xref: /sqlite-3.40.0/src/select.c (revision 8ccdef6b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\
25         (S)->zSelName,(S)),\
26     sqlite3DebugPrintf X
27 #else
28 # define SELECTTRACE(K,P,S,X)
29 #endif
30 
31 
32 /*
33 ** An instance of the following object is used to record information about
34 ** how to process the DISTINCT keyword, to simplify passing that information
35 ** into the selectInnerLoop() routine.
36 */
37 typedef struct DistinctCtx DistinctCtx;
38 struct DistinctCtx {
39   u8 isTnct;      /* True if the DISTINCT keyword is present */
40   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
41   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
42   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
43 };
44 
45 /*
46 ** An instance of the following object is used to record information about
47 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 */
49 typedef struct SortCtx SortCtx;
50 struct SortCtx {
51   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
52   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
53   int iECursor;         /* Cursor number for the sorter */
54   int regReturn;        /* Register holding block-output return address */
55   int labelBkOut;       /* Start label for the block-output subroutine */
56   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
57   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
58 };
59 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
60 
61 /*
62 ** Delete all the content of a Select structure.  Deallocate the structure
63 ** itself only if bFree is true.
64 */
65 static void clearSelect(sqlite3 *db, Select *p, int bFree){
66   while( p ){
67     Select *pPrior = p->pPrior;
68     sqlite3ExprListDelete(db, p->pEList);
69     sqlite3SrcListDelete(db, p->pSrc);
70     sqlite3ExprDelete(db, p->pWhere);
71     sqlite3ExprListDelete(db, p->pGroupBy);
72     sqlite3ExprDelete(db, p->pHaving);
73     sqlite3ExprListDelete(db, p->pOrderBy);
74     sqlite3ExprDelete(db, p->pLimit);
75     sqlite3ExprDelete(db, p->pOffset);
76     sqlite3WithDelete(db, p->pWith);
77     if( bFree ) sqlite3DbFree(db, p);
78     p = pPrior;
79     bFree = 1;
80   }
81 }
82 
83 /*
84 ** Initialize a SelectDest structure.
85 */
86 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
87   pDest->eDest = (u8)eDest;
88   pDest->iSDParm = iParm;
89   pDest->affSdst = 0;
90   pDest->iSdst = 0;
91   pDest->nSdst = 0;
92 }
93 
94 
95 /*
96 ** Allocate a new Select structure and return a pointer to that
97 ** structure.
98 */
99 Select *sqlite3SelectNew(
100   Parse *pParse,        /* Parsing context */
101   ExprList *pEList,     /* which columns to include in the result */
102   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
103   Expr *pWhere,         /* the WHERE clause */
104   ExprList *pGroupBy,   /* the GROUP BY clause */
105   Expr *pHaving,        /* the HAVING clause */
106   ExprList *pOrderBy,   /* the ORDER BY clause */
107   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
108   Expr *pLimit,         /* LIMIT value.  NULL means not used */
109   Expr *pOffset         /* OFFSET value.  NULL means no offset */
110 ){
111   Select *pNew;
112   Select standin;
113   sqlite3 *db = pParse->db;
114   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
115   if( pNew==0 ){
116     assert( db->mallocFailed );
117     pNew = &standin;
118     memset(pNew, 0, sizeof(*pNew));
119   }
120   if( pEList==0 ){
121     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
122   }
123   pNew->pEList = pEList;
124   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
125   pNew->pSrc = pSrc;
126   pNew->pWhere = pWhere;
127   pNew->pGroupBy = pGroupBy;
128   pNew->pHaving = pHaving;
129   pNew->pOrderBy = pOrderBy;
130   pNew->selFlags = selFlags;
131   pNew->op = TK_SELECT;
132   pNew->pLimit = pLimit;
133   pNew->pOffset = pOffset;
134   assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 );
135   pNew->addrOpenEphm[0] = -1;
136   pNew->addrOpenEphm[1] = -1;
137   if( db->mallocFailed ) {
138     clearSelect(db, pNew, pNew!=&standin);
139     pNew = 0;
140   }else{
141     assert( pNew->pSrc!=0 || pParse->nErr>0 );
142   }
143   assert( pNew!=&standin );
144   return pNew;
145 }
146 
147 #if SELECTTRACE_ENABLED
148 /*
149 ** Set the name of a Select object
150 */
151 void sqlite3SelectSetName(Select *p, const char *zName){
152   if( p && zName ){
153     sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName);
154   }
155 }
156 #endif
157 
158 
159 /*
160 ** Delete the given Select structure and all of its substructures.
161 */
162 void sqlite3SelectDelete(sqlite3 *db, Select *p){
163   clearSelect(db, p, 1);
164 }
165 
166 /*
167 ** Return a pointer to the right-most SELECT statement in a compound.
168 */
169 static Select *findRightmost(Select *p){
170   while( p->pNext ) p = p->pNext;
171   return p;
172 }
173 
174 /*
175 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
176 ** type of join.  Return an integer constant that expresses that type
177 ** in terms of the following bit values:
178 **
179 **     JT_INNER
180 **     JT_CROSS
181 **     JT_OUTER
182 **     JT_NATURAL
183 **     JT_LEFT
184 **     JT_RIGHT
185 **
186 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 **
188 ** If an illegal or unsupported join type is seen, then still return
189 ** a join type, but put an error in the pParse structure.
190 */
191 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
192   int jointype = 0;
193   Token *apAll[3];
194   Token *p;
195                              /*   0123456789 123456789 123456789 123 */
196   static const char zKeyText[] = "naturaleftouterightfullinnercross";
197   static const struct {
198     u8 i;        /* Beginning of keyword text in zKeyText[] */
199     u8 nChar;    /* Length of the keyword in characters */
200     u8 code;     /* Join type mask */
201   } aKeyword[] = {
202     /* natural */ { 0,  7, JT_NATURAL                },
203     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
204     /* outer   */ { 10, 5, JT_OUTER                  },
205     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
206     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
207     /* inner   */ { 23, 5, JT_INNER                  },
208     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
209   };
210   int i, j;
211   apAll[0] = pA;
212   apAll[1] = pB;
213   apAll[2] = pC;
214   for(i=0; i<3 && apAll[i]; i++){
215     p = apAll[i];
216     for(j=0; j<ArraySize(aKeyword); j++){
217       if( p->n==aKeyword[j].nChar
218           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
219         jointype |= aKeyword[j].code;
220         break;
221       }
222     }
223     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
224     if( j>=ArraySize(aKeyword) ){
225       jointype |= JT_ERROR;
226       break;
227     }
228   }
229   if(
230      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
231      (jointype & JT_ERROR)!=0
232   ){
233     const char *zSp = " ";
234     assert( pB!=0 );
235     if( pC==0 ){ zSp++; }
236     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
237        "%T %T%s%T", pA, pB, zSp, pC);
238     jointype = JT_INNER;
239   }else if( (jointype & JT_OUTER)!=0
240          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
241     sqlite3ErrorMsg(pParse,
242       "RIGHT and FULL OUTER JOINs are not currently supported");
243     jointype = JT_INNER;
244   }
245   return jointype;
246 }
247 
248 /*
249 ** Return the index of a column in a table.  Return -1 if the column
250 ** is not contained in the table.
251 */
252 static int columnIndex(Table *pTab, const char *zCol){
253   int i;
254   for(i=0; i<pTab->nCol; i++){
255     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
256   }
257   return -1;
258 }
259 
260 /*
261 ** Search the first N tables in pSrc, from left to right, looking for a
262 ** table that has a column named zCol.
263 **
264 ** When found, set *piTab and *piCol to the table index and column index
265 ** of the matching column and return TRUE.
266 **
267 ** If not found, return FALSE.
268 */
269 static int tableAndColumnIndex(
270   SrcList *pSrc,       /* Array of tables to search */
271   int N,               /* Number of tables in pSrc->a[] to search */
272   const char *zCol,    /* Name of the column we are looking for */
273   int *piTab,          /* Write index of pSrc->a[] here */
274   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 ){
276   int i;               /* For looping over tables in pSrc */
277   int iCol;            /* Index of column matching zCol */
278 
279   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
280   for(i=0; i<N; i++){
281     iCol = columnIndex(pSrc->a[i].pTab, zCol);
282     if( iCol>=0 ){
283       if( piTab ){
284         *piTab = i;
285         *piCol = iCol;
286       }
287       return 1;
288     }
289   }
290   return 0;
291 }
292 
293 /*
294 ** This function is used to add terms implied by JOIN syntax to the
295 ** WHERE clause expression of a SELECT statement. The new term, which
296 ** is ANDed with the existing WHERE clause, is of the form:
297 **
298 **    (tab1.col1 = tab2.col2)
299 **
300 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
301 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
302 ** column iColRight of tab2.
303 */
304 static void addWhereTerm(
305   Parse *pParse,                  /* Parsing context */
306   SrcList *pSrc,                  /* List of tables in FROM clause */
307   int iLeft,                      /* Index of first table to join in pSrc */
308   int iColLeft,                   /* Index of column in first table */
309   int iRight,                     /* Index of second table in pSrc */
310   int iColRight,                  /* Index of column in second table */
311   int isOuterJoin,                /* True if this is an OUTER join */
312   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
313 ){
314   sqlite3 *db = pParse->db;
315   Expr *pE1;
316   Expr *pE2;
317   Expr *pEq;
318 
319   assert( iLeft<iRight );
320   assert( pSrc->nSrc>iRight );
321   assert( pSrc->a[iLeft].pTab );
322   assert( pSrc->a[iRight].pTab );
323 
324   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
325   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
326 
327   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
328   if( pEq && isOuterJoin ){
329     ExprSetProperty(pEq, EP_FromJoin);
330     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
331     ExprSetVVAProperty(pEq, EP_NoReduce);
332     pEq->iRightJoinTable = (i16)pE2->iTable;
333   }
334   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
335 }
336 
337 /*
338 ** Set the EP_FromJoin property on all terms of the given expression.
339 ** And set the Expr.iRightJoinTable to iTable for every term in the
340 ** expression.
341 **
342 ** The EP_FromJoin property is used on terms of an expression to tell
343 ** the LEFT OUTER JOIN processing logic that this term is part of the
344 ** join restriction specified in the ON or USING clause and not a part
345 ** of the more general WHERE clause.  These terms are moved over to the
346 ** WHERE clause during join processing but we need to remember that they
347 ** originated in the ON or USING clause.
348 **
349 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
350 ** expression depends on table iRightJoinTable even if that table is not
351 ** explicitly mentioned in the expression.  That information is needed
352 ** for cases like this:
353 **
354 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 **
356 ** The where clause needs to defer the handling of the t1.x=5
357 ** term until after the t2 loop of the join.  In that way, a
358 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
359 ** defer the handling of t1.x=5, it will be processed immediately
360 ** after the t1 loop and rows with t1.x!=5 will never appear in
361 ** the output, which is incorrect.
362 */
363 static void setJoinExpr(Expr *p, int iTable){
364   while( p ){
365     ExprSetProperty(p, EP_FromJoin);
366     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
367     ExprSetVVAProperty(p, EP_NoReduce);
368     p->iRightJoinTable = (i16)iTable;
369     if( p->op==TK_FUNCTION && p->x.pList ){
370       int i;
371       for(i=0; i<p->x.pList->nExpr; i++){
372         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
373       }
374     }
375     setJoinExpr(p->pLeft, iTable);
376     p = p->pRight;
377   }
378 }
379 
380 /*
381 ** This routine processes the join information for a SELECT statement.
382 ** ON and USING clauses are converted into extra terms of the WHERE clause.
383 ** NATURAL joins also create extra WHERE clause terms.
384 **
385 ** The terms of a FROM clause are contained in the Select.pSrc structure.
386 ** The left most table is the first entry in Select.pSrc.  The right-most
387 ** table is the last entry.  The join operator is held in the entry to
388 ** the left.  Thus entry 0 contains the join operator for the join between
389 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
390 ** also attached to the left entry.
391 **
392 ** This routine returns the number of errors encountered.
393 */
394 static int sqliteProcessJoin(Parse *pParse, Select *p){
395   SrcList *pSrc;                  /* All tables in the FROM clause */
396   int i, j;                       /* Loop counters */
397   struct SrcList_item *pLeft;     /* Left table being joined */
398   struct SrcList_item *pRight;    /* Right table being joined */
399 
400   pSrc = p->pSrc;
401   pLeft = &pSrc->a[0];
402   pRight = &pLeft[1];
403   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
404     Table *pLeftTab = pLeft->pTab;
405     Table *pRightTab = pRight->pTab;
406     int isOuter;
407 
408     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
409     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
410 
411     /* When the NATURAL keyword is present, add WHERE clause terms for
412     ** every column that the two tables have in common.
413     */
414     if( pRight->fg.jointype & JT_NATURAL ){
415       if( pRight->pOn || pRight->pUsing ){
416         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
417            "an ON or USING clause", 0);
418         return 1;
419       }
420       for(j=0; j<pRightTab->nCol; j++){
421         char *zName;   /* Name of column in the right table */
422         int iLeft;     /* Matching left table */
423         int iLeftCol;  /* Matching column in the left table */
424 
425         zName = pRightTab->aCol[j].zName;
426         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
427           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
428                        isOuter, &p->pWhere);
429         }
430       }
431     }
432 
433     /* Disallow both ON and USING clauses in the same join
434     */
435     if( pRight->pOn && pRight->pUsing ){
436       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
437         "clauses in the same join");
438       return 1;
439     }
440 
441     /* Add the ON clause to the end of the WHERE clause, connected by
442     ** an AND operator.
443     */
444     if( pRight->pOn ){
445       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
446       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
447       pRight->pOn = 0;
448     }
449 
450     /* Create extra terms on the WHERE clause for each column named
451     ** in the USING clause.  Example: If the two tables to be joined are
452     ** A and B and the USING clause names X, Y, and Z, then add this
453     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
454     ** Report an error if any column mentioned in the USING clause is
455     ** not contained in both tables to be joined.
456     */
457     if( pRight->pUsing ){
458       IdList *pList = pRight->pUsing;
459       for(j=0; j<pList->nId; j++){
460         char *zName;     /* Name of the term in the USING clause */
461         int iLeft;       /* Table on the left with matching column name */
462         int iLeftCol;    /* Column number of matching column on the left */
463         int iRightCol;   /* Column number of matching column on the right */
464 
465         zName = pList->a[j].zName;
466         iRightCol = columnIndex(pRightTab, zName);
467         if( iRightCol<0
468          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
469         ){
470           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
471             "not present in both tables", zName);
472           return 1;
473         }
474         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
475                      isOuter, &p->pWhere);
476       }
477     }
478   }
479   return 0;
480 }
481 
482 /* Forward reference */
483 static KeyInfo *keyInfoFromExprList(
484   Parse *pParse,       /* Parsing context */
485   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
486   int iStart,          /* Begin with this column of pList */
487   int nExtra           /* Add this many extra columns to the end */
488 );
489 
490 /*
491 ** Generate code that will push the record in registers regData
492 ** through regData+nData-1 onto the sorter.
493 */
494 static void pushOntoSorter(
495   Parse *pParse,         /* Parser context */
496   SortCtx *pSort,        /* Information about the ORDER BY clause */
497   Select *pSelect,       /* The whole SELECT statement */
498   int regData,           /* First register holding data to be sorted */
499   int regOrigData,       /* First register holding data before packing */
500   int nData,             /* Number of elements in the data array */
501   int nPrefixReg         /* No. of reg prior to regData available for use */
502 ){
503   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
504   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
505   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
506   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
507   int regBase;                                     /* Regs for sorter record */
508   int regRecord = ++pParse->nMem;                  /* Assembled sorter record */
509   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
510   int op;                            /* Opcode to add sorter record to sorter */
511 
512   assert( bSeq==0 || bSeq==1 );
513   assert( nData==1 || regData==regOrigData );
514   if( nPrefixReg ){
515     assert( nPrefixReg==nExpr+bSeq );
516     regBase = regData - nExpr - bSeq;
517   }else{
518     regBase = pParse->nMem + 1;
519     pParse->nMem += nBase;
520   }
521   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
522                           SQLITE_ECEL_DUP|SQLITE_ECEL_REF);
523   if( bSeq ){
524     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
525   }
526   if( nPrefixReg==0 ){
527     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
528   }
529 
530   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord);
531   if( nOBSat>0 ){
532     int regPrevKey;   /* The first nOBSat columns of the previous row */
533     int addrFirst;    /* Address of the OP_IfNot opcode */
534     int addrJmp;      /* Address of the OP_Jump opcode */
535     VdbeOp *pOp;      /* Opcode that opens the sorter */
536     int nKey;         /* Number of sorting key columns, including OP_Sequence */
537     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
538 
539     regPrevKey = pParse->nMem+1;
540     pParse->nMem += pSort->nOBSat;
541     nKey = nExpr - pSort->nOBSat + bSeq;
542     if( bSeq ){
543       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
544     }else{
545       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
546     }
547     VdbeCoverage(v);
548     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
549     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
550     if( pParse->db->mallocFailed ) return;
551     pOp->p2 = nKey + nData;
552     pKI = pOp->p4.pKeyInfo;
553     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
554     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
555     testcase( pKI->nXField>2 );
556     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
557                                            pKI->nXField-1);
558     addrJmp = sqlite3VdbeCurrentAddr(v);
559     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
560     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
561     pSort->regReturn = ++pParse->nMem;
562     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
563     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
564     sqlite3VdbeJumpHere(v, addrFirst);
565     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
566     sqlite3VdbeJumpHere(v, addrJmp);
567   }
568   if( pSort->sortFlags & SORTFLAG_UseSorter ){
569     op = OP_SorterInsert;
570   }else{
571     op = OP_IdxInsert;
572   }
573   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
574   if( pSelect->iLimit ){
575     int addr;
576     int iLimit;
577     if( pSelect->iOffset ){
578       iLimit = pSelect->iOffset+1;
579     }else{
580       iLimit = pSelect->iLimit;
581     }
582     addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v);
583     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
584     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
585     sqlite3VdbeJumpHere(v, addr);
586   }
587 }
588 
589 /*
590 ** Add code to implement the OFFSET
591 */
592 static void codeOffset(
593   Vdbe *v,          /* Generate code into this VM */
594   int iOffset,      /* Register holding the offset counter */
595   int iContinue     /* Jump here to skip the current record */
596 ){
597   if( iOffset>0 ){
598     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
599     VdbeComment((v, "OFFSET"));
600   }
601 }
602 
603 /*
604 ** Add code that will check to make sure the N registers starting at iMem
605 ** form a distinct entry.  iTab is a sorting index that holds previously
606 ** seen combinations of the N values.  A new entry is made in iTab
607 ** if the current N values are new.
608 **
609 ** A jump to addrRepeat is made and the N+1 values are popped from the
610 ** stack if the top N elements are not distinct.
611 */
612 static void codeDistinct(
613   Parse *pParse,     /* Parsing and code generating context */
614   int iTab,          /* A sorting index used to test for distinctness */
615   int addrRepeat,    /* Jump to here if not distinct */
616   int N,             /* Number of elements */
617   int iMem           /* First element */
618 ){
619   Vdbe *v;
620   int r1;
621 
622   v = pParse->pVdbe;
623   r1 = sqlite3GetTempReg(pParse);
624   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
625   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
626   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
627   sqlite3ReleaseTempReg(pParse, r1);
628 }
629 
630 #ifndef SQLITE_OMIT_SUBQUERY
631 /*
632 ** Generate an error message when a SELECT is used within a subexpression
633 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
634 ** column.  We do this in a subroutine because the error used to occur
635 ** in multiple places.  (The error only occurs in one place now, but we
636 ** retain the subroutine to minimize code disruption.)
637 */
638 static int checkForMultiColumnSelectError(
639   Parse *pParse,       /* Parse context. */
640   SelectDest *pDest,   /* Destination of SELECT results */
641   int nExpr            /* Number of result columns returned by SELECT */
642 ){
643   int eDest = pDest->eDest;
644   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
645     sqlite3ErrorMsg(pParse, "only a single result allowed for "
646        "a SELECT that is part of an expression");
647     return 1;
648   }else{
649     return 0;
650   }
651 }
652 #endif
653 
654 /*
655 ** This routine generates the code for the inside of the inner loop
656 ** of a SELECT.
657 **
658 ** If srcTab is negative, then the pEList expressions
659 ** are evaluated in order to get the data for this row.  If srcTab is
660 ** zero or more, then data is pulled from srcTab and pEList is used only
661 ** to get number columns and the datatype for each column.
662 */
663 static void selectInnerLoop(
664   Parse *pParse,          /* The parser context */
665   Select *p,              /* The complete select statement being coded */
666   ExprList *pEList,       /* List of values being extracted */
667   int srcTab,             /* Pull data from this table */
668   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
669   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
670   SelectDest *pDest,      /* How to dispose of the results */
671   int iContinue,          /* Jump here to continue with next row */
672   int iBreak              /* Jump here to break out of the inner loop */
673 ){
674   Vdbe *v = pParse->pVdbe;
675   int i;
676   int hasDistinct;        /* True if the DISTINCT keyword is present */
677   int regResult;              /* Start of memory holding result set */
678   int eDest = pDest->eDest;   /* How to dispose of results */
679   int iParm = pDest->iSDParm; /* First argument to disposal method */
680   int nResultCol;             /* Number of result columns */
681   int nPrefixReg = 0;         /* Number of extra registers before regResult */
682 
683   assert( v );
684   assert( pEList!=0 );
685   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
686   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
687   if( pSort==0 && !hasDistinct ){
688     assert( iContinue!=0 );
689     codeOffset(v, p->iOffset, iContinue);
690   }
691 
692   /* Pull the requested columns.
693   */
694   nResultCol = pEList->nExpr;
695 
696   if( pDest->iSdst==0 ){
697     if( pSort ){
698       nPrefixReg = pSort->pOrderBy->nExpr;
699       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
700       pParse->nMem += nPrefixReg;
701     }
702     pDest->iSdst = pParse->nMem+1;
703     pParse->nMem += nResultCol;
704   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
705     /* This is an error condition that can result, for example, when a SELECT
706     ** on the right-hand side of an INSERT contains more result columns than
707     ** there are columns in the table on the left.  The error will be caught
708     ** and reported later.  But we need to make sure enough memory is allocated
709     ** to avoid other spurious errors in the meantime. */
710     pParse->nMem += nResultCol;
711   }
712   pDest->nSdst = nResultCol;
713   regResult = pDest->iSdst;
714   if( srcTab>=0 ){
715     for(i=0; i<nResultCol; i++){
716       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
717       VdbeComment((v, "%s", pEList->a[i].zName));
718     }
719   }else if( eDest!=SRT_Exists ){
720     /* If the destination is an EXISTS(...) expression, the actual
721     ** values returned by the SELECT are not required.
