xref: /sqlite-3.40.0/src/select.c (revision 8f1eb6f5)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* 0: Not distinct. 1: DISTICT  2: DISTINCT and ORDER BY */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 */
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209   int jointype = 0;
210   Token *apAll[3];
211   Token *p;
212                              /*   0123456789 123456789 123456789 123 */
213   static const char zKeyText[] = "naturaleftouterightfullinnercross";
214   static const struct {
215     u8 i;        /* Beginning of keyword text in zKeyText[] */
216     u8 nChar;    /* Length of the keyword in characters */
217     u8 code;     /* Join type mask */
218   } aKeyword[] = {
219     /* natural */ { 0,  7, JT_NATURAL                },
220     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
221     /* outer   */ { 10, 5, JT_OUTER                  },
222     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
223     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224     /* inner   */ { 23, 5, JT_INNER                  },
225     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
226   };
227   int i, j;
228   apAll[0] = pA;
229   apAll[1] = pB;
230   apAll[2] = pC;
231   for(i=0; i<3 && apAll[i]; i++){
232     p = apAll[i];
233     for(j=0; j<ArraySize(aKeyword); j++){
234       if( p->n==aKeyword[j].nChar
235           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236         jointype |= aKeyword[j].code;
237         break;
238       }
239     }
240     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241     if( j>=ArraySize(aKeyword) ){
242       jointype |= JT_ERROR;
243       break;
244     }
245   }
246   if(
247      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248      (jointype & JT_ERROR)!=0
249   ){
250     const char *zSp = " ";
251     assert( pB!=0 );
252     if( pC==0 ){ zSp++; }
253     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254        "%T %T%s%T", pA, pB, zSp, pC);
255     jointype = JT_INNER;
256   }else if( (jointype & JT_OUTER)!=0
257          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258     sqlite3ErrorMsg(pParse,
259       "RIGHT and FULL OUTER JOINs are not currently supported");
260     jointype = JT_INNER;
261   }
262   return jointype;
263 }
264 
265 /*
266 ** Return the index of a column in a table.  Return -1 if the column
267 ** is not contained in the table.
268 */
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270   int i;
271   u8 h = sqlite3StrIHash(zCol);
272   Column *pCol;
273   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
275   }
276   return -1;
277 }
278 
279 /*
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
282 **
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
285 **
286 ** If not found, return FALSE.
287 */
288 static int tableAndColumnIndex(
289   SrcList *pSrc,       /* Array of tables to search */
290   int N,               /* Number of tables in pSrc->a[] to search */
291   const char *zCol,    /* Name of the column we are looking for */
292   int *piTab,          /* Write index of pSrc->a[] here */
293   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294   int bIgnoreHidden    /* True to ignore hidden columns */
295 ){
296   int i;               /* For looping over tables in pSrc */
297   int iCol;            /* Index of column matching zCol */
298 
299   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
300   for(i=0; i<N; i++){
301     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302     if( iCol>=0
303      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
304     ){
305       if( piTab ){
306         *piTab = i;
307         *piCol = iCol;
308       }
309       return 1;
310     }
311   }
312   return 0;
313 }
314 
315 /*
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
319 **
320 **    (tab1.col1 = tab2.col2)
321 **
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
325 */
326 static void addWhereTerm(
327   Parse *pParse,                  /* Parsing context */
328   SrcList *pSrc,                  /* List of tables in FROM clause */
329   int iLeft,                      /* Index of first table to join in pSrc */
330   int iColLeft,                   /* Index of column in first table */
331   int iRight,                     /* Index of second table in pSrc */
332   int iColRight,                  /* Index of column in second table */
333   int isOuterJoin,                /* True if this is an OUTER join */
334   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
335 ){
336   sqlite3 *db = pParse->db;
337   Expr *pE1;
338   Expr *pE2;
339   Expr *pEq;
340 
341   assert( iLeft<iRight );
342   assert( pSrc->nSrc>iRight );
343   assert( pSrc->a[iLeft].pTab );
344   assert( pSrc->a[iRight].pTab );
345 
346   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
348 
349   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350   assert( pE2!=0 || pEq==0 );  /* Due to db->mallocFailed test
351                                ** in sqlite3DbMallocRawNN() called from
352                                ** sqlite3PExpr(). */
353   if( pEq && isOuterJoin ){
354     ExprSetProperty(pEq, EP_FromJoin);
355     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
356     ExprSetVVAProperty(pEq, EP_NoReduce);
357     pEq->w.iRightJoinTable = pE2->iTable;
358   }
359   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
360 }
361 
362 /*
363 ** Set the EP_FromJoin property on all terms of the given expression.
364 ** And set the Expr.w.iRightJoinTable to iTable for every term in the
365 ** expression.
366 **
367 ** The EP_FromJoin property is used on terms of an expression to tell
368 ** the LEFT OUTER JOIN processing logic that this term is part of the
369 ** join restriction specified in the ON or USING clause and not a part
370 ** of the more general WHERE clause.  These terms are moved over to the
371 ** WHERE clause during join processing but we need to remember that they
372 ** originated in the ON or USING clause.
373 **
374 ** The Expr.w.iRightJoinTable tells the WHERE clause processing that the
375 ** expression depends on table w.iRightJoinTable even if that table is not
376 ** explicitly mentioned in the expression.  That information is needed
377 ** for cases like this:
378 **
379 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
380 **
381 ** The where clause needs to defer the handling of the t1.x=5
382 ** term until after the t2 loop of the join.  In that way, a
383 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
384 ** defer the handling of t1.x=5, it will be processed immediately
385 ** after the t1 loop and rows with t1.x!=5 will never appear in
386 ** the output, which is incorrect.
387 */
388 void sqlite3SetJoinExpr(Expr *p, int iTable){
389   while( p ){
390     ExprSetProperty(p, EP_FromJoin);
391     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
392     ExprSetVVAProperty(p, EP_NoReduce);
393     p->w.iRightJoinTable = iTable;
394     if( p->op==TK_FUNCTION ){
395       assert( ExprUseXList(p) );
396       if( p->x.pList ){
397         int i;
398         for(i=0; i<p->x.pList->nExpr; i++){
399           sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
400         }
401       }
402     }
403     sqlite3SetJoinExpr(p->pLeft, iTable);
404     p = p->pRight;
405   }
406 }
407 
408 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
409 ** term that is marked with EP_FromJoin and w.iRightJoinTable==iTable into
410 ** an ordinary term that omits the EP_FromJoin mark.
411 **
412 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
413 */
414 static void unsetJoinExpr(Expr *p, int iTable){
415   while( p ){
416     if( ExprHasProperty(p, EP_FromJoin)
417      && (iTable<0 || p->w.iRightJoinTable==iTable) ){
418       ExprClearProperty(p, EP_FromJoin);
419     }
420     if( p->op==TK_COLUMN && p->iTable==iTable ){
421       ExprClearProperty(p, EP_CanBeNull);
422     }
423     if( p->op==TK_FUNCTION ){
424       assert( ExprUseXList(p) );
425       if( p->x.pList ){
426         int i;
427         for(i=0; i<p->x.pList->nExpr; i++){
428           unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
429         }
430       }
431     }
432     unsetJoinExpr(p->pLeft, iTable);
433     p = p->pRight;
434   }
435 }
436 
437 /*
438 ** This routine processes the join information for a SELECT statement.
439 ** ON and USING clauses are converted into extra terms of the WHERE clause.
440 ** NATURAL joins also create extra WHERE clause terms.
441 **
442 ** The terms of a FROM clause are contained in the Select.pSrc structure.
443 ** The left most table is the first entry in Select.pSrc.  The right-most
444 ** table is the last entry.  The join operator is held in the entry to
445 ** the left.  Thus entry 0 contains the join operator for the join between
446 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
447 ** also attached to the left entry.
448 **
449 ** This routine returns the number of errors encountered.
450 */
451 static int sqliteProcessJoin(Parse *pParse, Select *p){
452   SrcList *pSrc;                  /* All tables in the FROM clause */
453   int i, j;                       /* Loop counters */
454   SrcItem *pLeft;                 /* Left table being joined */
455   SrcItem *pRight;                /* Right table being joined */
456 
457   pSrc = p->pSrc;
458   pLeft = &pSrc->a[0];
459   pRight = &pLeft[1];
460   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
461     Table *pRightTab = pRight->pTab;
462     int isOuter;
463 
464     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
465     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
466 
467     /* When the NATURAL keyword is present, add WHERE clause terms for
468     ** every column that the two tables have in common.
469     */
470     if( pRight->fg.jointype & JT_NATURAL ){
471       if( pRight->pOn || pRight->pUsing ){
472         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
473            "an ON or USING clause", 0);
474         return 1;
475       }
476       for(j=0; j<pRightTab->nCol; j++){
477         char *zName;   /* Name of column in the right table */
478         int iLeft;     /* Matching left table */
479         int iLeftCol;  /* Matching column in the left table */
480 
481         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
482         zName = pRightTab->aCol[j].zCnName;
483         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
484           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
485                 isOuter, &p->pWhere);
486         }
487       }
488     }
489 
490     /* Disallow both ON and USING clauses in the same join
491     */
492     if( pRight->pOn && pRight->pUsing ){
493       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
494         "clauses in the same join");
495       return 1;
496     }
497 
498     /* Add the ON clause to the end of the WHERE clause, connected by
499     ** an AND operator.
500     */
501     if( pRight->pOn ){
502       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
503       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
504       pRight->pOn = 0;
505     }
506 
507     /* Create extra terms on the WHERE clause for each column named
508     ** in the USING clause.  Example: If the two tables to be joined are
509     ** A and B and the USING clause names X, Y, and Z, then add this
510     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
511     ** Report an error if any column mentioned in the USING clause is
512     ** not contained in both tables to be joined.
513     */
514     if( pRight->pUsing ){
515       IdList *pList = pRight->pUsing;
516       for(j=0; j<pList->nId; j++){
517         char *zName;     /* Name of the term in the USING clause */
518         int iLeft;       /* Table on the left with matching column name */
519         int iLeftCol;    /* Column number of matching column on the left */
520         int iRightCol;   /* Column number of matching column on the right */
521 
522         zName = pList->a[j].zName;
523         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
524         if( iRightCol<0
525          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
526         ){
527           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
528             "not present in both tables", zName);
529           return 1;
530         }
531         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
532                      isOuter, &p->pWhere);
533       }
534     }
535   }
536   return 0;
537 }
538 
539 /*
540 ** An instance of this object holds information (beyond pParse and pSelect)
541 ** needed to load the next result row that is to be added to the sorter.
542 */
543 typedef struct RowLoadInfo RowLoadInfo;
544 struct RowLoadInfo {
545   int regResult;               /* Store results in array of registers here */
546   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
547 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
548   ExprList *pExtra;            /* Extra columns needed by sorter refs */
549   int regExtraResult;          /* Where to load the extra columns */
550 #endif
551 };
552 
553 /*
554 ** This routine does the work of loading query data into an array of
555 ** registers so that it can be added to the sorter.
556 */
557 static void innerLoopLoadRow(
558   Parse *pParse,             /* Statement under construction */
559   Select *pSelect,           /* The query being coded */
560   RowLoadInfo *pInfo         /* Info needed to complete the row load */
561 ){
562   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
563                           0, pInfo->ecelFlags);
564 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
565   if( pInfo->pExtra ){
566     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
567     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
568   }
569 #endif
570 }
571 
572 /*
573 ** Code the OP_MakeRecord instruction that generates the entry to be
574 ** added into the sorter.
575 **
576 ** Return the register in which the result is stored.
577 */
578 static int makeSorterRecord(
579   Parse *pParse,
580   SortCtx *pSort,
581   Select *pSelect,
582   int regBase,
583   int nBase
584 ){
585   int nOBSat = pSort->nOBSat;
586   Vdbe *v = pParse->pVdbe;
587   int regOut = ++pParse->nMem;
588   if( pSort->pDeferredRowLoad ){
589     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
590   }
591   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
592   return regOut;
593 }
594 
595 /*
596 ** Generate code that will push the record in registers regData
597 ** through regData+nData-1 onto the sorter.
598 */
599 static void pushOntoSorter(
600   Parse *pParse,         /* Parser context */
601   SortCtx *pSort,        /* Information about the ORDER BY clause */
602   Select *pSelect,       /* The whole SELECT statement */
603   int regData,           /* First register holding data to be sorted */
604   int regOrigData,       /* First register holding data before packing */
605   int nData,             /* Number of elements in the regData data array */
606   int nPrefixReg         /* No. of reg prior to regData available for use */
607 ){
608   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
609   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
610   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
611   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
612   int regBase;                                     /* Regs for sorter record */
613   int regRecord = 0;                               /* Assembled sorter record */
614   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
615   int op;                            /* Opcode to add sorter record to sorter */
616   int iLimit;                        /* LIMIT counter */
617   int iSkip = 0;                     /* End of the sorter insert loop */
618 
619   assert( bSeq==0 || bSeq==1 );
620 
621   /* Three cases:
622   **   (1) The data to be sorted has already been packed into a Record
623   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
624   **       will be completely unrelated to regOrigData.
625   **   (2) All output columns are included in the sort record.  In that
626   **       case regData==regOrigData.
627   **   (3) Some output columns are omitted from the sort record due to
628   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
629   **       SQLITE_ECEL_OMITREF optimization, or due to the
630   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
631   **       regOrigData is 0 to prevent this routine from trying to copy
632   **       values that might not yet exist.
633   */
634   assert( nData==1 || regData==regOrigData || regOrigData==0 );
635 
636   if( nPrefixReg ){
637     assert( nPrefixReg==nExpr+bSeq );
638     regBase = regData - nPrefixReg;
639   }else{
640     regBase = pParse->nMem + 1;
641     pParse->nMem += nBase;
642   }
643   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
644   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
645   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
646   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
647                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
648   if( bSeq ){
649     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
650   }
651   if( nPrefixReg==0 && nData>0 ){
652     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
653   }
654   if( nOBSat>0 ){
655     int regPrevKey;   /* The first nOBSat columns of the previous row */
656     int addrFirst;    /* Address of the OP_IfNot opcode */
657     int addrJmp;      /* Address of the OP_Jump opcode */
658     VdbeOp *pOp;      /* Opcode that opens the sorter */
659     int nKey;         /* Number of sorting key columns, including OP_Sequence */
660     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
661 
662     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
663     regPrevKey = pParse->nMem+1;
664     pParse->nMem += pSort->nOBSat;
665     nKey = nExpr - pSort->nOBSat + bSeq;
666     if( bSeq ){
667       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
668     }else{
669       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
670     }
671     VdbeCoverage(v);
672     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
673     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
674     if( pParse->db->mallocFailed ) return;
675     pOp->p2 = nKey + nData;
676     pKI = pOp->p4.pKeyInfo;
677     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
678     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
679     testcase( pKI->nAllField > pKI->nKeyField+2 );
680     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
681                                            pKI->nAllField-pKI->nKeyField-1);
682     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
683     addrJmp = sqlite3VdbeCurrentAddr(v);
684     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
685     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
686     pSort->regReturn = ++pParse->nMem;
687     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
688     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
689     if( iLimit ){
690       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
691       VdbeCoverage(v);
692     }
693     sqlite3VdbeJumpHere(v, addrFirst);
694     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
695     sqlite3VdbeJumpHere(v, addrJmp);
696   }
697   if( iLimit ){
698     /* At this point the values for the new sorter entry are stored
699     ** in an array of registers. They need to be composed into a record
700     ** and inserted into the sorter if either (a) there are currently
701     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
702     ** the largest record currently in the sorter. If (b) is true and there
703     ** are already LIMIT+OFFSET items in the sorter, delete the largest
704     ** entry before inserting the new one. This way there are never more
705     ** than LIMIT+OFFSET items in the sorter.
706     **
707     ** If the new record does not need to be inserted into the sorter,
708     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
709     ** value is not zero, then it is a label of where to jump.  Otherwise,
710     ** just bypass the row insert logic.  See the header comment on the
711     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
712     */
713     int iCsr = pSort->iECursor;
714     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
715     VdbeCoverage(v);
716     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
717     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
718                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
719     VdbeCoverage(v);
720     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
721   }
722   if( regRecord==0 ){
723     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
724   }
725   if( pSort->sortFlags & SORTFLAG_UseSorter ){
726     op = OP_SorterInsert;
727   }else{
728     op = OP_IdxInsert;
729   }
730   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
731                        regBase+nOBSat, nBase-nOBSat);
732   if( iSkip ){
733     sqlite3VdbeChangeP2(v, iSkip,
734          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
735   }
736 }
737 
738 /*
739 ** Add code to implement the OFFSET
740 */
741 static void codeOffset(
742   Vdbe *v,          /* Generate code into this VM */
743   int iOffset,      /* Register holding the offset counter */
744   int iContinue     /* Jump here to skip the current record */
745 ){
746   if( iOffset>0 ){
747     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
748     VdbeComment((v, "OFFSET"));
749   }
750 }
751 
752 /*
753 ** Add code that will check to make sure the array of registers starting at
754 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
755 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
756 ** are available. Which is used depends on the value of parameter eTnctType,
757 ** as follows:
758 **
759 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
760 **     Build an ephemeral table that contains all entries seen before and
761 **     skip entries which have been seen before.
762 **
763 **     Parameter iTab is the cursor number of an ephemeral table that must
764 **     be opened before the VM code generated by this routine is executed.
765 **     The ephemeral cursor table is queried for a record identical to the
766 **     record formed by the current array of registers. If one is found,
767 **     jump to VM address addrRepeat. Otherwise, insert a new record into
768 **     the ephemeral cursor and proceed.
769 **
770 **     The returned value in this case is a copy of parameter iTab.
771 **
772 **   WHERE_DISTINCT_ORDERED:
773 **     In this case rows are being delivered sorted order. The ephermal
774 **     table is not required. Instead, the current set of values
775 **     is compared against previous row. If they match, the new row
776 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
777 **     the VM program proceeds with processing the new row.
778 **
779 **     The returned value in this case is the register number of the first
780 **     in an array of registers used to store the previous result row so that
781 **     it can be compared to the next. The caller must ensure that this
782 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
783 **     will take care of this initialization.)
784 **
785 **   WHERE_DISTINCT_UNIQUE:
786 **     In this case it has already been determined that the rows are distinct.
787 **     No special action is required. The return value is zero.
788 **
789 ** Parameter pEList is the list of expressions used to generated the
790 ** contents of each row. It is used by this routine to determine (a)
791 ** how many elements there are in the array of registers and (b) the
792 ** collation sequences that should be used for the comparisons if
793 ** eTnctType is WHERE_DISTINCT_ORDERED.
794 */
795 static int codeDistinct(
796   Parse *pParse,     /* Parsing and code generating context */
797   int eTnctType,     /* WHERE_DISTINCT_* value */
798   int iTab,          /* A sorting index used to test for distinctness */
799   int addrRepeat,    /* Jump to here if not distinct */
800   ExprList *pEList,  /* Expression for each element */
801   int regElem        /* First element */
802 ){
803   int iRet = 0;
804   int nResultCol = pEList->nExpr;
805   Vdbe *v = pParse->pVdbe;
806 
807   switch( eTnctType ){
808     case WHERE_DISTINCT_ORDERED: {
809       int i;
810       int iJump;              /* Jump destination */
811       int regPrev;            /* Previous row content */
812 
813       /* Allocate space for the previous row */
814       iRet = regPrev = pParse->nMem+1;
815       pParse->nMem += nResultCol;
816 
817       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
818       for(i=0; i<nResultCol; i++){
819         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
820         if( i<nResultCol-1 ){
821           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
822           VdbeCoverage(v);
823         }else{
824           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
825           VdbeCoverage(v);
826          }
827         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
828         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
829       }
830       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
831       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
832       break;
833     }
834 
835     case WHERE_DISTINCT_UNIQUE: {
836       /* nothing to do */
837       break;
838     }
839 
840     default: {
841       int r1 = sqlite3GetTempReg(pParse);
842       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
843       VdbeCoverage(v);
844       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
845       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
846       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
847       sqlite3ReleaseTempReg(pParse, r1);
848       iRet = iTab;
849       break;
850     }
851   }
852 
853   return iRet;
854 }
855 
856 /*
857 ** This routine runs after codeDistinct().  It makes necessary
858 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
859 ** routine made use of.  This processing must be done separately since
860 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
861 ** laid down.
862 **
863 ** WHERE_DISTINCT_NOOP:
864 ** WHERE_DISTINCT_UNORDERED:
865 **
866 **     No adjustments necessary.  This function is a no-op.
867 **
868 ** WHERE_DISTINCT_UNIQUE:
869 **
870 **     The ephemeral table is not needed.  So change the
871 **     OP_OpenEphemeral opcode into an OP_Noop.
872 **
873 ** WHERE_DISTINCT_ORDERED:
874 **
875 **     The ephemeral table is not needed.  But we do need register
876 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
877 **     into an OP_Null on the iVal register.
878 */
879 static void fixDistinctOpenEph(
880   Parse *pParse,     /* Parsing and code generating context */
881   int eTnctType,     /* WHERE_DISTINCT_* value */
882   int iVal,          /* Value returned by codeDistinct() */
883   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
884 ){
885   if( pParse->nErr==0
886    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
887   ){
888     Vdbe *v = pParse->pVdbe;
889     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
890     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
891       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
892     }
893     if( eTnctType==WHERE_DISTINCT_ORDERED ){
894       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
895       ** bit on the first register of the previous value.  This will cause the
896       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
897       ** the loop even if the first row is all NULLs.  */
898       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
899       pOp->opcode = OP_Null;
900       pOp->p1 = 1;
901       pOp->p2 = iVal;
902     }
903   }
904 }
905 
906 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
907 /*
908 ** This function is called as part of inner-loop generation for a SELECT
909 ** statement with an ORDER BY that is not optimized by an index. It
910 ** determines the expressions, if any, that the sorter-reference
911 ** optimization should be used for. The sorter-reference optimization
912 ** is used for SELECT queries like:
913 **
914 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
915 **
916 ** If the optimization is used for expression "bigblob", then instead of
917 ** storing values read from that column in the sorter records, the PK of
918 ** the row from table t1 is stored instead. Then, as records are extracted from
919 ** the sorter to return to the user, the required value of bigblob is
920 ** retrieved directly from table t1. If the values are very large, this
921 ** can be more efficient than storing them directly in the sorter records.
922 **
923 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
924 ** for which the sorter-reference optimization should be enabled.
925 ** Additionally, the pSort->aDefer[] array is populated with entries
926 ** for all cursors required to evaluate all selected expressions. Finally.
927 ** output variable (*ppExtra) is set to an expression list containing
928 ** expressions for all extra PK values that should be stored in the
929 ** sorter records.
930 */
931 static void selectExprDefer(
932   Parse *pParse,                  /* Leave any error here */
933   SortCtx *pSort,                 /* Sorter context */
934   ExprList *pEList,               /* Expressions destined for sorter */
935   ExprList **ppExtra              /* Expressions to append to sorter record */
936 ){
937   int i;
938   int nDefer = 0;
939   ExprList *pExtra = 0;
940   for(i=0; i<pEList->nExpr; i++){
941     struct ExprList_item *pItem = &pEList->a[i];
942     if( pItem->u.x.iOrderByCol==0 ){
943       Expr *pExpr = pItem->pExpr;
944       Table *pTab;
945       if( pExpr->op==TK_COLUMN
946        && pExpr->iColumn>=0
947        && ALWAYS( ExprUseYTab(pExpr) )
948        && (pTab = pExpr->y.pTab)!=0
949        && IsOrdinaryTable(pTab)
950        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
951       ){
952         int j;
953         for(j=0; j<nDefer; j++){
954           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
955         }
956         if( j==nDefer ){
957           if( nDefer==ArraySize(pSort->aDefer) ){
958             continue;
959           }else{
960             int nKey = 1;
961             int k;
962             Index *pPk = 0;
963             if( !HasRowid(pTab) ){
964               pPk = sqlite3PrimaryKeyIndex(pTab);
965               nKey = pPk->nKeyCol;
966             }
967             for(k=0; k<nKey; k++){
968               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
969               if( pNew ){
970                 pNew->iTable = pExpr->iTable;
971                 assert( ExprUseYTab(pNew) );
972                 pNew->y.pTab = pExpr->y.pTab;
973                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
974                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
975               }
976             }
977             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
978             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
979             pSort->aDefer[nDefer].nKey = nKey;
980             nDefer++;
981           }
982         }
983         pItem->bSorterRef = 1;
984       }
985     }
986   }
987   pSort->nDefer = (u8)nDefer;
988   *ppExtra = pExtra;
989 }
990 #endif
991 
992 /*
993 ** This routine generates the code for the inside of the inner loop
994 ** of a SELECT.
995 **
996 ** If srcTab is negative, then the p->pEList expressions
997 ** are evaluated in order to get the data for this row.  If srcTab is
998 ** zero or more, then data is pulled from srcTab and p->pEList is used only
999 ** to get the number of columns and the collation sequence for each column.
1000 */
1001 static void selectInnerLoop(
1002   Parse *pParse,          /* The parser context */
1003   Select *p,              /* The complete select statement being coded */
1004   int srcTab,             /* Pull data from this table if non-negative */
1005   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
1006   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1007   SelectDest *pDest,      /* How to dispose of the results */
1008   int iContinue,          /* Jump here to continue with next row */
1009   int iBreak              /* Jump here to break out of the inner loop */
1010 ){
1011   Vdbe *v = pParse->pVdbe;
1012   int i;
1013   int hasDistinct;            /* True if the DISTINCT keyword is present */
1014   int eDest = pDest->eDest;   /* How to dispose of results */
1015   int iParm = pDest->iSDParm; /* First argument to disposal method */
1016   int nResultCol;             /* Number of result columns */
1017   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1018   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1019 
1020   /* Usually, regResult is the first cell in an array of memory cells
1021   ** containing the current result row. In this case regOrig is set to the
1022   ** same value. However, if the results are being sent to the sorter, the
1023   ** values for any expressions that are also part of the sort-key are omitted
1024   ** from this array. In this case regOrig is set to zero.  */
1025   int regResult;              /* Start of memory holding current results */
1026   int regOrig;                /* Start of memory holding full result (or 0) */
1027 
1028   assert( v );
1029   assert( p->pEList!=0 );
1030   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1031   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1032   if( pSort==0 && !hasDistinct ){
1033     assert( iContinue!=0 );
1034     codeOffset(v, p->iOffset, iContinue);
1035   }
1036 
1037   /* Pull the requested columns.
1038   */
1039   nResultCol = p->pEList->nExpr;
1040 
1041   if( pDest->iSdst==0 ){
1042     if( pSort ){
1043       nPrefixReg = pSort->pOrderBy->nExpr;
1044       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1045       pParse->nMem += nPrefixReg;
1046     }
1047     pDest->iSdst = pParse->nMem+1;
1048     pParse->nMem += nResultCol;
1049   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1050     /* This is an error condition that can result, for example, when a SELECT
1051     ** on the right-hand side of an INSERT contains more result columns than
1052     ** there are columns in the table on the left.  The error will be caught
1053     ** and reported later.  But we need to make sure enough memory is allocated
1054     ** to avoid other spurious errors in the meantime. */
1055     pParse->nMem += nResultCol;
1056   }
1057   pDest->nSdst = nResultCol;
1058   regOrig = regResult = pDest->iSdst;
1059   if( srcTab>=0 ){
1060     for(i=0; i<nResultCol; i++){
1061       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1062       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1063     }
1064   }else if( eDest!=SRT_Exists ){
1065 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1066     ExprList *pExtra = 0;
1067 #endif
1068     /* If the destination is an EXISTS(...) expression, the actual
1069     ** values returned by the SELECT are not required.
1070     */
1071     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1072     ExprList *pEList;
1073     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1074       ecelFlags = SQLITE_ECEL_DUP;
1075     }else{
1076       ecelFlags = 0;
1077     }
1078     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1079       /* For each expression in p->pEList that is a copy of an expression in
1080       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1081       ** iOrderByCol value to one more than the index of the ORDER BY
1082       ** expression within the sort-key that pushOntoSorter() will generate.
1083       ** This allows the p->pEList field to be omitted from the sorted record,
1084       ** saving space and CPU cycles.  */
1085       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1086 
1087       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1088         int j;
1089         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1090           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1091         }
1092       }
1093 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1094       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1095       if( pExtra && pParse->db->mallocFailed==0 ){
1096         /* If there are any extra PK columns to add to the sorter records,
1097         ** allocate extra memory cells and adjust the OpenEphemeral
1098         ** instruction to account for the larger records. This is only
1099         ** required if there are one or more WITHOUT ROWID tables with
1100         ** composite primary keys in the SortCtx.aDefer[] array.  */
1101         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1102         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1103         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1104         pParse->nMem += pExtra->nExpr;
1105       }
1106 #endif
1107 
1108       /* Adjust nResultCol to account for columns that are omitted
1109       ** from the sorter by the optimizations in this branch */
1110       pEList = p->pEList;
1111       for(i=0; i<pEList->nExpr; i++){
1112         if( pEList->a[i].u.x.iOrderByCol>0
1113 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1114          || pEList->a[i].bSorterRef
1115 #endif
1116         ){
1117           nResultCol--;
1118           regOrig = 0;
1119         }
1120       }
1121 
1122       testcase( regOrig );
1123       testcase( eDest==SRT_Set );
1124       testcase( eDest==SRT_Mem );
1125       testcase( eDest==SRT_Coroutine );
1126       testcase( eDest==SRT_Output );
1127       assert( eDest==SRT_Set || eDest==SRT_Mem
1128            || eDest==SRT_Coroutine || eDest==SRT_Output
1129            || eDest==SRT_Upfrom );
1130     }
1131     sRowLoadInfo.regResult = regResult;
1132     sRowLoadInfo.ecelFlags = ecelFlags;
1133 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1134     sRowLoadInfo.pExtra = pExtra;
1135     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1136     if( pExtra ) nResultCol += pExtra->nExpr;
1137 #endif
1138     if( p->iLimit
1139      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1140      && nPrefixReg>0
1141     ){
1142       assert( pSort!=0 );
1143       assert( hasDistinct==0 );
1144       pSort->pDeferredRowLoad = &sRowLoadInfo;
1145       regOrig = 0;
1146     }else{
1147       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1148     }
1149   }
1150 
1151   /* If the DISTINCT keyword was present on the SELECT statement
1152   ** and this row has been seen before, then do not make this row
1153   ** part of the result.
