1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%s/%d/%p: ",(S)->zSelName,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 #ifndef SQLITE_OMIT_WINDOWFUNC 100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 101 sqlite3WindowListDelete(db, p->pWinDefn); 102 } 103 #endif 104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 105 if( bFree ) sqlite3DbFreeNN(db, p); 106 p = pPrior; 107 bFree = 1; 108 } 109 } 110 111 /* 112 ** Initialize a SelectDest structure. 113 */ 114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 115 pDest->eDest = (u8)eDest; 116 pDest->iSDParm = iParm; 117 pDest->zAffSdst = 0; 118 pDest->iSdst = 0; 119 pDest->nSdst = 0; 120 } 121 122 123 /* 124 ** Allocate a new Select structure and return a pointer to that 125 ** structure. 126 */ 127 Select *sqlite3SelectNew( 128 Parse *pParse, /* Parsing context */ 129 ExprList *pEList, /* which columns to include in the result */ 130 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 131 Expr *pWhere, /* the WHERE clause */ 132 ExprList *pGroupBy, /* the GROUP BY clause */ 133 Expr *pHaving, /* the HAVING clause */ 134 ExprList *pOrderBy, /* the ORDER BY clause */ 135 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 136 Expr *pLimit /* LIMIT value. NULL means not used */ 137 ){ 138 Select *pNew; 139 Select standin; 140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 141 if( pNew==0 ){ 142 assert( pParse->db->mallocFailed ); 143 pNew = &standin; 144 } 145 if( pEList==0 ){ 146 pEList = sqlite3ExprListAppend(pParse, 0, 147 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 148 } 149 pNew->pEList = pEList; 150 pNew->op = TK_SELECT; 151 pNew->selFlags = selFlags; 152 pNew->iLimit = 0; 153 pNew->iOffset = 0; 154 #if SELECTTRACE_ENABLED 155 pNew->zSelName[0] = 0; 156 #endif 157 pNew->addrOpenEphm[0] = -1; 158 pNew->addrOpenEphm[1] = -1; 159 pNew->nSelectRow = 0; 160 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 161 pNew->pSrc = pSrc; 162 pNew->pWhere = pWhere; 163 pNew->pGroupBy = pGroupBy; 164 pNew->pHaving = pHaving; 165 pNew->pOrderBy = pOrderBy; 166 pNew->pPrior = 0; 167 pNew->pNext = 0; 168 pNew->pLimit = pLimit; 169 pNew->pWith = 0; 170 #ifndef SQLITE_OMIT_WINDOWFUNC 171 pNew->pWin = 0; 172 pNew->pWinDefn = 0; 173 #endif 174 if( pParse->db->mallocFailed ) { 175 clearSelect(pParse->db, pNew, pNew!=&standin); 176 pNew = 0; 177 }else{ 178 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 179 } 180 assert( pNew!=&standin ); 181 return pNew; 182 } 183 184 #if SELECTTRACE_ENABLED 185 /* 186 ** Set the name of a Select object 187 */ 188 void sqlite3SelectSetName(Select *p, const char *zName){ 189 if( p && zName ){ 190 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 191 } 192 } 193 #endif 194 195 196 /* 197 ** Delete the given Select structure and all of its substructures. 198 */ 199 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 200 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 201 } 202 203 /* 204 ** Return a pointer to the right-most SELECT statement in a compound. 205 */ 206 static Select *findRightmost(Select *p){ 207 while( p->pNext ) p = p->pNext; 208 return p; 209 } 210 211 /* 212 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 213 ** type of join. Return an integer constant that expresses that type 214 ** in terms of the following bit values: 215 ** 216 ** JT_INNER 217 ** JT_CROSS 218 ** JT_OUTER 219 ** JT_NATURAL 220 ** JT_LEFT 221 ** JT_RIGHT 222 ** 223 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 224 ** 225 ** If an illegal or unsupported join type is seen, then still return 226 ** a join type, but put an error in the pParse structure. 227 */ 228 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 229 int jointype = 0; 230 Token *apAll[3]; 231 Token *p; 232 /* 0123456789 123456789 123456789 123 */ 233 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 234 static const struct { 235 u8 i; /* Beginning of keyword text in zKeyText[] */ 236 u8 nChar; /* Length of the keyword in characters */ 237 u8 code; /* Join type mask */ 238 } aKeyword[] = { 239 /* natural */ { 0, 7, JT_NATURAL }, 240 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 241 /* outer */ { 10, 5, JT_OUTER }, 242 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 243 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 244 /* inner */ { 23, 5, JT_INNER }, 245 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 246 }; 247 int i, j; 248 apAll[0] = pA; 249 apAll[1] = pB; 250 apAll[2] = pC; 251 for(i=0; i<3 && apAll[i]; i++){ 252 p = apAll[i]; 253 for(j=0; j<ArraySize(aKeyword); j++){ 254 if( p->n==aKeyword[j].nChar 255 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 256 jointype |= aKeyword[j].code; 257 break; 258 } 259 } 260 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 261 if( j>=ArraySize(aKeyword) ){ 262 jointype |= JT_ERROR; 263 break; 264 } 265 } 266 if( 267 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 268 (jointype & JT_ERROR)!=0 269 ){ 270 const char *zSp = " "; 271 assert( pB!=0 ); 272 if( pC==0 ){ zSp++; } 273 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 274 "%T %T%s%T", pA, pB, zSp, pC); 275 jointype = JT_INNER; 276 }else if( (jointype & JT_OUTER)!=0 277 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 278 sqlite3ErrorMsg(pParse, 279 "RIGHT and FULL OUTER JOINs are not currently supported"); 280 jointype = JT_INNER; 281 } 282 return jointype; 283 } 284 285 /* 286 ** Return the index of a column in a table. Return -1 if the column 287 ** is not contained in the table. 288 */ 289 static int columnIndex(Table *pTab, const char *zCol){ 290 int i; 291 for(i=0; i<pTab->nCol; i++){ 292 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 293 } 294 return -1; 295 } 296 297 /* 298 ** Search the first N tables in pSrc, from left to right, looking for a 299 ** table that has a column named zCol. 300 ** 301 ** When found, set *piTab and *piCol to the table index and column index 302 ** of the matching column and return TRUE. 303 ** 304 ** If not found, return FALSE. 305 */ 306 static int tableAndColumnIndex( 307 SrcList *pSrc, /* Array of tables to search */ 308 int N, /* Number of tables in pSrc->a[] to search */ 309 const char *zCol, /* Name of the column we are looking for */ 310 int *piTab, /* Write index of pSrc->a[] here */ 311 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 312 ){ 313 int i; /* For looping over tables in pSrc */ 314 int iCol; /* Index of column matching zCol */ 315 316 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 317 for(i=0; i<N; i++){ 318 iCol = columnIndex(pSrc->a[i].pTab, zCol); 319 if( iCol>=0 ){ 320 if( piTab ){ 321 *piTab = i; 322 *piCol = iCol; 323 } 324 return 1; 325 } 326 } 327 return 0; 328 } 329 330 /* 331 ** This function is used to add terms implied by JOIN syntax to the 332 ** WHERE clause expression of a SELECT statement. The new term, which 333 ** is ANDed with the existing WHERE clause, is of the form: 334 ** 335 ** (tab1.col1 = tab2.col2) 336 ** 337 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 338 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 339 ** column iColRight of tab2. 340 */ 341 static void addWhereTerm( 342 Parse *pParse, /* Parsing context */ 343 SrcList *pSrc, /* List of tables in FROM clause */ 344 int iLeft, /* Index of first table to join in pSrc */ 345 int iColLeft, /* Index of column in first table */ 346 int iRight, /* Index of second table in pSrc */ 347 int iColRight, /* Index of column in second table */ 348 int isOuterJoin, /* True if this is an OUTER join */ 349 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 350 ){ 351 sqlite3 *db = pParse->db; 352 Expr *pE1; 353 Expr *pE2; 354 Expr *pEq; 355 356 assert( iLeft<iRight ); 357 assert( pSrc->nSrc>iRight ); 358 assert( pSrc->a[iLeft].pTab ); 359 assert( pSrc->a[iRight].pTab ); 360 361 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 362 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 363 364 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 365 if( pEq && isOuterJoin ){ 366 ExprSetProperty(pEq, EP_FromJoin); 367 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 368 ExprSetVVAProperty(pEq, EP_NoReduce); 369 pEq->iRightJoinTable = (i16)pE2->iTable; 370 } 371 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 372 } 373 374 /* 375 ** Set the EP_FromJoin property on all terms of the given expression. 376 ** And set the Expr.iRightJoinTable to iTable for every term in the 377 ** expression. 378 ** 379 ** The EP_FromJoin property is used on terms of an expression to tell 380 ** the LEFT OUTER JOIN processing logic that this term is part of the 381 ** join restriction specified in the ON or USING clause and not a part 382 ** of the more general WHERE clause. These terms are moved over to the 383 ** WHERE clause during join processing but we need to remember that they 384 ** originated in the ON or USING clause. 385 ** 386 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 387 ** expression depends on table iRightJoinTable even if that table is not 388 ** explicitly mentioned in the expression. That information is needed 389 ** for cases like this: 390 ** 391 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 392 ** 393 ** The where clause needs to defer the handling of the t1.x=5 394 ** term until after the t2 loop of the join. In that way, a 395 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 396 ** defer the handling of t1.x=5, it will be processed immediately 397 ** after the t1 loop and rows with t1.x!=5 will never appear in 398 ** the output, which is incorrect. 399 */ 400 static void setJoinExpr(Expr *p, int iTable){ 401 while( p ){ 402 ExprSetProperty(p, EP_FromJoin); 403 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 404 ExprSetVVAProperty(p, EP_NoReduce); 405 p->iRightJoinTable = (i16)iTable; 406 if( p->op==TK_FUNCTION && p->x.pList ){ 407 int i; 408 for(i=0; i<p->x.pList->nExpr; i++){ 409 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 410 } 411 } 412 setJoinExpr(p->pLeft, iTable); 413 p = p->pRight; 414 } 415 } 416 417 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 418 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 419 ** an ordinary term that omits the EP_FromJoin mark. 420 ** 421 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 422 */ 423 static void unsetJoinExpr(Expr *p, int iTable){ 424 while( p ){ 425 if( ExprHasProperty(p, EP_FromJoin) 426 && (iTable<0 || p->iRightJoinTable==iTable) ){ 427 ExprClearProperty(p, EP_FromJoin); 428 } 429 if( p->op==TK_FUNCTION && p->x.pList ){ 430 int i; 431 for(i=0; i<p->x.pList->nExpr; i++){ 432 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 433 } 434 } 435 unsetJoinExpr(p->pLeft, iTable); 436 p = p->pRight; 437 } 438 } 439 440 /* 441 ** This routine processes the join information for a SELECT statement. 442 ** ON and USING clauses are converted into extra terms of the WHERE clause. 443 ** NATURAL joins also create extra WHERE clause terms. 444 ** 445 ** The terms of a FROM clause are contained in the Select.pSrc structure. 446 ** The left most table is the first entry in Select.pSrc. The right-most 447 ** table is the last entry. The join operator is held in the entry to 448 ** the left. Thus entry 0 contains the join operator for the join between 449 ** entries 0 and 1. Any ON or USING clauses associated with the join are 450 ** also attached to the left entry. 451 ** 452 ** This routine returns the number of errors encountered. 453 */ 454 static int sqliteProcessJoin(Parse *pParse, Select *p){ 455 SrcList *pSrc; /* All tables in the FROM clause */ 456 int i, j; /* Loop counters */ 457 struct SrcList_item *pLeft; /* Left table being joined */ 458 struct SrcList_item *pRight; /* Right table being joined */ 459 460 pSrc = p->pSrc; 461 pLeft = &pSrc->a[0]; 462 pRight = &pLeft[1]; 463 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 464 Table *pRightTab = pRight->pTab; 465 int isOuter; 466 467 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 468 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 469 470 /* When the NATURAL keyword is present, add WHERE clause terms for 471 ** every column that the two tables have in common. 472 */ 473 if( pRight->fg.jointype & JT_NATURAL ){ 474 if( pRight->pOn || pRight->pUsing ){ 475 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 476 "an ON or USING clause", 0); 477 return 1; 478 } 479 for(j=0; j<pRightTab->nCol; j++){ 480 char *zName; /* Name of column in the right table */ 481 int iLeft; /* Matching left table */ 482 int iLeftCol; /* Matching column in the left table */ 483 484 zName = pRightTab->aCol[j].zName; 485 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 486 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 487 isOuter, &p->pWhere); 488 } 489 } 490 } 491 492 /* Disallow both ON and USING clauses in the same join 493 */ 494 if( pRight->pOn && pRight->pUsing ){ 495 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 496 "clauses in the same join"); 497 return 1; 498 } 499 500 /* Add the ON clause to the end of the WHERE clause, connected by 501 ** an AND operator. 502 */ 503 if( pRight->pOn ){ 504 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 505 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 506 pRight->pOn = 0; 507 } 508 509 /* Create extra terms on the WHERE clause for each column named 510 ** in the USING clause. Example: If the two tables to be joined are 511 ** A and B and the USING clause names X, Y, and Z, then add this 512 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 513 ** Report an error if any column mentioned in the USING clause is 514 ** not contained in both tables to be joined. 515 */ 516 if( pRight->pUsing ){ 517 IdList *pList = pRight->pUsing; 518 for(j=0; j<pList->nId; j++){ 519 char *zName; /* Name of the term in the USING clause */ 520 int iLeft; /* Table on the left with matching column name */ 521 int iLeftCol; /* Column number of matching column on the left */ 522 int iRightCol; /* Column number of matching column on the right */ 523 524 zName = pList->a[j].zName; 525 iRightCol = columnIndex(pRightTab, zName); 526 if( iRightCol<0 527 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 528 ){ 529 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 530 "not present in both tables", zName); 531 return 1; 532 } 533 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 534 isOuter, &p->pWhere); 535 } 536 } 537 } 538 return 0; 539 } 540 541 /* 542 ** An instance of this object holds information (beyond pParse and pSelect) 543 ** needed to load the next result row that is to be added to the sorter. 544 */ 545 typedef struct RowLoadInfo RowLoadInfo; 546 struct RowLoadInfo { 547 int regResult; /* Store results in array of registers here */ 548 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 550 ExprList *pExtra; /* Extra columns needed by sorter refs */ 551 int regExtraResult; /* Where to load the extra columns */ 552 #endif 553 }; 554 555 /* 556 ** This routine does the work of loading query data into an array of 557 ** registers so that it can be added to the sorter. 558 */ 559 static void innerLoopLoadRow( 560 Parse *pParse, /* Statement under construction */ 561 Select *pSelect, /* The query being coded */ 562 RowLoadInfo *pInfo /* Info needed to complete the row load */ 563 ){ 564 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 565 0, pInfo->ecelFlags); 566 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 567 if( pInfo->pExtra ){ 568 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 569 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 570 } 571 #endif 572 } 573 574 /* 575 ** Code the OP_MakeRecord instruction that generates the entry to be 576 ** added into the sorter. 577 ** 578 ** Return the register in which the result is stored. 579 */ 580 static int makeSorterRecord( 581 Parse *pParse, 582 SortCtx *pSort, 583 Select *pSelect, 584 int regBase, 585 int nBase 586 ){ 587 int nOBSat = pSort->nOBSat; 588 Vdbe *v = pParse->pVdbe; 589 int regOut = ++pParse->nMem; 590 if( pSort->pDeferredRowLoad ){ 591 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 592 } 593 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 594 return regOut; 595 } 596 597 /* 598 ** Generate code that will push the record in registers regData 599 ** through regData+nData-1 onto the sorter. 600 */ 601 static void pushOntoSorter( 602 Parse *pParse, /* Parser context */ 603 SortCtx *pSort, /* Information about the ORDER BY clause */ 604 Select *pSelect, /* The whole SELECT statement */ 605 int regData, /* First register holding data to be sorted */ 606 int regOrigData, /* First register holding data before packing */ 607 int nData, /* Number of elements in the regData data array */ 608 int nPrefixReg /* No. of reg prior to regData available for use */ 609 ){ 610 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 611 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 612 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 613 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 614 int regBase; /* Regs for sorter record */ 615 int regRecord = 0; /* Assembled sorter record */ 616 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 617 int op; /* Opcode to add sorter record to sorter */ 618 int iLimit; /* LIMIT counter */ 619 int iSkip = 0; /* End of the sorter insert loop */ 620 621 assert( bSeq==0 || bSeq==1 ); 622 623 /* Three cases: 624 ** (1) The data to be sorted has already been packed into a Record 625 ** by a prior OP_MakeRecord. In this case nData==1 and regData 626 ** will be completely unrelated to regOrigData. 627 ** (2) All output columns are included in the sort record. In that 628 ** case regData==regOrigData. 629 ** (3) Some output columns are omitted from the sort record due to 630 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 631 ** SQLITE_ECEL_OMITREF optimization, or due to the 632 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 633 ** regOrigData is 0 to prevent this routine from trying to copy 634 ** values that might not yet exist. 635 */ 636 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 637 638 if( nPrefixReg ){ 639 assert( nPrefixReg==nExpr+bSeq ); 640 regBase = regData - nPrefixReg; 641 }else{ 642 regBase = pParse->nMem + 1; 643 pParse->nMem += nBase; 644 } 645 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 646 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 647 pSort->labelDone = sqlite3VdbeMakeLabel(v); 648 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 649 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 650 if( bSeq ){ 651 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 652 } 653 if( nPrefixReg==0 && nData>0 ){ 654 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 655 } 656 if( nOBSat>0 ){ 657 int regPrevKey; /* The first nOBSat columns of the previous row */ 658 int addrFirst; /* Address of the OP_IfNot opcode */ 659 int addrJmp; /* Address of the OP_Jump opcode */ 660 VdbeOp *pOp; /* Opcode that opens the sorter */ 661 int nKey; /* Number of sorting key columns, including OP_Sequence */ 662 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 663 664 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 665 regPrevKey = pParse->nMem+1; 666 pParse->nMem += pSort->nOBSat; 667 nKey = nExpr - pSort->nOBSat + bSeq; 668 if( bSeq ){ 669 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 670 }else{ 671 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 672 } 673 VdbeCoverage(v); 674 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 675 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 676 if( pParse->db->mallocFailed ) return; 677 pOp->p2 = nKey + nData; 678 pKI = pOp->p4.pKeyInfo; 679 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 680 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 681 testcase( pKI->nAllField > pKI->nKeyField+2 ); 682 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 683 pKI->nAllField-pKI->nKeyField-1); 684 addrJmp = sqlite3VdbeCurrentAddr(v); 685 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 686 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 687 pSort->regReturn = ++pParse->nMem; 688 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 689 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 690 if( iLimit ){ 691 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 692 VdbeCoverage(v); 693 } 694 sqlite3VdbeJumpHere(v, addrFirst); 695 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 696 sqlite3VdbeJumpHere(v, addrJmp); 697 } 698 if( iLimit ){ 699 /* At this point the values for the new sorter entry are stored 700 ** in an array of registers. They need to be composed into a record 701 ** and inserted into the sorter if either (a) there are currently 702 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 703 ** the largest record currently in the sorter. If (b) is true and there 704 ** are already LIMIT+OFFSET items in the sorter, delete the largest 705 ** entry before inserting the new one. This way there are never more 706 ** than LIMIT+OFFSET items in the sorter. 707 ** 708 ** If the new record does not need to be inserted into the sorter, 709 ** jump to the next iteration of the loop. Or, if the 710 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner 711 ** loop delivers items in sorted order, jump to the next iteration 712 ** of the outer loop. 713 */ 714 int iCsr = pSort->iECursor; 715 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 716 VdbeCoverage(v); 717 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 718 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 719 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 720 VdbeCoverage(v); 721 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 722 } 723 if( regRecord==0 ){ 724 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 725 } 726 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 727 op = OP_SorterInsert; 728 }else{ 729 op = OP_IdxInsert; 730 } 731 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 732 regBase+nOBSat, nBase-nOBSat); 733 if( iSkip ){ 734 assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 ); 735 sqlite3VdbeChangeP2(v, iSkip, 736 sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop); 737 } 738 } 739 740 /* 741 ** Add code to implement the OFFSET 742 */ 743 static void codeOffset( 744 Vdbe *v, /* Generate code into this VM */ 745 int iOffset, /* Register holding the offset counter */ 746 int iContinue /* Jump here to skip the current record */ 747 ){ 748 if( iOffset>0 ){ 749 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 750 VdbeComment((v, "OFFSET")); 751 } 752 } 753 754 /* 755 ** Add code that will check to make sure the N registers starting at iMem 756 ** form a distinct entry. iTab is a sorting index that holds previously 757 ** seen combinations of the N values. A new entry is made in iTab 758 ** if the current N values are new. 759 ** 760 ** A jump to addrRepeat is made and the N+1 values are popped from the 761 ** stack if the top N elements are not distinct. 762 */ 763 static void codeDistinct( 764 Parse *pParse, /* Parsing and code generating context */ 765 int iTab, /* A sorting index used to test for distinctness */ 766 int addrRepeat, /* Jump to here if not distinct */ 767 int N, /* Number of elements */ 768 int iMem /* First element */ 769 ){ 770 Vdbe *v; 771 int r1; 772 773 v = pParse->pVdbe; 774 r1 = sqlite3GetTempReg(pParse); 775 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 776 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 777 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 778 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 779 sqlite3ReleaseTempReg(pParse, r1); 780 } 781 782 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 783 /* 784 ** This function is called as part of inner-loop generation for a SELECT 785 ** statement with an ORDER BY that is not optimized by an index. It 786 ** determines the expressions, if any, that the sorter-reference 787 ** optimization should be used for. The sorter-reference optimization 788 ** is used for SELECT queries like: 789 ** 790 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 791 ** 792 ** If the optimization is used for expression "bigblob", then instead of 793 ** storing values read from that column in the sorter records, the PK of 794 ** the row from table t1 is stored instead. Then, as records are extracted from 795 ** the sorter to return to the user, the required value of bigblob is 796 ** retrieved directly from table t1. If the values are very large, this 797 ** can be more efficient than storing them directly in the sorter records. 798 ** 799 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 800 ** for which the sorter-reference optimization should be enabled. 801 ** Additionally, the pSort->aDefer[] array is populated with entries 802 ** for all cursors required to evaluate all selected expressions. Finally. 803 ** output variable (*ppExtra) is set to an expression list containing 804 ** expressions for all extra PK values that should be stored in the 805 ** sorter records. 806 */ 807 static void selectExprDefer( 808 Parse *pParse, /* Leave any error here */ 809 SortCtx *pSort, /* Sorter context */ 810 ExprList *pEList, /* Expressions destined for sorter */ 811 ExprList **ppExtra /* Expressions to append to sorter record */ 812 ){ 813 int i; 814 int nDefer = 0; 815 ExprList *pExtra = 0; 816 for(i=0; i<pEList->nExpr; i++){ 817 struct ExprList_item *pItem = &pEList->a[i]; 818 if( pItem->u.x.iOrderByCol==0 ){ 819 Expr *pExpr = pItem->pExpr; 820 Table *pTab = pExpr->pTab; 821 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 822 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 823 ){ 824 int j; 825 for(j=0; j<nDefer; j++){ 826 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 827 } 828 if( j==nDefer ){ 829 if( nDefer==ArraySize(pSort->aDefer) ){ 830 continue; 831 }else{ 832 int nKey = 1; 833 int k; 834 Index *pPk = 0; 835 if( !HasRowid(pTab) ){ 836 pPk = sqlite3PrimaryKeyIndex(pTab); 837 nKey = pPk->nKeyCol; 838 } 839 for(k=0; k<nKey; k++){ 840 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 841 if( pNew ){ 842 pNew->iTable = pExpr->iTable; 843 pNew->pTab = pExpr->pTab; 844 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 845 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 846 } 847 } 848 pSort->aDefer[nDefer].pTab = pExpr->pTab; 849 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 850 pSort->aDefer[nDefer].nKey = nKey; 851 nDefer++; 852 } 853 } 854 pItem->bSorterRef = 1; 855 } 856 } 857 } 858 pSort->nDefer = (u8)nDefer; 859 *ppExtra = pExtra; 860 } 861 #endif 862 863 /* 864 ** This routine generates the code for the inside of the inner loop 865 ** of a SELECT. 866 ** 867 ** If srcTab is negative, then the p->pEList expressions 868 ** are evaluated in order to get the data for this row. If srcTab is 869 ** zero or more, then data is pulled from srcTab and p->pEList is used only 870 ** to get the number of columns and the collation sequence for each column. 871 */ 872 static void selectInnerLoop( 873 Parse *pParse, /* The parser context */ 874 Select *p, /* The complete select statement being coded */ 875 int srcTab, /* Pull data from this table if non-negative */ 876 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 877 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 878 SelectDest *pDest, /* How to dispose of the results */ 879 int iContinue, /* Jump here to continue with next row */ 880 int iBreak /* Jump here to break out of the inner loop */ 881 ){ 882 Vdbe *v = pParse->pVdbe; 883 int i; 884 int hasDistinct; /* True if the DISTINCT keyword is present */ 885 int eDest = pDest->eDest; /* How to dispose of results */ 886 int iParm = pDest->iSDParm; /* First argument to disposal method */ 887 int nResultCol; /* Number of result columns */ 888 int nPrefixReg = 0; /* Number of extra registers before regResult */ 889 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 890 891 /* Usually, regResult is the first cell in an array of memory cells 892 ** containing the current result row. In this case regOrig is set to the 893 ** same value. However, if the results are being sent to the sorter, the 894 ** values for any expressions that are also part of the sort-key are omitted 895 ** from this array. In this case regOrig is set to zero. */ 896 int regResult; /* Start of memory holding current results */ 897 int regOrig; /* Start of memory holding full result (or 0) */ 898 899 assert( v ); 900 assert( p->pEList!