1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ 25 (S)->zSelName,(S)),\ 26 sqlite3DebugPrintf X 27 #else 28 # define SELECTTRACE(K,P,S,X) 29 #endif 30 31 32 /* 33 ** An instance of the following object is used to record information about 34 ** how to process the DISTINCT keyword, to simplify passing that information 35 ** into the selectInnerLoop() routine. 36 */ 37 typedef struct DistinctCtx DistinctCtx; 38 struct DistinctCtx { 39 u8 isTnct; /* True if the DISTINCT keyword is present */ 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 43 }; 44 45 /* 46 ** An instance of the following object is used to record information about 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. 48 */ 49 typedef struct SortCtx SortCtx; 50 struct SortCtx { 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 53 int iECursor; /* Cursor number for the sorter */ 54 int regReturn; /* Register holding block-output return address */ 55 int labelBkOut; /* Start label for the block-output subroutine */ 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 60 }; 61 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 62 63 /* 64 ** Delete all the content of a Select structure. Deallocate the structure 65 ** itself only if bFree is true. 66 */ 67 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 68 while( p ){ 69 Select *pPrior = p->pPrior; 70 sqlite3ExprListDelete(db, p->pEList); 71 sqlite3SrcListDelete(db, p->pSrc); 72 sqlite3ExprDelete(db, p->pWhere); 73 sqlite3ExprListDelete(db, p->pGroupBy); 74 sqlite3ExprDelete(db, p->pHaving); 75 sqlite3ExprListDelete(db, p->pOrderBy); 76 sqlite3ExprDelete(db, p->pLimit); 77 sqlite3ExprDelete(db, p->pOffset); 78 if( p->pWith ) sqlite3WithDelete(db, p->pWith); 79 if( bFree ) sqlite3DbFree(db, p); 80 p = pPrior; 81 bFree = 1; 82 } 83 } 84 85 /* 86 ** Initialize a SelectDest structure. 87 */ 88 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 89 pDest->eDest = (u8)eDest; 90 pDest->iSDParm = iParm; 91 pDest->zAffSdst = 0; 92 pDest->iSdst = 0; 93 pDest->nSdst = 0; 94 } 95 96 97 /* 98 ** Allocate a new Select structure and return a pointer to that 99 ** structure. 100 */ 101 Select *sqlite3SelectNew( 102 Parse *pParse, /* Parsing context */ 103 ExprList *pEList, /* which columns to include in the result */ 104 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 105 Expr *pWhere, /* the WHERE clause */ 106 ExprList *pGroupBy, /* the GROUP BY clause */ 107 Expr *pHaving, /* the HAVING clause */ 108 ExprList *pOrderBy, /* the ORDER BY clause */ 109 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 110 Expr *pLimit, /* LIMIT value. NULL means not used */ 111 Expr *pOffset /* OFFSET value. NULL means no offset */ 112 ){ 113 Select *pNew; 114 Select standin; 115 sqlite3 *db = pParse->db; 116 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); 117 if( pNew==0 ){ 118 assert( db->mallocFailed ); 119 pNew = &standin; 120 } 121 if( pEList==0 ){ 122 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0)); 123 } 124 pNew->pEList = pEList; 125 pNew->op = TK_SELECT; 126 pNew->selFlags = selFlags; 127 pNew->iLimit = 0; 128 pNew->iOffset = 0; 129 #if SELECTTRACE_ENABLED 130 pNew->zSelName[0] = 0; 131 #endif 132 pNew->addrOpenEphm[0] = -1; 133 pNew->addrOpenEphm[1] = -1; 134 pNew->nSelectRow = 0; 135 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 136 pNew->pSrc = pSrc; 137 pNew->pWhere = pWhere; 138 pNew->pGroupBy = pGroupBy; 139 pNew->pHaving = pHaving; 140 pNew->pOrderBy = pOrderBy; 141 pNew->pPrior = 0; 142 pNew->pNext = 0; 143 pNew->pLimit = pLimit; 144 pNew->pOffset = pOffset; 145 pNew->pWith = 0; 146 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); 147 if( db->mallocFailed ) { 148 clearSelect(db, pNew, pNew!=&standin); 149 pNew = 0; 150 }else{ 151 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 152 } 153 assert( pNew!=&standin ); 154 return pNew; 155 } 156 157 #if SELECTTRACE_ENABLED 158 /* 159 ** Set the name of a Select object 160 */ 161 void sqlite3SelectSetName(Select *p, const char *zName){ 162 if( p && zName ){ 163 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); 164 } 165 } 166 #endif 167 168 169 /* 170 ** Delete the given Select structure and all of its substructures. 171 */ 172 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 173 if( p ) clearSelect(db, p, 1); 174 } 175 176 /* 177 ** Return a pointer to the right-most SELECT statement in a compound. 