1154   */
1155   if( hasDistinct ){
1156     int eType = pDistinct->eTnctType;
1157     int iTab = pDistinct->tabTnct;
1158     assert( nResultCol==p->pEList->nExpr );
1159     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1160     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1161     if( pSort==0 ){
1162       codeOffset(v, p->iOffset, iContinue);
1163     }
1164   }
1165 
1166   switch( eDest ){
1167     /* In this mode, write each query result to the key of the temporary
1168     ** table iParm.
1169     */
1170 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1171     case SRT_Union: {
1172       int r1;
1173       r1 = sqlite3GetTempReg(pParse);
1174       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1175       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1176       sqlite3ReleaseTempReg(pParse, r1);
1177       break;
1178     }
1179 
1180     /* Construct a record from the query result, but instead of
1181     ** saving that record, use it as a key to delete elements from
1182     ** the temporary table iParm.
1183     */
1184     case SRT_Except: {
1185       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1186       break;
1187     }
1188 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1189 
1190     /* Store the result as data using a unique key.
1191     */
1192     case SRT_Fifo:
1193     case SRT_DistFifo:
1194     case SRT_Table:
1195     case SRT_EphemTab: {
1196       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1197       testcase( eDest==SRT_Table );
1198       testcase( eDest==SRT_EphemTab );
1199       testcase( eDest==SRT_Fifo );
1200       testcase( eDest==SRT_DistFifo );
1201       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1202 #ifndef SQLITE_OMIT_CTE
1203       if( eDest==SRT_DistFifo ){
1204         /* If the destination is DistFifo, then cursor (iParm+1) is open
1205         ** on an ephemeral index. If the current row is already present
1206         ** in the index, do not write it to the output. If not, add the
1207         ** current row to the index and proceed with writing it to the
1208         ** output table as well.  */
1209         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1210         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1211         VdbeCoverage(v);
1212         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1213         assert( pSort==0 );
1214       }
1215 #endif
1216       if( pSort ){
1217         assert( regResult==regOrig );
1218         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1219       }else{
1220         int r2 = sqlite3GetTempReg(pParse);
1221         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1222         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1223         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1224         sqlite3ReleaseTempReg(pParse, r2);
1225       }
1226       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1227       break;
1228     }
1229 
1230     case SRT_Upfrom: {
1231       if( pSort ){
1232         pushOntoSorter(
1233             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1234       }else{
1235         int i2 = pDest->iSDParm2;
1236         int r1 = sqlite3GetTempReg(pParse);
1237 
1238         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1239         ** might still be trying to return one row, because that is what
1240         ** aggregates do.  Don't record that empty row in the output table. */
1241         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1242 
1243         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1244                           regResult+(i2<0), nResultCol-(i2<0), r1);
1245         if( i2<0 ){
1246           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1247         }else{
1248           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1249         }
1250       }
1251       break;
1252     }
1253 
1254 #ifndef SQLITE_OMIT_SUBQUERY
1255     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1256     ** then there should be a single item on the stack.  Write this
1257     ** item into the set table with bogus data.
1258     */
1259     case SRT_Set: {
1260       if( pSort ){
1261         /* At first glance you would think we could optimize out the
1262         ** ORDER BY in this case since the order of entries in the set
1263         ** does not matter.  But there might be a LIMIT clause, in which
1264         ** case the order does matter */
1265         pushOntoSorter(
1266             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1267       }else{
1268         int r1 = sqlite3GetTempReg(pParse);
1269         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1270         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1271             r1, pDest->zAffSdst, nResultCol);
1272         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1273         sqlite3ReleaseTempReg(pParse, r1);
1274       }
1275       break;
1276     }
1277 
1278 
1279     /* If any row exist in the result set, record that fact and abort.
1280     */
1281     case SRT_Exists: {
1282       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1283       /* The LIMIT clause will terminate the loop for us */
1284       break;
1285     }
1286 
1287     /* If this is a scalar select that is part of an expression, then
1288     ** store the results in the appropriate memory cell or array of
1289     ** memory cells and break out of the scan loop.
1290     */
1291     case SRT_Mem: {
1292       if( pSort ){
1293         assert( nResultCol<=pDest->nSdst );
1294         pushOntoSorter(
1295             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1296       }else{
1297         assert( nResultCol==pDest->nSdst );
1298         assert( regResult==iParm );
1299         /* The LIMIT clause will jump out of the loop for us */
1300       }
1301       break;
1302     }
1303 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1304 
1305     case SRT_Coroutine:       /* Send data to a co-routine */
1306     case SRT_Output: {        /* Return the results */
1307       testcase( eDest==SRT_Coroutine );
1308       testcase( eDest==SRT_Output );
1309       if( pSort ){
1310         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1311                        nPrefixReg);
1312       }else if( eDest==SRT_Coroutine ){
1313         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1314       }else{
1315         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1316       }
1317       break;
1318     }
1319 
1320 #ifndef SQLITE_OMIT_CTE
1321     /* Write the results into a priority queue that is order according to
1322     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1323     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1324     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1325     ** final OP_Sequence column.  The last column is the record as a blob.
1326     */
1327     case SRT_DistQueue:
1328     case SRT_Queue: {
1329       int nKey;
1330       int r1, r2, r3;
1331       int addrTest = 0;
1332       ExprList *pSO;
1333       pSO = pDest->pOrderBy;
1334       assert( pSO );
1335       nKey = pSO->nExpr;
1336       r1 = sqlite3GetTempReg(pParse);
1337       r2 = sqlite3GetTempRange(pParse, nKey+2);
1338       r3 = r2+nKey+1;
1339       if( eDest==SRT_DistQueue ){
1340         /* If the destination is DistQueue, then cursor (iParm+1) is open
1341         ** on a second ephemeral index that holds all values every previously
1342         ** added to the queue. */
1343         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1344                                         regResult, nResultCol);
1345         VdbeCoverage(v);
1346       }
1347       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1348       if( eDest==SRT_DistQueue ){
1349         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1350         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1351       }
1352       for(i=0; i<nKey; i++){
1353         sqlite3VdbeAddOp2(v, OP_SCopy,
1354                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1355                           r2+i);
1356       }
1357       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1358       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1359       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1360       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1361       sqlite3ReleaseTempReg(pParse, r1);
1362       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1363       break;
1364     }
1365 #endif /* SQLITE_OMIT_CTE */
1366 
1367 
1368 
1369 #if !defined(SQLITE_OMIT_TRIGGER)
1370     /* Discard the results.  This is used for SELECT statements inside
1371     ** the body of a TRIGGER.  The purpose of such selects is to call
1372     ** user-defined functions that have side effects.  We do not care
1373     ** about the actual results of the select.
1374     */
1375     default: {
1376       assert( eDest==SRT_Discard );
1377       break;
1378     }
1379 #endif
1380   }
1381 
1382   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1383   ** there is a sorter, in which case the sorter has already limited
1384   ** the output for us.
1385   */
1386   if( pSort==0 && p->iLimit ){
1387     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1388   }
1389 }
1390 
1391 /*
1392 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1393 ** X extra columns.
1394 */
1395 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1396   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1397   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1398   if( p ){
1399     p->aSortFlags = (u8*)&p->aColl[N+X];
1400     p->nKeyField = (u16)N;
1401     p->nAllField = (u16)(N+X);
1402     p->enc = ENC(db);
1403     p->db = db;
1404     p->nRef = 1;
1405     memset(&p[1], 0, nExtra);
1406   }else{
1407     return (KeyInfo*)sqlite3OomFault(db);
1408   }
1409   return p;
1410 }
1411 
1412 /*
1413 ** Deallocate a KeyInfo object
1414 */
1415 void sqlite3KeyInfoUnref(KeyInfo *p){
1416   if( p ){
1417     assert( p->nRef>0 );
1418     p->nRef--;
1419     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1420   }
1421 }
1422 
1423 /*
1424 ** Make a new pointer to a KeyInfo object
1425 */
1426 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1427   if( p ){
1428     assert( p->nRef>0 );
1429     p->nRef++;
1430   }
1431   return p;
1432 }
1433 
1434 #ifdef SQLITE_DEBUG
1435 /*
1436 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1437 ** can only be changed if this is just a single reference to the object.
1438 **
1439 ** This routine is used only inside of assert() statements.
1440 */
1441 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1442 #endif /* SQLITE_DEBUG */
1443 
1444 /*
1445 ** Given an expression list, generate a KeyInfo structure that records
1446 ** the collating sequence for each expression in that expression list.
1447 **
1448 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1449 ** KeyInfo structure is appropriate for initializing a virtual index to
1450 ** implement that clause.  If the ExprList is the result set of a SELECT
1451 ** then the KeyInfo structure is appropriate for initializing a virtual
1452 ** index to implement a DISTINCT test.
1453 **
1454 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1455 ** function is responsible for seeing that this structure is eventually
1456 ** freed.
1457 */
1458 KeyInfo *sqlite3KeyInfoFromExprList(
1459   Parse *pParse,       /* Parsing context */
1460   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1461   int iStart,          /* Begin with this column of pList */
1462   int nExtra           /* Add this many extra columns to the end */
1463 ){
1464   int nExpr;
1465   KeyInfo *pInfo;
1466   struct ExprList_item *pItem;
1467   sqlite3 *db = pParse->db;
1468   int i;
1469 
1470   nExpr = pList->nExpr;
1471   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1472   if( pInfo ){
1473     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1474     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1475       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1476       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1477     }
1478   }
1479   return pInfo;
1480 }
1481 
1482 /*
1483 ** Name of the connection operator, used for error messages.
1484 */
1485 const char *sqlite3SelectOpName(int id){
1486   char *z;
1487   switch( id ){
1488     case TK_ALL:       z = "UNION ALL";   break;
1489     case TK_INTERSECT: z = "INTERSECT";   break;
1490     case TK_EXCEPT:    z = "EXCEPT";      break;
1491     default:           z = "UNION";       break;
1492   }
1493   return z;
1494 }
1495 
1496 #ifndef SQLITE_OMIT_EXPLAIN
1497 /*
1498 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1499 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1500 ** where the caption is of the form:
1501 **
1502 **   "USE TEMP B-TREE FOR xxx"
1503 **
1504 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1505 ** is determined by the zUsage argument.
1506 */
1507 static void explainTempTable(Parse *pParse, const char *zUsage){
1508   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1509 }
1510 
1511 /*
1512 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1513 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1514 ** in sqlite3Select() to assign values to structure member variables that
1515 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1516 ** code with #ifndef directives.
1517 */
1518 # define explainSetInteger(a, b) a = b
1519 
1520 #else
1521 /* No-op versions of the explainXXX() functions and macros. */
1522 # define explainTempTable(y,z)
1523 # define explainSetInteger(y,z)
1524 #endif
1525 
1526 
1527 /*
1528 ** If the inner loop was generated using a non-null pOrderBy argument,
1529 ** then the results were placed in a sorter.  After the loop is terminated
1530 ** we need to run the sorter and output the results.  The following
1531 ** routine generates the code needed to do that.
1532 */
1533 static void generateSortTail(
1534   Parse *pParse,    /* Parsing context */
1535   Select *p,        /* The SELECT statement */
1536   SortCtx *pSort,   /* Information on the ORDER BY clause */
1537   int nColumn,      /* Number of columns of data */
1538   SelectDest *pDest /* Write the sorted results here */
1539 ){
1540   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1541   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1542   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1543   int addr;                       /* Top of output loop. Jump for Next. */
1544   int addrOnce = 0;
1545   int iTab;
1546   ExprList *pOrderBy = pSort->pOrderBy;
1547   int eDest = pDest->eDest;
1548   int iParm = pDest->iSDParm;
1549   int regRow;
1550   int regRowid;
1551   int iCol;
1552   int nKey;                       /* Number of key columns in sorter record */
1553   int iSortTab;                   /* Sorter cursor to read from */
1554   int i;
1555   int bSeq;                       /* True if sorter record includes seq. no. */
1556   int nRefKey = 0;
1557   struct ExprList_item *aOutEx = p->pEList->a;
1558 
1559   assert( addrBreak<0 );
1560   if( pSort->labelBkOut ){
1561     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1562     sqlite3VdbeGoto(v, addrBreak);
1563     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1564   }
1565 
1566 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1567   /* Open any cursors needed for sorter-reference expressions */
1568   for(i=0; i<pSort->nDefer; i++){
1569     Table *pTab = pSort->aDefer[i].pTab;
1570     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1571     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1572     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1573   }
1574 #endif
1575 
1576   iTab = pSort->iECursor;
1577   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1578     if( eDest==SRT_Mem && p->iOffset ){
1579       sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1580     }
1581     regRowid = 0;
1582     regRow = pDest->iSdst;
1583   }else{
1584     regRowid = sqlite3GetTempReg(pParse);
1585     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1586       regRow = sqlite3GetTempReg(pParse);
1587       nColumn = 0;
1588     }else{
1589       regRow = sqlite3GetTempRange(pParse, nColumn);
1590     }
1591   }
1592   nKey = pOrderBy->nExpr - pSort->nOBSat;
1593   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1594     int regSortOut = ++pParse->nMem;
1595     iSortTab = pParse->nTab++;
1596     if( pSort->labelBkOut ){
1597       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1598     }
1599     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1600         nKey+1+nColumn+nRefKey);
1601     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1602     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1603     VdbeCoverage(v);
1604     codeOffset(v, p->iOffset, addrContinue);
1605     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1606     bSeq = 0;
1607   }else{
1608     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1609     codeOffset(v, p->iOffset, addrContinue);
1610     iSortTab = iTab;
1611     bSeq = 1;
1612   }
1613   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1614 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1615     if( aOutEx[i].bSorterRef ) continue;
1616 #endif
1617     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1618   }
1619 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1620   if( pSort->nDefer ){
1621     int iKey = iCol+1;
1622     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1623 
1624     for(i=0; i<pSort->nDefer; i++){
1625       int iCsr = pSort->aDefer[i].iCsr;
1626       Table *pTab = pSort->aDefer[i].pTab;
1627       int nKey = pSort->aDefer[i].nKey;
1628 
1629       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1630       if( HasRowid(pTab) ){
1631         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1632         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1633             sqlite3VdbeCurrentAddr(v)+1, regKey);
1634       }else{
1635         int k;
1636         int iJmp;
1637         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1638         for(k=0; k<nKey; k++){
1639           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1640         }
1641         iJmp = sqlite3VdbeCurrentAddr(v);
1642         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1643         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1644         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1645       }
1646     }
1647     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1648   }
1649 #endif
1650   for(i=nColumn-1; i>=0; i--){
1651 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1652     if( aOutEx[i].bSorterRef ){
1653       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1654     }else
1655 #endif
1656     {
1657       int iRead;
1658       if( aOutEx[i].u.x.iOrderByCol ){
1659         iRead = aOutEx[i].u.x.iOrderByCol-1;
1660       }else{
1661         iRead = iCol--;
1662       }
1663       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1664       VdbeComment((v, "%s", aOutEx[i].zEName));
1665     }
1666   }
1667   switch( eDest ){
1668     case SRT_Table:
1669     case SRT_EphemTab: {
1670       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1671       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1672       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1673       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1674       break;
1675     }
1676 #ifndef SQLITE_OMIT_SUBQUERY
1677     case SRT_Set: {
1678       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1679       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1680                         pDest->zAffSdst, nColumn);
1681       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1682       break;
1683     }
1684     case SRT_Mem: {
1685       /* The LIMIT clause will terminate the loop for us */
1686       break;
1687     }
1688 #endif
1689     case SRT_Upfrom: {
1690       int i2 = pDest->iSDParm2;
1691       int r1 = sqlite3GetTempReg(pParse);
1692       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1693       if( i2<0 ){
1694         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1695       }else{
1696         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1697       }
1698       break;
1699     }
1700     default: {
1701       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1702       testcase( eDest==SRT_Output );
1703       testcase( eDest==SRT_Coroutine );
1704       if( eDest==SRT_Output ){
1705         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1706       }else{
1707         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1708       }
1709       break;
1710     }
1711   }
1712   if( regRowid ){
1713     if( eDest==SRT_Set ){
1714       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1715     }else{
1716       sqlite3ReleaseTempReg(pParse, regRow);
1717     }
1718     sqlite3ReleaseTempReg(pParse, regRowid);
1719   }
1720   /* The bottom of the loop
1721   */
1722   sqlite3VdbeResolveLabel(v, addrContinue);
1723   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1724     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1725   }else{
1726     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1727   }
1728   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1729   sqlite3VdbeResolveLabel(v, addrBreak);
1730 }
1731 
1732 /*
1733 ** Return a pointer to a string containing the 'declaration type' of the
1734 ** expression pExpr. The string may be treated as static by the caller.
1735 **
1736 ** Also try to estimate the size of the returned value and return that
1737 ** result in *pEstWidth.
1738 **
1739 ** The declaration type is the exact datatype definition extracted from the
1740 ** original CREATE TABLE statement if the expression is a column. The
1741 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1742 ** is considered a column can be complex in the presence of subqueries. The
1743 ** result-set expression in all of the following SELECT statements is
1744 ** considered a column by this function.
1745 **
1746 **   SELECT col FROM tbl;
1747 **   SELECT (SELECT col FROM tbl;
1748 **   SELECT (SELECT col FROM tbl);
1749 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1750 **
1751 ** The declaration type for any expression other than a column is NULL.
1752 **
1753 ** This routine has either 3 or 6 parameters depending on whether or not
1754 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1755 */
1756 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1757 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1758 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1759 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1760 #endif
1761 static const char *columnTypeImpl(
1762   NameContext *pNC,
1763 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1764   Expr *pExpr
1765 #else
1766   Expr *pExpr,
1767   const char **pzOrigDb,
1768   const char **pzOrigTab,
1769   const char **pzOrigCol
1770 #endif
1771 ){
1772   char const *zType = 0;
1773   int j;
1774 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1775   char const *zOrigDb = 0;
1776   char const *zOrigTab = 0;
1777   char const *zOrigCol = 0;
1778 #endif
1779 
1780   assert( pExpr!=0 );
1781   assert( pNC->pSrcList!=0 );
1782   switch( pExpr->op ){
1783     case TK_COLUMN: {
1784       /* The expression is a column. Locate the table the column is being
1785       ** extracted from in NameContext.pSrcList. This table may be real
1786       ** database table or a subquery.
1787       */
1788       Table *pTab = 0;            /* Table structure column is extracted from */
1789       Select *pS = 0;             /* Select the column is extracted from */
1790       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1791       while( pNC && !pTab ){
1792         SrcList *pTabList = pNC->pSrcList;
1793         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1794         if( j<pTabList->nSrc ){
1795           pTab = pTabList->a[j].pTab;
1796           pS = pTabList->a[j].pSelect;
1797         }else{
1798           pNC = pNC->pNext;
1799         }
1800       }
1801 
1802       if( pTab==0 ){
1803         /* At one time, code such as "SELECT new.x" within a trigger would
1804         ** cause this condition to run.  Since then, we have restructured how
1805         ** trigger code is generated and so this condition is no longer
1806         ** possible. However, it can still be true for statements like
1807         ** the following:
1808         **
1809         **   CREATE TABLE t1(col INTEGER);
1810         **   SELECT (SELECT t1.col) FROM FROM t1;
1811         **
1812         ** when columnType() is called on the expression "t1.col" in the
1813         ** sub-select. In this case, set the column type to NULL, even
1814         ** though it should really be "INTEGER".
1815         **
1816         ** This is not a problem, as the column type of "t1.col" is never
1817         ** used. When columnType() is called on the expression
1818         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1819         ** branch below.  */
1820         break;
1821       }
1822 
1823       assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1824       if( pS ){
1825         /* The "table" is actually a sub-select or a view in the FROM clause
1826         ** of the SELECT statement. Return the declaration type and origin
1827         ** data for the result-set column of the sub-select.
1828         */
1829         if( iCol<pS->pEList->nExpr
1830 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1831          && iCol>=0
1832 #else
1833          && ALWAYS(iCol>=0)
1834 #endif
1835         ){
1836           /* If iCol is less than zero, then the expression requests the
1837           ** rowid of the sub-select or view. This expression is legal (see
1838           ** test case misc2.2.2) - it always evaluates to NULL.
1839           */
1840           NameContext sNC;
1841           Expr *p = pS->pEList->a[iCol].pExpr;
1842           sNC.pSrcList = pS->pSrc;
1843           sNC.pNext = pNC;
1844           sNC.pParse = pNC->pParse;
1845           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1846         }
1847       }else{
1848         /* A real table or a CTE table */
1849         assert( !pS );
1850 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1851         if( iCol<0 ) iCol = pTab->iPKey;
1852         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1853         if( iCol<0 ){
1854           zType = "INTEGER";
1855           zOrigCol = "rowid";
1856         }else{
1857           zOrigCol = pTab->aCol[iCol].zCnName;
1858           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1859         }
1860         zOrigTab = pTab->zName;
1861         if( pNC->pParse && pTab->pSchema ){
1862           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1863           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1864         }
1865 #else
1866         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1867         if( iCol<0 ){
1868           zType = "INTEGER";
1869         }else{
1870           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1871         }
1872 #endif
1873       }
1874       break;
1875     }
1876 #ifndef SQLITE_OMIT_SUBQUERY
1877     case TK_SELECT: {
1878       /* The expression is a sub-select. Return the declaration type and
1879       ** origin info for the single column in the result set of the SELECT
1880       ** statement.
1881       */
1882       NameContext sNC;
1883       Select *pS;
1884       Expr *p;
1885       assert( ExprUseXSelect(pExpr) );
1886       pS = pExpr->x.pSelect;
1887       p = pS->pEList->a[0].pExpr;
1888       sNC.pSrcList = pS->pSrc;
1889       sNC.pNext = pNC;
1890       sNC.pParse = pNC->pParse;
1891       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1892       break;
1893     }
1894 #endif
1895   }
1896 
1897 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1898   if( pzOrigDb ){
1899     assert( pzOrigTab && pzOrigCol );
1900     *pzOrigDb = zOrigDb;
1901     *pzOrigTab = zOrigTab;
1902     *pzOrigCol = zOrigCol;
1903   }
1904 #endif
1905   return zType;
1906 }
1907 
1908 /*
1909 ** Generate code that will tell the VDBE the declaration types of columns
1910 ** in the result set.
1911 */
1912 static void generateColumnTypes(
1913   Parse *pParse,      /* Parser context */
1914   SrcList *pTabList,  /* List of tables */
1915   ExprList *pEList    /* Expressions defining the result set */
1916 ){
1917 #ifndef SQLITE_OMIT_DECLTYPE
1918   Vdbe *v = pParse->pVdbe;
1919   int i;
1920   NameContext sNC;
1921   sNC.pSrcList = pTabList;
1922   sNC.pParse = pParse;
1923   sNC.pNext = 0;
1924   for(i=0; i<pEList->nExpr; i++){
1925     Expr *p = pEList->a[i].pExpr;
1926     const char *zType;
1927 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1928     const char *zOrigDb = 0;
1929     const char *zOrigTab = 0;
1930     const char *zOrigCol = 0;
1931     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1932 
1933     /* The vdbe must make its own copy of the column-type and other
1934     ** column specific strings, in case the schema is reset before this
1935     ** virtual machine is deleted.
1936     */
1937     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1938     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1939     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1940 #else
1941     zType = columnType(&sNC, p, 0, 0, 0);
1942 #endif
1943     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1944   }
1945 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1946 }
1947 
1948 
1949 /*
1950 ** Compute the column names for a SELECT statement.
1951 **
1952 ** The only guarantee that SQLite makes about column names is that if the
1953 ** column has an AS clause assigning it a name, that will be the name used.
1954 ** That is the only documented guarantee.  However, countless applications
1955 ** developed over the years have made baseless assumptions about column names
1956 ** and will break if those assumptions changes.  Hence, use extreme caution
1957 ** when modifying this routine to avoid breaking legacy.
1958 **
1959 ** See Also: sqlite3ColumnsFromExprList()
1960 **
1961 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1962 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1963 ** applications should operate this way.  Nevertheless, we need to support the
1964 ** other modes for legacy:
1965 **
1966 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1967 **                              originally appears in the SELECT statement.  In
1968 **                              other words, the zSpan of the result expression.
1969 **
1970 **    short=ON, full=OFF:       (This is the default setting).  If the result
1971 **                              refers directly to a table column, then the
1972 **                              result column name is just the table column
1973 **                              name: COLUMN.  Otherwise use zSpan.
1974 **
1975 **    full=ON, short=ANY:       If the result refers directly to a table column,
1976 **                              then the result column name with the table name
1977 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1978 */
1979 void sqlite3GenerateColumnNames(
1980   Parse *pParse,      /* Parser context */
1981   Select *pSelect     /* Generate column names for this SELECT statement */
1982 ){
1983   Vdbe *v = pParse->pVdbe;
1984   int i;
1985   Table *pTab;
1986   SrcList *pTabList;
1987   ExprList *pEList;
1988   sqlite3 *db = pParse->db;
1989   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1990   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1991 
1992 #ifndef SQLITE_OMIT_EXPLAIN
1993   /* If this is an EXPLAIN, skip this step */
1994   if( pParse->explain ){
1995     return;
1996   }
1997 #endif
1998 
1999   if( pParse->colNamesSet ) return;
2000   /* Column names are determined by the left-most term of a compound select */
2001   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2002   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2003   pTabList = pSelect->pSrc;
2004   pEList = pSelect->pEList;
2005   assert( v!=0 );
2006   assert( pTabList!=0 );
2007   pParse->colNamesSet = 1;
2008   fullName = (db->flags & SQLITE_FullColNames)!=0;
2009   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2010   sqlite3VdbeSetNumCols(v, pEList->nExpr);
2011   for(i=0; i<pEList->nExpr; i++){
2012     Expr *p = pEList->a[i].pExpr;
2013 
2014     assert( p!=0 );
2015     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2016     assert( p->op!=TK_COLUMN
2017         || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2018     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
2019       /* An AS clause always takes first priority */
2020       char *zName = pEList->a[i].zEName;
2021       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2022     }else if( srcName && p->op==TK_COLUMN ){
2023       char *zCol;
2024       int iCol = p->iColumn;
2025       pTab = p->y.pTab;
2026       assert( pTab!=0 );
2027       if( iCol<0 ) iCol = pTab->iPKey;
2028       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2029       if( iCol<0 ){
2030         zCol = "rowid";
2031       }else{
2032         zCol = pTab->aCol[iCol].zCnName;
2033       }
2034       if( fullName ){
2035         char *zName = 0;
2036         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2037         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2038       }else{
2039         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2040       }
2041     }else{
2042       const char *z = pEList->a[i].zEName;
2043       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2044       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2045     }
2046   }
2047   generateColumnTypes(pParse, pTabList, pEList);
2048 }
2049 
2050 /*
2051 ** Given an expression list (which is really the list of expressions
2052 ** that form the result set of a SELECT statement) compute appropriate
2053 ** column names for a table that would hold the expression list.
2054 **
2055 ** All column names will be unique.
2056 **
2057 ** Only the column names are computed.  Column.zType, Column.zColl,
2058 ** and other fields of Column are zeroed.
2059 **
2060 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2061 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2062 **
2063 ** The only guarantee that SQLite makes about column names is that if the
2064 ** column has an AS clause assigning it a name, that will be the name used.
2065 ** That is the only documented guarantee.  However, countless applications
2066 ** developed over the years have made baseless assumptions about column names
2067 ** and will break if those assumptions changes.  Hence, use extreme caution
2068 ** when modifying this routine to avoid breaking legacy.
2069 **
2070 ** See Also: sqlite3GenerateColumnNames()
2071 */
2072 int sqlite3ColumnsFromExprList(
2073   Parse *pParse,          /* Parsing context */
2074   ExprList *pEList,       /* Expr list from which to derive column names */
2075   i16 *pnCol,             /* Write the number of columns here */
2076   Column **paCol          /* Write the new column list here */
2077 ){
2078   sqlite3 *db = pParse->db;   /* Database connection */
2079   int i, j;                   /* Loop counters */
2080   u32 cnt;                    /* Index added to make the name unique */
2081   Column *aCol, *pCol;        /* For looping over result columns */
2082   int nCol;                   /* Number of columns in the result set */
2083   char *zName;                /* Column name */
2084   int nName;                  /* Size of name in zName[] */
2085   Hash ht;                    /* Hash table of column names */
2086   Table *pTab;
2087 
2088   sqlite3HashInit(&ht);
2089   if( pEList ){
2090     nCol = pEList->nExpr;
2091     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2092     testcase( aCol==0 );
2093     if( NEVER(nCol>32767) ) nCol = 32767;
2094   }else{
2095     nCol = 0;
2096     aCol = 0;
2097   }
2098   assert( nCol==(i16)nCol );
2099   *pnCol = nCol;
2100   *paCol = aCol;
2101 
2102   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2103     /* Get an appropriate name for the column
2104     */
2105     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2106       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2107     }else{
2108       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2109       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2110         pColExpr = pColExpr->pRight;
2111         assert( pColExpr!=0 );
2112       }
2113       if( pColExpr->op==TK_COLUMN
2114        && ALWAYS( ExprUseYTab(pColExpr) )
2115        && (pTab = pColExpr->y.pTab)!=0
2116       ){
2117         /* For columns use the column name name */
2118         int iCol = pColExpr->iColumn;
2119         if( iCol<0 ) iCol = pTab->iPKey;
2120         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2121       }else if( pColExpr->op==TK_ID ){
2122         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2123         zName = pColExpr->u.zToken;
2124       }else{
2125         /* Use the original text of the column expression as its name */
2126         zName = pEList->a[i].zEName;
2127       }
2128     }
2129     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2130       zName = sqlite3DbStrDup(db, zName);
2131     }else{
2132       zName = sqlite3MPrintf(db,"column%d",i+1);
2133     }
2134 
2135     /* Make sure the column name is unique.  If the name is not unique,
2136     ** append an integer to the name so that it becomes unique.
