1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 58 }; 59 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 60 61 /* 62 ** Delete all the content of a Select structure. Deallocate the structure 63 ** itself only if bFree is true. 64 */ 65 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 66 while( p ){ 67 Select *pPrior = p->pPrior; 68 sqlite3ExprListDelete(db, p->pEList); 69 sqlite3SrcListDelete(db, p->pSrc); 70 sqlite3ExprDelete(db, p->pWhere); 71 sqlite3ExprListDelete(db, p->pGroupBy); 72 sqlite3ExprDelete(db, p->pHaving); 73 sqlite3ExprListDelete(db, p->pOrderBy); 74 sqlite3ExprDelete(db, p->pLimit); 75 sqlite3ExprDelete(db, p->pOffset); 76 sqlite3WithDelete(db, p->pWith); 77 if( bFree ) sqlite3DbFree(db, p); 78 p = pPrior; 79 bFree = 1; 80 } 81 } 82 83 /* 84 ** Initialize a SelectDest structure. 85 */ 86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 87 pDest->eDest = (u8)eDest; 88 pDest->iSDParm = iParm; 89 pDest->affSdst = 0; 90 pDest->iSdst = 0; 91 pDest->nSdst = 0; 92 } 93 94 95 /* 96 ** Allocate a new Select structure and return a pointer to that 97 ** structure. 98 */ 99 Select *sqlite3SelectNew( 100 Parse *pParse, /* Parsing context */ 101 ExprList *pEList, /* which columns to include in the result */ 102 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 103 Expr *pWhere, /* the WHERE clause */ 104 ExprList *pGroupBy, /* the GROUP BY clause */ 105 Expr *pHaving, /* the HAVING clause */ 106 ExprList *pOrderBy, /* the ORDER BY clause */ 107 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 108 Expr *pLimit, /* LIMIT value. NULL means not used */ 109 Expr *pOffset /* OFFSET value. NULL means no offset */ 110 ){ 111 Select *pNew; 112 Select standin; 113 sqlite3 *db = pParse->db; 114 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 115 if( pNew==0 ){ 116 assert( db->mallocFailed ); 117 pNew = &standin; 118 memset(pNew, 0, sizeof(*pNew)); 119 } 120 if( pEList==0 ){ 121 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0)); 122 } 123 pNew->pEList = pEList; 124 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 125 pNew->pSrc = pSrc; 126 pNew->pWhere = pWhere; 127 pNew->pGroupBy = pGroupBy; 128 pNew->pHaving = pHaving; 129 pNew->pOrderBy = pOrderBy; 130 pNew->selFlags = selFlags; 131 pNew->op = TK_SELECT; 132 pNew->pLimit = pLimit; 133 pNew->pOffset = pOffset; 134 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 135 pNew->addrOpenEphm[0] = -1; 136 pNew->addrOpenEphm[1] = -1; 137 if( db->mallocFailed ) { 138 clearSelect(db, pNew, pNew!=&standin); 139 pNew = 0; 140 }else{ 141 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 142 } 143 assert( pNew!=&standin ); 144 return pNew; 145 } 146 147 #if SELECTTRACE_ENABLED 148 /* 149 ** Set the name of a Select object 150 */ 151 void sqlite3SelectSetName(Select *p, const char *zName){ 152 if( p && zName ){ 153 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 154 } 155 } 156 #endif 157 158 159 /* 160 ** Delete the given Select structure and all of its substructures. 161 */ 162 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 163 clearSelect(db, p, 1); 164 } 165 166 /* 167 ** Return a pointer to the right-most SELECT statement in a compound. 168 */ 169 static Select *findRightmost(Select *p){ 170 while( p->pNext ) p = p->pNext; 171 return p; 172 } 173 174 /* 175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 176 ** type of join. Return an integer constant that expresses that type 177 ** in terms of the following bit values: 178 ** 179 ** JT_INNER 180 ** JT_CROSS 181 ** JT_OUTER 182 ** JT_NATURAL 183 ** JT_LEFT 184 ** JT_RIGHT 185 ** 186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 187 ** 188 ** If an illegal or unsupported join type is seen, then still return 189 ** a join type, but put an error in the pParse structure. 190 */ 191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 192 int jointype = 0; 193 Token *apAll[3]; 194 Token *p; 195 /* 0123456789 123456789 123456789 123 */ 196 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 197 static const struct { 198 u8 i; /* Beginning of keyword text in zKeyText[] */ 199 u8 nChar; /* Length of the keyword in characters */ 200 u8 code; /* Join type mask */ 201 } aKeyword[] = { 202 /* natural */ { 0, 7, JT_NATURAL }, 203 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 204 /* outer */ { 10, 5, JT_OUTER }, 205 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 206 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 207 /* inner */ { 23, 5, JT_INNER }, 208 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 209 }; 210 int i, j; 211 apAll[0] = pA; 212 apAll[1] = pB; 213 apAll[2] = pC; 214 for(i=0; i<3 && apAll[i]; i++){ 215 p = apAll[i]; 216 for(j=0; j<ArraySize(aKeyword); j++){ 217 if( p->n==aKeyword[j].nChar 218 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 219 jointype |= aKeyword[j].code; 220 break; 221 } 222 } 223 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 224 if( j>=ArraySize(aKeyword) ){ 225 jointype |= JT_ERROR; 226 break; 227 } 228 } 229 if( 230 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 231 (jointype & JT_ERROR)!=0 232 ){ 233 const char *zSp = " "; 234 assert( pB!=0 ); 235 if( pC==0 ){ zSp++; } 236 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 237 "%T %T%s%T", pA, pB, zSp, pC); 238 jointype = JT_INNER; 239 }else if( (jointype & JT_OUTER)!=0 240 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 241 sqlite3ErrorMsg(pParse, 242 "RIGHT and FULL OUTER JOINs are not currently supported"); 243 jointype = JT_INNER; 244 } 245 return jointype; 246 } 247 248 /* 249 ** Return the index of a column in a table. Return -1 if the column 250 ** is not contained in the table. 251 */ 252 static int columnIndex(Table *pTab, const char *zCol){ 253 int i; 254 for(i=0; i<pTab->nCol; i++){ 255 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 256 } 257 return -1; 258 } 259 260 /* 261 ** Search the first N tables in pSrc, from left to right, looking for a 262 ** table that has a column named zCol. 263 ** 264 ** When found, set *piTab and *piCol to the table index and column index 265 ** of the matching column and return TRUE. 266 ** 267 ** If not found, return FALSE. 268 */ 269 static int tableAndColumnIndex( 270 SrcList *pSrc, /* Array of tables to search */ 271 int N, /* Number of tables in pSrc->a[] to search */ 272 const char *zCol, /* Name of the column we are looking for */ 273 int *piTab, /* Write index of pSrc->a[] here */ 274 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 275 ){ 276 int i; /* For looping over tables in pSrc */ 277 int iCol; /* Index of column matching zCol */ 278 279 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 280 for(i=0; i<N; i++){ 281 iCol = columnIndex(pSrc->a[i].pTab, zCol); 282 if( iCol>=0 ){ 283 if( piTab ){ 284 *piTab = i; 285 *piCol = iCol; 286 } 287 return 1; 288 } 289 } 290 return 0; 291 } 292 293 /* 294 ** This function is used to add terms implied by JOIN syntax to the 295 ** WHERE clause expression of a SELECT statement. The new term, which 296 ** is ANDed with the existing WHERE clause, is of the form: 297 ** 298 ** (tab1.col1 = tab2.col2) 299 ** 300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 302 ** column iColRight of tab2. 303 */ 304 static void addWhereTerm( 305 Parse *pParse, /* Parsing context */ 306 SrcList *pSrc, /* List of tables in FROM clause */ 307 int iLeft, /* Index of first table to join in pSrc */ 308 int iColLeft, /* Index of column in first table */ 309 int iRight, /* Index of second table in pSrc */ 310 int iColRight, /* Index of column in second table */ 311 int isOuterJoin, /* True if this is an OUTER join */ 312 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 313 ){ 314 sqlite3 *db = pParse->db; 315 Expr *pE1; 316 Expr *pE2; 317 Expr *pEq; 318 319 assert( iLeft<iRight ); 320 assert( pSrc->nSrc>iRight ); 321 assert( pSrc->a[iLeft].pTab ); 322 assert( pSrc->a[iRight].pTab ); 323 324 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 325 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 326 327 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 328 if( pEq && isOuterJoin ){ 329 ExprSetProperty(pEq, EP_FromJoin); 330 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 331 ExprSetVVAProperty(pEq, EP_NoReduce); 332 pEq->iRightJoinTable = (i16)pE2->iTable; 333 } 334 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 335 } 336 337 /* 338 ** Set the EP_FromJoin property on all terms of the given expression. 339 ** And set the Expr.iRightJoinTable to iTable for every term in the 340 ** expression. 341 ** 342 ** The EP_FromJoin property is used on terms of an expression to tell 343 ** the LEFT OUTER JOIN processing logic that this term is part of the 344 ** join restriction specified in the ON or USING clause and not a part 345 ** of the more general WHERE clause. These terms are moved over to the 346 ** WHERE clause during join processing but we need to remember that they 347 ** originated in the ON or USING clause. 348 ** 349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 350 ** expression depends on table iRightJoinTable even if that table is not 351 ** explicitly mentioned in the expression. That information is needed 352 ** for cases like this: 353 ** 354 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 355 ** 356 ** The where clause needs to defer the handling of the t1.x=5 357 ** term until after the t2 loop of the join. In that way, a 358 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 359 ** defer the handling of t1.x=5, it will be processed immediately 360 ** after the t1 loop and rows with t1.x!=5 will never appear in 361 ** the output, which is incorrect. 362 */ 363 static void setJoinExpr(Expr *p, int iTable){ 364 while( p ){ 365 ExprSetProperty(p, EP_FromJoin); 366 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 367 ExprSetVVAProperty(p, EP_NoReduce); 368 p->iRightJoinTable = (i16)iTable; 369 if( p->op==TK_FUNCTION && p->x.pList ){ 370 int i; 371 for(i=0; i<p->x.pList->nExpr; i++){ 372 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 373 } 374 } 375 setJoinExpr(p->pLeft, iTable); 376 p = p->pRight; 377 } 378 } 379 380 /* 381 ** This routine processes the join information for a SELECT statement. 382 ** ON and USING clauses are converted into extra terms of the WHERE clause. 383 ** NATURAL joins also create extra WHERE clause terms. 384 ** 385 ** The terms of a FROM clause are contained in the Select.pSrc structure. 386 ** The left most table is the first entry in Select.pSrc. The right-most 387 ** table is the last entry. The join operator is held in the entry to 388 ** the left. Thus entry 0 contains the join operator for the join between 389 ** entries 0 and 1. Any ON or USING clauses associated with the join are 390 ** also attached to the left entry. 391 ** 392 ** This routine returns the number of errors encountered. 393 */ 394 static int sqliteProcessJoin(Parse *pParse, Select *p){ 395 SrcList *pSrc; /* All tables in the FROM clause */ 396 int i, j; /* Loop counters */ 397 struct SrcList_item *pLeft; /* Left table being joined */ 398 struct SrcList_item *pRight; /* Right table being joined */ 399 400 pSrc = p->pSrc; 401 pLeft = &pSrc->a[0]; 402 pRight = &pLeft[1]; 403 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 404 Table *pLeftTab = pLeft->pTab; 405 Table *pRightTab = pRight->pTab; 406 int isOuter; 407 408 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 409 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 410 411 /* When the NATURAL keyword is present, add WHERE clause terms for 412 ** every column that the two tables have in common. 413 */ 414 if( pRight->fg.jointype & JT_NATURAL ){ 415 if( pRight->pOn || pRight->pUsing ){ 416 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 417 "an ON or USING clause", 0); 418 return 1; 419 } 420 for(j=0; j<pRightTab->nCol; j++){ 421 char *zName; /* Name of column in the right table */ 422 int iLeft; /* Matching left table */ 423 int iLeftCol; /* Matching column in the left table */ 424 425 zName = pRightTab->aCol[j].zName; 426 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 427 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 428 isOuter, &p->pWhere); 429 } 430 } 431 } 432 433 /* Disallow both ON and USING clauses in the same join 434 */ 435 if( pRight->pOn && pRight->pUsing ){ 436 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 437 "clauses in the same join"); 438 return 1; 439 } 440 441 /* Add the ON clause to the end of the WHERE clause, connected by 442 ** an AND operator. 443 */ 444 if( pRight->pOn ){ 445 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 446 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 447 pRight->pOn = 0; 448 } 449 450 /* Create extra terms on the WHERE clause for each column named 451 ** in the USING clause. Example: If the two tables to be joined are 452 ** A and B and the USING clause names X, Y, and Z, then add this 453 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 454 ** Report an error if any column mentioned in the USING clause is 455 ** not contained in both tables to be joined. 456 */ 457 if( pRight->pUsing ){ 458 IdList *pList = pRight->pUsing; 459 for(j=0; j<pList->nId; j++){ 460 char *zName; /* Name of the term in the USING clause */ 461 int iLeft; /* Table on the left with matching column name */ 462 int iLeftCol; /* Column number of matching column on the left */ 463 int iRightCol; /* Column number of matching column on the right */ 464 465 zName = pList->a[j].zName; 466 iRightCol = columnIndex(pRightTab, zName); 467 if( iRightCol<0 468 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 469 ){ 470 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 471 "not present in both tables", zName); 472 return 1; 473 } 474 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 475 isOuter, &p->pWhere); 476 } 477 } 478 } 479 return 0; 480 } 481 482 /* Forward reference */ 483 static KeyInfo *keyInfoFromExprList( 484 Parse *pParse, /* Parsing context */ 485 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 486 int iStart, /* Begin with this column of pList */ 487 int nExtra /* Add this many extra columns to the end */ 488 ); 489 490 /* 491 ** Generate code that will push the record in registers regData 492 ** through regData+nData-1 onto the sorter. 493 */ 494 static void pushOntoSorter( 495 Parse *pParse, /* Parser context */ 496 SortCtx *pSort, /* Information about the ORDER BY clause */ 497 Select *pSelect, /* The whole SELECT statement */ 498 int regData, /* First register holding data to be sorted */ 499 int regOrigData, /* First register holding data before packing */ 500 int nData, /* Number of elements in the data array */ 501 int nPrefixReg /* No. of reg prior to regData available for use */ 502 ){ 503 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 504 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 505 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 506 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 507 int regBase; /* Regs for sorter record */ 508 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 509 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 510 int op; /* Opcode to add sorter record to sorter */ 511 512 assert( bSeq==0 || bSeq==1 ); 513 assert( nData==1 || regData==regOrigData ); 514 if( nPrefixReg ){ 515 assert( nPrefixReg==nExpr+bSeq ); 516 regBase = regData - nExpr - bSeq; 517 }else{ 518 regBase = pParse->nMem + 1; 519 pParse->nMem += nBase; 520 } 521 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 522 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); 523 if( bSeq ){ 524 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 525 } 526 if( nPrefixReg==0 ){ 527 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 528 } 529 530 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 531 if( nOBSat>0 ){ 532 int regPrevKey; /* The first nOBSat columns of the previous row */ 533 int addrFirst; /* Address of the OP_IfNot opcode */ 534 int addrJmp; /* Address of the OP_Jump opcode */ 535 VdbeOp *pOp; /* Opcode that opens the sorter */ 536 int nKey; /* Number of sorting key columns, including OP_Sequence */ 537 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 538 539 regPrevKey = pParse->nMem+1; 540 pParse->nMem += pSort->nOBSat; 541 nKey = nExpr - pSort->nOBSat + bSeq; 542 if( bSeq ){ 543 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 544 }else{ 545 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 546 } 547 VdbeCoverage(v); 548 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 549 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 550 if( pParse->db->mallocFailed ) return; 551 pOp->p2 = nKey + nData; 552 pKI = pOp->p4.pKeyInfo; 553 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 554 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 555 testcase( pKI->nXField>2 ); 556 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 557 pKI->nXField-1); 558 addrJmp = sqlite3VdbeCurrentAddr(v); 559 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 560 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 561 pSort->regReturn = ++pParse->nMem; 562 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 563 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 564 sqlite3VdbeJumpHere(v, addrFirst); 565 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 566 sqlite3VdbeJumpHere(v, addrJmp); 567 } 568 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 569 op = OP_SorterInsert; 570 }else{ 571 op = OP_IdxInsert; 572 } 573 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 574 if( pSelect->iLimit ){ 575 int addr; 576 int iLimit; 577 if( pSelect->iOffset ){ 578 iLimit = pSelect->iOffset+1; 579 }else{ 580 iLimit = pSelect->iLimit; 581 } 582 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); 583 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 584 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 585 sqlite3VdbeJumpHere(v, addr); 586 } 587 } 588 589 /* 590 ** Add code to implement the OFFSET 591 */ 592 static void codeOffset( 593 Vdbe *v, /* Generate code into this VM */ 594 int iOffset, /* Register holding the offset counter */ 595 int iContinue /* Jump here to skip the current record */ 596 ){ 597 if( iOffset>0 ){ 598 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 599 VdbeComment((v, "OFFSET")); 600 } 601 } 602 603 /* 604 ** Add code that will check to make sure the N registers starting at iMem 605 ** form a distinct entry. iTab is a sorting index that holds previously 606 ** seen combinations of the N values. A new entry is made in iTab 607 ** if the current N values are new. 608 ** 609 ** A jump to addrRepeat is made and the N+1 values are popped from the 610 ** stack if the top N elements are not distinct. 611 */ 612 static void codeDistinct( 613 Parse *pParse, /* Parsing and code generating context */ 614 int iTab, /* A sorting index used to test for distinctness */ 615 int addrRepeat, /* Jump to here if not distinct */ 616 int N, /* Number of elements */ 617 int iMem /* First element */ 618 ){ 619 Vdbe *v; 620 int r1; 621 622 v = pParse->pVdbe; 623 r1 = sqlite3GetTempReg(pParse); 624 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 625 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 626 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 627 sqlite3ReleaseTempReg(pParse, r1); 628 } 629 630 #ifndef SQLITE_OMIT_SUBQUERY 631 /* 632 ** Generate an error message when a SELECT is used within a subexpression 633 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 634 ** column. We do this in a subroutine because the error used to occur 635 ** in multiple places. (The error only occurs in one place now, but we 636 ** retain the subroutine to minimize code disruption.) 637 */ 638 static int checkForMultiColumnSelectError( 639 Parse *pParse, /* Parse context. */ 640 SelectDest *pDest, /* Destination of SELECT results */ 641 int nExpr /* Number of result columns returned by SELECT */ 642 ){ 643 int eDest = pDest->eDest; 644 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 645 sqlite3ErrorMsg(pParse, "only a single result allowed for " 646 "a SELECT that is part of an expression"); 647 return 1; 648 }else{ 649 return 0; 650 } 651 } 652 #endif 653 654 /* 655 ** This routine generates the code for the inside of the inner loop 656 ** of a SELECT. 657 ** 658 ** If srcTab is negative, then the pEList expressions 659 ** are evaluated in order to get the data for this row. If srcTab is 660 ** zero or more, then data is pulled from srcTab and pEList is used only 661 ** to get number columns and the datatype for each column. 662 */ 663 static void selectInnerLoop( 664 Parse *pParse, /* The parser context */ 665 Select *p, /* The complete select statement being coded */ 666 ExprList *pEList, /* List of values being extracted */ 667 int srcTab, /* Pull data from this table */ 668 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 669 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 670 SelectDest *pDest, /* How to dispose of the results */ 671 int iContinue, /* Jump here to continue with next row */ 672 int iBreak /* Jump here to break out of the inner loop */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 int i; 676 int hasDistinct; /* True if the DISTINCT keyword is present */ 677 int regResult; /* Start of memory holding result set */ 678 int eDest = pDest->eDest; /* How to dispose of results */ 679 int iParm = pDest->iSDParm; /* First argument to disposal method */ 680 int nResultCol; /* Number of result columns */ 681 int nPrefixReg = 0; /* Number of extra registers before regResult */ 682 683 assert( v ); 684 assert( pEList!=0 ); 685 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 686 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 687 if( pSort==0 && !hasDistinct ){ 688 assert( iContinue!=0 ); 689 codeOffset(v, p->iOffset, iContinue); 690 } 691 692 /* Pull the requested columns. 693 */ 694 nResultCol = pEList->nExpr; 695 696 if( pDest->iSdst==0 ){ 697 if( pSort ){ 698 nPrefixReg = pSort->pOrderBy->nExpr; 699 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 700 pParse->nMem += nPrefixReg; 701 } 702 pDest->iSdst = pParse->nMem+1; 703 pParse->nMem += nResultCol; 704 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 705 /* This is an error condition that can result, for example, when a SELECT 706 ** on the right-hand side of an INSERT contains more result columns than 707 ** there are columns in the table on the left. The error will be caught 708 ** and reported later. But we need to make sure enough memory is allocated 709 ** to avoid other spurious errors in the meantime. */ 710 pParse->nMem += nResultCol; 711 } 712 pDest->nSdst = nResultCol; 713 regResult = pDest->iSdst; 714 if( srcTab>=0 ){ 715 for(i=0; i<nResultCol; i++){ 716 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 717 VdbeComment((v, "%s", pEList->a[i].zName)); 718 } 719 }else if( eDest!=SRT_Exists ){ 720 /* If the destination is an EXISTS(...) expression, the actual 721 ** values returned by the SELECT are not required. 722 */ 723 u8 ecelFlags; 724 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 725 ecelFlags = SQLITE_ECEL_DUP; 726 }else{ 727 ecelFlags = 0; 728 } 729 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); 730 } 731 732 /* If the DISTINCT keyword was present on the SELECT statement 733 ** and this row has been seen before, then do not make this row 734 ** part of the result. 735 */ 736 if( hasDistinct ){ 737 switch( pDistinct->eTnctType ){ 738 case WHERE_DISTINCT_ORDERED: { 739 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 740 int iJump; /* Jump destination */ 741 int regPrev; /* Previous row content */ 742 743 /* Allocate space for the previous row */ 744 regPrev = pParse->nMem+1; 745 pParse->nMem += nResultCol; 746 747 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 748 ** sets the MEM_Cleared bit on the first register of the 749 ** previous value. This will cause the OP_Ne below to always 750 ** fail on the first iteration of the loop even if the first 751 ** row is all NULLs. 752 */ 753 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 754 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 755 pOp->opcode = OP_Null; 756 pOp->p1 = 1; 757 pOp->p2 = regPrev; 758 759 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 760 for(i=0; i<nResultCol; i++){ 761 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 762 if( i<nResultCol-1 ){ 763 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 764 VdbeCoverage(v); 765 }else{ 766 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 767 VdbeCoverage(v); 768 } 769 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 770 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 771 } 772 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 773 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 774 break; 775 } 776 777 case WHERE_DISTINCT_UNIQUE: { 778 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 779 break; 780 } 781 782 default: { 783 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 784 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 785 regResult); 786 break; 787 } 788 } 789 if( pSort==0 ){ 790 codeOffset(v, p->iOffset, iContinue); 791 } 792 } 793 794 switch( eDest ){ 795 /* In this mode, write each query result to the key of the temporary 796 ** table iParm. 