722     */
723     u8 ecelFlags;
724     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
725       ecelFlags = SQLITE_ECEL_DUP;
726     }else{
727       ecelFlags = 0;
728     }
729     sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags);
730   }
731 
732   /* If the DISTINCT keyword was present on the SELECT statement
733   ** and this row has been seen before, then do not make this row
734   ** part of the result.
735   */
736   if( hasDistinct ){
737     switch( pDistinct->eTnctType ){
738       case WHERE_DISTINCT_ORDERED: {
739         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
740         int iJump;              /* Jump destination */
741         int regPrev;            /* Previous row content */
742 
743         /* Allocate space for the previous row */
744         regPrev = pParse->nMem+1;
745         pParse->nMem += nResultCol;
746 
747         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
748         ** sets the MEM_Cleared bit on the first register of the
749         ** previous value.  This will cause the OP_Ne below to always
750         ** fail on the first iteration of the loop even if the first
751         ** row is all NULLs.
752         */
753         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
754         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
755         pOp->opcode = OP_Null;
756         pOp->p1 = 1;
757         pOp->p2 = regPrev;
758 
759         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
760         for(i=0; i<nResultCol; i++){
761           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
762           if( i<nResultCol-1 ){
763             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
764             VdbeCoverage(v);
765           }else{
766             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
767             VdbeCoverage(v);
768            }
769           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
770           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
771         }
772         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
773         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
774         break;
775       }
776 
777       case WHERE_DISTINCT_UNIQUE: {
778         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
779         break;
780       }
781 
782       default: {
783         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
784         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
785                      regResult);
786         break;
787       }
788     }
789     if( pSort==0 ){
790       codeOffset(v, p->iOffset, iContinue);
791     }
792   }
793 
794   switch( eDest ){
795     /* In this mode, write each query result to the key of the temporary
796     ** table iParm.
797     */
798 #ifndef SQLITE_OMIT_COMPOUND_SELECT
799     case SRT_Union: {
800       int r1;
801       r1 = sqlite3GetTempReg(pParse);
802       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
803       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
804       sqlite3ReleaseTempReg(pParse, r1);
805       break;
806     }
807 
808     /* Construct a record from the query result, but instead of
809     ** saving that record, use it as a key to delete elements from
810     ** the temporary table iParm.
811     */
812     case SRT_Except: {
813       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
814       break;
815     }
816 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
817 
818     /* Store the result as data using a unique key.
819     */
820     case SRT_Fifo:
821     case SRT_DistFifo:
822     case SRT_Table:
823     case SRT_EphemTab: {
824       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
825       testcase( eDest==SRT_Table );
826       testcase( eDest==SRT_EphemTab );
827       testcase( eDest==SRT_Fifo );
828       testcase( eDest==SRT_DistFifo );
829       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
830 #ifndef SQLITE_OMIT_CTE
831       if( eDest==SRT_DistFifo ){
832         /* If the destination is DistFifo, then cursor (iParm+1) is open
833         ** on an ephemeral index. If the current row is already present
834         ** in the index, do not write it to the output. If not, add the
835         ** current row to the index and proceed with writing it to the
836         ** output table as well.  */
837         int addr = sqlite3VdbeCurrentAddr(v) + 4;
838         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
839         VdbeCoverage(v);
840         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
841         assert( pSort==0 );
842       }
843 #endif
844       if( pSort ){
845         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg);
846       }else{
847         int r2 = sqlite3GetTempReg(pParse);
848         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
849         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
850         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
851         sqlite3ReleaseTempReg(pParse, r2);
852       }
853       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
854       break;
855     }
856 
857 #ifndef SQLITE_OMIT_SUBQUERY
858     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
859     ** then there should be a single item on the stack.  Write this
860     ** item into the set table with bogus data.
861     */
862     case SRT_Set: {
863       assert( nResultCol==1 );
864       pDest->affSdst =
865                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
866       if( pSort ){
867         /* At first glance you would think we could optimize out the
868         ** ORDER BY in this case since the order of entries in the set
869         ** does not matter.  But there might be a LIMIT clause, in which
870         ** case the order does matter */
871         pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
872       }else{
873         int r1 = sqlite3GetTempReg(pParse);
874         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
875         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
876         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
877         sqlite3ReleaseTempReg(pParse, r1);
878       }
879       break;
880     }
881 
882     /* If any row exist in the result set, record that fact and abort.
883     */
884     case SRT_Exists: {
885       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
886       /* The LIMIT clause will terminate the loop for us */
887       break;
888     }
889 
890     /* If this is a scalar select that is part of an expression, then
891     ** store the results in the appropriate memory cell and break out
892     ** of the scan loop.
893     */
894     case SRT_Mem: {
895       assert( nResultCol==1 );
896       if( pSort ){
897         pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg);
898       }else{
899         assert( regResult==iParm );
900         /* The LIMIT clause will jump out of the loop for us */
901       }
902       break;
903     }
904 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
905 
906     case SRT_Coroutine:       /* Send data to a co-routine */
907     case SRT_Output: {        /* Return the results */
908       testcase( eDest==SRT_Coroutine );
909       testcase( eDest==SRT_Output );
910       if( pSort ){
911         pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol,
912                        nPrefixReg);
913       }else if( eDest==SRT_Coroutine ){
914         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
915       }else{
916         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
917         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
918       }
919       break;
920     }
921 
922 #ifndef SQLITE_OMIT_CTE
923     /* Write the results into a priority queue that is order according to
924     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
925     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
926     ** pSO->nExpr columns, then make sure all keys are unique by adding a
927     ** final OP_Sequence column.  The last column is the record as a blob.
928     */
929     case SRT_DistQueue:
930     case SRT_Queue: {
931       int nKey;
932       int r1, r2, r3;
933       int addrTest = 0;
934       ExprList *pSO;
935       pSO = pDest->pOrderBy;
936       assert( pSO );
937       nKey = pSO->nExpr;
938       r1 = sqlite3GetTempReg(pParse);
939       r2 = sqlite3GetTempRange(pParse, nKey+2);
940       r3 = r2+nKey+1;
941       if( eDest==SRT_DistQueue ){
942         /* If the destination is DistQueue, then cursor (iParm+1) is open
943         ** on a second ephemeral index that holds all values every previously
944         ** added to the queue. */
945         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
946                                         regResult, nResultCol);
947         VdbeCoverage(v);
948       }
949       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
950       if( eDest==SRT_DistQueue ){
951         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
952         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
953       }
954       for(i=0; i<nKey; i++){
955         sqlite3VdbeAddOp2(v, OP_SCopy,
956                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
957                           r2+i);
958       }
959       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
960       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
961       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
962       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
963       sqlite3ReleaseTempReg(pParse, r1);
964       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
965       break;
966     }
967 #endif /* SQLITE_OMIT_CTE */
968 
969 
970 
971 #if !defined(SQLITE_OMIT_TRIGGER)
972     /* Discard the results.  This is used for SELECT statements inside
973     ** the body of a TRIGGER.  The purpose of such selects is to call
974     ** user-defined functions that have side effects.  We do not care
975     ** about the actual results of the select.
976     */
977     default: {
978       assert( eDest==SRT_Discard );
979       break;
980     }
981 #endif
982   }
983 
984   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
985   ** there is a sorter, in which case the sorter has already limited
986   ** the output for us.
987   */
988   if( pSort==0 && p->iLimit ){
989     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
990   }
991 }
992 
993 /*
994 ** Allocate a KeyInfo object sufficient for an index of N key columns and
995 ** X extra columns.
996 */
997 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
998   KeyInfo *p = sqlite3DbMallocZero(0,
999                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
1000   if( p ){
1001     p->aSortOrder = (u8*)&p->aColl[N+X];
1002     p->nField = (u16)N;
1003     p->nXField = (u16)X;
1004     p->enc = ENC(db);
1005     p->db = db;
1006     p->nRef = 1;
1007   }else{
1008     db->mallocFailed = 1;
1009   }
1010   return p;
1011 }
1012 
1013 /*
1014 ** Deallocate a KeyInfo object
1015 */
1016 void sqlite3KeyInfoUnref(KeyInfo *p){
1017   if( p ){
1018     assert( p->nRef>0 );
1019     p->nRef--;
1020     if( p->nRef==0 ) sqlite3DbFree(0, p);
1021   }
1022 }
1023 
1024 /*
1025 ** Make a new pointer to a KeyInfo object
1026 */
1027 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1028   if( p ){
1029     assert( p->nRef>0 );
1030     p->nRef++;
1031   }
1032   return p;
1033 }
1034 
1035 #ifdef SQLITE_DEBUG
1036 /*
1037 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1038 ** can only be changed if this is just a single reference to the object.
1039 **
1040 ** This routine is used only inside of assert() statements.
1041 */
1042 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1043 #endif /* SQLITE_DEBUG */
1044 
1045 /*
1046 ** Given an expression list, generate a KeyInfo structure that records
1047 ** the collating sequence for each expression in that expression list.
1048 **
1049 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1050 ** KeyInfo structure is appropriate for initializing a virtual index to
1051 ** implement that clause.  If the ExprList is the result set of a SELECT
1052 ** then the KeyInfo structure is appropriate for initializing a virtual
1053 ** index to implement a DISTINCT test.
1054 **
1055 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1056 ** function is responsible for seeing that this structure is eventually
1057 ** freed.
1058 */
1059 static KeyInfo *keyInfoFromExprList(
1060   Parse *pParse,       /* Parsing context */
1061   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1062   int iStart,          /* Begin with this column of pList */
1063   int nExtra           /* Add this many extra columns to the end */
1064 ){
1065   int nExpr;
1066   KeyInfo *pInfo;
1067   struct ExprList_item *pItem;
1068   sqlite3 *db = pParse->db;
1069   int i;
1070 
1071   nExpr = pList->nExpr;
1072   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1073   if( pInfo ){
1074     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1075     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1076       CollSeq *pColl;
1077       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1078       if( !pColl ) pColl = db->pDfltColl;
1079       pInfo->aColl[i-iStart] = pColl;
1080       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1081     }
1082   }
1083   return pInfo;
1084 }
1085 
1086 /*
1087 ** Name of the connection operator, used for error messages.
1088 */
1089 static const char *selectOpName(int id){
1090   char *z;
1091   switch( id ){
1092     case TK_ALL:       z = "UNION ALL";   break;
1093     case TK_INTERSECT: z = "INTERSECT";   break;
1094     case TK_EXCEPT:    z = "EXCEPT";      break;
1095     default:           z = "UNION";       break;
1096   }
1097   return z;
1098 }
1099 
1100 #ifndef SQLITE_OMIT_EXPLAIN
1101 /*
1102 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1103 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1104 ** where the caption is of the form:
1105 **
1106 **   "USE TEMP B-TREE FOR xxx"
1107 **
1108 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1109 ** is determined by the zUsage argument.
1110 */
1111 static void explainTempTable(Parse *pParse, const char *zUsage){
1112   if( pParse->explain==2 ){
1113     Vdbe *v = pParse->pVdbe;
1114     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1115     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1116   }
1117 }
1118 
1119 /*
1120 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1121 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1122 ** in sqlite3Select() to assign values to structure member variables that
1123 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1124 ** code with #ifndef directives.
1125 */
1126 # define explainSetInteger(a, b) a = b
1127 
1128 #else
1129 /* No-op versions of the explainXXX() functions and macros. */
1130 # define explainTempTable(y,z)
1131 # define explainSetInteger(y,z)
1132 #endif
1133 
1134 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1135 /*
1136 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1137 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1138 ** where the caption is of one of the two forms:
1139 **
1140 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1141 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1142 **
1143 ** where iSub1 and iSub2 are the integers passed as the corresponding
1144 ** function parameters, and op is the text representation of the parameter
1145 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1146 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1147 ** false, or the second form if it is true.
1148 */
1149 static void explainComposite(
1150   Parse *pParse,                  /* Parse context */
1151   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1152   int iSub1,                      /* Subquery id 1 */
1153   int iSub2,                      /* Subquery id 2 */
1154   int bUseTmp                     /* True if a temp table was used */
1155 ){
1156   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1157   if( pParse->explain==2 ){
1158     Vdbe *v = pParse->pVdbe;
1159     char *zMsg = sqlite3MPrintf(
1160         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1161         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1162     );
1163     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1164   }
1165 }
1166 #else
1167 /* No-op versions of the explainXXX() functions and macros. */
1168 # define explainComposite(v,w,x,y,z)
1169 #endif
1170 
1171 /*
1172 ** If the inner loop was generated using a non-null pOrderBy argument,
1173 ** then the results were placed in a sorter.  After the loop is terminated
1174 ** we need to run the sorter and output the results.  The following
1175 ** routine generates the code needed to do that.
1176 */
1177 static void generateSortTail(
1178   Parse *pParse,    /* Parsing context */
1179   Select *p,        /* The SELECT statement */
1180   SortCtx *pSort,   /* Information on the ORDER BY clause */
1181   int nColumn,      /* Number of columns of data */
1182   SelectDest *pDest /* Write the sorted results here */
1183 ){
1184   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1185   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1186   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1187   int addr;
1188   int addrOnce = 0;
1189   int iTab;
1190   ExprList *pOrderBy = pSort->pOrderBy;
1191   int eDest = pDest->eDest;
1192   int iParm = pDest->iSDParm;
1193   int regRow;
1194   int regRowid;
1195   int nKey;
1196   int iSortTab;                   /* Sorter cursor to read from */
1197   int nSortData;                  /* Trailing values to read from sorter */
1198   int i;
1199   int bSeq;                       /* True if sorter record includes seq. no. */
1200 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1201   struct ExprList_item *aOutEx = p->pEList->a;
1202 #endif
1203 
1204   if( pSort->labelBkOut ){
1205     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1206     sqlite3VdbeGoto(v, addrBreak);
1207     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1208   }
1209   iTab = pSort->iECursor;
1210   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1211     regRowid = 0;
1212     regRow = pDest->iSdst;
1213     nSortData = nColumn;
1214   }else{
1215     regRowid = sqlite3GetTempReg(pParse);
1216     regRow = sqlite3GetTempReg(pParse);
1217     nSortData = 1;
1218   }
1219   nKey = pOrderBy->nExpr - pSort->nOBSat;
1220   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1221     int regSortOut = ++pParse->nMem;
1222     iSortTab = pParse->nTab++;
1223     if( pSort->labelBkOut ){
1224       addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1225     }
1226     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData);
1227     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1228     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1229     VdbeCoverage(v);
1230     codeOffset(v, p->iOffset, addrContinue);
1231     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1232     bSeq = 0;
1233   }else{
1234     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1235     codeOffset(v, p->iOffset, addrContinue);
1236     iSortTab = iTab;
1237     bSeq = 1;
1238   }
1239   for(i=0; i<nSortData; i++){
1240     sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i);
1241     VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan));
1242   }
1243   switch( eDest ){
1244     case SRT_EphemTab: {
1245       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1246       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1247       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1248       break;
1249     }
1250 #ifndef SQLITE_OMIT_SUBQUERY
1251     case SRT_Set: {
1252       assert( nColumn==1 );
1253       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1254                         &pDest->affSdst, 1);
1255       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1256       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1257       break;
1258     }
1259     case SRT_Mem: {
1260       assert( nColumn==1 );
1261       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1262       /* The LIMIT clause will terminate the loop for us */
1263       break;
1264     }
1265 #endif
1266     default: {
1267       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1268       testcase( eDest==SRT_Output );
1269       testcase( eDest==SRT_Coroutine );
1270       if( eDest==SRT_Output ){
1271         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1272         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1273       }else{
1274         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1275       }
1276       break;
1277     }
1278   }
1279   if( regRowid ){
1280     sqlite3ReleaseTempReg(pParse, regRow);
1281     sqlite3ReleaseTempReg(pParse, regRowid);
1282   }
1283   /* The bottom of the loop
1284   */
1285   sqlite3VdbeResolveLabel(v, addrContinue);
1286   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1287     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1288   }else{
1289     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1290   }
1291   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1292   sqlite3VdbeResolveLabel(v, addrBreak);
1293 }
1294 
1295 /*
1296 ** Return a pointer to a string containing the 'declaration type' of the
1297 ** expression pExpr. The string may be treated as static by the caller.
1298 **
1299 ** Also try to estimate the size of the returned value and return that
1300 ** result in *pEstWidth.
1301 **
1302 ** The declaration type is the exact datatype definition extracted from the
1303 ** original CREATE TABLE statement if the expression is a column. The
1304 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1305 ** is considered a column can be complex in the presence of subqueries. The
1306 ** result-set expression in all of the following SELECT statements is
1307 ** considered a column by this function.
1308 **
1309 **   SELECT col FROM tbl;
1310 **   SELECT (SELECT col FROM tbl;
1311 **   SELECT (SELECT col FROM tbl);
1312 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1313 **
1314 ** The declaration type for any expression other than a column is NULL.
1315 **
1316 ** This routine has either 3 or 6 parameters depending on whether or not
1317 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1318 */
1319 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1320 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1323 #endif
1324 static const char *columnTypeImpl(
1325   NameContext *pNC,
1326   Expr *pExpr,
1327 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1328   const char **pzOrigDb,
1329   const char **pzOrigTab,
1330   const char **pzOrigCol,
1331 #endif
1332   u8 *pEstWidth
1333 ){
1334   char const *zType = 0;
1335   int j;
1336   u8 estWidth = 1;
1337 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1338   char const *zOrigDb = 0;
1339   char const *zOrigTab = 0;
1340   char const *zOrigCol = 0;
1341 #endif
1342 
1343   assert( pExpr!=0 );
1344   assert( pNC->pSrcList!=0 );
1345   switch( pExpr->op ){
1346     case TK_AGG_COLUMN:
1347     case TK_COLUMN: {
1348       /* The expression is a column. Locate the table the column is being
1349       ** extracted from in NameContext.pSrcList. This table may be real
1350       ** database table or a subquery.
1351       */
1352       Table *pTab = 0;            /* Table structure column is extracted from */
1353       Select *pS = 0;             /* Select the column is extracted from */
1354       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1355       testcase( pExpr->op==TK_AGG_COLUMN );
1356       testcase( pExpr->op==TK_COLUMN );
1357       while( pNC && !pTab ){
1358         SrcList *pTabList = pNC->pSrcList;
1359         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1360         if( j<pTabList->nSrc ){
1361           pTab = pTabList->a[j].pTab;
1362           pS = pTabList->a[j].pSelect;
1363         }else{
1364           pNC = pNC->pNext;
1365         }
1366       }
1367 
1368       if( pTab==0 ){
1369         /* At one time, code such as "SELECT new.x" within a trigger would
1370         ** cause this condition to run.  Since then, we have restructured how
1371         ** trigger code is generated and so this condition is no longer
1372         ** possible. However, it can still be true for statements like
1373         ** the following:
1374         **
1375         **   CREATE TABLE t1(col INTEGER);
1376         **   SELECT (SELECT t1.col) FROM FROM t1;
1377         **
1378         ** when columnType() is called on the expression "t1.col" in the
1379         ** sub-select. In this case, set the column type to NULL, even
1380         ** though it should really be "INTEGER".
1381         **
1382         ** This is not a problem, as the column type of "t1.col" is never
1383         ** used. When columnType() is called on the expression
1384         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1385         ** branch below.  */
1386         break;
1387       }
1388 
1389       assert( pTab && pExpr->pTab==pTab );
1390       if( pS ){
1391         /* The "table" is actually a sub-select or a view in the FROM clause
1392         ** of the SELECT statement. Return the declaration type and origin
1393         ** data for the result-set column of the sub-select.
1394         */
1395         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1396           /* If iCol is less than zero, then the expression requests the
1397           ** rowid of the sub-select or view. This expression is legal (see
1398           ** test case misc2.2.2) - it always evaluates to NULL.
1399           **
1400           ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been
1401           ** caught already by name resolution.
1402           */
1403           NameContext sNC;
1404           Expr *p = pS->pEList->a[iCol].pExpr;
1405           sNC.pSrcList = pS->pSrc;
1406           sNC.pNext = pNC;
1407           sNC.pParse = pNC->pParse;
1408           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1409         }
1410       }else if( pTab->pSchema ){
1411         /* A real table */
1412         assert( !pS );
1413         if( iCol<0 ) iCol = pTab->iPKey;
1414         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1415 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1416         if( iCol<0 ){
1417           zType = "INTEGER";
1418           zOrigCol = "rowid";
1419         }else{
1420           zType = pTab->aCol[iCol].zType;
1421           zOrigCol = pTab->aCol[iCol].zName;
1422           estWidth = pTab->aCol[iCol].szEst;
1423         }
1424         zOrigTab = pTab->zName;
1425         if( pNC->pParse ){
1426           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1427           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1428         }
1429 #else
1430         if( iCol<0 ){
1431           zType = "INTEGER";
1432         }else{
1433           zType = pTab->aCol[iCol].zType;
1434           estWidth = pTab->aCol[iCol].szEst;
1435         }
1436 #endif
1437       }
1438       break;
1439     }
1440 #ifndef SQLITE_OMIT_SUBQUERY
1441     case TK_SELECT: {
1442       /* The expression is a sub-select. Return the declaration type and
1443       ** origin info for the single column in the result set of the SELECT
1444       ** statement.
1445       */
1446       NameContext sNC;
1447       Select *pS = pExpr->x.pSelect;
1448       Expr *p = pS->pEList->a[0].pExpr;
1449       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1450       sNC.pSrcList = pS->pSrc;
1451       sNC.pNext = pNC;
1452       sNC.pParse = pNC->pParse;
1453       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1454       break;
1455     }
1456 #endif
1457   }
1458 
1459 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1460   if( pzOrigDb ){
1461     assert( pzOrigTab && pzOrigCol );
1462     *pzOrigDb = zOrigDb;
1463     *pzOrigTab = zOrigTab;
1464     *pzOrigCol = zOrigCol;
1465   }
1466 #endif
1467   if( pEstWidth ) *pEstWidth = estWidth;
1468   return zType;
1469 }
1470 
1471 /*
1472 ** Generate code that will tell the VDBE the declaration types of columns
1473 ** in the result set.
1474 */
1475 static void generateColumnTypes(
1476   Parse *pParse,      /* Parser context */
1477   SrcList *pTabList,  /* List of tables */
1478   ExprList *pEList    /* Expressions defining the result set */
1479 ){
1480 #ifndef SQLITE_OMIT_DECLTYPE
1481   Vdbe *v = pParse->pVdbe;
1482   int i;
1483   NameContext sNC;
1484   sNC.pSrcList = pTabList;
1485   sNC.pParse = pParse;
1486   for(i=0; i<pEList->nExpr; i++){
1487     Expr *p = pEList->a[i].pExpr;
1488     const char *zType;
1489 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1490     const char *zOrigDb = 0;
1491     const char *zOrigTab = 0;
1492     const char *zOrigCol = 0;
1493     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1494 
1495     /* The vdbe must make its own copy of the column-type and other
1496     ** column specific strings, in case the schema is reset before this
1497     ** virtual machine is deleted.