2137     */
2138     cnt = 0;
2139     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2140       nName = sqlite3Strlen30(zName);
2141       if( nName>0 ){
2142         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2143         if( zName[j]==':' ) nName = j;
2144       }
2145       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2146       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2147     }
2148     pCol->zCnName = zName;
2149     pCol->hName = sqlite3StrIHash(zName);
2150     sqlite3ColumnPropertiesFromName(0, pCol);
2151     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2152       sqlite3OomFault(db);
2153     }
2154   }
2155   sqlite3HashClear(&ht);
2156   if( db->mallocFailed ){
2157     for(j=0; j<i; j++){
2158       sqlite3DbFree(db, aCol[j].zCnName);
2159     }
2160     sqlite3DbFree(db, aCol);
2161     *paCol = 0;
2162     *pnCol = 0;
2163     return SQLITE_NOMEM_BKPT;
2164   }
2165   return SQLITE_OK;
2166 }
2167 
2168 /*
2169 ** Add type and collation information to a column list based on
2170 ** a SELECT statement.
2171 **
2172 ** The column list presumably came from selectColumnNamesFromExprList().
2173 ** The column list has only names, not types or collations.  This
2174 ** routine goes through and adds the types and collations.
2175 **
2176 ** This routine requires that all identifiers in the SELECT
2177 ** statement be resolved.
2178 */
2179 void sqlite3SelectAddColumnTypeAndCollation(
2180   Parse *pParse,        /* Parsing contexts */
2181   Table *pTab,          /* Add column type information to this table */
2182   Select *pSelect,      /* SELECT used to determine types and collations */
2183   char aff              /* Default affinity for columns */
2184 ){
2185   sqlite3 *db = pParse->db;
2186   NameContext sNC;
2187   Column *pCol;
2188   CollSeq *pColl;
2189   int i;
2190   Expr *p;
2191   struct ExprList_item *a;
2192 
2193   assert( pSelect!=0 );
2194   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2195   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2196   if( db->mallocFailed ) return;
2197   memset(&sNC, 0, sizeof(sNC));
2198   sNC.pSrcList = pSelect->pSrc;
2199   a = pSelect->pEList->a;
2200   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2201     const char *zType;
2202     i64 n, m;
2203     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2204     p = a[i].pExpr;
2205     zType = columnType(&sNC, p, 0, 0, 0);
2206     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2207     pCol->affinity = sqlite3ExprAffinity(p);
2208     if( zType ){
2209       m = sqlite3Strlen30(zType);
2210       n = sqlite3Strlen30(pCol->zCnName);
2211       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2212       if( pCol->zCnName ){
2213         memcpy(&pCol->zCnName[n+1], zType, m+1);
2214         pCol->colFlags |= COLFLAG_HASTYPE;
2215       }else{
2216         testcase( pCol->colFlags & COLFLAG_HASTYPE );
2217         pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2218       }
2219     }
2220     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2221     pColl = sqlite3ExprCollSeq(pParse, p);
2222     if( pColl ){
2223       assert( pTab->pIndex==0 );
2224       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2225     }
2226   }
2227   pTab->szTabRow = 1; /* Any non-zero value works */
2228 }
2229 
2230 /*
2231 ** Given a SELECT statement, generate a Table structure that describes
2232 ** the result set of that SELECT.
2233 */
2234 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2235   Table *pTab;
2236   sqlite3 *db = pParse->db;
2237   u64 savedFlags;
2238 
2239   savedFlags = db->flags;
2240   db->flags &= ~(u64)SQLITE_FullColNames;
2241   db->flags |= SQLITE_ShortColNames;
2242   sqlite3SelectPrep(pParse, pSelect, 0);
2243   db->flags = savedFlags;
2244   if( pParse->nErr ) return 0;
2245   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2246   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2247   if( pTab==0 ){
2248     return 0;
2249   }
2250   pTab->nTabRef = 1;
2251   pTab->zName = 0;
2252   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2253   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2254   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2255   pTab->iPKey = -1;
2256   if( db->mallocFailed ){
2257     sqlite3DeleteTable(db, pTab);
2258     return 0;
2259   }
2260   return pTab;
2261 }
2262 
2263 /*
2264 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2265 ** If an error occurs, return NULL and leave a message in pParse.
2266 */
2267 Vdbe *sqlite3GetVdbe(Parse *pParse){
2268   if( pParse->pVdbe ){
2269     return pParse->pVdbe;
2270   }
2271   if( pParse->pToplevel==0
2272    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2273   ){
2274     pParse->okConstFactor = 1;
2275   }
2276   return sqlite3VdbeCreate(pParse);
2277 }
2278 
2279 
2280 /*
2281 ** Compute the iLimit and iOffset fields of the SELECT based on the
2282 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2283 ** that appear in the original SQL statement after the LIMIT and OFFSET
2284 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2285 ** are the integer memory register numbers for counters used to compute
2286 ** the limit and offset.  If there is no limit and/or offset, then
2287 ** iLimit and iOffset are negative.
2288 **
2289 ** This routine changes the values of iLimit and iOffset only if
2290 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2291 ** and iOffset should have been preset to appropriate default values (zero)
2292 ** prior to calling this routine.
2293 **
2294 ** The iOffset register (if it exists) is initialized to the value
2295 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2296 ** iOffset+1 is initialized to LIMIT+OFFSET.
2297 **
2298 ** Only if pLimit->pLeft!=0 do the limit registers get
2299 ** redefined.  The UNION ALL operator uses this property to force
2300 ** the reuse of the same limit and offset registers across multiple
2301 ** SELECT statements.
2302 */
2303 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2304   Vdbe *v = 0;
2305   int iLimit = 0;
2306   int iOffset;
2307   int n;
2308   Expr *pLimit = p->pLimit;
2309 
2310   if( p->iLimit ) return;
2311 
2312   /*
2313   ** "LIMIT -1" always shows all rows.  There is some
2314   ** controversy about what the correct behavior should be.
2315   ** The current implementation interprets "LIMIT 0" to mean
2316   ** no rows.
2317   */
2318   if( pLimit ){
2319     assert( pLimit->op==TK_LIMIT );
2320     assert( pLimit->pLeft!=0 );
2321     p->iLimit = iLimit = ++pParse->nMem;
2322     v = sqlite3GetVdbe(pParse);
2323     assert( v!=0 );
2324     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2325       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2326       VdbeComment((v, "LIMIT counter"));
2327       if( n==0 ){
2328         sqlite3VdbeGoto(v, iBreak);
2329       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2330         p->nSelectRow = sqlite3LogEst((u64)n);
2331         p->selFlags |= SF_FixedLimit;
2332       }
2333     }else{
2334       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2335       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2336       VdbeComment((v, "LIMIT counter"));
2337       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2338     }
2339     if( pLimit->pRight ){
2340       p->iOffset = iOffset = ++pParse->nMem;
2341       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2342       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2343       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2344       VdbeComment((v, "OFFSET counter"));
2345       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2346       VdbeComment((v, "LIMIT+OFFSET"));
2347     }
2348   }
2349 }
2350 
2351 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2352 /*
2353 ** Return the appropriate collating sequence for the iCol-th column of
2354 ** the result set for the compound-select statement "p".  Return NULL if
2355 ** the column has no default collating sequence.
2356 **
2357 ** The collating sequence for the compound select is taken from the
2358 ** left-most term of the select that has a collating sequence.
2359 */
2360 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2361   CollSeq *pRet;
2362   if( p->pPrior ){
2363     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2364   }else{
2365     pRet = 0;
2366   }
2367   assert( iCol>=0 );
2368   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2369   ** have been thrown during name resolution and we would not have gotten
2370   ** this far */
2371   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2372     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2373   }
2374   return pRet;
2375 }
2376 
2377 /*
2378 ** The select statement passed as the second parameter is a compound SELECT
2379 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2380 ** structure suitable for implementing the ORDER BY.
2381 **
2382 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2383 ** function is responsible for ensuring that this structure is eventually
2384 ** freed.
2385 */
2386 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2387   ExprList *pOrderBy = p->pOrderBy;
2388   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2389   sqlite3 *db = pParse->db;
2390   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2391   if( pRet ){
2392     int i;
2393     for(i=0; i<nOrderBy; i++){
2394       struct ExprList_item *pItem = &pOrderBy->a[i];
2395       Expr *pTerm = pItem->pExpr;
2396       CollSeq *pColl;
2397 
2398       if( pTerm->flags & EP_Collate ){
2399         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2400       }else{
2401         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2402         if( pColl==0 ) pColl = db->pDfltColl;
2403         pOrderBy->a[i].pExpr =
2404           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2405       }
2406       assert( sqlite3KeyInfoIsWriteable(pRet) );
2407       pRet->aColl[i] = pColl;
2408       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2409     }
2410   }
2411 
2412   return pRet;
2413 }
2414 
2415 #ifndef SQLITE_OMIT_CTE
2416 /*
2417 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2418 ** query of the form:
2419 **
2420 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2421 **                         \___________/             \_______________/
2422 **                           p->pPrior                      p
2423 **
2424 **
2425 ** There is exactly one reference to the recursive-table in the FROM clause
2426 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2427 **
2428 ** The setup-query runs once to generate an initial set of rows that go
2429 ** into a Queue table.  Rows are extracted from the Queue table one by
2430 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2431 ** extracted row (now in the iCurrent table) becomes the content of the
2432 ** recursive-table for a recursive-query run.  The output of the recursive-query
2433 ** is added back into the Queue table.  Then another row is extracted from Queue
2434 ** and the iteration continues until the Queue table is empty.
2435 **
2436 ** If the compound query operator is UNION then no duplicate rows are ever
2437 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2438 ** that have ever been inserted into Queue and causes duplicates to be
2439 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2440 **
2441 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2442 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2443 ** an ORDER BY, the Queue table is just a FIFO.
2444 **
2445 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2446 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2447 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2448 ** with a positive value, then the first OFFSET outputs are discarded rather
2449 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2450 ** rows have been skipped.
2451 */
2452 static void generateWithRecursiveQuery(
2453   Parse *pParse,        /* Parsing context */
2454   Select *p,            /* The recursive SELECT to be coded */
2455   SelectDest *pDest     /* What to do with query results */
2456 ){
2457   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2458   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2459   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2460   Select *pSetup;               /* The setup query */
2461   Select *pFirstRec;            /* Left-most recursive term */
2462   int addrTop;                  /* Top of the loop */
2463   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2464   int iCurrent = 0;             /* The Current table */
2465   int regCurrent;               /* Register holding Current table */
2466   int iQueue;                   /* The Queue table */
2467   int iDistinct = 0;            /* To ensure unique results if UNION */
2468   int eDest = SRT_Fifo;         /* How to write to Queue */
2469   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2470   int i;                        /* Loop counter */
2471   int rc;                       /* Result code */
2472   ExprList *pOrderBy;           /* The ORDER BY clause */
2473   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2474   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2475 
2476 #ifndef SQLITE_OMIT_WINDOWFUNC
2477   if( p->pWin ){
2478     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2479     return;
2480   }
2481 #endif
2482 
2483   /* Obtain authorization to do a recursive query */
2484   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2485 
2486   /* Process the LIMIT and OFFSET clauses, if they exist */
2487   addrBreak = sqlite3VdbeMakeLabel(pParse);
2488   p->nSelectRow = 320;  /* 4 billion rows */
2489   computeLimitRegisters(pParse, p, addrBreak);
2490   pLimit = p->pLimit;
2491   regLimit = p->iLimit;
2492   regOffset = p->iOffset;
2493   p->pLimit = 0;
2494   p->iLimit = p->iOffset = 0;
2495   pOrderBy = p->pOrderBy;
2496 
2497   /* Locate the cursor number of the Current table */
2498   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2499     if( pSrc->a[i].fg.isRecursive ){
2500       iCurrent = pSrc->a[i].iCursor;
2501       break;
2502     }
2503   }
2504 
2505   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2506   ** the Distinct table must be exactly one greater than Queue in order
2507   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2508   iQueue = pParse->nTab++;
2509   if( p->op==TK_UNION ){
2510     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2511     iDistinct = pParse->nTab++;
2512   }else{
2513     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2514   }
2515   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2516 
2517   /* Allocate cursors for Current, Queue, and Distinct. */
2518   regCurrent = ++pParse->nMem;
2519   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2520   if( pOrderBy ){
2521     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2522     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2523                       (char*)pKeyInfo, P4_KEYINFO);
2524     destQueue.pOrderBy = pOrderBy;
2525   }else{
2526     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2527   }
2528   VdbeComment((v, "Queue table"));
2529   if( iDistinct ){
2530     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2531     p->selFlags |= SF_UsesEphemeral;
2532   }
2533 
2534   /* Detach the ORDER BY clause from the compound SELECT */
2535   p->pOrderBy = 0;
2536 
2537   /* Figure out how many elements of the compound SELECT are part of the
2538   ** recursive query.  Make sure no recursive elements use aggregate
2539   ** functions.  Mark the recursive elements as UNION ALL even if they
2540   ** are really UNION because the distinctness will be enforced by the
2541   ** iDistinct table.  pFirstRec is left pointing to the left-most
2542   ** recursive term of the CTE.
2543   */
2544   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2545     if( pFirstRec->selFlags & SF_Aggregate ){
2546       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2547       goto end_of_recursive_query;
2548     }
2549     pFirstRec->op = TK_ALL;
2550     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2551   }
2552 
2553   /* Store the results of the setup-query in Queue. */
2554   pSetup = pFirstRec->pPrior;
2555   pSetup->pNext = 0;
2556   ExplainQueryPlan((pParse, 1, "SETUP"));
2557   rc = sqlite3Select(pParse, pSetup, &destQueue);
2558   pSetup->pNext = p;
2559   if( rc ) goto end_of_recursive_query;
2560 
2561   /* Find the next row in the Queue and output that row */
2562   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2563 
2564   /* Transfer the next row in Queue over to Current */
2565   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2566   if( pOrderBy ){
2567     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2568   }else{
2569     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2570   }
2571   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2572 
2573   /* Output the single row in Current */
2574   addrCont = sqlite3VdbeMakeLabel(pParse);
2575   codeOffset(v, regOffset, addrCont);
2576   selectInnerLoop(pParse, p, iCurrent,
2577       0, 0, pDest, addrCont, addrBreak);
2578   if( regLimit ){
2579     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2580     VdbeCoverage(v);
2581   }
2582   sqlite3VdbeResolveLabel(v, addrCont);
2583 
2584   /* Execute the recursive SELECT taking the single row in Current as
2585   ** the value for the recursive-table. Store the results in the Queue.
2586   */
2587   pFirstRec->pPrior = 0;
2588   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2589   sqlite3Select(pParse, p, &destQueue);
2590   assert( pFirstRec->pPrior==0 );
2591   pFirstRec->pPrior = pSetup;
2592 
2593   /* Keep running the loop until the Queue is empty */
2594   sqlite3VdbeGoto(v, addrTop);
2595   sqlite3VdbeResolveLabel(v, addrBreak);
2596 
2597 end_of_recursive_query:
2598   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2599   p->pOrderBy = pOrderBy;
2600   p->pLimit = pLimit;
2601   return;
2602 }
2603 #endif /* SQLITE_OMIT_CTE */
2604 
2605 /* Forward references */
2606 static int multiSelectOrderBy(
2607   Parse *pParse,        /* Parsing context */
2608   Select *p,            /* The right-most of SELECTs to be coded */
2609   SelectDest *pDest     /* What to do with query results */
2610 );
2611 
2612 /*
2613 ** Handle the special case of a compound-select that originates from a
2614 ** VALUES clause.  By handling this as a special case, we avoid deep
2615 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2616 ** on a VALUES clause.
2617 **
2618 ** Because the Select object originates from a VALUES clause:
2619 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2620 **   (2) All terms are UNION ALL
2621 **   (3) There is no ORDER BY clause
2622 **
2623 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2624 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2625 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2626 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2627 */
2628 static int multiSelectValues(
2629   Parse *pParse,        /* Parsing context */
2630   Select *p,            /* The right-most of SELECTs to be coded */
2631   SelectDest *pDest     /* What to do with query results */
2632 ){
2633   int nRow = 1;
2634   int rc = 0;
2635   int bShowAll = p->pLimit==0;
2636   assert( p->selFlags & SF_MultiValue );
2637   do{
2638     assert( p->selFlags & SF_Values );
2639     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2640     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2641 #ifndef SQLITE_OMIT_WINDOWFUNC
2642     if( p->pWin ) return -1;
2643 #endif
2644     if( p->pPrior==0 ) break;
2645     assert( p->pPrior->pNext==p );
2646     p = p->pPrior;
2647     nRow += bShowAll;
2648   }while(1);
2649   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2650                     nRow==1 ? "" : "S"));
2651   while( p ){
2652     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2653     if( !bShowAll ) break;
2654     p->nSelectRow = nRow;
2655     p = p->pNext;
2656   }
2657   return rc;
2658 }
2659 
2660 /*
2661 ** Return true if the SELECT statement which is known to be the recursive
2662 ** part of a recursive CTE still has its anchor terms attached.  If the
2663 ** anchor terms have already been removed, then return false.
2664 */
2665 static int hasAnchor(Select *p){
2666   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2667   return p!=0;
2668 }
2669 
2670 /*
2671 ** This routine is called to process a compound query form from
2672 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2673 ** INTERSECT
2674 **
2675 ** "p" points to the right-most of the two queries.  the query on the
2676 ** left is p->pPrior.  The left query could also be a compound query
2677 ** in which case this routine will be called recursively.
2678 **
2679 ** The results of the total query are to be written into a destination
2680 ** of type eDest with parameter iParm.
2681 **
2682 ** Example 1:  Consider a three-way compound SQL statement.
2683 **
2684 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2685 **
2686 ** This statement is parsed up as follows:
2687 **
2688 **     SELECT c FROM t3
2689 **      |
2690 **      `----->  SELECT b FROM t2
2691 **                |
2692 **                `------>  SELECT a FROM t1
2693 **
2694 ** The arrows in the diagram above represent the Select.pPrior pointer.
2695 ** So if this routine is called with p equal to the t3 query, then
2696 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2697 **
2698 ** Notice that because of the way SQLite parses compound SELECTs, the
2699 ** individual selects always group from left to right.
2700 */
2701 static int multiSelect(
2702   Parse *pParse,        /* Parsing context */
2703   Select *p,            /* The right-most of SELECTs to be coded */
2704   SelectDest *pDest     /* What to do with query results */
2705 ){
2706   int rc = SQLITE_OK;   /* Success code from a subroutine */
2707   Select *pPrior;       /* Another SELECT immediately to our left */
2708   Vdbe *v;              /* Generate code to this VDBE */
2709   SelectDest dest;      /* Alternative data destination */
2710   Select *pDelete = 0;  /* Chain of simple selects to delete */
2711   sqlite3 *db;          /* Database connection */
2712 
2713   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2714   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2715   */
2716   assert( p && p->pPrior );  /* Calling function guarantees this much */
2717   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2718   assert( p->selFlags & SF_Compound );
2719   db = pParse->db;
2720   pPrior = p->pPrior;
2721   dest = *pDest;
2722   assert( pPrior->pOrderBy==0 );
2723   assert( pPrior->pLimit==0 );
2724 
2725   v = sqlite3GetVdbe(pParse);
2726   assert( v!=0 );  /* The VDBE already created by calling function */
2727 
2728   /* Create the destination temporary table if necessary
2729   */
2730   if( dest.eDest==SRT_EphemTab ){
2731     assert( p->pEList );
2732     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2733     dest.eDest = SRT_Table;
2734   }
2735 
2736   /* Special handling for a compound-select that originates as a VALUES clause.
2737   */
2738   if( p->selFlags & SF_MultiValue ){
2739     rc = multiSelectValues(pParse, p, &dest);
2740     if( rc>=0 ) goto multi_select_end;
2741     rc = SQLITE_OK;
2742   }
2743 
2744   /* Make sure all SELECTs in the statement have the same number of elements
2745   ** in their result sets.
2746   */
2747   assert( p->pEList && pPrior->pEList );
2748   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2749 
2750 #ifndef SQLITE_OMIT_CTE
2751   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2752     generateWithRecursiveQuery(pParse, p, &dest);
2753   }else
2754 #endif
2755 
2756   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2757   */
2758   if( p->pOrderBy ){
2759     return multiSelectOrderBy(pParse, p, pDest);
2760   }else{
2761 
2762 #ifndef SQLITE_OMIT_EXPLAIN
2763     if( pPrior->pPrior==0 ){
2764       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2765       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2766     }
2767 #endif
2768 
2769     /* Generate code for the left and right SELECT statements.
2770     */
2771     switch( p->op ){
2772       case TK_ALL: {
2773         int addr = 0;
2774         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2775         assert( !pPrior->pLimit );
2776         pPrior->iLimit = p->iLimit;
2777         pPrior->iOffset = p->iOffset;
2778         pPrior->pLimit = p->pLimit;
2779         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2780         rc = sqlite3Select(pParse, pPrior, &dest);
2781         pPrior->pLimit = 0;
2782         if( rc ){
2783           goto multi_select_end;
2784         }
2785         p->pPrior = 0;
2786         p->iLimit = pPrior->iLimit;
2787         p->iOffset = pPrior->iOffset;
2788         if( p->iLimit ){
2789           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2790           VdbeComment((v, "Jump ahead if LIMIT reached"));
2791           if( p->iOffset ){
2792             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2793                               p->iLimit, p->iOffset+1, p->iOffset);
2794           }
2795         }
2796         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2797         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2798         rc = sqlite3Select(pParse, p, &dest);
2799         testcase( rc!=SQLITE_OK );
2800         pDelete = p->pPrior;
2801         p->pPrior = pPrior;
2802         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2803         if( p->pLimit
2804          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2805          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2806         ){
2807           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2808         }
2809         if( addr ){
2810           sqlite3VdbeJumpHere(v, addr);
2811         }
2812         break;
2813       }
2814       case TK_EXCEPT:
2815       case TK_UNION: {
2816         int unionTab;    /* Cursor number of the temp table holding result */
2817         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2818         int priorOp;     /* The SRT_ operation to apply to prior selects */
2819         Expr *pLimit;    /* Saved values of p->nLimit  */
2820         int addr;
2821         SelectDest uniondest;
2822 
2823         testcase( p->op==TK_EXCEPT );
2824         testcase( p->op==TK_UNION );
2825         priorOp = SRT_Union;
2826         if( dest.eDest==priorOp ){
2827           /* We can reuse a temporary table generated by a SELECT to our
2828           ** right.
2829           */
2830           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2831           unionTab = dest.iSDParm;
2832         }else{
2833           /* We will need to create our own temporary table to hold the
2834           ** intermediate results.
2835           */
2836           unionTab = pParse->nTab++;
2837           assert( p->pOrderBy==0 );
2838           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2839           assert( p->addrOpenEphm[0] == -1 );
2840           p->addrOpenEphm[0] = addr;
2841           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2842           assert( p->pEList );
2843         }
2844 
2845 
2846         /* Code the SELECT statements to our left
2847         */
2848         assert( !pPrior->pOrderBy );
2849         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2850         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2851         rc = sqlite3Select(pParse, pPrior, &uniondest);
2852         if( rc ){
2853           goto multi_select_end;
2854         }
2855 
2856         /* Code the current SELECT statement
2857         */
2858         if( p->op==TK_EXCEPT ){
2859           op = SRT_Except;
2860         }else{
2861           assert( p->op==TK_UNION );
2862           op = SRT_Union;
2863         }
2864         p->pPrior = 0;
2865         pLimit = p->pLimit;
2866         p->pLimit = 0;
2867         uniondest.eDest = op;
2868         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2869                           sqlite3SelectOpName(p->op)));
2870         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2871         rc = sqlite3Select(pParse, p, &uniondest);
2872         testcase( rc!=SQLITE_OK );
2873         assert( p->pOrderBy==0 );
2874         pDelete = p->pPrior;
2875         p->pPrior = pPrior;
2876         p->pOrderBy = 0;
2877         if( p->op==TK_UNION ){
2878           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2879         }
2880         sqlite3ExprDelete(db, p->pLimit);
2881         p->pLimit = pLimit;
2882         p->iLimit = 0;
2883         p->iOffset = 0;
2884 
2885         /* Convert the data in the temporary table into whatever form
2886         ** it is that we currently need.
2887         */
2888         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2889         assert( p->pEList || db->mallocFailed );
2890         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2891           int iCont, iBreak, iStart;
2892           iBreak = sqlite3VdbeMakeLabel(pParse);
2893           iCont = sqlite3VdbeMakeLabel(pParse);
2894           computeLimitRegisters(pParse, p, iBreak);
2895           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2896           iStart = sqlite3VdbeCurrentAddr(v);
2897           selectInnerLoop(pParse, p, unionTab,
2898                           0, 0, &dest, iCont, iBreak);
2899           sqlite3VdbeResolveLabel(v, iCont);
2900           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2901           sqlite3VdbeResolveLabel(v, iBreak);
2902           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2903         }
2904         break;
2905       }
2906       default: assert( p->op==TK_INTERSECT ); {
2907         int tab1, tab2;
2908         int iCont, iBreak, iStart;
2909         Expr *pLimit;
2910         int addr;
2911         SelectDest intersectdest;
2912         int r1;
2913 
2914         /* INTERSECT is different from the others since it requires
2915         ** two temporary tables.  Hence it has its own case.  Begin
2916         ** by allocating the tables we will need.
2917         */
2918         tab1 = pParse->nTab++;
2919         tab2 = pParse->nTab++;
2920         assert( p->pOrderBy==0 );
2921 
2922         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2923         assert( p->addrOpenEphm[0] == -1 );
2924         p->addrOpenEphm[0] = addr;
2925         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2926         assert( p->pEList );
2927 
2928         /* Code the SELECTs to our left into temporary table "tab1".
2929         */
2930         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2931         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2932         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2933         if( rc ){
2934           goto multi_select_end;
2935         }
2936 
2937         /* Code the current SELECT into temporary table "tab2"
2938         */
2939         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2940         assert( p->addrOpenEphm[1] == -1 );
2941         p->addrOpenEphm[1] = addr;
2942         p->pPrior = 0;
2943         pLimit = p->pLimit;
2944         p->pLimit = 0;
2945         intersectdest.iSDParm = tab2;
2946         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2947                           sqlite3SelectOpName(p->op)));
2948         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2949         rc = sqlite3Select(pParse, p, &intersectdest);
2950         testcase( rc!=SQLITE_OK );
2951         pDelete = p->pPrior;
2952         p->pPrior = pPrior;
2953         if( p->nSelectRow>pPrior->nSelectRow ){
2954           p->nSelectRow = pPrior->nSelectRow;
2955         }
2956         sqlite3ExprDelete(db, p->pLimit);
2957         p->pLimit = pLimit;
2958 
2959         /* Generate code to take the intersection of the two temporary
2960         ** tables.
2961         */
2962         if( rc ) break;
2963         assert( p->pEList );
2964         iBreak = sqlite3VdbeMakeLabel(pParse);
2965         iCont = sqlite3VdbeMakeLabel(pParse);
2966         computeLimitRegisters(pParse, p, iBreak);
2967         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2968         r1 = sqlite3GetTempReg(pParse);
2969         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2970         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2971         VdbeCoverage(v);
2972         sqlite3ReleaseTempReg(pParse, r1);
2973         selectInnerLoop(pParse, p, tab1,
2974                         0, 0, &dest, iCont, iBreak);
2975         sqlite3VdbeResolveLabel(v, iCont);
2976         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2977         sqlite3VdbeResolveLabel(v, iBreak);
2978         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2979         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2980         break;
2981       }
2982     }
2983 
2984   #ifndef SQLITE_OMIT_EXPLAIN
2985     if( p->pNext==0 ){
2986       ExplainQueryPlanPop(pParse);
2987     }
2988   #endif
2989   }
2990   if( pParse->nErr ) goto multi_select_end;
2991 
2992   /* Compute collating sequences used by
2993   ** temporary tables needed to implement the compound select.
2994   ** Attach the KeyInfo structure to all temporary tables.
2995   **
2996   ** This section is run by the right-most SELECT statement only.
2997   ** SELECT statements to the left always skip this part.  The right-most
2998   ** SELECT might also skip this part if it has no ORDER BY clause and
2999   ** no temp tables are required.
3000   */
3001   if( p->selFlags & SF_UsesEphemeral ){
3002     int i;                        /* Loop counter */
3003     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
3004     Select *pLoop;                /* For looping through SELECT statements */
3005     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
3006     int nCol;                     /* Number of columns in result set */
3007 
3008     assert( p->pNext==0 );
3009     assert( p->pEList!=0 );
3010     nCol = p->pEList->nExpr;
3011     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3012     if( !pKeyInfo ){
3013       rc = SQLITE_NOMEM_BKPT;
3014       goto multi_select_end;
3015     }
3016     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3017       *apColl = multiSelectCollSeq(pParse, p, i);
3018       if( 0==*apColl ){
3019         *apColl = db->pDfltColl;
3020       }
3021     }
3022 
3023     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3024       for(i=0; i<2; i++){
3025         int addr = pLoop->addrOpenEphm[i];
3026         if( addr<0 ){
3027           /* If [0] is unused then [1] is also unused.  So we can
3028           ** always safely abort as soon as the first unused slot is found */
3029           assert( pLoop->addrOpenEphm[1]<0 );
3030           break;
3031         }
3032         sqlite3VdbeChangeP2(v, addr, nCol);
3033         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3034                             P4_KEYINFO);
3035         pLoop->addrOpenEphm[i] = -1;
3036       }
3037     }
3038     sqlite3KeyInfoUnref(pKeyInfo);
3039   }
3040 
3041 multi_select_end:
3042   pDest->iSdst = dest.iSdst;
3043   pDest->nSdst = dest.nSdst;
3044   if( pDelete ){
3045     sqlite3ParserAddCleanup(pParse,
3046         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3047         pDelete);
3048   }
3049   return rc;
3050 }
3051 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3052 
3053 /*
3054 ** Error message for when two or more terms of a compound select have different
3055 ** size result sets.