797 */ 798 #ifndef SQLITE_OMIT_COMPOUND_SELECT 799 case SRT_Union: { 800 int r1; 801 r1 = sqlite3GetTempReg(pParse); 802 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 803 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 804 sqlite3ReleaseTempReg(pParse, r1); 805 break; 806 } 807 808 /* Construct a record from the query result, but instead of 809 ** saving that record, use it as a key to delete elements from 810 ** the temporary table iParm. 811 */ 812 case SRT_Except: { 813 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 814 break; 815 } 816 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 817 818 /* Store the result as data using a unique key. 819 */ 820 case SRT_Fifo: 821 case SRT_DistFifo: 822 case SRT_Table: 823 case SRT_EphemTab: { 824 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 825 testcase( eDest==SRT_Table ); 826 testcase( eDest==SRT_EphemTab ); 827 testcase( eDest==SRT_Fifo ); 828 testcase( eDest==SRT_DistFifo ); 829 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 830 #ifndef SQLITE_OMIT_CTE 831 if( eDest==SRT_DistFifo ){ 832 /* If the destination is DistFifo, then cursor (iParm+1) is open 833 ** on an ephemeral index. If the current row is already present 834 ** in the index, do not write it to the output. If not, add the 835 ** current row to the index and proceed with writing it to the 836 ** output table as well. */ 837 int addr = sqlite3VdbeCurrentAddr(v) + 4; 838 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 839 VdbeCoverage(v); 840 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 841 assert( pSort==0 ); 842 } 843 #endif 844 if( pSort ){ 845 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 846 }else{ 847 int r2 = sqlite3GetTempReg(pParse); 848 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 849 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 850 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 851 sqlite3ReleaseTempReg(pParse, r2); 852 } 853 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 854 break; 855 } 856 857 #ifndef SQLITE_OMIT_SUBQUERY 858 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 859 ** then there should be a single item on the stack. Write this 860 ** item into the set table with bogus data. 861 */ 862 case SRT_Set: { 863 assert( nResultCol==1 ); 864 pDest->affSdst = 865 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 866 if( pSort ){ 867 /* At first glance you would think we could optimize out the 868 ** ORDER BY in this case since the order of entries in the set 869 ** does not matter. But there might be a LIMIT clause, in which 870 ** case the order does matter */ 871 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 872 }else{ 873 int r1 = sqlite3GetTempReg(pParse); 874 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 875 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 876 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 877 sqlite3ReleaseTempReg(pParse, r1); 878 } 879 break; 880 } 881 882 /* If any row exist in the result set, record that fact and abort. 883 */ 884 case SRT_Exists: { 885 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 886 /* The LIMIT clause will terminate the loop for us */ 887 break; 888 } 889 890 /* If this is a scalar select that is part of an expression, then 891 ** store the results in the appropriate memory cell and break out 892 ** of the scan loop. 893 */ 894 case SRT_Mem: { 895 assert( nResultCol==1 ); 896 if( pSort ){ 897 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); 898 }else{ 899 assert( regResult==iParm ); 900 /* The LIMIT clause will jump out of the loop for us */ 901 } 902 break; 903 } 904 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 905 906 case SRT_Coroutine: /* Send data to a co-routine */ 907 case SRT_Output: { /* Return the results */ 908 testcase( eDest==SRT_Coroutine ); 909 testcase( eDest==SRT_Output ); 910 if( pSort ){ 911 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, 912 nPrefixReg); 913 }else if( eDest==SRT_Coroutine ){ 914 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 915 }else{ 916 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 917 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 918 } 919 break; 920 } 921 922 #ifndef SQLITE_OMIT_CTE 923 /* Write the results into a priority queue that is order according to 924 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 925 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 926 ** pSO->nExpr columns, then make sure all keys are unique by adding a 927 ** final OP_Sequence column. The last column is the record as a blob. 928 */ 929 case SRT_DistQueue: 930 case SRT_Queue: { 931 int nKey; 932 int r1, r2, r3; 933 int addrTest = 0; 934 ExprList *pSO; 935 pSO = pDest->pOrderBy; 936 assert( pSO ); 937 nKey = pSO->nExpr; 938 r1 = sqlite3GetTempReg(pParse); 939 r2 = sqlite3GetTempRange(pParse, nKey+2); 940 r3 = r2+nKey+1; 941 if( eDest==SRT_DistQueue ){ 942 /* If the destination is DistQueue, then cursor (iParm+1) is open 943 ** on a second ephemeral index that holds all values every previously 944 ** added to the queue. */ 945 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 946 regResult, nResultCol); 947 VdbeCoverage(v); 948 } 949 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 950 if( eDest==SRT_DistQueue ){ 951 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 952 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 953 } 954 for(i=0; i<nKey; i++){ 955 sqlite3VdbeAddOp2(v, OP_SCopy, 956 regResult + pSO->a[i].u.x.iOrderByCol - 1, 957 r2+i); 958 } 959 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 960 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 961 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 962 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 963 sqlite3ReleaseTempReg(pParse, r1); 964 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 965 break; 966 } 967 #endif /* SQLITE_OMIT_CTE */ 968 969 970 971 #if !defined(SQLITE_OMIT_TRIGGER) 972 /* Discard the results. This is used for SELECT statements inside 973 ** the body of a TRIGGER. The purpose of such selects is to call 974 ** user-defined functions that have side effects. We do not care 975 ** about the actual results of the select. 976 */ 977 default: { 978 assert( eDest==SRT_Discard ); 979 break; 980 } 981 #endif 982 } 983 984 /* Jump to the end of the loop if the LIMIT is reached. Except, if 985 ** there is a sorter, in which case the sorter has already limited 986 ** the output for us. 987 */ 988 if( pSort==0 && p->iLimit ){ 989 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 990 } 991 } 992 993 /* 994 ** Allocate a KeyInfo object sufficient for an index of N key columns and 995 ** X extra columns. 996 */ 997 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 998 KeyInfo *p = sqlite3DbMallocZero(0, 999 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 1000 if( p ){ 1001 p->aSortOrder = (u8*)&p->aColl[N+X]; 1002 p->nField = (u16)N; 1003 p->nXField = (u16)X; 1004 p->enc = ENC(db); 1005 p->db = db; 1006 p->nRef = 1; 1007 }else{ 1008 db->mallocFailed = 1; 1009 } 1010 return p; 1011 } 1012 1013 /* 1014 ** Deallocate a KeyInfo object 1015 */ 1016 void sqlite3KeyInfoUnref(KeyInfo *p){ 1017 if( p ){ 1018 assert( p->nRef>0 ); 1019 p->nRef--; 1020 if( p->nRef==0 ) sqlite3DbFree(0, p); 1021 } 1022 } 1023 1024 /* 1025 ** Make a new pointer to a KeyInfo object 1026 */ 1027 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1028 if( p ){ 1029 assert( p->nRef>0 ); 1030 p->nRef++; 1031 } 1032 return p; 1033 } 1034 1035 #ifdef SQLITE_DEBUG 1036 /* 1037 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1038 ** can only be changed if this is just a single reference to the object. 1039 ** 1040 ** This routine is used only inside of assert() statements. 1041 */ 1042 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1043 #endif /* SQLITE_DEBUG */ 1044 1045 /* 1046 ** Given an expression list, generate a KeyInfo structure that records 1047 ** the collating sequence for each expression in that expression list. 1048 ** 1049 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1050 ** KeyInfo structure is appropriate for initializing a virtual index to 1051 ** implement that clause. If the ExprList is the result set of a SELECT 1052 ** then the KeyInfo structure is appropriate for initializing a virtual 1053 ** index to implement a DISTINCT test. 1054 ** 1055 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1056 ** function is responsible for seeing that this structure is eventually 1057 ** freed. 1058 */ 1059 static KeyInfo *keyInfoFromExprList( 1060 Parse *pParse, /* Parsing context */ 1061 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1062 int iStart, /* Begin with this column of pList */ 1063 int nExtra /* Add this many extra columns to the end */ 1064 ){ 1065 int nExpr; 1066 KeyInfo *pInfo; 1067 struct ExprList_item *pItem; 1068 sqlite3 *db = pParse->db; 1069 int i; 1070 1071 nExpr = pList->nExpr; 1072 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1073 if( pInfo ){ 1074 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1075 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1076 CollSeq *pColl; 1077 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1078 if( !pColl ) pColl = db->pDfltColl; 1079 pInfo->aColl[i-iStart] = pColl; 1080 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1081 } 1082 } 1083 return pInfo; 1084 } 1085 1086 /* 1087 ** Name of the connection operator, used for error messages. 1088 */ 1089 static const char *selectOpName(int id){ 1090 char *z; 1091 switch( id ){ 1092 case TK_ALL: z = "UNION ALL"; break; 1093 case TK_INTERSECT: z = "INTERSECT"; break; 1094 case TK_EXCEPT: z = "EXCEPT"; break; 1095 default: z = "UNION"; break; 1096 } 1097 return z; 1098 } 1099 1100 #ifndef SQLITE_OMIT_EXPLAIN 1101 /* 1102 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1103 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1104 ** where the caption is of the form: 1105 ** 1106 ** "USE TEMP B-TREE FOR xxx" 1107 ** 1108 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1109 ** is determined by the zUsage argument. 1110 */ 1111 static void explainTempTable(Parse *pParse, const char *zUsage){ 1112 if( pParse->explain==2 ){ 1113 Vdbe *v = pParse->pVdbe; 1114 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1115 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1116 } 1117 } 1118 1119 /* 1120 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1121 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1122 ** in sqlite3Select() to assign values to structure member variables that 1123 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1124 ** code with #ifndef directives. 1125 */ 1126 # define explainSetInteger(a, b) a = b 1127 1128 #else 1129 /* No-op versions of the explainXXX() functions and macros. */ 1130 # define explainTempTable(y,z) 1131 # define explainSetInteger(y,z) 1132 #endif 1133 1134 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1135 /* 1136 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1137 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1138 ** where the caption is of one of the two forms: 1139 ** 1140 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1141 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1142 ** 1143 ** where iSub1 and iSub2 are the integers passed as the corresponding 1144 ** function parameters, and op is the text representation of the parameter 1145 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1146 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1147 ** false, or the second form if it is true. 1148 */ 1149 static void explainComposite( 1150 Parse *pParse, /* Parse context */ 1151 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1152 int iSub1, /* Subquery id 1 */ 1153 int iSub2, /* Subquery id 2 */ 1154 int bUseTmp /* True if a temp table was used */ 1155 ){ 1156 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1157 if( pParse->explain==2 ){ 1158 Vdbe *v = pParse->pVdbe; 1159 char *zMsg = sqlite3MPrintf( 1160 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1161 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1162 ); 1163 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1164 } 1165 } 1166 #else 1167 /* No-op versions of the explainXXX() functions and macros. */ 1168 # define explainComposite(v,w,x,y,z) 1169 #endif 1170 1171 /* 1172 ** If the inner loop was generated using a non-null pOrderBy argument, 1173 ** then the results were placed in a sorter. After the loop is terminated 1174 ** we need to run the sorter and output the results. The following 1175 ** routine generates the code needed to do that. 1176 */ 1177 static void generateSortTail( 1178 Parse *pParse, /* Parsing context */ 1179 Select *p, /* The SELECT statement */ 1180 SortCtx *pSort, /* Information on the ORDER BY clause */ 1181 int nColumn, /* Number of columns of data */ 1182 SelectDest *pDest /* Write the sorted results here */ 1183 ){ 1184 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1185 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1186 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1187 int addr; 1188 int addrOnce = 0; 1189 int iTab; 1190 ExprList *pOrderBy = pSort->pOrderBy; 1191 int eDest = pDest->eDest; 1192 int iParm = pDest->iSDParm; 1193 int regRow; 1194 int regRowid; 1195 int nKey; 1196 int iSortTab; /* Sorter cursor to read from */ 1197 int nSortData; /* Trailing values to read from sorter */ 1198 int i; 1199 int bSeq; /* True if sorter record includes seq. no. */ 1200 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 1201 struct ExprList_item *aOutEx = p->pEList->a; 1202 #endif 1203 1204 if( pSort->labelBkOut ){ 1205 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1206 sqlite3VdbeGoto(v, addrBreak); 1207 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1208 } 1209 iTab = pSort->iECursor; 1210 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1211 regRowid = 0; 1212 regRow = pDest->iSdst; 1213 nSortData = nColumn; 1214 }else{ 1215 regRowid = sqlite3GetTempReg(pParse); 1216 regRow = sqlite3GetTempReg(pParse); 1217 nSortData = 1; 1218 } 1219 nKey = pOrderBy->nExpr - pSort->nOBSat; 1220 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1221 int regSortOut = ++pParse->nMem; 1222 iSortTab = pParse->nTab++; 1223 if( pSort->labelBkOut ){ 1224 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1225 } 1226 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1227 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1228 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1229 VdbeCoverage(v); 1230 codeOffset(v, p->iOffset, addrContinue); 1231 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1232 bSeq = 0; 1233 }else{ 1234 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1235 codeOffset(v, p->iOffset, addrContinue); 1236 iSortTab = iTab; 1237 bSeq = 1; 1238 } 1239 for(i=0; i<nSortData; i++){ 1240 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); 1241 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1242 } 1243 switch( eDest ){ 1244 case SRT_EphemTab: { 1245 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1246 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1247 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1248 break; 1249 } 1250 #ifndef SQLITE_OMIT_SUBQUERY 1251 case SRT_Set: { 1252 assert( nColumn==1 ); 1253 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1254 &pDest->affSdst, 1); 1255 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1256 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1257 break; 1258 } 1259 case SRT_Mem: { 1260 assert( nColumn==1 ); 1261 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1262 /* The LIMIT clause will terminate the loop for us */ 1263 break; 1264 } 1265 #endif 1266 default: { 1267 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1268 testcase( eDest==SRT_Output ); 1269 testcase( eDest==SRT_Coroutine ); 1270 if( eDest==SRT_Output ){ 1271 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1272 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1273 }else{ 1274 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1275 } 1276 break; 1277 } 1278 } 1279 if( regRowid ){ 1280 sqlite3ReleaseTempReg(pParse, regRow); 1281 sqlite3ReleaseTempReg(pParse, regRowid); 1282 } 1283 /* The bottom of the loop 1284 */ 1285 sqlite3VdbeResolveLabel(v, addrContinue); 1286 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1287 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1288 }else{ 1289 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1290 } 1291 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1292 sqlite3VdbeResolveLabel(v, addrBreak); 1293 } 1294 1295 /* 1296 ** Return a pointer to a string containing the 'declaration type' of the 1297 ** expression pExpr. The string may be treated as static by the caller. 1298 ** 1299 ** Also try to estimate the size of the returned value and return that 1300 ** result in *pEstWidth. 1301 ** 1302 ** The declaration type is the exact datatype definition extracted from the 1303 ** original CREATE TABLE statement if the expression is a column. The 1304 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1305 ** is considered a column can be complex in the presence of subqueries. The 1306 ** result-set expression in all of the following SELECT statements is 1307 ** considered a column by this function. 1308 ** 1309 ** SELECT col FROM tbl; 1310 ** SELECT (SELECT col FROM tbl; 1311 ** SELECT (SELECT col FROM tbl); 1312 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1313 ** 1314 ** The declaration type for any expression other than a column is NULL. 1315 ** 1316 ** This routine has either 3 or 6 parameters depending on whether or not 1317 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1318 */ 1319 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1320 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1323 #endif 1324 static const char *columnTypeImpl( 1325 NameContext *pNC, 1326 Expr *pExpr, 1327 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1328 const char **pzOrigDb, 1329 const char **pzOrigTab, 1330 const char **pzOrigCol, 1331 #endif 1332 u8 *pEstWidth 1333 ){ 1334 char const *zType = 0; 1335 int j; 1336 u8 estWidth = 1; 1337 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1338 char const *zOrigDb = 0; 1339 char const *zOrigTab = 0; 1340 char const *zOrigCol = 0; 1341 #endif 1342 1343 assert( pExpr!=0 ); 1344 assert( pNC->pSrcList!=0 ); 1345 switch( pExpr->op ){ 1346 case TK_AGG_COLUMN: 1347 case TK_COLUMN: { 1348 /* The expression is a column. Locate the table the column is being 1349 ** extracted from in NameContext.pSrcList. This table may be real 1350 ** database table or a subquery. 1351 */ 1352 Table *pTab = 0; /* Table structure column is extracted from */ 1353 Select *pS = 0; /* Select the column is extracted from */ 1354 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1355 testcase( pExpr->op==TK_AGG_COLUMN ); 1356 testcase( pExpr->op==TK_COLUMN ); 1357 while( pNC && !pTab ){ 1358 SrcList *pTabList = pNC->pSrcList; 1359 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1360 if( j<pTabList->nSrc ){ 1361 pTab = pTabList->a[j].pTab; 1362 pS = pTabList->a[j].pSelect; 1363 }else{ 1364 pNC = pNC->pNext; 1365 } 1366 } 1367 1368 if( pTab==0 ){ 1369 /* At one time, code such as "SELECT new.x" within a trigger would 1370 ** cause this condition to run. Since then, we have restructured how 1371 ** trigger code is generated and so this condition is no longer 1372 ** possible. However, it can still be true for statements like 1373 ** the following: 1374 ** 1375 ** CREATE TABLE t1(col INTEGER); 1376 ** SELECT (SELECT t1.col) FROM FROM t1; 1377 ** 1378 ** when columnType() is called on the expression "t1.col" in the 1379 ** sub-select. In this case, set the column type to NULL, even 1380 ** though it should really be "INTEGER". 1381 ** 1382 ** This is not a problem, as the column type of "t1.col" is never 1383 ** used. When columnType() is called on the expression 1384 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1385 ** branch below. */ 1386 break; 1387 } 1388 1389 assert( pTab && pExpr->pTab==pTab ); 1390 if( pS ){ 1391 /* The "table" is actually a sub-select or a view in the FROM clause 1392 ** of the SELECT statement. Return the declaration type and origin 1393 ** data for the result-set column of the sub-select. 1394 */ 1395 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1396 /* If iCol is less than zero, then the expression requests the 1397 ** rowid of the sub-select or view. This expression is legal (see 1398 ** test case misc2.2.2) - it always evaluates to NULL. 1399 ** 1400 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1401 ** caught already by name resolution. 1402 */ 1403 NameContext sNC; 1404 Expr *p = pS->pEList->a[iCol].pExpr; 1405 sNC.pSrcList = pS->pSrc; 1406 sNC.pNext = pNC; 1407 sNC.pParse = pNC->pParse; 1408 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1409 } 1410 }else if( pTab->pSchema ){ 1411 /* A real table */ 1412 assert( !pS ); 1413 if( iCol<0 ) iCol = pTab->iPKey; 1414 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1415 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1416 if( iCol<0 ){ 1417 zType = "INTEGER"; 1418 zOrigCol = "rowid"; 1419 }else{ 1420 zType = pTab->aCol[iCol].zType; 1421 zOrigCol = pTab->aCol[iCol].zName; 1422 estWidth = pTab->aCol[iCol].szEst; 1423 } 1424 zOrigTab = pTab->zName; 1425 if( pNC->pParse ){ 1426 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1427 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1428 } 1429 #else 1430 if( iCol<0 ){ 1431 zType = "INTEGER"; 1432 }else{ 1433 zType = pTab->aCol[iCol].zType; 1434 estWidth = pTab->aCol[iCol].szEst; 1435 } 1436 #endif 1437 } 1438 break; 1439 } 1440 #ifndef SQLITE_OMIT_SUBQUERY 1441 case TK_SELECT: { 1442 /* The expression is a sub-select. Return the declaration type and 1443 ** origin info for the single column in the result set of the SELECT 1444 ** statement. 1445 */ 1446 NameContext sNC; 1447 Select *pS = pExpr->x.pSelect; 1448 Expr *p = pS->pEList->a[0].pExpr; 1449 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1450 sNC.pSrcList = pS->pSrc; 1451 sNC.pNext = pNC; 1452 sNC.pParse = pNC->pParse; 1453 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1454 break; 1455 } 1456 #endif 1457 } 1458 1459 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1460 if( pzOrigDb ){ 1461 assert( pzOrigTab && pzOrigCol ); 1462 *pzOrigDb = zOrigDb; 1463 *pzOrigTab = zOrigTab; 1464 *pzOrigCol = zOrigCol; 1465 } 1466 #endif 1467 if( pEstWidth ) *pEstWidth = estWidth; 1468 return zType; 1469 } 1470 1471 /* 1472 ** Generate code that will tell the VDBE the declaration types of columns 1473 ** in the result set. 1474 */ 1475 static void generateColumnTypes( 1476 Parse *pParse, /* Parser context */ 1477 SrcList *pTabList, /* List of tables */ 1478 ExprList *pEList /* Expressions defining the result set */ 1479 ){ 1480 #ifndef SQLITE_OMIT_DECLTYPE 1481 Vdbe *v = pParse->pVdbe; 1482 int i; 1483 NameContext sNC; 1484 sNC.pSrcList = pTabList; 1485 sNC.pParse = pParse; 1486 for(i=0; i<pEList->nExpr; i++){ 1487 Expr *p = pEList->a[i].pExpr; 1488 const char *zType; 1489 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1490 const char *zOrigDb = 0; 1491 const char *zOrigTab = 0; 1492 const char *zOrigCol = 0; 1493 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1494 1495 /* The vdbe must make its own copy of the column-type and other 1496 ** column specific strings, in case the schema is reset before this 1497 ** virtual machine is deleted. 1498 */ 1499 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1500 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1501 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1502 #else 1503 zType = columnType(&sNC, p, 0, 0, 0, 0); 1504 #endif 1505 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1506 } 1507 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1508 } 1509 1510 /* 1511 ** Generate code that will tell the VDBE the names of columns 1512 ** in the result set. This information is used to provide the 1513 ** azCol[] values in the callback. 