xref: /sqlite-3.40.0/src/select.c (revision 8f0c712a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
72   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101       sqlite3WindowListDelete(db, p->pWinDefn);
102     }
103 #endif
104     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105     if( bFree ) sqlite3DbFreeNN(db, p);
106     p = pPrior;
107     bFree = 1;
108   }
109 }
110 
111 /*
112 ** Initialize a SelectDest structure.
113 */
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115   pDest->eDest = (u8)eDest;
116   pDest->iSDParm = iParm;
117   pDest->zAffSdst = 0;
118   pDest->iSdst = 0;
119   pDest->nSdst = 0;
120 }
121 
122 
123 /*
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
126 */
127 Select *sqlite3SelectNew(
128   Parse *pParse,        /* Parsing context */
129   ExprList *pEList,     /* which columns to include in the result */
130   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
131   Expr *pWhere,         /* the WHERE clause */
132   ExprList *pGroupBy,   /* the GROUP BY clause */
133   Expr *pHaving,        /* the HAVING clause */
134   ExprList *pOrderBy,   /* the ORDER BY clause */
135   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
136   Expr *pLimit          /* LIMIT value.  NULL means not used */
137 ){
138   Select *pNew;
139   Select standin;
140   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141   if( pNew==0 ){
142     assert( pParse->db->mallocFailed );
143     pNew = &standin;
144   }
145   if( pEList==0 ){
146     pEList = sqlite3ExprListAppend(pParse, 0,
147                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
148   }
149   pNew->pEList = pEList;
150   pNew->op = TK_SELECT;
151   pNew->selFlags = selFlags;
152   pNew->iLimit = 0;
153   pNew->iOffset = 0;
154 #if SELECTTRACE_ENABLED
155   pNew->zSelName[0] = 0;
156 #endif
157   pNew->addrOpenEphm[0] = -1;
158   pNew->addrOpenEphm[1] = -1;
159   pNew->nSelectRow = 0;
160   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
161   pNew->pSrc = pSrc;
162   pNew->pWhere = pWhere;
163   pNew->pGroupBy = pGroupBy;
164   pNew->pHaving = pHaving;
165   pNew->pOrderBy = pOrderBy;
166   pNew->pPrior = 0;
167   pNew->pNext = 0;
168   pNew->pLimit = pLimit;
169   pNew->pWith = 0;
170 #ifndef SQLITE_OMIT_WINDOWFUNC
171   pNew->pWin = 0;
172   pNew->pWinDefn = 0;
173 #endif
174   if( pParse->db->mallocFailed ) {
175     clearSelect(pParse->db, pNew, pNew!=&standin);
176     pNew = 0;
177   }else{
178     assert( pNew->pSrc!=0 || pParse->nErr>0 );
179   }
180   assert( pNew!=&standin );
181   return pNew;
182 }
183 
184 #if SELECTTRACE_ENABLED
185 /*
186 ** Set the name of a Select object
187 */
188 void sqlite3SelectSetName(Select *p, const char *zName){
189   if( p && zName ){
190     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
191   }
192 }
193 #endif
194 
195 
196 /*
197 ** Delete the given Select structure and all of its substructures.
198 */
199 void sqlite3SelectDelete(sqlite3 *db, Select *p){
200   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
201 }
202 
203 /*
204 ** Return a pointer to the right-most SELECT statement in a compound.
205 */
206 static Select *findRightmost(Select *p){
207   while( p->pNext ) p = p->pNext;
208   return p;
209 }
210 
211 /*
212 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
213 ** type of join.  Return an integer constant that expresses that type
214 ** in terms of the following bit values:
215 **
216 **     JT_INNER
217 **     JT_CROSS
218 **     JT_OUTER
219 **     JT_NATURAL
220 **     JT_LEFT
221 **     JT_RIGHT
222 **
223 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
224 **
225 ** If an illegal or unsupported join type is seen, then still return
226 ** a join type, but put an error in the pParse structure.
227 */
228 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
229   int jointype = 0;
230   Token *apAll[3];
231   Token *p;
232                              /*   0123456789 123456789 123456789 123 */
233   static const char zKeyText[] = "naturaleftouterightfullinnercross";
234   static const struct {
235     u8 i;        /* Beginning of keyword text in zKeyText[] */
236     u8 nChar;    /* Length of the keyword in characters */
237     u8 code;     /* Join type mask */
238   } aKeyword[] = {
239     /* natural */ { 0,  7, JT_NATURAL                },
240     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
241     /* outer   */ { 10, 5, JT_OUTER                  },
242     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
243     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
244     /* inner   */ { 23, 5, JT_INNER                  },
245     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
246   };
247   int i, j;
248   apAll[0] = pA;
249   apAll[1] = pB;
250   apAll[2] = pC;
251   for(i=0; i<3 && apAll[i]; i++){
252     p = apAll[i];
253     for(j=0; j<ArraySize(aKeyword); j++){
254       if( p->n==aKeyword[j].nChar
255           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
256         jointype |= aKeyword[j].code;
257         break;
258       }
259     }
260     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
261     if( j>=ArraySize(aKeyword) ){
262       jointype |= JT_ERROR;
263       break;
264     }
265   }
266   if(
267      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
268      (jointype & JT_ERROR)!=0
269   ){
270     const char *zSp = " ";
271     assert( pB!=0 );
272     if( pC==0 ){ zSp++; }
273     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
274        "%T %T%s%T", pA, pB, zSp, pC);
275     jointype = JT_INNER;
276   }else if( (jointype & JT_OUTER)!=0
277          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
278     sqlite3ErrorMsg(pParse,
279       "RIGHT and FULL OUTER JOINs are not currently supported");
280     jointype = JT_INNER;
281   }
282   return jointype;
283 }
284 
285 /*
286 ** Return the index of a column in a table.  Return -1 if the column
287 ** is not contained in the table.
288 */
289 static int columnIndex(Table *pTab, const char *zCol){
290   int i;
291   for(i=0; i<pTab->nCol; i++){
292     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
293   }
294   return -1;
295 }
296 
297 /*
298 ** Search the first N tables in pSrc, from left to right, looking for a
299 ** table that has a column named zCol.
300 **
301 ** When found, set *piTab and *piCol to the table index and column index
302 ** of the matching column and return TRUE.
303 **
304 ** If not found, return FALSE.
305 */
306 static int tableAndColumnIndex(
307   SrcList *pSrc,       /* Array of tables to search */
308   int N,               /* Number of tables in pSrc->a[] to search */
309   const char *zCol,    /* Name of the column we are looking for */
310   int *piTab,          /* Write index of pSrc->a[] here */
311   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
312 ){
313   int i;               /* For looping over tables in pSrc */
314   int iCol;            /* Index of column matching zCol */
315 
316   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
317   for(i=0; i<N; i++){
318     iCol = columnIndex(pSrc->a[i].pTab, zCol);
319     if( iCol>=0 ){
320       if( piTab ){
321         *piTab = i;
322         *piCol = iCol;
323       }
324       return 1;
325     }
326   }
327   return 0;
328 }
329 
330 /*
331 ** This function is used to add terms implied by JOIN syntax to the
332 ** WHERE clause expression of a SELECT statement. The new term, which
333 ** is ANDed with the existing WHERE clause, is of the form:
334 **
335 **    (tab1.col1 = tab2.col2)
336 **
337 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
338 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
339 ** column iColRight of tab2.
340 */
341 static void addWhereTerm(
342   Parse *pParse,                  /* Parsing context */
343   SrcList *pSrc,                  /* List of tables in FROM clause */
344   int iLeft,                      /* Index of first table to join in pSrc */
345   int iColLeft,                   /* Index of column in first table */
346   int iRight,                     /* Index of second table in pSrc */
347   int iColRight,                  /* Index of column in second table */
348   int isOuterJoin,                /* True if this is an OUTER join */
349   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
350 ){
351   sqlite3 *db = pParse->db;
352   Expr *pE1;
353   Expr *pE2;
354   Expr *pEq;
355 
356   assert( iLeft<iRight );
357   assert( pSrc->nSrc>iRight );
358   assert( pSrc->a[iLeft].pTab );
359   assert( pSrc->a[iRight].pTab );
360 
361   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
362   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
363 
364   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
365   if( pEq && isOuterJoin ){
366     ExprSetProperty(pEq, EP_FromJoin);
367     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
368     ExprSetVVAProperty(pEq, EP_NoReduce);
369     pEq->iRightJoinTable = (i16)pE2->iTable;
370   }
371   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
372 }
373 
374 /*
375 ** Set the EP_FromJoin property on all terms of the given expression.
376 ** And set the Expr.iRightJoinTable to iTable for every term in the
377 ** expression.
378 **
379 ** The EP_FromJoin property is used on terms of an expression to tell
380 ** the LEFT OUTER JOIN processing logic that this term is part of the
381 ** join restriction specified in the ON or USING clause and not a part
382 ** of the more general WHERE clause.  These terms are moved over to the
383 ** WHERE clause during join processing but we need to remember that they
384 ** originated in the ON or USING clause.
385 **
386 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
387 ** expression depends on table iRightJoinTable even if that table is not
388 ** explicitly mentioned in the expression.  That information is needed
389 ** for cases like this:
390 **
391 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
392 **
393 ** The where clause needs to defer the handling of the t1.x=5
394 ** term until after the t2 loop of the join.  In that way, a
395 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
396 ** defer the handling of t1.x=5, it will be processed immediately
397 ** after the t1 loop and rows with t1.x!=5 will never appear in
398 ** the output, which is incorrect.
399 */
400 static void setJoinExpr(Expr *p, int iTable){
401   while( p ){
402     ExprSetProperty(p, EP_FromJoin);
403     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
404     ExprSetVVAProperty(p, EP_NoReduce);
405     p->iRightJoinTable = (i16)iTable;
406     if( p->op==TK_FUNCTION && p->x.pList ){
407       int i;
408       for(i=0; i<p->x.pList->nExpr; i++){
409         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
410       }
411     }
412     setJoinExpr(p->pLeft, iTable);
413     p = p->pRight;
414   }
415 }
416 
417 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
418 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
419 ** an ordinary term that omits the EP_FromJoin mark.
420 **
421 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
422 */
423 static void unsetJoinExpr(Expr *p, int iTable){
424   while( p ){
425     if( ExprHasProperty(p, EP_FromJoin)
426      && (iTable<0 || p->iRightJoinTable==iTable) ){
427       ExprClearProperty(p, EP_FromJoin);
428     }
429     if( p->op==TK_FUNCTION && p->x.pList ){
430       int i;
431       for(i=0; i<p->x.pList->nExpr; i++){
432         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
433       }
434     }
435     unsetJoinExpr(p->pLeft, iTable);
436     p = p->pRight;
437   }
438 }
439 
440 /*
441 ** This routine processes the join information for a SELECT statement.
442 ** ON and USING clauses are converted into extra terms of the WHERE clause.
443 ** NATURAL joins also create extra WHERE clause terms.
444 **
445 ** The terms of a FROM clause are contained in the Select.pSrc structure.
446 ** The left most table is the first entry in Select.pSrc.  The right-most
447 ** table is the last entry.  The join operator is held in the entry to
448 ** the left.  Thus entry 0 contains the join operator for the join between
449 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
450 ** also attached to the left entry.
451 **
452 ** This routine returns the number of errors encountered.
453 */
454 static int sqliteProcessJoin(Parse *pParse, Select *p){
455   SrcList *pSrc;                  /* All tables in the FROM clause */
456   int i, j;                       /* Loop counters */
457   struct SrcList_item *pLeft;     /* Left table being joined */
458   struct SrcList_item *pRight;    /* Right table being joined */
459 
460   pSrc = p->pSrc;
461   pLeft = &pSrc->a[0];
462   pRight = &pLeft[1];
463   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
464     Table *pRightTab = pRight->pTab;
465     int isOuter;
466 
467     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
468     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
469 
470     /* When the NATURAL keyword is present, add WHERE clause terms for
471     ** every column that the two tables have in common.
472     */
473     if( pRight->fg.jointype & JT_NATURAL ){
474       if( pRight->pOn || pRight->pUsing ){
475         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
476            "an ON or USING clause", 0);
477         return 1;
478       }
479       for(j=0; j<pRightTab->nCol; j++){
480         char *zName;   /* Name of column in the right table */
481         int iLeft;     /* Matching left table */
482         int iLeftCol;  /* Matching column in the left table */
483 
484         zName = pRightTab->aCol[j].zName;
485         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
486           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
487                        isOuter, &p->pWhere);
488         }
489       }
490     }
491 
492     /* Disallow both ON and USING clauses in the same join
493     */
494     if( pRight->pOn && pRight->pUsing ){
495       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
496         "clauses in the same join");
497       return 1;
498     }
499 
500     /* Add the ON clause to the end of the WHERE clause, connected by
501     ** an AND operator.
502     */
503     if( pRight->pOn ){
504       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
505       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
506       pRight->pOn = 0;
507     }
508 
509     /* Create extra terms on the WHERE clause for each column named
510     ** in the USING clause.  Example: If the two tables to be joined are
511     ** A and B and the USING clause names X, Y, and Z, then add this
512     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
513     ** Report an error if any column mentioned in the USING clause is
514     ** not contained in both tables to be joined.
515     */
516     if( pRight->pUsing ){
517       IdList *pList = pRight->pUsing;
518       for(j=0; j<pList->nId; j++){
519         char *zName;     /* Name of the term in the USING clause */
520         int iLeft;       /* Table on the left with matching column name */
521         int iLeftCol;    /* Column number of matching column on the left */
522         int iRightCol;   /* Column number of matching column on the right */
523 
524         zName = pList->a[j].zName;
525         iRightCol = columnIndex(pRightTab, zName);
526         if( iRightCol<0
527          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
528         ){
529           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
530             "not present in both tables", zName);
531           return 1;
532         }
533         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
534                      isOuter, &p->pWhere);
535       }
536     }
537   }
538   return 0;
539 }
540 
541 /*
542 ** An instance of this object holds information (beyond pParse and pSelect)
543 ** needed to load the next result row that is to be added to the sorter.
544 */
545 typedef struct RowLoadInfo RowLoadInfo;
546 struct RowLoadInfo {
547   int regResult;               /* Store results in array of registers here */
548   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
550   ExprList *pExtra;            /* Extra columns needed by sorter refs */
551   int regExtraResult;          /* Where to load the extra columns */
552 #endif
553 };
554 
555 /*
556 ** This routine does the work of loading query data into an array of
557 ** registers so that it can be added to the sorter.
558 */
559 static void innerLoopLoadRow(
560   Parse *pParse,             /* Statement under construction */
561   Select *pSelect,           /* The query being coded */
562   RowLoadInfo *pInfo         /* Info needed to complete the row load */
563 ){
564   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
565                           0, pInfo->ecelFlags);
566 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
567   if( pInfo->pExtra ){
568     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
569     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
570   }
571 #endif
572 }
573 
574 /*
575 ** Code the OP_MakeRecord instruction that generates the entry to be
576 ** added into the sorter.
577 **
578 ** Return the register in which the result is stored.
579 */
580 static int makeSorterRecord(
581   Parse *pParse,
582   SortCtx *pSort,
583   Select *pSelect,
584   int regBase,
585   int nBase
586 ){
587   int nOBSat = pSort->nOBSat;
588   Vdbe *v = pParse->pVdbe;
589   int regOut = ++pParse->nMem;
590   if( pSort->pDeferredRowLoad ){
591     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
592   }
593   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
594   return regOut;
595 }
596 
597 /*
598 ** Generate code that will push the record in registers regData
599 ** through regData+nData-1 onto the sorter.
600 */
601 static void pushOntoSorter(
602   Parse *pParse,         /* Parser context */
603   SortCtx *pSort,        /* Information about the ORDER BY clause */
604   Select *pSelect,       /* The whole SELECT statement */
605   int regData,           /* First register holding data to be sorted */
606   int regOrigData,       /* First register holding data before packing */
607   int nData,             /* Number of elements in the regData data array */
608   int nPrefixReg         /* No. of reg prior to regData available for use */
609 ){
610   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
611   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
612   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
613   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
614   int regBase;                                     /* Regs for sorter record */
615   int regRecord = 0;                               /* Assembled sorter record */
616   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
617   int op;                            /* Opcode to add sorter record to sorter */
618   int iLimit;                        /* LIMIT counter */
619   int iSkip = 0;                     /* End of the sorter insert loop */
620 
621   assert( bSeq==0 || bSeq==1 );
622 
623   /* Three cases:
624   **   (1) The data to be sorted has already been packed into a Record
625   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
626   **       will be completely unrelated to regOrigData.
627   **   (2) All output columns are included in the sort record.  In that
628   **       case regData==regOrigData.
629   **   (3) Some output columns are omitted from the sort record due to
630   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
631   **       SQLITE_ECEL_OMITREF optimization, or due to the
632   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
633   **       regOrigData is 0 to prevent this routine from trying to copy
634   **       values that might not yet exist.
635   */
636   assert( nData==1 || regData==regOrigData || regOrigData==0 );
637 
638   if( nPrefixReg ){
639     assert( nPrefixReg==nExpr+bSeq );
640     regBase = regData - nPrefixReg;
641   }else{
642     regBase = pParse->nMem + 1;
643     pParse->nMem += nBase;
644   }
645   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
646   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
647   pSort->labelDone = sqlite3VdbeMakeLabel(v);
648   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
649                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
650   if( bSeq ){
651     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
652   }
653   if( nPrefixReg==0 && nData>0 ){
654     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
655   }
656   if( nOBSat>0 ){
657     int regPrevKey;   /* The first nOBSat columns of the previous row */
658     int addrFirst;    /* Address of the OP_IfNot opcode */
659     int addrJmp;      /* Address of the OP_Jump opcode */
660     VdbeOp *pOp;      /* Opcode that opens the sorter */
661     int nKey;         /* Number of sorting key columns, including OP_Sequence */
662     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
663 
664     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
665     regPrevKey = pParse->nMem+1;
666     pParse->nMem += pSort->nOBSat;
667     nKey = nExpr - pSort->nOBSat + bSeq;
668     if( bSeq ){
669       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
670     }else{
671       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
672     }
673     VdbeCoverage(v);
674     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
675     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
676     if( pParse->db->mallocFailed ) return;
677     pOp->p2 = nKey + nData;
678     pKI = pOp->p4.pKeyInfo;
679     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
680     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
681     testcase( pKI->nAllField > pKI->nKeyField+2 );
682     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
683                                            pKI->nAllField-pKI->nKeyField-1);
684     addrJmp = sqlite3VdbeCurrentAddr(v);
685     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
686     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
687     pSort->regReturn = ++pParse->nMem;
688     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
689     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
690     if( iLimit ){
691       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
692       VdbeCoverage(v);
693     }
694     sqlite3VdbeJumpHere(v, addrFirst);
695     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
696     sqlite3VdbeJumpHere(v, addrJmp);
697   }
698   if( iLimit ){
699     /* At this point the values for the new sorter entry are stored
700     ** in an array of registers. They need to be composed into a record
701     ** and inserted into the sorter if either (a) there are currently
702     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
703     ** the largest record currently in the sorter. If (b) is true and there
704     ** are already LIMIT+OFFSET items in the sorter, delete the largest
705     ** entry before inserting the new one. This way there are never more
706     ** than LIMIT+OFFSET items in the sorter.
707     **
708     ** If the new record does not need to be inserted into the sorter,
709     ** jump to the next iteration of the loop. Or, if the
710     ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
711     ** loop delivers items in sorted order, jump to the next iteration
712     ** of the outer loop.
713     */
714     int iCsr = pSort->iECursor;
715     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
716     VdbeCoverage(v);
717     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
718     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
719                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
720     VdbeCoverage(v);
721     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
722   }
723   if( regRecord==0 ){
724     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
725   }
726   if( pSort->sortFlags & SORTFLAG_UseSorter ){
727     op = OP_SorterInsert;
728   }else{
729     op = OP_IdxInsert;
730   }
731   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
732                        regBase+nOBSat, nBase-nOBSat);
733   if( iSkip ){
734     assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
735     sqlite3VdbeChangeP2(v, iSkip,
736          sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
737   }
738 }
739 
740 /*
741 ** Add code to implement the OFFSET
742 */
743 static void codeOffset(
744   Vdbe *v,          /* Generate code into this VM */
745   int iOffset,      /* Register holding the offset counter */
746   int iContinue     /* Jump here to skip the current record */
747 ){
748   if( iOffset>0 ){
749     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
750     VdbeComment((v, "OFFSET"));
751   }
752 }
753 
754 /*
755 ** Add code that will check to make sure the N registers starting at iMem
756 ** form a distinct entry.  iTab is a sorting index that holds previously
757 ** seen combinations of the N values.  A new entry is made in iTab
758 ** if the current N values are new.
759 **
760 ** A jump to addrRepeat is made and the N+1 values are popped from the
761 ** stack if the top N elements are not distinct.
762 */
763 static void codeDistinct(
764   Parse *pParse,     /* Parsing and code generating context */
765   int iTab,          /* A sorting index used to test for distinctness */
766   int addrRepeat,    /* Jump to here if not distinct */
767   int N,             /* Number of elements */
768   int iMem           /* First element */
769 ){
770   Vdbe *v;
771   int r1;
772 
773   v = pParse->pVdbe;
774   r1 = sqlite3GetTempReg(pParse);
775   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
776   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
777   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
778   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
779   sqlite3ReleaseTempReg(pParse, r1);
780 }
781 
782 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
783 /*
784 ** This function is called as part of inner-loop generation for a SELECT
785 ** statement with an ORDER BY that is not optimized by an index. It
786 ** determines the expressions, if any, that the sorter-reference
787 ** optimization should be used for. The sorter-reference optimization
788 ** is used for SELECT queries like:
789 **
790 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
791 **
792 ** If the optimization is used for expression "bigblob", then instead of
793 ** storing values read from that column in the sorter records, the PK of
794 ** the row from table t1 is stored instead. Then, as records are extracted from
795 ** the sorter to return to the user, the required value of bigblob is
796 ** retrieved directly from table t1. If the values are very large, this
797 ** can be more efficient than storing them directly in the sorter records.
798 **
799 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
800 ** for which the sorter-reference optimization should be enabled.
801 ** Additionally, the pSort->aDefer[] array is populated with entries
802 ** for all cursors required to evaluate all selected expressions. Finally.
803 ** output variable (*ppExtra) is set to an expression list containing
804 ** expressions for all extra PK values that should be stored in the
805 ** sorter records.
806 */
807 static void selectExprDefer(
808   Parse *pParse,                  /* Leave any error here */
809   SortCtx *pSort,                 /* Sorter context */
810   ExprList *pEList,               /* Expressions destined for sorter */
811   ExprList **ppExtra              /* Expressions to append to sorter record */
812 ){
813   int i;
814   int nDefer = 0;
815   ExprList *pExtra = 0;
816   for(i=0; i<pEList->nExpr; i++){
817     struct ExprList_item *pItem = &pEList->a[i];
818     if( pItem->u.x.iOrderByCol==0 ){
819       Expr *pExpr = pItem->pExpr;
820       Table *pTab = pExpr->pTab;
821       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
822        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
823       ){
824         int j;
825         for(j=0; j<nDefer; j++){
826           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
827         }
828         if( j==nDefer ){
829           if( nDefer==ArraySize(pSort->aDefer) ){
830             continue;
831           }else{
832             int nKey = 1;
833             int k;
834             Index *pPk = 0;
835             if( !HasRowid(pTab) ){
836               pPk = sqlite3PrimaryKeyIndex(pTab);
837               nKey = pPk->nKeyCol;
838             }
839             for(k=0; k<nKey; k++){
840               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
841               if( pNew ){
842                 pNew->iTable = pExpr->iTable;
843                 pNew->pTab = pExpr->pTab;
844                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
845                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
846               }
847             }
848             pSort->aDefer[nDefer].pTab = pExpr->pTab;
849             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
850             pSort->aDefer[nDefer].nKey = nKey;
851             nDefer++;
852           }
853         }
854         pItem->bSorterRef = 1;
855       }
856     }
857   }
858   pSort->nDefer = (u8)nDefer;
859   *ppExtra = pExtra;
860 }
861 #endif
862 
863 /*
864 ** This routine generates the code for the inside of the inner loop
865 ** of a SELECT.
866 **
867 ** If srcTab is negative, then the p->pEList expressions
868 ** are evaluated in order to get the data for this row.  If srcTab is
869 ** zero or more, then data is pulled from srcTab and p->pEList is used only
870 ** to get the number of columns and the collation sequence for each column.
871 */
872 static void selectInnerLoop(
873   Parse *pParse,          /* The parser context */
874   Select *p,              /* The complete select statement being coded */
875   int srcTab,             /* Pull data from this table if non-negative */
876   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
877   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
878   SelectDest *pDest,      /* How to dispose of the results */
879   int iContinue,          /* Jump here to continue with next row */
880   int iBreak              /* Jump here to break out of the inner loop */
881 ){
882   Vdbe *v = pParse->pVdbe;
883   int i;
884   int hasDistinct;            /* True if the DISTINCT keyword is present */
885   int eDest = pDest->eDest;   /* How to dispose of results */
886   int iParm = pDest->iSDParm; /* First argument to disposal method */
887   int nResultCol;             /* Number of result columns */
888   int nPrefixReg = 0;         /* Number of extra registers before regResult */
889   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
890 
891   /* Usually, regResult is the first cell in an array of memory cells
892   ** containing the current result row. In this case regOrig is set to the
893   ** same value. However, if the results are being sent to the sorter, the
894   ** values for any expressions that are also part of the sort-key are omitted
895   ** from this array. In this case regOrig is set to zero.  */
896   int regResult;              /* Start of memory holding current results */
897   int regOrig;                /* Start of memory holding full result (or 0) */
898 
899   assert( v );
900   assert( p->pEList!=0 );
901   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
902   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
903   if( pSort==0 && !hasDistinct ){
904     assert( iContinue!=0 );
905     codeOffset(v, p->iOffset, iContinue);
906   }
907 
908   /* Pull the requested columns.