3056 */
3057 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3058   if( p->selFlags & SF_Values ){
3059     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3060   }else{
3061     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3062       " do not have the same number of result columns",
3063       sqlite3SelectOpName(p->op));
3064   }
3065 }
3066 
3067 /*
3068 ** Code an output subroutine for a coroutine implementation of a
3069 ** SELECT statment.
3070 **
3071 ** The data to be output is contained in pIn->iSdst.  There are
3072 ** pIn->nSdst columns to be output.  pDest is where the output should
3073 ** be sent.
3074 **
3075 ** regReturn is the number of the register holding the subroutine
3076 ** return address.
3077 **
3078 ** If regPrev>0 then it is the first register in a vector that
3079 ** records the previous output.  mem[regPrev] is a flag that is false
3080 ** if there has been no previous output.  If regPrev>0 then code is
3081 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3082 ** keys.
3083 **
3084 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3085 ** iBreak.
3086 */
3087 static int generateOutputSubroutine(
3088   Parse *pParse,          /* Parsing context */
3089   Select *p,              /* The SELECT statement */
3090   SelectDest *pIn,        /* Coroutine supplying data */
3091   SelectDest *pDest,      /* Where to send the data */
3092   int regReturn,          /* The return address register */
3093   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3094   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3095   int iBreak              /* Jump here if we hit the LIMIT */
3096 ){
3097   Vdbe *v = pParse->pVdbe;
3098   int iContinue;
3099   int addr;
3100 
3101   addr = sqlite3VdbeCurrentAddr(v);
3102   iContinue = sqlite3VdbeMakeLabel(pParse);
3103 
3104   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3105   */
3106   if( regPrev ){
3107     int addr1, addr2;
3108     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3109     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3110                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3111     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3112     sqlite3VdbeJumpHere(v, addr1);
3113     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3114     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3115   }
3116   if( pParse->db->mallocFailed ) return 0;
3117 
3118   /* Suppress the first OFFSET entries if there is an OFFSET clause
3119   */
3120   codeOffset(v, p->iOffset, iContinue);
3121 
3122   assert( pDest->eDest!=SRT_Exists );
3123   assert( pDest->eDest!=SRT_Table );
3124   switch( pDest->eDest ){
3125     /* Store the result as data using a unique key.
3126     */
3127     case SRT_EphemTab: {
3128       int r1 = sqlite3GetTempReg(pParse);
3129       int r2 = sqlite3GetTempReg(pParse);
3130       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3131       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3132       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3133       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3134       sqlite3ReleaseTempReg(pParse, r2);
3135       sqlite3ReleaseTempReg(pParse, r1);
3136       break;
3137     }
3138 
3139 #ifndef SQLITE_OMIT_SUBQUERY
3140     /* If we are creating a set for an "expr IN (SELECT ...)".
3141     */
3142     case SRT_Set: {
3143       int r1;
3144       testcase( pIn->nSdst>1 );
3145       r1 = sqlite3GetTempReg(pParse);
3146       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3147           r1, pDest->zAffSdst, pIn->nSdst);
3148       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3149                            pIn->iSdst, pIn->nSdst);
3150       sqlite3ReleaseTempReg(pParse, r1);
3151       break;
3152     }
3153 
3154     /* If this is a scalar select that is part of an expression, then
3155     ** store the results in the appropriate memory cell and break out
3156     ** of the scan loop.  Note that the select might return multiple columns
3157     ** if it is the RHS of a row-value IN operator.
3158     */
3159     case SRT_Mem: {
3160       testcase( pIn->nSdst>1 );
3161       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3162       /* The LIMIT clause will jump out of the loop for us */
3163       break;
3164     }
3165 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3166 
3167     /* The results are stored in a sequence of registers
3168     ** starting at pDest->iSdst.  Then the co-routine yields.
3169     */
3170     case SRT_Coroutine: {
3171       if( pDest->iSdst==0 ){
3172         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3173         pDest->nSdst = pIn->nSdst;
3174       }
3175       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3176       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3177       break;
3178     }
3179 
3180     /* If none of the above, then the result destination must be
3181     ** SRT_Output.  This routine is never called with any other
3182     ** destination other than the ones handled above or SRT_Output.
3183     **
3184     ** For SRT_Output, results are stored in a sequence of registers.
3185     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3186     ** return the next row of result.
3187     */
3188     default: {
3189       assert( pDest->eDest==SRT_Output );
3190       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3191       break;
3192     }
3193   }
3194 
3195   /* Jump to the end of the loop if the LIMIT is reached.
3196   */
3197   if( p->iLimit ){
3198     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3199   }
3200 
3201   /* Generate the subroutine return
3202   */
3203   sqlite3VdbeResolveLabel(v, iContinue);
3204   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3205 
3206   return addr;
3207 }
3208 
3209 /*
3210 ** Alternative compound select code generator for cases when there
3211 ** is an ORDER BY clause.
3212 **
3213 ** We assume a query of the following form:
3214 **
3215 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3216 **
3217 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3218 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3219 ** co-routines.  Then run the co-routines in parallel and merge the results
3220 ** into the output.  In addition to the two coroutines (called selectA and
3221 ** selectB) there are 7 subroutines:
3222 **
3223 **    outA:    Move the output of the selectA coroutine into the output
3224 **             of the compound query.
3225 **
3226 **    outB:    Move the output of the selectB coroutine into the output
3227 **             of the compound query.  (Only generated for UNION and
3228 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3229 **             appears only in B.)
3230 **
3231 **    AltB:    Called when there is data from both coroutines and A<B.
3232 **
3233 **    AeqB:    Called when there is data from both coroutines and A==B.
3234 **
3235 **    AgtB:    Called when there is data from both coroutines and A>B.
3236 **
3237 **    EofA:    Called when data is exhausted from selectA.
3238 **
3239 **    EofB:    Called when data is exhausted from selectB.
3240 **
3241 ** The implementation of the latter five subroutines depend on which
3242 ** <operator> is used:
3243 **
3244 **
3245 **             UNION ALL         UNION            EXCEPT          INTERSECT
3246 **          -------------  -----------------  --------------  -----------------
3247 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3248 **
3249 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3250 **
3251 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3252 **
3253 **   EofA:   outB, nextB      outB, nextB          halt             halt
3254 **
3255 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3256 **
3257 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3258 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3259 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3260 ** following nextX causes a jump to the end of the select processing.
3261 **
3262 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3263 ** within the output subroutine.  The regPrev register set holds the previously
3264 ** output value.  A comparison is made against this value and the output
3265 ** is skipped if the next results would be the same as the previous.
3266 **
3267 ** The implementation plan is to implement the two coroutines and seven
3268 ** subroutines first, then put the control logic at the bottom.  Like this:
3269 **
3270 **          goto Init
3271 **     coA: coroutine for left query (A)
3272 **     coB: coroutine for right query (B)
3273 **    outA: output one row of A
3274 **    outB: output one row of B (UNION and UNION ALL only)
3275 **    EofA: ...
3276 **    EofB: ...
3277 **    AltB: ...
3278 **    AeqB: ...
3279 **    AgtB: ...
3280 **    Init: initialize coroutine registers
3281 **          yield coA
3282 **          if eof(A) goto EofA
3283 **          yield coB
3284 **          if eof(B) goto EofB
3285 **    Cmpr: Compare A, B
3286 **          Jump AltB, AeqB, AgtB
3287 **     End: ...
3288 **
3289 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3290 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3291 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3292 ** and AgtB jump to either L2 or to one of EofA or EofB.
3293 */
3294 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3295 static int multiSelectOrderBy(
3296   Parse *pParse,        /* Parsing context */
3297   Select *p,            /* The right-most of SELECTs to be coded */
3298   SelectDest *pDest     /* What to do with query results */
3299 ){
3300   int i, j;             /* Loop counters */
3301   Select *pPrior;       /* Another SELECT immediately to our left */
3302   Select *pSplit;       /* Left-most SELECT in the right-hand group */
3303   int nSelect;          /* Number of SELECT statements in the compound */
3304   Vdbe *v;              /* Generate code to this VDBE */
3305   SelectDest destA;     /* Destination for coroutine A */
3306   SelectDest destB;     /* Destination for coroutine B */
3307   int regAddrA;         /* Address register for select-A coroutine */
3308   int regAddrB;         /* Address register for select-B coroutine */
3309   int addrSelectA;      /* Address of the select-A coroutine */
3310   int addrSelectB;      /* Address of the select-B coroutine */
3311   int regOutA;          /* Address register for the output-A subroutine */
3312   int regOutB;          /* Address register for the output-B subroutine */
3313   int addrOutA;         /* Address of the output-A subroutine */
3314   int addrOutB = 0;     /* Address of the output-B subroutine */
3315   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3316   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3317   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3318   int addrAltB;         /* Address of the A<B subroutine */
3319   int addrAeqB;         /* Address of the A==B subroutine */
3320   int addrAgtB;         /* Address of the A>B subroutine */
3321   int regLimitA;        /* Limit register for select-A */
3322   int regLimitB;        /* Limit register for select-A */
3323   int regPrev;          /* A range of registers to hold previous output */
3324   int savedLimit;       /* Saved value of p->iLimit */
3325   int savedOffset;      /* Saved value of p->iOffset */
3326   int labelCmpr;        /* Label for the start of the merge algorithm */
3327   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3328   int addr1;            /* Jump instructions that get retargetted */
3329   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3330   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3331   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3332   sqlite3 *db;          /* Database connection */
3333   ExprList *pOrderBy;   /* The ORDER BY clause */
3334   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3335   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3336 
3337   assert( p->pOrderBy!=0 );
3338   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3339   db = pParse->db;
3340   v = pParse->pVdbe;
3341   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3342   labelEnd = sqlite3VdbeMakeLabel(pParse);
3343   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3344 
3345 
3346   /* Patch up the ORDER BY clause
3347   */
3348   op = p->op;
3349   assert( p->pPrior->pOrderBy==0 );
3350   pOrderBy = p->pOrderBy;
3351   assert( pOrderBy );
3352   nOrderBy = pOrderBy->nExpr;
3353 
3354   /* For operators other than UNION ALL we have to make sure that
3355   ** the ORDER BY clause covers every term of the result set.  Add
3356   ** terms to the ORDER BY clause as necessary.
3357   */
3358   if( op!=TK_ALL ){
3359     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3360       struct ExprList_item *pItem;
3361       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3362         assert( pItem!=0 );
3363         assert( pItem->u.x.iOrderByCol>0 );
3364         if( pItem->u.x.iOrderByCol==i ) break;
3365       }
3366       if( j==nOrderBy ){
3367         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3368         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3369         pNew->flags |= EP_IntValue;
3370         pNew->u.iValue = i;
3371         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3372         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3373       }
3374     }
3375   }
3376 
3377   /* Compute the comparison permutation and keyinfo that is used with
3378   ** the permutation used to determine if the next
3379   ** row of results comes from selectA or selectB.  Also add explicit
3380   ** collations to the ORDER BY clause terms so that when the subqueries
3381   ** to the right and the left are evaluated, they use the correct
3382   ** collation.
3383   */
3384   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3385   if( aPermute ){
3386     struct ExprList_item *pItem;
3387     aPermute[0] = nOrderBy;
3388     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3389       assert( pItem!=0 );
3390       assert( pItem->u.x.iOrderByCol>0 );
3391       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3392       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3393     }
3394     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3395   }else{
3396     pKeyMerge = 0;
3397   }
3398 
3399   /* Allocate a range of temporary registers and the KeyInfo needed
3400   ** for the logic that removes duplicate result rows when the
3401   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3402   */
3403   if( op==TK_ALL ){
3404     regPrev = 0;
3405   }else{
3406     int nExpr = p->pEList->nExpr;
3407     assert( nOrderBy>=nExpr || db->mallocFailed );
3408     regPrev = pParse->nMem+1;
3409     pParse->nMem += nExpr+1;
3410     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3411     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3412     if( pKeyDup ){
3413       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3414       for(i=0; i<nExpr; i++){
3415         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3416         pKeyDup->aSortFlags[i] = 0;
3417       }
3418     }
3419   }
3420 
3421   /* Separate the left and the right query from one another
3422   */
3423   nSelect = 1;
3424   if( (op==TK_ALL || op==TK_UNION)
3425    && OptimizationEnabled(db, SQLITE_BalancedMerge)
3426   ){
3427     for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3428       nSelect++;
3429       assert( pSplit->pPrior->pNext==pSplit );
3430     }
3431   }
3432   if( nSelect<=3 ){
3433     pSplit = p;
3434   }else{
3435     pSplit = p;
3436     for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3437   }
3438   pPrior = pSplit->pPrior;
3439   assert( pPrior!=0 );
3440   pSplit->pPrior = 0;
3441   pPrior->pNext = 0;
3442   assert( p->pOrderBy == pOrderBy );
3443   assert( pOrderBy!=0 || db->mallocFailed );
3444   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3445   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3446   sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3447 
3448   /* Compute the limit registers */
3449   computeLimitRegisters(pParse, p, labelEnd);
3450   if( p->iLimit && op==TK_ALL ){
3451     regLimitA = ++pParse->nMem;
3452     regLimitB = ++pParse->nMem;
3453     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3454                                   regLimitA);
3455     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3456   }else{
3457     regLimitA = regLimitB = 0;
3458   }
3459   sqlite3ExprDelete(db, p->pLimit);
3460   p->pLimit = 0;
3461 
3462   regAddrA = ++pParse->nMem;
3463   regAddrB = ++pParse->nMem;
3464   regOutA = ++pParse->nMem;
3465   regOutB = ++pParse->nMem;
3466   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3467   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3468 
3469   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3470 
3471   /* Generate a coroutine to evaluate the SELECT statement to the
3472   ** left of the compound operator - the "A" select.
3473   */
3474   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3475   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3476   VdbeComment((v, "left SELECT"));
3477   pPrior->iLimit = regLimitA;
3478   ExplainQueryPlan((pParse, 1, "LEFT"));
3479   sqlite3Select(pParse, pPrior, &destA);
3480   sqlite3VdbeEndCoroutine(v, regAddrA);
3481   sqlite3VdbeJumpHere(v, addr1);
3482 
3483   /* Generate a coroutine to evaluate the SELECT statement on
3484   ** the right - the "B" select
3485   */
3486   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3487   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3488   VdbeComment((v, "right SELECT"));
3489   savedLimit = p->iLimit;
3490   savedOffset = p->iOffset;
3491   p->iLimit = regLimitB;
3492   p->iOffset = 0;
3493   ExplainQueryPlan((pParse, 1, "RIGHT"));
3494   sqlite3Select(pParse, p, &destB);
3495   p->iLimit = savedLimit;
3496   p->iOffset = savedOffset;
3497   sqlite3VdbeEndCoroutine(v, regAddrB);
3498 
3499   /* Generate a subroutine that outputs the current row of the A
3500   ** select as the next output row of the compound select.
3501   */
3502   VdbeNoopComment((v, "Output routine for A"));
3503   addrOutA = generateOutputSubroutine(pParse,
3504                  p, &destA, pDest, regOutA,
3505                  regPrev, pKeyDup, labelEnd);
3506 
3507   /* Generate a subroutine that outputs the current row of the B
3508   ** select as the next output row of the compound select.
3509   */
3510   if( op==TK_ALL || op==TK_UNION ){
3511     VdbeNoopComment((v, "Output routine for B"));
3512     addrOutB = generateOutputSubroutine(pParse,
3513                  p, &destB, pDest, regOutB,
3514                  regPrev, pKeyDup, labelEnd);
3515   }
3516   sqlite3KeyInfoUnref(pKeyDup);
3517 
3518   /* Generate a subroutine to run when the results from select A
3519   ** are exhausted and only data in select B remains.
3520   */
3521   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3522     addrEofA_noB = addrEofA = labelEnd;
3523   }else{
3524     VdbeNoopComment((v, "eof-A subroutine"));
3525     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3526     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3527                                      VdbeCoverage(v);
3528     sqlite3VdbeGoto(v, addrEofA);
3529     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3530   }
3531 
3532   /* Generate a subroutine to run when the results from select B
3533   ** are exhausted and only data in select A remains.
3534   */
3535   if( op==TK_INTERSECT ){
3536     addrEofB = addrEofA;
3537     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3538   }else{
3539     VdbeNoopComment((v, "eof-B subroutine"));
3540     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3541     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3542     sqlite3VdbeGoto(v, addrEofB);
3543   }
3544 
3545   /* Generate code to handle the case of A<B
3546   */
3547   VdbeNoopComment((v, "A-lt-B subroutine"));
3548   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3549   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3550   sqlite3VdbeGoto(v, labelCmpr);
3551 
3552   /* Generate code to handle the case of A==B
3553   */
3554   if( op==TK_ALL ){
3555     addrAeqB = addrAltB;
3556   }else if( op==TK_INTERSECT ){
3557     addrAeqB = addrAltB;
3558     addrAltB++;
3559   }else{
3560     VdbeNoopComment((v, "A-eq-B subroutine"));
3561     addrAeqB =
3562     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3563     sqlite3VdbeGoto(v, labelCmpr);
3564   }
3565 
3566   /* Generate code to handle the case of A>B
3567   */
3568   VdbeNoopComment((v, "A-gt-B subroutine"));
3569   addrAgtB = sqlite3VdbeCurrentAddr(v);
3570   if( op==TK_ALL || op==TK_UNION ){
3571     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3572   }
3573   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3574   sqlite3VdbeGoto(v, labelCmpr);
3575 
3576   /* This code runs once to initialize everything.
3577   */
3578   sqlite3VdbeJumpHere(v, addr1);
3579   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3580   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3581 
3582   /* Implement the main merge loop
3583   */
3584   sqlite3VdbeResolveLabel(v, labelCmpr);
3585   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3586   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3587                          (char*)pKeyMerge, P4_KEYINFO);
3588   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3589   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3590 
3591   /* Jump to the this point in order to terminate the query.
3592   */
3593   sqlite3VdbeResolveLabel(v, labelEnd);
3594 
3595   /* Reassembly the compound query so that it will be freed correctly
3596   ** by the calling function */
3597   if( pSplit->pPrior ){
3598     sqlite3SelectDelete(db, pSplit->pPrior);
3599   }
3600   pSplit->pPrior = pPrior;
3601   pPrior->pNext = pSplit;
3602   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3603   pPrior->pOrderBy = 0;
3604 
3605   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3606   **** subqueries ****/
3607   ExplainQueryPlanPop(pParse);
3608   return pParse->nErr!=0;
3609 }
3610 #endif
3611 
3612 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3613 
3614 /* An instance of the SubstContext object describes an substitution edit
3615 ** to be performed on a parse tree.
3616 **
3617 ** All references to columns in table iTable are to be replaced by corresponding
3618 ** expressions in pEList.
3619 */
3620 typedef struct SubstContext {
3621   Parse *pParse;            /* The parsing context */
3622   int iTable;               /* Replace references to this table */
3623   int iNewTable;            /* New table number */
3624   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3625   ExprList *pEList;         /* Replacement expressions */
3626 } SubstContext;
3627 
3628 /* Forward Declarations */
3629 static void substExprList(SubstContext*, ExprList*);
3630 static void substSelect(SubstContext*, Select*, int);
3631 
3632 /*
3633 ** Scan through the expression pExpr.  Replace every reference to
3634 ** a column in table number iTable with a copy of the iColumn-th
3635 ** entry in pEList.  (But leave references to the ROWID column
3636 ** unchanged.)
3637 **
3638 ** This routine is part of the flattening procedure.  A subquery
3639 ** whose result set is defined by pEList appears as entry in the
3640 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3641 ** FORM clause entry is iTable.  This routine makes the necessary
3642 ** changes to pExpr so that it refers directly to the source table
3643 ** of the subquery rather the result set of the subquery.
3644 */
3645 static Expr *substExpr(
3646   SubstContext *pSubst,  /* Description of the substitution */
3647   Expr *pExpr            /* Expr in which substitution occurs */
3648 ){
3649   if( pExpr==0 ) return 0;
3650   if( ExprHasProperty(pExpr, EP_FromJoin)
3651    && pExpr->w.iRightJoinTable==pSubst->iTable
3652   ){
3653     pExpr->w.iRightJoinTable = pSubst->iNewTable;
3654   }
3655   if( pExpr->op==TK_COLUMN
3656    && pExpr->iTable==pSubst->iTable
3657    && !ExprHasProperty(pExpr, EP_FixedCol)
3658   ){
3659 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3660     if( pExpr->iColumn<0 ){
3661       pExpr->op = TK_NULL;
3662     }else
3663 #endif
3664     {
3665       Expr *pNew;
3666       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3667       Expr ifNullRow;
3668       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3669       assert( pExpr->pRight==0 );
3670       if( sqlite3ExprIsVector(pCopy) ){
3671         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3672       }else{
3673         sqlite3 *db = pSubst->pParse->db;
3674         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3675           memset(&ifNullRow, 0, sizeof(ifNullRow));
3676           ifNullRow.op = TK_IF_NULL_ROW;
3677           ifNullRow.pLeft = pCopy;
3678           ifNullRow.iTable = pSubst->iNewTable;
3679           ifNullRow.flags = EP_IfNullRow;
3680           pCopy = &ifNullRow;
3681         }
3682         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3683         pNew = sqlite3ExprDup(db, pCopy, 0);
3684         if( db->mallocFailed ){
3685           sqlite3ExprDelete(db, pNew);
3686           return pExpr;
3687         }
3688         if( pSubst->isLeftJoin ){
3689           ExprSetProperty(pNew, EP_CanBeNull);
3690         }
3691         if( ExprHasProperty(pExpr,EP_FromJoin) ){
3692           sqlite3SetJoinExpr(pNew, pExpr->w.iRightJoinTable);
3693         }
3694         sqlite3ExprDelete(db, pExpr);
3695         pExpr = pNew;
3696 
3697         /* Ensure that the expression now has an implicit collation sequence,
3698         ** just as it did when it was a column of a view or sub-query. */
3699         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3700           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3701           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3702               (pColl ? pColl->zName : "BINARY")
3703           );
3704         }
3705         ExprClearProperty(pExpr, EP_Collate);
3706       }
3707     }
3708   }else{
3709     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3710       pExpr->iTable = pSubst->iNewTable;
3711     }
3712     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3713     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3714     if( ExprUseXSelect(pExpr) ){
3715       substSelect(pSubst, pExpr->x.pSelect, 1);
3716     }else{
3717       substExprList(pSubst, pExpr->x.pList);
3718     }
3719 #ifndef SQLITE_OMIT_WINDOWFUNC
3720     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3721       Window *pWin = pExpr->y.pWin;
3722       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3723       substExprList(pSubst, pWin->pPartition);
3724       substExprList(pSubst, pWin->pOrderBy);
3725     }
3726 #endif
3727   }
3728   return pExpr;
3729 }
3730 static void substExprList(
3731   SubstContext *pSubst, /* Description of the substitution */
3732   ExprList *pList       /* List to scan and in which to make substitutes */
3733 ){
3734   int i;
3735   if( pList==0 ) return;
3736   for(i=0; i<pList->nExpr; i++){
3737     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3738   }
3739 }
3740 static void substSelect(
3741   SubstContext *pSubst, /* Description of the substitution */
3742   Select *p,            /* SELECT statement in which to make substitutions */
3743   int doPrior           /* Do substitutes on p->pPrior too */
3744 ){
3745   SrcList *pSrc;
3746   SrcItem *pItem;
3747   int i;
3748   if( !p ) return;
3749   do{
3750     substExprList(pSubst, p->pEList);
3751     substExprList(pSubst, p->pGroupBy);
3752     substExprList(pSubst, p->pOrderBy);
3753     p->pHaving = substExpr(pSubst, p->pHaving);
3754     p->pWhere = substExpr(pSubst, p->pWhere);
3755     pSrc = p->pSrc;
3756     assert( pSrc!=0 );
3757     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3758       substSelect(pSubst, pItem->pSelect, 1);
3759       if( pItem->fg.isTabFunc ){
3760         substExprList(pSubst, pItem->u1.pFuncArg);
3761       }
3762     }
3763   }while( doPrior && (p = p->pPrior)!=0 );
3764 }
3765 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3766 
3767 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3768 /*
3769 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3770 ** clause of that SELECT.
3771 **
3772 ** This routine scans the entire SELECT statement and recomputes the
3773 ** pSrcItem->colUsed mask.
3774 */
3775 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3776   SrcItem *pItem;
3777   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3778   pItem = pWalker->u.pSrcItem;
3779   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3780   if( pExpr->iColumn<0 ) return WRC_Continue;
3781   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3782   return WRC_Continue;
3783 }
3784 static void recomputeColumnsUsed(
3785   Select *pSelect,                 /* The complete SELECT statement */
3786   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3787 ){
3788   Walker w;
3789   if( NEVER(pSrcItem->pTab==0) ) return;
3790   memset(&w, 0, sizeof(w));
3791   w.xExprCallback = recomputeColumnsUsedExpr;
3792   w.xSelectCallback = sqlite3SelectWalkNoop;
3793   w.u.pSrcItem = pSrcItem;
3794   pSrcItem->colUsed = 0;
3795   sqlite3WalkSelect(&w, pSelect);
3796 }
3797 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3798 
3799 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3800 /*
3801 ** Assign new cursor numbers to each of the items in pSrc. For each
3802 ** new cursor number assigned, set an entry in the aCsrMap[] array
3803 ** to map the old cursor number to the new:
3804 **
3805 **     aCsrMap[iOld+1] = iNew;
3806 **
3807 ** The array is guaranteed by the caller to be large enough for all
3808 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3809 **
3810 ** If pSrc contains any sub-selects, call this routine recursively
3811 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3812 */
3813 static void srclistRenumberCursors(
3814   Parse *pParse,                  /* Parse context */
3815   int *aCsrMap,                   /* Array to store cursor mappings in */
3816   SrcList *pSrc,                  /* FROM clause to renumber */
3817   int iExcept                     /* FROM clause item to skip */
3818 ){
3819   int i;
3820   SrcItem *pItem;
3821   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3822     if( i!=iExcept ){
3823       Select *p;
3824       assert( pItem->iCursor < aCsrMap[0] );
3825       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3826         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3827       }
3828       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3829       for(p=pItem->pSelect; p; p=p->pPrior){
3830         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3831       }
3832     }
3833   }
3834 }
3835 
3836 /*
3837 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3838 */
3839 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3840   int *aCsrMap = pWalker->u.aiCol;
3841   int iCsr = *piCursor;
3842   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3843     *piCursor = aCsrMap[iCsr+1];
3844   }
3845 }
3846 
3847 /*
3848 ** Expression walker callback used by renumberCursors() to update
3849 ** Expr objects to match newly assigned cursor numbers.
3850 */
3851 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3852   int op = pExpr->op;
3853   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3854     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3855   }
3856   if( ExprHasProperty(pExpr, EP_FromJoin) ){
3857     renumberCursorDoMapping(pWalker, &pExpr->w.iRightJoinTable);
3858   }
3859   return WRC_Continue;
3860 }
3861 
3862 /*
3863 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3864 ** of the SELECT statement passed as the second argument, and to each
3865 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3866 ** Except, do not assign a new cursor number to the iExcept'th element in
3867 ** the FROM clause of (*p). Update all expressions and other references
3868 ** to refer to the new cursor numbers.
3869 **
3870 ** Argument aCsrMap is an array that may be used for temporary working
3871 ** space. Two guarantees are made by the caller:
3872 **
3873 **   * the array is larger than the largest cursor number used within the
3874 **     select statement passed as an argument, and
3875 **
3876 **   * the array entries for all cursor numbers that do *not* appear in
3877 **     FROM clauses of the select statement as described above are
3878 **     initialized to zero.
3879 */
3880 static void renumberCursors(
3881   Parse *pParse,                  /* Parse context */
3882   Select *p,                      /* Select to renumber cursors within */
3883   int iExcept,                    /* FROM clause item to skip */
3884   int *aCsrMap                    /* Working space */
3885 ){
3886   Walker w;
3887   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3888   memset(&w, 0, sizeof(w));
3889   w.u.aiCol = aCsrMap;
3890   w.xExprCallback = renumberCursorsCb;
3891   w.xSelectCallback = sqlite3SelectWalkNoop;
3892   sqlite3WalkSelect(&w, p);
3893 }
3894 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3895 
3896 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3897 /*
3898 ** This routine attempts to flatten subqueries as a performance optimization.
3899 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3900 **
3901 ** To understand the concept of flattening, consider the following
3902 ** query:
3903 **
3904 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3905 **
3906 ** The default way of implementing this query is to execute the
3907 ** subquery first and store the results in a temporary table, then
3908 ** run the outer query on that temporary table.  This requires two
3909 ** passes over the data.  Furthermore, because the temporary table
3910 ** has no indices, the WHERE clause on the outer query cannot be
3911 ** optimized.
3912 **
3913 ** This routine attempts to rewrite queries such as the above into
3914 ** a single flat select, like this:
3915 **
3916 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3917 **
3918 ** The code generated for this simplification gives the same result
3919 ** but only has to scan the data once.  And because indices might
3920 ** exist on the table t1, a complete scan of the data might be
3921 ** avoided.
