1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 if( pEq && isOuterJoin ){ 351 ExprSetProperty(pEq, EP_FromJoin); 352 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 353 ExprSetVVAProperty(pEq, EP_NoReduce); 354 pEq->iRightJoinTable = pE2->iTable; 355 } 356 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 357 } 358 359 /* 360 ** Set the EP_FromJoin property on all terms of the given expression. 361 ** And set the Expr.iRightJoinTable to iTable for every term in the 362 ** expression. 363 ** 364 ** The EP_FromJoin property is used on terms of an expression to tell 365 ** the LEFT OUTER JOIN processing logic that this term is part of the 366 ** join restriction specified in the ON or USING clause and not a part 367 ** of the more general WHERE clause. These terms are moved over to the 368 ** WHERE clause during join processing but we need to remember that they 369 ** originated in the ON or USING clause. 370 ** 371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 372 ** expression depends on table iRightJoinTable even if that table is not 373 ** explicitly mentioned in the expression. That information is needed 374 ** for cases like this: 375 ** 376 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 377 ** 378 ** The where clause needs to defer the handling of the t1.x=5 379 ** term until after the t2 loop of the join. In that way, a 380 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 381 ** defer the handling of t1.x=5, it will be processed immediately 382 ** after the t1 loop and rows with t1.x!=5 will never appear in 383 ** the output, which is incorrect. 384 */ 385 void sqlite3SetJoinExpr(Expr *p, int iTable){ 386 while( p ){ 387 ExprSetProperty(p, EP_FromJoin); 388 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 389 ExprSetVVAProperty(p, EP_NoReduce); 390 p->iRightJoinTable = iTable; 391 if( p->op==TK_FUNCTION && p->x.pList ){ 392 int i; 393 for(i=0; i<p->x.pList->nExpr; i++){ 394 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 395 } 396 } 397 sqlite3SetJoinExpr(p->pLeft, iTable); 398 p = p->pRight; 399 } 400 } 401 402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 404 ** an ordinary term that omits the EP_FromJoin mark. 405 ** 406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 407 */ 408 static void unsetJoinExpr(Expr *p, int iTable){ 409 while( p ){ 410 if( ExprHasProperty(p, EP_FromJoin) 411 && (iTable<0 || p->iRightJoinTable==iTable) ){ 412 ExprClearProperty(p, EP_FromJoin); 413 } 414 if( p->op==TK_COLUMN && p->iTable==iTable ){ 415 ExprClearProperty(p, EP_CanBeNull); 416 } 417 if( p->op==TK_FUNCTION && p->x.pList ){ 418 int i; 419 for(i=0; i<p->x.pList->nExpr; i++){ 420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 421 } 422 } 423 unsetJoinExpr(p->pLeft, iTable); 424 p = p->pRight; 425 } 426 } 427 428 /* 429 ** This routine processes the join information for a SELECT statement. 430 ** ON and USING clauses are converted into extra terms of the WHERE clause. 431 ** NATURAL joins also create extra WHERE clause terms. 432 ** 433 ** The terms of a FROM clause are contained in the Select.pSrc structure. 434 ** The left most table is the first entry in Select.pSrc. The right-most 435 ** table is the last entry. The join operator is held in the entry to 436 ** the left. Thus entry 0 contains the join operator for the join between 437 ** entries 0 and 1. Any ON or USING clauses associated with the join are 438 ** also attached to the left entry. 439 ** 440 ** This routine returns the number of errors encountered. 441 */ 442 static int sqliteProcessJoin(Parse *pParse, Select *p){ 443 SrcList *pSrc; /* All tables in the FROM clause */ 444 int i, j; /* Loop counters */ 445 SrcItem *pLeft; /* Left table being joined */ 446 SrcItem *pRight; /* Right table being joined */ 447 448 pSrc = p->pSrc; 449 pLeft = &pSrc->a[0]; 450 pRight = &pLeft[1]; 451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 452 Table *pRightTab = pRight->pTab; 453 int isOuter; 454 455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 457 458 /* When the NATURAL keyword is present, add WHERE clause terms for 459 ** every column that the two tables have in common. 460 */ 461 if( pRight->fg.jointype & JT_NATURAL ){ 462 if( pRight->pOn || pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 464 "an ON or USING clause", 0); 465 return 1; 466 } 467 for(j=0; j<pRightTab->nCol; j++){ 468 char *zName; /* Name of column in the right table */ 469 int iLeft; /* Matching left table */ 470 int iLeftCol; /* Matching column in the left table */ 471 472 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 473 zName = pRightTab->aCol[j].zName; 474 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 475 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 476 isOuter, &p->pWhere); 477 } 478 } 479 } 480 481 /* Disallow both ON and USING clauses in the same join 482 */ 483 if( pRight->pOn && pRight->pUsing ){ 484 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 485 "clauses in the same join"); 486 return 1; 487 } 488 489 /* Add the ON clause to the end of the WHERE clause, connected by 490 ** an AND operator. 491 */ 492 if( pRight->pOn ){ 493 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 494 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 495 pRight->pOn = 0; 496 } 497 498 /* Create extra terms on the WHERE clause for each column named 499 ** in the USING clause. Example: If the two tables to be joined are 500 ** A and B and the USING clause names X, Y, and Z, then add this 501 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 502 ** Report an error if any column mentioned in the USING clause is 503 ** not contained in both tables to be joined. 504 */ 505 if( pRight->pUsing ){ 506 IdList *pList = pRight->pUsing; 507 for(j=0; j<pList->nId; j++){ 508 char *zName; /* Name of the term in the USING clause */ 509 int iLeft; /* Table on the left with matching column name */ 510 int iLeftCol; /* Column number of matching column on the left */ 511 int iRightCol; /* Column number of matching column on the right */ 512 513 zName = pList->a[j].zName; 514 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 515 if( iRightCol<0 516 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 517 ){ 518 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 519 "not present in both tables", zName); 520 return 1; 521 } 522 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 523 isOuter, &p->pWhere); 524 } 525 } 526 } 527 return 0; 528 } 529 530 /* 531 ** An instance of this object holds information (beyond pParse and pSelect) 532 ** needed to load the next result row that is to be added to the sorter. 533 */ 534 typedef struct RowLoadInfo RowLoadInfo; 535 struct RowLoadInfo { 536 int regResult; /* Store results in array of registers here */ 537 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 539 ExprList *pExtra; /* Extra columns needed by sorter refs */ 540 int regExtraResult; /* Where to load the extra columns */ 541 #endif 542 }; 543 544 /* 545 ** This routine does the work of loading query data into an array of 546 ** registers so that it can be added to the sorter. 547 */ 548 static void innerLoopLoadRow( 549 Parse *pParse, /* Statement under construction */ 550 Select *pSelect, /* The query being coded */ 551 RowLoadInfo *pInfo /* Info needed to complete the row load */ 552 ){ 553 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 554 0, pInfo->ecelFlags); 555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 556 if( pInfo->pExtra ){ 557 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 558 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 559 } 560 #endif 561 } 562 563 /* 564 ** Code the OP_MakeRecord instruction that generates the entry to be 565 ** added into the sorter. 566 ** 567 ** Return the register in which the result is stored. 568 */ 569 static int makeSorterRecord( 570 Parse *pParse, 571 SortCtx *pSort, 572 Select *pSelect, 573 int regBase, 574 int nBase 575 ){ 576 int nOBSat = pSort->nOBSat; 577 Vdbe *v = pParse->pVdbe; 578 int regOut = ++pParse->nMem; 579 if( pSort->pDeferredRowLoad ){ 580 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 581 } 582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 583 return regOut; 584 } 585 586 /* 587 ** Generate code that will push the record in registers regData 588 ** through regData+nData-1 onto the sorter. 589 */ 590 static void pushOntoSorter( 591 Parse *pParse, /* Parser context */ 592 SortCtx *pSort, /* Information about the ORDER BY clause */ 593 Select *pSelect, /* The whole SELECT statement */ 594 int regData, /* First register holding data to be sorted */ 595 int regOrigData, /* First register holding data before packing */ 596 int nData, /* Number of elements in the regData data array */ 597 int nPrefixReg /* No. of reg prior to regData available for use */ 598 ){ 599 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 600 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 601 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 602 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 603 int regBase; /* Regs for sorter record */ 604 int regRecord = 0; /* Assembled sorter record */ 605 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 606 int op; /* Opcode to add sorter record to sorter */ 607 int iLimit; /* LIMIT counter */ 608 int iSkip = 0; /* End of the sorter insert loop */ 609 610 assert( bSeq==0 || bSeq==1 ); 611 612 /* Three cases: 613 ** (1) The data to be sorted has already been packed into a Record 614 ** by a prior OP_MakeRecord. In this case nData==1 and regData 615 ** will be completely unrelated to regOrigData. 616 ** (2) All output columns are included in the sort record. In that 617 ** case regData==regOrigData. 618 ** (3) Some output columns are omitted from the sort record due to 619 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 620 ** SQLITE_ECEL_OMITREF optimization, or due to the 621 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 622 ** regOrigData is 0 to prevent this routine from trying to copy 623 ** values that might not yet exist. 624 */ 625 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 626 627 if( nPrefixReg ){ 628 assert( nPrefixReg==nExpr+bSeq ); 629 regBase = regData - nPrefixReg; 630 }else{ 631 regBase = pParse->nMem + 1; 632 pParse->nMem += nBase; 633 } 634 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 635 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 636 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 637 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 638 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 639 if( bSeq ){ 640 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 641 } 642 if( nPrefixReg==0 && nData>0 ){ 643 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 644 } 645 if( nOBSat>0 ){ 646 int regPrevKey; /* The first nOBSat columns of the previous row */ 647 int addrFirst; /* Address of the OP_IfNot opcode */ 648 int addrJmp; /* Address of the OP_Jump opcode */ 649 VdbeOp *pOp; /* Opcode that opens the sorter */ 650 int nKey; /* Number of sorting key columns, including OP_Sequence */ 651 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 652 653 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 654 regPrevKey = pParse->nMem+1; 655 pParse->nMem += pSort->nOBSat; 656 nKey = nExpr - pSort->nOBSat + bSeq; 657 if( bSeq ){ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 659 }else{ 660 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 661 } 662 VdbeCoverage(v); 663 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 664 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 665 if( pParse->db->mallocFailed ) return; 666 pOp->p2 = nKey + nData; 667 pKI = pOp->p4.pKeyInfo; 668 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 669 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 670 testcase( pKI->nAllField > pKI->nKeyField+2 ); 671 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 672 pKI->nAllField-pKI->nKeyField-1); 673 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 674 addrJmp = sqlite3VdbeCurrentAddr(v); 675 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 676 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 677 pSort->regReturn = ++pParse->nMem; 678 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 679 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 680 if( iLimit ){ 681 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 682 VdbeCoverage(v); 683 } 684 sqlite3VdbeJumpHere(v, addrFirst); 685 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 686 sqlite3VdbeJumpHere(v, addrJmp); 687 } 688 if( iLimit ){ 689 /* At this point the values for the new sorter entry are stored 690 ** in an array of registers. They need to be composed into a record 691 ** and inserted into the sorter if either (a) there are currently 692 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 693 ** the largest record currently in the sorter. If (b) is true and there 694 ** are already LIMIT+OFFSET items in the sorter, delete the largest 695 ** entry before inserting the new one. This way there are never more 696 ** than LIMIT+OFFSET items in the sorter. 697 ** 698 ** If the new record does not need to be inserted into the sorter, 699 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 700 ** value is not zero, then it is a label of where to jump. Otherwise, 701 ** just bypass the row insert logic. See the header comment on the 702 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 703 */ 704 int iCsr = pSort->iECursor; 705 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 706 VdbeCoverage(v); 707 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 708 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 709 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 710 VdbeCoverage(v); 711 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 712 } 713 if( regRecord==0 ){ 714 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 715 } 716 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 717 op = OP_SorterInsert; 718 }else{ 719 op = OP_IdxInsert; 720 } 721 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 722 regBase+nOBSat, nBase-nOBSat); 723 if( iSkip ){ 724 sqlite3VdbeChangeP2(v, iSkip, 725 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 726 } 727 } 728 729 /* 730 ** Add code to implement the OFFSET 731 */ 732 static void codeOffset( 733 Vdbe *v, /* Generate code into this VM */ 734 int iOffset, /* Register holding the offset counter */ 735 int iContinue /* Jump here to skip the current record */ 736 ){ 737 if( iOffset>0 ){ 738 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 739 VdbeComment((v, "OFFSET")); 740 } 741 } 742 743 /* 744 ** Add code that will check to make sure the array of registers starting at 745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 747 ** are available. Which is used depends on the value of parameter eTnctType, 748 ** as follows: 749 ** 750 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 751 ** Build an ephemeral table that contains all entries seen before and 752 ** skip entries which have been seen before. 753 ** 754 ** Parameter iTab is the cursor number of an ephemeral table that must 755 ** be opened before the VM code generated by this routine is executed. 756 ** The ephemeral cursor table is queried for a record identical to the 757 ** record formed by the current array of registers. If one is found, 758 ** jump to VM address addrRepeat. Otherwise, insert a new record into 759 ** the ephemeral cursor and proceed. 760 ** 761 ** The returned value in this case is a copy of parameter iTab. 762 ** 763 ** WHERE_DISTINCT_ORDERED: 764 ** In this case rows are being delivered sorted order. The ephermal 765 ** table is not required. Instead, the current set of values 766 ** is compared against previous row. If they match, the new row 767 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 768 ** the VM program proceeds with processing the new row. 769 ** 770 ** The returned value in this case is the register number of the first 771 ** in an array of registers used to store the previous result row so that 772 ** it can be compared to the next. The caller must ensure that this 773 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 774 ** will take care of this initialization.) 775 ** 776 ** WHERE_DISTINCT_UNIQUE: 777 ** In this case it has already been determined that the rows are distinct. 778 ** No special action is required. The return value is zero. 779 ** 780 ** Parameter pEList is the list of expressions used to generated the 781 ** contents of each row. It is used by this routine to determine (a) 782 ** how many elements there are in the array of registers and (b) the 783 ** collation sequences that should be used for the comparisons if 784 ** eTnctType is WHERE_DISTINCT_ORDERED. 785 */ 786 static int codeDistinct( 787 Parse *pParse, /* Parsing and code generating context */ 788 int eTnctType, /* WHERE_DISTINCT_* value */ 789 int iTab, /* A sorting index used to test for distinctness */ 790 int addrRepeat, /* Jump to here if not distinct */ 791 ExprList *pEList, /* Expression for each element */ 792 int regElem /* First element */ 793 ){ 794 int iRet = 0; 795 int nResultCol = pEList->nExpr; 796 Vdbe *v = pParse->pVdbe; 797 798 switch( eTnctType ){ 799 case WHERE_DISTINCT_ORDERED: { 800 int i; 801 int iJump; /* Jump destination */ 802 int regPrev; /* Previous row content */ 803 804 /* Allocate space for the previous row */ 805 iRet = regPrev = pParse->nMem+1; 806 pParse->nMem += nResultCol; 807 808 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 809 for(i=0; i<nResultCol; i++){ 810 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 811 if( i<nResultCol-1 ){ 812 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 813 VdbeCoverage(v); 814 }else{ 815 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 816 VdbeCoverage(v); 817 } 818 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 819 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 820 } 821 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 822 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 823 break; 824 } 825 826 case WHERE_DISTINCT_UNIQUE: { 827 /* nothing to do */ 828 break; 829 } 830 831 default: { 832 int r1 = sqlite3GetTempReg(pParse); 833 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 834 VdbeCoverage(v); 835 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 836 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 837 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 838 sqlite3ReleaseTempReg(pParse, r1); 839 iRet = iTab; 840 break; 841 } 842 } 843 844 return iRet; 845 } 846 847 /* 848 ** This routine runs after codeDistinct(). It makes necessary 849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 850 ** routine made use of. This processing must be done separately since 851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 852 ** laid down. 853 ** 854 ** WHERE_DISTINCT_NOOP: 855 ** WHERE_DISTINCT_UNORDERED: 856 ** 857 ** No adjustments necessary. This function is a no-op. 858 ** 859 ** WHERE_DISTINCT_UNIQUE: 860 ** 861 ** The ephemeral table is not needed. So change the 862 ** OP_OpenEphemeral opcode into an OP_Noop. 863 ** 864 ** WHERE_DISTINCT_ORDERED: 865 ** 866 ** The ephemeral table is not needed. But we do need register 867 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 868 ** into an OP_Null on the iVal register. 869 */ 870 static void fixDistinctOpenEph( 871 Parse *pParse, /* Parsing and code generating context */ 872 int eTnctType, /* WHERE_DISTINCT_* value */ 873 int iVal, /* Value returned by codeDistinct() */ 874 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 875 ){ 876 if( eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED ){ 877 Vdbe *v = pParse->pVdbe; 878 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 879 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 880 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 881 } 882 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 883 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 884 ** bit on the first register of the previous value. This will cause the 885 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 886 ** the loop even if the first row is all NULLs. */ 887 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 888 pOp->opcode = OP_Null; 889 pOp->p1 = 1; 890 pOp->p2 = iVal; 891 } 892 } 893 } 894 895 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 896 /* 897 ** This function is called as part of inner-loop generation for a SELECT 898 ** statement with an ORDER BY that is not optimized by an index. It 899 ** determines the expressions, if any, that the sorter-reference 900 ** optimization should be used for. The sorter-reference optimization 901 ** is used for SELECT queries like: 902 ** 903 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 904 ** 905 ** If the optimization is used for expression "bigblob", then instead of 906 ** storing values read from that column in the sorter records, the PK of 907 ** the row from table t1 is stored instead. Then, as records are extracted from 908 ** the sorter to return to the user, the required value of bigblob is 909 ** retrieved directly from table t1. If the values are very large, this 910 ** can be more efficient than storing them directly in the sorter records. 911 ** 912 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 913 ** for which the sorter-reference optimization should be enabled. 914 ** Additionally, the pSort->aDefer[] array is populated with entries 915 ** for all cursors required to evaluate all selected expressions. Finally. 916 ** output variable (*ppExtra) is set to an expression list containing 917 ** expressions for all extra PK values that should be stored in the 918 ** sorter records. 919 */ 920 static void selectExprDefer( 921 Parse *pParse, /* Leave any error here */ 922 SortCtx *pSort, /* Sorter context */ 923 ExprList *pEList, /* Expressions destined for sorter */ 924 ExprList **ppExtra /* Expressions to append to sorter record */ 925 ){ 926 int i; 927 int nDefer = 0; 928 ExprList *pExtra = 0; 929 for(i=0; i<pEList->nExpr; i++){ 930 struct ExprList_item *pItem = &pEList->a[i]; 931 if( pItem->u.x.iOrderByCol==0 ){ 932 Expr *pExpr = pItem->pExpr; 933 Table *pTab = pExpr->y.pTab; 934 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 935 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 936 ){ 937 int j; 938 for(j=0; j<nDefer; j++){ 939 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 940 } 941 if( j==nDefer ){ 942 if( nDefer==ArraySize(pSort->aDefer) ){ 943 continue; 944 }else{ 945 int nKey = 1; 946 int k; 947 Index *pPk = 0; 948 if( !HasRowid(pTab) ){ 949 pPk = sqlite3PrimaryKeyIndex(pTab); 950 nKey = pPk->nKeyCol; 951 } 952 for(k=0; k<nKey; k++){ 953 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 954 if( pNew ){ 955 pNew->iTable = pExpr->iTable; 956 pNew->y.pTab = pExpr->y.pTab; 957 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 958 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 959 } 960 } 961 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 962 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 963 pSort->aDefer[nDefer].nKey = nKey; 964 nDefer++; 965 } 966 } 967 pItem->bSorterRef = 1; 968 } 969 } 970 } 971 pSort->nDefer = (u8)nDefer; 972 *ppExtra = pExtra; 973 } 974 #endif 975 976 /* 977 ** This routine generates the code for the inside of the inner loop 978 ** of a SELECT. 979 ** 980 ** If srcTab is negative, then the p->pEList expressions 981 ** are evaluated in order to get the data for this row. If srcTab is 982 ** zero or more, then data is pulled from srcTab and p->pEList is used only 983 ** to get the number of columns and the collation sequence for each column. 984 */ 985 static void selectInnerLoop( 986 Parse *pParse, /* The parser context */ 987 Select *p, /* The complete select statement being coded */ 988 int srcTab, /* Pull data from this table if non-negative */ 989 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 990 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 991 SelectDest *pDest, /* How to dispose of the results */ 992 int iContinue, /* Jump here to continue with next row */ 993 int iBreak /* Jump here to break out of the inner loop */ 994 ){ 995 Vdbe *v = pParse->pVdbe; 996 int i; 997 int hasDistinct; /* True if the DISTINCT keyword is present */ 998 int eDest = pDest->eDest; /* How to dispose of results */ 999 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1000 int nResultCol; /* Number of result columns */ 1001 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1002 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1003 1004 /* Usually, regResult is the first cell in an array of memory cells 1005 ** containing the current result row. In this case regOrig is set to the 1006 ** same value. However, if the results are being sent to the sorter, the 1007 ** values for any expressions that are also part of the sort-key are omitted 1008 ** from this array. In this case regOrig is set to zero. */ 1009 int regResult; /* Start of memory holding current results */ 1010 int regOrig; /* Start of memory holding full result (or 0) */ 1011 1012 assert( v ); 1013 assert( p->pEList!=0 ); 1014 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1015 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1016 if( pSort==0 && !hasDistinct ){ 1017 assert( iContinue!=0 ); 1018 codeOffset(v, p->iOffset, iContinue); 1019 } 1020 1021 /* Pull the requested columns. 1022 */ 1023 nResultCol = p->pEList->nExpr; 1024 1025 if( pDest->iSdst==0 ){ 1026 if( pSort ){ 1027 nPrefixReg = pSort->pOrderBy->nExpr; 1028 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1029 pParse->nMem += nPrefixReg; 1030 } 1031 pDest->iSdst = pParse->nMem+1; 1032 pParse->nMem += nResultCol; 1033 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1034 /* This is an error condition that can result, for example, when a SELECT 1035 ** on the right-hand side of an INSERT contains more result columns than 1036 ** there are columns in the table on the left. The error will be caught 1037 ** and reported later. But we need to make sure enough memory is allocated 1038 ** to avoid other spurious errors in the meantime. */ 1039 pParse->nMem += nResultCol; 1040 } 1041 pDest->nSdst = nResultCol; 1042 regOrig = regResult = pDest->iSdst; 1043 if( srcTab>=0 ){ 1044 for(i=0; i<nResultCol; i++){ 1045 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1046 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1047 } 1048 }else if( eDest!=SRT_Exists ){ 1049 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1050 ExprList *pExtra = 0; 1051 #endif 1052 /* If the destination is an EXISTS(...) expression, the actual 1053 ** values returned by the SELECT are not required. 1054 */ 1055 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1056 ExprList *pEList; 1057 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1058 ecelFlags = SQLITE_ECEL_DUP; 1059 }else{ 1060 ecelFlags = 0; 1061 } 1062 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1063 /* For each expression in p->pEList that is a copy of an expression in 1064 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1065 ** iOrderByCol value to one more than the index of the ORDER BY 1066 ** expression within the sort-key that pushOntoSorter() will generate. 1067 ** This allows the p->pEList field to be omitted from the sorted record, 1068 ** saving space and CPU cycles. */ 1069 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1070 1071 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1072 int j; 1073 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1074 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1075 } 1076 } 1077 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1078 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1079 if( pExtra && pParse->db->mallocFailed==0 ){ 1080 /* If there are any extra PK columns to add to the sorter records, 1081 ** allocate extra memory cells and adjust the OpenEphemeral 1082 ** instruction to account for the larger records. This is only 1083 ** required if there are one or more WITHOUT ROWID tables with 1084 ** composite primary keys in the SortCtx.aDefer[] array. */ 1085 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1086 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1087 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1088 pParse->nMem += pExtra->nExpr; 1089 } 1090 #endif 1091 1092 /* Adjust nResultCol to account for columns that are omitted 1093 ** from the sorter by the optimizations in this branch */ 1094 pEList = p->pEList; 1095 for(i=0; i<pEList->nExpr; i++){ 1096 if( pEList->a[i].u.x.iOrderByCol>0 1097 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1098 || pEList->a[i].bSorterRef 1099 #endif 1100 ){ 1101 nResultCol--; 1102 regOrig = 0; 1103 } 1104 } 1105 1106 testcase( regOrig ); 1107 testcase( eDest==SRT_Set ); 1108 testcase( eDest==SRT_Mem ); 1109 testcase( eDest==SRT_Coroutine ); 1110 testcase( eDest==SRT_Output ); 1111 assert( eDest==SRT_Set || eDest==SRT_Mem 1112 || eDest==SRT_Coroutine || eDest==SRT_Output 1113 || eDest==SRT_Upfrom ); 1114 } 1115 sRowLoadInfo.regResult = regResult; 1116 sRowLoadInfo.ecelFlags = ecelFlags; 1117 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1118 sRowLoadInfo.pExtra = pExtra; 1119 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1120 if( pExtra ) nResultCol += pExtra->nExpr; 1121 #endif 1122 if( p->iLimit 1123 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1124 && nPrefixReg>0 1125 ){ 1126 assert( pSort!=0 ); 1127 assert( hasDistinct==0 ); 1128 pSort->pDeferredRowLoad = &sRowLoadInfo; 1129 regOrig = 0; 1130 }else{ 1131 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1132 } 1133 } 1134 1135 /* If the DISTINCT keyword was present on the SELECT statement 1136 ** and this row has been seen before, then do not make this row 1137 ** part of the result. 1138 */ 1139 if( hasDistinct ){ 1140 int eType = pDistinct->eTnctType; 1141 int iTab = pDistinct->tabTnct; 1142 assert( nResultCol==p->pEList->nExpr ); 1143 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1144 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1145 if( pSort==0 ){ 1146 codeOffset(v, p->iOffset, iContinue); 1147 } 1148 } 1149 1150 switch( eDest ){ 1151 /* In this mode, write each query result to the key of the temporary 1152 ** table iParm. 1153 */ 1154 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1155 case SRT_Union: { 1156 int r1; 1157 r1 = sqlite3GetTempReg(pParse); 1158 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1159 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1160 sqlite3ReleaseTempReg(pParse, r1); 1161 break; 1162 } 1163 1164 /* Construct a record from the query result, but instead of 1165 ** saving that record, use it as a key to delete elements from 1166 ** the temporary table iParm. 