909   */
910   nResultCol = p->pEList->nExpr;
911 
912   if( pDest->iSdst==0 ){
913     if( pSort ){
914       nPrefixReg = pSort->pOrderBy->nExpr;
915       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
916       pParse->nMem += nPrefixReg;
917     }
918     pDest->iSdst = pParse->nMem+1;
919     pParse->nMem += nResultCol;
920   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
921     /* This is an error condition that can result, for example, when a SELECT
922     ** on the right-hand side of an INSERT contains more result columns than
923     ** there are columns in the table on the left.  The error will be caught
924     ** and reported later.  But we need to make sure enough memory is allocated
925     ** to avoid other spurious errors in the meantime. */
926     pParse->nMem += nResultCol;
927   }
928   pDest->nSdst = nResultCol;
929   regOrig = regResult = pDest->iSdst;
930   if( srcTab>=0 ){
931     for(i=0; i<nResultCol; i++){
932       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
933       VdbeComment((v, "%s", p->pEList->a[i].zName));
934     }
935   }else if( eDest!=SRT_Exists ){
936 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
937     ExprList *pExtra = 0;
938 #endif
939     /* If the destination is an EXISTS(...) expression, the actual
940     ** values returned by the SELECT are not required.
941     */
942     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
943     ExprList *pEList;
944     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
945       ecelFlags = SQLITE_ECEL_DUP;
946     }else{
947       ecelFlags = 0;
948     }
949     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
950       /* For each expression in p->pEList that is a copy of an expression in
951       ** the ORDER BY clause (pSort->pOrderBy), set the associated
952       ** iOrderByCol value to one more than the index of the ORDER BY
953       ** expression within the sort-key that pushOntoSorter() will generate.
954       ** This allows the p->pEList field to be omitted from the sorted record,
955       ** saving space and CPU cycles.  */
956       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
957 
958       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
959         int j;
960         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
961           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
962         }
963       }
964 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
965       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
966       if( pExtra && pParse->db->mallocFailed==0 ){
967         /* If there are any extra PK columns to add to the sorter records,
968         ** allocate extra memory cells and adjust the OpenEphemeral
969         ** instruction to account for the larger records. This is only
970         ** required if there are one or more WITHOUT ROWID tables with
971         ** composite primary keys in the SortCtx.aDefer[] array.  */
972         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
973         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
974         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
975         pParse->nMem += pExtra->nExpr;
976       }
977 #endif
978 
979       /* Adjust nResultCol to account for columns that are omitted
980       ** from the sorter by the optimizations in this branch */
981       pEList = p->pEList;
982       for(i=0; i<pEList->nExpr; i++){
983         if( pEList->a[i].u.x.iOrderByCol>0
984 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
985          || pEList->a[i].bSorterRef
986 #endif
987         ){
988           nResultCol--;
989           regOrig = 0;
990         }
991       }
992 
993       testcase( regOrig );
994       testcase( eDest==SRT_Set );
995       testcase( eDest==SRT_Mem );
996       testcase( eDest==SRT_Coroutine );
997       testcase( eDest==SRT_Output );
998       assert( eDest==SRT_Set || eDest==SRT_Mem
999            || eDest==SRT_Coroutine || eDest==SRT_Output );
1000     }
1001     sRowLoadInfo.regResult = regResult;
1002     sRowLoadInfo.ecelFlags = ecelFlags;
1003 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1004     sRowLoadInfo.pExtra = pExtra;
1005     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1006     if( pExtra ) nResultCol += pExtra->nExpr;
1007 #endif
1008     if( p->iLimit
1009      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1010      && nPrefixReg>0
1011     ){
1012       assert( pSort!=0 );
1013       assert( hasDistinct==0 );
1014       pSort->pDeferredRowLoad = &sRowLoadInfo;
1015       regOrig = 0;
1016     }else{
1017       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1018     }
1019   }
1020 
1021   /* If the DISTINCT keyword was present on the SELECT statement
1022   ** and this row has been seen before, then do not make this row
1023   ** part of the result.
1024   */
1025   if( hasDistinct ){
1026     switch( pDistinct->eTnctType ){
1027       case WHERE_DISTINCT_ORDERED: {
1028         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1029         int iJump;              /* Jump destination */
1030         int regPrev;            /* Previous row content */
1031 
1032         /* Allocate space for the previous row */
1033         regPrev = pParse->nMem+1;
1034         pParse->nMem += nResultCol;
1035 
1036         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1037         ** sets the MEM_Cleared bit on the first register of the
1038         ** previous value.  This will cause the OP_Ne below to always
1039         ** fail on the first iteration of the loop even if the first
1040         ** row is all NULLs.
1041         */
1042         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1043         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1044         pOp->opcode = OP_Null;
1045         pOp->p1 = 1;
1046         pOp->p2 = regPrev;
1047 
1048         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1049         for(i=0; i<nResultCol; i++){
1050           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1051           if( i<nResultCol-1 ){
1052             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1053             VdbeCoverage(v);
1054           }else{
1055             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1056             VdbeCoverage(v);
1057            }
1058           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1059           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1060         }
1061         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1062         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1063         break;
1064       }
1065 
1066       case WHERE_DISTINCT_UNIQUE: {
1067         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1068         break;
1069       }
1070 
1071       default: {
1072         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1073         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1074                      regResult);
1075         break;
1076       }
1077     }
1078     if( pSort==0 ){
1079       codeOffset(v, p->iOffset, iContinue);
1080     }
1081   }
1082 
1083   switch( eDest ){
1084     /* In this mode, write each query result to the key of the temporary
1085     ** table iParm.
1086     */
1087 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1088     case SRT_Union: {
1089       int r1;
1090       r1 = sqlite3GetTempReg(pParse);
1091       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1092       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1093       sqlite3ReleaseTempReg(pParse, r1);
1094       break;
1095     }
1096 
1097     /* Construct a record from the query result, but instead of
1098     ** saving that record, use it as a key to delete elements from
1099     ** the temporary table iParm.
1100     */
1101     case SRT_Except: {
1102       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1103       break;
1104     }
1105 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1106 
1107     /* Store the result as data using a unique key.
1108     */
1109     case SRT_Fifo:
1110     case SRT_DistFifo:
1111     case SRT_Table:
1112     case SRT_EphemTab: {
1113       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1114       testcase( eDest==SRT_Table );
1115       testcase( eDest==SRT_EphemTab );
1116       testcase( eDest==SRT_Fifo );
1117       testcase( eDest==SRT_DistFifo );
1118       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1119 #ifndef SQLITE_OMIT_CTE
1120       if( eDest==SRT_DistFifo ){
1121         /* If the destination is DistFifo, then cursor (iParm+1) is open
1122         ** on an ephemeral index. If the current row is already present
1123         ** in the index, do not write it to the output. If not, add the
1124         ** current row to the index and proceed with writing it to the
1125         ** output table as well.  */
1126         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1127         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1128         VdbeCoverage(v);
1129         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1130         assert( pSort==0 );
1131       }
1132 #endif
1133       if( pSort ){
1134         assert( regResult==regOrig );
1135         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1136       }else{
1137         int r2 = sqlite3GetTempReg(pParse);
1138         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1139         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1140         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1141         sqlite3ReleaseTempReg(pParse, r2);
1142       }
1143       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1144       break;
1145     }
1146 
1147 #ifndef SQLITE_OMIT_SUBQUERY
1148     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1149     ** then there should be a single item on the stack.  Write this
1150     ** item into the set table with bogus data.
1151     */
1152     case SRT_Set: {
1153       if( pSort ){
1154         /* At first glance you would think we could optimize out the
1155         ** ORDER BY in this case since the order of entries in the set
1156         ** does not matter.  But there might be a LIMIT clause, in which
1157         ** case the order does matter */
1158         pushOntoSorter(
1159             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1160       }else{
1161         int r1 = sqlite3GetTempReg(pParse);
1162         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1163         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1164             r1, pDest->zAffSdst, nResultCol);
1165         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1166         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1167         sqlite3ReleaseTempReg(pParse, r1);
1168       }
1169       break;
1170     }
1171 
1172     /* If any row exist in the result set, record that fact and abort.
1173     */
1174     case SRT_Exists: {
1175       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1176       /* The LIMIT clause will terminate the loop for us */
1177       break;
1178     }
1179 
1180     /* If this is a scalar select that is part of an expression, then
1181     ** store the results in the appropriate memory cell or array of
1182     ** memory cells and break out of the scan loop.
1183     */
1184     case SRT_Mem: {
1185       if( pSort ){
1186         assert( nResultCol<=pDest->nSdst );
1187         pushOntoSorter(
1188             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1189       }else{
1190         assert( nResultCol==pDest->nSdst );
1191         assert( regResult==iParm );
1192         /* The LIMIT clause will jump out of the loop for us */
1193       }
1194       break;
1195     }
1196 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1197 
1198     case SRT_Coroutine:       /* Send data to a co-routine */
1199     case SRT_Output: {        /* Return the results */
1200       testcase( eDest==SRT_Coroutine );
1201       testcase( eDest==SRT_Output );
1202       if( pSort ){
1203         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1204                        nPrefixReg);
1205       }else if( eDest==SRT_Coroutine ){
1206         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1207       }else{
1208         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1209         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
1210       }
1211       break;
1212     }
1213 
1214 #ifndef SQLITE_OMIT_CTE
1215     /* Write the results into a priority queue that is order according to
1216     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1217     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1218     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1219     ** final OP_Sequence column.  The last column is the record as a blob.
1220     */
1221     case SRT_DistQueue:
1222     case SRT_Queue: {
1223       int nKey;
1224       int r1, r2, r3;
1225       int addrTest = 0;
1226       ExprList *pSO;
1227       pSO = pDest->pOrderBy;
1228       assert( pSO );
1229       nKey = pSO->nExpr;
1230       r1 = sqlite3GetTempReg(pParse);
1231       r2 = sqlite3GetTempRange(pParse, nKey+2);
1232       r3 = r2+nKey+1;
1233       if( eDest==SRT_DistQueue ){
1234         /* If the destination is DistQueue, then cursor (iParm+1) is open
1235         ** on a second ephemeral index that holds all values every previously
1236         ** added to the queue. */
1237         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1238                                         regResult, nResultCol);
1239         VdbeCoverage(v);
1240       }
1241       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1242       if( eDest==SRT_DistQueue ){
1243         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1244         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1245       }
1246       for(i=0; i<nKey; i++){
1247         sqlite3VdbeAddOp2(v, OP_SCopy,
1248                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1249                           r2+i);
1250       }
1251       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1252       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1253       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1254       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1255       sqlite3ReleaseTempReg(pParse, r1);
1256       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1257       break;
1258     }
1259 #endif /* SQLITE_OMIT_CTE */
1260 
1261 
1262 
1263 #if !defined(SQLITE_OMIT_TRIGGER)
1264     /* Discard the results.  This is used for SELECT statements inside
1265     ** the body of a TRIGGER.  The purpose of such selects is to call
1266     ** user-defined functions that have side effects.  We do not care
1267     ** about the actual results of the select.
1268     */
1269     default: {
1270       assert( eDest==SRT_Discard );
1271       break;
1272     }
1273 #endif
1274   }
1275 
1276   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1277   ** there is a sorter, in which case the sorter has already limited
1278   ** the output for us.
1279   */
1280   if( pSort==0 && p->iLimit ){
1281     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1282   }
1283 }
1284 
1285 /*
1286 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1287 ** X extra columns.
1288 */
1289 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1290   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1291   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1292   if( p ){
1293     p->aSortOrder = (u8*)&p->aColl[N+X];
1294     p->nKeyField = (u16)N;
1295     p->nAllField = (u16)(N+X);
1296     p->enc = ENC(db);
1297     p->db = db;
1298     p->nRef = 1;
1299     memset(&p[1], 0, nExtra);
1300   }else{
1301     sqlite3OomFault(db);
1302   }
1303   return p;
1304 }
1305 
1306 /*
1307 ** Deallocate a KeyInfo object
1308 */
1309 void sqlite3KeyInfoUnref(KeyInfo *p){
1310   if( p ){
1311     assert( p->nRef>0 );
1312     p->nRef--;
1313     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1314   }
1315 }
1316 
1317 /*
1318 ** Make a new pointer to a KeyInfo object
1319 */
1320 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1321   if( p ){
1322     assert( p->nRef>0 );
1323     p->nRef++;
1324   }
1325   return p;
1326 }
1327 
1328 #ifdef SQLITE_DEBUG
1329 /*
1330 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1331 ** can only be changed if this is just a single reference to the object.
1332 **
1333 ** This routine is used only inside of assert() statements.
1334 */
1335 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1336 #endif /* SQLITE_DEBUG */
1337 
1338 /*
1339 ** Given an expression list, generate a KeyInfo structure that records
1340 ** the collating sequence for each expression in that expression list.
1341 **
1342 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1343 ** KeyInfo structure is appropriate for initializing a virtual index to
1344 ** implement that clause.  If the ExprList is the result set of a SELECT
1345 ** then the KeyInfo structure is appropriate for initializing a virtual
1346 ** index to implement a DISTINCT test.
1347 **
1348 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1349 ** function is responsible for seeing that this structure is eventually
1350 ** freed.
1351 */
1352 KeyInfo *sqlite3KeyInfoFromExprList(
1353   Parse *pParse,       /* Parsing context */
1354   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1355   int iStart,          /* Begin with this column of pList */
1356   int nExtra           /* Add this many extra columns to the end */
1357 ){
1358   int nExpr;
1359   KeyInfo *pInfo;
1360   struct ExprList_item *pItem;
1361   sqlite3 *db = pParse->db;
1362   int i;
1363 
1364   nExpr = pList->nExpr;
1365   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1366   if( pInfo ){
1367     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1368     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1369       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1370       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1371     }
1372   }
1373   return pInfo;
1374 }
1375 
1376 /*
1377 ** Name of the connection operator, used for error messages.
1378 */
1379 static const char *selectOpName(int id){
1380   char *z;
1381   switch( id ){
1382     case TK_ALL:       z = "UNION ALL";   break;
1383     case TK_INTERSECT: z = "INTERSECT";   break;
1384     case TK_EXCEPT:    z = "EXCEPT";      break;
1385     default:           z = "UNION";       break;
1386   }
1387   return z;
1388 }
1389 
1390 #ifndef SQLITE_OMIT_EXPLAIN
1391 /*
1392 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1393 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1394 ** where the caption is of the form:
1395 **
1396 **   "USE TEMP B-TREE FOR xxx"
1397 **
1398 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1399 ** is determined by the zUsage argument.
1400 */
1401 static void explainTempTable(Parse *pParse, const char *zUsage){
1402   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1403 }
1404 
1405 /*
1406 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1407 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1408 ** in sqlite3Select() to assign values to structure member variables that
1409 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1410 ** code with #ifndef directives.
1411 */
1412 # define explainSetInteger(a, b) a = b
1413 
1414 #else
1415 /* No-op versions of the explainXXX() functions and macros. */
1416 # define explainTempTable(y,z)
1417 # define explainSetInteger(y,z)
1418 #endif
1419 
1420 
1421 /*
1422 ** If the inner loop was generated using a non-null pOrderBy argument,
1423 ** then the results were placed in a sorter.  After the loop is terminated
1424 ** we need to run the sorter and output the results.  The following
1425 ** routine generates the code needed to do that.
1426 */
1427 static void generateSortTail(
1428   Parse *pParse,    /* Parsing context */
1429   Select *p,        /* The SELECT statement */
1430   SortCtx *pSort,   /* Information on the ORDER BY clause */
1431   int nColumn,      /* Number of columns of data */
1432   SelectDest *pDest /* Write the sorted results here */
1433 ){
1434   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1435   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1436   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1437   int addr;                       /* Top of output loop. Jump for Next. */
1438   int addrOnce = 0;
1439   int iTab;
1440   ExprList *pOrderBy = pSort->pOrderBy;
1441   int eDest = pDest->eDest;
1442   int iParm = pDest->iSDParm;
1443   int regRow;
1444   int regRowid;
1445   int iCol;
1446   int nKey;                       /* Number of key columns in sorter record */
1447   int iSortTab;                   /* Sorter cursor to read from */
1448   int i;
1449   int bSeq;                       /* True if sorter record includes seq. no. */
1450   int nRefKey = 0;
1451   struct ExprList_item *aOutEx = p->pEList->a;
1452 
1453   assert( addrBreak<0 );
1454   if( pSort->labelBkOut ){
1455     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1456     sqlite3VdbeGoto(v, addrBreak);
1457     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1458   }
1459 
1460 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1461   /* Open any cursors needed for sorter-reference expressions */
1462   for(i=0; i<pSort->nDefer; i++){
1463     Table *pTab = pSort->aDefer[i].pTab;
1464     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1465     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1466     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1467   }
1468 #endif
1469 
1470   iTab = pSort->iECursor;
1471   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1472     regRowid = 0;
1473     regRow = pDest->iSdst;
1474   }else{
1475     regRowid = sqlite3GetTempReg(pParse);
1476     regRow = sqlite3GetTempRange(pParse, nColumn);
1477   }
1478   nKey = pOrderBy->nExpr - pSort->nOBSat;
1479   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1480     int regSortOut = ++pParse->nMem;
1481     iSortTab = pParse->nTab++;
1482     if( pSort->labelBkOut ){
1483       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1484     }
1485     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1486         nKey+1+nColumn+nRefKey);
1487     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1488     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1489     VdbeCoverage(v);
1490     codeOffset(v, p->iOffset, addrContinue);
1491     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1492     bSeq = 0;
1493   }else{
1494     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1495     codeOffset(v, p->iOffset, addrContinue);
1496     iSortTab = iTab;
1497     bSeq = 1;
1498   }
1499   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1500 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1501     if( aOutEx[i].bSorterRef ) continue;
1502 #endif
1503     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1504   }
1505 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1506   if( pSort->nDefer ){
1507     int iKey = iCol+1;
1508     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1509 
1510     for(i=0; i<pSort->nDefer; i++){
1511       int iCsr = pSort->aDefer[i].iCsr;
1512       Table *pTab = pSort->aDefer[i].pTab;
1513       int nKey = pSort->aDefer[i].nKey;
1514 
1515       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1516       if( HasRowid(pTab) ){
1517         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1518         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1519             sqlite3VdbeCurrentAddr(v)+1, regKey);
1520       }else{
1521         int k;
1522         int iJmp;
1523         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1524         for(k=0; k<nKey; k++){
1525           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1526         }
1527         iJmp = sqlite3VdbeCurrentAddr(v);
1528         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1529         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1530         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1531       }
1532     }
1533     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1534   }
1535 #endif
1536   for(i=nColumn-1; i>=0; i--){
1537 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1538     if( aOutEx[i].bSorterRef ){
1539       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1540     }else
1541 #endif
1542     {
1543       int iRead;
1544       if( aOutEx[i].u.x.iOrderByCol ){
1545         iRead = aOutEx[i].u.x.iOrderByCol-1;
1546       }else{
1547         iRead = iCol--;
1548       }
1549       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1550       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1551     }
1552   }
1553   switch( eDest ){
1554     case SRT_Table:
1555     case SRT_EphemTab: {
1556       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1557       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1558       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1559       break;
1560     }
1561 #ifndef SQLITE_OMIT_SUBQUERY
1562     case SRT_Set: {
1563       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1564       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1565                         pDest->zAffSdst, nColumn);
1566       sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn);
1567       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1568       break;
1569     }
1570     case SRT_Mem: {
1571       /* The LIMIT clause will terminate the loop for us */
1572       break;
1573     }
1574 #endif
1575     default: {
1576       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1577       testcase( eDest==SRT_Output );
1578       testcase( eDest==SRT_Coroutine );
1579       if( eDest==SRT_Output ){
1580         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1581         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1582       }else{
1583         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1584       }
1585       break;
1586     }
1587   }
1588   if( regRowid ){
1589     if( eDest==SRT_Set ){
1590       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1591     }else{
1592       sqlite3ReleaseTempReg(pParse, regRow);
1593     }
1594     sqlite3ReleaseTempReg(pParse, regRowid);
1595   }
1596   /* The bottom of the loop
1597   */
1598   sqlite3VdbeResolveLabel(v, addrContinue);
1599   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1600     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1601   }else{
1602     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1603   }
1604   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1605   sqlite3VdbeResolveLabel(v, addrBreak);
1606 }
1607 
1608 /*
1609 ** Return a pointer to a string containing the 'declaration type' of the
1610 ** expression pExpr. The string may be treated as static by the caller.
1611 **
1612 ** Also try to estimate the size of the returned value and return that
1613 ** result in *pEstWidth.
1614 **
1615 ** The declaration type is the exact datatype definition extracted from the
1616 ** original CREATE TABLE statement if the expression is a column. The
1617 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1618 ** is considered a column can be complex in the presence of subqueries. The
1619 ** result-set expression in all of the following SELECT statements is
1620 ** considered a column by this function.
1621 **
1622 **   SELECT col FROM tbl;
1623 **   SELECT (SELECT col FROM tbl;
1624 **   SELECT (SELECT col FROM tbl);
1625 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1626 **
1627 ** The declaration type for any expression other than a column is NULL.
1628 **
1629 ** This routine has either 3 or 6 parameters depending on whether or not
1630 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1631 */
1632 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1633 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1634 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1635 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1636 #endif
1637 static const char *columnTypeImpl(
1638   NameContext *pNC,
1639 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1640   Expr *pExpr
1641 #else
1642   Expr *pExpr,
1643   const char **pzOrigDb,
1644   const char **pzOrigTab,
1645   const char **pzOrigCol
1646 #endif
1647 ){
1648   char const *zType = 0;
1649   int j;
1650 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1651   char const *zOrigDb = 0;
1652   char const *zOrigTab = 0;
1653   char const *zOrigCol = 0;
1654 #endif
1655 
1656   assert( pExpr!=0 );
1657   assert( pNC->pSrcList!=0 );
1658   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1659                                        ** are processed */
1660   switch( pExpr->op ){
1661     case TK_COLUMN: {
1662       /* The expression is a column. Locate the table the column is being
1663       ** extracted from in NameContext.pSrcList. This table may be real
1664       ** database table or a subquery.
1665       */
1666       Table *pTab = 0;            /* Table structure column is extracted from */
1667       Select *pS = 0;             /* Select the column is extracted from */
1668       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1669       while( pNC && !pTab ){
1670         SrcList *pTabList = pNC->pSrcList;
1671         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1672         if( j<pTabList->nSrc ){
1673           pTab = pTabList->a[j].pTab;
1674           pS = pTabList->a[j].pSelect;
1675         }else{
1676           pNC = pNC->pNext;
1677         }
1678       }
1679 
1680       if( pTab==0 ){
1681         /* At one time, code such as "SELECT new.x" within a trigger would
1682         ** cause this condition to run.  Since then, we have restructured how
1683         ** trigger code is generated and so this condition is no longer
1684         ** possible. However, it can still be true for statements like
1685         ** the following:
1686         **
1687         **   CREATE TABLE t1(col INTEGER);
1688         **   SELECT (SELECT t1.col) FROM FROM t1;
1689         **
1690         ** when columnType() is called on the expression "t1.col" in the
1691         ** sub-select. In this case, set the column type to NULL, even
1692         ** though it should really be "INTEGER".
1693         **
1694         ** This is not a problem, as the column type of "t1.col" is never
1695         ** used. When columnType() is called on the expression
1696         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1697         ** branch below.  */
1698         break;
1699       }
1700 
1701       assert( pTab && pExpr->pTab==pTab );
1702       if( pS ){
1703         /* The "table" is actually a sub-select or a view in the FROM clause
1704         ** of the SELECT statement. Return the declaration type and origin
1705         ** data for the result-set column of the sub-select.
1706         */
1707         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1708           /* If iCol is less than zero, then the expression requests the
1709           ** rowid of the sub-select or view. This expression is legal (see
1710           ** test case misc2.2.2) - it always evaluates to NULL.
1711           */
1712           NameContext sNC;
1713           Expr *p = pS->pEList->a[iCol].pExpr;
1714           sNC.pSrcList = pS->pSrc;
1715           sNC.pNext = pNC;
1716           sNC.pParse = pNC->pParse;
1717           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1718         }
1719       }else{
1720         /* A real table or a CTE table */
1721         assert( !pS );
1722 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1723         if( iCol<0 ) iCol = pTab->iPKey;
1724         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1725         if( iCol<0 ){
1726           zType = "INTEGER";
1727           zOrigCol = "rowid";
1728         }else{
1729           zOrigCol = pTab->aCol[iCol].zName;
1730           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1731         }
1732         zOrigTab = pTab->zName;
1733         if( pNC->pParse && pTab->pSchema ){
1734           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1735           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1736         }
1737 #else
1738         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1739         if( iCol<0 ){
1740           zType = "INTEGER";
1741         }else{
1742           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1743         }
1744 #endif
1745       }
1746       break;
1747     }
1748 #ifndef SQLITE_OMIT_SUBQUERY
1749     case TK_SELECT: {
1750       /* The expression is a sub-select. Return the declaration type and
1751       ** origin info for the single column in the result set of the SELECT
1752       ** statement.