=0 ); 901 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 902 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 903 if( pSort==0 && !hasDistinct ){ 904 assert( iContinue!=0 ); 905 codeOffset(v, p->iOffset, iContinue); 906 } 907 908 /* Pull the requested columns. 909 */ 910 nResultCol = p->pEList->nExpr; 911 912 if( pDest->iSdst==0 ){ 913 if( pSort ){ 914 nPrefixReg = pSort->pOrderBy->nExpr; 915 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 916 pParse->nMem += nPrefixReg; 917 } 918 pDest->iSdst = pParse->nMem+1; 919 pParse->nMem += nResultCol; 920 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 921 /* This is an error condition that can result, for example, when a SELECT 922 ** on the right-hand side of an INSERT contains more result columns than 923 ** there are columns in the table on the left. The error will be caught 924 ** and reported later. But we need to make sure enough memory is allocated 925 ** to avoid other spurious errors in the meantime. */ 926 pParse->nMem += nResultCol; 927 } 928 pDest->nSdst = nResultCol; 929 regOrig = regResult = pDest->iSdst; 930 if( srcTab>=0 ){ 931 for(i=0; i<nResultCol; i++){ 932 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 933 VdbeComment((v, "%s", p->pEList->a[i].zName)); 934 } 935 }else if( eDest!=SRT_Exists ){ 936 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 937 ExprList *pExtra = 0; 938 #endif 939 /* If the destination is an EXISTS(...) expression, the actual 940 ** values returned by the SELECT are not required. 941 */ 942 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 943 ExprList *pEList; 944 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 945 ecelFlags = SQLITE_ECEL_DUP; 946 }else{ 947 ecelFlags = 0; 948 } 949 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 950 /* For each expression in p->pEList that is a copy of an expression in 951 ** the ORDER BY clause (pSort->pOrderBy), set the associated 952 ** iOrderByCol value to one more than the index of the ORDER BY 953 ** expression within the sort-key that pushOntoSorter() will generate. 954 ** This allows the p->pEList field to be omitted from the sorted record, 955 ** saving space and CPU cycles. */ 956 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 957 958 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 959 int j; 960 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 961 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 962 } 963 } 964 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 965 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 966 if( pExtra && pParse->db->mallocFailed==0 ){ 967 /* If there are any extra PK columns to add to the sorter records, 968 ** allocate extra memory cells and adjust the OpenEphemeral 969 ** instruction to account for the larger records. This is only 970 ** required if there are one or more WITHOUT ROWID tables with 971 ** composite primary keys in the SortCtx.aDefer[] array. */ 972 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 973 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 974 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 975 pParse->nMem += pExtra->nExpr; 976 } 977 #endif 978 979 /* Adjust nResultCol to account for columns that are omitted 980 ** from the sorter by the optimizations in this branch */ 981 pEList = p->pEList; 982 for(i=0; i<pEList->nExpr; i++){ 983 if( pEList->a[i].u.x.iOrderByCol>0 984 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 985 || pEList->a[i].bSorterRef 986 #endif 987 ){ 988 nResultCol--; 989 regOrig = 0; 990 } 991 } 992 993 testcase( regOrig ); 994 testcase( eDest==SRT_Set ); 995 testcase( eDest==SRT_Mem ); 996 testcase( eDest==SRT_Coroutine ); 997 testcase( eDest==SRT_Output ); 998 assert( eDest==SRT_Set || eDest==SRT_Mem 999 || eDest==SRT_Coroutine || eDest==SRT_Output ); 1000 } 1001 sRowLoadInfo.regResult = regResult; 1002 sRowLoadInfo.ecelFlags = ecelFlags; 1003 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1004 sRowLoadInfo.pExtra = pExtra; 1005 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1006 if( pExtra ) nResultCol += pExtra->nExpr; 1007 #endif 1008 if( p->iLimit 1009 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1010 && nPrefixReg>0 1011 ){ 1012 assert( pSort!=0 ); 1013 assert( hasDistinct==0 ); 1014 pSort->pDeferredRowLoad = &sRowLoadInfo; 1015 regOrig = 0; 1016 }else{ 1017 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1018 } 1019 } 1020 1021 /* If the DISTINCT keyword was present on the SELECT statement 1022 ** and this row has been seen before, then do not make this row 1023 ** part of the result. 1024 */ 1025 if( hasDistinct ){ 1026 switch( pDistinct->eTnctType ){ 1027 case WHERE_DISTINCT_ORDERED: { 1028 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1029 int iJump; /* Jump destination */ 1030 int regPrev; /* Previous row content */ 1031 1032 /* Allocate space for the previous row */ 1033 regPrev = pParse->nMem+1; 1034 pParse->nMem += nResultCol; 1035 1036 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1037 ** sets the MEM_Cleared bit on the first register of the 1038 ** previous value. This will cause the OP_Ne below to always 1039 ** fail on the first iteration of the loop even if the first 1040 ** row is all NULLs. 1041 */ 1042 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1043 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1044 pOp->opcode = OP_Null; 1045 pOp->p1 = 1; 1046 pOp->p2 = regPrev; 1047 1048 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1049 for(i=0; i<nResultCol; i++){ 1050 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1051 if( i<nResultCol-1 ){ 1052 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1053 VdbeCoverage(v); 1054 }else{ 1055 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1056 VdbeCoverage(v); 1057 } 1058 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1059 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1060 } 1061 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1062 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1063 break; 1064 } 1065 1066 case WHERE_DISTINCT_UNIQUE: { 1067 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1068 break; 1069 } 1070 1071 default: { 1072 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1073 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1074 regResult); 1075 break; 1076 } 1077 } 1078 if( pSort==0 ){ 1079 codeOffset(v, p->iOffset, iContinue); 1080 } 1081 } 1082 1083 switch( eDest ){ 1084 /* In this mode, write each query result to the key of the temporary 1085 ** table iParm. 1086 */ 1087 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1088 case SRT_Union: { 1089 int r1; 1090 r1 = sqlite3GetTempReg(pParse); 1091 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1092 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1093 sqlite3ReleaseTempReg(pParse, r1); 1094 break; 1095 } 1096 1097 /* Construct a record from the query result, but instead of 1098 ** saving that record, use it as a key to delete elements from 1099 ** the temporary table iParm. 1100 */ 1101 case SRT_Except: { 1102 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1103 break; 1104 } 1105 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1106 1107 /* Store the result as data using a unique key. 1108 */ 1109 case SRT_Fifo: 1110 case SRT_DistFifo: 1111 case SRT_Table: 1112 case SRT_EphemTab: { 1113 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1114 testcase( eDest==SRT_Table ); 1115 testcase( eDest==SRT_EphemTab ); 1116 testcase( eDest==SRT_Fifo ); 1117 testcase( eDest==SRT_DistFifo ); 1118 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1119 #ifndef SQLITE_OMIT_CTE 1120 if( eDest==SRT_DistFifo ){ 1121 /* If the destination is DistFifo, then cursor (iParm+1) is open 1122 ** on an ephemeral index. If the current row is already present 1123 ** in the index, do not write it to the output. If not, add the 1124 ** current row to the index and proceed with writing it to the 1125 ** output table as well. */ 1126 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1127 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1128 VdbeCoverage(v); 1129 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1130 assert( pSort==0 ); 1131 } 1132 #endif 1133 if( pSort ){ 1134 assert( regResult==regOrig ); 1135 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1136 }else{ 1137 int r2 = sqlite3GetTempReg(pParse); 1138 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1139 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1140 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1141 sqlite3ReleaseTempReg(pParse, r2); 1142 } 1143 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1144 break; 1145 } 1146 1147 #ifndef SQLITE_OMIT_SUBQUERY 1148 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1149 ** then there should be a single item on the stack. Write this 1150 ** item into the set table with bogus data. 1151 */ 1152 case SRT_Set: { 1153 if( pSort ){ 1154 /* At first glance you would think we could optimize out the 1155 ** ORDER BY in this case since the order of entries in the set 1156 ** does not matter. But there might be a LIMIT clause, in which 1157 ** case the order does matter */ 1158 pushOntoSorter( 1159 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1160 }else{ 1161 int r1 = sqlite3GetTempReg(pParse); 1162 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1163 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1164 r1, pDest->zAffSdst, nResultCol); 1165 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1166 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1167 sqlite3ReleaseTempReg(pParse, r1); 1168 } 1169 break; 1170 } 1171 1172 /* If any row exist in the result set, record that fact and abort. 1173 */ 1174 case SRT_Exists: { 1175 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1176 /* The LIMIT clause will terminate the loop for us */ 1177 break; 1178 } 1179 1180 /* If this is a scalar select that is part of an expression, then 1181 ** store the results in the appropriate memory cell or array of 1182 ** memory cells and break out of the scan loop. 1183 */ 1184 case SRT_Mem: { 1185 if( pSort ){ 1186 assert( nResultCol<=pDest->nSdst ); 1187 pushOntoSorter( 1188 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1189 }else{ 1190 assert( nResultCol==pDest->nSdst ); 1191 assert( regResult==iParm ); 1192 /* The LIMIT clause will jump out of the loop for us */ 1193 } 1194 break; 1195 } 1196 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1197 1198 case SRT_Coroutine: /* Send data to a co-routine */ 1199 case SRT_Output: { /* Return the results */ 1200 testcase( eDest==SRT_Coroutine ); 1201 testcase( eDest==SRT_Output ); 1202 if( pSort ){ 1203 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1204 nPrefixReg); 1205 }else if( eDest==SRT_Coroutine ){ 1206 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1207 }else{ 1208 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1209 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 1210 } 1211 break; 1212 } 1213 1214 #ifndef SQLITE_OMIT_CTE 1215 /* Write the results into a priority queue that is order according to 1216 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1217 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1218 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1219 ** final OP_Sequence column. The last column is the record as a blob. 1220 */ 1221 case SRT_DistQueue: 1222 case SRT_Queue: { 1223 int nKey; 1224 int r1, r2, r3; 1225 int addrTest = 0; 1226 ExprList *pSO; 1227 pSO = pDest->pOrderBy; 1228 assert( pSO ); 1229 nKey = pSO->nExpr; 1230 r1 = sqlite3GetTempReg(pParse); 1231 r2 = sqlite3GetTempRange(pParse, nKey+2); 1232 r3 = r2+nKey+1; 1233 if( eDest==SRT_DistQueue ){ 1234 /* If the destination is DistQueue, then cursor (iParm+1) is open 1235 ** on a second ephemeral index that holds all values every previously 1236 ** added to the queue. */ 1237 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1238 regResult, nResultCol); 1239 VdbeCoverage(v); 1240 } 1241 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1242 if( eDest==SRT_DistQueue ){ 1243 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1244 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1245 } 1246 for(i=0; i<nKey; i++){ 1247 sqlite3VdbeAddOp2(v, OP_SCopy, 1248 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1249 r2+i); 1250 } 1251 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1252 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1253 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1254 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1255 sqlite3ReleaseTempReg(pParse, r1); 1256 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1257 break; 1258 } 1259 #endif /* SQLITE_OMIT_CTE */ 1260 1261 1262 1263 #if !defined(SQLITE_OMIT_TRIGGER) 1264 /* Discard the results. This is used for SELECT statements inside 1265 ** the body of a TRIGGER. The purpose of such selects is to call 1266 ** user-defined functions that have side effects. We do not care 1267 ** about the actual results of the select. 1268 */ 1269 default: { 1270 assert( eDest==SRT_Discard ); 1271 break; 1272 } 1273 #endif 1274 } 1275 1276 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1277 ** there is a sorter, in which case the sorter has already limited 1278 ** the output for us. 1279 */ 1280 if( pSort==0 && p->iLimit ){ 1281 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1282 } 1283 } 1284 1285 /* 1286 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1287 ** X extra columns. 1288 */ 1289 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1290 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1291 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1292 if( p ){ 1293 p->aSortOrder = (u8*)&p->aColl[N+X]; 1294 p->nKeyField = (u16)N; 1295 p->nAllField = (u16)(N+X); 1296 p->enc = ENC(db); 1297 p->db = db; 1298 p->nRef = 1; 1299 memset(&p[1], 0, nExtra); 1300 }else{ 1301 sqlite3OomFault(db); 1302 } 1303 return p; 1304 } 1305 1306 /* 1307 ** Deallocate a KeyInfo object 1308 */ 1309 void sqlite3KeyInfoUnref(KeyInfo *p){ 1310 if( p ){ 1311 assert( p->nRef>0 ); 1312 p->nRef--; 1313 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1314 } 1315 } 1316 1317 /* 1318 ** Make a new pointer to a KeyInfo object 1319 */ 1320 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1321 if( p ){ 1322 assert( p->nRef>0 ); 1323 p->nRef++; 1324 } 1325 return p; 1326 } 1327 1328 #ifdef SQLITE_DEBUG 1329 /* 1330 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1331 ** can only be changed if this is just a single reference to the object. 1332 ** 1333 ** This routine is used only inside of assert() statements. 1334 */ 1335 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1336 #endif /* SQLITE_DEBUG */ 1337 1338 /* 1339 ** Given an expression list, generate a KeyInfo structure that records 1340 ** the collating sequence for each expression in that expression list. 1341 ** 1342 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1343 ** KeyInfo structure is appropriate for initializing a virtual index to 1344 ** implement that clause. If the ExprList is the result set of a SELECT 1345 ** then the KeyInfo structure is appropriate for initializing a virtual 1346 ** index to implement a DISTINCT test. 1347 ** 1348 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1349 ** function is responsible for seeing that this structure is eventually 1350 ** freed. 1351 */ 1352 KeyInfo *sqlite3KeyInfoFromExprList( 1353 Parse *pParse, /* Parsing context */ 1354 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1355 int iStart, /* Begin with this column of pList */ 1356 int nExtra /* Add this many extra columns to the end */ 1357 ){ 1358 int nExpr; 1359 KeyInfo *pInfo; 1360 struct ExprList_item *pItem; 1361 sqlite3 *db = pParse->db; 1362 int i; 1363 1364 nExpr = pList->nExpr; 1365 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1366 if( pInfo ){ 1367 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1368 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1369 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1370 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1371 } 1372 } 1373 return pInfo; 1374 } 1375 1376 /* 1377 ** Name of the connection operator, used for error messages. 1378 */ 1379 static const char *selectOpName(int id){ 1380 char *z; 1381 switch( id ){ 1382 case TK_ALL: z = "UNION ALL"; break; 1383 case TK_INTERSECT: z = "INTERSECT"; break; 1384 case TK_EXCEPT: z = "EXCEPT"; break; 1385 default: z = "UNION"; break; 1386 } 1387 return z; 1388 } 1389 1390 #ifndef SQLITE_OMIT_EXPLAIN 1391 /* 1392 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1393 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1394 ** where the caption is of the form: 1395 ** 1396 ** "USE TEMP B-TREE FOR xxx" 1397 ** 1398 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1399 ** is determined by the zUsage argument. 1400 */ 1401 static void explainTempTable(Parse *pParse, const char *zUsage){ 1402 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1403 } 1404 1405 /* 1406 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1407 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1408 ** in sqlite3Select() to assign values to structure member variables that 1409 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1410 ** code with #ifndef directives. 1411 */ 1412 # define explainSetInteger(a, b) a = b 1413 1414 #else 1415 /* No-op versions of the explainXXX() functions and macros. */ 1416 # define explainTempTable(y,z) 1417 # define explainSetInteger(y,z) 1418 #endif 1419 1420 1421 /* 1422 ** If the inner loop was generated using a non-null pOrderBy argument, 1423 ** then the results were placed in a sorter. After the loop is terminated 1424 ** we need to run the sorter and output the results. The following 1425 ** routine generates the code needed to do that. 1426 */ 1427 static void generateSortTail( 1428 Parse *pParse, /* Parsing context */ 1429 Select *p, /* The SELECT statement */ 1430 SortCtx *pSort, /* Information on the ORDER BY clause */ 1431 int nColumn, /* Number of columns of data */ 1432 SelectDest *pDest /* Write the sorted results here */ 1433 ){ 1434 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1435 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1436 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1437 int addr; /* Top of output loop. Jump for Next. */ 1438 int addrOnce = 0; 1439 int iTab; 1440 ExprList *pOrderBy = pSort->pOrderBy; 1441 int eDest = pDest->eDest; 1442 int iParm = pDest->iSDParm; 1443 int regRow; 1444 int regRowid; 1445 int iCol; 1446 int nKey; /* Number of key columns in sorter record */ 1447 int iSortTab; /* Sorter cursor to read from */ 1448 int i; 1449 int bSeq; /* True if sorter record includes seq. no. */ 1450 int nRefKey = 0; 1451 struct ExprList_item *aOutEx = p->pEList->a; 1452 1453 assert( addrBreak<0 ); 1454 if( pSort->labelBkOut ){ 1455 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1456 sqlite3VdbeGoto(v, addrBreak); 1457 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1458 } 1459 1460 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1461 /* Open any cursors needed for sorter-reference expressions */ 1462 for(i=0; i<pSort->nDefer; i++){ 1463 Table *pTab = pSort->aDefer[i].pTab; 1464 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1465 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1466 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1467 } 1468 #endif 1469 1470 iTab = pSort->iECursor; 1471 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1472 regRowid = 0; 1473 regRow = pDest->iSdst; 1474 }else{ 1475 regRowid = sqlite3GetTempReg(pParse); 1476 regRow = sqlite3GetTempRange(pParse, nColumn); 1477 } 1478 nKey = pOrderBy->nExpr - pSort->nOBSat; 1479 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1480 int regSortOut = ++pParse->nMem; 1481 iSortTab = pParse->nTab++; 1482 if( pSort->labelBkOut ){ 1483 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1484 } 1485 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1486 nKey+1+nColumn+nRefKey); 1487 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1488 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1489 VdbeCoverage(v); 1490 codeOffset(v, p->iOffset, addrContinue); 1491 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1492 bSeq = 0; 1493 }else{ 1494 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1495 codeOffset(v, p->iOffset, addrContinue); 1496 iSortTab = iTab; 1497 bSeq = 1; 1498 } 1499 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1500 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1501 if( aOutEx[i].bSorterRef ) continue; 1502 #endif 1503 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1504 } 1505 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1506 if( pSort->nDefer ){ 1507 int iKey = iCol+1; 1508 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1509 1510 for(i=0; i<pSort->nDefer; i++){ 1511 int iCsr = pSort->aDefer[i].iCsr; 1512 Table *pTab = pSort->aDefer[i].pTab; 1513 int nKey = pSort->aDefer[i].nKey; 1514 1515 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1516 if( HasRowid(pTab) ){ 1517 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1518 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1519 sqlite3VdbeCurrentAddr(v)+1, regKey); 1520 }else{ 1521 int k; 1522 int iJmp; 1523 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1524 for(k=0; k<nKey; k++){ 1525 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1526 } 1527 iJmp = sqlite3VdbeCurrentAddr(v); 1528 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1529 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1530 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1531 } 1532 } 1533 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1534 } 1535 #endif 1536 for(i=nColumn-1; i>=0; i--){ 1537 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1538 if( aOutEx[i].bSorterRef ){ 1539 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1540 }else 1541 #endif 1542 { 1543 int iRead; 1544 if( aOutEx[i].u.x.iOrderByCol ){ 1545 iRead = aOutEx[i].u.x.iOrderByCol-1; 1546 }else{ 1547 iRead = iCol--; 1548 } 1549 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1550 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1551 } 1552 } 1553 switch( eDest ){ 1554 case SRT_Table: 1555 case SRT_EphemTab: { 1556 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1557 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1558 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1559 break; 1560 } 1561 #ifndef SQLITE_OMIT_SUBQUERY 1562 case SRT_Set: { 1563 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1564 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1565 pDest->zAffSdst, nColumn); 1566 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1567 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1568 break; 1569 } 1570 case SRT_Mem: { 1571 /* The LIMIT clause will terminate the loop for us */ 1572 break; 1573 } 1574 #endif 1575 default: { 1576 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1577 testcase( eDest==SRT_Output ); 1578 testcase( eDest==SRT_Coroutine ); 1579 if( eDest==SRT_Output ){ 1580 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1581 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1582 }else{ 1583 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1584 } 1585 break; 1586 } 1587 } 1588 if( regRowid ){ 1589 if( eDest==SRT_Set ){ 1590 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1591 }else{ 1592 sqlite3ReleaseTempReg(pParse, regRow); 1593 } 1594 sqlite3ReleaseTempReg(pParse, regRowid); 1595 } 1596 /* The bottom of the loop 1597 */ 1598 sqlite3VdbeResolveLabel(v, addrContinue); 1599 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1600 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1601 }else{ 1602 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1603 } 1604 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1605 sqlite3VdbeResolveLabel(v, addrBreak); 1606 } 1607 1608 /* 1609 ** Return a pointer to a string containing the 'declaration type' of the 1610 ** expression pExpr. The string may be treated as static by the caller. 1611 ** 1612 ** Also try to estimate the size of the returned value and return that 1613 ** result in *pEstWidth. 1614 ** 1615 ** The declaration type is the exact datatype definition extracted from the 1616 ** original CREATE TABLE statement if the expression is a column. The 1617 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1618 ** is considered a column can be complex in the presence of subqueries. The 1619 ** result-set expression in all of the following SELECT statements is 1620 ** considered a column by this function. 1621 ** 1622 ** SELECT col FROM tbl; 1623 ** SELECT (SELECT col FROM tbl; 1624 ** SELECT (SELECT col FROM tbl); 1625 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1626 ** 1627 ** The declaration type for any expression other than a column is NULL. 1628 ** 1629 ** This routine has either 3 or 6 parameters depending on whether or not 1630 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1631 */ 1632 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1633 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1634 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1635 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1636 #endif 1637 static const char *columnTypeImpl( 1638 NameContext *pNC, 1639 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1640 Expr *pExpr 1641 #else 1642 Expr *pExpr, 1643 const char **pzOrigDb, 1644 const char **pzOrigTab, 1645 const char **pzOrigCol 1646 #endif 1647 ){ 1648 char const *zType = 0; 1649 int j; 1650 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1651 char const *zOrigDb = 0; 1652 char const *zOrigTab = 0; 1653 char const *zOrigCol = 0; 1654 #endif 1655 1656 assert( pExpr!=0 ); 1657 assert( pNC->pSrcList!=0 ); 1658 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1659 ** are processed */ 1660 switch( pExpr->op ){ 1661 case TK_COLUMN: { 1662 /* The expression is a column. Locate the table the column is being 1663 ** extracted from in NameContext.pSrcList. This table may be real 1664 ** database table or a subquery. 1665 */ 1666 Table *pTab = 0; /* Table structure column is extracted from */ 1667 Select *pS = 0; /* Select the column is extracted from */ 1668 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1669 while( pNC && !pTab ){ 1670 SrcList *pTabList = pNC->pSrcList; 1671 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1672 if( j<pTabList->nSrc ){ 1673 pTab = pTabList->a[j].pTab; 1674 pS = pTabList->a[j].pSelect; 1675 }else{ 1676 pNC = pNC->pNext; 1677 } 1678 } 1679 1680 if( pTab==0 ){ 1681 /* At one time, code such as "SELECT new.x" within a trigger would 1682 ** cause this condition to run. Since then, we have restructured how 1683 ** trigger code is generated and so this condition is no longer 1684 ** possible. However, it can still be true for statements like 1685 ** the following: 1686 ** 1687 ** CREATE TABLE t1(col INTEGER); 1688 ** SELECT (SELECT t1.col) FROM FROM t1; 1689 ** 1690 ** when columnType() is called on the expression "t1.col" in the 1691 ** sub-select. In this case, set the column type to NULL, even 1692 ** though it should really be "INTEGER". 1693 ** 1694 ** This is not a problem, as the column type of "t1.col" is never 1695 ** used. When columnType() is called on the expression 1696 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1697 ** branch below. */ 1698 break; 1699 } 1700 1701 assert( pTab && pExpr->pTab==pTab ); 1702 if( pS ){ 1703 /* The "table" is actually a sub-select or a view in the FROM clause 1704 ** of the SELECT statement. Return the declaration type and origin 1705 ** data for the result-set column of the sub-select. 