178 */ 179 static Select *findRightmost(Select *p){ 180 while( p->pNext ) p = p->pNext; 181 return p; 182 } 183 184 /* 185 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 186 ** type of join. Return an integer constant that expresses that type 187 ** in terms of the following bit values: 188 ** 189 ** JT_INNER 190 ** JT_CROSS 191 ** JT_OUTER 192 ** JT_NATURAL 193 ** JT_LEFT 194 ** JT_RIGHT 195 ** 196 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 197 ** 198 ** If an illegal or unsupported join type is seen, then still return 199 ** a join type, but put an error in the pParse structure. 200 */ 201 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 202 int jointype = 0; 203 Token *apAll[3]; 204 Token *p; 205 /* 0123456789 123456789 123456789 123 */ 206 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 207 static const struct { 208 u8 i; /* Beginning of keyword text in zKeyText[] */ 209 u8 nChar; /* Length of the keyword in characters */ 210 u8 code; /* Join type mask */ 211 } aKeyword[] = { 212 /* natural */ { 0, 7, JT_NATURAL }, 213 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 214 /* outer */ { 10, 5, JT_OUTER }, 215 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 216 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 217 /* inner */ { 23, 5, JT_INNER }, 218 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 219 }; 220 int i, j; 221 apAll[0] = pA; 222 apAll[1] = pB; 223 apAll[2] = pC; 224 for(i=0; i<3 && apAll[i]; i++){ 225 p = apAll[i]; 226 for(j=0; j<ArraySize(aKeyword); j++){ 227 if( p->n==aKeyword[j].nChar 228 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 229 jointype |= aKeyword[j].code; 230 break; 231 } 232 } 233 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 234 if( j>=ArraySize(aKeyword) ){ 235 jointype |= JT_ERROR; 236 break; 237 } 238 } 239 if( 240 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 241 (jointype & JT_ERROR)!=0 242 ){ 243 const char *zSp = " "; 244 assert( pB!=0 ); 245 if( pC==0 ){ zSp++; } 246 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 247 "%T %T%s%T", pA, pB, zSp, pC); 248 jointype = JT_INNER; 249 }else if( (jointype & JT_OUTER)!=0 250 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 251 sqlite3ErrorMsg(pParse, 252 "RIGHT and FULL OUTER JOINs are not currently supported"); 253 jointype = JT_INNER; 254 } 255 return jointype; 256 } 257 258 /* 259 ** Return the index of a column in a table. Return -1 if the column 260 ** is not contained in the table. 261 */ 262 static int columnIndex(Table *pTab, const char *zCol){ 263 int i; 264 for(i=0; i<pTab->nCol; i++){ 265 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 266 } 267 return -1; 268 } 269 270 /* 271 ** Search the first N tables in pSrc, from left to right, looking for a 272 ** table that has a column named zCol. 273 ** 274 ** When found, set *piTab and *piCol to the table index and column index 275 ** of the matching column and return TRUE. 276 ** 277 ** If not found, return FALSE. 278 */ 279 static int tableAndColumnIndex( 280 SrcList *pSrc, /* Array of tables to search */ 281 int N, /* Number of tables in pSrc->a[] to search */ 282 const char *zCol, /* Name of the column we are looking for */ 283 int *piTab, /* Write index of pSrc->a[] here */ 284 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 285 ){ 286 int i; /* For looping over tables in pSrc */ 287 int iCol; /* Index of column matching zCol */ 288 289 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 290 for(i=0; i<N; i++){ 291 iCol = columnIndex(pSrc->a[i].pTab, zCol); 292 if( iCol>=0 ){ 293 if( piTab ){ 294 *piTab = i; 295 *piCol = iCol; 296 } 297 return 1; 298 } 299 } 300 return 0; 301 } 302 303 /* 304 ** This function is used to add terms implied by JOIN syntax to the 305 ** WHERE clause expression of a SELECT statement. The new term, which 306 ** is ANDed with the existing WHERE clause, is of the form: 307 ** 308 ** (tab1.col1 = tab2.col2) 309 ** 310 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 311 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 312 ** column iColRight of tab2. 313 */ 314 static void addWhereTerm( 315 Parse *pParse, /* Parsing context */ 316 SrcList *pSrc, /* List of tables in FROM clause */ 317 int iLeft, /* Index of first table to join in pSrc */ 318 int iColLeft, /* Index of column in first table */ 319 int iRight, /* Index of second table in pSrc */ 320 int iColRight, /* Index of column in second table */ 321 int isOuterJoin, /* True if this is an OUTER join */ 322 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 323 ){ 324 sqlite3 *db = pParse->db; 325 Expr *pE1; 326 Expr *pE2; 327 Expr *pEq; 328 329 assert( iLeft<iRight ); 330 assert( pSrc->nSrc>iRight ); 331 assert( pSrc->a[iLeft].pTab ); 332 assert( pSrc->a[iRight].pTab ); 333 334 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 335 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 336 337 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 338 if( pEq && isOuterJoin ){ 339 ExprSetProperty(pEq, EP_FromJoin); 340 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 341 ExprSetVVAProperty(pEq, EP_NoReduce); 342 pEq->iRightJoinTable = (i16)pE2->iTable; 343 } 344 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 345 } 346 347 /* 348 ** Set the EP_FromJoin property on all terms of the given expression. 