1498     */
1499     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1500     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1501     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1502 #else
1503     zType = columnType(&sNC, p, 0, 0, 0, 0);
1504 #endif
1505     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1506   }
1507 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1508 }
1509 
1510 /*
1511 ** Generate code that will tell the VDBE the names of columns
1512 ** in the result set.  This information is used to provide the
1513 ** azCol[] values in the callback.
1514 */
1515 static void generateColumnNames(
1516   Parse *pParse,      /* Parser context */
1517   SrcList *pTabList,  /* List of tables */
1518   ExprList *pEList    /* Expressions defining the result set */
1519 ){
1520   Vdbe *v = pParse->pVdbe;
1521   int i, j;
1522   sqlite3 *db = pParse->db;
1523   int fullNames, shortNames;
1524 
1525 #ifndef SQLITE_OMIT_EXPLAIN
1526   /* If this is an EXPLAIN, skip this step */
1527   if( pParse->explain ){
1528     return;
1529   }
1530 #endif
1531 
1532   if( pParse->colNamesSet || db->mallocFailed ) return;
1533   assert( v!=0 );
1534   assert( pTabList!=0 );
1535   pParse->colNamesSet = 1;
1536   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1537   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1538   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1539   for(i=0; i<pEList->nExpr; i++){
1540     Expr *p;
1541     p = pEList->a[i].pExpr;
1542     if( NEVER(p==0) ) continue;
1543     if( pEList->a[i].zName ){
1544       char *zName = pEList->a[i].zName;
1545       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1546     }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
1547       Table *pTab;
1548       char *zCol;
1549       int iCol = p->iColumn;
1550       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1551         if( pTabList->a[j].iCursor==p->iTable ) break;
1552       }
1553       assert( j<pTabList->nSrc );
1554       pTab = pTabList->a[j].pTab;
1555       if( iCol<0 ) iCol = pTab->iPKey;
1556       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1557       if( iCol<0 ){
1558         zCol = "rowid";
1559       }else{
1560         zCol = pTab->aCol[iCol].zName;
1561       }
1562       if( !shortNames && !fullNames ){
1563         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1564             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1565       }else if( fullNames ){
1566         char *zName = 0;
1567         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1568         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1569       }else{
1570         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1571       }
1572     }else{
1573       const char *z = pEList->a[i].zSpan;
1574       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1575       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1576     }
1577   }
1578   generateColumnTypes(pParse, pTabList, pEList);
1579 }
1580 
1581 /*
1582 ** Given an expression list (which is really the list of expressions
1583 ** that form the result set of a SELECT statement) compute appropriate
1584 ** column names for a table that would hold the expression list.
1585 **
1586 ** All column names will be unique.
1587 **
1588 ** Only the column names are computed.  Column.zType, Column.zColl,
1589 ** and other fields of Column are zeroed.
1590 **
1591 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1592 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1593 */
1594 int sqlite3ColumnsFromExprList(
1595   Parse *pParse,          /* Parsing context */
1596   ExprList *pEList,       /* Expr list from which to derive column names */
1597   i16 *pnCol,             /* Write the number of columns here */
1598   Column **paCol          /* Write the new column list here */
1599 ){
1600   sqlite3 *db = pParse->db;   /* Database connection */
1601   int i, j;                   /* Loop counters */
1602   u32 cnt;                    /* Index added to make the name unique */
1603   Column *aCol, *pCol;        /* For looping over result columns */
1604   int nCol;                   /* Number of columns in the result set */
1605   Expr *p;                    /* Expression for a single result column */
1606   char *zName;                /* Column name */
1607   int nName;                  /* Size of name in zName[] */
1608   Hash ht;                    /* Hash table of column names */
1609 
1610   sqlite3HashInit(&ht);
1611   if( pEList ){
1612     nCol = pEList->nExpr;
1613     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1614     testcase( aCol==0 );
1615   }else{
1616     nCol = 0;
1617     aCol = 0;
1618   }
1619   assert( nCol==(i16)nCol );
1620   *pnCol = nCol;
1621   *paCol = aCol;
1622 
1623   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1624     /* Get an appropriate name for the column
1625     */
1626     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1627     if( (zName = pEList->a[i].zName)!=0 ){
1628       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1629     }else{
1630       Expr *pColExpr = p;  /* The expression that is the result column name */
1631       Table *pTab;         /* Table associated with this expression */
1632       while( pColExpr->op==TK_DOT ){
1633         pColExpr = pColExpr->pRight;
1634         assert( pColExpr!=0 );
1635       }
1636       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1637         /* For columns use the column name name */
1638         int iCol = pColExpr->iColumn;
1639         pTab = pColExpr->pTab;
1640         if( iCol<0 ) iCol = pTab->iPKey;
1641         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1642       }else if( pColExpr->op==TK_ID ){
1643         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1644         zName = pColExpr->u.zToken;
1645       }else{
1646         /* Use the original text of the column expression as its name */
1647         zName = pEList->a[i].zSpan;
1648       }
1649     }
1650     zName = sqlite3MPrintf(db, "%s", zName);
1651 
1652     /* Make sure the column name is unique.  If the name is not unique,
1653     ** append an integer to the name so that it becomes unique.
1654     */
1655     cnt = 0;
1656     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1657       nName = sqlite3Strlen30(zName);
1658       if( nName>0 ){
1659         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1660         if( zName[j]==':' ) nName = j;
1661       }
1662       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1663       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1664     }
1665     pCol->zName = zName;
1666     sqlite3ColumnPropertiesFromName(0, pCol);
1667     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
1668       db->mallocFailed = 1;
1669     }
1670   }
1671   sqlite3HashClear(&ht);
1672   if( db->mallocFailed ){
1673     for(j=0; j<i; j++){
1674       sqlite3DbFree(db, aCol[j].zName);
1675     }
1676     sqlite3DbFree(db, aCol);
1677     *paCol = 0;
1678     *pnCol = 0;
1679     return SQLITE_NOMEM;
1680   }
1681   return SQLITE_OK;
1682 }
1683 
1684 /*
1685 ** Add type and collation information to a column list based on
1686 ** a SELECT statement.
1687 **
1688 ** The column list presumably came from selectColumnNamesFromExprList().
1689 ** The column list has only names, not types or collations.  This
1690 ** routine goes through and adds the types and collations.
1691 **
1692 ** This routine requires that all identifiers in the SELECT
1693 ** statement be resolved.
1694 */
1695 static void selectAddColumnTypeAndCollation(
1696   Parse *pParse,        /* Parsing contexts */
1697   Table *pTab,          /* Add column type information to this table */
1698   Select *pSelect       /* SELECT used to determine types and collations */
1699 ){
1700   sqlite3 *db = pParse->db;
1701   NameContext sNC;
1702   Column *pCol;
1703   CollSeq *pColl;
1704   int i;
1705   Expr *p;
1706   struct ExprList_item *a;
1707   u64 szAll = 0;
1708 
1709   assert( pSelect!=0 );
1710   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1711   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1712   if( db->mallocFailed ) return;
1713   memset(&sNC, 0, sizeof(sNC));
1714   sNC.pSrcList = pSelect->pSrc;
1715   a = pSelect->pEList->a;
1716   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1717     p = a[i].pExpr;
1718     if( pCol->zType==0 ){
1719       pCol->zType = sqlite3DbStrDup(db,
1720                         columnType(&sNC, p,0,0,0, &pCol->szEst));
1721     }
1722     szAll += pCol->szEst;
1723     pCol->affinity = sqlite3ExprAffinity(p);
1724     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
1725     pColl = sqlite3ExprCollSeq(pParse, p);
1726     if( pColl && pCol->zColl==0 ){
1727       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1728     }
1729   }
1730   pTab->szTabRow = sqlite3LogEst(szAll*4);
1731 }
1732 
1733 /*
1734 ** Given a SELECT statement, generate a Table structure that describes
1735 ** the result set of that SELECT.
1736 */
1737 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1738   Table *pTab;
1739   sqlite3 *db = pParse->db;
1740   int savedFlags;
1741 
1742   savedFlags = db->flags;
1743   db->flags &= ~SQLITE_FullColNames;
1744   db->flags |= SQLITE_ShortColNames;
1745   sqlite3SelectPrep(pParse, pSelect, 0);
1746   if( pParse->nErr ) return 0;
1747   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1748   db->flags = savedFlags;
1749   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1750   if( pTab==0 ){
1751     return 0;
1752   }
1753   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1754   ** is disabled */
1755   assert( db->lookaside.bEnabled==0 );
1756   pTab->nRef = 1;
1757   pTab->zName = 0;
1758   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1759   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1760   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1761   pTab->iPKey = -1;
1762   if( db->mallocFailed ){
1763     sqlite3DeleteTable(db, pTab);
1764     return 0;
1765   }
1766   return pTab;
1767 }
1768 
1769 /*
1770 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1771 ** If an error occurs, return NULL and leave a message in pParse.
1772 */
1773 Vdbe *sqlite3GetVdbe(Parse *pParse){
1774   Vdbe *v = pParse->pVdbe;
1775   if( v==0 ){
1776     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1777     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1778     if( pParse->pToplevel==0
1779      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1780     ){
1781       pParse->okConstFactor = 1;
1782     }
1783 
1784   }
1785   return v;
1786 }
1787 
1788 
1789 /*
1790 ** Compute the iLimit and iOffset fields of the SELECT based on the
1791 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1792 ** that appear in the original SQL statement after the LIMIT and OFFSET
1793 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1794 ** are the integer memory register numbers for counters used to compute
1795 ** the limit and offset.  If there is no limit and/or offset, then
1796 ** iLimit and iOffset are negative.
1797 **
1798 ** This routine changes the values of iLimit and iOffset only if
1799 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1800 ** iOffset should have been preset to appropriate default values (zero)
1801 ** prior to calling this routine.
1802 **
1803 ** The iOffset register (if it exists) is initialized to the value
1804 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1805 ** iOffset+1 is initialized to LIMIT+OFFSET.
1806 **
1807 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1808 ** redefined.  The UNION ALL operator uses this property to force
1809 ** the reuse of the same limit and offset registers across multiple
1810 ** SELECT statements.
1811 */
1812 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1813   Vdbe *v = 0;
1814   int iLimit = 0;
1815   int iOffset;
1816   int n;
1817   if( p->iLimit ) return;
1818 
1819   /*
1820   ** "LIMIT -1" always shows all rows.  There is some
1821   ** controversy about what the correct behavior should be.
1822   ** The current implementation interprets "LIMIT 0" to mean
1823   ** no rows.
1824   */
1825   sqlite3ExprCacheClear(pParse);
1826   assert( p->pOffset==0 || p->pLimit!=0 );
1827   if( p->pLimit ){
1828     p->iLimit = iLimit = ++pParse->nMem;
1829     v = sqlite3GetVdbe(pParse);
1830     assert( v!=0 );
1831     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1832       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1833       VdbeComment((v, "LIMIT counter"));
1834       if( n==0 ){
1835         sqlite3VdbeGoto(v, iBreak);
1836       }else if( n>=0 && p->nSelectRow>(u64)n ){
1837         p->nSelectRow = n;
1838       }
1839     }else{
1840       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1841       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1842       VdbeComment((v, "LIMIT counter"));
1843       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
1844     }
1845     if( p->pOffset ){
1846       p->iOffset = iOffset = ++pParse->nMem;
1847       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1848       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1849       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1850       VdbeComment((v, "OFFSET counter"));
1851       sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iOffset, iOffset, 0);
1852       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1853       VdbeComment((v, "LIMIT+OFFSET"));
1854       sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iLimit, iOffset+1, -1);
1855     }
1856   }
1857 }
1858 
1859 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1860 /*
1861 ** Return the appropriate collating sequence for the iCol-th column of
1862 ** the result set for the compound-select statement "p".  Return NULL if
1863 ** the column has no default collating sequence.
1864 **
1865 ** The collating sequence for the compound select is taken from the
1866 ** left-most term of the select that has a collating sequence.
1867 */
1868 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1869   CollSeq *pRet;
1870   if( p->pPrior ){
1871     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1872   }else{
1873     pRet = 0;
1874   }
1875   assert( iCol>=0 );
1876   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
1877   ** have been thrown during name resolution and we would not have gotten
1878   ** this far */
1879   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
1880     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1881   }
1882   return pRet;
1883 }
1884 
1885 /*
1886 ** The select statement passed as the second parameter is a compound SELECT
1887 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1888 ** structure suitable for implementing the ORDER BY.
1889 **
1890 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1891 ** function is responsible for ensuring that this structure is eventually
1892 ** freed.
1893 */
1894 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1895   ExprList *pOrderBy = p->pOrderBy;
1896   int nOrderBy = p->pOrderBy->nExpr;
1897   sqlite3 *db = pParse->db;
1898   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1899   if( pRet ){
1900     int i;
1901     for(i=0; i<nOrderBy; i++){
1902       struct ExprList_item *pItem = &pOrderBy->a[i];
1903       Expr *pTerm = pItem->pExpr;
1904       CollSeq *pColl;
1905 
1906       if( pTerm->flags & EP_Collate ){
1907         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1908       }else{
1909         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1910         if( pColl==0 ) pColl = db->pDfltColl;
1911         pOrderBy->a[i].pExpr =
1912           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1913       }
1914       assert( sqlite3KeyInfoIsWriteable(pRet) );
1915       pRet->aColl[i] = pColl;
1916       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1917     }
1918   }
1919 
1920   return pRet;
1921 }
1922 
1923 #ifndef SQLITE_OMIT_CTE
1924 /*
1925 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1926 ** query of the form:
1927 **
1928 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1929 **                         \___________/             \_______________/
1930 **                           p->pPrior                      p
1931 **
1932 **
1933 ** There is exactly one reference to the recursive-table in the FROM clause
1934 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
1935 **
1936 ** The setup-query runs once to generate an initial set of rows that go
1937 ** into a Queue table.  Rows are extracted from the Queue table one by
1938 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1939 ** extracted row (now in the iCurrent table) becomes the content of the
1940 ** recursive-table for a recursive-query run.  The output of the recursive-query
1941 ** is added back into the Queue table.  Then another row is extracted from Queue
1942 ** and the iteration continues until the Queue table is empty.
1943 **
1944 ** If the compound query operator is UNION then no duplicate rows are ever
1945 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1946 ** that have ever been inserted into Queue and causes duplicates to be
1947 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1948 **
1949 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1950 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1951 ** an ORDER BY, the Queue table is just a FIFO.
1952 **
1953 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1954 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1955 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1956 ** with a positive value, then the first OFFSET outputs are discarded rather
1957 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1958 ** rows have been skipped.
1959 */
1960 static void generateWithRecursiveQuery(
1961   Parse *pParse,        /* Parsing context */
1962   Select *p,            /* The recursive SELECT to be coded */
1963   SelectDest *pDest     /* What to do with query results */
1964 ){
1965   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1966   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1967   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1968   Select *pSetup = p->pPrior;   /* The setup query */
1969   int addrTop;                  /* Top of the loop */
1970   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1971   int iCurrent = 0;             /* The Current table */
1972   int regCurrent;               /* Register holding Current table */
1973   int iQueue;                   /* The Queue table */
1974   int iDistinct = 0;            /* To ensure unique results if UNION */
1975   int eDest = SRT_Fifo;         /* How to write to Queue */
1976   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1977   int i;                        /* Loop counter */
1978   int rc;                       /* Result code */
1979   ExprList *pOrderBy;           /* The ORDER BY clause */
1980   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1981   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1982 
1983   /* Obtain authorization to do a recursive query */
1984   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1985 
1986   /* Process the LIMIT and OFFSET clauses, if they exist */
1987   addrBreak = sqlite3VdbeMakeLabel(v);
1988   computeLimitRegisters(pParse, p, addrBreak);
1989   pLimit = p->pLimit;
1990   pOffset = p->pOffset;
1991   regLimit = p->iLimit;
1992   regOffset = p->iOffset;
1993   p->pLimit = p->pOffset = 0;
1994   p->iLimit = p->iOffset = 0;
1995   pOrderBy = p->pOrderBy;
1996 
1997   /* Locate the cursor number of the Current table */
1998   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1999     if( pSrc->a[i].fg.isRecursive ){
2000       iCurrent = pSrc->a[i].iCursor;
2001       break;
2002     }
2003   }
2004 
2005   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2006   ** the Distinct table must be exactly one greater than Queue in order
2007   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2008   iQueue = pParse->nTab++;
2009   if( p->op==TK_UNION ){
2010     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2011     iDistinct = pParse->nTab++;
2012   }else{
2013     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2014   }
2015   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2016 
2017   /* Allocate cursors for Current, Queue, and Distinct. */
2018   regCurrent = ++pParse->nMem;
2019   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2020   if( pOrderBy ){
2021     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2022     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2023                       (char*)pKeyInfo, P4_KEYINFO);
2024     destQueue.pOrderBy = pOrderBy;
2025   }else{
2026     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2027   }
2028   VdbeComment((v, "Queue table"));
2029   if( iDistinct ){
2030     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2031     p->selFlags |= SF_UsesEphemeral;
2032   }
2033 
2034   /* Detach the ORDER BY clause from the compound SELECT */
2035   p->pOrderBy = 0;
2036 
2037   /* Store the results of the setup-query in Queue. */
2038   pSetup->pNext = 0;
2039   rc = sqlite3Select(pParse, pSetup, &destQueue);
2040   pSetup->pNext = p;
2041   if( rc ) goto end_of_recursive_query;
2042 
2043   /* Find the next row in the Queue and output that row */
2044   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2045 
2046   /* Transfer the next row in Queue over to Current */
2047   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2048   if( pOrderBy ){
2049     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2050   }else{
2051     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2052   }
2053   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2054 
2055   /* Output the single row in Current */
2056   addrCont = sqlite3VdbeMakeLabel(v);
2057   codeOffset(v, regOffset, addrCont);
2058   selectInnerLoop(pParse, p, p->pEList, iCurrent,
2059       0, 0, pDest, addrCont, addrBreak);
2060   if( regLimit ){
2061     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2062     VdbeCoverage(v);
2063   }
2064   sqlite3VdbeResolveLabel(v, addrCont);
2065 
2066   /* Execute the recursive SELECT taking the single row in Current as
2067   ** the value for the recursive-table. Store the results in the Queue.
2068   */
2069   if( p->selFlags & SF_Aggregate ){
2070     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2071   }else{
2072     p->pPrior = 0;
2073     sqlite3Select(pParse, p, &destQueue);
2074     assert( p->pPrior==0 );
2075     p->pPrior = pSetup;
2076   }
2077 
2078   /* Keep running the loop until the Queue is empty */
2079   sqlite3VdbeGoto(v, addrTop);
2080   sqlite3VdbeResolveLabel(v, addrBreak);
2081 
2082 end_of_recursive_query:
2083   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2084   p->pOrderBy = pOrderBy;
2085   p->pLimit = pLimit;
2086   p->pOffset = pOffset;
2087   return;
2088 }
2089 #endif /* SQLITE_OMIT_CTE */
2090 
2091 /* Forward references */
2092 static int multiSelectOrderBy(
2093   Parse *pParse,        /* Parsing context */
2094   Select *p,            /* The right-most of SELECTs to be coded */
2095   SelectDest *pDest     /* What to do with query results */
2096 );
2097 
2098 /*
2099 ** Handle the special case of a compound-select that originates from a
2100 ** VALUES clause.  By handling this as a special case, we avoid deep
2101 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2102 ** on a VALUES clause.
2103 **
2104 ** Because the Select object originates from a VALUES clause:
2105 **   (1) It has no LIMIT or OFFSET
2106 **   (2) All terms are UNION ALL
2107 **   (3) There is no ORDER BY clause
2108 */
2109 static int multiSelectValues(
2110   Parse *pParse,        /* Parsing context */
2111   Select *p,            /* The right-most of SELECTs to be coded */
2112   SelectDest *pDest     /* What to do with query results */
2113 ){
2114   Select *pPrior;
2115   int nRow = 1;
2116   int rc = 0;
2117   assert( p->selFlags & SF_MultiValue );
2118   do{
2119     assert( p->selFlags & SF_Values );
2120     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2121     assert( p->pLimit==0 );
2122     assert( p->pOffset==0 );
2123     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2124     if( p->pPrior==0 ) break;
2125     assert( p->pPrior->pNext==p );
2126     p = p->pPrior;
2127     nRow++;
2128   }while(1);
2129   while( p ){
2130     pPrior = p->pPrior;
2131     p->pPrior = 0;
2132     rc = sqlite3Select(pParse, p, pDest);
2133     p->pPrior = pPrior;
2134     if( rc ) break;
2135     p->nSelectRow = nRow;
2136     p = p->pNext;
2137   }
2138   return rc;
2139 }
2140 
2141 /*
2142 ** This routine is called to process a compound query form from
2143 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2144 ** INTERSECT
2145 **
2146 ** "p" points to the right-most of the two queries.  the query on the
2147 ** left is p->pPrior.  The left query could also be a compound query
2148 ** in which case this routine will be called recursively.
2149 **
2150 ** The results of the total query are to be written into a destination
2151 ** of type eDest with parameter iParm.
2152 **
2153 ** Example 1:  Consider a three-way compound SQL statement.
2154 **
2155 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2156 **
2157 ** This statement is parsed up as follows:
2158 **
2159 **     SELECT c FROM t3
2160 **      |
2161 **      `----->  SELECT b FROM t2
2162 **                |
2163 **                `------>  SELECT a FROM t1
2164 **
2165 ** The arrows in the diagram above represent the Select.pPrior pointer.
2166 ** So if this routine is called with p equal to the t3 query, then
2167 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2168 **
2169 ** Notice that because of the way SQLite parses compound SELECTs, the
2170 ** individual selects always group from left to right.