1514 */ 1515 static void generateColumnNames( 1516 Parse *pParse, /* Parser context */ 1517 SrcList *pTabList, /* List of tables */ 1518 ExprList *pEList /* Expressions defining the result set */ 1519 ){ 1520 Vdbe *v = pParse->pVdbe; 1521 int i, j; 1522 sqlite3 *db = pParse->db; 1523 int fullNames, shortNames; 1524 1525 #ifndef SQLITE_OMIT_EXPLAIN 1526 /* If this is an EXPLAIN, skip this step */ 1527 if( pParse->explain ){ 1528 return; 1529 } 1530 #endif 1531 1532 if( pParse->colNamesSet || db->mallocFailed ) return; 1533 assert( v!=0 ); 1534 assert( pTabList!=0 ); 1535 pParse->colNamesSet = 1; 1536 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1537 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1538 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1539 for(i=0; i<pEList->nExpr; i++){ 1540 Expr *p; 1541 p = pEList->a[i].pExpr; 1542 if( NEVER(p==0) ) continue; 1543 if( pEList->a[i].zName ){ 1544 char *zName = pEList->a[i].zName; 1545 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1546 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){ 1547 Table *pTab; 1548 char *zCol; 1549 int iCol = p->iColumn; 1550 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1551 if( pTabList->a[j].iCursor==p->iTable ) break; 1552 } 1553 assert( j<pTabList->nSrc ); 1554 pTab = pTabList->a[j].pTab; 1555 if( iCol<0 ) iCol = pTab->iPKey; 1556 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1557 if( iCol<0 ){ 1558 zCol = "rowid"; 1559 }else{ 1560 zCol = pTab->aCol[iCol].zName; 1561 } 1562 if( !shortNames && !fullNames ){ 1563 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1564 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1565 }else if( fullNames ){ 1566 char *zName = 0; 1567 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1568 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1569 }else{ 1570 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1571 } 1572 }else{ 1573 const char *z = pEList->a[i].zSpan; 1574 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1575 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1576 } 1577 } 1578 generateColumnTypes(pParse, pTabList, pEList); 1579 } 1580 1581 /* 1582 ** Given an expression list (which is really the list of expressions 1583 ** that form the result set of a SELECT statement) compute appropriate 1584 ** column names for a table that would hold the expression list. 1585 ** 1586 ** All column names will be unique. 1587 ** 1588 ** Only the column names are computed. Column.zType, Column.zColl, 1589 ** and other fields of Column are zeroed. 1590 ** 1591 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1592 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1593 */ 1594 int sqlite3ColumnsFromExprList( 1595 Parse *pParse, /* Parsing context */ 1596 ExprList *pEList, /* Expr list from which to derive column names */ 1597 i16 *pnCol, /* Write the number of columns here */ 1598 Column **paCol /* Write the new column list here */ 1599 ){ 1600 sqlite3 *db = pParse->db; /* Database connection */ 1601 int i, j; /* Loop counters */ 1602 u32 cnt; /* Index added to make the name unique */ 1603 Column *aCol, *pCol; /* For looping over result columns */ 1604 int nCol; /* Number of columns in the result set */ 1605 Expr *p; /* Expression for a single result column */ 1606 char *zName; /* Column name */ 1607 int nName; /* Size of name in zName[] */ 1608 Hash ht; /* Hash table of column names */ 1609 1610 sqlite3HashInit(&ht); 1611 if( pEList ){ 1612 nCol = pEList->nExpr; 1613 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1614 testcase( aCol==0 ); 1615 }else{ 1616 nCol = 0; 1617 aCol = 0; 1618 } 1619 assert( nCol==(i16)nCol ); 1620 *pnCol = nCol; 1621 *paCol = aCol; 1622 1623 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1624 /* Get an appropriate name for the column 1625 */ 1626 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1627 if( (zName = pEList->a[i].zName)!=0 ){ 1628 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1629 }else{ 1630 Expr *pColExpr = p; /* The expression that is the result column name */ 1631 Table *pTab; /* Table associated with this expression */ 1632 while( pColExpr->op==TK_DOT ){ 1633 pColExpr = pColExpr->pRight; 1634 assert( pColExpr!=0 ); 1635 } 1636 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1637 /* For columns use the column name name */ 1638 int iCol = pColExpr->iColumn; 1639 pTab = pColExpr->pTab; 1640 if( iCol<0 ) iCol = pTab->iPKey; 1641 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1642 }else if( pColExpr->op==TK_ID ){ 1643 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1644 zName = pColExpr->u.zToken; 1645 }else{ 1646 /* Use the original text of the column expression as its name */ 1647 zName = pEList->a[i].zSpan; 1648 } 1649 } 1650 zName = sqlite3MPrintf(db, "%s", zName); 1651 1652 /* Make sure the column name is unique. If the name is not unique, 1653 ** append an integer to the name so that it becomes unique. 1654 */ 1655 cnt = 0; 1656 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1657 nName = sqlite3Strlen30(zName); 1658 if( nName>0 ){ 1659 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1660 if( zName[j]==':' ) nName = j; 1661 } 1662 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1663 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1664 } 1665 pCol->zName = zName; 1666 sqlite3ColumnPropertiesFromName(0, pCol); 1667 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1668 db->mallocFailed = 1; 1669 } 1670 } 1671 sqlite3HashClear(&ht); 1672 if( db->mallocFailed ){ 1673 for(j=0; j<i; j++){ 1674 sqlite3DbFree(db, aCol[j].zName); 1675 } 1676 sqlite3DbFree(db, aCol); 1677 *paCol = 0; 1678 *pnCol = 0; 1679 return SQLITE_NOMEM; 1680 } 1681 return SQLITE_OK; 1682 } 1683 1684 /* 1685 ** Add type and collation information to a column list based on 1686 ** a SELECT statement. 1687 ** 1688 ** The column list presumably came from selectColumnNamesFromExprList(). 1689 ** The column list has only names, not types or collations. This 1690 ** routine goes through and adds the types and collations. 1691 ** 1692 ** This routine requires that all identifiers in the SELECT 1693 ** statement be resolved. 1694 */ 1695 static void selectAddColumnTypeAndCollation( 1696 Parse *pParse, /* Parsing contexts */ 1697 Table *pTab, /* Add column type information to this table */ 1698 Select *pSelect /* SELECT used to determine types and collations */ 1699 ){ 1700 sqlite3 *db = pParse->db; 1701 NameContext sNC; 1702 Column *pCol; 1703 CollSeq *pColl; 1704 int i; 1705 Expr *p; 1706 struct ExprList_item *a; 1707 u64 szAll = 0; 1708 1709 assert( pSelect!=0 ); 1710 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1711 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1712 if( db->mallocFailed ) return; 1713 memset(&sNC, 0, sizeof(sNC)); 1714 sNC.pSrcList = pSelect->pSrc; 1715 a = pSelect->pEList->a; 1716 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1717 p = a[i].pExpr; 1718 if( pCol->zType==0 ){ 1719 pCol->zType = sqlite3DbStrDup(db, 1720 columnType(&sNC, p,0,0,0, &pCol->szEst)); 1721 } 1722 szAll += pCol->szEst; 1723 pCol->affinity = sqlite3ExprAffinity(p); 1724 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1725 pColl = sqlite3ExprCollSeq(pParse, p); 1726 if( pColl && pCol->zColl==0 ){ 1727 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1728 } 1729 } 1730 pTab->szTabRow = sqlite3LogEst(szAll*4); 1731 } 1732 1733 /* 1734 ** Given a SELECT statement, generate a Table structure that describes 1735 ** the result set of that SELECT. 1736 */ 1737 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1738 Table *pTab; 1739 sqlite3 *db = pParse->db; 1740 int savedFlags; 1741 1742 savedFlags = db->flags; 1743 db->flags &= ~SQLITE_FullColNames; 1744 db->flags |= SQLITE_ShortColNames; 1745 sqlite3SelectPrep(pParse, pSelect, 0); 1746 if( pParse->nErr ) return 0; 1747 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1748 db->flags = savedFlags; 1749 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1750 if( pTab==0 ){ 1751 return 0; 1752 } 1753 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1754 ** is disabled */ 1755 assert( db->lookaside.bEnabled==0 ); 1756 pTab->nRef = 1; 1757 pTab->zName = 0; 1758 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1759 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1760 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1761 pTab->iPKey = -1; 1762 if( db->mallocFailed ){ 1763 sqlite3DeleteTable(db, pTab); 1764 return 0; 1765 } 1766 return pTab; 1767 } 1768 1769 /* 1770 ** Get a VDBE for the given parser context. Create a new one if necessary. 1771 ** If an error occurs, return NULL and leave a message in pParse. 1772 */ 1773 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1774 Vdbe *v = pParse->pVdbe; 1775 if( v==0 ){ 1776 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1777 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1778 if( pParse->pToplevel==0 1779 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1780 ){ 1781 pParse->okConstFactor = 1; 1782 } 1783 1784 } 1785 return v; 1786 } 1787 1788 1789 /* 1790 ** Compute the iLimit and iOffset fields of the SELECT based on the 1791 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1792 ** that appear in the original SQL statement after the LIMIT and OFFSET 1793 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1794 ** are the integer memory register numbers for counters used to compute 1795 ** the limit and offset. If there is no limit and/or offset, then 1796 ** iLimit and iOffset are negative. 1797 ** 1798 ** This routine changes the values of iLimit and iOffset only if 1799 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1800 ** iOffset should have been preset to appropriate default values (zero) 1801 ** prior to calling this routine. 1802 ** 1803 ** The iOffset register (if it exists) is initialized to the value 1804 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1805 ** iOffset+1 is initialized to LIMIT+OFFSET. 1806 ** 1807 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1808 ** redefined. The UNION ALL operator uses this property to force 1809 ** the reuse of the same limit and offset registers across multiple 1810 ** SELECT statements. 1811 */ 1812 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1813 Vdbe *v = 0; 1814 int iLimit = 0; 1815 int iOffset; 1816 int n; 1817 if( p->iLimit ) return; 1818 1819 /* 1820 ** "LIMIT -1" always shows all rows. There is some 1821 ** controversy about what the correct behavior should be. 1822 ** The current implementation interprets "LIMIT 0" to mean 1823 ** no rows. 1824 */ 1825 sqlite3ExprCacheClear(pParse); 1826 assert( p->pOffset==0 || p->pLimit!=0 ); 1827 if( p->pLimit ){ 1828 p->iLimit = iLimit = ++pParse->nMem; 1829 v = sqlite3GetVdbe(pParse); 1830 assert( v!=0 ); 1831 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1832 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1833 VdbeComment((v, "LIMIT counter")); 1834 if( n==0 ){ 1835 sqlite3VdbeGoto(v, iBreak); 1836 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1837 p->nSelectRow = n; 1838 } 1839 }else{ 1840 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1841 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1842 VdbeComment((v, "LIMIT counter")); 1843 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1844 } 1845 if( p->pOffset ){ 1846 p->iOffset = iOffset = ++pParse->nMem; 1847 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1848 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1849 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1850 VdbeComment((v, "OFFSET counter")); 1851 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iOffset, iOffset, 0); 1852 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1853 VdbeComment((v, "LIMIT+OFFSET")); 1854 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iLimit, iOffset+1, -1); 1855 } 1856 } 1857 } 1858 1859 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1860 /* 1861 ** Return the appropriate collating sequence for the iCol-th column of 1862 ** the result set for the compound-select statement "p". Return NULL if 1863 ** the column has no default collating sequence. 1864 ** 1865 ** The collating sequence for the compound select is taken from the 1866 ** left-most term of the select that has a collating sequence. 1867 */ 1868 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1869 CollSeq *pRet; 1870 if( p->pPrior ){ 1871 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1872 }else{ 1873 pRet = 0; 1874 } 1875 assert( iCol>=0 ); 1876 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1877 ** have been thrown during name resolution and we would not have gotten 1878 ** this far */ 1879 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1880 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1881 } 1882 return pRet; 1883 } 1884 1885 /* 1886 ** The select statement passed as the second parameter is a compound SELECT 1887 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1888 ** structure suitable for implementing the ORDER BY. 1889 ** 1890 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1891 ** function is responsible for ensuring that this structure is eventually 1892 ** freed. 1893 */ 1894 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1895 ExprList *pOrderBy = p->pOrderBy; 1896 int nOrderBy = p->pOrderBy->nExpr; 1897 sqlite3 *db = pParse->db; 1898 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1899 if( pRet ){ 1900 int i; 1901 for(i=0; i<nOrderBy; i++){ 1902 struct ExprList_item *pItem = &pOrderBy->a[i]; 1903 Expr *pTerm = pItem->pExpr; 1904 CollSeq *pColl; 1905 1906 if( pTerm->flags & EP_Collate ){ 1907 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1908 }else{ 1909 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1910 if( pColl==0 ) pColl = db->pDfltColl; 1911 pOrderBy->a[i].pExpr = 1912 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1913 } 1914 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1915 pRet->aColl[i] = pColl; 1916 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1917 } 1918 } 1919 1920 return pRet; 1921 } 1922 1923 #ifndef SQLITE_OMIT_CTE 1924 /* 1925 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1926 ** query of the form: 1927 ** 1928 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1929 ** \___________/ \_______________/ 1930 ** p->pPrior p 1931 ** 1932 ** 1933 ** There is exactly one reference to the recursive-table in the FROM clause 1934 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1935 ** 1936 ** The setup-query runs once to generate an initial set of rows that go 1937 ** into a Queue table. Rows are extracted from the Queue table one by 1938 ** one. Each row extracted from Queue is output to pDest. Then the single 1939 ** extracted row (now in the iCurrent table) becomes the content of the 1940 ** recursive-table for a recursive-query run. The output of the recursive-query 1941 ** is added back into the Queue table. Then another row is extracted from Queue 1942 ** and the iteration continues until the Queue table is empty. 1943 ** 1944 ** If the compound query operator is UNION then no duplicate rows are ever 1945 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1946 ** that have ever been inserted into Queue and causes duplicates to be 1947 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1948 ** 1949 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1950 ** ORDER BY order and the first entry is extracted for each cycle. Without 1951 ** an ORDER BY, the Queue table is just a FIFO. 1952 ** 1953 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1954 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1955 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1956 ** with a positive value, then the first OFFSET outputs are discarded rather 1957 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1958 ** rows have been skipped. 1959 */ 1960 static void generateWithRecursiveQuery( 1961 Parse *pParse, /* Parsing context */ 1962 Select *p, /* The recursive SELECT to be coded */ 1963 SelectDest *pDest /* What to do with query results */ 1964 ){ 1965 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1966 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1967 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1968 Select *pSetup = p->pPrior; /* The setup query */ 1969 int addrTop; /* Top of the loop */ 1970 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1971 int iCurrent = 0; /* The Current table */ 1972 int regCurrent; /* Register holding Current table */ 1973 int iQueue; /* The Queue table */ 1974 int iDistinct = 0; /* To ensure unique results if UNION */ 1975 int eDest = SRT_Fifo; /* How to write to Queue */ 1976 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1977 int i; /* Loop counter */ 1978 int rc; /* Result code */ 1979 ExprList *pOrderBy; /* The ORDER BY clause */ 1980 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1981 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1982 1983 /* Obtain authorization to do a recursive query */ 1984 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1985 1986 /* Process the LIMIT and OFFSET clauses, if they exist */ 1987 addrBreak = sqlite3VdbeMakeLabel(v); 1988 computeLimitRegisters(pParse, p, addrBreak); 1989 pLimit = p->pLimit; 1990 pOffset = p->pOffset; 1991 regLimit = p->iLimit; 1992 regOffset = p->iOffset; 1993 p->pLimit = p->pOffset = 0; 1994 p->iLimit = p->iOffset = 0; 1995 pOrderBy = p->pOrderBy; 1996 1997 /* Locate the cursor number of the Current table */ 1998 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1999 if( pSrc->a[i].fg.isRecursive ){ 2000 iCurrent = pSrc->a[i].iCursor; 2001 break; 2002 } 2003 } 2004 2005 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2006 ** the Distinct table must be exactly one greater than Queue in order 2007 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2008 iQueue = pParse->nTab++; 2009 if( p->op==TK_UNION ){ 2010 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2011 iDistinct = pParse->nTab++; 2012 }else{ 2013 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2014 } 2015 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2016 2017 /* Allocate cursors for Current, Queue, and Distinct. */ 2018 regCurrent = ++pParse->nMem; 2019 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2020 if( pOrderBy ){ 2021 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2022 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2023 (char*)pKeyInfo, P4_KEYINFO); 2024 destQueue.pOrderBy = pOrderBy; 2025 }else{ 2026 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2027 } 2028 VdbeComment((v, "Queue table")); 2029 if( iDistinct ){ 2030 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2031 p->selFlags |= SF_UsesEphemeral; 2032 } 2033 2034 /* Detach the ORDER BY clause from the compound SELECT */ 2035 p->pOrderBy = 0; 2036 2037 /* Store the results of the setup-query in Queue. */ 2038 pSetup->pNext = 0; 2039 rc = sqlite3Select(pParse, pSetup, &destQueue); 2040 pSetup->pNext = p; 2041 if( rc ) goto end_of_recursive_query; 2042 2043 /* Find the next row in the Queue and output that row */ 2044 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2045 2046 /* Transfer the next row in Queue over to Current */ 2047 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2048 if( pOrderBy ){ 2049 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2050 }else{ 2051 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2052 } 2053 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2054 2055 /* Output the single row in Current */ 2056 addrCont = sqlite3VdbeMakeLabel(v); 2057 codeOffset(v, regOffset, addrCont); 2058 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2059 0, 0, pDest, addrCont, addrBreak); 2060 if( regLimit ){ 2061 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2062 VdbeCoverage(v); 2063 } 2064 sqlite3VdbeResolveLabel(v, addrCont); 2065 2066 /* Execute the recursive SELECT taking the single row in Current as 2067 ** the value for the recursive-table. Store the results in the Queue. 2068 */ 2069 if( p->selFlags & SF_Aggregate ){ 2070 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2071 }else{ 2072 p->pPrior = 0; 2073 sqlite3Select(pParse, p, &destQueue); 2074 assert( p->pPrior==0 ); 2075 p->pPrior = pSetup; 2076 } 2077 2078 /* Keep running the loop until the Queue is empty */ 2079 sqlite3VdbeGoto(v, addrTop); 2080 sqlite3VdbeResolveLabel(v, addrBreak); 2081 2082 end_of_recursive_query: 2083 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2084 p->pOrderBy = pOrderBy; 2085 p->pLimit = pLimit; 2086 p->pOffset = pOffset; 2087 return; 2088 } 2089 #endif /* SQLITE_OMIT_CTE */ 2090 2091 /* Forward references */ 2092 static int multiSelectOrderBy( 2093 Parse *pParse, /* Parsing context */ 2094 Select *p, /* The right-most of SELECTs to be coded */ 2095 SelectDest *pDest /* What to do with query results */ 2096 ); 2097 2098 /* 2099 ** Handle the special case of a compound-select that originates from a 2100 ** VALUES clause. By handling this as a special case, we avoid deep 2101 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2102 ** on a VALUES clause. 2103 ** 2104 ** Because the Select object originates from a VALUES clause: 2105 ** (1) It has no LIMIT or OFFSET 2106 ** (2) All terms are UNION ALL 2107 ** (3) There is no ORDER BY clause 2108 */ 2109 static int multiSelectValues( 2110 Parse *pParse, /* Parsing context */ 2111 Select *p, /* The right-most of SELECTs to be coded */ 2112 SelectDest *pDest /* What to do with query results */ 2113 ){ 2114 Select *pPrior; 2115 int nRow = 1; 2116 int rc = 0; 2117 assert( p->selFlags & SF_MultiValue ); 2118 do{ 2119 assert( p->selFlags & SF_Values ); 2120 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2121 assert( p->pLimit==0 ); 2122 assert( p->pOffset==0 ); 2123 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2124 if( p->pPrior==0 ) break; 2125 assert( p->pPrior->pNext==p ); 2126 p = p->pPrior; 2127 nRow++; 2128 }while(1); 2129 while( p ){ 2130 pPrior = p->pPrior; 2131 p->pPrior = 0; 2132 rc = sqlite3Select(pParse, p, pDest); 2133 p->pPrior = pPrior; 2134 if( rc ) break; 2135 p->nSelectRow = nRow; 2136 p = p->pNext; 2137 } 2138 return rc; 2139 } 2140 2141 /* 2142 ** This routine is called to process a compound query form from 2143 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2144 ** INTERSECT 2145 ** 2146 ** "p" points to the right-most of the two queries. the query on the 2147 ** left is p->pPrior. The left query could also be a compound query 2148 ** in which case this routine will be called recursively. 2149 ** 2150 ** The results of the total query are to be written into a destination 2151 ** of type eDest with parameter iParm. 2152 ** 2153 ** Example 1: Consider a three-way compound SQL statement. 2154 ** 2155 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2156 ** 2157 ** This statement is parsed up as follows: 2158 ** 2159 ** SELECT c FROM t3 2160 ** | 2161 ** `-----> SELECT b FROM t2 2162 ** | 2163 ** `------> SELECT a FROM t1 2164 ** 2165 ** The arrows in the diagram above represent the Select.pPrior pointer. 2166 ** So if this routine is called with p equal to the t3 query, then 2167 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2168 ** 2169 ** Notice that because of the way SQLite parses compound SELECTs, the 2170 ** individual selects always group from left to right. 2171 */ 2172 static int multiSelect( 2173 Parse *pParse, /* Parsing context */ 2174 Select *p, /* The right-most of SELECTs to be coded */ 2175 SelectDest *pDest /* What to do with query results */ 2176 ){ 2177 int rc = SQLITE_OK; /* Success code from a subroutine */ 2178 Select *pPrior; /* Another SELECT immediately to our left */ 2179 Vdbe *v; /* Generate code to this VDBE */ 2180 SelectDest dest; /* Alternative data destination */ 2181 Select *pDelete = 0; /* Chain of simple selects to delete */ 2182 sqlite3 *db; /* Database connection */ 2183 #ifndef SQLITE_OMIT_EXPLAIN 2184 int iSub1 = 0; /* EQP id of left-hand query */ 2185 int iSub2 = 0; /* EQP id of right-hand query */ 2186 #endif 2187 2188 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2189 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2190 */ 2191 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2192 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2193 db = pParse->db; 2194 pPrior = p->pPrior; 2195 dest = *pDest; 2196 if( pPrior->pOrderBy ){ 2197 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2198 selectOpName(p->op)); 2199 rc = 1; 2200 goto multi_select_end; 2201 } 2202 if( pPrior->pLimit ){ 2203 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2204 selectOpName(p->op)); 2205 rc = 1; 2206 goto multi_select_end; 2207 } 2208 2209 v = sqlite3GetVdbe(pParse); 2210 assert( v!