1753       */
1754       NameContext sNC;
1755       Select *pS = pExpr->x.pSelect;
1756       Expr *p = pS->pEList->a[0].pExpr;
1757       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1758       sNC.pSrcList = pS->pSrc;
1759       sNC.pNext = pNC;
1760       sNC.pParse = pNC->pParse;
1761       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1762       break;
1763     }
1764 #endif
1765   }
1766 
1767 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1768   if( pzOrigDb ){
1769     assert( pzOrigTab && pzOrigCol );
1770     *pzOrigDb = zOrigDb;
1771     *pzOrigTab = zOrigTab;
1772     *pzOrigCol = zOrigCol;
1773   }
1774 #endif
1775   return zType;
1776 }
1777 
1778 /*
1779 ** Generate code that will tell the VDBE the declaration types of columns
1780 ** in the result set.
1781 */
1782 static void generateColumnTypes(
1783   Parse *pParse,      /* Parser context */
1784   SrcList *pTabList,  /* List of tables */
1785   ExprList *pEList    /* Expressions defining the result set */
1786 ){
1787 #ifndef SQLITE_OMIT_DECLTYPE
1788   Vdbe *v = pParse->pVdbe;
1789   int i;
1790   NameContext sNC;
1791   sNC.pSrcList = pTabList;
1792   sNC.pParse = pParse;
1793   sNC.pNext = 0;
1794   for(i=0; i<pEList->nExpr; i++){
1795     Expr *p = pEList->a[i].pExpr;
1796     const char *zType;
1797 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1798     const char *zOrigDb = 0;
1799     const char *zOrigTab = 0;
1800     const char *zOrigCol = 0;
1801     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1802 
1803     /* The vdbe must make its own copy of the column-type and other
1804     ** column specific strings, in case the schema is reset before this
1805     ** virtual machine is deleted.
1806     */
1807     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1808     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1809     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1810 #else
1811     zType = columnType(&sNC, p, 0, 0, 0);
1812 #endif
1813     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1814   }
1815 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1816 }
1817 
1818 
1819 /*
1820 ** Compute the column names for a SELECT statement.
1821 **
1822 ** The only guarantee that SQLite makes about column names is that if the
1823 ** column has an AS clause assigning it a name, that will be the name used.
1824 ** That is the only documented guarantee.  However, countless applications
1825 ** developed over the years have made baseless assumptions about column names
1826 ** and will break if those assumptions changes.  Hence, use extreme caution
1827 ** when modifying this routine to avoid breaking legacy.
1828 **
1829 ** See Also: sqlite3ColumnsFromExprList()
1830 **
1831 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1832 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1833 ** applications should operate this way.  Nevertheless, we need to support the
1834 ** other modes for legacy:
1835 **
1836 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1837 **                              originally appears in the SELECT statement.  In
1838 **                              other words, the zSpan of the result expression.
1839 **
1840 **    short=ON, full=OFF:       (This is the default setting).  If the result
1841 **                              refers directly to a table column, then the
1842 **                              result column name is just the table column
1843 **                              name: COLUMN.  Otherwise use zSpan.
1844 **
1845 **    full=ON, short=ANY:       If the result refers directly to a table column,
1846 **                              then the result column name with the table name
1847 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1848 */
1849 static void generateColumnNames(
1850   Parse *pParse,      /* Parser context */
1851   Select *pSelect     /* Generate column names for this SELECT statement */
1852 ){
1853   Vdbe *v = pParse->pVdbe;
1854   int i;
1855   Table *pTab;
1856   SrcList *pTabList;
1857   ExprList *pEList;
1858   sqlite3 *db = pParse->db;
1859   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1860   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1861 
1862 #ifndef SQLITE_OMIT_EXPLAIN
1863   /* If this is an EXPLAIN, skip this step */
1864   if( pParse->explain ){
1865     return;
1866   }
1867 #endif
1868 
1869   if( pParse->colNamesSet ) return;
1870   /* Column names are determined by the left-most term of a compound select */
1871   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1872   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1873   pTabList = pSelect->pSrc;
1874   pEList = pSelect->pEList;
1875   assert( v!=0 );
1876   assert( pTabList!=0 );
1877   pParse->colNamesSet = 1;
1878   fullName = (db->flags & SQLITE_FullColNames)!=0;
1879   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1880   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1881   for(i=0; i<pEList->nExpr; i++){
1882     Expr *p = pEList->a[i].pExpr;
1883 
1884     assert( p!=0 );
1885     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1886     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1887     if( pEList->a[i].zName ){
1888       /* An AS clause always takes first priority */
1889       char *zName = pEList->a[i].zName;
1890       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1891     }else if( srcName && p->op==TK_COLUMN ){
1892       char *zCol;
1893       int iCol = p->iColumn;
1894       pTab = p->pTab;
1895       assert( pTab!=0 );
1896       if( iCol<0 ) iCol = pTab->iPKey;
1897       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1898       if( iCol<0 ){
1899         zCol = "rowid";
1900       }else{
1901         zCol = pTab->aCol[iCol].zName;
1902       }
1903       if( fullName ){
1904         char *zName = 0;
1905         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1906         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1907       }else{
1908         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1909       }
1910     }else{
1911       const char *z = pEList->a[i].zSpan;
1912       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1913       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1914     }
1915   }
1916   generateColumnTypes(pParse, pTabList, pEList);
1917 }
1918 
1919 /*
1920 ** Given an expression list (which is really the list of expressions
1921 ** that form the result set of a SELECT statement) compute appropriate
1922 ** column names for a table that would hold the expression list.
1923 **
1924 ** All column names will be unique.
1925 **
1926 ** Only the column names are computed.  Column.zType, Column.zColl,
1927 ** and other fields of Column are zeroed.
1928 **
1929 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1930 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1931 **
1932 ** The only guarantee that SQLite makes about column names is that if the
1933 ** column has an AS clause assigning it a name, that will be the name used.
1934 ** That is the only documented guarantee.  However, countless applications
1935 ** developed over the years have made baseless assumptions about column names
1936 ** and will break if those assumptions changes.  Hence, use extreme caution
1937 ** when modifying this routine to avoid breaking legacy.
1938 **
1939 ** See Also: generateColumnNames()
1940 */
1941 int sqlite3ColumnsFromExprList(
1942   Parse *pParse,          /* Parsing context */
1943   ExprList *pEList,       /* Expr list from which to derive column names */
1944   i16 *pnCol,             /* Write the number of columns here */
1945   Column **paCol          /* Write the new column list here */
1946 ){
1947   sqlite3 *db = pParse->db;   /* Database connection */
1948   int i, j;                   /* Loop counters */
1949   u32 cnt;                    /* Index added to make the name unique */
1950   Column *aCol, *pCol;        /* For looping over result columns */
1951   int nCol;                   /* Number of columns in the result set */
1952   char *zName;                /* Column name */
1953   int nName;                  /* Size of name in zName[] */
1954   Hash ht;                    /* Hash table of column names */
1955 
1956   sqlite3HashInit(&ht);
1957   if( pEList ){
1958     nCol = pEList->nExpr;
1959     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1960     testcase( aCol==0 );
1961     if( nCol>32767 ) nCol = 32767;
1962   }else{
1963     nCol = 0;
1964     aCol = 0;
1965   }
1966   assert( nCol==(i16)nCol );
1967   *pnCol = nCol;
1968   *paCol = aCol;
1969 
1970   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1971     /* Get an appropriate name for the column
1972     */
1973     if( (zName = pEList->a[i].zName)!=0 ){
1974       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1975     }else{
1976       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1977       while( pColExpr->op==TK_DOT ){
1978         pColExpr = pColExpr->pRight;
1979         assert( pColExpr!=0 );
1980       }
1981       assert( pColExpr->op!=TK_AGG_COLUMN );
1982       if( pColExpr->op==TK_COLUMN ){
1983         /* For columns use the column name name */
1984         int iCol = pColExpr->iColumn;
1985         Table *pTab = pColExpr->pTab;
1986         assert( pTab!=0 );
1987         if( iCol<0 ) iCol = pTab->iPKey;
1988         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1989       }else if( pColExpr->op==TK_ID ){
1990         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1991         zName = pColExpr->u.zToken;
1992       }else{
1993         /* Use the original text of the column expression as its name */
1994         zName = pEList->a[i].zSpan;
1995       }
1996     }
1997     if( zName ){
1998       zName = sqlite3DbStrDup(db, zName);
1999     }else{
2000       zName = sqlite3MPrintf(db,"column%d",i+1);
2001     }
2002 
2003     /* Make sure the column name is unique.  If the name is not unique,
2004     ** append an integer to the name so that it becomes unique.
2005     */
2006     cnt = 0;
2007     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2008       nName = sqlite3Strlen30(zName);
2009       if( nName>0 ){
2010         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2011         if( zName[j]==':' ) nName = j;
2012       }
2013       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2014       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2015     }
2016     pCol->zName = zName;
2017     sqlite3ColumnPropertiesFromName(0, pCol);
2018     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2019       sqlite3OomFault(db);
2020     }
2021   }
2022   sqlite3HashClear(&ht);
2023   if( db->mallocFailed ){
2024     for(j=0; j<i; j++){
2025       sqlite3DbFree(db, aCol[j].zName);
2026     }
2027     sqlite3DbFree(db, aCol);
2028     *paCol = 0;
2029     *pnCol = 0;
2030     return SQLITE_NOMEM_BKPT;
2031   }
2032   return SQLITE_OK;
2033 }
2034 
2035 /*
2036 ** Add type and collation information to a column list based on
2037 ** a SELECT statement.
2038 **
2039 ** The column list presumably came from selectColumnNamesFromExprList().
2040 ** The column list has only names, not types or collations.  This
2041 ** routine goes through and adds the types and collations.
2042 **
2043 ** This routine requires that all identifiers in the SELECT
2044 ** statement be resolved.
2045 */
2046 void sqlite3SelectAddColumnTypeAndCollation(
2047   Parse *pParse,        /* Parsing contexts */
2048   Table *pTab,          /* Add column type information to this table */
2049   Select *pSelect       /* SELECT used to determine types and collations */
2050 ){
2051   sqlite3 *db = pParse->db;
2052   NameContext sNC;
2053   Column *pCol;
2054   CollSeq *pColl;
2055   int i;
2056   Expr *p;
2057   struct ExprList_item *a;
2058 
2059   assert( pSelect!=0 );
2060   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2061   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2062   if( db->mallocFailed ) return;
2063   memset(&sNC, 0, sizeof(sNC));
2064   sNC.pSrcList = pSelect->pSrc;
2065   a = pSelect->pEList->a;
2066   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2067     const char *zType;
2068     int n, m;
2069     p = a[i].pExpr;
2070     zType = columnType(&sNC, p, 0, 0, 0);
2071     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2072     pCol->affinity = sqlite3ExprAffinity(p);
2073     if( zType ){
2074       m = sqlite3Strlen30(zType);
2075       n = sqlite3Strlen30(pCol->zName);
2076       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2077       if( pCol->zName ){
2078         memcpy(&pCol->zName[n+1], zType, m+1);
2079         pCol->colFlags |= COLFLAG_HASTYPE;
2080       }
2081     }
2082     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2083     pColl = sqlite3ExprCollSeq(pParse, p);
2084     if( pColl && pCol->zColl==0 ){
2085       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2086     }
2087   }
2088   pTab->szTabRow = 1; /* Any non-zero value works */
2089 }
2090 
2091 /*
2092 ** Given a SELECT statement, generate a Table structure that describes
2093 ** the result set of that SELECT.
2094 */
2095 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2096   Table *pTab;
2097   sqlite3 *db = pParse->db;
2098   int savedFlags;
2099 
2100   savedFlags = db->flags;
2101   db->flags &= ~SQLITE_FullColNames;
2102   db->flags |= SQLITE_ShortColNames;
2103   sqlite3SelectPrep(pParse, pSelect, 0);
2104   if( pParse->nErr ) return 0;
2105   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2106   db->flags = savedFlags;
2107   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2108   if( pTab==0 ){
2109     return 0;
2110   }
2111   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2112   ** is disabled */
2113   assert( db->lookaside.bDisable );
2114   pTab->nTabRef = 1;
2115   pTab->zName = 0;
2116   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2117   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2118   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2119   pTab->iPKey = -1;
2120   if( db->mallocFailed ){
2121     sqlite3DeleteTable(db, pTab);
2122     return 0;
2123   }
2124   return pTab;
2125 }
2126 
2127 /*
2128 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2129 ** If an error occurs, return NULL and leave a message in pParse.
2130 */
2131 Vdbe *sqlite3GetVdbe(Parse *pParse){
2132   if( pParse->pVdbe ){
2133     return pParse->pVdbe;
2134   }
2135   if( pParse->pToplevel==0
2136    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2137   ){
2138     pParse->okConstFactor = 1;
2139   }
2140   return sqlite3VdbeCreate(pParse);
2141 }
2142 
2143 
2144 /*
2145 ** Compute the iLimit and iOffset fields of the SELECT based on the
2146 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2147 ** that appear in the original SQL statement after the LIMIT and OFFSET
2148 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2149 ** are the integer memory register numbers for counters used to compute
2150 ** the limit and offset.  If there is no limit and/or offset, then
2151 ** iLimit and iOffset are negative.
2152 **
2153 ** This routine changes the values of iLimit and iOffset only if
2154 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2155 ** and iOffset should have been preset to appropriate default values (zero)
2156 ** prior to calling this routine.
2157 **
2158 ** The iOffset register (if it exists) is initialized to the value
2159 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2160 ** iOffset+1 is initialized to LIMIT+OFFSET.
2161 **
2162 ** Only if pLimit->pLeft!=0 do the limit registers get
2163 ** redefined.  The UNION ALL operator uses this property to force
2164 ** the reuse of the same limit and offset registers across multiple
2165 ** SELECT statements.
2166 */
2167 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2168   Vdbe *v = 0;
2169   int iLimit = 0;
2170   int iOffset;
2171   int n;
2172   Expr *pLimit = p->pLimit;
2173 
2174   if( p->iLimit ) return;
2175 
2176   /*
2177   ** "LIMIT -1" always shows all rows.  There is some
2178   ** controversy about what the correct behavior should be.
2179   ** The current implementation interprets "LIMIT 0" to mean
2180   ** no rows.
2181   */
2182   sqlite3ExprCacheClear(pParse);
2183   if( pLimit ){
2184     assert( pLimit->op==TK_LIMIT );
2185     assert( pLimit->pLeft!=0 );
2186     p->iLimit = iLimit = ++pParse->nMem;
2187     v = sqlite3GetVdbe(pParse);
2188     assert( v!=0 );
2189     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2190       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2191       VdbeComment((v, "LIMIT counter"));
2192       if( n==0 ){
2193         sqlite3VdbeGoto(v, iBreak);
2194       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2195         p->nSelectRow = sqlite3LogEst((u64)n);
2196         p->selFlags |= SF_FixedLimit;
2197       }
2198     }else{
2199       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2200       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2201       VdbeComment((v, "LIMIT counter"));
2202       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2203     }
2204     if( pLimit->pRight ){
2205       p->iOffset = iOffset = ++pParse->nMem;
2206       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2207       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2208       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2209       VdbeComment((v, "OFFSET counter"));
2210       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2211       VdbeComment((v, "LIMIT+OFFSET"));
2212     }
2213   }
2214 }
2215 
2216 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2217 /*
2218 ** Return the appropriate collating sequence for the iCol-th column of
2219 ** the result set for the compound-select statement "p".  Return NULL if
2220 ** the column has no default collating sequence.
2221 **
2222 ** The collating sequence for the compound select is taken from the
2223 ** left-most term of the select that has a collating sequence.
2224 */
2225 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2226   CollSeq *pRet;
2227   if( p->pPrior ){
2228     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2229   }else{
2230     pRet = 0;
2231   }
2232   assert( iCol>=0 );
2233   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2234   ** have been thrown during name resolution and we would not have gotten
2235   ** this far */
2236   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2237     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2238   }
2239   return pRet;
2240 }
2241 
2242 /*
2243 ** The select statement passed as the second parameter is a compound SELECT
2244 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2245 ** structure suitable for implementing the ORDER BY.
2246 **
2247 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2248 ** function is responsible for ensuring that this structure is eventually
2249 ** freed.
2250 */
2251 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2252   ExprList *pOrderBy = p->pOrderBy;
2253   int nOrderBy = p->pOrderBy->nExpr;
2254   sqlite3 *db = pParse->db;
2255   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2256   if( pRet ){
2257     int i;
2258     for(i=0; i<nOrderBy; i++){
2259       struct ExprList_item *pItem = &pOrderBy->a[i];
2260       Expr *pTerm = pItem->pExpr;
2261       CollSeq *pColl;
2262 
2263       if( pTerm->flags & EP_Collate ){
2264         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2265       }else{
2266         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2267         if( pColl==0 ) pColl = db->pDfltColl;
2268         pOrderBy->a[i].pExpr =
2269           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2270       }
2271       assert( sqlite3KeyInfoIsWriteable(pRet) );
2272       pRet->aColl[i] = pColl;
2273       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2274     }
2275   }
2276 
2277   return pRet;
2278 }
2279 
2280 #ifndef SQLITE_OMIT_CTE
2281 /*
2282 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2283 ** query of the form:
2284 **
2285 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2286 **                         \___________/             \_______________/
2287 **                           p->pPrior                      p
2288 **
2289 **
2290 ** There is exactly one reference to the recursive-table in the FROM clause
2291 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2292 **
2293 ** The setup-query runs once to generate an initial set of rows that go
2294 ** into a Queue table.  Rows are extracted from the Queue table one by
2295 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2296 ** extracted row (now in the iCurrent table) becomes the content of the
2297 ** recursive-table for a recursive-query run.  The output of the recursive-query
2298 ** is added back into the Queue table.  Then another row is extracted from Queue
2299 ** and the iteration continues until the Queue table is empty.
2300 **
2301 ** If the compound query operator is UNION then no duplicate rows are ever
2302 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2303 ** that have ever been inserted into Queue and causes duplicates to be
2304 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2305 **
2306 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2307 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2308 ** an ORDER BY, the Queue table is just a FIFO.
2309 **
2310 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2311 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2312 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2313 ** with a positive value, then the first OFFSET outputs are discarded rather
2314 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2315 ** rows have been skipped.
2316 */
2317 static void generateWithRecursiveQuery(
2318   Parse *pParse,        /* Parsing context */
2319   Select *p,            /* The recursive SELECT to be coded */
2320   SelectDest *pDest     /* What to do with query results */
2321 ){
2322   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2323   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2324   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2325   Select *pSetup = p->pPrior;   /* The setup query */
2326   int addrTop;                  /* Top of the loop */
2327   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2328   int iCurrent = 0;             /* The Current table */
2329   int regCurrent;               /* Register holding Current table */
2330   int iQueue;                   /* The Queue table */
2331   int iDistinct = 0;            /* To ensure unique results if UNION */
2332   int eDest = SRT_Fifo;         /* How to write to Queue */
2333   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2334   int i;                        /* Loop counter */
2335   int rc;                       /* Result code */
2336   ExprList *pOrderBy;           /* The ORDER BY clause */
2337   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2338   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2339 
2340   /* Obtain authorization to do a recursive query */
2341   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2342 
2343   /* Process the LIMIT and OFFSET clauses, if they exist */
2344   addrBreak = sqlite3VdbeMakeLabel(v);
2345   p->nSelectRow = 320;  /* 4 billion rows */
2346   computeLimitRegisters(pParse, p, addrBreak);
2347   pLimit = p->pLimit;
2348   regLimit = p->iLimit;
2349   regOffset = p->iOffset;
2350   p->pLimit = 0;
2351   p->iLimit = p->iOffset = 0;
2352   pOrderBy = p->pOrderBy;
2353 
2354   /* Locate the cursor number of the Current table */
2355   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2356     if( pSrc->a[i].fg.isRecursive ){
2357       iCurrent = pSrc->a[i].iCursor;
2358       break;
2359     }
2360   }
2361 
2362   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2363   ** the Distinct table must be exactly one greater than Queue in order
2364   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2365   iQueue = pParse->nTab++;
2366   if( p->op==TK_UNION ){
2367     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2368     iDistinct = pParse->nTab++;
2369   }else{
2370     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2371   }
2372   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2373 
2374   /* Allocate cursors for Current, Queue, and Distinct. */
2375   regCurrent = ++pParse->nMem;
2376   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2377   if( pOrderBy ){
2378     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2379     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2380                       (char*)pKeyInfo, P4_KEYINFO);
2381     destQueue.pOrderBy = pOrderBy;
2382   }else{
2383     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2384   }
2385   VdbeComment((v, "Queue table"));
2386   if( iDistinct ){
2387     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2388     p->selFlags |= SF_UsesEphemeral;
2389   }
2390 
2391   /* Detach the ORDER BY clause from the compound SELECT */
2392   p->pOrderBy = 0;
2393 
2394   /* Store the results of the setup-query in Queue. */
2395   pSetup->pNext = 0;
2396   ExplainQueryPlan((pParse, 1, "SETUP"));
2397   rc = sqlite3Select(pParse, pSetup, &destQueue);
2398   pSetup->pNext = p;
2399   if( rc ) goto end_of_recursive_query;
2400 
2401   /* Find the next row in the Queue and output that row */
2402   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2403 
2404   /* Transfer the next row in Queue over to Current */
2405   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2406   if( pOrderBy ){
2407     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2408   }else{
2409     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2410   }
2411   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2412 
2413   /* Output the single row in Current */
2414   addrCont = sqlite3VdbeMakeLabel(v);
2415   codeOffset(v, regOffset, addrCont);
2416   selectInnerLoop(pParse, p, iCurrent,
2417       0, 0, pDest, addrCont, addrBreak);
2418   if( regLimit ){
2419     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2420     VdbeCoverage(v);
2421   }
2422   sqlite3VdbeResolveLabel(v, addrCont);
2423 
2424   /* Execute the recursive SELECT taking the single row in Current as
2425   ** the value for the recursive-table. Store the results in the Queue.
2426   */
2427   if( p->selFlags & SF_Aggregate ){
2428     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2429   }else{
2430     p->pPrior = 0;
2431     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2432     sqlite3Select(pParse, p, &destQueue);
2433     assert( p->pPrior==0 );
2434     p->pPrior = pSetup;
2435   }
2436 
2437   /* Keep running the loop until the Queue is empty */
2438   sqlite3VdbeGoto(v, addrTop);
2439   sqlite3VdbeResolveLabel(v, addrBreak);
2440 
2441 end_of_recursive_query:
2442   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2443   p->pOrderBy = pOrderBy;
2444   p->pLimit = pLimit;
2445   return;
2446 }
2447 #endif /* SQLITE_OMIT_CTE */
2448 
2449 /* Forward references */
2450 static int multiSelectOrderBy(
2451   Parse *pParse,        /* Parsing context */
2452   Select *p,            /* The right-most of SELECTs to be coded */
2453   SelectDest *pDest     /* What to do with query results */
2454 );
2455 
2456 /*
2457 ** Handle the special case of a compound-select that originates from a
2458 ** VALUES clause.  By handling this as a special case, we avoid deep
2459 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2460 ** on a VALUES clause.
2461 **
2462 ** Because the Select object originates from a VALUES clause:
2463 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2464 **   (2) All terms are UNION ALL
2465 **   (3) There is no ORDER BY clause
2466 **
2467 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2468 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2469 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2470 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2471 */
2472 static int multiSelectValues(
2473   Parse *pParse,        /* Parsing context */
2474   Select *p,            /* The right-most of SELECTs to be coded */
2475   SelectDest *pDest     /* What to do with query results */
2476 ){
2477   int nRow = 1;
2478   int rc = 0;
2479   int bShowAll = p->pLimit==0;
2480   assert( p->selFlags & SF_MultiValue );
2481   do{
2482     assert( p->selFlags & SF_Values );
2483     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2484     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2485     if( p->pPrior==0 ) break;
2486     assert( p->pPrior->pNext==p );
2487     p = p->pPrior;
2488     nRow += bShowAll;
2489   }while(1);
2490   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2491                     nRow==1 ? "" : "S"));
2492   while( p ){
2493     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2494     if( !bShowAll ) break;
2495     p->nSelectRow = nRow;
2496     p = p->pNext;
2497   }
2498   return rc;
2499 }
2500 
2501 /*
2502 ** This routine is called to process a compound query form from
2503 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2504 ** INTERSECT
2505 **
2506 ** "p" points to the right-most of the two queries.  the query on the
2507 ** left is p->pPrior.  The left query could also be a compound query
2508 ** in which case this routine will be called recursively.
2509 **
2510 ** The results of the total query are to be written into a destination
2511 ** of type eDest with parameter iParm.
2512 **
2513 ** Example 1:  Consider a three-way compound SQL statement.
2514 **
2515 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2516 **
2517 ** This statement is parsed up as follows:
2518 **
2519 **     SELECT c FROM t3
2520 **      |
2521 **      `----->  SELECT b FROM t2
2522 **                |
2523 **                `------>  SELECT a FROM t1
2524 **
2525 ** The arrows in the diagram above represent the Select.pPrior pointer.
2526 ** So if this routine is called with p equal to the t3 query, then
2527 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2528 **
2529 ** Notice that because of the way SQLite parses compound SELECTs, the
2530 ** individual selects always group from left to right.