1167 */ 1168 case SRT_Except: { 1169 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1170 break; 1171 } 1172 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1173 1174 /* Store the result as data using a unique key. 1175 */ 1176 case SRT_Fifo: 1177 case SRT_DistFifo: 1178 case SRT_Table: 1179 case SRT_EphemTab: { 1180 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1181 testcase( eDest==SRT_Table ); 1182 testcase( eDest==SRT_EphemTab ); 1183 testcase( eDest==SRT_Fifo ); 1184 testcase( eDest==SRT_DistFifo ); 1185 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1186 #ifndef SQLITE_OMIT_CTE 1187 if( eDest==SRT_DistFifo ){ 1188 /* If the destination is DistFifo, then cursor (iParm+1) is open 1189 ** on an ephemeral index. If the current row is already present 1190 ** in the index, do not write it to the output. If not, add the 1191 ** current row to the index and proceed with writing it to the 1192 ** output table as well. */ 1193 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1194 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1195 VdbeCoverage(v); 1196 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1197 assert( pSort==0 ); 1198 } 1199 #endif 1200 if( pSort ){ 1201 assert( regResult==regOrig ); 1202 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1203 }else{ 1204 int r2 = sqlite3GetTempReg(pParse); 1205 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1206 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1207 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1208 sqlite3ReleaseTempReg(pParse, r2); 1209 } 1210 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1211 break; 1212 } 1213 1214 case SRT_Upfrom: { 1215 if( pSort ){ 1216 pushOntoSorter( 1217 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1218 }else{ 1219 int i2 = pDest->iSDParm2; 1220 int r1 = sqlite3GetTempReg(pParse); 1221 1222 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1223 ** might still be trying to return one row, because that is what 1224 ** aggregates do. Don't record that empty row in the output table. */ 1225 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1226 1227 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1228 regResult+(i2<0), nResultCol-(i2<0), r1); 1229 if( i2<0 ){ 1230 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1231 }else{ 1232 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1233 } 1234 } 1235 break; 1236 } 1237 1238 #ifndef SQLITE_OMIT_SUBQUERY 1239 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1240 ** then there should be a single item on the stack. Write this 1241 ** item into the set table with bogus data. 1242 */ 1243 case SRT_Set: { 1244 if( pSort ){ 1245 /* At first glance you would think we could optimize out the 1246 ** ORDER BY in this case since the order of entries in the set 1247 ** does not matter. But there might be a LIMIT clause, in which 1248 ** case the order does matter */ 1249 pushOntoSorter( 1250 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1251 }else{ 1252 int r1 = sqlite3GetTempReg(pParse); 1253 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1254 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1255 r1, pDest->zAffSdst, nResultCol); 1256 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1257 sqlite3ReleaseTempReg(pParse, r1); 1258 } 1259 break; 1260 } 1261 1262 1263 /* If any row exist in the result set, record that fact and abort. 1264 */ 1265 case SRT_Exists: { 1266 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1267 /* The LIMIT clause will terminate the loop for us */ 1268 break; 1269 } 1270 1271 /* If this is a scalar select that is part of an expression, then 1272 ** store the results in the appropriate memory cell or array of 1273 ** memory cells and break out of the scan loop. 1274 */ 1275 case SRT_Mem: { 1276 if( pSort ){ 1277 assert( nResultCol<=pDest->nSdst ); 1278 pushOntoSorter( 1279 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1280 }else{ 1281 assert( nResultCol==pDest->nSdst ); 1282 assert( regResult==iParm ); 1283 /* The LIMIT clause will jump out of the loop for us */ 1284 } 1285 break; 1286 } 1287 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1288 1289 case SRT_Coroutine: /* Send data to a co-routine */ 1290 case SRT_Output: { /* Return the results */ 1291 testcase( eDest==SRT_Coroutine ); 1292 testcase( eDest==SRT_Output ); 1293 if( pSort ){ 1294 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1295 nPrefixReg); 1296 }else if( eDest==SRT_Coroutine ){ 1297 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1298 }else{ 1299 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1300 } 1301 break; 1302 } 1303 1304 #ifndef SQLITE_OMIT_CTE 1305 /* Write the results into a priority queue that is order according to 1306 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1307 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1308 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1309 ** final OP_Sequence column. The last column is the record as a blob. 1310 */ 1311 case SRT_DistQueue: 1312 case SRT_Queue: { 1313 int nKey; 1314 int r1, r2, r3; 1315 int addrTest = 0; 1316 ExprList *pSO; 1317 pSO = pDest->pOrderBy; 1318 assert( pSO ); 1319 nKey = pSO->nExpr; 1320 r1 = sqlite3GetTempReg(pParse); 1321 r2 = sqlite3GetTempRange(pParse, nKey+2); 1322 r3 = r2+nKey+1; 1323 if( eDest==SRT_DistQueue ){ 1324 /* If the destination is DistQueue, then cursor (iParm+1) is open 1325 ** on a second ephemeral index that holds all values every previously 1326 ** added to the queue. */ 1327 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1328 regResult, nResultCol); 1329 VdbeCoverage(v); 1330 } 1331 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1332 if( eDest==SRT_DistQueue ){ 1333 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1334 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1335 } 1336 for(i=0; i<nKey; i++){ 1337 sqlite3VdbeAddOp2(v, OP_SCopy, 1338 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1339 r2+i); 1340 } 1341 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1342 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1343 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1344 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1345 sqlite3ReleaseTempReg(pParse, r1); 1346 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1347 break; 1348 } 1349 #endif /* SQLITE_OMIT_CTE */ 1350 1351 1352 1353 #if !defined(SQLITE_OMIT_TRIGGER) 1354 /* Discard the results. This is used for SELECT statements inside 1355 ** the body of a TRIGGER. The purpose of such selects is to call 1356 ** user-defined functions that have side effects. We do not care 1357 ** about the actual results of the select. 1358 */ 1359 default: { 1360 assert( eDest==SRT_Discard ); 1361 break; 1362 } 1363 #endif 1364 } 1365 1366 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1367 ** there is a sorter, in which case the sorter has already limited 1368 ** the output for us. 1369 */ 1370 if( pSort==0 && p->iLimit ){ 1371 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1372 } 1373 } 1374 1375 /* 1376 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1377 ** X extra columns. 1378 */ 1379 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1380 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1381 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1382 if( p ){ 1383 p->aSortFlags = (u8*)&p->aColl[N+X]; 1384 p->nKeyField = (u16)N; 1385 p->nAllField = (u16)(N+X); 1386 p->enc = ENC(db); 1387 p->db = db; 1388 p->nRef = 1; 1389 memset(&p[1], 0, nExtra); 1390 }else{ 1391 sqlite3OomFault(db); 1392 } 1393 return p; 1394 } 1395 1396 /* 1397 ** Deallocate a KeyInfo object 1398 */ 1399 void sqlite3KeyInfoUnref(KeyInfo *p){ 1400 if( p ){ 1401 assert( p->nRef>0 ); 1402 p->nRef--; 1403 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1404 } 1405 } 1406 1407 /* 1408 ** Make a new pointer to a KeyInfo object 1409 */ 1410 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1411 if( p ){ 1412 assert( p->nRef>0 ); 1413 p->nRef++; 1414 } 1415 return p; 1416 } 1417 1418 #ifdef SQLITE_DEBUG 1419 /* 1420 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1421 ** can only be changed if this is just a single reference to the object. 1422 ** 1423 ** This routine is used only inside of assert() statements. 1424 */ 1425 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1426 #endif /* SQLITE_DEBUG */ 1427 1428 /* 1429 ** Given an expression list, generate a KeyInfo structure that records 1430 ** the collating sequence for each expression in that expression list. 1431 ** 1432 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1433 ** KeyInfo structure is appropriate for initializing a virtual index to 1434 ** implement that clause. If the ExprList is the result set of a SELECT 1435 ** then the KeyInfo structure is appropriate for initializing a virtual 1436 ** index to implement a DISTINCT test. 1437 ** 1438 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1439 ** function is responsible for seeing that this structure is eventually 1440 ** freed. 1441 */ 1442 KeyInfo *sqlite3KeyInfoFromExprList( 1443 Parse *pParse, /* Parsing context */ 1444 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1445 int iStart, /* Begin with this column of pList */ 1446 int nExtra /* Add this many extra columns to the end */ 1447 ){ 1448 int nExpr; 1449 KeyInfo *pInfo; 1450 struct ExprList_item *pItem; 1451 sqlite3 *db = pParse->db; 1452 int i; 1453 1454 nExpr = pList->nExpr; 1455 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1456 if( pInfo ){ 1457 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1458 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1459 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1460 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1461 } 1462 } 1463 return pInfo; 1464 } 1465 1466 /* 1467 ** Name of the connection operator, used for error messages. 1468 */ 1469 const char *sqlite3SelectOpName(int id){ 1470 char *z; 1471 switch( id ){ 1472 case TK_ALL: z = "UNION ALL"; break; 1473 case TK_INTERSECT: z = "INTERSECT"; break; 1474 case TK_EXCEPT: z = "EXCEPT"; break; 1475 default: z = "UNION"; break; 1476 } 1477 return z; 1478 } 1479 1480 #ifndef SQLITE_OMIT_EXPLAIN 1481 /* 1482 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1483 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1484 ** where the caption is of the form: 1485 ** 1486 ** "USE TEMP B-TREE FOR xxx" 1487 ** 1488 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1489 ** is determined by the zUsage argument. 1490 */ 1491 static void explainTempTable(Parse *pParse, const char *zUsage){ 1492 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1493 } 1494 1495 /* 1496 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1497 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1498 ** in sqlite3Select() to assign values to structure member variables that 1499 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1500 ** code with #ifndef directives. 1501 */ 1502 # define explainSetInteger(a, b) a = b 1503 1504 #else 1505 /* No-op versions of the explainXXX() functions and macros. */ 1506 # define explainTempTable(y,z) 1507 # define explainSetInteger(y,z) 1508 #endif 1509 1510 1511 /* 1512 ** If the inner loop was generated using a non-null pOrderBy argument, 1513 ** then the results were placed in a sorter. After the loop is terminated 1514 ** we need to run the sorter and output the results. The following 1515 ** routine generates the code needed to do that. 1516 */ 1517 static void generateSortTail( 1518 Parse *pParse, /* Parsing context */ 1519 Select *p, /* The SELECT statement */ 1520 SortCtx *pSort, /* Information on the ORDER BY clause */ 1521 int nColumn, /* Number of columns of data */ 1522 SelectDest *pDest /* Write the sorted results here */ 1523 ){ 1524 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1525 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1526 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1527 int addr; /* Top of output loop. Jump for Next. */ 1528 int addrOnce = 0; 1529 int iTab; 1530 ExprList *pOrderBy = pSort->pOrderBy; 1531 int eDest = pDest->eDest; 1532 int iParm = pDest->iSDParm; 1533 int regRow; 1534 int regRowid; 1535 int iCol; 1536 int nKey; /* Number of key columns in sorter record */ 1537 int iSortTab; /* Sorter cursor to read from */ 1538 int i; 1539 int bSeq; /* True if sorter record includes seq. no. */ 1540 int nRefKey = 0; 1541 struct ExprList_item *aOutEx = p->pEList->a; 1542 1543 assert( addrBreak<0 ); 1544 if( pSort->labelBkOut ){ 1545 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1546 sqlite3VdbeGoto(v, addrBreak); 1547 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1548 } 1549 1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1551 /* Open any cursors needed for sorter-reference expressions */ 1552 for(i=0; i<pSort->nDefer; i++){ 1553 Table *pTab = pSort->aDefer[i].pTab; 1554 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1555 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1556 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1557 } 1558 #endif 1559 1560 iTab = pSort->iECursor; 1561 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1562 regRowid = 0; 1563 regRow = pDest->iSdst; 1564 }else{ 1565 regRowid = sqlite3GetTempReg(pParse); 1566 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1567 regRow = sqlite3GetTempReg(pParse); 1568 nColumn = 0; 1569 }else{ 1570 regRow = sqlite3GetTempRange(pParse, nColumn); 1571 } 1572 } 1573 nKey = pOrderBy->nExpr - pSort->nOBSat; 1574 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1575 int regSortOut = ++pParse->nMem; 1576 iSortTab = pParse->nTab++; 1577 if( pSort->labelBkOut ){ 1578 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1579 } 1580 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1581 nKey+1+nColumn+nRefKey); 1582 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1583 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1584 VdbeCoverage(v); 1585 codeOffset(v, p->iOffset, addrContinue); 1586 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1587 bSeq = 0; 1588 }else{ 1589 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1590 codeOffset(v, p->iOffset, addrContinue); 1591 iSortTab = iTab; 1592 bSeq = 1; 1593 } 1594 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1595 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1596 if( aOutEx[i].bSorterRef ) continue; 1597 #endif 1598 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1599 } 1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1601 if( pSort->nDefer ){ 1602 int iKey = iCol+1; 1603 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1604 1605 for(i=0; i<pSort->nDefer; i++){ 1606 int iCsr = pSort->aDefer[i].iCsr; 1607 Table *pTab = pSort->aDefer[i].pTab; 1608 int nKey = pSort->aDefer[i].nKey; 1609 1610 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1611 if( HasRowid(pTab) ){ 1612 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1613 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1614 sqlite3VdbeCurrentAddr(v)+1, regKey); 1615 }else{ 1616 int k; 1617 int iJmp; 1618 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1619 for(k=0; k<nKey; k++){ 1620 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1621 } 1622 iJmp = sqlite3VdbeCurrentAddr(v); 1623 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1624 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1625 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1626 } 1627 } 1628 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1629 } 1630 #endif 1631 for(i=nColumn-1; i>=0; i--){ 1632 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1633 if( aOutEx[i].bSorterRef ){ 1634 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1635 }else 1636 #endif 1637 { 1638 int iRead; 1639 if( aOutEx[i].u.x.iOrderByCol ){ 1640 iRead = aOutEx[i].u.x.iOrderByCol-1; 1641 }else{ 1642 iRead = iCol--; 1643 } 1644 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1645 VdbeComment((v, "%s", aOutEx[i].zEName)); 1646 } 1647 } 1648 switch( eDest ){ 1649 case SRT_Table: 1650 case SRT_EphemTab: { 1651 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1652 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1653 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1654 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1655 break; 1656 } 1657 #ifndef SQLITE_OMIT_SUBQUERY 1658 case SRT_Set: { 1659 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1660 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1661 pDest->zAffSdst, nColumn); 1662 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1663 break; 1664 } 1665 case SRT_Mem: { 1666 /* The LIMIT clause will terminate the loop for us */ 1667 break; 1668 } 1669 #endif 1670 case SRT_Upfrom: { 1671 int i2 = pDest->iSDParm2; 1672 int r1 = sqlite3GetTempReg(pParse); 1673 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1674 if( i2<0 ){ 1675 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1676 }else{ 1677 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1678 } 1679 break; 1680 } 1681 default: { 1682 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1683 testcase( eDest==SRT_Output ); 1684 testcase( eDest==SRT_Coroutine ); 1685 if( eDest==SRT_Output ){ 1686 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1687 }else{ 1688 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1689 } 1690 break; 1691 } 1692 } 1693 if( regRowid ){ 1694 if( eDest==SRT_Set ){ 1695 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1696 }else{ 1697 sqlite3ReleaseTempReg(pParse, regRow); 1698 } 1699 sqlite3ReleaseTempReg(pParse, regRowid); 1700 } 1701 /* The bottom of the loop 1702 */ 1703 sqlite3VdbeResolveLabel(v, addrContinue); 1704 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1705 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1706 }else{ 1707 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1708 } 1709 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1710 sqlite3VdbeResolveLabel(v, addrBreak); 1711 } 1712 1713 /* 1714 ** Return a pointer to a string containing the 'declaration type' of the 1715 ** expression pExpr. The string may be treated as static by the caller. 1716 ** 1717 ** Also try to estimate the size of the returned value and return that 1718 ** result in *pEstWidth. 1719 ** 1720 ** The declaration type is the exact datatype definition extracted from the 1721 ** original CREATE TABLE statement if the expression is a column. The 1722 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1723 ** is considered a column can be complex in the presence of subqueries. The 1724 ** result-set expression in all of the following SELECT statements is 1725 ** considered a column by this function. 1726 ** 1727 ** SELECT col FROM tbl; 1728 ** SELECT (SELECT col FROM tbl; 1729 ** SELECT (SELECT col FROM tbl); 1730 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1731 ** 1732 ** The declaration type for any expression other than a column is NULL. 1733 ** 1734 ** This routine has either 3 or 6 parameters depending on whether or not 1735 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1736 */ 1737 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1738 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1739 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1741 #endif 1742 static const char *columnTypeImpl( 1743 NameContext *pNC, 1744 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1745 Expr *pExpr 1746 #else 1747 Expr *pExpr, 1748 const char **pzOrigDb, 1749 const char **pzOrigTab, 1750 const char **pzOrigCol 1751 #endif 1752 ){ 1753 char const *zType = 0; 1754 int j; 1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1756 char const *zOrigDb = 0; 1757 char const *zOrigTab = 0; 1758 char const *zOrigCol = 0; 1759 #endif 1760 1761 assert( pExpr!=0 ); 1762 assert( pNC->pSrcList!=0 ); 1763 switch( pExpr->op ){ 1764 case TK_COLUMN: { 1765 /* The expression is a column. Locate the table the column is being 1766 ** extracted from in NameContext.pSrcList. This table may be real 1767 ** database table or a subquery. 1768 */ 1769 Table *pTab = 0; /* Table structure column is extracted from */ 1770 Select *pS = 0; /* Select the column is extracted from */ 1771 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1772 while( pNC && !pTab ){ 1773 SrcList *pTabList = pNC->pSrcList; 1774 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1775 if( j<pTabList->nSrc ){ 1776 pTab = pTabList->a[j].pTab; 1777 pS = pTabList->a[j].pSelect; 1778 }else{ 1779 pNC = pNC->pNext; 1780 } 1781 } 1782 1783 if( pTab==0 ){ 1784 /* At one time, code such as "SELECT new.x" within a trigger would 1785 ** cause this condition to run. Since then, we have restructured how 1786 ** trigger code is generated and so this condition is no longer 1787 ** possible. However, it can still be true for statements like 1788 ** the following: 1789 ** 1790 ** CREATE TABLE t1(col INTEGER); 1791 ** SELECT (SELECT t1.col) FROM FROM t1; 1792 ** 1793 ** when columnType() is called on the expression "t1.col" in the 1794 ** sub-select. In this case, set the column type to NULL, even 1795 ** though it should really be "INTEGER". 1796 ** 1797 ** This is not a problem, as the column type of "t1.col" is never 1798 ** used. When columnType() is called on the expression 1799 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1800 ** branch below. */ 1801 break; 1802 } 1803 1804 assert( pTab && pExpr->y.pTab==pTab ); 1805 if( pS ){ 1806 /* The "table" is actually a sub-select or a view in the FROM clause 1807 ** of the SELECT statement. Return the declaration type and origin 1808 ** data for the result-set column of the sub-select. 1809 */ 1810 if( iCol<pS->pEList->nExpr 1811 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1812 && iCol>=0 1813 #else 1814 && ALWAYS(iCol>=0) 1815 #endif 1816 ){ 1817 /* If iCol is less than zero, then the expression requests the 1818 ** rowid of the sub-select or view. This expression is legal (see 1819 ** test case misc2.2.2) - it always evaluates to NULL. 1820 */ 1821 NameContext sNC; 1822 Expr *p = pS->pEList->a[iCol].pExpr; 1823 sNC.pSrcList = pS->pSrc; 1824 sNC.pNext = pNC; 1825 sNC.pParse = pNC->pParse; 1826 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1827 } 1828 }else{ 1829 /* A real table or a CTE table */ 1830 assert( !pS ); 1831 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1832 if( iCol<0 ) iCol = pTab->iPKey; 1833 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1834 if( iCol<0 ){ 1835 zType = "INTEGER"; 1836 zOrigCol = "rowid"; 1837 }else{ 1838 zOrigCol = pTab->aCol[iCol].zName; 1839 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1840 } 1841 zOrigTab = pTab->zName; 1842 if( pNC->pParse && pTab->pSchema ){ 1843 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1844 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1845 } 1846 #else 1847 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1848 if( iCol<0 ){ 1849 zType = "INTEGER"; 1850 }else{ 1851 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1852 } 1853 #endif 1854 } 1855 break; 1856 } 1857 #ifndef SQLITE_OMIT_SUBQUERY 1858 case TK_SELECT: { 1859 /* The expression is a sub-select. Return the declaration type and 1860 ** origin info for the single column in the result set of the SELECT 1861 ** statement. 1862 */ 1863 NameContext sNC; 1864 Select *pS = pExpr->x.pSelect; 1865 Expr *p = pS->pEList->a[0].pExpr; 1866 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1867 sNC.pSrcList = pS->pSrc; 1868 sNC.pNext = pNC; 1869 sNC.pParse = pNC->pParse; 1870 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1871 break; 1872 } 1873 #endif 1874 } 1875 1876 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1877 if( pzOrigDb ){ 1878 assert( pzOrigTab && pzOrigCol ); 1879 *pzOrigDb = zOrigDb; 1880 *pzOrigTab = zOrigTab; 1881 *pzOrigCol = zOrigCol; 1882 } 1883 #endif 1884 return zType; 1885 } 1886 1887 /* 1888 ** Generate code that will tell the VDBE the declaration types of columns 1889 ** in the result set. 1890 */ 1891 static void generateColumnTypes( 1892 Parse *pParse, /* Parser context */ 1893 SrcList *pTabList, /* List of tables */ 1894 ExprList *pEList /* Expressions defining the result set */ 1895 ){ 1896 #ifndef SQLITE_OMIT_DECLTYPE 1897 Vdbe *v = pParse->pVdbe; 1898 int i; 1899 NameContext sNC; 1900 sNC.pSrcList = pTabList; 1901 sNC.pParse = pParse; 1902 sNC.pNext = 0; 1903 for(i=0; i<pEList->nExpr; i++){ 1904 Expr *p = pEList->a[i].pExpr; 1905 const char *zType; 1906 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1907 const char *zOrigDb = 0; 1908 const char *zOrigTab = 0; 1909 const char *zOrigCol = 0; 1910 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1911 1912 /* The vdbe must make its own copy of the column-type and other 1913 ** column specific strings, in case the schema is reset before this 1914 ** virtual machine is deleted. 1915 */ 1916 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1917 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1918 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1919 #else 1920 zType = columnType(&sNC, p, 0, 0, 0); 1921 #endif 1922 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1923 } 1924 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1925 } 1926 1927 1928 /* 1929 ** Compute the column names for a SELECT statement. 1930 ** 1931 ** The only guarantee that SQLite makes about column names is that if the 1932 ** column has an AS clause assigning it a name, that will be the name used. 1933 ** That is the only documented guarantee. However, countless applications 1934 ** developed over the years have made baseless assumptions about column names 1935 ** and will break if those assumptions changes. Hence, use extreme caution 1936 ** when modifying this routine to avoid breaking legacy. 1937 ** 1938 ** See Also: sqlite3ColumnsFromExprList() 1939 ** 1940 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1941 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1942 ** applications should operate this way. Nevertheless, we need to support the 1943 ** other modes for legacy: 1944 ** 1945 ** short=OFF, full=OFF: Column name is the text of the expression has it 1946 ** originally appears in the SELECT statement. In 1947 ** other words, the zSpan of the result expression. 1948 ** 1949 ** short=ON, full=OFF: (This is the default setting). If the result 1950 ** refers directly to a table column, then the 1951 ** result column name is just the table column 1952 ** name: COLUMN. Otherwise use zSpan. 1953 ** 1954 ** full=ON, short=ANY: If the result refers directly to a table column, 1955 ** then the result column name with the table name 1956 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1957 */ 1958 static void generateColumnNames( 1959 Parse *pParse, /* Parser context */ 1960 Select *pSelect /* Generate column names for this SELECT statement */ 1961 ){ 1962 Vdbe *v = pParse->pVdbe; 1963 int i; 1964 Table *pTab; 1965 SrcList *pTabList; 1966 ExprList *pEList; 1967 sqlite3 *db = pParse->db; 1968 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1969 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1970 1971 #ifndef SQLITE_OMIT_EXPLAIN 1972 /* If this is an EXPLAIN, skip this step */ 1973 if( pParse->explain ){ 1974 return; 1975 } 1976 #endif 1977 1978 if( pParse->colNamesSet ) return; 1979 /* Column names are determined by the left-most term of a compound select */ 1980 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1981 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1982 pTabList = pSelect->pSrc; 1983 pEList = pSelect->pEList; 1984 assert( v!=0 ); 1985 assert( pTabList!=0 ); 1986 pParse->colNamesSet = 1; 1987 fullName = (db->flags & SQLITE_FullColNames)!=0; 1988 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1989 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1990 for(i=0; i<pEList->nExpr; i++){ 1991 Expr *p = pEList->a[i].pExpr; 1992 1993 assert( p!=0 ); 1994 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1995 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1996 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1997 /* An AS clause always takes first priority */ 1998 char *zName = pEList->a[i].zEName; 1999 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2000 }else if( srcName && p->op==TK_COLUMN ){ 2001 char *zCol; 2002 int iCol = p->iColumn; 2003 pTab = p->y.pTab; 2004 assert( pTab!=0 ); 2005 if( iCol<0 ) iCol = pTab->iPKey; 2006 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2007 if( iCol<0 ){ 2008 zCol = "rowid"; 2009 }else{ 2010 zCol = pTab->aCol[iCol].zName; 2011 } 2012 if( fullName ){ 2013 char *zName = 0; 2014 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2015 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2016 }else{ 2017 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2018 } 2019 }else{ 2020 const char *z = pEList->a[i].zEName; 2021 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2022 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2023 } 2024 } 2025 generateColumnTypes(pParse, pTabList, pEList); 2026 } 2027 2028 /* 2029 ** Given an expression list (which is really the list of expressions 2030 ** that form the result set of a SELECT statement) compute appropriate 2031 ** column names for a table that would hold the expression list. 2032 ** 2033 ** All column names will be unique. 2034 ** 2035 ** Only the column names are computed. Column.zType, Column.zColl, 2036 ** and other fields of Column are zeroed. 2037 ** 2038 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2039 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2040 ** 2041 ** The only guarantee that SQLite makes about column names is that if the 2042 ** column has an AS clause assigning it a name, that will be the name used. 2043 ** That is the only documented guarantee. However, countless applications 2044 ** developed over the years have made baseless assumptions about column names 2045 ** and will break if those assumptions changes. Hence, use extreme caution 2046 ** when modifying this routine to avoid breaking legacy. 2047 ** 2048 ** See Also: generateColumnNames() 2049 */ 2050 int sqlite3ColumnsFromExprList( 2051 Parse *pParse, /* Parsing context */ 2052 ExprList *pEList, /* Expr list from which to derive column names */ 2053 i16 *pnCol, /* Write the number of columns here */ 2054 Column **paCol /* Write the new column list here */ 2055 ){ 2056 sqlite3 *db = pParse->db; /* Database connection */ 2057 int i, j; /* Loop counters */ 2058 u32 cnt; /* Index added to make the name unique */ 2059 Column *aCol, *pCol; /* For looping over result columns */ 2060 int nCol; /* Number of columns in the result set */ 2061 char *zName; /* Column name */ 2062 int nName; /* Size of name in zName[] */ 2063 Hash ht; /* Hash table of column names */ 2064 Table *pTab; 2065 2066 sqlite3HashInit(&ht); 2067 if( pEList ){ 2068 nCol = pEList->nExpr; 2069 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2070 testcase( aCol==0 ); 2071 if( NEVER(nCol>32767) ) nCol = 32767; 2072 }else{ 2073 nCol = 0; 2074 aCol = 0; 2075 } 2076 assert( nCol==(i16)nCol ); 2077 *pnCol = nCol; 2078 *paCol = aCol; 2079 2080 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2081 /* Get an appropriate name for the column 2082 */ 2083 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2084 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2085 }else{ 2086 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2087 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2088 pColExpr = pColExpr->pRight; 2089 assert( pColExpr!