=0 ); /* The VDBE already created by calling function */ 2211 2212 /* Create the destination temporary table if necessary 2213 */ 2214 if( dest.eDest==SRT_EphemTab ){ 2215 assert( p->pEList ); 2216 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2217 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2218 dest.eDest = SRT_Table; 2219 } 2220 2221 /* Special handling for a compound-select that originates as a VALUES clause. 2222 */ 2223 if( p->selFlags & SF_MultiValue ){ 2224 rc = multiSelectValues(pParse, p, &dest); 2225 goto multi_select_end; 2226 } 2227 2228 /* Make sure all SELECTs in the statement have the same number of elements 2229 ** in their result sets. 2230 */ 2231 assert( p->pEList && pPrior->pEList ); 2232 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2233 2234 #ifndef SQLITE_OMIT_CTE 2235 if( p->selFlags & SF_Recursive ){ 2236 generateWithRecursiveQuery(pParse, p, &dest); 2237 }else 2238 #endif 2239 2240 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2241 */ 2242 if( p->pOrderBy ){ 2243 return multiSelectOrderBy(pParse, p, pDest); 2244 }else 2245 2246 /* Generate code for the left and right SELECT statements. 2247 */ 2248 switch( p->op ){ 2249 case TK_ALL: { 2250 int addr = 0; 2251 int nLimit; 2252 assert( !pPrior->pLimit ); 2253 pPrior->iLimit = p->iLimit; 2254 pPrior->iOffset = p->iOffset; 2255 pPrior->pLimit = p->pLimit; 2256 pPrior->pOffset = p->pOffset; 2257 explainSetInteger(iSub1, pParse->iNextSelectId); 2258 rc = sqlite3Select(pParse, pPrior, &dest); 2259 p->pLimit = 0; 2260 p->pOffset = 0; 2261 if( rc ){ 2262 goto multi_select_end; 2263 } 2264 p->pPrior = 0; 2265 p->iLimit = pPrior->iLimit; 2266 p->iOffset = pPrior->iOffset; 2267 if( p->iLimit ){ 2268 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2269 VdbeComment((v, "Jump ahead if LIMIT reached")); 2270 if( p->iOffset ){ 2271 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iOffset, p->iOffset, 0); 2272 sqlite3VdbeAddOp3(v, OP_Add, p->iLimit, p->iOffset, p->iOffset+1); 2273 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iLimit, p->iOffset+1, -1); 2274 } 2275 } 2276 explainSetInteger(iSub2, pParse->iNextSelectId); 2277 rc = sqlite3Select(pParse, p, &dest); 2278 testcase( rc!=SQLITE_OK ); 2279 pDelete = p->pPrior; 2280 p->pPrior = pPrior; 2281 p->nSelectRow += pPrior->nSelectRow; 2282 if( pPrior->pLimit 2283 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2284 && nLimit>0 && p->nSelectRow > (u64)nLimit 2285 ){ 2286 p->nSelectRow = nLimit; 2287 } 2288 if( addr ){ 2289 sqlite3VdbeJumpHere(v, addr); 2290 } 2291 break; 2292 } 2293 case TK_EXCEPT: 2294 case TK_UNION: { 2295 int unionTab; /* Cursor number of the temporary table holding result */ 2296 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2297 int priorOp; /* The SRT_ operation to apply to prior selects */ 2298 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2299 int addr; 2300 SelectDest uniondest; 2301 2302 testcase( p->op==TK_EXCEPT ); 2303 testcase( p->op==TK_UNION ); 2304 priorOp = SRT_Union; 2305 if( dest.eDest==priorOp ){ 2306 /* We can reuse a temporary table generated by a SELECT to our 2307 ** right. 2308 */ 2309 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2310 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2311 unionTab = dest.iSDParm; 2312 }else{ 2313 /* We will need to create our own temporary table to hold the 2314 ** intermediate results. 2315 */ 2316 unionTab = pParse->nTab++; 2317 assert( p->pOrderBy==0 ); 2318 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2319 assert( p->addrOpenEphm[0] == -1 ); 2320 p->addrOpenEphm[0] = addr; 2321 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2322 assert( p->pEList ); 2323 } 2324 2325 /* Code the SELECT statements to our left 2326 */ 2327 assert( !pPrior->pOrderBy ); 2328 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2329 explainSetInteger(iSub1, pParse->iNextSelectId); 2330 rc = sqlite3Select(pParse, pPrior, &uniondest); 2331 if( rc ){ 2332 goto multi_select_end; 2333 } 2334 2335 /* Code the current SELECT statement 2336 */ 2337 if( p->op==TK_EXCEPT ){ 2338 op = SRT_Except; 2339 }else{ 2340 assert( p->op==TK_UNION ); 2341 op = SRT_Union; 2342 } 2343 p->pPrior = 0; 2344 pLimit = p->pLimit; 2345 p->pLimit = 0; 2346 pOffset = p->pOffset; 2347 p->pOffset = 0; 2348 uniondest.eDest = op; 2349 explainSetInteger(iSub2, pParse->iNextSelectId); 2350 rc = sqlite3Select(pParse, p, &uniondest); 2351 testcase( rc!=SQLITE_OK ); 2352 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2353 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2354 sqlite3ExprListDelete(db, p->pOrderBy); 2355 pDelete = p->pPrior; 2356 p->pPrior = pPrior; 2357 p->pOrderBy = 0; 2358 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2359 sqlite3ExprDelete(db, p->pLimit); 2360 p->pLimit = pLimit; 2361 p->pOffset = pOffset; 2362 p->iLimit = 0; 2363 p->iOffset = 0; 2364 2365 /* Convert the data in the temporary table into whatever form 2366 ** it is that we currently need. 2367 */ 2368 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2369 if( dest.eDest!=priorOp ){ 2370 int iCont, iBreak, iStart; 2371 assert( p->pEList ); 2372 if( dest.eDest==SRT_Output ){ 2373 Select *pFirst = p; 2374 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2375 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2376 } 2377 iBreak = sqlite3VdbeMakeLabel(v); 2378 iCont = sqlite3VdbeMakeLabel(v); 2379 computeLimitRegisters(pParse, p, iBreak); 2380 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2381 iStart = sqlite3VdbeCurrentAddr(v); 2382 selectInnerLoop(pParse, p, p->pEList, unionTab, 2383 0, 0, &dest, iCont, iBreak); 2384 sqlite3VdbeResolveLabel(v, iCont); 2385 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2386 sqlite3VdbeResolveLabel(v, iBreak); 2387 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2388 } 2389 break; 2390 } 2391 default: assert( p->op==TK_INTERSECT ); { 2392 int tab1, tab2; 2393 int iCont, iBreak, iStart; 2394 Expr *pLimit, *pOffset; 2395 int addr; 2396 SelectDest intersectdest; 2397 int r1; 2398 2399 /* INTERSECT is different from the others since it requires 2400 ** two temporary tables. Hence it has its own case. Begin 2401 ** by allocating the tables we will need. 2402 */ 2403 tab1 = pParse->nTab++; 2404 tab2 = pParse->nTab++; 2405 assert( p->pOrderBy==0 ); 2406 2407 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2408 assert( p->addrOpenEphm[0] == -1 ); 2409 p->addrOpenEphm[0] = addr; 2410 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2411 assert( p->pEList ); 2412 2413 /* Code the SELECTs to our left into temporary table "tab1". 2414 */ 2415 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2416 explainSetInteger(iSub1, pParse->iNextSelectId); 2417 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2418 if( rc ){ 2419 goto multi_select_end; 2420 } 2421 2422 /* Code the current SELECT into temporary table "tab2" 2423 */ 2424 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2425 assert( p->addrOpenEphm[1] == -1 ); 2426 p->addrOpenEphm[1] = addr; 2427 p->pPrior = 0; 2428 pLimit = p->pLimit; 2429 p->pLimit = 0; 2430 pOffset = p->pOffset; 2431 p->pOffset = 0; 2432 intersectdest.iSDParm = tab2; 2433 explainSetInteger(iSub2, pParse->iNextSelectId); 2434 rc = sqlite3Select(pParse, p, &intersectdest); 2435 testcase( rc!=SQLITE_OK ); 2436 pDelete = p->pPrior; 2437 p->pPrior = pPrior; 2438 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2439 sqlite3ExprDelete(db, p->pLimit); 2440 p->pLimit = pLimit; 2441 p->pOffset = pOffset; 2442 2443 /* Generate code to take the intersection of the two temporary 2444 ** tables. 2445 */ 2446 assert( p->pEList ); 2447 if( dest.eDest==SRT_Output ){ 2448 Select *pFirst = p; 2449 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2450 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2451 } 2452 iBreak = sqlite3VdbeMakeLabel(v); 2453 iCont = sqlite3VdbeMakeLabel(v); 2454 computeLimitRegisters(pParse, p, iBreak); 2455 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2456 r1 = sqlite3GetTempReg(pParse); 2457 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2458 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2459 sqlite3ReleaseTempReg(pParse, r1); 2460 selectInnerLoop(pParse, p, p->pEList, tab1, 2461 0, 0, &dest, iCont, iBreak); 2462 sqlite3VdbeResolveLabel(v, iCont); 2463 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2464 sqlite3VdbeResolveLabel(v, iBreak); 2465 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2466 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2467 break; 2468 } 2469 } 2470 2471 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2472 2473 /* Compute collating sequences used by 2474 ** temporary tables needed to implement the compound select. 2475 ** Attach the KeyInfo structure to all temporary tables. 2476 ** 2477 ** This section is run by the right-most SELECT statement only. 2478 ** SELECT statements to the left always skip this part. The right-most 2479 ** SELECT might also skip this part if it has no ORDER BY clause and 2480 ** no temp tables are required. 2481 */ 2482 if( p->selFlags & SF_UsesEphemeral ){ 2483 int i; /* Loop counter */ 2484 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2485 Select *pLoop; /* For looping through SELECT statements */ 2486 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2487 int nCol; /* Number of columns in result set */ 2488 2489 assert( p->pNext==0 ); 2490 nCol = p->pEList->nExpr; 2491 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2492 if( !pKeyInfo ){ 2493 rc = SQLITE_NOMEM; 2494 goto multi_select_end; 2495 } 2496 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2497 *apColl = multiSelectCollSeq(pParse, p, i); 2498 if( 0==*apColl ){ 2499 *apColl = db->pDfltColl; 2500 } 2501 } 2502 2503 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2504 for(i=0; i<2; i++){ 2505 int addr = pLoop->addrOpenEphm[i]; 2506 if( addr<0 ){ 2507 /* If [0] is unused then [1] is also unused. So we can 2508 ** always safely abort as soon as the first unused slot is found */ 2509 assert( pLoop->addrOpenEphm[1]<0 ); 2510 break; 2511 } 2512 sqlite3VdbeChangeP2(v, addr, nCol); 2513 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2514 P4_KEYINFO); 2515 pLoop->addrOpenEphm[i] = -1; 2516 } 2517 } 2518 sqlite3KeyInfoUnref(pKeyInfo); 2519 } 2520 2521 multi_select_end: 2522 pDest->iSdst = dest.iSdst; 2523 pDest->nSdst = dest.nSdst; 2524 sqlite3SelectDelete(db, pDelete); 2525 return rc; 2526 } 2527 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2528 2529 /* 2530 ** Error message for when two or more terms of a compound select have different 2531 ** size result sets. 2532 */ 2533 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2534 if( p->selFlags & SF_Values ){ 2535 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2536 }else{ 2537 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2538 " do not have the same number of result columns", selectOpName(p->op)); 2539 } 2540 } 2541 2542 /* 2543 ** Code an output subroutine for a coroutine implementation of a 2544 ** SELECT statment. 2545 ** 2546 ** The data to be output is contained in pIn->iSdst. There are 2547 ** pIn->nSdst columns to be output. pDest is where the output should 2548 ** be sent. 2549 ** 2550 ** regReturn is the number of the register holding the subroutine 2551 ** return address. 2552 ** 2553 ** If regPrev>0 then it is the first register in a vector that 2554 ** records the previous output. mem[regPrev] is a flag that is false 2555 ** if there has been no previous output. If regPrev>0 then code is 2556 ** generated to suppress duplicates. pKeyInfo is used for comparing 2557 ** keys. 2558 ** 2559 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2560 ** iBreak. 2561 */ 2562 static int generateOutputSubroutine( 2563 Parse *pParse, /* Parsing context */ 2564 Select *p, /* The SELECT statement */ 2565 SelectDest *pIn, /* Coroutine supplying data */ 2566 SelectDest *pDest, /* Where to send the data */ 2567 int regReturn, /* The return address register */ 2568 int regPrev, /* Previous result register. No uniqueness if 0 */ 2569 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2570 int iBreak /* Jump here if we hit the LIMIT */ 2571 ){ 2572 Vdbe *v = pParse->pVdbe; 2573 int iContinue; 2574 int addr; 2575 2576 addr = sqlite3VdbeCurrentAddr(v); 2577 iContinue = sqlite3VdbeMakeLabel(v); 2578 2579 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2580 */ 2581 if( regPrev ){ 2582 int addr1, addr2; 2583 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2584 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2585 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2586 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2587 sqlite3VdbeJumpHere(v, addr1); 2588 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2589 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2590 } 2591 if( pParse->db->mallocFailed ) return 0; 2592 2593 /* Suppress the first OFFSET entries if there is an OFFSET clause 2594 */ 2595 codeOffset(v, p->iOffset, iContinue); 2596 2597 assert( pDest->eDest!=SRT_Exists ); 2598 assert( pDest->eDest!=SRT_Table ); 2599 switch( pDest->eDest ){ 2600 /* Store the result as data using a unique key. 2601 */ 2602 case SRT_EphemTab: { 2603 int r1 = sqlite3GetTempReg(pParse); 2604 int r2 = sqlite3GetTempReg(pParse); 2605 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2606 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2607 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2608 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2609 sqlite3ReleaseTempReg(pParse, r2); 2610 sqlite3ReleaseTempReg(pParse, r1); 2611 break; 2612 } 2613 2614 #ifndef SQLITE_OMIT_SUBQUERY 2615 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2616 ** then there should be a single item on the stack. Write this 2617 ** item into the set table with bogus data. 2618 */ 2619 case SRT_Set: { 2620 int r1; 2621 assert( pIn->nSdst==1 || pParse->nErr>0 ); 2622 pDest->affSdst = 2623 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2624 r1 = sqlite3GetTempReg(pParse); 2625 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2626 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2627 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2628 sqlite3ReleaseTempReg(pParse, r1); 2629 break; 2630 } 2631 2632 /* If this is a scalar select that is part of an expression, then 2633 ** store the results in the appropriate memory cell and break out 2634 ** of the scan loop. 2635 */ 2636 case SRT_Mem: { 2637 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2638 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2639 /* The LIMIT clause will jump out of the loop for us */ 2640 break; 2641 } 2642 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2643 2644 /* The results are stored in a sequence of registers 2645 ** starting at pDest->iSdst. Then the co-routine yields. 2646 */ 2647 case SRT_Coroutine: { 2648 if( pDest->iSdst==0 ){ 2649 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2650 pDest->nSdst = pIn->nSdst; 2651 } 2652 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2653 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2654 break; 2655 } 2656 2657 /* If none of the above, then the result destination must be 2658 ** SRT_Output. This routine is never called with any other 2659 ** destination other than the ones handled above or SRT_Output. 2660 ** 2661 ** For SRT_Output, results are stored in a sequence of registers. 2662 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2663 ** return the next row of result. 2664 */ 2665 default: { 2666 assert( pDest->eDest==SRT_Output ); 2667 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2668 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2669 break; 2670 } 2671 } 2672 2673 /* Jump to the end of the loop if the LIMIT is reached. 2674 */ 2675 if( p->iLimit ){ 2676 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2677 } 2678 2679 /* Generate the subroutine return 2680 */ 2681 sqlite3VdbeResolveLabel(v, iContinue); 2682 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2683 2684 return addr; 2685 } 2686 2687 /* 2688 ** Alternative compound select code generator for cases when there 2689 ** is an ORDER BY clause. 2690 ** 2691 ** We assume a query of the following form: 2692 ** 2693 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2694 ** 2695 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2696 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2697 ** co-routines. Then run the co-routines in parallel and merge the results 2698 ** into the output. In addition to the two coroutines (called selectA and 2699 ** selectB) there are 7 subroutines: 2700 ** 2701 ** outA: Move the output of the selectA coroutine into the output 2702 ** of the compound query. 2703 ** 2704 ** outB: Move the output of the selectB coroutine into the output 2705 ** of the compound query. (Only generated for UNION and 2706 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2707 ** appears only in B.) 2708 ** 2709 ** AltB: Called when there is data from both coroutines and A<B. 2710 ** 2711 ** AeqB: Called when there is data from both coroutines and A==B. 2712 ** 2713 ** AgtB: Called when there is data from both coroutines and A>B. 2714 ** 2715 ** EofA: Called when data is exhausted from selectA. 2716 ** 2717 ** EofB: Called when data is exhausted from selectB. 2718 ** 2719 ** The implementation of the latter five subroutines depend on which 2720 ** <operator> is used: 2721 ** 2722 ** 2723 ** UNION ALL UNION EXCEPT INTERSECT 2724 ** ------------- ----------------- -------------- ----------------- 2725 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2726 ** 2727 ** AeqB: outA, nextA nextA nextA outA, nextA 2728 ** 2729 ** AgtB: outB, nextB outB, nextB nextB nextB 2730 ** 2731 ** EofA: outB, nextB outB, nextB halt halt 2732 ** 2733 ** EofB: outA, nextA outA, nextA outA, nextA halt 2734 ** 2735 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2736 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2737 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2738 ** following nextX causes a jump to the end of the select processing. 2739 ** 2740 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2741 ** within the output subroutine. The regPrev register set holds the previously 2742 ** output value. A comparison is made against this value and the output 2743 ** is skipped if the next results would be the same as the previous. 2744 ** 2745 ** The implementation plan is to implement the two coroutines and seven 2746 ** subroutines first, then put the control logic at the bottom. Like this: 2747 ** 2748 ** goto Init 2749 ** coA: coroutine for left query (A) 2750 ** coB: coroutine for right query (B) 2751 ** outA: output one row of A 2752 ** outB: output one row of B (UNION and UNION ALL only) 2753 ** EofA: ... 2754 ** EofB: ... 2755 ** AltB: ... 2756 ** AeqB: ... 2757 ** AgtB: ... 2758 ** Init: initialize coroutine registers 2759 ** yield coA 2760 ** if eof(A) goto EofA 2761 ** yield coB 2762 ** if eof(B) goto EofB 2763 ** Cmpr: Compare A, B 2764 ** Jump AltB, AeqB, AgtB 2765 ** End: ... 2766 ** 2767 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2768 ** actually called using Gosub and they do not Return. EofA and EofB loop 2769 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2770 ** and AgtB jump to either L2 or to one of EofA or EofB. 2771 */ 2772 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2773 static int multiSelectOrderBy( 2774 Parse *pParse, /* Parsing context */ 2775 Select *p, /* The right-most of SELECTs to be coded */ 2776 SelectDest *pDest /* What to do with query results */ 2777 ){ 2778 int i, j; /* Loop counters */ 2779 Select *pPrior; /* Another SELECT immediately to our left */ 2780 Vdbe *v; /* Generate code to this VDBE */ 2781 SelectDest destA; /* Destination for coroutine A */ 2782 SelectDest destB; /* Destination for coroutine B */ 2783 int regAddrA; /* Address register for select-A coroutine */ 2784 int regAddrB; /* Address register for select-B coroutine */ 2785 int addrSelectA; /* Address of the select-A coroutine */ 2786 int addrSelectB; /* Address of the select-B coroutine */ 2787 int regOutA; /* Address register for the output-A subroutine */ 2788 int regOutB; /* Address register for the output-B subroutine */ 2789 int addrOutA; /* Address of the output-A subroutine */ 2790 int addrOutB = 0; /* Address of the output-B subroutine */ 2791 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2792 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2793 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2794 int addrAltB; /* Address of the A<B subroutine */ 2795 int addrAeqB; /* Address of the A==B subroutine */ 2796 int addrAgtB; /* Address of the A>B subroutine */ 2797 int regLimitA; /* Limit register for select-A */ 2798 int regLimitB; /* Limit register for select-A */ 2799 int regPrev; /* A range of registers to hold previous output */ 2800 int savedLimit; /* Saved value of p->iLimit */ 2801 int savedOffset; /* Saved value of p->iOffset */ 2802 int labelCmpr; /* Label for the start of the merge algorithm */ 2803 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2804 int addr1; /* Jump instructions that get retargetted */ 2805 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2806 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2807 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2808 sqlite3 *db; /* Database connection */ 2809 ExprList *pOrderBy; /* The ORDER BY clause */ 2810 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2811 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2812 #ifndef SQLITE_OMIT_EXPLAIN 2813 int iSub1; /* EQP id of left-hand query */ 2814 int iSub2; /* EQP id of right-hand query */ 2815 #endif 2816 2817 assert( p->pOrderBy!=0 ); 2818 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2819 db = pParse->db; 2820 v = pParse->pVdbe; 2821 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2822 labelEnd = sqlite3VdbeMakeLabel(v); 2823 labelCmpr = sqlite3VdbeMakeLabel(v); 2824 2825 2826 /* Patch up the ORDER BY clause 2827 */ 2828 op = p->op; 2829 pPrior = p->pPrior; 2830 assert( pPrior->pOrderBy==0 ); 2831 pOrderBy = p->pOrderBy; 2832 assert( pOrderBy ); 2833 nOrderBy = pOrderBy->nExpr; 2834 2835 /* For operators other than UNION ALL we have to make sure that 2836 ** the ORDER BY clause covers every term of the result set. Add 2837 ** terms to the ORDER BY clause as necessary. 2838 */ 2839 if( op!=TK_ALL ){ 2840 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2841 struct ExprList_item *pItem; 2842 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2843 assert( pItem->u.x.iOrderByCol>0 ); 2844 if( pItem->u.x.iOrderByCol==i ) break; 2845 } 2846 if( j==nOrderBy ){ 2847 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2848 if( pNew==0 ) return SQLITE_NOMEM; 2849 pNew->flags |= EP_IntValue; 2850 pNew->u.iValue = i; 2851 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2852 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2853 } 2854 } 2855 } 2856 2857 /* Compute the comparison permutation and keyinfo that is used with 2858 ** the permutation used to determine if the next 2859 ** row of results comes from selectA or selectB. Also add explicit 2860 ** collations to the ORDER BY clause terms so that when the subqueries 2861 ** to the right and the left are evaluated, they use the correct 2862 ** collation. 2863 */ 2864 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2865 if( aPermute ){ 2866 struct ExprList_item *pItem; 2867 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2868 assert( pItem->u.x.iOrderByCol>0 ); 2869 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2870 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2871 } 2872 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2873 }else{ 2874 pKeyMerge = 0; 2875 } 2876 2877 /* Reattach the ORDER BY clause to the query. 2878 */ 2879 p->pOrderBy = pOrderBy; 2880 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2881 2882 /* Allocate a range of temporary registers and the KeyInfo needed 2883 ** for the logic that removes duplicate result rows when the 2884 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2885 */ 2886 if( op==TK_ALL ){ 2887 regPrev = 0; 2888 }else{ 2889 int nExpr = p->pEList->nExpr; 2890 assert( nOrderBy>=nExpr || db->mallocFailed ); 2891 regPrev = pParse->nMem+1; 2892 pParse->nMem += nExpr+1; 2893 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2894 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2895 if( pKeyDup ){ 2896 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2897 for(i=0; i<nExpr; i++){ 2898 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2899 pKeyDup->aSortOrder[i] = 0; 2900 } 2901 } 2902 } 2903 2904 /* Separate the left and the right query from one another 2905 */ 2906 p->pPrior = 0; 2907 pPrior->pNext = 0; 2908 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2909 if( pPrior->pPrior==0 ){ 2910 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2911 } 2912 2913 /* Compute the limit registers */ 2914 computeLimitRegisters(pParse, p, labelEnd); 2915 if( p->iLimit && op==TK_ALL ){ 2916 regLimitA = ++pParse->nMem; 2917 regLimitB = ++pParse->nMem; 2918 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2919 regLimitA); 2920 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2921 }else{ 2922 regLimitA = regLimitB = 0; 2923 } 2924 sqlite3ExprDelete(db, p->pLimit); 2925 p->pLimit = 0; 2926 sqlite3ExprDelete(db, p->pOffset); 2927 p->pOffset = 0; 2928 2929 regAddrA = ++pParse->nMem; 2930 regAddrB = ++pParse->nMem; 2931 regOutA = ++pParse->nMem; 2932 regOutB = ++pParse->nMem; 2933 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2934 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2935 2936 /* Generate a coroutine to evaluate the SELECT statement to the 2937 ** left of the compound operator - the "A" select. 