db, pNew); 93 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 94 pNew = 0; 95 }else{ 96 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 97 } 98 assert( pNew!=&standin ); 99 return pNew; 100 } 101 102 /* 103 ** Delete the given Select structure and all of its substructures. 104 */ 105 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 106 if( p ){ 107 clearSelect(db, p); 108 sqlite3DbFree(db, p); 109 } 110 } 111 112 /* 113 ** Return a pointer to the right-most SELECT statement in a compound. 114 */ 115 static Select *findRightmost(Select *p){ 116 while( p->pNext ) p = p->pNext; 117 return p; 118 } 119 120 /* 121 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 122 ** type of join. Return an integer constant that expresses that type 123 ** in terms of the following bit values: 124 ** 125 ** JT_INNER 126 ** JT_CROSS 127 ** JT_OUTER 128 ** JT_NATURAL 129 ** JT_LEFT 130 ** JT_RIGHT 131 ** 132 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 133 ** 134 ** If an illegal or unsupported join type is seen, then still return 135 ** a join type, but put an error in the pParse structure. 136 */ 137 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 138 int jointype = 0; 139 Token *apAll[3]; 140 Token *p; 141 /* 0123456789 123456789 123456789 123 */ 142 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 143 static const struct { 144 u8 i; /* Beginning of keyword text in zKeyText[] */ 145 u8 nChar; /* Length of the keyword in characters */ 146 u8 code; /* Join type mask */ 147 } aKeyword[] = { 148 /* natural */ { 0, 7, JT_NATURAL }, 149 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 150 /* outer */ { 10, 5, JT_OUTER }, 151 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 152 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 153 /* inner */ { 23, 5, JT_INNER }, 154 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 155 }; 156 int i, j; 157 apAll[0] = pA; 158 apAll[1] = pB; 159 apAll[2] = pC; 160 for(i=0; i<3 && apAll[i]; i++){ 161 p = apAll[i]; 162 for(j=0; j<ArraySize(aKeyword); j++){ 163 if( p->n==aKeyword[j].nChar 164 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 165 jointype |= aKeyword[j].code; 166 break; 167 } 168 } 169 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 170 if( j>=ArraySize(aKeyword) ){ 171 jointype |= JT_ERROR; 172 break; 173 } 174 } 175 if( 176 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 177 (jointype & JT_ERROR)!=0 178 ){ 179 const char *zSp = " "; 180 assert( pB!=0 ); 181 if( pC==0 ){ zSp++; } 182 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 183 "%T %T%s%T", pA, pB, zSp, pC); 184 jointype = JT_INNER; 185 }else if( (jointype & JT_OUTER)!=0 186 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 187 sqlite3ErrorMsg(pParse, 188 "RIGHT and FULL OUTER JOINs are not currently supported"); 189 jointype = JT_INNER; 190 } 191 return jointype; 192 } 193 194 /* 195 ** Return the index of a column in a table. Return -1 if the column 196 ** is not contained in the table. 197 */ 198 static int columnIndex(Table *pTab, const char *zCol){ 199 int i; 200 for(i=0; i<pTab->nCol; i++){ 201 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 202 } 203 return -1; 204 } 205 206 /* 207 ** Search the first N tables in pSrc, from left to right, looking for a 208 ** table that has a column named zCol. 209 ** 210 ** When found, set *piTab and *piCol to the table index and column index 211 ** of the matching column and return TRUE. 212 ** 213 ** If not found, return FALSE. 214 */ 215 static int tableAndColumnIndex( 216 SrcList *pSrc, /* Array of tables to search */ 217 int N, /* Number of tables in pSrc->a[] to search */ 218 const char *zCol, /* Name of the column we are looking for */ 219 int *piTab, /* Write index of pSrc->a[] here */ 220 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 221 ){ 222 int i; /* For looping over tables in pSrc */ 223 int iCol; /* Index of column matching zCol */ 224 225 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 226 for(i=0; i<N; i++){ 227 iCol = columnIndex(pSrc->a[i].pTab, zCol); 228 if( iCol>=0 ){ 229 if( piTab ){ 230 *piTab = i; 231 *piCol = iCol; 232 } 233 return 1; 234 } 235 } 236 return 0; 237 } 238 239 /* 240 ** This function is used to add terms implied by JOIN syntax to the 241 ** WHERE clause expression of a SELECT statement. The new term, which 242 ** is ANDed with the existing WHERE clause, is of the form: 243 ** 244 ** (tab1.col1 = tab2.col2) 245 ** 246 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 247 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 248 ** column iColRight of tab2. 249 */ 250 static void addWhereTerm( 251 Parse *pParse, /* Parsing context */ 252 SrcList *pSrc, /* List of tables in FROM clause */ 253 int iLeft, /* Index of first table to join in pSrc */ 254 int iColLeft, /* Index of column in first table */ 255 int iRight, /* Index of second table in pSrc */ 256 int iColRight, /* Index of column in second table */ 257 int isOuterJoin, /* True if this is an OUTER join */ 258 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 259 ){ 260 sqlite3 *db = pParse->db; 261 Expr *pE1; 262 Expr *pE2; 263 Expr *pEq; 264 265 assert( iLeft<iRight ); 266 assert( pSrc->nSrc>iRight ); 267 assert( pSrc->a[iLeft].pTab ); 268 assert( pSrc->a[iRight].pTab ); 269 270 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 271 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 272 273 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 274 if( pEq && isOuterJoin ){ 275 ExprSetProperty(pEq, EP_FromJoin); 276 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 277 ExprSetVVAProperty(pEq, EP_NoReduce); 278 pEq->iRightJoinTable = (i16)pE2->iTable; 279 } 280 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 281 } 282 283 /* 284 ** Set the EP_FromJoin property on all terms of the given expression. 285 ** And set the Expr.iRightJoinTable to iTable for every term in the 286 ** expression. 287 ** 288 ** The EP_FromJoin property is used on terms of an expression to tell 289 ** the LEFT OUTER JOIN processing logic that this term is part of the 290 ** join restriction specified in the ON or USING clause and not a part 291 ** of the more general WHERE clause. These terms are moved over to the 292 ** WHERE clause during join processing but we need to remember that they 293 ** originated in the ON or USING clause. 294 ** 295 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 296 ** expression depends on table iRightJoinTable even if that table is not 297 ** explicitly mentioned in the expression. That information is needed 298 ** for cases like this: 299 ** 300 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 301 ** 302 ** The where clause needs to defer the handling of the t1.x=5 303 ** term until after the t2 loop of the join. In that way, a 304 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 305 ** defer the handling of t1.x=5, it will be processed immediately 306 ** after the t1 loop and rows with t1.x!=5 will never appear in 307 ** the output, which is incorrect. 308 */ 309 static void setJoinExpr(Expr *p, int iTable){ 310 while( p ){ 311 ExprSetProperty(p, EP_FromJoin); 312 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 313 ExprSetVVAProperty(p, EP_NoReduce); 314 p->iRightJoinTable = (i16)iTable; 315 setJoinExpr(p->pLeft, iTable); 316 p = p->pRight; 317 } 318 } 319 320 /* 321 ** This routine processes the join information for a SELECT statement. 322 ** ON and USING clauses are converted into extra terms of the WHERE clause. 323 ** NATURAL joins also create extra WHERE clause terms. 324 ** 325 ** The terms of a FROM clause are contained in the Select.pSrc structure. 326 ** The left most table is the first entry in Select.pSrc. The right-most 327 ** table is the last entry. The join operator is held in the entry to 328 ** the left. Thus entry 0 contains the join operator for the join between 329 ** entries 0 and 1. Any ON or USING clauses associated with the join are 330 ** also attached to the left entry. 331 ** 332 ** This routine returns the number of errors encountered. 333 */ 334 static int sqliteProcessJoin(Parse *pParse, Select *p){ 335 SrcList *pSrc; /* All tables in the FROM clause */ 336 int i, j; /* Loop counters */ 337 struct SrcList_item *pLeft; /* Left table being joined */ 338 struct SrcList_item *pRight; /* Right table being joined */ 339 340 pSrc = p->pSrc; 341 pLeft = &pSrc->a[0]; 342 pRight = &pLeft[1]; 343 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 344 Table *pLeftTab = pLeft->pTab; 345 Table *pRightTab = pRight->pTab; 346 int isOuter; 347 348 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 349 isOuter = (pRight->jointype & JT_OUTER)!=0; 350 351 /* When the NATURAL keyword is present, add WHERE clause terms for 352 ** every column that the two tables have in common. 353 */ 354 if( pRight->jointype & JT_NATURAL ){ 355 if( pRight->pOn || pRight->pUsing ){ 356 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 357 "an ON or USING clause", 0); 358 return 1; 359 } 360 for(j=0; j<pRightTab->nCol; j++){ 361 char *zName; /* Name of column in the right table */ 362 int iLeft; /* Matching left table */ 363 int iLeftCol; /* Matching column in the left table */ 364 365 zName = pRightTab->aCol[j].zName; 366 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 367 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 368 isOuter, &p->pWhere); 369 } 370 } 371 } 372 373 /* Disallow both ON and USING clauses in the same join 374 */ 375 if( pRight->pOn && pRight->pUsing ){ 376 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 377 "clauses in the same join"); 378 return 1; 379 } 380 381 /* Add the ON clause to the end of the WHERE clause, connected by 382 ** an AND operator. 383 */ 384 if( pRight->pOn ){ 385 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 386 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 387 pRight->pOn = 0; 388 } 389 390 /* Create extra terms on the WHERE clause for each column named 391 ** in the USING clause. Example: If the two tables to be joined are 392 ** A and B and the USING clause names X, Y, and Z, then add this 393 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 394 ** Report an error if any column mentioned in the USING clause is 395 ** not contained in both tables to be joined. 396 */ 397 if( pRight->pUsing ){ 398 IdList *pList = pRight->pUsing; 399 for(j=0; j<pList->nId; j++){ 400 char *zName; /* Name of the term in the USING clause */ 401 int iLeft; /* Table on the left with matching column name */ 402 int iLeftCol; /* Column number of matching column on the left */ 403 int iRightCol; /* Column number of matching column on the right */ 404 405 zName = pList->a[j].zName; 406 iRightCol = columnIndex(pRightTab, zName); 407 if( iRightCol<0 408 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 409 ){ 410 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 411 "not present in both tables", zName); 412 return 1; 413 } 414 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 415 isOuter, &p->pWhere); 416 } 417 } 418 } 419 return 0; 420 } 421 422 /* 423 ** Insert code into "v" that will push the record on the top of the 424 ** stack into the sorter. 425 */ 426 static void pushOntoSorter( 427 Parse *pParse, /* Parser context */ 428 ExprList *pOrderBy, /* The ORDER BY clause */ 429 Select *pSelect, /* The whole SELECT statement */ 430 int regData /* Register holding data to be sorted */ 431 ){ 432 Vdbe *v = pParse->pVdbe; 433 int nExpr = pOrderBy->nExpr; 434 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 435 int regRecord = sqlite3GetTempReg(pParse); 436 int op; 437 sqlite3ExprCacheClear(pParse); 438 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 439 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 440 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 441 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 442 if( pSelect->selFlags & SF_UseSorter ){ 443 op = OP_SorterInsert; 444 }else{ 445 op = OP_IdxInsert; 446 } 447 sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord); 448 sqlite3ReleaseTempReg(pParse, regRecord); 449 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 450 if( pSelect->iLimit ){ 451 int addr1, addr2; 452 int iLimit; 453 if( pSelect->iOffset ){ 454 iLimit = pSelect->iOffset+1; 455 }else{ 456 iLimit = pSelect->iLimit; 457 } 458 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 459 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 460 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 461 sqlite3VdbeJumpHere(v, addr1); 462 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 463 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 464 sqlite3VdbeJumpHere(v, addr2); 465 } 466 } 467 468 /* 469 ** Add code to implement the OFFSET 470 */ 471 static void codeOffset( 472 Vdbe *v, /* Generate code into this VM */ 473 int iOffset, /* Register holding the offset counter */ 474 int iContinue /* Jump here to skip the current record */ 475 ){ 476 if( iOffset>0 && iContinue!=0 ){ 477 int addr; 478 sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1); 479 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); 480 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 481 VdbeComment((v, "skip OFFSET records")); 482 sqlite3VdbeJumpHere(v, addr); 483 } 484 } 485 486 /* 487 ** Add code that will check to make sure the N registers starting at iMem 488 ** form a distinct entry. iTab is a sorting index that holds previously 489 ** seen combinations of the N values. A new entry is made in iTab 490 ** if the current N values are new. 491 ** 492 ** A jump to addrRepeat is made and the N+1 values are popped from the 493 ** stack if the top N elements are not distinct. 494 */ 495 static void codeDistinct( 496 Parse *pParse, /* Parsing and code generating context */ 497 int iTab, /* A sorting index used to test for distinctness */ 498 int addrRepeat, /* Jump to here if not distinct */ 499 int N, /* Number of elements */ 500 int iMem /* First element */ 501 ){ 502 Vdbe *v; 503 int r1; 504 505 v = pParse->pVdbe; 506 r1 = sqlite3GetTempReg(pParse); 507 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 508 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 509 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 510 sqlite3ReleaseTempReg(pParse, r1); 511 } 512 513 #ifndef SQLITE_OMIT_SUBQUERY 514 /* 515 ** Generate an error message when a SELECT is used within a subexpression 516 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 517 ** column. We do this in a subroutine because the error used to occur 518 ** in multiple places. (The error only occurs in one place now, but we 519 ** retain the subroutine to minimize code disruption.) 520 */ 521 static int checkForMultiColumnSelectError( 522 Parse *pParse, /* Parse context. */ 523 SelectDest *pDest, /* Destination of SELECT results */ 524 int nExpr /* Number of result columns returned by SELECT */ 525 ){ 526 int eDest = pDest->eDest; 527 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 528 sqlite3ErrorMsg(pParse, "only a single result allowed for " 529 "a SELECT that is part of an expression"); 530 return 1; 531 }else{ 532 return 0; 533 } 534 } 535 #endif 536 537 /* 538 ** An instance of the following object is used to record information about 539 ** how to process the DISTINCT keyword, to simplify passing that information 540 ** into the selectInnerLoop() routine. 541 */ 542 typedef struct DistinctCtx DistinctCtx; 543 struct DistinctCtx { 544 u8 isTnct; /* True if the DISTINCT keyword is present */ 545 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 546 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 547 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 548 }; 549 550 /* 551 ** This routine generates the code for the inside of the inner loop 552 ** of a SELECT. 553 ** 554 ** If srcTab is negative, then the pEList expressions 555 ** are evaluated in order to get the data for this row. If srcTab is 556 ** zero or more, then data is pulled from srcTab and pEList is used only 557 ** to get number columns and the datatype for each column. 558 */ 559 static void selectInnerLoop( 560 Parse *pParse, /* The parser context */ 561 Select *p, /* The complete select statement being coded */ 562 ExprList *pEList, /* List of values being extracted */ 563 int srcTab, /* Pull data from this table */ 564 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 565 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 566 SelectDest *pDest, /* How to dispose of the results */ 567 int iContinue, /* Jump here to continue with next row */ 568 int iBreak /* Jump here to break out of the inner loop */ 569 ){ 570 Vdbe *v = pParse->pVdbe; 571 int i; 572 int hasDistinct; /* True if the DISTINCT keyword is present */ 573 int regResult; /* Start of memory holding result set */ 574 int eDest = pDest->eDest; /* How to dispose of results */ 575 int iParm = pDest->iSDParm; /* First argument to disposal method */ 576 int nResultCol; /* Number of result columns */ 577 578 assert( v ); 579 assert( pEList!=0 ); 580 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 581 if( pOrderBy==0 && !hasDistinct ){ 582 codeOffset(v, p->iOffset, iContinue); 583 } 584 585 /* Pull the requested columns. 586 */ 587 nResultCol = pEList->nExpr; 588 if( pDest->iSdst==0 ){ 589 pDest->iSdst = pParse->nMem+1; 590 pDest->nSdst = nResultCol; 591 pParse->nMem += nResultCol; 592 }else{ 593 assert( pDest->nSdst==nResultCol ); 594 } 595 regResult = pDest->iSdst; 596 if( srcTab>=0 ){ 597 for(i=0; i<nResultCol; i++){ 598 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 599 VdbeComment((v, "%s", pEList->a[i].zName)); 600 } 601 }else if( eDest!=SRT_Exists ){ 602 /* If the destination is an EXISTS(...) expression, the actual 603 ** values returned by the SELECT are not required. 604 */ 605 sqlite3ExprCodeExprList(pParse, pEList, regResult, 606 (eDest==SRT_Output)?SQLITE_ECEL_DUP:0); 607 } 608 609 /* If the DISTINCT keyword was present on the SELECT statement 610 ** and this row has been seen before, then do not make this row 611 ** part of the result. 612 */ 613 if( hasDistinct ){ 614 switch( pDistinct->eTnctType ){ 615 case WHERE_DISTINCT_ORDERED: { 616 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 617 int iJump; /* Jump destination */ 618 int regPrev; /* Previous row content */ 619 620 /* Allocate space for the previous row */ 621 regPrev = pParse->nMem+1; 622 pParse->nMem += nResultCol; 623 624 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 625 ** sets the MEM_Cleared bit on the first register of the 626 ** previous value. This will cause the OP_Ne below to always 627 ** fail on the first iteration of the loop even if the first 628 ** row is all NULLs. 629 */ 630 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 631 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 632 pOp->opcode = OP_Null; 633 pOp->p1 = 1; 634 pOp->p2 = regPrev; 635 636 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 637 for(i=0; i<nResultCol; i++){ 638 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 639 if( i<nResultCol-1 ){ 640 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 641 }else{ 642 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 643 } 644 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 645 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 646 } 647 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 648 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 649 break; 650 } 651 652 case WHERE_DISTINCT_UNIQUE: { 653 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 654 break; 655 } 656 657 default: { 658 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 659 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 660 break; 661 } 662 } 663 if( pOrderBy==0 ){ 664 codeOffset(v, p->iOffset, iContinue); 665 } 666 } 667 668 switch( eDest ){ 669 /* In this mode, write each query result to the key of the temporary 670 ** table iParm. 671 */ 672 #ifndef SQLITE_OMIT_COMPOUND_SELECT 673 case SRT_Union: { 674 int r1; 675 r1 = sqlite3GetTempReg(pParse); 676 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 677 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 678 sqlite3ReleaseTempReg(pParse, r1); 679 break; 680 } 681 682 /* Construct a record from the query result, but instead of 683 ** saving that record, use it as a key to delete elements from 684 ** the temporary table iParm. 685 */ 686 case SRT_Except: { 687 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 688 break; 689 } 690 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 691 692 /* Store the result as data using a unique key. 693 */ 694 case SRT_DistTable: 695 case SRT_Table: 696 case SRT_EphemTab: { 697 int r1 = sqlite3GetTempReg(pParse); 698 testcase( eDest==SRT_Table ); 699 testcase( eDest==SRT_EphemTab ); 700 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 701 #ifndef SQLITE_OMIT_CTE 702 if( eDest==SRT_DistTable ){ 703 /* If the destination is DistTable, then cursor (iParm+1) is open 704 ** on an ephemeral index. If the current row is already present 705 ** in the index, do not write it to the output. If not, add the 706 ** current row to the index and proceed with writing it to the 707 ** output table as well. */ 708 int addr = sqlite3VdbeCurrentAddr(v) + 4; 709 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 710 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 711 assert( pOrderBy==0 ); 712 } 713 #endif 714 if( pOrderBy ){ 715 pushOntoSorter(pParse, pOrderBy, p, r1); 716 }else{ 717 int r2 = sqlite3GetTempReg(pParse); 718 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 719 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 720 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 721 sqlite3ReleaseTempReg(pParse, r2); 722 } 723 sqlite3ReleaseTempReg(pParse, r1); 724 break; 725 } 726 727 #ifndef SQLITE_OMIT_SUBQUERY 728 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 729 ** then there should be a single item on the stack. Write this 730 ** item into the set table with bogus data. 731 */ 732 case SRT_Set: { 733 assert( nResultCol==1 ); 734 pDest->affSdst = 735 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 736 if( pOrderBy ){ 737 /* At first glance you would think we could optimize out the 738 ** ORDER BY in this case since the order of entries in the set 739 ** does not matter. But there might be a LIMIT clause, in which 740 ** case the order does matter */ 741 pushOntoSorter(pParse, pOrderBy, p, regResult); 742 }else{ 743 int r1 = sqlite3GetTempReg(pParse); 744 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 745 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 746 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 747 sqlite3ReleaseTempReg(pParse, r1); 748 } 749 break; 750 } 751 752 /* If any row exist in the result set, record that fact and abort. 