2171 */
2172 static int multiSelect(
2173   Parse *pParse,        /* Parsing context */
2174   Select *p,            /* The right-most of SELECTs to be coded */
2175   SelectDest *pDest     /* What to do with query results */
2176 ){
2177   int rc = SQLITE_OK;   /* Success code from a subroutine */
2178   Select *pPrior;       /* Another SELECT immediately to our left */
2179   Vdbe *v;              /* Generate code to this VDBE */
2180   SelectDest dest;      /* Alternative data destination */
2181   Select *pDelete = 0;  /* Chain of simple selects to delete */
2182   sqlite3 *db;          /* Database connection */
2183 #ifndef SQLITE_OMIT_EXPLAIN
2184   int iSub1 = 0;        /* EQP id of left-hand query */
2185   int iSub2 = 0;        /* EQP id of right-hand query */
2186 #endif
2187 
2188   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2189   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2190   */
2191   assert( p && p->pPrior );  /* Calling function guarantees this much */
2192   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2193   db = pParse->db;
2194   pPrior = p->pPrior;
2195   dest = *pDest;
2196   if( pPrior->pOrderBy ){
2197     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2198       selectOpName(p->op));
2199     rc = 1;
2200     goto multi_select_end;
2201   }
2202   if( pPrior->pLimit ){
2203     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2204       selectOpName(p->op));
2205     rc = 1;
2206     goto multi_select_end;
2207   }
2208 
2209   v = sqlite3GetVdbe(pParse);
2210   assert( v!=0 );  /* The VDBE already created by calling function */
2211 
2212   /* Create the destination temporary table if necessary
2213   */
2214   if( dest.eDest==SRT_EphemTab ){
2215     assert( p->pEList );
2216     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2217     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2218     dest.eDest = SRT_Table;
2219   }
2220 
2221   /* Special handling for a compound-select that originates as a VALUES clause.
2222   */
2223   if( p->selFlags & SF_MultiValue ){
2224     rc = multiSelectValues(pParse, p, &dest);
2225     goto multi_select_end;
2226   }
2227 
2228   /* Make sure all SELECTs in the statement have the same number of elements
2229   ** in their result sets.
2230   */
2231   assert( p->pEList && pPrior->pEList );
2232   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2233 
2234 #ifndef SQLITE_OMIT_CTE
2235   if( p->selFlags & SF_Recursive ){
2236     generateWithRecursiveQuery(pParse, p, &dest);
2237   }else
2238 #endif
2239 
2240   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2241   */
2242   if( p->pOrderBy ){
2243     return multiSelectOrderBy(pParse, p, pDest);
2244   }else
2245 
2246   /* Generate code for the left and right SELECT statements.
2247   */
2248   switch( p->op ){
2249     case TK_ALL: {
2250       int addr = 0;
2251       int nLimit;
2252       assert( !pPrior->pLimit );
2253       pPrior->iLimit = p->iLimit;
2254       pPrior->iOffset = p->iOffset;
2255       pPrior->pLimit = p->pLimit;
2256       pPrior->pOffset = p->pOffset;
2257       explainSetInteger(iSub1, pParse->iNextSelectId);
2258       rc = sqlite3Select(pParse, pPrior, &dest);
2259       p->pLimit = 0;
2260       p->pOffset = 0;
2261       if( rc ){
2262         goto multi_select_end;
2263       }
2264       p->pPrior = 0;
2265       p->iLimit = pPrior->iLimit;
2266       p->iOffset = pPrior->iOffset;
2267       if( p->iLimit ){
2268         addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2269         VdbeComment((v, "Jump ahead if LIMIT reached"));
2270         if( p->iOffset ){
2271           sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iOffset, p->iOffset, 0);
2272           sqlite3VdbeAddOp3(v, OP_Add, p->iLimit, p->iOffset, p->iOffset+1);
2273           sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iLimit, p->iOffset+1, -1);
2274         }
2275       }
2276       explainSetInteger(iSub2, pParse->iNextSelectId);
2277       rc = sqlite3Select(pParse, p, &dest);
2278       testcase( rc!=SQLITE_OK );
2279       pDelete = p->pPrior;
2280       p->pPrior = pPrior;
2281       p->nSelectRow += pPrior->nSelectRow;
2282       if( pPrior->pLimit
2283        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2284        && nLimit>0 && p->nSelectRow > (u64)nLimit
2285       ){
2286         p->nSelectRow = nLimit;
2287       }
2288       if( addr ){
2289         sqlite3VdbeJumpHere(v, addr);
2290       }
2291       break;
2292     }
2293     case TK_EXCEPT:
2294     case TK_UNION: {
2295       int unionTab;    /* Cursor number of the temporary table holding result */
2296       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2297       int priorOp;     /* The SRT_ operation to apply to prior selects */
2298       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2299       int addr;
2300       SelectDest uniondest;
2301 
2302       testcase( p->op==TK_EXCEPT );
2303       testcase( p->op==TK_UNION );
2304       priorOp = SRT_Union;
2305       if( dest.eDest==priorOp ){
2306         /* We can reuse a temporary table generated by a SELECT to our
2307         ** right.
2308         */
2309         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2310         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2311         unionTab = dest.iSDParm;
2312       }else{
2313         /* We will need to create our own temporary table to hold the
2314         ** intermediate results.
2315         */
2316         unionTab = pParse->nTab++;
2317         assert( p->pOrderBy==0 );
2318         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2319         assert( p->addrOpenEphm[0] == -1 );
2320         p->addrOpenEphm[0] = addr;
2321         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2322         assert( p->pEList );
2323       }
2324 
2325       /* Code the SELECT statements to our left
2326       */
2327       assert( !pPrior->pOrderBy );
2328       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2329       explainSetInteger(iSub1, pParse->iNextSelectId);
2330       rc = sqlite3Select(pParse, pPrior, &uniondest);
2331       if( rc ){
2332         goto multi_select_end;
2333       }
2334 
2335       /* Code the current SELECT statement
2336       */
2337       if( p->op==TK_EXCEPT ){
2338         op = SRT_Except;
2339       }else{
2340         assert( p->op==TK_UNION );
2341         op = SRT_Union;
2342       }
2343       p->pPrior = 0;
2344       pLimit = p->pLimit;
2345       p->pLimit = 0;
2346       pOffset = p->pOffset;
2347       p->pOffset = 0;
2348       uniondest.eDest = op;
2349       explainSetInteger(iSub2, pParse->iNextSelectId);
2350       rc = sqlite3Select(pParse, p, &uniondest);
2351       testcase( rc!=SQLITE_OK );
2352       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2353       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2354       sqlite3ExprListDelete(db, p->pOrderBy);
2355       pDelete = p->pPrior;
2356       p->pPrior = pPrior;
2357       p->pOrderBy = 0;
2358       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2359       sqlite3ExprDelete(db, p->pLimit);
2360       p->pLimit = pLimit;
2361       p->pOffset = pOffset;
2362       p->iLimit = 0;
2363       p->iOffset = 0;
2364 
2365       /* Convert the data in the temporary table into whatever form
2366       ** it is that we currently need.
2367       */
2368       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2369       if( dest.eDest!=priorOp ){
2370         int iCont, iBreak, iStart;
2371         assert( p->pEList );
2372         if( dest.eDest==SRT_Output ){
2373           Select *pFirst = p;
2374           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2375           generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2376         }
2377         iBreak = sqlite3VdbeMakeLabel(v);
2378         iCont = sqlite3VdbeMakeLabel(v);
2379         computeLimitRegisters(pParse, p, iBreak);
2380         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2381         iStart = sqlite3VdbeCurrentAddr(v);
2382         selectInnerLoop(pParse, p, p->pEList, unionTab,
2383                         0, 0, &dest, iCont, iBreak);
2384         sqlite3VdbeResolveLabel(v, iCont);
2385         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2386         sqlite3VdbeResolveLabel(v, iBreak);
2387         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2388       }
2389       break;
2390     }
2391     default: assert( p->op==TK_INTERSECT ); {
2392       int tab1, tab2;
2393       int iCont, iBreak, iStart;
2394       Expr *pLimit, *pOffset;
2395       int addr;
2396       SelectDest intersectdest;
2397       int r1;
2398 
2399       /* INTERSECT is different from the others since it requires
2400       ** two temporary tables.  Hence it has its own case.  Begin
2401       ** by allocating the tables we will need.
2402       */
2403       tab1 = pParse->nTab++;
2404       tab2 = pParse->nTab++;
2405       assert( p->pOrderBy==0 );
2406 
2407       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2408       assert( p->addrOpenEphm[0] == -1 );
2409       p->addrOpenEphm[0] = addr;
2410       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2411       assert( p->pEList );
2412 
2413       /* Code the SELECTs to our left into temporary table "tab1".
2414       */
2415       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2416       explainSetInteger(iSub1, pParse->iNextSelectId);
2417       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2418       if( rc ){
2419         goto multi_select_end;
2420       }
2421 
2422       /* Code the current SELECT into temporary table "tab2"
2423       */
2424       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2425       assert( p->addrOpenEphm[1] == -1 );
2426       p->addrOpenEphm[1] = addr;
2427       p->pPrior = 0;
2428       pLimit = p->pLimit;
2429       p->pLimit = 0;
2430       pOffset = p->pOffset;
2431       p->pOffset = 0;
2432       intersectdest.iSDParm = tab2;
2433       explainSetInteger(iSub2, pParse->iNextSelectId);
2434       rc = sqlite3Select(pParse, p, &intersectdest);
2435       testcase( rc!=SQLITE_OK );
2436       pDelete = p->pPrior;
2437       p->pPrior = pPrior;
2438       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2439       sqlite3ExprDelete(db, p->pLimit);
2440       p->pLimit = pLimit;
2441       p->pOffset = pOffset;
2442 
2443       /* Generate code to take the intersection of the two temporary
2444       ** tables.
2445       */
2446       assert( p->pEList );
2447       if( dest.eDest==SRT_Output ){
2448         Select *pFirst = p;
2449         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2450         generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
2451       }
2452       iBreak = sqlite3VdbeMakeLabel(v);
2453       iCont = sqlite3VdbeMakeLabel(v);
2454       computeLimitRegisters(pParse, p, iBreak);
2455       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2456       r1 = sqlite3GetTempReg(pParse);
2457       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2458       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2459       sqlite3ReleaseTempReg(pParse, r1);
2460       selectInnerLoop(pParse, p, p->pEList, tab1,
2461                       0, 0, &dest, iCont, iBreak);
2462       sqlite3VdbeResolveLabel(v, iCont);
2463       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2464       sqlite3VdbeResolveLabel(v, iBreak);
2465       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2466       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2467       break;
2468     }
2469   }
2470 
2471   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2472 
2473   /* Compute collating sequences used by
2474   ** temporary tables needed to implement the compound select.
2475   ** Attach the KeyInfo structure to all temporary tables.
2476   **
2477   ** This section is run by the right-most SELECT statement only.
2478   ** SELECT statements to the left always skip this part.  The right-most
2479   ** SELECT might also skip this part if it has no ORDER BY clause and
2480   ** no temp tables are required.
2481   */
2482   if( p->selFlags & SF_UsesEphemeral ){
2483     int i;                        /* Loop counter */
2484     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2485     Select *pLoop;                /* For looping through SELECT statements */
2486     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2487     int nCol;                     /* Number of columns in result set */
2488 
2489     assert( p->pNext==0 );
2490     nCol = p->pEList->nExpr;
2491     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2492     if( !pKeyInfo ){
2493       rc = SQLITE_NOMEM;
2494       goto multi_select_end;
2495     }
2496     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2497       *apColl = multiSelectCollSeq(pParse, p, i);
2498       if( 0==*apColl ){
2499         *apColl = db->pDfltColl;
2500       }
2501     }
2502 
2503     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2504       for(i=0; i<2; i++){
2505         int addr = pLoop->addrOpenEphm[i];
2506         if( addr<0 ){
2507           /* If [0] is unused then [1] is also unused.  So we can
2508           ** always safely abort as soon as the first unused slot is found */
2509           assert( pLoop->addrOpenEphm[1]<0 );
2510           break;
2511         }
2512         sqlite3VdbeChangeP2(v, addr, nCol);
2513         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2514                             P4_KEYINFO);
2515         pLoop->addrOpenEphm[i] = -1;
2516       }
2517     }
2518     sqlite3KeyInfoUnref(pKeyInfo);
2519   }
2520 
2521 multi_select_end:
2522   pDest->iSdst = dest.iSdst;
2523   pDest->nSdst = dest.nSdst;
2524   sqlite3SelectDelete(db, pDelete);
2525   return rc;
2526 }
2527 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2528 
2529 /*
2530 ** Error message for when two or more terms of a compound select have different
2531 ** size result sets.
2532 */
2533 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2534   if( p->selFlags & SF_Values ){
2535     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2536   }else{
2537     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2538       " do not have the same number of result columns", selectOpName(p->op));
2539   }
2540 }
2541 
2542 /*
2543 ** Code an output subroutine for a coroutine implementation of a
2544 ** SELECT statment.
2545 **
2546 ** The data to be output is contained in pIn->iSdst.  There are
2547 ** pIn->nSdst columns to be output.  pDest is where the output should
2548 ** be sent.
2549 **
2550 ** regReturn is the number of the register holding the subroutine
2551 ** return address.
2552 **
2553 ** If regPrev>0 then it is the first register in a vector that
2554 ** records the previous output.  mem[regPrev] is a flag that is false
2555 ** if there has been no previous output.  If regPrev>0 then code is
2556 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2557 ** keys.
2558 **
2559 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2560 ** iBreak.
2561 */
2562 static int generateOutputSubroutine(
2563   Parse *pParse,          /* Parsing context */
2564   Select *p,              /* The SELECT statement */
2565   SelectDest *pIn,        /* Coroutine supplying data */
2566   SelectDest *pDest,      /* Where to send the data */
2567   int regReturn,          /* The return address register */
2568   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2569   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2570   int iBreak              /* Jump here if we hit the LIMIT */
2571 ){
2572   Vdbe *v = pParse->pVdbe;
2573   int iContinue;
2574   int addr;
2575 
2576   addr = sqlite3VdbeCurrentAddr(v);
2577   iContinue = sqlite3VdbeMakeLabel(v);
2578 
2579   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2580   */
2581   if( regPrev ){
2582     int addr1, addr2;
2583     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2584     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2585                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2586     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2587     sqlite3VdbeJumpHere(v, addr1);
2588     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2589     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2590   }
2591   if( pParse->db->mallocFailed ) return 0;
2592 
2593   /* Suppress the first OFFSET entries if there is an OFFSET clause
2594   */
2595   codeOffset(v, p->iOffset, iContinue);
2596 
2597   assert( pDest->eDest!=SRT_Exists );
2598   assert( pDest->eDest!=SRT_Table );
2599   switch( pDest->eDest ){
2600     /* Store the result as data using a unique key.
2601     */
2602     case SRT_EphemTab: {
2603       int r1 = sqlite3GetTempReg(pParse);
2604       int r2 = sqlite3GetTempReg(pParse);
2605       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2606       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2607       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2608       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2609       sqlite3ReleaseTempReg(pParse, r2);
2610       sqlite3ReleaseTempReg(pParse, r1);
2611       break;
2612     }
2613 
2614 #ifndef SQLITE_OMIT_SUBQUERY
2615     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2616     ** then there should be a single item on the stack.  Write this
2617     ** item into the set table with bogus data.
2618     */
2619     case SRT_Set: {
2620       int r1;
2621       assert( pIn->nSdst==1 || pParse->nErr>0 );
2622       pDest->affSdst =
2623          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2624       r1 = sqlite3GetTempReg(pParse);
2625       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2626       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2627       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2628       sqlite3ReleaseTempReg(pParse, r1);
2629       break;
2630     }
2631 
2632     /* If this is a scalar select that is part of an expression, then
2633     ** store the results in the appropriate memory cell and break out
2634     ** of the scan loop.
2635     */
2636     case SRT_Mem: {
2637       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2638       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2639       /* The LIMIT clause will jump out of the loop for us */
2640       break;
2641     }
2642 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2643 
2644     /* The results are stored in a sequence of registers
2645     ** starting at pDest->iSdst.  Then the co-routine yields.
2646     */
2647     case SRT_Coroutine: {
2648       if( pDest->iSdst==0 ){
2649         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2650         pDest->nSdst = pIn->nSdst;
2651       }
2652       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2653       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2654       break;
2655     }
2656 
2657     /* If none of the above, then the result destination must be
2658     ** SRT_Output.  This routine is never called with any other
2659     ** destination other than the ones handled above or SRT_Output.
2660     **
2661     ** For SRT_Output, results are stored in a sequence of registers.
2662     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2663     ** return the next row of result.
2664     */
2665     default: {
2666       assert( pDest->eDest==SRT_Output );
2667       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2668       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2669       break;
2670     }
2671   }
2672 
2673   /* Jump to the end of the loop if the LIMIT is reached.
2674   */
2675   if( p->iLimit ){
2676     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2677   }
2678 
2679   /* Generate the subroutine return
2680   */
2681   sqlite3VdbeResolveLabel(v, iContinue);
2682   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2683 
2684   return addr;
2685 }
2686 
2687 /*
2688 ** Alternative compound select code generator for cases when there
2689 ** is an ORDER BY clause.
2690 **
2691 ** We assume a query of the following form:
2692 **
2693 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2694 **
2695 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2696 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2697 ** co-routines.  Then run the co-routines in parallel and merge the results
2698 ** into the output.  In addition to the two coroutines (called selectA and
2699 ** selectB) there are 7 subroutines:
2700 **
2701 **    outA:    Move the output of the selectA coroutine into the output
2702 **             of the compound query.
2703 **
2704 **    outB:    Move the output of the selectB coroutine into the output
2705 **             of the compound query.  (Only generated for UNION and
2706 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2707 **             appears only in B.)
2708 **
2709 **    AltB:    Called when there is data from both coroutines and A<B.
2710 **
2711 **    AeqB:    Called when there is data from both coroutines and A==B.
2712 **
2713 **    AgtB:    Called when there is data from both coroutines and A>B.
2714 **
2715 **    EofA:    Called when data is exhausted from selectA.
2716 **
2717 **    EofB:    Called when data is exhausted from selectB.
2718 **
2719 ** The implementation of the latter five subroutines depend on which
2720 ** <operator> is used:
2721 **
2722 **
2723 **             UNION ALL         UNION            EXCEPT          INTERSECT
2724 **          -------------  -----------------  --------------  -----------------
2725 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2726 **
2727 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2728 **
2729 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2730 **
2731 **   EofA:   outB, nextB      outB, nextB          halt             halt
2732 **
2733 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2734 **
2735 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2736 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2737 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2738 ** following nextX causes a jump to the end of the select processing.
2739 **
2740 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2741 ** within the output subroutine.  The regPrev register set holds the previously
2742 ** output value.  A comparison is made against this value and the output
2743 ** is skipped if the next results would be the same as the previous.
2744 **
2745 ** The implementation plan is to implement the two coroutines and seven
2746 ** subroutines first, then put the control logic at the bottom.  Like this:
2747 **
2748 **          goto Init
2749 **     coA: coroutine for left query (A)
2750 **     coB: coroutine for right query (B)
2751 **    outA: output one row of A
2752 **    outB: output one row of B (UNION and UNION ALL only)
2753 **    EofA: ...
2754 **    EofB: ...
2755 **    AltB: ...
2756 **    AeqB: ...
2757 **    AgtB: ...
2758 **    Init: initialize coroutine registers
2759 **          yield coA
2760 **          if eof(A) goto EofA
2761 **          yield coB
2762 **          if eof(B) goto EofB
2763 **    Cmpr: Compare A, B
2764 **          Jump AltB, AeqB, AgtB
2765 **     End: ...
2766 **
2767 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2768 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2769 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2770 ** and AgtB jump to either L2 or to one of EofA or EofB.
2771 */
2772 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2773 static int multiSelectOrderBy(
2774   Parse *pParse,        /* Parsing context */
2775   Select *p,            /* The right-most of SELECTs to be coded */
2776   SelectDest *pDest     /* What to do with query results */
2777 ){
2778   int i, j;             /* Loop counters */
2779   Select *pPrior;       /* Another SELECT immediately to our left */
2780   Vdbe *v;              /* Generate code to this VDBE */
2781   SelectDest destA;     /* Destination for coroutine A */
2782   SelectDest destB;     /* Destination for coroutine B */
2783   int regAddrA;         /* Address register for select-A coroutine */
2784   int regAddrB;         /* Address register for select-B coroutine */
2785   int addrSelectA;      /* Address of the select-A coroutine */
2786   int addrSelectB;      /* Address of the select-B coroutine */
2787   int regOutA;          /* Address register for the output-A subroutine */
2788   int regOutB;          /* Address register for the output-B subroutine */
2789   int addrOutA;         /* Address of the output-A subroutine */
2790   int addrOutB = 0;     /* Address of the output-B subroutine */
2791   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2792   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2793   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2794   int addrAltB;         /* Address of the A<B subroutine */
2795   int addrAeqB;         /* Address of the A==B subroutine */
2796   int addrAgtB;         /* Address of the A>B subroutine */
2797   int regLimitA;        /* Limit register for select-A */
2798   int regLimitB;        /* Limit register for select-A */
2799   int regPrev;          /* A range of registers to hold previous output */
2800   int savedLimit;       /* Saved value of p->iLimit */
2801   int savedOffset;      /* Saved value of p->iOffset */
2802   int labelCmpr;        /* Label for the start of the merge algorithm */
2803   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2804   int addr1;            /* Jump instructions that get retargetted */
2805   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2806   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2807   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2808   sqlite3 *db;          /* Database connection */
2809   ExprList *pOrderBy;   /* The ORDER BY clause */
2810   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2811   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2812 #ifndef SQLITE_OMIT_EXPLAIN
2813   int iSub1;            /* EQP id of left-hand query */
2814   int iSub2;            /* EQP id of right-hand query */
2815 #endif
2816 
2817   assert( p->pOrderBy!=0 );
2818   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2819   db = pParse->db;
2820   v = pParse->pVdbe;
2821   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2822   labelEnd = sqlite3VdbeMakeLabel(v);
2823   labelCmpr = sqlite3VdbeMakeLabel(v);
2824 
2825 
2826   /* Patch up the ORDER BY clause
2827   */
2828   op = p->op;
2829   pPrior = p->pPrior;
2830   assert( pPrior->pOrderBy==0 );
2831   pOrderBy = p->pOrderBy;
2832   assert( pOrderBy );
2833   nOrderBy = pOrderBy->nExpr;
2834 
2835   /* For operators other than UNION ALL we have to make sure that
2836   ** the ORDER BY clause covers every term of the result set.  Add
2837   ** terms to the ORDER BY clause as necessary.
2838   */
2839   if( op!=TK_ALL ){
2840     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2841       struct ExprList_item *pItem;
2842       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2843         assert( pItem->u.x.iOrderByCol>0 );
2844         if( pItem->u.x.iOrderByCol==i ) break;
2845       }
2846       if( j==nOrderBy ){
2847         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2848         if( pNew==0 ) return SQLITE_NOMEM;
2849         pNew->flags |= EP_IntValue;
2850         pNew->u.iValue = i;
2851         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2852         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2853       }
2854     }
2855   }
2856 
2857   /* Compute the comparison permutation and keyinfo that is used with
2858   ** the permutation used to determine if the next
2859   ** row of results comes from selectA or selectB.  Also add explicit
2860   ** collations to the ORDER BY clause terms so that when the subqueries
2861   ** to the right and the left are evaluated, they use the correct
2862   ** collation.