=0 ); 2090 } 2091 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2092 /* For columns use the column name name */ 2093 int iCol = pColExpr->iColumn; 2094 if( iCol<0 ) iCol = pTab->iPKey; 2095 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 2096 }else if( pColExpr->op==TK_ID ){ 2097 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2098 zName = pColExpr->u.zToken; 2099 }else{ 2100 /* Use the original text of the column expression as its name */ 2101 zName = pEList->a[i].zEName; 2102 } 2103 } 2104 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2105 zName = sqlite3DbStrDup(db, zName); 2106 }else{ 2107 zName = sqlite3MPrintf(db,"column%d",i+1); 2108 } 2109 2110 /* Make sure the column name is unique. If the name is not unique, 2111 ** append an integer to the name so that it becomes unique. 2112 */ 2113 cnt = 0; 2114 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2115 nName = sqlite3Strlen30(zName); 2116 if( nName>0 ){ 2117 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2118 if( zName[j]==':' ) nName = j; 2119 } 2120 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2121 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2122 } 2123 pCol->zName = zName; 2124 pCol->hName = sqlite3StrIHash(zName); 2125 sqlite3ColumnPropertiesFromName(0, pCol); 2126 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2127 sqlite3OomFault(db); 2128 } 2129 } 2130 sqlite3HashClear(&ht); 2131 if( db->mallocFailed ){ 2132 for(j=0; j<i; j++){ 2133 sqlite3DbFree(db, aCol[j].zName); 2134 } 2135 sqlite3DbFree(db, aCol); 2136 *paCol = 0; 2137 *pnCol = 0; 2138 return SQLITE_NOMEM_BKPT; 2139 } 2140 return SQLITE_OK; 2141 } 2142 2143 /* 2144 ** Add type and collation information to a column list based on 2145 ** a SELECT statement. 2146 ** 2147 ** The column list presumably came from selectColumnNamesFromExprList(). 2148 ** The column list has only names, not types or collations. This 2149 ** routine goes through and adds the types and collations. 2150 ** 2151 ** This routine requires that all identifiers in the SELECT 2152 ** statement be resolved. 2153 */ 2154 void sqlite3SelectAddColumnTypeAndCollation( 2155 Parse *pParse, /* Parsing contexts */ 2156 Table *pTab, /* Add column type information to this table */ 2157 Select *pSelect, /* SELECT used to determine types and collations */ 2158 char aff /* Default affinity for columns */ 2159 ){ 2160 sqlite3 *db = pParse->db; 2161 NameContext sNC; 2162 Column *pCol; 2163 CollSeq *pColl; 2164 int i; 2165 Expr *p; 2166 struct ExprList_item *a; 2167 2168 assert( pSelect!=0 ); 2169 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2170 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2171 if( db->mallocFailed ) return; 2172 memset(&sNC, 0, sizeof(sNC)); 2173 sNC.pSrcList = pSelect->pSrc; 2174 a = pSelect->pEList->a; 2175 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2176 const char *zType; 2177 int n, m; 2178 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2179 p = a[i].pExpr; 2180 zType = columnType(&sNC, p, 0, 0, 0); 2181 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2182 pCol->affinity = sqlite3ExprAffinity(p); 2183 if( zType ){ 2184 m = sqlite3Strlen30(zType); 2185 n = sqlite3Strlen30(pCol->zName); 2186 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2187 if( pCol->zName ){ 2188 memcpy(&pCol->zName[n+1], zType, m+1); 2189 pCol->colFlags |= COLFLAG_HASTYPE; 2190 } 2191 } 2192 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2193 pColl = sqlite3ExprCollSeq(pParse, p); 2194 if( pColl && pCol->zColl==0 ){ 2195 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2196 } 2197 } 2198 pTab->szTabRow = 1; /* Any non-zero value works */ 2199 } 2200 2201 /* 2202 ** Given a SELECT statement, generate a Table structure that describes 2203 ** the result set of that SELECT. 2204 */ 2205 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2206 Table *pTab; 2207 sqlite3 *db = pParse->db; 2208 u64 savedFlags; 2209 2210 savedFlags = db->flags; 2211 db->flags &= ~(u64)SQLITE_FullColNames; 2212 db->flags |= SQLITE_ShortColNames; 2213 sqlite3SelectPrep(pParse, pSelect, 0); 2214 db->flags = savedFlags; 2215 if( pParse->nErr ) return 0; 2216 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2217 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2218 if( pTab==0 ){ 2219 return 0; 2220 } 2221 pTab->nTabRef = 1; 2222 pTab->zName = 0; 2223 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2224 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2225 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2226 pTab->iPKey = -1; 2227 if( db->mallocFailed ){ 2228 sqlite3DeleteTable(db, pTab); 2229 return 0; 2230 } 2231 return pTab; 2232 } 2233 2234 /* 2235 ** Get a VDBE for the given parser context. Create a new one if necessary. 2236 ** If an error occurs, return NULL and leave a message in pParse. 2237 */ 2238 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2239 if( pParse->pVdbe ){ 2240 return pParse->pVdbe; 2241 } 2242 if( pParse->pToplevel==0 2243 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2244 ){ 2245 pParse->okConstFactor = 1; 2246 } 2247 return sqlite3VdbeCreate(pParse); 2248 } 2249 2250 2251 /* 2252 ** Compute the iLimit and iOffset fields of the SELECT based on the 2253 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2254 ** that appear in the original SQL statement after the LIMIT and OFFSET 2255 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2256 ** are the integer memory register numbers for counters used to compute 2257 ** the limit and offset. If there is no limit and/or offset, then 2258 ** iLimit and iOffset are negative. 2259 ** 2260 ** This routine changes the values of iLimit and iOffset only if 2261 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2262 ** and iOffset should have been preset to appropriate default values (zero) 2263 ** prior to calling this routine. 2264 ** 2265 ** The iOffset register (if it exists) is initialized to the value 2266 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2267 ** iOffset+1 is initialized to LIMIT+OFFSET. 2268 ** 2269 ** Only if pLimit->pLeft!=0 do the limit registers get 2270 ** redefined. The UNION ALL operator uses this property to force 2271 ** the reuse of the same limit and offset registers across multiple 2272 ** SELECT statements. 2273 */ 2274 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2275 Vdbe *v = 0; 2276 int iLimit = 0; 2277 int iOffset; 2278 int n; 2279 Expr *pLimit = p->pLimit; 2280 2281 if( p->iLimit ) return; 2282 2283 /* 2284 ** "LIMIT -1" always shows all rows. There is some 2285 ** controversy about what the correct behavior should be. 2286 ** The current implementation interprets "LIMIT 0" to mean 2287 ** no rows. 2288 */ 2289 if( pLimit ){ 2290 assert( pLimit->op==TK_LIMIT ); 2291 assert( pLimit->pLeft!=0 ); 2292 p->iLimit = iLimit = ++pParse->nMem; 2293 v = sqlite3GetVdbe(pParse); 2294 assert( v!=0 ); 2295 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2296 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2297 VdbeComment((v, "LIMIT counter")); 2298 if( n==0 ){ 2299 sqlite3VdbeGoto(v, iBreak); 2300 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2301 p->nSelectRow = sqlite3LogEst((u64)n); 2302 p->selFlags |= SF_FixedLimit; 2303 } 2304 }else{ 2305 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2306 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2307 VdbeComment((v, "LIMIT counter")); 2308 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2309 } 2310 if( pLimit->pRight ){ 2311 p->iOffset = iOffset = ++pParse->nMem; 2312 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2313 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2314 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2315 VdbeComment((v, "OFFSET counter")); 2316 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2317 VdbeComment((v, "LIMIT+OFFSET")); 2318 } 2319 } 2320 } 2321 2322 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2323 /* 2324 ** Return the appropriate collating sequence for the iCol-th column of 2325 ** the result set for the compound-select statement "p". Return NULL if 2326 ** the column has no default collating sequence. 2327 ** 2328 ** The collating sequence for the compound select is taken from the 2329 ** left-most term of the select that has a collating sequence. 2330 */ 2331 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2332 CollSeq *pRet; 2333 if( p->pPrior ){ 2334 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2335 }else{ 2336 pRet = 0; 2337 } 2338 assert( iCol>=0 ); 2339 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2340 ** have been thrown during name resolution and we would not have gotten 2341 ** this far */ 2342 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2343 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2344 } 2345 return pRet; 2346 } 2347 2348 /* 2349 ** The select statement passed as the second parameter is a compound SELECT 2350 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2351 ** structure suitable for implementing the ORDER BY. 2352 ** 2353 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2354 ** function is responsible for ensuring that this structure is eventually 2355 ** freed. 2356 */ 2357 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2358 ExprList *pOrderBy = p->pOrderBy; 2359 int nOrderBy = p->pOrderBy->nExpr; 2360 sqlite3 *db = pParse->db; 2361 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2362 if( pRet ){ 2363 int i; 2364 for(i=0; i<nOrderBy; i++){ 2365 struct ExprList_item *pItem = &pOrderBy->a[i]; 2366 Expr *pTerm = pItem->pExpr; 2367 CollSeq *pColl; 2368 2369 if( pTerm->flags & EP_Collate ){ 2370 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2371 }else{ 2372 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2373 if( pColl==0 ) pColl = db->pDfltColl; 2374 pOrderBy->a[i].pExpr = 2375 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2376 } 2377 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2378 pRet->aColl[i] = pColl; 2379 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2380 } 2381 } 2382 2383 return pRet; 2384 } 2385 2386 #ifndef SQLITE_OMIT_CTE 2387 /* 2388 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2389 ** query of the form: 2390 ** 2391 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2392 ** \___________/ \_______________/ 2393 ** p->pPrior p 2394 ** 2395 ** 2396 ** There is exactly one reference to the recursive-table in the FROM clause 2397 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2398 ** 2399 ** The setup-query runs once to generate an initial set of rows that go 2400 ** into a Queue table. Rows are extracted from the Queue table one by 2401 ** one. Each row extracted from Queue is output to pDest. Then the single 2402 ** extracted row (now in the iCurrent table) becomes the content of the 2403 ** recursive-table for a recursive-query run. The output of the recursive-query 2404 ** is added back into the Queue table. Then another row is extracted from Queue 2405 ** and the iteration continues until the Queue table is empty. 2406 ** 2407 ** If the compound query operator is UNION then no duplicate rows are ever 2408 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2409 ** that have ever been inserted into Queue and causes duplicates to be 2410 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2411 ** 2412 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2413 ** ORDER BY order and the first entry is extracted for each cycle. Without 2414 ** an ORDER BY, the Queue table is just a FIFO. 2415 ** 2416 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2417 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2418 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2419 ** with a positive value, then the first OFFSET outputs are discarded rather 2420 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2421 ** rows have been skipped. 2422 */ 2423 static void generateWithRecursiveQuery( 2424 Parse *pParse, /* Parsing context */ 2425 Select *p, /* The recursive SELECT to be coded */ 2426 SelectDest *pDest /* What to do with query results */ 2427 ){ 2428 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2429 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2430 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2431 Select *pSetup = p->pPrior; /* The setup query */ 2432 Select *pFirstRec; /* Left-most recursive term */ 2433 int addrTop; /* Top of the loop */ 2434 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2435 int iCurrent = 0; /* The Current table */ 2436 int regCurrent; /* Register holding Current table */ 2437 int iQueue; /* The Queue table */ 2438 int iDistinct = 0; /* To ensure unique results if UNION */ 2439 int eDest = SRT_Fifo; /* How to write to Queue */ 2440 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2441 int i; /* Loop counter */ 2442 int rc; /* Result code */ 2443 ExprList *pOrderBy; /* The ORDER BY clause */ 2444 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2445 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2446 2447 #ifndef SQLITE_OMIT_WINDOWFUNC 2448 if( p->pWin ){ 2449 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2450 return; 2451 } 2452 #endif 2453 2454 /* Obtain authorization to do a recursive query */ 2455 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2456 2457 /* Process the LIMIT and OFFSET clauses, if they exist */ 2458 addrBreak = sqlite3VdbeMakeLabel(pParse); 2459 p->nSelectRow = 320; /* 4 billion rows */ 2460 computeLimitRegisters(pParse, p, addrBreak); 2461 pLimit = p->pLimit; 2462 regLimit = p->iLimit; 2463 regOffset = p->iOffset; 2464 p->pLimit = 0; 2465 p->iLimit = p->iOffset = 0; 2466 pOrderBy = p->pOrderBy; 2467 2468 /* Locate the cursor number of the Current table */ 2469 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2470 if( pSrc->a[i].fg.isRecursive ){ 2471 iCurrent = pSrc->a[i].iCursor; 2472 break; 2473 } 2474 } 2475 2476 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2477 ** the Distinct table must be exactly one greater than Queue in order 2478 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2479 iQueue = pParse->nTab++; 2480 if( p->op==TK_UNION ){ 2481 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2482 iDistinct = pParse->nTab++; 2483 }else{ 2484 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2485 } 2486 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2487 2488 /* Allocate cursors for Current, Queue, and Distinct. */ 2489 regCurrent = ++pParse->nMem; 2490 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2491 if( pOrderBy ){ 2492 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2493 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2494 (char*)pKeyInfo, P4_KEYINFO); 2495 destQueue.pOrderBy = pOrderBy; 2496 }else{ 2497 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2498 } 2499 VdbeComment((v, "Queue table")); 2500 if( iDistinct ){ 2501 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2502 p->selFlags |= SF_UsesEphemeral; 2503 } 2504 2505 /* Detach the ORDER BY clause from the compound SELECT */ 2506 p->pOrderBy = 0; 2507 2508 /* Figure out how many elements of the compound SELECT are part of the 2509 ** recursive query. Make sure no recursive elements use aggregate 2510 ** functions. Mark the recursive elements as UNION ALL even if they 2511 ** are really UNION because the distinctness will be enforced by the 2512 ** iDistinct table. pFirstRec is left pointing to the left-most 2513 ** recursive term of the CTE. 2514 */ 2515 pFirstRec = p; 2516 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2517 if( pFirstRec->selFlags & SF_Aggregate ){ 2518 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2519 goto end_of_recursive_query; 2520 } 2521 pFirstRec->op = TK_ALL; 2522 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2523 } 2524 2525 /* Store the results of the setup-query in Queue. */ 2526 pSetup = pFirstRec->pPrior; 2527 pSetup->pNext = 0; 2528 ExplainQueryPlan((pParse, 1, "SETUP")); 2529 rc = sqlite3Select(pParse, pSetup, &destQueue); 2530 pSetup->pNext = p; 2531 if( rc ) goto end_of_recursive_query; 2532 2533 /* Find the next row in the Queue and output that row */ 2534 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2535 2536 /* Transfer the next row in Queue over to Current */ 2537 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2538 if( pOrderBy ){ 2539 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2540 }else{ 2541 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2542 } 2543 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2544 2545 /* Output the single row in Current */ 2546 addrCont = sqlite3VdbeMakeLabel(pParse); 2547 codeOffset(v, regOffset, addrCont); 2548 selectInnerLoop(pParse, p, iCurrent, 2549 0, 0, pDest, addrCont, addrBreak); 2550 if( regLimit ){ 2551 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2552 VdbeCoverage(v); 2553 } 2554 sqlite3VdbeResolveLabel(v, addrCont); 2555 2556 /* Execute the recursive SELECT taking the single row in Current as 2557 ** the value for the recursive-table. Store the results in the Queue. 2558 */ 2559 pFirstRec->pPrior = 0; 2560 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2561 sqlite3Select(pParse, p, &destQueue); 2562 assert( pFirstRec->pPrior==0 ); 2563 pFirstRec->pPrior = pSetup; 2564 2565 /* Keep running the loop until the Queue is empty */ 2566 sqlite3VdbeGoto(v, addrTop); 2567 sqlite3VdbeResolveLabel(v, addrBreak); 2568 2569 end_of_recursive_query: 2570 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2571 p->pOrderBy = pOrderBy; 2572 p->pLimit = pLimit; 2573 return; 2574 } 2575 #endif /* SQLITE_OMIT_CTE */ 2576 2577 /* Forward references */ 2578 static int multiSelectOrderBy( 2579 Parse *pParse, /* Parsing context */ 2580 Select *p, /* The right-most of SELECTs to be coded */ 2581 SelectDest *pDest /* What to do with query results */ 2582 ); 2583 2584 /* 2585 ** Handle the special case of a compound-select that originates from a 2586 ** VALUES clause. By handling this as a special case, we avoid deep 2587 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2588 ** on a VALUES clause. 2589 ** 2590 ** Because the Select object originates from a VALUES clause: 2591 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2592 ** (2) All terms are UNION ALL 2593 ** (3) There is no ORDER BY clause 2594 ** 2595 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2596 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2597 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2598 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2599 */ 2600 static int multiSelectValues( 2601 Parse *pParse, /* Parsing context */ 2602 Select *p, /* The right-most of SELECTs to be coded */ 2603 SelectDest *pDest /* What to do with query results */ 2604 ){ 2605 int nRow = 1; 2606 int rc = 0; 2607 int bShowAll = p->pLimit==0; 2608 assert( p->selFlags & SF_MultiValue ); 2609 do{ 2610 assert( p->selFlags & SF_Values ); 2611 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2612 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2613 #ifndef SQLITE_OMIT_WINDOWFUNC 2614 if( p->pWin ) return -1; 2615 #endif 2616 if( p->pPrior==0 ) break; 2617 assert( p->pPrior->pNext==p ); 2618 p = p->pPrior; 2619 nRow += bShowAll; 2620 }while(1); 2621 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2622 nRow==1 ? "" : "S")); 2623 while( p ){ 2624 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2625 if( !bShowAll ) break; 2626 p->nSelectRow = nRow; 2627 p = p->pNext; 2628 } 2629 return rc; 2630 } 2631 2632 /* 2633 ** Return true if the SELECT statement which is known to be the recursive 2634 ** part of a recursive CTE still has its anchor terms attached. If the 2635 ** anchor terms have already been removed, then return false. 2636 */ 2637 static int hasAnchor(Select *p){ 2638 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2639 return p!=0; 2640 } 2641 2642 /* 2643 ** This routine is called to process a compound query form from 2644 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2645 ** INTERSECT 2646 ** 2647 ** "p" points to the right-most of the two queries. the query on the 2648 ** left is p->pPrior. The left query could also be a compound query 2649 ** in which case this routine will be called recursively. 2650 ** 2651 ** The results of the total query are to be written into a destination 2652 ** of type eDest with parameter iParm. 2653 ** 2654 ** Example 1: Consider a three-way compound SQL statement. 2655 ** 2656 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2657 ** 2658 ** This statement is parsed up as follows: 2659 ** 2660 ** SELECT c FROM t3 2661 ** | 2662 ** `-----> SELECT b FROM t2 2663 ** | 2664 ** `------> SELECT a FROM t1 2665 ** 2666 ** The arrows in the diagram above represent the Select.pPrior pointer. 2667 ** So if this routine is called with p equal to the t3 query, then 2668 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2669 ** 2670 ** Notice that because of the way SQLite parses compound SELECTs, the 2671 ** individual selects always group from left to right. 2672 */ 2673 static int multiSelect( 2674 Parse *pParse, /* Parsing context */ 2675 Select *p, /* The right-most of SELECTs to be coded */ 2676 SelectDest *pDest /* What to do with query results */ 2677 ){ 2678 int rc = SQLITE_OK; /* Success code from a subroutine */ 2679 Select *pPrior; /* Another SELECT immediately to our left */ 2680 Vdbe *v; /* Generate code to this VDBE */ 2681 SelectDest dest; /* Alternative data destination */ 2682 Select *pDelete = 0; /* Chain of simple selects to delete */ 2683 sqlite3 *db; /* Database connection */ 2684 2685 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2686 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2687 */ 2688 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2689 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2690 assert( p->selFlags & SF_Compound ); 2691 db = pParse->db; 2692 pPrior = p->pPrior; 2693 dest = *pDest; 2694 assert( pPrior->pOrderBy==0 ); 2695 assert( pPrior->pLimit==0 ); 2696 2697 v = sqlite3GetVdbe(pParse); 2698 assert( v!=0 ); /* The VDBE already created by calling function */ 2699 2700 /* Create the destination temporary table if necessary 2701 */ 2702 if( dest.eDest==SRT_EphemTab ){ 2703 assert( p->pEList ); 2704 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2705 dest.eDest = SRT_Table; 2706 } 2707 2708 /* Special handling for a compound-select that originates as a VALUES clause. 2709 */ 2710 if( p->selFlags & SF_MultiValue ){ 2711 rc = multiSelectValues(pParse, p, &dest); 2712 if( rc>=0 ) goto multi_select_end; 2713 rc = SQLITE_OK; 2714 } 2715 2716 /* Make sure all SELECTs in the statement have the same number of elements 2717 ** in their result sets. 2718 */ 2719 assert( p->pEList && pPrior->pEList ); 2720 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2721 2722 #ifndef SQLITE_OMIT_CTE 2723 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2724 generateWithRecursiveQuery(pParse, p, &dest); 2725 }else 2726 #endif 2727 2728 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2729 */ 2730 if( p->pOrderBy ){ 2731 return multiSelectOrderBy(pParse, p, pDest); 2732 }else{ 2733 2734 #ifndef SQLITE_OMIT_EXPLAIN 2735 if( pPrior->pPrior==0 ){ 2736 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2737 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2738 } 2739 #endif 2740 2741 /* Generate code for the left and right SELECT statements. 2742 */ 2743 switch( p->op ){ 2744 case TK_ALL: { 2745 int addr = 0; 2746 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2747 assert( !pPrior->pLimit ); 2748 pPrior->iLimit = p->iLimit; 2749 pPrior->iOffset = p->iOffset; 2750 pPrior->pLimit = p->pLimit; 2751 rc = sqlite3Select(pParse, pPrior, &dest); 2752 pPrior->pLimit = 0; 2753 if( rc ){ 2754 goto multi_select_end; 2755 } 2756 p->pPrior = 0; 2757 p->iLimit = pPrior->iLimit; 2758 p->iOffset = pPrior->iOffset; 2759 if( p->iLimit ){ 2760 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2761 VdbeComment((v, "Jump ahead if LIMIT reached")); 2762 if( p->iOffset ){ 2763 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2764 p->iLimit, p->iOffset+1, p->iOffset); 2765 } 2766 } 2767 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2768 rc = sqlite3Select(pParse, p, &dest); 2769 testcase( rc!=SQLITE_OK ); 2770 pDelete = p->pPrior; 2771 p->pPrior = pPrior; 2772 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2773 if( p->pLimit 2774 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2775 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2776 ){ 2777 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2778 } 2779 if( addr ){ 2780 sqlite3VdbeJumpHere(v, addr); 2781 } 2782 break; 2783 } 2784 case TK_EXCEPT: 2785 case TK_UNION: { 2786 int unionTab; /* Cursor number of the temp table holding result */ 2787 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2788 int priorOp; /* The SRT_ operation to apply to prior selects */ 2789 Expr *pLimit; /* Saved values of p->nLimit */ 2790 int addr; 2791 SelectDest uniondest; 2792 2793 testcase( p->op==TK_EXCEPT ); 2794 testcase( p->op==TK_UNION ); 2795 priorOp = SRT_Union; 2796 if( dest.eDest==priorOp ){ 2797 /* We can reuse a temporary table generated by a SELECT to our 2798 ** right. 2799 */ 2800 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2801 unionTab = dest.iSDParm; 2802 }else{ 2803 /* We will need to create our own temporary table to hold the 2804 ** intermediate results. 2805 */ 2806 unionTab = pParse->nTab++; 2807 assert( p->pOrderBy==0 ); 2808 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2809 assert( p->addrOpenEphm[0] == -1 ); 2810 p->addrOpenEphm[0] = addr; 2811 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2812 assert( p->pEList ); 2813 } 2814 2815 2816 /* Code the SELECT statements to our left 2817 */ 2818 assert( !pPrior->pOrderBy ); 2819 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2820 rc = sqlite3Select(pParse, pPrior, &uniondest); 2821 if( rc ){ 2822 goto multi_select_end; 2823 } 2824 2825 /* Code the current SELECT statement 2826 */ 2827 if( p->op==TK_EXCEPT ){ 2828 op = SRT_Except; 2829 }else{ 2830 assert( p->op==TK_UNION ); 2831 op = SRT_Union; 2832 } 2833 p->pPrior = 0; 2834 pLimit = p->pLimit; 2835 p->pLimit = 0; 2836 uniondest.eDest = op; 2837 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2838 sqlite3SelectOpName(p->op))); 2839 rc = sqlite3Select(pParse, p, &uniondest); 2840 testcase( rc!=SQLITE_OK ); 2841 assert( p->pOrderBy==0 ); 2842 pDelete = p->pPrior; 2843 p->pPrior = pPrior; 2844 p->pOrderBy = 0; 2845 if( p->op==TK_UNION ){ 2846 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2847 } 2848 sqlite3ExprDelete(db, p->pLimit); 2849 p->pLimit = pLimit; 2850 p->iLimit = 0; 2851 p->iOffset = 0; 2852 2853 /* Convert the data in the temporary table into whatever form 2854 ** it is that we currently need. 2855 */ 2856 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2857 assert( p->pEList || db->mallocFailed ); 2858 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2859 int iCont, iBreak, iStart; 2860 iBreak = sqlite3VdbeMakeLabel(pParse); 2861 iCont = sqlite3VdbeMakeLabel(pParse); 2862 computeLimitRegisters(pParse, p, iBreak); 2863 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2864 iStart = sqlite3VdbeCurrentAddr(v); 2865 selectInnerLoop(pParse, p, unionTab, 2866 0, 0, &dest, iCont, iBreak); 2867 sqlite3VdbeResolveLabel(v, iCont); 2868 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2869 sqlite3VdbeResolveLabel(v, iBreak); 2870 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2871 } 2872 break; 2873 } 2874 default: assert( p->op==TK_INTERSECT ); { 2875 int tab1, tab2; 2876 int iCont, iBreak, iStart; 2877 Expr *pLimit; 2878 int addr; 2879 SelectDest intersectdest; 2880 int r1; 2881 2882 /* INTERSECT is different from the others since it requires 2883 ** two temporary tables. Hence it has its own case. Begin 2884 ** by allocating the tables we will need. 2885 */ 2886 tab1 = pParse->nTab++; 2887 tab2 = pParse->nTab++; 2888 assert( p->pOrderBy==0 ); 2889 2890 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2891 assert( p->addrOpenEphm[0] == -1 ); 2892 p->addrOpenEphm[0] = addr; 2893 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2894 assert( p->pEList ); 2895 2896 /* Code the SELECTs to our left into temporary table "tab1". 2897 */ 2898 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2899 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2900 if( rc ){ 2901 goto multi_select_end; 2902 } 2903 2904 /* Code the current SELECT into temporary table "tab2" 2905 */ 2906 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2907 assert( p->addrOpenEphm[1] == -1 ); 2908 p->addrOpenEphm[1] = addr; 2909 p->pPrior = 0; 2910 pLimit = p->pLimit; 2911 p->pLimit = 0; 2912 intersectdest.iSDParm = tab2; 2913 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2914 sqlite3SelectOpName(p->op))); 2915 rc = sqlite3Select(pParse, p, &intersectdest); 2916 testcase( rc!=SQLITE_OK ); 2917 pDelete = p->pPrior; 2918 p->pPrior = pPrior; 2919 if( p->nSelectRow>pPrior->nSelectRow ){ 2920 p->nSelectRow = pPrior->nSelectRow; 2921 } 2922 sqlite3ExprDelete(db, p->pLimit); 2923 p->pLimit = pLimit; 2924 2925 /* Generate code to take the intersection of the two temporary 2926 ** tables. 2927 */ 2928 if( rc ) break; 2929 assert( p->pEList ); 2930 iBreak = sqlite3VdbeMakeLabel(pParse); 2931 iCont = sqlite3VdbeMakeLabel(pParse); 2932 computeLimitRegisters(pParse, p, iBreak); 2933 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2934 r1 = sqlite3GetTempReg(pParse); 2935 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2936 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2937 VdbeCoverage(v); 2938 sqlite3ReleaseTempReg(pParse, r1); 2939 selectInnerLoop(pParse, p, tab1, 2940 0, 0, &dest, iCont, iBreak); 2941 sqlite3VdbeResolveLabel(v, iCont); 2942 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2943 sqlite3VdbeResolveLabel(v, iBreak); 2944 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2945 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2946 break; 2947 } 2948 } 2949 2950 #ifndef SQLITE_OMIT_EXPLAIN 2951 if( p->pNext==0 ){ 2952 ExplainQueryPlanPop(pParse); 2953 } 2954 #endif 2955 } 2956 if( pParse->nErr ) goto multi_select_end; 2957 2958 /* Compute collating sequences used by 2959 ** temporary tables needed to implement the compound select. 2960 ** Attach the KeyInfo structure to all temporary tables. 2961 ** 2962 ** This section is run by the right-most SELECT statement only. 2963 ** SELECT statements to the left always skip this part. The right-most 2964 ** SELECT might also skip this part if it has no ORDER BY clause and 2965 ** no temp tables are required. 2966 */ 2967 if( p->selFlags & SF_UsesEphemeral ){ 2968 int i; /* Loop counter */ 2969 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2970 Select *pLoop; /* For looping through SELECT statements */ 2971 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2972 int nCol; /* Number of columns in result set */ 2973 2974 assert( p->pNext==0 ); 2975 nCol = p->pEList->nExpr; 2976 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2977 if( !pKeyInfo ){ 2978 rc = SQLITE_NOMEM_BKPT; 2979 goto multi_select_end; 2980 } 2981 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2982 *apColl = multiSelectCollSeq(pParse, p, i); 2983 if( 0==*apColl ){ 2984 *apColl = db->pDfltColl; 2985 } 2986 } 2987 2988 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2989 for(i=0; i<2; i++){ 2990 int addr = pLoop->addrOpenEphm[i]; 2991 if( addr<0 ){ 2992 /* If [0] is unused then [1] is also unused. So we can 2993 ** always safely abort as soon as the first unused slot is found */ 2994 assert( pLoop->addrOpenEphm[1]<0 ); 2995 break; 2996 } 2997 sqlite3VdbeChangeP2(v, addr, nCol); 2998 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2999 P4_KEYINFO); 3000 pLoop->addrOpenEphm[i] = -1; 3001 } 3002 } 3003 sqlite3KeyInfoUnref(pKeyInfo); 3004 } 3005 3006 multi_select_end: 3007 pDest->iSdst = dest.iSdst; 3008 pDest->nSdst = dest.nSdst; 3009 sqlite3SelectDelete(db, pDelete); 3010 return rc; 3011 } 3012 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3013 3014 /* 3015 ** Error message for when two or more terms of a compound select have different 3016 ** size result sets. 3017 */ 3018 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3019 if( p->selFlags & SF_Values ){ 3020 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3021 }else{ 3022 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3023 " do not have the same number of result columns", 3024 sqlite3SelectOpName(p->op)); 3025 } 3026 } 3027 3028 /* 3029 ** Code an output subroutine for a coroutine implementation of a 3030 ** SELECT statment. 