1706 */ 1707 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1708 /* If iCol is less than zero, then the expression requests the 1709 ** rowid of the sub-select or view. This expression is legal (see 1710 ** test case misc2.2.2) - it always evaluates to NULL. 1711 */ 1712 NameContext sNC; 1713 Expr *p = pS->pEList->a[iCol].pExpr; 1714 sNC.pSrcList = pS->pSrc; 1715 sNC.pNext = pNC; 1716 sNC.pParse = pNC->pParse; 1717 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1718 } 1719 }else{ 1720 /* A real table or a CTE table */ 1721 assert( !pS ); 1722 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1723 if( iCol<0 ) iCol = pTab->iPKey; 1724 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1725 if( iCol<0 ){ 1726 zType = "INTEGER"; 1727 zOrigCol = "rowid"; 1728 }else{ 1729 zOrigCol = pTab->aCol[iCol].zName; 1730 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1731 } 1732 zOrigTab = pTab->zName; 1733 if( pNC->pParse && pTab->pSchema ){ 1734 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1735 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1736 } 1737 #else 1738 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1739 if( iCol<0 ){ 1740 zType = "INTEGER"; 1741 }else{ 1742 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1743 } 1744 #endif 1745 } 1746 break; 1747 } 1748 #ifndef SQLITE_OMIT_SUBQUERY 1749 case TK_SELECT: { 1750 /* The expression is a sub-select. Return the declaration type and 1751 ** origin info for the single column in the result set of the SELECT 1752 ** statement. 1753 */ 1754 NameContext sNC; 1755 Select *pS = pExpr->x.pSelect; 1756 Expr *p = pS->pEList->a[0].pExpr; 1757 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1758 sNC.pSrcList = pS->pSrc; 1759 sNC.pNext = pNC; 1760 sNC.pParse = pNC->pParse; 1761 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1762 break; 1763 } 1764 #endif 1765 } 1766 1767 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1768 if( pzOrigDb ){ 1769 assert( pzOrigTab && pzOrigCol ); 1770 *pzOrigDb = zOrigDb; 1771 *pzOrigTab = zOrigTab; 1772 *pzOrigCol = zOrigCol; 1773 } 1774 #endif 1775 return zType; 1776 } 1777 1778 /* 1779 ** Generate code that will tell the VDBE the declaration types of columns 1780 ** in the result set. 1781 */ 1782 static void generateColumnTypes( 1783 Parse *pParse, /* Parser context */ 1784 SrcList *pTabList, /* List of tables */ 1785 ExprList *pEList /* Expressions defining the result set */ 1786 ){ 1787 #ifndef SQLITE_OMIT_DECLTYPE 1788 Vdbe *v = pParse->pVdbe; 1789 int i; 1790 NameContext sNC; 1791 sNC.pSrcList = pTabList; 1792 sNC.pParse = pParse; 1793 sNC.pNext = 0; 1794 for(i=0; i<pEList->nExpr; i++){ 1795 Expr *p = pEList->a[i].pExpr; 1796 const char *zType; 1797 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1798 const char *zOrigDb = 0; 1799 const char *zOrigTab = 0; 1800 const char *zOrigCol = 0; 1801 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1802 1803 /* The vdbe must make its own copy of the column-type and other 1804 ** column specific strings, in case the schema is reset before this 1805 ** virtual machine is deleted. 1806 */ 1807 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1808 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1809 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1810 #else 1811 zType = columnType(&sNC, p, 0, 0, 0); 1812 #endif 1813 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1814 } 1815 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1816 } 1817 1818 1819 /* 1820 ** Compute the column names for a SELECT statement. 1821 ** 1822 ** The only guarantee that SQLite makes about column names is that if the 1823 ** column has an AS clause assigning it a name, that will be the name used. 1824 ** That is the only documented guarantee. However, countless applications 1825 ** developed over the years have made baseless assumptions about column names 1826 ** and will break if those assumptions changes. Hence, use extreme caution 1827 ** when modifying this routine to avoid breaking legacy. 1828 ** 1829 ** See Also: sqlite3ColumnsFromExprList() 1830 ** 1831 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1832 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1833 ** applications should operate this way. Nevertheless, we need to support the 1834 ** other modes for legacy: 1835 ** 1836 ** short=OFF, full=OFF: Column name is the text of the expression has it 1837 ** originally appears in the SELECT statement. In 1838 ** other words, the zSpan of the result expression. 1839 ** 1840 ** short=ON, full=OFF: (This is the default setting). If the result 1841 ** refers directly to a table column, then the 1842 ** result column name is just the table column 1843 ** name: COLUMN. Otherwise use zSpan. 1844 ** 1845 ** full=ON, short=ANY: If the result refers directly to a table column, 1846 ** then the result column name with the table name 1847 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1848 */ 1849 static void generateColumnNames( 1850 Parse *pParse, /* Parser context */ 1851 Select *pSelect /* Generate column names for this SELECT statement */ 1852 ){ 1853 Vdbe *v = pParse->pVdbe; 1854 int i; 1855 Table *pTab; 1856 SrcList *pTabList; 1857 ExprList *pEList; 1858 sqlite3 *db = pParse->db; 1859 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1860 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1861 1862 #ifndef SQLITE_OMIT_EXPLAIN 1863 /* If this is an EXPLAIN, skip this step */ 1864 if( pParse->explain ){ 1865 return; 1866 } 1867 #endif 1868 1869 if( pParse->colNamesSet ) return; 1870 /* Column names are determined by the left-most term of a compound select */ 1871 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1872 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1873 pTabList = pSelect->pSrc; 1874 pEList = pSelect->pEList; 1875 assert( v!=0 ); 1876 assert( pTabList!=0 ); 1877 pParse->colNamesSet = 1; 1878 fullName = (db->flags & SQLITE_FullColNames)!=0; 1879 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1880 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1881 for(i=0; i<pEList->nExpr; i++){ 1882 Expr *p = pEList->a[i].pExpr; 1883 1884 assert( p!=0 ); 1885 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1886 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1887 if( pEList->a[i].zName ){ 1888 /* An AS clause always takes first priority */ 1889 char *zName = pEList->a[i].zName; 1890 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1891 }else if( srcName && p->op==TK_COLUMN ){ 1892 char *zCol; 1893 int iCol = p->iColumn; 1894 pTab = p->pTab; 1895 assert( pTab!=0 ); 1896 if( iCol<0 ) iCol = pTab->iPKey; 1897 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1898 if( iCol<0 ){ 1899 zCol = "rowid"; 1900 }else{ 1901 zCol = pTab->aCol[iCol].zName; 1902 } 1903 if( fullName ){ 1904 char *zName = 0; 1905 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1906 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1907 }else{ 1908 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1909 } 1910 }else{ 1911 const char *z = pEList->a[i].zSpan; 1912 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1913 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1914 } 1915 } 1916 generateColumnTypes(pParse, pTabList, pEList); 1917 } 1918 1919 /* 1920 ** Given an expression list (which is really the list of expressions 1921 ** that form the result set of a SELECT statement) compute appropriate 1922 ** column names for a table that would hold the expression list. 1923 ** 1924 ** All column names will be unique. 1925 ** 1926 ** Only the column names are computed. Column.zType, Column.zColl, 1927 ** and other fields of Column are zeroed. 1928 ** 1929 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1930 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1931 ** 1932 ** The only guarantee that SQLite makes about column names is that if the 1933 ** column has an AS clause assigning it a name, that will be the name used. 1934 ** That is the only documented guarantee. However, countless applications 1935 ** developed over the years have made baseless assumptions about column names 1936 ** and will break if those assumptions changes. Hence, use extreme caution 1937 ** when modifying this routine to avoid breaking legacy. 1938 ** 1939 ** See Also: generateColumnNames() 1940 */ 1941 int sqlite3ColumnsFromExprList( 1942 Parse *pParse, /* Parsing context */ 1943 ExprList *pEList, /* Expr list from which to derive column names */ 1944 i16 *pnCol, /* Write the number of columns here */ 1945 Column **paCol /* Write the new column list here */ 1946 ){ 1947 sqlite3 *db = pParse->db; /* Database connection */ 1948 int i, j; /* Loop counters */ 1949 u32 cnt; /* Index added to make the name unique */ 1950 Column *aCol, *pCol; /* For looping over result columns */ 1951 int nCol; /* Number of columns in the result set */ 1952 char *zName; /* Column name */ 1953 int nName; /* Size of name in zName[] */ 1954 Hash ht; /* Hash table of column names */ 1955 1956 sqlite3HashInit(&ht); 1957 if( pEList ){ 1958 nCol = pEList->nExpr; 1959 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1960 testcase( aCol==0 ); 1961 if( nCol>32767 ) nCol = 32767; 1962 }else{ 1963 nCol = 0; 1964 aCol = 0; 1965 } 1966 assert( nCol==(i16)nCol ); 1967 *pnCol = nCol; 1968 *paCol = aCol; 1969 1970 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1971 /* Get an appropriate name for the column 1972 */ 1973 if( (zName = pEList->a[i].zName)!=0 ){ 1974 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1975 }else{ 1976 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1977 while( pColExpr->op==TK_DOT ){ 1978 pColExpr = pColExpr->pRight; 1979 assert( pColExpr!=0 ); 1980 } 1981 assert( pColExpr->op!=TK_AGG_COLUMN ); 1982 if( pColExpr->op==TK_COLUMN ){ 1983 /* For columns use the column name name */ 1984 int iCol = pColExpr->iColumn; 1985 Table *pTab = pColExpr->pTab; 1986 assert( pTab!=0 ); 1987 if( iCol<0 ) iCol = pTab->iPKey; 1988 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1989 }else if( pColExpr->op==TK_ID ){ 1990 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1991 zName = pColExpr->u.zToken; 1992 }else{ 1993 /* Use the original text of the column expression as its name */ 1994 zName = pEList->a[i].zSpan; 1995 } 1996 } 1997 if( zName ){ 1998 zName = sqlite3DbStrDup(db, zName); 1999 }else{ 2000 zName = sqlite3MPrintf(db,"column%d",i+1); 2001 } 2002 2003 /* Make sure the column name is unique. If the name is not unique, 2004 ** append an integer to the name so that it becomes unique. 2005 */ 2006 cnt = 0; 2007 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2008 nName = sqlite3Strlen30(zName); 2009 if( nName>0 ){ 2010 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2011 if( zName[j]==':' ) nName = j; 2012 } 2013 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2014 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2015 } 2016 pCol->zName = zName; 2017 sqlite3ColumnPropertiesFromName(0, pCol); 2018 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2019 sqlite3OomFault(db); 2020 } 2021 } 2022 sqlite3HashClear(&ht); 2023 if( db->mallocFailed ){ 2024 for(j=0; j<i; j++){ 2025 sqlite3DbFree(db, aCol[j].zName); 2026 } 2027 sqlite3DbFree(db, aCol); 2028 *paCol = 0; 2029 *pnCol = 0; 2030 return SQLITE_NOMEM_BKPT; 2031 } 2032 return SQLITE_OK; 2033 } 2034 2035 /* 2036 ** Add type and collation information to a column list based on 2037 ** a SELECT statement. 2038 ** 2039 ** The column list presumably came from selectColumnNamesFromExprList(). 2040 ** The column list has only names, not types or collations. This 2041 ** routine goes through and adds the types and collations. 2042 ** 2043 ** This routine requires that all identifiers in the SELECT 2044 ** statement be resolved. 2045 */ 2046 void sqlite3SelectAddColumnTypeAndCollation( 2047 Parse *pParse, /* Parsing contexts */ 2048 Table *pTab, /* Add column type information to this table */ 2049 Select *pSelect /* SELECT used to determine types and collations */ 2050 ){ 2051 sqlite3 *db = pParse->db; 2052 NameContext sNC; 2053 Column *pCol; 2054 CollSeq *pColl; 2055 int i; 2056 Expr *p; 2057 struct ExprList_item *a; 2058 2059 assert( pSelect!=0 ); 2060 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2061 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2062 if( db->mallocFailed ) return; 2063 memset(&sNC, 0, sizeof(sNC)); 2064 sNC.pSrcList = pSelect->pSrc; 2065 a = pSelect->pEList->a; 2066 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2067 const char *zType; 2068 int n, m; 2069 p = a[i].pExpr; 2070 zType = columnType(&sNC, p, 0, 0, 0); 2071 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2072 pCol->affinity = sqlite3ExprAffinity(p); 2073 if( zType ){ 2074 m = sqlite3Strlen30(zType); 2075 n = sqlite3Strlen30(pCol->zName); 2076 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2077 if( pCol->zName ){ 2078 memcpy(&pCol->zName[n+1], zType, m+1); 2079 pCol->colFlags |= COLFLAG_HASTYPE; 2080 } 2081 } 2082 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2083 pColl = sqlite3ExprCollSeq(pParse, p); 2084 if( pColl && pCol->zColl==0 ){ 2085 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2086 } 2087 } 2088 pTab->szTabRow = 1; /* Any non-zero value works */ 2089 } 2090 2091 /* 2092 ** Given a SELECT statement, generate a Table structure that describes 2093 ** the result set of that SELECT. 2094 */ 2095 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2096 Table *pTab; 2097 sqlite3 *db = pParse->db; 2098 int savedFlags; 2099 2100 savedFlags = db->flags; 2101 db->flags &= ~SQLITE_FullColNames; 2102 db->flags |= SQLITE_ShortColNames; 2103 sqlite3SelectPrep(pParse, pSelect, 0); 2104 if( pParse->nErr ) return 0; 2105 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2106 db->flags = savedFlags; 2107 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2108 if( pTab==0 ){ 2109 return 0; 2110 } 2111 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2112 ** is disabled */ 2113 assert( db->lookaside.bDisable ); 2114 pTab->nTabRef = 1; 2115 pTab->zName = 0; 2116 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2117 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2118 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2119 pTab->iPKey = -1; 2120 if( db->mallocFailed ){ 2121 sqlite3DeleteTable(db, pTab); 2122 return 0; 2123 } 2124 return pTab; 2125 } 2126 2127 /* 2128 ** Get a VDBE for the given parser context. Create a new one if necessary. 2129 ** If an error occurs, return NULL and leave a message in pParse. 2130 */ 2131 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2132 if( pParse->pVdbe ){ 2133 return pParse->pVdbe; 2134 } 2135 if( pParse->pToplevel==0 2136 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2137 ){ 2138 pParse->okConstFactor = 1; 2139 } 2140 return sqlite3VdbeCreate(pParse); 2141 } 2142 2143 2144 /* 2145 ** Compute the iLimit and iOffset fields of the SELECT based on the 2146 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2147 ** that appear in the original SQL statement after the LIMIT and OFFSET 2148 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2149 ** are the integer memory register numbers for counters used to compute 2150 ** the limit and offset. If there is no limit and/or offset, then 2151 ** iLimit and iOffset are negative. 2152 ** 2153 ** This routine changes the values of iLimit and iOffset only if 2154 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2155 ** and iOffset should have been preset to appropriate default values (zero) 2156 ** prior to calling this routine. 2157 ** 2158 ** The iOffset register (if it exists) is initialized to the value 2159 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2160 ** iOffset+1 is initialized to LIMIT+OFFSET. 2161 ** 2162 ** Only if pLimit->pLeft!=0 do the limit registers get 2163 ** redefined. The UNION ALL operator uses this property to force 2164 ** the reuse of the same limit and offset registers across multiple 2165 ** SELECT statements. 2166 */ 2167 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2168 Vdbe *v = 0; 2169 int iLimit = 0; 2170 int iOffset; 2171 int n; 2172 Expr *pLimit = p->pLimit; 2173 2174 if( p->iLimit ) return; 2175 2176 /* 2177 ** "LIMIT -1" always shows all rows. There is some 2178 ** controversy about what the correct behavior should be. 2179 ** The current implementation interprets "LIMIT 0" to mean 2180 ** no rows. 2181 */ 2182 sqlite3ExprCacheClear(pParse); 2183 if( pLimit ){ 2184 assert( pLimit->op==TK_LIMIT ); 2185 assert( pLimit->pLeft!=0 ); 2186 p->iLimit = iLimit = ++pParse->nMem; 2187 v = sqlite3GetVdbe(pParse); 2188 assert( v!=0 ); 2189 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2190 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2191 VdbeComment((v, "LIMIT counter")); 2192 if( n==0 ){ 2193 sqlite3VdbeGoto(v, iBreak); 2194 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2195 p->nSelectRow = sqlite3LogEst((u64)n); 2196 p->selFlags |= SF_FixedLimit; 2197 } 2198 }else{ 2199 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2200 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2201 VdbeComment((v, "LIMIT counter")); 2202 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2203 } 2204 if( pLimit->pRight ){ 2205 p->iOffset = iOffset = ++pParse->nMem; 2206 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2207 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2208 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2209 VdbeComment((v, "OFFSET counter")); 2210 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2211 VdbeComment((v, "LIMIT+OFFSET")); 2212 } 2213 } 2214 } 2215 2216 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2217 /* 2218 ** Return the appropriate collating sequence for the iCol-th column of 2219 ** the result set for the compound-select statement "p". Return NULL if 2220 ** the column has no default collating sequence. 2221 ** 2222 ** The collating sequence for the compound select is taken from the 2223 ** left-most term of the select that has a collating sequence. 2224 */ 2225 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2226 CollSeq *pRet; 2227 if( p->pPrior ){ 2228 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2229 }else{ 2230 pRet = 0; 2231 } 2232 assert( iCol>=0 ); 2233 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2234 ** have been thrown during name resolution and we would not have gotten 2235 ** this far */ 2236 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2237 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2238 } 2239 return pRet; 2240 } 2241 2242 /* 2243 ** The select statement passed as the second parameter is a compound SELECT 2244 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2245 ** structure suitable for implementing the ORDER BY. 2246 ** 2247 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2248 ** function is responsible for ensuring that this structure is eventually 2249 ** freed. 2250 */ 2251 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2252 ExprList *pOrderBy = p->pOrderBy; 2253 int nOrderBy = p->pOrderBy->nExpr; 2254 sqlite3 *db = pParse->db; 2255 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2256 if( pRet ){ 2257 int i; 2258 for(i=0; i<nOrderBy; i++){ 2259 struct ExprList_item *pItem = &pOrderBy->a[i]; 2260 Expr *pTerm = pItem->pExpr; 2261 CollSeq *pColl; 2262 2263 if( pTerm->flags & EP_Collate ){ 2264 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2265 }else{ 2266 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2267 if( pColl==0 ) pColl = db->pDfltColl; 2268 pOrderBy->a[i].pExpr = 2269 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2270 } 2271 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2272 pRet->aColl[i] = pColl; 2273 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2274 } 2275 } 2276 2277 return pRet; 2278 } 2279 2280 #ifndef SQLITE_OMIT_CTE 2281 /* 2282 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2283 ** query of the form: 2284 ** 2285 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2286 ** \___________/ \_______________/ 2287 ** p->pPrior p 2288 ** 2289 ** 2290 ** There is exactly one reference to the recursive-table in the FROM clause 2291 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2292 ** 2293 ** The setup-query runs once to generate an initial set of rows that go 2294 ** into a Queue table. Rows are extracted from the Queue table one by 2295 ** one. Each row extracted from Queue is output to pDest. Then the single 2296 ** extracted row (now in the iCurrent table) becomes the content of the 2297 ** recursive-table for a recursive-query run. The output of the recursive-query 2298 ** is added back into the Queue table. Then another row is extracted from Queue 2299 ** and the iteration continues until the Queue table is empty. 2300 ** 2301 ** If the compound query operator is UNION then no duplicate rows are ever 2302 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2303 ** that have ever been inserted into Queue and causes duplicates to be 2304 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2305 ** 2306 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2307 ** ORDER BY order and the first entry is extracted for each cycle. Without 2308 ** an ORDER BY, the Queue table is just a FIFO. 2309 ** 2310 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2311 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2312 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2313 ** with a positive value, then the first OFFSET outputs are discarded rather 2314 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2315 ** rows have been skipped. 2316 */ 2317 static void generateWithRecursiveQuery( 2318 Parse *pParse, /* Parsing context */ 2319 Select *p, /* The recursive SELECT to be coded */ 2320 SelectDest *pDest /* What to do with query results */ 2321 ){ 2322 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2323 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2324 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2325 Select *pSetup = p->pPrior; /* The setup query */ 2326 int addrTop; /* Top of the loop */ 2327 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2328 int iCurrent = 0; /* The Current table */ 2329 int regCurrent; /* Register holding Current table */ 2330 int iQueue; /* The Queue table */ 2331 int iDistinct = 0; /* To ensure unique results if UNION */ 2332 int eDest = SRT_Fifo; /* How to write to Queue */ 2333 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2334 int i; /* Loop counter */ 2335 int rc; /* Result code */ 2336 ExprList *pOrderBy; /* The ORDER BY clause */ 2337 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2338 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2339 2340 /* Obtain authorization to do a recursive query */ 2341 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2342 2343 /* Process the LIMIT and OFFSET clauses, if they exist */ 2344 addrBreak = sqlite3VdbeMakeLabel(v); 2345 p->nSelectRow = 320; /* 4 billion rows */ 2346 computeLimitRegisters(pParse, p, addrBreak); 2347 pLimit = p->pLimit; 2348 regLimit = p->iLimit; 2349 regOffset = p->iOffset; 2350 p->pLimit = 0; 2351 p->iLimit = p->iOffset = 0; 2352 pOrderBy = p->pOrderBy; 2353 2354 /* Locate the cursor number of the Current table */ 2355 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2356 if( pSrc->a[i].fg.isRecursive ){ 2357 iCurrent = pSrc->a[i].iCursor; 2358 break; 2359 } 2360 } 2361 2362 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2363 ** the Distinct table must be exactly one greater than Queue in order 2364 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2365 iQueue = pParse->nTab++; 2366 if( p->op==TK_UNION ){ 2367 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2368 iDistinct = pParse->nTab++; 2369 }else{ 2370 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2371 } 2372 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2373 2374 /* Allocate cursors for Current, Queue, and Distinct. */ 2375 regCurrent = ++pParse->nMem; 2376 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2377 if( pOrderBy ){ 2378 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2379 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2380 (char*)pKeyInfo, P4_KEYINFO); 2381 destQueue.pOrderBy = pOrderBy; 2382 }else{ 2383 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2384 } 2385 VdbeComment((v, "Queue table")); 2386 if( iDistinct ){ 2387 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2388 p->selFlags |= SF_UsesEphemeral; 2389 } 2390 2391 /* Detach the ORDER BY clause from the compound SELECT */ 2392 p->pOrderBy = 0; 2393 2394 /* Store the results of the setup-query in Queue. */ 2395 pSetup->pNext = 0; 2396 ExplainQueryPlan((pParse, 1, "SETUP")); 2397 rc = sqlite3Select(pParse, pSetup, &destQueue); 2398 pSetup->pNext = p; 2399 if( rc ) goto end_of_recursive_query; 2400 2401 /* Find the next row in the Queue and output that row */ 2402 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2403 2404 /* Transfer the next row in Queue over to Current */ 2405 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2406 if( pOrderBy ){ 2407 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2408 }else{ 2409 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2410 } 2411 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2412 2413 /* Output the single row in Current */ 2414 addrCont = sqlite3VdbeMakeLabel(v); 2415 codeOffset(v, regOffset, addrCont); 2416 selectInnerLoop(pParse, p, iCurrent, 2417 0, 0, pDest, addrCont, addrBreak); 2418 if( regLimit ){ 2419 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2420 VdbeCoverage(v); 2421 } 2422 sqlite3VdbeResolveLabel(v, addrCont); 2423 2424 /* Execute the recursive SELECT taking the single row in Current as 2425 ** the value for the recursive-table. Store the results in the Queue. 2426 */ 2427 if( p->selFlags & SF_Aggregate ){ 2428 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2429 }else{ 2430 p->pPrior = 0; 2431 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2432 sqlite3Select(pParse, p, &destQueue); 2433 assert( p->pPrior==0 ); 2434 p->pPrior = pSetup; 2435 } 2436 2437 /* Keep running the loop until the Queue is empty */ 2438 sqlite3VdbeGoto(v, addrTop); 2439 sqlite3VdbeResolveLabel(v, addrBreak); 2440 2441 end_of_recursive_query: 2442 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2443 p->pOrderBy = pOrderBy; 2444 p->pLimit = pLimit; 2445 return; 2446 } 2447 #endif /* SQLITE_OMIT_CTE */ 2448 2449 /* Forward references */ 2450 static int multiSelectOrderBy( 2451 Parse *pParse, /* Parsing context */ 2452 Select *p, /* The right-most of SELECTs to be coded */ 2453 SelectDest *pDest /* What to do with query results */ 2454 ); 2455 2456 /* 2457 ** Handle the special case of a compound-select that originates from a 2458 ** VALUES clause. By handling this as a special case, we avoid deep 2459 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2460 ** on a VALUES clause. 2461 ** 2462 ** Because the Select object originates from a VALUES clause: 2463 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2464 ** (2) All terms are UNION ALL 2465 ** (3) There is no ORDER BY clause 2466 ** 2467 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2468 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2469 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2470 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2471 */ 2472 static int multiSelectValues( 2473 Parse *pParse, /* Parsing context */ 2474 Select *p, /* The right-most of SELECTs to be coded */ 2475 SelectDest *pDest /* What to do with query results */ 2476 ){ 2477 int nRow = 1; 2478 int rc = 0; 2479 int bShowAll = p->pLimit==0; 2480 assert( p->selFlags & SF_MultiValue ); 2481 do{ 2482 assert( p->selFlags & SF_Values ); 2483 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2484 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2485 if( p->pPrior==0 ) break; 2486 assert( p->pPrior->pNext==p ); 2487 p = p->pPrior; 2488 nRow += bShowAll; 2489 }while(1); 2490 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2491 nRow==1 ? "" : "S")); 2492 while( p ){ 2493 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2494 if( !bShowAll ) break; 2495 p->nSelectRow = nRow; 2496 p = p->pNext; 2497 } 2498 return rc; 2499 } 2500 2501 /* 2502 ** This routine is called to process a compound query form from 2503 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2504 ** INTERSECT 2505 ** 2506 ** "p" points to the right-most of the two queries. the query on the 2507 ** left is p->pPrior. The left query could also be a compound query 2508 ** in which case this routine will be called recursively. 2509 ** 2510 ** The results of the total query are to be written into a destination 2511 ** of type eDest with parameter iParm. 2512 ** 2513 ** Example 1: Consider a three-way compound SQL statement. 2514 ** 2515 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2516 ** 2517 ** This statement is parsed up as follows: 2518 ** 2519 ** SELECT c FROM t3 2520 ** | 2521 ** `-----> SELECT b FROM t2 2522 ** | 2523 ** `------> SELECT a FROM t1 2524 ** 2525 ** The arrows in the diagram above represent the Select.pPrior pointer. 