2938 */ 2939 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2940 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2941 VdbeComment((v, "left SELECT")); 2942 pPrior->iLimit = regLimitA; 2943 explainSetInteger(iSub1, pParse->iNextSelectId); 2944 sqlite3Select(pParse, pPrior, &destA); 2945 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2946 sqlite3VdbeJumpHere(v, addr1); 2947 2948 /* Generate a coroutine to evaluate the SELECT statement on 2949 ** the right - the "B" select 2950 */ 2951 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2952 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2953 VdbeComment((v, "right SELECT")); 2954 savedLimit = p->iLimit; 2955 savedOffset = p->iOffset; 2956 p->iLimit = regLimitB; 2957 p->iOffset = 0; 2958 explainSetInteger(iSub2, pParse->iNextSelectId); 2959 sqlite3Select(pParse, p, &destB); 2960 p->iLimit = savedLimit; 2961 p->iOffset = savedOffset; 2962 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2963 2964 /* Generate a subroutine that outputs the current row of the A 2965 ** select as the next output row of the compound select. 2966 */ 2967 VdbeNoopComment((v, "Output routine for A")); 2968 addrOutA = generateOutputSubroutine(pParse, 2969 p, &destA, pDest, regOutA, 2970 regPrev, pKeyDup, labelEnd); 2971 2972 /* Generate a subroutine that outputs the current row of the B 2973 ** select as the next output row of the compound select. 2974 */ 2975 if( op==TK_ALL || op==TK_UNION ){ 2976 VdbeNoopComment((v, "Output routine for B")); 2977 addrOutB = generateOutputSubroutine(pParse, 2978 p, &destB, pDest, regOutB, 2979 regPrev, pKeyDup, labelEnd); 2980 } 2981 sqlite3KeyInfoUnref(pKeyDup); 2982 2983 /* Generate a subroutine to run when the results from select A 2984 ** are exhausted and only data in select B remains. 2985 */ 2986 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2987 addrEofA_noB = addrEofA = labelEnd; 2988 }else{ 2989 VdbeNoopComment((v, "eof-A subroutine")); 2990 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2991 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2992 VdbeCoverage(v); 2993 sqlite3VdbeGoto(v, addrEofA); 2994 p->nSelectRow += pPrior->nSelectRow; 2995 } 2996 2997 /* Generate a subroutine to run when the results from select B 2998 ** are exhausted and only data in select A remains. 2999 */ 3000 if( op==TK_INTERSECT ){ 3001 addrEofB = addrEofA; 3002 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3003 }else{ 3004 VdbeNoopComment((v, "eof-B subroutine")); 3005 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3006 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3007 sqlite3VdbeGoto(v, addrEofB); 3008 } 3009 3010 /* Generate code to handle the case of A<B 3011 */ 3012 VdbeNoopComment((v, "A-lt-B subroutine")); 3013 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3014 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3015 sqlite3VdbeGoto(v, labelCmpr); 3016 3017 /* Generate code to handle the case of A==B 3018 */ 3019 if( op==TK_ALL ){ 3020 addrAeqB = addrAltB; 3021 }else if( op==TK_INTERSECT ){ 3022 addrAeqB = addrAltB; 3023 addrAltB++; 3024 }else{ 3025 VdbeNoopComment((v, "A-eq-B subroutine")); 3026 addrAeqB = 3027 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3028 sqlite3VdbeGoto(v, labelCmpr); 3029 } 3030 3031 /* Generate code to handle the case of A>B 3032 */ 3033 VdbeNoopComment((v, "A-gt-B subroutine")); 3034 addrAgtB = sqlite3VdbeCurrentAddr(v); 3035 if( op==TK_ALL || op==TK_UNION ){ 3036 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3037 } 3038 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3039 sqlite3VdbeGoto(v, labelCmpr); 3040 3041 /* This code runs once to initialize everything. 3042 */ 3043 sqlite3VdbeJumpHere(v, addr1); 3044 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3045 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3046 3047 /* Implement the main merge loop 3048 */ 3049 sqlite3VdbeResolveLabel(v, labelCmpr); 3050 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3051 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3052 (char*)pKeyMerge, P4_KEYINFO); 3053 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3054 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3055 3056 /* Jump to the this point in order to terminate the query. 3057 */ 3058 sqlite3VdbeResolveLabel(v, labelEnd); 3059 3060 /* Set the number of output columns 3061 */ 3062 if( pDest->eDest==SRT_Output ){ 3063 Select *pFirst = pPrior; 3064 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3065 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3066 } 3067 3068 /* Reassembly the compound query so that it will be freed correctly 3069 ** by the calling function */ 3070 if( p->pPrior ){ 3071 sqlite3SelectDelete(db, p->pPrior); 3072 } 3073 p->pPrior = pPrior; 3074 pPrior->pNext = p; 3075 3076 /*** TBD: Insert subroutine calls to close cursors on incomplete 3077 **** subqueries ****/ 3078 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3079 return pParse->nErr!=0; 3080 } 3081 #endif 3082 3083 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3084 /* Forward Declarations */ 3085 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 3086 static void substSelect(sqlite3*, Select *, int, ExprList*, int); 3087 3088 /* 3089 ** Scan through the expression pExpr. Replace every reference to 3090 ** a column in table number iTable with a copy of the iColumn-th 3091 ** entry in pEList. (But leave references to the ROWID column 3092 ** unchanged.) 3093 ** 3094 ** This routine is part of the flattening procedure. A subquery 3095 ** whose result set is defined by pEList appears as entry in the 3096 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3097 ** FORM clause entry is iTable. This routine make the necessary 3098 ** changes to pExpr so that it refers directly to the source table 3099 ** of the subquery rather the result set of the subquery. 3100 */ 3101 static Expr *substExpr( 3102 sqlite3 *db, /* Report malloc errors to this connection */ 3103 Expr *pExpr, /* Expr in which substitution occurs */ 3104 int iTable, /* Table to be substituted */ 3105 ExprList *pEList /* Substitute expressions */ 3106 ){ 3107 if( pExpr==0 ) return 0; 3108 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3109 if( pExpr->iColumn<0 ){ 3110 pExpr->op = TK_NULL; 3111 }else{ 3112 Expr *pNew; 3113 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3114 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3115 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 3116 sqlite3ExprDelete(db, pExpr); 3117 pExpr = pNew; 3118 } 3119 }else{ 3120 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3121 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3122 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3123 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1); 3124 }else{ 3125 substExprList(db, pExpr->x.pList, iTable, pEList); 3126 } 3127 } 3128 return pExpr; 3129 } 3130 static void substExprList( 3131 sqlite3 *db, /* Report malloc errors here */ 3132 ExprList *pList, /* List to scan and in which to make substitutes */ 3133 int iTable, /* Table to be substituted */ 3134 ExprList *pEList /* Substitute values */ 3135 ){ 3136 int i; 3137 if( pList==0 ) return; 3138 for(i=0; i<pList->nExpr; i++){ 3139 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3140 } 3141 } 3142 static void substSelect( 3143 sqlite3 *db, /* Report malloc errors here */ 3144 Select *p, /* SELECT statement in which to make substitutions */ 3145 int iTable, /* Table to be replaced */ 3146 ExprList *pEList, /* Substitute values */ 3147 int doPrior /* Do substitutes on p->pPrior too */ 3148 ){ 3149 SrcList *pSrc; 3150 struct SrcList_item *pItem; 3151 int i; 3152 if( !p ) return; 3153 do{ 3154 substExprList(db, p->pEList, iTable, pEList); 3155 substExprList(db, p->pGroupBy, iTable, pEList); 3156 substExprList(db, p->pOrderBy, iTable, pEList); 3157 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3158 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3159 pSrc = p->pSrc; 3160 assert( pSrc!=0 ); 3161 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3162 substSelect(db, pItem->pSelect, iTable, pEList, 1); 3163 if( pItem->fg.isTabFunc ){ 3164 substExprList(db, pItem->u1.pFuncArg, iTable, pEList); 3165 } 3166 } 3167 }while( doPrior && (p = p->pPrior)!=0 ); 3168 } 3169 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3170 3171 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3172 /* 3173 ** This routine attempts to flatten subqueries as a performance optimization. 3174 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3175 ** 3176 ** To understand the concept of flattening, consider the following 3177 ** query: 3178 ** 3179 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3180 ** 3181 ** The default way of implementing this query is to execute the 3182 ** subquery first and store the results in a temporary table, then 3183 ** run the outer query on that temporary table. This requires two 3184 ** passes over the data. Furthermore, because the temporary table 3185 ** has no indices, the WHERE clause on the outer query cannot be 3186 ** optimized. 3187 ** 3188 ** This routine attempts to rewrite queries such as the above into 3189 ** a single flat select, like this: 3190 ** 3191 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3192 ** 3193 ** The code generated for this simplification gives the same result 3194 ** but only has to scan the data once. And because indices might 3195 ** exist on the table t1, a complete scan of the data might be 3196 ** avoided. 3197 ** 3198 ** Flattening is only attempted if all of the following are true: 3199 ** 3200 ** (1) The subquery and the outer query do not both use aggregates. 3201 ** 3202 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3203 ** and (2b) the outer query does not use subqueries other than the one 3204 ** FROM-clause subquery that is a candidate for flattening. (2b is 3205 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3206 ** 3207 ** (3) The subquery is not the right operand of a left outer join 3208 ** (Originally ticket #306. Strengthened by ticket #3300) 3209 ** 3210 ** (4) The subquery is not DISTINCT. 3211 ** 3212 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3213 ** sub-queries that were excluded from this optimization. Restriction 3214 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3215 ** 3216 ** (6) The subquery does not use aggregates or the outer query is not 3217 ** DISTINCT. 3218 ** 3219 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3220 ** A FROM clause, consider adding a FROM close with the special 3221 ** table sqlite_once that consists of a single row containing a 3222 ** single NULL. 3223 ** 3224 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3225 ** 3226 ** (9) The subquery does not use LIMIT or the outer query does not use 3227 ** aggregates. 3228 ** 3229 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3230 ** accidently carried the comment forward until 2014-09-15. Original 3231 ** text: "The subquery does not use aggregates or the outer query 3232 ** does not use LIMIT." 3233 ** 3234 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3235 ** 3236 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3237 ** a separate restriction deriving from ticket #350. 3238 ** 3239 ** (13) The subquery and outer query do not both use LIMIT. 3240 ** 3241 ** (14) The subquery does not use OFFSET. 3242 ** 3243 ** (15) The outer query is not part of a compound select or the 3244 ** subquery does not have a LIMIT clause. 3245 ** (See ticket #2339 and ticket [02a8e81d44]). 3246 ** 3247 ** (16) The outer query is not an aggregate or the subquery does 3248 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3249 ** until we introduced the group_concat() function. 3250 ** 3251 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3252 ** compound clause made up entirely of non-aggregate queries, and 3253 ** the parent query: 3254 ** 3255 ** * is not itself part of a compound select, 3256 ** * is not an aggregate or DISTINCT query, and 3257 ** * is not a join 3258 ** 3259 ** The parent and sub-query may contain WHERE clauses. Subject to 3260 ** rules (11), (13) and (14), they may also contain ORDER BY, 3261 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3262 ** operator other than UNION ALL because all the other compound 3263 ** operators have an implied DISTINCT which is disallowed by 3264 ** restriction (4). 3265 ** 3266 ** Also, each component of the sub-query must return the same number 3267 ** of result columns. This is actually a requirement for any compound 3268 ** SELECT statement, but all the code here does is make sure that no 3269 ** such (illegal) sub-query is flattened. The caller will detect the 3270 ** syntax error and return a detailed message. 3271 ** 3272 ** (18) If the sub-query is a compound select, then all terms of the 3273 ** ORDER by clause of the parent must be simple references to 3274 ** columns of the sub-query. 3275 ** 3276 ** (19) The subquery does not use LIMIT or the outer query does not 3277 ** have a WHERE clause. 3278 ** 3279 ** (20) If the sub-query is a compound select, then it must not use 3280 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3281 ** somewhat by saying that the terms of the ORDER BY clause must 3282 ** appear as unmodified result columns in the outer query. But we 3283 ** have other optimizations in mind to deal with that case. 3284 ** 3285 ** (21) The subquery does not use LIMIT or the outer query is not 3286 ** DISTINCT. (See ticket [752e1646fc]). 3287 ** 3288 ** (22) The subquery is not a recursive CTE. 3289 ** 3290 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3291 ** compound query. This restriction is because transforming the 3292 ** parent to a compound query confuses the code that handles 3293 ** recursive queries in multiSelect(). 3294 ** 3295 ** (24) The subquery is not an aggregate that uses the built-in min() or 3296 ** or max() functions. (Without this restriction, a query like: 3297 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3298 ** return the value X for which Y was maximal.) 3299 ** 3300 ** 3301 ** In this routine, the "p" parameter is a pointer to the outer query. 3302 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3303 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3304 ** 3305 ** If flattening is not attempted, this routine is a no-op and returns 0. 3306 ** If flattening is attempted this routine returns 1. 3307 ** 3308 ** All of the expression analysis must occur on both the outer query and 3309 ** the subquery before this routine runs. 3310 */ 3311 static int flattenSubquery( 3312 Parse *pParse, /* Parsing context */ 3313 Select *p, /* The parent or outer SELECT statement */ 3314 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3315 int isAgg, /* True if outer SELECT uses aggregate functions */ 3316 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3317 ){ 3318 const char *zSavedAuthContext = pParse->zAuthContext; 3319 Select *pParent; /* Current UNION ALL term of the other query */ 3320 Select *pSub; /* The inner query or "subquery" */ 3321 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3322 SrcList *pSrc; /* The FROM clause of the outer query */ 3323 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3324 ExprList *pList; /* The result set of the outer query */ 3325 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3326 int i; /* Loop counter */ 3327 Expr *pWhere; /* The WHERE clause */ 3328 struct SrcList_item *pSubitem; /* The subquery */ 3329 sqlite3 *db = pParse->db; 3330 3331 /* Check to see if flattening is permitted. Return 0 if not. 3332 */ 3333 assert( p!=0 ); 3334 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3335 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3336 pSrc = p->pSrc; 3337 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3338 pSubitem = &pSrc->a[iFrom]; 3339 iParent = pSubitem->iCursor; 3340 pSub = pSubitem->pSelect; 3341 assert( pSub!=0 ); 3342 if( subqueryIsAgg ){ 3343 if( isAgg ) return 0; /* Restriction (1) */ 3344 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3345 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3346 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3347 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3348 ){ 3349 return 0; /* Restriction (2b) */ 3350 } 3351 } 3352 3353 pSubSrc = pSub->pSrc; 3354 assert( pSubSrc ); 3355 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3356 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3357 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3358 ** became arbitrary expressions, we were forced to add restrictions (13) 3359 ** and (14). */ 3360 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3361 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3362 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3363 return 0; /* Restriction (15) */ 3364 } 3365 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3366 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3367 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3368 return 0; /* Restrictions (8)(9) */ 3369 } 3370 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3371 return 0; /* Restriction (6) */ 3372 } 3373 if( p->pOrderBy && pSub->pOrderBy ){ 3374 return 0; /* Restriction (11) */ 3375 } 3376 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3377 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3378 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3379 return 0; /* Restriction (21) */ 3380 } 3381 testcase( pSub->selFlags & SF_Recursive ); 3382 testcase( pSub->selFlags & SF_MinMaxAgg ); 3383 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3384 return 0; /* Restrictions (22) and (24) */ 3385 } 3386 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3387 return 0; /* Restriction (23) */ 3388 } 3389 3390 /* OBSOLETE COMMENT 1: 3391 ** Restriction 3: If the subquery is a join, make sure the subquery is 3392 ** not used as the right operand of an outer join. Examples of why this 3393 ** is not allowed: 3394 ** 3395 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3396 ** 3397 ** If we flatten the above, we would get 3398 ** 3399 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3400 ** 3401 ** which is not at all the same thing. 3402 ** 3403 ** OBSOLETE COMMENT 2: 3404 ** Restriction 12: If the subquery is the right operand of a left outer 3405 ** join, make sure the subquery has no WHERE clause. 3406 ** An examples of why this is not allowed: 3407 ** 3408 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3409 ** 3410 ** If we flatten the above, we would get 3411 ** 3412 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3413 ** 3414 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3415 ** effectively converts the OUTER JOIN into an INNER JOIN. 3416 ** 3417 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3418 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3419 ** is fraught with danger. Best to avoid the whole thing. If the 3420 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3421 */ 3422 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3423 return 0; 3424 } 3425 3426 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3427 ** use only the UNION ALL operator. And none of the simple select queries 3428 ** that make up the compound SELECT are allowed to be aggregate or distinct 3429 ** queries. 3430 */ 3431 if( pSub->pPrior ){ 3432 if( pSub->pOrderBy ){ 3433 return 0; /* Restriction 20 */ 3434 } 3435 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3436 return 0; 3437 } 3438 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3439 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3440 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3441 assert( pSub->pSrc!=0 ); 3442 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3443 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3444 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3445 || pSub1->pSrc->nSrc<1 3446 ){ 3447 return 0; 3448 } 3449 testcase( pSub1->pSrc->nSrc>1 ); 3450 } 3451 3452 /* Restriction 18. */ 3453 if( p->pOrderBy ){ 3454 int ii; 3455 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3456 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3457 } 3458 } 3459 } 3460 3461 /***** If we reach this point, flattening is permitted. *****/ 3462 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3463 pSub->zSelName, pSub, iFrom)); 3464 3465 /* Authorize the subquery */ 3466 pParse->zAuthContext = pSubitem->zName; 3467 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3468 testcase( i==SQLITE_DENY ); 3469 pParse->zAuthContext = zSavedAuthContext; 3470 3471 /* If the sub-query is a compound SELECT statement, then (by restrictions 3472 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3473 ** be of the form: 3474 ** 3475 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3476 ** 3477 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3478 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3479 ** OFFSET clauses and joins them to the left-hand-side of the original 3480 ** using UNION ALL operators. In this case N is the number of simple 3481 ** select statements in the compound sub-query. 3482 ** 3483 ** Example: 3484 ** 3485 ** SELECT a+1 FROM ( 3486 ** SELECT x FROM tab 3487 ** UNION ALL 3488 ** SELECT y FROM tab 3489 ** UNION ALL 3490 ** SELECT abs(z*2) FROM tab2 3491 ** ) WHERE a!=5 ORDER BY 1 3492 ** 3493 ** Transformed into: 3494 ** 3495 ** SELECT x+1 FROM tab WHERE x+1!=5 3496 ** UNION ALL 3497 ** SELECT y+1 FROM tab WHERE y+1!=5 3498 ** UNION ALL 3499 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3500 ** ORDER BY 1 3501 ** 3502 ** We call this the "compound-subquery flattening". 3503 */ 3504 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3505 Select *pNew; 3506 ExprList *pOrderBy = p->pOrderBy; 3507 Expr *pLimit = p->pLimit; 3508 Expr *pOffset = p->pOffset; 3509 Select *pPrior = p->pPrior; 3510 p->pOrderBy = 0; 3511 p->pSrc = 0; 3512 p->pPrior = 0; 3513 p->pLimit = 0; 3514 p->pOffset = 0; 3515 pNew = sqlite3SelectDup(db, p, 0); 3516 sqlite3SelectSetName(pNew, pSub->zSelName); 3517 p->pOffset = pOffset; 3518 p->pLimit = pLimit; 3519 p->pOrderBy = pOrderBy; 3520 p->pSrc = pSrc; 3521 p->op = TK_ALL; 3522 if( pNew==0 ){ 3523 p->pPrior = pPrior; 3524 }else{ 3525 pNew->pPrior = pPrior; 3526 if( pPrior ) pPrior->pNext = pNew; 3527 pNew->pNext = p; 3528 p->pPrior = pNew; 3529 SELECTTRACE(2,pParse,p, 3530 ("compound-subquery flattener creates %s.%p as peer\n", 3531 pNew->zSelName, pNew)); 3532 } 3533 if( db->mallocFailed ) return 1; 3534 } 3535 3536 /* Begin flattening the iFrom-th entry of the FROM clause 3537 ** in the outer query. 3538 */ 3539 pSub = pSub1 = pSubitem->pSelect; 3540 3541 /* Delete the transient table structure associated with the 3542 ** subquery 3543 */ 3544 sqlite3DbFree(db, pSubitem->zDatabase); 3545 sqlite3DbFree(db, pSubitem->zName); 3546 sqlite3DbFree(db, pSubitem->zAlias); 3547 pSubitem->zDatabase = 0; 3548 pSubitem->zName = 0; 3549 pSubitem->zAlias = 0; 3550 pSubitem->pSelect = 0; 3551 3552 /* Defer deleting the Table object associated with the 3553 ** subquery until code generation is 3554 ** complete, since there may still exist Expr.pTab entries that 3555 ** refer to the subquery even after flattening. Ticket #3346. 3556 ** 3557 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3558 */ 3559 if( ALWAYS(pSubitem->pTab!