3031 ** 3032 ** The data to be output is contained in pIn->iSdst. There are 3033 ** pIn->nSdst columns to be output. pDest is where the output should 3034 ** be sent. 3035 ** 3036 ** regReturn is the number of the register holding the subroutine 3037 ** return address. 3038 ** 3039 ** If regPrev>0 then it is the first register in a vector that 3040 ** records the previous output. mem[regPrev] is a flag that is false 3041 ** if there has been no previous output. If regPrev>0 then code is 3042 ** generated to suppress duplicates. pKeyInfo is used for comparing 3043 ** keys. 3044 ** 3045 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3046 ** iBreak. 3047 */ 3048 static int generateOutputSubroutine( 3049 Parse *pParse, /* Parsing context */ 3050 Select *p, /* The SELECT statement */ 3051 SelectDest *pIn, /* Coroutine supplying data */ 3052 SelectDest *pDest, /* Where to send the data */ 3053 int regReturn, /* The return address register */ 3054 int regPrev, /* Previous result register. No uniqueness if 0 */ 3055 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3056 int iBreak /* Jump here if we hit the LIMIT */ 3057 ){ 3058 Vdbe *v = pParse->pVdbe; 3059 int iContinue; 3060 int addr; 3061 3062 addr = sqlite3VdbeCurrentAddr(v); 3063 iContinue = sqlite3VdbeMakeLabel(pParse); 3064 3065 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3066 */ 3067 if( regPrev ){ 3068 int addr1, addr2; 3069 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3070 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3071 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3072 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3073 sqlite3VdbeJumpHere(v, addr1); 3074 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3075 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3076 } 3077 if( pParse->db->mallocFailed ) return 0; 3078 3079 /* Suppress the first OFFSET entries if there is an OFFSET clause 3080 */ 3081 codeOffset(v, p->iOffset, iContinue); 3082 3083 assert( pDest->eDest!=SRT_Exists ); 3084 assert( pDest->eDest!=SRT_Table ); 3085 switch( pDest->eDest ){ 3086 /* Store the result as data using a unique key. 3087 */ 3088 case SRT_EphemTab: { 3089 int r1 = sqlite3GetTempReg(pParse); 3090 int r2 = sqlite3GetTempReg(pParse); 3091 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3092 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3093 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3094 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3095 sqlite3ReleaseTempReg(pParse, r2); 3096 sqlite3ReleaseTempReg(pParse, r1); 3097 break; 3098 } 3099 3100 #ifndef SQLITE_OMIT_SUBQUERY 3101 /* If we are creating a set for an "expr IN (SELECT ...)". 3102 */ 3103 case SRT_Set: { 3104 int r1; 3105 testcase( pIn->nSdst>1 ); 3106 r1 = sqlite3GetTempReg(pParse); 3107 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3108 r1, pDest->zAffSdst, pIn->nSdst); 3109 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3110 pIn->iSdst, pIn->nSdst); 3111 sqlite3ReleaseTempReg(pParse, r1); 3112 break; 3113 } 3114 3115 /* If this is a scalar select that is part of an expression, then 3116 ** store the results in the appropriate memory cell and break out 3117 ** of the scan loop. Note that the select might return multiple columns 3118 ** if it is the RHS of a row-value IN operator. 3119 */ 3120 case SRT_Mem: { 3121 testcase( pIn->nSdst>1 ); 3122 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3123 /* The LIMIT clause will jump out of the loop for us */ 3124 break; 3125 } 3126 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3127 3128 /* The results are stored in a sequence of registers 3129 ** starting at pDest->iSdst. Then the co-routine yields. 3130 */ 3131 case SRT_Coroutine: { 3132 if( pDest->iSdst==0 ){ 3133 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3134 pDest->nSdst = pIn->nSdst; 3135 } 3136 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3137 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3138 break; 3139 } 3140 3141 /* If none of the above, then the result destination must be 3142 ** SRT_Output. This routine is never called with any other 3143 ** destination other than the ones handled above or SRT_Output. 3144 ** 3145 ** For SRT_Output, results are stored in a sequence of registers. 3146 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3147 ** return the next row of result. 3148 */ 3149 default: { 3150 assert( pDest->eDest==SRT_Output ); 3151 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3152 break; 3153 } 3154 } 3155 3156 /* Jump to the end of the loop if the LIMIT is reached. 3157 */ 3158 if( p->iLimit ){ 3159 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3160 } 3161 3162 /* Generate the subroutine return 3163 */ 3164 sqlite3VdbeResolveLabel(v, iContinue); 3165 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3166 3167 return addr; 3168 } 3169 3170 /* 3171 ** Alternative compound select code generator for cases when there 3172 ** is an ORDER BY clause. 3173 ** 3174 ** We assume a query of the following form: 3175 ** 3176 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3177 ** 3178 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3179 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3180 ** co-routines. Then run the co-routines in parallel and merge the results 3181 ** into the output. In addition to the two coroutines (called selectA and 3182 ** selectB) there are 7 subroutines: 3183 ** 3184 ** outA: Move the output of the selectA coroutine into the output 3185 ** of the compound query. 3186 ** 3187 ** outB: Move the output of the selectB coroutine into the output 3188 ** of the compound query. (Only generated for UNION and 3189 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3190 ** appears only in B.) 3191 ** 3192 ** AltB: Called when there is data from both coroutines and A<B. 3193 ** 3194 ** AeqB: Called when there is data from both coroutines and A==B. 3195 ** 3196 ** AgtB: Called when there is data from both coroutines and A>B. 3197 ** 3198 ** EofA: Called when data is exhausted from selectA. 3199 ** 3200 ** EofB: Called when data is exhausted from selectB. 3201 ** 3202 ** The implementation of the latter five subroutines depend on which 3203 ** <operator> is used: 3204 ** 3205 ** 3206 ** UNION ALL UNION EXCEPT INTERSECT 3207 ** ------------- ----------------- -------------- ----------------- 3208 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3209 ** 3210 ** AeqB: outA, nextA nextA nextA outA, nextA 3211 ** 3212 ** AgtB: outB, nextB outB, nextB nextB nextB 3213 ** 3214 ** EofA: outB, nextB outB, nextB halt halt 3215 ** 3216 ** EofB: outA, nextA outA, nextA outA, nextA halt 3217 ** 3218 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3219 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3220 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3221 ** following nextX causes a jump to the end of the select processing. 3222 ** 3223 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3224 ** within the output subroutine. The regPrev register set holds the previously 3225 ** output value. A comparison is made against this value and the output 3226 ** is skipped if the next results would be the same as the previous. 3227 ** 3228 ** The implementation plan is to implement the two coroutines and seven 3229 ** subroutines first, then put the control logic at the bottom. Like this: 3230 ** 3231 ** goto Init 3232 ** coA: coroutine for left query (A) 3233 ** coB: coroutine for right query (B) 3234 ** outA: output one row of A 3235 ** outB: output one row of B (UNION and UNION ALL only) 3236 ** EofA: ... 3237 ** EofB: ... 3238 ** AltB: ... 3239 ** AeqB: ... 3240 ** AgtB: ... 3241 ** Init: initialize coroutine registers 3242 ** yield coA 3243 ** if eof(A) goto EofA 3244 ** yield coB 3245 ** if eof(B) goto EofB 3246 ** Cmpr: Compare A, B 3247 ** Jump AltB, AeqB, AgtB 3248 ** End: ... 3249 ** 3250 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3251 ** actually called using Gosub and they do not Return. EofA and EofB loop 3252 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3253 ** and AgtB jump to either L2 or to one of EofA or EofB. 3254 */ 3255 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3256 static int multiSelectOrderBy( 3257 Parse *pParse, /* Parsing context */ 3258 Select *p, /* The right-most of SELECTs to be coded */ 3259 SelectDest *pDest /* What to do with query results */ 3260 ){ 3261 int i, j; /* Loop counters */ 3262 Select *pPrior; /* Another SELECT immediately to our left */ 3263 Vdbe *v; /* Generate code to this VDBE */ 3264 SelectDest destA; /* Destination for coroutine A */ 3265 SelectDest destB; /* Destination for coroutine B */ 3266 int regAddrA; /* Address register for select-A coroutine */ 3267 int regAddrB; /* Address register for select-B coroutine */ 3268 int addrSelectA; /* Address of the select-A coroutine */ 3269 int addrSelectB; /* Address of the select-B coroutine */ 3270 int regOutA; /* Address register for the output-A subroutine */ 3271 int regOutB; /* Address register for the output-B subroutine */ 3272 int addrOutA; /* Address of the output-A subroutine */ 3273 int addrOutB = 0; /* Address of the output-B subroutine */ 3274 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3275 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3276 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3277 int addrAltB; /* Address of the A<B subroutine */ 3278 int addrAeqB; /* Address of the A==B subroutine */ 3279 int addrAgtB; /* Address of the A>B subroutine */ 3280 int regLimitA; /* Limit register for select-A */ 3281 int regLimitB; /* Limit register for select-A */ 3282 int regPrev; /* A range of registers to hold previous output */ 3283 int savedLimit; /* Saved value of p->iLimit */ 3284 int savedOffset; /* Saved value of p->iOffset */ 3285 int labelCmpr; /* Label for the start of the merge algorithm */ 3286 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3287 int addr1; /* Jump instructions that get retargetted */ 3288 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3289 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3290 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3291 sqlite3 *db; /* Database connection */ 3292 ExprList *pOrderBy; /* The ORDER BY clause */ 3293 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3294 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3295 3296 assert( p->pOrderBy!=0 ); 3297 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3298 db = pParse->db; 3299 v = pParse->pVdbe; 3300 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3301 labelEnd = sqlite3VdbeMakeLabel(pParse); 3302 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3303 3304 3305 /* Patch up the ORDER BY clause 3306 */ 3307 op = p->op; 3308 pPrior = p->pPrior; 3309 assert( pPrior->pOrderBy==0 ); 3310 pOrderBy = p->pOrderBy; 3311 assert( pOrderBy ); 3312 nOrderBy = pOrderBy->nExpr; 3313 3314 /* For operators other than UNION ALL we have to make sure that 3315 ** the ORDER BY clause covers every term of the result set. Add 3316 ** terms to the ORDER BY clause as necessary. 3317 */ 3318 if( op!=TK_ALL ){ 3319 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3320 struct ExprList_item *pItem; 3321 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3322 assert( pItem->u.x.iOrderByCol>0 ); 3323 if( pItem->u.x.iOrderByCol==i ) break; 3324 } 3325 if( j==nOrderBy ){ 3326 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3327 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3328 pNew->flags |= EP_IntValue; 3329 pNew->u.iValue = i; 3330 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3331 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3332 } 3333 } 3334 } 3335 3336 /* Compute the comparison permutation and keyinfo that is used with 3337 ** the permutation used to determine if the next 3338 ** row of results comes from selectA or selectB. Also add explicit 3339 ** collations to the ORDER BY clause terms so that when the subqueries 3340 ** to the right and the left are evaluated, they use the correct 3341 ** collation. 3342 */ 3343 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3344 if( aPermute ){ 3345 struct ExprList_item *pItem; 3346 aPermute[0] = nOrderBy; 3347 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3348 assert( pItem->u.x.iOrderByCol>0 ); 3349 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3350 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3351 } 3352 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3353 }else{ 3354 pKeyMerge = 0; 3355 } 3356 3357 /* Reattach the ORDER BY clause to the query. 3358 */ 3359 p->pOrderBy = pOrderBy; 3360 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3361 3362 /* Allocate a range of temporary registers and the KeyInfo needed 3363 ** for the logic that removes duplicate result rows when the 3364 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3365 */ 3366 if( op==TK_ALL ){ 3367 regPrev = 0; 3368 }else{ 3369 int nExpr = p->pEList->nExpr; 3370 assert( nOrderBy>=nExpr || db->mallocFailed ); 3371 regPrev = pParse->nMem+1; 3372 pParse->nMem += nExpr+1; 3373 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3374 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3375 if( pKeyDup ){ 3376 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3377 for(i=0; i<nExpr; i++){ 3378 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3379 pKeyDup->aSortFlags[i] = 0; 3380 } 3381 } 3382 } 3383 3384 /* Separate the left and the right query from one another 3385 */ 3386 p->pPrior = 0; 3387 pPrior->pNext = 0; 3388 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3389 if( pPrior->pPrior==0 ){ 3390 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3391 } 3392 3393 /* Compute the limit registers */ 3394 computeLimitRegisters(pParse, p, labelEnd); 3395 if( p->iLimit && op==TK_ALL ){ 3396 regLimitA = ++pParse->nMem; 3397 regLimitB = ++pParse->nMem; 3398 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3399 regLimitA); 3400 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3401 }else{ 3402 regLimitA = regLimitB = 0; 3403 } 3404 sqlite3ExprDelete(db, p->pLimit); 3405 p->pLimit = 0; 3406 3407 regAddrA = ++pParse->nMem; 3408 regAddrB = ++pParse->nMem; 3409 regOutA = ++pParse->nMem; 3410 regOutB = ++pParse->nMem; 3411 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3412 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3413 3414 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3415 3416 /* Generate a coroutine to evaluate the SELECT statement to the 3417 ** left of the compound operator - the "A" select. 3418 */ 3419 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3420 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3421 VdbeComment((v, "left SELECT")); 3422 pPrior->iLimit = regLimitA; 3423 ExplainQueryPlan((pParse, 1, "LEFT")); 3424 sqlite3Select(pParse, pPrior, &destA); 3425 sqlite3VdbeEndCoroutine(v, regAddrA); 3426 sqlite3VdbeJumpHere(v, addr1); 3427 3428 /* Generate a coroutine to evaluate the SELECT statement on 3429 ** the right - the "B" select 3430 */ 3431 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3432 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3433 VdbeComment((v, "right SELECT")); 3434 savedLimit = p->iLimit; 3435 savedOffset = p->iOffset; 3436 p->iLimit = regLimitB; 3437 p->iOffset = 0; 3438 ExplainQueryPlan((pParse, 1, "RIGHT")); 3439 sqlite3Select(pParse, p, &destB); 3440 p->iLimit = savedLimit; 3441 p->iOffset = savedOffset; 3442 sqlite3VdbeEndCoroutine(v, regAddrB); 3443 3444 /* Generate a subroutine that outputs the current row of the A 3445 ** select as the next output row of the compound select. 3446 */ 3447 VdbeNoopComment((v, "Output routine for A")); 3448 addrOutA = generateOutputSubroutine(pParse, 3449 p, &destA, pDest, regOutA, 3450 regPrev, pKeyDup, labelEnd); 3451 3452 /* Generate a subroutine that outputs the current row of the B 3453 ** select as the next output row of the compound select. 3454 */ 3455 if( op==TK_ALL || op==TK_UNION ){ 3456 VdbeNoopComment((v, "Output routine for B")); 3457 addrOutB = generateOutputSubroutine(pParse, 3458 p, &destB, pDest, regOutB, 3459 regPrev, pKeyDup, labelEnd); 3460 } 3461 sqlite3KeyInfoUnref(pKeyDup); 3462 3463 /* Generate a subroutine to run when the results from select A 3464 ** are exhausted and only data in select B remains. 3465 */ 3466 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3467 addrEofA_noB = addrEofA = labelEnd; 3468 }else{ 3469 VdbeNoopComment((v, "eof-A subroutine")); 3470 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3471 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3472 VdbeCoverage(v); 3473 sqlite3VdbeGoto(v, addrEofA); 3474 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3475 } 3476 3477 /* Generate a subroutine to run when the results from select B 3478 ** are exhausted and only data in select A remains. 3479 */ 3480 if( op==TK_INTERSECT ){ 3481 addrEofB = addrEofA; 3482 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3483 }else{ 3484 VdbeNoopComment((v, "eof-B subroutine")); 3485 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3486 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3487 sqlite3VdbeGoto(v, addrEofB); 3488 } 3489 3490 /* Generate code to handle the case of A<B 3491 */ 3492 VdbeNoopComment((v, "A-lt-B subroutine")); 3493 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3494 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3495 sqlite3VdbeGoto(v, labelCmpr); 3496 3497 /* Generate code to handle the case of A==B 3498 */ 3499 if( op==TK_ALL ){ 3500 addrAeqB = addrAltB; 3501 }else if( op==TK_INTERSECT ){ 3502 addrAeqB = addrAltB; 3503 addrAltB++; 3504 }else{ 3505 VdbeNoopComment((v, "A-eq-B subroutine")); 3506 addrAeqB = 3507 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3508 sqlite3VdbeGoto(v, labelCmpr); 3509 } 3510 3511 /* Generate code to handle the case of A>B 3512 */ 3513 VdbeNoopComment((v, "A-gt-B subroutine")); 3514 addrAgtB = sqlite3VdbeCurrentAddr(v); 3515 if( op==TK_ALL || op==TK_UNION ){ 3516 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3517 } 3518 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3519 sqlite3VdbeGoto(v, labelCmpr); 3520 3521 /* This code runs once to initialize everything. 3522 */ 3523 sqlite3VdbeJumpHere(v, addr1); 3524 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3525 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3526 3527 /* Implement the main merge loop 3528 */ 3529 sqlite3VdbeResolveLabel(v, labelCmpr); 3530 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3531 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3532 (char*)pKeyMerge, P4_KEYINFO); 3533 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3534 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3535 3536 /* Jump to the this point in order to terminate the query. 3537 */ 3538 sqlite3VdbeResolveLabel(v, labelEnd); 3539 3540 /* Reassembly the compound query so that it will be freed correctly 3541 ** by the calling function */ 3542 if( p->pPrior ){ 3543 sqlite3SelectDelete(db, p->pPrior); 3544 } 3545 p->pPrior = pPrior; 3546 pPrior->pNext = p; 3547 3548 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3549 pPrior->pOrderBy = 0; 3550 3551 /*** TBD: Insert subroutine calls to close cursors on incomplete 3552 **** subqueries ****/ 3553 ExplainQueryPlanPop(pParse); 3554 return pParse->nErr!=0; 3555 } 3556 #endif 3557 3558 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3559 3560 /* An instance of the SubstContext object describes an substitution edit 3561 ** to be performed on a parse tree. 3562 ** 3563 ** All references to columns in table iTable are to be replaced by corresponding 3564 ** expressions in pEList. 3565 */ 3566 typedef struct SubstContext { 3567 Parse *pParse; /* The parsing context */ 3568 int iTable; /* Replace references to this table */ 3569 int iNewTable; /* New table number */ 3570 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3571 ExprList *pEList; /* Replacement expressions */ 3572 } SubstContext; 3573 3574 /* Forward Declarations */ 3575 static void substExprList(SubstContext*, ExprList*); 3576 static void substSelect(SubstContext*, Select*, int); 3577 3578 /* 3579 ** Scan through the expression pExpr. Replace every reference to 3580 ** a column in table number iTable with a copy of the iColumn-th 3581 ** entry in pEList. (But leave references to the ROWID column 3582 ** unchanged.) 3583 ** 3584 ** This routine is part of the flattening procedure. A subquery 3585 ** whose result set is defined by pEList appears as entry in the 3586 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3587 ** FORM clause entry is iTable. This routine makes the necessary 3588 ** changes to pExpr so that it refers directly to the source table 3589 ** of the subquery rather the result set of the subquery. 3590 */ 3591 static Expr *substExpr( 3592 SubstContext *pSubst, /* Description of the substitution */ 3593 Expr *pExpr /* Expr in which substitution occurs */ 3594 ){ 3595 if( pExpr==0 ) return 0; 3596 if( ExprHasProperty(pExpr, EP_FromJoin) 3597 && pExpr->iRightJoinTable==pSubst->iTable 3598 ){ 3599 pExpr->iRightJoinTable = pSubst->iNewTable; 3600 } 3601 if( pExpr->op==TK_COLUMN 3602 && pExpr->iTable==pSubst->iTable 3603 && !ExprHasProperty(pExpr, EP_FixedCol) 3604 ){ 3605 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3606 if( pExpr->iColumn<0 ){ 3607 pExpr->op = TK_NULL; 3608 }else 3609 #endif 3610 { 3611 Expr *pNew; 3612 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3613 Expr ifNullRow; 3614 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3615 assert( pExpr->pRight==0 ); 3616 if( sqlite3ExprIsVector(pCopy) ){ 3617 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3618 }else{ 3619 sqlite3 *db = pSubst->pParse->db; 3620 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3621 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3622 ifNullRow.op = TK_IF_NULL_ROW; 3623 ifNullRow.pLeft = pCopy; 3624 ifNullRow.iTable = pSubst->iNewTable; 3625 ifNullRow.flags = EP_IfNullRow; 3626 pCopy = &ifNullRow; 3627 } 3628 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3629 pNew = sqlite3ExprDup(db, pCopy, 0); 3630 if( db->mallocFailed ){ 3631 sqlite3ExprDelete(db, pNew); 3632 return pExpr; 3633 } 3634 if( pSubst->isLeftJoin ){ 3635 ExprSetProperty(pNew, EP_CanBeNull); 3636 } 3637 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3638 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3639 } 3640 sqlite3ExprDelete(db, pExpr); 3641 pExpr = pNew; 3642 3643 /* Ensure that the expression now has an implicit collation sequence, 3644 ** just as it did when it was a column of a view or sub-query. */ 3645 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3646 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3647 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3648 (pColl ? pColl->zName : "BINARY") 3649 ); 3650 } 3651 ExprClearProperty(pExpr, EP_Collate); 3652 } 3653 } 3654 }else{ 3655 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3656 pExpr->iTable = pSubst->iNewTable; 3657 } 3658 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3659 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3660 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3661 substSelect(pSubst, pExpr->x.pSelect, 1); 3662 }else{ 3663 substExprList(pSubst, pExpr->x.pList); 3664 } 3665 #ifndef SQLITE_OMIT_WINDOWFUNC 3666 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3667 Window *pWin = pExpr->y.pWin; 3668 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3669 substExprList(pSubst, pWin->pPartition); 3670 substExprList(pSubst, pWin->pOrderBy); 3671 } 3672 #endif 3673 } 3674 return pExpr; 3675 } 3676 static void substExprList( 3677 SubstContext *pSubst, /* Description of the substitution */ 3678 ExprList *pList /* List to scan and in which to make substitutes */ 3679 ){ 3680 int i; 3681 if( pList==0 ) return; 3682 for(i=0; i<pList->nExpr; i++){ 3683 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3684 } 3685 } 3686 static void substSelect( 3687 SubstContext *pSubst, /* Description of the substitution */ 3688 Select *p, /* SELECT statement in which to make substitutions */ 3689 int doPrior /* Do substitutes on p->pPrior too */ 3690 ){ 3691 SrcList *pSrc; 3692 SrcItem *pItem; 3693 int i; 3694 if( !p ) return; 3695 do{ 3696 substExprList(pSubst, p->pEList); 3697 substExprList(pSubst, p->pGroupBy); 3698 substExprList(pSubst, p->pOrderBy); 3699 p->pHaving = substExpr(pSubst, p->pHaving); 3700 p->pWhere = substExpr(pSubst, p->pWhere); 3701 pSrc = p->pSrc; 3702 assert( pSrc!=0 ); 3703 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3704 substSelect(pSubst, pItem->pSelect, 1); 3705 if( pItem->fg.isTabFunc ){ 3706 substExprList(pSubst, pItem->u1.pFuncArg); 3707 } 3708 } 3709 }while( doPrior && (p = p->pPrior)!=0 ); 3710 } 3711 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3712 3713 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3714 /* 3715 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3716 ** clause of that SELECT. 3717 ** 3718 ** This routine scans the entire SELECT statement and recomputes the 3719 ** pSrcItem->colUsed mask. 3720 */ 3721 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3722 SrcItem *pItem; 3723 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3724 pItem = pWalker->u.pSrcItem; 3725 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3726 if( pExpr->iColumn<0 ) return WRC_Continue; 3727 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3728 return WRC_Continue; 3729 } 3730 static void recomputeColumnsUsed( 3731 Select *pSelect, /* The complete SELECT statement */ 3732 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3733 ){ 3734 Walker w; 3735 if( NEVER(pSrcItem->pTab==0) ) return; 3736 memset(&w, 0, sizeof(w)); 3737 w.xExprCallback = recomputeColumnsUsedExpr; 3738 w.xSelectCallback = sqlite3SelectWalkNoop; 3739 w.u.pSrcItem = pSrcItem; 3740 pSrcItem->colUsed = 0; 3741 sqlite3WalkSelect(&w, pSelect); 3742 } 3743 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3744 3745 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3746 /* 3747 ** Assign new cursor numbers to each of the items in pSrc. For each 3748 ** new cursor number assigned, set an entry in the aCsrMap[] array 3749 ** to map the old cursor number to the new: 3750 ** 3751 ** aCsrMap[iOld] = iNew; 3752 ** 3753 ** The array is guaranteed by the caller to be large enough for all 3754 ** existing cursor numbers in pSrc. 3755 ** 3756 ** If pSrc contains any sub-selects, call this routine recursively 3757 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3758 */ 3759 static void srclistRenumberCursors( 3760 Parse *pParse, /* Parse context */ 3761 int *aCsrMap, /* Array to store cursor mappings in */ 3762 SrcList *pSrc, /* FROM clause to renumber */ 3763 int iExcept /* FROM clause item to skip */ 3764 ){ 3765 int i; 3766 SrcItem *pItem; 3767 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3768 if( i!=iExcept ){ 3769 Select *p; 3770 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor]==0 ){ 3771 aCsrMap[pItem->iCursor] = pParse->nTab++; 3772 } 3773 pItem->iCursor = aCsrMap[pItem->iCursor]; 3774 for(p=pItem->pSelect; p; p=p->pPrior){ 3775 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3776 } 3777 } 3778 } 3779 } 3780 3781 /* 3782 ** Expression walker callback used by renumberCursors() to update 3783 ** Expr objects to match newly assigned cursor numbers. 3784 */ 3785 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3786 int *aCsrMap = pWalker->u.aiCol; 3787 int op = pExpr->op; 3788 if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){ 3789 pExpr->iTable = aCsrMap[pExpr->iTable]; 3790 } 3791 if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){ 3792 pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable]; 3793 } 3794 return WRC_Continue; 3795 } 3796 3797 /* 3798 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3799 ** of the SELECT statement passed as the second argument, and to each 3800 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3801 ** Except, do not assign a new cursor number to the iExcept'th element in 3802 ** the FROM clause of (*p). Update all expressions and other references 3803 ** to refer to the new cursor numbers. 3804 ** 3805 ** Argument aCsrMap is an array that may be used for temporary working 3806 ** space. Two guarantees are made by the caller: 3807 ** 3808 ** * the array is larger than the largest cursor number used within the 3809 ** select statement passed as an argument, and 3810 ** 3811 ** * the array entries for all cursor numbers that do *not* appear in 3812 ** FROM clauses of the select statement as described above are 3813 ** initialized to zero. 3814 */ 3815 static void renumberCursors( 3816 Parse *pParse, /* Parse context */ 3817 Select *p, /* Select to renumber cursors within */ 3818 int iExcept, /* FROM clause item to skip */ 3819 int *aCsrMap /* Working space */ 3820 ){ 3821 Walker w; 3822 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3823 memset(&w, 0, sizeof(w)); 3824 w.u.aiCol = aCsrMap; 3825 w.xExprCallback = renumberCursorsCb; 3826 w.xSelectCallback = sqlite3SelectWalkNoop; 3827 sqlite3WalkSelect(&w, p); 3828 } 3829 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3830 3831 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3832 /* 3833 ** This routine attempts to flatten subqueries as a performance optimization. 3834 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3835 ** 3836 ** To understand the concept of flattening, consider the following 3837 ** query: 3838 ** 3839 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3840 ** 3841 ** The default way of implementing this query is to execute the 3842 ** subquery first and store the results in a temporary table, then 3843 ** run the outer query on that temporary table. This requires two 3844 ** passes over the data. Furthermore, because the temporary table 3845 ** has no indices, the WHERE clause on the outer query cannot be 3846 ** optimized. 3847 ** 3848 ** This routine attempts to rewrite queries such as the above into 3849 ** a single flat select, like this: 3850 ** 3851 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3852 ** 3853 ** The code generated for this simplification gives the same result 3854 ** but only has to scan the data once. And because indices might 3855 ** exist on the table t1, a complete scan of the data might be 3856 ** avoided. 