3922 **
3923 ** Flattening is subject to the following constraints:
3924 **
3925 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3926 **        The subquery and the outer query cannot both be aggregates.
3927 **
3928 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3929 **        (2) If the subquery is an aggregate then
3930 **        (2a) the outer query must not be a join and
3931 **        (2b) the outer query must not use subqueries
3932 **             other than the one FROM-clause subquery that is a candidate
3933 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3934 **             from 2015-02-09.)
3935 **
3936 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3937 **        (3a) the subquery may not be a join and
3938 **        (3b) the FROM clause of the subquery may not contain a virtual
3939 **             table and
3940 **        (3c) the outer query may not be an aggregate.
3941 **        (3d) the outer query may not be DISTINCT.
3942 **
3943 **   (4)  The subquery can not be DISTINCT.
3944 **
3945 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3946 **        sub-queries that were excluded from this optimization. Restriction
3947 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3948 **
3949 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3950 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3951 **
3952 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3953 **        A FROM clause, consider adding a FROM clause with the special
3954 **        table sqlite_once that consists of a single row containing a
3955 **        single NULL.
3956 **
3957 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3958 **
3959 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3960 **
3961 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3962 **        accidently carried the comment forward until 2014-09-15.  Original
3963 **        constraint: "If the subquery is aggregate then the outer query
3964 **        may not use LIMIT."
3965 **
3966 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3967 **
3968 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3969 **        a separate restriction deriving from ticket #350.
3970 **
3971 **  (13)  The subquery and outer query may not both use LIMIT.
3972 **
3973 **  (14)  The subquery may not use OFFSET.
3974 **
3975 **  (15)  If the outer query is part of a compound select, then the
3976 **        subquery may not use LIMIT.
3977 **        (See ticket #2339 and ticket [02a8e81d44]).
3978 **
3979 **  (16)  If the outer query is aggregate, then the subquery may not
3980 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3981 **        until we introduced the group_concat() function.
3982 **
3983 **  (17)  If the subquery is a compound select, then
3984 **        (17a) all compound operators must be a UNION ALL, and
3985 **        (17b) no terms within the subquery compound may be aggregate
3986 **              or DISTINCT, and
3987 **        (17c) every term within the subquery compound must have a FROM clause
3988 **        (17d) the outer query may not be
3989 **              (17d1) aggregate, or
3990 **              (17d2) DISTINCT
3991 **        (17e) the subquery may not contain window functions, and
3992 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3993 **
3994 **        The parent and sub-query may contain WHERE clauses. Subject to
3995 **        rules (11), (13) and (14), they may also contain ORDER BY,
3996 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3997 **        operator other than UNION ALL because all the other compound
3998 **        operators have an implied DISTINCT which is disallowed by
3999 **        restriction (4).
4000 **
4001 **        Also, each component of the sub-query must return the same number
4002 **        of result columns. This is actually a requirement for any compound
4003 **        SELECT statement, but all the code here does is make sure that no
4004 **        such (illegal) sub-query is flattened. The caller will detect the
4005 **        syntax error and return a detailed message.
4006 **
4007 **  (18)  If the sub-query is a compound select, then all terms of the
4008 **        ORDER BY clause of the parent must be copies of a term returned
4009 **        by the parent query.
4010 **
4011 **  (19)  If the subquery uses LIMIT then the outer query may not
4012 **        have a WHERE clause.
4013 **
4014 **  (20)  If the sub-query is a compound select, then it must not use
4015 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
4016 **        somewhat by saying that the terms of the ORDER BY clause must
4017 **        appear as unmodified result columns in the outer query.  But we
4018 **        have other optimizations in mind to deal with that case.
4019 **
4020 **  (21)  If the subquery uses LIMIT then the outer query may not be
4021 **        DISTINCT.  (See ticket [752e1646fc]).
4022 **
4023 **  (22)  The subquery may not be a recursive CTE.
4024 **
4025 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
4026 **        a compound query.  This restriction is because transforming the
4027 **        parent to a compound query confuses the code that handles
4028 **        recursive queries in multiSelect().
4029 **
4030 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
4031 **        The subquery may not be an aggregate that uses the built-in min() or
4032 **        or max() functions.  (Without this restriction, a query like:
4033 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4034 **        return the value X for which Y was maximal.)
4035 **
4036 **  (25)  If either the subquery or the parent query contains a window
4037 **        function in the select list or ORDER BY clause, flattening
4038 **        is not attempted.
4039 **
4040 **
4041 ** In this routine, the "p" parameter is a pointer to the outer query.
4042 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4043 ** uses aggregates.
4044 **
4045 ** If flattening is not attempted, this routine is a no-op and returns 0.
4046 ** If flattening is attempted this routine returns 1.
4047 **
4048 ** All of the expression analysis must occur on both the outer query and
4049 ** the subquery before this routine runs.
4050 */
4051 static int flattenSubquery(
4052   Parse *pParse,       /* Parsing context */
4053   Select *p,           /* The parent or outer SELECT statement */
4054   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4055   int isAgg            /* True if outer SELECT uses aggregate functions */
4056 ){
4057   const char *zSavedAuthContext = pParse->zAuthContext;
4058   Select *pParent;    /* Current UNION ALL term of the other query */
4059   Select *pSub;       /* The inner query or "subquery" */
4060   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4061   SrcList *pSrc;      /* The FROM clause of the outer query */
4062   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4063   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4064   int iNewParent = -1;/* Replacement table for iParent */
4065   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4066   int i;              /* Loop counter */
4067   Expr *pWhere;                    /* The WHERE clause */
4068   SrcItem *pSubitem;               /* The subquery */
4069   sqlite3 *db = pParse->db;
4070   Walker w;                        /* Walker to persist agginfo data */
4071   int *aCsrMap = 0;
4072 
4073   /* Check to see if flattening is permitted.  Return 0 if not.
4074   */
4075   assert( p!=0 );
4076   assert( p->pPrior==0 );
4077   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4078   pSrc = p->pSrc;
4079   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4080   pSubitem = &pSrc->a[iFrom];
4081   iParent = pSubitem->iCursor;
4082   pSub = pSubitem->pSelect;
4083   assert( pSub!=0 );
4084 
4085 #ifndef SQLITE_OMIT_WINDOWFUNC
4086   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4087 #endif
4088 
4089   pSubSrc = pSub->pSrc;
4090   assert( pSubSrc );
4091   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4092   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4093   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4094   ** became arbitrary expressions, we were forced to add restrictions (13)
4095   ** and (14). */
4096   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4097   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4098   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4099     return 0;                                            /* Restriction (15) */
4100   }
4101   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4102   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4103   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4104      return 0;         /* Restrictions (8)(9) */
4105   }
4106   if( p->pOrderBy && pSub->pOrderBy ){
4107      return 0;                                           /* Restriction (11) */
4108   }
4109   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4110   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4111   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4112      return 0;         /* Restriction (21) */
4113   }
4114   if( pSub->selFlags & (SF_Recursive) ){
4115     return 0; /* Restrictions (22) */
4116   }
4117 
4118   /*
4119   ** If the subquery is the right operand of a LEFT JOIN, then the
4120   ** subquery may not be a join itself (3a). Example of why this is not
4121   ** allowed:
4122   **
4123   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4124   **
4125   ** If we flatten the above, we would get
4126   **
4127   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4128   **
4129   ** which is not at all the same thing.
4130   **
4131   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4132   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4133   ** aggregates are processed - there is no mechanism to determine if
4134   ** the LEFT JOIN table should be all-NULL.
4135   **
4136   ** See also tickets #306, #350, and #3300.
4137   */
4138   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4139     isLeftJoin = 1;
4140     if( pSubSrc->nSrc>1                   /* (3a) */
4141      || isAgg                             /* (3b) */
4142      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
4143      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
4144     ){
4145       return 0;
4146     }
4147   }
4148 #ifdef SQLITE_EXTRA_IFNULLROW
4149   else if( iFrom>0 && !isAgg ){
4150     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4151     ** every reference to any result column from subquery in a join, even
4152     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4153     ** opcode. */
4154     isLeftJoin = -1;
4155   }
4156 #endif
4157 
4158   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4159   ** use only the UNION ALL operator. And none of the simple select queries
4160   ** that make up the compound SELECT are allowed to be aggregate or distinct
4161   ** queries.
4162   */
4163   if( pSub->pPrior ){
4164     if( pSub->pOrderBy ){
4165       return 0;  /* Restriction (20) */
4166     }
4167     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4168       return 0; /* (17d1), (17d2), or (17f) */
4169     }
4170     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4171       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4172       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4173       assert( pSub->pSrc!=0 );
4174       assert( (pSub->selFlags & SF_Recursive)==0 );
4175       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4176       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4177        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4178        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4179 #ifndef SQLITE_OMIT_WINDOWFUNC
4180        || pSub1->pWin                                          /* (17e) */
4181 #endif
4182       ){
4183         return 0;
4184       }
4185       testcase( pSub1->pSrc->nSrc>1 );
4186     }
4187 
4188     /* Restriction (18). */
4189     if( p->pOrderBy ){
4190       int ii;
4191       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4192         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4193       }
4194     }
4195 
4196     /* Restriction (23) */
4197     if( (p->selFlags & SF_Recursive) ) return 0;
4198 
4199     if( pSrc->nSrc>1 ){
4200       if( pParse->nSelect>500 ) return 0;
4201       aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4202       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4203     }
4204   }
4205 
4206   /***** If we reach this point, flattening is permitted. *****/
4207   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4208                    pSub->selId, pSub, iFrom));
4209 
4210   /* Authorize the subquery */
4211   pParse->zAuthContext = pSubitem->zName;
4212   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4213   testcase( i==SQLITE_DENY );
4214   pParse->zAuthContext = zSavedAuthContext;
4215 
4216   /* Delete the transient structures associated with thesubquery */
4217   pSub1 = pSubitem->pSelect;
4218   sqlite3DbFree(db, pSubitem->zDatabase);
4219   sqlite3DbFree(db, pSubitem->zName);
4220   sqlite3DbFree(db, pSubitem->zAlias);
4221   pSubitem->zDatabase = 0;
4222   pSubitem->zName = 0;
4223   pSubitem->zAlias = 0;
4224   pSubitem->pSelect = 0;
4225   assert( pSubitem->pOn==0 );
4226 
4227   /* If the sub-query is a compound SELECT statement, then (by restrictions
4228   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4229   ** be of the form:
4230   **
4231   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4232   **
4233   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4234   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4235   ** OFFSET clauses and joins them to the left-hand-side of the original
4236   ** using UNION ALL operators. In this case N is the number of simple
4237   ** select statements in the compound sub-query.
4238   **
4239   ** Example:
4240   **
4241   **     SELECT a+1 FROM (
4242   **        SELECT x FROM tab
4243   **        UNION ALL
4244   **        SELECT y FROM tab
4245   **        UNION ALL
4246   **        SELECT abs(z*2) FROM tab2
4247   **     ) WHERE a!=5 ORDER BY 1
4248   **
4249   ** Transformed into:
4250   **
4251   **     SELECT x+1 FROM tab WHERE x+1!=5
4252   **     UNION ALL
4253   **     SELECT y+1 FROM tab WHERE y+1!=5
4254   **     UNION ALL
4255   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4256   **     ORDER BY 1
4257   **
4258   ** We call this the "compound-subquery flattening".
4259   */
4260   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4261     Select *pNew;
4262     ExprList *pOrderBy = p->pOrderBy;
4263     Expr *pLimit = p->pLimit;
4264     Select *pPrior = p->pPrior;
4265     Table *pItemTab = pSubitem->pTab;
4266     pSubitem->pTab = 0;
4267     p->pOrderBy = 0;
4268     p->pPrior = 0;
4269     p->pLimit = 0;
4270     pNew = sqlite3SelectDup(db, p, 0);
4271     p->pLimit = pLimit;
4272     p->pOrderBy = pOrderBy;
4273     p->op = TK_ALL;
4274     pSubitem->pTab = pItemTab;
4275     if( pNew==0 ){
4276       p->pPrior = pPrior;
4277     }else{
4278       pNew->selId = ++pParse->nSelect;
4279       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4280         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4281       }
4282       pNew->pPrior = pPrior;
4283       if( pPrior ) pPrior->pNext = pNew;
4284       pNew->pNext = p;
4285       p->pPrior = pNew;
4286       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4287                               " creates %u as peer\n",pNew->selId));
4288     }
4289     assert( pSubitem->pSelect==0 );
4290   }
4291   sqlite3DbFree(db, aCsrMap);
4292   if( db->mallocFailed ){
4293     pSubitem->pSelect = pSub1;
4294     return 1;
4295   }
4296 
4297   /* Defer deleting the Table object associated with the
4298   ** subquery until code generation is
4299   ** complete, since there may still exist Expr.pTab entries that
4300   ** refer to the subquery even after flattening.  Ticket #3346.
4301   **
4302   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4303   */
4304   if( ALWAYS(pSubitem->pTab!=0) ){
4305     Table *pTabToDel = pSubitem->pTab;
4306     if( pTabToDel->nTabRef==1 ){
4307       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4308       sqlite3ParserAddCleanup(pToplevel,
4309          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4310          pTabToDel);
4311       testcase( pToplevel->earlyCleanup );
4312     }else{
4313       pTabToDel->nTabRef--;
4314     }
4315     pSubitem->pTab = 0;
4316   }
4317 
4318   /* The following loop runs once for each term in a compound-subquery
4319   ** flattening (as described above).  If we are doing a different kind
4320   ** of flattening - a flattening other than a compound-subquery flattening -
4321   ** then this loop only runs once.
4322   **
4323   ** This loop moves all of the FROM elements of the subquery into the
4324   ** the FROM clause of the outer query.  Before doing this, remember
4325   ** the cursor number for the original outer query FROM element in
4326   ** iParent.  The iParent cursor will never be used.  Subsequent code
4327   ** will scan expressions looking for iParent references and replace
4328   ** those references with expressions that resolve to the subquery FROM
4329   ** elements we are now copying in.
4330   */
4331   pSub = pSub1;
4332   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4333     int nSubSrc;
4334     u8 jointype = 0;
4335     assert( pSub!=0 );
4336     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4337     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4338     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4339 
4340     if( pParent==p ){
4341       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4342     }
4343 
4344     /* The subquery uses a single slot of the FROM clause of the outer
4345     ** query.  If the subquery has more than one element in its FROM clause,
4346     ** then expand the outer query to make space for it to hold all elements
4347     ** of the subquery.
4348     **
4349     ** Example:
4350     **
4351     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4352     **
4353     ** The outer query has 3 slots in its FROM clause.  One slot of the
4354     ** outer query (the middle slot) is used by the subquery.  The next
4355     ** block of code will expand the outer query FROM clause to 4 slots.
4356     ** The middle slot is expanded to two slots in order to make space
4357     ** for the two elements in the FROM clause of the subquery.
4358     */
4359     if( nSubSrc>1 ){
4360       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4361       if( pSrc==0 ) break;
4362       pParent->pSrc = pSrc;
4363     }
4364 
4365     /* Transfer the FROM clause terms from the subquery into the
4366     ** outer query.
4367     */
4368     for(i=0; i<nSubSrc; i++){
4369       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4370       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4371       pSrc->a[i+iFrom] = pSubSrc->a[i];
4372       iNewParent = pSubSrc->a[i].iCursor;
4373       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4374     }
4375     pSrc->a[iFrom].fg.jointype = jointype;
4376 
4377     /* Now begin substituting subquery result set expressions for
4378     ** references to the iParent in the outer query.
4379     **
4380     ** Example:
4381     **
4382     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4383     **   \                     \_____________ subquery __________/          /
4384     **    \_____________________ outer query ______________________________/
4385     **
4386     ** We look at every expression in the outer query and every place we see
4387     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4388     */
4389     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4390       /* At this point, any non-zero iOrderByCol values indicate that the
4391       ** ORDER BY column expression is identical to the iOrderByCol'th
4392       ** expression returned by SELECT statement pSub. Since these values
4393       ** do not necessarily correspond to columns in SELECT statement pParent,
4394       ** zero them before transfering the ORDER BY clause.
4395       **
4396       ** Not doing this may cause an error if a subsequent call to this
4397       ** function attempts to flatten a compound sub-query into pParent
4398       ** (the only way this can happen is if the compound sub-query is
4399       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4400       ExprList *pOrderBy = pSub->pOrderBy;
4401       for(i=0; i<pOrderBy->nExpr; i++){
4402         pOrderBy->a[i].u.x.iOrderByCol = 0;
4403       }
4404       assert( pParent->pOrderBy==0 );
4405       pParent->pOrderBy = pOrderBy;
4406       pSub->pOrderBy = 0;
4407     }
4408     pWhere = pSub->pWhere;
4409     pSub->pWhere = 0;
4410     if( isLeftJoin>0 ){
4411       sqlite3SetJoinExpr(pWhere, iNewParent);
4412     }
4413     if( pWhere ){
4414       if( pParent->pWhere ){
4415         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4416       }else{
4417         pParent->pWhere = pWhere;
4418       }
4419     }
4420     if( db->mallocFailed==0 ){
4421       SubstContext x;
4422       x.pParse = pParse;
4423       x.iTable = iParent;
4424       x.iNewTable = iNewParent;
4425       x.isLeftJoin = isLeftJoin;
4426       x.pEList = pSub->pEList;
4427       substSelect(&x, pParent, 0);
4428     }
4429 
4430     /* The flattened query is a compound if either the inner or the
4431     ** outer query is a compound. */
4432     pParent->selFlags |= pSub->selFlags & SF_Compound;
4433     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4434 
4435     /*
4436     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4437     **
4438     ** One is tempted to try to add a and b to combine the limits.  But this
4439     ** does not work if either limit is negative.
4440     */
4441     if( pSub->pLimit ){
4442       pParent->pLimit = pSub->pLimit;
4443       pSub->pLimit = 0;
4444     }
4445 
4446     /* Recompute the SrcList_item.colUsed masks for the flattened
4447     ** tables. */
4448     for(i=0; i<nSubSrc; i++){
4449       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4450     }
4451   }
4452 
4453   /* Finially, delete what is left of the subquery and return
4454   ** success.
4455   */
4456   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4457   sqlite3WalkSelect(&w,pSub1);
4458   sqlite3SelectDelete(db, pSub1);
4459 
4460 #if TREETRACE_ENABLED
4461   if( sqlite3TreeTrace & 0x100 ){
4462     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4463     sqlite3TreeViewSelect(0, p, 0);
4464   }
4465 #endif
4466 
4467   return 1;
4468 }
4469 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4470 
4471 /*
4472 ** A structure to keep track of all of the column values that are fixed to
4473 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4474 */
4475 typedef struct WhereConst WhereConst;
4476 struct WhereConst {
4477   Parse *pParse;   /* Parsing context */
4478   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4479   int nConst;      /* Number for COLUMN=CONSTANT terms */
4480   int nChng;       /* Number of times a constant is propagated */
4481   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4482   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4483 };
4484 
4485 /*
4486 ** Add a new entry to the pConst object.  Except, do not add duplicate
4487 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4488 **
4489 ** The caller guarantees the pColumn is a column and pValue is a constant.
4490 ** This routine has to do some additional checks before completing the
4491 ** insert.
4492 */
4493 static void constInsert(
4494   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4495   Expr *pColumn,       /* The COLUMN part of the constraint */
4496   Expr *pValue,        /* The VALUE part of the constraint */
4497   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4498 ){
4499   int i;
4500   assert( pColumn->op==TK_COLUMN );
4501   assert( sqlite3ExprIsConstant(pValue) );
4502 
4503   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4504   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4505   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4506     return;
4507   }
4508 
4509   /* 2018-10-25 ticket [cf5ed20f]
4510   ** Make sure the same pColumn is not inserted more than once */
4511   for(i=0; i<pConst->nConst; i++){
4512     const Expr *pE2 = pConst->apExpr[i*2];
4513     assert( pE2->op==TK_COLUMN );
4514     if( pE2->iTable==pColumn->iTable
4515      && pE2->iColumn==pColumn->iColumn
4516     ){
4517       return;  /* Already present.  Return without doing anything. */
4518     }
4519   }
4520   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4521     pConst->bHasAffBlob = 1;
4522   }
4523 
4524   pConst->nConst++;
4525   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4526                          pConst->nConst*2*sizeof(Expr*));
4527   if( pConst->apExpr==0 ){
4528     pConst->nConst = 0;
4529   }else{
4530     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4531     pConst->apExpr[pConst->nConst*2-1] = pValue;
4532   }
4533 }
4534 
4535 /*
4536 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4537 ** is a constant expression and where the term must be true because it
4538 ** is part of the AND-connected terms of the expression.  For each term
4539 ** found, add it to the pConst structure.
4540 */
4541 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4542   Expr *pRight, *pLeft;
4543   if( NEVER(pExpr==0) ) return;
4544   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4545   if( pExpr->op==TK_AND ){
4546     findConstInWhere(pConst, pExpr->pRight);
4547     findConstInWhere(pConst, pExpr->pLeft);
4548     return;
4549   }
4550   if( pExpr->op!=TK_EQ ) return;
4551   pRight = pExpr->pRight;
4552   pLeft = pExpr->pLeft;
4553   assert( pRight!=0 );
4554   assert( pLeft!=0 );
4555   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4556     constInsert(pConst,pRight,pLeft,pExpr);
4557   }
4558   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4559     constInsert(pConst,pLeft,pRight,pExpr);
4560   }
4561 }
4562 
4563 /*
4564 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4565 **
4566 ** Argument pExpr is a candidate expression to be replaced by a value. If
4567 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4568 ** then overwrite it with the corresponding value. Except, do not do so
4569 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4570 ** is SQLITE_AFF_BLOB.
4571 */
4572 static int propagateConstantExprRewriteOne(
4573   WhereConst *pConst,
4574   Expr *pExpr,
4575   int bIgnoreAffBlob
4576 ){
4577   int i;
4578   if( pConst->pOomFault[0] ) return WRC_Prune;
4579   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4580   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4581     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4582     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4583     return WRC_Continue;
4584   }
4585   for(i=0; i<pConst->nConst; i++){
4586     Expr *pColumn = pConst->apExpr[i*2];
4587     if( pColumn==pExpr ) continue;
4588     if( pColumn->iTable!=pExpr->iTable ) continue;
4589     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4590     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4591       break;
4592     }
4593     /* A match is found.  Add the EP_FixedCol property */
4594     pConst->nChng++;
4595     ExprClearProperty(pExpr, EP_Leaf);
4596     ExprSetProperty(pExpr, EP_FixedCol);
4597     assert( pExpr->pLeft==0 );
4598     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4599     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4600     break;
4601   }
4602   return WRC_Prune;
4603 }
4604 
4605 /*
4606 ** This is a Walker expression callback. pExpr is a node from the WHERE
4607 ** clause of a SELECT statement. This function examines pExpr to see if
4608 ** any substitutions based on the contents of pWalker->u.pConst should
4609 ** be made to pExpr or its immediate children.
4610 **
4611 ** A substitution is made if:
4612 **
4613 **   + pExpr is a column with an affinity other than BLOB that matches
4614 **     one of the columns in pWalker->u.pConst, or
4615 **
4616 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4617 **     uses an affinity other than TEXT and one of its immediate
4618 **     children is a column that matches one of the columns in
4619 **     pWalker->u.pConst.
4620 */
4621 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4622   WhereConst *pConst = pWalker->u.pConst;
4623   assert( TK_GT==TK_EQ+1 );
4624   assert( TK_LE==TK_EQ+2 );
4625   assert( TK_LT==TK_EQ+3 );
4626   assert( TK_GE==TK_EQ+4 );
4627   if( pConst->bHasAffBlob ){
4628     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4629      || pExpr->op==TK_IS
4630     ){
4631       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4632       if( pConst->pOomFault[0] ) return WRC_Prune;
4633       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4634         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4635       }
4636     }
4637   }
4638   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4639 }
4640 
4641 /*
4642 ** The WHERE-clause constant propagation optimization.
4643 **
4644 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4645 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4646 ** part of a ON clause from a LEFT JOIN, then throughout the query
4647 ** replace all other occurrences of COLUMN with CONSTANT.
4648 **
4649 ** For example, the query:
4650 **
4651 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4652 **
4653 ** Is transformed into
4654 **
4655 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4656 **
4657 ** Return true if any transformations where made and false if not.
4658 **
4659 ** Implementation note:  Constant propagation is tricky due to affinity
4660 ** and collating sequence interactions.  Consider this example:
4661 **
4662 **    CREATE TABLE t1(a INT,b TEXT);
4663 **    INSERT INTO t1 VALUES(123,'0123');
4664 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4665 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4666 **
4667 ** The two SELECT statements above should return different answers.  b=a
4668 ** is alway true because the comparison uses numeric affinity, but b=123
4669 ** is false because it uses text affinity and '0123' is not the same as '123'.
4670 ** To work around this, the expression tree is not actually changed from
4671 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4672 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4673 ** routines know to generate the constant "123" instead of looking up the
4674 ** column value.  Also, to avoid collation problems, this optimization is
4675 ** only attempted if the "a=123" term uses the default BINARY collation.
4676 **
4677 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4678 **
4679 **    CREATE TABLE t1(x);
4680 **    INSERT INTO t1 VALUES(10.0);
4681 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4682 **
4683 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4684 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4685 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4686 ** resulting in a false positive.  To avoid this, constant propagation for
4687 ** columns with BLOB affinity is only allowed if the constant is used with
4688 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4689 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4690 ** for details.
4691 */
4692 static int propagateConstants(
4693   Parse *pParse,   /* The parsing context */
4694   Select *p        /* The query in which to propagate constants */
4695 ){
4696   WhereConst x;
4697   Walker w;
4698   int nChng = 0;
4699   x.pParse = pParse;
4700   x.pOomFault = &pParse->db->mallocFailed;
4701   do{
4702     x.nConst = 0;
4703     x.nChng = 0;
4704     x.apExpr = 0;
4705     x.bHasAffBlob = 0;
4706     findConstInWhere(&x, p->pWhere);
4707     if( x.nConst ){
4708       memset(&w, 0, sizeof(w));
4709       w.pParse = pParse;
4710       w.xExprCallback = propagateConstantExprRewrite;
4711       w.xSelectCallback = sqlite3SelectWalkNoop;
4712       w.xSelectCallback2 = 0;
4713       w.walkerDepth = 0;
4714       w.u.pConst = &x;
4715       sqlite3WalkExpr(&w, p->pWhere);
4716       sqlite3DbFree(x.pParse->db, x.apExpr);
4717       nChng += x.nChng;
4718     }
4719   }while( x.nChng );
4720   return nChng;
4721 }
4722 
4723 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4724 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4725 /*
4726 ** This function is called to determine whether or not it is safe to
4727 ** push WHERE clause expression pExpr down to FROM clause sub-query
4728 ** pSubq, which contains at least one window function. Return 1
4729 ** if it is safe and the expression should be pushed down, or 0
4730 ** otherwise.
4731 **
4732 ** It is only safe to push the expression down if it consists only
4733 ** of constants and copies of expressions that appear in the PARTITION
4734 ** BY clause of all window function used by the sub-query. It is safe
4735 ** to filter out entire partitions, but not rows within partitions, as
4736 ** this may change the results of the window functions.
4737 **
4738 ** At the time this function is called it is guaranteed that
4739 **
4740 **   * the sub-query uses only one distinct window frame, and
4741 **   * that the window frame has a PARTITION BY clase.
4742 */
4743 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4744   assert( pSubq->pWin->pPartition );
4745   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4746   assert( pSubq->pPrior==0 );
4747   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4748 }
4749 # endif /* SQLITE_OMIT_WINDOWFUNC */
4750 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4751 
4752 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4753 /*
4754 ** Make copies of relevant WHERE clause terms of the outer query into
4755 ** the WHERE clause of subquery.  Example:
4756 **
4757 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4758 **
4759 ** Transformed into:
4760 **
4761 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4762 **     WHERE x=5 AND y=10;
4763 **
4764 ** The hope is that the terms added to the inner query will make it more
4765 ** efficient.
4766 **
4767 ** Do not attempt this optimization if:
4768 **
4769 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4770 **           disallow this optimization for aggregate subqueries, but now
4771 **           it is allowed by putting the extra terms on the HAVING clause.
4772 **           The added HAVING clause is pointless if the subquery lacks
4773 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4774 **           so there does not appear to be any reason to add extra logic
4775 **           to suppress it. **)
4776 **
4777 **   (2) The inner query is the recursive part of a common table expression.
4778 **
4779 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4780 **       clause would change the meaning of the LIMIT).
4781 **
4782 **   (4) The inner query is the right operand of a LEFT JOIN and the
4783 **       expression to be pushed down does not come from the ON clause
4784 **       on that LEFT JOIN.
4785 **
4786 **   (5) The WHERE clause expression originates in the ON or USING clause
4787 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4788 **       left join.  An example:
4789 **
4790 **           SELECT *
4791 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4792 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4793 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4794 **
4795 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4796 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4797 **       then the (1,1,NULL) row would be suppressed.
4798 **
4799 **   (6) Window functions make things tricky as changes to the WHERE clause
4800 **       of the inner query could change the window over which window
4801 **       functions are calculated. Therefore, do not attempt the optimization
4802 **       if:
4803 **
4804 **     (6a) The inner query uses multiple incompatible window partitions.
4805 **
4806 **     (6b) The inner query is a compound and uses window-functions.
4807 **
4808 **     (6c) The WHERE clause does not consist entirely of constants and
4809 **          copies of expressions found in the PARTITION BY clause of
4810 **          all window-functions used by the sub-query. It is safe to
4811 **          filter out entire partitions, as this does not change the
4812 **          window over which any window-function is calculated.
4813 **
4814 **   (7) The inner query is a Common Table Expression (CTE) that should
4815 **       be materialized.  (This restriction is implemented in the calling
4816 **       routine.)
4817 **
4818 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4819 ** terms are duplicated into the subquery.