2526 ** So if this routine is called with p equal to the t3 query, then 2527 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2528 ** 2529 ** Notice that because of the way SQLite parses compound SELECTs, the 2530 ** individual selects always group from left to right. 2531 */ 2532 static int multiSelect( 2533 Parse *pParse, /* Parsing context */ 2534 Select *p, /* The right-most of SELECTs to be coded */ 2535 SelectDest *pDest /* What to do with query results */ 2536 ){ 2537 int rc = SQLITE_OK; /* Success code from a subroutine */ 2538 Select *pPrior; /* Another SELECT immediately to our left */ 2539 Vdbe *v; /* Generate code to this VDBE */ 2540 SelectDest dest; /* Alternative data destination */ 2541 Select *pDelete = 0; /* Chain of simple selects to delete */ 2542 sqlite3 *db; /* Database connection */ 2543 2544 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2545 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2546 */ 2547 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2548 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2549 db = pParse->db; 2550 pPrior = p->pPrior; 2551 dest = *pDest; 2552 if( pPrior->pOrderBy || pPrior->pLimit ){ 2553 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2554 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2555 rc = 1; 2556 goto multi_select_end; 2557 } 2558 2559 v = sqlite3GetVdbe(pParse); 2560 assert( v!=0 ); /* The VDBE already created by calling function */ 2561 2562 /* Create the destination temporary table if necessary 2563 */ 2564 if( dest.eDest==SRT_EphemTab ){ 2565 assert( p->pEList ); 2566 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2567 dest.eDest = SRT_Table; 2568 } 2569 2570 /* Special handling for a compound-select that originates as a VALUES clause. 2571 */ 2572 if( p->selFlags & SF_MultiValue ){ 2573 rc = multiSelectValues(pParse, p, &dest); 2574 goto multi_select_end; 2575 } 2576 2577 /* Make sure all SELECTs in the statement have the same number of elements 2578 ** in their result sets. 2579 */ 2580 assert( p->pEList && pPrior->pEList ); 2581 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2582 2583 #ifndef SQLITE_OMIT_CTE 2584 if( p->selFlags & SF_Recursive ){ 2585 generateWithRecursiveQuery(pParse, p, &dest); 2586 }else 2587 #endif 2588 2589 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2590 */ 2591 if( p->pOrderBy ){ 2592 return multiSelectOrderBy(pParse, p, pDest); 2593 }else{ 2594 2595 #ifndef SQLITE_OMIT_EXPLAIN 2596 if( pPrior->pPrior==0 ){ 2597 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2598 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2599 } 2600 #endif 2601 2602 /* Generate code for the left and right SELECT statements. 2603 */ 2604 switch( p->op ){ 2605 case TK_ALL: { 2606 int addr = 0; 2607 int nLimit; 2608 assert( !pPrior->pLimit ); 2609 pPrior->iLimit = p->iLimit; 2610 pPrior->iOffset = p->iOffset; 2611 pPrior->pLimit = p->pLimit; 2612 rc = sqlite3Select(pParse, pPrior, &dest); 2613 p->pLimit = 0; 2614 if( rc ){ 2615 goto multi_select_end; 2616 } 2617 p->pPrior = 0; 2618 p->iLimit = pPrior->iLimit; 2619 p->iOffset = pPrior->iOffset; 2620 if( p->iLimit ){ 2621 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2622 VdbeComment((v, "Jump ahead if LIMIT reached")); 2623 if( p->iOffset ){ 2624 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2625 p->iLimit, p->iOffset+1, p->iOffset); 2626 } 2627 } 2628 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2629 rc = sqlite3Select(pParse, p, &dest); 2630 testcase( rc!=SQLITE_OK ); 2631 pDelete = p->pPrior; 2632 p->pPrior = pPrior; 2633 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2634 if( pPrior->pLimit 2635 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2636 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2637 ){ 2638 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2639 } 2640 if( addr ){ 2641 sqlite3VdbeJumpHere(v, addr); 2642 } 2643 break; 2644 } 2645 case TK_EXCEPT: 2646 case TK_UNION: { 2647 int unionTab; /* Cursor number of the temp table holding result */ 2648 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2649 int priorOp; /* The SRT_ operation to apply to prior selects */ 2650 Expr *pLimit; /* Saved values of p->nLimit */ 2651 int addr; 2652 SelectDest uniondest; 2653 2654 testcase( p->op==TK_EXCEPT ); 2655 testcase( p->op==TK_UNION ); 2656 priorOp = SRT_Union; 2657 if( dest.eDest==priorOp ){ 2658 /* We can reuse a temporary table generated by a SELECT to our 2659 ** right. 2660 */ 2661 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2662 unionTab = dest.iSDParm; 2663 }else{ 2664 /* We will need to create our own temporary table to hold the 2665 ** intermediate results. 2666 */ 2667 unionTab = pParse->nTab++; 2668 assert( p->pOrderBy==0 ); 2669 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2670 assert( p->addrOpenEphm[0] == -1 ); 2671 p->addrOpenEphm[0] = addr; 2672 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2673 assert( p->pEList ); 2674 } 2675 2676 /* Code the SELECT statements to our left 2677 */ 2678 assert( !pPrior->pOrderBy ); 2679 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2680 rc = sqlite3Select(pParse, pPrior, &uniondest); 2681 if( rc ){ 2682 goto multi_select_end; 2683 } 2684 2685 /* Code the current SELECT statement 2686 */ 2687 if( p->op==TK_EXCEPT ){ 2688 op = SRT_Except; 2689 }else{ 2690 assert( p->op==TK_UNION ); 2691 op = SRT_Union; 2692 } 2693 p->pPrior = 0; 2694 pLimit = p->pLimit; 2695 p->pLimit = 0; 2696 uniondest.eDest = op; 2697 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2698 selectOpName(p->op))); 2699 rc = sqlite3Select(pParse, p, &uniondest); 2700 testcase( rc!=SQLITE_OK ); 2701 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2702 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2703 sqlite3ExprListDelete(db, p->pOrderBy); 2704 pDelete = p->pPrior; 2705 p->pPrior = pPrior; 2706 p->pOrderBy = 0; 2707 if( p->op==TK_UNION ){ 2708 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2709 } 2710 sqlite3ExprDelete(db, p->pLimit); 2711 p->pLimit = pLimit; 2712 p->iLimit = 0; 2713 p->iOffset = 0; 2714 2715 /* Convert the data in the temporary table into whatever form 2716 ** it is that we currently need. 2717 */ 2718 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2719 if( dest.eDest!=priorOp ){ 2720 int iCont, iBreak, iStart; 2721 assert( p->pEList ); 2722 iBreak = sqlite3VdbeMakeLabel(v); 2723 iCont = sqlite3VdbeMakeLabel(v); 2724 computeLimitRegisters(pParse, p, iBreak); 2725 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2726 iStart = sqlite3VdbeCurrentAddr(v); 2727 selectInnerLoop(pParse, p, unionTab, 2728 0, 0, &dest, iCont, iBreak); 2729 sqlite3VdbeResolveLabel(v, iCont); 2730 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2731 sqlite3VdbeResolveLabel(v, iBreak); 2732 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2733 } 2734 break; 2735 } 2736 default: assert( p->op==TK_INTERSECT ); { 2737 int tab1, tab2; 2738 int iCont, iBreak, iStart; 2739 Expr *pLimit; 2740 int addr; 2741 SelectDest intersectdest; 2742 int r1; 2743 2744 /* INTERSECT is different from the others since it requires 2745 ** two temporary tables. Hence it has its own case. Begin 2746 ** by allocating the tables we will need. 2747 */ 2748 tab1 = pParse->nTab++; 2749 tab2 = pParse->nTab++; 2750 assert( p->pOrderBy==0 ); 2751 2752 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2753 assert( p->addrOpenEphm[0] == -1 ); 2754 p->addrOpenEphm[0] = addr; 2755 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2756 assert( p->pEList ); 2757 2758 /* Code the SELECTs to our left into temporary table "tab1". 2759 */ 2760 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2761 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2762 if( rc ){ 2763 goto multi_select_end; 2764 } 2765 2766 /* Code the current SELECT into temporary table "tab2" 2767 */ 2768 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2769 assert( p->addrOpenEphm[1] == -1 ); 2770 p->addrOpenEphm[1] = addr; 2771 p->pPrior = 0; 2772 pLimit = p->pLimit; 2773 p->pLimit = 0; 2774 intersectdest.iSDParm = tab2; 2775 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2776 selectOpName(p->op))); 2777 rc = sqlite3Select(pParse, p, &intersectdest); 2778 testcase( rc!=SQLITE_OK ); 2779 pDelete = p->pPrior; 2780 p->pPrior = pPrior; 2781 if( p->nSelectRow>pPrior->nSelectRow ){ 2782 p->nSelectRow = pPrior->nSelectRow; 2783 } 2784 sqlite3ExprDelete(db, p->pLimit); 2785 p->pLimit = pLimit; 2786 2787 /* Generate code to take the intersection of the two temporary 2788 ** tables. 2789 */ 2790 assert( p->pEList ); 2791 iBreak = sqlite3VdbeMakeLabel(v); 2792 iCont = sqlite3VdbeMakeLabel(v); 2793 computeLimitRegisters(pParse, p, iBreak); 2794 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2795 r1 = sqlite3GetTempReg(pParse); 2796 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2797 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2798 VdbeCoverage(v); 2799 sqlite3ReleaseTempReg(pParse, r1); 2800 selectInnerLoop(pParse, p, tab1, 2801 0, 0, &dest, iCont, iBreak); 2802 sqlite3VdbeResolveLabel(v, iCont); 2803 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2804 sqlite3VdbeResolveLabel(v, iBreak); 2805 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2806 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2807 break; 2808 } 2809 } 2810 2811 #ifndef SQLITE_OMIT_EXPLAIN 2812 if( p->pNext==0 ){ 2813 ExplainQueryPlanPop(pParse); 2814 } 2815 #endif 2816 } 2817 2818 /* Compute collating sequences used by 2819 ** temporary tables needed to implement the compound select. 2820 ** Attach the KeyInfo structure to all temporary tables. 2821 ** 2822 ** This section is run by the right-most SELECT statement only. 2823 ** SELECT statements to the left always skip this part. The right-most 2824 ** SELECT might also skip this part if it has no ORDER BY clause and 2825 ** no temp tables are required. 2826 */ 2827 if( p->selFlags & SF_UsesEphemeral ){ 2828 int i; /* Loop counter */ 2829 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2830 Select *pLoop; /* For looping through SELECT statements */ 2831 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2832 int nCol; /* Number of columns in result set */ 2833 2834 assert( p->pNext==0 ); 2835 nCol = p->pEList->nExpr; 2836 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2837 if( !pKeyInfo ){ 2838 rc = SQLITE_NOMEM_BKPT; 2839 goto multi_select_end; 2840 } 2841 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2842 *apColl = multiSelectCollSeq(pParse, p, i); 2843 if( 0==*apColl ){ 2844 *apColl = db->pDfltColl; 2845 } 2846 } 2847 2848 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2849 for(i=0; i<2; i++){ 2850 int addr = pLoop->addrOpenEphm[i]; 2851 if( addr<0 ){ 2852 /* If [0] is unused then [1] is also unused. So we can 2853 ** always safely abort as soon as the first unused slot is found */ 2854 assert( pLoop->addrOpenEphm[1]<0 ); 2855 break; 2856 } 2857 sqlite3VdbeChangeP2(v, addr, nCol); 2858 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2859 P4_KEYINFO); 2860 pLoop->addrOpenEphm[i] = -1; 2861 } 2862 } 2863 sqlite3KeyInfoUnref(pKeyInfo); 2864 } 2865 2866 multi_select_end: 2867 pDest->iSdst = dest.iSdst; 2868 pDest->nSdst = dest.nSdst; 2869 sqlite3SelectDelete(db, pDelete); 2870 return rc; 2871 } 2872 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2873 2874 /* 2875 ** Error message for when two or more terms of a compound select have different 2876 ** size result sets. 2877 */ 2878 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2879 if( p->selFlags & SF_Values ){ 2880 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2881 }else{ 2882 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2883 " do not have the same number of result columns", selectOpName(p->op)); 2884 } 2885 } 2886 2887 /* 2888 ** Code an output subroutine for a coroutine implementation of a 2889 ** SELECT statment. 2890 ** 2891 ** The data to be output is contained in pIn->iSdst. There are 2892 ** pIn->nSdst columns to be output. pDest is where the output should 2893 ** be sent. 2894 ** 2895 ** regReturn is the number of the register holding the subroutine 2896 ** return address. 2897 ** 2898 ** If regPrev>0 then it is the first register in a vector that 2899 ** records the previous output. mem[regPrev] is a flag that is false 2900 ** if there has been no previous output. If regPrev>0 then code is 2901 ** generated to suppress duplicates. pKeyInfo is used for comparing 2902 ** keys. 2903 ** 2904 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2905 ** iBreak. 2906 */ 2907 static int generateOutputSubroutine( 2908 Parse *pParse, /* Parsing context */ 2909 Select *p, /* The SELECT statement */ 2910 SelectDest *pIn, /* Coroutine supplying data */ 2911 SelectDest *pDest, /* Where to send the data */ 2912 int regReturn, /* The return address register */ 2913 int regPrev, /* Previous result register. No uniqueness if 0 */ 2914 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2915 int iBreak /* Jump here if we hit the LIMIT */ 2916 ){ 2917 Vdbe *v = pParse->pVdbe; 2918 int iContinue; 2919 int addr; 2920 2921 addr = sqlite3VdbeCurrentAddr(v); 2922 iContinue = sqlite3VdbeMakeLabel(v); 2923 2924 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2925 */ 2926 if( regPrev ){ 2927 int addr1, addr2; 2928 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2929 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2930 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2931 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2932 sqlite3VdbeJumpHere(v, addr1); 2933 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2934 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2935 } 2936 if( pParse->db->mallocFailed ) return 0; 2937 2938 /* Suppress the first OFFSET entries if there is an OFFSET clause 2939 */ 2940 codeOffset(v, p->iOffset, iContinue); 2941 2942 assert( pDest->eDest!=SRT_Exists ); 2943 assert( pDest->eDest!=SRT_Table ); 2944 switch( pDest->eDest ){ 2945 /* Store the result as data using a unique key. 2946 */ 2947 case SRT_EphemTab: { 2948 int r1 = sqlite3GetTempReg(pParse); 2949 int r2 = sqlite3GetTempReg(pParse); 2950 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2951 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2952 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2953 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2954 sqlite3ReleaseTempReg(pParse, r2); 2955 sqlite3ReleaseTempReg(pParse, r1); 2956 break; 2957 } 2958 2959 #ifndef SQLITE_OMIT_SUBQUERY 2960 /* If we are creating a set for an "expr IN (SELECT ...)". 2961 */ 2962 case SRT_Set: { 2963 int r1; 2964 testcase( pIn->nSdst>1 ); 2965 r1 = sqlite3GetTempReg(pParse); 2966 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2967 r1, pDest->zAffSdst, pIn->nSdst); 2968 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2969 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2970 pIn->iSdst, pIn->nSdst); 2971 sqlite3ReleaseTempReg(pParse, r1); 2972 break; 2973 } 2974 2975 /* If this is a scalar select that is part of an expression, then 2976 ** store the results in the appropriate memory cell and break out 2977 ** of the scan loop. 2978 */ 2979 case SRT_Mem: { 2980 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2981 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2982 /* The LIMIT clause will jump out of the loop for us */ 2983 break; 2984 } 2985 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2986 2987 /* The results are stored in a sequence of registers 2988 ** starting at pDest->iSdst. Then the co-routine yields. 2989 */ 2990 case SRT_Coroutine: { 2991 if( pDest->iSdst==0 ){ 2992 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2993 pDest->nSdst = pIn->nSdst; 2994 } 2995 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2996 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2997 break; 2998 } 2999 3000 /* If none of the above, then the result destination must be 3001 ** SRT_Output. This routine is never called with any other 3002 ** destination other than the ones handled above or SRT_Output. 3003 ** 3004 ** For SRT_Output, results are stored in a sequence of registers. 3005 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3006 ** return the next row of result. 3007 */ 3008 default: { 3009 assert( pDest->eDest==SRT_Output ); 3010 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3011 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 3012 break; 3013 } 3014 } 3015 3016 /* Jump to the end of the loop if the LIMIT is reached. 3017 */ 3018 if( p->iLimit ){ 3019 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3020 } 3021 3022 /* Generate the subroutine return 3023 */ 3024 sqlite3VdbeResolveLabel(v, iContinue); 3025 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3026 3027 return addr; 3028 } 3029 3030 /* 3031 ** Alternative compound select code generator for cases when there 3032 ** is an ORDER BY clause. 3033 ** 3034 ** We assume a query of the following form: 3035 ** 3036 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3037 ** 3038 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3039 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3040 ** co-routines. Then run the co-routines in parallel and merge the results 3041 ** into the output. In addition to the two coroutines (called selectA and 3042 ** selectB) there are 7 subroutines: 3043 ** 3044 ** outA: Move the output of the selectA coroutine into the output 3045 ** of the compound query. 3046 ** 3047 ** outB: Move the output of the selectB coroutine into the output 3048 ** of the compound query. (Only generated for UNION and 3049 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3050 ** appears only in B.) 3051 ** 3052 ** AltB: Called when there is data from both coroutines and A<B. 3053 ** 3054 ** AeqB: Called when there is data from both coroutines and A==B. 3055 ** 3056 ** AgtB: Called when there is data from both coroutines and A>B. 3057 ** 3058 ** EofA: Called when data is exhausted from selectA. 3059 ** 3060 ** EofB: Called when data is exhausted from selectB. 3061 ** 3062 ** The implementation of the latter five subroutines depend on which 3063 ** <operator> is used: 3064 ** 3065 ** 3066 ** UNION ALL UNION EXCEPT INTERSECT 3067 ** ------------- ----------------- -------------- ----------------- 3068 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3069 ** 3070 ** AeqB: outA, nextA nextA nextA outA, nextA 3071 ** 3072 ** AgtB: outB, nextB outB, nextB nextB nextB 3073 ** 3074 ** EofA: outB, nextB outB, nextB halt halt 3075 ** 3076 ** EofB: outA, nextA outA, nextA outA, nextA halt 3077 ** 3078 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3079 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3080 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3081 ** following nextX causes a jump to the end of the select processing. 3082 ** 3083 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3084 ** within the output subroutine. The regPrev register set holds the previously 3085 ** output value. A comparison is made against this value and the output 3086 ** is skipped if the next results would be the same as the previous. 3087 ** 3088 ** The implementation plan is to implement the two coroutines and seven 3089 ** subroutines first, then put the control logic at the bottom. Like this: 3090 ** 3091 ** goto Init 3092 ** coA: coroutine for left query (A) 3093 ** coB: coroutine for right query (B) 3094 ** outA: output one row of A 3095 ** outB: output one row of B (UNION and UNION ALL only) 3096 ** EofA: ... 3097 ** EofB: ... 3098 ** AltB: ... 3099 ** AeqB: ... 3100 ** AgtB: ... 3101 ** Init: initialize coroutine registers 3102 ** yield coA 3103 ** if eof(A) goto EofA 3104 ** yield coB 3105 ** if eof(B) goto EofB 3106 ** Cmpr: Compare A, B 3107 ** Jump AltB, AeqB, AgtB 3108 ** End: ... 3109 ** 3110 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3111 ** actually called using Gosub and they do not Return. EofA and EofB loop 3112 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3113 ** and AgtB jump to either L2 or to one of EofA or EofB. 3114 */ 3115 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3116 static int multiSelectOrderBy( 3117 Parse *pParse, /* Parsing context */ 3118 Select *p, /* The right-most of SELECTs to be coded */ 3119 SelectDest *pDest /* What to do with query results */ 3120 ){ 3121 int i, j; /* Loop counters */ 3122 Select *pPrior; /* Another SELECT immediately to our left */ 3123 Vdbe *v; /* Generate code to this VDBE */ 3124 SelectDest destA; /* Destination for coroutine A */ 3125 SelectDest destB; /* Destination for coroutine B */ 3126 int regAddrA; /* Address register for select-A coroutine */ 3127 int regAddrB; /* Address register for select-B coroutine */ 3128 int addrSelectA; /* Address of the select-A coroutine */ 3129 int addrSelectB; /* Address of the select-B coroutine */ 3130 int regOutA; /* Address register for the output-A subroutine */ 3131 int regOutB; /* Address register for the output-B subroutine */ 3132 int addrOutA; /* Address of the output-A subroutine */ 3133 int addrOutB = 0; /* Address of the output-B subroutine */ 3134 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3135 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3136 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3137 int addrAltB; /* Address of the A<B subroutine */ 3138 int addrAeqB; /* Address of the A==B subroutine */ 3139 int addrAgtB; /* Address of the A>B subroutine */ 3140 int regLimitA; /* Limit register for select-A */ 3141 int regLimitB; /* Limit register for select-A */ 3142 int regPrev; /* A range of registers to hold previous output */ 3143 int savedLimit; /* Saved value of p->iLimit */ 3144 int savedOffset; /* Saved value of p->iOffset */ 3145 int labelCmpr; /* Label for the start of the merge algorithm */ 3146 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3147 int addr1; /* Jump instructions that get retargetted */ 3148 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3149 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3150 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3151 sqlite3 *db; /* Database connection */ 3152 ExprList *pOrderBy; /* The ORDER BY clause */ 3153 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3154 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3155 3156 assert( p->pOrderBy!=0 ); 3157 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3158 db = pParse->db; 3159 v = pParse->pVdbe; 3160 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3161 labelEnd = sqlite3VdbeMakeLabel(v); 3162 labelCmpr = sqlite3VdbeMakeLabel(v); 3163 3164 3165 /* Patch up the ORDER BY clause 3166 */ 3167 op = p->op; 3168 pPrior = p->pPrior; 3169 assert( pPrior->pOrderBy==0 ); 3170 pOrderBy = p->pOrderBy; 3171 assert( pOrderBy ); 3172 nOrderBy = pOrderBy->nExpr; 3173 3174 /* For operators other than UNION ALL we have to make sure that 3175 ** the ORDER BY clause covers every term of the result set. Add 3176 ** terms to the ORDER BY clause as necessary. 3177 */ 3178 if( op!=TK_ALL ){ 3179 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3180 struct ExprList_item *pItem; 3181 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3182 assert( pItem->u.x.iOrderByCol>0 ); 3183 if( pItem->u.x.iOrderByCol==i ) break; 3184 } 3185 if( j==nOrderBy ){ 3186 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3187 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3188 pNew->flags |= EP_IntValue; 3189 pNew->u.iValue = i; 3190 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3191 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3192 } 3193 } 3194 } 3195 3196 /* Compute the comparison permutation and keyinfo that is used with 3197 ** the permutation used to determine if the next 3198 ** row of results comes from selectA or selectB. Also add explicit 3199 ** collations to the ORDER BY clause terms so that when the subqueries 3200 ** to the right and the left are evaluated, they use the correct 3201 ** collation. 3202 */ 3203 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3204 if( aPermute ){ 3205 struct ExprList_item *pItem; 3206 aPermute[0] = nOrderBy; 3207 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3208 assert( pItem->u.x.iOrderByCol>0 ); 3209 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3210 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3211 } 3212 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3213 }else{ 3214 pKeyMerge = 0; 3215 } 3216 3217 /* Reattach the ORDER BY clause to the query. 3218 */ 3219 p->pOrderBy = pOrderBy; 3220 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3221 3222 /* Allocate a range of temporary registers and the KeyInfo needed 3223 ** for the logic that removes duplicate result rows when the 3224 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3225 */ 3226 if( op==TK_ALL ){ 3227 regPrev = 0; 3228 }else{ 3229 int nExpr = p->pEList->nExpr; 3230 assert( nOrderBy>=nExpr || db->mallocFailed ); 3231 regPrev = pParse->nMem+1; 3232 pParse->nMem += nExpr+1; 3233 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3234 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3235 if( pKeyDup ){ 3236 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3237 for(i=0; i<nExpr; i++){ 3238 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3239 pKeyDup->aSortOrder[i] = 0; 3240 } 3241 } 3242 } 3243 3244 /* Separate the left and the right query from one another 3245 */ 3246 p->pPrior = 0; 3247 pPrior->pNext = 0; 3248 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3249 if( pPrior->pPrior==0 ){ 3250 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3251 } 3252 3253 /* Compute the limit registers */ 3254 computeLimitRegisters(pParse, p, labelEnd); 3255 if( p->iLimit && op==TK_ALL ){ 3256 regLimitA = ++pParse->nMem; 3257 regLimitB = ++pParse->nMem; 3258 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3259 regLimitA); 3260 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3261 }else{ 3262 regLimitA = regLimitB = 0; 3263 } 3264 sqlite3ExprDelete(db, p->pLimit); 3265 p->pLimit = 0; 3266 3267 regAddrA = ++pParse->nMem; 3268 regAddrB = ++pParse->nMem; 3269 regOutA = ++pParse->nMem; 3270 regOutB = ++pParse->nMem; 3271 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3272 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3273 3274 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3275 3276 /* Generate a coroutine to evaluate the SELECT statement to the 3277 ** left of the compound operator - the "A" select. 3278 */ 3279 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3280 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3281 VdbeComment((v, "left SELECT")); 3282 pPrior->iLimit = regLimitA; 3283 ExplainQueryPlan((pParse, 1, "LEFT")); 3284 sqlite3Select(pParse, pPrior, &destA); 3285 sqlite3VdbeEndCoroutine(v, regAddrA); 3286 sqlite3VdbeJumpHere(v, addr1); 3287 3288 /* Generate a coroutine to evaluate the SELECT statement on 3289 ** the right - the "B" select 3290 */ 3291 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3292 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3293 VdbeComment((v, "right SELECT")); 3294 savedLimit = p->iLimit; 3295 savedOffset = p->iOffset; 3296 p->iLimit = regLimitB; 3297 p->iOffset = 0; 3298 ExplainQueryPlan((pParse, 1, "RIGHT")); 3299 sqlite3Select(pParse, p, &destB); 3300 p->iLimit = savedLimit; 3301 p->iOffset = savedOffset; 3302 sqlite3VdbeEndCoroutine(v, regAddrB); 3303 3304 /* Generate a subroutine that outputs the current row of the A 3305 ** select as the next output row of the compound select. 3306 */ 3307 VdbeNoopComment((v, "Output routine for A")); 3308 addrOutA = generateOutputSubroutine(pParse, 3309 p, &destA, pDest, regOutA, 3310 regPrev, pKeyDup, labelEnd); 3311 3312 /* Generate a subroutine that outputs the current row of the B 3313 ** select as the next output row of the compound select. 3314 */ 3315 if( op==TK_ALL || op==TK_UNION ){ 3316 VdbeNoopComment((v, "Output routine for B")); 3317 addrOutB = generateOutputSubroutine(pParse, 3318 p, &destB, pDest, regOutB, 3319 regPrev, pKeyDup, labelEnd); 3320 } 3321 sqlite3KeyInfoUnref(pKeyDup); 3322 3323 /* Generate a subroutine to run when the results from select A 3324 ** are exhausted and only data in select B remains. 