3857 ** 3858 ** Flattening is subject to the following constraints: 3859 ** 3860 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3861 ** The subquery and the outer query cannot both be aggregates. 3862 ** 3863 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3864 ** (2) If the subquery is an aggregate then 3865 ** (2a) the outer query must not be a join and 3866 ** (2b) the outer query must not use subqueries 3867 ** other than the one FROM-clause subquery that is a candidate 3868 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3869 ** from 2015-02-09.) 3870 ** 3871 ** (3) If the subquery is the right operand of a LEFT JOIN then 3872 ** (3a) the subquery may not be a join and 3873 ** (3b) the FROM clause of the subquery may not contain a virtual 3874 ** table and 3875 ** (3c) the outer query may not be an aggregate. 3876 ** (3d) the outer query may not be DISTINCT. 3877 ** 3878 ** (4) The subquery can not be DISTINCT. 3879 ** 3880 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3881 ** sub-queries that were excluded from this optimization. Restriction 3882 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3883 ** 3884 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3885 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3886 ** 3887 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3888 ** A FROM clause, consider adding a FROM clause with the special 3889 ** table sqlite_once that consists of a single row containing a 3890 ** single NULL. 3891 ** 3892 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3893 ** 3894 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3895 ** 3896 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3897 ** accidently carried the comment forward until 2014-09-15. Original 3898 ** constraint: "If the subquery is aggregate then the outer query 3899 ** may not use LIMIT." 3900 ** 3901 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3902 ** 3903 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3904 ** a separate restriction deriving from ticket #350. 3905 ** 3906 ** (13) The subquery and outer query may not both use LIMIT. 3907 ** 3908 ** (14) The subquery may not use OFFSET. 3909 ** 3910 ** (15) If the outer query is part of a compound select, then the 3911 ** subquery may not use LIMIT. 3912 ** (See ticket #2339 and ticket [02a8e81d44]). 3913 ** 3914 ** (16) If the outer query is aggregate, then the subquery may not 3915 ** use ORDER BY. (Ticket #2942) This used to not matter 3916 ** until we introduced the group_concat() function. 3917 ** 3918 ** (17) If the subquery is a compound select, then 3919 ** (17a) all compound operators must be a UNION ALL, and 3920 ** (17b) no terms within the subquery compound may be aggregate 3921 ** or DISTINCT, and 3922 ** (17c) every term within the subquery compound must have a FROM clause 3923 ** (17d) the outer query may not be 3924 ** (17d1) aggregate, or 3925 ** (17d2) DISTINCT 3926 ** (17e) the subquery may not contain window functions, and 3927 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3928 ** 3929 ** The parent and sub-query may contain WHERE clauses. Subject to 3930 ** rules (11), (13) and (14), they may also contain ORDER BY, 3931 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3932 ** operator other than UNION ALL because all the other compound 3933 ** operators have an implied DISTINCT which is disallowed by 3934 ** restriction (4). 3935 ** 3936 ** Also, each component of the sub-query must return the same number 3937 ** of result columns. This is actually a requirement for any compound 3938 ** SELECT statement, but all the code here does is make sure that no 3939 ** such (illegal) sub-query is flattened. The caller will detect the 3940 ** syntax error and return a detailed message. 3941 ** 3942 ** (18) If the sub-query is a compound select, then all terms of the 3943 ** ORDER BY clause of the parent must be copies of a term returned 3944 ** by the parent query. 3945 ** 3946 ** (19) If the subquery uses LIMIT then the outer query may not 3947 ** have a WHERE clause. 3948 ** 3949 ** (20) If the sub-query is a compound select, then it must not use 3950 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3951 ** somewhat by saying that the terms of the ORDER BY clause must 3952 ** appear as unmodified result columns in the outer query. But we 3953 ** have other optimizations in mind to deal with that case. 3954 ** 3955 ** (21) If the subquery uses LIMIT then the outer query may not be 3956 ** DISTINCT. (See ticket [752e1646fc]). 3957 ** 3958 ** (22) The subquery may not be a recursive CTE. 3959 ** 3960 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3961 ** a compound query. This restriction is because transforming the 3962 ** parent to a compound query confuses the code that handles 3963 ** recursive queries in multiSelect(). 3964 ** 3965 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3966 ** The subquery may not be an aggregate that uses the built-in min() or 3967 ** or max() functions. (Without this restriction, a query like: 3968 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3969 ** return the value X for which Y was maximal.) 3970 ** 3971 ** (25) If either the subquery or the parent query contains a window 3972 ** function in the select list or ORDER BY clause, flattening 3973 ** is not attempted. 3974 ** 3975 ** 3976 ** In this routine, the "p" parameter is a pointer to the outer query. 3977 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3978 ** uses aggregates. 3979 ** 3980 ** If flattening is not attempted, this routine is a no-op and returns 0. 3981 ** If flattening is attempted this routine returns 1. 3982 ** 3983 ** All of the expression analysis must occur on both the outer query and 3984 ** the subquery before this routine runs. 3985 */ 3986 static int flattenSubquery( 3987 Parse *pParse, /* Parsing context */ 3988 Select *p, /* The parent or outer SELECT statement */ 3989 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3990 int isAgg /* True if outer SELECT uses aggregate functions */ 3991 ){ 3992 const char *zSavedAuthContext = pParse->zAuthContext; 3993 Select *pParent; /* Current UNION ALL term of the other query */ 3994 Select *pSub; /* The inner query or "subquery" */ 3995 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3996 SrcList *pSrc; /* The FROM clause of the outer query */ 3997 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3998 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3999 int iNewParent = -1;/* Replacement table for iParent */ 4000 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4001 int i; /* Loop counter */ 4002 Expr *pWhere; /* The WHERE clause */ 4003 SrcItem *pSubitem; /* The subquery */ 4004 sqlite3 *db = pParse->db; 4005 Walker w; /* Walker to persist agginfo data */ 4006 int *aCsrMap = 0; 4007 4008 /* Check to see if flattening is permitted. Return 0 if not. 4009 */ 4010 assert( p!=0 ); 4011 assert( p->pPrior==0 ); 4012 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4013 pSrc = p->pSrc; 4014 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4015 pSubitem = &pSrc->a[iFrom]; 4016 iParent = pSubitem->iCursor; 4017 pSub = pSubitem->pSelect; 4018 assert( pSub!=0 ); 4019 4020 #ifndef SQLITE_OMIT_WINDOWFUNC 4021 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4022 #endif 4023 4024 pSubSrc = pSub->pSrc; 4025 assert( pSubSrc ); 4026 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4027 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4028 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4029 ** became arbitrary expressions, we were forced to add restrictions (13) 4030 ** and (14). */ 4031 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4032 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4033 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4034 return 0; /* Restriction (15) */ 4035 } 4036 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4037 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4038 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4039 return 0; /* Restrictions (8)(9) */ 4040 } 4041 if( p->pOrderBy && pSub->pOrderBy ){ 4042 return 0; /* Restriction (11) */ 4043 } 4044 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4045 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4046 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4047 return 0; /* Restriction (21) */ 4048 } 4049 if( pSub->selFlags & (SF_Recursive) ){ 4050 return 0; /* Restrictions (22) */ 4051 } 4052 4053 /* 4054 ** If the subquery is the right operand of a LEFT JOIN, then the 4055 ** subquery may not be a join itself (3a). Example of why this is not 4056 ** allowed: 4057 ** 4058 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4059 ** 4060 ** If we flatten the above, we would get 4061 ** 4062 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4063 ** 4064 ** which is not at all the same thing. 4065 ** 4066 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4067 ** query cannot be an aggregate. (3c) This is an artifact of the way 4068 ** aggregates are processed - there is no mechanism to determine if 4069 ** the LEFT JOIN table should be all-NULL. 4070 ** 4071 ** See also tickets #306, #350, and #3300. 4072 */ 4073 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4074 isLeftJoin = 1; 4075 if( pSubSrc->nSrc>1 /* (3a) */ 4076 || isAgg /* (3b) */ 4077 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4078 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4079 ){ 4080 return 0; 4081 } 4082 } 4083 #ifdef SQLITE_EXTRA_IFNULLROW 4084 else if( iFrom>0 && !isAgg ){ 4085 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4086 ** every reference to any result column from subquery in a join, even 4087 ** though they are not necessary. This will stress-test the OP_IfNullRow 4088 ** opcode. */ 4089 isLeftJoin = -1; 4090 } 4091 #endif 4092 4093 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4094 ** use only the UNION ALL operator. And none of the simple select queries 4095 ** that make up the compound SELECT are allowed to be aggregate or distinct 4096 ** queries. 4097 */ 4098 if( pSub->pPrior ){ 4099 if( pSub->pOrderBy ){ 4100 return 0; /* Restriction (20) */ 4101 } 4102 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4103 return 0; /* (17d1), (17d2), or (17f) */ 4104 } 4105 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4106 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4107 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4108 assert( pSub->pSrc!=0 ); 4109 assert( (pSub->selFlags & SF_Recursive)==0 ); 4110 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4111 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4112 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4113 || pSub1->pSrc->nSrc<1 /* (17c) */ 4114 #ifndef SQLITE_OMIT_WINDOWFUNC 4115 || pSub1->pWin /* (17e) */ 4116 #endif 4117 ){ 4118 return 0; 4119 } 4120 testcase( pSub1->pSrc->nSrc>1 ); 4121 } 4122 4123 /* Restriction (18). */ 4124 if( p->pOrderBy ){ 4125 int ii; 4126 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4127 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4128 } 4129 } 4130 4131 /* Restriction (23) */ 4132 if( (p->selFlags & SF_Recursive) ) return 0; 4133 4134 if( pSrc->nSrc>1 ){ 4135 if( pParse->nSelect>500 ) return 0; 4136 aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int)); 4137 } 4138 } 4139 4140 /***** If we reach this point, flattening is permitted. *****/ 4141 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4142 pSub->selId, pSub, iFrom)); 4143 4144 /* Authorize the subquery */ 4145 pParse->zAuthContext = pSubitem->zName; 4146 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4147 testcase( i==SQLITE_DENY ); 4148 pParse->zAuthContext = zSavedAuthContext; 4149 4150 /* Delete the transient structures associated with thesubquery */ 4151 pSub1 = pSubitem->pSelect; 4152 sqlite3DbFree(db, pSubitem->zDatabase); 4153 sqlite3DbFree(db, pSubitem->zName); 4154 sqlite3DbFree(db, pSubitem->zAlias); 4155 pSubitem->zDatabase = 0; 4156 pSubitem->zName = 0; 4157 pSubitem->zAlias = 0; 4158 pSubitem->pSelect = 0; 4159 assert( pSubitem->pOn==0 ); 4160 4161 /* If the sub-query is a compound SELECT statement, then (by restrictions 4162 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4163 ** be of the form: 4164 ** 4165 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4166 ** 4167 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4168 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4169 ** OFFSET clauses and joins them to the left-hand-side of the original 4170 ** using UNION ALL operators. In this case N is the number of simple 4171 ** select statements in the compound sub-query. 4172 ** 4173 ** Example: 4174 ** 4175 ** SELECT a+1 FROM ( 4176 ** SELECT x FROM tab 4177 ** UNION ALL 4178 ** SELECT y FROM tab 4179 ** UNION ALL 4180 ** SELECT abs(z*2) FROM tab2 4181 ** ) WHERE a!=5 ORDER BY 1 4182 ** 4183 ** Transformed into: 4184 ** 4185 ** SELECT x+1 FROM tab WHERE x+1!=5 4186 ** UNION ALL 4187 ** SELECT y+1 FROM tab WHERE y+1!=5 4188 ** UNION ALL 4189 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4190 ** ORDER BY 1 4191 ** 4192 ** We call this the "compound-subquery flattening". 4193 */ 4194 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4195 Select *pNew; 4196 ExprList *pOrderBy = p->pOrderBy; 4197 Expr *pLimit = p->pLimit; 4198 Select *pPrior = p->pPrior; 4199 Table *pItemTab = pSubitem->pTab; 4200 pSubitem->pTab = 0; 4201 p->pOrderBy = 0; 4202 p->pPrior = 0; 4203 p->pLimit = 0; 4204 pNew = sqlite3SelectDup(db, p, 0); 4205 p->pLimit = pLimit; 4206 p->pOrderBy = pOrderBy; 4207 p->op = TK_ALL; 4208 pSubitem->pTab = pItemTab; 4209 if( pNew==0 ){ 4210 p->pPrior = pPrior; 4211 }else{ 4212 pNew->selId = ++pParse->nSelect; 4213 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4214 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4215 } 4216 pNew->pPrior = pPrior; 4217 if( pPrior ) pPrior->pNext = pNew; 4218 pNew->pNext = p; 4219 p->pPrior = pNew; 4220 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4221 " creates %u as peer\n",pNew->selId)); 4222 } 4223 assert( pSubitem->pSelect==0 ); 4224 } 4225 sqlite3DbFree(db, aCsrMap); 4226 if( db->mallocFailed ){ 4227 pSubitem->pSelect = pSub1; 4228 return 1; 4229 } 4230 4231 /* Defer deleting the Table object associated with the 4232 ** subquery until code generation is 4233 ** complete, since there may still exist Expr.pTab entries that 4234 ** refer to the subquery even after flattening. Ticket #3346. 4235 ** 4236 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4237 */ 4238 if( ALWAYS(pSubitem->pTab!=0) ){ 4239 Table *pTabToDel = pSubitem->pTab; 4240 if( pTabToDel->nTabRef==1 ){ 4241 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4242 sqlite3ParserAddCleanup(pToplevel, 4243 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4244 pTabToDel); 4245 testcase( pToplevel->earlyCleanup ); 4246 }else{ 4247 pTabToDel->nTabRef--; 4248 } 4249 pSubitem->pTab = 0; 4250 } 4251 4252 /* The following loop runs once for each term in a compound-subquery 4253 ** flattening (as described above). If we are doing a different kind 4254 ** of flattening - a flattening other than a compound-subquery flattening - 4255 ** then this loop only runs once. 4256 ** 4257 ** This loop moves all of the FROM elements of the subquery into the 4258 ** the FROM clause of the outer query. Before doing this, remember 4259 ** the cursor number for the original outer query FROM element in 4260 ** iParent. The iParent cursor will never be used. Subsequent code 4261 ** will scan expressions looking for iParent references and replace 4262 ** those references with expressions that resolve to the subquery FROM 4263 ** elements we are now copying in. 4264 */ 4265 pSub = pSub1; 4266 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4267 int nSubSrc; 4268 u8 jointype = 0; 4269 assert( pSub!=0 ); 4270 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4271 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4272 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4273 4274 if( pParent==p ){ 4275 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4276 } 4277 4278 /* The subquery uses a single slot of the FROM clause of the outer 4279 ** query. If the subquery has more than one element in its FROM clause, 4280 ** then expand the outer query to make space for it to hold all elements 4281 ** of the subquery. 4282 ** 4283 ** Example: 4284 ** 4285 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4286 ** 4287 ** The outer query has 3 slots in its FROM clause. One slot of the 4288 ** outer query (the middle slot) is used by the subquery. The next 4289 ** block of code will expand the outer query FROM clause to 4 slots. 4290 ** The middle slot is expanded to two slots in order to make space 4291 ** for the two elements in the FROM clause of the subquery. 4292 */ 4293 if( nSubSrc>1 ){ 4294 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4295 if( pSrc==0 ) break; 4296 pParent->pSrc = pSrc; 4297 } 4298 4299 /* Transfer the FROM clause terms from the subquery into the 4300 ** outer query. 4301 */ 4302 for(i=0; i<nSubSrc; i++){ 4303 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4304 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4305 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4306 iNewParent = pSubSrc->a[i].iCursor; 4307 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4308 } 4309 pSrc->a[iFrom].fg.jointype = jointype; 4310 4311 /* Now begin substituting subquery result set expressions for 4312 ** references to the iParent in the outer query. 4313 ** 4314 ** Example: 4315 ** 4316 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4317 ** \ \_____________ subquery __________/ / 4318 ** \_____________________ outer query ______________________________/ 4319 ** 4320 ** We look at every expression in the outer query and every place we see 4321 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4322 */ 4323 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4324 /* At this point, any non-zero iOrderByCol values indicate that the 4325 ** ORDER BY column expression is identical to the iOrderByCol'th 4326 ** expression returned by SELECT statement pSub. Since these values 4327 ** do not necessarily correspond to columns in SELECT statement pParent, 4328 ** zero them before transfering the ORDER BY clause. 4329 ** 4330 ** Not doing this may cause an error if a subsequent call to this 4331 ** function attempts to flatten a compound sub-query into pParent 4332 ** (the only way this can happen is if the compound sub-query is 4333 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4334 ExprList *pOrderBy = pSub->pOrderBy; 4335 for(i=0; i<pOrderBy->nExpr; i++){ 4336 pOrderBy->a[i].u.x.iOrderByCol = 0; 4337 } 4338 assert( pParent->pOrderBy==0 ); 4339 pParent->pOrderBy = pOrderBy; 4340 pSub->pOrderBy = 0; 4341 } 4342 pWhere = pSub->pWhere; 4343 pSub->pWhere = 0; 4344 if( isLeftJoin>0 ){ 4345 sqlite3SetJoinExpr(pWhere, iNewParent); 4346 } 4347 if( pWhere ){ 4348 if( pParent->pWhere ){ 4349 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4350 }else{ 4351 pParent->pWhere = pWhere; 4352 } 4353 } 4354 if( db->mallocFailed==0 ){ 4355 SubstContext x; 4356 x.pParse = pParse; 4357 x.iTable = iParent; 4358 x.iNewTable = iNewParent; 4359 x.isLeftJoin = isLeftJoin; 4360 x.pEList = pSub->pEList; 4361 substSelect(&x, pParent, 0); 4362 } 4363 4364 /* The flattened query is a compound if either the inner or the 4365 ** outer query is a compound. */ 4366 pParent->selFlags |= pSub->selFlags & SF_Compound; 4367 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4368 4369 /* 4370 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4371 ** 4372 ** One is tempted to try to add a and b to combine the limits. But this 4373 ** does not work if either limit is negative. 4374 */ 4375 if( pSub->pLimit ){ 4376 pParent->pLimit = pSub->pLimit; 4377 pSub->pLimit = 0; 4378 } 4379 4380 /* Recompute the SrcList_item.colUsed masks for the flattened 4381 ** tables. */ 4382 for(i=0; i<nSubSrc; i++){ 4383 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4384 } 4385 } 4386 4387 /* Finially, delete what is left of the subquery and return 4388 ** success. 4389 */ 4390 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4391 sqlite3WalkSelect(&w,pSub1); 4392 sqlite3SelectDelete(db, pSub1); 4393 4394 #if SELECTTRACE_ENABLED 4395 if( sqlite3SelectTrace & 0x100 ){ 4396 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4397 sqlite3TreeViewSelect(0, p, 0); 4398 } 4399 #endif 4400 4401 return 1; 4402 } 4403 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4404 4405 /* 4406 ** A structure to keep track of all of the column values that are fixed to 4407 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4408 */ 4409 typedef struct WhereConst WhereConst; 4410 struct WhereConst { 4411 Parse *pParse; /* Parsing context */ 4412 int nConst; /* Number for COLUMN=CONSTANT terms */ 4413 int nChng; /* Number of times a constant is propagated */ 4414 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4415 }; 4416 4417 /* 4418 ** Add a new entry to the pConst object. Except, do not add duplicate 4419 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4420 ** 4421 ** The caller guarantees the pColumn is a column and pValue is a constant. 4422 ** This routine has to do some additional checks before completing the 4423 ** insert. 4424 */ 4425 static void constInsert( 4426 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4427 Expr *pColumn, /* The COLUMN part of the constraint */ 4428 Expr *pValue, /* The VALUE part of the constraint */ 4429 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4430 ){ 4431 int i; 4432 assert( pColumn->op==TK_COLUMN ); 4433 assert( sqlite3ExprIsConstant(pValue) ); 4434 4435 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4436 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4437 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4438 return; 4439 } 4440 4441 /* 2018-10-25 ticket [cf5ed20f] 4442 ** Make sure the same pColumn is not inserted more than once */ 4443 for(i=0; i<pConst->nConst; i++){ 4444 const Expr *pE2 = pConst->apExpr[i*2]; 4445 assert( pE2->op==TK_COLUMN ); 4446 if( pE2->iTable==pColumn->iTable 4447 && pE2->iColumn==pColumn->iColumn 4448 ){ 4449 return; /* Already present. Return without doing anything. */ 4450 } 4451 } 4452 4453 pConst->nConst++; 4454 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4455 pConst->nConst*2*sizeof(Expr*)); 4456 if( pConst->apExpr==0 ){ 4457 pConst->nConst = 0; 4458 }else{ 4459 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4460 pConst->apExpr[pConst->nConst*2-1] = pValue; 4461 } 4462 } 4463 4464 /* 4465 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4466 ** is a constant expression and where the term must be true because it 4467 ** is part of the AND-connected terms of the expression. For each term 4468 ** found, add it to the pConst structure. 4469 */ 4470 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4471 Expr *pRight, *pLeft; 4472 if( pExpr==0 ) return; 4473 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4474 if( pExpr->op==TK_AND ){ 4475 findConstInWhere(pConst, pExpr->pRight); 4476 findConstInWhere(pConst, pExpr->pLeft); 4477 return; 4478 } 4479 if( pExpr->op!=TK_EQ ) return; 4480 pRight = pExpr->pRight; 4481 pLeft = pExpr->pLeft; 4482 assert( pRight!=0 ); 4483 assert( pLeft!=0 ); 4484 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4485 constInsert(pConst,pRight,pLeft,pExpr); 4486 } 4487 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4488 constInsert(pConst,pLeft,pRight,pExpr); 4489 } 4490 } 4491 4492 /* 4493 ** This is a Walker expression callback. pExpr is a candidate expression 4494 ** to be replaced by a value. If pExpr is equivalent to one of the 4495 ** columns named in pWalker->u.pConst, then overwrite it with its 4496 ** corresponding value. 4497 */ 4498 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4499 int i; 4500 WhereConst *pConst; 4501 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4502 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4503 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4504 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4505 return WRC_Continue; 4506 } 4507 pConst = pWalker->u.pConst; 4508 for(i=0; i<pConst->nConst; i++){ 4509 Expr *pColumn = pConst->apExpr[i*2]; 4510 if( pColumn==pExpr ) continue; 4511 if( pColumn->iTable!=pExpr->iTable ) continue; 4512 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4513 /* A match is found. Add the EP_FixedCol property */ 4514 pConst->nChng++; 4515 ExprClearProperty(pExpr, EP_Leaf); 4516 ExprSetProperty(pExpr, EP_FixedCol); 4517 assert( pExpr->pLeft==0 ); 4518 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4519 break; 4520 } 4521 return WRC_Prune; 4522 } 4523 4524 /* 4525 ** The WHERE-clause constant propagation optimization. 4526 ** 4527 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4528 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4529 ** part of a ON clause from a LEFT JOIN, then throughout the query 4530 ** replace all other occurrences of COLUMN with CONSTANT. 4531 ** 4532 ** For example, the query: 4533 ** 4534 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4535 ** 4536 ** Is transformed into 4537 ** 4538 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4539 ** 4540 ** Return true if any transformations where made and false if not. 4541 ** 4542 ** Implementation note: Constant propagation is tricky due to affinity 4543 ** and collating sequence interactions. Consider this example: 4544 ** 4545 ** CREATE TABLE t1(a INT,b TEXT); 4546 ** INSERT INTO t1 VALUES(123,'0123'); 4547 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4548 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4549 ** 4550 ** The two SELECT statements above should return different answers. b=a 4551 ** is alway true because the comparison uses numeric affinity, but b=123 4552 ** is false because it uses text affinity and '0123' is not the same as '123'. 4553 ** To work around this, the expression tree is not actually changed from 4554 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4555 ** and the "123" value is hung off of the pLeft pointer. Code generator 4556 ** routines know to generate the constant "123" instead of looking up the 4557 ** column value. Also, to avoid collation problems, this optimization is 4558 ** only attempted if the "a=123" term uses the default BINARY collation. 4559 */ 4560 static int propagateConstants( 4561 Parse *pParse, /* The parsing context */ 4562 Select *p /* The query in which to propagate constants */ 4563 ){ 4564 WhereConst x; 4565 Walker w; 4566 int nChng = 0; 4567 x.pParse = pParse; 4568 do{ 4569 x.nConst = 0; 4570 x.nChng = 0; 4571 x.apExpr = 0; 4572 findConstInWhere(&x, p->pWhere); 4573 if( x.nConst ){ 4574 memset(&w, 0, sizeof(w)); 4575 w.pParse = pParse; 4576 w.xExprCallback = propagateConstantExprRewrite; 4577 w.xSelectCallback = sqlite3SelectWalkNoop; 4578 w.xSelectCallback2 = 0; 4579 w.walkerDepth = 0; 4580 w.u.pConst = &x; 4581 sqlite3WalkExpr(&w, p->pWhere); 4582 sqlite3DbFree(x.pParse->db, x.apExpr); 4583 nChng += x.nChng; 4584 } 4585 }while( x.nChng ); 4586 return nChng; 4587 } 4588 4589 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4590 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4591 /* 4592 ** This function is called to determine whether or not it is safe to 4593 ** push WHERE clause expression pExpr down to FROM clause sub-query 4594 ** pSubq, which contains at least one window function. Return 1 4595 ** if it is safe and the expression should be pushed down, or 0 4596 ** otherwise. 4597 ** 4598 ** It is only safe to push the expression down if it consists only 4599 ** of constants and copies of expressions that appear in the PARTITION 4600 ** BY clause of all window function used by the sub-query. It is safe 4601 ** to filter out entire partitions, but not rows within partitions, as 4602 ** this may change the results of the window functions. 4603 ** 4604 ** At the time this function is called it is guaranteed that 4605 ** 4606 ** * the sub-query uses only one distinct window frame, and 4607 ** * that the window frame has a PARTITION BY clase. 4608 */ 4609 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4610 assert( pSubq->pWin->pPartition ); 4611 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4612 assert( pSubq->pPrior==0 ); 4613 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4614 } 4615 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4616 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4617 4618 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4619 /* 4620 ** Make copies of relevant WHERE clause terms of the outer query into 4621 ** the WHERE clause of subquery. Example: 4622 ** 4623 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4624 ** 4625 ** Transformed into: 4626 ** 4627 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4628 ** WHERE x=5 AND y=10; 4629 ** 4630 ** The hope is that the terms added to the inner query will make it more 4631 ** efficient. 4632 ** 4633 ** Do not attempt this optimization if: 4634 ** 4635 ** (1) (** This restriction was removed on 2017-09-29. We used to 4636 ** disallow this optimization for aggregate subqueries, but now 4637 ** it is allowed by putting the extra terms on the HAVING clause. 4638 ** The added HAVING clause is pointless if the subquery lacks 4639 ** a GROUP BY clause. But such a HAVING clause is also harmless 4640 ** so there does not appear to be any reason to add extra logic 4641 ** to suppress it. **) 4642 ** 4643 ** (2) The inner query is the recursive part of a common table expression. 4644 ** 4645 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4646 ** clause would change the meaning of the LIMIT). 4647 ** 4648 ** (4) The inner query is the right operand of a LEFT JOIN and the 4649 ** expression to be pushed down does not come from the ON clause 4650 ** on that LEFT JOIN. 4651 ** 4652 ** (5) The WHERE clause expression originates in the ON or USING clause 4653 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4654 ** left join. An example: 4655 ** 4656 ** SELECT * 4657 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4658 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4659 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4660 ** 4661 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4662 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4663 ** then the (1,1,NULL) row would be suppressed. 4664 ** 4665 ** (6) Window functions make things tricky as changes to the WHERE clause 4666 ** of the inner query could change the window over which window 4667 ** functions are calculated. Therefore, do not attempt the optimization 4668 ** if: 4669 ** 4670 ** (6a) The inner query uses multiple incompatible window partitions. 4671 ** 4672 ** (6b) The inner query is a compound and uses window-functions. 4673 ** 4674 ** (6c) The WHERE clause does not consist entirely of constants and 4675 ** copies of expressions found in the PARTITION BY clause of 4676 ** all window-functions used by the sub-query. It is safe to 4677 ** filter out entire partitions, as this does not change the 4678 ** window over which any window-function is calculated. 4679 ** 4680 ** (7) The inner query is a Common Table Expression (CTE) that should 4681 ** be materialized. (This restriction is implemented in the calling 4682 ** routine.) 