2531 */
2532 static int multiSelect(
2533   Parse *pParse,        /* Parsing context */
2534   Select *p,            /* The right-most of SELECTs to be coded */
2535   SelectDest *pDest     /* What to do with query results */
2536 ){
2537   int rc = SQLITE_OK;   /* Success code from a subroutine */
2538   Select *pPrior;       /* Another SELECT immediately to our left */
2539   Vdbe *v;              /* Generate code to this VDBE */
2540   SelectDest dest;      /* Alternative data destination */
2541   Select *pDelete = 0;  /* Chain of simple selects to delete */
2542   sqlite3 *db;          /* Database connection */
2543 
2544   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2545   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2546   */
2547   assert( p && p->pPrior );  /* Calling function guarantees this much */
2548   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2549   db = pParse->db;
2550   pPrior = p->pPrior;
2551   dest = *pDest;
2552   if( pPrior->pOrderBy || pPrior->pLimit ){
2553     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2554       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2555     rc = 1;
2556     goto multi_select_end;
2557   }
2558 
2559   v = sqlite3GetVdbe(pParse);
2560   assert( v!=0 );  /* The VDBE already created by calling function */
2561 
2562   /* Create the destination temporary table if necessary
2563   */
2564   if( dest.eDest==SRT_EphemTab ){
2565     assert( p->pEList );
2566     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2567     dest.eDest = SRT_Table;
2568   }
2569 
2570   /* Special handling for a compound-select that originates as a VALUES clause.
2571   */
2572   if( p->selFlags & SF_MultiValue ){
2573     rc = multiSelectValues(pParse, p, &dest);
2574     goto multi_select_end;
2575   }
2576 
2577   /* Make sure all SELECTs in the statement have the same number of elements
2578   ** in their result sets.
2579   */
2580   assert( p->pEList && pPrior->pEList );
2581   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2582 
2583 #ifndef SQLITE_OMIT_CTE
2584   if( p->selFlags & SF_Recursive ){
2585     generateWithRecursiveQuery(pParse, p, &dest);
2586   }else
2587 #endif
2588 
2589   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2590   */
2591   if( p->pOrderBy ){
2592     return multiSelectOrderBy(pParse, p, pDest);
2593   }else{
2594 
2595 #ifndef SQLITE_OMIT_EXPLAIN
2596     if( pPrior->pPrior==0 ){
2597       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2598       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2599     }
2600 #endif
2601 
2602     /* Generate code for the left and right SELECT statements.
2603     */
2604     switch( p->op ){
2605       case TK_ALL: {
2606         int addr = 0;
2607         int nLimit;
2608         assert( !pPrior->pLimit );
2609         pPrior->iLimit = p->iLimit;
2610         pPrior->iOffset = p->iOffset;
2611         pPrior->pLimit = p->pLimit;
2612         rc = sqlite3Select(pParse, pPrior, &dest);
2613         p->pLimit = 0;
2614         if( rc ){
2615           goto multi_select_end;
2616         }
2617         p->pPrior = 0;
2618         p->iLimit = pPrior->iLimit;
2619         p->iOffset = pPrior->iOffset;
2620         if( p->iLimit ){
2621           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2622           VdbeComment((v, "Jump ahead if LIMIT reached"));
2623           if( p->iOffset ){
2624             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2625                               p->iLimit, p->iOffset+1, p->iOffset);
2626           }
2627         }
2628         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2629         rc = sqlite3Select(pParse, p, &dest);
2630         testcase( rc!=SQLITE_OK );
2631         pDelete = p->pPrior;
2632         p->pPrior = pPrior;
2633         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2634         if( pPrior->pLimit
2635          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2636          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2637         ){
2638           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2639         }
2640         if( addr ){
2641           sqlite3VdbeJumpHere(v, addr);
2642         }
2643         break;
2644       }
2645       case TK_EXCEPT:
2646       case TK_UNION: {
2647         int unionTab;    /* Cursor number of the temp table holding result */
2648         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2649         int priorOp;     /* The SRT_ operation to apply to prior selects */
2650         Expr *pLimit;    /* Saved values of p->nLimit  */
2651         int addr;
2652         SelectDest uniondest;
2653 
2654         testcase( p->op==TK_EXCEPT );
2655         testcase( p->op==TK_UNION );
2656         priorOp = SRT_Union;
2657         if( dest.eDest==priorOp ){
2658           /* We can reuse a temporary table generated by a SELECT to our
2659           ** right.
2660           */
2661           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2662           unionTab = dest.iSDParm;
2663         }else{
2664           /* We will need to create our own temporary table to hold the
2665           ** intermediate results.
2666           */
2667           unionTab = pParse->nTab++;
2668           assert( p->pOrderBy==0 );
2669           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2670           assert( p->addrOpenEphm[0] == -1 );
2671           p->addrOpenEphm[0] = addr;
2672           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2673           assert( p->pEList );
2674         }
2675 
2676         /* Code the SELECT statements to our left
2677         */
2678         assert( !pPrior->pOrderBy );
2679         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2680         rc = sqlite3Select(pParse, pPrior, &uniondest);
2681         if( rc ){
2682           goto multi_select_end;
2683         }
2684 
2685         /* Code the current SELECT statement
2686         */
2687         if( p->op==TK_EXCEPT ){
2688           op = SRT_Except;
2689         }else{
2690           assert( p->op==TK_UNION );
2691           op = SRT_Union;
2692         }
2693         p->pPrior = 0;
2694         pLimit = p->pLimit;
2695         p->pLimit = 0;
2696         uniondest.eDest = op;
2697         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2698                           selectOpName(p->op)));
2699         rc = sqlite3Select(pParse, p, &uniondest);
2700         testcase( rc!=SQLITE_OK );
2701         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2702         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2703         sqlite3ExprListDelete(db, p->pOrderBy);
2704         pDelete = p->pPrior;
2705         p->pPrior = pPrior;
2706         p->pOrderBy = 0;
2707         if( p->op==TK_UNION ){
2708           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2709         }
2710         sqlite3ExprDelete(db, p->pLimit);
2711         p->pLimit = pLimit;
2712         p->iLimit = 0;
2713         p->iOffset = 0;
2714 
2715         /* Convert the data in the temporary table into whatever form
2716         ** it is that we currently need.
2717         */
2718         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2719         if( dest.eDest!=priorOp ){
2720           int iCont, iBreak, iStart;
2721           assert( p->pEList );
2722           iBreak = sqlite3VdbeMakeLabel(v);
2723           iCont = sqlite3VdbeMakeLabel(v);
2724           computeLimitRegisters(pParse, p, iBreak);
2725           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2726           iStart = sqlite3VdbeCurrentAddr(v);
2727           selectInnerLoop(pParse, p, unionTab,
2728                           0, 0, &dest, iCont, iBreak);
2729           sqlite3VdbeResolveLabel(v, iCont);
2730           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2731           sqlite3VdbeResolveLabel(v, iBreak);
2732           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2733         }
2734         break;
2735       }
2736       default: assert( p->op==TK_INTERSECT ); {
2737         int tab1, tab2;
2738         int iCont, iBreak, iStart;
2739         Expr *pLimit;
2740         int addr;
2741         SelectDest intersectdest;
2742         int r1;
2743 
2744         /* INTERSECT is different from the others since it requires
2745         ** two temporary tables.  Hence it has its own case.  Begin
2746         ** by allocating the tables we will need.
2747         */
2748         tab1 = pParse->nTab++;
2749         tab2 = pParse->nTab++;
2750         assert( p->pOrderBy==0 );
2751 
2752         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2753         assert( p->addrOpenEphm[0] == -1 );
2754         p->addrOpenEphm[0] = addr;
2755         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2756         assert( p->pEList );
2757 
2758         /* Code the SELECTs to our left into temporary table "tab1".
2759         */
2760         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2761         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2762         if( rc ){
2763           goto multi_select_end;
2764         }
2765 
2766         /* Code the current SELECT into temporary table "tab2"
2767         */
2768         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2769         assert( p->addrOpenEphm[1] == -1 );
2770         p->addrOpenEphm[1] = addr;
2771         p->pPrior = 0;
2772         pLimit = p->pLimit;
2773         p->pLimit = 0;
2774         intersectdest.iSDParm = tab2;
2775         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2776                           selectOpName(p->op)));
2777         rc = sqlite3Select(pParse, p, &intersectdest);
2778         testcase( rc!=SQLITE_OK );
2779         pDelete = p->pPrior;
2780         p->pPrior = pPrior;
2781         if( p->nSelectRow>pPrior->nSelectRow ){
2782           p->nSelectRow = pPrior->nSelectRow;
2783         }
2784         sqlite3ExprDelete(db, p->pLimit);
2785         p->pLimit = pLimit;
2786 
2787         /* Generate code to take the intersection of the two temporary
2788         ** tables.
2789         */
2790         assert( p->pEList );
2791         iBreak = sqlite3VdbeMakeLabel(v);
2792         iCont = sqlite3VdbeMakeLabel(v);
2793         computeLimitRegisters(pParse, p, iBreak);
2794         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2795         r1 = sqlite3GetTempReg(pParse);
2796         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2797         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2798         VdbeCoverage(v);
2799         sqlite3ReleaseTempReg(pParse, r1);
2800         selectInnerLoop(pParse, p, tab1,
2801                         0, 0, &dest, iCont, iBreak);
2802         sqlite3VdbeResolveLabel(v, iCont);
2803         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2804         sqlite3VdbeResolveLabel(v, iBreak);
2805         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2806         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2807         break;
2808       }
2809     }
2810 
2811   #ifndef SQLITE_OMIT_EXPLAIN
2812     if( p->pNext==0 ){
2813       ExplainQueryPlanPop(pParse);
2814     }
2815   #endif
2816   }
2817 
2818   /* Compute collating sequences used by
2819   ** temporary tables needed to implement the compound select.
2820   ** Attach the KeyInfo structure to all temporary tables.
2821   **
2822   ** This section is run by the right-most SELECT statement only.
2823   ** SELECT statements to the left always skip this part.  The right-most
2824   ** SELECT might also skip this part if it has no ORDER BY clause and
2825   ** no temp tables are required.
2826   */
2827   if( p->selFlags & SF_UsesEphemeral ){
2828     int i;                        /* Loop counter */
2829     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2830     Select *pLoop;                /* For looping through SELECT statements */
2831     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2832     int nCol;                     /* Number of columns in result set */
2833 
2834     assert( p->pNext==0 );
2835     nCol = p->pEList->nExpr;
2836     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2837     if( !pKeyInfo ){
2838       rc = SQLITE_NOMEM_BKPT;
2839       goto multi_select_end;
2840     }
2841     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2842       *apColl = multiSelectCollSeq(pParse, p, i);
2843       if( 0==*apColl ){
2844         *apColl = db->pDfltColl;
2845       }
2846     }
2847 
2848     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2849       for(i=0; i<2; i++){
2850         int addr = pLoop->addrOpenEphm[i];
2851         if( addr<0 ){
2852           /* If [0] is unused then [1] is also unused.  So we can
2853           ** always safely abort as soon as the first unused slot is found */
2854           assert( pLoop->addrOpenEphm[1]<0 );
2855           break;
2856         }
2857         sqlite3VdbeChangeP2(v, addr, nCol);
2858         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2859                             P4_KEYINFO);
2860         pLoop->addrOpenEphm[i] = -1;
2861       }
2862     }
2863     sqlite3KeyInfoUnref(pKeyInfo);
2864   }
2865 
2866 multi_select_end:
2867   pDest->iSdst = dest.iSdst;
2868   pDest->nSdst = dest.nSdst;
2869   sqlite3SelectDelete(db, pDelete);
2870   return rc;
2871 }
2872 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2873 
2874 /*
2875 ** Error message for when two or more terms of a compound select have different
2876 ** size result sets.
2877 */
2878 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2879   if( p->selFlags & SF_Values ){
2880     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2881   }else{
2882     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2883       " do not have the same number of result columns", selectOpName(p->op));
2884   }
2885 }
2886 
2887 /*
2888 ** Code an output subroutine for a coroutine implementation of a
2889 ** SELECT statment.
2890 **
2891 ** The data to be output is contained in pIn->iSdst.  There are
2892 ** pIn->nSdst columns to be output.  pDest is where the output should
2893 ** be sent.
2894 **
2895 ** regReturn is the number of the register holding the subroutine
2896 ** return address.
2897 **
2898 ** If regPrev>0 then it is the first register in a vector that
2899 ** records the previous output.  mem[regPrev] is a flag that is false
2900 ** if there has been no previous output.  If regPrev>0 then code is
2901 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2902 ** keys.
2903 **
2904 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2905 ** iBreak.
2906 */
2907 static int generateOutputSubroutine(
2908   Parse *pParse,          /* Parsing context */
2909   Select *p,              /* The SELECT statement */
2910   SelectDest *pIn,        /* Coroutine supplying data */
2911   SelectDest *pDest,      /* Where to send the data */
2912   int regReturn,          /* The return address register */
2913   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2914   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2915   int iBreak              /* Jump here if we hit the LIMIT */
2916 ){
2917   Vdbe *v = pParse->pVdbe;
2918   int iContinue;
2919   int addr;
2920 
2921   addr = sqlite3VdbeCurrentAddr(v);
2922   iContinue = sqlite3VdbeMakeLabel(v);
2923 
2924   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2925   */
2926   if( regPrev ){
2927     int addr1, addr2;
2928     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2929     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2930                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2931     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2932     sqlite3VdbeJumpHere(v, addr1);
2933     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2934     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2935   }
2936   if( pParse->db->mallocFailed ) return 0;
2937 
2938   /* Suppress the first OFFSET entries if there is an OFFSET clause
2939   */
2940   codeOffset(v, p->iOffset, iContinue);
2941 
2942   assert( pDest->eDest!=SRT_Exists );
2943   assert( pDest->eDest!=SRT_Table );
2944   switch( pDest->eDest ){
2945     /* Store the result as data using a unique key.
2946     */
2947     case SRT_EphemTab: {
2948       int r1 = sqlite3GetTempReg(pParse);
2949       int r2 = sqlite3GetTempReg(pParse);
2950       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2951       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2952       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2953       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2954       sqlite3ReleaseTempReg(pParse, r2);
2955       sqlite3ReleaseTempReg(pParse, r1);
2956       break;
2957     }
2958 
2959 #ifndef SQLITE_OMIT_SUBQUERY
2960     /* If we are creating a set for an "expr IN (SELECT ...)".
2961     */
2962     case SRT_Set: {
2963       int r1;
2964       testcase( pIn->nSdst>1 );
2965       r1 = sqlite3GetTempReg(pParse);
2966       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2967           r1, pDest->zAffSdst, pIn->nSdst);
2968       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2969       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2970                            pIn->iSdst, pIn->nSdst);
2971       sqlite3ReleaseTempReg(pParse, r1);
2972       break;
2973     }
2974 
2975     /* If this is a scalar select that is part of an expression, then
2976     ** store the results in the appropriate memory cell and break out
2977     ** of the scan loop.
2978     */
2979     case SRT_Mem: {
2980       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2981       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2982       /* The LIMIT clause will jump out of the loop for us */
2983       break;
2984     }
2985 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2986 
2987     /* The results are stored in a sequence of registers
2988     ** starting at pDest->iSdst.  Then the co-routine yields.
2989     */
2990     case SRT_Coroutine: {
2991       if( pDest->iSdst==0 ){
2992         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2993         pDest->nSdst = pIn->nSdst;
2994       }
2995       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2996       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2997       break;
2998     }
2999 
3000     /* If none of the above, then the result destination must be
3001     ** SRT_Output.  This routine is never called with any other
3002     ** destination other than the ones handled above or SRT_Output.
3003     **
3004     ** For SRT_Output, results are stored in a sequence of registers.
3005     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3006     ** return the next row of result.
3007     */
3008     default: {
3009       assert( pDest->eDest==SRT_Output );
3010       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3011       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
3012       break;
3013     }
3014   }
3015 
3016   /* Jump to the end of the loop if the LIMIT is reached.
3017   */
3018   if( p->iLimit ){
3019     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3020   }
3021 
3022   /* Generate the subroutine return
3023   */
3024   sqlite3VdbeResolveLabel(v, iContinue);
3025   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3026 
3027   return addr;
3028 }
3029 
3030 /*
3031 ** Alternative compound select code generator for cases when there
3032 ** is an ORDER BY clause.
3033 **
3034 ** We assume a query of the following form:
3035 **
3036 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3037 **
3038 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3039 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3040 ** co-routines.  Then run the co-routines in parallel and merge the results
3041 ** into the output.  In addition to the two coroutines (called selectA and
3042 ** selectB) there are 7 subroutines:
3043 **
3044 **    outA:    Move the output of the selectA coroutine into the output
3045 **             of the compound query.
3046 **
3047 **    outB:    Move the output of the selectB coroutine into the output
3048 **             of the compound query.  (Only generated for UNION and
3049 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3050 **             appears only in B.)
3051 **
3052 **    AltB:    Called when there is data from both coroutines and A<B.
3053 **
3054 **    AeqB:    Called when there is data from both coroutines and A==B.
3055 **
3056 **    AgtB:    Called when there is data from both coroutines and A>B.
3057 **
3058 **    EofA:    Called when data is exhausted from selectA.
3059 **
3060 **    EofB:    Called when data is exhausted from selectB.
3061 **
3062 ** The implementation of the latter five subroutines depend on which
3063 ** <operator> is used:
3064 **
3065 **
3066 **             UNION ALL         UNION            EXCEPT          INTERSECT
3067 **          -------------  -----------------  --------------  -----------------
3068 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3069 **
3070 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3071 **
3072 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3073 **
3074 **   EofA:   outB, nextB      outB, nextB          halt             halt
3075 **
3076 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3077 **
3078 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3079 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3080 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3081 ** following nextX causes a jump to the end of the select processing.
3082 **
3083 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3084 ** within the output subroutine.  The regPrev register set holds the previously
3085 ** output value.  A comparison is made against this value and the output
3086 ** is skipped if the next results would be the same as the previous.
3087 **
3088 ** The implementation plan is to implement the two coroutines and seven
3089 ** subroutines first, then put the control logic at the bottom.  Like this:
3090 **
3091 **          goto Init
3092 **     coA: coroutine for left query (A)
3093 **     coB: coroutine for right query (B)
3094 **    outA: output one row of A
3095 **    outB: output one row of B (UNION and UNION ALL only)
3096 **    EofA: ...
3097 **    EofB: ...
3098 **    AltB: ...
3099 **    AeqB: ...
3100 **    AgtB: ...
3101 **    Init: initialize coroutine registers
3102 **          yield coA
3103 **          if eof(A) goto EofA
3104 **          yield coB
3105 **          if eof(B) goto EofB
3106 **    Cmpr: Compare A, B
3107 **          Jump AltB, AeqB, AgtB
3108 **     End: ...
3109 **
3110 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3111 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3112 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3113 ** and AgtB jump to either L2 or to one of EofA or EofB.
3114 */
3115 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3116 static int multiSelectOrderBy(
3117   Parse *pParse,        /* Parsing context */
3118   Select *p,            /* The right-most of SELECTs to be coded */
3119   SelectDest *pDest     /* What to do with query results */
3120 ){
3121   int i, j;             /* Loop counters */
3122   Select *pPrior;       /* Another SELECT immediately to our left */
3123   Vdbe *v;              /* Generate code to this VDBE */
3124   SelectDest destA;     /* Destination for coroutine A */
3125   SelectDest destB;     /* Destination for coroutine B */
3126   int regAddrA;         /* Address register for select-A coroutine */
3127   int regAddrB;         /* Address register for select-B coroutine */
3128   int addrSelectA;      /* Address of the select-A coroutine */
3129   int addrSelectB;      /* Address of the select-B coroutine */
3130   int regOutA;          /* Address register for the output-A subroutine */
3131   int regOutB;          /* Address register for the output-B subroutine */
3132   int addrOutA;         /* Address of the output-A subroutine */
3133   int addrOutB = 0;     /* Address of the output-B subroutine */
3134   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3135   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3136   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3137   int addrAltB;         /* Address of the A<B subroutine */
3138   int addrAeqB;         /* Address of the A==B subroutine */
3139   int addrAgtB;         /* Address of the A>B subroutine */
3140   int regLimitA;        /* Limit register for select-A */
3141   int regLimitB;        /* Limit register for select-A */
3142   int regPrev;          /* A range of registers to hold previous output */
3143   int savedLimit;       /* Saved value of p->iLimit */
3144   int savedOffset;      /* Saved value of p->iOffset */
3145   int labelCmpr;        /* Label for the start of the merge algorithm */
3146   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3147   int addr1;            /* Jump instructions that get retargetted */
3148   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3149   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3150   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3151   sqlite3 *db;          /* Database connection */
3152   ExprList *pOrderBy;   /* The ORDER BY clause */
3153   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3154   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3155 
3156   assert( p->pOrderBy!=0 );
3157   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3158   db = pParse->db;
3159   v = pParse->pVdbe;
3160   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3161   labelEnd = sqlite3VdbeMakeLabel(v);
3162   labelCmpr = sqlite3VdbeMakeLabel(v);
3163 
3164 
3165   /* Patch up the ORDER BY clause
3166   */
3167   op = p->op;
3168   pPrior = p->pPrior;
3169   assert( pPrior->pOrderBy==0 );
3170   pOrderBy = p->pOrderBy;
3171   assert( pOrderBy );
3172   nOrderBy = pOrderBy->nExpr;
3173 
3174   /* For operators other than UNION ALL we have to make sure that
3175   ** the ORDER BY clause covers every term of the result set.  Add
3176   ** terms to the ORDER BY clause as necessary.
3177   */
3178   if( op!=TK_ALL ){
3179     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3180       struct ExprList_item *pItem;
3181       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3182         assert( pItem->u.x.iOrderByCol>0 );
3183         if( pItem->u.x.iOrderByCol==i ) break;
3184       }
3185       if( j==nOrderBy ){
3186         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3187         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3188         pNew->flags |= EP_IntValue;
3189         pNew->u.iValue = i;
3190         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3191         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3192       }
3193     }
3194   }
3195 
3196   /* Compute the comparison permutation and keyinfo that is used with
3197   ** the permutation used to determine if the next
3198   ** row of results comes from selectA or selectB.  Also add explicit
3199   ** collations to the ORDER BY clause terms so that when the subqueries
3200   ** to the right and the left are evaluated, they use the correct
3201   ** collation.
3202   */
3203   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3204   if( aPermute ){
3205     struct ExprList_item *pItem;
3206     aPermute[0] = nOrderBy;
3207     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3208       assert( pItem->u.x.iOrderByCol>0 );
3209       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3210       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3211     }
3212     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3213   }else{
3214     pKeyMerge = 0;
3215   }
3216 
3217   /* Reattach the ORDER BY clause to the query.
3218   */
3219   p->pOrderBy = pOrderBy;
3220   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3221 
3222   /* Allocate a range of temporary registers and the KeyInfo needed
3223   ** for the logic that removes duplicate result rows when the
3224   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3225   */
3226   if( op==TK_ALL ){
3227     regPrev = 0;
3228   }else{
3229     int nExpr = p->pEList->nExpr;
3230     assert( nOrderBy>=nExpr || db->mallocFailed );
3231     regPrev = pParse->nMem+1;
3232     pParse->nMem += nExpr+1;
3233     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3234     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3235     if( pKeyDup ){
3236       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3237       for(i=0; i<nExpr; i++){
3238         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3239         pKeyDup->aSortOrder[i] = 0;
3240       }
3241     }
3242   }
3243 
3244   /* Separate the left and the right query from one another
3245   */
3246   p->pPrior = 0;
3247   pPrior->pNext = 0;
3248   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3249   if( pPrior->pPrior==0 ){
3250     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3251   }
3252 
3253   /* Compute the limit registers */
3254   computeLimitRegisters(pParse, p, labelEnd);
3255   if( p->iLimit && op==TK_ALL ){
3256     regLimitA = ++pParse->nMem;
3257     regLimitB = ++pParse->nMem;
3258     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3259                                   regLimitA);
3260     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3261   }else{
3262     regLimitA = regLimitB = 0;
3263   }
3264   sqlite3ExprDelete(db, p->pLimit);
3265   p->pLimit = 0;
3266 
3267   regAddrA = ++pParse->nMem;
3268   regAddrB = ++pParse->nMem;
3269   regOutA = ++pParse->nMem;
3270   regOutB = ++pParse->nMem;
3271   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3272   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3273 
3274   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3275 
3276   /* Generate a coroutine to evaluate the SELECT statement to the
3277   ** left of the compound operator - the "A" select.
3278   */
3279   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3280   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3281   VdbeComment((v, "left SELECT"));
3282   pPrior->iLimit = regLimitA;
3283   ExplainQueryPlan((pParse, 1, "LEFT"));
3284   sqlite3Select(pParse, pPrior, &destA);
3285   sqlite3VdbeEndCoroutine(v, regAddrA);
3286   sqlite3VdbeJumpHere(v, addr1);
3287 
3288   /* Generate a coroutine to evaluate the SELECT statement on
3289   ** the right - the "B" select
3290   */
3291   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3292   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3293   VdbeComment((v, "right SELECT"));
3294   savedLimit = p->iLimit;
3295   savedOffset = p->iOffset;
3296   p->iLimit = regLimitB;
3297   p->iOffset = 0;
3298   ExplainQueryPlan((pParse, 1, "RIGHT"));
3299   sqlite3Select(pParse, p, &destB);
3300   p->iLimit = savedLimit;
3301   p->iOffset = savedOffset;
3302   sqlite3VdbeEndCoroutine(v, regAddrB);
3303 
3304   /* Generate a subroutine that outputs the current row of the A
3305   ** select as the next output row of the compound select.
3306   */
3307   VdbeNoopComment((v, "Output routine for A"));
3308   addrOutA = generateOutputSubroutine(pParse,
3309                  p, &destA, pDest, regOutA,
3310                  regPrev, pKeyDup, labelEnd);
3311 
3312   /* Generate a subroutine that outputs the current row of the B
3313   ** select as the next output row of the compound select.