753 */ 754 case SRT_Exists: { 755 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 756 /* The LIMIT clause will terminate the loop for us */ 757 break; 758 } 759 760 /* If this is a scalar select that is part of an expression, then 761 ** store the results in the appropriate memory cell and break out 762 ** of the scan loop. 763 */ 764 case SRT_Mem: { 765 assert( nResultCol==1 ); 766 if( pOrderBy ){ 767 pushOntoSorter(pParse, pOrderBy, p, regResult); 768 }else{ 769 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 770 /* The LIMIT clause will jump out of the loop for us */ 771 } 772 break; 773 } 774 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 775 776 case SRT_Coroutine: /* Send data to a co-routine */ 777 case SRT_Output: { /* Return the results */ 778 testcase( eDest==SRT_Coroutine ); 779 testcase( eDest==SRT_Output ); 780 if( pOrderBy ){ 781 int r1 = sqlite3GetTempReg(pParse); 782 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 783 pushOntoSorter(pParse, pOrderBy, p, r1); 784 sqlite3ReleaseTempReg(pParse, r1); 785 }else if( eDest==SRT_Coroutine ){ 786 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 787 }else{ 788 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 789 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 790 } 791 break; 792 } 793 794 #ifndef SQLITE_OMIT_CTE 795 /* Write the results into a priority queue that is order according to 796 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 797 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 798 ** pSO->nExpr columns, then make sure all keys are unique by adding a 799 ** final OP_Sequence column. The last column is the record as a blob. 800 */ 801 case SRT_DistQueue: 802 case SRT_Queue: { 803 int nKey; 804 int r1, r2, r3; 805 int addrTest = 0; 806 ExprList *pSO; 807 pSO = pDest->pOrderBy; 808 assert( pSO ); 809 nKey = pSO->nExpr; 810 r1 = sqlite3GetTempReg(pParse); 811 r2 = sqlite3GetTempRange(pParse, nKey+2); 812 r3 = r2+nKey+1; 813 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 814 if( eDest==SRT_DistQueue ){ 815 /* If the destination is DistQueue, then cursor (iParm+1) is open 816 ** on a second ephemeral index that holds all values every previously 817 ** added to the queue. Only add this new value if it has never before 818 ** been added */ 819 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, r3, 0); 820 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 821 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 822 } 823 for(i=0; i<nKey; i++){ 824 sqlite3VdbeAddOp2(v, OP_SCopy, 825 regResult + pSO->a[i].u.x.iOrderByCol - 1, 826 r2+i); 827 } 828 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 829 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 830 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 831 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 832 sqlite3ReleaseTempReg(pParse, r1); 833 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 834 break; 835 } 836 #endif /* SQLITE_OMIT_CTE */ 837 838 839 840 #if !defined(SQLITE_OMIT_TRIGGER) 841 /* Discard the results. This is used for SELECT statements inside 842 ** the body of a TRIGGER. The purpose of such selects is to call 843 ** user-defined functions that have side effects. We do not care 844 ** about the actual results of the select. 845 */ 846 default: { 847 assert( eDest==SRT_Discard ); 848 break; 849 } 850 #endif 851 } 852 853 /* Jump to the end of the loop if the LIMIT is reached. Except, if 854 ** there is a sorter, in which case the sorter has already limited 855 ** the output for us. 856 */ 857 if( pOrderBy==0 && p->iLimit ){ 858 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 859 } 860 } 861 862 /* 863 ** Allocate a KeyInfo object sufficient for an index of N key columns and 864 ** X extra columns. 865 */ 866 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 867 KeyInfo *p = sqlite3DbMallocZero(0, 868 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 869 if( p ){ 870 p->aSortOrder = (u8*)&p->aColl[N+X]; 871 p->nField = (u16)N; 872 p->nXField = (u16)X; 873 p->enc = ENC(db); 874 p->db = db; 875 p->nRef = 1; 876 }else{ 877 db->mallocFailed = 1; 878 } 879 return p; 880 } 881 882 /* 883 ** Deallocate a KeyInfo object 884 */ 885 void sqlite3KeyInfoUnref(KeyInfo *p){ 886 if( p ){ 887 assert( p->nRef>0 ); 888 p->nRef--; 889 if( p->nRef==0 ) sqlite3DbFree(0, p); 890 } 891 } 892 893 /* 894 ** Make a new pointer to a KeyInfo object 895 */ 896 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 897 if( p ){ 898 assert( p->nRef>0 ); 899 p->nRef++; 900 } 901 return p; 902 } 903 904 #ifdef SQLITE_DEBUG 905 /* 906 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 907 ** can only be changed if this is just a single reference to the object. 908 ** 909 ** This routine is used only inside of assert() statements. 910 */ 911 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 912 #endif /* SQLITE_DEBUG */ 913 914 /* 915 ** Given an expression list, generate a KeyInfo structure that records 916 ** the collating sequence for each expression in that expression list. 917 ** 918 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 919 ** KeyInfo structure is appropriate for initializing a virtual index to 920 ** implement that clause. If the ExprList is the result set of a SELECT 921 ** then the KeyInfo structure is appropriate for initializing a virtual 922 ** index to implement a DISTINCT test. 923 ** 924 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 925 ** function is responsible for seeing that this structure is eventually 926 ** freed. 927 */ 928 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList, int nExtra){ 929 int nExpr; 930 KeyInfo *pInfo; 931 struct ExprList_item *pItem; 932 sqlite3 *db = pParse->db; 933 int i; 934 935 nExpr = pList->nExpr; 936 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra, 1); 937 if( pInfo ){ 938 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 939 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 940 CollSeq *pColl; 941 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 942 if( !pColl ) pColl = db->pDfltColl; 943 pInfo->aColl[i] = pColl; 944 pInfo->aSortOrder[i] = pItem->sortOrder; 945 } 946 } 947 return pInfo; 948 } 949 950 #ifndef SQLITE_OMIT_COMPOUND_SELECT 951 /* 952 ** Name of the connection operator, used for error messages. 953 */ 954 static const char *selectOpName(int id){ 955 char *z; 956 switch( id ){ 957 case TK_ALL: z = "UNION ALL"; break; 958 case TK_INTERSECT: z = "INTERSECT"; break; 959 case TK_EXCEPT: z = "EXCEPT"; break; 960 default: z = "UNION"; break; 961 } 962 return z; 963 } 964 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 965 966 #ifndef SQLITE_OMIT_EXPLAIN 967 /* 968 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 969 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 970 ** where the caption is of the form: 971 ** 972 ** "USE TEMP B-TREE FOR xxx" 973 ** 974 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 975 ** is determined by the zUsage argument. 976 */ 977 static void explainTempTable(Parse *pParse, const char *zUsage){ 978 if( pParse->explain==2 ){ 979 Vdbe *v = pParse->pVdbe; 980 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 981 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 982 } 983 } 984 985 /* 986 ** Assign expression b to lvalue a. A second, no-op, version of this macro 987 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 988 ** in sqlite3Select() to assign values to structure member variables that 989 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 990 ** code with #ifndef directives. 991 */ 992 # define explainSetInteger(a, b) a = b 993 994 #else 995 /* No-op versions of the explainXXX() functions and macros. */ 996 # define explainTempTable(y,z) 997 # define explainSetInteger(y,z) 998 #endif 999 1000 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1001 /* 1002 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1003 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1004 ** where the caption is of one of the two forms: 1005 ** 1006 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1007 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1008 ** 1009 ** where iSub1 and iSub2 are the integers passed as the corresponding 1010 ** function parameters, and op is the text representation of the parameter 1011 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1012 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1013 ** false, or the second form if it is true. 1014 */ 1015 static void explainComposite( 1016 Parse *pParse, /* Parse context */ 1017 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1018 int iSub1, /* Subquery id 1 */ 1019 int iSub2, /* Subquery id 2 */ 1020 int bUseTmp /* True if a temp table was used */ 1021 ){ 1022 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1023 if( pParse->explain==2 ){ 1024 Vdbe *v = pParse->pVdbe; 1025 char *zMsg = sqlite3MPrintf( 1026 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1027 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1028 ); 1029 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1030 } 1031 } 1032 #else 1033 /* No-op versions of the explainXXX() functions and macros. */ 1034 # define explainComposite(v,w,x,y,z) 1035 #endif 1036 1037 /* 1038 ** If the inner loop was generated using a non-null pOrderBy argument, 1039 ** then the results were placed in a sorter. After the loop is terminated 1040 ** we need to run the sorter and output the results. The following 1041 ** routine generates the code needed to do that. 1042 */ 1043 static void generateSortTail( 1044 Parse *pParse, /* Parsing context */ 1045 Select *p, /* The SELECT statement */ 1046 Vdbe *v, /* Generate code into this VDBE */ 1047 int nColumn, /* Number of columns of data */ 1048 SelectDest *pDest /* Write the sorted results here */ 1049 ){ 1050 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1051 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1052 int addr; 1053 int iTab; 1054 int pseudoTab = 0; 1055 ExprList *pOrderBy = p->pOrderBy; 1056 1057 int eDest = pDest->eDest; 1058 int iParm = pDest->iSDParm; 1059 1060 int regRow; 1061 int regRowid; 1062 1063 iTab = pOrderBy->iECursor; 1064 regRow = sqlite3GetTempReg(pParse); 1065 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1066 pseudoTab = pParse->nTab++; 1067 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 1068 regRowid = 0; 1069 }else{ 1070 regRowid = sqlite3GetTempReg(pParse); 1071 } 1072 if( p->selFlags & SF_UseSorter ){ 1073 int regSortOut = ++pParse->nMem; 1074 int ptab2 = pParse->nTab++; 1075 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2); 1076 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1077 codeOffset(v, p->iOffset, addrContinue); 1078 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 1079 sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow); 1080 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1081 }else{ 1082 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 1083 codeOffset(v, p->iOffset, addrContinue); 1084 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow); 1085 } 1086 switch( eDest ){ 1087 case SRT_Table: 1088 case SRT_EphemTab: { 1089 testcase( eDest==SRT_Table ); 1090 testcase( eDest==SRT_EphemTab ); 1091 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1092 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1093 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1094 break; 1095 } 1096 #ifndef SQLITE_OMIT_SUBQUERY 1097 case SRT_Set: { 1098 assert( nColumn==1 ); 1099 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1100 &pDest->affSdst, 1); 1101 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1102 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1103 break; 1104 } 1105 case SRT_Mem: { 1106 assert( nColumn==1 ); 1107 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1108 /* The LIMIT clause will terminate the loop for us */ 1109 break; 1110 } 1111 #endif 1112 default: { 1113 int i; 1114 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1115 testcase( eDest==SRT_Output ); 1116 testcase( eDest==SRT_Coroutine ); 1117 for(i=0; i<nColumn; i++){ 1118 assert( regRow!=pDest->iSdst+i ); 1119 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i); 1120 if( i==0 ){ 1121 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1122 } 1123 } 1124 if( eDest==SRT_Output ){ 1125 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1126 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1127 }else{ 1128 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1129 } 1130 break; 1131 } 1132 } 1133 sqlite3ReleaseTempReg(pParse, regRow); 1134 sqlite3ReleaseTempReg(pParse, regRowid); 1135 1136 /* The bottom of the loop 1137 */ 1138 sqlite3VdbeResolveLabel(v, addrContinue); 1139 if( p->selFlags & SF_UseSorter ){ 1140 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); 1141 }else{ 1142 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 1143 } 1144 sqlite3VdbeResolveLabel(v, addrBreak); 1145 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1146 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 1147 } 1148 } 1149 1150 /* 1151 ** Return a pointer to a string containing the 'declaration type' of the 1152 ** expression pExpr. The string may be treated as static by the caller. 1153 ** 1154 ** Also try to estimate the size of the returned value and return that 1155 ** result in *pEstWidth. 1156 ** 1157 ** The declaration type is the exact datatype definition extracted from the 1158 ** original CREATE TABLE statement if the expression is a column. The 1159 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1160 ** is considered a column can be complex in the presence of subqueries. The 1161 ** result-set expression in all of the following SELECT statements is 1162 ** considered a column by this function. 1163 ** 1164 ** SELECT col FROM tbl; 1165 ** SELECT (SELECT col FROM tbl; 1166 ** SELECT (SELECT col FROM tbl); 1167 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1168 ** 1169 ** The declaration type for any expression other than a column is NULL. 1170 ** 1171 ** This routine has either 3 or 6 parameters depending on whether or not 1172 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1173 */ 1174 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1175 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1176 static const char *columnTypeImpl( 1177 NameContext *pNC, 1178 Expr *pExpr, 1179 const char **pzOrigDb, 1180 const char **pzOrigTab, 1181 const char **pzOrigCol, 1182 u8 *pEstWidth 1183 ){ 1184 char const *zOrigDb = 0; 1185 char const *zOrigTab = 0; 1186 char const *zOrigCol = 0; 1187 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1188 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1189 static const char *columnTypeImpl( 1190 NameContext *pNC, 1191 Expr *pExpr, 1192 u8 *pEstWidth 1193 ){ 1194 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1195 char const *zType = 0; 1196 int j; 1197 u8 estWidth = 1; 1198 1199 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1200 switch( pExpr->op ){ 1201 case TK_AGG_COLUMN: 1202 case TK_COLUMN: { 1203 /* The expression is a column. Locate the table the column is being 1204 ** extracted from in NameContext.pSrcList. This table may be real 1205 ** database table or a subquery. 1206 */ 1207 Table *pTab = 0; /* Table structure column is extracted from */ 1208 Select *pS = 0; /* Select the column is extracted from */ 1209 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1210 testcase( pExpr->op==TK_AGG_COLUMN ); 1211 testcase( pExpr->op==TK_COLUMN ); 1212 while( pNC && !pTab ){ 1213 SrcList *pTabList = pNC->pSrcList; 1214 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1215 if( j<pTabList->nSrc ){ 1216 pTab = pTabList->a[j].pTab; 1217 pS = pTabList->a[j].pSelect; 1218 }else{ 1219 pNC = pNC->pNext; 1220 } 1221 } 1222 1223 if( pTab==0 ){ 1224 /* At one time, code such as "SELECT new.x" within a trigger would 1225 ** cause this condition to run. Since then, we have restructured how 1226 ** trigger code is generated and so this condition is no longer 1227 ** possible. However, it can still be true for statements like 1228 ** the following: 1229 ** 1230 ** CREATE TABLE t1(col INTEGER); 1231 ** SELECT (SELECT t1.col) FROM FROM t1; 1232 ** 1233 ** when columnType() is called on the expression "t1.col" in the 1234 ** sub-select. In this case, set the column type to NULL, even 1235 ** though it should really be "INTEGER". 1236 ** 1237 ** This is not a problem, as the column type of "t1.col" is never 1238 ** used. When columnType() is called on the expression 1239 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1240 ** branch below. */ 1241 break; 1242 } 1243 1244 assert( pTab && pExpr->pTab==pTab ); 1245 if( pS ){ 1246 /* The "table" is actually a sub-select or a view in the FROM clause 1247 ** of the SELECT statement. Return the declaration type and origin 1248 ** data for the result-set column of the sub-select. 1249 */ 1250 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1251 /* If iCol is less than zero, then the expression requests the 1252 ** rowid of the sub-select or view. This expression is legal (see 1253 ** test case misc2.2.2) - it always evaluates to NULL. 1254 */ 1255 NameContext sNC; 1256 Expr *p = pS->pEList->a[iCol].pExpr; 1257 sNC.pSrcList = pS->pSrc; 1258 sNC.pNext = pNC; 1259 sNC.pParse = pNC->pParse; 1260 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1261 } 1262 }else if( pTab->pSchema ){ 1263 /* A real table */ 1264 assert( !pS ); 1265 if( iCol<0 ) iCol = pTab->iPKey; 1266 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1267 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1268 if( iCol<0 ){ 1269 zType = "INTEGER"; 1270 zOrigCol = "rowid"; 1271 }else{ 1272 zType = pTab->aCol[iCol].zType; 1273 zOrigCol = pTab->aCol[iCol].zName; 1274 estWidth = pTab->aCol[iCol].szEst; 1275 } 1276 zOrigTab = pTab->zName; 1277 if( pNC->pParse ){ 1278 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1279 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1280 } 1281 #else 1282 if( iCol<0 ){ 1283 zType = "INTEGER"; 1284 }else{ 1285 zType = pTab->aCol[iCol].zType; 1286 estWidth = pTab->aCol[iCol].szEst; 1287 } 1288 #endif 1289 } 1290 break; 1291 } 1292 #ifndef SQLITE_OMIT_SUBQUERY 1293 case TK_SELECT: { 1294 /* The expression is a sub-select. Return the declaration type and 1295 ** origin info for the single column in the result set of the SELECT 1296 ** statement. 1297 */ 1298 NameContext sNC; 1299 Select *pS = pExpr->x.pSelect; 1300 Expr *p = pS->pEList->a[0].pExpr; 1301 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1302 sNC.pSrcList = pS->pSrc; 1303 sNC.pNext = pNC; 1304 sNC.pParse = pNC->pParse; 1305 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1306 break; 1307 } 1308 #endif 1309 } 1310 1311 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1312 if( pzOrigDb ){ 1313 assert( pzOrigTab && pzOrigCol ); 1314 *pzOrigDb = zOrigDb; 1315 *pzOrigTab = zOrigTab; 1316 *pzOrigCol = zOrigCol; 1317 } 1318 #endif 1319 if( pEstWidth ) *pEstWidth = estWidth; 1320 return zType; 1321 } 1322 1323 /* 1324 ** Generate code that will tell the VDBE the declaration types of columns 1325 ** in the result set. 1326 */ 1327 static void generateColumnTypes( 1328 Parse *pParse, /* Parser context */ 1329 SrcList *pTabList, /* List of tables */ 1330 ExprList *pEList /* Expressions defining the result set */ 1331 ){ 1332 #ifndef SQLITE_OMIT_DECLTYPE 1333 Vdbe *v = pParse->pVdbe; 1334 int i; 1335 NameContext sNC; 1336 sNC.pSrcList = pTabList; 1337 sNC.pParse = pParse; 1338 for(i=0; i<pEList->nExpr; i++){ 1339 Expr *p = pEList->a[i].pExpr; 1340 const char *zType; 1341 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1342 const char *zOrigDb = 0; 1343 const char *zOrigTab = 0; 1344 const char *zOrigCol = 0; 1345 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1346 1347 /* The vdbe must make its own copy of the column-type and other 1348 ** column specific strings, in case the schema is reset before this 1349 ** virtual machine is deleted. 1350 */ 1351 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1352 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1353 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1354 #else 1355 zType = columnType(&sNC, p, 0, 0, 0, 0); 1356 #endif 1357 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1358 } 1359 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1360 } 1361 1362 /* 1363 ** Generate code that will tell the VDBE the names of columns 1364 ** in the result set. This information is used to provide the 1365 ** azCol[] values in the callback. 1366 */ 1367 static void generateColumnNames( 1368 Parse *pParse, /* Parser context */ 1369 SrcList *pTabList, /* List of tables */ 1370 ExprList *pEList /* Expressions defining the result set */ 1371 ){ 1372 Vdbe *v = pParse->pVdbe; 1373 int i, j; 1374 sqlite3 *db = pParse->db; 1375 int fullNames, shortNames; 1376 1377 #ifndef SQLITE_OMIT_EXPLAIN 1378 /* If this is an EXPLAIN, skip this step */ 1379 if( pParse->explain ){ 1380 return; 1381 } 1382 #endif 1383 1384 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1385 pParse->colNamesSet = 1; 1386 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1387 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1388 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1389 for(i=0; i<pEList->nExpr; i++){ 1390 Expr *p; 1391 p = pEList->a[i].pExpr; 1392 if( NEVER(p==0) ) continue; 1393 if( pEList->a[i].zName ){ 1394 char *zName = pEList->a[i].zName; 1395 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1396 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1397 Table *pTab; 1398 char *zCol; 1399 int iCol = p->iColumn; 1400 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1401 if( pTabList->a[j].iCursor==p->iTable ) break; 1402 } 1403 assert( j<pTabList->nSrc ); 1404 pTab = pTabList->a[j].pTab; 1405 if( iCol<0 ) iCol = pTab->iPKey; 1406 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1407 if( iCol<0 ){ 1408 zCol = "rowid"; 1409 }else{ 1410 zCol = pTab->aCol[iCol].zName; 1411 } 1412 if( !shortNames && !fullNames ){ 1413 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1414 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1415 }else if( fullNames ){ 1416 char *zName = 0; 1417 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1418 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1419 }else{ 1420 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1421 } 1422 }else{ 1423 const char *z = pEList->a[i].zSpan; 1424 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1425 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1426 } 1427 } 1428 generateColumnTypes(pParse, pTabList, pEList); 1429 } 1430 1431 /* 1432 ** Given a an expression list (which is really the list of expressions 1433 ** that form the result set of a SELECT statement) compute appropriate 1434 ** column names for a table that would hold the expression list. 1435 ** 1436 ** All column names will be unique. 1437 ** 1438 ** Only the column names are computed. Column.zType, Column.zColl, 1439 ** and other fields of Column are zeroed. 