4683 ** 4684 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4685 ** terms are duplicated into the subquery. 4686 */ 4687 static int pushDownWhereTerms( 4688 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4689 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4690 Expr *pWhere, /* The WHERE clause of the outer query */ 4691 int iCursor, /* Cursor number of the subquery */ 4692 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4693 ){ 4694 Expr *pNew; 4695 int nChng = 0; 4696 if( pWhere==0 ) return 0; 4697 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4698 4699 #ifndef SQLITE_OMIT_WINDOWFUNC 4700 if( pSubq->pPrior ){ 4701 Select *pSel; 4702 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4703 if( pSel->pWin ) return 0; /* restriction (6b) */ 4704 } 4705 }else{ 4706 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4707 } 4708 #endif 4709 4710 #ifdef SQLITE_DEBUG 4711 /* Only the first term of a compound can have a WITH clause. But make 4712 ** sure no other terms are marked SF_Recursive in case something changes 4713 ** in the future. 4714 */ 4715 { 4716 Select *pX; 4717 for(pX=pSubq; pX; pX=pX->pPrior){ 4718 assert( (pX->selFlags & (SF_Recursive))==0 ); 4719 } 4720 } 4721 #endif 4722 4723 if( pSubq->pLimit!=0 ){ 4724 return 0; /* restriction (3) */ 4725 } 4726 while( pWhere->op==TK_AND ){ 4727 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4728 iCursor, isLeftJoin); 4729 pWhere = pWhere->pLeft; 4730 } 4731 if( isLeftJoin 4732 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4733 || pWhere->iRightJoinTable!=iCursor) 4734 ){ 4735 return 0; /* restriction (4) */ 4736 } 4737 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4738 return 0; /* restriction (5) */ 4739 } 4740 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4741 nChng++; 4742 pSubq->selFlags |= SF_PushDown; 4743 while( pSubq ){ 4744 SubstContext x; 4745 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4746 unsetJoinExpr(pNew, -1); 4747 x.pParse = pParse; 4748 x.iTable = iCursor; 4749 x.iNewTable = iCursor; 4750 x.isLeftJoin = 0; 4751 x.pEList = pSubq->pEList; 4752 pNew = substExpr(&x, pNew); 4753 #ifndef SQLITE_OMIT_WINDOWFUNC 4754 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4755 /* Restriction 6c has prevented push-down in this case */ 4756 sqlite3ExprDelete(pParse->db, pNew); 4757 nChng--; 4758 break; 4759 } 4760 #endif 4761 if( pSubq->selFlags & SF_Aggregate ){ 4762 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4763 }else{ 4764 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4765 } 4766 pSubq = pSubq->pPrior; 4767 } 4768 } 4769 return nChng; 4770 } 4771 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4772 4773 /* 4774 ** The pFunc is the only aggregate function in the query. Check to see 4775 ** if the query is a candidate for the min/max optimization. 4776 ** 4777 ** If the query is a candidate for the min/max optimization, then set 4778 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4779 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4780 ** whether pFunc is a min() or max() function. 4781 ** 4782 ** If the query is not a candidate for the min/max optimization, return 4783 ** WHERE_ORDERBY_NORMAL (which must be zero). 4784 ** 4785 ** This routine must be called after aggregate functions have been 4786 ** located but before their arguments have been subjected to aggregate 4787 ** analysis. 4788 */ 4789 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4790 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4791 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4792 const char *zFunc; /* Name of aggregate function pFunc */ 4793 ExprList *pOrderBy; 4794 u8 sortFlags = 0; 4795 4796 assert( *ppMinMax==0 ); 4797 assert( pFunc->op==TK_AGG_FUNCTION ); 4798 assert( !IsWindowFunc(pFunc) ); 4799 if( pEList==0 4800 || pEList->nExpr!=1 4801 || ExprHasProperty(pFunc, EP_WinFunc) 4802 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4803 ){ 4804 return eRet; 4805 } 4806 zFunc = pFunc->u.zToken; 4807 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4808 eRet = WHERE_ORDERBY_MIN; 4809 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4810 sortFlags = KEYINFO_ORDER_BIGNULL; 4811 } 4812 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4813 eRet = WHERE_ORDERBY_MAX; 4814 sortFlags = KEYINFO_ORDER_DESC; 4815 }else{ 4816 return eRet; 4817 } 4818 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4819 assert( pOrderBy!=0 || db->mallocFailed ); 4820 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4821 return eRet; 4822 } 4823 4824 /* 4825 ** The select statement passed as the first argument is an aggregate query. 4826 ** The second argument is the associated aggregate-info object. This 4827 ** function tests if the SELECT is of the form: 4828 ** 4829 ** SELECT count(*) FROM <tbl> 4830 ** 4831 ** where table is a database table, not a sub-select or view. If the query 4832 ** does match this pattern, then a pointer to the Table object representing 4833 ** <tbl> is returned. Otherwise, 0 is returned. 4834 */ 4835 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4836 Table *pTab; 4837 Expr *pExpr; 4838 4839 assert( !p->pGroupBy ); 4840 4841 if( p->pWhere || p->pEList->nExpr!=1 4842 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4843 ){ 4844 return 0; 4845 } 4846 pTab = p->pSrc->a[0].pTab; 4847 pExpr = p->pEList->a[0].pExpr; 4848 assert( pTab && !pTab->pSelect && pExpr ); 4849 4850 if( IsVirtual(pTab) ) return 0; 4851 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4852 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4853 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4854 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4855 4856 return pTab; 4857 } 4858 4859 /* 4860 ** If the source-list item passed as an argument was augmented with an 4861 ** INDEXED BY clause, then try to locate the specified index. If there 4862 ** was such a clause and the named index cannot be found, return 4863 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4864 ** pFrom->pIndex and return SQLITE_OK. 4865 */ 4866 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4867 Table *pTab = pFrom->pTab; 4868 char *zIndexedBy = pFrom->u1.zIndexedBy; 4869 Index *pIdx; 4870 assert( pTab!=0 ); 4871 assert( pFrom->fg.isIndexedBy!=0 ); 4872 4873 for(pIdx=pTab->pIndex; 4874 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4875 pIdx=pIdx->pNext 4876 ); 4877 if( !pIdx ){ 4878 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4879 pParse->checkSchema = 1; 4880 return SQLITE_ERROR; 4881 } 4882 pFrom->u2.pIBIndex = pIdx; 4883 return SQLITE_OK; 4884 } 4885 4886 /* 4887 ** Detect compound SELECT statements that use an ORDER BY clause with 4888 ** an alternative collating sequence. 4889 ** 4890 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4891 ** 4892 ** These are rewritten as a subquery: 4893 ** 4894 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4895 ** ORDER BY ... COLLATE ... 4896 ** 4897 ** This transformation is necessary because the multiSelectOrderBy() routine 4898 ** above that generates the code for a compound SELECT with an ORDER BY clause 4899 ** uses a merge algorithm that requires the same collating sequence on the 4900 ** result columns as on the ORDER BY clause. See ticket 4901 ** http://www.sqlite.org/src/info/6709574d2a 4902 ** 4903 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4904 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4905 ** there are COLLATE terms in the ORDER BY. 4906 */ 4907 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4908 int i; 4909 Select *pNew; 4910 Select *pX; 4911 sqlite3 *db; 4912 struct ExprList_item *a; 4913 SrcList *pNewSrc; 4914 Parse *pParse; 4915 Token dummy; 4916 4917 if( p->pPrior==0 ) return WRC_Continue; 4918 if( p->pOrderBy==0 ) return WRC_Continue; 4919 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4920 if( pX==0 ) return WRC_Continue; 4921 a = p->pOrderBy->a; 4922 #ifndef SQLITE_OMIT_WINDOWFUNC 4923 /* If iOrderByCol is already non-zero, then it has already been matched 4924 ** to a result column of the SELECT statement. This occurs when the 4925 ** SELECT is rewritten for window-functions processing and then passed 4926 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 4927 ** by this function is not required in this case. */ 4928 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 4929 #endif 4930 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4931 if( a[i].pExpr->flags & EP_Collate ) break; 4932 } 4933 if( i<0 ) return WRC_Continue; 4934 4935 /* If we reach this point, that means the transformation is required. */ 4936 4937 pParse = pWalker->pParse; 4938 db = pParse->db; 4939 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4940 if( pNew==0 ) return WRC_Abort; 4941 memset(&dummy, 0, sizeof(dummy)); 4942 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4943 if( pNewSrc==0 ) return WRC_Abort; 4944 *pNew = *p; 4945 p->pSrc = pNewSrc; 4946 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4947 p->op = TK_SELECT; 4948 p->pWhere = 0; 4949 pNew->pGroupBy = 0; 4950 pNew->pHaving = 0; 4951 pNew->pOrderBy = 0; 4952 p->pPrior = 0; 4953 p->pNext = 0; 4954 p->pWith = 0; 4955 #ifndef SQLITE_OMIT_WINDOWFUNC 4956 p->pWinDefn = 0; 4957 #endif 4958 p->selFlags &= ~SF_Compound; 4959 assert( (p->selFlags & SF_Converted)==0 ); 4960 p->selFlags |= SF_Converted; 4961 assert( pNew->pPrior!=0 ); 4962 pNew->pPrior->pNext = pNew; 4963 pNew->pLimit = 0; 4964 return WRC_Continue; 4965 } 4966 4967 /* 4968 ** Check to see if the FROM clause term pFrom has table-valued function 4969 ** arguments. If it does, leave an error message in pParse and return 4970 ** non-zero, since pFrom is not allowed to be a table-valued function. 4971 */ 4972 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 4973 if( pFrom->fg.isTabFunc ){ 4974 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4975 return 1; 4976 } 4977 return 0; 4978 } 4979 4980 #ifndef SQLITE_OMIT_CTE 4981 /* 4982 ** Argument pWith (which may be NULL) points to a linked list of nested 4983 ** WITH contexts, from inner to outermost. If the table identified by 4984 ** FROM clause element pItem is really a common-table-expression (CTE) 4985 ** then return a pointer to the CTE definition for that table. Otherwise 4986 ** return NULL. 4987 ** 4988 ** If a non-NULL value is returned, set *ppContext to point to the With 4989 ** object that the returned CTE belongs to. 4990 */ 4991 static struct Cte *searchWith( 4992 With *pWith, /* Current innermost WITH clause */ 4993 SrcItem *pItem, /* FROM clause element to resolve */ 4994 With **ppContext /* OUT: WITH clause return value belongs to */ 4995 ){ 4996 const char *zName = pItem->zName; 4997 With *p; 4998 assert( pItem->zDatabase==0 ); 4999 assert( zName!=0 ); 5000 for(p=pWith; p; p=p->pOuter){ 5001 int i; 5002 for(i=0; i<p->nCte; i++){ 5003 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5004 *ppContext = p; 5005 return &p->a[i]; 5006 } 5007 } 5008 } 5009 return 0; 5010 } 5011 5012 /* The code generator maintains a stack of active WITH clauses 5013 ** with the inner-most WITH clause being at the top of the stack. 5014 ** 5015 ** This routine pushes the WITH clause passed as the second argument 5016 ** onto the top of the stack. If argument bFree is true, then this 5017 ** WITH clause will never be popped from the stack. In this case it 5018 ** should be freed along with the Parse object. In other cases, when 5019 ** bFree==0, the With object will be freed along with the SELECT 5020 ** statement with which it is associated. 5021 */ 5022 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5023 if( pWith ){ 5024 assert( pParse->pWith!=pWith ); 5025 pWith->pOuter = pParse->pWith; 5026 pParse->pWith = pWith; 5027 if( bFree ){ 5028 sqlite3ParserAddCleanup(pParse, 5029 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5030 pWith); 5031 testcase( pParse->earlyCleanup ); 5032 } 5033 } 5034 } 5035 5036 /* 5037 ** This function checks if argument pFrom refers to a CTE declared by 5038 ** a WITH clause on the stack currently maintained by the parser (on the 5039 ** pParse->pWith linked list). And if currently processing a CTE 5040 ** CTE expression, through routine checks to see if the reference is 5041 ** a recursive reference to the CTE. 5042 ** 5043 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5044 ** and other fields are populated accordingly. 5045 ** 5046 ** Return 0 if no match is found. 5047 ** Return 1 if a match is found. 5048 ** Return 2 if an error condition is detected. 5049 */ 5050 static int resolveFromTermToCte( 5051 Parse *pParse, /* The parsing context */ 5052 Walker *pWalker, /* Current tree walker */ 5053 SrcItem *pFrom /* The FROM clause term to check */ 5054 ){ 5055 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5056 With *pWith; /* The matching WITH */ 5057 5058 assert( pFrom->pTab==0 ); 5059 if( pParse->pWith==0 ){ 5060 /* There are no WITH clauses in the stack. No match is possible */ 5061 return 0; 5062 } 5063 if( pFrom->zDatabase!=0 ){ 5064 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5065 ** it cannot possibly be a CTE reference. */ 5066 return 0; 5067 } 5068 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5069 if( pCte ){ 5070 sqlite3 *db = pParse->db; 5071 Table *pTab; 5072 ExprList *pEList; 5073 Select *pSel; 5074 Select *pLeft; /* Left-most SELECT statement */ 5075 Select *pRecTerm; /* Left-most recursive term */ 5076 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5077 With *pSavedWith; /* Initial value of pParse->pWith */ 5078 int iRecTab = -1; /* Cursor for recursive table */ 5079 CteUse *pCteUse; 5080 5081 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5082 ** recursive reference to CTE pCte. Leave an error in pParse and return 5083 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5084 ** In this case, proceed. */ 5085 if( pCte->zCteErr ){ 5086 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5087 return 2; 5088 } 5089 if( cannotBeFunction(pParse, pFrom) ) return 2; 5090 5091 assert( pFrom->pTab==0 ); 5092 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5093 if( pTab==0 ) return 2; 5094 pCteUse = pCte->pUse; 5095 if( pCteUse==0 ){ 5096 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5097 if( pCteUse==0 5098 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5099 ){ 5100 sqlite3DbFree(db, pTab); 5101 return 2; 5102 } 5103 pCteUse->eM10d = pCte->eM10d; 5104 } 5105 pFrom->pTab = pTab; 5106 pTab->nTabRef = 1; 5107 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5108 pTab->iPKey = -1; 5109 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5110 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5111 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5112 if( db->mallocFailed ) return 2; 5113 assert( pFrom->pSelect ); 5114 pFrom->fg.isCte = 1; 5115 pFrom->u2.pCteUse = pCteUse; 5116 pCteUse->nUse++; 5117 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5118 pCteUse->eM10d = M10d_Yes; 5119 } 5120 5121 /* Check if this is a recursive CTE. */ 5122 pRecTerm = pSel = pFrom->pSelect; 5123 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5124 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5125 int i; 5126 SrcList *pSrc = pRecTerm->pSrc; 5127 assert( pRecTerm->pPrior!=0 ); 5128 for(i=0; i<pSrc->nSrc; i++){ 5129 SrcItem *pItem = &pSrc->a[i]; 5130 if( pItem->zDatabase==0 5131 && pItem->zName!=0 5132 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5133 ){ 5134 pItem->pTab = pTab; 5135 pTab->nTabRef++; 5136 pItem->fg.isRecursive = 1; 5137 if( pRecTerm->selFlags & SF_Recursive ){ 5138 sqlite3ErrorMsg(pParse, 5139 "multiple references to recursive table: %s", pCte->zName 5140 ); 5141 return 2; 5142 } 5143 pRecTerm->selFlags |= SF_Recursive; 5144 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5145 pItem->iCursor = iRecTab; 5146 } 5147 } 5148 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5149 pRecTerm = pRecTerm->pPrior; 5150 } 5151 5152 pCte->zCteErr = "circular reference: %s"; 5153 pSavedWith = pParse->pWith; 5154 pParse->pWith = pWith; 5155 if( pSel->selFlags & SF_Recursive ){ 5156 int rc; 5157 assert( pRecTerm!=0 ); 5158 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5159 assert( pRecTerm->pNext!=0 ); 5160 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5161 assert( pRecTerm->pWith==0 ); 5162 pRecTerm->pWith = pSel->pWith; 5163 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5164 pRecTerm->pWith = 0; 5165 if( rc ){ 5166 pParse->pWith = pSavedWith; 5167 return 2; 5168 } 5169 }else{ 5170 if( sqlite3WalkSelect(pWalker, pSel) ){ 5171 pParse->pWith = pSavedWith; 5172 return 2; 5173 } 5174 } 5175 pParse->pWith = pWith; 5176 5177 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5178 pEList = pLeft->pEList; 5179 if( pCte->pCols ){ 5180 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5181 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5182 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5183 ); 5184 pParse->pWith = pSavedWith; 5185 return 2; 5186 } 5187 pEList = pCte->pCols; 5188 } 5189 5190 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5191 if( bMayRecursive ){ 5192 if( pSel->selFlags & SF_Recursive ){ 5193 pCte->zCteErr = "multiple recursive references: %s"; 5194 }else{ 5195 pCte->zCteErr = "recursive reference in a subquery: %s"; 5196 } 5197 sqlite3WalkSelect(pWalker, pSel); 5198 } 5199 pCte->zCteErr = 0; 5200 pParse->pWith = pSavedWith; 5201 return 1; /* Success */ 5202 } 5203 return 0; /* No match */ 5204 } 5205 #endif 5206 5207 #ifndef SQLITE_OMIT_CTE 5208 /* 5209 ** If the SELECT passed as the second argument has an associated WITH 5210 ** clause, pop it from the stack stored as part of the Parse object. 5211 ** 5212 ** This function is used as the xSelectCallback2() callback by 5213 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5214 ** names and other FROM clause elements. 5215 */ 5216 static void selectPopWith(Walker *pWalker, Select *p){ 5217 Parse *pParse = pWalker->pParse; 5218 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5219 With *pWith = findRightmost(p)->pWith; 5220 if( pWith!=0 ){ 5221 assert( pParse->pWith==pWith || pParse->nErr ); 5222 pParse->pWith = pWith->pOuter; 5223 } 5224 } 5225 } 5226 #else 5227 #define selectPopWith 0 5228 #endif 5229 5230 /* 5231 ** The SrcList_item structure passed as the second argument represents a 5232 ** sub-query in the FROM clause of a SELECT statement. This function 5233 ** allocates and populates the SrcList_item.pTab object. If successful, 5234 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5235 ** SQLITE_NOMEM. 5236 */ 5237 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5238 Select *pSel = pFrom->pSelect; 5239 Table *pTab; 5240 5241 assert( pSel ); 5242 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5243 if( pTab==0 ) return SQLITE_NOMEM; 5244 pTab->nTabRef = 1; 5245 if( pFrom->zAlias ){ 5246 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5247 }else{ 5248 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5249 } 5250 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5251 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5252 pTab->iPKey = -1; 5253 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5254 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5255 /* The usual case - do not allow ROWID on a subquery */ 5256 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5257 #else 5258 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5259 #endif 5260 5261 5262 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5263 } 5264 5265 /* 5266 ** This routine is a Walker callback for "expanding" a SELECT statement. 5267 ** "Expanding" means to do the following: 5268 ** 5269 ** (1) Make sure VDBE cursor numbers have been assigned to every 5270 ** element of the FROM clause. 5271 ** 5272 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5273 ** defines FROM clause. When views appear in the FROM clause, 5274 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5275 ** that implements the view. A copy is made of the view's SELECT 5276 ** statement so that we can freely modify or delete that statement 5277 ** without worrying about messing up the persistent representation 5278 ** of the view. 5279 ** 5280 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5281 ** on joins and the ON and USING clause of joins. 5282 ** 5283 ** (4) Scan the list of columns in the result set (pEList) looking 5284 ** for instances of the "*" operator or the TABLE.* operator. 5285 ** If found, expand each "*" to be every column in every table 5286 ** and TABLE.* to be every column in TABLE. 5287 ** 5288 */ 5289 static int selectExpander(Walker *pWalker, Select *p){ 5290 Parse *pParse = pWalker->pParse; 5291 int i, j, k, rc; 5292 SrcList *pTabList; 5293 ExprList *pEList; 5294 SrcItem *pFrom; 5295 sqlite3 *db = pParse->db; 5296 Expr *pE, *pRight, *pExpr; 5297 u16 selFlags = p->selFlags; 5298 u32 elistFlags = 0; 5299 5300 p->selFlags |= SF_Expanded; 5301 if( db->mallocFailed ){ 5302 return WRC_Abort; 5303 } 5304 assert( p->pSrc!=0 ); 5305 if( (selFlags & SF_Expanded)!=0 ){ 5306 return WRC_Prune; 5307 } 5308 if( pWalker->eCode ){ 5309 /* Renumber selId because it has been copied from a view */ 5310 p->selId = ++pParse->nSelect; 5311 } 5312 pTabList = p->pSrc; 5313 pEList = p->pEList; 5314 sqlite3WithPush(pParse, p->pWith, 0); 5315 5316 /* Make sure cursor numbers have been assigned to all entries in 5317 ** the FROM clause of the SELECT statement. 5318 */ 5319 sqlite3SrcListAssignCursors(pParse, pTabList); 5320 5321 /* Look up every table named in the FROM clause of the select. If 5322 ** an entry of the FROM clause is a subquery instead of a table or view, 5323 ** then create a transient table structure to describe the subquery. 5324 */ 5325 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5326 Table *pTab; 5327 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5328 if( pFrom->pTab ) continue; 5329 assert( pFrom->fg.isRecursive==0 ); 5330 if( pFrom->zName==0 ){ 5331 #ifndef SQLITE_OMIT_SUBQUERY 5332 Select *pSel = pFrom->pSelect; 5333 /* A sub-query in the FROM clause of a SELECT */ 5334 assert( pSel!=0 ); 5335 assert( pFrom->pTab==0 ); 5336 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5337 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5338 #endif 5339 #ifndef SQLITE_OMIT_CTE 5340 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5341 if( rc>1 ) return WRC_Abort; 5342 pTab = pFrom->pTab; 5343 assert( pTab!=0 ); 5344 #endif 5345 }else{ 5346 /* An ordinary table or view name in the FROM clause */ 5347 assert( pFrom->pTab==0 ); 5348 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5349 if( pTab==0 ) return WRC_Abort; 5350 if( pTab->nTabRef>=0xffff ){ 5351 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5352 pTab->zName); 5353 pFrom->pTab = 0; 5354 return WRC_Abort; 5355 } 5356 pTab->nTabRef++; 5357 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5358 return WRC_Abort; 5359 } 5360 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5361 if( IsVirtual(pTab) || pTab->pSelect ){ 5362 i16 nCol; 5363 u8 eCodeOrig = pWalker->eCode; 5364 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5365 assert( pFrom->pSelect==0 ); 5366 if( pTab->pSelect 5367 && (db->flags & SQLITE_EnableView)==0 5368 && pTab->pSchema!=db->aDb[1].pSchema 5369 ){ 5370 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5371 pTab->zName); 5372 } 5373 #ifndef SQLITE_OMIT_VIRTUALTABLE 5374 if( IsVirtual(pTab) 5375 && pFrom->fg.fromDDL 5376 && ALWAYS(pTab->pVTable!=0) 5377 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5378 ){ 5379 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5380 pTab->zName); 5381 } 5382 #endif 5383 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5384 nCol = pTab->nCol; 5385 pTab->nCol = -1; 5386 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5387 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5388 pWalker->eCode = eCodeOrig; 5389 pTab->nCol = nCol; 5390 } 5391 #endif 5392 } 5393 5394 /* Locate the index named by the INDEXED BY clause, if any. */ 5395 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5396 return WRC_Abort; 5397 } 5398 } 5399 5400 /* Process NATURAL keywords, and ON and USING clauses of joins. 5401 */ 5402 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5403 return WRC_Abort; 5404 } 5405 5406 /* For every "*" that occurs in the column list, insert the names of 5407 ** all columns in all tables. And for every TABLE.* insert the names 5408 ** of all columns in TABLE. The parser inserted a special expression 5409 ** with the TK_ASTERISK operator for each "*" that it found in the column 5410 ** list. The following code just has to locate the TK_ASTERISK 5411 ** expressions and expand each one to the list of all columns in 5412 ** all tables. 5413 ** 5414 ** The first loop just checks to see if there are any "*" operators 5415 ** that need expanding. 5416 */ 5417 for(k=0; k<pEList->nExpr; k++){ 5418 pE = pEList->a[k].pExpr; 5419 if( pE->op==TK_ASTERISK ) break; 5420 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5421 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5422 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5423 elistFlags |= pE->flags; 5424 } 5425 if( k<pEList->nExpr ){ 5426 /* 5427 ** If we get here it means the result set contains one or more "*" 5428 ** operators that need to be expanded. Loop through each expression 5429 ** in the result set and expand them one by one. 5430 */ 5431 struct ExprList_item *a = pEList->a; 5432 ExprList *pNew = 0; 5433 int flags = pParse->db->flags; 5434 int longNames = (flags & SQLITE_FullColNames)!=0 5435 && (flags & SQLITE_ShortColNames)==0; 5436 5437 for(k=0; k<pEList->nExpr; k++){ 5438 pE = a[k].pExpr; 5439 elistFlags |= pE->flags; 5440 pRight = pE->pRight; 5441 assert( pE->op!=TK_DOT || pRight!=0 ); 5442 if( pE->op!=TK_ASTERISK 5443 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5444 ){ 5445 /* This particular expression does not need to be expanded. 5446 */ 5447 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5448 if( pNew ){ 5449 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5450 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5451 a[k].zEName = 0; 5452 } 5453 a[k].pExpr = 0; 5454 }else{ 5455 /* This expression is a "*" or a "TABLE.*" and needs to be 5456 ** expanded. */ 5457 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5458 char *zTName = 0; /* text of name of TABLE */ 5459 if( pE->op==TK_DOT ){ 5460 assert( pE->pLeft!=0 ); 5461 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5462 zTName = pE->pLeft->u.zToken; 5463 } 5464 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5465 Table *pTab = pFrom->pTab; 5466 Select *pSub = pFrom->pSelect; 5467 char *zTabName = pFrom->zAlias; 5468 const char *zSchemaName = 0; 5469 int iDb; 5470 if( zTabName==0 ){ 5471 zTabName = pTab->zName; 5472 } 5473 if( db->mallocFailed ) break; 5474 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5475 pSub = 0; 5476 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5477 continue; 5478 } 5479 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5480 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5481 } 5482 for(j=0; j<pTab->nCol; j++){ 5483 char *zName = pTab->aCol[j].zName; 5484 char *zColname; /* The computed column name */ 5485 char *zToFree; /* Malloced string that needs to be freed */ 5486 Token sColname; /* Computed column name as a token */ 5487 5488 assert( zName ); 5489 if( zTName && pSub 5490 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5491 ){ 5492 continue; 5493 } 5494 5495 /* If a column is marked as 'hidden', omit it from the expanded 5496 ** result-set list unless the SELECT has the SF_IncludeHidden 5497 ** bit set. 5498 */ 5499 if( (p->selFlags & SF_IncludeHidden)==0 5500 && IsHiddenColumn(&pTab->aCol[j]) 5501 ){ 5502 continue; 5503 } 5504 tableSeen = 1; 5505 5506 if( i>0 && zTName==0 ){ 5507 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5508 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5509 ){ 5510 /* In a NATURAL join, omit the join columns from the 5511 ** table to the right of the join */ 5512 continue; 5513 } 5514 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5515 /* In a join with a USING clause, omit columns in the 5516 ** using clause from the table on the right. */ 5517 continue; 5518 } 5519 } 5520 pRight = sqlite3Expr(db, TK_ID, zName); 5521 zColname = zName; 5522 zToFree = 0; 5523 if( longNames || pTabList->nSrc>1 ){ 5524 Expr *pLeft; 5525 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5526 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5527 if( zSchemaName ){ 5528 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5529 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5530 } 5531 if( longNames ){ 5532 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5533 zToFree = zColname; 5534 } 5535 }else{ 5536 pExpr = pRight; 5537 } 5538 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5539 sqlite3TokenInit(&sColname, zColname); 5540 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5541 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5542 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5543 sqlite3DbFree(db, pX->zEName); 5544 if( pSub ){ 5545 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5546 testcase( pX->zEName==0 ); 5547 }else{ 5548 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5549 zSchemaName, zTabName, zColname); 5550 testcase( pX->zEName==0 ); 5551 } 5552 pX->eEName = ENAME_TAB; 5553 } 5554 sqlite3DbFree(db, zToFree); 5555 } 5556 } 5557 if( !tableSeen ){ 5558 if( zTName ){ 5559 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5560 }else{ 5561 sqlite3ErrorMsg(pParse, "no tables specified"); 5562 } 5563 } 5564 } 5565 } 5566 sqlite3ExprListDelete(db, pEList); 5567 p->pEList = pNew; 5568 } 5569 if( p->pEList ){ 5570 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5571 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5572 return WRC_Abort; 5573 } 5574 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5575 p->selFlags |= SF_ComplexResult; 5576 } 5577 } 5578 return WRC_Continue; 5579 } 5580 5581 #if SQLITE_DEBUG 5582 /* 5583 ** Always assert. This xSelectCallback2 implementation proves that the 5584 ** xSelectCallback2 is never invoked. 5585 */ 5586 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5587 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5588 assert( 0 ); 5589 } 5590 #endif 5591 /* 5592 ** This routine "expands" a SELECT statement and all of its subqueries. 5593 ** For additional information on what it means to "expand" a SELECT 5594 ** statement, see the comment on the selectExpand worker callback above. 5595 ** 5596 ** Expanding a SELECT statement is the first step in processing a 5597 ** SELECT statement. The SELECT statement must be expanded before 5598 ** name resolution is performed. 5599 ** 5600 ** If anything goes wrong, an error message is written into pParse. 5601 ** The calling function can detect the problem by looking at pParse->nErr 5602 ** and/or pParse->db->mallocFailed. 5603 */ 5604 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5605 Walker w; 5606 w.xExprCallback = sqlite3ExprWalkNoop; 5607 w.pParse = pParse; 5608 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5609 w.xSelectCallback = convertCompoundSelectToSubquery; 5610 w.xSelectCallback2 = 0; 5611 sqlite3WalkSelect(&w, pSelect); 5612 } 5613 w.xSelectCallback = selectExpander; 5614 w.xSelectCallback2 = selectPopWith; 5615 w.eCode = 0; 5616 sqlite3WalkSelect(&w, pSelect); 5617 } 5618 5619 5620 #ifndef SQLITE_OMIT_SUBQUERY 5621 /* 5622 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5623 ** interface. 