3325 */ 3326 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3327 addrEofA_noB = addrEofA = labelEnd; 3328 }else{ 3329 VdbeNoopComment((v, "eof-A subroutine")); 3330 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3331 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3332 VdbeCoverage(v); 3333 sqlite3VdbeGoto(v, addrEofA); 3334 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3335 } 3336 3337 /* Generate a subroutine to run when the results from select B 3338 ** are exhausted and only data in select A remains. 3339 */ 3340 if( op==TK_INTERSECT ){ 3341 addrEofB = addrEofA; 3342 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3343 }else{ 3344 VdbeNoopComment((v, "eof-B subroutine")); 3345 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3346 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3347 sqlite3VdbeGoto(v, addrEofB); 3348 } 3349 3350 /* Generate code to handle the case of A<B 3351 */ 3352 VdbeNoopComment((v, "A-lt-B subroutine")); 3353 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3354 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3355 sqlite3VdbeGoto(v, labelCmpr); 3356 3357 /* Generate code to handle the case of A==B 3358 */ 3359 if( op==TK_ALL ){ 3360 addrAeqB = addrAltB; 3361 }else if( op==TK_INTERSECT ){ 3362 addrAeqB = addrAltB; 3363 addrAltB++; 3364 }else{ 3365 VdbeNoopComment((v, "A-eq-B subroutine")); 3366 addrAeqB = 3367 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3368 sqlite3VdbeGoto(v, labelCmpr); 3369 } 3370 3371 /* Generate code to handle the case of A>B 3372 */ 3373 VdbeNoopComment((v, "A-gt-B subroutine")); 3374 addrAgtB = sqlite3VdbeCurrentAddr(v); 3375 if( op==TK_ALL || op==TK_UNION ){ 3376 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3377 } 3378 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3379 sqlite3VdbeGoto(v, labelCmpr); 3380 3381 /* This code runs once to initialize everything. 3382 */ 3383 sqlite3VdbeJumpHere(v, addr1); 3384 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3385 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3386 3387 /* Implement the main merge loop 3388 */ 3389 sqlite3VdbeResolveLabel(v, labelCmpr); 3390 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3391 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3392 (char*)pKeyMerge, P4_KEYINFO); 3393 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3394 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3395 3396 /* Jump to the this point in order to terminate the query. 3397 */ 3398 sqlite3VdbeResolveLabel(v, labelEnd); 3399 3400 /* Reassembly the compound query so that it will be freed correctly 3401 ** by the calling function */ 3402 if( p->pPrior ){ 3403 sqlite3SelectDelete(db, p->pPrior); 3404 } 3405 p->pPrior = pPrior; 3406 pPrior->pNext = p; 3407 3408 /*** TBD: Insert subroutine calls to close cursors on incomplete 3409 **** subqueries ****/ 3410 ExplainQueryPlanPop(pParse); 3411 return pParse->nErr!=0; 3412 } 3413 #endif 3414 3415 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3416 3417 /* An instance of the SubstContext object describes an substitution edit 3418 ** to be performed on a parse tree. 3419 ** 3420 ** All references to columns in table iTable are to be replaced by corresponding 3421 ** expressions in pEList. 3422 */ 3423 typedef struct SubstContext { 3424 Parse *pParse; /* The parsing context */ 3425 int iTable; /* Replace references to this table */ 3426 int iNewTable; /* New table number */ 3427 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3428 ExprList *pEList; /* Replacement expressions */ 3429 } SubstContext; 3430 3431 /* Forward Declarations */ 3432 static void substExprList(SubstContext*, ExprList*); 3433 static void substSelect(SubstContext*, Select*, int); 3434 3435 /* 3436 ** Scan through the expression pExpr. Replace every reference to 3437 ** a column in table number iTable with a copy of the iColumn-th 3438 ** entry in pEList. (But leave references to the ROWID column 3439 ** unchanged.) 3440 ** 3441 ** This routine is part of the flattening procedure. A subquery 3442 ** whose result set is defined by pEList appears as entry in the 3443 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3444 ** FORM clause entry is iTable. This routine makes the necessary 3445 ** changes to pExpr so that it refers directly to the source table 3446 ** of the subquery rather the result set of the subquery. 3447 */ 3448 static Expr *substExpr( 3449 SubstContext *pSubst, /* Description of the substitution */ 3450 Expr *pExpr /* Expr in which substitution occurs */ 3451 ){ 3452 if( pExpr==0 ) return 0; 3453 if( ExprHasProperty(pExpr, EP_FromJoin) 3454 && pExpr->iRightJoinTable==pSubst->iTable 3455 ){ 3456 pExpr->iRightJoinTable = pSubst->iNewTable; 3457 } 3458 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3459 if( pExpr->iColumn<0 ){ 3460 pExpr->op = TK_NULL; 3461 }else{ 3462 Expr *pNew; 3463 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3464 Expr ifNullRow; 3465 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3466 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3467 if( sqlite3ExprIsVector(pCopy) ){ 3468 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3469 }else{ 3470 sqlite3 *db = pSubst->pParse->db; 3471 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3472 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3473 ifNullRow.op = TK_IF_NULL_ROW; 3474 ifNullRow.pLeft = pCopy; 3475 ifNullRow.iTable = pSubst->iNewTable; 3476 pCopy = &ifNullRow; 3477 } 3478 pNew = sqlite3ExprDup(db, pCopy, 0); 3479 if( pNew && pSubst->isLeftJoin ){ 3480 ExprSetProperty(pNew, EP_CanBeNull); 3481 } 3482 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3483 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3484 ExprSetProperty(pNew, EP_FromJoin); 3485 } 3486 sqlite3ExprDelete(db, pExpr); 3487 pExpr = pNew; 3488 } 3489 } 3490 }else{ 3491 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3492 pExpr->iTable = pSubst->iNewTable; 3493 } 3494 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3495 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3496 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3497 substSelect(pSubst, pExpr->x.pSelect, 1); 3498 }else{ 3499 substExprList(pSubst, pExpr->x.pList); 3500 } 3501 } 3502 return pExpr; 3503 } 3504 static void substExprList( 3505 SubstContext *pSubst, /* Description of the substitution */ 3506 ExprList *pList /* List to scan and in which to make substitutes */ 3507 ){ 3508 int i; 3509 if( pList==0 ) return; 3510 for(i=0; i<pList->nExpr; i++){ 3511 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3512 } 3513 } 3514 static void substSelect( 3515 SubstContext *pSubst, /* Description of the substitution */ 3516 Select *p, /* SELECT statement in which to make substitutions */ 3517 int doPrior /* Do substitutes on p->pPrior too */ 3518 ){ 3519 SrcList *pSrc; 3520 struct SrcList_item *pItem; 3521 int i; 3522 if( !p ) return; 3523 do{ 3524 substExprList(pSubst, p->pEList); 3525 substExprList(pSubst, p->pGroupBy); 3526 substExprList(pSubst, p->pOrderBy); 3527 p->pHaving = substExpr(pSubst, p->pHaving); 3528 p->pWhere = substExpr(pSubst, p->pWhere); 3529 pSrc = p->pSrc; 3530 assert( pSrc!=0 ); 3531 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3532 substSelect(pSubst, pItem->pSelect, 1); 3533 if( pItem->fg.isTabFunc ){ 3534 substExprList(pSubst, pItem->u1.pFuncArg); 3535 } 3536 } 3537 }while( doPrior && (p = p->pPrior)!=0 ); 3538 } 3539 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3540 3541 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3542 /* 3543 ** This routine attempts to flatten subqueries as a performance optimization. 3544 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3545 ** 3546 ** To understand the concept of flattening, consider the following 3547 ** query: 3548 ** 3549 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3550 ** 3551 ** The default way of implementing this query is to execute the 3552 ** subquery first and store the results in a temporary table, then 3553 ** run the outer query on that temporary table. This requires two 3554 ** passes over the data. Furthermore, because the temporary table 3555 ** has no indices, the WHERE clause on the outer query cannot be 3556 ** optimized. 3557 ** 3558 ** This routine attempts to rewrite queries such as the above into 3559 ** a single flat select, like this: 3560 ** 3561 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3562 ** 3563 ** The code generated for this simplification gives the same result 3564 ** but only has to scan the data once. And because indices might 3565 ** exist on the table t1, a complete scan of the data might be 3566 ** avoided. 3567 ** 3568 ** Flattening is subject to the following constraints: 3569 ** 3570 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3571 ** The subquery and the outer query cannot both be aggregates. 3572 ** 3573 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3574 ** (2) If the subquery is an aggregate then 3575 ** (2a) the outer query must not be a join and 3576 ** (2b) the outer query must not use subqueries 3577 ** other than the one FROM-clause subquery that is a candidate 3578 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3579 ** from 2015-02-09.) 3580 ** 3581 ** (3) If the subquery is the right operand of a LEFT JOIN then 3582 ** (3a) the subquery may not be a join and 3583 ** (3b) the FROM clause of the subquery may not contain a virtual 3584 ** table and 3585 ** (3c) the outer query may not be an aggregate. 3586 ** 3587 ** (4) The subquery can not be DISTINCT. 3588 ** 3589 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3590 ** sub-queries that were excluded from this optimization. Restriction 3591 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3592 ** 3593 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3594 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3595 ** 3596 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3597 ** A FROM clause, consider adding a FROM clause with the special 3598 ** table sqlite_once that consists of a single row containing a 3599 ** single NULL. 3600 ** 3601 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3602 ** 3603 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3604 ** 3605 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3606 ** accidently carried the comment forward until 2014-09-15. Original 3607 ** constraint: "If the subquery is aggregate then the outer query 3608 ** may not use LIMIT." 3609 ** 3610 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3611 ** 3612 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3613 ** a separate restriction deriving from ticket #350. 3614 ** 3615 ** (13) The subquery and outer query may not both use LIMIT. 3616 ** 3617 ** (14) The subquery may not use OFFSET. 3618 ** 3619 ** (15) If the outer query is part of a compound select, then the 3620 ** subquery may not use LIMIT. 3621 ** (See ticket #2339 and ticket [02a8e81d44]). 3622 ** 3623 ** (16) If the outer query is aggregate, then the subquery may not 3624 ** use ORDER BY. (Ticket #2942) This used to not matter 3625 ** until we introduced the group_concat() function. 3626 ** 3627 ** (17) If the subquery is a compound select, then 3628 ** (17a) all compound operators must be a UNION ALL, and 3629 ** (17b) no terms within the subquery compound may be aggregate 3630 ** or DISTINCT, and 3631 ** (17c) every term within the subquery compound must have a FROM clause 3632 ** (17d) the outer query may not be 3633 ** (17d1) aggregate, or 3634 ** (17d2) DISTINCT, or 3635 ** (17d3) a join. 3636 ** 3637 ** The parent and sub-query may contain WHERE clauses. Subject to 3638 ** rules (11), (13) and (14), they may also contain ORDER BY, 3639 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3640 ** operator other than UNION ALL because all the other compound 3641 ** operators have an implied DISTINCT which is disallowed by 3642 ** restriction (4). 3643 ** 3644 ** Also, each component of the sub-query must return the same number 3645 ** of result columns. This is actually a requirement for any compound 3646 ** SELECT statement, but all the code here does is make sure that no 3647 ** such (illegal) sub-query is flattened. The caller will detect the 3648 ** syntax error and return a detailed message. 3649 ** 3650 ** (18) If the sub-query is a compound select, then all terms of the 3651 ** ORDER BY clause of the parent must be simple references to 3652 ** columns of the sub-query. 3653 ** 3654 ** (19) If the subquery uses LIMIT then the outer query may not 3655 ** have a WHERE clause. 3656 ** 3657 ** (20) If the sub-query is a compound select, then it must not use 3658 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3659 ** somewhat by saying that the terms of the ORDER BY clause must 3660 ** appear as unmodified result columns in the outer query. But we 3661 ** have other optimizations in mind to deal with that case. 3662 ** 3663 ** (21) If the subquery uses LIMIT then the outer query may not be 3664 ** DISTINCT. (See ticket [752e1646fc]). 3665 ** 3666 ** (22) The subquery may not be a recursive CTE. 3667 ** 3668 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3669 ** a recursive CTE, then the sub-query may not be a compound query. 3670 ** This restriction is because transforming the 3671 ** parent to a compound query confuses the code that handles 3672 ** recursive queries in multiSelect(). 3673 ** 3674 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3675 ** The subquery may not be an aggregate that uses the built-in min() or 3676 ** or max() functions. (Without this restriction, a query like: 3677 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3678 ** return the value X for which Y was maximal.) 3679 ** 3680 ** (25) If either the subquery or the parent query contains a window 3681 ** function in the select list or ORDER BY clause, flattening 3682 ** is not attempted. 3683 ** 3684 ** 3685 ** In this routine, the "p" parameter is a pointer to the outer query. 3686 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3687 ** uses aggregates. 3688 ** 3689 ** If flattening is not attempted, this routine is a no-op and returns 0. 3690 ** If flattening is attempted this routine returns 1. 3691 ** 3692 ** All of the expression analysis must occur on both the outer query and 3693 ** the subquery before this routine runs. 3694 */ 3695 static int flattenSubquery( 3696 Parse *pParse, /* Parsing context */ 3697 Select *p, /* The parent or outer SELECT statement */ 3698 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3699 int isAgg /* True if outer SELECT uses aggregate functions */ 3700 ){ 3701 const char *zSavedAuthContext = pParse->zAuthContext; 3702 Select *pParent; /* Current UNION ALL term of the other query */ 3703 Select *pSub; /* The inner query or "subquery" */ 3704 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3705 SrcList *pSrc; /* The FROM clause of the outer query */ 3706 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3707 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3708 int iNewParent = -1;/* Replacement table for iParent */ 3709 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3710 int i; /* Loop counter */ 3711 Expr *pWhere; /* The WHERE clause */ 3712 struct SrcList_item *pSubitem; /* The subquery */ 3713 sqlite3 *db = pParse->db; 3714 3715 /* Check to see if flattening is permitted. Return 0 if not. 3716 */ 3717 assert( p!=0 ); 3718 assert( p->pPrior==0 ); 3719 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3720 pSrc = p->pSrc; 3721 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3722 pSubitem = &pSrc->a[iFrom]; 3723 iParent = pSubitem->iCursor; 3724 pSub = pSubitem->pSelect; 3725 assert( pSub!=0 ); 3726 3727 #ifndef SQLITE_OMIT_WINDOWFUNC 3728 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3729 #endif 3730 3731 pSubSrc = pSub->pSrc; 3732 assert( pSubSrc ); 3733 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3734 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3735 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3736 ** became arbitrary expressions, we were forced to add restrictions (13) 3737 ** and (14). */ 3738 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3739 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3740 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3741 return 0; /* Restriction (15) */ 3742 } 3743 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3744 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3745 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3746 return 0; /* Restrictions (8)(9) */ 3747 } 3748 if( p->pOrderBy && pSub->pOrderBy ){ 3749 return 0; /* Restriction (11) */ 3750 } 3751 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3752 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3753 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3754 return 0; /* Restriction (21) */ 3755 } 3756 if( pSub->selFlags & (SF_Recursive) ){ 3757 return 0; /* Restrictions (22) */ 3758 } 3759 3760 /* 3761 ** If the subquery is the right operand of a LEFT JOIN, then the 3762 ** subquery may not be a join itself (3a). Example of why this is not 3763 ** allowed: 3764 ** 3765 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3766 ** 3767 ** If we flatten the above, we would get 3768 ** 3769 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3770 ** 3771 ** which is not at all the same thing. 3772 ** 3773 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3774 ** query cannot be an aggregate. (3c) This is an artifact of the way 3775 ** aggregates are processed - there is no mechanism to determine if 3776 ** the LEFT JOIN table should be all-NULL. 3777 ** 3778 ** See also tickets #306, #350, and #3300. 3779 */ 3780 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3781 isLeftJoin = 1; 3782 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3783 /* (3a) (3c) (3b) */ 3784 return 0; 3785 } 3786 } 3787 #ifdef SQLITE_EXTRA_IFNULLROW 3788 else if( iFrom>0 && !isAgg ){ 3789 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3790 ** every reference to any result column from subquery in a join, even 3791 ** though they are not necessary. This will stress-test the OP_IfNullRow 3792 ** opcode. */ 3793 isLeftJoin = -1; 3794 } 3795 #endif 3796 3797 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3798 ** use only the UNION ALL operator. And none of the simple select queries 3799 ** that make up the compound SELECT are allowed to be aggregate or distinct 3800 ** queries. 3801 */ 3802 if( pSub->pPrior ){ 3803 if( pSub->pOrderBy ){ 3804 return 0; /* Restriction (20) */ 3805 } 3806 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3807 return 0; /* (17d1), (17d2), or (17d3) */ 3808 } 3809 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3810 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3811 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3812 assert( pSub->pSrc!=0 ); 3813 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3814 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3815 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3816 || pSub1->pSrc->nSrc<1 /* (17c) */ 3817 ){ 3818 return 0; 3819 } 3820 testcase( pSub1->pSrc->nSrc>1 ); 3821 } 3822 3823 /* Restriction (18). */ 3824 if( p->pOrderBy ){ 3825 int ii; 3826 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3827 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3828 } 3829 } 3830 } 3831 3832 /* Ex-restriction (23): 3833 ** The only way that the recursive part of a CTE can contain a compound 3834 ** subquery is for the subquery to be one term of a join. But if the 3835 ** subquery is a join, then the flattening has already been stopped by 3836 ** restriction (17d3) 3837 */ 3838 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3839 3840 /***** If we reach this point, flattening is permitted. *****/ 3841 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3842 pSub->zSelName, pSub, iFrom)); 3843 3844 /* Authorize the subquery */ 3845 pParse->zAuthContext = pSubitem->zName; 3846 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3847 testcase( i==SQLITE_DENY ); 3848 pParse->zAuthContext = zSavedAuthContext; 3849 3850 /* If the sub-query is a compound SELECT statement, then (by restrictions 3851 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3852 ** be of the form: 3853 ** 3854 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3855 ** 3856 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3857 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3858 ** OFFSET clauses and joins them to the left-hand-side of the original 3859 ** using UNION ALL operators. In this case N is the number of simple 3860 ** select statements in the compound sub-query. 3861 ** 3862 ** Example: 3863 ** 3864 ** SELECT a+1 FROM ( 3865 ** SELECT x FROM tab 3866 ** UNION ALL 3867 ** SELECT y FROM tab 3868 ** UNION ALL 3869 ** SELECT abs(z*2) FROM tab2 3870 ** ) WHERE a!=5 ORDER BY 1 3871 ** 3872 ** Transformed into: 3873 ** 3874 ** SELECT x+1 FROM tab WHERE x+1!=5 3875 ** UNION ALL 3876 ** SELECT y+1 FROM tab WHERE y+1!=5 3877 ** UNION ALL 3878 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3879 ** ORDER BY 1 3880 ** 3881 ** We call this the "compound-subquery flattening". 3882 */ 3883 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3884 Select *pNew; 3885 ExprList *pOrderBy = p->pOrderBy; 3886 Expr *pLimit = p->pLimit; 3887 Select *pPrior = p->pPrior; 3888 p->pOrderBy = 0; 3889 p->pSrc = 0; 3890 p->pPrior = 0; 3891 p->pLimit = 0; 3892 pNew = sqlite3SelectDup(db, p, 0); 3893 sqlite3SelectSetName(pNew, pSub->zSelName); 3894 p->pLimit = pLimit; 3895 p->pOrderBy = pOrderBy; 3896 p->pSrc = pSrc; 3897 p->op = TK_ALL; 3898 if( pNew==0 ){ 3899 p->pPrior = pPrior; 3900 }else{ 3901 pNew->pPrior = pPrior; 3902 if( pPrior ) pPrior->pNext = pNew; 3903 pNew->pNext = p; 3904 p->pPrior = pNew; 3905 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3906 " creates %s.%p as peer\n",pNew->zSelName, pNew)); 3907 } 3908 if( db->mallocFailed ) return 1; 3909 } 3910 3911 /* Begin flattening the iFrom-th entry of the FROM clause 3912 ** in the outer query. 3913 */ 3914 pSub = pSub1 = pSubitem->pSelect; 3915 3916 /* Delete the transient table structure associated with the 3917 ** subquery 3918 */ 3919 sqlite3DbFree(db, pSubitem->zDatabase); 3920 sqlite3DbFree(db, pSubitem->zName); 3921 sqlite3DbFree(db, pSubitem->zAlias); 3922 pSubitem->zDatabase = 0; 3923 pSubitem->zName = 0; 3924 pSubitem->zAlias = 0; 3925 pSubitem->pSelect = 0; 3926 3927 /* Defer deleting the Table object associated with the 3928 ** subquery until code generation is 3929 ** complete, since there may still exist Expr.pTab entries that 3930 ** refer to the subquery even after flattening. Ticket #3346. 3931 ** 3932 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3933 */ 3934 if( ALWAYS(pSubitem->pTab!=0) ){ 3935 Table *pTabToDel = pSubitem->pTab; 3936 if( pTabToDel->nTabRef==1 ){ 3937 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3938 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3939 pToplevel->pZombieTab = pTabToDel; 3940 }else{ 3941 pTabToDel->nTabRef--; 3942 } 3943 pSubitem->pTab = 0; 3944 } 3945 3946 /* The following loop runs once for each term in a compound-subquery 3947 ** flattening (as described above). If we are doing a different kind 3948 ** of flattening - a flattening other than a compound-subquery flattening - 3949 ** then this loop only runs once. 3950 ** 3951 ** This loop moves all of the FROM elements of the subquery into the 3952 ** the FROM clause of the outer query. Before doing this, remember 3953 ** the cursor number for the original outer query FROM element in 3954 ** iParent. The iParent cursor will never be used. Subsequent code 3955 ** will scan expressions looking for iParent references and replace 3956 ** those references with expressions that resolve to the subquery FROM 3957 ** elements we are now copying in. 3958 */ 3959 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3960 int nSubSrc; 3961 u8 jointype = 0; 3962 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3963 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3964 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3965 3966 if( pSrc ){ 3967 assert( pParent==p ); /* First time through the loop */ 3968 jointype = pSubitem->fg.jointype; 3969 }else{ 3970 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3971 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3972 if( pSrc==0 ){ 3973 assert( db->mallocFailed ); 3974 break; 3975 } 3976 } 3977 3978 /* The subquery uses a single slot of the FROM clause of the outer 3979 ** query. If the subquery has more than one element in its FROM clause, 3980 ** then expand the outer query to make space for it to hold all elements 3981 ** of the subquery. 3982 ** 3983 ** Example: 3984 ** 3985 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3986 ** 3987 ** The outer query has 3 slots in its FROM clause. One slot of the 3988 ** outer query (the middle slot) is used by the subquery. The next 3989 ** block of code will expand the outer query FROM clause to 4 slots. 3990 ** The middle slot is expanded to two slots in order to make space 3991 ** for the two elements in the FROM clause of the subquery. 3992 */ 3993 if( nSubSrc>1 ){ 3994 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3995 if( db->mallocFailed ){ 3996 break; 3997 } 3998 } 3999 4000 /* Transfer the FROM clause terms from the subquery into the 4001 ** outer query. 4002 */ 4003 for(i=0; i<nSubSrc; i++){ 4004 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4005 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4006 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4007 iNewParent = pSubSrc->a[i].iCursor; 4008 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4009 } 4010 pSrc->a[iFrom].fg.jointype = jointype; 4011 4012 /* Now begin substituting subquery result set expressions for 4013 ** references to the iParent in the outer query. 4014 ** 4015 ** Example: 4016 ** 4017 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4018 ** \ \_____________ subquery __________/ / 4019 ** \_____________________ outer query ______________________________/ 4020 ** 4021 ** We look at every expression in the outer query and every place we see 4022 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4023 */ 4024 if( pSub->pOrderBy ){ 4025 /* At this point, any non-zero iOrderByCol values indicate that the 4026 ** ORDER BY column expression is identical to the iOrderByCol'th 4027 ** expression returned by SELECT statement pSub. Since these values 4028 ** do not necessarily correspond to columns in SELECT statement pParent, 4029 ** zero them before transfering the ORDER BY clause. 4030 ** 4031 ** Not doing this may cause an error if a subsequent call to this 4032 ** function attempts to flatten a compound sub-query into pParent 4033 ** (the only way this can happen is if the compound sub-query is 4034 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4035 ExprList *pOrderBy = pSub->pOrderBy; 4036 for(i=0; i<pOrderBy->nExpr; i++){ 4037 pOrderBy->a[i].u.x.iOrderByCol = 0; 4038 } 4039 assert( pParent->pOrderBy==0 ); 4040 pParent->pOrderBy = pOrderBy; 4041 pSub->pOrderBy = 0; 4042 } 4043 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 4044 if( isLeftJoin>0 ){ 4045 setJoinExpr(pWhere, iNewParent); 4046 } 4047 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 4048 if( db->mallocFailed==0 ){ 4049 SubstContext x; 4050 x.pParse = pParse; 4051 x.iTable = iParent; 4052 x.iNewTable = iNewParent; 4053 x.isLeftJoin = isLeftJoin; 4054 x.pEList = pSub->pEList; 4055 substSelect(&x, pParent, 0); 4056 } 4057 4058 /* The flattened query is distinct if either the inner or the 4059 ** outer query is distinct. 4060 */ 4061 pParent->selFlags |= pSub->selFlags & SF_Distinct; 4062 4063 /* 4064 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4065 ** 4066 ** One is tempted to try to add a and b to combine the limits. But this 4067 ** does not work if either limit is negative. 4068 */ 4069 if( pSub->pLimit ){ 4070 pParent->pLimit = pSub->pLimit; 4071 pSub->pLimit = 0; 4072 } 4073 } 4074 4075 /* Finially, delete what is left of the subquery and return 4076 ** success. 