1440 ** 1441 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1442 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1443 */ 1444 static int selectColumnsFromExprList( 1445 Parse *pParse, /* Parsing context */ 1446 ExprList *pEList, /* Expr list from which to derive column names */ 1447 i16 *pnCol, /* Write the number of columns here */ 1448 Column **paCol /* Write the new column list here */ 1449 ){ 1450 sqlite3 *db = pParse->db; /* Database connection */ 1451 int i, j; /* Loop counters */ 1452 int cnt; /* Index added to make the name unique */ 1453 Column *aCol, *pCol; /* For looping over result columns */ 1454 int nCol; /* Number of columns in the result set */ 1455 Expr *p; /* Expression for a single result column */ 1456 char *zName; /* Column name */ 1457 int nName; /* Size of name in zName[] */ 1458 1459 if( pEList ){ 1460 nCol = pEList->nExpr; 1461 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1462 testcase( aCol==0 ); 1463 }else{ 1464 nCol = 0; 1465 aCol = 0; 1466 } 1467 *pnCol = nCol; 1468 *paCol = aCol; 1469 1470 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1471 /* Get an appropriate name for the column 1472 */ 1473 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1474 if( (zName = pEList->a[i].zName)!=0 ){ 1475 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1476 zName = sqlite3DbStrDup(db, zName); 1477 }else{ 1478 Expr *pColExpr = p; /* The expression that is the result column name */ 1479 Table *pTab; /* Table associated with this expression */ 1480 while( pColExpr->op==TK_DOT ){ 1481 pColExpr = pColExpr->pRight; 1482 assert( pColExpr!=0 ); 1483 } 1484 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1485 /* For columns use the column name name */ 1486 int iCol = pColExpr->iColumn; 1487 pTab = pColExpr->pTab; 1488 if( iCol<0 ) iCol = pTab->iPKey; 1489 zName = sqlite3MPrintf(db, "%s", 1490 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1491 }else if( pColExpr->op==TK_ID ){ 1492 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1493 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1494 }else{ 1495 /* Use the original text of the column expression as its name */ 1496 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1497 } 1498 } 1499 if( db->mallocFailed ){ 1500 sqlite3DbFree(db, zName); 1501 break; 1502 } 1503 1504 /* Make sure the column name is unique. If the name is not unique, 1505 ** append a integer to the name so that it becomes unique. 1506 */ 1507 nName = sqlite3Strlen30(zName); 1508 for(j=cnt=0; j<i; j++){ 1509 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1510 char *zNewName; 1511 int k; 1512 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1513 if( zName[k]==':' ) nName = k; 1514 zName[nName] = 0; 1515 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1516 sqlite3DbFree(db, zName); 1517 zName = zNewName; 1518 j = -1; 1519 if( zName==0 ) break; 1520 } 1521 } 1522 pCol->zName = zName; 1523 } 1524 if( db->mallocFailed ){ 1525 for(j=0; j<i; j++){ 1526 sqlite3DbFree(db, aCol[j].zName); 1527 } 1528 sqlite3DbFree(db, aCol); 1529 *paCol = 0; 1530 *pnCol = 0; 1531 return SQLITE_NOMEM; 1532 } 1533 return SQLITE_OK; 1534 } 1535 1536 /* 1537 ** Add type and collation information to a column list based on 1538 ** a SELECT statement. 1539 ** 1540 ** The column list presumably came from selectColumnNamesFromExprList(). 1541 ** The column list has only names, not types or collations. This 1542 ** routine goes through and adds the types and collations. 1543 ** 1544 ** This routine requires that all identifiers in the SELECT 1545 ** statement be resolved. 1546 */ 1547 static void selectAddColumnTypeAndCollation( 1548 Parse *pParse, /* Parsing contexts */ 1549 Table *pTab, /* Add column type information to this table */ 1550 Select *pSelect /* SELECT used to determine types and collations */ 1551 ){ 1552 sqlite3 *db = pParse->db; 1553 NameContext sNC; 1554 Column *pCol; 1555 CollSeq *pColl; 1556 int i; 1557 Expr *p; 1558 struct ExprList_item *a; 1559 u64 szAll = 0; 1560 1561 assert( pSelect!=0 ); 1562 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1563 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1564 if( db->mallocFailed ) return; 1565 memset(&sNC, 0, sizeof(sNC)); 1566 sNC.pSrcList = pSelect->pSrc; 1567 a = pSelect->pEList->a; 1568 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1569 p = a[i].pExpr; 1570 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1571 szAll += pCol->szEst; 1572 pCol->affinity = sqlite3ExprAffinity(p); 1573 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1574 pColl = sqlite3ExprCollSeq(pParse, p); 1575 if( pColl ){ 1576 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1577 } 1578 } 1579 pTab->szTabRow = sqlite3LogEst(szAll*4); 1580 } 1581 1582 /* 1583 ** Given a SELECT statement, generate a Table structure that describes 1584 ** the result set of that SELECT. 1585 */ 1586 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1587 Table *pTab; 1588 sqlite3 *db = pParse->db; 1589 int savedFlags; 1590 1591 savedFlags = db->flags; 1592 db->flags &= ~SQLITE_FullColNames; 1593 db->flags |= SQLITE_ShortColNames; 1594 sqlite3SelectPrep(pParse, pSelect, 0); 1595 if( pParse->nErr ) return 0; 1596 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1597 db->flags = savedFlags; 1598 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1599 if( pTab==0 ){ 1600 return 0; 1601 } 1602 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1603 ** is disabled */ 1604 assert( db->lookaside.bEnabled==0 ); 1605 pTab->nRef = 1; 1606 pTab->zName = 0; 1607 pTab->nRowEst = 1048576; 1608 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1609 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1610 pTab->iPKey = -1; 1611 if( db->mallocFailed ){ 1612 sqlite3DeleteTable(db, pTab); 1613 return 0; 1614 } 1615 return pTab; 1616 } 1617 1618 /* 1619 ** Get a VDBE for the given parser context. Create a new one if necessary. 1620 ** If an error occurs, return NULL and leave a message in pParse. 1621 */ 1622 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1623 Vdbe *v = pParse->pVdbe; 1624 if( v==0 ){ 1625 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1626 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1627 if( pParse->pToplevel==0 1628 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1629 ){ 1630 pParse->okConstFactor = 1; 1631 } 1632 1633 } 1634 return v; 1635 } 1636 1637 1638 /* 1639 ** Compute the iLimit and iOffset fields of the SELECT based on the 1640 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1641 ** that appear in the original SQL statement after the LIMIT and OFFSET 1642 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1643 ** are the integer memory register numbers for counters used to compute 1644 ** the limit and offset. If there is no limit and/or offset, then 1645 ** iLimit and iOffset are negative. 1646 ** 1647 ** This routine changes the values of iLimit and iOffset only if 1648 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1649 ** iOffset should have been preset to appropriate default values (zero) 1650 ** prior to calling this routine. 1651 ** 1652 ** The iOffset register (if it exists) is initialized to the value 1653 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1654 ** iOffset+1 is initialized to LIMIT+OFFSET. 1655 ** 1656 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1657 ** redefined. The UNION ALL operator uses this property to force 1658 ** the reuse of the same limit and offset registers across multiple 1659 ** SELECT statements. 1660 */ 1661 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1662 Vdbe *v = 0; 1663 int iLimit = 0; 1664 int iOffset; 1665 int addr1, n; 1666 if( p->iLimit ) return; 1667 1668 /* 1669 ** "LIMIT -1" always shows all rows. There is some 1670 ** controversy about what the correct behavior should be. 1671 ** The current implementation interprets "LIMIT 0" to mean 1672 ** no rows. 1673 */ 1674 sqlite3ExprCacheClear(pParse); 1675 assert( p->pOffset==0 || p->pLimit!=0 ); 1676 if( p->pLimit ){ 1677 p->iLimit = iLimit = ++pParse->nMem; 1678 v = sqlite3GetVdbe(pParse); 1679 assert( v!=0 ); 1680 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1681 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1682 VdbeComment((v, "LIMIT counter")); 1683 if( n==0 ){ 1684 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1685 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1686 p->nSelectRow = n; 1687 } 1688 }else{ 1689 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1690 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1691 VdbeComment((v, "LIMIT counter")); 1692 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1693 } 1694 if( p->pOffset ){ 1695 p->iOffset = iOffset = ++pParse->nMem; 1696 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1697 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1698 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1699 VdbeComment((v, "OFFSET counter")); 1700 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1701 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1702 sqlite3VdbeJumpHere(v, addr1); 1703 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1704 VdbeComment((v, "LIMIT+OFFSET")); 1705 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1706 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1707 sqlite3VdbeJumpHere(v, addr1); 1708 } 1709 } 1710 } 1711 1712 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1713 /* 1714 ** Return the appropriate collating sequence for the iCol-th column of 1715 ** the result set for the compound-select statement "p". Return NULL if 1716 ** the column has no default collating sequence. 1717 ** 1718 ** The collating sequence for the compound select is taken from the 1719 ** left-most term of the select that has a collating sequence. 1720 */ 1721 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1722 CollSeq *pRet; 1723 if( p->pPrior ){ 1724 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1725 }else{ 1726 pRet = 0; 1727 } 1728 assert( iCol>=0 ); 1729 if( pRet==0 && iCol<p->pEList->nExpr ){ 1730 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1731 } 1732 return pRet; 1733 } 1734 1735 /* 1736 ** The select statement passed as the second parameter is a compound SELECT 1737 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1738 ** structure suitable for implementing the ORDER BY. 1739 ** 1740 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1741 ** function is responsible for ensuring that this structure is eventually 1742 ** freed. 1743 */ 1744 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1745 ExprList *pOrderBy = p->pOrderBy; 1746 int nOrderBy = p->pOrderBy->nExpr; 1747 sqlite3 *db = pParse->db; 1748 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1749 if( pRet ){ 1750 int i; 1751 for(i=0; i<nOrderBy; i++){ 1752 struct ExprList_item *pItem = &pOrderBy->a[i]; 1753 Expr *pTerm = pItem->pExpr; 1754 CollSeq *pColl; 1755 1756 if( pTerm->flags & EP_Collate ){ 1757 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1758 }else{ 1759 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1760 if( pColl==0 ) pColl = db->pDfltColl; 1761 pOrderBy->a[i].pExpr = 1762 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1763 } 1764 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1765 pRet->aColl[i] = pColl; 1766 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1767 } 1768 } 1769 1770 return pRet; 1771 } 1772 1773 #ifndef SQLITE_OMIT_CTE 1774 /* 1775 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1776 ** query of the form: 1777 ** 1778 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1779 ** \___________/ \_______________/ 1780 ** p->pPrior p 1781 ** 1782 ** 1783 ** There is exactly one reference to the recursive-table in the FROM clause 1784 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1785 ** 1786 ** The setup-query runs once to generate an initial set of rows that go 1787 ** into a Queue table. Rows are extracted from the Queue table one by 1788 ** one. Each row extracted from Queue is output to pDest. Then the single 1789 ** extracted row (now in the iCurrent table) becomes the content of the 1790 ** recursive-table for a recursive-query run. The output of the recursive-query 1791 ** is added back into the Queue table. Then another row is extracted from Queue 1792 ** and the iteration continues until the Queue table is empty. 1793 ** 1794 ** If the compound query operator is UNION then no duplicate rows are ever 1795 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1796 ** that have ever been inserted into Queue and causes duplicates to be 1797 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1798 ** 1799 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1800 ** ORDER BY order and the first entry is extracted for each cycle. Without 1801 ** an ORDER BY, the Queue table is just a FIFO. 1802 ** 1803 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1804 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1805 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1806 ** with a positive value, then the first OFFSET outputs are discarded rather 1807 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1808 ** rows have been skipped. 1809 */ 1810 static void generateWithRecursiveQuery( 1811 Parse *pParse, /* Parsing context */ 1812 Select *p, /* The recursive SELECT to be coded */ 1813 SelectDest *pDest /* What to do with query results */ 1814 ){ 1815 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1816 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1817 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1818 Select *pSetup = p->pPrior; /* The setup query */ 1819 int addrTop; /* Top of the loop */ 1820 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1821 int iCurrent = 0; /* The Current table */ 1822 int regCurrent; /* Register holding Current table */ 1823 int iQueue; /* The Queue table */ 1824 int iDistinct = 0; /* To ensure unique results if UNION */ 1825 int eDest = SRT_Table; /* How to write to Queue */ 1826 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1827 int i; /* Loop counter */ 1828 int rc; /* Result code */ 1829 ExprList *pOrderBy; /* The ORDER BY clause */ 1830 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1831 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1832 1833 /* Obtain authorization to do a recursive query */ 1834 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1835 1836 /* Process the LIMIT and OFFSET clauses, if they exist */ 1837 addrBreak = sqlite3VdbeMakeLabel(v); 1838 computeLimitRegisters(pParse, p, addrBreak); 1839 pLimit = p->pLimit; 1840 pOffset = p->pOffset; 1841 regLimit = p->iLimit; 1842 regOffset = p->iOffset; 1843 p->pLimit = p->pOffset = 0; 1844 p->iLimit = p->iOffset = 0; 1845 pOrderBy = p->pOrderBy; 1846 1847 /* Locate the cursor number of the Current table */ 1848 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1849 if( pSrc->a[i].isRecursive ){ 1850 iCurrent = pSrc->a[i].iCursor; 1851 break; 1852 } 1853 } 1854 1855 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1856 ** the Distinct table must be exactly one greater than Queue in order 1857 ** for the SRT_DistTable and SRT_DistQueue destinations to work. */ 1858 iQueue = pParse->nTab++; 1859 if( p->op==TK_UNION ){ 1860 eDest = pOrderBy ? SRT_DistQueue : SRT_DistTable; 1861 iDistinct = pParse->nTab++; 1862 }else{ 1863 eDest = pOrderBy ? SRT_Queue : SRT_Table; 1864 } 1865 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 1866 1867 /* Allocate cursors for Current, Queue, and Distinct. */ 1868 regCurrent = ++pParse->nMem; 1869 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 1870 if( pOrderBy ){ 1871 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 1872 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 1873 (char*)pKeyInfo, P4_KEYINFO); 1874 destQueue.pOrderBy = pOrderBy; 1875 }else{ 1876 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 1877 } 1878 VdbeComment((v, "Queue table")); 1879 if( iDistinct ){ 1880 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 1881 p->selFlags |= SF_UsesEphemeral; 1882 } 1883 1884 /* Detach the ORDER BY clause from the compound SELECT */ 1885 p->pOrderBy = 0; 1886 1887 /* Store the results of the setup-query in Queue. */ 1888 pSetup->pNext = 0; 1889 rc = sqlite3Select(pParse, pSetup, &destQueue); 1890 pSetup->pNext = p; 1891 if( rc ) goto end_of_recursive_query; 1892 1893 /* Find the next row in the Queue and output that row */ 1894 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); 1895 1896 /* Transfer the next row in Queue over to Current */ 1897 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 1898 if( pOrderBy ){ 1899 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 1900 }else{ 1901 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 1902 } 1903 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 1904 1905 /* Output the single row in Current */ 1906 addrCont = sqlite3VdbeMakeLabel(v); 1907 codeOffset(v, regOffset, addrCont); 1908 selectInnerLoop(pParse, p, p->pEList, iCurrent, 1909 0, 0, pDest, addrCont, addrBreak); 1910 if( regLimit ) sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 1911 sqlite3VdbeResolveLabel(v, addrCont); 1912 1913 /* Execute the recursive SELECT taking the single row in Current as 1914 ** the value for the recursive-table. Store the results in the Queue. 1915 */ 1916 p->pPrior = 0; 1917 sqlite3Select(pParse, p, &destQueue); 1918 assert( p->pPrior==0 ); 1919 p->pPrior = pSetup; 1920 1921 /* Keep running the loop until the Queue is empty */ 1922 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 1923 sqlite3VdbeResolveLabel(v, addrBreak); 1924 1925 end_of_recursive_query: 1926 p->pOrderBy = pOrderBy; 1927 p->pLimit = pLimit; 1928 p->pOffset = pOffset; 1929 return; 1930 } 1931 #endif /* SQLITE_OMIT_CTE */ 1932 1933 /* Forward references */ 1934 static int multiSelectOrderBy( 1935 Parse *pParse, /* Parsing context */ 1936 Select *p, /* The right-most of SELECTs to be coded */ 1937 SelectDest *pDest /* What to do with query results */ 1938 ); 1939 1940 1941 /* 1942 ** This routine is called to process a compound query form from 1943 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1944 ** INTERSECT 1945 ** 1946 ** "p" points to the right-most of the two queries. the query on the 1947 ** left is p->pPrior. The left query could also be a compound query 1948 ** in which case this routine will be called recursively. 1949 ** 1950 ** The results of the total query are to be written into a destination 1951 ** of type eDest with parameter iParm. 1952 ** 1953 ** Example 1: Consider a three-way compound SQL statement. 1954 ** 1955 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1956 ** 1957 ** This statement is parsed up as follows: 1958 ** 1959 ** SELECT c FROM t3 1960 ** | 1961 ** `-----> SELECT b FROM t2 1962 ** | 1963 ** `------> SELECT a FROM t1 1964 ** 1965 ** The arrows in the diagram above represent the Select.pPrior pointer. 1966 ** So if this routine is called with p equal to the t3 query, then 1967 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1968 ** 1969 ** Notice that because of the way SQLite parses compound SELECTs, the 1970 ** individual selects always group from left to right. 1971 */ 1972 static int multiSelect( 1973 Parse *pParse, /* Parsing context */ 1974 Select *p, /* The right-most of SELECTs to be coded */ 1975 SelectDest *pDest /* What to do with query results */ 1976 ){ 1977 int rc = SQLITE_OK; /* Success code from a subroutine */ 1978 Select *pPrior; /* Another SELECT immediately to our left */ 1979 Vdbe *v; /* Generate code to this VDBE */ 1980 SelectDest dest; /* Alternative data destination */ 1981 Select *pDelete = 0; /* Chain of simple selects to delete */ 1982 sqlite3 *db; /* Database connection */ 1983 #ifndef SQLITE_OMIT_EXPLAIN 1984 int iSub1 = 0; /* EQP id of left-hand query */ 1985 int iSub2 = 0; /* EQP id of right-hand query */ 1986 #endif 1987 1988 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1989 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1990 */ 1991 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1992 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 1993 db = pParse->db; 1994 pPrior = p->pPrior; 1995 dest = *pDest; 1996 if( pPrior->pOrderBy ){ 1997 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1998 selectOpName(p->op)); 1999 rc = 1; 2000 goto multi_select_end; 2001 } 2002 if( pPrior->pLimit ){ 2003 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2004 selectOpName(p->op)); 2005 rc = 1; 2006 goto multi_select_end; 2007 } 2008 2009 v = sqlite3GetVdbe(pParse); 2010 assert( v!=0 ); /* The VDBE already created by calling function */ 2011 2012 /* Create the destination temporary table if necessary 2013 */ 2014 if( dest.eDest==SRT_EphemTab ){ 2015 assert( p->pEList ); 2016 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2017 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2018 dest.eDest = SRT_Table; 2019 } 2020 2021 /* Make sure all SELECTs in the statement have the same number of elements 2022 ** in their result sets. 2023 */ 2024 assert( p->pEList && pPrior->pEList ); 2025 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2026 if( p->selFlags & SF_Values ){ 2027 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2028 }else{ 2029 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2030 " do not have the same number of result columns", selectOpName(p->op)); 2031 } 2032 rc = 1; 2033 goto multi_select_end; 2034 } 2035 2036 #ifndef SQLITE_OMIT_CTE 2037 if( p->selFlags & SF_Recursive ){ 2038 generateWithRecursiveQuery(pParse, p, &dest); 2039 }else 2040 #endif 2041 2042 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2043 */ 2044 if( p->pOrderBy ){ 2045 return multiSelectOrderBy(pParse, p, pDest); 2046 }else 2047 2048 /* Generate code for the left and right SELECT statements. 2049 */ 2050 switch( p->op ){ 2051 case TK_ALL: { 2052 int addr = 0; 2053 int nLimit; 2054 assert( !pPrior->pLimit ); 2055 pPrior->iLimit = p->iLimit; 2056 pPrior->iOffset = p->iOffset; 2057 pPrior->pLimit = p->pLimit; 2058 pPrior->pOffset = p->pOffset; 2059 explainSetInteger(iSub1, pParse->iNextSelectId); 2060 rc = sqlite3Select(pParse, pPrior, &dest); 2061 p->pLimit = 0; 2062 p->pOffset = 0; 2063 if( rc ){ 2064 goto multi_select_end; 2065 } 2066 p->pPrior = 0; 2067 p->iLimit = pPrior->iLimit; 2068 p->iOffset = pPrior->iOffset; 2069 if( p->iLimit ){ 2070 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 2071 VdbeComment((v, "Jump ahead if LIMIT reached")); 2072 } 2073 explainSetInteger(iSub2, pParse->iNextSelectId); 2074 rc = sqlite3Select(pParse, p, &dest); 2075 testcase( rc!=SQLITE_OK ); 2076 pDelete = p->pPrior; 2077 p->pPrior = pPrior; 2078 p->nSelectRow += pPrior->nSelectRow; 2079 if( pPrior->pLimit 2080 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2081 && nLimit>0 && p->nSelectRow > (u64)nLimit 2082 ){ 2083 p->nSelectRow = nLimit; 2084 } 2085 if( addr ){ 2086 sqlite3VdbeJumpHere(v, addr); 2087 } 2088 break; 2089 } 2090 case TK_EXCEPT: 2091 case TK_UNION: { 2092 int unionTab; /* Cursor number of the temporary table holding result */ 2093 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2094 int priorOp; /* The SRT_ operation to apply to prior selects */ 2095 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2096 int addr; 2097 SelectDest uniondest; 2098 2099 testcase( p->op==TK_EXCEPT ); 2100 testcase( p->op==TK_UNION ); 2101 priorOp = SRT_Union; 2102 if( dest.eDest==priorOp ){ 2103 /* We can reuse a temporary table generated by a SELECT to our 2104 ** right. 