3314   */
3315   if( op==TK_ALL || op==TK_UNION ){
3316     VdbeNoopComment((v, "Output routine for B"));
3317     addrOutB = generateOutputSubroutine(pParse,
3318                  p, &destB, pDest, regOutB,
3319                  regPrev, pKeyDup, labelEnd);
3320   }
3321   sqlite3KeyInfoUnref(pKeyDup);
3322 
3323   /* Generate a subroutine to run when the results from select A
3324   ** are exhausted and only data in select B remains.
3325   */
3326   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3327     addrEofA_noB = addrEofA = labelEnd;
3328   }else{
3329     VdbeNoopComment((v, "eof-A subroutine"));
3330     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3331     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3332                                      VdbeCoverage(v);
3333     sqlite3VdbeGoto(v, addrEofA);
3334     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3335   }
3336 
3337   /* Generate a subroutine to run when the results from select B
3338   ** are exhausted and only data in select A remains.
3339   */
3340   if( op==TK_INTERSECT ){
3341     addrEofB = addrEofA;
3342     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3343   }else{
3344     VdbeNoopComment((v, "eof-B subroutine"));
3345     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3346     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3347     sqlite3VdbeGoto(v, addrEofB);
3348   }
3349 
3350   /* Generate code to handle the case of A<B
3351   */
3352   VdbeNoopComment((v, "A-lt-B subroutine"));
3353   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3354   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3355   sqlite3VdbeGoto(v, labelCmpr);
3356 
3357   /* Generate code to handle the case of A==B
3358   */
3359   if( op==TK_ALL ){
3360     addrAeqB = addrAltB;
3361   }else if( op==TK_INTERSECT ){
3362     addrAeqB = addrAltB;
3363     addrAltB++;
3364   }else{
3365     VdbeNoopComment((v, "A-eq-B subroutine"));
3366     addrAeqB =
3367     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3368     sqlite3VdbeGoto(v, labelCmpr);
3369   }
3370 
3371   /* Generate code to handle the case of A>B
3372   */
3373   VdbeNoopComment((v, "A-gt-B subroutine"));
3374   addrAgtB = sqlite3VdbeCurrentAddr(v);
3375   if( op==TK_ALL || op==TK_UNION ){
3376     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3377   }
3378   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3379   sqlite3VdbeGoto(v, labelCmpr);
3380 
3381   /* This code runs once to initialize everything.
3382   */
3383   sqlite3VdbeJumpHere(v, addr1);
3384   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3385   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3386 
3387   /* Implement the main merge loop
3388   */
3389   sqlite3VdbeResolveLabel(v, labelCmpr);
3390   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3391   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3392                          (char*)pKeyMerge, P4_KEYINFO);
3393   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3394   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3395 
3396   /* Jump to the this point in order to terminate the query.
3397   */
3398   sqlite3VdbeResolveLabel(v, labelEnd);
3399 
3400   /* Reassembly the compound query so that it will be freed correctly
3401   ** by the calling function */
3402   if( p->pPrior ){
3403     sqlite3SelectDelete(db, p->pPrior);
3404   }
3405   p->pPrior = pPrior;
3406   pPrior->pNext = p;
3407 
3408   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3409   **** subqueries ****/
3410   ExplainQueryPlanPop(pParse);
3411   return pParse->nErr!=0;
3412 }
3413 #endif
3414 
3415 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3416 
3417 /* An instance of the SubstContext object describes an substitution edit
3418 ** to be performed on a parse tree.
3419 **
3420 ** All references to columns in table iTable are to be replaced by corresponding
3421 ** expressions in pEList.
3422 */
3423 typedef struct SubstContext {
3424   Parse *pParse;            /* The parsing context */
3425   int iTable;               /* Replace references to this table */
3426   int iNewTable;            /* New table number */
3427   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3428   ExprList *pEList;         /* Replacement expressions */
3429 } SubstContext;
3430 
3431 /* Forward Declarations */
3432 static void substExprList(SubstContext*, ExprList*);
3433 static void substSelect(SubstContext*, Select*, int);
3434 
3435 /*
3436 ** Scan through the expression pExpr.  Replace every reference to
3437 ** a column in table number iTable with a copy of the iColumn-th
3438 ** entry in pEList.  (But leave references to the ROWID column
3439 ** unchanged.)
3440 **
3441 ** This routine is part of the flattening procedure.  A subquery
3442 ** whose result set is defined by pEList appears as entry in the
3443 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3444 ** FORM clause entry is iTable.  This routine makes the necessary
3445 ** changes to pExpr so that it refers directly to the source table
3446 ** of the subquery rather the result set of the subquery.
3447 */
3448 static Expr *substExpr(
3449   SubstContext *pSubst,  /* Description of the substitution */
3450   Expr *pExpr            /* Expr in which substitution occurs */
3451 ){
3452   if( pExpr==0 ) return 0;
3453   if( ExprHasProperty(pExpr, EP_FromJoin)
3454    && pExpr->iRightJoinTable==pSubst->iTable
3455   ){
3456     pExpr->iRightJoinTable = pSubst->iNewTable;
3457   }
3458   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3459     if( pExpr->iColumn<0 ){
3460       pExpr->op = TK_NULL;
3461     }else{
3462       Expr *pNew;
3463       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3464       Expr ifNullRow;
3465       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3466       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3467       if( sqlite3ExprIsVector(pCopy) ){
3468         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3469       }else{
3470         sqlite3 *db = pSubst->pParse->db;
3471         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3472           memset(&ifNullRow, 0, sizeof(ifNullRow));
3473           ifNullRow.op = TK_IF_NULL_ROW;
3474           ifNullRow.pLeft = pCopy;
3475           ifNullRow.iTable = pSubst->iNewTable;
3476           pCopy = &ifNullRow;
3477         }
3478         pNew = sqlite3ExprDup(db, pCopy, 0);
3479         if( pNew && pSubst->isLeftJoin ){
3480           ExprSetProperty(pNew, EP_CanBeNull);
3481         }
3482         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3483           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3484           ExprSetProperty(pNew, EP_FromJoin);
3485         }
3486         sqlite3ExprDelete(db, pExpr);
3487         pExpr = pNew;
3488       }
3489     }
3490   }else{
3491     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3492       pExpr->iTable = pSubst->iNewTable;
3493     }
3494     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3495     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3496     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3497       substSelect(pSubst, pExpr->x.pSelect, 1);
3498     }else{
3499       substExprList(pSubst, pExpr->x.pList);
3500     }
3501   }
3502   return pExpr;
3503 }
3504 static void substExprList(
3505   SubstContext *pSubst, /* Description of the substitution */
3506   ExprList *pList       /* List to scan and in which to make substitutes */
3507 ){
3508   int i;
3509   if( pList==0 ) return;
3510   for(i=0; i<pList->nExpr; i++){
3511     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3512   }
3513 }
3514 static void substSelect(
3515   SubstContext *pSubst, /* Description of the substitution */
3516   Select *p,            /* SELECT statement in which to make substitutions */
3517   int doPrior           /* Do substitutes on p->pPrior too */
3518 ){
3519   SrcList *pSrc;
3520   struct SrcList_item *pItem;
3521   int i;
3522   if( !p ) return;
3523   do{
3524     substExprList(pSubst, p->pEList);
3525     substExprList(pSubst, p->pGroupBy);
3526     substExprList(pSubst, p->pOrderBy);
3527     p->pHaving = substExpr(pSubst, p->pHaving);
3528     p->pWhere = substExpr(pSubst, p->pWhere);
3529     pSrc = p->pSrc;
3530     assert( pSrc!=0 );
3531     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3532       substSelect(pSubst, pItem->pSelect, 1);
3533       if( pItem->fg.isTabFunc ){
3534         substExprList(pSubst, pItem->u1.pFuncArg);
3535       }
3536     }
3537   }while( doPrior && (p = p->pPrior)!=0 );
3538 }
3539 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3540 
3541 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3542 /*
3543 ** This routine attempts to flatten subqueries as a performance optimization.
3544 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3545 **
3546 ** To understand the concept of flattening, consider the following
3547 ** query:
3548 **
3549 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3550 **
3551 ** The default way of implementing this query is to execute the
3552 ** subquery first and store the results in a temporary table, then
3553 ** run the outer query on that temporary table.  This requires two
3554 ** passes over the data.  Furthermore, because the temporary table
3555 ** has no indices, the WHERE clause on the outer query cannot be
3556 ** optimized.
3557 **
3558 ** This routine attempts to rewrite queries such as the above into
3559 ** a single flat select, like this:
3560 **
3561 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3562 **
3563 ** The code generated for this simplification gives the same result
3564 ** but only has to scan the data once.  And because indices might
3565 ** exist on the table t1, a complete scan of the data might be
3566 ** avoided.
3567 **
3568 ** Flattening is subject to the following constraints:
3569 **
3570 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3571 **        The subquery and the outer query cannot both be aggregates.
3572 **
3573 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3574 **        (2) If the subquery is an aggregate then
3575 **        (2a) the outer query must not be a join and
3576 **        (2b) the outer query must not use subqueries
3577 **             other than the one FROM-clause subquery that is a candidate
3578 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3579 **             from 2015-02-09.)
3580 **
3581 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3582 **        (3a) the subquery may not be a join and
3583 **        (3b) the FROM clause of the subquery may not contain a virtual
3584 **             table and
3585 **        (3c) the outer query may not be an aggregate.
3586 **
3587 **   (4)  The subquery can not be DISTINCT.
3588 **
3589 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3590 **        sub-queries that were excluded from this optimization. Restriction
3591 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3592 **
3593 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3594 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3595 **
3596 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3597 **        A FROM clause, consider adding a FROM clause with the special
3598 **        table sqlite_once that consists of a single row containing a
3599 **        single NULL.
3600 **
3601 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3602 **
3603 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3604 **
3605 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3606 **        accidently carried the comment forward until 2014-09-15.  Original
3607 **        constraint: "If the subquery is aggregate then the outer query
3608 **        may not use LIMIT."
3609 **
3610 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3611 **
3612 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3613 **        a separate restriction deriving from ticket #350.
3614 **
3615 **  (13)  The subquery and outer query may not both use LIMIT.
3616 **
3617 **  (14)  The subquery may not use OFFSET.
3618 **
3619 **  (15)  If the outer query is part of a compound select, then the
3620 **        subquery may not use LIMIT.
3621 **        (See ticket #2339 and ticket [02a8e81d44]).
3622 **
3623 **  (16)  If the outer query is aggregate, then the subquery may not
3624 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3625 **        until we introduced the group_concat() function.
3626 **
3627 **  (17)  If the subquery is a compound select, then
3628 **        (17a) all compound operators must be a UNION ALL, and
3629 **        (17b) no terms within the subquery compound may be aggregate
3630 **              or DISTINCT, and
3631 **        (17c) every term within the subquery compound must have a FROM clause
3632 **        (17d) the outer query may not be
3633 **              (17d1) aggregate, or
3634 **              (17d2) DISTINCT, or
3635 **              (17d3) a join.
3636 **
3637 **        The parent and sub-query may contain WHERE clauses. Subject to
3638 **        rules (11), (13) and (14), they may also contain ORDER BY,
3639 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3640 **        operator other than UNION ALL because all the other compound
3641 **        operators have an implied DISTINCT which is disallowed by
3642 **        restriction (4).
3643 **
3644 **        Also, each component of the sub-query must return the same number
3645 **        of result columns. This is actually a requirement for any compound
3646 **        SELECT statement, but all the code here does is make sure that no
3647 **        such (illegal) sub-query is flattened. The caller will detect the
3648 **        syntax error and return a detailed message.
3649 **
3650 **  (18)  If the sub-query is a compound select, then all terms of the
3651 **        ORDER BY clause of the parent must be simple references to
3652 **        columns of the sub-query.
3653 **
3654 **  (19)  If the subquery uses LIMIT then the outer query may not
3655 **        have a WHERE clause.
3656 **
3657 **  (20)  If the sub-query is a compound select, then it must not use
3658 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3659 **        somewhat by saying that the terms of the ORDER BY clause must
3660 **        appear as unmodified result columns in the outer query.  But we
3661 **        have other optimizations in mind to deal with that case.
3662 **
3663 **  (21)  If the subquery uses LIMIT then the outer query may not be
3664 **        DISTINCT.  (See ticket [752e1646fc]).
3665 **
3666 **  (22)  The subquery may not be a recursive CTE.
3667 **
3668 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3669 **        a recursive CTE, then the sub-query may not be a compound query.
3670 **        This restriction is because transforming the
3671 **        parent to a compound query confuses the code that handles
3672 **        recursive queries in multiSelect().
3673 **
3674 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3675 **        The subquery may not be an aggregate that uses the built-in min() or
3676 **        or max() functions.  (Without this restriction, a query like:
3677 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3678 **        return the value X for which Y was maximal.)
3679 **
3680 **  (25)  If either the subquery or the parent query contains a window
3681 **        function in the select list or ORDER BY clause, flattening
3682 **        is not attempted.
3683 **
3684 **
3685 ** In this routine, the "p" parameter is a pointer to the outer query.
3686 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3687 ** uses aggregates.
3688 **
3689 ** If flattening is not attempted, this routine is a no-op and returns 0.
3690 ** If flattening is attempted this routine returns 1.
3691 **
3692 ** All of the expression analysis must occur on both the outer query and
3693 ** the subquery before this routine runs.
3694 */
3695 static int flattenSubquery(
3696   Parse *pParse,       /* Parsing context */
3697   Select *p,           /* The parent or outer SELECT statement */
3698   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3699   int isAgg            /* True if outer SELECT uses aggregate functions */
3700 ){
3701   const char *zSavedAuthContext = pParse->zAuthContext;
3702   Select *pParent;    /* Current UNION ALL term of the other query */
3703   Select *pSub;       /* The inner query or "subquery" */
3704   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3705   SrcList *pSrc;      /* The FROM clause of the outer query */
3706   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3707   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3708   int iNewParent = -1;/* Replacement table for iParent */
3709   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3710   int i;              /* Loop counter */
3711   Expr *pWhere;                    /* The WHERE clause */
3712   struct SrcList_item *pSubitem;   /* The subquery */
3713   sqlite3 *db = pParse->db;
3714 
3715   /* Check to see if flattening is permitted.  Return 0 if not.
3716   */
3717   assert( p!=0 );
3718   assert( p->pPrior==0 );
3719   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3720   pSrc = p->pSrc;
3721   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3722   pSubitem = &pSrc->a[iFrom];
3723   iParent = pSubitem->iCursor;
3724   pSub = pSubitem->pSelect;
3725   assert( pSub!=0 );
3726 
3727 #ifndef SQLITE_OMIT_WINDOWFUNC
3728   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3729 #endif
3730 
3731   pSubSrc = pSub->pSrc;
3732   assert( pSubSrc );
3733   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3734   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3735   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3736   ** became arbitrary expressions, we were forced to add restrictions (13)
3737   ** and (14). */
3738   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3739   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3740   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3741     return 0;                                            /* Restriction (15) */
3742   }
3743   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3744   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3745   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3746      return 0;         /* Restrictions (8)(9) */
3747   }
3748   if( p->pOrderBy && pSub->pOrderBy ){
3749      return 0;                                           /* Restriction (11) */
3750   }
3751   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3752   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3753   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3754      return 0;         /* Restriction (21) */
3755   }
3756   if( pSub->selFlags & (SF_Recursive) ){
3757     return 0; /* Restrictions (22) */
3758   }
3759 
3760   /*
3761   ** If the subquery is the right operand of a LEFT JOIN, then the
3762   ** subquery may not be a join itself (3a). Example of why this is not
3763   ** allowed:
3764   **
3765   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3766   **
3767   ** If we flatten the above, we would get
3768   **
3769   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3770   **
3771   ** which is not at all the same thing.
3772   **
3773   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3774   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3775   ** aggregates are processed - there is no mechanism to determine if
3776   ** the LEFT JOIN table should be all-NULL.
3777   **
3778   ** See also tickets #306, #350, and #3300.
3779   */
3780   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3781     isLeftJoin = 1;
3782     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3783       /*  (3a)             (3c)     (3b) */
3784       return 0;
3785     }
3786   }
3787 #ifdef SQLITE_EXTRA_IFNULLROW
3788   else if( iFrom>0 && !isAgg ){
3789     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3790     ** every reference to any result column from subquery in a join, even
3791     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3792     ** opcode. */
3793     isLeftJoin = -1;
3794   }
3795 #endif
3796 
3797   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3798   ** use only the UNION ALL operator. And none of the simple select queries
3799   ** that make up the compound SELECT are allowed to be aggregate or distinct
3800   ** queries.
3801   */
3802   if( pSub->pPrior ){
3803     if( pSub->pOrderBy ){
3804       return 0;  /* Restriction (20) */
3805     }
3806     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3807       return 0; /* (17d1), (17d2), or (17d3) */
3808     }
3809     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3810       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3811       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3812       assert( pSub->pSrc!=0 );
3813       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3814       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3815        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3816        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3817       ){
3818         return 0;
3819       }
3820       testcase( pSub1->pSrc->nSrc>1 );
3821     }
3822 
3823     /* Restriction (18). */
3824     if( p->pOrderBy ){
3825       int ii;
3826       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3827         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3828       }
3829     }
3830   }
3831 
3832   /* Ex-restriction (23):
3833   ** The only way that the recursive part of a CTE can contain a compound
3834   ** subquery is for the subquery to be one term of a join.  But if the
3835   ** subquery is a join, then the flattening has already been stopped by
3836   ** restriction (17d3)
3837   */
3838   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3839 
3840   /***** If we reach this point, flattening is permitted. *****/
3841   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3842                    pSub->zSelName, pSub, iFrom));
3843 
3844   /* Authorize the subquery */
3845   pParse->zAuthContext = pSubitem->zName;
3846   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3847   testcase( i==SQLITE_DENY );
3848   pParse->zAuthContext = zSavedAuthContext;
3849 
3850   /* If the sub-query is a compound SELECT statement, then (by restrictions
3851   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3852   ** be of the form:
3853   **
3854   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3855   **
3856   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3857   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3858   ** OFFSET clauses and joins them to the left-hand-side of the original
3859   ** using UNION ALL operators. In this case N is the number of simple
3860   ** select statements in the compound sub-query.
3861   **
3862   ** Example:
3863   **
3864   **     SELECT a+1 FROM (
3865   **        SELECT x FROM tab
3866   **        UNION ALL
3867   **        SELECT y FROM tab
3868   **        UNION ALL
3869   **        SELECT abs(z*2) FROM tab2
3870   **     ) WHERE a!=5 ORDER BY 1
3871   **
3872   ** Transformed into:
3873   **
3874   **     SELECT x+1 FROM tab WHERE x+1!=5
3875   **     UNION ALL
3876   **     SELECT y+1 FROM tab WHERE y+1!=5
3877   **     UNION ALL
3878   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3879   **     ORDER BY 1
3880   **
3881   ** We call this the "compound-subquery flattening".
3882   */
3883   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3884     Select *pNew;
3885     ExprList *pOrderBy = p->pOrderBy;
3886     Expr *pLimit = p->pLimit;
3887     Select *pPrior = p->pPrior;
3888     p->pOrderBy = 0;
3889     p->pSrc = 0;
3890     p->pPrior = 0;
3891     p->pLimit = 0;
3892     pNew = sqlite3SelectDup(db, p, 0);
3893     sqlite3SelectSetName(pNew, pSub->zSelName);
3894     p->pLimit = pLimit;
3895     p->pOrderBy = pOrderBy;
3896     p->pSrc = pSrc;
3897     p->op = TK_ALL;
3898     if( pNew==0 ){
3899       p->pPrior = pPrior;
3900     }else{
3901       pNew->pPrior = pPrior;
3902       if( pPrior ) pPrior->pNext = pNew;
3903       pNew->pNext = p;
3904       p->pPrior = pNew;
3905       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3906                               " creates %s.%p as peer\n",pNew->zSelName, pNew));
3907     }
3908     if( db->mallocFailed ) return 1;
3909   }
3910 
3911   /* Begin flattening the iFrom-th entry of the FROM clause
3912   ** in the outer query.
3913   */
3914   pSub = pSub1 = pSubitem->pSelect;
3915 
3916   /* Delete the transient table structure associated with the
3917   ** subquery
3918   */
3919   sqlite3DbFree(db, pSubitem->zDatabase);
3920   sqlite3DbFree(db, pSubitem->zName);
3921   sqlite3DbFree(db, pSubitem->zAlias);
3922   pSubitem->zDatabase = 0;
3923   pSubitem->zName = 0;
3924   pSubitem->zAlias = 0;
3925   pSubitem->pSelect = 0;
3926 
3927   /* Defer deleting the Table object associated with the
3928   ** subquery until code generation is
3929   ** complete, since there may still exist Expr.pTab entries that
3930   ** refer to the subquery even after flattening.  Ticket #3346.
3931   **
3932   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3933   */
3934   if( ALWAYS(pSubitem->pTab!=0) ){
3935     Table *pTabToDel = pSubitem->pTab;
3936     if( pTabToDel->nTabRef==1 ){
3937       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3938       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3939       pToplevel->pZombieTab = pTabToDel;
3940     }else{
3941       pTabToDel->nTabRef--;
3942     }
3943     pSubitem->pTab = 0;
3944   }
3945 
3946   /* The following loop runs once for each term in a compound-subquery
3947   ** flattening (as described above).  If we are doing a different kind
3948   ** of flattening - a flattening other than a compound-subquery flattening -
3949   ** then this loop only runs once.
3950   **
3951   ** This loop moves all of the FROM elements of the subquery into the
3952   ** the FROM clause of the outer query.  Before doing this, remember
3953   ** the cursor number for the original outer query FROM element in
3954   ** iParent.  The iParent cursor will never be used.  Subsequent code
3955   ** will scan expressions looking for iParent references and replace
3956   ** those references with expressions that resolve to the subquery FROM
3957   ** elements we are now copying in.
3958   */
3959   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3960     int nSubSrc;
3961     u8 jointype = 0;
3962     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3963     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3964     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3965 
3966     if( pSrc ){
3967       assert( pParent==p );  /* First time through the loop */
3968       jointype = pSubitem->fg.jointype;
3969     }else{
3970       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3971       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3972       if( pSrc==0 ){
3973         assert( db->mallocFailed );
3974         break;
3975       }
3976     }
3977 
3978     /* The subquery uses a single slot of the FROM clause of the outer
3979     ** query.  If the subquery has more than one element in its FROM clause,
3980     ** then expand the outer query to make space for it to hold all elements
3981     ** of the subquery.
3982     **
3983     ** Example:
3984     **
3985     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3986     **
3987     ** The outer query has 3 slots in its FROM clause.  One slot of the
3988     ** outer query (the middle slot) is used by the subquery.  The next
3989     ** block of code will expand the outer query FROM clause to 4 slots.
3990     ** The middle slot is expanded to two slots in order to make space
3991     ** for the two elements in the FROM clause of the subquery.
3992     */
3993     if( nSubSrc>1 ){
3994       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3995       if( db->mallocFailed ){
3996         break;
3997       }
3998     }
3999 
4000     /* Transfer the FROM clause terms from the subquery into the
4001     ** outer query.
4002     */
4003     for(i=0; i<nSubSrc; i++){
4004       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4005       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4006       pSrc->a[i+iFrom] = pSubSrc->a[i];
4007       iNewParent = pSubSrc->a[i].iCursor;
4008       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4009     }
4010     pSrc->a[iFrom].fg.jointype = jointype;
4011 
4012     /* Now begin substituting subquery result set expressions for
4013     ** references to the iParent in the outer query.
4014     **
4015     ** Example:
4016     **
4017     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4018     **   \                     \_____________ subquery __________/          /
4019     **    \_____________________ outer query ______________________________/
4020     **
4021     ** We look at every expression in the outer query and every place we see
4022     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4023     */
4024     if( pSub->pOrderBy ){
4025       /* At this point, any non-zero iOrderByCol values indicate that the
4026       ** ORDER BY column expression is identical to the iOrderByCol'th
4027       ** expression returned by SELECT statement pSub. Since these values
4028       ** do not necessarily correspond to columns in SELECT statement pParent,
4029       ** zero them before transfering the ORDER BY clause.
4030       **
4031       ** Not doing this may cause an error if a subsequent call to this
4032       ** function attempts to flatten a compound sub-query into pParent
4033       ** (the only way this can happen is if the compound sub-query is
4034       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4035       ExprList *pOrderBy = pSub->pOrderBy;
4036       for(i=0; i<pOrderBy->nExpr; i++){
4037         pOrderBy->a[i].u.x.iOrderByCol = 0;
4038       }
4039       assert( pParent->pOrderBy==0 );
4040       pParent->pOrderBy = pOrderBy;
4041       pSub->pOrderBy = 0;
4042     }
4043     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4044     if( isLeftJoin>0 ){
4045       setJoinExpr(pWhere, iNewParent);
4046     }
4047     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4048     if( db->mallocFailed==0 ){
4049       SubstContext x;
4050       x.pParse = pParse;
4051       x.iTable = iParent;
4052       x.iNewTable = iNewParent;
4053       x.isLeftJoin = isLeftJoin;
4054       x.pEList = pSub->pEList;
4055       substSelect(&x, pParent, 0);
4056     }
4057 
4058     /* The flattened query is distinct if either the inner or the
4059     ** outer query is distinct.
4060     */
4061     pParent->selFlags |= pSub->selFlags & SF_Distinct;
4062 
4063     /*
4064     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4065     **
4066     ** One is tempted to try to add a and b to combine the limits.  But this
4067     ** does not work if either limit is negative.