2863   */
2864   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2865   if( aPermute ){
2866     struct ExprList_item *pItem;
2867     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2868       assert( pItem->u.x.iOrderByCol>0 );
2869       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2870       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2871     }
2872     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2873   }else{
2874     pKeyMerge = 0;
2875   }
2876 
2877   /* Reattach the ORDER BY clause to the query.
2878   */
2879   p->pOrderBy = pOrderBy;
2880   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2881 
2882   /* Allocate a range of temporary registers and the KeyInfo needed
2883   ** for the logic that removes duplicate result rows when the
2884   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2885   */
2886   if( op==TK_ALL ){
2887     regPrev = 0;
2888   }else{
2889     int nExpr = p->pEList->nExpr;
2890     assert( nOrderBy>=nExpr || db->mallocFailed );
2891     regPrev = pParse->nMem+1;
2892     pParse->nMem += nExpr+1;
2893     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2894     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2895     if( pKeyDup ){
2896       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2897       for(i=0; i<nExpr; i++){
2898         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2899         pKeyDup->aSortOrder[i] = 0;
2900       }
2901     }
2902   }
2903 
2904   /* Separate the left and the right query from one another
2905   */
2906   p->pPrior = 0;
2907   pPrior->pNext = 0;
2908   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2909   if( pPrior->pPrior==0 ){
2910     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2911   }
2912 
2913   /* Compute the limit registers */
2914   computeLimitRegisters(pParse, p, labelEnd);
2915   if( p->iLimit && op==TK_ALL ){
2916     regLimitA = ++pParse->nMem;
2917     regLimitB = ++pParse->nMem;
2918     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2919                                   regLimitA);
2920     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2921   }else{
2922     regLimitA = regLimitB = 0;
2923   }
2924   sqlite3ExprDelete(db, p->pLimit);
2925   p->pLimit = 0;
2926   sqlite3ExprDelete(db, p->pOffset);
2927   p->pOffset = 0;
2928 
2929   regAddrA = ++pParse->nMem;
2930   regAddrB = ++pParse->nMem;
2931   regOutA = ++pParse->nMem;
2932   regOutB = ++pParse->nMem;
2933   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2934   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2935 
2936   /* Generate a coroutine to evaluate the SELECT statement to the
2937   ** left of the compound operator - the "A" select.
2938   */
2939   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2940   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2941   VdbeComment((v, "left SELECT"));
2942   pPrior->iLimit = regLimitA;
2943   explainSetInteger(iSub1, pParse->iNextSelectId);
2944   sqlite3Select(pParse, pPrior, &destA);
2945   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2946   sqlite3VdbeJumpHere(v, addr1);
2947 
2948   /* Generate a coroutine to evaluate the SELECT statement on
2949   ** the right - the "B" select
2950   */
2951   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2952   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2953   VdbeComment((v, "right SELECT"));
2954   savedLimit = p->iLimit;
2955   savedOffset = p->iOffset;
2956   p->iLimit = regLimitB;
2957   p->iOffset = 0;
2958   explainSetInteger(iSub2, pParse->iNextSelectId);
2959   sqlite3Select(pParse, p, &destB);
2960   p->iLimit = savedLimit;
2961   p->iOffset = savedOffset;
2962   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2963 
2964   /* Generate a subroutine that outputs the current row of the A
2965   ** select as the next output row of the compound select.
2966   */
2967   VdbeNoopComment((v, "Output routine for A"));
2968   addrOutA = generateOutputSubroutine(pParse,
2969                  p, &destA, pDest, regOutA,
2970                  regPrev, pKeyDup, labelEnd);
2971 
2972   /* Generate a subroutine that outputs the current row of the B
2973   ** select as the next output row of the compound select.
2974   */
2975   if( op==TK_ALL || op==TK_UNION ){
2976     VdbeNoopComment((v, "Output routine for B"));
2977     addrOutB = generateOutputSubroutine(pParse,
2978                  p, &destB, pDest, regOutB,
2979                  regPrev, pKeyDup, labelEnd);
2980   }
2981   sqlite3KeyInfoUnref(pKeyDup);
2982 
2983   /* Generate a subroutine to run when the results from select A
2984   ** are exhausted and only data in select B remains.
2985   */
2986   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2987     addrEofA_noB = addrEofA = labelEnd;
2988   }else{
2989     VdbeNoopComment((v, "eof-A subroutine"));
2990     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2991     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2992                                      VdbeCoverage(v);
2993     sqlite3VdbeGoto(v, addrEofA);
2994     p->nSelectRow += pPrior->nSelectRow;
2995   }
2996 
2997   /* Generate a subroutine to run when the results from select B
2998   ** are exhausted and only data in select A remains.
2999   */
3000   if( op==TK_INTERSECT ){
3001     addrEofB = addrEofA;
3002     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3003   }else{
3004     VdbeNoopComment((v, "eof-B subroutine"));
3005     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3006     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3007     sqlite3VdbeGoto(v, addrEofB);
3008   }
3009 
3010   /* Generate code to handle the case of A<B
3011   */
3012   VdbeNoopComment((v, "A-lt-B subroutine"));
3013   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3014   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3015   sqlite3VdbeGoto(v, labelCmpr);
3016 
3017   /* Generate code to handle the case of A==B
3018   */
3019   if( op==TK_ALL ){
3020     addrAeqB = addrAltB;
3021   }else if( op==TK_INTERSECT ){
3022     addrAeqB = addrAltB;
3023     addrAltB++;
3024   }else{
3025     VdbeNoopComment((v, "A-eq-B subroutine"));
3026     addrAeqB =
3027     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3028     sqlite3VdbeGoto(v, labelCmpr);
3029   }
3030 
3031   /* Generate code to handle the case of A>B
3032   */
3033   VdbeNoopComment((v, "A-gt-B subroutine"));
3034   addrAgtB = sqlite3VdbeCurrentAddr(v);
3035   if( op==TK_ALL || op==TK_UNION ){
3036     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3037   }
3038   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3039   sqlite3VdbeGoto(v, labelCmpr);
3040 
3041   /* This code runs once to initialize everything.
3042   */
3043   sqlite3VdbeJumpHere(v, addr1);
3044   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3045   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3046 
3047   /* Implement the main merge loop
3048   */
3049   sqlite3VdbeResolveLabel(v, labelCmpr);
3050   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3051   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3052                          (char*)pKeyMerge, P4_KEYINFO);
3053   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3054   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3055 
3056   /* Jump to the this point in order to terminate the query.
3057   */
3058   sqlite3VdbeResolveLabel(v, labelEnd);
3059 
3060   /* Set the number of output columns
3061   */
3062   if( pDest->eDest==SRT_Output ){
3063     Select *pFirst = pPrior;
3064     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
3065     generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
3066   }
3067 
3068   /* Reassembly the compound query so that it will be freed correctly
3069   ** by the calling function */
3070   if( p->pPrior ){
3071     sqlite3SelectDelete(db, p->pPrior);
3072   }
3073   p->pPrior = pPrior;
3074   pPrior->pNext = p;
3075 
3076   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3077   **** subqueries ****/
3078   explainComposite(pParse, p->op, iSub1, iSub2, 0);
3079   return pParse->nErr!=0;
3080 }
3081 #endif
3082 
3083 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3084 /* Forward Declarations */
3085 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
3086 static void substSelect(sqlite3*, Select *, int, ExprList*, int);
3087 
3088 /*
3089 ** Scan through the expression pExpr.  Replace every reference to
3090 ** a column in table number iTable with a copy of the iColumn-th
3091 ** entry in pEList.  (But leave references to the ROWID column
3092 ** unchanged.)
3093 **
3094 ** This routine is part of the flattening procedure.  A subquery
3095 ** whose result set is defined by pEList appears as entry in the
3096 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3097 ** FORM clause entry is iTable.  This routine make the necessary
3098 ** changes to pExpr so that it refers directly to the source table
3099 ** of the subquery rather the result set of the subquery.
3100 */
3101 static Expr *substExpr(
3102   sqlite3 *db,        /* Report malloc errors to this connection */
3103   Expr *pExpr,        /* Expr in which substitution occurs */
3104   int iTable,         /* Table to be substituted */
3105   ExprList *pEList    /* Substitute expressions */
3106 ){
3107   if( pExpr==0 ) return 0;
3108   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
3109     if( pExpr->iColumn<0 ){
3110       pExpr->op = TK_NULL;
3111     }else{
3112       Expr *pNew;
3113       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
3114       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
3115       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
3116       sqlite3ExprDelete(db, pExpr);
3117       pExpr = pNew;
3118     }
3119   }else{
3120     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3121     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3122     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3123       substSelect(db, pExpr->x.pSelect, iTable, pEList, 1);
3124     }else{
3125       substExprList(db, pExpr->x.pList, iTable, pEList);
3126     }
3127   }
3128   return pExpr;
3129 }
3130 static void substExprList(
3131   sqlite3 *db,         /* Report malloc errors here */
3132   ExprList *pList,     /* List to scan and in which to make substitutes */
3133   int iTable,          /* Table to be substituted */
3134   ExprList *pEList     /* Substitute values */
3135 ){
3136   int i;
3137   if( pList==0 ) return;
3138   for(i=0; i<pList->nExpr; i++){
3139     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3140   }
3141 }
3142 static void substSelect(
3143   sqlite3 *db,         /* Report malloc errors here */
3144   Select *p,           /* SELECT statement in which to make substitutions */
3145   int iTable,          /* Table to be replaced */
3146   ExprList *pEList,    /* Substitute values */
3147   int doPrior          /* Do substitutes on p->pPrior too */
3148 ){
3149   SrcList *pSrc;
3150   struct SrcList_item *pItem;
3151   int i;
3152   if( !p ) return;
3153   do{
3154     substExprList(db, p->pEList, iTable, pEList);
3155     substExprList(db, p->pGroupBy, iTable, pEList);
3156     substExprList(db, p->pOrderBy, iTable, pEList);
3157     p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3158     p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3159     pSrc = p->pSrc;
3160     assert( pSrc!=0 );
3161     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3162       substSelect(db, pItem->pSelect, iTable, pEList, 1);
3163       if( pItem->fg.isTabFunc ){
3164         substExprList(db, pItem->u1.pFuncArg, iTable, pEList);
3165       }
3166     }
3167   }while( doPrior && (p = p->pPrior)!=0 );
3168 }
3169 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3170 
3171 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3172 /*
3173 ** This routine attempts to flatten subqueries as a performance optimization.
3174 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3175 **
3176 ** To understand the concept of flattening, consider the following
3177 ** query:
3178 **
3179 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3180 **
3181 ** The default way of implementing this query is to execute the
3182 ** subquery first and store the results in a temporary table, then
3183 ** run the outer query on that temporary table.  This requires two
3184 ** passes over the data.  Furthermore, because the temporary table
3185 ** has no indices, the WHERE clause on the outer query cannot be
3186 ** optimized.
3187 **
3188 ** This routine attempts to rewrite queries such as the above into
3189 ** a single flat select, like this:
3190 **
3191 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3192 **
3193 ** The code generated for this simplification gives the same result
3194 ** but only has to scan the data once.  And because indices might
3195 ** exist on the table t1, a complete scan of the data might be
3196 ** avoided.
3197 **
3198 ** Flattening is only attempted if all of the following are true:
3199 **
3200 **   (1)  The subquery and the outer query do not both use aggregates.
3201 **
3202 **   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
3203 **        and (2b) the outer query does not use subqueries other than the one
3204 **        FROM-clause subquery that is a candidate for flattening.  (2b is
3205 **        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
3206 **
3207 **   (3)  The subquery is not the right operand of a left outer join
3208 **        (Originally ticket #306.  Strengthened by ticket #3300)
3209 **
3210 **   (4)  The subquery is not DISTINCT.
3211 **
3212 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3213 **        sub-queries that were excluded from this optimization. Restriction
3214 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3215 **
3216 **   (6)  The subquery does not use aggregates or the outer query is not
3217 **        DISTINCT.
3218 **
3219 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3220 **        A FROM clause, consider adding a FROM close with the special
3221 **        table sqlite_once that consists of a single row containing a
3222 **        single NULL.
3223 **
3224 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3225 **
3226 **   (9)  The subquery does not use LIMIT or the outer query does not use
3227 **        aggregates.
3228 **
3229 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3230 **        accidently carried the comment forward until 2014-09-15.  Original
3231 **        text: "The subquery does not use aggregates or the outer query
3232 **        does not use LIMIT."
3233 **
3234 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3235 **
3236 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3237 **        a separate restriction deriving from ticket #350.
3238 **
3239 **  (13)  The subquery and outer query do not both use LIMIT.
3240 **
3241 **  (14)  The subquery does not use OFFSET.
3242 **
3243 **  (15)  The outer query is not part of a compound select or the
3244 **        subquery does not have a LIMIT clause.
3245 **        (See ticket #2339 and ticket [02a8e81d44]).
3246 **
3247 **  (16)  The outer query is not an aggregate or the subquery does
3248 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3249 **        until we introduced the group_concat() function.
3250 **
3251 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3252 **        compound clause made up entirely of non-aggregate queries, and
3253 **        the parent query:
3254 **
3255 **          * is not itself part of a compound select,
3256 **          * is not an aggregate or DISTINCT query, and
3257 **          * is not a join
3258 **
3259 **        The parent and sub-query may contain WHERE clauses. Subject to
3260 **        rules (11), (13) and (14), they may also contain ORDER BY,
3261 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3262 **        operator other than UNION ALL because all the other compound
3263 **        operators have an implied DISTINCT which is disallowed by
3264 **        restriction (4).
3265 **
3266 **        Also, each component of the sub-query must return the same number
3267 **        of result columns. This is actually a requirement for any compound
3268 **        SELECT statement, but all the code here does is make sure that no
3269 **        such (illegal) sub-query is flattened. The caller will detect the
3270 **        syntax error and return a detailed message.
3271 **
3272 **  (18)  If the sub-query is a compound select, then all terms of the
3273 **        ORDER by clause of the parent must be simple references to
3274 **        columns of the sub-query.
3275 **
3276 **  (19)  The subquery does not use LIMIT or the outer query does not
3277 **        have a WHERE clause.
3278 **
3279 **  (20)  If the sub-query is a compound select, then it must not use
3280 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3281 **        somewhat by saying that the terms of the ORDER BY clause must
3282 **        appear as unmodified result columns in the outer query.  But we
3283 **        have other optimizations in mind to deal with that case.
3284 **
3285 **  (21)  The subquery does not use LIMIT or the outer query is not
3286 **        DISTINCT.  (See ticket [752e1646fc]).
3287 **
3288 **  (22)  The subquery is not a recursive CTE.
3289 **
3290 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3291 **        compound query. This restriction is because transforming the
3292 **        parent to a compound query confuses the code that handles
3293 **        recursive queries in multiSelect().
3294 **
3295 **  (24)  The subquery is not an aggregate that uses the built-in min() or
3296 **        or max() functions.  (Without this restriction, a query like:
3297 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3298 **        return the value X for which Y was maximal.)
3299 **
3300 **
3301 ** In this routine, the "p" parameter is a pointer to the outer query.
3302 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3303 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3304 **
3305 ** If flattening is not attempted, this routine is a no-op and returns 0.
3306 ** If flattening is attempted this routine returns 1.
3307 **
3308 ** All of the expression analysis must occur on both the outer query and
3309 ** the subquery before this routine runs.
3310 */
3311 static int flattenSubquery(
3312   Parse *pParse,       /* Parsing context */
3313   Select *p,           /* The parent or outer SELECT statement */
3314   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3315   int isAgg,           /* True if outer SELECT uses aggregate functions */
3316   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3317 ){
3318   const char *zSavedAuthContext = pParse->zAuthContext;
3319   Select *pParent;    /* Current UNION ALL term of the other query */
3320   Select *pSub;       /* The inner query or "subquery" */
3321   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3322   SrcList *pSrc;      /* The FROM clause of the outer query */
3323   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3324   ExprList *pList;    /* The result set of the outer query */
3325   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3326   int i;              /* Loop counter */
3327   Expr *pWhere;                    /* The WHERE clause */
3328   struct SrcList_item *pSubitem;   /* The subquery */
3329   sqlite3 *db = pParse->db;
3330 
3331   /* Check to see if flattening is permitted.  Return 0 if not.
3332   */
3333   assert( p!=0 );
3334   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3335   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3336   pSrc = p->pSrc;
3337   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3338   pSubitem = &pSrc->a[iFrom];
3339   iParent = pSubitem->iCursor;
3340   pSub = pSubitem->pSelect;
3341   assert( pSub!=0 );
3342   if( subqueryIsAgg ){
3343     if( isAgg ) return 0;                                /* Restriction (1)   */
3344     if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
3345     if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
3346      || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
3347      || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
3348     ){
3349       return 0;                                          /* Restriction (2b)  */
3350     }
3351   }
3352 
3353   pSubSrc = pSub->pSrc;
3354   assert( pSubSrc );
3355   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3356   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3357   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3358   ** became arbitrary expressions, we were forced to add restrictions (13)
3359   ** and (14). */
3360   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3361   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3362   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3363     return 0;                                            /* Restriction (15) */
3364   }
3365   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3366   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3367   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3368      return 0;         /* Restrictions (8)(9) */
3369   }
3370   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3371      return 0;         /* Restriction (6)  */
3372   }
3373   if( p->pOrderBy && pSub->pOrderBy ){
3374      return 0;                                           /* Restriction (11) */
3375   }
3376   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3377   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3378   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3379      return 0;         /* Restriction (21) */
3380   }
3381   testcase( pSub->selFlags & SF_Recursive );
3382   testcase( pSub->selFlags & SF_MinMaxAgg );
3383   if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){
3384     return 0; /* Restrictions (22) and (24) */
3385   }
3386   if( (p->selFlags & SF_Recursive) && pSub->pPrior ){
3387     return 0; /* Restriction (23) */
3388   }
3389 
3390   /* OBSOLETE COMMENT 1:
3391   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3392   ** not used as the right operand of an outer join.  Examples of why this
3393   ** is not allowed:
3394   **
3395   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3396   **
3397   ** If we flatten the above, we would get
3398   **
3399   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3400   **
3401   ** which is not at all the same thing.
3402   **
3403   ** OBSOLETE COMMENT 2:
3404   ** Restriction 12:  If the subquery is the right operand of a left outer
3405   ** join, make sure the subquery has no WHERE clause.
3406   ** An examples of why this is not allowed:
3407   **
3408   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3409   **
3410   ** If we flatten the above, we would get
3411   **
3412   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3413   **
3414   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3415   ** effectively converts the OUTER JOIN into an INNER JOIN.
3416   **
3417   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3418   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3419   ** is fraught with danger.  Best to avoid the whole thing.  If the
3420   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3421   */
3422   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3423     return 0;
3424   }
3425 
3426   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3427   ** use only the UNION ALL operator. And none of the simple select queries
3428   ** that make up the compound SELECT are allowed to be aggregate or distinct
3429   ** queries.
3430   */
3431   if( pSub->pPrior ){
3432     if( pSub->pOrderBy ){
3433       return 0;  /* Restriction 20 */
3434     }
3435     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3436       return 0;
3437     }
3438     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3439       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3440       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3441       assert( pSub->pSrc!=0 );
3442       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3443       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3444        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3445        || pSub1->pSrc->nSrc<1
3446       ){
3447         return 0;
3448       }
3449       testcase( pSub1->pSrc->nSrc>1 );
3450     }
3451 
3452     /* Restriction 18. */
3453     if( p->pOrderBy ){
3454       int ii;
3455       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3456         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3457       }
3458     }
3459   }
3460 
3461   /***** If we reach this point, flattening is permitted. *****/
3462   SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n",
3463                    pSub->zSelName, pSub, iFrom));
3464 
3465   /* Authorize the subquery */
3466   pParse->zAuthContext = pSubitem->zName;
3467   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3468   testcase( i==SQLITE_DENY );
3469   pParse->zAuthContext = zSavedAuthContext;
3470 
3471   /* If the sub-query is a compound SELECT statement, then (by restrictions
3472   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3473   ** be of the form:
3474   **
3475   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3476   **
3477   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3478   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3479   ** OFFSET clauses and joins them to the left-hand-side of the original
3480   ** using UNION ALL operators. In this case N is the number of simple
3481   ** select statements in the compound sub-query.
3482   **
3483   ** Example:
3484   **
3485   **     SELECT a+1 FROM (
3486   **        SELECT x FROM tab
3487   **        UNION ALL
3488   **        SELECT y FROM tab
3489   **        UNION ALL
3490   **        SELECT abs(z*2) FROM tab2
3491   **     ) WHERE a!=5 ORDER BY 1
3492   **
3493   ** Transformed into:
3494   **
3495   **     SELECT x+1 FROM tab WHERE x+1!=5
3496   **     UNION ALL
3497   **     SELECT y+1 FROM tab WHERE y+1!=5
3498   **     UNION ALL
3499   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3500   **     ORDER BY 1
3501   **
3502   ** We call this the "compound-subquery flattening".
3503   */
3504   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3505     Select *pNew;
3506     ExprList *pOrderBy = p->pOrderBy;
3507     Expr *pLimit = p->pLimit;
3508     Expr *pOffset = p->pOffset;
3509     Select *pPrior = p->pPrior;
3510     p->pOrderBy = 0;
3511     p->pSrc = 0;
3512     p->pPrior = 0;
3513     p->pLimit = 0;
3514     p->pOffset = 0;
3515     pNew = sqlite3SelectDup(db, p, 0);
3516     sqlite3SelectSetName(pNew, pSub->zSelName);
3517     p->pOffset = pOffset;
3518     p->pLimit = pLimit;
3519     p->pOrderBy = pOrderBy;
3520     p->pSrc = pSrc;
3521     p->op = TK_ALL;
3522     if( pNew==0 ){
3523       p->pPrior = pPrior;
3524     }else{
3525       pNew->pPrior = pPrior;
3526       if( pPrior ) pPrior->pNext = pNew;
3527       pNew->pNext = p;
3528       p->pPrior = pNew;
3529       SELECTTRACE(2,pParse,p,
3530          ("compound-subquery flattener creates %s.%p as peer\n",
3531          pNew->zSelName, pNew));
3532     }
3533     if( db->mallocFailed ) return 1;
3534   }
3535 
3536   /* Begin flattening the iFrom-th entry of the FROM clause
3537   ** in the outer query.
3538   */
3539   pSub = pSub1 = pSubitem->pSelect;
3540 
3541   /* Delete the transient table structure associated with the
3542   ** subquery
3543   */
3544   sqlite3DbFree(db, pSubitem->zDatabase);
3545   sqlite3DbFree(db, pSubitem->zName);
3546   sqlite3DbFree(db, pSubitem->zAlias);
3547   pSubitem->zDatabase = 0;
3548   pSubitem->zName = 0;
3549   pSubitem->zAlias = 0;
3550   pSubitem->pSelect = 0;
3551 
3552   /* Defer deleting the Table object associated with the
3553   ** subquery until code generation is
3554   ** complete, since there may still exist Expr.pTab entries that
3555   ** refer to the subquery even after flattening.  Ticket #3346.