4077 */ 4078 sqlite3SelectDelete(db, pSub1); 4079 4080 #if SELECTTRACE_ENABLED 4081 if( sqlite3SelectTrace & 0x100 ){ 4082 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4083 sqlite3TreeViewSelect(0, p, 0); 4084 } 4085 #endif 4086 4087 return 1; 4088 } 4089 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4090 4091 4092 4093 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4094 /* 4095 ** Make copies of relevant WHERE clause terms of the outer query into 4096 ** the WHERE clause of subquery. Example: 4097 ** 4098 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4099 ** 4100 ** Transformed into: 4101 ** 4102 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4103 ** WHERE x=5 AND y=10; 4104 ** 4105 ** The hope is that the terms added to the inner query will make it more 4106 ** efficient. 4107 ** 4108 ** Do not attempt this optimization if: 4109 ** 4110 ** (1) (** This restriction was removed on 2017-09-29. We used to 4111 ** disallow this optimization for aggregate subqueries, but now 4112 ** it is allowed by putting the extra terms on the HAVING clause. 4113 ** The added HAVING clause is pointless if the subquery lacks 4114 ** a GROUP BY clause. But such a HAVING clause is also harmless 4115 ** so there does not appear to be any reason to add extra logic 4116 ** to suppress it. **) 4117 ** 4118 ** (2) The inner query is the recursive part of a common table expression. 4119 ** 4120 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4121 ** clause would change the meaning of the LIMIT). 4122 ** 4123 ** (4) The inner query is the right operand of a LEFT JOIN and the 4124 ** expression to be pushed down does not come from the ON clause 4125 ** on that LEFT JOIN. 4126 ** 4127 ** (5) The WHERE clause expression originates in the ON or USING clause 4128 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4129 ** left join. An example: 4130 ** 4131 ** SELECT * 4132 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4133 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4134 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4135 ** 4136 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4137 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4138 ** then the (1,1,NULL) row would be suppressed. 4139 ** 4140 ** (6) The inner query features one or more window-functions (since 4141 ** changes to the WHERE clause of the inner query could change the 4142 ** window over which window functions are calculated). 4143 ** 4144 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4145 ** terms are duplicated into the subquery. 4146 */ 4147 static int pushDownWhereTerms( 4148 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4149 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4150 Expr *pWhere, /* The WHERE clause of the outer query */ 4151 int iCursor, /* Cursor number of the subquery */ 4152 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4153 ){ 4154 Expr *pNew; 4155 int nChng = 0; 4156 if( pWhere==0 ) return 0; 4157 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4158 4159 #ifndef SQLITE_OMIT_WINDOWFUNC 4160 if( pSubq->pWin ) return 0; 4161 #endif 4162 4163 #ifdef SQLITE_DEBUG 4164 /* Only the first term of a compound can have a WITH clause. But make 4165 ** sure no other terms are marked SF_Recursive in case something changes 4166 ** in the future. 4167 */ 4168 { 4169 Select *pX; 4170 for(pX=pSubq; pX; pX=pX->pPrior){ 4171 assert( (pX->selFlags & (SF_Recursive))==0 ); 4172 } 4173 } 4174 #endif 4175 4176 if( pSubq->pLimit!=0 ){ 4177 return 0; /* restriction (3) */ 4178 } 4179 while( pWhere->op==TK_AND ){ 4180 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4181 iCursor, isLeftJoin); 4182 pWhere = pWhere->pLeft; 4183 } 4184 if( isLeftJoin 4185 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4186 || pWhere->iRightJoinTable!=iCursor) 4187 ){ 4188 return 0; /* restriction (4) */ 4189 } 4190 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4191 return 0; /* restriction (5) */ 4192 } 4193 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4194 nChng++; 4195 while( pSubq ){ 4196 SubstContext x; 4197 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4198 unsetJoinExpr(pNew, -1); 4199 x.pParse = pParse; 4200 x.iTable = iCursor; 4201 x.iNewTable = iCursor; 4202 x.isLeftJoin = 0; 4203 x.pEList = pSubq->pEList; 4204 pNew = substExpr(&x, pNew); 4205 if( pSubq->selFlags & SF_Aggregate ){ 4206 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4207 }else{ 4208 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4209 } 4210 pSubq = pSubq->pPrior; 4211 } 4212 } 4213 return nChng; 4214 } 4215 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4216 4217 /* 4218 ** The pFunc is the only aggregate function in the query. Check to see 4219 ** if the query is a candidate for the min/max optimization. 4220 ** 4221 ** If the query is a candidate for the min/max optimization, then set 4222 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4223 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4224 ** whether pFunc is a min() or max() function. 4225 ** 4226 ** If the query is not a candidate for the min/max optimization, return 4227 ** WHERE_ORDERBY_NORMAL (which must be zero). 4228 ** 4229 ** This routine must be called after aggregate functions have been 4230 ** located but before their arguments have been subjected to aggregate 4231 ** analysis. 4232 */ 4233 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4234 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4235 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4236 const char *zFunc; /* Name of aggregate function pFunc */ 4237 ExprList *pOrderBy; 4238 u8 sortOrder; 4239 4240 assert( *ppMinMax==0 ); 4241 assert( pFunc->op==TK_AGG_FUNCTION ); 4242 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4243 zFunc = pFunc->u.zToken; 4244 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4245 eRet = WHERE_ORDERBY_MIN; 4246 sortOrder = SQLITE_SO_ASC; 4247 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4248 eRet = WHERE_ORDERBY_MAX; 4249 sortOrder = SQLITE_SO_DESC; 4250 }else{ 4251 return eRet; 4252 } 4253 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4254 assert( pOrderBy!=0 || db->mallocFailed ); 4255 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4256 return eRet; 4257 } 4258 4259 /* 4260 ** The select statement passed as the first argument is an aggregate query. 4261 ** The second argument is the associated aggregate-info object. This 4262 ** function tests if the SELECT is of the form: 4263 ** 4264 ** SELECT count(*) FROM <tbl> 4265 ** 4266 ** where table is a database table, not a sub-select or view. If the query 4267 ** does match this pattern, then a pointer to the Table object representing 4268 ** <tbl> is returned. Otherwise, 0 is returned. 4269 */ 4270 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4271 Table *pTab; 4272 Expr *pExpr; 4273 4274 assert( !p->pGroupBy ); 4275 4276 if( p->pWhere || p->pEList->nExpr!=1 4277 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4278 ){ 4279 return 0; 4280 } 4281 pTab = p->pSrc->a[0].pTab; 4282 pExpr = p->pEList->a[0].pExpr; 4283 assert( pTab && !pTab->pSelect && pExpr ); 4284 4285 if( IsVirtual(pTab) ) return 0; 4286 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4287 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4288 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4289 if( pExpr->flags&EP_Distinct ) return 0; 4290 4291 return pTab; 4292 } 4293 4294 /* 4295 ** If the source-list item passed as an argument was augmented with an 4296 ** INDEXED BY clause, then try to locate the specified index. If there 4297 ** was such a clause and the named index cannot be found, return 4298 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4299 ** pFrom->pIndex and return SQLITE_OK. 4300 */ 4301 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4302 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4303 Table *pTab = pFrom->pTab; 4304 char *zIndexedBy = pFrom->u1.zIndexedBy; 4305 Index *pIdx; 4306 for(pIdx=pTab->pIndex; 4307 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4308 pIdx=pIdx->pNext 4309 ); 4310 if( !pIdx ){ 4311 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4312 pParse->checkSchema = 1; 4313 return SQLITE_ERROR; 4314 } 4315 pFrom->pIBIndex = pIdx; 4316 } 4317 return SQLITE_OK; 4318 } 4319 /* 4320 ** Detect compound SELECT statements that use an ORDER BY clause with 4321 ** an alternative collating sequence. 4322 ** 4323 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4324 ** 4325 ** These are rewritten as a subquery: 4326 ** 4327 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4328 ** ORDER BY ... COLLATE ... 4329 ** 4330 ** This transformation is necessary because the multiSelectOrderBy() routine 4331 ** above that generates the code for a compound SELECT with an ORDER BY clause 4332 ** uses a merge algorithm that requires the same collating sequence on the 4333 ** result columns as on the ORDER BY clause. See ticket 4334 ** http://www.sqlite.org/src/info/6709574d2a 4335 ** 4336 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4337 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4338 ** there are COLLATE terms in the ORDER BY. 4339 */ 4340 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4341 int i; 4342 Select *pNew; 4343 Select *pX; 4344 sqlite3 *db; 4345 struct ExprList_item *a; 4346 SrcList *pNewSrc; 4347 Parse *pParse; 4348 Token dummy; 4349 4350 if( p->pPrior==0 ) return WRC_Continue; 4351 if( p->pOrderBy==0 ) return WRC_Continue; 4352 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4353 if( pX==0 ) return WRC_Continue; 4354 a = p->pOrderBy->a; 4355 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4356 if( a[i].pExpr->flags & EP_Collate ) break; 4357 } 4358 if( i<0 ) return WRC_Continue; 4359 4360 /* If we reach this point, that means the transformation is required. */ 4361 4362 pParse = pWalker->pParse; 4363 db = pParse->db; 4364 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4365 if( pNew==0 ) return WRC_Abort; 4366 memset(&dummy, 0, sizeof(dummy)); 4367 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4368 if( pNewSrc==0 ) return WRC_Abort; 4369 *pNew = *p; 4370 p->pSrc = pNewSrc; 4371 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4372 p->op = TK_SELECT; 4373 p->pWhere = 0; 4374 pNew->pGroupBy = 0; 4375 pNew->pHaving = 0; 4376 pNew->pOrderBy = 0; 4377 p->pPrior = 0; 4378 p->pNext = 0; 4379 p->pWith = 0; 4380 p->selFlags &= ~SF_Compound; 4381 assert( (p->selFlags & SF_Converted)==0 ); 4382 p->selFlags |= SF_Converted; 4383 assert( pNew->pPrior!=0 ); 4384 pNew->pPrior->pNext = pNew; 4385 pNew->pLimit = 0; 4386 return WRC_Continue; 4387 } 4388 4389 /* 4390 ** Check to see if the FROM clause term pFrom has table-valued function 4391 ** arguments. If it does, leave an error message in pParse and return 4392 ** non-zero, since pFrom is not allowed to be a table-valued function. 4393 */ 4394 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4395 if( pFrom->fg.isTabFunc ){ 4396 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4397 return 1; 4398 } 4399 return 0; 4400 } 4401 4402 #ifndef SQLITE_OMIT_CTE 4403 /* 4404 ** Argument pWith (which may be NULL) points to a linked list of nested 4405 ** WITH contexts, from inner to outermost. If the table identified by 4406 ** FROM clause element pItem is really a common-table-expression (CTE) 4407 ** then return a pointer to the CTE definition for that table. Otherwise 4408 ** return NULL. 4409 ** 4410 ** If a non-NULL value is returned, set *ppContext to point to the With 4411 ** object that the returned CTE belongs to. 4412 */ 4413 static struct Cte *searchWith( 4414 With *pWith, /* Current innermost WITH clause */ 4415 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4416 With **ppContext /* OUT: WITH clause return value belongs to */ 4417 ){ 4418 const char *zName; 4419 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4420 With *p; 4421 for(p=pWith; p; p=p->pOuter){ 4422 int i; 4423 for(i=0; i<p->nCte; i++){ 4424 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4425 *ppContext = p; 4426 return &p->a[i]; 4427 } 4428 } 4429 } 4430 } 4431 return 0; 4432 } 4433 4434 /* The code generator maintains a stack of active WITH clauses 4435 ** with the inner-most WITH clause being at the top of the stack. 4436 ** 4437 ** This routine pushes the WITH clause passed as the second argument 4438 ** onto the top of the stack. If argument bFree is true, then this 4439 ** WITH clause will never be popped from the stack. In this case it 4440 ** should be freed along with the Parse object. In other cases, when 4441 ** bFree==0, the With object will be freed along with the SELECT 4442 ** statement with which it is associated. 4443 */ 4444 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4445 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4446 if( pWith ){ 4447 assert( pParse->pWith!=pWith ); 4448 pWith->pOuter = pParse->pWith; 4449 pParse->pWith = pWith; 4450 if( bFree ) pParse->pWithToFree = pWith; 4451 } 4452 } 4453 4454 /* 4455 ** This function checks if argument pFrom refers to a CTE declared by 4456 ** a WITH clause on the stack currently maintained by the parser. And, 4457 ** if currently processing a CTE expression, if it is a recursive 4458 ** reference to the current CTE. 4459 ** 4460 ** If pFrom falls into either of the two categories above, pFrom->pTab 4461 ** and other fields are populated accordingly. The caller should check 4462 ** (pFrom->pTab!=0) to determine whether or not a successful match 4463 ** was found. 4464 ** 4465 ** Whether or not a match is found, SQLITE_OK is returned if no error 4466 ** occurs. If an error does occur, an error message is stored in the 4467 ** parser and some error code other than SQLITE_OK returned. 4468 */ 4469 static int withExpand( 4470 Walker *pWalker, 4471 struct SrcList_item *pFrom 4472 ){ 4473 Parse *pParse = pWalker->pParse; 4474 sqlite3 *db = pParse->db; 4475 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4476 With *pWith; /* WITH clause that pCte belongs to */ 4477 4478 assert( pFrom->pTab==0 ); 4479 4480 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4481 if( pCte ){ 4482 Table *pTab; 4483 ExprList *pEList; 4484 Select *pSel; 4485 Select *pLeft; /* Left-most SELECT statement */ 4486 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4487 With *pSavedWith; /* Initial value of pParse->pWith */ 4488 4489 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4490 ** recursive reference to CTE pCte. Leave an error in pParse and return 4491 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4492 ** In this case, proceed. */ 4493 if( pCte->zCteErr ){ 4494 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4495 return SQLITE_ERROR; 4496 } 4497 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4498 4499 assert( pFrom->pTab==0 ); 4500 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4501 if( pTab==0 ) return WRC_Abort; 4502 pTab->nTabRef = 1; 4503 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4504 pTab->iPKey = -1; 4505 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4506 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4507 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4508 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4509 assert( pFrom->pSelect ); 4510 4511 /* Check if this is a recursive CTE. */ 4512 pSel = pFrom->pSelect; 4513 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4514 if( bMayRecursive ){ 4515 int i; 4516 SrcList *pSrc = pFrom->pSelect->pSrc; 4517 for(i=0; i<pSrc->nSrc; i++){ 4518 struct SrcList_item *pItem = &pSrc->a[i]; 4519 if( pItem->zDatabase==0 4520 && pItem->zName!=0 4521 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4522 ){ 4523 pItem->pTab = pTab; 4524 pItem->fg.isRecursive = 1; 4525 pTab->nTabRef++; 4526 pSel->selFlags |= SF_Recursive; 4527 } 4528 } 4529 } 4530 4531 /* Only one recursive reference is permitted. */ 4532 if( pTab->nTabRef>2 ){ 4533 sqlite3ErrorMsg( 4534 pParse, "multiple references to recursive table: %s", pCte->zName 4535 ); 4536 return SQLITE_ERROR; 4537 } 4538 assert( pTab->nTabRef==1 || 4539 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4540 4541 pCte->zCteErr = "circular reference: %s"; 4542 pSavedWith = pParse->pWith; 4543 pParse->pWith = pWith; 4544 if( bMayRecursive ){ 4545 Select *pPrior = pSel->pPrior; 4546 assert( pPrior->pWith==0 ); 4547 pPrior->pWith = pSel->pWith; 4548 sqlite3WalkSelect(pWalker, pPrior); 4549 pPrior->pWith = 0; 4550 }else{ 4551 sqlite3WalkSelect(pWalker, pSel); 4552 } 4553 pParse->pWith = pWith; 4554 4555 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4556 pEList = pLeft->pEList; 4557 if( pCte->pCols ){ 4558 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4559 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4560 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4561 ); 4562 pParse->pWith = pSavedWith; 4563 return SQLITE_ERROR; 4564 } 4565 pEList = pCte->pCols; 4566 } 4567 4568 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4569 if( bMayRecursive ){ 4570 if( pSel->selFlags & SF_Recursive ){ 4571 pCte->zCteErr = "multiple recursive references: %s"; 4572 }else{ 4573 pCte->zCteErr = "recursive reference in a subquery: %s"; 4574 } 4575 sqlite3WalkSelect(pWalker, pSel); 4576 } 4577 pCte->zCteErr = 0; 4578 pParse->pWith = pSavedWith; 4579 } 4580 4581 return SQLITE_OK; 4582 } 4583 #endif 4584 4585 #ifndef SQLITE_OMIT_CTE 4586 /* 4587 ** If the SELECT passed as the second argument has an associated WITH 4588 ** clause, pop it from the stack stored as part of the Parse object. 4589 ** 4590 ** This function is used as the xSelectCallback2() callback by 4591 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4592 ** names and other FROM clause elements. 4593 */ 4594 static void selectPopWith(Walker *pWalker, Select *p){ 4595 Parse *pParse = pWalker->pParse; 4596 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4597 With *pWith = findRightmost(p)->pWith; 4598 if( pWith!=0 ){ 4599 assert( pParse->pWith==pWith ); 4600 pParse->pWith = pWith->pOuter; 4601 } 4602 } 4603 } 4604 #else 4605 #define selectPopWith 0 4606 #endif 4607 4608 /* 4609 ** The SrcList_item structure passed as the second argument represents a 4610 ** sub-query in the FROM clause of a SELECT statement. This function 4611 ** allocates and populates the SrcList_item.pTab object. If successful, 4612 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4613 ** SQLITE_NOMEM. 4614 */ 4615 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4616 Select *pSel = pFrom->pSelect; 4617 Table *pTab; 4618 4619 assert( pSel ); 4620 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4621 if( pTab==0 ) return SQLITE_NOMEM; 4622 pTab->nTabRef = 1; 4623 if( pFrom->zAlias ){ 4624 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4625 }else{ 4626 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%p", (void*)pTab); 4627 } 4628 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4629 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4630 pTab->iPKey = -1; 4631 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4632 pTab->tabFlags |= TF_Ephemeral; 4633 4634 return SQLITE_OK; 4635 } 4636 4637 /* 4638 ** This routine is a Walker callback for "expanding" a SELECT statement. 4639 ** "Expanding" means to do the following: 4640 ** 4641 ** (1) Make sure VDBE cursor numbers have been assigned to every 4642 ** element of the FROM clause. 4643 ** 4644 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4645 ** defines FROM clause. When views appear in the FROM clause, 4646 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4647 ** that implements the view. A copy is made of the view's SELECT 4648 ** statement so that we can freely modify or delete that statement 4649 ** without worrying about messing up the persistent representation 4650 ** of the view. 4651 ** 4652 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4653 ** on joins and the ON and USING clause of joins. 4654 ** 4655 ** (4) Scan the list of columns in the result set (pEList) looking 4656 ** for instances of the "*" operator or the TABLE.* operator. 4657 ** If found, expand each "*" to be every column in every table 4658 ** and TABLE.* to be every column in TABLE. 4659 ** 4660 */ 4661 static int selectExpander(Walker *pWalker, Select *p){ 4662 Parse *pParse = pWalker->pParse; 4663 int i, j, k; 4664 SrcList *pTabList; 4665 ExprList *pEList; 4666 struct SrcList_item *pFrom; 4667 sqlite3 *db = pParse->db; 4668 Expr *pE, *pRight, *pExpr; 4669 u16 selFlags = p->selFlags; 4670 u32 elistFlags = 0; 4671 4672 p->selFlags |= SF_Expanded; 4673 if( db->mallocFailed ){ 4674 return WRC_Abort; 4675 } 4676 assert( p->pSrc!=0 ); 4677 if( (selFlags & SF_Expanded)!=0 ){ 4678 return WRC_Prune; 4679 } 4680 pTabList = p->pSrc; 4681 pEList = p->pEList; 4682 sqlite3WithPush(pParse, p->pWith, 0); 4683 4684 /* Make sure cursor numbers have been assigned to all entries in 4685 ** the FROM clause of the SELECT statement. 4686 */ 4687 sqlite3SrcListAssignCursors(pParse, pTabList); 4688 4689 /* Look up every table named in the FROM clause of the select. If 4690 ** an entry of the FROM clause is a subquery instead of a table or view, 4691 ** then create a transient table structure to describe the subquery. 4692 */ 4693 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4694 Table *pTab; 4695 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4696 if( pFrom->fg.isRecursive ) continue; 4697 assert( pFrom->pTab==0 ); 4698 #ifndef SQLITE_OMIT_CTE 4699 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4700 if( pFrom->pTab ) {} else 4701 #endif 4702 if( pFrom->zName==0 ){ 4703 #ifndef SQLITE_OMIT_SUBQUERY 4704 Select *pSel = pFrom->pSelect; 4705 /* A sub-query in the FROM clause of a SELECT */ 4706 assert( pSel!=0 ); 4707 assert( pFrom->pTab==0 ); 4708 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4709 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4710 #endif 4711 }else{ 4712 /* An ordinary table or view name in the FROM clause */ 4713 assert( pFrom->pTab==0 ); 4714 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4715 if( pTab==0 ) return WRC_Abort; 4716 if( pTab->nTabRef>=0xffff ){ 4717 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4718 pTab->zName); 4719 pFrom->pTab = 0; 4720 return WRC_Abort; 4721 } 4722 pTab->nTabRef++; 4723 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4724 return WRC_Abort; 4725 } 4726 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4727 if( IsVirtual(pTab) || pTab->pSelect ){ 4728 i16 nCol; 4729 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4730 assert( pFrom->pSelect==0 ); 4731 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4732 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4733 nCol = pTab->nCol; 4734 pTab->nCol = -1; 4735 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4736 pTab->nCol = nCol; 4737 } 4738 #endif 4739 } 4740 4741 /* Locate the index named by the INDEXED BY clause, if any. */ 4742 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4743 return WRC_Abort; 4744 } 4745 } 4746 4747 /* Process NATURAL keywords, and ON and USING clauses of joins. 4748 */ 4749 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4750 return WRC_Abort; 4751 } 4752 4753 /* For every "*" that occurs in the column list, insert the names of 4754 ** all columns in all tables. And for every TABLE.* insert the names 4755 ** of all columns in TABLE. The parser inserted a special expression 4756 ** with the TK_ASTERISK operator for each "*" that it found in the column 4757 ** list. The following code just has to locate the TK_ASTERISK 4758 ** expressions and expand each one to the list of all columns in 4759 ** all tables. 4760 ** 4761 ** The first loop just checks to see if there are any "*" operators 4762 ** that need expanding. 4763 */ 4764 for(k=0; k<pEList->nExpr; k++){ 4765 pE = pEList->a[k].pExpr; 4766 if( pE->op==TK_ASTERISK ) break; 4767 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4768 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4769 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4770 elistFlags |= pE->flags; 4771 } 4772 if( k<pEList->nExpr ){ 4773 /* 4774 ** If we get here it means the result set contains one or more "*" 4775 ** operators that need to be expanded. Loop through each expression 4776 ** in the result set and expand them one by one. 4777 */ 4778 struct ExprList_item *a = pEList->a; 4779 ExprList *pNew = 0; 4780 int flags = pParse->db->flags; 4781 int longNames = (flags & SQLITE_FullColNames)!=0 4782 && (flags & SQLITE_ShortColNames)==0; 4783 4784 for(k=0; k<pEList->nExpr; k++){ 4785 pE = a[k].pExpr; 4786 elistFlags |= pE->flags; 4787 pRight = pE->pRight; 4788 assert( pE->op!=TK_DOT || pRight!=0 ); 4789 if( pE->op!=TK_ASTERISK 4790 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4791 ){ 4792 /* This particular expression does not need to be expanded. 4793 */ 4794 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4795 if( pNew ){ 4796 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4797 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4798 a[k].zName = 0; 4799 a[k].zSpan = 0; 4800 } 4801 a[k].pExpr = 0; 4802 }else{ 4803 /* This expression is a "*" or a "TABLE.*" and needs to be 4804 ** expanded. */ 4805 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4806 char *zTName = 0; /* text of name of TABLE */ 4807 if( pE->op==TK_DOT ){ 4808 assert( pE->pLeft!=0 ); 4809 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4810 zTName = pE->pLeft->u.zToken; 4811 } 4812 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4813 Table *pTab = pFrom->pTab; 4814 Select *pSub = pFrom->pSelect; 4815 char *zTabName = pFrom->zAlias; 4816 const char *zSchemaName = 0; 4817 int iDb; 4818 if( zTabName==0 ){ 4819 zTabName = pTab->zName; 4820 } 4821 if( db->mallocFailed ) break; 4822 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4823 pSub = 0; 4824 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4825 continue; 4826 } 4827 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4828 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4829 } 4830 for(j=0; j<pTab->nCol; j++){ 4831 char *zName = pTab->aCol[j].zName; 4832 char *zColname; /* The computed column name */ 4833 char *zToFree; /* Malloced string that needs to be freed */ 4834 Token sColname; /* Computed column name as a token */ 4835 4836 assert( zName ); 4837 if( zTName && pSub 4838 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4839 ){ 4840 continue; 4841 } 4842 4843 /* If a column is marked as 'hidden', omit it from the expanded 4844 ** result-set list unless the SELECT has the SF_IncludeHidden 4845 ** bit set. 4846 */ 4847 if( (p->selFlags & SF_IncludeHidden)==0 4848 && IsHiddenColumn(&pTab->aCol[j]) 4849 ){ 4850 continue; 4851 } 4852 tableSeen = 1; 4853 4854 if( i>0 && zTName==0 ){ 4855 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4856 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4857 ){ 4858 /* In a NATURAL join, omit the join columns from the 4859 ** table to the right of the join */ 4860 continue; 4861 } 4862 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4863 /* In a join with a USING clause, omit columns in the 4864 ** using clause from the table on the right. */ 4865 continue; 4866 } 4867 } 4868 pRight = sqlite3Expr(db, TK_ID, zName); 4869 zColname = zName; 4870 zToFree = 0; 4871 if( longNames || pTabList->nSrc>1 ){ 4872 Expr *pLeft; 4873 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4874 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4875 if( zSchemaName ){ 4876 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4877 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4878 } 4879 if( longNames ){ 4880 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4881 zToFree = zColname; 4882 } 4883 }else{ 4884 pExpr = pRight; 4885 } 4886 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4887 sqlite3TokenInit(&sColname, zColname); 4888 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4889 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4890 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4891 if( pSub ){ 4892 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4893 testcase( pX->zSpan==0 ); 4894 }else{ 4895 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4896 zSchemaName, zTabName, zColname); 4897 testcase( pX->zSpan==0 ); 4898 } 4899 pX->bSpanIsTab = 1; 4900 } 4901 sqlite3DbFree(db, zToFree); 4902 } 4903 } 4904 if( !tableSeen ){ 4905 if( zTName ){ 4906 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4907 }else{ 4908 sqlite3ErrorMsg(pParse, "no tables specified"); 4909 } 4910 } 4911 } 4912 } 4913 sqlite3ExprListDelete(db, pEList); 4914 p->pEList = pNew; 4915 } 4916 if( p->pEList ){ 4917 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4918 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4919 return WRC_Abort; 4920 } 4921 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 4922 p->selFlags |= SF_ComplexResult; 4923 } 4924 } 4925 return WRC_Continue; 4926 } 4927 4928 /* 4929 ** No-op routine for the parse-tree walker. 