2105 */ 2106 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2107 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2108 unionTab = dest.iSDParm; 2109 }else{ 2110 /* We will need to create our own temporary table to hold the 2111 ** intermediate results. 2112 */ 2113 unionTab = pParse->nTab++; 2114 assert( p->pOrderBy==0 ); 2115 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2116 assert( p->addrOpenEphm[0] == -1 ); 2117 p->addrOpenEphm[0] = addr; 2118 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2119 assert( p->pEList ); 2120 } 2121 2122 /* Code the SELECT statements to our left 2123 */ 2124 assert( !pPrior->pOrderBy ); 2125 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2126 explainSetInteger(iSub1, pParse->iNextSelectId); 2127 rc = sqlite3Select(pParse, pPrior, &uniondest); 2128 if( rc ){ 2129 goto multi_select_end; 2130 } 2131 2132 /* Code the current SELECT statement 2133 */ 2134 if( p->op==TK_EXCEPT ){ 2135 op = SRT_Except; 2136 }else{ 2137 assert( p->op==TK_UNION ); 2138 op = SRT_Union; 2139 } 2140 p->pPrior = 0; 2141 pLimit = p->pLimit; 2142 p->pLimit = 0; 2143 pOffset = p->pOffset; 2144 p->pOffset = 0; 2145 uniondest.eDest = op; 2146 explainSetInteger(iSub2, pParse->iNextSelectId); 2147 rc = sqlite3Select(pParse, p, &uniondest); 2148 testcase( rc!=SQLITE_OK ); 2149 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2150 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2151 sqlite3ExprListDelete(db, p->pOrderBy); 2152 pDelete = p->pPrior; 2153 p->pPrior = pPrior; 2154 p->pOrderBy = 0; 2155 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2156 sqlite3ExprDelete(db, p->pLimit); 2157 p->pLimit = pLimit; 2158 p->pOffset = pOffset; 2159 p->iLimit = 0; 2160 p->iOffset = 0; 2161 2162 /* Convert the data in the temporary table into whatever form 2163 ** it is that we currently need. 2164 */ 2165 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2166 if( dest.eDest!=priorOp ){ 2167 int iCont, iBreak, iStart; 2168 assert( p->pEList ); 2169 if( dest.eDest==SRT_Output ){ 2170 Select *pFirst = p; 2171 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2172 generateColumnNames(pParse, 0, pFirst->pEList); 2173 } 2174 iBreak = sqlite3VdbeMakeLabel(v); 2175 iCont = sqlite3VdbeMakeLabel(v); 2176 computeLimitRegisters(pParse, p, iBreak); 2177 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 2178 iStart = sqlite3VdbeCurrentAddr(v); 2179 selectInnerLoop(pParse, p, p->pEList, unionTab, 2180 0, 0, &dest, iCont, iBreak); 2181 sqlite3VdbeResolveLabel(v, iCont); 2182 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 2183 sqlite3VdbeResolveLabel(v, iBreak); 2184 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2185 } 2186 break; 2187 } 2188 default: assert( p->op==TK_INTERSECT ); { 2189 int tab1, tab2; 2190 int iCont, iBreak, iStart; 2191 Expr *pLimit, *pOffset; 2192 int addr; 2193 SelectDest intersectdest; 2194 int r1; 2195 2196 /* INTERSECT is different from the others since it requires 2197 ** two temporary tables. Hence it has its own case. Begin 2198 ** by allocating the tables we will need. 2199 */ 2200 tab1 = pParse->nTab++; 2201 tab2 = pParse->nTab++; 2202 assert( p->pOrderBy==0 ); 2203 2204 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2205 assert( p->addrOpenEphm[0] == -1 ); 2206 p->addrOpenEphm[0] = addr; 2207 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2208 assert( p->pEList ); 2209 2210 /* Code the SELECTs to our left into temporary table "tab1". 2211 */ 2212 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2213 explainSetInteger(iSub1, pParse->iNextSelectId); 2214 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2215 if( rc ){ 2216 goto multi_select_end; 2217 } 2218 2219 /* Code the current SELECT into temporary table "tab2" 2220 */ 2221 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2222 assert( p->addrOpenEphm[1] == -1 ); 2223 p->addrOpenEphm[1] = addr; 2224 p->pPrior = 0; 2225 pLimit = p->pLimit; 2226 p->pLimit = 0; 2227 pOffset = p->pOffset; 2228 p->pOffset = 0; 2229 intersectdest.iSDParm = tab2; 2230 explainSetInteger(iSub2, pParse->iNextSelectId); 2231 rc = sqlite3Select(pParse, p, &intersectdest); 2232 testcase( rc!=SQLITE_OK ); 2233 pDelete = p->pPrior; 2234 p->pPrior = pPrior; 2235 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2236 sqlite3ExprDelete(db, p->pLimit); 2237 p->pLimit = pLimit; 2238 p->pOffset = pOffset; 2239 2240 /* Generate code to take the intersection of the two temporary 2241 ** tables. 2242 */ 2243 assert( p->pEList ); 2244 if( dest.eDest==SRT_Output ){ 2245 Select *pFirst = p; 2246 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2247 generateColumnNames(pParse, 0, pFirst->pEList); 2248 } 2249 iBreak = sqlite3VdbeMakeLabel(v); 2250 iCont = sqlite3VdbeMakeLabel(v); 2251 computeLimitRegisters(pParse, p, iBreak); 2252 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 2253 r1 = sqlite3GetTempReg(pParse); 2254 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2255 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2256 sqlite3ReleaseTempReg(pParse, r1); 2257 selectInnerLoop(pParse, p, p->pEList, tab1, 2258 0, 0, &dest, iCont, iBreak); 2259 sqlite3VdbeResolveLabel(v, iCont); 2260 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 2261 sqlite3VdbeResolveLabel(v, iBreak); 2262 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2263 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2264 break; 2265 } 2266 } 2267 2268 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2269 2270 /* Compute collating sequences used by 2271 ** temporary tables needed to implement the compound select. 2272 ** Attach the KeyInfo structure to all temporary tables. 2273 ** 2274 ** This section is run by the right-most SELECT statement only. 2275 ** SELECT statements to the left always skip this part. The right-most 2276 ** SELECT might also skip this part if it has no ORDER BY clause and 2277 ** no temp tables are required. 2278 */ 2279 if( p->selFlags & SF_UsesEphemeral ){ 2280 int i; /* Loop counter */ 2281 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2282 Select *pLoop; /* For looping through SELECT statements */ 2283 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2284 int nCol; /* Number of columns in result set */ 2285 2286 assert( p->pNext==0 ); 2287 nCol = p->pEList->nExpr; 2288 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2289 if( !pKeyInfo ){ 2290 rc = SQLITE_NOMEM; 2291 goto multi_select_end; 2292 } 2293 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2294 *apColl = multiSelectCollSeq(pParse, p, i); 2295 if( 0==*apColl ){ 2296 *apColl = db->pDfltColl; 2297 } 2298 } 2299 2300 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2301 for(i=0; i<2; i++){ 2302 int addr = pLoop->addrOpenEphm[i]; 2303 if( addr<0 ){ 2304 /* If [0] is unused then [1] is also unused. So we can 2305 ** always safely abort as soon as the first unused slot is found */ 2306 assert( pLoop->addrOpenEphm[1]<0 ); 2307 break; 2308 } 2309 sqlite3VdbeChangeP2(v, addr, nCol); 2310 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2311 P4_KEYINFO); 2312 pLoop->addrOpenEphm[i] = -1; 2313 } 2314 } 2315 sqlite3KeyInfoUnref(pKeyInfo); 2316 } 2317 2318 multi_select_end: 2319 pDest->iSdst = dest.iSdst; 2320 pDest->nSdst = dest.nSdst; 2321 sqlite3SelectDelete(db, pDelete); 2322 return rc; 2323 } 2324 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2325 2326 /* 2327 ** Code an output subroutine for a coroutine implementation of a 2328 ** SELECT statment. 2329 ** 2330 ** The data to be output is contained in pIn->iSdst. There are 2331 ** pIn->nSdst columns to be output. pDest is where the output should 2332 ** be sent. 2333 ** 2334 ** regReturn is the number of the register holding the subroutine 2335 ** return address. 2336 ** 2337 ** If regPrev>0 then it is the first register in a vector that 2338 ** records the previous output. mem[regPrev] is a flag that is false 2339 ** if there has been no previous output. If regPrev>0 then code is 2340 ** generated to suppress duplicates. pKeyInfo is used for comparing 2341 ** keys. 2342 ** 2343 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2344 ** iBreak. 2345 */ 2346 static int generateOutputSubroutine( 2347 Parse *pParse, /* Parsing context */ 2348 Select *p, /* The SELECT statement */ 2349 SelectDest *pIn, /* Coroutine supplying data */ 2350 SelectDest *pDest, /* Where to send the data */ 2351 int regReturn, /* The return address register */ 2352 int regPrev, /* Previous result register. No uniqueness if 0 */ 2353 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2354 int iBreak /* Jump here if we hit the LIMIT */ 2355 ){ 2356 Vdbe *v = pParse->pVdbe; 2357 int iContinue; 2358 int addr; 2359 2360 addr = sqlite3VdbeCurrentAddr(v); 2361 iContinue = sqlite3VdbeMakeLabel(v); 2362 2363 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2364 */ 2365 if( regPrev ){ 2366 int j1, j2; 2367 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 2368 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2369 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2370 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 2371 sqlite3VdbeJumpHere(v, j1); 2372 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2373 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2374 } 2375 if( pParse->db->mallocFailed ) return 0; 2376 2377 /* Suppress the first OFFSET entries if there is an OFFSET clause 2378 */ 2379 codeOffset(v, p->iOffset, iContinue); 2380 2381 switch( pDest->eDest ){ 2382 /* Store the result as data using a unique key. 2383 */ 2384 case SRT_Table: 2385 case SRT_EphemTab: { 2386 int r1 = sqlite3GetTempReg(pParse); 2387 int r2 = sqlite3GetTempReg(pParse); 2388 testcase( pDest->eDest==SRT_Table ); 2389 testcase( pDest->eDest==SRT_EphemTab ); 2390 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2391 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2392 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2393 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2394 sqlite3ReleaseTempReg(pParse, r2); 2395 sqlite3ReleaseTempReg(pParse, r1); 2396 break; 2397 } 2398 2399 #ifndef SQLITE_OMIT_SUBQUERY 2400 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2401 ** then there should be a single item on the stack. Write this 2402 ** item into the set table with bogus data. 2403 */ 2404 case SRT_Set: { 2405 int r1; 2406 assert( pIn->nSdst==1 ); 2407 pDest->affSdst = 2408 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2409 r1 = sqlite3GetTempReg(pParse); 2410 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2411 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2412 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2413 sqlite3ReleaseTempReg(pParse, r1); 2414 break; 2415 } 2416 2417 #if 0 /* Never occurs on an ORDER BY query */ 2418 /* If any row exist in the result set, record that fact and abort. 2419 */ 2420 case SRT_Exists: { 2421 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2422 /* The LIMIT clause will terminate the loop for us */ 2423 break; 2424 } 2425 #endif 2426 2427 /* If this is a scalar select that is part of an expression, then 2428 ** store the results in the appropriate memory cell and break out 2429 ** of the scan loop. 2430 */ 2431 case SRT_Mem: { 2432 assert( pIn->nSdst==1 ); 2433 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2434 /* The LIMIT clause will jump out of the loop for us */ 2435 break; 2436 } 2437 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2438 2439 /* The results are stored in a sequence of registers 2440 ** starting at pDest->iSdst. Then the co-routine yields. 2441 */ 2442 case SRT_Coroutine: { 2443 if( pDest->iSdst==0 ){ 2444 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2445 pDest->nSdst = pIn->nSdst; 2446 } 2447 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2448 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2449 break; 2450 } 2451 2452 /* If none of the above, then the result destination must be 2453 ** SRT_Output. This routine is never called with any other 2454 ** destination other than the ones handled above or SRT_Output. 2455 ** 2456 ** For SRT_Output, results are stored in a sequence of registers. 2457 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2458 ** return the next row of result. 2459 */ 2460 default: { 2461 assert( pDest->eDest==SRT_Output ); 2462 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2463 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2464 break; 2465 } 2466 } 2467 2468 /* Jump to the end of the loop if the LIMIT is reached. 2469 */ 2470 if( p->iLimit ){ 2471 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 2472 } 2473 2474 /* Generate the subroutine return 2475 */ 2476 sqlite3VdbeResolveLabel(v, iContinue); 2477 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2478 2479 return addr; 2480 } 2481 2482 /* 2483 ** Alternative compound select code generator for cases when there 2484 ** is an ORDER BY clause. 2485 ** 2486 ** We assume a query of the following form: 2487 ** 2488 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2489 ** 2490 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2491 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2492 ** co-routines. Then run the co-routines in parallel and merge the results 2493 ** into the output. In addition to the two coroutines (called selectA and 2494 ** selectB) there are 7 subroutines: 2495 ** 2496 ** outA: Move the output of the selectA coroutine into the output 2497 ** of the compound query. 2498 ** 2499 ** outB: Move the output of the selectB coroutine into the output 2500 ** of the compound query. (Only generated for UNION and 2501 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2502 ** appears only in B.) 2503 ** 2504 ** AltB: Called when there is data from both coroutines and A<B. 2505 ** 2506 ** AeqB: Called when there is data from both coroutines and A==B. 2507 ** 2508 ** AgtB: Called when there is data from both coroutines and A>B. 2509 ** 2510 ** EofA: Called when data is exhausted from selectA. 2511 ** 2512 ** EofB: Called when data is exhausted from selectB. 2513 ** 2514 ** The implementation of the latter five subroutines depend on which 2515 ** <operator> is used: 2516 ** 2517 ** 2518 ** UNION ALL UNION EXCEPT INTERSECT 2519 ** ------------- ----------------- -------------- ----------------- 2520 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2521 ** 2522 ** AeqB: outA, nextA nextA nextA outA, nextA 2523 ** 2524 ** AgtB: outB, nextB outB, nextB nextB nextB 2525 ** 2526 ** EofA: outB, nextB outB, nextB halt halt 2527 ** 2528 ** EofB: outA, nextA outA, nextA outA, nextA halt 2529 ** 2530 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2531 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2532 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2533 ** following nextX causes a jump to the end of the select processing. 2534 ** 2535 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2536 ** within the output subroutine. The regPrev register set holds the previously 2537 ** output value. A comparison is made against this value and the output 2538 ** is skipped if the next results would be the same as the previous. 2539 ** 2540 ** The implementation plan is to implement the two coroutines and seven 2541 ** subroutines first, then put the control logic at the bottom. Like this: 2542 ** 2543 ** goto Init 2544 ** coA: coroutine for left query (A) 2545 ** coB: coroutine for right query (B) 2546 ** outA: output one row of A 2547 ** outB: output one row of B (UNION and UNION ALL only) 2548 ** EofA: ... 2549 ** EofB: ... 2550 ** AltB: ... 2551 ** AeqB: ... 2552 ** AgtB: ... 2553 ** Init: initialize coroutine registers 2554 ** yield coA 2555 ** if eof(A) goto EofA 2556 ** yield coB 2557 ** if eof(B) goto EofB 2558 ** Cmpr: Compare A, B 2559 ** Jump AltB, AeqB, AgtB 2560 ** End: ... 2561 ** 2562 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2563 ** actually called using Gosub and they do not Return. EofA and EofB loop 2564 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2565 ** and AgtB jump to either L2 or to one of EofA or EofB. 2566 */ 2567 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2568 static int multiSelectOrderBy( 2569 Parse *pParse, /* Parsing context */ 2570 Select *p, /* The right-most of SELECTs to be coded */ 2571 SelectDest *pDest /* What to do with query results */ 2572 ){ 2573 int i, j; /* Loop counters */ 2574 Select *pPrior; /* Another SELECT immediately to our left */ 2575 Vdbe *v; /* Generate code to this VDBE */ 2576 SelectDest destA; /* Destination for coroutine A */ 2577 SelectDest destB; /* Destination for coroutine B */ 2578 int regAddrA; /* Address register for select-A coroutine */ 2579 int regAddrB; /* Address register for select-B coroutine */ 2580 int addrSelectA; /* Address of the select-A coroutine */ 2581 int addrSelectB; /* Address of the select-B coroutine */ 2582 int regOutA; /* Address register for the output-A subroutine */ 2583 int regOutB; /* Address register for the output-B subroutine */ 2584 int addrOutA; /* Address of the output-A subroutine */ 2585 int addrOutB = 0; /* Address of the output-B subroutine */ 2586 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2587 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2588 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2589 int addrAltB; /* Address of the A<B subroutine */ 2590 int addrAeqB; /* Address of the A==B subroutine */ 2591 int addrAgtB; /* Address of the A>B subroutine */ 2592 int regLimitA; /* Limit register for select-A */ 2593 int regLimitB; /* Limit register for select-A */ 2594 int regPrev; /* A range of registers to hold previous output */ 2595 int savedLimit; /* Saved value of p->iLimit */ 2596 int savedOffset; /* Saved value of p->iOffset */ 2597 int labelCmpr; /* Label for the start of the merge algorithm */ 2598 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2599 int j1; /* Jump instructions that get retargetted */ 2600 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2601 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2602 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2603 sqlite3 *db; /* Database connection */ 2604 ExprList *pOrderBy; /* The ORDER BY clause */ 2605 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2606 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2607 #ifndef SQLITE_OMIT_EXPLAIN 2608 int iSub1; /* EQP id of left-hand query */ 2609 int iSub2; /* EQP id of right-hand query */ 2610 #endif 2611 2612 assert( p->pOrderBy!=0 ); 2613 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2614 db = pParse->db; 2615 v = pParse->pVdbe; 2616 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2617 labelEnd = sqlite3VdbeMakeLabel(v); 2618 labelCmpr = sqlite3VdbeMakeLabel(v); 2619 2620 2621 /* Patch up the ORDER BY clause 2622 */ 2623 op = p->op; 2624 pPrior = p->pPrior; 2625 assert( pPrior->pOrderBy==0 ); 2626 pOrderBy = p->pOrderBy; 2627 assert( pOrderBy ); 2628 nOrderBy = pOrderBy->nExpr; 2629 2630 /* For operators other than UNION ALL we have to make sure that 2631 ** the ORDER BY clause covers every term of the result set. Add 2632 ** terms to the ORDER BY clause as necessary. 2633 */ 2634 if( op!=TK_ALL ){ 2635 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2636 struct ExprList_item *pItem; 2637 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2638 assert( pItem->u.x.iOrderByCol>0 ); 2639 if( pItem->u.x.iOrderByCol==i ) break; 2640 } 2641 if( j==nOrderBy ){ 2642 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2643 if( pNew==0 ) return SQLITE_NOMEM; 2644 pNew->flags |= EP_IntValue; 2645 pNew->u.iValue = i; 2646 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2647 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2648 } 2649 } 2650 } 2651 2652 /* Compute the comparison permutation and keyinfo that is used with 2653 ** the permutation used to determine if the next 2654 ** row of results comes from selectA or selectB. Also add explicit 2655 ** collations to the ORDER BY clause terms so that when the subqueries 2656 ** to the right and the left are evaluated, they use the correct 2657 ** collation. 2658 */ 2659 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2660 if( aPermute ){ 2661 struct ExprList_item *pItem; 2662 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2663 assert( pItem->u.x.iOrderByCol>0 2664 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2665 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2666 } 2667 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2668 }else{ 2669 pKeyMerge = 0; 2670 } 2671 2672 /* Reattach the ORDER BY clause to the query. 2673 */ 2674 p->pOrderBy = pOrderBy; 2675 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2676 2677 /* Allocate a range of temporary registers and the KeyInfo needed 2678 ** for the logic that removes duplicate result rows when the 2679 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2680 */ 2681 if( op==TK_ALL ){ 2682 regPrev = 0; 2683 }else{ 2684 int nExpr = p->pEList->nExpr; 2685 assert( nOrderBy>=nExpr || db->mallocFailed ); 2686 regPrev = pParse->nMem+1; 2687 pParse->nMem += nExpr+1; 2688 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2689 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2690 if( pKeyDup ){ 2691 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2692 for(i=0; i<nExpr; i++){ 2693 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2694 pKeyDup->aSortOrder[i] = 0; 2695 } 2696 } 2697 } 2698 2699 /* Separate the left and the right query from one another 2700 */ 2701 p->pPrior = 0; 2702 pPrior->pNext = 0; 2703 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2704 if( pPrior->pPrior==0 ){ 2705 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2706 } 2707 2708 /* Compute the limit registers */ 2709 computeLimitRegisters(pParse, p, labelEnd); 2710 if( p->iLimit && op==TK_ALL ){ 2711 regLimitA = ++pParse->nMem; 2712 regLimitB = ++pParse->nMem; 2713 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2714 regLimitA); 2715 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2716 }else{ 2717 regLimitA = regLimitB = 0; 2718 } 2719 sqlite3ExprDelete(db, p->pLimit); 2720 p->pLimit = 0; 2721 sqlite3ExprDelete(db, p->pOffset); 2722 p->pOffset = 0; 2723 2724 regAddrA = ++pParse->nMem; 2725 regAddrB = ++pParse->nMem; 2726 regOutA = ++pParse->nMem; 2727 regOutB = ++pParse->nMem; 2728 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2729 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2730 2731 /* Generate a coroutine to evaluate the SELECT statement to the 2732 ** left of the compound operator - the "A" select. 