3556   **
3557   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3558   */
3559   if( ALWAYS(pSubitem->pTab!=0) ){
3560     Table *pTabToDel = pSubitem->pTab;
3561     if( pTabToDel->nRef==1 ){
3562       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3563       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3564       pToplevel->pZombieTab = pTabToDel;
3565     }else{
3566       pTabToDel->nRef--;
3567     }
3568     pSubitem->pTab = 0;
3569   }
3570 
3571   /* The following loop runs once for each term in a compound-subquery
3572   ** flattening (as described above).  If we are doing a different kind
3573   ** of flattening - a flattening other than a compound-subquery flattening -
3574   ** then this loop only runs once.
3575   **
3576   ** This loop moves all of the FROM elements of the subquery into the
3577   ** the FROM clause of the outer query.  Before doing this, remember
3578   ** the cursor number for the original outer query FROM element in
3579   ** iParent.  The iParent cursor will never be used.  Subsequent code
3580   ** will scan expressions looking for iParent references and replace
3581   ** those references with expressions that resolve to the subquery FROM
3582   ** elements we are now copying in.
3583   */
3584   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3585     int nSubSrc;
3586     u8 jointype = 0;
3587     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3588     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3589     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3590 
3591     if( pSrc ){
3592       assert( pParent==p );  /* First time through the loop */
3593       jointype = pSubitem->fg.jointype;
3594     }else{
3595       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3596       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3597       if( pSrc==0 ){
3598         assert( db->mallocFailed );
3599         break;
3600       }
3601     }
3602 
3603     /* The subquery uses a single slot of the FROM clause of the outer
3604     ** query.  If the subquery has more than one element in its FROM clause,
3605     ** then expand the outer query to make space for it to hold all elements
3606     ** of the subquery.
3607     **
3608     ** Example:
3609     **
3610     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3611     **
3612     ** The outer query has 3 slots in its FROM clause.  One slot of the
3613     ** outer query (the middle slot) is used by the subquery.  The next
3614     ** block of code will expand the outer query FROM clause to 4 slots.
3615     ** The middle slot is expanded to two slots in order to make space
3616     ** for the two elements in the FROM clause of the subquery.
3617     */
3618     if( nSubSrc>1 ){
3619       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3620       if( db->mallocFailed ){
3621         break;
3622       }
3623     }
3624 
3625     /* Transfer the FROM clause terms from the subquery into the
3626     ** outer query.
3627     */
3628     for(i=0; i<nSubSrc; i++){
3629       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3630       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3631       pSrc->a[i+iFrom] = pSubSrc->a[i];
3632       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3633     }
3634     pSrc->a[iFrom].fg.jointype = jointype;
3635 
3636     /* Now begin substituting subquery result set expressions for
3637     ** references to the iParent in the outer query.
3638     **
3639     ** Example:
3640     **
3641     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3642     **   \                     \_____________ subquery __________/          /
3643     **    \_____________________ outer query ______________________________/
3644     **
3645     ** We look at every expression in the outer query and every place we see
3646     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3647     */
3648     pList = pParent->pEList;
3649     for(i=0; i<pList->nExpr; i++){
3650       if( pList->a[i].zName==0 ){
3651         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3652         sqlite3Dequote(zName);
3653         pList->a[i].zName = zName;
3654       }
3655     }
3656     if( pSub->pOrderBy ){
3657       /* At this point, any non-zero iOrderByCol values indicate that the
3658       ** ORDER BY column expression is identical to the iOrderByCol'th
3659       ** expression returned by SELECT statement pSub. Since these values
3660       ** do not necessarily correspond to columns in SELECT statement pParent,
3661       ** zero them before transfering the ORDER BY clause.
3662       **
3663       ** Not doing this may cause an error if a subsequent call to this
3664       ** function attempts to flatten a compound sub-query into pParent
3665       ** (the only way this can happen is if the compound sub-query is
3666       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
3667       ExprList *pOrderBy = pSub->pOrderBy;
3668       for(i=0; i<pOrderBy->nExpr; i++){
3669         pOrderBy->a[i].u.x.iOrderByCol = 0;
3670       }
3671       assert( pParent->pOrderBy==0 );
3672       assert( pSub->pPrior==0 );
3673       pParent->pOrderBy = pOrderBy;
3674       pSub->pOrderBy = 0;
3675     }
3676     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3677     if( subqueryIsAgg ){
3678       assert( pParent->pHaving==0 );
3679       pParent->pHaving = pParent->pWhere;
3680       pParent->pWhere = pWhere;
3681       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3682                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3683       assert( pParent->pGroupBy==0 );
3684       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3685     }else{
3686       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3687     }
3688     substSelect(db, pParent, iParent, pSub->pEList, 0);
3689 
3690     /* The flattened query is distinct if either the inner or the
3691     ** outer query is distinct.
3692     */
3693     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3694 
3695     /*
3696     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3697     **
3698     ** One is tempted to try to add a and b to combine the limits.  But this
3699     ** does not work if either limit is negative.
3700     */
3701     if( pSub->pLimit ){
3702       pParent->pLimit = pSub->pLimit;
3703       pSub->pLimit = 0;
3704     }
3705   }
3706 
3707   /* Finially, delete what is left of the subquery and return
3708   ** success.
3709   */
3710   sqlite3SelectDelete(db, pSub1);
3711 
3712 #if SELECTTRACE_ENABLED
3713   if( sqlite3SelectTrace & 0x100 ){
3714     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
3715     sqlite3TreeViewSelect(0, p, 0);
3716   }
3717 #endif
3718 
3719   return 1;
3720 }
3721 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3722 
3723 
3724 
3725 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3726 /*
3727 ** Make copies of relevant WHERE clause terms of the outer query into
3728 ** the WHERE clause of subquery.  Example:
3729 **
3730 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
3731 **
3732 ** Transformed into:
3733 **
3734 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
3735 **     WHERE x=5 AND y=10;
3736 **
3737 ** The hope is that the terms added to the inner query will make it more
3738 ** efficient.
3739 **
3740 ** Do not attempt this optimization if:
3741 **
3742 **   (1) The inner query is an aggregate.  (In that case, we'd really want
3743 **       to copy the outer WHERE-clause terms onto the HAVING clause of the
3744 **       inner query.  But they probably won't help there so do not bother.)
3745 **
3746 **   (2) The inner query is the recursive part of a common table expression.
3747 **
3748 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
3749 **       close would change the meaning of the LIMIT).
3750 **
3751 **   (4) The inner query is the right operand of a LEFT JOIN.  (The caller
3752 **       enforces this restriction since this routine does not have enough
3753 **       information to know.)
3754 **
3755 **   (5) The WHERE clause expression originates in the ON or USING clause
3756 **       of a LEFT JOIN.
3757 **
3758 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
3759 ** terms are duplicated into the subquery.
3760 */
3761 static int pushDownWhereTerms(
3762   sqlite3 *db,          /* The database connection (for malloc()) */
3763   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
3764   Expr *pWhere,         /* The WHERE clause of the outer query */
3765   int iCursor           /* Cursor number of the subquery */
3766 ){
3767   Expr *pNew;
3768   int nChng = 0;
3769   if( pWhere==0 ) return 0;
3770   if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){
3771      return 0; /* restrictions (1) and (2) */
3772   }
3773   if( pSubq->pLimit!=0 ){
3774      return 0; /* restriction (3) */
3775   }
3776   while( pWhere->op==TK_AND ){
3777     nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor);
3778     pWhere = pWhere->pLeft;
3779   }
3780   if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
3781   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
3782     nChng++;
3783     while( pSubq ){
3784       pNew = sqlite3ExprDup(db, pWhere, 0);
3785       pNew = substExpr(db, pNew, iCursor, pSubq->pEList);
3786       pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew);
3787       pSubq = pSubq->pPrior;
3788     }
3789   }
3790   return nChng;
3791 }
3792 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3793 
3794 /*
3795 ** Based on the contents of the AggInfo structure indicated by the first
3796 ** argument, this function checks if the following are true:
3797 **
3798 **    * the query contains just a single aggregate function,
3799 **    * the aggregate function is either min() or max(), and
3800 **    * the argument to the aggregate function is a column value.
3801 **
3802 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3803 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3804 ** list of arguments passed to the aggregate before returning.
3805 **
3806 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3807 ** WHERE_ORDERBY_NORMAL is returned.
3808 */
3809 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3810   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3811 
3812   *ppMinMax = 0;
3813   if( pAggInfo->nFunc==1 ){
3814     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3815     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3816 
3817     assert( pExpr->op==TK_AGG_FUNCTION );
3818     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3819       const char *zFunc = pExpr->u.zToken;
3820       if( sqlite3StrICmp(zFunc, "min")==0 ){
3821         eRet = WHERE_ORDERBY_MIN;
3822         *ppMinMax = pEList;
3823       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3824         eRet = WHERE_ORDERBY_MAX;
3825         *ppMinMax = pEList;
3826       }
3827     }
3828   }
3829 
3830   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3831   return eRet;
3832 }
3833 
3834 /*
3835 ** The select statement passed as the first argument is an aggregate query.
3836 ** The second argument is the associated aggregate-info object. This
3837 ** function tests if the SELECT is of the form:
3838 **
3839 **   SELECT count(*) FROM <tbl>
3840 **
3841 ** where table is a database table, not a sub-select or view. If the query
3842 ** does match this pattern, then a pointer to the Table object representing
3843 ** <tbl> is returned. Otherwise, 0 is returned.
3844 */
3845 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3846   Table *pTab;
3847   Expr *pExpr;
3848 
3849   assert( !p->pGroupBy );
3850 
3851   if( p->pWhere || p->pEList->nExpr!=1
3852    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3853   ){
3854     return 0;
3855   }
3856   pTab = p->pSrc->a[0].pTab;
3857   pExpr = p->pEList->a[0].pExpr;
3858   assert( pTab && !pTab->pSelect && pExpr );
3859 
3860   if( IsVirtual(pTab) ) return 0;
3861   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3862   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3863   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3864   if( pExpr->flags&EP_Distinct ) return 0;
3865 
3866   return pTab;
3867 }
3868 
3869 /*
3870 ** If the source-list item passed as an argument was augmented with an
3871 ** INDEXED BY clause, then try to locate the specified index. If there
3872 ** was such a clause and the named index cannot be found, return
3873 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3874 ** pFrom->pIndex and return SQLITE_OK.
3875 */
3876 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3877   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
3878     Table *pTab = pFrom->pTab;
3879     char *zIndexedBy = pFrom->u1.zIndexedBy;
3880     Index *pIdx;
3881     for(pIdx=pTab->pIndex;
3882         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
3883         pIdx=pIdx->pNext
3884     );
3885     if( !pIdx ){
3886       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
3887       pParse->checkSchema = 1;
3888       return SQLITE_ERROR;
3889     }
3890     pFrom->pIBIndex = pIdx;
3891   }
3892   return SQLITE_OK;
3893 }
3894 /*
3895 ** Detect compound SELECT statements that use an ORDER BY clause with
3896 ** an alternative collating sequence.
3897 **
3898 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3899 **
3900 ** These are rewritten as a subquery:
3901 **
3902 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3903 **     ORDER BY ... COLLATE ...
3904 **
3905 ** This transformation is necessary because the multiSelectOrderBy() routine
3906 ** above that generates the code for a compound SELECT with an ORDER BY clause
3907 ** uses a merge algorithm that requires the same collating sequence on the
3908 ** result columns as on the ORDER BY clause.  See ticket
3909 ** http://www.sqlite.org/src/info/6709574d2a
3910 **
3911 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3912 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3913 ** there are COLLATE terms in the ORDER BY.
3914 */
3915 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3916   int i;
3917   Select *pNew;
3918   Select *pX;
3919   sqlite3 *db;
3920   struct ExprList_item *a;
3921   SrcList *pNewSrc;
3922   Parse *pParse;
3923   Token dummy;
3924 
3925   if( p->pPrior==0 ) return WRC_Continue;
3926   if( p->pOrderBy==0 ) return WRC_Continue;
3927   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3928   if( pX==0 ) return WRC_Continue;
3929   a = p->pOrderBy->a;
3930   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3931     if( a[i].pExpr->flags & EP_Collate ) break;
3932   }
3933   if( i<0 ) return WRC_Continue;
3934 
3935   /* If we reach this point, that means the transformation is required. */
3936 
3937   pParse = pWalker->pParse;
3938   db = pParse->db;
3939   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3940   if( pNew==0 ) return WRC_Abort;
3941   memset(&dummy, 0, sizeof(dummy));
3942   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3943   if( pNewSrc==0 ) return WRC_Abort;
3944   *pNew = *p;
3945   p->pSrc = pNewSrc;
3946   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
3947   p->op = TK_SELECT;
3948   p->pWhere = 0;
3949   pNew->pGroupBy = 0;
3950   pNew->pHaving = 0;
3951   pNew->pOrderBy = 0;
3952   p->pPrior = 0;
3953   p->pNext = 0;
3954   p->pWith = 0;
3955   p->selFlags &= ~SF_Compound;
3956   assert( (p->selFlags & SF_Converted)==0 );
3957   p->selFlags |= SF_Converted;
3958   assert( pNew->pPrior!=0 );
3959   pNew->pPrior->pNext = pNew;
3960   pNew->pLimit = 0;
3961   pNew->pOffset = 0;
3962   return WRC_Continue;
3963 }
3964 
3965 /*
3966 ** Check to see if the FROM clause term pFrom has table-valued function
3967 ** arguments.  If it does, leave an error message in pParse and return
3968 ** non-zero, since pFrom is not allowed to be a table-valued function.
3969 */
3970 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
3971   if( pFrom->fg.isTabFunc ){
3972     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
3973     return 1;
3974   }
3975   return 0;
3976 }
3977 
3978 #ifndef SQLITE_OMIT_CTE
3979 /*
3980 ** Argument pWith (which may be NULL) points to a linked list of nested
3981 ** WITH contexts, from inner to outermost. If the table identified by
3982 ** FROM clause element pItem is really a common-table-expression (CTE)
3983 ** then return a pointer to the CTE definition for that table. Otherwise
3984 ** return NULL.
3985 **
3986 ** If a non-NULL value is returned, set *ppContext to point to the With
3987 ** object that the returned CTE belongs to.
3988 */
3989 static struct Cte *searchWith(
3990   With *pWith,                    /* Current innermost WITH clause */
3991   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3992   With **ppContext                /* OUT: WITH clause return value belongs to */
3993 ){
3994   const char *zName;
3995   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3996     With *p;
3997     for(p=pWith; p; p=p->pOuter){
3998       int i;
3999       for(i=0; i<p->nCte; i++){
4000         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4001           *ppContext = p;
4002           return &p->a[i];
4003         }
4004       }
4005     }
4006   }
4007   return 0;
4008 }
4009 
4010 /* The code generator maintains a stack of active WITH clauses
4011 ** with the inner-most WITH clause being at the top of the stack.
4012 **
4013 ** This routine pushes the WITH clause passed as the second argument
4014 ** onto the top of the stack. If argument bFree is true, then this
4015 ** WITH clause will never be popped from the stack. In this case it
4016 ** should be freed along with the Parse object. In other cases, when
4017 ** bFree==0, the With object will be freed along with the SELECT
4018 ** statement with which it is associated.
4019 */
4020 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4021   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4022   if( pWith ){
4023     assert( pParse->pWith!=pWith );
4024     pWith->pOuter = pParse->pWith;
4025     pParse->pWith = pWith;
4026     if( bFree ) pParse->pWithToFree = pWith;
4027   }
4028 }
4029 
4030 /*
4031 ** This function checks if argument pFrom refers to a CTE declared by
4032 ** a WITH clause on the stack currently maintained by the parser. And,
4033 ** if currently processing a CTE expression, if it is a recursive
4034 ** reference to the current CTE.
4035 **
4036 ** If pFrom falls into either of the two categories above, pFrom->pTab
4037 ** and other fields are populated accordingly. The caller should check
4038 ** (pFrom->pTab!=0) to determine whether or not a successful match
4039 ** was found.
4040 **
4041 ** Whether or not a match is found, SQLITE_OK is returned if no error
4042 ** occurs. If an error does occur, an error message is stored in the
4043 ** parser and some error code other than SQLITE_OK returned.
4044 */
4045 static int withExpand(
4046   Walker *pWalker,
4047   struct SrcList_item *pFrom
4048 ){
4049   Parse *pParse = pWalker->pParse;
4050   sqlite3 *db = pParse->db;
4051   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4052   With *pWith;                    /* WITH clause that pCte belongs to */
4053 
4054   assert( pFrom->pTab==0 );
4055 
4056   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4057   if( pCte ){
4058     Table *pTab;
4059     ExprList *pEList;
4060     Select *pSel;
4061     Select *pLeft;                /* Left-most SELECT statement */
4062     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4063     With *pSavedWith;             /* Initial value of pParse->pWith */
4064 
4065     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4066     ** recursive reference to CTE pCte. Leave an error in pParse and return
4067     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4068     ** In this case, proceed.  */
4069     if( pCte->zCteErr ){
4070       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4071       return SQLITE_ERROR;
4072     }
4073     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4074 
4075     assert( pFrom->pTab==0 );
4076     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4077     if( pTab==0 ) return WRC_Abort;
4078     pTab->nRef = 1;
4079     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4080     pTab->iPKey = -1;
4081     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4082     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4083     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4084     if( db->mallocFailed ) return SQLITE_NOMEM;
4085     assert( pFrom->pSelect );
4086 
4087     /* Check if this is a recursive CTE. */
4088     pSel = pFrom->pSelect;
4089     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4090     if( bMayRecursive ){
4091       int i;
4092       SrcList *pSrc = pFrom->pSelect->pSrc;
4093       for(i=0; i<pSrc->nSrc; i++){
4094         struct SrcList_item *pItem = &pSrc->a[i];
4095         if( pItem->zDatabase==0
4096          && pItem->zName!=0
4097          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4098           ){
4099           pItem->pTab = pTab;
4100           pItem->fg.isRecursive = 1;
4101           pTab->nRef++;
4102           pSel->selFlags |= SF_Recursive;
4103         }
4104       }
4105     }
4106 
4107     /* Only one recursive reference is permitted. */
4108     if( pTab->nRef>2 ){
4109       sqlite3ErrorMsg(
4110           pParse, "multiple references to recursive table: %s", pCte->zName
4111       );
4112       return SQLITE_ERROR;
4113     }
4114     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
4115 
4116     pCte->zCteErr = "circular reference: %s";
4117     pSavedWith = pParse->pWith;
4118     pParse->pWith = pWith;
4119     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
4120     pParse->pWith = pWith;
4121 
4122     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4123     pEList = pLeft->pEList;
4124     if( pCte->pCols ){
4125       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4126         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4127             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4128         );
4129         pParse->pWith = pSavedWith;
4130         return SQLITE_ERROR;
4131       }
4132       pEList = pCte->pCols;
4133     }
4134 
4135     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4136     if( bMayRecursive ){
4137       if( pSel->selFlags & SF_Recursive ){
4138         pCte->zCteErr = "multiple recursive references: %s";
4139       }else{
4140         pCte->zCteErr = "recursive reference in a subquery: %s";
4141       }
4142       sqlite3WalkSelect(pWalker, pSel);
4143     }
4144     pCte->zCteErr = 0;
4145     pParse->pWith = pSavedWith;
4146   }
4147 
4148   return SQLITE_OK;
4149 }
4150 #endif
4151 
4152 #ifndef SQLITE_OMIT_CTE
4153 /*
4154 ** If the SELECT passed as the second argument has an associated WITH
4155 ** clause, pop it from the stack stored as part of the Parse object.
4156 **
4157 ** This function is used as the xSelectCallback2() callback by
4158 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4159 ** names and other FROM clause elements.
4160 */
4161 static void selectPopWith(Walker *pWalker, Select *p){
4162   Parse *pParse = pWalker->pParse;
4163   With *pWith = findRightmost(p)->pWith;
4164   if( pWith!=0 ){
4165     assert( pParse->pWith==pWith );
4166     pParse->pWith = pWith->pOuter;
4167   }
4168 }
4169 #else
4170 #define selectPopWith 0
4171 #endif
4172 
4173 /*
4174 ** This routine is a Walker callback for "expanding" a SELECT statement.
4175 ** "Expanding" means to do the following:
4176 **
4177 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4178 **         element of the FROM clause.
4179 **
4180 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4181 **         defines FROM clause.  When views appear in the FROM clause,
4182 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4183 **         that implements the view.  A copy is made of the view's SELECT
4184 **         statement so that we can freely modify or delete that statement
4185 **         without worrying about messing up the persistent representation
4186 **         of the view.
4187 **
4188 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4189 **         on joins and the ON and USING clause of joins.
4190 **
4191 **    (4)  Scan the list of columns in the result set (pEList) looking
4192 **         for instances of the "*" operator or the TABLE.* operator.
4193 **         If found, expand each "*" to be every column in every table
4194 **         and TABLE.* to be every column in TABLE.
4195 **
4196 */
4197 static int selectExpander(Walker *pWalker, Select *p){
4198   Parse *pParse = pWalker->pParse;
4199   int i, j, k;
4200   SrcList *pTabList;
4201   ExprList *pEList;
4202   struct SrcList_item *pFrom;
4203   sqlite3 *db = pParse->db;
4204   Expr *pE, *pRight, *pExpr;
4205   u16 selFlags = p->selFlags;
4206 
4207   p->selFlags |= SF_Expanded;
4208   if( db->mallocFailed  ){
4209     return WRC_Abort;
4210   }
4211   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
4212     return WRC_Prune;
4213   }
4214   pTabList = p->pSrc;
4215   pEList = p->pEList;
4216   if( pWalker->xSelectCallback2==selectPopWith ){
4217     sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
4218   }
4219 
4220   /* Make sure cursor numbers have been assigned to all entries in
4221   ** the FROM clause of the SELECT statement.
4222   */
4223   sqlite3SrcListAssignCursors(pParse, pTabList);
4224 
4225   /* Look up every table named in the FROM clause of the select.  If
4226   ** an entry of the FROM clause is a subquery instead of a table or view,
4227   ** then create a transient table structure to describe the subquery.