4820 */
4821 static int pushDownWhereTerms(
4822   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4823   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4824   Expr *pWhere,         /* The WHERE clause of the outer query */
4825   int iCursor,          /* Cursor number of the subquery */
4826   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4827 ){
4828   Expr *pNew;
4829   int nChng = 0;
4830   if( pWhere==0 ) return 0;
4831   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4832 
4833 #ifndef SQLITE_OMIT_WINDOWFUNC
4834   if( pSubq->pPrior ){
4835     Select *pSel;
4836     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4837       if( pSel->pWin ) return 0;    /* restriction (6b) */
4838     }
4839   }else{
4840     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4841   }
4842 #endif
4843 
4844 #ifdef SQLITE_DEBUG
4845   /* Only the first term of a compound can have a WITH clause.  But make
4846   ** sure no other terms are marked SF_Recursive in case something changes
4847   ** in the future.
4848   */
4849   {
4850     Select *pX;
4851     for(pX=pSubq; pX; pX=pX->pPrior){
4852       assert( (pX->selFlags & (SF_Recursive))==0 );
4853     }
4854   }
4855 #endif
4856 
4857   if( pSubq->pLimit!=0 ){
4858     return 0; /* restriction (3) */
4859   }
4860   while( pWhere->op==TK_AND ){
4861     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4862                                 iCursor, isLeftJoin);
4863     pWhere = pWhere->pLeft;
4864   }
4865   if( isLeftJoin
4866    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4867          || pWhere->w.iRightJoinTable!=iCursor)
4868   ){
4869     return 0; /* restriction (4) */
4870   }
4871   if( ExprHasProperty(pWhere,EP_FromJoin)
4872    && pWhere->w.iRightJoinTable!=iCursor
4873   ){
4874     return 0; /* restriction (5) */
4875   }
4876   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4877     nChng++;
4878     pSubq->selFlags |= SF_PushDown;
4879     while( pSubq ){
4880       SubstContext x;
4881       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4882       unsetJoinExpr(pNew, -1);
4883       x.pParse = pParse;
4884       x.iTable = iCursor;
4885       x.iNewTable = iCursor;
4886       x.isLeftJoin = 0;
4887       x.pEList = pSubq->pEList;
4888       pNew = substExpr(&x, pNew);
4889 #ifndef SQLITE_OMIT_WINDOWFUNC
4890       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4891         /* Restriction 6c has prevented push-down in this case */
4892         sqlite3ExprDelete(pParse->db, pNew);
4893         nChng--;
4894         break;
4895       }
4896 #endif
4897       if( pSubq->selFlags & SF_Aggregate ){
4898         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4899       }else{
4900         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4901       }
4902       pSubq = pSubq->pPrior;
4903     }
4904   }
4905   return nChng;
4906 }
4907 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4908 
4909 /*
4910 ** The pFunc is the only aggregate function in the query.  Check to see
4911 ** if the query is a candidate for the min/max optimization.
4912 **
4913 ** If the query is a candidate for the min/max optimization, then set
4914 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4915 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4916 ** whether pFunc is a min() or max() function.
4917 **
4918 ** If the query is not a candidate for the min/max optimization, return
4919 ** WHERE_ORDERBY_NORMAL (which must be zero).
4920 **
4921 ** This routine must be called after aggregate functions have been
4922 ** located but before their arguments have been subjected to aggregate
4923 ** analysis.
4924 */
4925 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4926   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4927   ExprList *pEList;                     /* Arguments to agg function */
4928   const char *zFunc;                    /* Name of aggregate function pFunc */
4929   ExprList *pOrderBy;
4930   u8 sortFlags = 0;
4931 
4932   assert( *ppMinMax==0 );
4933   assert( pFunc->op==TK_AGG_FUNCTION );
4934   assert( !IsWindowFunc(pFunc) );
4935   assert( ExprUseXList(pFunc) );
4936   pEList = pFunc->x.pList;
4937   if( pEList==0
4938    || pEList->nExpr!=1
4939    || ExprHasProperty(pFunc, EP_WinFunc)
4940    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4941   ){
4942     return eRet;
4943   }
4944   assert( !ExprHasProperty(pFunc, EP_IntValue) );
4945   zFunc = pFunc->u.zToken;
4946   if( sqlite3StrICmp(zFunc, "min")==0 ){
4947     eRet = WHERE_ORDERBY_MIN;
4948     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4949       sortFlags = KEYINFO_ORDER_BIGNULL;
4950     }
4951   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4952     eRet = WHERE_ORDERBY_MAX;
4953     sortFlags = KEYINFO_ORDER_DESC;
4954   }else{
4955     return eRet;
4956   }
4957   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4958   assert( pOrderBy!=0 || db->mallocFailed );
4959   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4960   return eRet;
4961 }
4962 
4963 /*
4964 ** The select statement passed as the first argument is an aggregate query.
4965 ** The second argument is the associated aggregate-info object. This
4966 ** function tests if the SELECT is of the form:
4967 **
4968 **   SELECT count(*) FROM <tbl>
4969 **
4970 ** where table is a database table, not a sub-select or view. If the query
4971 ** does match this pattern, then a pointer to the Table object representing
4972 ** <tbl> is returned. Otherwise, NULL is returned.
4973 **
4974 ** This routine checks to see if it is safe to use the count optimization.
4975 ** A correct answer is still obtained (though perhaps more slowly) if
4976 ** this routine returns NULL when it could have returned a table pointer.
4977 ** But returning the pointer when NULL should have been returned can
4978 ** result in incorrect answers and/or crashes.  So, when in doubt, return NULL.
4979 */
4980 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4981   Table *pTab;
4982   Expr *pExpr;
4983 
4984   assert( !p->pGroupBy );
4985 
4986   if( p->pWhere
4987    || p->pEList->nExpr!=1
4988    || p->pSrc->nSrc!=1
4989    || p->pSrc->a[0].pSelect
4990    || pAggInfo->nFunc!=1
4991   ){
4992     return 0;
4993   }
4994   pTab = p->pSrc->a[0].pTab;
4995   assert( pTab!=0 );
4996   assert( !IsView(pTab) );
4997   if( !IsOrdinaryTable(pTab) ) return 0;
4998   pExpr = p->pEList->a[0].pExpr;
4999   assert( pExpr!=0 );
5000   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5001   if( pExpr->pAggInfo!=pAggInfo ) return 0;
5002   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5003   assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5004   testcase( ExprHasProperty(pExpr, EP_Distinct) );
5005   testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5006   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5007 
5008   return pTab;
5009 }
5010 
5011 /*
5012 ** If the source-list item passed as an argument was augmented with an
5013 ** INDEXED BY clause, then try to locate the specified index. If there
5014 ** was such a clause and the named index cannot be found, return
5015 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5016 ** pFrom->pIndex and return SQLITE_OK.
5017 */
5018 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5019   Table *pTab = pFrom->pTab;
5020   char *zIndexedBy = pFrom->u1.zIndexedBy;
5021   Index *pIdx;
5022   assert( pTab!=0 );
5023   assert( pFrom->fg.isIndexedBy!=0 );
5024 
5025   for(pIdx=pTab->pIndex;
5026       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5027       pIdx=pIdx->pNext
5028   );
5029   if( !pIdx ){
5030     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5031     pParse->checkSchema = 1;
5032     return SQLITE_ERROR;
5033   }
5034   assert( pFrom->fg.isCte==0 );
5035   pFrom->u2.pIBIndex = pIdx;
5036   return SQLITE_OK;
5037 }
5038 
5039 /*
5040 ** Detect compound SELECT statements that use an ORDER BY clause with
5041 ** an alternative collating sequence.
5042 **
5043 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5044 **
5045 ** These are rewritten as a subquery:
5046 **
5047 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5048 **     ORDER BY ... COLLATE ...
5049 **
5050 ** This transformation is necessary because the multiSelectOrderBy() routine
5051 ** above that generates the code for a compound SELECT with an ORDER BY clause
5052 ** uses a merge algorithm that requires the same collating sequence on the
5053 ** result columns as on the ORDER BY clause.  See ticket
5054 ** http://www.sqlite.org/src/info/6709574d2a
5055 **
5056 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5057 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5058 ** there are COLLATE terms in the ORDER BY.
5059 */
5060 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5061   int i;
5062   Select *pNew;
5063   Select *pX;
5064   sqlite3 *db;
5065   struct ExprList_item *a;
5066   SrcList *pNewSrc;
5067   Parse *pParse;
5068   Token dummy;
5069 
5070   if( p->pPrior==0 ) return WRC_Continue;
5071   if( p->pOrderBy==0 ) return WRC_Continue;
5072   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5073   if( pX==0 ) return WRC_Continue;
5074   a = p->pOrderBy->a;
5075 #ifndef SQLITE_OMIT_WINDOWFUNC
5076   /* If iOrderByCol is already non-zero, then it has already been matched
5077   ** to a result column of the SELECT statement. This occurs when the
5078   ** SELECT is rewritten for window-functions processing and then passed
5079   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5080   ** by this function is not required in this case. */
5081   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5082 #endif
5083   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5084     if( a[i].pExpr->flags & EP_Collate ) break;
5085   }
5086   if( i<0 ) return WRC_Continue;
5087 
5088   /* If we reach this point, that means the transformation is required. */
5089 
5090   pParse = pWalker->pParse;
5091   db = pParse->db;
5092   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5093   if( pNew==0 ) return WRC_Abort;
5094   memset(&dummy, 0, sizeof(dummy));
5095   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
5096   if( pNewSrc==0 ) return WRC_Abort;
5097   *pNew = *p;
5098   p->pSrc = pNewSrc;
5099   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5100   p->op = TK_SELECT;
5101   p->pWhere = 0;
5102   pNew->pGroupBy = 0;
5103   pNew->pHaving = 0;
5104   pNew->pOrderBy = 0;
5105   p->pPrior = 0;
5106   p->pNext = 0;
5107   p->pWith = 0;
5108 #ifndef SQLITE_OMIT_WINDOWFUNC
5109   p->pWinDefn = 0;
5110 #endif
5111   p->selFlags &= ~SF_Compound;
5112   assert( (p->selFlags & SF_Converted)==0 );
5113   p->selFlags |= SF_Converted;
5114   assert( pNew->pPrior!=0 );
5115   pNew->pPrior->pNext = pNew;
5116   pNew->pLimit = 0;
5117   return WRC_Continue;
5118 }
5119 
5120 /*
5121 ** Check to see if the FROM clause term pFrom has table-valued function
5122 ** arguments.  If it does, leave an error message in pParse and return
5123 ** non-zero, since pFrom is not allowed to be a table-valued function.
5124 */
5125 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5126   if( pFrom->fg.isTabFunc ){
5127     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5128     return 1;
5129   }
5130   return 0;
5131 }
5132 
5133 #ifndef SQLITE_OMIT_CTE
5134 /*
5135 ** Argument pWith (which may be NULL) points to a linked list of nested
5136 ** WITH contexts, from inner to outermost. If the table identified by
5137 ** FROM clause element pItem is really a common-table-expression (CTE)
5138 ** then return a pointer to the CTE definition for that table. Otherwise
5139 ** return NULL.
5140 **
5141 ** If a non-NULL value is returned, set *ppContext to point to the With
5142 ** object that the returned CTE belongs to.
5143 */
5144 static struct Cte *searchWith(
5145   With *pWith,                    /* Current innermost WITH clause */
5146   SrcItem *pItem,                 /* FROM clause element to resolve */
5147   With **ppContext                /* OUT: WITH clause return value belongs to */
5148 ){
5149   const char *zName = pItem->zName;
5150   With *p;
5151   assert( pItem->zDatabase==0 );
5152   assert( zName!=0 );
5153   for(p=pWith; p; p=p->pOuter){
5154     int i;
5155     for(i=0; i<p->nCte; i++){
5156       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5157         *ppContext = p;
5158         return &p->a[i];
5159       }
5160     }
5161     if( p->bView ) break;
5162   }
5163   return 0;
5164 }
5165 
5166 /* The code generator maintains a stack of active WITH clauses
5167 ** with the inner-most WITH clause being at the top of the stack.
5168 **
5169 ** This routine pushes the WITH clause passed as the second argument
5170 ** onto the top of the stack. If argument bFree is true, then this
5171 ** WITH clause will never be popped from the stack but should instead
5172 ** be freed along with the Parse object. In other cases, when
5173 ** bFree==0, the With object will be freed along with the SELECT
5174 ** statement with which it is associated.
5175 **
5176 ** This routine returns a copy of pWith.  Or, if bFree is true and
5177 ** the pWith object is destroyed immediately due to an OOM condition,
5178 ** then this routine return NULL.
5179 **
5180 ** If bFree is true, do not continue to use the pWith pointer after
5181 ** calling this routine,  Instead, use only the return value.
5182 */
5183 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5184   if( pWith ){
5185     if( bFree ){
5186       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5187                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5188                       pWith);
5189       if( pWith==0 ) return 0;
5190     }
5191     if( pParse->nErr==0 ){
5192       assert( pParse->pWith!=pWith );
5193       pWith->pOuter = pParse->pWith;
5194       pParse->pWith = pWith;
5195     }
5196   }
5197   return pWith;
5198 }
5199 
5200 /*
5201 ** This function checks if argument pFrom refers to a CTE declared by
5202 ** a WITH clause on the stack currently maintained by the parser (on the
5203 ** pParse->pWith linked list).  And if currently processing a CTE
5204 ** CTE expression, through routine checks to see if the reference is
5205 ** a recursive reference to the CTE.
5206 **
5207 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5208 ** and other fields are populated accordingly.
5209 **
5210 ** Return 0 if no match is found.
5211 ** Return 1 if a match is found.
5212 ** Return 2 if an error condition is detected.
5213 */
5214 static int resolveFromTermToCte(
5215   Parse *pParse,                  /* The parsing context */
5216   Walker *pWalker,                /* Current tree walker */
5217   SrcItem *pFrom                  /* The FROM clause term to check */
5218 ){
5219   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5220   With *pWith;             /* The matching WITH */
5221 
5222   assert( pFrom->pTab==0 );
5223   if( pParse->pWith==0 ){
5224     /* There are no WITH clauses in the stack.  No match is possible */
5225     return 0;
5226   }
5227   if( pParse->nErr ){
5228     /* Prior errors might have left pParse->pWith in a goofy state, so
5229     ** go no further. */
5230     return 0;
5231   }
5232   if( pFrom->zDatabase!=0 ){
5233     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5234     ** it cannot possibly be a CTE reference. */
5235     return 0;
5236   }
5237   if( pFrom->fg.notCte ){
5238     /* The FROM term is specifically excluded from matching a CTE.
5239     **   (1)  It is part of a trigger that used to have zDatabase but had
5240     **        zDatabase removed by sqlite3FixTriggerStep().
5241     **   (2)  This is the first term in the FROM clause of an UPDATE.
5242     */
5243     return 0;
5244   }
5245   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5246   if( pCte ){
5247     sqlite3 *db = pParse->db;
5248     Table *pTab;
5249     ExprList *pEList;
5250     Select *pSel;
5251     Select *pLeft;                /* Left-most SELECT statement */
5252     Select *pRecTerm;             /* Left-most recursive term */
5253     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5254     With *pSavedWith;             /* Initial value of pParse->pWith */
5255     int iRecTab = -1;             /* Cursor for recursive table */
5256     CteUse *pCteUse;
5257 
5258     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5259     ** recursive reference to CTE pCte. Leave an error in pParse and return
5260     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5261     ** In this case, proceed.  */
5262     if( pCte->zCteErr ){
5263       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5264       return 2;
5265     }
5266     if( cannotBeFunction(pParse, pFrom) ) return 2;
5267 
5268     assert( pFrom->pTab==0 );
5269     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5270     if( pTab==0 ) return 2;
5271     pCteUse = pCte->pUse;
5272     if( pCteUse==0 ){
5273       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5274       if( pCteUse==0
5275        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5276       ){
5277         sqlite3DbFree(db, pTab);
5278         return 2;
5279       }
5280       pCteUse->eM10d = pCte->eM10d;
5281     }
5282     pFrom->pTab = pTab;
5283     pTab->nTabRef = 1;
5284     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5285     pTab->iPKey = -1;
5286     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5287     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5288     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5289     if( db->mallocFailed ) return 2;
5290     pFrom->pSelect->selFlags |= SF_CopyCte;
5291     assert( pFrom->pSelect );
5292     if( pFrom->fg.isIndexedBy ){
5293       sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5294       return 2;
5295     }
5296     pFrom->fg.isCte = 1;
5297     pFrom->u2.pCteUse = pCteUse;
5298     pCteUse->nUse++;
5299     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5300       pCteUse->eM10d = M10d_Yes;
5301     }
5302 
5303     /* Check if this is a recursive CTE. */
5304     pRecTerm = pSel = pFrom->pSelect;
5305     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5306     while( bMayRecursive && pRecTerm->op==pSel->op ){
5307       int i;
5308       SrcList *pSrc = pRecTerm->pSrc;
5309       assert( pRecTerm->pPrior!=0 );
5310       for(i=0; i<pSrc->nSrc; i++){
5311         SrcItem *pItem = &pSrc->a[i];
5312         if( pItem->zDatabase==0
5313          && pItem->zName!=0
5314          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5315         ){
5316           pItem->pTab = pTab;
5317           pTab->nTabRef++;
5318           pItem->fg.isRecursive = 1;
5319           if( pRecTerm->selFlags & SF_Recursive ){
5320             sqlite3ErrorMsg(pParse,
5321                "multiple references to recursive table: %s", pCte->zName
5322             );
5323             return 2;
5324           }
5325           pRecTerm->selFlags |= SF_Recursive;
5326           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5327           pItem->iCursor = iRecTab;
5328         }
5329       }
5330       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5331       pRecTerm = pRecTerm->pPrior;
5332     }
5333 
5334     pCte->zCteErr = "circular reference: %s";
5335     pSavedWith = pParse->pWith;
5336     pParse->pWith = pWith;
5337     if( pSel->selFlags & SF_Recursive ){
5338       int rc;
5339       assert( pRecTerm!=0 );
5340       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5341       assert( pRecTerm->pNext!=0 );
5342       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5343       assert( pRecTerm->pWith==0 );
5344       pRecTerm->pWith = pSel->pWith;
5345       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5346       pRecTerm->pWith = 0;
5347       if( rc ){
5348         pParse->pWith = pSavedWith;
5349         return 2;
5350       }
5351     }else{
5352       if( sqlite3WalkSelect(pWalker, pSel) ){
5353         pParse->pWith = pSavedWith;
5354         return 2;
5355       }
5356     }
5357     pParse->pWith = pWith;
5358 
5359     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5360     pEList = pLeft->pEList;
5361     if( pCte->pCols ){
5362       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5363         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5364             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5365         );
5366         pParse->pWith = pSavedWith;
5367         return 2;
5368       }
5369       pEList = pCte->pCols;
5370     }
5371 
5372     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5373     if( bMayRecursive ){
5374       if( pSel->selFlags & SF_Recursive ){
5375         pCte->zCteErr = "multiple recursive references: %s";
5376       }else{
5377         pCte->zCteErr = "recursive reference in a subquery: %s";
5378       }
5379       sqlite3WalkSelect(pWalker, pSel);
5380     }
5381     pCte->zCteErr = 0;
5382     pParse->pWith = pSavedWith;
5383     return 1;  /* Success */
5384   }
5385   return 0;  /* No match */
5386 }
5387 #endif
5388 
5389 #ifndef SQLITE_OMIT_CTE
5390 /*
5391 ** If the SELECT passed as the second argument has an associated WITH
5392 ** clause, pop it from the stack stored as part of the Parse object.
5393 **
5394 ** This function is used as the xSelectCallback2() callback by
5395 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5396 ** names and other FROM clause elements.
5397 */
5398 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5399   Parse *pParse = pWalker->pParse;
5400   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5401     With *pWith = findRightmost(p)->pWith;
5402     if( pWith!=0 ){
5403       assert( pParse->pWith==pWith || pParse->nErr );
5404       pParse->pWith = pWith->pOuter;
5405     }
5406   }
5407 }
5408 #endif
5409 
5410 /*
5411 ** The SrcList_item structure passed as the second argument represents a
5412 ** sub-query in the FROM clause of a SELECT statement. This function
5413 ** allocates and populates the SrcList_item.pTab object. If successful,
5414 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5415 ** SQLITE_NOMEM.
5416 */
5417 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5418   Select *pSel = pFrom->pSelect;
5419   Table *pTab;
5420 
5421   assert( pSel );
5422   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5423   if( pTab==0 ) return SQLITE_NOMEM;
5424   pTab->nTabRef = 1;
5425   if( pFrom->zAlias ){
5426     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5427   }else{
5428     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5429   }
5430   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5431   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5432   pTab->iPKey = -1;
5433   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5434 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5435   /* The usual case - do not allow ROWID on a subquery */
5436   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5437 #else
5438   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5439 #endif
5440 
5441 
5442   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5443 }
5444 
5445 /*
5446 ** This routine is a Walker callback for "expanding" a SELECT statement.
5447 ** "Expanding" means to do the following:
5448 **
5449 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5450 **         element of the FROM clause.
5451 **
5452 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5453 **         defines FROM clause.  When views appear in the FROM clause,
5454 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5455 **         that implements the view.  A copy is made of the view's SELECT
5456 **         statement so that we can freely modify or delete that statement
5457 **         without worrying about messing up the persistent representation
5458 **         of the view.
5459 **
5460 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5461 **         on joins and the ON and USING clause of joins.
5462 **
5463 **    (4)  Scan the list of columns in the result set (pEList) looking
5464 **         for instances of the "*" operator or the TABLE.* operator.
5465 **         If found, expand each "*" to be every column in every table
5466 **         and TABLE.* to be every column in TABLE.
5467 **
5468 */
5469 static int selectExpander(Walker *pWalker, Select *p){
5470   Parse *pParse = pWalker->pParse;
5471   int i, j, k, rc;
5472   SrcList *pTabList;
5473   ExprList *pEList;
5474   SrcItem *pFrom;
5475   sqlite3 *db = pParse->db;
5476   Expr *pE, *pRight, *pExpr;
5477   u16 selFlags = p->selFlags;
5478   u32 elistFlags = 0;
5479 
5480   p->selFlags |= SF_Expanded;
5481   if( db->mallocFailed  ){
5482     return WRC_Abort;
5483   }
5484   assert( p->pSrc!=0 );
5485   if( (selFlags & SF_Expanded)!=0 ){
5486     return WRC_Prune;
5487   }
5488   if( pWalker->eCode ){
5489     /* Renumber selId because it has been copied from a view */
5490     p->selId = ++pParse->nSelect;
5491   }
5492   pTabList = p->pSrc;
5493   pEList = p->pEList;
5494   if( pParse->pWith && (p->selFlags & SF_View) ){
5495     if( p->pWith==0 ){
5496       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5497       if( p->pWith==0 ){
5498         return WRC_Abort;
5499       }
5500     }
5501     p->pWith->bView = 1;
5502   }
5503   sqlite3WithPush(pParse, p->pWith, 0);
5504 
5505   /* Make sure cursor numbers have been assigned to all entries in
5506   ** the FROM clause of the SELECT statement.
5507   */
5508   sqlite3SrcListAssignCursors(pParse, pTabList);
5509 
5510   /* Look up every table named in the FROM clause of the select.  If
5511   ** an entry of the FROM clause is a subquery instead of a table or view,
5512   ** then create a transient table structure to describe the subquery.
5513   */
5514   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5515     Table *pTab;
5516     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5517     if( pFrom->pTab ) continue;
5518     assert( pFrom->fg.isRecursive==0 );
5519     if( pFrom->zName==0 ){
5520 #ifndef SQLITE_OMIT_SUBQUERY
5521       Select *pSel = pFrom->pSelect;
5522       /* A sub-query in the FROM clause of a SELECT */
5523       assert( pSel!=0 );
5524       assert( pFrom->pTab==0 );
5525       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5526       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5527 #endif
5528 #ifndef SQLITE_OMIT_CTE
5529     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5530       if( rc>1 ) return WRC_Abort;
5531       pTab = pFrom->pTab;
5532       assert( pTab!=0 );
5533 #endif
5534     }else{
5535       /* An ordinary table or view name in the FROM clause */
5536       assert( pFrom->pTab==0 );
5537       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5538       if( pTab==0 ) return WRC_Abort;
5539       if( pTab->nTabRef>=0xffff ){
5540         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5541            pTab->zName);
5542         pFrom->pTab = 0;
5543         return WRC_Abort;
5544       }
5545       pTab->nTabRef++;
5546       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5547         return WRC_Abort;
5548       }
5549 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5550       if( !IsOrdinaryTable(pTab) ){
5551         i16 nCol;
5552         u8 eCodeOrig = pWalker->eCode;
5553         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5554         assert( pFrom->pSelect==0 );
5555         if( IsView(pTab) ){
5556           if( (db->flags & SQLITE_EnableView)==0
5557            && pTab->pSchema!=db->aDb[1].pSchema
5558           ){
5559             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5560               pTab->zName);
5561           }
5562           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5563         }
5564 #ifndef SQLITE_OMIT_VIRTUALTABLE
5565         else if( ALWAYS(IsVirtual(pTab))
5566          && pFrom->fg.fromDDL
5567          && ALWAYS(pTab->u.vtab.p!=0)
5568          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5569         ){
5570           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5571                                   pTab->zName);
5572         }
5573         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5574 #endif
5575         nCol = pTab->nCol;
5576         pTab->nCol = -1;
5577         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5578         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5579         pWalker->eCode = eCodeOrig;
5580         pTab->nCol = nCol;
5581       }
5582 #endif
5583     }
5584 
5585     /* Locate the index named by the INDEXED BY clause, if any. */
5586     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5587       return WRC_Abort;
5588     }
5589   }
5590 
5591   /* Process NATURAL keywords, and ON and USING clauses of joins.
5592   */
5593   assert( db->mallocFailed==0 || pParse->nErr!=0 );
5594   if( pParse->nErr || sqliteProcessJoin(pParse, p) ){
5595     return WRC_Abort;
5596   }
5597 
5598   /* For every "*" that occurs in the column list, insert the names of
5599   ** all columns in all tables.  And for every TABLE.* insert the names
5600   ** of all columns in TABLE.  The parser inserted a special expression
5601   ** with the TK_ASTERISK operator for each "*" that it found in the column
5602   ** list.  The following code just has to locate the TK_ASTERISK
5603   ** expressions and expand each one to the list of all columns in
5604   ** all tables.
5605   **
5606   ** The first loop just checks to see if there are any "*" operators
5607   ** that need expanding.
5608   */
5609   for(k=0; k<pEList->nExpr; k++){
5610     pE = pEList->a[k].pExpr;
5611     if( pE->op==TK_ASTERISK ) break;
5612     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5613     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5614     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5615     elistFlags |= pE->flags;
5616   }
5617   if( k<pEList->nExpr ){
5618     /*
5619     ** If we get here it means the result set contains one or more "*"
5620     ** operators that need to be expanded.  Loop through each expression
5621     ** in the result set and expand them one by one.
5622     */
5623     struct ExprList_item *a = pEList->a;
5624     ExprList *pNew = 0;
5625     int flags = pParse->db->flags;
5626     int longNames = (flags & SQLITE_FullColNames)!=0
5627                       && (flags & SQLITE_ShortColNames)==0;
5628 
5629     for(k=0; k<pEList->nExpr; k++){
5630       pE = a[k].pExpr;
5631       elistFlags |= pE->flags;
5632       pRight = pE->pRight;
5633       assert( pE->op!=TK_DOT || pRight!=0 );
5634       if( pE->op!=TK_ASTERISK
5635        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5636       ){
5637         /* This particular expression does not need to be expanded.
5638         */
5639         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5640         if( pNew ){
5641           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5642           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5643           a[k].zEName = 0;
5644         }
5645         a[k].pExpr = 0;
5646       }else{
5647         /* This expression is a "*" or a "TABLE.*" and needs to be
5648         ** expanded. */
5649         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5650         char *zTName = 0;       /* text of name of TABLE */
5651         if( pE->op==TK_DOT ){
5652           assert( pE->pLeft!=0 );
5653           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5654           zTName = pE->pLeft->u.zToken;
5655         }
5656         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5657           Table *pTab = pFrom->pTab;
5658           Select *pSub = pFrom->pSelect;
5659           char *zTabName = pFrom->zAlias;
5660           const char *zSchemaName = 0;
5661           int iDb;
5662           if( zTabName==0 ){
5663             zTabName = pTab->zName;
5664           }
5665           if( db->mallocFailed ) break;
5666           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5667             pSub = 0;
5668             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5669               continue;
5670             }
5671             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5672             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5673           }
5674           for(j=0; j<pTab->nCol; j++){
5675             char *zName = pTab->aCol[j].zCnName;
5676             char *zColname;  /* The computed column name */
5677             char *zToFree;   /* Malloced string that needs to be freed */
5678             Token sColname;  /* Computed column name as a token */
5679 
5680             assert( zName );
5681             if( zTName && pSub
5682              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5683             ){
5684               continue;
5685             }
5686 
5687             /* If a column is marked as 'hidden', omit it from the expanded
5688             ** result-set list unless the SELECT has the SF_IncludeHidden
5689             ** bit set.