5624 ** 5625 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5626 ** information to the Table structure that represents the result set 5627 ** of that subquery. 5628 ** 5629 ** The Table structure that represents the result set was constructed 5630 ** by selectExpander() but the type and collation information was omitted 5631 ** at that point because identifiers had not yet been resolved. This 5632 ** routine is called after identifier resolution. 5633 */ 5634 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5635 Parse *pParse; 5636 int i; 5637 SrcList *pTabList; 5638 SrcItem *pFrom; 5639 5640 assert( p->selFlags & SF_Resolved ); 5641 if( p->selFlags & SF_HasTypeInfo ) return; 5642 p->selFlags |= SF_HasTypeInfo; 5643 pParse = pWalker->pParse; 5644 pTabList = p->pSrc; 5645 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5646 Table *pTab = pFrom->pTab; 5647 assert( pTab!=0 ); 5648 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5649 /* A sub-query in the FROM clause of a SELECT */ 5650 Select *pSel = pFrom->pSelect; 5651 if( pSel ){ 5652 while( pSel->pPrior ) pSel = pSel->pPrior; 5653 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5654 SQLITE_AFF_NONE); 5655 } 5656 } 5657 } 5658 } 5659 #endif 5660 5661 5662 /* 5663 ** This routine adds datatype and collating sequence information to 5664 ** the Table structures of all FROM-clause subqueries in a 5665 ** SELECT statement. 5666 ** 5667 ** Use this routine after name resolution. 5668 */ 5669 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5670 #ifndef SQLITE_OMIT_SUBQUERY 5671 Walker w; 5672 w.xSelectCallback = sqlite3SelectWalkNoop; 5673 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5674 w.xExprCallback = sqlite3ExprWalkNoop; 5675 w.pParse = pParse; 5676 sqlite3WalkSelect(&w, pSelect); 5677 #endif 5678 } 5679 5680 5681 /* 5682 ** This routine sets up a SELECT statement for processing. The 5683 ** following is accomplished: 5684 ** 5685 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5686 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5687 ** * ON and USING clauses are shifted into WHERE statements 5688 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5689 ** * Identifiers in expression are matched to tables. 5690 ** 5691 ** This routine acts recursively on all subqueries within the SELECT. 5692 */ 5693 void sqlite3SelectPrep( 5694 Parse *pParse, /* The parser context */ 5695 Select *p, /* The SELECT statement being coded. */ 5696 NameContext *pOuterNC /* Name context for container */ 5697 ){ 5698 assert( p!=0 || pParse->db->mallocFailed ); 5699 if( pParse->db->mallocFailed ) return; 5700 if( p->selFlags & SF_HasTypeInfo ) return; 5701 sqlite3SelectExpand(pParse, p); 5702 if( pParse->nErr || pParse->db->mallocFailed ) return; 5703 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5704 if( pParse->nErr || pParse->db->mallocFailed ) return; 5705 sqlite3SelectAddTypeInfo(pParse, p); 5706 } 5707 5708 /* 5709 ** Reset the aggregate accumulator. 5710 ** 5711 ** The aggregate accumulator is a set of memory cells that hold 5712 ** intermediate results while calculating an aggregate. This 5713 ** routine generates code that stores NULLs in all of those memory 5714 ** cells. 5715 */ 5716 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5717 Vdbe *v = pParse->pVdbe; 5718 int i; 5719 struct AggInfo_func *pFunc; 5720 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5721 if( nReg==0 ) return; 5722 if( pParse->nErr || pParse->db->mallocFailed ) return; 5723 #ifdef SQLITE_DEBUG 5724 /* Verify that all AggInfo registers are within the range specified by 5725 ** AggInfo.mnReg..AggInfo.mxReg */ 5726 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5727 for(i=0; i<pAggInfo->nColumn; i++){ 5728 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5729 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5730 } 5731 for(i=0; i<pAggInfo->nFunc; i++){ 5732 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5733 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5734 } 5735 #endif 5736 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5737 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5738 if( pFunc->iDistinct>=0 ){ 5739 Expr *pE = pFunc->pFExpr; 5740 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5741 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5742 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5743 "argument"); 5744 pFunc->iDistinct = -1; 5745 }else{ 5746 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5747 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5748 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5749 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5750 pFunc->pFunc->zName)); 5751 } 5752 } 5753 } 5754 } 5755 5756 /* 5757 ** Invoke the OP_AggFinalize opcode for every aggregate function 5758 ** in the AggInfo structure. 5759 */ 5760 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5761 Vdbe *v = pParse->pVdbe; 5762 int i; 5763 struct AggInfo_func *pF; 5764 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5765 ExprList *pList = pF->pFExpr->x.pList; 5766 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5767 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5768 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5769 } 5770 } 5771 5772 5773 /* 5774 ** Update the accumulator memory cells for an aggregate based on 5775 ** the current cursor position. 5776 ** 5777 ** If regAcc is non-zero and there are no min() or max() aggregates 5778 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5779 ** registers if register regAcc contains 0. The caller will take care 5780 ** of setting and clearing regAcc. 5781 */ 5782 static void updateAccumulator( 5783 Parse *pParse, 5784 int regAcc, 5785 AggInfo *pAggInfo, 5786 int eDistinctType 5787 ){ 5788 Vdbe *v = pParse->pVdbe; 5789 int i; 5790 int regHit = 0; 5791 int addrHitTest = 0; 5792 struct AggInfo_func *pF; 5793 struct AggInfo_col *pC; 5794 5795 pAggInfo->directMode = 1; 5796 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5797 int nArg; 5798 int addrNext = 0; 5799 int regAgg; 5800 ExprList *pList = pF->pFExpr->x.pList; 5801 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5802 assert( !IsWindowFunc(pF->pFExpr) ); 5803 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5804 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5805 if( pAggInfo->nAccumulator 5806 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5807 && regAcc 5808 ){ 5809 /* If regAcc==0, there there exists some min() or max() function 5810 ** without a FILTER clause that will ensure the magnet registers 5811 ** are populated. */ 5812 if( regHit==0 ) regHit = ++pParse->nMem; 5813 /* If this is the first row of the group (regAcc contains 0), clear the 5814 ** "magnet" register regHit so that the accumulator registers 5815 ** are populated if the FILTER clause jumps over the the 5816 ** invocation of min() or max() altogether. Or, if this is not 5817 ** the first row (regAcc contains 1), set the magnet register so that 5818 ** the accumulators are not populated unless the min()/max() is invoked 5819 ** and indicates that they should be. */ 5820 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5821 } 5822 addrNext = sqlite3VdbeMakeLabel(pParse); 5823 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5824 } 5825 if( pList ){ 5826 nArg = pList->nExpr; 5827 regAgg = sqlite3GetTempRange(pParse, nArg); 5828 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5829 }else{ 5830 nArg = 0; 5831 regAgg = 0; 5832 } 5833 if( pF->iDistinct>=0 && pList ){ 5834 if( addrNext==0 ){ 5835 addrNext = sqlite3VdbeMakeLabel(pParse); 5836 } 5837 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5838 pF->iDistinct, addrNext, pList, regAgg); 5839 } 5840 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5841 CollSeq *pColl = 0; 5842 struct ExprList_item *pItem; 5843 int j; 5844 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5845 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5846 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5847 } 5848 if( !pColl ){ 5849 pColl = pParse->db->pDfltColl; 5850 } 5851 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5852 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5853 } 5854 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5855 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5856 sqlite3VdbeChangeP5(v, (u8)nArg); 5857 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5858 if( addrNext ){ 5859 sqlite3VdbeResolveLabel(v, addrNext); 5860 } 5861 } 5862 if( regHit==0 && pAggInfo->nAccumulator ){ 5863 regHit = regAcc; 5864 } 5865 if( regHit ){ 5866 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5867 } 5868 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5869 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5870 } 5871 5872 pAggInfo->directMode = 0; 5873 if( addrHitTest ){ 5874 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5875 } 5876 } 5877 5878 /* 5879 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5880 ** count(*) query ("SELECT count(*) FROM pTab"). 5881 */ 5882 #ifndef SQLITE_OMIT_EXPLAIN 5883 static void explainSimpleCount( 5884 Parse *pParse, /* Parse context */ 5885 Table *pTab, /* Table being queried */ 5886 Index *pIdx /* Index used to optimize scan, or NULL */ 5887 ){ 5888 if( pParse->explain==2 ){ 5889 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5890 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 5891 pTab->zName, 5892 bCover ? " USING COVERING INDEX " : "", 5893 bCover ? pIdx->zName : "" 5894 ); 5895 } 5896 } 5897 #else 5898 # define explainSimpleCount(a,b,c) 5899 #endif 5900 5901 /* 5902 ** sqlite3WalkExpr() callback used by havingToWhere(). 5903 ** 5904 ** If the node passed to the callback is a TK_AND node, return 5905 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5906 ** 5907 ** Otherwise, return WRC_Prune. In this case, also check if the 5908 ** sub-expression matches the criteria for being moved to the WHERE 5909 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5910 ** within the HAVING expression with a constant "1". 5911 */ 5912 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5913 if( pExpr->op!=TK_AND ){ 5914 Select *pS = pWalker->u.pSelect; 5915 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 5916 && ExprAlwaysFalse(pExpr)==0 5917 ){ 5918 sqlite3 *db = pWalker->pParse->db; 5919 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5920 if( pNew ){ 5921 Expr *pWhere = pS->pWhere; 5922 SWAP(Expr, *pNew, *pExpr); 5923 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5924 pS->pWhere = pNew; 5925 pWalker->eCode = 1; 5926 } 5927 } 5928 return WRC_Prune; 5929 } 5930 return WRC_Continue; 5931 } 5932 5933 /* 5934 ** Transfer eligible terms from the HAVING clause of a query, which is 5935 ** processed after grouping, to the WHERE clause, which is processed before 5936 ** grouping. For example, the query: 5937 ** 5938 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5939 ** 5940 ** can be rewritten as: 5941 ** 5942 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5943 ** 5944 ** A term of the HAVING expression is eligible for transfer if it consists 5945 ** entirely of constants and expressions that are also GROUP BY terms that 5946 ** use the "BINARY" collation sequence. 5947 */ 5948 static void havingToWhere(Parse *pParse, Select *p){ 5949 Walker sWalker; 5950 memset(&sWalker, 0, sizeof(sWalker)); 5951 sWalker.pParse = pParse; 5952 sWalker.xExprCallback = havingToWhereExprCb; 5953 sWalker.u.pSelect = p; 5954 sqlite3WalkExpr(&sWalker, p->pHaving); 5955 #if SELECTTRACE_ENABLED 5956 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5957 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5958 sqlite3TreeViewSelect(0, p, 0); 5959 } 5960 #endif 5961 } 5962 5963 /* 5964 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5965 ** If it is, then return the SrcList_item for the prior view. If it is not, 5966 ** then return 0. 5967 */ 5968 static SrcItem *isSelfJoinView( 5969 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5970 SrcItem *pThis /* Search for prior reference to this subquery */ 5971 ){ 5972 SrcItem *pItem; 5973 assert( pThis->pSelect!=0 ); 5974 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 5975 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5976 Select *pS1; 5977 if( pItem->pSelect==0 ) continue; 5978 if( pItem->fg.viaCoroutine ) continue; 5979 if( pItem->zName==0 ) continue; 5980 assert( pItem->pTab!=0 ); 5981 assert( pThis->pTab!=0 ); 5982 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5983 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5984 pS1 = pItem->pSelect; 5985 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5986 /* The query flattener left two different CTE tables with identical 5987 ** names in the same FROM clause. */ 5988 continue; 5989 } 5990 if( pItem->pSelect->selFlags & SF_PushDown ){ 5991 /* The view was modified by some other optimization such as 5992 ** pushDownWhereTerms() */ 5993 continue; 5994 } 5995 return pItem; 5996 } 5997 return 0; 5998 } 5999 6000 /* 6001 ** Deallocate a single AggInfo object 6002 */ 6003 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6004 sqlite3DbFree(db, p->aCol); 6005 sqlite3DbFree(db, p->aFunc); 6006 sqlite3DbFreeNN(db, p); 6007 } 6008 6009 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6010 /* 6011 ** Attempt to transform a query of the form 6012 ** 6013 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6014 ** 6015 ** Into this: 6016 ** 6017 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6018 ** 6019 ** The transformation only works if all of the following are true: 6020 ** 6021 ** * The subquery is a UNION ALL of two or more terms 6022 ** * The subquery does not have a LIMIT clause 6023 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6024 ** * The outer query is a simple count(*) with no WHERE clause or other 6025 ** extraneous syntax. 6026 ** 6027 ** Return TRUE if the optimization is undertaken. 6028 */ 6029 static int countOfViewOptimization(Parse *pParse, Select *p){ 6030 Select *pSub, *pPrior; 6031 Expr *pExpr; 6032 Expr *pCount; 6033 sqlite3 *db; 6034 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6035 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6036 if( p->pWhere ) return 0; 6037 if( p->pGroupBy ) return 0; 6038 pExpr = p->pEList->a[0].pExpr; 6039 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6040 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6041 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6042 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6043 pSub = p->pSrc->a[0].pSelect; 6044 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6045 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6046 do{ 6047 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6048 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6049 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6050 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6051 pSub = pSub->pPrior; /* Repeat over compound */ 6052 }while( pSub ); 6053 6054 /* If we reach this point then it is OK to perform the transformation */ 6055 6056 db = pParse->db; 6057 pCount = pExpr; 6058 pExpr = 0; 6059 pSub = p->pSrc->a[0].pSelect; 6060 p->pSrc->a[0].pSelect = 0; 6061 sqlite3SrcListDelete(db, p->pSrc); 6062 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6063 while( pSub ){ 6064 Expr *pTerm; 6065 pPrior = pSub->pPrior; 6066 pSub->pPrior = 0; 6067 pSub->pNext = 0; 6068 pSub->selFlags |= SF_Aggregate; 6069 pSub->selFlags &= ~SF_Compound; 6070 pSub->nSelectRow = 0; 6071 sqlite3ExprListDelete(db, pSub->pEList); 6072 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6073 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6074 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6075 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6076 if( pExpr==0 ){ 6077 pExpr = pTerm; 6078 }else{ 6079 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6080 } 6081 pSub = pPrior; 6082 } 6083 p->pEList->a[0].pExpr = pExpr; 6084 p->selFlags &= ~SF_Aggregate; 6085 6086 #if SELECTTRACE_ENABLED 6087 if( sqlite3SelectTrace & 0x400 ){ 6088 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6089 sqlite3TreeViewSelect(0, p, 0); 6090 } 6091 #endif 6092 return 1; 6093 } 6094 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6095 6096 /* 6097 ** Generate code for the SELECT statement given in the p argument. 6098 ** 6099 ** The results are returned according to the SelectDest structure. 6100 ** See comments in sqliteInt.h for further information. 6101 ** 6102 ** This routine returns the number of errors. If any errors are 6103 ** encountered, then an appropriate error message is left in 6104 ** pParse->zErrMsg. 6105 ** 6106 ** This routine does NOT free the Select structure passed in. The 6107 ** calling function needs to do that. 6108 */ 6109 int sqlite3Select( 6110 Parse *pParse, /* The parser context */ 6111 Select *p, /* The SELECT statement being coded. */ 6112 SelectDest *pDest /* What to do with the query results */ 6113 ){ 6114 int i, j; /* Loop counters */ 6115 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6116 Vdbe *v; /* The virtual machine under construction */ 6117 int isAgg; /* True for select lists like "count(*)" */ 6118 ExprList *pEList = 0; /* List of columns to extract. */ 6119 SrcList *pTabList; /* List of tables to select from */ 6120 Expr *pWhere; /* The WHERE clause. May be NULL */ 6121 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6122 Expr *pHaving; /* The HAVING clause. May be NULL */ 6123 AggInfo *pAggInfo = 0; /* Aggregate information */ 6124 int rc = 1; /* Value to return from this function */ 6125 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6126 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6127 int iEnd; /* Address of the end of the query */ 6128 sqlite3 *db; /* The database connection */ 6129 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6130 u8 minMaxFlag; /* Flag for min/max queries */ 6131 6132 db = pParse->db; 6133 v = sqlite3GetVdbe(pParse); 6134 if( p==0 || db->mallocFailed || pParse->nErr ){ 6135 return 1; 6136 } 6137 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6138 #if SELECTTRACE_ENABLED 6139 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6140 if( sqlite3SelectTrace & 0x100 ){ 6141 sqlite3TreeViewSelect(0, p, 0); 6142 } 6143 #endif 6144 6145 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6146 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6147 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6148 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6149 if( IgnorableDistinct(pDest) ){ 6150 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6151 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6152 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6153 /* All of these destinations are also able to ignore the ORDER BY clause */ 6154 if( p->pOrderBy ){ 6155 #if SELECTTRACE_ENABLED 6156 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6157 if( sqlite3SelectTrace & 0x100 ){ 6158 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6159 } 6160 #endif 6161 sqlite3ParserAddCleanup(pParse, 6162 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6163 p->pOrderBy); 6164 testcase( pParse->earlyCleanup ); 6165 p->pOrderBy = 0; 6166 } 6167 p->selFlags &= ~SF_Distinct; 6168 p->selFlags |= SF_NoopOrderBy; 6169 } 6170 sqlite3SelectPrep(pParse, p, 0); 6171 if( pParse->nErr || db->mallocFailed ){ 6172 goto select_end; 6173 } 6174 assert( p->pEList!=0 ); 6175 #if SELECTTRACE_ENABLED 6176 if( sqlite3SelectTrace & 0x104 ){ 6177 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6178 sqlite3TreeViewSelect(0, p, 0); 6179 } 6180 #endif 6181 6182 /* If the SF_UpdateFrom flag is set, then this function is being called 6183 ** as part of populating the temp table for an UPDATE...FROM statement. 6184 ** In this case, it is an error if the target object (pSrc->a[0]) name 6185 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */ 6186 if( p->selFlags & SF_UpdateFrom ){ 6187 SrcItem *p0 = &p->pSrc->a[0]; 6188 for(i=1; i<p->pSrc->nSrc; i++){ 6189 SrcItem *p1 = &p->pSrc->a[i]; 6190 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6191 sqlite3ErrorMsg(pParse, 6192 "target object/alias may not appear in FROM clause: %s", 6193 p0->zAlias ? p0->zAlias : p0->pTab->zName 6194 ); 6195 goto select_end; 6196 } 6197 } 6198 } 6199 6200 if( pDest->eDest==SRT_Output ){ 6201 generateColumnNames(pParse, p); 6202 } 6203 6204 #ifndef SQLITE_OMIT_WINDOWFUNC 6205 if( sqlite3WindowRewrite(pParse, p) ){ 6206 assert( db->mallocFailed || pParse->nErr>0 ); 6207 goto select_end; 6208 } 6209 #if SELECTTRACE_ENABLED 6210 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6211 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6212 sqlite3TreeViewSelect(0, p, 0); 6213 } 6214 #endif 6215 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6216 pTabList = p->pSrc; 6217 isAgg = (p->selFlags & SF_Aggregate)!=0; 6218 memset(&sSort, 0, sizeof(sSort)); 6219 sSort.pOrderBy = p->pOrderBy; 6220 6221 /* Try to do various optimizations (flattening subqueries, and strength 6222 ** reduction of join operators) in the FROM clause up into the main query 6223 */ 6224 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6225 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6226 SrcItem *pItem = &pTabList->a[i]; 6227 Select *pSub = pItem->pSelect; 6228 Table *pTab = pItem->pTab; 6229 6230 /* The expander should have already created transient Table objects 6231 ** even for FROM clause elements such as subqueries that do not correspond 6232 ** to a real table */ 6233 assert( pTab!=0 ); 6234 6235 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6236 ** of the LEFT JOIN used in the WHERE clause. 6237 */ 6238 if( (pItem->fg.jointype & JT_LEFT)!=0 6239 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6240 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6241 ){ 6242 SELECTTRACE(0x100,pParse,p, 6243 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6244 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6245 unsetJoinExpr(p->pWhere, pItem->iCursor); 6246 } 6247 6248 /* No futher action if this term of the FROM clause is no a subquery */ 6249 if( pSub==0 ) continue; 6250 6251 /* Catch mismatch in the declared columns of a view and the number of 6252 ** columns in the SELECT on the RHS */ 6253 if( pTab->nCol!=pSub->pEList->nExpr ){ 6254 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6255 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6256 goto select_end; 6257 } 6258 6259 /* Do not try to flatten an aggregate subquery. 6260 ** 6261 ** Flattening an aggregate subquery is only possible if the outer query 6262 ** is not a join. But if the outer query is not a join, then the subquery 6263 ** will be implemented as a co-routine and there is no advantage to 6264 ** flattening in that case. 6265 */ 6266 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6267 assert( pSub->pGroupBy==0 ); 6268 6269 /* If the outer query contains a "complex" result set (that is, 6270 ** if the result set of the outer query uses functions or subqueries) 6271 ** and if the subquery contains an ORDER BY clause and if 6272 ** it will be implemented as a co-routine, then do not flatten. This 6273 ** restriction allows SQL constructs like this: 6274 ** 6275 ** SELECT expensive_function(x) 6276 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6277 ** 6278 ** The expensive_function() is only computed on the 10 rows that 6279 ** are output, rather than every row of the table. 6280 ** 6281 ** The requirement that the outer query have a complex result set 6282 ** means that flattening does occur on simpler SQL constraints without 6283 ** the expensive_function() like: 6284 ** 6285 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6286 */ 6287 if( pSub->pOrderBy!=0 6288 && i==0 6289 && (p->selFlags & SF_ComplexResult)!=0 6290 && (pTabList->nSrc==1 6291 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6292 ){ 6293 continue; 6294 } 6295 6296 if( flattenSubquery(pParse, p, i, isAgg) ){ 6297 if( pParse->nErr ) goto select_end; 6298 /* This subquery can be absorbed into its parent. */ 6299 i = -1; 6300 } 6301 pTabList = p->pSrc; 6302 if( db->mallocFailed ) goto select_end; 6303 if( !IgnorableOrderby(pDest) ){ 6304 sSort.pOrderBy = p->pOrderBy; 6305 } 6306 } 6307 #endif 6308 6309 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6310 /* Handle compound SELECT statements using the separate multiSelect() 6311 ** procedure. 6312 */ 6313 if( p->pPrior ){ 6314 rc = multiSelect(pParse, p, pDest); 6315 #if SELECTTRACE_ENABLED 6316 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6317 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6318 sqlite3TreeViewSelect(0, p, 0); 6319 } 6320 #endif 6321 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6322 return rc; 6323 } 6324 #endif 6325 6326 /* Do the WHERE-clause constant propagation optimization if this is 6327 ** a join. No need to speed time on this operation for non-join queries 6328 ** as the equivalent optimization will be handled by query planner in 6329 ** sqlite3WhereBegin(). 6330 */ 6331 if( pTabList->nSrc>1 6332 && OptimizationEnabled(db, SQLITE_PropagateConst) 6333 && propagateConstants(pParse, p) 6334 ){ 6335 #if SELECTTRACE_ENABLED 6336 if( sqlite3SelectTrace & 0x100 ){ 6337 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6338 sqlite3TreeViewSelect(0, p, 0); 6339 } 6340 #endif 6341 }else{ 6342 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6343 } 6344 6345 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6346 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6347 && countOfViewOptimization(pParse, p) 6348 ){ 6349 if( db->mallocFailed ) goto select_end; 6350 pEList = p->pEList; 6351 pTabList = p->pSrc; 6352 } 6353 #endif 6354 6355 /* For each term in the FROM clause, do two things: 6356 ** (1) Authorized unreferenced tables 6357 ** (2) Generate code for all sub-queries 6358 */ 6359 for(i=0; i<pTabList->nSrc; i++){ 6360 SrcItem *pItem = &pTabList->a[i]; 6361 SrcItem *pPrior; 6362 SelectDest dest; 6363 Select *pSub; 6364 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6365 const char *zSavedAuthContext; 6366 #endif 6367 6368 /* Issue SQLITE_READ authorizations with a fake column name for any 6369 ** tables that are referenced but from which no values are extracted. 6370 ** Examples of where these kinds of null SQLITE_READ authorizations 6371 ** would occur: 6372 ** 6373 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6374 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6375 ** 6376 ** The fake column name is an empty string. It is possible for a table to 6377 ** have a column named by the empty string, in which case there is no way to 6378 ** distinguish between an unreferenced table and an actual reference to the 6379 ** "" column. The original design was for the fake column name to be a NULL, 6380 ** which would be unambiguous. But legacy authorization callbacks might 6381 ** assume the column name is non-NULL and segfault. The use of an empty 6382 ** string for the fake column name seems safer. 6383 */ 6384 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6385 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6386 } 6387 6388 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6389 /* Generate code for all sub-queries in the FROM clause 6390 */ 6391 pSub = pItem->pSelect; 6392 if( pSub==0 ) continue; 6393 6394 /* The code for a subquery should only be generated once, though it is 6395 ** technically harmless for it to be generated multiple times. The 6396 ** following assert() will detect if something changes to cause 6397 ** the same subquery to be coded multiple times, as a signal to the 6398 ** developers to try to optimize the situation. 6399 ** 6400 ** Update 2019-07-24: 6401 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6402 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6403 ** coded twice. So this assert() now becomes a testcase(). It should 6404 ** be very rare, though. 6405 */ 6406 testcase( pItem->addrFillSub!=0 ); 6407 6408 /* Increment Parse.nHeight by the height of the largest expression 6409 ** tree referred to by this, the parent select. The child select 6410 ** may contain expression trees of at most 6411 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6412 ** more conservative than necessary, but much easier than enforcing 6413 ** an exact limit. 6414 */ 6415 pParse->nHeight += sqlite3SelectExprHeight(p); 6416 6417 /* Make copies of constant WHERE-clause terms in the outer query down 6418 ** inside the subquery. This can help the subquery to run more efficiently. 6419 */ 6420 if( OptimizationEnabled(db, SQLITE_PushDown) 6421 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) 6422 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6423 (pItem->fg.jointype & JT_OUTER)!=0) 6424 ){ 6425 #if SELECTTRACE_ENABLED 6426 if( sqlite3SelectTrace & 0x100 ){ 6427 SELECTTRACE(0x100,pParse,p, 6428 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6429 sqlite3TreeViewSelect(0, p, 0); 6430 } 6431 #endif 6432 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6433 }else{ 6434 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6435 } 6436 6437 zSavedAuthContext = pParse->zAuthContext; 6438 pParse->zAuthContext = pItem->zName; 6439 6440 /* Generate code to implement the subquery 6441 ** 6442 ** The subquery is implemented as a co-routine if: 6443 ** (1) the subquery is guaranteed to be the outer loop (so that 6444 ** it does not need to be computed more than once), and 6445 ** (2) the subquery is not a CTE that should be materialized 6446 ** 6447 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6448 ** implementation? 6449 */ 6450 if( i==0 6451 && (pTabList->nSrc==1 6452 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6453 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6454 ){ 6455 /* Implement a co-routine that will return a single row of the result 6456 ** set on each invocation. 6457 */ 6458 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6459 6460 pItem->regReturn = ++pParse->nMem; 6461 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6462 VdbeComment((v, "%!S", pItem)); 6463 pItem->addrFillSub = addrTop; 6464 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6465 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6466 sqlite3Select(pParse, pSub, &dest); 6467 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6468 pItem->fg.viaCoroutine = 1; 6469 pItem->regResult = dest.iSdst; 6470 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6471 sqlite3VdbeJumpHere(v, addrTop-1); 6472 sqlite3ClearTempRegCache(pParse); 6473 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6474 /* This is a CTE for which materialization code has already been 6475 ** generated. Invoke the subroutine to compute the materialization, 6476 ** the make the pItem->iCursor be a copy of the ephemerial table that 6477 ** holds the result of the materialization. */ 6478 CteUse *pCteUse = pItem->u2.pCteUse; 6479 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6480 if( pItem->iCursor!