349 ** And set the Expr.iRightJoinTable to iTable for every term in the 350 ** expression. 351 ** 352 ** The EP_FromJoin property is used on terms of an expression to tell 353 ** the LEFT OUTER JOIN processing logic that this term is part of the 354 ** join restriction specified in the ON or USING clause and not a part 355 ** of the more general WHERE clause. These terms are moved over to the 356 ** WHERE clause during join processing but we need to remember that they 357 ** originated in the ON or USING clause. 358 ** 359 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 360 ** expression depends on table iRightJoinTable even if that table is not 361 ** explicitly mentioned in the expression. That information is needed 362 ** for cases like this: 363 ** 364 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 365 ** 366 ** The where clause needs to defer the handling of the t1.x=5 367 ** term until after the t2 loop of the join. In that way, a 368 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 369 ** defer the handling of t1.x=5, it will be processed immediately 370 ** after the t1 loop and rows with t1.x!=5 will never appear in 371 ** the output, which is incorrect. 372 */ 373 static void setJoinExpr(Expr *p, int iTable){ 374 while( p ){ 375 ExprSetProperty(p, EP_FromJoin); 376 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 377 ExprSetVVAProperty(p, EP_NoReduce); 378 p->iRightJoinTable = (i16)iTable; 379 if( p->op==TK_FUNCTION && p->x.pList ){ 380 int i; 381 for(i=0; i<p->x.pList->nExpr; i++){ 382 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 383 } 384 } 385 setJoinExpr(p->pLeft, iTable); 386 p = p->pRight; 387 } 388 } 389 390 /* 391 ** This routine processes the join information for a SELECT statement. 392 ** ON and USING clauses are converted into extra terms of the WHERE clause. 393 ** NATURAL joins also create extra WHERE clause terms. 394 ** 395 ** The terms of a FROM clause are contained in the Select.pSrc structure. 396 ** The left most table is the first entry in Select.pSrc. The right-most 397 ** table is the last entry. The join operator is held in the entry to 398 ** the left. Thus entry 0 contains the join operator for the join between 399 ** entries 0 and 1. Any ON or USING clauses associated with the join are 400 ** also attached to the left entry. 401 ** 402 ** This routine returns the number of errors encountered. 403 */ 404 static int sqliteProcessJoin(Parse *pParse, Select *p){ 405 SrcList *pSrc; /* All tables in the FROM clause */ 406 int i, j; /* Loop counters */ 407 struct SrcList_item *pLeft; /* Left table being joined */ 408 struct SrcList_item *pRight; /* Right table being joined */ 409 410 pSrc = p->pSrc; 411 pLeft = &pSrc->a[0]; 412 pRight = &pLeft[1]; 413 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 414 Table *pLeftTab = pLeft->pTab; 415 Table *pRightTab = pRight->pTab; 416 int isOuter; 417 418 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 419 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 420 421 /* When the NATURAL keyword is present, add WHERE clause terms for 422 ** every column that the two tables have in common. 423 */ 424 if( pRight->fg.jointype & JT_NATURAL ){ 425 if( pRight->pOn || pRight->pUsing ){ 426 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 427 "an ON or USING clause", 0); 428 return 1; 429 } 430 for(j=0; j<pRightTab->nCol; j++){ 431 char *zName; /* Name of column in the right table */ 432 int iLeft; /* Matching left table */ 433 int iLeftCol; /* Matching column in the left table */ 434 435 zName = pRightTab->aCol[j].zName; 436 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 437 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 438 isOuter, &p->pWhere); 439 } 440 } 441 } 442 443 /* Disallow both ON and USING clauses in the same join 444 */ 445 if( pRight->pOn && pRight->pUsing ){ 446 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 447 "clauses in the same join"); 448 return 1; 449 } 450 451 /* Add the ON clause to the end of the WHERE clause, connected by 452 ** an AND operator. 