4228   */
4229   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4230     Table *pTab;
4231     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4232     if( pFrom->fg.isRecursive ) continue;
4233     assert( pFrom->pTab==0 );
4234 #ifndef SQLITE_OMIT_CTE
4235     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4236     if( pFrom->pTab ) {} else
4237 #endif
4238     if( pFrom->zName==0 ){
4239 #ifndef SQLITE_OMIT_SUBQUERY
4240       Select *pSel = pFrom->pSelect;
4241       /* A sub-query in the FROM clause of a SELECT */
4242       assert( pSel!=0 );
4243       assert( pFrom->pTab==0 );
4244       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4245       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4246       if( pTab==0 ) return WRC_Abort;
4247       pTab->nRef = 1;
4248       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4249       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4250       sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4251       pTab->iPKey = -1;
4252       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4253       pTab->tabFlags |= TF_Ephemeral;
4254 #endif
4255     }else{
4256       /* An ordinary table or view name in the FROM clause */
4257       assert( pFrom->pTab==0 );
4258       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4259       if( pTab==0 ) return WRC_Abort;
4260       if( pTab->nRef==0xffff ){
4261         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4262            pTab->zName);
4263         pFrom->pTab = 0;
4264         return WRC_Abort;
4265       }
4266       pTab->nRef++;
4267       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4268         return WRC_Abort;
4269       }
4270 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4271       if( IsVirtual(pTab) || pTab->pSelect ){
4272         i16 nCol;
4273         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4274         assert( pFrom->pSelect==0 );
4275         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4276         sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
4277         nCol = pTab->nCol;
4278         pTab->nCol = -1;
4279         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4280         pTab->nCol = nCol;
4281       }
4282 #endif
4283     }
4284 
4285     /* Locate the index named by the INDEXED BY clause, if any. */
4286     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4287       return WRC_Abort;
4288     }
4289   }
4290 
4291   /* Process NATURAL keywords, and ON and USING clauses of joins.
4292   */
4293   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4294     return WRC_Abort;
4295   }
4296 
4297   /* For every "*" that occurs in the column list, insert the names of
4298   ** all columns in all tables.  And for every TABLE.* insert the names
4299   ** of all columns in TABLE.  The parser inserted a special expression
4300   ** with the TK_ASTERISK operator for each "*" that it found in the column
4301   ** list.  The following code just has to locate the TK_ASTERISK
4302   ** expressions and expand each one to the list of all columns in
4303   ** all tables.
4304   **
4305   ** The first loop just checks to see if there are any "*" operators
4306   ** that need expanding.
4307   */
4308   for(k=0; k<pEList->nExpr; k++){
4309     pE = pEList->a[k].pExpr;
4310     if( pE->op==TK_ASTERISK ) break;
4311     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4312     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4313     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4314   }
4315   if( k<pEList->nExpr ){
4316     /*
4317     ** If we get here it means the result set contains one or more "*"
4318     ** operators that need to be expanded.  Loop through each expression
4319     ** in the result set and expand them one by one.
4320     */
4321     struct ExprList_item *a = pEList->a;
4322     ExprList *pNew = 0;
4323     int flags = pParse->db->flags;
4324     int longNames = (flags & SQLITE_FullColNames)!=0
4325                       && (flags & SQLITE_ShortColNames)==0;
4326 
4327     for(k=0; k<pEList->nExpr; k++){
4328       pE = a[k].pExpr;
4329       pRight = pE->pRight;
4330       assert( pE->op!=TK_DOT || pRight!=0 );
4331       if( pE->op!=TK_ASTERISK
4332        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4333       ){
4334         /* This particular expression does not need to be expanded.
4335         */
4336         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4337         if( pNew ){
4338           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4339           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4340           a[k].zName = 0;
4341           a[k].zSpan = 0;
4342         }
4343         a[k].pExpr = 0;
4344       }else{
4345         /* This expression is a "*" or a "TABLE.*" and needs to be
4346         ** expanded. */
4347         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4348         char *zTName = 0;       /* text of name of TABLE */
4349         if( pE->op==TK_DOT ){
4350           assert( pE->pLeft!=0 );
4351           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4352           zTName = pE->pLeft->u.zToken;
4353         }
4354         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4355           Table *pTab = pFrom->pTab;
4356           Select *pSub = pFrom->pSelect;
4357           char *zTabName = pFrom->zAlias;
4358           const char *zSchemaName = 0;
4359           int iDb;
4360           if( zTabName==0 ){
4361             zTabName = pTab->zName;
4362           }
4363           if( db->mallocFailed ) break;
4364           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4365             pSub = 0;
4366             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4367               continue;
4368             }
4369             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4370             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4371           }
4372           for(j=0; j<pTab->nCol; j++){
4373             char *zName = pTab->aCol[j].zName;
4374             char *zColname;  /* The computed column name */
4375             char *zToFree;   /* Malloced string that needs to be freed */
4376             Token sColname;  /* Computed column name as a token */
4377 
4378             assert( zName );
4379             if( zTName && pSub
4380              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4381             ){
4382               continue;
4383             }
4384 
4385             /* If a column is marked as 'hidden', omit it from the expanded
4386             ** result-set list unless the SELECT has the SF_IncludeHidden
4387             ** bit set.
4388             */
4389             if( (p->selFlags & SF_IncludeHidden)==0
4390              && IsHiddenColumn(&pTab->aCol[j])
4391             ){
4392               continue;
4393             }
4394             tableSeen = 1;
4395 
4396             if( i>0 && zTName==0 ){
4397               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4398                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4399               ){
4400                 /* In a NATURAL join, omit the join columns from the
4401                 ** table to the right of the join */
4402                 continue;
4403               }
4404               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4405                 /* In a join with a USING clause, omit columns in the
4406                 ** using clause from the table on the right. */
4407                 continue;
4408               }
4409             }
4410             pRight = sqlite3Expr(db, TK_ID, zName);
4411             zColname = zName;
4412             zToFree = 0;
4413             if( longNames || pTabList->nSrc>1 ){
4414               Expr *pLeft;
4415               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4416               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4417               if( zSchemaName ){
4418                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4419                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4420               }
4421               if( longNames ){
4422                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4423                 zToFree = zColname;
4424               }
4425             }else{
4426               pExpr = pRight;
4427             }
4428             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4429             sColname.z = zColname;
4430             sColname.n = sqlite3Strlen30(zColname);
4431             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4432             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4433               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4434               if( pSub ){
4435                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4436                 testcase( pX->zSpan==0 );
4437               }else{
4438                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4439                                            zSchemaName, zTabName, zColname);
4440                 testcase( pX->zSpan==0 );
4441               }
4442               pX->bSpanIsTab = 1;
4443             }
4444             sqlite3DbFree(db, zToFree);
4445           }
4446         }
4447         if( !tableSeen ){
4448           if( zTName ){
4449             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4450           }else{
4451             sqlite3ErrorMsg(pParse, "no tables specified");
4452           }
4453         }
4454       }
4455     }
4456     sqlite3ExprListDelete(db, pEList);
4457     p->pEList = pNew;
4458   }
4459 #if SQLITE_MAX_COLUMN
4460   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4461     sqlite3ErrorMsg(pParse, "too many columns in result set");
4462     return WRC_Abort;
4463   }
4464 #endif
4465   return WRC_Continue;
4466 }
4467 
4468 /*
4469 ** No-op routine for the parse-tree walker.
4470 **
4471 ** When this routine is the Walker.xExprCallback then expression trees
4472 ** are walked without any actions being taken at each node.  Presumably,
4473 ** when this routine is used for Walker.xExprCallback then
4474 ** Walker.xSelectCallback is set to do something useful for every
4475 ** subquery in the parser tree.
4476 */
4477 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4478   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4479   return WRC_Continue;
4480 }
4481 
4482 /*
4483 ** This routine "expands" a SELECT statement and all of its subqueries.
4484 ** For additional information on what it means to "expand" a SELECT
4485 ** statement, see the comment on the selectExpand worker callback above.
4486 **
4487 ** Expanding a SELECT statement is the first step in processing a
4488 ** SELECT statement.  The SELECT statement must be expanded before
4489 ** name resolution is performed.
4490 **
4491 ** If anything goes wrong, an error message is written into pParse.
4492 ** The calling function can detect the problem by looking at pParse->nErr
4493 ** and/or pParse->db->mallocFailed.
4494 */
4495 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4496   Walker w;
4497   memset(&w, 0, sizeof(w));
4498   w.xExprCallback = sqlite3ExprWalkNoop;
4499   w.pParse = pParse;
4500   if( pParse->hasCompound ){
4501     w.xSelectCallback = convertCompoundSelectToSubquery;
4502     sqlite3WalkSelect(&w, pSelect);
4503   }
4504   w.xSelectCallback = selectExpander;
4505   if( (pSelect->selFlags & SF_MultiValue)==0 ){
4506     w.xSelectCallback2 = selectPopWith;
4507   }
4508   sqlite3WalkSelect(&w, pSelect);
4509 }
4510 
4511 
4512 #ifndef SQLITE_OMIT_SUBQUERY
4513 /*
4514 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4515 ** interface.
4516 **
4517 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4518 ** information to the Table structure that represents the result set
4519 ** of that subquery.
4520 **
4521 ** The Table structure that represents the result set was constructed
4522 ** by selectExpander() but the type and collation information was omitted
4523 ** at that point because identifiers had not yet been resolved.  This
4524 ** routine is called after identifier resolution.
4525 */
4526 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4527   Parse *pParse;
4528   int i;
4529   SrcList *pTabList;
4530   struct SrcList_item *pFrom;
4531 
4532   assert( p->selFlags & SF_Resolved );
4533   assert( (p->selFlags & SF_HasTypeInfo)==0 );
4534   p->selFlags |= SF_HasTypeInfo;
4535   pParse = pWalker->pParse;
4536   pTabList = p->pSrc;
4537   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4538     Table *pTab = pFrom->pTab;
4539     assert( pTab!=0 );
4540     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
4541       /* A sub-query in the FROM clause of a SELECT */
4542       Select *pSel = pFrom->pSelect;
4543       if( pSel ){
4544         while( pSel->pPrior ) pSel = pSel->pPrior;
4545         selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4546       }
4547     }
4548   }
4549 }
4550 #endif
4551 
4552 
4553 /*
4554 ** This routine adds datatype and collating sequence information to
4555 ** the Table structures of all FROM-clause subqueries in a
4556 ** SELECT statement.
4557 **
4558 ** Use this routine after name resolution.
4559 */
4560 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4561 #ifndef SQLITE_OMIT_SUBQUERY
4562   Walker w;
4563   memset(&w, 0, sizeof(w));
4564   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4565   w.xExprCallback = sqlite3ExprWalkNoop;
4566   w.pParse = pParse;
4567   sqlite3WalkSelect(&w, pSelect);
4568 #endif
4569 }
4570 
4571 
4572 /*
4573 ** This routine sets up a SELECT statement for processing.  The
4574 ** following is accomplished:
4575 **
4576 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4577 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4578 **     *  ON and USING clauses are shifted into WHERE statements
4579 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4580 **     *  Identifiers in expression are matched to tables.
4581 **
4582 ** This routine acts recursively on all subqueries within the SELECT.
4583 */
4584 void sqlite3SelectPrep(
4585   Parse *pParse,         /* The parser context */
4586   Select *p,             /* The SELECT statement being coded. */
4587   NameContext *pOuterNC  /* Name context for container */
4588 ){
4589   sqlite3 *db;
4590   if( NEVER(p==0) ) return;
4591   db = pParse->db;
4592   if( db->mallocFailed ) return;
4593   if( p->selFlags & SF_HasTypeInfo ) return;
4594   sqlite3SelectExpand(pParse, p);
4595   if( pParse->nErr || db->mallocFailed ) return;
4596   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4597   if( pParse->nErr || db->mallocFailed ) return;
4598   sqlite3SelectAddTypeInfo(pParse, p);
4599 }
4600 
4601 /*
4602 ** Reset the aggregate accumulator.
4603 **
4604 ** The aggregate accumulator is a set of memory cells that hold
4605 ** intermediate results while calculating an aggregate.  This
4606 ** routine generates code that stores NULLs in all of those memory
4607 ** cells.
4608 */
4609 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4610   Vdbe *v = pParse->pVdbe;
4611   int i;
4612   struct AggInfo_func *pFunc;
4613   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4614   if( nReg==0 ) return;
4615 #ifdef SQLITE_DEBUG
4616   /* Verify that all AggInfo registers are within the range specified by
4617   ** AggInfo.mnReg..AggInfo.mxReg */
4618   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4619   for(i=0; i<pAggInfo->nColumn; i++){
4620     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4621          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4622   }
4623   for(i=0; i<pAggInfo->nFunc; i++){
4624     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4625          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4626   }
4627 #endif
4628   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4629   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4630     if( pFunc->iDistinct>=0 ){
4631       Expr *pE = pFunc->pExpr;
4632       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4633       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4634         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4635            "argument");
4636         pFunc->iDistinct = -1;
4637       }else{
4638         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4639         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4640                           (char*)pKeyInfo, P4_KEYINFO);
4641       }
4642     }
4643   }
4644 }
4645 
4646 /*
4647 ** Invoke the OP_AggFinalize opcode for every aggregate function
4648 ** in the AggInfo structure.
4649 */
4650 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4651   Vdbe *v = pParse->pVdbe;
4652   int i;
4653   struct AggInfo_func *pF;
4654   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4655     ExprList *pList = pF->pExpr->x.pList;
4656     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4657     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4658                       (void*)pF->pFunc, P4_FUNCDEF);
4659   }
4660 }
4661 
4662 /*
4663 ** Update the accumulator memory cells for an aggregate based on
4664 ** the current cursor position.
4665 */
4666 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4667   Vdbe *v = pParse->pVdbe;
4668   int i;
4669   int regHit = 0;
4670   int addrHitTest = 0;
4671   struct AggInfo_func *pF;
4672   struct AggInfo_col *pC;
4673 
4674   pAggInfo->directMode = 1;
4675   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4676     int nArg;
4677     int addrNext = 0;
4678     int regAgg;
4679     ExprList *pList = pF->pExpr->x.pList;
4680     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4681     if( pList ){
4682       nArg = pList->nExpr;
4683       regAgg = sqlite3GetTempRange(pParse, nArg);
4684       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
4685     }else{
4686       nArg = 0;
4687       regAgg = 0;
4688     }
4689     if( pF->iDistinct>=0 ){
4690       addrNext = sqlite3VdbeMakeLabel(v);
4691       testcase( nArg==0 );  /* Error condition */
4692       testcase( nArg>1 );   /* Also an error */
4693       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4694     }
4695     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4696       CollSeq *pColl = 0;
4697       struct ExprList_item *pItem;
4698       int j;
4699       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4700       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4701         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4702       }
4703       if( !pColl ){
4704         pColl = pParse->db->pDfltColl;
4705       }
4706       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4707       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4708     }
4709     sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem,
4710                       (void*)pF->pFunc, P4_FUNCDEF);
4711     sqlite3VdbeChangeP5(v, (u8)nArg);
4712     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4713     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4714     if( addrNext ){
4715       sqlite3VdbeResolveLabel(v, addrNext);
4716       sqlite3ExprCacheClear(pParse);
4717     }
4718   }
4719 
4720   /* Before populating the accumulator registers, clear the column cache.
4721   ** Otherwise, if any of the required column values are already present
4722   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4723   ** to pC->iMem. But by the time the value is used, the original register
4724   ** may have been used, invalidating the underlying buffer holding the
4725   ** text or blob value. See ticket [883034dcb5].
4726   **
4727   ** Another solution would be to change the OP_SCopy used to copy cached
4728   ** values to an OP_Copy.
4729   */
4730   if( regHit ){
4731     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4732   }
4733   sqlite3ExprCacheClear(pParse);
4734   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4735     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4736   }
4737   pAggInfo->directMode = 0;
4738   sqlite3ExprCacheClear(pParse);
4739   if( addrHitTest ){
4740     sqlite3VdbeJumpHere(v, addrHitTest);
4741   }
4742 }
4743 
4744 /*
4745 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4746 ** count(*) query ("SELECT count(*) FROM pTab").
4747 */
4748 #ifndef SQLITE_OMIT_EXPLAIN
4749 static void explainSimpleCount(
4750   Parse *pParse,                  /* Parse context */
4751   Table *pTab,                    /* Table being queried */
4752   Index *pIdx                     /* Index used to optimize scan, or NULL */
4753 ){
4754   if( pParse->explain==2 ){
4755     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
4756     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4757         pTab->zName,
4758         bCover ? " USING COVERING INDEX " : "",
4759         bCover ? pIdx->zName : ""
4760     );
4761     sqlite3VdbeAddOp4(
4762         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4763     );
4764   }
4765 }
4766 #else
4767 # define explainSimpleCount(a,b,c)
4768 #endif
4769 
4770 /*
4771 ** Generate code for the SELECT statement given in the p argument.
4772 **
4773 ** The results are returned according to the SelectDest structure.
4774 ** See comments in sqliteInt.h for further information.
4775 **
4776 ** This routine returns the number of errors.  If any errors are
4777 ** encountered, then an appropriate error message is left in
4778 ** pParse->zErrMsg.
4779 **
4780 ** This routine does NOT free the Select structure passed in.  The
4781 ** calling function needs to do that.
4782 */
4783 int sqlite3Select(
4784   Parse *pParse,         /* The parser context */
4785   Select *p,             /* The SELECT statement being coded. */
4786   SelectDest *pDest      /* What to do with the query results */
4787 ){
4788   int i, j;              /* Loop counters */
4789   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4790   Vdbe *v;               /* The virtual machine under construction */
4791   int isAgg;             /* True for select lists like "count(*)" */
4792   ExprList *pEList = 0;  /* List of columns to extract. */
4793   SrcList *pTabList;     /* List of tables to select from */
4794   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4795   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4796   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4797   int rc = 1;            /* Value to return from this function */
4798   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4799   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4800   AggInfo sAggInfo;      /* Information used by aggregate queries */
4801   int iEnd;              /* Address of the end of the query */
4802   sqlite3 *db;           /* The database connection */
4803 
4804 #ifndef SQLITE_OMIT_EXPLAIN
4805   int iRestoreSelectId = pParse->iSelectId;
4806   pParse->iSelectId = pParse->iNextSelectId++;
4807 #endif
4808 
4809   db = pParse->db;
4810   if( p==0 || db->mallocFailed || pParse->nErr ){
4811     return 1;
4812   }
4813   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4814   memset(&sAggInfo, 0, sizeof(sAggInfo));
4815 #if SELECTTRACE_ENABLED
4816   pParse->nSelectIndent++;
4817   SELECTTRACE(1,pParse,p, ("begin processing:\n"));
4818   if( sqlite3SelectTrace & 0x100 ){
4819     sqlite3TreeViewSelect(0, p, 0);
4820   }
4821 #endif
4822 
4823   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4824   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4825   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4826   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4827   if( IgnorableOrderby(pDest) ){
4828     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4829            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4830            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4831            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4832     /* If ORDER BY makes no difference in the output then neither does
4833     ** DISTINCT so it can be removed too. */
4834     sqlite3ExprListDelete(db, p->pOrderBy);
4835     p->pOrderBy = 0;
4836     p->selFlags &= ~SF_Distinct;
4837   }
4838   sqlite3SelectPrep(pParse, p, 0);
4839   memset(&sSort, 0, sizeof(sSort));
4840   sSort.pOrderBy = p->pOrderBy;
4841   pTabList = p->pSrc;
4842   if( pParse->nErr || db->mallocFailed ){
4843     goto select_end;
4844   }
4845   assert( p->pEList!=0 );
4846   isAgg = (p->selFlags & SF_Aggregate)!=0;
4847 #if SELECTTRACE_ENABLED
4848   if( sqlite3SelectTrace & 0x100 ){
4849     SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
4850     sqlite3TreeViewSelect(0, p, 0);
4851   }
4852 #endif
4853 
4854 
4855   /* If writing to memory or generating a set
4856   ** only a single column may be output.
4857   */
4858 #ifndef SQLITE_OMIT_SUBQUERY
4859   if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){
4860     goto select_end;
4861   }
4862 #endif
4863 
4864   /* Try to flatten subqueries in the FROM clause up into the main query
4865   */
4866 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4867   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4868     struct SrcList_item *pItem = &pTabList->a[i];
4869     Select *pSub = pItem->pSelect;
4870     int isAggSub;
4871     Table *pTab = pItem->pTab;
4872     if( pSub==0 ) continue;
4873 
4874     /* Catch mismatch in the declared columns of a view and the number of
4875     ** columns in the SELECT on the RHS */
4876     if( pTab->nCol!=pSub->pEList->nExpr ){
4877       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
4878                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
4879       goto select_end;
4880     }
4881 
4882     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4883     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4884       /* This subquery can be absorbed into its parent. */
4885       if( isAggSub ){
4886         isAgg = 1;
4887         p->selFlags |= SF_Aggregate;
4888       }
4889       i = -1;
4890     }
4891     pTabList = p->pSrc;
4892     if( db->mallocFailed ) goto select_end;
4893     if( !IgnorableOrderby(pDest) ){
4894       sSort.pOrderBy = p->pOrderBy;
4895     }
4896   }
4897 #endif
4898 
4899   /* Get a pointer the VDBE under construction, allocating a new VDBE if one
4900   ** does not already exist */
4901   v = sqlite3GetVdbe(pParse);
4902   if( v==0 ) goto select_end;
4903 
4904 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4905   /* Handle compound SELECT statements using the separate multiSelect()
4906   ** procedure.
4907   */
4908   if( p->pPrior ){
4909     rc = multiSelect(pParse, p, pDest);
4910     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4911 #if SELECTTRACE_ENABLED
4912     SELECTTRACE(1,pParse,p,("end compound-select processing\n"));
4913     pParse->nSelectIndent--;
4914 #endif
4915     return rc;
4916   }
4917 #endif
4918 
4919   /* Generate code for all sub-queries in the FROM clause
4920   */
4921 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4922   for(i=0; i<pTabList->nSrc; i++){
4923     struct SrcList_item *pItem = &pTabList->a[i];
4924     SelectDest dest;
4925     Select *pSub = pItem->pSelect;
4926     if( pSub==0 ) continue;
4927 
4928     /* Sometimes the code for a subquery will be generated more than
4929     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4930     ** for example.  In that case, do not regenerate the code to manifest
4931     ** a view or the co-routine to implement a view.  The first instance
4932     ** is sufficient, though the subroutine to manifest the view does need
4933     ** to be invoked again. */
4934     if( pItem->addrFillSub ){
4935       if( pItem->fg.viaCoroutine==0 ){
4936         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4937       }
4938       continue;
4939     }
4940 
4941     /* Increment Parse.nHeight by the height of the largest expression
4942     ** tree referred to by this, the parent select. The child select
4943     ** may contain expression trees of at most
4944     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4945     ** more conservative than necessary, but much easier than enforcing
4946     ** an exact limit.
4947     */
4948     pParse->nHeight += sqlite3SelectExprHeight(p);
4949 
4950     /* Make copies of constant WHERE-clause terms in the outer query down
4951     ** inside the subquery.  This can help the subquery to run more efficiently.