4068     */
4069     if( pSub->pLimit ){
4070       pParent->pLimit = pSub->pLimit;
4071       pSub->pLimit = 0;
4072     }
4073   }
4074 
4075   /* Finially, delete what is left of the subquery and return
4076   ** success.
4077   */
4078   sqlite3SelectDelete(db, pSub1);
4079 
4080 #if SELECTTRACE_ENABLED
4081   if( sqlite3SelectTrace & 0x100 ){
4082     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4083     sqlite3TreeViewSelect(0, p, 0);
4084   }
4085 #endif
4086 
4087   return 1;
4088 }
4089 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4090 
4091 
4092 
4093 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4094 /*
4095 ** Make copies of relevant WHERE clause terms of the outer query into
4096 ** the WHERE clause of subquery.  Example:
4097 **
4098 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4099 **
4100 ** Transformed into:
4101 **
4102 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4103 **     WHERE x=5 AND y=10;
4104 **
4105 ** The hope is that the terms added to the inner query will make it more
4106 ** efficient.
4107 **
4108 ** Do not attempt this optimization if:
4109 **
4110 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4111 **           disallow this optimization for aggregate subqueries, but now
4112 **           it is allowed by putting the extra terms on the HAVING clause.
4113 **           The added HAVING clause is pointless if the subquery lacks
4114 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4115 **           so there does not appear to be any reason to add extra logic
4116 **           to suppress it. **)
4117 **
4118 **   (2) The inner query is the recursive part of a common table expression.
4119 **
4120 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4121 **       clause would change the meaning of the LIMIT).
4122 **
4123 **   (4) The inner query is the right operand of a LEFT JOIN and the
4124 **       expression to be pushed down does not come from the ON clause
4125 **       on that LEFT JOIN.
4126 **
4127 **   (5) The WHERE clause expression originates in the ON or USING clause
4128 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4129 **       left join.  An example:
4130 **
4131 **           SELECT *
4132 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4133 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4134 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4135 **
4136 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4137 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4138 **       then the (1,1,NULL) row would be suppressed.
4139 **
4140 **   (6) The inner query features one or more window-functions (since
4141 **       changes to the WHERE clause of the inner query could change the
4142 **       window over which window functions are calculated).
4143 **
4144 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4145 ** terms are duplicated into the subquery.
4146 */
4147 static int pushDownWhereTerms(
4148   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4149   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4150   Expr *pWhere,         /* The WHERE clause of the outer query */
4151   int iCursor,          /* Cursor number of the subquery */
4152   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4153 ){
4154   Expr *pNew;
4155   int nChng = 0;
4156   if( pWhere==0 ) return 0;
4157   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4158 
4159 #ifndef SQLITE_OMIT_WINDOWFUNC
4160   if( pSubq->pWin ) return 0;
4161 #endif
4162 
4163 #ifdef SQLITE_DEBUG
4164   /* Only the first term of a compound can have a WITH clause.  But make
4165   ** sure no other terms are marked SF_Recursive in case something changes
4166   ** in the future.
4167   */
4168   {
4169     Select *pX;
4170     for(pX=pSubq; pX; pX=pX->pPrior){
4171       assert( (pX->selFlags & (SF_Recursive))==0 );
4172     }
4173   }
4174 #endif
4175 
4176   if( pSubq->pLimit!=0 ){
4177     return 0; /* restriction (3) */
4178   }
4179   while( pWhere->op==TK_AND ){
4180     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4181                                 iCursor, isLeftJoin);
4182     pWhere = pWhere->pLeft;
4183   }
4184   if( isLeftJoin
4185    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4186          || pWhere->iRightJoinTable!=iCursor)
4187   ){
4188     return 0; /* restriction (4) */
4189   }
4190   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4191     return 0; /* restriction (5) */
4192   }
4193   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4194     nChng++;
4195     while( pSubq ){
4196       SubstContext x;
4197       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4198       unsetJoinExpr(pNew, -1);
4199       x.pParse = pParse;
4200       x.iTable = iCursor;
4201       x.iNewTable = iCursor;
4202       x.isLeftJoin = 0;
4203       x.pEList = pSubq->pEList;
4204       pNew = substExpr(&x, pNew);
4205       if( pSubq->selFlags & SF_Aggregate ){
4206         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4207       }else{
4208         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4209       }
4210       pSubq = pSubq->pPrior;
4211     }
4212   }
4213   return nChng;
4214 }
4215 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4216 
4217 /*
4218 ** The pFunc is the only aggregate function in the query.  Check to see
4219 ** if the query is a candidate for the min/max optimization.
4220 **
4221 ** If the query is a candidate for the min/max optimization, then set
4222 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4223 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4224 ** whether pFunc is a min() or max() function.
4225 **
4226 ** If the query is not a candidate for the min/max optimization, return
4227 ** WHERE_ORDERBY_NORMAL (which must be zero).
4228 **
4229 ** This routine must be called after aggregate functions have been
4230 ** located but before their arguments have been subjected to aggregate
4231 ** analysis.
4232 */
4233 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4234   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4235   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4236   const char *zFunc;                    /* Name of aggregate function pFunc */
4237   ExprList *pOrderBy;
4238   u8 sortOrder;
4239 
4240   assert( *ppMinMax==0 );
4241   assert( pFunc->op==TK_AGG_FUNCTION );
4242   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4243   zFunc = pFunc->u.zToken;
4244   if( sqlite3StrICmp(zFunc, "min")==0 ){
4245     eRet = WHERE_ORDERBY_MIN;
4246     sortOrder = SQLITE_SO_ASC;
4247   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4248     eRet = WHERE_ORDERBY_MAX;
4249     sortOrder = SQLITE_SO_DESC;
4250   }else{
4251     return eRet;
4252   }
4253   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4254   assert( pOrderBy!=0 || db->mallocFailed );
4255   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4256   return eRet;
4257 }
4258 
4259 /*
4260 ** The select statement passed as the first argument is an aggregate query.
4261 ** The second argument is the associated aggregate-info object. This
4262 ** function tests if the SELECT is of the form:
4263 **
4264 **   SELECT count(*) FROM <tbl>
4265 **
4266 ** where table is a database table, not a sub-select or view. If the query
4267 ** does match this pattern, then a pointer to the Table object representing
4268 ** <tbl> is returned. Otherwise, 0 is returned.
4269 */
4270 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4271   Table *pTab;
4272   Expr *pExpr;
4273 
4274   assert( !p->pGroupBy );
4275 
4276   if( p->pWhere || p->pEList->nExpr!=1
4277    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4278   ){
4279     return 0;
4280   }
4281   pTab = p->pSrc->a[0].pTab;
4282   pExpr = p->pEList->a[0].pExpr;
4283   assert( pTab && !pTab->pSelect && pExpr );
4284 
4285   if( IsVirtual(pTab) ) return 0;
4286   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4287   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4288   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4289   if( pExpr->flags&EP_Distinct ) return 0;
4290 
4291   return pTab;
4292 }
4293 
4294 /*
4295 ** If the source-list item passed as an argument was augmented with an
4296 ** INDEXED BY clause, then try to locate the specified index. If there
4297 ** was such a clause and the named index cannot be found, return
4298 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4299 ** pFrom->pIndex and return SQLITE_OK.
4300 */
4301 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4302   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4303     Table *pTab = pFrom->pTab;
4304     char *zIndexedBy = pFrom->u1.zIndexedBy;
4305     Index *pIdx;
4306     for(pIdx=pTab->pIndex;
4307         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4308         pIdx=pIdx->pNext
4309     );
4310     if( !pIdx ){
4311       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4312       pParse->checkSchema = 1;
4313       return SQLITE_ERROR;
4314     }
4315     pFrom->pIBIndex = pIdx;
4316   }
4317   return SQLITE_OK;
4318 }
4319 /*
4320 ** Detect compound SELECT statements that use an ORDER BY clause with
4321 ** an alternative collating sequence.
4322 **
4323 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4324 **
4325 ** These are rewritten as a subquery:
4326 **
4327 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4328 **     ORDER BY ... COLLATE ...
4329 **
4330 ** This transformation is necessary because the multiSelectOrderBy() routine
4331 ** above that generates the code for a compound SELECT with an ORDER BY clause
4332 ** uses a merge algorithm that requires the same collating sequence on the
4333 ** result columns as on the ORDER BY clause.  See ticket
4334 ** http://www.sqlite.org/src/info/6709574d2a
4335 **
4336 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4337 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4338 ** there are COLLATE terms in the ORDER BY.
4339 */
4340 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4341   int i;
4342   Select *pNew;
4343   Select *pX;
4344   sqlite3 *db;
4345   struct ExprList_item *a;
4346   SrcList *pNewSrc;
4347   Parse *pParse;
4348   Token dummy;
4349 
4350   if( p->pPrior==0 ) return WRC_Continue;
4351   if( p->pOrderBy==0 ) return WRC_Continue;
4352   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4353   if( pX==0 ) return WRC_Continue;
4354   a = p->pOrderBy->a;
4355   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4356     if( a[i].pExpr->flags & EP_Collate ) break;
4357   }
4358   if( i<0 ) return WRC_Continue;
4359 
4360   /* If we reach this point, that means the transformation is required. */
4361 
4362   pParse = pWalker->pParse;
4363   db = pParse->db;
4364   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4365   if( pNew==0 ) return WRC_Abort;
4366   memset(&dummy, 0, sizeof(dummy));
4367   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4368   if( pNewSrc==0 ) return WRC_Abort;
4369   *pNew = *p;
4370   p->pSrc = pNewSrc;
4371   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4372   p->op = TK_SELECT;
4373   p->pWhere = 0;
4374   pNew->pGroupBy = 0;
4375   pNew->pHaving = 0;
4376   pNew->pOrderBy = 0;
4377   p->pPrior = 0;
4378   p->pNext = 0;
4379   p->pWith = 0;
4380   p->selFlags &= ~SF_Compound;
4381   assert( (p->selFlags & SF_Converted)==0 );
4382   p->selFlags |= SF_Converted;
4383   assert( pNew->pPrior!=0 );
4384   pNew->pPrior->pNext = pNew;
4385   pNew->pLimit = 0;
4386   return WRC_Continue;
4387 }
4388 
4389 /*
4390 ** Check to see if the FROM clause term pFrom has table-valued function
4391 ** arguments.  If it does, leave an error message in pParse and return
4392 ** non-zero, since pFrom is not allowed to be a table-valued function.
4393 */
4394 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4395   if( pFrom->fg.isTabFunc ){
4396     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4397     return 1;
4398   }
4399   return 0;
4400 }
4401 
4402 #ifndef SQLITE_OMIT_CTE
4403 /*
4404 ** Argument pWith (which may be NULL) points to a linked list of nested
4405 ** WITH contexts, from inner to outermost. If the table identified by
4406 ** FROM clause element pItem is really a common-table-expression (CTE)
4407 ** then return a pointer to the CTE definition for that table. Otherwise
4408 ** return NULL.
4409 **
4410 ** If a non-NULL value is returned, set *ppContext to point to the With
4411 ** object that the returned CTE belongs to.
4412 */
4413 static struct Cte *searchWith(
4414   With *pWith,                    /* Current innermost WITH clause */
4415   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4416   With **ppContext                /* OUT: WITH clause return value belongs to */
4417 ){
4418   const char *zName;
4419   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4420     With *p;
4421     for(p=pWith; p; p=p->pOuter){
4422       int i;
4423       for(i=0; i<p->nCte; i++){
4424         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4425           *ppContext = p;
4426           return &p->a[i];
4427         }
4428       }
4429     }
4430   }
4431   return 0;
4432 }
4433 
4434 /* The code generator maintains a stack of active WITH clauses
4435 ** with the inner-most WITH clause being at the top of the stack.
4436 **
4437 ** This routine pushes the WITH clause passed as the second argument
4438 ** onto the top of the stack. If argument bFree is true, then this
4439 ** WITH clause will never be popped from the stack. In this case it
4440 ** should be freed along with the Parse object. In other cases, when
4441 ** bFree==0, the With object will be freed along with the SELECT
4442 ** statement with which it is associated.
4443 */
4444 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4445   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4446   if( pWith ){
4447     assert( pParse->pWith!=pWith );
4448     pWith->pOuter = pParse->pWith;
4449     pParse->pWith = pWith;
4450     if( bFree ) pParse->pWithToFree = pWith;
4451   }
4452 }
4453 
4454 /*
4455 ** This function checks if argument pFrom refers to a CTE declared by
4456 ** a WITH clause on the stack currently maintained by the parser. And,
4457 ** if currently processing a CTE expression, if it is a recursive
4458 ** reference to the current CTE.
4459 **
4460 ** If pFrom falls into either of the two categories above, pFrom->pTab
4461 ** and other fields are populated accordingly. The caller should check
4462 ** (pFrom->pTab!=0) to determine whether or not a successful match
4463 ** was found.
4464 **
4465 ** Whether or not a match is found, SQLITE_OK is returned if no error
4466 ** occurs. If an error does occur, an error message is stored in the
4467 ** parser and some error code other than SQLITE_OK returned.
4468 */
4469 static int withExpand(
4470   Walker *pWalker,
4471   struct SrcList_item *pFrom
4472 ){
4473   Parse *pParse = pWalker->pParse;
4474   sqlite3 *db = pParse->db;
4475   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4476   With *pWith;                    /* WITH clause that pCte belongs to */
4477 
4478   assert( pFrom->pTab==0 );
4479 
4480   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4481   if( pCte ){
4482     Table *pTab;
4483     ExprList *pEList;
4484     Select *pSel;
4485     Select *pLeft;                /* Left-most SELECT statement */
4486     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4487     With *pSavedWith;             /* Initial value of pParse->pWith */
4488 
4489     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4490     ** recursive reference to CTE pCte. Leave an error in pParse and return
4491     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4492     ** In this case, proceed.  */
4493     if( pCte->zCteErr ){
4494       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4495       return SQLITE_ERROR;
4496     }
4497     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4498 
4499     assert( pFrom->pTab==0 );
4500     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4501     if( pTab==0 ) return WRC_Abort;
4502     pTab->nTabRef = 1;
4503     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4504     pTab->iPKey = -1;
4505     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4506     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4507     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4508     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4509     assert( pFrom->pSelect );
4510 
4511     /* Check if this is a recursive CTE. */
4512     pSel = pFrom->pSelect;
4513     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4514     if( bMayRecursive ){
4515       int i;
4516       SrcList *pSrc = pFrom->pSelect->pSrc;
4517       for(i=0; i<pSrc->nSrc; i++){
4518         struct SrcList_item *pItem = &pSrc->a[i];
4519         if( pItem->zDatabase==0
4520          && pItem->zName!=0
4521          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4522           ){
4523           pItem->pTab = pTab;
4524           pItem->fg.isRecursive = 1;
4525           pTab->nTabRef++;
4526           pSel->selFlags |= SF_Recursive;
4527         }
4528       }
4529     }
4530 
4531     /* Only one recursive reference is permitted. */
4532     if( pTab->nTabRef>2 ){
4533       sqlite3ErrorMsg(
4534           pParse, "multiple references to recursive table: %s", pCte->zName
4535       );
4536       return SQLITE_ERROR;
4537     }
4538     assert( pTab->nTabRef==1 ||
4539             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4540 
4541     pCte->zCteErr = "circular reference: %s";
4542     pSavedWith = pParse->pWith;
4543     pParse->pWith = pWith;
4544     if( bMayRecursive ){
4545       Select *pPrior = pSel->pPrior;
4546       assert( pPrior->pWith==0 );
4547       pPrior->pWith = pSel->pWith;
4548       sqlite3WalkSelect(pWalker, pPrior);
4549       pPrior->pWith = 0;
4550     }else{
4551       sqlite3WalkSelect(pWalker, pSel);
4552     }
4553     pParse->pWith = pWith;
4554 
4555     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4556     pEList = pLeft->pEList;
4557     if( pCte->pCols ){
4558       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4559         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4560             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4561         );
4562         pParse->pWith = pSavedWith;
4563         return SQLITE_ERROR;
4564       }
4565       pEList = pCte->pCols;
4566     }
4567 
4568     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4569     if( bMayRecursive ){
4570       if( pSel->selFlags & SF_Recursive ){
4571         pCte->zCteErr = "multiple recursive references: %s";
4572       }else{
4573         pCte->zCteErr = "recursive reference in a subquery: %s";
4574       }
4575       sqlite3WalkSelect(pWalker, pSel);
4576     }
4577     pCte->zCteErr = 0;
4578     pParse->pWith = pSavedWith;
4579   }
4580 
4581   return SQLITE_OK;
4582 }
4583 #endif
4584 
4585 #ifndef SQLITE_OMIT_CTE
4586 /*
4587 ** If the SELECT passed as the second argument has an associated WITH
4588 ** clause, pop it from the stack stored as part of the Parse object.
4589 **
4590 ** This function is used as the xSelectCallback2() callback by
4591 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4592 ** names and other FROM clause elements.
4593 */
4594 static void selectPopWith(Walker *pWalker, Select *p){
4595   Parse *pParse = pWalker->pParse;
4596   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4597     With *pWith = findRightmost(p)->pWith;
4598     if( pWith!=0 ){
4599       assert( pParse->pWith==pWith );
4600       pParse->pWith = pWith->pOuter;
4601     }
4602   }
4603 }
4604 #else
4605 #define selectPopWith 0
4606 #endif
4607 
4608 /*
4609 ** The SrcList_item structure passed as the second argument represents a
4610 ** sub-query in the FROM clause of a SELECT statement. This function
4611 ** allocates and populates the SrcList_item.pTab object. If successful,
4612 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4613 ** SQLITE_NOMEM.
4614 */
4615 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4616   Select *pSel = pFrom->pSelect;
4617   Table *pTab;
4618 
4619   assert( pSel );
4620   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4621   if( pTab==0 ) return SQLITE_NOMEM;
4622   pTab->nTabRef = 1;
4623   if( pFrom->zAlias ){
4624     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4625   }else{
4626     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%p", (void*)pTab);
4627   }
4628   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4629   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4630   pTab->iPKey = -1;
4631   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4632   pTab->tabFlags |= TF_Ephemeral;
4633 
4634   return SQLITE_OK;
4635 }
4636 
4637 /*
4638 ** This routine is a Walker callback for "expanding" a SELECT statement.
4639 ** "Expanding" means to do the following:
4640 **
4641 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4642 **         element of the FROM clause.
4643 **
4644 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4645 **         defines FROM clause.  When views appear in the FROM clause,
4646 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4647 **         that implements the view.  A copy is made of the view's SELECT
4648 **         statement so that we can freely modify or delete that statement
4649 **         without worrying about messing up the persistent representation
4650 **         of the view.
4651 **
4652 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4653 **         on joins and the ON and USING clause of joins.
4654 **
4655 **    (4)  Scan the list of columns in the result set (pEList) looking
4656 **         for instances of the "*" operator or the TABLE.* operator.
4657 **         If found, expand each "*" to be every column in every table
4658 **         and TABLE.* to be every column in TABLE.
4659 **
4660 */
4661 static int selectExpander(Walker *pWalker, Select *p){
4662   Parse *pParse = pWalker->pParse;
4663   int i, j, k;
4664   SrcList *pTabList;
4665   ExprList *pEList;
4666   struct SrcList_item *pFrom;
4667   sqlite3 *db = pParse->db;
4668   Expr *pE, *pRight, *pExpr;
4669   u16 selFlags = p->selFlags;
4670   u32 elistFlags = 0;
4671 
4672   p->selFlags |= SF_Expanded;
4673   if( db->mallocFailed  ){
4674     return WRC_Abort;
4675   }
4676   assert( p->pSrc!=0 );
4677   if( (selFlags & SF_Expanded)!=0 ){
4678     return WRC_Prune;
4679   }
4680   pTabList = p->pSrc;
4681   pEList = p->pEList;
4682   sqlite3WithPush(pParse, p->pWith, 0);
4683 
4684   /* Make sure cursor numbers have been assigned to all entries in
4685   ** the FROM clause of the SELECT statement.
4686   */
4687   sqlite3SrcListAssignCursors(pParse, pTabList);
4688 
4689   /* Look up every table named in the FROM clause of the select.  If
4690   ** an entry of the FROM clause is a subquery instead of a table or view,
4691   ** then create a transient table structure to describe the subquery.
4692   */
4693   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4694     Table *pTab;
4695     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4696     if( pFrom->fg.isRecursive ) continue;
4697     assert( pFrom->pTab==0 );
4698 #ifndef SQLITE_OMIT_CTE
4699     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4700     if( pFrom->pTab ) {} else
4701 #endif
4702     if( pFrom->zName==0 ){
4703 #ifndef SQLITE_OMIT_SUBQUERY
4704       Select *pSel = pFrom->pSelect;
4705       /* A sub-query in the FROM clause of a SELECT */
4706       assert( pSel!=0 );
4707       assert( pFrom->pTab==0 );
4708       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4709       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4710 #endif
4711     }else{
4712       /* An ordinary table or view name in the FROM clause */
4713       assert( pFrom->pTab==0 );
4714       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4715       if( pTab==0 ) return WRC_Abort;
4716       if( pTab->nTabRef>=0xffff ){
4717         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4718            pTab->zName);
4719         pFrom->pTab = 0;
4720         return WRC_Abort;
4721       }
4722       pTab->nTabRef++;
4723       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4724         return WRC_Abort;
4725       }
4726 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4727       if( IsVirtual(pTab) || pTab->pSelect ){
4728         i16 nCol;
4729         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4730         assert( pFrom->pSelect==0 );
4731         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4732         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4733         nCol = pTab->nCol;
4734         pTab->nCol = -1;
4735         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4736         pTab->nCol = nCol;
4737       }
4738 #endif
4739     }
4740 
4741     /* Locate the index named by the INDEXED BY clause, if any. */
4742     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4743       return WRC_Abort;
4744     }
4745   }
4746 
4747   /* Process NATURAL keywords, and ON and USING clauses of joins.
4748   */
4749   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4750     return WRC_Abort;
4751   }
4752 
4753   /* For every "*" that occurs in the column list, insert the names of
4754   ** all columns in all tables.  And for every TABLE.* insert the names
4755   ** of all columns in TABLE.  The parser inserted a special expression
4756   ** with the TK_ASTERISK operator for each "*" that it found in the column
4757   ** list.  The following code just has to locate the TK_ASTERISK
4758   ** expressions and expand each one to the list of all columns in
4759   ** all tables.
4760   **
4761   ** The first loop just checks to see if there are any "*" operators
4762   ** that need expanding.
4763   */
4764   for(k=0; k<pEList->nExpr; k++){
4765     pE = pEList->a[k].pExpr;
4766     if( pE->op==TK_ASTERISK ) break;
4767     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4768     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4769     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4770     elistFlags |= pE->flags;
4771   }
4772   if( k<pEList->nExpr ){
4773     /*
4774     ** If we get here it means the result set contains one or more "*"
4775     ** operators that need to be expanded.  Loop through each expression
4776     ** in the result set and expand them one by one.
4777     */
4778     struct ExprList_item *a = pEList->a;
4779     ExprList *pNew = 0;
4780     int flags = pParse->db->flags;
4781     int longNames = (flags & SQLITE_FullColNames)!=0
4782                       && (flags & SQLITE_ShortColNames)==0;
4783 
4784     for(k=0; k<pEList->nExpr; k++){
4785       pE = a[k].pExpr;
4786       elistFlags |= pE->flags;
4787       pRight = pE->pRight;
4788       assert( pE->op!=TK_DOT || pRight!=0 );
4789       if( pE->op!=TK_ASTERISK
4790        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4791       ){
4792         /* This particular expression does not need to be expanded.
4793         */
4794         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4795         if( pNew ){
4796           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4797           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4798           a[k].zName = 0;
4799           a[k].zSpan = 0;
4800         }
4801         a[k].pExpr = 0;
4802       }else{
4803         /* This expression is a "*" or a "TABLE.*" and needs to be
4804         ** expanded. */
4805         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4806         char *zTName = 0;       /* text of name of TABLE */
4807         if( pE->op==TK_DOT ){
4808           assert( pE->pLeft!=0 );
4809           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4810           zTName = pE->pLeft->u.zToken;
4811         }
4812         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4813           Table *pTab = pFrom->pTab;
4814           Select *pSub = pFrom->pSelect;
4815           char *zTabName = pFrom->zAlias;
4816           const char *zSchemaName = 0;
4817           int iDb;
4818           if( zTabName==0 ){
4819             zTabName = pTab->zName;
4820           }
4821           if( db->mallocFailed ) break;
4822           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4823             pSub = 0;
4824             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4825               continue;
4826             }
4827             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4828             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4829           }
4830           for(j=0; j<pTab->nCol; j++){
4831             char *zName = pTab->aCol[j].zName;
4832             char *zColname;  /* The computed column name */
4833             char *zToFree;   /* Malloced string that needs to be freed */
4834             Token sColname;  /* Computed column name as a token */
4835 
4836             assert( zName );
4837             if( zTName && pSub
4838              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4839             ){
4840               continue;
4841             }
4842 
4843             /* If a column is marked as 'hidden', omit it from the expanded
4844             ** result-set list unless the SELECT has the SF_IncludeHidden
4845             ** bit set.