=0) ){ 3560 Table *pTabToDel = pSubitem->pTab; 3561 if( pTabToDel->nRef==1 ){ 3562 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3563 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3564 pToplevel->pZombieTab = pTabToDel; 3565 }else{ 3566 pTabToDel->nRef--; 3567 } 3568 pSubitem->pTab = 0; 3569 } 3570 3571 /* The following loop runs once for each term in a compound-subquery 3572 ** flattening (as described above). If we are doing a different kind 3573 ** of flattening - a flattening other than a compound-subquery flattening - 3574 ** then this loop only runs once. 3575 ** 3576 ** This loop moves all of the FROM elements of the subquery into the 3577 ** the FROM clause of the outer query. Before doing this, remember 3578 ** the cursor number for the original outer query FROM element in 3579 ** iParent. The iParent cursor will never be used. Subsequent code 3580 ** will scan expressions looking for iParent references and replace 3581 ** those references with expressions that resolve to the subquery FROM 3582 ** elements we are now copying in. 3583 */ 3584 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3585 int nSubSrc; 3586 u8 jointype = 0; 3587 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3588 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3589 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3590 3591 if( pSrc ){ 3592 assert( pParent==p ); /* First time through the loop */ 3593 jointype = pSubitem->fg.jointype; 3594 }else{ 3595 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3596 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3597 if( pSrc==0 ){ 3598 assert( db->mallocFailed ); 3599 break; 3600 } 3601 } 3602 3603 /* The subquery uses a single slot of the FROM clause of the outer 3604 ** query. If the subquery has more than one element in its FROM clause, 3605 ** then expand the outer query to make space for it to hold all elements 3606 ** of the subquery. 3607 ** 3608 ** Example: 3609 ** 3610 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3611 ** 3612 ** The outer query has 3 slots in its FROM clause. One slot of the 3613 ** outer query (the middle slot) is used by the subquery. The next 3614 ** block of code will expand the outer query FROM clause to 4 slots. 3615 ** The middle slot is expanded to two slots in order to make space 3616 ** for the two elements in the FROM clause of the subquery. 3617 */ 3618 if( nSubSrc>1 ){ 3619 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3620 if( db->mallocFailed ){ 3621 break; 3622 } 3623 } 3624 3625 /* Transfer the FROM clause terms from the subquery into the 3626 ** outer query. 3627 */ 3628 for(i=0; i<nSubSrc; i++){ 3629 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3630 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3631 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3632 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3633 } 3634 pSrc->a[iFrom].fg.jointype = jointype; 3635 3636 /* Now begin substituting subquery result set expressions for 3637 ** references to the iParent in the outer query. 3638 ** 3639 ** Example: 3640 ** 3641 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3642 ** \ \_____________ subquery __________/ / 3643 ** \_____________________ outer query ______________________________/ 3644 ** 3645 ** We look at every expression in the outer query and every place we see 3646 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3647 */ 3648 pList = pParent->pEList; 3649 for(i=0; i<pList->nExpr; i++){ 3650 if( pList->a[i].zName==0 ){ 3651 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3652 sqlite3Dequote(zName); 3653 pList->a[i].zName = zName; 3654 } 3655 } 3656 if( pSub->pOrderBy ){ 3657 /* At this point, any non-zero iOrderByCol values indicate that the 3658 ** ORDER BY column expression is identical to the iOrderByCol'th 3659 ** expression returned by SELECT statement pSub. Since these values 3660 ** do not necessarily correspond to columns in SELECT statement pParent, 3661 ** zero them before transfering the ORDER BY clause. 3662 ** 3663 ** Not doing this may cause an error if a subsequent call to this 3664 ** function attempts to flatten a compound sub-query into pParent 3665 ** (the only way this can happen is if the compound sub-query is 3666 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3667 ExprList *pOrderBy = pSub->pOrderBy; 3668 for(i=0; i<pOrderBy->nExpr; i++){ 3669 pOrderBy->a[i].u.x.iOrderByCol = 0; 3670 } 3671 assert( pParent->pOrderBy==0 ); 3672 assert( pSub->pPrior==0 ); 3673 pParent->pOrderBy = pOrderBy; 3674 pSub->pOrderBy = 0; 3675 } 3676 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3677 if( subqueryIsAgg ){ 3678 assert( pParent->pHaving==0 ); 3679 pParent->pHaving = pParent->pWhere; 3680 pParent->pWhere = pWhere; 3681 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3682 sqlite3ExprDup(db, pSub->pHaving, 0)); 3683 assert( pParent->pGroupBy==0 ); 3684 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3685 }else{ 3686 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3687 } 3688 substSelect(db, pParent, iParent, pSub->pEList, 0); 3689 3690 /* The flattened query is distinct if either the inner or the 3691 ** outer query is distinct. 3692 */ 3693 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3694 3695 /* 3696 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3697 ** 3698 ** One is tempted to try to add a and b to combine the limits. But this 3699 ** does not work if either limit is negative. 3700 */ 3701 if( pSub->pLimit ){ 3702 pParent->pLimit = pSub->pLimit; 3703 pSub->pLimit = 0; 3704 } 3705 } 3706 3707 /* Finially, delete what is left of the subquery and return 3708 ** success. 3709 */ 3710 sqlite3SelectDelete(db, pSub1); 3711 3712 #if SELECTTRACE_ENABLED 3713 if( sqlite3SelectTrace & 0x100 ){ 3714 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3715 sqlite3TreeViewSelect(0, p, 0); 3716 } 3717 #endif 3718 3719 return 1; 3720 } 3721 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3722 3723 3724 3725 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3726 /* 3727 ** Make copies of relevant WHERE clause terms of the outer query into 3728 ** the WHERE clause of subquery. Example: 3729 ** 3730 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3731 ** 3732 ** Transformed into: 3733 ** 3734 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3735 ** WHERE x=5 AND y=10; 3736 ** 3737 ** The hope is that the terms added to the inner query will make it more 3738 ** efficient. 3739 ** 3740 ** Do not attempt this optimization if: 3741 ** 3742 ** (1) The inner query is an aggregate. (In that case, we'd really want 3743 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3744 ** inner query. But they probably won't help there so do not bother.) 3745 ** 3746 ** (2) The inner query is the recursive part of a common table expression. 3747 ** 3748 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3749 ** close would change the meaning of the LIMIT). 3750 ** 3751 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3752 ** enforces this restriction since this routine does not have enough 3753 ** information to know.) 3754 ** 3755 ** (5) The WHERE clause expression originates in the ON or USING clause 3756 ** of a LEFT JOIN. 3757 ** 3758 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3759 ** terms are duplicated into the subquery. 3760 */ 3761 static int pushDownWhereTerms( 3762 sqlite3 *db, /* The database connection (for malloc()) */ 3763 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3764 Expr *pWhere, /* The WHERE clause of the outer query */ 3765 int iCursor /* Cursor number of the subquery */ 3766 ){ 3767 Expr *pNew; 3768 int nChng = 0; 3769 if( pWhere==0 ) return 0; 3770 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3771 return 0; /* restrictions (1) and (2) */ 3772 } 3773 if( pSubq->pLimit!=0 ){ 3774 return 0; /* restriction (3) */ 3775 } 3776 while( pWhere->op==TK_AND ){ 3777 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); 3778 pWhere = pWhere->pLeft; 3779 } 3780 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3781 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3782 nChng++; 3783 while( pSubq ){ 3784 pNew = sqlite3ExprDup(db, pWhere, 0); 3785 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); 3786 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); 3787 pSubq = pSubq->pPrior; 3788 } 3789 } 3790 return nChng; 3791 } 3792 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3793 3794 /* 3795 ** Based on the contents of the AggInfo structure indicated by the first 3796 ** argument, this function checks if the following are true: 3797 ** 3798 ** * the query contains just a single aggregate function, 3799 ** * the aggregate function is either min() or max(), and 3800 ** * the argument to the aggregate function is a column value. 3801 ** 3802 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3803 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3804 ** list of arguments passed to the aggregate before returning. 3805 ** 3806 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3807 ** WHERE_ORDERBY_NORMAL is returned. 3808 */ 3809 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3810 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3811 3812 *ppMinMax = 0; 3813 if( pAggInfo->nFunc==1 ){ 3814 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3815 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3816 3817 assert( pExpr->op==TK_AGG_FUNCTION ); 3818 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3819 const char *zFunc = pExpr->u.zToken; 3820 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3821 eRet = WHERE_ORDERBY_MIN; 3822 *ppMinMax = pEList; 3823 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3824 eRet = WHERE_ORDERBY_MAX; 3825 *ppMinMax = pEList; 3826 } 3827 } 3828 } 3829 3830 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3831 return eRet; 3832 } 3833 3834 /* 3835 ** The select statement passed as the first argument is an aggregate query. 3836 ** The second argument is the associated aggregate-info object. This 3837 ** function tests if the SELECT is of the form: 3838 ** 3839 ** SELECT count(*) FROM <tbl> 3840 ** 3841 ** where table is a database table, not a sub-select or view. If the query 3842 ** does match this pattern, then a pointer to the Table object representing 3843 ** <tbl> is returned. Otherwise, 0 is returned. 3844 */ 3845 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3846 Table *pTab; 3847 Expr *pExpr; 3848 3849 assert( !p->pGroupBy ); 3850 3851 if( p->pWhere || p->pEList->nExpr!=1 3852 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3853 ){ 3854 return 0; 3855 } 3856 pTab = p->pSrc->a[0].pTab; 3857 pExpr = p->pEList->a[0].pExpr; 3858 assert( pTab && !pTab->pSelect && pExpr ); 3859 3860 if( IsVirtual(pTab) ) return 0; 3861 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3862 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3863 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3864 if( pExpr->flags&EP_Distinct ) return 0; 3865 3866 return pTab; 3867 } 3868 3869 /* 3870 ** If the source-list item passed as an argument was augmented with an 3871 ** INDEXED BY clause, then try to locate the specified index. If there 3872 ** was such a clause and the named index cannot be found, return 3873 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3874 ** pFrom->pIndex and return SQLITE_OK. 3875 */ 3876 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3877 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3878 Table *pTab = pFrom->pTab; 3879 char *zIndexedBy = pFrom->u1.zIndexedBy; 3880 Index *pIdx; 3881 for(pIdx=pTab->pIndex; 3882 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3883 pIdx=pIdx->pNext 3884 ); 3885 if( !pIdx ){ 3886 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3887 pParse->checkSchema = 1; 3888 return SQLITE_ERROR; 3889 } 3890 pFrom->pIBIndex = pIdx; 3891 } 3892 return SQLITE_OK; 3893 } 3894 /* 3895 ** Detect compound SELECT statements that use an ORDER BY clause with 3896 ** an alternative collating sequence. 3897 ** 3898 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3899 ** 3900 ** These are rewritten as a subquery: 3901 ** 3902 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3903 ** ORDER BY ... COLLATE ... 3904 ** 3905 ** This transformation is necessary because the multiSelectOrderBy() routine 3906 ** above that generates the code for a compound SELECT with an ORDER BY clause 3907 ** uses a merge algorithm that requires the same collating sequence on the 3908 ** result columns as on the ORDER BY clause. See ticket 3909 ** http://www.sqlite.org/src/info/6709574d2a 3910 ** 3911 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3912 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3913 ** there are COLLATE terms in the ORDER BY. 3914 */ 3915 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3916 int i; 3917 Select *pNew; 3918 Select *pX; 3919 sqlite3 *db; 3920 struct ExprList_item *a; 3921 SrcList *pNewSrc; 3922 Parse *pParse; 3923 Token dummy; 3924 3925 if( p->pPrior==0 ) return WRC_Continue; 3926 if( p->pOrderBy==0 ) return WRC_Continue; 3927 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3928 if( pX==0 ) return WRC_Continue; 3929 a = p->pOrderBy->a; 3930 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3931 if( a[i].pExpr->flags & EP_Collate ) break; 3932 } 3933 if( i<0 ) return WRC_Continue; 3934 3935 /* If we reach this point, that means the transformation is required. */ 3936 3937 pParse = pWalker->pParse; 3938 db = pParse->db; 3939 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3940 if( pNew==0 ) return WRC_Abort; 3941 memset(&dummy, 0, sizeof(dummy)); 3942 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3943 if( pNewSrc==0 ) return WRC_Abort; 3944 *pNew = *p; 3945 p->pSrc = pNewSrc; 3946 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 3947 p->op = TK_SELECT; 3948 p->pWhere = 0; 3949 pNew->pGroupBy = 0; 3950 pNew->pHaving = 0; 3951 pNew->pOrderBy = 0; 3952 p->pPrior = 0; 3953 p->pNext = 0; 3954 p->pWith = 0; 3955 p->selFlags &= ~SF_Compound; 3956 assert( (p->selFlags & SF_Converted)==0 ); 3957 p->selFlags |= SF_Converted; 3958 assert( pNew->pPrior!=0 ); 3959 pNew->pPrior->pNext = pNew; 3960 pNew->pLimit = 0; 3961 pNew->pOffset = 0; 3962 return WRC_Continue; 3963 } 3964 3965 /* 3966 ** Check to see if the FROM clause term pFrom has table-valued function 3967 ** arguments. If it does, leave an error message in pParse and return 3968 ** non-zero, since pFrom is not allowed to be a table-valued function. 3969 */ 3970 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 3971 if( pFrom->fg.isTabFunc ){ 3972 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 3973 return 1; 3974 } 3975 return 0; 3976 } 3977 3978 #ifndef SQLITE_OMIT_CTE 3979 /* 3980 ** Argument pWith (which may be NULL) points to a linked list of nested 3981 ** WITH contexts, from inner to outermost. If the table identified by 3982 ** FROM clause element pItem is really a common-table-expression (CTE) 3983 ** then return a pointer to the CTE definition for that table. Otherwise 3984 ** return NULL. 3985 ** 3986 ** If a non-NULL value is returned, set *ppContext to point to the With 3987 ** object that the returned CTE belongs to. 3988 */ 3989 static struct Cte *searchWith( 3990 With *pWith, /* Current innermost WITH clause */ 3991 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3992 With **ppContext /* OUT: WITH clause return value belongs to */ 3993 ){ 3994 const char *zName; 3995 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3996 With *p; 3997 for(p=pWith; p; p=p->pOuter){ 3998 int i; 3999 for(i=0; i<p->nCte; i++){ 4000 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4001 *ppContext = p; 4002 return &p->a[i]; 4003 } 4004 } 4005 } 4006 } 4007 return 0; 4008 } 4009 4010 /* The code generator maintains a stack of active WITH clauses 4011 ** with the inner-most WITH clause being at the top of the stack. 4012 ** 4013 ** This routine pushes the WITH clause passed as the second argument 4014 ** onto the top of the stack. If argument bFree is true, then this 4015 ** WITH clause will never be popped from the stack. In this case it 4016 ** should be freed along with the Parse object. In other cases, when 4017 ** bFree==0, the With object will be freed along with the SELECT 4018 ** statement with which it is associated. 4019 */ 4020 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4021 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4022 if( pWith ){ 4023 assert( pParse->pWith!=pWith ); 4024 pWith->pOuter = pParse->pWith; 4025 pParse->pWith = pWith; 4026 if( bFree ) pParse->pWithToFree = pWith; 4027 } 4028 } 4029 4030 /* 4031 ** This function checks if argument pFrom refers to a CTE declared by 4032 ** a WITH clause on the stack currently maintained by the parser. And, 4033 ** if currently processing a CTE expression, if it is a recursive 4034 ** reference to the current CTE. 4035 ** 4036 ** If pFrom falls into either of the two categories above, pFrom->pTab 4037 ** and other fields are populated accordingly. The caller should check 4038 ** (pFrom->pTab!=0) to determine whether or not a successful match 4039 ** was found. 4040 ** 4041 ** Whether or not a match is found, SQLITE_OK is returned if no error 4042 ** occurs. If an error does occur, an error message is stored in the 4043 ** parser and some error code other than SQLITE_OK returned. 4044 */ 4045 static int withExpand( 4046 Walker *pWalker, 4047 struct SrcList_item *pFrom 4048 ){ 4049 Parse *pParse = pWalker->pParse; 4050 sqlite3 *db = pParse->db; 4051 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4052 With *pWith; /* WITH clause that pCte belongs to */ 4053 4054 assert( pFrom->pTab==0 ); 4055 4056 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4057 if( pCte ){ 4058 Table *pTab; 4059 ExprList *pEList; 4060 Select *pSel; 4061 Select *pLeft; /* Left-most SELECT statement */ 4062 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4063 With *pSavedWith; /* Initial value of pParse->pWith */ 4064 4065 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4066 ** recursive reference to CTE pCte. Leave an error in pParse and return 4067 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4068 ** In this case, proceed. */ 4069 if( pCte->zCteErr ){ 4070 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4071 return SQLITE_ERROR; 4072 } 4073 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4074 4075 assert( pFrom->pTab==0 ); 4076 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4077 if( pTab==0 ) return WRC_Abort; 4078 pTab->nRef = 1; 4079 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4080 pTab->iPKey = -1; 4081 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4082 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4083 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4084 if( db->mallocFailed ) return SQLITE_NOMEM; 4085 assert( pFrom->pSelect ); 4086 4087 /* Check if this is a recursive CTE. */ 4088 pSel = pFrom->pSelect; 4089 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4090 if( bMayRecursive ){ 4091 int i; 4092 SrcList *pSrc = pFrom->pSelect->pSrc; 4093 for(i=0; i<pSrc->nSrc; i++){ 4094 struct SrcList_item *pItem = &pSrc->a[i]; 4095 if( pItem->zDatabase==0 4096 && pItem->zName!=0 4097 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4098 ){ 4099 pItem->pTab = pTab; 4100 pItem->fg.isRecursive = 1; 4101 pTab->nRef++; 4102 pSel->selFlags |= SF_Recursive; 4103 } 4104 } 4105 } 4106 4107 /* Only one recursive reference is permitted. */ 4108 if( pTab->nRef>2 ){ 4109 sqlite3ErrorMsg( 4110 pParse, "multiple references to recursive table: %s", pCte->zName 4111 ); 4112 return SQLITE_ERROR; 4113 } 4114 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 4115 4116 pCte->zCteErr = "circular reference: %s"; 4117 pSavedWith = pParse->pWith; 4118 pParse->pWith = pWith; 4119 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4120 pParse->pWith = pWith; 4121 4122 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4123 pEList = pLeft->pEList; 4124 if( pCte->pCols ){ 4125 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4126 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4127 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4128 ); 4129 pParse->pWith = pSavedWith; 4130 return SQLITE_ERROR; 4131 } 4132 pEList = pCte->pCols; 4133 } 4134 4135 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4136 if( bMayRecursive ){ 4137 if( pSel->selFlags & SF_Recursive ){ 4138 pCte->zCteErr = "multiple recursive references: %s"; 4139 }else{ 4140 pCte->zCteErr = "recursive reference in a subquery: %s"; 4141 } 4142 sqlite3WalkSelect(pWalker, pSel); 4143 } 4144 pCte->zCteErr = 0; 4145 pParse->pWith = pSavedWith; 4146 } 4147 4148 return SQLITE_OK; 4149 } 4150 #endif 4151 4152 #ifndef SQLITE_OMIT_CTE 4153 /* 4154 ** If the SELECT passed as the second argument has an associated WITH 4155 ** clause, pop it from the stack stored as part of the Parse object. 4156 ** 4157 ** This function is used as the xSelectCallback2() callback by 4158 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4159 ** names and other FROM clause elements. 4160 */ 4161 static void selectPopWith(Walker *pWalker, Select *p){ 4162 Parse *pParse = pWalker->pParse; 4163 With *pWith = findRightmost(p)->pWith; 4164 if( pWith!=0 ){ 4165 assert( pParse->pWith==pWith ); 4166 pParse->pWith = pWith->pOuter; 4167 } 4168 } 4169 #else 4170 #define selectPopWith 0 4171 #endif 4172 4173 /* 4174 ** This routine is a Walker callback for "expanding" a SELECT statement. 4175 ** "Expanding" means to do the following: 4176 ** 4177 ** (1) Make sure VDBE cursor numbers have been assigned to every 4178 ** element of the FROM clause. 4179 ** 4180 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4181 ** defines FROM clause. When views appear in the FROM clause, 4182 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4183 ** that implements the view. A copy is made of the view's SELECT 4184 ** statement so that we can freely modify or delete that statement 4185 ** without worrying about messing up the persistent representation 4186 ** of the view. 4187 ** 4188 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4189 ** on joins and the ON and USING clause of joins. 4190 ** 4191 ** (4) Scan the list of columns in the result set (pEList) looking 4192 ** for instances of the "*" operator or the TABLE.* operator. 4193 ** If found, expand each "*" to be every column in every table 4194 ** and TABLE.* to be every column in TABLE. 4195 ** 4196 */ 4197 static int selectExpander(Walker *pWalker, Select *p){ 4198 Parse *pParse = pWalker->pParse; 4199 int i, j, k; 4200 SrcList *pTabList; 4201 ExprList *pEList; 4202 struct SrcList_item *pFrom; 4203 sqlite3 *db = pParse->db; 4204 Expr *pE, *pRight, *pExpr; 4205 u16 selFlags = p->selFlags; 4206 4207 p->selFlags |= SF_Expanded; 4208 if( db->mallocFailed ){ 4209 return WRC_Abort; 4210 } 4211 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4212 return WRC_Prune; 4213 } 4214 pTabList = p->pSrc; 4215 pEList = p->pEList; 4216 if( pWalker->xSelectCallback2==selectPopWith ){ 4217 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4218 } 4219 4220 /* Make sure cursor numbers have been assigned to all entries in 4221 ** the FROM clause of the SELECT statement. 4222 */ 4223 sqlite3SrcListAssignCursors(pParse, pTabList); 4224 4225 /* Look up every table named in the FROM clause of the select. If 4226 ** an entry of the FROM clause is a subquery instead of a table or view, 4227 ** then create a transient table structure to describe the subquery. 4228 */ 4229 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4230 Table *pTab; 4231 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4232 if( pFrom->fg.isRecursive ) continue; 4233 assert( pFrom->pTab==0 ); 4234 #ifndef SQLITE_OMIT_CTE 4235 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4236 if( pFrom->pTab ) {} else 4237 #endif 4238 if( pFrom->zName==0 ){ 4239 #ifndef SQLITE_OMIT_SUBQUERY 4240 Select *pSel = pFrom->pSelect; 4241 /* A sub-query in the FROM clause of a SELECT */ 4242 assert( pSel!=0 ); 4243 assert( pFrom->pTab==0 ); 4244 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4245 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4246 if( pTab==0 ) return WRC_Abort; 4247 pTab->nRef = 1; 4248 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4249 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4250 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4251 pTab->iPKey = -1; 4252 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4253 pTab->tabFlags |= TF_Ephemeral; 4254 #endif 4255 }else{ 4256 /* An ordinary table or view name in the FROM clause */ 4257 assert( pFrom->pTab==0 ); 4258 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4259 if( pTab==0 ) return WRC_Abort; 4260 if( pTab->nRef==0xffff ){ 4261 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4262 pTab->zName); 4263 pFrom->pTab = 0; 4264 return WRC_Abort; 4265 } 4266 pTab->nRef++; 4267 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4268 return WRC_Abort; 4269 } 4270 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4271 if( IsVirtual(pTab) || pTab->pSelect ){ 4272 i16 nCol; 4273 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4274 assert( pFrom->pSelect==0 ); 4275 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4276 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4277 nCol = pTab->nCol; 4278 pTab->nCol = -1; 4279 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4280 pTab->nCol = nCol; 4281 } 4282 #endif 4283 } 4284 4285 /* Locate the index named by the INDEXED BY clause, if any. */ 4286 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4287 return WRC_Abort; 4288 } 4289 } 4290 4291 /* Process NATURAL keywords, and ON and USING clauses of joins. 