5690             */
5691             if( (p->selFlags & SF_IncludeHidden)==0
5692              && IsHiddenColumn(&pTab->aCol[j])
5693             ){
5694               continue;
5695             }
5696             tableSeen = 1;
5697 
5698             if( i>0 && zTName==0 ){
5699               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5700                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5701               ){
5702                 /* In a NATURAL join, omit the join columns from the
5703                 ** table to the right of the join */
5704                 continue;
5705               }
5706               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5707                 /* In a join with a USING clause, omit columns in the
5708                 ** using clause from the table on the right. */
5709                 continue;
5710               }
5711             }
5712             pRight = sqlite3Expr(db, TK_ID, zName);
5713             zColname = zName;
5714             zToFree = 0;
5715             if( longNames || pTabList->nSrc>1 ){
5716               Expr *pLeft;
5717               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5718               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5719               if( zSchemaName ){
5720                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5721                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5722               }
5723               if( longNames ){
5724                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5725                 zToFree = zColname;
5726               }
5727             }else{
5728               pExpr = pRight;
5729             }
5730             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5731             sqlite3TokenInit(&sColname, zColname);
5732             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5733             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5734               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5735               sqlite3DbFree(db, pX->zEName);
5736               if( pSub ){
5737                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5738                 testcase( pX->zEName==0 );
5739               }else{
5740                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5741                                            zSchemaName, zTabName, zColname);
5742                 testcase( pX->zEName==0 );
5743               }
5744               pX->eEName = ENAME_TAB;
5745             }
5746             sqlite3DbFree(db, zToFree);
5747           }
5748         }
5749         if( !tableSeen ){
5750           if( zTName ){
5751             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5752           }else{
5753             sqlite3ErrorMsg(pParse, "no tables specified");
5754           }
5755         }
5756       }
5757     }
5758     sqlite3ExprListDelete(db, pEList);
5759     p->pEList = pNew;
5760   }
5761   if( p->pEList ){
5762     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5763       sqlite3ErrorMsg(pParse, "too many columns in result set");
5764       return WRC_Abort;
5765     }
5766     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5767       p->selFlags |= SF_ComplexResult;
5768     }
5769   }
5770   return WRC_Continue;
5771 }
5772 
5773 #if SQLITE_DEBUG
5774 /*
5775 ** Always assert.  This xSelectCallback2 implementation proves that the
5776 ** xSelectCallback2 is never invoked.
5777 */
5778 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5779   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5780   assert( 0 );
5781 }
5782 #endif
5783 /*
5784 ** This routine "expands" a SELECT statement and all of its subqueries.
5785 ** For additional information on what it means to "expand" a SELECT
5786 ** statement, see the comment on the selectExpand worker callback above.
5787 **
5788 ** Expanding a SELECT statement is the first step in processing a
5789 ** SELECT statement.  The SELECT statement must be expanded before
5790 ** name resolution is performed.
5791 **
5792 ** If anything goes wrong, an error message is written into pParse.
5793 ** The calling function can detect the problem by looking at pParse->nErr
5794 ** and/or pParse->db->mallocFailed.
5795 */
5796 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5797   Walker w;
5798   w.xExprCallback = sqlite3ExprWalkNoop;
5799   w.pParse = pParse;
5800   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5801     w.xSelectCallback = convertCompoundSelectToSubquery;
5802     w.xSelectCallback2 = 0;
5803     sqlite3WalkSelect(&w, pSelect);
5804   }
5805   w.xSelectCallback = selectExpander;
5806   w.xSelectCallback2 = sqlite3SelectPopWith;
5807   w.eCode = 0;
5808   sqlite3WalkSelect(&w, pSelect);
5809 }
5810 
5811 
5812 #ifndef SQLITE_OMIT_SUBQUERY
5813 /*
5814 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5815 ** interface.
5816 **
5817 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5818 ** information to the Table structure that represents the result set
5819 ** of that subquery.
5820 **
5821 ** The Table structure that represents the result set was constructed
5822 ** by selectExpander() but the type and collation information was omitted
5823 ** at that point because identifiers had not yet been resolved.  This
5824 ** routine is called after identifier resolution.
5825 */
5826 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5827   Parse *pParse;
5828   int i;
5829   SrcList *pTabList;
5830   SrcItem *pFrom;
5831 
5832   assert( p->selFlags & SF_Resolved );
5833   if( p->selFlags & SF_HasTypeInfo ) return;
5834   p->selFlags |= SF_HasTypeInfo;
5835   pParse = pWalker->pParse;
5836   pTabList = p->pSrc;
5837   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5838     Table *pTab = pFrom->pTab;
5839     assert( pTab!=0 );
5840     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5841       /* A sub-query in the FROM clause of a SELECT */
5842       Select *pSel = pFrom->pSelect;
5843       if( pSel ){
5844         while( pSel->pPrior ) pSel = pSel->pPrior;
5845         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5846                                                SQLITE_AFF_NONE);
5847       }
5848     }
5849   }
5850 }
5851 #endif
5852 
5853 
5854 /*
5855 ** This routine adds datatype and collating sequence information to
5856 ** the Table structures of all FROM-clause subqueries in a
5857 ** SELECT statement.
5858 **
5859 ** Use this routine after name resolution.
5860 */
5861 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5862 #ifndef SQLITE_OMIT_SUBQUERY
5863   Walker w;
5864   w.xSelectCallback = sqlite3SelectWalkNoop;
5865   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5866   w.xExprCallback = sqlite3ExprWalkNoop;
5867   w.pParse = pParse;
5868   sqlite3WalkSelect(&w, pSelect);
5869 #endif
5870 }
5871 
5872 
5873 /*
5874 ** This routine sets up a SELECT statement for processing.  The
5875 ** following is accomplished:
5876 **
5877 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5878 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5879 **     *  ON and USING clauses are shifted into WHERE statements
5880 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5881 **     *  Identifiers in expression are matched to tables.
5882 **
5883 ** This routine acts recursively on all subqueries within the SELECT.
5884 */
5885 void sqlite3SelectPrep(
5886   Parse *pParse,         /* The parser context */
5887   Select *p,             /* The SELECT statement being coded. */
5888   NameContext *pOuterNC  /* Name context for container */
5889 ){
5890   assert( p!=0 || pParse->db->mallocFailed );
5891   assert( pParse->db->pParse==pParse );
5892   if( pParse->db->mallocFailed ) return;
5893   if( p->selFlags & SF_HasTypeInfo ) return;
5894   sqlite3SelectExpand(pParse, p);
5895   if( pParse->nErr ) return;
5896   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5897   if( pParse->nErr ) return;
5898   sqlite3SelectAddTypeInfo(pParse, p);
5899 }
5900 
5901 /*
5902 ** Reset the aggregate accumulator.
5903 **
5904 ** The aggregate accumulator is a set of memory cells that hold
5905 ** intermediate results while calculating an aggregate.  This
5906 ** routine generates code that stores NULLs in all of those memory
5907 ** cells.
5908 */
5909 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5910   Vdbe *v = pParse->pVdbe;
5911   int i;
5912   struct AggInfo_func *pFunc;
5913   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5914   assert( pParse->db->pParse==pParse );
5915   assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
5916   if( nReg==0 ) return;
5917   if( pParse->nErr ) return;
5918 #ifdef SQLITE_DEBUG
5919   /* Verify that all AggInfo registers are within the range specified by
5920   ** AggInfo.mnReg..AggInfo.mxReg */
5921   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5922   for(i=0; i<pAggInfo->nColumn; i++){
5923     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5924          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5925   }
5926   for(i=0; i<pAggInfo->nFunc; i++){
5927     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5928          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5929   }
5930 #endif
5931   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5932   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5933     if( pFunc->iDistinct>=0 ){
5934       Expr *pE = pFunc->pFExpr;
5935       assert( ExprUseXList(pE) );
5936       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5937         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5938            "argument");
5939         pFunc->iDistinct = -1;
5940       }else{
5941         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5942         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5943             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5944         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5945                           pFunc->pFunc->zName));
5946       }
5947     }
5948   }
5949 }
5950 
5951 /*
5952 ** Invoke the OP_AggFinalize opcode for every aggregate function
5953 ** in the AggInfo structure.
5954 */
5955 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5956   Vdbe *v = pParse->pVdbe;
5957   int i;
5958   struct AggInfo_func *pF;
5959   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5960     ExprList *pList;
5961     assert( ExprUseXList(pF->pFExpr) );
5962     pList = pF->pFExpr->x.pList;
5963     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5964     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5965   }
5966 }
5967 
5968 
5969 /*
5970 ** Update the accumulator memory cells for an aggregate based on
5971 ** the current cursor position.
5972 **
5973 ** If regAcc is non-zero and there are no min() or max() aggregates
5974 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5975 ** registers if register regAcc contains 0. The caller will take care
5976 ** of setting and clearing regAcc.
5977 */
5978 static void updateAccumulator(
5979   Parse *pParse,
5980   int regAcc,
5981   AggInfo *pAggInfo,
5982   int eDistinctType
5983 ){
5984   Vdbe *v = pParse->pVdbe;
5985   int i;
5986   int regHit = 0;
5987   int addrHitTest = 0;
5988   struct AggInfo_func *pF;
5989   struct AggInfo_col *pC;
5990 
5991   pAggInfo->directMode = 1;
5992   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5993     int nArg;
5994     int addrNext = 0;
5995     int regAgg;
5996     ExprList *pList;
5997     assert( ExprUseXList(pF->pFExpr) );
5998     assert( !IsWindowFunc(pF->pFExpr) );
5999     pList = pF->pFExpr->x.pList;
6000     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6001       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6002       if( pAggInfo->nAccumulator
6003        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6004        && regAcc
6005       ){
6006         /* If regAcc==0, there there exists some min() or max() function
6007         ** without a FILTER clause that will ensure the magnet registers
6008         ** are populated. */
6009         if( regHit==0 ) regHit = ++pParse->nMem;
6010         /* If this is the first row of the group (regAcc contains 0), clear the
6011         ** "magnet" register regHit so that the accumulator registers
6012         ** are populated if the FILTER clause jumps over the the
6013         ** invocation of min() or max() altogether. Or, if this is not
6014         ** the first row (regAcc contains 1), set the magnet register so that
6015         ** the accumulators are not populated unless the min()/max() is invoked
6016         ** and indicates that they should be.  */
6017         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6018       }
6019       addrNext = sqlite3VdbeMakeLabel(pParse);
6020       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6021     }
6022     if( pList ){
6023       nArg = pList->nExpr;
6024       regAgg = sqlite3GetTempRange(pParse, nArg);
6025       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6026     }else{
6027       nArg = 0;
6028       regAgg = 0;
6029     }
6030     if( pF->iDistinct>=0 && pList ){
6031       if( addrNext==0 ){
6032         addrNext = sqlite3VdbeMakeLabel(pParse);
6033       }
6034       pF->iDistinct = codeDistinct(pParse, eDistinctType,
6035           pF->iDistinct, addrNext, pList, regAgg);
6036     }
6037     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6038       CollSeq *pColl = 0;
6039       struct ExprList_item *pItem;
6040       int j;
6041       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
6042       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6043         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6044       }
6045       if( !pColl ){
6046         pColl = pParse->db->pDfltColl;
6047       }
6048       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6049       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6050     }
6051     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6052     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6053     sqlite3VdbeChangeP5(v, (u8)nArg);
6054     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6055     if( addrNext ){
6056       sqlite3VdbeResolveLabel(v, addrNext);
6057     }
6058   }
6059   if( regHit==0 && pAggInfo->nAccumulator ){
6060     regHit = regAcc;
6061   }
6062   if( regHit ){
6063     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6064   }
6065   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6066     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6067   }
6068 
6069   pAggInfo->directMode = 0;
6070   if( addrHitTest ){
6071     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6072   }
6073 }
6074 
6075 /*
6076 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6077 ** count(*) query ("SELECT count(*) FROM pTab").
6078 */
6079 #ifndef SQLITE_OMIT_EXPLAIN
6080 static void explainSimpleCount(
6081   Parse *pParse,                  /* Parse context */
6082   Table *pTab,                    /* Table being queried */
6083   Index *pIdx                     /* Index used to optimize scan, or NULL */
6084 ){
6085   if( pParse->explain==2 ){
6086     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6087     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6088         pTab->zName,
6089         bCover ? " USING COVERING INDEX " : "",
6090         bCover ? pIdx->zName : ""
6091     );
6092   }
6093 }
6094 #else
6095 # define explainSimpleCount(a,b,c)
6096 #endif
6097 
6098 /*
6099 ** sqlite3WalkExpr() callback used by havingToWhere().
6100 **
6101 ** If the node passed to the callback is a TK_AND node, return
6102 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6103 **
6104 ** Otherwise, return WRC_Prune. In this case, also check if the
6105 ** sub-expression matches the criteria for being moved to the WHERE
6106 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6107 ** within the HAVING expression with a constant "1".
6108 */
6109 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6110   if( pExpr->op!=TK_AND ){
6111     Select *pS = pWalker->u.pSelect;
6112     /* This routine is called before the HAVING clause of the current
6113     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6114     ** here, it indicates that the expression is a correlated reference to a
6115     ** column from an outer aggregate query, or an aggregate function that
6116     ** belongs to an outer query. Do not move the expression to the WHERE
6117     ** clause in this obscure case, as doing so may corrupt the outer Select
6118     ** statements AggInfo structure.  */
6119     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6120      && ExprAlwaysFalse(pExpr)==0
6121      && pExpr->pAggInfo==0
6122     ){
6123       sqlite3 *db = pWalker->pParse->db;
6124       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6125       if( pNew ){
6126         Expr *pWhere = pS->pWhere;
6127         SWAP(Expr, *pNew, *pExpr);
6128         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6129         pS->pWhere = pNew;
6130         pWalker->eCode = 1;
6131       }
6132     }
6133     return WRC_Prune;
6134   }
6135   return WRC_Continue;
6136 }
6137 
6138 /*
6139 ** Transfer eligible terms from the HAVING clause of a query, which is
6140 ** processed after grouping, to the WHERE clause, which is processed before
6141 ** grouping. For example, the query:
6142 **
6143 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6144 **
6145 ** can be rewritten as:
6146 **
6147 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6148 **
6149 ** A term of the HAVING expression is eligible for transfer if it consists
6150 ** entirely of constants and expressions that are also GROUP BY terms that
6151 ** use the "BINARY" collation sequence.
6152 */
6153 static void havingToWhere(Parse *pParse, Select *p){
6154   Walker sWalker;
6155   memset(&sWalker, 0, sizeof(sWalker));
6156   sWalker.pParse = pParse;
6157   sWalker.xExprCallback = havingToWhereExprCb;
6158   sWalker.u.pSelect = p;
6159   sqlite3WalkExpr(&sWalker, p->pHaving);
6160 #if TREETRACE_ENABLED
6161   if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
6162     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6163     sqlite3TreeViewSelect(0, p, 0);
6164   }
6165 #endif
6166 }
6167 
6168 /*
6169 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6170 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6171 ** then return 0.
6172 */
6173 static SrcItem *isSelfJoinView(
6174   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6175   SrcItem *pThis               /* Search for prior reference to this subquery */
6176 ){
6177   SrcItem *pItem;
6178   assert( pThis->pSelect!=0 );
6179   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6180   for(pItem = pTabList->a; pItem<pThis; pItem++){
6181     Select *pS1;
6182     if( pItem->pSelect==0 ) continue;
6183     if( pItem->fg.viaCoroutine ) continue;
6184     if( pItem->zName==0 ) continue;
6185     assert( pItem->pTab!=0 );
6186     assert( pThis->pTab!=0 );
6187     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6188     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6189     pS1 = pItem->pSelect;
6190     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6191       /* The query flattener left two different CTE tables with identical
6192       ** names in the same FROM clause. */
6193       continue;
6194     }
6195     if( pItem->pSelect->selFlags & SF_PushDown ){
6196       /* The view was modified by some other optimization such as
6197       ** pushDownWhereTerms() */
6198       continue;
6199     }
6200     return pItem;
6201   }
6202   return 0;
6203 }
6204 
6205 /*
6206 ** Deallocate a single AggInfo object
6207 */
6208 static void agginfoFree(sqlite3 *db, AggInfo *p){
6209   sqlite3DbFree(db, p->aCol);
6210   sqlite3DbFree(db, p->aFunc);
6211   sqlite3DbFreeNN(db, p);
6212 }
6213 
6214 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6215 /*
6216 ** Attempt to transform a query of the form
6217 **
6218 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6219 **
6220 ** Into this:
6221 **
6222 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6223 **
6224 ** The transformation only works if all of the following are true:
6225 **
6226 **   *  The subquery is a UNION ALL of two or more terms
6227 **   *  The subquery does not have a LIMIT clause
6228 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6229 **   *  The outer query is a simple count(*) with no WHERE clause or other
6230 **      extraneous syntax.
6231 **
6232 ** Return TRUE if the optimization is undertaken.
6233 */
6234 static int countOfViewOptimization(Parse *pParse, Select *p){
6235   Select *pSub, *pPrior;
6236   Expr *pExpr;
6237   Expr *pCount;
6238   sqlite3 *db;
6239   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6240   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6241   if( p->pWhere ) return 0;
6242   if( p->pGroupBy ) return 0;
6243   pExpr = p->pEList->a[0].pExpr;
6244   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6245   assert( ExprUseUToken(pExpr) );
6246   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6247   assert( ExprUseXList(pExpr) );
6248   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6249   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6250   pSub = p->pSrc->a[0].pSelect;
6251   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6252   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6253   do{
6254     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6255     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6256     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6257     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6258     pSub = pSub->pPrior;                              /* Repeat over compound */
6259   }while( pSub );
6260 
6261   /* If we reach this point then it is OK to perform the transformation */
6262 
6263   db = pParse->db;
6264   pCount = pExpr;
6265   pExpr = 0;
6266   pSub = p->pSrc->a[0].pSelect;
6267   p->pSrc->a[0].pSelect = 0;
6268   sqlite3SrcListDelete(db, p->pSrc);
6269   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6270   while( pSub ){
6271     Expr *pTerm;
6272     pPrior = pSub->pPrior;
6273     pSub->pPrior = 0;
6274     pSub->pNext = 0;
6275     pSub->selFlags |= SF_Aggregate;
6276     pSub->selFlags &= ~SF_Compound;
6277     pSub->nSelectRow = 0;
6278     sqlite3ExprListDelete(db, pSub->pEList);
6279     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6280     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6281     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6282     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6283     if( pExpr==0 ){
6284       pExpr = pTerm;
6285     }else{
6286       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6287     }
6288     pSub = pPrior;
6289   }
6290   p->pEList->a[0].pExpr = pExpr;
6291   p->selFlags &= ~SF_Aggregate;
6292 
6293 #if TREETRACE_ENABLED
6294   if( sqlite3TreeTrace & 0x400 ){
6295     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6296     sqlite3TreeViewSelect(0, p, 0);
6297   }
6298 #endif
6299   return 1;
6300 }
6301 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6302 
6303 /*
6304 ** Generate code for the SELECT statement given in the p argument.
6305 **
6306 ** The results are returned according to the SelectDest structure.
6307 ** See comments in sqliteInt.h for further information.
6308 **
6309 ** This routine returns the number of errors.  If any errors are
6310 ** encountered, then an appropriate error message is left in
6311 ** pParse->zErrMsg.
6312 **
6313 ** This routine does NOT free the Select structure passed in.  The
6314 ** calling function needs to do that.
6315 */
6316 int sqlite3Select(
6317   Parse *pParse,         /* The parser context */
6318   Select *p,             /* The SELECT statement being coded. */
6319   SelectDest *pDest      /* What to do with the query results */
6320 ){
6321   int i, j;              /* Loop counters */
6322   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6323   Vdbe *v;               /* The virtual machine under construction */
6324   int isAgg;             /* True for select lists like "count(*)" */
6325   ExprList *pEList = 0;  /* List of columns to extract. */
6326   SrcList *pTabList;     /* List of tables to select from */
6327   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6328   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6329   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6330   AggInfo *pAggInfo = 0; /* Aggregate information */
6331   int rc = 1;            /* Value to return from this function */
6332   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6333   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6334   int iEnd;              /* Address of the end of the query */
6335   sqlite3 *db;           /* The database connection */
6336   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6337   u8 minMaxFlag;                 /* Flag for min/max queries */
6338 
6339   db = pParse->db;
6340   assert( pParse==db->pParse );
6341   v = sqlite3GetVdbe(pParse);
6342   if( p==0 || pParse->nErr ){
6343     return 1;
6344   }
6345   assert( db->mallocFailed==0 );
6346   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6347 #if TREETRACE_ENABLED
6348   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6349   if( sqlite3TreeTrace & 0x100 ){
6350     sqlite3TreeViewSelect(0, p, 0);
6351   }
6352 #endif
6353 
6354   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6355   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6356   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6357   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6358   if( IgnorableDistinct(pDest) ){
6359     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6360            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6361            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6362     /* All of these destinations are also able to ignore the ORDER BY clause */
6363     if( p->pOrderBy ){
6364 #if TREETRACE_ENABLED
6365       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6366       if( sqlite3TreeTrace & 0x100 ){
6367         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6368       }
6369 #endif
6370       sqlite3ParserAddCleanup(pParse,
6371         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6372         p->pOrderBy);
6373       testcase( pParse->earlyCleanup );
6374       p->pOrderBy = 0;
6375     }
6376     p->selFlags &= ~SF_Distinct;
6377     p->selFlags |= SF_NoopOrderBy;
6378   }
6379   sqlite3SelectPrep(pParse, p, 0);
6380   if( pParse->nErr ){
6381     goto select_end;
6382   }
6383   assert( db->mallocFailed==0 );
6384   assert( p->pEList!=0 );
6385 #if TREETRACE_ENABLED
6386   if( sqlite3TreeTrace & 0x104 ){
6387     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6388     sqlite3TreeViewSelect(0, p, 0);
6389   }
6390 #endif
6391 
6392   /* If the SF_UFSrcCheck flag is set, then this function is being called
6393   ** as part of populating the temp table for an UPDATE...FROM statement.
6394   ** In this case, it is an error if the target object (pSrc->a[0]) name
6395   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6396   **
6397   ** Postgres disallows this case too. The reason is that some other
6398   ** systems handle this case differently, and not all the same way,
6399   ** which is just confusing. To avoid this, we follow PG's lead and
6400   ** disallow it altogether.  */
6401   if( p->selFlags & SF_UFSrcCheck ){
6402     SrcItem *p0 = &p->pSrc->a[0];
6403     for(i=1; i<p->pSrc->nSrc; i++){
6404       SrcItem *p1 = &p->pSrc->a[i];
6405       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6406         sqlite3ErrorMsg(pParse,
6407             "target object/alias may not appear in FROM clause: %s",
6408             p0->zAlias ? p0->zAlias : p0->pTab->zName
6409         );
6410         goto select_end;
6411       }
6412     }
6413 
6414     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6415     ** and leaving this flag set can cause errors if a compound sub-query
6416     ** in p->pSrc is flattened into this query and this function called
6417     ** again as part of compound SELECT processing.  */
6418     p->selFlags &= ~SF_UFSrcCheck;
6419   }
6420 
6421   if( pDest->eDest==SRT_Output ){
6422     sqlite3GenerateColumnNames(pParse, p);
6423   }
6424 
6425 #ifndef SQLITE_OMIT_WINDOWFUNC
6426   if( sqlite3WindowRewrite(pParse, p) ){
6427     assert( pParse->nErr );
6428     goto select_end;
6429   }
6430 #if TREETRACE_ENABLED
6431   if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
6432     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6433     sqlite3TreeViewSelect(0, p, 0);
6434   }
6435 #endif
6436 #endif /* SQLITE_OMIT_WINDOWFUNC */
6437   pTabList = p->pSrc;
6438   isAgg = (p->selFlags & SF_Aggregate)!=0;
6439   memset(&sSort, 0, sizeof(sSort));
6440   sSort.pOrderBy = p->pOrderBy;
6441 
6442   /* Try to do various optimizations (flattening subqueries, and strength
6443   ** reduction of join operators) in the FROM clause up into the main query
6444   */
6445 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6446   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6447     SrcItem *pItem = &pTabList->a[i];
6448     Select *pSub = pItem->pSelect;
6449     Table *pTab = pItem->pTab;
6450 
6451     /* The expander should have already created transient Table objects
6452     ** even for FROM clause elements such as subqueries that do not correspond
6453     ** to a real table */
6454     assert( pTab!=0 );
6455 
6456     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6457     ** of the LEFT JOIN used in the WHERE clause.
6458     */
6459     if( (pItem->fg.jointype & JT_LEFT)!=0
6460      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6461      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6462     ){
6463       SELECTTRACE(0x100,pParse,p,
6464                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6465       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6466       unsetJoinExpr(p->pWhere, pItem->iCursor);
6467     }
6468 
6469     /* No futher action if this term of the FROM clause is no a subquery */
6470     if( pSub==0 ) continue;
6471 
6472     /* Catch mismatch in the declared columns of a view and the number of
6473     ** columns in the SELECT on the RHS */
6474     if( pTab->nCol!=pSub->pEList->nExpr ){
6475       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6476                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6477       goto select_end;
6478     }
6479 
6480     /* Do not try to flatten an aggregate subquery.
6481     **
6482     ** Flattening an aggregate subquery is only possible if the outer query
6483     ** is not a join.  But if the outer query is not a join, then the subquery
6484     ** will be implemented as a co-routine and there is no advantage to
6485     ** flattening in that case.
6486     */
6487     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6488     assert( pSub->pGroupBy==0 );
6489 
6490     /* If a FROM-clause subquery has an ORDER BY clause that is not
6491     ** really doing anything, then delete it now so that it does not
6492     ** interfere with query flattening.  See the discussion at
6493     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6494     **
6495     ** Beware of these cases where the ORDER BY clause may not be safely
6496     ** omitted:
6497     **
6498     **    (1)   There is also a LIMIT clause
6499     **    (2)   The subquery was added to help with window-function
6500     **          processing
6501     **    (3)   The subquery is in the FROM clause of an UPDATE
6502     **    (4)   The outer query uses an aggregate function other than
6503     **          the built-in count(), min(), or max().
6504     **    (5)   The ORDER BY isn't going to accomplish anything because
6505     **          one of:
6506     **            (a)  The outer query has a different ORDER BY clause
6507     **            (b)  The subquery is part of a join
6508     **          See forum post 062d576715d277c8
6509     */
6510     if( pSub->pOrderBy!=0
6511      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6512      && pSub->pLimit==0                           /* Condition (1) */
6513      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6514      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6515      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6516     ){
6517       SELECTTRACE(0x100,pParse,p,
6518                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6519       sqlite3ExprListDelete(db, pSub->pOrderBy);
6520       pSub->pOrderBy = 0;
6521     }
6522 
6523     /* If the outer query contains a "complex" result set (that is,
6524     ** if the result set of the outer query uses functions or subqueries)
6525     ** and if the subquery contains an ORDER BY clause and if
6526     ** it will be implemented as a co-routine, then do not flatten.  This
6527     ** restriction allows SQL constructs like this:
6528     **
6529     **  SELECT expensive_function(x)
6530     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6531     **
6532     ** The expensive_function() is only computed on the 10 rows that
6533     ** are output, rather than every row of the table.
6534     **
6535     ** The requirement that the outer query have a complex result set
6536     ** means that flattening does occur on simpler SQL constraints without
6537     ** the expensive_function() like:
6538     **
6539     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6540     */
6541     if( pSub->pOrderBy!=0
6542      && i==0
6543      && (p->selFlags & SF_ComplexResult)!=0
6544      && (pTabList->nSrc==1
6545          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6546     ){
6547       continue;
6548     }
6549 
6550     if( flattenSubquery(pParse, p, i, isAgg) ){
6551       if( pParse->nErr ) goto select_end;
6552       /* This subquery can be absorbed into its parent. */
6553       i = -1;
6554     }
6555     pTabList = p->pSrc;
6556     if( db->mallocFailed ) goto select_end;
6557     if( !IgnorableOrderby(pDest) ){
6558       sSort.pOrderBy = p->pOrderBy;
6559     }
6560   }
6561 #endif
6562 
6563 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6564   /* Handle compound SELECT statements using the separate multiSelect()
6565   ** procedure.
6566   */
6567   if( p->pPrior ){
6568     rc = multiSelect(pParse, p, pDest);
6569 #if TREETRACE_ENABLED
6570     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6571     if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6572       sqlite3TreeViewSelect(0, p, 0);
6573     }
6574 #endif
6575     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6576     return rc;
6577   }
6578 #endif
6579 
6580   /* Do the WHERE-clause constant propagation optimization if this is
6581   ** a join.  No need to speed time on this operation for non-join queries
6582   ** as the equivalent optimization will be handled by query planner in
6583   ** sqlite3WhereBegin().
6584   */
6585   if( p->pWhere!=0
6586    && p->pWhere->op==TK_AND
6587    && OptimizationEnabled(db, SQLITE_PropagateConst)
6588    && propagateConstants(pParse, p)
6589   ){
6590 #if TREETRACE_ENABLED
6591     if( sqlite3TreeTrace & 0x100 ){
6592       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6593       sqlite3TreeViewSelect(0, p, 0);
6594     }
6595 #endif
6596   }else{
6597     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6598   }
6599 
6600 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6601   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6602    && countOfViewOptimization(pParse, p)
6603   ){
6604     if( db->mallocFailed ) goto select_end;
6605     pEList = p->pEList;
6606     pTabList = p->pSrc;
6607   }
6608 #endif
6609 
6610   /* For each term in the FROM clause, do two things:
6611   ** (1) Authorized unreferenced tables
6612   ** (2) Generate code for all sub-queries
6613   */
6614   for(i=0; i<pTabList->nSrc; i++){
6615     SrcItem *pItem = &pTabList->a[i];
6616     SrcItem *pPrior;
6617     SelectDest dest;
6618     Select *pSub;
6619 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6620     const char *zSavedAuthContext;
6621 #endif
6622 
6623     /* Issue SQLITE_READ authorizations with a fake column name for any
6624     ** tables that are referenced but from which no values are extracted.
6625     ** Examples of where these kinds of null SQLITE_READ authorizations
6626     ** would occur:
6627     **
6628     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6629     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6630     **
6631     ** The fake column name is an empty string.  It is possible for a table to
6632     ** have a column named by the empty string, in which case there is no way to
6633     ** distinguish between an unreferenced table and an actual reference to the
6634     ** "" column. The original design was for the fake column name to be a NULL,
6635     ** which would be unambiguous.  But legacy authorization callbacks might
6636     ** assume the column name is non-NULL and segfault.  The use of an empty
6637     ** string for the fake column name seems safer.