2733 */ 2734 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2735 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2736 VdbeComment((v, "left SELECT")); 2737 pPrior->iLimit = regLimitA; 2738 explainSetInteger(iSub1, pParse->iNextSelectId); 2739 sqlite3Select(pParse, pPrior, &destA); 2740 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2741 sqlite3VdbeJumpHere(v, j1); 2742 2743 /* Generate a coroutine to evaluate the SELECT statement on 2744 ** the right - the "B" select 2745 */ 2746 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2747 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2748 VdbeComment((v, "right SELECT")); 2749 savedLimit = p->iLimit; 2750 savedOffset = p->iOffset; 2751 p->iLimit = regLimitB; 2752 p->iOffset = 0; 2753 explainSetInteger(iSub2, pParse->iNextSelectId); 2754 sqlite3Select(pParse, p, &destB); 2755 p->iLimit = savedLimit; 2756 p->iOffset = savedOffset; 2757 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2758 2759 /* Generate a subroutine that outputs the current row of the A 2760 ** select as the next output row of the compound select. 2761 */ 2762 VdbeNoopComment((v, "Output routine for A")); 2763 addrOutA = generateOutputSubroutine(pParse, 2764 p, &destA, pDest, regOutA, 2765 regPrev, pKeyDup, labelEnd); 2766 2767 /* Generate a subroutine that outputs the current row of the B 2768 ** select as the next output row of the compound select. 2769 */ 2770 if( op==TK_ALL || op==TK_UNION ){ 2771 VdbeNoopComment((v, "Output routine for B")); 2772 addrOutB = generateOutputSubroutine(pParse, 2773 p, &destB, pDest, regOutB, 2774 regPrev, pKeyDup, labelEnd); 2775 } 2776 sqlite3KeyInfoUnref(pKeyDup); 2777 2778 /* Generate a subroutine to run when the results from select A 2779 ** are exhausted and only data in select B remains. 2780 */ 2781 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2782 addrEofA_noB = addrEofA = labelEnd; 2783 }else{ 2784 VdbeNoopComment((v, "eof-A subroutine")); 2785 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2786 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2787 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2788 p->nSelectRow += pPrior->nSelectRow; 2789 } 2790 2791 /* Generate a subroutine to run when the results from select B 2792 ** are exhausted and only data in select A remains. 2793 */ 2794 if( op==TK_INTERSECT ){ 2795 addrEofB = addrEofA; 2796 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2797 }else{ 2798 VdbeNoopComment((v, "eof-B subroutine")); 2799 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2800 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); 2801 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2802 } 2803 2804 /* Generate code to handle the case of A<B 2805 */ 2806 VdbeNoopComment((v, "A-lt-B subroutine")); 2807 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2808 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); 2809 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2810 2811 /* Generate code to handle the case of A==B 2812 */ 2813 if( op==TK_ALL ){ 2814 addrAeqB = addrAltB; 2815 }else if( op==TK_INTERSECT ){ 2816 addrAeqB = addrAltB; 2817 addrAltB++; 2818 }else{ 2819 VdbeNoopComment((v, "A-eq-B subroutine")); 2820 addrAeqB = 2821 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); 2822 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2823 } 2824 2825 /* Generate code to handle the case of A>B 2826 */ 2827 VdbeNoopComment((v, "A-gt-B subroutine")); 2828 addrAgtB = sqlite3VdbeCurrentAddr(v); 2829 if( op==TK_ALL || op==TK_UNION ){ 2830 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2831 } 2832 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); 2833 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2834 2835 /* This code runs once to initialize everything. 2836 */ 2837 sqlite3VdbeJumpHere(v, j1); 2838 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); 2839 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); 2840 2841 /* Implement the main merge loop 2842 */ 2843 sqlite3VdbeResolveLabel(v, labelCmpr); 2844 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2845 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 2846 (char*)pKeyMerge, P4_KEYINFO); 2847 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 2848 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2849 2850 /* Jump to the this point in order to terminate the query. 2851 */ 2852 sqlite3VdbeResolveLabel(v, labelEnd); 2853 2854 /* Set the number of output columns 2855 */ 2856 if( pDest->eDest==SRT_Output ){ 2857 Select *pFirst = pPrior; 2858 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2859 generateColumnNames(pParse, 0, pFirst->pEList); 2860 } 2861 2862 /* Reassembly the compound query so that it will be freed correctly 2863 ** by the calling function */ 2864 if( p->pPrior ){ 2865 sqlite3SelectDelete(db, p->pPrior); 2866 } 2867 p->pPrior = pPrior; 2868 pPrior->pNext = p; 2869 2870 /*** TBD: Insert subroutine calls to close cursors on incomplete 2871 **** subqueries ****/ 2872 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2873 return SQLITE_OK; 2874 } 2875 #endif 2876 2877 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2878 /* Forward Declarations */ 2879 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2880 static void substSelect(sqlite3*, Select *, int, ExprList *); 2881 2882 /* 2883 ** Scan through the expression pExpr. Replace every reference to 2884 ** a column in table number iTable with a copy of the iColumn-th 2885 ** entry in pEList. (But leave references to the ROWID column 2886 ** unchanged.) 2887 ** 2888 ** This routine is part of the flattening procedure. A subquery 2889 ** whose result set is defined by pEList appears as entry in the 2890 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2891 ** FORM clause entry is iTable. This routine make the necessary 2892 ** changes to pExpr so that it refers directly to the source table 2893 ** of the subquery rather the result set of the subquery. 2894 */ 2895 static Expr *substExpr( 2896 sqlite3 *db, /* Report malloc errors to this connection */ 2897 Expr *pExpr, /* Expr in which substitution occurs */ 2898 int iTable, /* Table to be substituted */ 2899 ExprList *pEList /* Substitute expressions */ 2900 ){ 2901 if( pExpr==0 ) return 0; 2902 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2903 if( pExpr->iColumn<0 ){ 2904 pExpr->op = TK_NULL; 2905 }else{ 2906 Expr *pNew; 2907 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2908 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2909 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2910 sqlite3ExprDelete(db, pExpr); 2911 pExpr = pNew; 2912 } 2913 }else{ 2914 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2915 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2916 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2917 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2918 }else{ 2919 substExprList(db, pExpr->x.pList, iTable, pEList); 2920 } 2921 } 2922 return pExpr; 2923 } 2924 static void substExprList( 2925 sqlite3 *db, /* Report malloc errors here */ 2926 ExprList *pList, /* List to scan and in which to make substitutes */ 2927 int iTable, /* Table to be substituted */ 2928 ExprList *pEList /* Substitute values */ 2929 ){ 2930 int i; 2931 if( pList==0 ) return; 2932 for(i=0; i<pList->nExpr; i++){ 2933 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2934 } 2935 } 2936 static void substSelect( 2937 sqlite3 *db, /* Report malloc errors here */ 2938 Select *p, /* SELECT statement in which to make substitutions */ 2939 int iTable, /* Table to be replaced */ 2940 ExprList *pEList /* Substitute values */ 2941 ){ 2942 SrcList *pSrc; 2943 struct SrcList_item *pItem; 2944 int i; 2945 if( !p ) return; 2946 substExprList(db, p->pEList, iTable, pEList); 2947 substExprList(db, p->pGroupBy, iTable, pEList); 2948 substExprList(db, p->pOrderBy, iTable, pEList); 2949 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2950 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2951 substSelect(db, p->pPrior, iTable, pEList); 2952 pSrc = p->pSrc; 2953 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2954 if( ALWAYS(pSrc) ){ 2955 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2956 substSelect(db, pItem->pSelect, iTable, pEList); 2957 } 2958 } 2959 } 2960 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2961 2962 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2963 /* 2964 ** This routine attempts to flatten subqueries as a performance optimization. 2965 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 2966 ** 2967 ** To understand the concept of flattening, consider the following 2968 ** query: 2969 ** 2970 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2971 ** 2972 ** The default way of implementing this query is to execute the 2973 ** subquery first and store the results in a temporary table, then 2974 ** run the outer query on that temporary table. This requires two 2975 ** passes over the data. Furthermore, because the temporary table 2976 ** has no indices, the WHERE clause on the outer query cannot be 2977 ** optimized. 2978 ** 2979 ** This routine attempts to rewrite queries such as the above into 2980 ** a single flat select, like this: 2981 ** 2982 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2983 ** 2984 ** The code generated for this simpification gives the same result 2985 ** but only has to scan the data once. And because indices might 2986 ** exist on the table t1, a complete scan of the data might be 2987 ** avoided. 2988 ** 2989 ** Flattening is only attempted if all of the following are true: 2990 ** 2991 ** (1) The subquery and the outer query do not both use aggregates. 2992 ** 2993 ** (2) The subquery is not an aggregate or the outer query is not a join. 2994 ** 2995 ** (3) The subquery is not the right operand of a left outer join 2996 ** (Originally ticket #306. Strengthened by ticket #3300) 2997 ** 2998 ** (4) The subquery is not DISTINCT. 2999 ** 3000 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3001 ** sub-queries that were excluded from this optimization. Restriction 3002 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3003 ** 3004 ** (6) The subquery does not use aggregates or the outer query is not 3005 ** DISTINCT. 3006 ** 3007 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3008 ** A FROM clause, consider adding a FROM close with the special 3009 ** table sqlite_once that consists of a single row containing a 3010 ** single NULL. 3011 ** 3012 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3013 ** 3014 ** (9) The subquery does not use LIMIT or the outer query does not use 3015 ** aggregates. 3016 ** 3017 ** (10) The subquery does not use aggregates or the outer query does not 3018 ** use LIMIT. 3019 ** 3020 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3021 ** 3022 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3023 ** a separate restriction deriving from ticket #350. 3024 ** 3025 ** (13) The subquery and outer query do not both use LIMIT. 3026 ** 3027 ** (14) The subquery does not use OFFSET. 3028 ** 3029 ** (15) The outer query is not part of a compound select or the 3030 ** subquery does not have a LIMIT clause. 3031 ** (See ticket #2339 and ticket [02a8e81d44]). 3032 ** 3033 ** (16) The outer query is not an aggregate or the subquery does 3034 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3035 ** until we introduced the group_concat() function. 3036 ** 3037 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3038 ** compound clause made up entirely of non-aggregate queries, and 3039 ** the parent query: 3040 ** 3041 ** * is not itself part of a compound select, 3042 ** * is not an aggregate or DISTINCT query, and 3043 ** * is not a join 3044 ** 3045 ** The parent and sub-query may contain WHERE clauses. Subject to 3046 ** rules (11), (13) and (14), they may also contain ORDER BY, 3047 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3048 ** operator other than UNION ALL because all the other compound 3049 ** operators have an implied DISTINCT which is disallowed by 3050 ** restriction (4). 3051 ** 3052 ** Also, each component of the sub-query must return the same number 3053 ** of result columns. This is actually a requirement for any compound 3054 ** SELECT statement, but all the code here does is make sure that no 3055 ** such (illegal) sub-query is flattened. The caller will detect the 3056 ** syntax error and return a detailed message. 3057 ** 3058 ** (18) If the sub-query is a compound select, then all terms of the 3059 ** ORDER by clause of the parent must be simple references to 3060 ** columns of the sub-query. 3061 ** 3062 ** (19) The subquery does not use LIMIT or the outer query does not 3063 ** have a WHERE clause. 3064 ** 3065 ** (20) If the sub-query is a compound select, then it must not use 3066 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3067 ** somewhat by saying that the terms of the ORDER BY clause must 3068 ** appear as unmodified result columns in the outer query. But we 3069 ** have other optimizations in mind to deal with that case. 3070 ** 3071 ** (21) The subquery does not use LIMIT or the outer query is not 3072 ** DISTINCT. (See ticket [752e1646fc]). 3073 ** 3074 ** (22) The subquery is not a recursive CTE. 3075 ** 3076 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3077 ** compound query. This restriction is because transforming the 3078 ** parent to a compound query confuses the code that handles 3079 ** recursive queries in multiSelect(). 3080 ** 3081 ** 3082 ** In this routine, the "p" parameter is a pointer to the outer query. 3083 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3084 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3085 ** 3086 ** If flattening is not attempted, this routine is a no-op and returns 0. 3087 ** If flattening is attempted this routine returns 1. 3088 ** 3089 ** All of the expression analysis must occur on both the outer query and 3090 ** the subquery before this routine runs. 3091 */ 3092 static int flattenSubquery( 3093 Parse *pParse, /* Parsing context */ 3094 Select *p, /* The parent or outer SELECT statement */ 3095 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3096 int isAgg, /* True if outer SELECT uses aggregate functions */ 3097 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3098 ){ 3099 const char *zSavedAuthContext = pParse->zAuthContext; 3100 Select *pParent; 3101 Select *pSub; /* The inner query or "subquery" */ 3102 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3103 SrcList *pSrc; /* The FROM clause of the outer query */ 3104 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3105 ExprList *pList; /* The result set of the outer query */ 3106 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3107 int i; /* Loop counter */ 3108 Expr *pWhere; /* The WHERE clause */ 3109 struct SrcList_item *pSubitem; /* The subquery */ 3110 sqlite3 *db = pParse->db; 3111 3112 /* Check to see if flattening is permitted. Return 0 if not. 3113 */ 3114 assert( p!=0 ); 3115 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3116 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3117 pSrc = p->pSrc; 3118 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3119 pSubitem = &pSrc->a[iFrom]; 3120 iParent = pSubitem->iCursor; 3121 pSub = pSubitem->pSelect; 3122 assert( pSub!=0 ); 3123 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3124 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3125 pSubSrc = pSub->pSrc; 3126 assert( pSubSrc ); 3127 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3128 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 3129 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3130 ** became arbitrary expressions, we were forced to add restrictions (13) 3131 ** and (14). */ 3132 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3133 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3134 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3135 return 0; /* Restriction (15) */ 3136 } 3137 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3138 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3139 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3140 return 0; /* Restrictions (8)(9) */ 3141 } 3142 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3143 return 0; /* Restriction (6) */ 3144 } 3145 if( p->pOrderBy && pSub->pOrderBy ){ 3146 return 0; /* Restriction (11) */ 3147 } 3148 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3149 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3150 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3151 return 0; /* Restriction (21) */ 3152 } 3153 if( pSub->selFlags & SF_Recursive ) return 0; /* Restriction (22) */ 3154 if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0; /* (23) */ 3155 3156 /* OBSOLETE COMMENT 1: 3157 ** Restriction 3: If the subquery is a join, make sure the subquery is 3158 ** not used as the right operand of an outer join. Examples of why this 3159 ** is not allowed: 3160 ** 3161 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3162 ** 3163 ** If we flatten the above, we would get 3164 ** 3165 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3166 ** 3167 ** which is not at all the same thing. 3168 ** 3169 ** OBSOLETE COMMENT 2: 3170 ** Restriction 12: If the subquery is the right operand of a left outer 3171 ** join, make sure the subquery has no WHERE clause. 3172 ** An examples of why this is not allowed: 3173 ** 3174 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3175 ** 3176 ** If we flatten the above, we would get 3177 ** 3178 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3179 ** 3180 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3181 ** effectively converts the OUTER JOIN into an INNER JOIN. 3182 ** 3183 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3184 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3185 ** is fraught with danger. Best to avoid the whole thing. If the 3186 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3187 */ 3188 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3189 return 0; 3190 } 3191 3192 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3193 ** use only the UNION ALL operator. And none of the simple select queries 3194 ** that make up the compound SELECT are allowed to be aggregate or distinct 3195 ** queries. 3196 */ 3197 if( pSub->pPrior ){ 3198 if( pSub->pOrderBy ){ 3199 return 0; /* Restriction 20 */ 3200 } 3201 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3202 return 0; 3203 } 3204 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3205 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3206 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3207 assert( pSub->pSrc!=0 ); 3208 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3209 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3210 || pSub1->pSrc->nSrc<1 3211 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3212 ){ 3213 return 0; 3214 } 3215 testcase( pSub1->pSrc->nSrc>1 ); 3216 } 3217 3218 /* Restriction 18. */ 3219 if( p->pOrderBy ){ 3220 int ii; 3221 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3222 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3223 } 3224 } 3225 } 3226 3227 /***** If we reach this point, flattening is permitted. *****/ 3228 3229 /* Authorize the subquery */ 3230 pParse->zAuthContext = pSubitem->zName; 3231 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3232 testcase( i==SQLITE_DENY ); 3233 pParse->zAuthContext = zSavedAuthContext; 3234 3235 /* If the sub-query is a compound SELECT statement, then (by restrictions 3236 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3237 ** be of the form: 3238 ** 3239 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3240 ** 3241 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3242 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3243 ** OFFSET clauses and joins them to the left-hand-side of the original 3244 ** using UNION ALL operators. In this case N is the number of simple 3245 ** select statements in the compound sub-query. 3246 ** 3247 ** Example: 3248 ** 3249 ** SELECT a+1 FROM ( 3250 ** SELECT x FROM tab 3251 ** UNION ALL 3252 ** SELECT y FROM tab 3253 ** UNION ALL 3254 ** SELECT abs(z*2) FROM tab2 3255 ** ) WHERE a!=5 ORDER BY 1 3256 ** 3257 ** Transformed into: 3258 ** 3259 ** SELECT x+1 FROM tab WHERE x+1!=5 3260 ** UNION ALL 3261 ** SELECT y+1 FROM tab WHERE y+1!=5 3262 ** UNION ALL 3263 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3264 ** ORDER BY 1 3265 ** 3266 ** We call this the "compound-subquery flattening". 3267 */ 3268 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3269 Select *pNew; 3270 ExprList *pOrderBy = p->pOrderBy; 3271 Expr *pLimit = p->pLimit; 3272 Expr *pOffset = p->pOffset; 3273 Select *pPrior = p->pPrior; 3274 p->pOrderBy = 0; 3275 p->pSrc = 0; 3276 p->pPrior = 0; 3277 p->pLimit = 0; 3278 p->pOffset = 0; 3279 pNew = sqlite3SelectDup(db, p, 0); 3280 p->pOffset = pOffset; 3281 p->pLimit = pLimit; 3282 p->pOrderBy = pOrderBy; 3283 p->pSrc = pSrc; 3284 p->op = TK_ALL; 3285 if( pNew==0 ){ 3286 p->pPrior = pPrior; 3287 }else{ 3288 pNew->pPrior = pPrior; 3289 if( pPrior ) pPrior->pNext = pNew; 3290 pNew->pNext = p; 3291 p->pPrior = pNew; 3292 } 3293 if( db->mallocFailed ) return 1; 3294 } 3295 3296 /* Begin flattening the iFrom-th entry of the FROM clause 3297 ** in the outer query. 3298 */ 3299 pSub = pSub1 = pSubitem->pSelect; 3300 3301 /* Delete the transient table structure associated with the 3302 ** subquery 3303 */ 3304 sqlite3DbFree(db, pSubitem->zDatabase); 3305 sqlite3DbFree(db, pSubitem->zName); 3306 sqlite3DbFree(db, pSubitem->zAlias); 3307 pSubitem->zDatabase = 0; 3308 pSubitem->zName = 0; 3309 pSubitem->zAlias = 0; 3310 pSubitem->pSelect = 0; 3311 3312 /* Defer deleting the Table object associated with the 3313 ** subquery until code generation is 3314 ** complete, since there may still exist Expr.pTab entries that 3315 ** refer to the subquery even after flattening. Ticket #3346. 3316 ** 3317 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3318 */ 3319 if( ALWAYS(pSubitem->pTab!=0) ){ 3320 Table *pTabToDel = pSubitem->pTab; 3321 if( pTabToDel->nRef==1 ){ 3322 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3323 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3324 pToplevel->pZombieTab = pTabToDel; 3325 }else{ 3326 pTabToDel->nRef--; 3327 } 3328 pSubitem->pTab = 0; 3329 } 3330 3331 /* The following loop runs once for each term in a compound-subquery 3332 ** flattening (as described above). If we are doing a different kind 3333 ** of flattening - a flattening other than a compound-subquery flattening - 3334 ** then this loop only runs once. 3335 ** 3336 ** This loop moves all of the FROM elements of the subquery into the 3337 ** the FROM clause of the outer query. Before doing this, remember 3338 ** the cursor number for the original outer query FROM element in 3339 ** iParent. The iParent cursor will never be used. Subsequent code 3340 ** will scan expressions looking for iParent references and replace 3341 ** those references with expressions that resolve to the subquery FROM 3342 ** elements we are now copying in. 3343 */ 3344 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3345 int nSubSrc; 3346 u8 jointype = 0; 3347 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3348 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3349 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3350 3351 if( pSrc ){ 3352 assert( pParent==p ); /* First time through the loop */ 3353 jointype = pSubitem->jointype; 3354 }else{ 3355 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3356 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3357 if( pSrc==0 ){ 3358 assert( db->mallocFailed ); 3359 break; 3360 } 3361 } 3362 3363 /* The subquery uses a single slot of the FROM clause of the outer 3364 ** query. If the subquery has more than one element in its FROM clause, 3365 ** then expand the outer query to make space for it to hold all elements 3366 ** of the subquery. 