4952     */
4953     if( (pItem->fg.jointype & JT_OUTER)==0
4954      && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor)
4955     ){
4956 #if SELECTTRACE_ENABLED
4957       if( sqlite3SelectTrace & 0x100 ){
4958         SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n"));
4959         sqlite3TreeViewSelect(0, p, 0);
4960       }
4961 #endif
4962     }
4963 
4964     /* Generate code to implement the subquery
4965     */
4966     if( pTabList->nSrc==1
4967      && (p->selFlags & SF_All)==0
4968      && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4969     ){
4970       /* Implement a co-routine that will return a single row of the result
4971       ** set on each invocation.
4972       */
4973       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4974       pItem->regReturn = ++pParse->nMem;
4975       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4976       VdbeComment((v, "%s", pItem->pTab->zName));
4977       pItem->addrFillSub = addrTop;
4978       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4979       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4980       sqlite3Select(pParse, pSub, &dest);
4981       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4982       pItem->fg.viaCoroutine = 1;
4983       pItem->regResult = dest.iSdst;
4984       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4985       sqlite3VdbeJumpHere(v, addrTop-1);
4986       sqlite3ClearTempRegCache(pParse);
4987     }else{
4988       /* Generate a subroutine that will fill an ephemeral table with
4989       ** the content of this subquery.  pItem->addrFillSub will point
4990       ** to the address of the generated subroutine.  pItem->regReturn
4991       ** is a register allocated to hold the subroutine return address
4992       */
4993       int topAddr;
4994       int onceAddr = 0;
4995       int retAddr;
4996       assert( pItem->addrFillSub==0 );
4997       pItem->regReturn = ++pParse->nMem;
4998       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4999       pItem->addrFillSub = topAddr+1;
5000       if( pItem->fg.isCorrelated==0 ){
5001         /* If the subquery is not correlated and if we are not inside of
5002         ** a trigger, then we only need to compute the value of the subquery
5003         ** once. */
5004         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
5005         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5006       }else{
5007         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5008       }
5009       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5010       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
5011       sqlite3Select(pParse, pSub, &dest);
5012       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
5013       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5014       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5015       VdbeComment((v, "end %s", pItem->pTab->zName));
5016       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5017       sqlite3ClearTempRegCache(pParse);
5018     }
5019     if( db->mallocFailed ) goto select_end;
5020     pParse->nHeight -= sqlite3SelectExprHeight(p);
5021   }
5022 #endif
5023 
5024   /* Various elements of the SELECT copied into local variables for
5025   ** convenience */
5026   pEList = p->pEList;
5027   pWhere = p->pWhere;
5028   pGroupBy = p->pGroupBy;
5029   pHaving = p->pHaving;
5030   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5031 
5032 #if SELECTTRACE_ENABLED
5033   if( sqlite3SelectTrace & 0x400 ){
5034     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5035     sqlite3TreeViewSelect(0, p, 0);
5036   }
5037 #endif
5038 
5039   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5040   ** if the select-list is the same as the ORDER BY list, then this query
5041   ** can be rewritten as a GROUP BY. In other words, this:
5042   **
5043   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5044   **
5045   ** is transformed to:
5046   **
5047   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5048   **
5049   ** The second form is preferred as a single index (or temp-table) may be
5050   ** used for both the ORDER BY and DISTINCT processing. As originally
5051   ** written the query must use a temp-table for at least one of the ORDER
5052   ** BY and DISTINCT, and an index or separate temp-table for the other.
5053   */
5054   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5055    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5056   ){
5057     p->selFlags &= ~SF_Distinct;
5058     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5059     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5060     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5061     ** original setting of the SF_Distinct flag, not the current setting */
5062     assert( sDistinct.isTnct );
5063   }
5064 
5065   /* If there is an ORDER BY clause, then create an ephemeral index to
5066   ** do the sorting.  But this sorting ephemeral index might end up
5067   ** being unused if the data can be extracted in pre-sorted order.
5068   ** If that is the case, then the OP_OpenEphemeral instruction will be
5069   ** changed to an OP_Noop once we figure out that the sorting index is
5070   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5071   ** that change.
5072   */
5073   if( sSort.pOrderBy ){
5074     KeyInfo *pKeyInfo;
5075     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
5076     sSort.iECursor = pParse->nTab++;
5077     sSort.addrSortIndex =
5078       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5079           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5080           (char*)pKeyInfo, P4_KEYINFO
5081       );
5082   }else{
5083     sSort.addrSortIndex = -1;
5084   }
5085 
5086   /* If the output is destined for a temporary table, open that table.
5087   */
5088   if( pDest->eDest==SRT_EphemTab ){
5089     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
5090   }
5091 
5092   /* Set the limiter.
5093   */
5094   iEnd = sqlite3VdbeMakeLabel(v);
5095   p->nSelectRow = LARGEST_INT64;
5096   computeLimitRegisters(pParse, p, iEnd);
5097   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
5098     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
5099     sSort.sortFlags |= SORTFLAG_UseSorter;
5100   }
5101 
5102   /* Open an ephemeral index to use for the distinct set.
5103   */
5104   if( p->selFlags & SF_Distinct ){
5105     sDistinct.tabTnct = pParse->nTab++;
5106     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5107                              sDistinct.tabTnct, 0, 0,
5108                              (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
5109                              P4_KEYINFO);
5110     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
5111     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
5112   }else{
5113     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
5114   }
5115 
5116   if( !isAgg && pGroupBy==0 ){
5117     /* No aggregate functions and no GROUP BY clause */
5118     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
5119 
5120     /* Begin the database scan. */
5121     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
5122                                p->pEList, wctrlFlags, 0);
5123     if( pWInfo==0 ) goto select_end;
5124     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
5125       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
5126     }
5127     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
5128       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
5129     }
5130     if( sSort.pOrderBy ){
5131       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
5132       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
5133         sSort.pOrderBy = 0;
5134       }
5135     }
5136 
5137     /* If sorting index that was created by a prior OP_OpenEphemeral
5138     ** instruction ended up not being needed, then change the OP_OpenEphemeral
5139     ** into an OP_Noop.
5140     */
5141     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
5142       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5143     }
5144 
5145     /* Use the standard inner loop. */
5146     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
5147                     sqlite3WhereContinueLabel(pWInfo),
5148                     sqlite3WhereBreakLabel(pWInfo));
5149 
5150     /* End the database scan loop.
5151     */
5152     sqlite3WhereEnd(pWInfo);
5153   }else{
5154     /* This case when there exist aggregate functions or a GROUP BY clause
5155     ** or both */
5156     NameContext sNC;    /* Name context for processing aggregate information */
5157     int iAMem;          /* First Mem address for storing current GROUP BY */
5158     int iBMem;          /* First Mem address for previous GROUP BY */
5159     int iUseFlag;       /* Mem address holding flag indicating that at least
5160                         ** one row of the input to the aggregator has been
5161                         ** processed */
5162     int iAbortFlag;     /* Mem address which causes query abort if positive */
5163     int groupBySort;    /* Rows come from source in GROUP BY order */
5164     int addrEnd;        /* End of processing for this SELECT */
5165     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
5166     int sortOut = 0;    /* Output register from the sorter */
5167     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
5168 
5169     /* Remove any and all aliases between the result set and the
5170     ** GROUP BY clause.
5171     */
5172     if( pGroupBy ){
5173       int k;                        /* Loop counter */
5174       struct ExprList_item *pItem;  /* For looping over expression in a list */
5175 
5176       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
5177         pItem->u.x.iAlias = 0;
5178       }
5179       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
5180         pItem->u.x.iAlias = 0;
5181       }
5182       if( p->nSelectRow>100 ) p->nSelectRow = 100;
5183     }else{
5184       p->nSelectRow = 1;
5185     }
5186 
5187     /* If there is both a GROUP BY and an ORDER BY clause and they are
5188     ** identical, then it may be possible to disable the ORDER BY clause
5189     ** on the grounds that the GROUP BY will cause elements to come out
5190     ** in the correct order. It also may not - the GROUP BY might use a
5191     ** database index that causes rows to be grouped together as required
5192     ** but not actually sorted. Either way, record the fact that the
5193     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
5194     ** variable.  */
5195     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
5196       orderByGrp = 1;
5197     }
5198 
5199     /* Create a label to jump to when we want to abort the query */
5200     addrEnd = sqlite3VdbeMakeLabel(v);
5201 
5202     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
5203     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
5204     ** SELECT statement.
5205     */
5206     memset(&sNC, 0, sizeof(sNC));
5207     sNC.pParse = pParse;
5208     sNC.pSrcList = pTabList;
5209     sNC.pAggInfo = &sAggInfo;
5210     sAggInfo.mnReg = pParse->nMem+1;
5211     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
5212     sAggInfo.pGroupBy = pGroupBy;
5213     sqlite3ExprAnalyzeAggList(&sNC, pEList);
5214     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
5215     if( pHaving ){
5216       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
5217     }
5218     sAggInfo.nAccumulator = sAggInfo.nColumn;
5219     for(i=0; i<sAggInfo.nFunc; i++){
5220       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
5221       sNC.ncFlags |= NC_InAggFunc;
5222       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
5223       sNC.ncFlags &= ~NC_InAggFunc;
5224     }
5225     sAggInfo.mxReg = pParse->nMem;
5226     if( db->mallocFailed ) goto select_end;
5227 
5228     /* Processing for aggregates with GROUP BY is very different and
5229     ** much more complex than aggregates without a GROUP BY.
5230     */
5231     if( pGroupBy ){
5232       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
5233       int addr1;          /* A-vs-B comparision jump */
5234       int addrOutputRow;  /* Start of subroutine that outputs a result row */
5235       int regOutputRow;   /* Return address register for output subroutine */
5236       int addrSetAbort;   /* Set the abort flag and return */
5237       int addrTopOfLoop;  /* Top of the input loop */
5238       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
5239       int addrReset;      /* Subroutine for resetting the accumulator */
5240       int regReset;       /* Return address register for reset subroutine */
5241 
5242       /* If there is a GROUP BY clause we might need a sorting index to
5243       ** implement it.  Allocate that sorting index now.  If it turns out
5244       ** that we do not need it after all, the OP_SorterOpen instruction
5245       ** will be converted into a Noop.
5246       */
5247       sAggInfo.sortingIdx = pParse->nTab++;
5248       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
5249       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
5250           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
5251           0, (char*)pKeyInfo, P4_KEYINFO);
5252 
5253       /* Initialize memory locations used by GROUP BY aggregate processing
5254       */
5255       iUseFlag = ++pParse->nMem;
5256       iAbortFlag = ++pParse->nMem;
5257       regOutputRow = ++pParse->nMem;
5258       addrOutputRow = sqlite3VdbeMakeLabel(v);
5259       regReset = ++pParse->nMem;
5260       addrReset = sqlite3VdbeMakeLabel(v);
5261       iAMem = pParse->nMem + 1;
5262       pParse->nMem += pGroupBy->nExpr;
5263       iBMem = pParse->nMem + 1;
5264       pParse->nMem += pGroupBy->nExpr;
5265       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
5266       VdbeComment((v, "clear abort flag"));
5267       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
5268       VdbeComment((v, "indicate accumulator empty"));
5269       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
5270 
5271       /* Begin a loop that will extract all source rows in GROUP BY order.
5272       ** This might involve two separate loops with an OP_Sort in between, or
5273       ** it might be a single loop that uses an index to extract information
5274       ** in the right order to begin with.
5275       */
5276       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5277       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
5278           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
5279       );
5280       if( pWInfo==0 ) goto select_end;
5281       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
5282         /* The optimizer is able to deliver rows in group by order so
5283         ** we do not have to sort.  The OP_OpenEphemeral table will be
5284         ** cancelled later because we still need to use the pKeyInfo
5285         */
5286         groupBySort = 0;
5287       }else{
5288         /* Rows are coming out in undetermined order.  We have to push
5289         ** each row into a sorting index, terminate the first loop,
5290         ** then loop over the sorting index in order to get the output
5291         ** in sorted order
5292         */
5293         int regBase;
5294         int regRecord;
5295         int nCol;
5296         int nGroupBy;
5297 
5298         explainTempTable(pParse,
5299             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
5300                     "DISTINCT" : "GROUP BY");
5301 
5302         groupBySort = 1;
5303         nGroupBy = pGroupBy->nExpr;
5304         nCol = nGroupBy;
5305         j = nGroupBy;
5306         for(i=0; i<sAggInfo.nColumn; i++){
5307           if( sAggInfo.aCol[i].iSorterColumn>=j ){
5308             nCol++;
5309             j++;
5310           }
5311         }
5312         regBase = sqlite3GetTempRange(pParse, nCol);
5313         sqlite3ExprCacheClear(pParse);
5314         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
5315         j = nGroupBy;
5316         for(i=0; i<sAggInfo.nColumn; i++){
5317           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5318           if( pCol->iSorterColumn>=j ){
5319             int r1 = j + regBase;
5320             sqlite3ExprCodeGetColumnToReg(pParse,
5321                                pCol->pTab, pCol->iColumn, pCol->iTable, r1);
5322             j++;
5323           }
5324         }
5325         regRecord = sqlite3GetTempReg(pParse);
5326         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5327         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5328         sqlite3ReleaseTempReg(pParse, regRecord);
5329         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5330         sqlite3WhereEnd(pWInfo);
5331         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5332         sortOut = sqlite3GetTempReg(pParse);
5333         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5334         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5335         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5336         sAggInfo.useSortingIdx = 1;
5337         sqlite3ExprCacheClear(pParse);
5338 
5339       }
5340 
5341       /* If the index or temporary table used by the GROUP BY sort
5342       ** will naturally deliver rows in the order required by the ORDER BY
5343       ** clause, cancel the ephemeral table open coded earlier.
5344       **
5345       ** This is an optimization - the correct answer should result regardless.
5346       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5347       ** disable this optimization for testing purposes.  */
5348       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5349        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5350       ){
5351         sSort.pOrderBy = 0;
5352         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5353       }
5354 
5355       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5356       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5357       ** Then compare the current GROUP BY terms against the GROUP BY terms
5358       ** from the previous row currently stored in a0, a1, a2...
5359       */
5360       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5361       sqlite3ExprCacheClear(pParse);
5362       if( groupBySort ){
5363         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
5364                           sortOut, sortPTab);
5365       }
5366       for(j=0; j<pGroupBy->nExpr; j++){
5367         if( groupBySort ){
5368           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5369         }else{
5370           sAggInfo.directMode = 1;
5371           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5372         }
5373       }
5374       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5375                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5376       addr1 = sqlite3VdbeCurrentAddr(v);
5377       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
5378 
5379       /* Generate code that runs whenever the GROUP BY changes.
5380       ** Changes in the GROUP BY are detected by the previous code
5381       ** block.  If there were no changes, this block is skipped.
5382       **
5383       ** This code copies current group by terms in b0,b1,b2,...
5384       ** over to a0,a1,a2.  It then calls the output subroutine
5385       ** and resets the aggregate accumulator registers in preparation
5386       ** for the next GROUP BY batch.
5387       */
5388       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5389       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5390       VdbeComment((v, "output one row"));
5391       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5392       VdbeComment((v, "check abort flag"));
5393       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5394       VdbeComment((v, "reset accumulator"));
5395 
5396       /* Update the aggregate accumulators based on the content of
5397       ** the current row
5398       */
5399       sqlite3VdbeJumpHere(v, addr1);
5400       updateAccumulator(pParse, &sAggInfo);
5401       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5402       VdbeComment((v, "indicate data in accumulator"));
5403 
5404       /* End of the loop
5405       */
5406       if( groupBySort ){
5407         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5408         VdbeCoverage(v);
5409       }else{
5410         sqlite3WhereEnd(pWInfo);
5411         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5412       }
5413 
5414       /* Output the final row of result
5415       */
5416       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5417       VdbeComment((v, "output final row"));
5418 
5419       /* Jump over the subroutines
5420       */
5421       sqlite3VdbeGoto(v, addrEnd);
5422 
5423       /* Generate a subroutine that outputs a single row of the result
5424       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5425       ** is less than or equal to zero, the subroutine is a no-op.  If
5426       ** the processing calls for the query to abort, this subroutine
5427       ** increments the iAbortFlag memory location before returning in
5428       ** order to signal the caller to abort.
5429       */
5430       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5431       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5432       VdbeComment((v, "set abort flag"));
5433       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5434       sqlite3VdbeResolveLabel(v, addrOutputRow);
5435       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5436       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
5437       VdbeCoverage(v);
5438       VdbeComment((v, "Groupby result generator entry point"));
5439       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5440       finalizeAggFunctions(pParse, &sAggInfo);
5441       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5442       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5443                       &sDistinct, pDest,
5444                       addrOutputRow+1, addrSetAbort);
5445       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5446       VdbeComment((v, "end groupby result generator"));
5447 
5448       /* Generate a subroutine that will reset the group-by accumulator
5449       */
5450       sqlite3VdbeResolveLabel(v, addrReset);
5451       resetAccumulator(pParse, &sAggInfo);
5452       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5453 
5454     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5455     else {
5456       ExprList *pDel = 0;
5457 #ifndef SQLITE_OMIT_BTREECOUNT
5458       Table *pTab;
5459       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5460         /* If isSimpleCount() returns a pointer to a Table structure, then
5461         ** the SQL statement is of the form:
5462         **
5463         **   SELECT count(*) FROM <tbl>
5464         **
5465         ** where the Table structure returned represents table <tbl>.
5466         **
5467         ** This statement is so common that it is optimized specially. The
5468         ** OP_Count instruction is executed either on the intkey table that
5469         ** contains the data for table <tbl> or on one of its indexes. It
5470         ** is better to execute the op on an index, as indexes are almost
5471         ** always spread across less pages than their corresponding tables.
5472         */
5473         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5474         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5475         Index *pIdx;                         /* Iterator variable */
5476         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5477         Index *pBest = 0;                    /* Best index found so far */
5478         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5479 
5480         sqlite3CodeVerifySchema(pParse, iDb);
5481         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5482 
5483         /* Search for the index that has the lowest scan cost.
5484         **
5485         ** (2011-04-15) Do not do a full scan of an unordered index.
5486         **
5487         ** (2013-10-03) Do not count the entries in a partial index.
5488         **
5489         ** In practice the KeyInfo structure will not be used. It is only
5490         ** passed to keep OP_OpenRead happy.
5491         */
5492         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5493         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5494           if( pIdx->bUnordered==0
5495            && pIdx->szIdxRow<pTab->szTabRow
5496            && pIdx->pPartIdxWhere==0
5497            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5498           ){
5499             pBest = pIdx;
5500           }
5501         }
5502         if( pBest ){
5503           iRoot = pBest->tnum;
5504           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5505         }
5506 
5507         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5508         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5509         if( pKeyInfo ){
5510           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5511         }
5512         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5513         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5514         explainSimpleCount(pParse, pTab, pBest);
5515       }else
5516 #endif /* SQLITE_OMIT_BTREECOUNT */
5517       {
5518         /* Check if the query is of one of the following forms:
5519         **
5520         **   SELECT min(x) FROM ...
5521         **   SELECT max(x) FROM ...
5522         **
5523         ** If it is, then ask the code in where.c to attempt to sort results
5524         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5525         ** If where.c is able to produce results sorted in this order, then
5526         ** add vdbe code to break out of the processing loop after the
5527         ** first iteration (since the first iteration of the loop is
5528         ** guaranteed to operate on the row with the minimum or maximum
5529         ** value of x, the only row required).
5530         **
5531         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5532         ** modify behavior as follows:
5533         **
5534         **   + If the query is a "SELECT min(x)", then the loop coded by
5535         **     where.c should not iterate over any values with a NULL value
5536         **     for x.
5537         **
5538         **   + The optimizer code in where.c (the thing that decides which
5539         **     index or indices to use) should place a different priority on
5540         **     satisfying the 'ORDER BY' clause than it does in other cases.
5541         **     Refer to code and comments in where.c for details.
5542         */
5543         ExprList *pMinMax = 0;
5544         u8 flag = WHERE_ORDERBY_NORMAL;
5545 
5546         assert( p->pGroupBy==0 );
5547         assert( flag==0 );
5548         if( p->pHaving==0 ){
5549           flag = minMaxQuery(&sAggInfo, &pMinMax);
5550         }
5551         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5552 
5553         if( flag ){
5554           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5555           pDel = pMinMax;
5556           if( pMinMax && !db->mallocFailed ){
5557             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5558             pMinMax->a[0].pExpr->op = TK_COLUMN;
5559           }
5560         }
5561 
5562         /* This case runs if the aggregate has no GROUP BY clause.  The
5563         ** processing is much simpler since there is only a single row
5564         ** of output.
5565         */
5566         resetAccumulator(pParse, &sAggInfo);
5567         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5568         if( pWInfo==0 ){
5569           sqlite3ExprListDelete(db, pDel);
5570           goto select_end;
5571         }
5572         updateAccumulator(pParse, &sAggInfo);
5573         assert( pMinMax==0 || pMinMax->nExpr==1 );
5574         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5575           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
5576           VdbeComment((v, "%s() by index",
5577                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5578         }
5579         sqlite3WhereEnd(pWInfo);
5580         finalizeAggFunctions(pParse, &sAggInfo);
5581       }
5582 
5583       sSort.pOrderBy = 0;
5584       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5585       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5586                       pDest, addrEnd, addrEnd);
5587       sqlite3ExprListDelete(db, pDel);
5588     }
5589     sqlite3VdbeResolveLabel(v, addrEnd);
5590 
5591   } /* endif aggregate query */
5592 
5593   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5594     explainTempTable(pParse, "DISTINCT");
5595   }
5596 
5597   /* If there is an ORDER BY clause, then we need to sort the results
5598   ** and send them to the callback one by one.
5599   */
5600   if( sSort.pOrderBy ){
5601     explainTempTable(pParse,
5602                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5603     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5604   }
5605 
5606   /* Jump here to skip this query
5607   */
5608   sqlite3VdbeResolveLabel(v, iEnd);
5609 
5610   /* The SELECT has been coded. If there is an error in the Parse structure,
5611   ** set the return code to 1. Otherwise 0. */
5612   rc = (pParse->nErr>0);
5613 
5614   /* Control jumps to here if an error is encountered above, or upon
5615   ** successful coding of the SELECT.
5616   */
5617 select_end:
5618   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5619 
5620   /* Identify column names if results of the SELECT are to be output.
5621   */
5622   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5623     generateColumnNames(pParse, pTabList, pEList);
5624   }
5625 
5626   sqlite3DbFree(db, sAggInfo.aCol);
5627   sqlite3DbFree(db, sAggInfo.aFunc);
5628 #if SELECTTRACE_ENABLED
5629   SELECTTRACE(1,pParse,p,("end processing\n"));
5630   pParse->nSelectIndent--;
5631 #endif
5632   return rc;
5633 }
5634