453 */ 454 if( pRight->pOn ){ 455 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 456 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 457 pRight->pOn = 0; 458 } 459 460 /* Create extra terms on the WHERE clause for each column named 461 ** in the USING clause. Example: If the two tables to be joined are 462 ** A and B and the USING clause names X, Y, and Z, then add this 463 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 464 ** Report an error if any column mentioned in the USING clause is 465 ** not contained in both tables to be joined. 466 */ 467 if( pRight->pUsing ){ 468 IdList *pList = pRight->pUsing; 469 for(j=0; j<pList->nId; j++){ 470 char *zName; /* Name of the term in the USING clause */ 471 int iLeft; /* Table on the left with matching column name */ 472 int iLeftCol; /* Column number of matching column on the left */ 473 int iRightCol; /* Column number of matching column on the right */ 474 475 zName = pList->a[j].zName; 476 iRightCol = columnIndex(pRightTab, zName); 477 if( iRightCol<0 478 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 479 ){ 480 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 481 "not present in both tables", zName); 482 return 1; 483 } 484 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 485 isOuter, &p->pWhere); 486 } 487 } 488 } 489 return 0; 490 } 491 492 /* Forward reference */ 493 static KeyInfo *keyInfoFromExprList( 494 Parse *pParse, /* Parsing context */ 495 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 496 int iStart, /* Begin with this column of pList */ 497 int nExtra /* Add this many extra columns to the end */ 498 ); 499 500 /* 501 ** Generate code that will push the record in registers regData 502 ** through regData+nData-1 onto the sorter. 503 */ 504 static void pushOntoSorter( 505 Parse *pParse, /* Parser context */ 506 SortCtx *pSort, /* Information about the ORDER BY clause */ 507 Select *pSelect, /* The whole SELECT statement */ 508 int regData, /* First register holding data to be sorted */ 509 int regOrigData, /* First register holding data before packing */ 510 int nData, /* Number of elements in the data array */ 511 int nPrefixReg /* No. of reg prior to regData available for use */ 512 ){ 513 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 514 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 515 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 516 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 517 int regBase; /* Regs for sorter record */ 518 int regRecord = ++pParse->nMem; /* Assembled sorter record */ 519 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 520 int op; /* Opcode to add sorter record to sorter */ 521 int iLimit; /* LIMIT counter */ 522 523 assert( bSeq==0 || bSeq==1 ); 524 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 525 if( nPrefixReg ){ 526 assert( nPrefixReg==nExpr+bSeq ); 527 regBase = regData - nExpr - bSeq; 528 }else{ 529 regBase = pParse->nMem + 1; 530 pParse->nMem += nBase; 531 } 532 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 533 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 534 pSort->labelDone = sqlite3VdbeMakeLabel(v); 535 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 536 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 537 if( bSeq ){ 538 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 539 } 540 if( nPrefixReg==0 && nData>0 ){ 541 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 542 } 543 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); 544 if( nOBSat>0 ){ 545 int regPrevKey; /* The first nOBSat columns of the previous row */ 546 int addrFirst; /* Address of the OP_IfNot opcode */ 547 int addrJmp; /* Address of the OP_Jump opcode */ 548 VdbeOp *pOp; /* Opcode that opens the sorter */ 549 int nKey; /* Number of sorting key columns, including OP_Sequence */ 550 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 551 552 regPrevKey = pParse->nMem+1; 553 pParse->nMem += pSort->nOBSat; 554 nKey = nExpr - pSort->nOBSat + bSeq; 555 if( bSeq ){ 556 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 557 }else{ 558 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 559 } 560 VdbeCoverage(v); 561 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 562 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 563 if( pParse->db->mallocFailed ) return; 564 pOp->p2 = nKey + nData; 565 pKI = pOp->p4.pKeyInfo; 566 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 567 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 