3367 ** 3368 ** Example: 3369 ** 3370 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3371 ** 3372 ** The outer query has 3 slots in its FROM clause. One slot of the 3373 ** outer query (the middle slot) is used by the subquery. The next 3374 ** block of code will expand the out query to 4 slots. The middle 3375 ** slot is expanded to two slots in order to make space for the 3376 ** two elements in the FROM clause of the subquery. 3377 */ 3378 if( nSubSrc>1 ){ 3379 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3380 if( db->mallocFailed ){ 3381 break; 3382 } 3383 } 3384 3385 /* Transfer the FROM clause terms from the subquery into the 3386 ** outer query. 3387 */ 3388 for(i=0; i<nSubSrc; i++){ 3389 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3390 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3391 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3392 } 3393 pSrc->a[iFrom].jointype = jointype; 3394 3395 /* Now begin substituting subquery result set expressions for 3396 ** references to the iParent in the outer query. 3397 ** 3398 ** Example: 3399 ** 3400 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3401 ** \ \_____________ subquery __________/ / 3402 ** \_____________________ outer query ______________________________/ 3403 ** 3404 ** We look at every expression in the outer query and every place we see 3405 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3406 */ 3407 pList = pParent->pEList; 3408 for(i=0; i<pList->nExpr; i++){ 3409 if( pList->a[i].zName==0 ){ 3410 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3411 sqlite3Dequote(zName); 3412 pList->a[i].zName = zName; 3413 } 3414 } 3415 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3416 if( isAgg ){ 3417 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3418 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3419 } 3420 if( pSub->pOrderBy ){ 3421 assert( pParent->pOrderBy==0 ); 3422 pParent->pOrderBy = pSub->pOrderBy; 3423 pSub->pOrderBy = 0; 3424 }else if( pParent->pOrderBy ){ 3425 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3426 } 3427 if( pSub->pWhere ){ 3428 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3429 }else{ 3430 pWhere = 0; 3431 } 3432 if( subqueryIsAgg ){ 3433 assert( pParent->pHaving==0 ); 3434 pParent->pHaving = pParent->pWhere; 3435 pParent->pWhere = pWhere; 3436 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3437 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3438 sqlite3ExprDup(db, pSub->pHaving, 0)); 3439 assert( pParent->pGroupBy==0 ); 3440 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3441 }else{ 3442 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3443 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3444 } 3445 3446 /* The flattened query is distinct if either the inner or the 3447 ** outer query is distinct. 3448 */ 3449 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3450 3451 /* 3452 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3453 ** 3454 ** One is tempted to try to add a and b to combine the limits. But this 3455 ** does not work if either limit is negative. 3456 */ 3457 if( pSub->pLimit ){ 3458 pParent->pLimit = pSub->pLimit; 3459 pSub->pLimit = 0; 3460 } 3461 } 3462 3463 /* Finially, delete what is left of the subquery and return 3464 ** success. 3465 */ 3466 sqlite3SelectDelete(db, pSub1); 3467 3468 return 1; 3469 } 3470 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3471 3472 /* 3473 ** Based on the contents of the AggInfo structure indicated by the first 3474 ** argument, this function checks if the following are true: 3475 ** 3476 ** * the query contains just a single aggregate function, 3477 ** * the aggregate function is either min() or max(), and 3478 ** * the argument to the aggregate function is a column value. 3479 ** 3480 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3481 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3482 ** list of arguments passed to the aggregate before returning. 3483 ** 3484 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3485 ** WHERE_ORDERBY_NORMAL is returned. 3486 */ 3487 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3488 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3489 3490 *ppMinMax = 0; 3491 if( pAggInfo->nFunc==1 ){ 3492 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3493 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3494 3495 assert( pExpr->op==TK_AGG_FUNCTION ); 3496 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3497 const char *zFunc = pExpr->u.zToken; 3498 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3499 eRet = WHERE_ORDERBY_MIN; 3500 *ppMinMax = pEList; 3501 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3502 eRet = WHERE_ORDERBY_MAX; 3503 *ppMinMax = pEList; 3504 } 3505 } 3506 } 3507 3508 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3509 return eRet; 3510 } 3511 3512 /* 3513 ** The select statement passed as the first argument is an aggregate query. 3514 ** The second argment is the associated aggregate-info object. This 3515 ** function tests if the SELECT is of the form: 3516 ** 3517 ** SELECT count(*) FROM <tbl> 3518 ** 3519 ** where table is a database table, not a sub-select or view. If the query 3520 ** does match this pattern, then a pointer to the Table object representing 3521 ** <tbl> is returned. Otherwise, 0 is returned. 3522 */ 3523 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3524 Table *pTab; 3525 Expr *pExpr; 3526 3527 assert( !p->pGroupBy ); 3528 3529 if( p->pWhere || p->pEList->nExpr!=1 3530 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3531 ){ 3532 return 0; 3533 } 3534 pTab = p->pSrc->a[0].pTab; 3535 pExpr = p->pEList->a[0].pExpr; 3536 assert( pTab && !pTab->pSelect && pExpr ); 3537 3538 if( IsVirtual(pTab) ) return 0; 3539 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3540 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3541 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3542 if( pExpr->flags&EP_Distinct ) return 0; 3543 3544 return pTab; 3545 } 3546 3547 /* 3548 ** If the source-list item passed as an argument was augmented with an 3549 ** INDEXED BY clause, then try to locate the specified index. If there 3550 ** was such a clause and the named index cannot be found, return 3551 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3552 ** pFrom->pIndex and return SQLITE_OK. 3553 */ 3554 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3555 if( pFrom->pTab && pFrom->zIndex ){ 3556 Table *pTab = pFrom->pTab; 3557 char *zIndex = pFrom->zIndex; 3558 Index *pIdx; 3559 for(pIdx=pTab->pIndex; 3560 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3561 pIdx=pIdx->pNext 3562 ); 3563 if( !pIdx ){ 3564 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3565 pParse->checkSchema = 1; 3566 return SQLITE_ERROR; 3567 } 3568 pFrom->pIndex = pIdx; 3569 } 3570 return SQLITE_OK; 3571 } 3572 /* 3573 ** Detect compound SELECT statements that use an ORDER BY clause with 3574 ** an alternative collating sequence. 3575 ** 3576 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3577 ** 3578 ** These are rewritten as a subquery: 3579 ** 3580 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3581 ** ORDER BY ... COLLATE ... 3582 ** 3583 ** This transformation is necessary because the multiSelectOrderBy() routine 3584 ** above that generates the code for a compound SELECT with an ORDER BY clause 3585 ** uses a merge algorithm that requires the same collating sequence on the 3586 ** result columns as on the ORDER BY clause. See ticket 3587 ** http://www.sqlite.org/src/info/6709574d2a 3588 ** 3589 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3590 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3591 ** there are COLLATE terms in the ORDER BY. 3592 */ 3593 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3594 int i; 3595 Select *pNew; 3596 Select *pX; 3597 sqlite3 *db; 3598 struct ExprList_item *a; 3599 SrcList *pNewSrc; 3600 Parse *pParse; 3601 Token dummy; 3602 3603 if( p->pPrior==0 ) return WRC_Continue; 3604 if( p->pOrderBy==0 ) return WRC_Continue; 3605 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3606 if( pX==0 ) return WRC_Continue; 3607 a = p->pOrderBy->a; 3608 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3609 if( a[i].pExpr->flags & EP_Collate ) break; 3610 } 3611 if( i<0 ) return WRC_Continue; 3612 3613 /* If we reach this point, that means the transformation is required. */ 3614 3615 pParse = pWalker->pParse; 3616 db = pParse->db; 3617 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3618 if( pNew==0 ) return WRC_Abort; 3619 memset(&dummy, 0, sizeof(dummy)); 3620 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3621 if( pNewSrc==0 ) return WRC_Abort; 3622 *pNew = *p; 3623 p->pSrc = pNewSrc; 3624 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3625 p->op = TK_SELECT; 3626 p->pWhere = 0; 3627 pNew->pGroupBy = 0; 3628 pNew->pHaving = 0; 3629 pNew->pOrderBy = 0; 3630 p->pPrior = 0; 3631 p->pNext = 0; 3632 p->selFlags &= ~SF_Compound; 3633 assert( pNew->pPrior!=0 ); 3634 pNew->pPrior->pNext = pNew; 3635 pNew->pLimit = 0; 3636 pNew->pOffset = 0; 3637 return WRC_Continue; 3638 } 3639 3640 #ifndef SQLITE_OMIT_CTE 3641 /* 3642 ** Argument pWith (which may be NULL) points to a linked list of nested 3643 ** WITH contexts, from inner to outermost. If the table identified by 3644 ** FROM clause element pItem is really a common-table-expression (CTE) 3645 ** then return a pointer to the CTE definition for that table. Otherwise 3646 ** return NULL. 3647 ** 3648 ** If a non-NULL value is returned, set *ppContext to point to the With 3649 ** object that the returned CTE belongs to. 3650 */ 3651 static struct Cte *searchWith( 3652 With *pWith, /* Current outermost WITH clause */ 3653 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3654 With **ppContext /* OUT: WITH clause return value belongs to */ 3655 ){ 3656 const char *zName; 3657 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3658 With *p; 3659 for(p=pWith; p; p=p->pOuter){ 3660 int i; 3661 for(i=0; i<p->nCte; i++){ 3662 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3663 *ppContext = p; 3664 return &p->a[i]; 3665 } 3666 } 3667 } 3668 } 3669 return 0; 3670 } 3671 3672 /* The code generator maintains a stack of active WITH clauses 3673 ** with the inner-most WITH clause being at the top of the stack. 3674 ** 3675 ** This routine pushes the WITH clause passed as the second argument 3676 ** onto the top of the stack. If argument bFree is true, then this 3677 ** WITH clause will never be popped from the stack. In this case it 3678 ** should be freed along with the Parse object. In other cases, when 3679 ** bFree==0, the With object will be freed along with the SELECT 3680 ** statement with which it is associated. 3681 */ 3682 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3683 assert( bFree==0 || pParse->pWith==0 ); 3684 if( pWith ){ 3685 pWith->pOuter = pParse->pWith; 3686 pParse->pWith = pWith; 3687 pParse->bFreeWith = bFree; 3688 } 3689 } 3690 3691 /* 3692 ** This function checks if argument pFrom refers to a CTE declared by 3693 ** a WITH clause on the stack currently maintained by the parser. And, 3694 ** if currently processing a CTE expression, if it is a recursive 3695 ** reference to the current CTE. 3696 ** 3697 ** If pFrom falls into either of the two categories above, pFrom->pTab 3698 ** and other fields are populated accordingly. The caller should check 3699 ** (pFrom->pTab!=0) to determine whether or not a successful match 3700 ** was found. 3701 ** 3702 ** Whether or not a match is found, SQLITE_OK is returned if no error 3703 ** occurs. If an error does occur, an error message is stored in the 3704 ** parser and some error code other than SQLITE_OK returned. 3705 */ 3706 static int withExpand( 3707 Walker *pWalker, 3708 struct SrcList_item *pFrom 3709 ){ 3710 Parse *pParse = pWalker->pParse; 3711 sqlite3 *db = pParse->db; 3712 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3713 With *pWith; /* WITH clause that pCte belongs to */ 3714 3715 assert( pFrom->pTab==0 ); 3716 3717 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3718 if( pCte ){ 3719 Table *pTab; 3720 ExprList *pEList; 3721 Select *pSel; 3722 Select *pLeft; /* Left-most SELECT statement */ 3723 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3724 With *pSavedWith; /* Initial value of pParse->pWith */ 3725 3726 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3727 ** recursive reference to CTE pCte. Leave an error in pParse and return 3728 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3729 ** In this case, proceed. */ 3730 if( pCte->zErr ){ 3731 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3732 return SQLITE_ERROR; 3733 } 3734 3735 assert( pFrom->pTab==0 ); 3736 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3737 if( pTab==0 ) return WRC_Abort; 3738 pTab->nRef = 1; 3739 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3740 pTab->iPKey = -1; 3741 pTab->nRowEst = 1048576; 3742 pTab->tabFlags |= TF_Ephemeral; 3743 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3744 if( db->mallocFailed ) return SQLITE_NOMEM; 3745 assert( pFrom->pSelect ); 3746 3747 /* Check if this is a recursive CTE. */ 3748 pSel = pFrom->pSelect; 3749 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3750 if( bMayRecursive ){ 3751 int i; 3752 SrcList *pSrc = pFrom->pSelect->pSrc; 3753 for(i=0; i<pSrc->nSrc; i++){ 3754 struct SrcList_item *pItem = &pSrc->a[i]; 3755 if( pItem->zDatabase==0 3756 && pItem->zName!=0 3757 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 3758 ){ 3759 pItem->pTab = pTab; 3760 pItem->isRecursive = 1; 3761 pTab->nRef++; 3762 pSel->selFlags |= SF_Recursive; 3763 } 3764 } 3765 } 3766 3767 /* Only one recursive reference is permitted. */ 3768 if( pTab->nRef>2 ){ 3769 sqlite3ErrorMsg( 3770 pParse, "multiple references to recursive table: %s", pCte->zName 3771 ); 3772 return SQLITE_ERROR; 3773 } 3774 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 3775 3776 pCte->zErr = "circular reference: %s"; 3777 pSavedWith = pParse->pWith; 3778 pParse->pWith = pWith; 3779 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 3780 3781 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 3782 pEList = pLeft->pEList; 3783 if( pCte->pCols ){ 3784 if( pEList->nExpr!=pCte->pCols->nExpr ){ 3785 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 3786 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 3787 ); 3788 pParse->pWith = pSavedWith; 3789 return SQLITE_ERROR; 3790 } 3791 pEList = pCte->pCols; 3792 } 3793 3794 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 3795 if( bMayRecursive ){ 3796 if( pSel->selFlags & SF_Recursive ){ 3797 pCte->zErr = "multiple recursive references: %s"; 3798 }else{ 3799 pCte->zErr = "recursive reference in a subquery: %s"; 3800 } 3801 sqlite3WalkSelect(pWalker, pSel); 3802 } 3803 pCte->zErr = 0; 3804 pParse->pWith = pSavedWith; 3805 } 3806 3807 return SQLITE_OK; 3808 } 3809 #endif 3810 3811 #ifndef SQLITE_OMIT_CTE 3812 /* 3813 ** If the SELECT passed as the second argument has an associated WITH 3814 ** clause, pop it from the stack stored as part of the Parse object. 3815 ** 3816 ** This function is used as the xSelectCallback2() callback by 3817 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 3818 ** names and other FROM clause elements. 3819 */ 3820 static void selectPopWith(Walker *pWalker, Select *p){ 3821 Parse *pParse = pWalker->pParse; 3822 With *pWith = findRightmost(p)->pWith; 3823 if( pWith!=0 ){ 3824 assert( pParse->pWith==pWith ); 3825 pParse->pWith = pWith->pOuter; 3826 } 3827 } 3828 #else 3829 #define selectPopWith 0 3830 #endif 3831 3832 /* 3833 ** This routine is a Walker callback for "expanding" a SELECT statement. 3834 ** "Expanding" means to do the following: 3835 ** 3836 ** (1) Make sure VDBE cursor numbers have been assigned to every 3837 ** element of the FROM clause. 3838 ** 3839 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3840 ** defines FROM clause. When views appear in the FROM clause, 3841 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3842 ** that implements the view. A copy is made of the view's SELECT 3843 ** statement so that we can freely modify or delete that statement 3844 ** without worrying about messing up the presistent representation 3845 ** of the view. 3846 ** 3847 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3848 ** on joins and the ON and USING clause of joins. 3849 ** 3850 ** (4) Scan the list of columns in the result set (pEList) looking 3851 ** for instances of the "*" operator or the TABLE.* operator. 3852 ** If found, expand each "*" to be every column in every table 3853 ** and TABLE.* to be every column in TABLE. 3854 ** 3855 */ 3856 static int selectExpander(Walker *pWalker, Select *p){ 3857 Parse *pParse = pWalker->pParse; 3858 int i, j, k; 3859 SrcList *pTabList; 3860 ExprList *pEList; 3861 struct SrcList_item *pFrom; 3862 sqlite3 *db = pParse->db; 3863 Expr *pE, *pRight, *pExpr; 3864 u16 selFlags = p->selFlags; 3865 3866 p->selFlags |= SF_Expanded; 3867 if( db->mallocFailed ){ 3868 return WRC_Abort; 3869 } 3870 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 3871 return WRC_Prune; 3872 } 3873 pTabList = p->pSrc; 3874 pEList = p->pEList; 3875 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 3876 3877 /* Make sure cursor numbers have been assigned to all entries in 3878 ** the FROM clause of the SELECT statement. 3879 */ 3880 sqlite3SrcListAssignCursors(pParse, pTabList); 3881 3882 /* Look up every table named in the FROM clause of the select. If 3883 ** an entry of the FROM clause is a subquery instead of a table or view, 3884 ** then create a transient table structure to describe the subquery. 3885 */ 3886 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3887 Table *pTab; 3888 assert( pFrom->isRecursive==0 || pFrom->pTab ); 3889 if( pFrom->isRecursive ) continue; 3890 if( pFrom->pTab!=0 ){ 3891 /* This statement has already been prepared. There is no need 3892 ** to go further. */ 3893 assert( i==0 ); 3894 #ifndef SQLITE_OMIT_CTE 3895 selectPopWith(pWalker, p); 3896 #endif 3897 return WRC_Prune; 3898 } 3899 #ifndef SQLITE_OMIT_CTE 3900 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 3901 if( pFrom->pTab ) {} else 3902 #endif 3903 if( pFrom->zName==0 ){ 3904 #ifndef SQLITE_OMIT_SUBQUERY 3905 Select *pSel = pFrom->pSelect; 3906 /* A sub-query in the FROM clause of a SELECT */ 3907 assert( pSel!=0 ); 3908 assert( pFrom->pTab==0 ); 3909 sqlite3WalkSelect(pWalker, pSel); 3910 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3911 if( pTab==0 ) return WRC_Abort; 3912 pTab->nRef = 1; 3913 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 3914 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3915 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3916 pTab->iPKey = -1; 3917 pTab->nRowEst = 1048576; 3918 pTab->tabFlags |= TF_Ephemeral; 3919 #endif 3920 }else{ 3921 /* An ordinary table or view name in the FROM clause */ 3922 assert( pFrom->pTab==0 ); 3923 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 3924 if( pTab==0 ) return WRC_Abort; 3925 if( pTab->nRef==0xffff ){ 3926 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 3927 pTab->zName); 3928 pFrom->pTab = 0; 3929 return WRC_Abort; 3930 } 3931 pTab->nRef++; 3932 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3933 if( pTab->pSelect || IsVirtual(pTab) ){ 3934 /* We reach here if the named table is a really a view */ 3935 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3936 assert( pFrom->pSelect==0 ); 3937 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3938 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3939 } 3940 #endif 3941 } 3942 3943 /* Locate the index named by the INDEXED BY clause, if any. */ 3944 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3945 return WRC_Abort; 3946 } 3947 } 3948 3949 /* Process NATURAL keywords, and ON and USING clauses of joins. 3950 */ 3951 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3952 return WRC_Abort; 3953 } 3954 3955 /* For every "*" that occurs in the column list, insert the names of 3956 ** all columns in all tables. And for every TABLE.* insert the names 3957 ** of all columns in TABLE. The parser inserted a special expression 3958 ** with the TK_ALL operator for each "*" that it found in the column list. 3959 ** The following code just has to locate the TK_ALL expressions and expand 3960 ** each one to the list of all columns in all tables. 3961 ** 3962 ** The first loop just checks to see if there are any "*" operators 3963 ** that need expanding. 3964 */ 3965 for(k=0; k<pEList->nExpr; k++){ 3966 pE = pEList->a[k].pExpr; 3967 if( pE->op==TK_ALL ) break; 3968 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3969 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3970 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3971 } 3972 if( k<pEList->nExpr ){ 3973 /* 3974 ** If we get here it means the result set contains one or more "*" 3975 ** operators that need to be expanded. Loop through each expression 3976 ** in the result set and expand them one by one. 3977 */ 3978 struct ExprList_item *a = pEList->a; 3979 ExprList *pNew = 0; 3980 int flags = pParse->db->flags; 3981 int longNames = (flags & SQLITE_FullColNames)!=0 3982 && (flags & SQLITE_ShortColNames)==0; 3983 3984 /* When processing FROM-clause subqueries, it is always the case 3985 ** that full_column_names=OFF and short_column_names=ON. The 3986 ** sqlite3ResultSetOfSelect() routine makes it so. */ 3987 assert( (p->selFlags & SF_NestedFrom)==0 3988 || ((flags & SQLITE_FullColNames)==0 && 3989 (flags & SQLITE_ShortColNames)!=0) ); 3990 3991 for(k=0; k<pEList->nExpr; k++){ 3992 pE = a[k].pExpr; 3993 pRight = pE->pRight; 3994 assert( pE->op!=TK_DOT || pRight!=0 ); 3995 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 3996 /* This particular expression does not need to be expanded. 3997 */ 3998 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3999 if( pNew ){ 4000 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4001 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4002 a[k].zName = 0; 4003 a[k].zSpan = 0; 4004 } 4005 a[k].pExpr = 0; 4006 }else{ 4007 /* This expression is a "*" or a "TABLE.*" and needs to be 4008 ** expanded. */ 4009 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4010 char *zTName = 0; /* text of name of TABLE */ 4011 if( pE->op==TK_DOT ){ 4012 assert( pE->pLeft!