4846             */
4847             if( (p->selFlags & SF_IncludeHidden)==0
4848              && IsHiddenColumn(&pTab->aCol[j])
4849             ){
4850               continue;
4851             }
4852             tableSeen = 1;
4853 
4854             if( i>0 && zTName==0 ){
4855               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4856                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4857               ){
4858                 /* In a NATURAL join, omit the join columns from the
4859                 ** table to the right of the join */
4860                 continue;
4861               }
4862               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4863                 /* In a join with a USING clause, omit columns in the
4864                 ** using clause from the table on the right. */
4865                 continue;
4866               }
4867             }
4868             pRight = sqlite3Expr(db, TK_ID, zName);
4869             zColname = zName;
4870             zToFree = 0;
4871             if( longNames || pTabList->nSrc>1 ){
4872               Expr *pLeft;
4873               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4874               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
4875               if( zSchemaName ){
4876                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4877                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
4878               }
4879               if( longNames ){
4880                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4881                 zToFree = zColname;
4882               }
4883             }else{
4884               pExpr = pRight;
4885             }
4886             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4887             sqlite3TokenInit(&sColname, zColname);
4888             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4889             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4890               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4891               if( pSub ){
4892                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4893                 testcase( pX->zSpan==0 );
4894               }else{
4895                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4896                                            zSchemaName, zTabName, zColname);
4897                 testcase( pX->zSpan==0 );
4898               }
4899               pX->bSpanIsTab = 1;
4900             }
4901             sqlite3DbFree(db, zToFree);
4902           }
4903         }
4904         if( !tableSeen ){
4905           if( zTName ){
4906             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4907           }else{
4908             sqlite3ErrorMsg(pParse, "no tables specified");
4909           }
4910         }
4911       }
4912     }
4913     sqlite3ExprListDelete(db, pEList);
4914     p->pEList = pNew;
4915   }
4916   if( p->pEList ){
4917     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4918       sqlite3ErrorMsg(pParse, "too many columns in result set");
4919       return WRC_Abort;
4920     }
4921     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
4922       p->selFlags |= SF_ComplexResult;
4923     }
4924   }
4925   return WRC_Continue;
4926 }
4927 
4928 /*
4929 ** No-op routine for the parse-tree walker.
4930 **
4931 ** When this routine is the Walker.xExprCallback then expression trees
4932 ** are walked without any actions being taken at each node.  Presumably,
4933 ** when this routine is used for Walker.xExprCallback then
4934 ** Walker.xSelectCallback is set to do something useful for every
4935 ** subquery in the parser tree.
4936 */
4937 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4938   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4939   return WRC_Continue;
4940 }
4941 
4942 /*
4943 ** No-op routine for the parse-tree walker for SELECT statements.
4944 ** subquery in the parser tree.
4945 */
4946 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
4947   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4948   return WRC_Continue;
4949 }
4950 
4951 #if SQLITE_DEBUG
4952 /*
4953 ** Always assert.  This xSelectCallback2 implementation proves that the
4954 ** xSelectCallback2 is never invoked.
4955 */
4956 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
4957   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4958   assert( 0 );
4959 }
4960 #endif
4961 /*
4962 ** This routine "expands" a SELECT statement and all of its subqueries.
4963 ** For additional information on what it means to "expand" a SELECT
4964 ** statement, see the comment on the selectExpand worker callback above.
4965 **
4966 ** Expanding a SELECT statement is the first step in processing a
4967 ** SELECT statement.  The SELECT statement must be expanded before
4968 ** name resolution is performed.
4969 **
4970 ** If anything goes wrong, an error message is written into pParse.
4971 ** The calling function can detect the problem by looking at pParse->nErr
4972 ** and/or pParse->db->mallocFailed.
4973 */
4974 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4975   Walker w;
4976   w.xExprCallback = sqlite3ExprWalkNoop;
4977   w.pParse = pParse;
4978   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
4979     w.xSelectCallback = convertCompoundSelectToSubquery;
4980     w.xSelectCallback2 = 0;
4981     sqlite3WalkSelect(&w, pSelect);
4982   }
4983   w.xSelectCallback = selectExpander;
4984   w.xSelectCallback2 = selectPopWith;
4985   sqlite3WalkSelect(&w, pSelect);
4986 }
4987 
4988 
4989 #ifndef SQLITE_OMIT_SUBQUERY
4990 /*
4991 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4992 ** interface.
4993 **
4994 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4995 ** information to the Table structure that represents the result set
4996 ** of that subquery.
4997 **
4998 ** The Table structure that represents the result set was constructed
4999 ** by selectExpander() but the type and collation information was omitted
5000 ** at that point because identifiers had not yet been resolved.  This
5001 ** routine is called after identifier resolution.
5002 */
5003 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5004   Parse *pParse;
5005   int i;
5006   SrcList *pTabList;
5007   struct SrcList_item *pFrom;
5008 
5009   assert( p->selFlags & SF_Resolved );
5010   if( p->selFlags & SF_HasTypeInfo ) return;
5011   p->selFlags |= SF_HasTypeInfo;
5012   pParse = pWalker->pParse;
5013   pTabList = p->pSrc;
5014   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5015     Table *pTab = pFrom->pTab;
5016     assert( pTab!=0 );
5017     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5018       /* A sub-query in the FROM clause of a SELECT */
5019       Select *pSel = pFrom->pSelect;
5020       if( pSel ){
5021         while( pSel->pPrior ) pSel = pSel->pPrior;
5022         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5023       }
5024     }
5025   }
5026 }
5027 #endif
5028 
5029 
5030 /*
5031 ** This routine adds datatype and collating sequence information to
5032 ** the Table structures of all FROM-clause subqueries in a
5033 ** SELECT statement.
5034 **
5035 ** Use this routine after name resolution.
5036 */
5037 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5038 #ifndef SQLITE_OMIT_SUBQUERY
5039   Walker w;
5040   w.xSelectCallback = sqlite3SelectWalkNoop;
5041   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5042   w.xExprCallback = sqlite3ExprWalkNoop;
5043   w.pParse = pParse;
5044   sqlite3WalkSelect(&w, pSelect);
5045 #endif
5046 }
5047 
5048 
5049 /*
5050 ** This routine sets up a SELECT statement for processing.  The
5051 ** following is accomplished:
5052 **
5053 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5054 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5055 **     *  ON and USING clauses are shifted into WHERE statements
5056 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5057 **     *  Identifiers in expression are matched to tables.
5058 **
5059 ** This routine acts recursively on all subqueries within the SELECT.
5060 */
5061 void sqlite3SelectPrep(
5062   Parse *pParse,         /* The parser context */
5063   Select *p,             /* The SELECT statement being coded. */
5064   NameContext *pOuterNC  /* Name context for container */
5065 ){
5066   assert( p!=0 || pParse->db->mallocFailed );
5067   if( pParse->db->mallocFailed ) return;
5068   if( p->selFlags & SF_HasTypeInfo ) return;
5069   sqlite3SelectExpand(pParse, p);
5070   if( pParse->nErr || pParse->db->mallocFailed ) return;
5071   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5072   if( pParse->nErr || pParse->db->mallocFailed ) return;
5073   sqlite3SelectAddTypeInfo(pParse, p);
5074 }
5075 
5076 /*
5077 ** Reset the aggregate accumulator.
5078 **
5079 ** The aggregate accumulator is a set of memory cells that hold
5080 ** intermediate results while calculating an aggregate.  This
5081 ** routine generates code that stores NULLs in all of those memory
5082 ** cells.
5083 */
5084 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5085   Vdbe *v = pParse->pVdbe;
5086   int i;
5087   struct AggInfo_func *pFunc;
5088   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5089   if( nReg==0 ) return;
5090 #ifdef SQLITE_DEBUG
5091   /* Verify that all AggInfo registers are within the range specified by
5092   ** AggInfo.mnReg..AggInfo.mxReg */
5093   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5094   for(i=0; i<pAggInfo->nColumn; i++){
5095     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5096          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5097   }
5098   for(i=0; i<pAggInfo->nFunc; i++){
5099     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5100          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5101   }
5102 #endif
5103   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5104   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5105     if( pFunc->iDistinct>=0 ){
5106       Expr *pE = pFunc->pExpr;
5107       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5108       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5109         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5110            "argument");
5111         pFunc->iDistinct = -1;
5112       }else{
5113         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5114         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5115                           (char*)pKeyInfo, P4_KEYINFO);
5116       }
5117     }
5118   }
5119 }
5120 
5121 /*
5122 ** Invoke the OP_AggFinalize opcode for every aggregate function
5123 ** in the AggInfo structure.
5124 */
5125 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5126   Vdbe *v = pParse->pVdbe;
5127   int i;
5128   struct AggInfo_func *pF;
5129   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5130     ExprList *pList = pF->pExpr->x.pList;
5131     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5132     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5133     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5134   }
5135 }
5136 
5137 
5138 /*
5139 ** Update the accumulator memory cells for an aggregate based on
5140 ** the current cursor position.
5141 **
5142 ** If regAcc is non-zero and there are no min() or max() aggregates
5143 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5144 ** registers i register regAcc contains 0. The caller will take care
5145 ** of setting and clearing regAcc.
5146 */
5147 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5148   Vdbe *v = pParse->pVdbe;
5149   int i;
5150   int regHit = 0;
5151   int addrHitTest = 0;
5152   struct AggInfo_func *pF;
5153   struct AggInfo_col *pC;
5154 
5155   pAggInfo->directMode = 1;
5156   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5157     int nArg;
5158     int addrNext = 0;
5159     int regAgg;
5160     ExprList *pList = pF->pExpr->x.pList;
5161     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5162     if( pList ){
5163       nArg = pList->nExpr;
5164       regAgg = sqlite3GetTempRange(pParse, nArg);
5165       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5166     }else{
5167       nArg = 0;
5168       regAgg = 0;
5169     }
5170     if( pF->iDistinct>=0 ){
5171       addrNext = sqlite3VdbeMakeLabel(v);
5172       testcase( nArg==0 );  /* Error condition */
5173       testcase( nArg>1 );   /* Also an error */
5174       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5175     }
5176     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5177       CollSeq *pColl = 0;
5178       struct ExprList_item *pItem;
5179       int j;
5180       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5181       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5182         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5183       }
5184       if( !pColl ){
5185         pColl = pParse->db->pDfltColl;
5186       }
5187       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5188       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5189     }
5190     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5191     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5192     sqlite3VdbeChangeP5(v, (u8)nArg);
5193     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
5194     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5195     if( addrNext ){
5196       sqlite3VdbeResolveLabel(v, addrNext);
5197       sqlite3ExprCacheClear(pParse);
5198     }
5199   }
5200 
5201   /* Before populating the accumulator registers, clear the column cache.
5202   ** Otherwise, if any of the required column values are already present
5203   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
5204   ** to pC->iMem. But by the time the value is used, the original register
5205   ** may have been used, invalidating the underlying buffer holding the
5206   ** text or blob value. See ticket [883034dcb5].
5207   **
5208   ** Another solution would be to change the OP_SCopy used to copy cached
5209   ** values to an OP_Copy.
5210   */
5211   if( regHit==0 && pAggInfo->nAccumulator ){
5212     regHit = regAcc;
5213   }
5214   if( regHit ){
5215     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5216   }
5217   sqlite3ExprCacheClear(pParse);
5218   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5219     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5220   }
5221   pAggInfo->directMode = 0;
5222   sqlite3ExprCacheClear(pParse);
5223   if( addrHitTest ){
5224     sqlite3VdbeJumpHere(v, addrHitTest);
5225   }
5226 }
5227 
5228 /*
5229 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5230 ** count(*) query ("SELECT count(*) FROM pTab").
5231 */
5232 #ifndef SQLITE_OMIT_EXPLAIN
5233 static void explainSimpleCount(
5234   Parse *pParse,                  /* Parse context */
5235   Table *pTab,                    /* Table being queried */
5236   Index *pIdx                     /* Index used to optimize scan, or NULL */
5237 ){
5238   if( pParse->explain==2 ){
5239     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5240     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5241         pTab->zName,
5242         bCover ? " USING COVERING INDEX " : "",
5243         bCover ? pIdx->zName : ""
5244     );
5245   }
5246 }
5247 #else
5248 # define explainSimpleCount(a,b,c)
5249 #endif
5250 
5251 /*
5252 ** sqlite3WalkExpr() callback used by havingToWhere().
5253 **
5254 ** If the node passed to the callback is a TK_AND node, return
5255 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5256 **
5257 ** Otherwise, return WRC_Prune. In this case, also check if the
5258 ** sub-expression matches the criteria for being moved to the WHERE
5259 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5260 ** within the HAVING expression with a constant "1".
5261 */
5262 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5263   if( pExpr->op!=TK_AND ){
5264     Select *pS = pWalker->u.pSelect;
5265     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5266       sqlite3 *db = pWalker->pParse->db;
5267       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5268       if( pNew ){
5269         Expr *pWhere = pS->pWhere;
5270         SWAP(Expr, *pNew, *pExpr);
5271         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5272         pS->pWhere = pNew;
5273         pWalker->eCode = 1;
5274       }
5275     }
5276     return WRC_Prune;
5277   }
5278   return WRC_Continue;
5279 }
5280 
5281 /*
5282 ** Transfer eligible terms from the HAVING clause of a query, which is
5283 ** processed after grouping, to the WHERE clause, which is processed before
5284 ** grouping. For example, the query:
5285 **
5286 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5287 **
5288 ** can be rewritten as:
5289 **
5290 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5291 **
5292 ** A term of the HAVING expression is eligible for transfer if it consists
5293 ** entirely of constants and expressions that are also GROUP BY terms that
5294 ** use the "BINARY" collation sequence.
5295 */
5296 static void havingToWhere(Parse *pParse, Select *p){
5297   Walker sWalker;
5298   memset(&sWalker, 0, sizeof(sWalker));
5299   sWalker.pParse = pParse;
5300   sWalker.xExprCallback = havingToWhereExprCb;
5301   sWalker.u.pSelect = p;
5302   sqlite3WalkExpr(&sWalker, p->pHaving);
5303 #if SELECTTRACE_ENABLED
5304   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5305     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5306     sqlite3TreeViewSelect(0, p, 0);
5307   }
5308 #endif
5309 }
5310 
5311 /*
5312 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5313 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5314 ** then return 0.
5315 */
5316 static struct SrcList_item *isSelfJoinView(
5317   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5318   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5319 ){
5320   struct SrcList_item *pItem;
5321   for(pItem = pTabList->a; pItem<pThis; pItem++){
5322     if( pItem->pSelect==0 ) continue;
5323     if( pItem->fg.viaCoroutine ) continue;
5324     if( pItem->zName==0 ) continue;
5325     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5326     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5327     if( sqlite3ExprCompare(0,
5328           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5329     ){
5330       /* The view was modified by some other optimization such as
5331       ** pushDownWhereTerms() */
5332       continue;
5333     }
5334     return pItem;
5335   }
5336   return 0;
5337 }
5338 
5339 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5340 /*
5341 ** Attempt to transform a query of the form
5342 **
5343 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5344 **
5345 ** Into this:
5346 **
5347 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5348 **
5349 ** The transformation only works if all of the following are true:
5350 **
5351 **   *  The subquery is a UNION ALL of two or more terms
5352 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5353 **   *  The outer query is a simple count(*)
5354 **
5355 ** Return TRUE if the optimization is undertaken.
5356 */
5357 static int countOfViewOptimization(Parse *pParse, Select *p){
5358   Select *pSub, *pPrior;
5359   Expr *pExpr;
5360   Expr *pCount;
5361   sqlite3 *db;
5362   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5363   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5364   pExpr = p->pEList->a[0].pExpr;
5365   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5366   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5367   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5368   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5369   pSub = p->pSrc->a[0].pSelect;
5370   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5371   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5372   do{
5373     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5374     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5375     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5376     pSub = pSub->pPrior;                              /* Repeat over compound */
5377   }while( pSub );
5378 
5379   /* If we reach this point then it is OK to perform the transformation */
5380 
5381   db = pParse->db;
5382   pCount = pExpr;
5383   pExpr = 0;
5384   pSub = p->pSrc->a[0].pSelect;
5385   p->pSrc->a[0].pSelect = 0;
5386   sqlite3SrcListDelete(db, p->pSrc);
5387   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5388   while( pSub ){
5389     Expr *pTerm;
5390     pPrior = pSub->pPrior;
5391     pSub->pPrior = 0;
5392     pSub->pNext = 0;
5393     pSub->selFlags |= SF_Aggregate;
5394     pSub->selFlags &= ~SF_Compound;
5395     pSub->nSelectRow = 0;
5396     sqlite3ExprListDelete(db, pSub->pEList);
5397     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5398     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5399     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5400     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5401     if( pExpr==0 ){
5402       pExpr = pTerm;
5403     }else{
5404       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5405     }
5406     pSub = pPrior;
5407   }
5408   p->pEList->a[0].pExpr = pExpr;
5409   p->selFlags &= ~SF_Aggregate;
5410 
5411 #if SELECTTRACE_ENABLED
5412   if( sqlite3SelectTrace & 0x400 ){
5413     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5414     sqlite3TreeViewSelect(0, p, 0);
5415   }
5416 #endif
5417   return 1;
5418 }
5419 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5420 
5421 /*
5422 ** Generate code for the SELECT statement given in the p argument.
5423 **
5424 ** The results are returned according to the SelectDest structure.
5425 ** See comments in sqliteInt.h for further information.
5426 **
5427 ** This routine returns the number of errors.  If any errors are
5428 ** encountered, then an appropriate error message is left in
5429 ** pParse->zErrMsg.
5430 **
5431 ** This routine does NOT free the Select structure passed in.  The
5432 ** calling function needs to do that.
5433 */
5434 int sqlite3Select(
5435   Parse *pParse,         /* The parser context */
5436   Select *p,             /* The SELECT statement being coded. */
5437   SelectDest *pDest      /* What to do with the query results */
5438 ){
5439   int i, j;              /* Loop counters */
5440   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5441   Vdbe *v;               /* The virtual machine under construction */
5442   int isAgg;             /* True for select lists like "count(*)" */
5443   ExprList *pEList = 0;  /* List of columns to extract. */
5444   SrcList *pTabList;     /* List of tables to select from */
5445   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5446   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5447   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5448   int rc = 1;            /* Value to return from this function */
5449   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5450   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5451   AggInfo sAggInfo;      /* Information used by aggregate queries */
5452   int iEnd;              /* Address of the end of the query */
5453   sqlite3 *db;           /* The database connection */
5454   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5455   u8 minMaxFlag;                 /* Flag for min/max queries */
5456 
5457   db = pParse->db;
5458   v = sqlite3GetVdbe(pParse);
5459   if( p==0 || db->mallocFailed || pParse->nErr ){
5460     return 1;
5461   }
5462   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5463   memset(&sAggInfo, 0, sizeof(sAggInfo));
5464 #if SELECTTRACE_ENABLED
5465   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5466   if( sqlite3SelectTrace & 0x100 ){
5467     sqlite3TreeViewSelect(0, p, 0);
5468   }
5469 #endif
5470 
5471   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5472   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5473   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5474   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5475   if( IgnorableOrderby(pDest) ){
5476     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5477            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5478            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5479            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5480     /* If ORDER BY makes no difference in the output then neither does
5481     ** DISTINCT so it can be removed too. */
5482     sqlite3ExprListDelete(db, p->pOrderBy);
5483     p->pOrderBy = 0;
5484     p->selFlags &= ~SF_Distinct;
5485   }
5486   sqlite3SelectPrep(pParse, p, 0);
5487   if( pParse->nErr || db->mallocFailed ){
5488     goto select_end;
5489   }
5490   assert( p->pEList!=0 );
5491 #if SELECTTRACE_ENABLED
5492   if( sqlite3SelectTrace & 0x104 ){
5493     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5494     sqlite3TreeViewSelect(0, p, 0);
5495   }
5496 #endif
5497 
5498   if( pDest->eDest==SRT_Output ){
5499     generateColumnNames(pParse, p);
5500   }
5501 
5502 #ifndef SQLITE_OMIT_WINDOWFUNC
5503   if( sqlite3WindowRewrite(pParse, p) ){
5504     goto select_end;
5505   }
5506 #if SELECTTRACE_ENABLED
5507   if( sqlite3SelectTrace & 0x108 ){
5508     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5509     sqlite3TreeViewSelect(0, p, 0);
5510   }
5511 #endif
5512 #endif /* SQLITE_OMIT_WINDOWFUNC */
5513   pTabList = p->pSrc;
5514   isAgg = (p->selFlags & SF_Aggregate)!=0;
5515   memset(&sSort, 0, sizeof(sSort));
5516   sSort.pOrderBy = p->pOrderBy;
5517 
5518   /* Try to various optimizations (flattening subqueries, and strength
5519   ** reduction of join operators) in the FROM clause up into the main query
5520   */
5521 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5522   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5523     struct SrcList_item *pItem = &pTabList->a[i];
5524     Select *pSub = pItem->pSelect;
5525     Table *pTab = pItem->pTab;
5526 
5527     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5528     ** of the LEFT JOIN used in the WHERE clause.
5529     */
5530     if( (pItem->fg.jointype & JT_LEFT)!=0
5531      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5532      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5533     ){
5534       SELECTTRACE(0x100,pParse,p,
5535                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5536       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5537       unsetJoinExpr(p->pWhere, pItem->iCursor);
5538     }
5539 
5540     /* No futher action if this term of the FROM clause is no a subquery */
5541     if( pSub==0 ) continue;
5542 
5543     /* Catch mismatch in the declared columns of a view and the number of
5544     ** columns in the SELECT on the RHS */
5545     if( pTab->nCol!=pSub->pEList->nExpr ){
5546       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5547                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5548       goto select_end;
5549     }
5550 
5551     /* Do not try to flatten an aggregate subquery.
5552     **
5553     ** Flattening an aggregate subquery is only possible if the outer query
5554     ** is not a join.  But if the outer query is not a join, then the subquery
5555     ** will be implemented as a co-routine and there is no advantage to
5556     ** flattening in that case.
5557     */
5558     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5559     assert( pSub->pGroupBy==0 );
5560 
5561     /* If the outer query contains a "complex" result set (that is,
5562     ** if the result set of the outer query uses functions or subqueries)
5563     ** and if the subquery contains an ORDER BY clause and if
5564     ** it will be implemented as a co-routine, then do not flatten.  This
5565     ** restriction allows SQL constructs like this:
5566     **
5567     **  SELECT expensive_function(x)
5568     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5569     **
5570     ** The expensive_function() is only computed on the 10 rows that
5571     ** are output, rather than every row of the table.
5572     **
5573     ** The requirement that the outer query have a complex result set
5574     ** means that flattening does occur on simpler SQL constraints without
5575     ** the expensive_function() like:
5576     **
5577     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5578     */
5579     if( pSub->pOrderBy!=0
5580      && i==0
5581      && (p->selFlags & SF_ComplexResult)!=0
5582      && (pTabList->nSrc==1
5583          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5584     ){
5585       continue;
5586     }
5587 
5588     if( flattenSubquery(pParse, p, i, isAgg) ){
5589       /* This subquery can be absorbed into its parent. */
5590       i = -1;
5591     }
5592     pTabList = p->pSrc;
5593     if( db->mallocFailed ) goto select_end;
5594     if( !IgnorableOrderby(pDest) ){
5595       sSort.pOrderBy = p->pOrderBy;
5596     }
5597   }
5598 #endif
5599 
5600 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5601   /* Handle compound SELECT statements using the separate multiSelect()
5602   ** procedure.
5603   */
5604   if( p->pPrior ){
5605     rc = multiSelect(pParse, p, pDest);
5606 #if SELECTTRACE_ENABLED
5607     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5608     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5609       sqlite3TreeViewSelect(0, p, 0);
5610     }
5611 #endif
5612     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5613     return rc;
5614   }
5615 #endif
5616 
5617   /* For each term in the FROM clause, do two things:
5618   ** (1) Authorized unreferenced tables
5619   ** (2) Generate code for all sub-queries
5620   */
5621   for(i=0; i<pTabList->nSrc; i++){
5622     struct SrcList_item *pItem = &pTabList->a[i];
5623     SelectDest dest;
5624     Select *pSub;
5625 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5626     const char *zSavedAuthContext;
5627 #endif
5628 
5629     /* Issue SQLITE_READ authorizations with a fake column name for any
5630     ** tables that are referenced but from which no values are extracted.
5631     ** Examples of where these kinds of null SQLITE_READ authorizations
5632     ** would occur:
5633     **
5634     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5635     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5636     **
5637     ** The fake column name is an empty string.  It is possible for a table to
5638     ** have a column named by the empty string, in which case there is no way to
5639     ** distinguish between an unreferenced table and an actual reference to the
5640     ** "" column. The original design was for the fake column name to be a NULL,
5641     ** which would be unambiguous.  But legacy authorization callbacks might
5642     ** assume the column name is non-NULL and segfault.  The use of an empty
5643     ** string for the fake column name seems safer.
5644     */
5645     if( pItem->colUsed==0 ){
5646       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5647     }
5648 
5649 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5650     /* Generate code for all sub-queries in the FROM clause
5651     */
5652     pSub = pItem->pSelect;
5653     if( pSub==0 ) continue;
5654 
5655     /* Sometimes the code for a subquery will be generated more than
5656     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5657     ** for example.  In that case, do not regenerate the code to manifest
5658     ** a view or the co-routine to implement a view.  The first instance
5659     ** is sufficient, though the subroutine to manifest the view does need
5660     ** to be invoked again. */
5661     if( pItem->addrFillSub ){
5662       if( pItem->fg.viaCoroutine==0 ){
5663         /* The subroutine that manifests the view might be a one-time routine,
5664         ** or it might need to be rerun on each iteration because it
5665         ** encodes a correlated subquery. */
5666         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5667         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5668       }
5669       continue;
5670     }
5671 
5672     /* Increment Parse.nHeight by the height of the largest expression
5673     ** tree referred to by this, the parent select. The child select
5674     ** may contain expression trees of at most
5675     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5676     ** more conservative than necessary, but much easier than enforcing
5677     ** an exact limit.