=pCteUse->iCur ){ 6481 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6482 } 6483 pSub->nSelectRow = pCteUse->nRowEst; 6484 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6485 /* This view has already been materialized by a prior entry in 6486 ** this same FROM clause. Reuse it. */ 6487 if( pPrior->addrFillSub ){ 6488 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6489 } 6490 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6491 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6492 }else{ 6493 /* Materalize the view. If the view is not correlated, generate a 6494 ** subroutine to do the materialization so that subsequent uses of 6495 ** the same view can reuse the materialization. */ 6496 int topAddr; 6497 int onceAddr = 0; 6498 int retAddr; 6499 6500 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6501 pItem->regReturn = ++pParse->nMem; 6502 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6503 pItem->addrFillSub = topAddr+1; 6504 if( pItem->fg.isCorrelated==0 ){ 6505 /* If the subquery is not correlated and if we are not inside of 6506 ** a trigger, then we only need to compute the value of the subquery 6507 ** once. */ 6508 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6509 VdbeComment((v, "materialize %!S", pItem)); 6510 }else{ 6511 VdbeNoopComment((v, "materialize %!S", pItem)); 6512 } 6513 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6514 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6515 sqlite3Select(pParse, pSub, &dest); 6516 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6517 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6518 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6519 VdbeComment((v, "end %!S", pItem)); 6520 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6521 sqlite3ClearTempRegCache(pParse); 6522 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6523 CteUse *pCteUse = pItem->u2.pCteUse; 6524 pCteUse->addrM9e = pItem->addrFillSub; 6525 pCteUse->regRtn = pItem->regReturn; 6526 pCteUse->iCur = pItem->iCursor; 6527 pCteUse->nRowEst = pSub->nSelectRow; 6528 } 6529 } 6530 if( db->mallocFailed ) goto select_end; 6531 pParse->nHeight -= sqlite3SelectExprHeight(p); 6532 pParse->zAuthContext = zSavedAuthContext; 6533 #endif 6534 } 6535 6536 /* Various elements of the SELECT copied into local variables for 6537 ** convenience */ 6538 pEList = p->pEList; 6539 pWhere = p->pWhere; 6540 pGroupBy = p->pGroupBy; 6541 pHaving = p->pHaving; 6542 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6543 6544 #if SELECTTRACE_ENABLED 6545 if( sqlite3SelectTrace & 0x400 ){ 6546 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6547 sqlite3TreeViewSelect(0, p, 0); 6548 } 6549 #endif 6550 6551 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6552 ** if the select-list is the same as the ORDER BY list, then this query 6553 ** can be rewritten as a GROUP BY. In other words, this: 6554 ** 6555 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6556 ** 6557 ** is transformed to: 6558 ** 6559 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6560 ** 6561 ** The second form is preferred as a single index (or temp-table) may be 6562 ** used for both the ORDER BY and DISTINCT processing. As originally 6563 ** written the query must use a temp-table for at least one of the ORDER 6564 ** BY and DISTINCT, and an index or separate temp-table for the other. 6565 */ 6566 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6567 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6568 #ifndef SQLITE_OMIT_WINDOWFUNC 6569 && p->pWin==0 6570 #endif 6571 ){ 6572 p->selFlags &= ~SF_Distinct; 6573 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6574 p->selFlags |= SF_Aggregate; 6575 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6576 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6577 ** original setting of the SF_Distinct flag, not the current setting */ 6578 assert( sDistinct.isTnct ); 6579 6580 #if SELECTTRACE_ENABLED 6581 if( sqlite3SelectTrace & 0x400 ){ 6582 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6583 sqlite3TreeViewSelect(0, p, 0); 6584 } 6585 #endif 6586 } 6587 6588 /* If there is an ORDER BY clause, then create an ephemeral index to 6589 ** do the sorting. But this sorting ephemeral index might end up 6590 ** being unused if the data can be extracted in pre-sorted order. 6591 ** If that is the case, then the OP_OpenEphemeral instruction will be 6592 ** changed to an OP_Noop once we figure out that the sorting index is 6593 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6594 ** that change. 6595 */ 6596 if( sSort.pOrderBy ){ 6597 KeyInfo *pKeyInfo; 6598 pKeyInfo = sqlite3KeyInfoFromExprList( 6599 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6600 sSort.iECursor = pParse->nTab++; 6601 sSort.addrSortIndex = 6602 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6603 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6604 (char*)pKeyInfo, P4_KEYINFO 6605 ); 6606 }else{ 6607 sSort.addrSortIndex = -1; 6608 } 6609 6610 /* If the output is destined for a temporary table, open that table. 6611 */ 6612 if( pDest->eDest==SRT_EphemTab ){ 6613 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6614 } 6615 6616 /* Set the limiter. 6617 */ 6618 iEnd = sqlite3VdbeMakeLabel(pParse); 6619 if( (p->selFlags & SF_FixedLimit)==0 ){ 6620 p->nSelectRow = 320; /* 4 billion rows */ 6621 } 6622 computeLimitRegisters(pParse, p, iEnd); 6623 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6624 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6625 sSort.sortFlags |= SORTFLAG_UseSorter; 6626 } 6627 6628 /* Open an ephemeral index to use for the distinct set. 6629 */ 6630 if( p->selFlags & SF_Distinct ){ 6631 sDistinct.tabTnct = pParse->nTab++; 6632 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6633 sDistinct.tabTnct, 0, 0, 6634 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6635 P4_KEYINFO); 6636 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6637 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6638 }else{ 6639 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6640 } 6641 6642 if( !isAgg && pGroupBy==0 ){ 6643 /* No aggregate functions and no GROUP BY clause */ 6644 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6645 | (p->selFlags & SF_FixedLimit); 6646 #ifndef SQLITE_OMIT_WINDOWFUNC 6647 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6648 if( pWin ){ 6649 sqlite3WindowCodeInit(pParse, p); 6650 } 6651 #endif 6652 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6653 6654 6655 /* Begin the database scan. */ 6656 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6657 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6658 p->pEList, wctrlFlags, p->nSelectRow); 6659 if( pWInfo==0 ) goto select_end; 6660 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6661 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6662 } 6663 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6664 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6665 } 6666 if( sSort.pOrderBy ){ 6667 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6668 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6669 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6670 sSort.pOrderBy = 0; 6671 } 6672 } 6673 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6674 6675 /* If sorting index that was created by a prior OP_OpenEphemeral 6676 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6677 ** into an OP_Noop. 6678 */ 6679 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6680 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6681 } 6682 6683 assert( p->pEList==pEList ); 6684 #ifndef SQLITE_OMIT_WINDOWFUNC 6685 if( pWin ){ 6686 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6687 int iCont = sqlite3VdbeMakeLabel(pParse); 6688 int iBreak = sqlite3VdbeMakeLabel(pParse); 6689 int regGosub = ++pParse->nMem; 6690 6691 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6692 6693 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6694 sqlite3VdbeResolveLabel(v, addrGosub); 6695 VdbeNoopComment((v, "inner-loop subroutine")); 6696 sSort.labelOBLopt = 0; 6697 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6698 sqlite3VdbeResolveLabel(v, iCont); 6699 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6700 VdbeComment((v, "end inner-loop subroutine")); 6701 sqlite3VdbeResolveLabel(v, iBreak); 6702 }else 6703 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6704 { 6705 /* Use the standard inner loop. */ 6706 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6707 sqlite3WhereContinueLabel(pWInfo), 6708 sqlite3WhereBreakLabel(pWInfo)); 6709 6710 /* End the database scan loop. 6711 */ 6712 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6713 sqlite3WhereEnd(pWInfo); 6714 } 6715 }else{ 6716 /* This case when there exist aggregate functions or a GROUP BY clause 6717 ** or both */ 6718 NameContext sNC; /* Name context for processing aggregate information */ 6719 int iAMem; /* First Mem address for storing current GROUP BY */ 6720 int iBMem; /* First Mem address for previous GROUP BY */ 6721 int iUseFlag; /* Mem address holding flag indicating that at least 6722 ** one row of the input to the aggregator has been 6723 ** processed */ 6724 int iAbortFlag; /* Mem address which causes query abort if positive */ 6725 int groupBySort; /* Rows come from source in GROUP BY order */ 6726 int addrEnd; /* End of processing for this SELECT */ 6727 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6728 int sortOut = 0; /* Output register from the sorter */ 6729 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6730 6731 /* Remove any and all aliases between the result set and the 6732 ** GROUP BY clause. 6733 */ 6734 if( pGroupBy ){ 6735 int k; /* Loop counter */ 6736 struct ExprList_item *pItem; /* For looping over expression in a list */ 6737 6738 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6739 pItem->u.x.iAlias = 0; 6740 } 6741 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6742 pItem->u.x.iAlias = 0; 6743 } 6744 assert( 66==sqlite3LogEst(100) ); 6745 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6746 6747 /* If there is both a GROUP BY and an ORDER BY clause and they are 6748 ** identical, then it may be possible to disable the ORDER BY clause 6749 ** on the grounds that the GROUP BY will cause elements to come out 6750 ** in the correct order. It also may not - the GROUP BY might use a 6751 ** database index that causes rows to be grouped together as required 6752 ** but not actually sorted. Either way, record the fact that the 6753 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6754 ** variable. */ 6755 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6756 int ii; 6757 /* The GROUP BY processing doesn't care whether rows are delivered in 6758 ** ASC or DESC order - only that each group is returned contiguously. 6759 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6760 ** ORDER BY to maximize the chances of rows being delivered in an 6761 ** order that makes the ORDER BY redundant. */ 6762 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6763 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6764 pGroupBy->a[ii].sortFlags = sortFlags; 6765 } 6766 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6767 orderByGrp = 1; 6768 } 6769 } 6770 }else{ 6771 assert( 0==sqlite3LogEst(1) ); 6772 p->nSelectRow = 0; 6773 } 6774 6775 /* Create a label to jump to when we want to abort the query */ 6776 addrEnd = sqlite3VdbeMakeLabel(pParse); 6777 6778 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6779 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6780 ** SELECT statement. 6781 */ 6782 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6783 if( pAggInfo ){ 6784 sqlite3ParserAddCleanup(pParse, 6785 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6786 testcase( pParse->earlyCleanup ); 6787 } 6788 if( db->mallocFailed ){ 6789 goto select_end; 6790 } 6791 pAggInfo->selId = p->selId; 6792 memset(&sNC, 0, sizeof(sNC)); 6793 sNC.pParse = pParse; 6794 sNC.pSrcList = pTabList; 6795 sNC.uNC.pAggInfo = pAggInfo; 6796 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6797 pAggInfo->mnReg = pParse->nMem+1; 6798 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6799 pAggInfo->pGroupBy = pGroupBy; 6800 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6801 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6802 if( pHaving ){ 6803 if( pGroupBy ){ 6804 assert( pWhere==p->pWhere ); 6805 assert( pHaving==p->pHaving ); 6806 assert( pGroupBy==p->pGroupBy ); 6807 havingToWhere(pParse, p); 6808 pWhere = p->pWhere; 6809 } 6810 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6811 } 6812 pAggInfo->nAccumulator = pAggInfo->nColumn; 6813 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6814 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6815 }else{ 6816 minMaxFlag = WHERE_ORDERBY_NORMAL; 6817 } 6818 for(i=0; i<pAggInfo->nFunc; i++){ 6819 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6820 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6821 sNC.ncFlags |= NC_InAggFunc; 6822 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6823 #ifndef SQLITE_OMIT_WINDOWFUNC 6824 assert( !IsWindowFunc(pExpr) ); 6825 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6826 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6827 } 6828 #endif 6829 sNC.ncFlags &= ~NC_InAggFunc; 6830 } 6831 pAggInfo->mxReg = pParse->nMem; 6832 if( db->mallocFailed ) goto select_end; 6833 #if SELECTTRACE_ENABLED 6834 if( sqlite3SelectTrace & 0x400 ){ 6835 int ii; 6836 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 6837 sqlite3TreeViewSelect(0, p, 0); 6838 if( minMaxFlag ){ 6839 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 6840 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 6841 } 6842 for(ii=0; ii<pAggInfo->nColumn; ii++){ 6843 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6844 ii, pAggInfo->aCol[ii].iMem); 6845 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 6846 } 6847 for(ii=0; ii<pAggInfo->nFunc; ii++){ 6848 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6849 ii, pAggInfo->aFunc[ii].iMem); 6850 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 6851 } 6852 } 6853 #endif 6854 6855 6856 /* Processing for aggregates with GROUP BY is very different and 6857 ** much more complex than aggregates without a GROUP BY. 6858 */ 6859 if( pGroupBy ){ 6860 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6861 int addr1; /* A-vs-B comparision jump */ 6862 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6863 int regOutputRow; /* Return address register for output subroutine */ 6864 int addrSetAbort; /* Set the abort flag and return */ 6865 int addrTopOfLoop; /* Top of the input loop */ 6866 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6867 int addrReset; /* Subroutine for resetting the accumulator */ 6868 int regReset; /* Return address register for reset subroutine */ 6869 ExprList *pDistinct = 0; 6870 u16 distFlag = 0; 6871 int eDist = WHERE_DISTINCT_NOOP; 6872 6873 if( pAggInfo->nFunc==1 6874 && pAggInfo->aFunc[0].iDistinct>=0 6875 && pAggInfo->aFunc[0].pFExpr->x.pList 6876 ){ 6877 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 6878 pExpr = sqlite3ExprDup(db, pExpr, 0); 6879 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 6880 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 6881 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 6882 } 6883 6884 /* If there is a GROUP BY clause we might need a sorting index to 6885 ** implement it. Allocate that sorting index now. If it turns out 6886 ** that we do not need it after all, the OP_SorterOpen instruction 6887 ** will be converted into a Noop. 6888 */ 6889 pAggInfo->sortingIdx = pParse->nTab++; 6890 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 6891 0, pAggInfo->nColumn); 6892 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6893 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 6894 0, (char*)pKeyInfo, P4_KEYINFO); 6895 6896 /* Initialize memory locations used by GROUP BY aggregate processing 6897 */ 6898 iUseFlag = ++pParse->nMem; 6899 iAbortFlag = ++pParse->nMem; 6900 regOutputRow = ++pParse->nMem; 6901 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6902 regReset = ++pParse->nMem; 6903 addrReset = sqlite3VdbeMakeLabel(pParse); 6904 iAMem = pParse->nMem + 1; 6905 pParse->nMem += pGroupBy->nExpr; 6906 iBMem = pParse->nMem + 1; 6907 pParse->nMem += pGroupBy->nExpr; 6908 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6909 VdbeComment((v, "clear abort flag")); 6910 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6911 6912 /* Begin a loop that will extract all source rows in GROUP BY order. 6913 ** This might involve two separate loops with an OP_Sort in between, or 6914 ** it might be a single loop that uses an index to extract information 6915 ** in the right order to begin with. 6916 */ 6917 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6918 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6919 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 6920 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 6921 ); 6922 if( pWInfo==0 ){ 6923 sqlite3ExprListDelete(db, pDistinct); 6924 goto select_end; 6925 } 6926 eDist = sqlite3WhereIsDistinct(pWInfo); 6927 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6928 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6929 /* The optimizer is able to deliver rows in group by order so 6930 ** we do not have to sort. The OP_OpenEphemeral table will be 6931 ** cancelled later because we still need to use the pKeyInfo 6932 */ 6933 groupBySort = 0; 6934 }else{ 6935 /* Rows are coming out in undetermined order. We have to push 6936 ** each row into a sorting index, terminate the first loop, 6937 ** then loop over the sorting index in order to get the output 6938 ** in sorted order 6939 */ 6940 int regBase; 6941 int regRecord; 6942 int nCol; 6943 int nGroupBy; 6944 6945 explainTempTable(pParse, 6946 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6947 "DISTINCT" : "GROUP BY"); 6948 6949 groupBySort = 1; 6950 nGroupBy = pGroupBy->nExpr; 6951 nCol = nGroupBy; 6952 j = nGroupBy; 6953 for(i=0; i<pAggInfo->nColumn; i++){ 6954 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 6955 nCol++; 6956 j++; 6957 } 6958 } 6959 regBase = sqlite3GetTempRange(pParse, nCol); 6960 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6961 j = nGroupBy; 6962 for(i=0; i<pAggInfo->nColumn; i++){ 6963 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 6964 if( pCol->iSorterColumn>=j ){ 6965 int r1 = j + regBase; 6966 sqlite3ExprCodeGetColumnOfTable(v, 6967 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6968 j++; 6969 } 6970 } 6971 regRecord = sqlite3GetTempReg(pParse); 6972 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6973 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 6974 sqlite3ReleaseTempReg(pParse, regRecord); 6975 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6976 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6977 sqlite3WhereEnd(pWInfo); 6978 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 6979 sortOut = sqlite3GetTempReg(pParse); 6980 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6981 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 6982 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6983 pAggInfo->useSortingIdx = 1; 6984 } 6985 6986 /* If the index or temporary table used by the GROUP BY sort 6987 ** will naturally deliver rows in the order required by the ORDER BY 6988 ** clause, cancel the ephemeral table open coded earlier. 6989 ** 6990 ** This is an optimization - the correct answer should result regardless. 6991 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6992 ** disable this optimization for testing purposes. */ 6993 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6994 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6995 ){ 6996 sSort.pOrderBy = 0; 6997 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6998 } 6999 7000 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7001 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7002 ** Then compare the current GROUP BY terms against the GROUP BY terms 7003 ** from the previous row currently stored in a0, a1, a2... 7004 */ 7005 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7006 if( groupBySort ){ 7007 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7008 sortOut, sortPTab); 7009 } 7010 for(j=0; j<pGroupBy->nExpr; j++){ 7011 if( groupBySort ){ 7012 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7013 }else{ 7014 pAggInfo->directMode = 1; 7015 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7016 } 7017 } 7018 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7019 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7020 addr1 = sqlite3VdbeCurrentAddr(v); 7021 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7022 7023 /* Generate code that runs whenever the GROUP BY changes. 7024 ** Changes in the GROUP BY are detected by the previous code 7025 ** block. If there were no changes, this block is skipped. 7026 ** 7027 ** This code copies current group by terms in b0,b1,b2,... 7028 ** over to a0,a1,a2. It then calls the output subroutine 7029 ** and resets the aggregate accumulator registers in preparation 7030 ** for the next GROUP BY batch. 7031 */ 7032 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7033 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7034 VdbeComment((v, "output one row")); 7035 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7036 VdbeComment((v, "check abort flag")); 7037 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7038 VdbeComment((v, "reset accumulator")); 7039 7040 /* Update the aggregate accumulators based on the content of 7041 ** the current row 7042 */ 7043 sqlite3VdbeJumpHere(v, addr1); 7044 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7045 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7046 VdbeComment((v, "indicate data in accumulator")); 7047 7048 /* End of the loop 7049 */ 7050 if( groupBySort ){ 7051 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7052 VdbeCoverage(v); 7053 }else{ 7054 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7055 sqlite3WhereEnd(pWInfo); 7056 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7057 } 7058 sqlite3ExprListDelete(db, pDistinct); 7059 7060 /* Output the final row of result 7061 */ 7062 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7063 VdbeComment((v, "output final row")); 7064 7065 /* Jump over the subroutines 7066 */ 7067 sqlite3VdbeGoto(v, addrEnd); 7068 7069 /* Generate a subroutine that outputs a single row of the result 7070 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7071 ** is less than or equal to zero, the subroutine is a no-op. If 7072 ** the processing calls for the query to abort, this subroutine 7073 ** increments the iAbortFlag memory location before returning in 7074 ** order to signal the caller to abort. 7075 */ 7076 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7077 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7078 VdbeComment((v, "set abort flag")); 7079 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7080 sqlite3VdbeResolveLabel(v, addrOutputRow); 7081 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7082 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7083 VdbeCoverage(v); 7084 VdbeComment((v, "Groupby result generator entry point")); 7085 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7086 finalizeAggFunctions(pParse, pAggInfo); 7087 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7088 selectInnerLoop(pParse, p, -1, &sSort, 7089 &sDistinct, pDest, 7090 addrOutputRow+1, addrSetAbort); 7091 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7092 VdbeComment((v, "end groupby result generator")); 7093 7094 /* Generate a subroutine that will reset the group-by accumulator 7095 */ 7096 sqlite3VdbeResolveLabel(v, addrReset); 7097 resetAccumulator(pParse, pAggInfo); 7098 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7099 VdbeComment((v, "indicate accumulator empty")); 7100 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7101 7102 if( eDist!=WHERE_DISTINCT_NOOP ){ 7103 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7104 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7105 } 7106 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7107 else { 7108 Table *pTab; 7109 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7110 /* If isSimpleCount() returns a pointer to a Table structure, then 7111 ** the SQL statement is of the form: 7112 ** 7113 ** SELECT count(*) FROM <tbl> 7114 ** 7115 ** where the Table structure returned represents table <tbl>. 7116 ** 7117 ** This statement is so common that it is optimized specially. The 7118 ** OP_Count instruction is executed either on the intkey table that 7119 ** contains the data for table <tbl> or on one of its indexes. It 7120 ** is better to execute the op on an index, as indexes are almost 7121 ** always spread across less pages than their corresponding tables. 7122 */ 7123 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7124 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7125 Index *pIdx; /* Iterator variable */ 7126 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7127 Index *pBest = 0; /* Best index found so far */ 7128 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7129 7130 sqlite3CodeVerifySchema(pParse, iDb); 7131 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7132 7133 /* Search for the index that has the lowest scan cost. 7134 ** 7135 ** (2011-04-15) Do not do a full scan of an unordered index. 7136 ** 7137 ** (2013-10-03) Do not count the entries in a partial index. 7138 ** 7139 ** In practice the KeyInfo structure will not be used. It is only 7140 ** passed to keep OP_OpenRead happy. 7141 */ 7142 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7143 if( !p->pSrc->a[0].fg.notIndexed ){ 7144 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7145 if( pIdx->bUnordered==0 7146 && pIdx->szIdxRow<pTab->szTabRow 7147 && pIdx->pPartIdxWhere==0 7148 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7149 ){ 7150 pBest = pIdx; 7151 } 7152 } 7153 } 7154 if( pBest ){ 7155 iRoot = pBest->tnum; 7156 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7157 } 7158 7159 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7160 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7161 if( pKeyInfo ){ 7162 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7163 } 7164 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7165 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7166 explainSimpleCount(pParse, pTab, pBest); 7167 }else{ 7168 int regAcc = 0; /* "populate accumulators" flag */ 7169 ExprList *pDistinct = 0; 7170 u16 distFlag = 0; 7171 int eDist; 7172 7173 /* If there are accumulator registers but no min() or max() functions 7174 ** without FILTER clauses, allocate register regAcc. Register regAcc 7175 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7176 ** The code generated by updateAccumulator() uses this to ensure 7177 ** that the accumulator registers are (a) updated only once if 7178 ** there are no min() or max functions or (b) always updated for the 7179 ** first row visited by the aggregate, so that they are updated at 7180 ** least once even if the FILTER clause means the min() or max() 7181 ** function visits zero rows. */ 7182 if( pAggInfo->nAccumulator ){ 7183 for(i=0; i<pAggInfo->nFunc; i++){ 7184 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7185 continue; 7186 } 7187 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7188 break; 7189 } 7190 } 7191 if( i==pAggInfo->nFunc ){ 7192 regAcc = ++pParse->nMem; 7193 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7194 } 7195 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7196 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7197 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7198 } 7199 7200 /* This case runs if the aggregate has no GROUP BY clause. The 7201 ** processing is much simpler since there is only a single row 7202 ** of output. 7203 */ 7204 assert( p->pGroupBy==0 ); 7205 resetAccumulator(pParse, pAggInfo); 7206 7207 /* If this query is a candidate for the min/max optimization, then 7208 ** minMaxFlag will have been previously set to either 7209 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7210 ** be an appropriate ORDER BY expression for the optimization. 7211 */ 7212 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7213 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7214 7215 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7216 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7217 pDistinct, minMaxFlag|distFlag, 0); 7218 if( pWInfo==0 ){ 7219 goto select_end; 7220 } 7221 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7222 eDist = sqlite3WhereIsDistinct(pWInfo); 7223 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7224 if( eDist!=WHERE_DISTINCT_NOOP ){ 7225 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7226 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7227 } 7228 7229 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7230 if( minMaxFlag ){ 7231 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7232 } 7233 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7234 sqlite3WhereEnd(pWInfo); 7235 finalizeAggFunctions(pParse, pAggInfo); 7236 } 7237 7238 sSort.pOrderBy = 0; 7239 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7240 selectInnerLoop(pParse, p, -1, 0, 0, 7241 pDest, addrEnd, addrEnd); 7242 } 7243 sqlite3VdbeResolveLabel(v, addrEnd); 7244 7245 } /* endif aggregate query */ 7246 7247 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7248 explainTempTable(pParse, "DISTINCT"); 7249 } 7250 7251 /* If there is an ORDER BY clause, then we need to sort the results 7252 ** and send them to the callback one by one. 7253 */ 7254 if( sSort.pOrderBy ){ 7255 explainTempTable(pParse, 7256 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7257 assert( p->pEList==pEList ); 7258 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7259 } 7260 7261 /* Jump here to skip this query 7262 */ 7263 sqlite3VdbeResolveLabel(v, iEnd); 7264 7265 /* The SELECT has been coded. If there is an error in the Parse structure, 7266 ** set the return code to 1. Otherwise 0. */ 7267 rc = (pParse->nErr>0); 7268 7269 /* Control jumps to here if an error is encountered above, or upon 7270 ** successful coding of the SELECT. 7271 */ 7272 select_end: 7273 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7274 pParse->nErr += db->mallocFailed; 7275 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7276 #ifdef SQLITE_DEBUG 7277 if( pAggInfo && !db->mallocFailed ){ 7278 for(i=0; i<pAggInfo->nColumn; i++){ 7279 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7280 assert( pExpr!=0 ); 7281 assert( pExpr->pAggInfo==pAggInfo ); 7282 assert( pExpr->iAgg==i ); 7283 } 7284 for(i=0; i<pAggInfo->nFunc; i++){ 7285 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7286 assert( pExpr!=0 ); 7287 assert( pExpr->pAggInfo==pAggInfo ); 7288 assert( pExpr->iAgg==i ); 7289 } 7290 } 7291 #endif 7292 7293 #if SELECTTRACE_ENABLED 7294 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7295 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7296 sqlite3TreeViewSelect(0, p, 0); 7297 } 7298 #endif 7299 ExplainQueryPlanPop(pParse); 7300 return rc; 7301 } 7302