=0 ); 4013 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4014 zTName = pE->pLeft->u.zToken; 4015 } 4016 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4017 Table *pTab = pFrom->pTab; 4018 Select *pSub = pFrom->pSelect; 4019 char *zTabName = pFrom->zAlias; 4020 const char *zSchemaName = 0; 4021 int iDb; 4022 if( zTabName==0 ){ 4023 zTabName = pTab->zName; 4024 } 4025 if( db->mallocFailed ) break; 4026 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4027 pSub = 0; 4028 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4029 continue; 4030 } 4031 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4032 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4033 } 4034 for(j=0; j<pTab->nCol; j++){ 4035 char *zName = pTab->aCol[j].zName; 4036 char *zColname; /* The computed column name */ 4037 char *zToFree; /* Malloced string that needs to be freed */ 4038 Token sColname; /* Computed column name as a token */ 4039 4040 assert( zName ); 4041 if( zTName && pSub 4042 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4043 ){ 4044 continue; 4045 } 4046 4047 /* If a column is marked as 'hidden' (currently only possible 4048 ** for virtual tables), do not include it in the expanded 4049 ** result-set list. 4050 */ 4051 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4052 assert(IsVirtual(pTab)); 4053 continue; 4054 } 4055 tableSeen = 1; 4056 4057 if( i>0 && zTName==0 ){ 4058 if( (pFrom->jointype & JT_NATURAL)!=0 4059 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4060 ){ 4061 /* In a NATURAL join, omit the join columns from the 4062 ** table to the right of the join */ 4063 continue; 4064 } 4065 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4066 /* In a join with a USING clause, omit columns in the 4067 ** using clause from the table on the right. */ 4068 continue; 4069 } 4070 } 4071 pRight = sqlite3Expr(db, TK_ID, zName); 4072 zColname = zName; 4073 zToFree = 0; 4074 if( longNames || pTabList->nSrc>1 ){ 4075 Expr *pLeft; 4076 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4077 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4078 if( zSchemaName ){ 4079 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4080 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4081 } 4082 if( longNames ){ 4083 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4084 zToFree = zColname; 4085 } 4086 }else{ 4087 pExpr = pRight; 4088 } 4089 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4090 sColname.z = zColname; 4091 sColname.n = sqlite3Strlen30(zColname); 4092 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4093 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4094 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4095 if( pSub ){ 4096 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4097 testcase( pX->zSpan==0 ); 4098 }else{ 4099 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4100 zSchemaName, zTabName, zColname); 4101 testcase( pX->zSpan==0 ); 4102 } 4103 pX->bSpanIsTab = 1; 4104 } 4105 sqlite3DbFree(db, zToFree); 4106 } 4107 } 4108 if( !tableSeen ){ 4109 if( zTName ){ 4110 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4111 }else{ 4112 sqlite3ErrorMsg(pParse, "no tables specified"); 4113 } 4114 } 4115 } 4116 } 4117 sqlite3ExprListDelete(db, pEList); 4118 p->pEList = pNew; 4119 } 4120 #if SQLITE_MAX_COLUMN 4121 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4122 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4123 } 4124 #endif 4125 return WRC_Continue; 4126 } 4127 4128 /* 4129 ** No-op routine for the parse-tree walker. 4130 ** 4131 ** When this routine is the Walker.xExprCallback then expression trees 4132 ** are walked without any actions being taken at each node. Presumably, 4133 ** when this routine is used for Walker.xExprCallback then 4134 ** Walker.xSelectCallback is set to do something useful for every 4135 ** subquery in the parser tree. 4136 */ 4137 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4138 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4139 return WRC_Continue; 4140 } 4141 4142 /* 4143 ** This routine "expands" a SELECT statement and all of its subqueries. 4144 ** For additional information on what it means to "expand" a SELECT 4145 ** statement, see the comment on the selectExpand worker callback above. 4146 ** 4147 ** Expanding a SELECT statement is the first step in processing a 4148 ** SELECT statement. The SELECT statement must be expanded before 4149 ** name resolution is performed. 4150 ** 4151 ** If anything goes wrong, an error message is written into pParse. 4152 ** The calling function can detect the problem by looking at pParse->nErr 4153 ** and/or pParse->db->mallocFailed. 4154 */ 4155 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4156 Walker w; 4157 memset(&w, 0, sizeof(w)); 4158 w.xExprCallback = exprWalkNoop; 4159 w.pParse = pParse; 4160 if( pParse->hasCompound ){ 4161 w.xSelectCallback = convertCompoundSelectToSubquery; 4162 sqlite3WalkSelect(&w, pSelect); 4163 } 4164 w.xSelectCallback = selectExpander; 4165 w.xSelectCallback2 = selectPopWith; 4166 sqlite3WalkSelect(&w, pSelect); 4167 } 4168 4169 4170 #ifndef SQLITE_OMIT_SUBQUERY 4171 /* 4172 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4173 ** interface. 4174 ** 4175 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4176 ** information to the Table structure that represents the result set 4177 ** of that subquery. 4178 ** 4179 ** The Table structure that represents the result set was constructed 4180 ** by selectExpander() but the type and collation information was omitted 4181 ** at that point because identifiers had not yet been resolved. This 4182 ** routine is called after identifier resolution. 4183 */ 4184 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4185 Parse *pParse; 4186 int i; 4187 SrcList *pTabList; 4188 struct SrcList_item *pFrom; 4189 4190 assert( p->selFlags & SF_Resolved ); 4191 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4192 p->selFlags |= SF_HasTypeInfo; 4193 pParse = pWalker->pParse; 4194 pTabList = p->pSrc; 4195 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4196 Table *pTab = pFrom->pTab; 4197 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4198 /* A sub-query in the FROM clause of a SELECT */ 4199 Select *pSel = pFrom->pSelect; 4200 if( pSel ){ 4201 while( pSel->pPrior ) pSel = pSel->pPrior; 4202 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4203 } 4204 } 4205 } 4206 } 4207 } 4208 #endif 4209 4210 4211 /* 4212 ** This routine adds datatype and collating sequence information to 4213 ** the Table structures of all FROM-clause subqueries in a 4214 ** SELECT statement. 4215 ** 4216 ** Use this routine after name resolution. 4217 */ 4218 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4219 #ifndef SQLITE_OMIT_SUBQUERY 4220 Walker w; 4221 memset(&w, 0, sizeof(w)); 4222 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4223 w.xExprCallback = exprWalkNoop; 4224 w.pParse = pParse; 4225 sqlite3WalkSelect(&w, pSelect); 4226 #endif 4227 } 4228 4229 4230 /* 4231 ** This routine sets up a SELECT statement for processing. The 4232 ** following is accomplished: 4233 ** 4234 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4235 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4236 ** * ON and USING clauses are shifted into WHERE statements 4237 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4238 ** * Identifiers in expression are matched to tables. 4239 ** 4240 ** This routine acts recursively on all subqueries within the SELECT. 4241 */ 4242 void sqlite3SelectPrep( 4243 Parse *pParse, /* The parser context */ 4244 Select *p, /* The SELECT statement being coded. */ 4245 NameContext *pOuterNC /* Name context for container */ 4246 ){ 4247 sqlite3 *db; 4248 if( NEVER(p==0) ) return; 4249 db = pParse->db; 4250 if( db->mallocFailed ) return; 4251 if( p->selFlags & SF_HasTypeInfo ) return; 4252 sqlite3SelectExpand(pParse, p); 4253 if( pParse->nErr || db->mallocFailed ) return; 4254 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4255 if( pParse->nErr || db->mallocFailed ) return; 4256 sqlite3SelectAddTypeInfo(pParse, p); 4257 } 4258 4259 /* 4260 ** Reset the aggregate accumulator. 4261 ** 4262 ** The aggregate accumulator is a set of memory cells that hold 4263 ** intermediate results while calculating an aggregate. This 4264 ** routine generates code that stores NULLs in all of those memory 4265 ** cells. 4266 */ 4267 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4268 Vdbe *v = pParse->pVdbe; 4269 int i; 4270 struct AggInfo_func *pFunc; 4271 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4272 if( nReg==0 ) return; 4273 #ifdef SQLITE_DEBUG 4274 /* Verify that all AggInfo registers are within the range specified by 4275 ** AggInfo.mnReg..AggInfo.mxReg */ 4276 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4277 for(i=0; i<pAggInfo->nColumn; i++){ 4278 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4279 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4280 } 4281 for(i=0; i<pAggInfo->nFunc; i++){ 4282 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4283 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4284 } 4285 #endif 4286 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4287 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4288 if( pFunc->iDistinct>=0 ){ 4289 Expr *pE = pFunc->pExpr; 4290 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4291 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4292 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4293 "argument"); 4294 pFunc->iDistinct = -1; 4295 }else{ 4296 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0); 4297 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4298 (char*)pKeyInfo, P4_KEYINFO); 4299 } 4300 } 4301 } 4302 } 4303 4304 /* 4305 ** Invoke the OP_AggFinalize opcode for every aggregate function 4306 ** in the AggInfo structure. 4307 */ 4308 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4309 Vdbe *v = pParse->pVdbe; 4310 int i; 4311 struct AggInfo_func *pF; 4312 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4313 ExprList *pList = pF->pExpr->x.pList; 4314 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4315 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4316 (void*)pF->pFunc, P4_FUNCDEF); 4317 } 4318 } 4319 4320 /* 4321 ** Update the accumulator memory cells for an aggregate based on 4322 ** the current cursor position. 4323 */ 4324 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4325 Vdbe *v = pParse->pVdbe; 4326 int i; 4327 int regHit = 0; 4328 int addrHitTest = 0; 4329 struct AggInfo_func *pF; 4330 struct AggInfo_col *pC; 4331 4332 pAggInfo->directMode = 1; 4333 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4334 int nArg; 4335 int addrNext = 0; 4336 int regAgg; 4337 ExprList *pList = pF->pExpr->x.pList; 4338 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4339 if( pList ){ 4340 nArg = pList->nExpr; 4341 regAgg = sqlite3GetTempRange(pParse, nArg); 4342 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4343 }else{ 4344 nArg = 0; 4345 regAgg = 0; 4346 } 4347 if( pF->iDistinct>=0 ){ 4348 addrNext = sqlite3VdbeMakeLabel(v); 4349 assert( nArg==1 ); 4350 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4351 } 4352 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4353 CollSeq *pColl = 0; 4354 struct ExprList_item *pItem; 4355 int j; 4356 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4357 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4358 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4359 } 4360 if( !pColl ){ 4361 pColl = pParse->db->pDfltColl; 4362 } 4363 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4364 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4365 } 4366 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4367 (void*)pF->pFunc, P4_FUNCDEF); 4368 sqlite3VdbeChangeP5(v, (u8)nArg); 4369 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4370 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4371 if( addrNext ){ 4372 sqlite3VdbeResolveLabel(v, addrNext); 4373 sqlite3ExprCacheClear(pParse); 4374 } 4375 } 4376 4377 /* Before populating the accumulator registers, clear the column cache. 4378 ** Otherwise, if any of the required column values are already present 4379 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4380 ** to pC->iMem. But by the time the value is used, the original register 4381 ** may have been used, invalidating the underlying buffer holding the 4382 ** text or blob value. See ticket [883034dcb5]. 4383 ** 4384 ** Another solution would be to change the OP_SCopy used to copy cached 4385 ** values to an OP_Copy. 4386 */ 4387 if( regHit ){ 4388 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); 4389 } 4390 sqlite3ExprCacheClear(pParse); 4391 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4392 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4393 } 4394 pAggInfo->directMode = 0; 4395 sqlite3ExprCacheClear(pParse); 4396 if( addrHitTest ){ 4397 sqlite3VdbeJumpHere(v, addrHitTest); 4398 } 4399 } 4400 4401 /* 4402 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4403 ** count(*) query ("SELECT count(*) FROM pTab"). 4404 */ 4405 #ifndef SQLITE_OMIT_EXPLAIN 4406 static void explainSimpleCount( 4407 Parse *pParse, /* Parse context */ 4408 Table *pTab, /* Table being queried */ 4409 Index *pIdx /* Index used to optimize scan, or NULL */ 4410 ){ 4411 if( pParse->explain==2 ){ 4412 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4413 pTab->zName, 4414 pIdx ? " USING COVERING INDEX " : "", 4415 pIdx ? pIdx->zName : "" 4416 ); 4417 sqlite3VdbeAddOp4( 4418 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4419 ); 4420 } 4421 } 4422 #else 4423 # define explainSimpleCount(a,b,c) 4424 #endif 4425 4426 /* 4427 ** Generate code for the SELECT statement given in the p argument. 4428 ** 4429 ** The results are returned according to the SelectDest structure. 4430 ** See comments in sqliteInt.h for further information. 4431 ** 4432 ** This routine returns the number of errors. If any errors are 4433 ** encountered, then an appropriate error message is left in 4434 ** pParse->zErrMsg. 4435 ** 4436 ** This routine does NOT free the Select structure passed in. The 4437 ** calling function needs to do that. 4438 */ 4439 int sqlite3Select( 4440 Parse *pParse, /* The parser context */ 4441 Select *p, /* The SELECT statement being coded. */ 4442 SelectDest *pDest /* What to do with the query results */ 4443 ){ 4444 int i, j; /* Loop counters */ 4445 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4446 Vdbe *v; /* The virtual machine under construction */ 4447 int isAgg; /* True for select lists like "count(*)" */ 4448 ExprList *pEList; /* List of columns to extract. */ 4449 SrcList *pTabList; /* List of tables to select from */ 4450 Expr *pWhere; /* The WHERE clause. May be NULL */ 4451 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 4452 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4453 Expr *pHaving; /* The HAVING clause. May be NULL */ 4454 int rc = 1; /* Value to return from this function */ 4455 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 4456 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4457 AggInfo sAggInfo; /* Information used by aggregate queries */ 4458 int iEnd; /* Address of the end of the query */ 4459 sqlite3 *db; /* The database connection */ 4460 4461 #ifndef SQLITE_OMIT_EXPLAIN 4462 int iRestoreSelectId = pParse->iSelectId; 4463 pParse->iSelectId = pParse->iNextSelectId++; 4464 #endif 4465 4466 db = pParse->db; 4467 if( p==0 || db->mallocFailed || pParse->nErr ){ 4468 return 1; 4469 } 4470 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4471 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4472 4473 if( IgnorableOrderby(pDest) ){ 4474 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4475 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 4476 /* If ORDER BY makes no difference in the output then neither does 4477 ** DISTINCT so it can be removed too. */ 4478 sqlite3ExprListDelete(db, p->pOrderBy); 4479 p->pOrderBy = 0; 4480 p->selFlags &= ~SF_Distinct; 4481 } 4482 sqlite3SelectPrep(pParse, p, 0); 4483 pOrderBy = p->pOrderBy; 4484 pTabList = p->pSrc; 4485 pEList = p->pEList; 4486 if( pParse->nErr || db->mallocFailed ){ 4487 goto select_end; 4488 } 4489 isAgg = (p->selFlags & SF_Aggregate)!=0; 4490 assert( pEList!=0 ); 4491 4492 /* Begin generating code. 4493 */ 4494 v = sqlite3GetVdbe(pParse); 4495 if( v==0 ) goto select_end; 4496 4497 /* If writing to memory or generating a set 4498 ** only a single column may be output. 4499 */ 4500 #ifndef SQLITE_OMIT_SUBQUERY 4501 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4502 goto select_end; 4503 } 4504 #endif 4505 4506 /* Generate code for all sub-queries in the FROM clause 4507 */ 4508 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4509 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4510 struct SrcList_item *pItem = &pTabList->a[i]; 4511 SelectDest dest; 4512 Select *pSub = pItem->pSelect; 4513 int isAggSub; 4514 4515 if( pSub==0 ) continue; 4516 4517 /* Sometimes the code for a subquery will be generated more than 4518 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4519 ** for example. In that case, do not regenerate the code to manifest 4520 ** a view or the co-routine to implement a view. The first instance 4521 ** is sufficient, though the subroutine to manifest the view does need 4522 ** to be invoked again. */ 4523 if( pItem->addrFillSub ){ 4524 if( pItem->viaCoroutine==0 ){ 4525 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4526 } 4527 continue; 4528 } 4529 4530 /* Increment Parse.nHeight by the height of the largest expression 4531 ** tree referred to by this, the parent select. The child select 4532 ** may contain expression trees of at most 4533 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4534 ** more conservative than necessary, but much easier than enforcing 4535 ** an exact limit. 4536 */ 4537 pParse->nHeight += sqlite3SelectExprHeight(p); 4538 4539 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4540 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4541 /* This subquery can be absorbed into its parent. */ 4542 if( isAggSub ){ 4543 isAgg = 1; 4544 p->selFlags |= SF_Aggregate; 4545 } 4546 i = -1; 4547 }else if( pTabList->nSrc==1 4548 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4549 ){ 4550 /* Implement a co-routine that will return a single row of the result 4551 ** set on each invocation. 4552 */ 4553 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4554 pItem->regReturn = ++pParse->nMem; 4555 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4556 VdbeComment((v, "%s", pItem->pTab->zName)); 4557 pItem->addrFillSub = addrTop; 4558 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4559 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4560 sqlite3Select(pParse, pSub, &dest); 4561 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 4562 pItem->viaCoroutine = 1; 4563 pItem->regResult = dest.iSdst; 4564 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4565 sqlite3VdbeJumpHere(v, addrTop-1); 4566 sqlite3ClearTempRegCache(pParse); 4567 }else{ 4568 /* Generate a subroutine that will fill an ephemeral table with 4569 ** the content of this subquery. pItem->addrFillSub will point 4570 ** to the address of the generated subroutine. pItem->regReturn 4571 ** is a register allocated to hold the subroutine return address 4572 */ 4573 int topAddr; 4574 int onceAddr = 0; 4575 int retAddr; 4576 assert( pItem->addrFillSub==0 ); 4577 pItem->regReturn = ++pParse->nMem; 4578 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4579 pItem->addrFillSub = topAddr+1; 4580 if( pItem->isCorrelated==0 ){ 4581 /* If the subquery is not correlated and if we are not inside of 4582 ** a trigger, then we only need to compute the value of the subquery 4583 ** once. */ 4584 onceAddr = sqlite3CodeOnce(pParse); 4585 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4586 }else{ 4587 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4588 } 4589 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4590 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4591 sqlite3Select(pParse, pSub, &dest); 4592 pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow; 4593 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4594 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4595 VdbeComment((v, "end %s", pItem->pTab->zName)); 4596 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4597 sqlite3ClearTempRegCache(pParse); 4598 } 4599 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4600 goto select_end; 4601 } 4602 pParse->nHeight -= sqlite3SelectExprHeight(p); 4603 pTabList = p->pSrc; 4604 if( !IgnorableOrderby(pDest) ){ 4605 pOrderBy = p->pOrderBy; 4606 } 4607 } 4608 pEList = p->pEList; 4609 #endif 4610 pWhere = p->pWhere; 4611 pGroupBy = p->pGroupBy; 4612 pHaving = p->pHaving; 4613 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4614 4615 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4616 /* If there is are a sequence of queries, do the earlier ones first. 4617 */ 4618 if( p->pPrior ){ 4619 rc = multiSelect(pParse, p, pDest); 4620 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4621 return rc; 4622 } 4623 #endif 4624 4625 /* If there is both a GROUP BY and an ORDER BY clause and they are 4626 ** identical, then disable the ORDER BY clause since the GROUP BY 4627 ** will cause elements to come out in the correct order. This is 4628 ** an optimization - the correct answer should result regardless. 4629 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 4630 ** to disable this optimization for testing purposes. 4631 */ 4632 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy, -1)==0 4633 && OptimizationEnabled(db, SQLITE_GroupByOrder) ){ 4634 pOrderBy = 0; 4635 } 4636 4637 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4638 ** if the select-list is the same as the ORDER BY list, then this query 4639 ** can be rewritten as a GROUP BY. In other words, this: 4640 ** 4641 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4642 ** 4643 ** is transformed to: 4644 ** 4645 ** SELECT xyz FROM ... GROUP BY xyz 4646 ** 4647 ** The second form is preferred as a single index (or temp-table) may be 4648 ** used for both the ORDER BY and DISTINCT processing. As originally 4649 ** written the query must use a temp-table for at least one of the ORDER 4650 ** BY and DISTINCT, and an index or separate temp-table for the other. 4651 */ 4652 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4653 && sqlite3ExprListCompare(pOrderBy, p->pEList, -1)==0 4654 ){ 4655 p->selFlags &= ~SF_Distinct; 4656 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4657 pGroupBy = p->pGroupBy; 4658 pOrderBy = 0; 4659 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4660 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4661 ** original setting of the SF_Distinct flag, not the current setting */ 4662 assert( sDistinct.isTnct ); 4663 } 4664 4665 /* If there is an ORDER BY clause, then this sorting 4666 ** index might end up being unused if the data can be 4667 ** extracted in pre-sorted order. If that is the case, then the 4668 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4669 ** we figure out that the sorting index is not needed. The addrSortIndex 4670 ** variable is used to facilitate that change. 