4292 */ 4293 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4294 return WRC_Abort; 4295 } 4296 4297 /* For every "*" that occurs in the column list, insert the names of 4298 ** all columns in all tables. And for every TABLE.* insert the names 4299 ** of all columns in TABLE. The parser inserted a special expression 4300 ** with the TK_ASTERISK operator for each "*" that it found in the column 4301 ** list. The following code just has to locate the TK_ASTERISK 4302 ** expressions and expand each one to the list of all columns in 4303 ** all tables. 4304 ** 4305 ** The first loop just checks to see if there are any "*" operators 4306 ** that need expanding. 4307 */ 4308 for(k=0; k<pEList->nExpr; k++){ 4309 pE = pEList->a[k].pExpr; 4310 if( pE->op==TK_ASTERISK ) break; 4311 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4312 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4313 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4314 } 4315 if( k<pEList->nExpr ){ 4316 /* 4317 ** If we get here it means the result set contains one or more "*" 4318 ** operators that need to be expanded. Loop through each expression 4319 ** in the result set and expand them one by one. 4320 */ 4321 struct ExprList_item *a = pEList->a; 4322 ExprList *pNew = 0; 4323 int flags = pParse->db->flags; 4324 int longNames = (flags & SQLITE_FullColNames)!=0 4325 && (flags & SQLITE_ShortColNames)==0; 4326 4327 for(k=0; k<pEList->nExpr; k++){ 4328 pE = a[k].pExpr; 4329 pRight = pE->pRight; 4330 assert( pE->op!=TK_DOT || pRight!=0 ); 4331 if( pE->op!=TK_ASTERISK 4332 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4333 ){ 4334 /* This particular expression does not need to be expanded. 4335 */ 4336 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4337 if( pNew ){ 4338 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4339 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4340 a[k].zName = 0; 4341 a[k].zSpan = 0; 4342 } 4343 a[k].pExpr = 0; 4344 }else{ 4345 /* This expression is a "*" or a "TABLE.*" and needs to be 4346 ** expanded. */ 4347 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4348 char *zTName = 0; /* text of name of TABLE */ 4349 if( pE->op==TK_DOT ){ 4350 assert( pE->pLeft!=0 ); 4351 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4352 zTName = pE->pLeft->u.zToken; 4353 } 4354 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4355 Table *pTab = pFrom->pTab; 4356 Select *pSub = pFrom->pSelect; 4357 char *zTabName = pFrom->zAlias; 4358 const char *zSchemaName = 0; 4359 int iDb; 4360 if( zTabName==0 ){ 4361 zTabName = pTab->zName; 4362 } 4363 if( db->mallocFailed ) break; 4364 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4365 pSub = 0; 4366 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4367 continue; 4368 } 4369 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4370 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4371 } 4372 for(j=0; j<pTab->nCol; j++){ 4373 char *zName = pTab->aCol[j].zName; 4374 char *zColname; /* The computed column name */ 4375 char *zToFree; /* Malloced string that needs to be freed */ 4376 Token sColname; /* Computed column name as a token */ 4377 4378 assert( zName ); 4379 if( zTName && pSub 4380 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4381 ){ 4382 continue; 4383 } 4384 4385 /* If a column is marked as 'hidden', omit it from the expanded 4386 ** result-set list unless the SELECT has the SF_IncludeHidden 4387 ** bit set. 4388 */ 4389 if( (p->selFlags & SF_IncludeHidden)==0 4390 && IsHiddenColumn(&pTab->aCol[j]) 4391 ){ 4392 continue; 4393 } 4394 tableSeen = 1; 4395 4396 if( i>0 && zTName==0 ){ 4397 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4398 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4399 ){ 4400 /* In a NATURAL join, omit the join columns from the 4401 ** table to the right of the join */ 4402 continue; 4403 } 4404 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4405 /* In a join with a USING clause, omit columns in the 4406 ** using clause from the table on the right. */ 4407 continue; 4408 } 4409 } 4410 pRight = sqlite3Expr(db, TK_ID, zName); 4411 zColname = zName; 4412 zToFree = 0; 4413 if( longNames || pTabList->nSrc>1 ){ 4414 Expr *pLeft; 4415 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4416 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4417 if( zSchemaName ){ 4418 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4419 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4420 } 4421 if( longNames ){ 4422 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4423 zToFree = zColname; 4424 } 4425 }else{ 4426 pExpr = pRight; 4427 } 4428 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4429 sColname.z = zColname; 4430 sColname.n = sqlite3Strlen30(zColname); 4431 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4432 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4433 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4434 if( pSub ){ 4435 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4436 testcase( pX->zSpan==0 ); 4437 }else{ 4438 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4439 zSchemaName, zTabName, zColname); 4440 testcase( pX->zSpan==0 ); 4441 } 4442 pX->bSpanIsTab = 1; 4443 } 4444 sqlite3DbFree(db, zToFree); 4445 } 4446 } 4447 if( !tableSeen ){ 4448 if( zTName ){ 4449 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4450 }else{ 4451 sqlite3ErrorMsg(pParse, "no tables specified"); 4452 } 4453 } 4454 } 4455 } 4456 sqlite3ExprListDelete(db, pEList); 4457 p->pEList = pNew; 4458 } 4459 #if SQLITE_MAX_COLUMN 4460 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4461 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4462 return WRC_Abort; 4463 } 4464 #endif 4465 return WRC_Continue; 4466 } 4467 4468 /* 4469 ** No-op routine for the parse-tree walker. 4470 ** 4471 ** When this routine is the Walker.xExprCallback then expression trees 4472 ** are walked without any actions being taken at each node. Presumably, 4473 ** when this routine is used for Walker.xExprCallback then 4474 ** Walker.xSelectCallback is set to do something useful for every 4475 ** subquery in the parser tree. 4476 */ 4477 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4478 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4479 return WRC_Continue; 4480 } 4481 4482 /* 4483 ** This routine "expands" a SELECT statement and all of its subqueries. 4484 ** For additional information on what it means to "expand" a SELECT 4485 ** statement, see the comment on the selectExpand worker callback above. 4486 ** 4487 ** Expanding a SELECT statement is the first step in processing a 4488 ** SELECT statement. The SELECT statement must be expanded before 4489 ** name resolution is performed. 4490 ** 4491 ** If anything goes wrong, an error message is written into pParse. 4492 ** The calling function can detect the problem by looking at pParse->nErr 4493 ** and/or pParse->db->mallocFailed. 4494 */ 4495 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4496 Walker w; 4497 memset(&w, 0, sizeof(w)); 4498 w.xExprCallback = sqlite3ExprWalkNoop; 4499 w.pParse = pParse; 4500 if( pParse->hasCompound ){ 4501 w.xSelectCallback = convertCompoundSelectToSubquery; 4502 sqlite3WalkSelect(&w, pSelect); 4503 } 4504 w.xSelectCallback = selectExpander; 4505 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4506 w.xSelectCallback2 = selectPopWith; 4507 } 4508 sqlite3WalkSelect(&w, pSelect); 4509 } 4510 4511 4512 #ifndef SQLITE_OMIT_SUBQUERY 4513 /* 4514 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4515 ** interface. 4516 ** 4517 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4518 ** information to the Table structure that represents the result set 4519 ** of that subquery. 4520 ** 4521 ** The Table structure that represents the result set was constructed 4522 ** by selectExpander() but the type and collation information was omitted 4523 ** at that point because identifiers had not yet been resolved. This 4524 ** routine is called after identifier resolution. 4525 */ 4526 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4527 Parse *pParse; 4528 int i; 4529 SrcList *pTabList; 4530 struct SrcList_item *pFrom; 4531 4532 assert( p->selFlags & SF_Resolved ); 4533 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4534 p->selFlags |= SF_HasTypeInfo; 4535 pParse = pWalker->pParse; 4536 pTabList = p->pSrc; 4537 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4538 Table *pTab = pFrom->pTab; 4539 assert( pTab!=0 ); 4540 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4541 /* A sub-query in the FROM clause of a SELECT */ 4542 Select *pSel = pFrom->pSelect; 4543 if( pSel ){ 4544 while( pSel->pPrior ) pSel = pSel->pPrior; 4545 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4546 } 4547 } 4548 } 4549 } 4550 #endif 4551 4552 4553 /* 4554 ** This routine adds datatype and collating sequence information to 4555 ** the Table structures of all FROM-clause subqueries in a 4556 ** SELECT statement. 4557 ** 4558 ** Use this routine after name resolution. 4559 */ 4560 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4561 #ifndef SQLITE_OMIT_SUBQUERY 4562 Walker w; 4563 memset(&w, 0, sizeof(w)); 4564 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4565 w.xExprCallback = sqlite3ExprWalkNoop; 4566 w.pParse = pParse; 4567 sqlite3WalkSelect(&w, pSelect); 4568 #endif 4569 } 4570 4571 4572 /* 4573 ** This routine sets up a SELECT statement for processing. The 4574 ** following is accomplished: 4575 ** 4576 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4577 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4578 ** * ON and USING clauses are shifted into WHERE statements 4579 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4580 ** * Identifiers in expression are matched to tables. 4581 ** 4582 ** This routine acts recursively on all subqueries within the SELECT. 4583 */ 4584 void sqlite3SelectPrep( 4585 Parse *pParse, /* The parser context */ 4586 Select *p, /* The SELECT statement being coded. */ 4587 NameContext *pOuterNC /* Name context for container */ 4588 ){ 4589 sqlite3 *db; 4590 if( NEVER(p==0) ) return; 4591 db = pParse->db; 4592 if( db->mallocFailed ) return; 4593 if( p->selFlags & SF_HasTypeInfo ) return; 4594 sqlite3SelectExpand(pParse, p); 4595 if( pParse->nErr || db->mallocFailed ) return; 4596 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4597 if( pParse->nErr || db->mallocFailed ) return; 4598 sqlite3SelectAddTypeInfo(pParse, p); 4599 } 4600 4601 /* 4602 ** Reset the aggregate accumulator. 4603 ** 4604 ** The aggregate accumulator is a set of memory cells that hold 4605 ** intermediate results while calculating an aggregate. This 4606 ** routine generates code that stores NULLs in all of those memory 4607 ** cells. 4608 */ 4609 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4610 Vdbe *v = pParse->pVdbe; 4611 int i; 4612 struct AggInfo_func *pFunc; 4613 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4614 if( nReg==0 ) return; 4615 #ifdef SQLITE_DEBUG 4616 /* Verify that all AggInfo registers are within the range specified by 4617 ** AggInfo.mnReg..AggInfo.mxReg */ 4618 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4619 for(i=0; i<pAggInfo->nColumn; i++){ 4620 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4621 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4622 } 4623 for(i=0; i<pAggInfo->nFunc; i++){ 4624 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4625 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4626 } 4627 #endif 4628 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4629 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4630 if( pFunc->iDistinct>=0 ){ 4631 Expr *pE = pFunc->pExpr; 4632 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4633 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4634 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4635 "argument"); 4636 pFunc->iDistinct = -1; 4637 }else{ 4638 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4639 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4640 (char*)pKeyInfo, P4_KEYINFO); 4641 } 4642 } 4643 } 4644 } 4645 4646 /* 4647 ** Invoke the OP_AggFinalize opcode for every aggregate function 4648 ** in the AggInfo structure. 4649 */ 4650 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4651 Vdbe *v = pParse->pVdbe; 4652 int i; 4653 struct AggInfo_func *pF; 4654 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4655 ExprList *pList = pF->pExpr->x.pList; 4656 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4657 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4658 (void*)pF->pFunc, P4_FUNCDEF); 4659 } 4660 } 4661 4662 /* 4663 ** Update the accumulator memory cells for an aggregate based on 4664 ** the current cursor position. 4665 */ 4666 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4667 Vdbe *v = pParse->pVdbe; 4668 int i; 4669 int regHit = 0; 4670 int addrHitTest = 0; 4671 struct AggInfo_func *pF; 4672 struct AggInfo_col *pC; 4673 4674 pAggInfo->directMode = 1; 4675 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4676 int nArg; 4677 int addrNext = 0; 4678 int regAgg; 4679 ExprList *pList = pF->pExpr->x.pList; 4680 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4681 if( pList ){ 4682 nArg = pList->nExpr; 4683 regAgg = sqlite3GetTempRange(pParse, nArg); 4684 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4685 }else{ 4686 nArg = 0; 4687 regAgg = 0; 4688 } 4689 if( pF->iDistinct>=0 ){ 4690 addrNext = sqlite3VdbeMakeLabel(v); 4691 testcase( nArg==0 ); /* Error condition */ 4692 testcase( nArg>1 ); /* Also an error */ 4693 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4694 } 4695 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4696 CollSeq *pColl = 0; 4697 struct ExprList_item *pItem; 4698 int j; 4699 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4700 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4701 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4702 } 4703 if( !pColl ){ 4704 pColl = pParse->db->pDfltColl; 4705 } 4706 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4707 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4708 } 4709 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, 4710 (void*)pF->pFunc, P4_FUNCDEF); 4711 sqlite3VdbeChangeP5(v, (u8)nArg); 4712 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4713 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4714 if( addrNext ){ 4715 sqlite3VdbeResolveLabel(v, addrNext); 4716 sqlite3ExprCacheClear(pParse); 4717 } 4718 } 4719 4720 /* Before populating the accumulator registers, clear the column cache. 4721 ** Otherwise, if any of the required column values are already present 4722 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4723 ** to pC->iMem. But by the time the value is used, the original register 4724 ** may have been used, invalidating the underlying buffer holding the 4725 ** text or blob value. See ticket [883034dcb5]. 4726 ** 4727 ** Another solution would be to change the OP_SCopy used to copy cached 4728 ** values to an OP_Copy. 4729 */ 4730 if( regHit ){ 4731 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4732 } 4733 sqlite3ExprCacheClear(pParse); 4734 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4735 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4736 } 4737 pAggInfo->directMode = 0; 4738 sqlite3ExprCacheClear(pParse); 4739 if( addrHitTest ){ 4740 sqlite3VdbeJumpHere(v, addrHitTest); 4741 } 4742 } 4743 4744 /* 4745 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4746 ** count(*) query ("SELECT count(*) FROM pTab"). 4747 */ 4748 #ifndef SQLITE_OMIT_EXPLAIN 4749 static void explainSimpleCount( 4750 Parse *pParse, /* Parse context */ 4751 Table *pTab, /* Table being queried */ 4752 Index *pIdx /* Index used to optimize scan, or NULL */ 4753 ){ 4754 if( pParse->explain==2 ){ 4755 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4756 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4757 pTab->zName, 4758 bCover ? " USING COVERING INDEX " : "", 4759 bCover ? pIdx->zName : "" 4760 ); 4761 sqlite3VdbeAddOp4( 4762 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4763 ); 4764 } 4765 } 4766 #else 4767 # define explainSimpleCount(a,b,c) 4768 #endif 4769 4770 /* 4771 ** Generate code for the SELECT statement given in the p argument. 4772 ** 4773 ** The results are returned according to the SelectDest structure. 4774 ** See comments in sqliteInt.h for further information. 4775 ** 4776 ** This routine returns the number of errors. If any errors are 4777 ** encountered, then an appropriate error message is left in 4778 ** pParse->zErrMsg. 4779 ** 4780 ** This routine does NOT free the Select structure passed in. The 4781 ** calling function needs to do that. 4782 */ 4783 int sqlite3Select( 4784 Parse *pParse, /* The parser context */ 4785 Select *p, /* The SELECT statement being coded. */ 4786 SelectDest *pDest /* What to do with the query results */ 4787 ){ 4788 int i, j; /* Loop counters */ 4789 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4790 Vdbe *v; /* The virtual machine under construction */ 4791 int isAgg; /* True for select lists like "count(*)" */ 4792 ExprList *pEList = 0; /* List of columns to extract. */ 4793 SrcList *pTabList; /* List of tables to select from */ 4794 Expr *pWhere; /* The WHERE clause. May be NULL */ 4795 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4796 Expr *pHaving; /* The HAVING clause. May be NULL */ 4797 int rc = 1; /* Value to return from this function */ 4798 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4799 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4800 AggInfo sAggInfo; /* Information used by aggregate queries */ 4801 int iEnd; /* Address of the end of the query */ 4802 sqlite3 *db; /* The database connection */ 4803 4804 #ifndef SQLITE_OMIT_EXPLAIN 4805 int iRestoreSelectId = pParse->iSelectId; 4806 pParse->iSelectId = pParse->iNextSelectId++; 4807 #endif 4808 4809 db = pParse->db; 4810 if( p==0 || db->mallocFailed || pParse->nErr ){ 4811 return 1; 4812 } 4813 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4814 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4815 #if SELECTTRACE_ENABLED 4816 pParse->nSelectIndent++; 4817 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4818 if( sqlite3SelectTrace & 0x100 ){ 4819 sqlite3TreeViewSelect(0, p, 0); 4820 } 4821 #endif 4822 4823 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4824 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4825 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4826 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4827 if( IgnorableOrderby(pDest) ){ 4828 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4829 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4830 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4831 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4832 /* If ORDER BY makes no difference in the output then neither does 4833 ** DISTINCT so it can be removed too. */ 4834 sqlite3ExprListDelete(db, p->pOrderBy); 4835 p->pOrderBy = 0; 4836 p->selFlags &= ~SF_Distinct; 4837 } 4838 sqlite3SelectPrep(pParse, p, 0); 4839 memset(&sSort, 0, sizeof(sSort)); 4840 sSort.pOrderBy = p->pOrderBy; 4841 pTabList = p->pSrc; 4842 if( pParse->nErr || db->mallocFailed ){ 4843 goto select_end; 4844 } 4845 assert( p->pEList!=0 ); 4846 isAgg = (p->selFlags & SF_Aggregate)!=0; 4847 #if SELECTTRACE_ENABLED 4848 if( sqlite3SelectTrace & 0x100 ){ 4849 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4850 sqlite3TreeViewSelect(0, p, 0); 4851 } 4852 #endif 4853 4854 4855 /* If writing to memory or generating a set 4856 ** only a single column may be output. 4857 */ 4858 #ifndef SQLITE_OMIT_SUBQUERY 4859 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ 4860 goto select_end; 4861 } 4862 #endif 4863 4864 /* Try to flatten subqueries in the FROM clause up into the main query 4865 */ 4866 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4867 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4868 struct SrcList_item *pItem = &pTabList->a[i]; 4869 Select *pSub = pItem->pSelect; 4870 int isAggSub; 4871 Table *pTab = pItem->pTab; 4872 if( pSub==0 ) continue; 4873 4874 /* Catch mismatch in the declared columns of a view and the number of 4875 ** columns in the SELECT on the RHS */ 4876 if( pTab->nCol!=pSub->pEList->nExpr ){ 4877 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4878 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4879 goto select_end; 4880 } 4881 4882 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4883 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4884 /* This subquery can be absorbed into its parent. */ 4885 if( isAggSub ){ 4886 isAgg = 1; 4887 p->selFlags |= SF_Aggregate; 4888 } 4889 i = -1; 4890 } 4891 pTabList = p->pSrc; 4892 if( db->mallocFailed ) goto select_end; 4893 if( !IgnorableOrderby(pDest) ){ 4894 sSort.pOrderBy = p->pOrderBy; 4895 } 4896 } 4897 #endif 4898 4899 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4900 ** does not already exist */ 4901 v = sqlite3GetVdbe(pParse); 4902 if( v==0 ) goto select_end; 4903 4904 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4905 /* Handle compound SELECT statements using the separate multiSelect() 4906 ** procedure. 4907 */ 4908 if( p->pPrior ){ 4909 rc = multiSelect(pParse, p, pDest); 4910 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4911 #if SELECTTRACE_ENABLED 4912 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4913 pParse->nSelectIndent--; 4914 #endif 4915 return rc; 4916 } 4917 #endif 4918 4919 /* Generate code for all sub-queries in the FROM clause 4920 */ 4921 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4922 for(i=0; i<pTabList->nSrc; i++){ 4923 struct SrcList_item *pItem = &pTabList->a[i]; 4924 SelectDest dest; 4925 Select *pSub = pItem->pSelect; 4926 if( pSub==0 ) continue; 4927 4928 /* Sometimes the code for a subquery will be generated more than 4929 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4930 ** for example. In that case, do not regenerate the code to manifest 4931 ** a view or the co-routine to implement a view. The first instance 4932 ** is sufficient, though the subroutine to manifest the view does need 4933 ** to be invoked again. */ 4934 if( pItem->addrFillSub ){ 4935 if( pItem->fg.viaCoroutine==0 ){ 4936 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4937 } 4938 continue; 4939 } 4940 4941 /* Increment Parse.nHeight by the height of the largest expression 4942 ** tree referred to by this, the parent select. The child select 4943 ** may contain expression trees of at most 4944 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4945 ** more conservative than necessary, but much easier than enforcing 4946 ** an exact limit. 4947 */ 4948 pParse->nHeight += sqlite3SelectExprHeight(p); 4949 4950 /* Make copies of constant WHERE-clause terms in the outer query down 4951 ** inside the subquery. This can help the subquery to run more efficiently. 4952 */ 4953 if( (pItem->fg.jointype & JT_OUTER)==0 4954 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) 4955 ){ 4956 #if SELECTTRACE_ENABLED 4957 if( sqlite3SelectTrace & 0x100 ){ 4958 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 4959 sqlite3TreeViewSelect(0, p, 0); 4960 } 4961 #endif 4962 } 4963 4964 /* Generate code to implement the subquery 4965 */ 4966 if( pTabList->nSrc==1 4967 && (p->selFlags & SF_All)==0 4968 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4969 ){ 4970 /* Implement a co-routine that will return a single row of the result 4971 ** set on each invocation. 