4930 ** 4931 ** When this routine is the Walker.xExprCallback then expression trees 4932 ** are walked without any actions being taken at each node. Presumably, 4933 ** when this routine is used for Walker.xExprCallback then 4934 ** Walker.xSelectCallback is set to do something useful for every 4935 ** subquery in the parser tree. 4936 */ 4937 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4938 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4939 return WRC_Continue; 4940 } 4941 4942 /* 4943 ** No-op routine for the parse-tree walker for SELECT statements. 4944 ** subquery in the parser tree. 4945 */ 4946 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 4947 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4948 return WRC_Continue; 4949 } 4950 4951 #if SQLITE_DEBUG 4952 /* 4953 ** Always assert. This xSelectCallback2 implementation proves that the 4954 ** xSelectCallback2 is never invoked. 4955 */ 4956 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 4957 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4958 assert( 0 ); 4959 } 4960 #endif 4961 /* 4962 ** This routine "expands" a SELECT statement and all of its subqueries. 4963 ** For additional information on what it means to "expand" a SELECT 4964 ** statement, see the comment on the selectExpand worker callback above. 4965 ** 4966 ** Expanding a SELECT statement is the first step in processing a 4967 ** SELECT statement. The SELECT statement must be expanded before 4968 ** name resolution is performed. 4969 ** 4970 ** If anything goes wrong, an error message is written into pParse. 4971 ** The calling function can detect the problem by looking at pParse->nErr 4972 ** and/or pParse->db->mallocFailed. 4973 */ 4974 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4975 Walker w; 4976 w.xExprCallback = sqlite3ExprWalkNoop; 4977 w.pParse = pParse; 4978 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 4979 w.xSelectCallback = convertCompoundSelectToSubquery; 4980 w.xSelectCallback2 = 0; 4981 sqlite3WalkSelect(&w, pSelect); 4982 } 4983 w.xSelectCallback = selectExpander; 4984 w.xSelectCallback2 = selectPopWith; 4985 sqlite3WalkSelect(&w, pSelect); 4986 } 4987 4988 4989 #ifndef SQLITE_OMIT_SUBQUERY 4990 /* 4991 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4992 ** interface. 4993 ** 4994 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4995 ** information to the Table structure that represents the result set 4996 ** of that subquery. 4997 ** 4998 ** The Table structure that represents the result set was constructed 4999 ** by selectExpander() but the type and collation information was omitted 5000 ** at that point because identifiers had not yet been resolved. This 5001 ** routine is called after identifier resolution. 5002 */ 5003 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5004 Parse *pParse; 5005 int i; 5006 SrcList *pTabList; 5007 struct SrcList_item *pFrom; 5008 5009 assert( p->selFlags & SF_Resolved ); 5010 if( p->selFlags & SF_HasTypeInfo ) return; 5011 p->selFlags |= SF_HasTypeInfo; 5012 pParse = pWalker->pParse; 5013 pTabList = p->pSrc; 5014 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5015 Table *pTab = pFrom->pTab; 5016 assert( pTab!=0 ); 5017 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5018 /* A sub-query in the FROM clause of a SELECT */ 5019 Select *pSel = pFrom->pSelect; 5020 if( pSel ){ 5021 while( pSel->pPrior ) pSel = pSel->pPrior; 5022 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 5023 } 5024 } 5025 } 5026 } 5027 #endif 5028 5029 5030 /* 5031 ** This routine adds datatype and collating sequence information to 5032 ** the Table structures of all FROM-clause subqueries in a 5033 ** SELECT statement. 5034 ** 5035 ** Use this routine after name resolution. 5036 */ 5037 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5038 #ifndef SQLITE_OMIT_SUBQUERY 5039 Walker w; 5040 w.xSelectCallback = sqlite3SelectWalkNoop; 5041 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5042 w.xExprCallback = sqlite3ExprWalkNoop; 5043 w.pParse = pParse; 5044 sqlite3WalkSelect(&w, pSelect); 5045 #endif 5046 } 5047 5048 5049 /* 5050 ** This routine sets up a SELECT statement for processing. The 5051 ** following is accomplished: 5052 ** 5053 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5054 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5055 ** * ON and USING clauses are shifted into WHERE statements 5056 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5057 ** * Identifiers in expression are matched to tables. 5058 ** 5059 ** This routine acts recursively on all subqueries within the SELECT. 5060 */ 5061 void sqlite3SelectPrep( 5062 Parse *pParse, /* The parser context */ 5063 Select *p, /* The SELECT statement being coded. */ 5064 NameContext *pOuterNC /* Name context for container */ 5065 ){ 5066 assert( p!=0 || pParse->db->mallocFailed ); 5067 if( pParse->db->mallocFailed ) return; 5068 if( p->selFlags & SF_HasTypeInfo ) return; 5069 sqlite3SelectExpand(pParse, p); 5070 if( pParse->nErr || pParse->db->mallocFailed ) return; 5071 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5072 if( pParse->nErr || pParse->db->mallocFailed ) return; 5073 sqlite3SelectAddTypeInfo(pParse, p); 5074 } 5075 5076 /* 5077 ** Reset the aggregate accumulator. 5078 ** 5079 ** The aggregate accumulator is a set of memory cells that hold 5080 ** intermediate results while calculating an aggregate. This 5081 ** routine generates code that stores NULLs in all of those memory 5082 ** cells. 5083 */ 5084 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5085 Vdbe *v = pParse->pVdbe; 5086 int i; 5087 struct AggInfo_func *pFunc; 5088 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5089 if( nReg==0 ) return; 5090 #ifdef SQLITE_DEBUG 5091 /* Verify that all AggInfo registers are within the range specified by 5092 ** AggInfo.mnReg..AggInfo.mxReg */ 5093 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5094 for(i=0; i<pAggInfo->nColumn; i++){ 5095 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5096 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5097 } 5098 for(i=0; i<pAggInfo->nFunc; i++){ 5099 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5100 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5101 } 5102 #endif 5103 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5104 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5105 if( pFunc->iDistinct>=0 ){ 5106 Expr *pE = pFunc->pExpr; 5107 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5108 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5109 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5110 "argument"); 5111 pFunc->iDistinct = -1; 5112 }else{ 5113 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5114 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5115 (char*)pKeyInfo, P4_KEYINFO); 5116 } 5117 } 5118 } 5119 } 5120 5121 /* 5122 ** Invoke the OP_AggFinalize opcode for every aggregate function 5123 ** in the AggInfo structure. 5124 */ 5125 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5126 Vdbe *v = pParse->pVdbe; 5127 int i; 5128 struct AggInfo_func *pF; 5129 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5130 ExprList *pList = pF->pExpr->x.pList; 5131 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5132 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5133 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5134 } 5135 } 5136 5137 5138 /* 5139 ** Update the accumulator memory cells for an aggregate based on 5140 ** the current cursor position. 5141 ** 5142 ** If regAcc is non-zero and there are no min() or max() aggregates 5143 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5144 ** registers i register regAcc contains 0. The caller will take care 5145 ** of setting and clearing regAcc. 5146 */ 5147 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5148 Vdbe *v = pParse->pVdbe; 5149 int i; 5150 int regHit = 0; 5151 int addrHitTest = 0; 5152 struct AggInfo_func *pF; 5153 struct AggInfo_col *pC; 5154 5155 pAggInfo->directMode = 1; 5156 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5157 int nArg; 5158 int addrNext = 0; 5159 int regAgg; 5160 ExprList *pList = pF->pExpr->x.pList; 5161 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5162 if( pList ){ 5163 nArg = pList->nExpr; 5164 regAgg = sqlite3GetTempRange(pParse, nArg); 5165 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5166 }else{ 5167 nArg = 0; 5168 regAgg = 0; 5169 } 5170 if( pF->iDistinct>=0 ){ 5171 addrNext = sqlite3VdbeMakeLabel(v); 5172 testcase( nArg==0 ); /* Error condition */ 5173 testcase( nArg>1 ); /* Also an error */ 5174 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5175 } 5176 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5177 CollSeq *pColl = 0; 5178 struct ExprList_item *pItem; 5179 int j; 5180 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5181 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5182 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5183 } 5184 if( !pColl ){ 5185 pColl = pParse->db->pDfltColl; 5186 } 5187 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5188 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5189 } 5190 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5191 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5192 sqlite3VdbeChangeP5(v, (u8)nArg); 5193 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 5194 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5195 if( addrNext ){ 5196 sqlite3VdbeResolveLabel(v, addrNext); 5197 sqlite3ExprCacheClear(pParse); 5198 } 5199 } 5200 5201 /* Before populating the accumulator registers, clear the column cache. 5202 ** Otherwise, if any of the required column values are already present 5203 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 5204 ** to pC->iMem. But by the time the value is used, the original register 5205 ** may have been used, invalidating the underlying buffer holding the 5206 ** text or blob value. See ticket [883034dcb5]. 5207 ** 5208 ** Another solution would be to change the OP_SCopy used to copy cached 5209 ** values to an OP_Copy. 5210 */ 5211 if( regHit==0 && pAggInfo->nAccumulator ){ 5212 regHit = regAcc; 5213 } 5214 if( regHit ){ 5215 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5216 } 5217 sqlite3ExprCacheClear(pParse); 5218 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5219 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5220 } 5221 pAggInfo->directMode = 0; 5222 sqlite3ExprCacheClear(pParse); 5223 if( addrHitTest ){ 5224 sqlite3VdbeJumpHere(v, addrHitTest); 5225 } 5226 } 5227 5228 /* 5229 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5230 ** count(*) query ("SELECT count(*) FROM pTab"). 5231 */ 5232 #ifndef SQLITE_OMIT_EXPLAIN 5233 static void explainSimpleCount( 5234 Parse *pParse, /* Parse context */ 5235 Table *pTab, /* Table being queried */ 5236 Index *pIdx /* Index used to optimize scan, or NULL */ 5237 ){ 5238 if( pParse->explain==2 ){ 5239 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5240 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5241 pTab->zName, 5242 bCover ? " USING COVERING INDEX " : "", 5243 bCover ? pIdx->zName : "" 5244 ); 5245 } 5246 } 5247 #else 5248 # define explainSimpleCount(a,b,c) 5249 #endif 5250 5251 /* 5252 ** sqlite3WalkExpr() callback used by havingToWhere(). 5253 ** 5254 ** If the node passed to the callback is a TK_AND node, return 5255 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5256 ** 5257 ** Otherwise, return WRC_Prune. In this case, also check if the 5258 ** sub-expression matches the criteria for being moved to the WHERE 5259 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5260 ** within the HAVING expression with a constant "1". 5261 */ 5262 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5263 if( pExpr->op!=TK_AND ){ 5264 Select *pS = pWalker->u.pSelect; 5265 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5266 sqlite3 *db = pWalker->pParse->db; 5267 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5268 if( pNew ){ 5269 Expr *pWhere = pS->pWhere; 5270 SWAP(Expr, *pNew, *pExpr); 5271 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5272 pS->pWhere = pNew; 5273 pWalker->eCode = 1; 5274 } 5275 } 5276 return WRC_Prune; 5277 } 5278 return WRC_Continue; 5279 } 5280 5281 /* 5282 ** Transfer eligible terms from the HAVING clause of a query, which is 5283 ** processed after grouping, to the WHERE clause, which is processed before 5284 ** grouping. For example, the query: 5285 ** 5286 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5287 ** 5288 ** can be rewritten as: 5289 ** 5290 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5291 ** 5292 ** A term of the HAVING expression is eligible for transfer if it consists 5293 ** entirely of constants and expressions that are also GROUP BY terms that 5294 ** use the "BINARY" collation sequence. 5295 */ 5296 static void havingToWhere(Parse *pParse, Select *p){ 5297 Walker sWalker; 5298 memset(&sWalker, 0, sizeof(sWalker)); 5299 sWalker.pParse = pParse; 5300 sWalker.xExprCallback = havingToWhereExprCb; 5301 sWalker.u.pSelect = p; 5302 sqlite3WalkExpr(&sWalker, p->pHaving); 5303 #if SELECTTRACE_ENABLED 5304 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5305 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5306 sqlite3TreeViewSelect(0, p, 0); 5307 } 5308 #endif 5309 } 5310 5311 /* 5312 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5313 ** If it is, then return the SrcList_item for the prior view. If it is not, 5314 ** then return 0. 5315 */ 5316 static struct SrcList_item *isSelfJoinView( 5317 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5318 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5319 ){ 5320 struct SrcList_item *pItem; 5321 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5322 if( pItem->pSelect==0 ) continue; 5323 if( pItem->fg.viaCoroutine ) continue; 5324 if( pItem->zName==0 ) continue; 5325 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5326 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5327 if( sqlite3ExprCompare(0, 5328 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5329 ){ 5330 /* The view was modified by some other optimization such as 5331 ** pushDownWhereTerms() */ 5332 continue; 5333 } 5334 return pItem; 5335 } 5336 return 0; 5337 } 5338 5339 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5340 /* 5341 ** Attempt to transform a query of the form 5342 ** 5343 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5344 ** 5345 ** Into this: 5346 ** 5347 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5348 ** 5349 ** The transformation only works if all of the following are true: 5350 ** 5351 ** * The subquery is a UNION ALL of two or more terms 5352 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5353 ** * The outer query is a simple count(*) 5354 ** 5355 ** Return TRUE if the optimization is undertaken. 5356 */ 5357 static int countOfViewOptimization(Parse *pParse, Select *p){ 5358 Select *pSub, *pPrior; 5359 Expr *pExpr; 5360 Expr *pCount; 5361 sqlite3 *db; 5362 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5363 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5364 pExpr = p->pEList->a[0].pExpr; 5365 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5366 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5367 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5368 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5369 pSub = p->pSrc->a[0].pSelect; 5370 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5371 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5372 do{ 5373 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5374 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5375 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5376 pSub = pSub->pPrior; /* Repeat over compound */ 5377 }while( pSub ); 5378 5379 /* If we reach this point then it is OK to perform the transformation */ 5380 5381 db = pParse->db; 5382 pCount = pExpr; 5383 pExpr = 0; 5384 pSub = p->pSrc->a[0].pSelect; 5385 p->pSrc->a[0].pSelect = 0; 5386 sqlite3SrcListDelete(db, p->pSrc); 5387 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5388 while( pSub ){ 5389 Expr *pTerm; 5390 pPrior = pSub->pPrior; 5391 pSub->pPrior = 0; 5392 pSub->pNext = 0; 5393 pSub->selFlags |= SF_Aggregate; 5394 pSub->selFlags &= ~SF_Compound; 5395 pSub->nSelectRow = 0; 5396 sqlite3ExprListDelete(db, pSub->pEList); 5397 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5398 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5399 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5400 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5401 if( pExpr==0 ){ 5402 pExpr = pTerm; 5403 }else{ 5404 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5405 } 5406 pSub = pPrior; 5407 } 5408 p->pEList->a[0].pExpr = pExpr; 5409 p->selFlags &= ~SF_Aggregate; 5410 5411 #if SELECTTRACE_ENABLED 5412 if( sqlite3SelectTrace & 0x400 ){ 5413 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5414 sqlite3TreeViewSelect(0, p, 0); 5415 } 5416 #endif 5417 return 1; 5418 } 5419 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5420 5421 /* 5422 ** Generate code for the SELECT statement given in the p argument. 5423 ** 5424 ** The results are returned according to the SelectDest structure. 5425 ** See comments in sqliteInt.h for further information. 5426 ** 5427 ** This routine returns the number of errors. If any errors are 5428 ** encountered, then an appropriate error message is left in 5429 ** pParse->zErrMsg. 5430 ** 5431 ** This routine does NOT free the Select structure passed in. The 5432 ** calling function needs to do that. 5433 */ 5434 int sqlite3Select( 5435 Parse *pParse, /* The parser context */ 5436 Select *p, /* The SELECT statement being coded. */ 5437 SelectDest *pDest /* What to do with the query results */ 5438 ){ 5439 int i, j; /* Loop counters */ 5440 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5441 Vdbe *v; /* The virtual machine under construction */ 5442 int isAgg; /* True for select lists like "count(*)" */ 5443 ExprList *pEList = 0; /* List of columns to extract. */ 5444 SrcList *pTabList; /* List of tables to select from */ 5445 Expr *pWhere; /* The WHERE clause. May be NULL */ 5446 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5447 Expr *pHaving; /* The HAVING clause. May be NULL */ 5448 int rc = 1; /* Value to return from this function */ 5449 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5450 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5451 AggInfo sAggInfo; /* Information used by aggregate queries */ 5452 int iEnd; /* Address of the end of the query */ 5453 sqlite3 *db; /* The database connection */ 5454 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5455 u8 minMaxFlag; /* Flag for min/max queries */ 5456 5457 db = pParse->db; 5458 v = sqlite3GetVdbe(pParse); 5459 if( p==0 || db->mallocFailed || pParse->nErr ){ 5460 return 1; 5461 } 5462 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5463 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5464 #if SELECTTRACE_ENABLED 5465 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5466 if( sqlite3SelectTrace & 0x100 ){ 5467 sqlite3TreeViewSelect(0, p, 0); 5468 } 5469 #endif 5470 5471 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5472 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5473 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5474 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5475 if( IgnorableOrderby(pDest) ){ 5476 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5477 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5478 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5479 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5480 /* If ORDER BY makes no difference in the output then neither does 5481 ** DISTINCT so it can be removed too. */ 5482 sqlite3ExprListDelete(db, p->pOrderBy); 5483 p->pOrderBy = 0; 5484 p->selFlags &= ~SF_Distinct; 5485 } 5486 sqlite3SelectPrep(pParse, p, 0); 5487 if( pParse->nErr || db->mallocFailed ){ 5488 goto select_end; 5489 } 5490 assert( p->pEList!=0 ); 5491 #if SELECTTRACE_ENABLED 5492 if( sqlite3SelectTrace & 0x104 ){ 5493 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5494 sqlite3TreeViewSelect(0, p, 0); 5495 } 5496 #endif 5497 5498 if( pDest->eDest==SRT_Output ){ 5499 generateColumnNames(pParse, p); 5500 } 5501 5502 #ifndef SQLITE_OMIT_WINDOWFUNC 5503 if( sqlite3WindowRewrite(pParse, p) ){ 5504 goto select_end; 5505 } 5506 #if SELECTTRACE_ENABLED 5507 if( sqlite3SelectTrace & 0x108 ){ 5508 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5509 sqlite3TreeViewSelect(0, p, 0); 5510 } 5511 #endif 5512 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5513 pTabList = p->pSrc; 5514 isAgg = (p->selFlags & SF_Aggregate)!=0; 5515 memset(&sSort, 0, sizeof(sSort)); 5516 sSort.pOrderBy = p->pOrderBy; 5517 5518 /* Try to various optimizations (flattening subqueries, and strength 5519 ** reduction of join operators) in the FROM clause up into the main query 5520 */ 5521 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5522 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5523 struct SrcList_item *pItem = &pTabList->a[i]; 5524 Select *pSub = pItem->pSelect; 5525 Table *pTab = pItem->pTab; 5526 5527 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5528 ** of the LEFT JOIN used in the WHERE clause. 5529 */ 5530 if( (pItem->fg.jointype & JT_LEFT)!=0 5531 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5532 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5533 ){ 5534 SELECTTRACE(0x100,pParse,p, 5535 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5536 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5537 unsetJoinExpr(p->pWhere, pItem->iCursor); 5538 } 5539 5540 /* No futher action if this term of the FROM clause is no a subquery */ 5541 if( pSub==0 ) continue; 5542 5543 /* Catch mismatch in the declared columns of a view and the number of 5544 ** columns in the SELECT on the RHS */ 5545 if( pTab->nCol!=pSub->pEList->nExpr ){ 5546 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5547 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5548 goto select_end; 5549 } 5550 5551 /* Do not try to flatten an aggregate subquery. 5552 ** 5553 ** Flattening an aggregate subquery is only possible if the outer query 5554 ** is not a join. But if the outer query is not a join, then the subquery 5555 ** will be implemented as a co-routine and there is no advantage to 5556 ** flattening in that case. 5557 */ 5558 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5559 assert( pSub->pGroupBy==0 ); 5560 5561 /* If the outer query contains a "complex" result set (that is, 5562 ** if the result set of the outer query uses functions or subqueries) 5563 ** and if the subquery contains an ORDER BY clause and if 5564 ** it will be implemented as a co-routine, then do not flatten. This 5565 ** restriction allows SQL constructs like this: 5566 ** 5567 ** SELECT expensive_function(x) 5568 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5569 ** 5570 ** The expensive_function() is only computed on the 10 rows that 5571 ** are output, rather than every row of the table. 5572 ** 5573 ** The requirement that the outer query have a complex result set 5574 ** means that flattening does occur on simpler SQL constraints without 5575 ** the expensive_function() like: 5576 ** 5577 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5578 */ 5579 if( pSub->pOrderBy!=0 5580 && i==0 5581 && (p->selFlags & SF_ComplexResult)!=0 5582 && (pTabList->nSrc==1 5583 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5584 ){ 5585 continue; 5586 } 5587 5588 if( flattenSubquery(pParse, p, i, isAgg) ){ 5589 /* This subquery can be absorbed into its parent. */ 5590 i = -1; 5591 } 5592 pTabList = p->pSrc; 5593 if( db->mallocFailed ) goto select_end; 5594 if( !IgnorableOrderby(pDest) ){ 5595 sSort.pOrderBy = p->pOrderBy; 5596 } 5597 } 5598 #endif 5599 5600 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5601 /* Handle compound SELECT statements using the separate multiSelect() 5602 ** procedure. 5603 */ 5604 if( p->pPrior ){ 5605 rc = multiSelect(pParse, p, pDest); 5606 #if SELECTTRACE_ENABLED 5607 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5608 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5609 sqlite3TreeViewSelect(0, p, 0); 5610 } 5611 #endif 5612 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5613 return rc; 5614 } 5615 #endif 5616 5617 /* For each term in the FROM clause, do two things: 5618 ** (1) Authorized unreferenced tables 5619 ** (2) Generate code for all sub-queries 5620 */ 5621 for(i=0; i<pTabList->nSrc; i++){ 5622 struct SrcList_item *pItem = &pTabList->a[i]; 5623 SelectDest dest; 5624 Select *pSub; 5625 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5626 const char *zSavedAuthContext; 5627 #endif 5628 5629 /* Issue SQLITE_READ authorizations with a fake column name for any 5630 ** tables that are referenced but from which no values are extracted. 5631 ** Examples of where these kinds of null SQLITE_READ authorizations 5632 ** would occur: 5633 ** 5634 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5635 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5636 ** 5637 ** The fake column name is an empty string. It is possible for a table to 5638 ** have a column named by the empty string, in which case there is no way to 5639 ** distinguish between an unreferenced table and an actual reference to the 5640 ** "" column. The original design was for the fake column name to be a NULL, 5641 ** which would be unambiguous. But legacy authorization callbacks might 5642 ** assume the column name is non-NULL and segfault. The use of an empty 5643 ** string for the fake column name seems safer. 5644 */ 5645 if( pItem->colUsed==0 ){ 5646 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5647 } 5648 5649 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5650 /* Generate code for all sub-queries in the FROM clause 5651 */ 5652 pSub = pItem->pSelect; 5653 if( pSub==0 ) continue; 5654 5655 /* Sometimes the code for a subquery will be generated more than 5656 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5657 ** for example. In that case, do not regenerate the code to manifest 5658 ** a view or the co-routine to implement a view. The first instance 5659 ** is sufficient, though the subroutine to manifest the view does need 5660 ** to be invoked again. */ 5661 if( pItem->addrFillSub ){ 5662 if( pItem->fg.viaCoroutine==0 ){ 5663 /* The subroutine that manifests the view might be a one-time routine, 5664 ** or it might need to be rerun on each iteration because it 5665 ** encodes a correlated subquery. */ 5666 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5667 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5668 } 5669 continue; 5670 } 5671 5672 /* Increment Parse.nHeight by the height of the largest expression 5673 ** tree referred to by this, the parent select. The child select 5674 ** may contain expression trees of at most 5675 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5676 ** more conservative than necessary, but much easier than enforcing 5677 ** an exact limit. 5678 */ 5679 pParse->nHeight += sqlite3SelectExprHeight(p); 5680 5681 /* Make copies of constant WHERE-clause terms in the outer query down 5682 ** inside the subquery. This can help the subquery to run more efficiently. 5683 */ 5684 if( OptimizationEnabled(db, SQLITE_PushDown) 5685 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5686 (pItem->fg.jointype & JT_OUTER)!=0) 5687 ){ 5688 #if SELECTTRACE_ENABLED 5689 if( sqlite3SelectTrace & 0x100 ){ 5690 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5691 sqlite3TreeViewSelect(0, p, 0); 5692 } 5693 #endif 5694 }else{ 5695 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5696 } 5697 5698 zSavedAuthContext = pParse->zAuthContext; 5699 pParse->zAuthContext = pItem->zName; 5700 5701 /* Generate code to implement the subquery 5702 ** 5703 ** The subquery is implemented as a co-routine if the subquery is 5704 ** guaranteed to be the outer loop (so that it does not need to be 5705 ** computed more than once) 5706 ** 5707 ** TODO: Are there other reasons beside (1) to use a co-routine 5708 ** implementation? 