4671 */ 4672 if( pOrderBy ){ 4673 KeyInfo *pKeyInfo; 4674 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy, 0); 4675 pOrderBy->iECursor = pParse->nTab++; 4676 p->addrOpenEphm[2] = addrSortIndex = 4677 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4678 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 4679 (char*)pKeyInfo, P4_KEYINFO); 4680 }else{ 4681 addrSortIndex = -1; 4682 } 4683 4684 /* If the output is destined for a temporary table, open that table. 4685 */ 4686 if( pDest->eDest==SRT_EphemTab ){ 4687 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4688 } 4689 4690 /* Set the limiter. 4691 */ 4692 iEnd = sqlite3VdbeMakeLabel(v); 4693 p->nSelectRow = LARGEST_INT64; 4694 computeLimitRegisters(pParse, p, iEnd); 4695 if( p->iLimit==0 && addrSortIndex>=0 ){ 4696 sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; 4697 p->selFlags |= SF_UseSorter; 4698 } 4699 4700 /* Open a virtual index to use for the distinct set. 4701 */ 4702 if( p->selFlags & SF_Distinct ){ 4703 sDistinct.tabTnct = pParse->nTab++; 4704 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4705 sDistinct.tabTnct, 0, 0, 4706 (char*)keyInfoFromExprList(pParse, p->pEList, 0), 4707 P4_KEYINFO); 4708 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4709 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4710 }else{ 4711 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4712 } 4713 4714 if( !isAgg && pGroupBy==0 ){ 4715 /* No aggregate functions and no GROUP BY clause */ 4716 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4717 4718 /* Begin the database scan. */ 4719 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, p->pEList, 4720 wctrlFlags, 0); 4721 if( pWInfo==0 ) goto select_end; 4722 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4723 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4724 } 4725 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4726 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4727 } 4728 if( pOrderBy && sqlite3WhereIsOrdered(pWInfo) ) pOrderBy = 0; 4729 4730 /* If sorting index that was created by a prior OP_OpenEphemeral 4731 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4732 ** into an OP_Noop. 4733 */ 4734 if( addrSortIndex>=0 && pOrderBy==0 ){ 4735 sqlite3VdbeChangeToNoop(v, addrSortIndex); 4736 p->addrOpenEphm[2] = -1; 4737 } 4738 4739 /* Use the standard inner loop. */ 4740 selectInnerLoop(pParse, p, pEList, -1, pOrderBy, &sDistinct, pDest, 4741 sqlite3WhereContinueLabel(pWInfo), 4742 sqlite3WhereBreakLabel(pWInfo)); 4743 4744 /* End the database scan loop. 4745 */ 4746 sqlite3WhereEnd(pWInfo); 4747 }else{ 4748 /* This case when there exist aggregate functions or a GROUP BY clause 4749 ** or both */ 4750 NameContext sNC; /* Name context for processing aggregate information */ 4751 int iAMem; /* First Mem address for storing current GROUP BY */ 4752 int iBMem; /* First Mem address for previous GROUP BY */ 4753 int iUseFlag; /* Mem address holding flag indicating that at least 4754 ** one row of the input to the aggregator has been 4755 ** processed */ 4756 int iAbortFlag; /* Mem address which causes query abort if positive */ 4757 int groupBySort; /* Rows come from source in GROUP BY order */ 4758 int addrEnd; /* End of processing for this SELECT */ 4759 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4760 int sortOut = 0; /* Output register from the sorter */ 4761 4762 /* Remove any and all aliases between the result set and the 4763 ** GROUP BY clause. 4764 */ 4765 if( pGroupBy ){ 4766 int k; /* Loop counter */ 4767 struct ExprList_item *pItem; /* For looping over expression in a list */ 4768 4769 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4770 pItem->u.x.iAlias = 0; 4771 } 4772 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4773 pItem->u.x.iAlias = 0; 4774 } 4775 if( p->nSelectRow>100 ) p->nSelectRow = 100; 4776 }else{ 4777 p->nSelectRow = 1; 4778 } 4779 4780 4781 /* Create a label to jump to when we want to abort the query */ 4782 addrEnd = sqlite3VdbeMakeLabel(v); 4783 4784 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4785 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4786 ** SELECT statement. 4787 */ 4788 memset(&sNC, 0, sizeof(sNC)); 4789 sNC.pParse = pParse; 4790 sNC.pSrcList = pTabList; 4791 sNC.pAggInfo = &sAggInfo; 4792 sAggInfo.mnReg = pParse->nMem+1; 4793 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4794 sAggInfo.pGroupBy = pGroupBy; 4795 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4796 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 4797 if( pHaving ){ 4798 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4799 } 4800 sAggInfo.nAccumulator = sAggInfo.nColumn; 4801 for(i=0; i<sAggInfo.nFunc; i++){ 4802 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4803 sNC.ncFlags |= NC_InAggFunc; 4804 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4805 sNC.ncFlags &= ~NC_InAggFunc; 4806 } 4807 sAggInfo.mxReg = pParse->nMem; 4808 if( db->mallocFailed ) goto select_end; 4809 4810 /* Processing for aggregates with GROUP BY is very different and 4811 ** much more complex than aggregates without a GROUP BY. 4812 */ 4813 if( pGroupBy ){ 4814 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4815 int j1; /* A-vs-B comparision jump */ 4816 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4817 int regOutputRow; /* Return address register for output subroutine */ 4818 int addrSetAbort; /* Set the abort flag and return */ 4819 int addrTopOfLoop; /* Top of the input loop */ 4820 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4821 int addrReset; /* Subroutine for resetting the accumulator */ 4822 int regReset; /* Return address register for reset subroutine */ 4823 4824 /* If there is a GROUP BY clause we might need a sorting index to 4825 ** implement it. Allocate that sorting index now. If it turns out 4826 ** that we do not need it after all, the OP_SorterOpen instruction 4827 ** will be converted into a Noop. 4828 */ 4829 sAggInfo.sortingIdx = pParse->nTab++; 4830 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0); 4831 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4832 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4833 0, (char*)pKeyInfo, P4_KEYINFO); 4834 4835 /* Initialize memory locations used by GROUP BY aggregate processing 4836 */ 4837 iUseFlag = ++pParse->nMem; 4838 iAbortFlag = ++pParse->nMem; 4839 regOutputRow = ++pParse->nMem; 4840 addrOutputRow = sqlite3VdbeMakeLabel(v); 4841 regReset = ++pParse->nMem; 4842 addrReset = sqlite3VdbeMakeLabel(v); 4843 iAMem = pParse->nMem + 1; 4844 pParse->nMem += pGroupBy->nExpr; 4845 iBMem = pParse->nMem + 1; 4846 pParse->nMem += pGroupBy->nExpr; 4847 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4848 VdbeComment((v, "clear abort flag")); 4849 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4850 VdbeComment((v, "indicate accumulator empty")); 4851 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4852 4853 /* Begin a loop that will extract all source rows in GROUP BY order. 4854 ** This might involve two separate loops with an OP_Sort in between, or 4855 ** it might be a single loop that uses an index to extract information 4856 ** in the right order to begin with. 4857 */ 4858 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4859 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 4860 WHERE_GROUPBY, 0); 4861 if( pWInfo==0 ) goto select_end; 4862 if( sqlite3WhereIsOrdered(pWInfo) ){ 4863 /* The optimizer is able to deliver rows in group by order so 4864 ** we do not have to sort. The OP_OpenEphemeral table will be 4865 ** cancelled later because we still need to use the pKeyInfo 4866 */ 4867 groupBySort = 0; 4868 }else{ 4869 /* Rows are coming out in undetermined order. We have to push 4870 ** each row into a sorting index, terminate the first loop, 4871 ** then loop over the sorting index in order to get the output 4872 ** in sorted order 4873 */ 4874 int regBase; 4875 int regRecord; 4876 int nCol; 4877 int nGroupBy; 4878 4879 explainTempTable(pParse, 4880 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 4881 "DISTINCT" : "GROUP BY"); 4882 4883 groupBySort = 1; 4884 nGroupBy = pGroupBy->nExpr; 4885 nCol = nGroupBy + 1; 4886 j = nGroupBy+1; 4887 for(i=0; i<sAggInfo.nColumn; i++){ 4888 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4889 nCol++; 4890 j++; 4891 } 4892 } 4893 regBase = sqlite3GetTempRange(pParse, nCol); 4894 sqlite3ExprCacheClear(pParse); 4895 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4896 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4897 j = nGroupBy+1; 4898 for(i=0; i<sAggInfo.nColumn; i++){ 4899 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4900 if( pCol->iSorterColumn>=j ){ 4901 int r1 = j + regBase; 4902 int r2; 4903 4904 r2 = sqlite3ExprCodeGetColumn(pParse, 4905 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 4906 if( r1!=r2 ){ 4907 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4908 } 4909 j++; 4910 } 4911 } 4912 regRecord = sqlite3GetTempReg(pParse); 4913 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4914 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 4915 sqlite3ReleaseTempReg(pParse, regRecord); 4916 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4917 sqlite3WhereEnd(pWInfo); 4918 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 4919 sortOut = sqlite3GetTempReg(pParse); 4920 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 4921 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 4922 VdbeComment((v, "GROUP BY sort")); 4923 sAggInfo.useSortingIdx = 1; 4924 sqlite3ExprCacheClear(pParse); 4925 } 4926 4927 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4928 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4929 ** Then compare the current GROUP BY terms against the GROUP BY terms 4930 ** from the previous row currently stored in a0, a1, a2... 4931 */ 4932 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4933 sqlite3ExprCacheClear(pParse); 4934 if( groupBySort ){ 4935 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 4936 } 4937 for(j=0; j<pGroupBy->nExpr; j++){ 4938 if( groupBySort ){ 4939 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 4940 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 4941 }else{ 4942 sAggInfo.directMode = 1; 4943 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4944 } 4945 } 4946 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4947 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 4948 j1 = sqlite3VdbeCurrentAddr(v); 4949 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4950 4951 /* Generate code that runs whenever the GROUP BY changes. 4952 ** Changes in the GROUP BY are detected by the previous code 4953 ** block. If there were no changes, this block is skipped. 4954 ** 4955 ** This code copies current group by terms in b0,b1,b2,... 4956 ** over to a0,a1,a2. It then calls the output subroutine 4957 ** and resets the aggregate accumulator registers in preparation 4958 ** for the next GROUP BY batch. 4959 */ 4960 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4961 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4962 VdbeComment((v, "output one row")); 4963 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4964 VdbeComment((v, "check abort flag")); 4965 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4966 VdbeComment((v, "reset accumulator")); 4967 4968 /* Update the aggregate accumulators based on the content of 4969 ** the current row 4970 */ 4971 sqlite3VdbeJumpHere(v, j1); 4972 updateAccumulator(pParse, &sAggInfo); 4973 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4974 VdbeComment((v, "indicate data in accumulator")); 4975 4976 /* End of the loop 4977 */ 4978 if( groupBySort ){ 4979 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 4980 }else{ 4981 sqlite3WhereEnd(pWInfo); 4982 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 4983 } 4984 4985 /* Output the final row of result 4986 */ 4987 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4988 VdbeComment((v, "output final row")); 4989 4990 /* Jump over the subroutines 4991 */ 4992 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4993 4994 /* Generate a subroutine that outputs a single row of the result 4995 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4996 ** is less than or equal to zero, the subroutine is a no-op. If 4997 ** the processing calls for the query to abort, this subroutine 4998 ** increments the iAbortFlag memory location before returning in 4999 ** order to signal the caller to abort. 5000 */ 5001 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5002 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5003 VdbeComment((v, "set abort flag")); 5004 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5005 sqlite3VdbeResolveLabel(v, addrOutputRow); 5006 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5007 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5008 VdbeComment((v, "Groupby result generator entry point")); 5009 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5010 finalizeAggFunctions(pParse, &sAggInfo); 5011 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5012 selectInnerLoop(pParse, p, p->pEList, -1, pOrderBy, 5013 &sDistinct, pDest, 5014 addrOutputRow+1, addrSetAbort); 5015 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5016 VdbeComment((v, "end groupby result generator")); 5017 5018 /* Generate a subroutine that will reset the group-by accumulator 5019 */ 5020 sqlite3VdbeResolveLabel(v, addrReset); 5021 resetAccumulator(pParse, &sAggInfo); 5022 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5023 5024 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5025 else { 5026 ExprList *pDel = 0; 5027 #ifndef SQLITE_OMIT_BTREECOUNT 5028 Table *pTab; 5029 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5030 /* If isSimpleCount() returns a pointer to a Table structure, then 5031 ** the SQL statement is of the form: 5032 ** 5033 ** SELECT count(*) FROM <tbl> 5034 ** 5035 ** where the Table structure returned represents table <tbl>. 5036 ** 5037 ** This statement is so common that it is optimized specially. The 5038 ** OP_Count instruction is executed either on the intkey table that 5039 ** contains the data for table <tbl> or on one of its indexes. It 5040 ** is better to execute the op on an index, as indexes are almost 5041 ** always spread across less pages than their corresponding tables. 5042 */ 5043 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5044 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5045 Index *pIdx; /* Iterator variable */ 5046 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5047 Index *pBest = 0; /* Best index found so far */ 5048 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5049 5050 sqlite3CodeVerifySchema(pParse, iDb); 5051 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5052 5053 /* Search for the index that has the lowest scan cost. 5054 ** 5055 ** (2011-04-15) Do not do a full scan of an unordered index. 5056 ** 5057 ** (2013-10-03) Do not count the entries in a partial index. 5058 ** 5059 ** In practice the KeyInfo structure will not be used. It is only 5060 ** passed to keep OP_OpenRead happy. 5061 */ 5062 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5063 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5064 if( pIdx->bUnordered==0 5065 && pIdx->szIdxRow<pTab->szTabRow 5066 && pIdx->pPartIdxWhere==0 5067 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5068 ){ 5069 pBest = pIdx; 5070 } 5071 } 5072 if( pBest ){ 5073 iRoot = pBest->tnum; 5074 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5075 } 5076 5077 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5078 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5079 if( pKeyInfo ){ 5080 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5081 } 5082 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5083 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5084 explainSimpleCount(pParse, pTab, pBest); 5085 }else 5086 #endif /* SQLITE_OMIT_BTREECOUNT */ 5087 { 5088 /* Check if the query is of one of the following forms: 5089 ** 5090 ** SELECT min(x) FROM ... 5091 ** SELECT max(x) FROM ... 5092 ** 5093 ** If it is, then ask the code in where.c to attempt to sort results 5094 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5095 ** If where.c is able to produce results sorted in this order, then 5096 ** add vdbe code to break out of the processing loop after the 5097 ** first iteration (since the first iteration of the loop is 5098 ** guaranteed to operate on the row with the minimum or maximum 5099 ** value of x, the only row required). 5100 ** 5101 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5102 ** modify behavior as follows: 5103 ** 5104 ** + If the query is a "SELECT min(x)", then the loop coded by 5105 ** where.c should not iterate over any values with a NULL value 5106 ** for x. 5107 ** 5108 ** + The optimizer code in where.c (the thing that decides which 5109 ** index or indices to use) should place a different priority on 5110 ** satisfying the 'ORDER BY' clause than it does in other cases. 5111 ** Refer to code and comments in where.c for details. 5112 */ 5113 ExprList *pMinMax = 0; 5114 u8 flag = WHERE_ORDERBY_NORMAL; 5115 5116 assert( p->pGroupBy==0 ); 5117 assert( flag==0 ); 5118 if( p->pHaving==0 ){ 5119 flag = minMaxQuery(&sAggInfo, &pMinMax); 5120 } 5121 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5122 5123 if( flag ){ 5124 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5125 pDel = pMinMax; 5126 if( pMinMax && !db->mallocFailed ){ 5127 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5128 pMinMax->a[0].pExpr->op = TK_COLUMN; 5129 } 5130 } 5131 5132 /* This case runs if the aggregate has no GROUP BY clause. The 5133 ** processing is much simpler since there is only a single row 5134 ** of output. 5135 */ 5136 resetAccumulator(pParse, &sAggInfo); 5137 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5138 if( pWInfo==0 ){ 5139 sqlite3ExprListDelete(db, pDel); 5140 goto select_end; 5141 } 5142 updateAccumulator(pParse, &sAggInfo); 5143 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5144 if( sqlite3WhereIsOrdered(pWInfo) ){ 5145 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5146 VdbeComment((v, "%s() by index", 5147 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5148 } 5149 sqlite3WhereEnd(pWInfo); 5150 finalizeAggFunctions(pParse, &sAggInfo); 5151 } 5152 5153 pOrderBy = 0; 5154 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5155 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5156 pDest, addrEnd, addrEnd); 5157 sqlite3ExprListDelete(db, pDel); 5158 } 5159 sqlite3VdbeResolveLabel(v, addrEnd); 5160 5161 } /* endif aggregate query */ 5162 5163 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5164 explainTempTable(pParse, "DISTINCT"); 5165 } 5166 5167 /* If there is an ORDER BY clause, then we need to sort the results 5168 ** and send them to the callback one by one. 5169 */ 5170 if( pOrderBy ){ 5171 explainTempTable(pParse, "ORDER BY"); 5172 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 5173 } 5174 5175 /* Jump here to skip this query 5176 */ 5177 sqlite3VdbeResolveLabel(v, iEnd); 5178 5179 /* The SELECT was successfully coded. Set the return code to 0 5180 ** to indicate no errors. 5181 */ 5182 rc = 0; 5183 5184 /* Control jumps to here if an error is encountered above, or upon 5185 ** successful coding of the SELECT. 5186 */ 5187 select_end: 5188 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5189 5190 /* Identify column names if results of the SELECT are to be output. 5191 */ 5192 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5193 generateColumnNames(pParse, pTabList, pEList); 5194 } 5195 5196 sqlite3DbFree(db, sAggInfo.aCol); 5197 sqlite3DbFree(db, sAggInfo.aFunc); 5198 return rc; 5199 } 5200 5201 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 5202 /* 5203 ** Generate a human-readable description of a the Select object. 5204 */ 5205 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 5206 sqlite3ExplainPrintf(pVdbe, "SELECT "); 5207 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 5208 if( p->selFlags & SF_Distinct ){ 5209 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 5210 } 5211 if( p->selFlags & SF_Aggregate ){ 5212 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 5213 } 5214 sqlite3ExplainNL(pVdbe); 5215 sqlite3ExplainPrintf(pVdbe, " "); 5216 } 5217 sqlite3ExplainExprList(pVdbe, p->pEList); 5218 sqlite3ExplainNL(pVdbe); 5219 if( p->pSrc && p->pSrc->nSrc ){ 5220 int i; 5221 sqlite3ExplainPrintf(pVdbe, "FROM "); 5222 sqlite3ExplainPush(pVdbe); 5223 for(i=0; i<p->pSrc->nSrc; i++){ 5224 struct SrcList_item *pItem = &p->pSrc->a[i]; 5225 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 5226 if( pItem->pSelect ){ 5227 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 5228 if( pItem->pTab ){ 5229 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 5230 } 5231 }else if( pItem->zName ){ 5232 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 5233 } 5234 if( pItem->zAlias ){ 5235 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 5236 } 5237 if( pItem->jointype & JT_LEFT ){ 5238 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 5239 } 5240 sqlite3ExplainNL(pVdbe); 5241 } 5242 sqlite3ExplainPop(pVdbe); 5243 } 5244 if( p->pWhere ){ 5245 sqlite3ExplainPrintf(pVdbe, "WHERE "); 5246 sqlite3ExplainExpr(pVdbe, p->pWhere); 5247 sqlite3ExplainNL(pVdbe); 5248 } 5249 if( p->pGroupBy ){ 5250 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 5251 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 5252 sqlite3ExplainNL(pVdbe); 5253 } 5254 if( p->pHaving ){ 5255 sqlite3ExplainPrintf(pVdbe, "HAVING "); 5256 sqlite3ExplainExpr(pVdbe, p->pHaving); 5257 sqlite3ExplainNL(pVdbe); 5258 } 5259 if( p->pOrderBy ){ 5260 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 5261 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 5262 sqlite3ExplainNL(pVdbe); 5263 } 5264 if( p->pLimit ){ 5265 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 5266 sqlite3ExplainExpr(pVdbe, p->pLimit); 5267 sqlite3ExplainNL(pVdbe); 5268 } 5269 if( p->pOffset ){ 5270 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 5271 sqlite3ExplainExpr(pVdbe, p->pOffset); 5272 sqlite3ExplainNL(pVdbe); 5273 } 5274 } 5275 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 5276 if( p==0 ){ 5277 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 5278 return; 5279 } 5280 sqlite3ExplainPush(pVdbe); 5281 while( p ){ 5282 explainOneSelect(pVdbe, p); 5283 p = p->pNext; 5284 if( p==0 ) break; 5285 sqlite3ExplainNL(pVdbe); 5286 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 5287 } 5288 sqlite3ExplainPrintf(pVdbe, "END"); 5289 sqlite3ExplainPop(pVdbe); 5290 } 5291 5292 /* End of the structure debug printing code 5293 *****************************************************************************/ 5294 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 5295