4972 */ 4973 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4974 pItem->regReturn = ++pParse->nMem; 4975 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4976 VdbeComment((v, "%s", pItem->pTab->zName)); 4977 pItem->addrFillSub = addrTop; 4978 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4979 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4980 sqlite3Select(pParse, pSub, &dest); 4981 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4982 pItem->fg.viaCoroutine = 1; 4983 pItem->regResult = dest.iSdst; 4984 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4985 sqlite3VdbeJumpHere(v, addrTop-1); 4986 sqlite3ClearTempRegCache(pParse); 4987 }else{ 4988 /* Generate a subroutine that will fill an ephemeral table with 4989 ** the content of this subquery. pItem->addrFillSub will point 4990 ** to the address of the generated subroutine. pItem->regReturn 4991 ** is a register allocated to hold the subroutine return address 4992 */ 4993 int topAddr; 4994 int onceAddr = 0; 4995 int retAddr; 4996 assert( pItem->addrFillSub==0 ); 4997 pItem->regReturn = ++pParse->nMem; 4998 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4999 pItem->addrFillSub = topAddr+1; 5000 if( pItem->fg.isCorrelated==0 ){ 5001 /* If the subquery is not correlated and if we are not inside of 5002 ** a trigger, then we only need to compute the value of the subquery 5003 ** once. */ 5004 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 5005 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5006 }else{ 5007 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5008 } 5009 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5010 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5011 sqlite3Select(pParse, pSub, &dest); 5012 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 5013 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5014 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5015 VdbeComment((v, "end %s", pItem->pTab->zName)); 5016 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5017 sqlite3ClearTempRegCache(pParse); 5018 } 5019 if( db->mallocFailed ) goto select_end; 5020 pParse->nHeight -= sqlite3SelectExprHeight(p); 5021 } 5022 #endif 5023 5024 /* Various elements of the SELECT copied into local variables for 5025 ** convenience */ 5026 pEList = p->pEList; 5027 pWhere = p->pWhere; 5028 pGroupBy = p->pGroupBy; 5029 pHaving = p->pHaving; 5030 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5031 5032 #if SELECTTRACE_ENABLED 5033 if( sqlite3SelectTrace & 0x400 ){ 5034 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5035 sqlite3TreeViewSelect(0, p, 0); 5036 } 5037 #endif 5038 5039 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5040 ** if the select-list is the same as the ORDER BY list, then this query 5041 ** can be rewritten as a GROUP BY. In other words, this: 5042 ** 5043 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5044 ** 5045 ** is transformed to: 5046 ** 5047 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5048 ** 5049 ** The second form is preferred as a single index (or temp-table) may be 5050 ** used for both the ORDER BY and DISTINCT processing. As originally 5051 ** written the query must use a temp-table for at least one of the ORDER 5052 ** BY and DISTINCT, and an index or separate temp-table for the other. 5053 */ 5054 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5055 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5056 ){ 5057 p->selFlags &= ~SF_Distinct; 5058 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5059 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5060 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5061 ** original setting of the SF_Distinct flag, not the current setting */ 5062 assert( sDistinct.isTnct ); 5063 } 5064 5065 /* If there is an ORDER BY clause, then create an ephemeral index to 5066 ** do the sorting. But this sorting ephemeral index might end up 5067 ** being unused if the data can be extracted in pre-sorted order. 5068 ** If that is the case, then the OP_OpenEphemeral instruction will be 5069 ** changed to an OP_Noop once we figure out that the sorting index is 5070 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5071 ** that change. 5072 */ 5073 if( sSort.pOrderBy ){ 5074 KeyInfo *pKeyInfo; 5075 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5076 sSort.iECursor = pParse->nTab++; 5077 sSort.addrSortIndex = 5078 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5079 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5080 (char*)pKeyInfo, P4_KEYINFO 5081 ); 5082 }else{ 5083 sSort.addrSortIndex = -1; 5084 } 5085 5086 /* If the output is destined for a temporary table, open that table. 5087 */ 5088 if( pDest->eDest==SRT_EphemTab ){ 5089 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5090 } 5091 5092 /* Set the limiter. 5093 */ 5094 iEnd = sqlite3VdbeMakeLabel(v); 5095 p->nSelectRow = LARGEST_INT64; 5096 computeLimitRegisters(pParse, p, iEnd); 5097 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5098 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5099 sSort.sortFlags |= SORTFLAG_UseSorter; 5100 } 5101 5102 /* Open an ephemeral index to use for the distinct set. 5103 */ 5104 if( p->selFlags & SF_Distinct ){ 5105 sDistinct.tabTnct = pParse->nTab++; 5106 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5107 sDistinct.tabTnct, 0, 0, 5108 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5109 P4_KEYINFO); 5110 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5111 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5112 }else{ 5113 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5114 } 5115 5116 if( !isAgg && pGroupBy==0 ){ 5117 /* No aggregate functions and no GROUP BY clause */ 5118 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5119 5120 /* Begin the database scan. */ 5121 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5122 p->pEList, wctrlFlags, 0); 5123 if( pWInfo==0 ) goto select_end; 5124 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5125 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5126 } 5127 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5128 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5129 } 5130 if( sSort.pOrderBy ){ 5131 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5132 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5133 sSort.pOrderBy = 0; 5134 } 5135 } 5136 5137 /* If sorting index that was created by a prior OP_OpenEphemeral 5138 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5139 ** into an OP_Noop. 5140 */ 5141 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5142 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5143 } 5144 5145 /* Use the standard inner loop. */ 5146 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5147 sqlite3WhereContinueLabel(pWInfo), 5148 sqlite3WhereBreakLabel(pWInfo)); 5149 5150 /* End the database scan loop. 5151 */ 5152 sqlite3WhereEnd(pWInfo); 5153 }else{ 5154 /* This case when there exist aggregate functions or a GROUP BY clause 5155 ** or both */ 5156 NameContext sNC; /* Name context for processing aggregate information */ 5157 int iAMem; /* First Mem address for storing current GROUP BY */ 5158 int iBMem; /* First Mem address for previous GROUP BY */ 5159 int iUseFlag; /* Mem address holding flag indicating that at least 5160 ** one row of the input to the aggregator has been 5161 ** processed */ 5162 int iAbortFlag; /* Mem address which causes query abort if positive */ 5163 int groupBySort; /* Rows come from source in GROUP BY order */ 5164 int addrEnd; /* End of processing for this SELECT */ 5165 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5166 int sortOut = 0; /* Output register from the sorter */ 5167 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5168 5169 /* Remove any and all aliases between the result set and the 5170 ** GROUP BY clause. 5171 */ 5172 if( pGroupBy ){ 5173 int k; /* Loop counter */ 5174 struct ExprList_item *pItem; /* For looping over expression in a list */ 5175 5176 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5177 pItem->u.x.iAlias = 0; 5178 } 5179 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5180 pItem->u.x.iAlias = 0; 5181 } 5182 if( p->nSelectRow>100 ) p->nSelectRow = 100; 5183 }else{ 5184 p->nSelectRow = 1; 5185 } 5186 5187 /* If there is both a GROUP BY and an ORDER BY clause and they are 5188 ** identical, then it may be possible to disable the ORDER BY clause 5189 ** on the grounds that the GROUP BY will cause elements to come out 5190 ** in the correct order. It also may not - the GROUP BY might use a 5191 ** database index that causes rows to be grouped together as required 5192 ** but not actually sorted. Either way, record the fact that the 5193 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5194 ** variable. */ 5195 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5196 orderByGrp = 1; 5197 } 5198 5199 /* Create a label to jump to when we want to abort the query */ 5200 addrEnd = sqlite3VdbeMakeLabel(v); 5201 5202 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5203 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5204 ** SELECT statement. 5205 */ 5206 memset(&sNC, 0, sizeof(sNC)); 5207 sNC.pParse = pParse; 5208 sNC.pSrcList = pTabList; 5209 sNC.pAggInfo = &sAggInfo; 5210 sAggInfo.mnReg = pParse->nMem+1; 5211 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5212 sAggInfo.pGroupBy = pGroupBy; 5213 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5214 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5215 if( pHaving ){ 5216 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5217 } 5218 sAggInfo.nAccumulator = sAggInfo.nColumn; 5219 for(i=0; i<sAggInfo.nFunc; i++){ 5220 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5221 sNC.ncFlags |= NC_InAggFunc; 5222 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5223 sNC.ncFlags &= ~NC_InAggFunc; 5224 } 5225 sAggInfo.mxReg = pParse->nMem; 5226 if( db->mallocFailed ) goto select_end; 5227 5228 /* Processing for aggregates with GROUP BY is very different and 5229 ** much more complex than aggregates without a GROUP BY. 5230 */ 5231 if( pGroupBy ){ 5232 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5233 int addr1; /* A-vs-B comparision jump */ 5234 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5235 int regOutputRow; /* Return address register for output subroutine */ 5236 int addrSetAbort; /* Set the abort flag and return */ 5237 int addrTopOfLoop; /* Top of the input loop */ 5238 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5239 int addrReset; /* Subroutine for resetting the accumulator */ 5240 int regReset; /* Return address register for reset subroutine */ 5241 5242 /* If there is a GROUP BY clause we might need a sorting index to 5243 ** implement it. Allocate that sorting index now. If it turns out 5244 ** that we do not need it after all, the OP_SorterOpen instruction 5245 ** will be converted into a Noop. 5246 */ 5247 sAggInfo.sortingIdx = pParse->nTab++; 5248 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5249 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5250 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5251 0, (char*)pKeyInfo, P4_KEYINFO); 5252 5253 /* Initialize memory locations used by GROUP BY aggregate processing 5254 */ 5255 iUseFlag = ++pParse->nMem; 5256 iAbortFlag = ++pParse->nMem; 5257 regOutputRow = ++pParse->nMem; 5258 addrOutputRow = sqlite3VdbeMakeLabel(v); 5259 regReset = ++pParse->nMem; 5260 addrReset = sqlite3VdbeMakeLabel(v); 5261 iAMem = pParse->nMem + 1; 5262 pParse->nMem += pGroupBy->nExpr; 5263 iBMem = pParse->nMem + 1; 5264 pParse->nMem += pGroupBy->nExpr; 5265 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5266 VdbeComment((v, "clear abort flag")); 5267 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5268 VdbeComment((v, "indicate accumulator empty")); 5269 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5270 5271 /* Begin a loop that will extract all source rows in GROUP BY order. 5272 ** This might involve two separate loops with an OP_Sort in between, or 5273 ** it might be a single loop that uses an index to extract information 5274 ** in the right order to begin with. 5275 */ 5276 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5277 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5278 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5279 ); 5280 if( pWInfo==0 ) goto select_end; 5281 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5282 /* The optimizer is able to deliver rows in group by order so 5283 ** we do not have to sort. The OP_OpenEphemeral table will be 5284 ** cancelled later because we still need to use the pKeyInfo 5285 */ 5286 groupBySort = 0; 5287 }else{ 5288 /* Rows are coming out in undetermined order. We have to push 5289 ** each row into a sorting index, terminate the first loop, 5290 ** then loop over the sorting index in order to get the output 5291 ** in sorted order 5292 */ 5293 int regBase; 5294 int regRecord; 5295 int nCol; 5296 int nGroupBy; 5297 5298 explainTempTable(pParse, 5299 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5300 "DISTINCT" : "GROUP BY"); 5301 5302 groupBySort = 1; 5303 nGroupBy = pGroupBy->nExpr; 5304 nCol = nGroupBy; 5305 j = nGroupBy; 5306 for(i=0; i<sAggInfo.nColumn; i++){ 5307 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5308 nCol++; 5309 j++; 5310 } 5311 } 5312 regBase = sqlite3GetTempRange(pParse, nCol); 5313 sqlite3ExprCacheClear(pParse); 5314 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5315 j = nGroupBy; 5316 for(i=0; i<sAggInfo.nColumn; i++){ 5317 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5318 if( pCol->iSorterColumn>=j ){ 5319 int r1 = j + regBase; 5320 sqlite3ExprCodeGetColumnToReg(pParse, 5321 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5322 j++; 5323 } 5324 } 5325 regRecord = sqlite3GetTempReg(pParse); 5326 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5327 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5328 sqlite3ReleaseTempReg(pParse, regRecord); 5329 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5330 sqlite3WhereEnd(pWInfo); 5331 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5332 sortOut = sqlite3GetTempReg(pParse); 5333 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5334 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5335 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5336 sAggInfo.useSortingIdx = 1; 5337 sqlite3ExprCacheClear(pParse); 5338 5339 } 5340 5341 /* If the index or temporary table used by the GROUP BY sort 5342 ** will naturally deliver rows in the order required by the ORDER BY 5343 ** clause, cancel the ephemeral table open coded earlier. 5344 ** 5345 ** This is an optimization - the correct answer should result regardless. 5346 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5347 ** disable this optimization for testing purposes. */ 5348 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5349 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5350 ){ 5351 sSort.pOrderBy = 0; 5352 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5353 } 5354 5355 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5356 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5357 ** Then compare the current GROUP BY terms against the GROUP BY terms 5358 ** from the previous row currently stored in a0, a1, a2... 5359 */ 5360 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5361 sqlite3ExprCacheClear(pParse); 5362 if( groupBySort ){ 5363 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5364 sortOut, sortPTab); 5365 } 5366 for(j=0; j<pGroupBy->nExpr; j++){ 5367 if( groupBySort ){ 5368 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5369 }else{ 5370 sAggInfo.directMode = 1; 5371 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5372 } 5373 } 5374 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5375 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5376 addr1 = sqlite3VdbeCurrentAddr(v); 5377 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5378 5379 /* Generate code that runs whenever the GROUP BY changes. 5380 ** Changes in the GROUP BY are detected by the previous code 5381 ** block. If there were no changes, this block is skipped. 5382 ** 5383 ** This code copies current group by terms in b0,b1,b2,... 5384 ** over to a0,a1,a2. It then calls the output subroutine 5385 ** and resets the aggregate accumulator registers in preparation 5386 ** for the next GROUP BY batch. 5387 */ 5388 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5389 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5390 VdbeComment((v, "output one row")); 5391 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5392 VdbeComment((v, "check abort flag")); 5393 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5394 VdbeComment((v, "reset accumulator")); 5395 5396 /* Update the aggregate accumulators based on the content of 5397 ** the current row 5398 */ 5399 sqlite3VdbeJumpHere(v, addr1); 5400 updateAccumulator(pParse, &sAggInfo); 5401 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5402 VdbeComment((v, "indicate data in accumulator")); 5403 5404 /* End of the loop 5405 */ 5406 if( groupBySort ){ 5407 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5408 VdbeCoverage(v); 5409 }else{ 5410 sqlite3WhereEnd(pWInfo); 5411 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5412 } 5413 5414 /* Output the final row of result 5415 */ 5416 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5417 VdbeComment((v, "output final row")); 5418 5419 /* Jump over the subroutines 5420 */ 5421 sqlite3VdbeGoto(v, addrEnd); 5422 5423 /* Generate a subroutine that outputs a single row of the result 5424 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5425 ** is less than or equal to zero, the subroutine is a no-op. If 5426 ** the processing calls for the query to abort, this subroutine 5427 ** increments the iAbortFlag memory location before returning in 5428 ** order to signal the caller to abort. 5429 */ 5430 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5431 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5432 VdbeComment((v, "set abort flag")); 5433 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5434 sqlite3VdbeResolveLabel(v, addrOutputRow); 5435 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5436 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5437 VdbeCoverage(v); 5438 VdbeComment((v, "Groupby result generator entry point")); 5439 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5440 finalizeAggFunctions(pParse, &sAggInfo); 5441 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5442 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5443 &sDistinct, pDest, 5444 addrOutputRow+1, addrSetAbort); 5445 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5446 VdbeComment((v, "end groupby result generator")); 5447 5448 /* Generate a subroutine that will reset the group-by accumulator 5449 */ 5450 sqlite3VdbeResolveLabel(v, addrReset); 5451 resetAccumulator(pParse, &sAggInfo); 5452 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5453 5454 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5455 else { 5456 ExprList *pDel = 0; 5457 #ifndef SQLITE_OMIT_BTREECOUNT 5458 Table *pTab; 5459 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5460 /* If isSimpleCount() returns a pointer to a Table structure, then 5461 ** the SQL statement is of the form: 5462 ** 5463 ** SELECT count(*) FROM <tbl> 5464 ** 5465 ** where the Table structure returned represents table <tbl>. 5466 ** 5467 ** This statement is so common that it is optimized specially. The 5468 ** OP_Count instruction is executed either on the intkey table that 5469 ** contains the data for table <tbl> or on one of its indexes. It 5470 ** is better to execute the op on an index, as indexes are almost 5471 ** always spread across less pages than their corresponding tables. 5472 */ 5473 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5474 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5475 Index *pIdx; /* Iterator variable */ 5476 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5477 Index *pBest = 0; /* Best index found so far */ 5478 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5479 5480 sqlite3CodeVerifySchema(pParse, iDb); 5481 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5482 5483 /* Search for the index that has the lowest scan cost. 5484 ** 5485 ** (2011-04-15) Do not do a full scan of an unordered index. 5486 ** 5487 ** (2013-10-03) Do not count the entries in a partial index. 5488 ** 5489 ** In practice the KeyInfo structure will not be used. It is only 5490 ** passed to keep OP_OpenRead happy. 5491 */ 5492 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5493 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5494 if( pIdx->bUnordered==0 5495 && pIdx->szIdxRow<pTab->szTabRow 5496 && pIdx->pPartIdxWhere==0 5497 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5498 ){ 5499 pBest = pIdx; 5500 } 5501 } 5502 if( pBest ){ 5503 iRoot = pBest->tnum; 5504 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5505 } 5506 5507 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5508 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5509 if( pKeyInfo ){ 5510 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5511 } 5512 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5513 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5514 explainSimpleCount(pParse, pTab, pBest); 5515 }else 5516 #endif /* SQLITE_OMIT_BTREECOUNT */ 5517 { 5518 /* Check if the query is of one of the following forms: 5519 ** 5520 ** SELECT min(x) FROM ... 5521 ** SELECT max(x) FROM ... 5522 ** 5523 ** If it is, then ask the code in where.c to attempt to sort results 5524 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5525 ** If where.c is able to produce results sorted in this order, then 5526 ** add vdbe code to break out of the processing loop after the 5527 ** first iteration (since the first iteration of the loop is 5528 ** guaranteed to operate on the row with the minimum or maximum 5529 ** value of x, the only row required). 5530 ** 5531 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5532 ** modify behavior as follows: 5533 ** 5534 ** + If the query is a "SELECT min(x)", then the loop coded by 5535 ** where.c should not iterate over any values with a NULL value 5536 ** for x. 5537 ** 5538 ** + The optimizer code in where.c (the thing that decides which 5539 ** index or indices to use) should place a different priority on 5540 ** satisfying the 'ORDER BY' clause than it does in other cases. 5541 ** Refer to code and comments in where.c for details. 5542 */ 5543 ExprList *pMinMax = 0; 5544 u8 flag = WHERE_ORDERBY_NORMAL; 5545 5546 assert( p->pGroupBy==0 ); 5547 assert( flag==0 ); 5548 if( p->pHaving==0 ){ 5549 flag = minMaxQuery(&sAggInfo, &pMinMax); 5550 } 5551 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5552 5553 if( flag ){ 5554 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5555 pDel = pMinMax; 5556 if( pMinMax && !db->mallocFailed ){ 5557 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5558 pMinMax->a[0].pExpr->op = TK_COLUMN; 5559 } 5560 } 5561 5562 /* This case runs if the aggregate has no GROUP BY clause. The 5563 ** processing is much simpler since there is only a single row 5564 ** of output. 5565 */ 5566 resetAccumulator(pParse, &sAggInfo); 5567 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5568 if( pWInfo==0 ){ 5569 sqlite3ExprListDelete(db, pDel); 5570 goto select_end; 5571 } 5572 updateAccumulator(pParse, &sAggInfo); 5573 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5574 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5575 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5576 VdbeComment((v, "%s() by index", 5577 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5578 } 5579 sqlite3WhereEnd(pWInfo); 5580 finalizeAggFunctions(pParse, &sAggInfo); 5581 } 5582 5583 sSort.pOrderBy = 0; 5584 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5585 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5586 pDest, addrEnd, addrEnd); 5587 sqlite3ExprListDelete(db, pDel); 5588 } 5589 sqlite3VdbeResolveLabel(v, addrEnd); 5590 5591 } /* endif aggregate query */ 5592 5593 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5594 explainTempTable(pParse, "DISTINCT"); 5595 } 5596 5597 /* If there is an ORDER BY clause, then we need to sort the results 5598 ** and send them to the callback one by one. 5599 */ 5600 if( sSort.pOrderBy ){ 5601 explainTempTable(pParse, 5602 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5603 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5604 } 5605 5606 /* Jump here to skip this query 5607 */ 5608 sqlite3VdbeResolveLabel(v, iEnd); 5609 5610 /* The SELECT has been coded. If there is an error in the Parse structure, 5611 ** set the return code to 1. Otherwise 0. */ 5612 rc = (pParse->nErr>0); 5613 5614 /* Control jumps to here if an error is encountered above, or upon 5615 ** successful coding of the SELECT. 5616 */ 5617 select_end: 5618 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5619 5620 /* Identify column names if results of the SELECT are to be output. 5621 */ 5622 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5623 generateColumnNames(pParse, pTabList, pEList); 5624 } 5625 5626 sqlite3DbFree(db, sAggInfo.aCol); 5627 sqlite3DbFree(db, sAggInfo.aFunc); 5628 #if SELECTTRACE_ENABLED 5629 SELECTTRACE(1,pParse,p,("end processing\n")); 5630 pParse->nSelectIndent--; 5631 #endif 5632 return rc; 5633 } 5634