6638     */
6639     if( pItem->colUsed==0 && pItem->zName!=0 ){
6640       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6641     }
6642 
6643 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6644     /* Generate code for all sub-queries in the FROM clause
6645     */
6646     pSub = pItem->pSelect;
6647     if( pSub==0 ) continue;
6648 
6649     /* The code for a subquery should only be generated once. */
6650     assert( pItem->addrFillSub==0 );
6651 
6652     /* Increment Parse.nHeight by the height of the largest expression
6653     ** tree referred to by this, the parent select. The child select
6654     ** may contain expression trees of at most
6655     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6656     ** more conservative than necessary, but much easier than enforcing
6657     ** an exact limit.
6658     */
6659     pParse->nHeight += sqlite3SelectExprHeight(p);
6660 
6661     /* Make copies of constant WHERE-clause terms in the outer query down
6662     ** inside the subquery.  This can help the subquery to run more efficiently.
6663     */
6664     if( OptimizationEnabled(db, SQLITE_PushDown)
6665      && (pItem->fg.isCte==0
6666          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6667      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6668                            (pItem->fg.jointype & JT_OUTER)!=0)
6669     ){
6670 #if TREETRACE_ENABLED
6671       if( sqlite3TreeTrace & 0x100 ){
6672         SELECTTRACE(0x100,pParse,p,
6673             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6674         sqlite3TreeViewSelect(0, p, 0);
6675       }
6676 #endif
6677       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6678     }else{
6679       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6680     }
6681 
6682     zSavedAuthContext = pParse->zAuthContext;
6683     pParse->zAuthContext = pItem->zName;
6684 
6685     /* Generate code to implement the subquery
6686     **
6687     ** The subquery is implemented as a co-routine if:
6688     **    (1)  the subquery is guaranteed to be the outer loop (so that
6689     **         it does not need to be computed more than once), and
6690     **    (2)  the subquery is not a CTE that should be materialized
6691     **
6692     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6693     ** implementation?
6694     */
6695     if( i==0
6696      && (pTabList->nSrc==1
6697             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6698      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6699     ){
6700       /* Implement a co-routine that will return a single row of the result
6701       ** set on each invocation.
6702       */
6703       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6704 
6705       pItem->regReturn = ++pParse->nMem;
6706       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6707       VdbeComment((v, "%!S", pItem));
6708       pItem->addrFillSub = addrTop;
6709       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6710       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6711       sqlite3Select(pParse, pSub, &dest);
6712       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6713       pItem->fg.viaCoroutine = 1;
6714       pItem->regResult = dest.iSdst;
6715       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6716       sqlite3VdbeJumpHere(v, addrTop-1);
6717       sqlite3ClearTempRegCache(pParse);
6718     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6719       /* This is a CTE for which materialization code has already been
6720       ** generated.  Invoke the subroutine to compute the materialization,
6721       ** the make the pItem->iCursor be a copy of the ephemerial table that
6722       ** holds the result of the materialization. */
6723       CteUse *pCteUse = pItem->u2.pCteUse;
6724       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6725       if( pItem->iCursor!=pCteUse->iCur ){
6726         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6727         VdbeComment((v, "%!S", pItem));
6728       }
6729       pSub->nSelectRow = pCteUse->nRowEst;
6730     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6731       /* This view has already been materialized by a prior entry in
6732       ** this same FROM clause.  Reuse it. */
6733       if( pPrior->addrFillSub ){
6734         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6735       }
6736       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6737       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6738     }else{
6739       /* Materialize the view.  If the view is not correlated, generate a
6740       ** subroutine to do the materialization so that subsequent uses of
6741       ** the same view can reuse the materialization. */
6742       int topAddr;
6743       int onceAddr = 0;
6744       int retAddr;
6745 
6746       pItem->regReturn = ++pParse->nMem;
6747       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6748       pItem->addrFillSub = topAddr+1;
6749       if( pItem->fg.isCorrelated==0 ){
6750         /* If the subquery is not correlated and if we are not inside of
6751         ** a trigger, then we only need to compute the value of the subquery
6752         ** once. */
6753         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6754         VdbeComment((v, "materialize %!S", pItem));
6755       }else{
6756         VdbeNoopComment((v, "materialize %!S", pItem));
6757       }
6758       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6759       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6760       sqlite3Select(pParse, pSub, &dest);
6761       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6762       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6763       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6764       VdbeComment((v, "end %!S", pItem));
6765       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6766       sqlite3ClearTempRegCache(pParse);
6767       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6768         CteUse *pCteUse = pItem->u2.pCteUse;
6769         pCteUse->addrM9e = pItem->addrFillSub;
6770         pCteUse->regRtn = pItem->regReturn;
6771         pCteUse->iCur = pItem->iCursor;
6772         pCteUse->nRowEst = pSub->nSelectRow;
6773       }
6774     }
6775     if( db->mallocFailed ) goto select_end;
6776     pParse->nHeight -= sqlite3SelectExprHeight(p);
6777     pParse->zAuthContext = zSavedAuthContext;
6778 #endif
6779   }
6780 
6781   /* Various elements of the SELECT copied into local variables for
6782   ** convenience */
6783   pEList = p->pEList;
6784   pWhere = p->pWhere;
6785   pGroupBy = p->pGroupBy;
6786   pHaving = p->pHaving;
6787   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6788 
6789 #if TREETRACE_ENABLED
6790   if( sqlite3TreeTrace & 0x400 ){
6791     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6792     sqlite3TreeViewSelect(0, p, 0);
6793   }
6794 #endif
6795 
6796   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6797   ** if the select-list is the same as the ORDER BY list, then this query
6798   ** can be rewritten as a GROUP BY. In other words, this:
6799   **
6800   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6801   **
6802   ** is transformed to:
6803   **
6804   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6805   **
6806   ** The second form is preferred as a single index (or temp-table) may be
6807   ** used for both the ORDER BY and DISTINCT processing. As originally
6808   ** written the query must use a temp-table for at least one of the ORDER
6809   ** BY and DISTINCT, and an index or separate temp-table for the other.
6810   */
6811   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6812    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6813 #ifndef SQLITE_OMIT_WINDOWFUNC
6814    && p->pWin==0
6815 #endif
6816   ){
6817     p->selFlags &= ~SF_Distinct;
6818     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6819     p->selFlags |= SF_Aggregate;
6820     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6821     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6822     ** original setting of the SF_Distinct flag, not the current setting */
6823     assert( sDistinct.isTnct );
6824     sDistinct.isTnct = 2;
6825 
6826 #if TREETRACE_ENABLED
6827     if( sqlite3TreeTrace & 0x400 ){
6828       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6829       sqlite3TreeViewSelect(0, p, 0);
6830     }
6831 #endif
6832   }
6833 
6834   /* If there is an ORDER BY clause, then create an ephemeral index to
6835   ** do the sorting.  But this sorting ephemeral index might end up
6836   ** being unused if the data can be extracted in pre-sorted order.
6837   ** If that is the case, then the OP_OpenEphemeral instruction will be
6838   ** changed to an OP_Noop once we figure out that the sorting index is
6839   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6840   ** that change.
6841   */
6842   if( sSort.pOrderBy ){
6843     KeyInfo *pKeyInfo;
6844     pKeyInfo = sqlite3KeyInfoFromExprList(
6845         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6846     sSort.iECursor = pParse->nTab++;
6847     sSort.addrSortIndex =
6848       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6849           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6850           (char*)pKeyInfo, P4_KEYINFO
6851       );
6852   }else{
6853     sSort.addrSortIndex = -1;
6854   }
6855 
6856   /* If the output is destined for a temporary table, open that table.
6857   */
6858   if( pDest->eDest==SRT_EphemTab ){
6859     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6860   }
6861 
6862   /* Set the limiter.
6863   */
6864   iEnd = sqlite3VdbeMakeLabel(pParse);
6865   if( (p->selFlags & SF_FixedLimit)==0 ){
6866     p->nSelectRow = 320;  /* 4 billion rows */
6867   }
6868   computeLimitRegisters(pParse, p, iEnd);
6869   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6870     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6871     sSort.sortFlags |= SORTFLAG_UseSorter;
6872   }
6873 
6874   /* Open an ephemeral index to use for the distinct set.
6875   */
6876   if( p->selFlags & SF_Distinct ){
6877     sDistinct.tabTnct = pParse->nTab++;
6878     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6879                        sDistinct.tabTnct, 0, 0,
6880                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6881                        P4_KEYINFO);
6882     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6883     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6884   }else{
6885     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6886   }
6887 
6888   if( !isAgg && pGroupBy==0 ){
6889     /* No aggregate functions and no GROUP BY clause */
6890     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6891                    | (p->selFlags & SF_FixedLimit);
6892 #ifndef SQLITE_OMIT_WINDOWFUNC
6893     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6894     if( pWin ){
6895       sqlite3WindowCodeInit(pParse, p);
6896     }
6897 #endif
6898     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6899 
6900 
6901     /* Begin the database scan. */
6902     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6903     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6904                                p->pEList, p, wctrlFlags, p->nSelectRow);
6905     if( pWInfo==0 ) goto select_end;
6906     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6907       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6908     }
6909     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6910       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6911     }
6912     if( sSort.pOrderBy ){
6913       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6914       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6915       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6916         sSort.pOrderBy = 0;
6917       }
6918     }
6919     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6920 
6921     /* If sorting index that was created by a prior OP_OpenEphemeral
6922     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6923     ** into an OP_Noop.
6924     */
6925     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6926       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6927     }
6928 
6929     assert( p->pEList==pEList );
6930 #ifndef SQLITE_OMIT_WINDOWFUNC
6931     if( pWin ){
6932       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6933       int iCont = sqlite3VdbeMakeLabel(pParse);
6934       int iBreak = sqlite3VdbeMakeLabel(pParse);
6935       int regGosub = ++pParse->nMem;
6936 
6937       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6938 
6939       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6940       sqlite3VdbeResolveLabel(v, addrGosub);
6941       VdbeNoopComment((v, "inner-loop subroutine"));
6942       sSort.labelOBLopt = 0;
6943       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6944       sqlite3VdbeResolveLabel(v, iCont);
6945       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6946       VdbeComment((v, "end inner-loop subroutine"));
6947       sqlite3VdbeResolveLabel(v, iBreak);
6948     }else
6949 #endif /* SQLITE_OMIT_WINDOWFUNC */
6950     {
6951       /* Use the standard inner loop. */
6952       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6953           sqlite3WhereContinueLabel(pWInfo),
6954           sqlite3WhereBreakLabel(pWInfo));
6955 
6956       /* End the database scan loop.
6957       */
6958       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6959       sqlite3WhereEnd(pWInfo);
6960     }
6961   }else{
6962     /* This case when there exist aggregate functions or a GROUP BY clause
6963     ** or both */
6964     NameContext sNC;    /* Name context for processing aggregate information */
6965     int iAMem;          /* First Mem address for storing current GROUP BY */
6966     int iBMem;          /* First Mem address for previous GROUP BY */
6967     int iUseFlag;       /* Mem address holding flag indicating that at least
6968                         ** one row of the input to the aggregator has been
6969                         ** processed */
6970     int iAbortFlag;     /* Mem address which causes query abort if positive */
6971     int groupBySort;    /* Rows come from source in GROUP BY order */
6972     int addrEnd;        /* End of processing for this SELECT */
6973     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6974     int sortOut = 0;    /* Output register from the sorter */
6975     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6976 
6977     /* Remove any and all aliases between the result set and the
6978     ** GROUP BY clause.
6979     */
6980     if( pGroupBy ){
6981       int k;                        /* Loop counter */
6982       struct ExprList_item *pItem;  /* For looping over expression in a list */
6983 
6984       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6985         pItem->u.x.iAlias = 0;
6986       }
6987       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6988         pItem->u.x.iAlias = 0;
6989       }
6990       assert( 66==sqlite3LogEst(100) );
6991       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6992 
6993       /* If there is both a GROUP BY and an ORDER BY clause and they are
6994       ** identical, then it may be possible to disable the ORDER BY clause
6995       ** on the grounds that the GROUP BY will cause elements to come out
6996       ** in the correct order. It also may not - the GROUP BY might use a
6997       ** database index that causes rows to be grouped together as required
6998       ** but not actually sorted. Either way, record the fact that the
6999       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7000       ** variable.  */
7001       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7002         int ii;
7003         /* The GROUP BY processing doesn't care whether rows are delivered in
7004         ** ASC or DESC order - only that each group is returned contiguously.
7005         ** So set the ASC/DESC flags in the GROUP BY to match those in the
7006         ** ORDER BY to maximize the chances of rows being delivered in an
7007         ** order that makes the ORDER BY redundant.  */
7008         for(ii=0; ii<pGroupBy->nExpr; ii++){
7009           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
7010           pGroupBy->a[ii].sortFlags = sortFlags;
7011         }
7012         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7013           orderByGrp = 1;
7014         }
7015       }
7016     }else{
7017       assert( 0==sqlite3LogEst(1) );
7018       p->nSelectRow = 0;
7019     }
7020 
7021     /* Create a label to jump to when we want to abort the query */
7022     addrEnd = sqlite3VdbeMakeLabel(pParse);
7023 
7024     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7025     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7026     ** SELECT statement.
7027     */
7028     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7029     if( pAggInfo ){
7030       sqlite3ParserAddCleanup(pParse,
7031           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7032       testcase( pParse->earlyCleanup );
7033     }
7034     if( db->mallocFailed ){
7035       goto select_end;
7036     }
7037     pAggInfo->selId = p->selId;
7038     memset(&sNC, 0, sizeof(sNC));
7039     sNC.pParse = pParse;
7040     sNC.pSrcList = pTabList;
7041     sNC.uNC.pAggInfo = pAggInfo;
7042     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7043     pAggInfo->mnReg = pParse->nMem+1;
7044     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7045     pAggInfo->pGroupBy = pGroupBy;
7046     sqlite3ExprAnalyzeAggList(&sNC, pEList);
7047     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7048     if( pHaving ){
7049       if( pGroupBy ){
7050         assert( pWhere==p->pWhere );
7051         assert( pHaving==p->pHaving );
7052         assert( pGroupBy==p->pGroupBy );
7053         havingToWhere(pParse, p);
7054         pWhere = p->pWhere;
7055       }
7056       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7057     }
7058     pAggInfo->nAccumulator = pAggInfo->nColumn;
7059     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7060       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7061     }else{
7062       minMaxFlag = WHERE_ORDERBY_NORMAL;
7063     }
7064     for(i=0; i<pAggInfo->nFunc; i++){
7065       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7066       assert( ExprUseXList(pExpr) );
7067       sNC.ncFlags |= NC_InAggFunc;
7068       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7069 #ifndef SQLITE_OMIT_WINDOWFUNC
7070       assert( !IsWindowFunc(pExpr) );
7071       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7072         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7073       }
7074 #endif
7075       sNC.ncFlags &= ~NC_InAggFunc;
7076     }
7077     pAggInfo->mxReg = pParse->nMem;
7078     if( db->mallocFailed ) goto select_end;
7079 #if TREETRACE_ENABLED
7080     if( sqlite3TreeTrace & 0x400 ){
7081       int ii;
7082       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7083       sqlite3TreeViewSelect(0, p, 0);
7084       if( minMaxFlag ){
7085         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7086         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7087       }
7088       for(ii=0; ii<pAggInfo->nColumn; ii++){
7089         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7090             ii, pAggInfo->aCol[ii].iMem);
7091         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7092       }
7093       for(ii=0; ii<pAggInfo->nFunc; ii++){
7094         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7095             ii, pAggInfo->aFunc[ii].iMem);
7096         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7097       }
7098     }
7099 #endif
7100 
7101 
7102     /* Processing for aggregates with GROUP BY is very different and
7103     ** much more complex than aggregates without a GROUP BY.
7104     */
7105     if( pGroupBy ){
7106       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7107       int addr1;          /* A-vs-B comparision jump */
7108       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7109       int regOutputRow;   /* Return address register for output subroutine */
7110       int addrSetAbort;   /* Set the abort flag and return */
7111       int addrTopOfLoop;  /* Top of the input loop */
7112       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7113       int addrReset;      /* Subroutine for resetting the accumulator */
7114       int regReset;       /* Return address register for reset subroutine */
7115       ExprList *pDistinct = 0;
7116       u16 distFlag = 0;
7117       int eDist = WHERE_DISTINCT_NOOP;
7118 
7119       if( pAggInfo->nFunc==1
7120        && pAggInfo->aFunc[0].iDistinct>=0
7121        && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7122        && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7123        && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7124       ){
7125         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7126         pExpr = sqlite3ExprDup(db, pExpr, 0);
7127         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7128         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7129         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7130       }
7131 
7132       /* If there is a GROUP BY clause we might need a sorting index to
7133       ** implement it.  Allocate that sorting index now.  If it turns out
7134       ** that we do not need it after all, the OP_SorterOpen instruction
7135       ** will be converted into a Noop.
7136       */
7137       pAggInfo->sortingIdx = pParse->nTab++;
7138       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7139                                             0, pAggInfo->nColumn);
7140       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7141           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7142           0, (char*)pKeyInfo, P4_KEYINFO);
7143 
7144       /* Initialize memory locations used by GROUP BY aggregate processing
7145       */
7146       iUseFlag = ++pParse->nMem;
7147       iAbortFlag = ++pParse->nMem;
7148       regOutputRow = ++pParse->nMem;
7149       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7150       regReset = ++pParse->nMem;
7151       addrReset = sqlite3VdbeMakeLabel(pParse);
7152       iAMem = pParse->nMem + 1;
7153       pParse->nMem += pGroupBy->nExpr;
7154       iBMem = pParse->nMem + 1;
7155       pParse->nMem += pGroupBy->nExpr;
7156       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7157       VdbeComment((v, "clear abort flag"));
7158       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7159 
7160       /* Begin a loop that will extract all source rows in GROUP BY order.
7161       ** This might involve two separate loops with an OP_Sort in between, or
7162       ** it might be a single loop that uses an index to extract information
7163       ** in the right order to begin with.
7164       */
7165       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7166       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7167       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7168           0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
7169           |  (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7170       );
7171       if( pWInfo==0 ){
7172         sqlite3ExprListDelete(db, pDistinct);
7173         goto select_end;
7174       }
7175       eDist = sqlite3WhereIsDistinct(pWInfo);
7176       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7177       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7178         /* The optimizer is able to deliver rows in group by order so
7179         ** we do not have to sort.  The OP_OpenEphemeral table will be
7180         ** cancelled later because we still need to use the pKeyInfo
7181         */
7182         groupBySort = 0;
7183       }else{
7184         /* Rows are coming out in undetermined order.  We have to push
7185         ** each row into a sorting index, terminate the first loop,
7186         ** then loop over the sorting index in order to get the output
7187         ** in sorted order
7188         */
7189         int regBase;
7190         int regRecord;
7191         int nCol;
7192         int nGroupBy;
7193 
7194         explainTempTable(pParse,
7195             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7196                     "DISTINCT" : "GROUP BY");
7197 
7198         groupBySort = 1;
7199         nGroupBy = pGroupBy->nExpr;
7200         nCol = nGroupBy;
7201         j = nGroupBy;
7202         for(i=0; i<pAggInfo->nColumn; i++){
7203           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7204             nCol++;
7205             j++;
7206           }
7207         }
7208         regBase = sqlite3GetTempRange(pParse, nCol);
7209         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7210         j = nGroupBy;
7211         for(i=0; i<pAggInfo->nColumn; i++){
7212           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7213           if( pCol->iSorterColumn>=j ){
7214             int r1 = j + regBase;
7215             sqlite3ExprCodeGetColumnOfTable(v,
7216                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7217             j++;
7218           }
7219         }
7220         regRecord = sqlite3GetTempReg(pParse);
7221         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7222         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7223         sqlite3ReleaseTempReg(pParse, regRecord);
7224         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7225         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7226         sqlite3WhereEnd(pWInfo);
7227         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7228         sortOut = sqlite3GetTempReg(pParse);
7229         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7230         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7231         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7232         pAggInfo->useSortingIdx = 1;
7233       }
7234 
7235       /* If the index or temporary table used by the GROUP BY sort
7236       ** will naturally deliver rows in the order required by the ORDER BY
7237       ** clause, cancel the ephemeral table open coded earlier.
7238       **
7239       ** This is an optimization - the correct answer should result regardless.
7240       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7241       ** disable this optimization for testing purposes.  */
7242       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7243        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7244       ){
7245         sSort.pOrderBy = 0;
7246         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7247       }
7248 
7249       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7250       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7251       ** Then compare the current GROUP BY terms against the GROUP BY terms
7252       ** from the previous row currently stored in a0, a1, a2...
7253       */
7254       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7255       if( groupBySort ){
7256         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7257                           sortOut, sortPTab);
7258       }
7259       for(j=0; j<pGroupBy->nExpr; j++){
7260         if( groupBySort ){
7261           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7262         }else{
7263           pAggInfo->directMode = 1;
7264           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7265         }
7266       }
7267       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7268                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7269       addr1 = sqlite3VdbeCurrentAddr(v);
7270       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7271 
7272       /* Generate code that runs whenever the GROUP BY changes.
7273       ** Changes in the GROUP BY are detected by the previous code
7274       ** block.  If there were no changes, this block is skipped.
7275       **
7276       ** This code copies current group by terms in b0,b1,b2,...
7277       ** over to a0,a1,a2.  It then calls the output subroutine
7278       ** and resets the aggregate accumulator registers in preparation
7279       ** for the next GROUP BY batch.
7280       */
7281       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7282       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7283       VdbeComment((v, "output one row"));
7284       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7285       VdbeComment((v, "check abort flag"));
7286       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7287       VdbeComment((v, "reset accumulator"));
7288 
7289       /* Update the aggregate accumulators based on the content of
7290       ** the current row
7291       */
7292       sqlite3VdbeJumpHere(v, addr1);
7293       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7294       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7295       VdbeComment((v, "indicate data in accumulator"));
7296 
7297       /* End of the loop
7298       */
7299       if( groupBySort ){
7300         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7301         VdbeCoverage(v);
7302       }else{
7303         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7304         sqlite3WhereEnd(pWInfo);
7305         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7306       }
7307       sqlite3ExprListDelete(db, pDistinct);
7308 
7309       /* Output the final row of result
7310       */
7311       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7312       VdbeComment((v, "output final row"));
7313 
7314       /* Jump over the subroutines
7315       */
7316       sqlite3VdbeGoto(v, addrEnd);
7317 
7318       /* Generate a subroutine that outputs a single row of the result
7319       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7320       ** is less than or equal to zero, the subroutine is a no-op.  If
7321       ** the processing calls for the query to abort, this subroutine
7322       ** increments the iAbortFlag memory location before returning in
7323       ** order to signal the caller to abort.
7324       */
7325       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7326       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7327       VdbeComment((v, "set abort flag"));
7328       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7329       sqlite3VdbeResolveLabel(v, addrOutputRow);
7330       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7331       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7332       VdbeCoverage(v);
7333       VdbeComment((v, "Groupby result generator entry point"));
7334       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7335       finalizeAggFunctions(pParse, pAggInfo);
7336       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7337       selectInnerLoop(pParse, p, -1, &sSort,
7338                       &sDistinct, pDest,
7339                       addrOutputRow+1, addrSetAbort);
7340       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7341       VdbeComment((v, "end groupby result generator"));
7342 
7343       /* Generate a subroutine that will reset the group-by accumulator
7344       */
7345       sqlite3VdbeResolveLabel(v, addrReset);
7346       resetAccumulator(pParse, pAggInfo);
7347       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7348       VdbeComment((v, "indicate accumulator empty"));
7349       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7350 
7351       if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
7352         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7353         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7354       }
7355     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7356     else {
7357       Table *pTab;
7358       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7359         /* If isSimpleCount() returns a pointer to a Table structure, then
7360         ** the SQL statement is of the form:
7361         **
7362         **   SELECT count(*) FROM <tbl>
7363         **
7364         ** where the Table structure returned represents table <tbl>.
7365         **
7366         ** This statement is so common that it is optimized specially. The
7367         ** OP_Count instruction is executed either on the intkey table that
7368         ** contains the data for table <tbl> or on one of its indexes. It
7369         ** is better to execute the op on an index, as indexes are almost
7370         ** always spread across less pages than their corresponding tables.
7371         */
7372         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7373         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7374         Index *pIdx;                         /* Iterator variable */
7375         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7376         Index *pBest = 0;                    /* Best index found so far */
7377         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7378 
7379         sqlite3CodeVerifySchema(pParse, iDb);
7380         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7381 
7382         /* Search for the index that has the lowest scan cost.
7383         **
7384         ** (2011-04-15) Do not do a full scan of an unordered index.
7385         **
7386         ** (2013-10-03) Do not count the entries in a partial index.
7387         **
7388         ** In practice the KeyInfo structure will not be used. It is only
7389         ** passed to keep OP_OpenRead happy.
7390         */
7391         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7392         if( !p->pSrc->a[0].fg.notIndexed ){
7393           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7394             if( pIdx->bUnordered==0
7395              && pIdx->szIdxRow<pTab->szTabRow
7396              && pIdx->pPartIdxWhere==0
7397              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7398             ){
7399               pBest = pIdx;
7400             }
7401           }
7402         }
7403         if( pBest ){
7404           iRoot = pBest->tnum;
7405           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7406         }
7407 
7408         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7409         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7410         if( pKeyInfo ){
7411           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7412         }
7413         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7414         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7415         explainSimpleCount(pParse, pTab, pBest);
7416       }else{
7417         int regAcc = 0;           /* "populate accumulators" flag */
7418         ExprList *pDistinct = 0;
7419         u16 distFlag = 0;
7420         int eDist;
7421 
7422         /* If there are accumulator registers but no min() or max() functions
7423         ** without FILTER clauses, allocate register regAcc. Register regAcc
7424         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7425         ** The code generated by updateAccumulator() uses this to ensure
7426         ** that the accumulator registers are (a) updated only once if
7427         ** there are no min() or max functions or (b) always updated for the
7428         ** first row visited by the aggregate, so that they are updated at
7429         ** least once even if the FILTER clause means the min() or max()
7430         ** function visits zero rows.  */
7431         if( pAggInfo->nAccumulator ){
7432           for(i=0; i<pAggInfo->nFunc; i++){
7433             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7434               continue;
7435             }
7436             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7437               break;
7438             }
7439           }
7440           if( i==pAggInfo->nFunc ){
7441             regAcc = ++pParse->nMem;
7442             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7443           }
7444         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7445           assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7446           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7447           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7448         }
7449 
7450         /* This case runs if the aggregate has no GROUP BY clause.  The
7451         ** processing is much simpler since there is only a single row
7452         ** of output.
7453         */
7454         assert( p->pGroupBy==0 );
7455         resetAccumulator(pParse, pAggInfo);
7456 
7457         /* If this query is a candidate for the min/max optimization, then
7458         ** minMaxFlag will have been previously set to either
7459         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7460         ** be an appropriate ORDER BY expression for the optimization.
7461         */
7462         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7463         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7464 
7465         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7466         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7467                                    pDistinct, 0, minMaxFlag|distFlag, 0);
7468         if( pWInfo==0 ){
7469           goto select_end;
7470         }
7471         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7472         eDist = sqlite3WhereIsDistinct(pWInfo);
7473         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7474         if( eDist!=WHERE_DISTINCT_NOOP ){
7475           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7476           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7477         }
7478 
7479         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7480         if( minMaxFlag ){
7481           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7482         }
7483         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7484         sqlite3WhereEnd(pWInfo);
7485         finalizeAggFunctions(pParse, pAggInfo);
7486       }
7487 
7488       sSort.pOrderBy = 0;
7489       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7490       selectInnerLoop(pParse, p, -1, 0, 0,
7491                       pDest, addrEnd, addrEnd);
7492     }
7493     sqlite3VdbeResolveLabel(v, addrEnd);
7494 
7495   } /* endif aggregate query */
7496 
7497   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7498     explainTempTable(pParse, "DISTINCT");
7499   }
7500 
7501   /* If there is an ORDER BY clause, then we need to sort the results
7502   ** and send them to the callback one by one.
7503   */
7504   if( sSort.pOrderBy ){
7505     explainTempTable(pParse,
7506                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7507     assert( p->pEList==pEList );
7508     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7509   }
7510 
7511   /* Jump here to skip this query
7512   */
7513   sqlite3VdbeResolveLabel(v, iEnd);
7514 
7515   /* The SELECT has been coded. If there is an error in the Parse structure,
7516   ** set the return code to 1. Otherwise 0. */
7517   rc = (pParse->nErr>0);
7518 
7519   /* Control jumps to here if an error is encountered above, or upon
7520   ** successful coding of the SELECT.
7521   */
7522 select_end:
7523   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7524   assert( db->mallocFailed==0 || pParse->nErr!=0 );
7525   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7526 #ifdef SQLITE_DEBUG
7527   if( pAggInfo && !db->mallocFailed ){
7528     for(i=0; i<pAggInfo->nColumn; i++){
7529       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7530       assert( pExpr!=0 );
7531       assert( pExpr->pAggInfo==pAggInfo );
7532       assert( pExpr->iAgg==i );
7533     }
7534     for(i=0; i<pAggInfo->nFunc; i++){
7535       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7536       assert( pExpr!=0 );
7537       assert( pExpr->pAggInfo==pAggInfo );
7538       assert( pExpr->iAgg==i );
7539     }
7540   }
7541 #endif
7542 
7543 #if TREETRACE_ENABLED
7544   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7545   if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7546     sqlite3TreeViewSelect(0, p, 0);
7547   }
7548 #endif
7549   ExplainQueryPlanPop(pParse);
7550   return rc;
7551 }
7552