5678     */
5679     pParse->nHeight += sqlite3SelectExprHeight(p);
5680 
5681     /* Make copies of constant WHERE-clause terms in the outer query down
5682     ** inside the subquery.  This can help the subquery to run more efficiently.
5683     */
5684     if( OptimizationEnabled(db, SQLITE_PushDown)
5685      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5686                            (pItem->fg.jointype & JT_OUTER)!=0)
5687     ){
5688 #if SELECTTRACE_ENABLED
5689       if( sqlite3SelectTrace & 0x100 ){
5690         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
5691         sqlite3TreeViewSelect(0, p, 0);
5692       }
5693 #endif
5694     }else{
5695       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5696     }
5697 
5698     zSavedAuthContext = pParse->zAuthContext;
5699     pParse->zAuthContext = pItem->zName;
5700 
5701     /* Generate code to implement the subquery
5702     **
5703     ** The subquery is implemented as a co-routine if the subquery is
5704     ** guaranteed to be the outer loop (so that it does not need to be
5705     ** computed more than once)
5706     **
5707     ** TODO: Are there other reasons beside (1) to use a co-routine
5708     ** implementation?
5709     */
5710     if( i==0
5711      && (pTabList->nSrc==1
5712             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5713     ){
5714       /* Implement a co-routine that will return a single row of the result
5715       ** set on each invocation.
5716       */
5717       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5718 
5719       pItem->regReturn = ++pParse->nMem;
5720       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5721       VdbeComment((v, "%s", pItem->pTab->zName));
5722       pItem->addrFillSub = addrTop;
5723       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5724       ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub));
5725       sqlite3Select(pParse, pSub, &dest);
5726       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5727       pItem->fg.viaCoroutine = 1;
5728       pItem->regResult = dest.iSdst;
5729       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5730       sqlite3VdbeJumpHere(v, addrTop-1);
5731       sqlite3ClearTempRegCache(pParse);
5732     }else{
5733       /* Generate a subroutine that will fill an ephemeral table with
5734       ** the content of this subquery.  pItem->addrFillSub will point
5735       ** to the address of the generated subroutine.  pItem->regReturn
5736       ** is a register allocated to hold the subroutine return address
5737       */
5738       int topAddr;
5739       int onceAddr = 0;
5740       int retAddr;
5741       struct SrcList_item *pPrior;
5742 
5743       assert( pItem->addrFillSub==0 );
5744       pItem->regReturn = ++pParse->nMem;
5745       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5746       pItem->addrFillSub = topAddr+1;
5747       if( pItem->fg.isCorrelated==0 ){
5748         /* If the subquery is not correlated and if we are not inside of
5749         ** a trigger, then we only need to compute the value of the subquery
5750         ** once. */
5751         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5752         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5753       }else{
5754         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5755       }
5756       pPrior = isSelfJoinView(pTabList, pItem);
5757       if( pPrior ){
5758         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5759         assert( pPrior->pSelect!=0 );
5760         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5761       }else{
5762         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5763         ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub));
5764         sqlite3Select(pParse, pSub, &dest);
5765       }
5766       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5767       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5768       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5769       VdbeComment((v, "end %s", pItem->pTab->zName));
5770       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5771       sqlite3ClearTempRegCache(pParse);
5772     }
5773     if( db->mallocFailed ) goto select_end;
5774     pParse->nHeight -= sqlite3SelectExprHeight(p);
5775     pParse->zAuthContext = zSavedAuthContext;
5776 #endif
5777   }
5778 
5779   /* Various elements of the SELECT copied into local variables for
5780   ** convenience */
5781   pEList = p->pEList;
5782   pWhere = p->pWhere;
5783   pGroupBy = p->pGroupBy;
5784   pHaving = p->pHaving;
5785   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5786 
5787 #if SELECTTRACE_ENABLED
5788   if( sqlite3SelectTrace & 0x400 ){
5789     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5790     sqlite3TreeViewSelect(0, p, 0);
5791   }
5792 #endif
5793 
5794 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5795   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5796    && countOfViewOptimization(pParse, p)
5797   ){
5798     if( db->mallocFailed ) goto select_end;
5799     pEList = p->pEList;
5800     pTabList = p->pSrc;
5801   }
5802 #endif
5803 
5804   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5805   ** if the select-list is the same as the ORDER BY list, then this query
5806   ** can be rewritten as a GROUP BY. In other words, this:
5807   **
5808   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5809   **
5810   ** is transformed to:
5811   **
5812   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5813   **
5814   ** The second form is preferred as a single index (or temp-table) may be
5815   ** used for both the ORDER BY and DISTINCT processing. As originally
5816   ** written the query must use a temp-table for at least one of the ORDER
5817   ** BY and DISTINCT, and an index or separate temp-table for the other.
5818   */
5819   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5820    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5821   ){
5822     p->selFlags &= ~SF_Distinct;
5823     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5824     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5825     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5826     ** original setting of the SF_Distinct flag, not the current setting */
5827     assert( sDistinct.isTnct );
5828 
5829 #if SELECTTRACE_ENABLED
5830     if( sqlite3SelectTrace & 0x400 ){
5831       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5832       sqlite3TreeViewSelect(0, p, 0);
5833     }
5834 #endif
5835   }
5836 
5837   /* If there is an ORDER BY clause, then create an ephemeral index to
5838   ** do the sorting.  But this sorting ephemeral index might end up
5839   ** being unused if the data can be extracted in pre-sorted order.
5840   ** If that is the case, then the OP_OpenEphemeral instruction will be
5841   ** changed to an OP_Noop once we figure out that the sorting index is
5842   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5843   ** that change.
5844   */
5845   if( sSort.pOrderBy ){
5846     KeyInfo *pKeyInfo;
5847     pKeyInfo = sqlite3KeyInfoFromExprList(
5848         pParse, sSort.pOrderBy, 0, pEList->nExpr);
5849     sSort.iECursor = pParse->nTab++;
5850     sSort.addrSortIndex =
5851       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5852           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5853           (char*)pKeyInfo, P4_KEYINFO
5854       );
5855   }else{
5856     sSort.addrSortIndex = -1;
5857   }
5858 
5859   /* If the output is destined for a temporary table, open that table.
5860   */
5861   if( pDest->eDest==SRT_EphemTab ){
5862     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5863   }
5864 
5865   /* Set the limiter.
5866   */
5867   iEnd = sqlite3VdbeMakeLabel(v);
5868   if( (p->selFlags & SF_FixedLimit)==0 ){
5869     p->nSelectRow = 320;  /* 4 billion rows */
5870   }
5871   computeLimitRegisters(pParse, p, iEnd);
5872   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5873     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5874     sSort.sortFlags |= SORTFLAG_UseSorter;
5875   }
5876 
5877   /* Open an ephemeral index to use for the distinct set.
5878   */
5879   if( p->selFlags & SF_Distinct ){
5880     sDistinct.tabTnct = pParse->nTab++;
5881     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5882                        sDistinct.tabTnct, 0, 0,
5883                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
5884                        P4_KEYINFO);
5885     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5886     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5887   }else{
5888     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5889   }
5890 
5891   if( !isAgg && pGroupBy==0 ){
5892     /* No aggregate functions and no GROUP BY clause */
5893     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
5894                    | (p->selFlags & SF_FixedLimit);
5895 #ifndef SQLITE_OMIT_WINDOWFUNC
5896     Window *pWin = p->pWin;      /* Master window object (or NULL) */
5897     if( pWin ){
5898       sqlite3WindowCodeInit(pParse, pWin);
5899     }
5900 #endif
5901     assert( WHERE_USE_LIMIT==SF_FixedLimit );
5902 
5903 
5904     /* Begin the database scan. */
5905     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
5906     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5907                                p->pEList, wctrlFlags, p->nSelectRow);
5908     if( pWInfo==0 ) goto select_end;
5909     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5910       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5911     }
5912     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5913       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5914     }
5915     if( sSort.pOrderBy ){
5916       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5917       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
5918       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5919         sSort.pOrderBy = 0;
5920       }
5921     }
5922 
5923     /* If sorting index that was created by a prior OP_OpenEphemeral
5924     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5925     ** into an OP_Noop.
5926     */
5927     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5928       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5929     }
5930 
5931     assert( p->pEList==pEList );
5932 #ifndef SQLITE_OMIT_WINDOWFUNC
5933     if( pWin ){
5934       int addrGosub = sqlite3VdbeMakeLabel(v);
5935       int iCont = sqlite3VdbeMakeLabel(v);
5936       int iBreak = sqlite3VdbeMakeLabel(v);
5937       int regGosub = ++pParse->nMem;
5938 
5939       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
5940 
5941       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
5942       sqlite3VdbeResolveLabel(v, addrGosub);
5943       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
5944       sqlite3VdbeResolveLabel(v, iCont);
5945       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
5946       sqlite3VdbeResolveLabel(v, iBreak);
5947     }else
5948 #endif /* SQLITE_OMIT_WINDOWFUNC */
5949     {
5950       /* Use the standard inner loop. */
5951       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
5952           sqlite3WhereContinueLabel(pWInfo),
5953           sqlite3WhereBreakLabel(pWInfo));
5954 
5955       /* End the database scan loop.
5956       */
5957       sqlite3WhereEnd(pWInfo);
5958     }
5959   }else{
5960     /* This case when there exist aggregate functions or a GROUP BY clause
5961     ** or both */
5962     NameContext sNC;    /* Name context for processing aggregate information */
5963     int iAMem;          /* First Mem address for storing current GROUP BY */
5964     int iBMem;          /* First Mem address for previous GROUP BY */
5965     int iUseFlag;       /* Mem address holding flag indicating that at least
5966                         ** one row of the input to the aggregator has been
5967                         ** processed */
5968     int iAbortFlag;     /* Mem address which causes query abort if positive */
5969     int groupBySort;    /* Rows come from source in GROUP BY order */
5970     int addrEnd;        /* End of processing for this SELECT */
5971     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5972     int sortOut = 0;    /* Output register from the sorter */
5973     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5974 
5975     /* Remove any and all aliases between the result set and the
5976     ** GROUP BY clause.
5977     */
5978     if( pGroupBy ){
5979       int k;                        /* Loop counter */
5980       struct ExprList_item *pItem;  /* For looping over expression in a list */
5981 
5982       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5983         pItem->u.x.iAlias = 0;
5984       }
5985       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5986         pItem->u.x.iAlias = 0;
5987       }
5988       assert( 66==sqlite3LogEst(100) );
5989       if( p->nSelectRow>66 ) p->nSelectRow = 66;
5990     }else{
5991       assert( 0==sqlite3LogEst(1) );
5992       p->nSelectRow = 0;
5993     }
5994 
5995     /* If there is both a GROUP BY and an ORDER BY clause and they are
5996     ** identical, then it may be possible to disable the ORDER BY clause
5997     ** on the grounds that the GROUP BY will cause elements to come out
5998     ** in the correct order. It also may not - the GROUP BY might use a
5999     ** database index that causes rows to be grouped together as required
6000     ** but not actually sorted. Either way, record the fact that the
6001     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6002     ** variable.  */
6003     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6004       orderByGrp = 1;
6005     }
6006 
6007     /* Create a label to jump to when we want to abort the query */
6008     addrEnd = sqlite3VdbeMakeLabel(v);
6009 
6010     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6011     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6012     ** SELECT statement.
6013     */
6014     memset(&sNC, 0, sizeof(sNC));
6015     sNC.pParse = pParse;
6016     sNC.pSrcList = pTabList;
6017     sNC.uNC.pAggInfo = &sAggInfo;
6018     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6019     sAggInfo.mnReg = pParse->nMem+1;
6020     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6021     sAggInfo.pGroupBy = pGroupBy;
6022     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6023     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6024     if( pHaving ){
6025       if( pGroupBy ){
6026         assert( pWhere==p->pWhere );
6027         assert( pHaving==p->pHaving );
6028         assert( pGroupBy==p->pGroupBy );
6029         havingToWhere(pParse, p);
6030         pWhere = p->pWhere;
6031       }
6032       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6033     }
6034     sAggInfo.nAccumulator = sAggInfo.nColumn;
6035     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6036       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6037     }else{
6038       minMaxFlag = WHERE_ORDERBY_NORMAL;
6039     }
6040     for(i=0; i<sAggInfo.nFunc; i++){
6041       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6042       sNC.ncFlags |= NC_InAggFunc;
6043       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6044       sNC.ncFlags &= ~NC_InAggFunc;
6045     }
6046     sAggInfo.mxReg = pParse->nMem;
6047     if( db->mallocFailed ) goto select_end;
6048 #if SELECTTRACE_ENABLED
6049     if( sqlite3SelectTrace & 0x400 ){
6050       int ii;
6051       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6052       sqlite3TreeViewSelect(0, p, 0);
6053       for(ii=0; ii<sAggInfo.nColumn; ii++){
6054         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6055             ii, sAggInfo.aCol[ii].iMem);
6056         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6057       }
6058       for(ii=0; ii<sAggInfo.nFunc; ii++){
6059         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6060             ii, sAggInfo.aFunc[ii].iMem);
6061         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6062       }
6063     }
6064 #endif
6065 
6066 
6067     /* Processing for aggregates with GROUP BY is very different and
6068     ** much more complex than aggregates without a GROUP BY.
6069     */
6070     if( pGroupBy ){
6071       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6072       int addr1;          /* A-vs-B comparision jump */
6073       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6074       int regOutputRow;   /* Return address register for output subroutine */
6075       int addrSetAbort;   /* Set the abort flag and return */
6076       int addrTopOfLoop;  /* Top of the input loop */
6077       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6078       int addrReset;      /* Subroutine for resetting the accumulator */
6079       int regReset;       /* Return address register for reset subroutine */
6080 
6081       /* If there is a GROUP BY clause we might need a sorting index to
6082       ** implement it.  Allocate that sorting index now.  If it turns out
6083       ** that we do not need it after all, the OP_SorterOpen instruction
6084       ** will be converted into a Noop.
6085       */
6086       sAggInfo.sortingIdx = pParse->nTab++;
6087       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6088       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6089           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6090           0, (char*)pKeyInfo, P4_KEYINFO);
6091 
6092       /* Initialize memory locations used by GROUP BY aggregate processing
6093       */
6094       iUseFlag = ++pParse->nMem;
6095       iAbortFlag = ++pParse->nMem;
6096       regOutputRow = ++pParse->nMem;
6097       addrOutputRow = sqlite3VdbeMakeLabel(v);
6098       regReset = ++pParse->nMem;
6099       addrReset = sqlite3VdbeMakeLabel(v);
6100       iAMem = pParse->nMem + 1;
6101       pParse->nMem += pGroupBy->nExpr;
6102       iBMem = pParse->nMem + 1;
6103       pParse->nMem += pGroupBy->nExpr;
6104       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6105       VdbeComment((v, "clear abort flag"));
6106       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6107 
6108       /* Begin a loop that will extract all source rows in GROUP BY order.
6109       ** This might involve two separate loops with an OP_Sort in between, or
6110       ** it might be a single loop that uses an index to extract information
6111       ** in the right order to begin with.
6112       */
6113       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6114       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6115       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6116           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6117       );
6118       if( pWInfo==0 ) goto select_end;
6119       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6120         /* The optimizer is able to deliver rows in group by order so
6121         ** we do not have to sort.  The OP_OpenEphemeral table will be
6122         ** cancelled later because we still need to use the pKeyInfo
6123         */
6124         groupBySort = 0;
6125       }else{
6126         /* Rows are coming out in undetermined order.  We have to push
6127         ** each row into a sorting index, terminate the first loop,
6128         ** then loop over the sorting index in order to get the output
6129         ** in sorted order
6130         */
6131         int regBase;
6132         int regRecord;
6133         int nCol;
6134         int nGroupBy;
6135 
6136         explainTempTable(pParse,
6137             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6138                     "DISTINCT" : "GROUP BY");
6139 
6140         groupBySort = 1;
6141         nGroupBy = pGroupBy->nExpr;
6142         nCol = nGroupBy;
6143         j = nGroupBy;
6144         for(i=0; i<sAggInfo.nColumn; i++){
6145           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6146             nCol++;
6147             j++;
6148           }
6149         }
6150         regBase = sqlite3GetTempRange(pParse, nCol);
6151         sqlite3ExprCacheClear(pParse);
6152         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6153         j = nGroupBy;
6154         for(i=0; i<sAggInfo.nColumn; i++){
6155           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6156           if( pCol->iSorterColumn>=j ){
6157             int r1 = j + regBase;
6158             sqlite3ExprCodeGetColumnToReg(pParse,
6159                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
6160             j++;
6161           }
6162         }
6163         regRecord = sqlite3GetTempReg(pParse);
6164         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6165         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6166         sqlite3ReleaseTempReg(pParse, regRecord);
6167         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6168         sqlite3WhereEnd(pWInfo);
6169         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6170         sortOut = sqlite3GetTempReg(pParse);
6171         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6172         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6173         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6174         sAggInfo.useSortingIdx = 1;
6175         sqlite3ExprCacheClear(pParse);
6176 
6177       }
6178 
6179       /* If the index or temporary table used by the GROUP BY sort
6180       ** will naturally deliver rows in the order required by the ORDER BY
6181       ** clause, cancel the ephemeral table open coded earlier.
6182       **
6183       ** This is an optimization - the correct answer should result regardless.
6184       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6185       ** disable this optimization for testing purposes.  */
6186       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6187        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6188       ){
6189         sSort.pOrderBy = 0;
6190         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6191       }
6192 
6193       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6194       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6195       ** Then compare the current GROUP BY terms against the GROUP BY terms
6196       ** from the previous row currently stored in a0, a1, a2...
6197       */
6198       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6199       sqlite3ExprCacheClear(pParse);
6200       if( groupBySort ){
6201         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6202                           sortOut, sortPTab);
6203       }
6204       for(j=0; j<pGroupBy->nExpr; j++){
6205         if( groupBySort ){
6206           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6207         }else{
6208           sAggInfo.directMode = 1;
6209           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6210         }
6211       }
6212       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6213                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6214       addr1 = sqlite3VdbeCurrentAddr(v);
6215       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6216 
6217       /* Generate code that runs whenever the GROUP BY changes.
6218       ** Changes in the GROUP BY are detected by the previous code
6219       ** block.  If there were no changes, this block is skipped.
6220       **
6221       ** This code copies current group by terms in b0,b1,b2,...
6222       ** over to a0,a1,a2.  It then calls the output subroutine
6223       ** and resets the aggregate accumulator registers in preparation
6224       ** for the next GROUP BY batch.
6225       */
6226       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6227       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6228       VdbeComment((v, "output one row"));
6229       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6230       VdbeComment((v, "check abort flag"));
6231       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6232       VdbeComment((v, "reset accumulator"));
6233 
6234       /* Update the aggregate accumulators based on the content of
6235       ** the current row
6236       */
6237       sqlite3VdbeJumpHere(v, addr1);
6238       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6239       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6240       VdbeComment((v, "indicate data in accumulator"));
6241 
6242       /* End of the loop
6243       */
6244       if( groupBySort ){
6245         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6246         VdbeCoverage(v);
6247       }else{
6248         sqlite3WhereEnd(pWInfo);
6249         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6250       }
6251 
6252       /* Output the final row of result
6253       */
6254       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6255       VdbeComment((v, "output final row"));
6256 
6257       /* Jump over the subroutines
6258       */
6259       sqlite3VdbeGoto(v, addrEnd);
6260 
6261       /* Generate a subroutine that outputs a single row of the result
6262       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6263       ** is less than or equal to zero, the subroutine is a no-op.  If
6264       ** the processing calls for the query to abort, this subroutine
6265       ** increments the iAbortFlag memory location before returning in
6266       ** order to signal the caller to abort.
6267       */
6268       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6269       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6270       VdbeComment((v, "set abort flag"));
6271       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6272       sqlite3VdbeResolveLabel(v, addrOutputRow);
6273       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6274       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6275       VdbeCoverage(v);
6276       VdbeComment((v, "Groupby result generator entry point"));
6277       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6278       finalizeAggFunctions(pParse, &sAggInfo);
6279       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6280       selectInnerLoop(pParse, p, -1, &sSort,
6281                       &sDistinct, pDest,
6282                       addrOutputRow+1, addrSetAbort);
6283       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6284       VdbeComment((v, "end groupby result generator"));
6285 
6286       /* Generate a subroutine that will reset the group-by accumulator
6287       */
6288       sqlite3VdbeResolveLabel(v, addrReset);
6289       resetAccumulator(pParse, &sAggInfo);
6290       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6291       VdbeComment((v, "indicate accumulator empty"));
6292       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6293 
6294     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6295     else {
6296 #ifndef SQLITE_OMIT_BTREECOUNT
6297       Table *pTab;
6298       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6299         /* If isSimpleCount() returns a pointer to a Table structure, then
6300         ** the SQL statement is of the form:
6301         **
6302         **   SELECT count(*) FROM <tbl>
6303         **
6304         ** where the Table structure returned represents table <tbl>.
6305         **
6306         ** This statement is so common that it is optimized specially. The
6307         ** OP_Count instruction is executed either on the intkey table that
6308         ** contains the data for table <tbl> or on one of its indexes. It
6309         ** is better to execute the op on an index, as indexes are almost
6310         ** always spread across less pages than their corresponding tables.
6311         */
6312         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6313         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6314         Index *pIdx;                         /* Iterator variable */
6315         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6316         Index *pBest = 0;                    /* Best index found so far */
6317         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6318 
6319         sqlite3CodeVerifySchema(pParse, iDb);
6320         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6321 
6322         /* Search for the index that has the lowest scan cost.
6323         **
6324         ** (2011-04-15) Do not do a full scan of an unordered index.
6325         **
6326         ** (2013-10-03) Do not count the entries in a partial index.
6327         **
6328         ** In practice the KeyInfo structure will not be used. It is only
6329         ** passed to keep OP_OpenRead happy.
6330         */
6331         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6332         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6333           if( pIdx->bUnordered==0
6334            && pIdx->szIdxRow<pTab->szTabRow
6335            && pIdx->pPartIdxWhere==0
6336            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6337           ){
6338             pBest = pIdx;
6339           }
6340         }
6341         if( pBest ){
6342           iRoot = pBest->tnum;
6343           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6344         }
6345 
6346         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6347         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6348         if( pKeyInfo ){
6349           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6350         }
6351         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6352         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6353         explainSimpleCount(pParse, pTab, pBest);
6354       }else
6355 #endif /* SQLITE_OMIT_BTREECOUNT */
6356       {
6357         int regAcc = 0;           /* "populate accumulators" flag */
6358 
6359         /* If there are accumulator registers but no min() or max() functions,
6360         ** allocate register regAcc. Register regAcc will contain 0 the first
6361         ** time the inner loop runs, and 1 thereafter. The code generated
6362         ** by updateAccumulator() only updates the accumulator registers if
6363         ** regAcc contains 0.  */
6364         if( sAggInfo.nAccumulator ){
6365           for(i=0; i<sAggInfo.nFunc; i++){
6366             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6367           }
6368           if( i==sAggInfo.nFunc ){
6369             regAcc = ++pParse->nMem;
6370             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6371           }
6372         }
6373 
6374         /* This case runs if the aggregate has no GROUP BY clause.  The
6375         ** processing is much simpler since there is only a single row
6376         ** of output.
6377         */
6378         assert( p->pGroupBy==0 );
6379         resetAccumulator(pParse, &sAggInfo);
6380 
6381         /* If this query is a candidate for the min/max optimization, then
6382         ** minMaxFlag will have been previously set to either
6383         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6384         ** be an appropriate ORDER BY expression for the optimization.
6385         */
6386         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6387         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6388 
6389         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6390         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6391                                    0, minMaxFlag, 0);
6392         if( pWInfo==0 ){
6393           goto select_end;
6394         }
6395         updateAccumulator(pParse, regAcc, &sAggInfo);
6396         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6397         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6398           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6399           VdbeComment((v, "%s() by index",
6400                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6401         }
6402         sqlite3WhereEnd(pWInfo);
6403         finalizeAggFunctions(pParse, &sAggInfo);
6404       }
6405 
6406       sSort.pOrderBy = 0;
6407       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6408       selectInnerLoop(pParse, p, -1, 0, 0,
6409                       pDest, addrEnd, addrEnd);
6410     }
6411     sqlite3VdbeResolveLabel(v, addrEnd);
6412 
6413   } /* endif aggregate query */
6414 
6415   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6416     explainTempTable(pParse, "DISTINCT");
6417   }
6418 
6419   /* If there is an ORDER BY clause, then we need to sort the results
6420   ** and send them to the callback one by one.
6421   */
6422   if( sSort.pOrderBy ){
6423     explainTempTable(pParse,
6424                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6425     assert( p->pEList==pEList );
6426     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6427   }
6428 
6429   /* Jump here to skip this query
6430   */
6431   sqlite3VdbeResolveLabel(v, iEnd);
6432 
6433   /* The SELECT has been coded. If there is an error in the Parse structure,
6434   ** set the return code to 1. Otherwise 0. */
6435   rc = (pParse->nErr>0);
6436 
6437   /* Control jumps to here if an error is encountered above, or upon
6438   ** successful coding of the SELECT.
6439   */
6440 select_end:
6441   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6442   sqlite3DbFree(db, sAggInfo.aCol);
6443   sqlite3DbFree(db, sAggInfo.aFunc);
6444 #if SELECTTRACE_ENABLED
6445   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6446   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6447     sqlite3TreeViewSelect(0, p, 0);
6448   }
6449 #endif
6450   ExplainQueryPlanPop(pParse);
6451   return rc;
6452 }
6453