5709 */ 5710 if( i==0 5711 && (pTabList->nSrc==1 5712 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5713 ){ 5714 /* Implement a co-routine that will return a single row of the result 5715 ** set on each invocation. 5716 */ 5717 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5718 5719 pItem->regReturn = ++pParse->nMem; 5720 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5721 VdbeComment((v, "%s", pItem->pTab->zName)); 5722 pItem->addrFillSub = addrTop; 5723 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5724 ExplainQueryPlan((pParse, 1, "CO-ROUTINE 0x%p", pSub)); 5725 sqlite3Select(pParse, pSub, &dest); 5726 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5727 pItem->fg.viaCoroutine = 1; 5728 pItem->regResult = dest.iSdst; 5729 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5730 sqlite3VdbeJumpHere(v, addrTop-1); 5731 sqlite3ClearTempRegCache(pParse); 5732 }else{ 5733 /* Generate a subroutine that will fill an ephemeral table with 5734 ** the content of this subquery. pItem->addrFillSub will point 5735 ** to the address of the generated subroutine. pItem->regReturn 5736 ** is a register allocated to hold the subroutine return address 5737 */ 5738 int topAddr; 5739 int onceAddr = 0; 5740 int retAddr; 5741 struct SrcList_item *pPrior; 5742 5743 assert( pItem->addrFillSub==0 ); 5744 pItem->regReturn = ++pParse->nMem; 5745 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5746 pItem->addrFillSub = topAddr+1; 5747 if( pItem->fg.isCorrelated==0 ){ 5748 /* If the subquery is not correlated and if we are not inside of 5749 ** a trigger, then we only need to compute the value of the subquery 5750 ** once. */ 5751 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5752 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5753 }else{ 5754 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5755 } 5756 pPrior = isSelfJoinView(pTabList, pItem); 5757 if( pPrior ){ 5758 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5759 assert( pPrior->pSelect!=0 ); 5760 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5761 }else{ 5762 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5763 ExplainQueryPlan((pParse, 1, "MATERIALIZE 0x%p", pSub)); 5764 sqlite3Select(pParse, pSub, &dest); 5765 } 5766 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5767 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5768 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5769 VdbeComment((v, "end %s", pItem->pTab->zName)); 5770 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5771 sqlite3ClearTempRegCache(pParse); 5772 } 5773 if( db->mallocFailed ) goto select_end; 5774 pParse->nHeight -= sqlite3SelectExprHeight(p); 5775 pParse->zAuthContext = zSavedAuthContext; 5776 #endif 5777 } 5778 5779 /* Various elements of the SELECT copied into local variables for 5780 ** convenience */ 5781 pEList = p->pEList; 5782 pWhere = p->pWhere; 5783 pGroupBy = p->pGroupBy; 5784 pHaving = p->pHaving; 5785 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5786 5787 #if SELECTTRACE_ENABLED 5788 if( sqlite3SelectTrace & 0x400 ){ 5789 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5790 sqlite3TreeViewSelect(0, p, 0); 5791 } 5792 #endif 5793 5794 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5795 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5796 && countOfViewOptimization(pParse, p) 5797 ){ 5798 if( db->mallocFailed ) goto select_end; 5799 pEList = p->pEList; 5800 pTabList = p->pSrc; 5801 } 5802 #endif 5803 5804 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5805 ** if the select-list is the same as the ORDER BY list, then this query 5806 ** can be rewritten as a GROUP BY. In other words, this: 5807 ** 5808 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5809 ** 5810 ** is transformed to: 5811 ** 5812 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5813 ** 5814 ** The second form is preferred as a single index (or temp-table) may be 5815 ** used for both the ORDER BY and DISTINCT processing. As originally 5816 ** written the query must use a temp-table for at least one of the ORDER 5817 ** BY and DISTINCT, and an index or separate temp-table for the other. 5818 */ 5819 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5820 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5821 ){ 5822 p->selFlags &= ~SF_Distinct; 5823 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5824 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5825 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5826 ** original setting of the SF_Distinct flag, not the current setting */ 5827 assert( sDistinct.isTnct ); 5828 5829 #if SELECTTRACE_ENABLED 5830 if( sqlite3SelectTrace & 0x400 ){ 5831 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5832 sqlite3TreeViewSelect(0, p, 0); 5833 } 5834 #endif 5835 } 5836 5837 /* If there is an ORDER BY clause, then create an ephemeral index to 5838 ** do the sorting. But this sorting ephemeral index might end up 5839 ** being unused if the data can be extracted in pre-sorted order. 5840 ** If that is the case, then the OP_OpenEphemeral instruction will be 5841 ** changed to an OP_Noop once we figure out that the sorting index is 5842 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5843 ** that change. 5844 */ 5845 if( sSort.pOrderBy ){ 5846 KeyInfo *pKeyInfo; 5847 pKeyInfo = sqlite3KeyInfoFromExprList( 5848 pParse, sSort.pOrderBy, 0, pEList->nExpr); 5849 sSort.iECursor = pParse->nTab++; 5850 sSort.addrSortIndex = 5851 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5852 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5853 (char*)pKeyInfo, P4_KEYINFO 5854 ); 5855 }else{ 5856 sSort.addrSortIndex = -1; 5857 } 5858 5859 /* If the output is destined for a temporary table, open that table. 5860 */ 5861 if( pDest->eDest==SRT_EphemTab ){ 5862 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5863 } 5864 5865 /* Set the limiter. 5866 */ 5867 iEnd = sqlite3VdbeMakeLabel(v); 5868 if( (p->selFlags & SF_FixedLimit)==0 ){ 5869 p->nSelectRow = 320; /* 4 billion rows */ 5870 } 5871 computeLimitRegisters(pParse, p, iEnd); 5872 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5873 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5874 sSort.sortFlags |= SORTFLAG_UseSorter; 5875 } 5876 5877 /* Open an ephemeral index to use for the distinct set. 5878 */ 5879 if( p->selFlags & SF_Distinct ){ 5880 sDistinct.tabTnct = pParse->nTab++; 5881 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5882 sDistinct.tabTnct, 0, 0, 5883 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 5884 P4_KEYINFO); 5885 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5886 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5887 }else{ 5888 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5889 } 5890 5891 if( !isAgg && pGroupBy==0 ){ 5892 /* No aggregate functions and no GROUP BY clause */ 5893 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 5894 | (p->selFlags & SF_FixedLimit); 5895 #ifndef SQLITE_OMIT_WINDOWFUNC 5896 Window *pWin = p->pWin; /* Master window object (or NULL) */ 5897 if( pWin ){ 5898 sqlite3WindowCodeInit(pParse, pWin); 5899 } 5900 #endif 5901 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5902 5903 5904 /* Begin the database scan. */ 5905 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 5906 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5907 p->pEList, wctrlFlags, p->nSelectRow); 5908 if( pWInfo==0 ) goto select_end; 5909 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5910 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5911 } 5912 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5913 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5914 } 5915 if( sSort.pOrderBy ){ 5916 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5917 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5918 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5919 sSort.pOrderBy = 0; 5920 } 5921 } 5922 5923 /* If sorting index that was created by a prior OP_OpenEphemeral 5924 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5925 ** into an OP_Noop. 5926 */ 5927 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5928 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5929 } 5930 5931 assert( p->pEList==pEList ); 5932 #ifndef SQLITE_OMIT_WINDOWFUNC 5933 if( pWin ){ 5934 int addrGosub = sqlite3VdbeMakeLabel(v); 5935 int iCont = sqlite3VdbeMakeLabel(v); 5936 int iBreak = sqlite3VdbeMakeLabel(v); 5937 int regGosub = ++pParse->nMem; 5938 5939 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 5940 5941 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 5942 sqlite3VdbeResolveLabel(v, addrGosub); 5943 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 5944 sqlite3VdbeResolveLabel(v, iCont); 5945 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 5946 sqlite3VdbeResolveLabel(v, iBreak); 5947 }else 5948 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5949 { 5950 /* Use the standard inner loop. */ 5951 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 5952 sqlite3WhereContinueLabel(pWInfo), 5953 sqlite3WhereBreakLabel(pWInfo)); 5954 5955 /* End the database scan loop. 5956 */ 5957 sqlite3WhereEnd(pWInfo); 5958 } 5959 }else{ 5960 /* This case when there exist aggregate functions or a GROUP BY clause 5961 ** or both */ 5962 NameContext sNC; /* Name context for processing aggregate information */ 5963 int iAMem; /* First Mem address for storing current GROUP BY */ 5964 int iBMem; /* First Mem address for previous GROUP BY */ 5965 int iUseFlag; /* Mem address holding flag indicating that at least 5966 ** one row of the input to the aggregator has been 5967 ** processed */ 5968 int iAbortFlag; /* Mem address which causes query abort if positive */ 5969 int groupBySort; /* Rows come from source in GROUP BY order */ 5970 int addrEnd; /* End of processing for this SELECT */ 5971 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5972 int sortOut = 0; /* Output register from the sorter */ 5973 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5974 5975 /* Remove any and all aliases between the result set and the 5976 ** GROUP BY clause. 5977 */ 5978 if( pGroupBy ){ 5979 int k; /* Loop counter */ 5980 struct ExprList_item *pItem; /* For looping over expression in a list */ 5981 5982 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5983 pItem->u.x.iAlias = 0; 5984 } 5985 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5986 pItem->u.x.iAlias = 0; 5987 } 5988 assert( 66==sqlite3LogEst(100) ); 5989 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5990 }else{ 5991 assert( 0==sqlite3LogEst(1) ); 5992 p->nSelectRow = 0; 5993 } 5994 5995 /* If there is both a GROUP BY and an ORDER BY clause and they are 5996 ** identical, then it may be possible to disable the ORDER BY clause 5997 ** on the grounds that the GROUP BY will cause elements to come out 5998 ** in the correct order. It also may not - the GROUP BY might use a 5999 ** database index that causes rows to be grouped together as required 6000 ** but not actually sorted. Either way, record the fact that the 6001 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6002 ** variable. */ 6003 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6004 orderByGrp = 1; 6005 } 6006 6007 /* Create a label to jump to when we want to abort the query */ 6008 addrEnd = sqlite3VdbeMakeLabel(v); 6009 6010 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6011 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6012 ** SELECT statement. 6013 */ 6014 memset(&sNC, 0, sizeof(sNC)); 6015 sNC.pParse = pParse; 6016 sNC.pSrcList = pTabList; 6017 sNC.uNC.pAggInfo = &sAggInfo; 6018 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6019 sAggInfo.mnReg = pParse->nMem+1; 6020 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6021 sAggInfo.pGroupBy = pGroupBy; 6022 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6023 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6024 if( pHaving ){ 6025 if( pGroupBy ){ 6026 assert( pWhere==p->pWhere ); 6027 assert( pHaving==p->pHaving ); 6028 assert( pGroupBy==p->pGroupBy ); 6029 havingToWhere(pParse, p); 6030 pWhere = p->pWhere; 6031 } 6032 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6033 } 6034 sAggInfo.nAccumulator = sAggInfo.nColumn; 6035 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6036 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6037 }else{ 6038 minMaxFlag = WHERE_ORDERBY_NORMAL; 6039 } 6040 for(i=0; i<sAggInfo.nFunc; i++){ 6041 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 6042 sNC.ncFlags |= NC_InAggFunc; 6043 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 6044 sNC.ncFlags &= ~NC_InAggFunc; 6045 } 6046 sAggInfo.mxReg = pParse->nMem; 6047 if( db->mallocFailed ) goto select_end; 6048 #if SELECTTRACE_ENABLED 6049 if( sqlite3SelectTrace & 0x400 ){ 6050 int ii; 6051 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6052 sqlite3TreeViewSelect(0, p, 0); 6053 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6054 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6055 ii, sAggInfo.aCol[ii].iMem); 6056 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6057 } 6058 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6059 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6060 ii, sAggInfo.aFunc[ii].iMem); 6061 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6062 } 6063 } 6064 #endif 6065 6066 6067 /* Processing for aggregates with GROUP BY is very different and 6068 ** much more complex than aggregates without a GROUP BY. 6069 */ 6070 if( pGroupBy ){ 6071 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6072 int addr1; /* A-vs-B comparision jump */ 6073 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6074 int regOutputRow; /* Return address register for output subroutine */ 6075 int addrSetAbort; /* Set the abort flag and return */ 6076 int addrTopOfLoop; /* Top of the input loop */ 6077 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6078 int addrReset; /* Subroutine for resetting the accumulator */ 6079 int regReset; /* Return address register for reset subroutine */ 6080 6081 /* If there is a GROUP BY clause we might need a sorting index to 6082 ** implement it. Allocate that sorting index now. If it turns out 6083 ** that we do not need it after all, the OP_SorterOpen instruction 6084 ** will be converted into a Noop. 6085 */ 6086 sAggInfo.sortingIdx = pParse->nTab++; 6087 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6088 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6089 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6090 0, (char*)pKeyInfo, P4_KEYINFO); 6091 6092 /* Initialize memory locations used by GROUP BY aggregate processing 6093 */ 6094 iUseFlag = ++pParse->nMem; 6095 iAbortFlag = ++pParse->nMem; 6096 regOutputRow = ++pParse->nMem; 6097 addrOutputRow = sqlite3VdbeMakeLabel(v); 6098 regReset = ++pParse->nMem; 6099 addrReset = sqlite3VdbeMakeLabel(v); 6100 iAMem = pParse->nMem + 1; 6101 pParse->nMem += pGroupBy->nExpr; 6102 iBMem = pParse->nMem + 1; 6103 pParse->nMem += pGroupBy->nExpr; 6104 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6105 VdbeComment((v, "clear abort flag")); 6106 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6107 6108 /* Begin a loop that will extract all source rows in GROUP BY order. 6109 ** This might involve two separate loops with an OP_Sort in between, or 6110 ** it might be a single loop that uses an index to extract information 6111 ** in the right order to begin with. 6112 */ 6113 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6114 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6115 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6116 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6117 ); 6118 if( pWInfo==0 ) goto select_end; 6119 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6120 /* The optimizer is able to deliver rows in group by order so 6121 ** we do not have to sort. The OP_OpenEphemeral table will be 6122 ** cancelled later because we still need to use the pKeyInfo 6123 */ 6124 groupBySort = 0; 6125 }else{ 6126 /* Rows are coming out in undetermined order. We have to push 6127 ** each row into a sorting index, terminate the first loop, 6128 ** then loop over the sorting index in order to get the output 6129 ** in sorted order 6130 */ 6131 int regBase; 6132 int regRecord; 6133 int nCol; 6134 int nGroupBy; 6135 6136 explainTempTable(pParse, 6137 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6138 "DISTINCT" : "GROUP BY"); 6139 6140 groupBySort = 1; 6141 nGroupBy = pGroupBy->nExpr; 6142 nCol = nGroupBy; 6143 j = nGroupBy; 6144 for(i=0; i<sAggInfo.nColumn; i++){ 6145 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6146 nCol++; 6147 j++; 6148 } 6149 } 6150 regBase = sqlite3GetTempRange(pParse, nCol); 6151 sqlite3ExprCacheClear(pParse); 6152 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6153 j = nGroupBy; 6154 for(i=0; i<sAggInfo.nColumn; i++){ 6155 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6156 if( pCol->iSorterColumn>=j ){ 6157 int r1 = j + regBase; 6158 sqlite3ExprCodeGetColumnToReg(pParse, 6159 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 6160 j++; 6161 } 6162 } 6163 regRecord = sqlite3GetTempReg(pParse); 6164 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6165 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6166 sqlite3ReleaseTempReg(pParse, regRecord); 6167 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6168 sqlite3WhereEnd(pWInfo); 6169 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6170 sortOut = sqlite3GetTempReg(pParse); 6171 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6172 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6173 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6174 sAggInfo.useSortingIdx = 1; 6175 sqlite3ExprCacheClear(pParse); 6176 6177 } 6178 6179 /* If the index or temporary table used by the GROUP BY sort 6180 ** will naturally deliver rows in the order required by the ORDER BY 6181 ** clause, cancel the ephemeral table open coded earlier. 6182 ** 6183 ** This is an optimization - the correct answer should result regardless. 6184 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6185 ** disable this optimization for testing purposes. */ 6186 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6187 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6188 ){ 6189 sSort.pOrderBy = 0; 6190 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6191 } 6192 6193 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6194 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6195 ** Then compare the current GROUP BY terms against the GROUP BY terms 6196 ** from the previous row currently stored in a0, a1, a2... 6197 */ 6198 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6199 sqlite3ExprCacheClear(pParse); 6200 if( groupBySort ){ 6201 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6202 sortOut, sortPTab); 6203 } 6204 for(j=0; j<pGroupBy->nExpr; j++){ 6205 if( groupBySort ){ 6206 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6207 }else{ 6208 sAggInfo.directMode = 1; 6209 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6210 } 6211 } 6212 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6213 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6214 addr1 = sqlite3VdbeCurrentAddr(v); 6215 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6216 6217 /* Generate code that runs whenever the GROUP BY changes. 6218 ** Changes in the GROUP BY are detected by the previous code 6219 ** block. If there were no changes, this block is skipped. 6220 ** 6221 ** This code copies current group by terms in b0,b1,b2,... 6222 ** over to a0,a1,a2. It then calls the output subroutine 6223 ** and resets the aggregate accumulator registers in preparation 6224 ** for the next GROUP BY batch. 6225 */ 6226 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6227 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6228 VdbeComment((v, "output one row")); 6229 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6230 VdbeComment((v, "check abort flag")); 6231 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6232 VdbeComment((v, "reset accumulator")); 6233 6234 /* Update the aggregate accumulators based on the content of 6235 ** the current row 6236 */ 6237 sqlite3VdbeJumpHere(v, addr1); 6238 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6239 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6240 VdbeComment((v, "indicate data in accumulator")); 6241 6242 /* End of the loop 6243 */ 6244 if( groupBySort ){ 6245 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6246 VdbeCoverage(v); 6247 }else{ 6248 sqlite3WhereEnd(pWInfo); 6249 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6250 } 6251 6252 /* Output the final row of result 6253 */ 6254 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6255 VdbeComment((v, "output final row")); 6256 6257 /* Jump over the subroutines 6258 */ 6259 sqlite3VdbeGoto(v, addrEnd); 6260 6261 /* Generate a subroutine that outputs a single row of the result 6262 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6263 ** is less than or equal to zero, the subroutine is a no-op. If 6264 ** the processing calls for the query to abort, this subroutine 6265 ** increments the iAbortFlag memory location before returning in 6266 ** order to signal the caller to abort. 6267 */ 6268 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6269 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6270 VdbeComment((v, "set abort flag")); 6271 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6272 sqlite3VdbeResolveLabel(v, addrOutputRow); 6273 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6274 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6275 VdbeCoverage(v); 6276 VdbeComment((v, "Groupby result generator entry point")); 6277 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6278 finalizeAggFunctions(pParse, &sAggInfo); 6279 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6280 selectInnerLoop(pParse, p, -1, &sSort, 6281 &sDistinct, pDest, 6282 addrOutputRow+1, addrSetAbort); 6283 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6284 VdbeComment((v, "end groupby result generator")); 6285 6286 /* Generate a subroutine that will reset the group-by accumulator 6287 */ 6288 sqlite3VdbeResolveLabel(v, addrReset); 6289 resetAccumulator(pParse, &sAggInfo); 6290 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6291 VdbeComment((v, "indicate accumulator empty")); 6292 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6293 6294 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6295 else { 6296 #ifndef SQLITE_OMIT_BTREECOUNT 6297 Table *pTab; 6298 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6299 /* If isSimpleCount() returns a pointer to a Table structure, then 6300 ** the SQL statement is of the form: 6301 ** 6302 ** SELECT count(*) FROM <tbl> 6303 ** 6304 ** where the Table structure returned represents table <tbl>. 6305 ** 6306 ** This statement is so common that it is optimized specially. The 6307 ** OP_Count instruction is executed either on the intkey table that 6308 ** contains the data for table <tbl> or on one of its indexes. It 6309 ** is better to execute the op on an index, as indexes are almost 6310 ** always spread across less pages than their corresponding tables. 6311 */ 6312 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6313 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6314 Index *pIdx; /* Iterator variable */ 6315 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6316 Index *pBest = 0; /* Best index found so far */ 6317 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6318 6319 sqlite3CodeVerifySchema(pParse, iDb); 6320 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6321 6322 /* Search for the index that has the lowest scan cost. 6323 ** 6324 ** (2011-04-15) Do not do a full scan of an unordered index. 6325 ** 6326 ** (2013-10-03) Do not count the entries in a partial index. 6327 ** 6328 ** In practice the KeyInfo structure will not be used. It is only 6329 ** passed to keep OP_OpenRead happy. 6330 */ 6331 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6332 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6333 if( pIdx->bUnordered==0 6334 && pIdx->szIdxRow<pTab->szTabRow 6335 && pIdx->pPartIdxWhere==0 6336 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6337 ){ 6338 pBest = pIdx; 6339 } 6340 } 6341 if( pBest ){ 6342 iRoot = pBest->tnum; 6343 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6344 } 6345 6346 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6347 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6348 if( pKeyInfo ){ 6349 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6350 } 6351 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6352 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6353 explainSimpleCount(pParse, pTab, pBest); 6354 }else 6355 #endif /* SQLITE_OMIT_BTREECOUNT */ 6356 { 6357 int regAcc = 0; /* "populate accumulators" flag */ 6358 6359 /* If there are accumulator registers but no min() or max() functions, 6360 ** allocate register regAcc. Register regAcc will contain 0 the first 6361 ** time the inner loop runs, and 1 thereafter. The code generated 6362 ** by updateAccumulator() only updates the accumulator registers if 6363 ** regAcc contains 0. */ 6364 if( sAggInfo.nAccumulator ){ 6365 for(i=0; i<sAggInfo.nFunc; i++){ 6366 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6367 } 6368 if( i==sAggInfo.nFunc ){ 6369 regAcc = ++pParse->nMem; 6370 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6371 } 6372 } 6373 6374 /* This case runs if the aggregate has no GROUP BY clause. The 6375 ** processing is much simpler since there is only a single row 6376 ** of output. 6377 */ 6378 assert( p->pGroupBy==0 ); 6379 resetAccumulator(pParse, &sAggInfo); 6380 6381 /* If this query is a candidate for the min/max optimization, then 6382 ** minMaxFlag will have been previously set to either 6383 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6384 ** be an appropriate ORDER BY expression for the optimization. 6385 */ 6386 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6387 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6388 6389 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6390 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6391 0, minMaxFlag, 0); 6392 if( pWInfo==0 ){ 6393 goto select_end; 6394 } 6395 updateAccumulator(pParse, regAcc, &sAggInfo); 6396 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6397 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6398 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6399 VdbeComment((v, "%s() by index", 6400 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6401 } 6402 sqlite3WhereEnd(pWInfo); 6403 finalizeAggFunctions(pParse, &sAggInfo); 6404 } 6405 6406 sSort.pOrderBy = 0; 6407 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6408 selectInnerLoop(pParse, p, -1, 0, 0, 6409 pDest, addrEnd, addrEnd); 6410 } 6411 sqlite3VdbeResolveLabel(v, addrEnd); 6412 6413 } /* endif aggregate query */ 6414 6415 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6416 explainTempTable(pParse, "DISTINCT"); 6417 } 6418 6419 /* If there is an ORDER BY clause, then we need to sort the results 6420 ** and send them to the callback one by one. 6421 */ 6422 if( sSort.pOrderBy ){ 6423 explainTempTable(pParse, 6424 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6425 assert( p->pEList==pEList ); 6426 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6427 } 6428 6429 /* Jump here to skip this query 6430 */ 6431 sqlite3VdbeResolveLabel(v, iEnd); 6432 6433 /* The SELECT has been coded. If there is an error in the Parse structure, 6434 ** set the return code to 1. Otherwise 0. */ 6435 rc = (pParse->nErr>0); 6436 6437 /* Control jumps to here if an error is encountered above, or upon 6438 ** successful coding of the SELECT. 6439 */ 6440 select_end: 6441 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6442 sqlite3DbFree(db, sAggInfo.aCol); 6443 sqlite3DbFree(db, sAggInfo.aFunc); 6444 #if SELECTTRACE_ENABLED 6445 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6446 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6447 sqlite3TreeViewSelect(0, p, 0); 6448 } 6449 #endif 6450 ExplainQueryPlanPop(pParse); 6451 return rc; 6452 } 6453