568 testcase( pKI->nXField>2 ); 569 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 570 pKI->nXField-1); 571 addrJmp = sqlite3VdbeCurrentAddr(v); 572 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 573 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 574 pSort->regReturn = ++pParse->nMem; 575 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 576 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 577 if( iLimit ){ 578 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 579 VdbeCoverage(v); 580 } 581 sqlite3VdbeJumpHere(v, addrFirst); 582 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 583 sqlite3VdbeJumpHere(v, addrJmp); 584 } 585 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 586 op = OP_SorterInsert; 587 }else{ 588 op = OP_IdxInsert; 589 } 590 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 591 regBase+nOBSat, nBase-nOBSat); 592 if( iLimit ){ 593 int addr; 594 int r1 = 0; 595 /* Fill the sorter until it contains LIMIT+OFFSET entries. (The iLimit 596 ** register is initialized with value of LIMIT+OFFSET.) After the sorter 597 ** fills up, delete the least entry in the sorter after each insert. 598 ** Thus we never hold more than the LIMIT+OFFSET rows in memory at once */ 599 addr = sqlite3VdbeAddOp1(v, OP_IfNotZero, iLimit); VdbeCoverage(v); 600 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 601 if( pSort->bOrderedInnerLoop ){ 602 r1 = ++pParse->nMem; 603 sqlite3VdbeAddOp3(v, OP_Column, pSort->iECursor, nExpr, r1); 604 VdbeComment((v, "seq")); 605 } 606 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 607 if( pSort->bOrderedInnerLoop ){ 608 /* If the inner loop is driven by an index such that values from 609 ** the same iteration of the inner loop are in sorted order, then 610 ** immediately jump to the next iteration of an inner loop if the 611 ** entry from the current iteration does not fit into the top 612 ** LIMIT+OFFSET entries of the sorter. */ 613 int iBrk = sqlite3VdbeCurrentAddr(v) + 2; 614 sqlite3VdbeAddOp3(v, OP_Eq, regBase+nExpr, iBrk, r1); 615 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 616 VdbeCoverage(v); 617 } 618 sqlite3VdbeJumpHere(v, addr); 619 } 620 } 621 622 /* 623 ** Add code to implement the OFFSET 624 */ 625 static void codeOffset( 626 Vdbe *v, /* Generate code into this VM */ 627 int iOffset, /* Register holding the offset counter */ 628 int iContinue /* Jump here to skip the current record */ 629 ){ 630 if( iOffset>0 ){ 631 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 632 VdbeComment((v, "OFFSET")); 633 } 634 } 635 636 /* 637 ** Add code that will check to make sure the N registers starting at iMem 638 ** form a distinct entry. iTab is a sorting index that holds previously 639 ** seen combinations of the N values. A new entry is made in iTab 640 ** if the current N values are new. 641 ** 642 ** A jump to addrRepeat is made and the N+1 values are popped from the 643 ** stack if the top N elements are not distinct. 644 */ 645 static void codeDistinct( 646 Parse *pParse, /* Parsing and code generating context */ 647 int iTab, /* A sorting index used to test for distinctness */ 648 int addrRepeat, /* Jump to here if not distinct */ 649 int N, /* Number of elements */ 650 int iMem /* First element */ 651 ){ 652 Vdbe *v; 653 int r1; 654 655 v = pParse->pVdbe; 656 r1 = sqlite3GetTempReg(pParse); 657 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 658 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 659 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 660 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 661 sqlite3ReleaseTempReg(pParse, r1); 662 } 663 664 /* 665 ** This routine generates the code for the inside of the inner loop 666 ** of a SELECT. 667 ** 668 ** If srcTab is negative, then the pEList expressions 669 ** are evaluated in order to get the data for this row. If srcTab is 670 ** zero or more, then data is pulled from srcTab and pEList is used only 671 ** to get the number of columns and the collation sequence for each column. 672 */ 673 static void selectInnerLoop( 674 Parse *pParse, /* The parser context */ 675 Select *p, /* The complete select statement being coded */ 676 ExprList *pEList, /* List of values being extracted */ 677 int srcTab, /* Pull data from this table */ 678 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 679 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 680 SelectDest *pDest, /* How to dispose of the results */ 681 int iContinue, /* Jump here to continue with next row */ 682 int iBreak /* Jump here to break out of the inner loop */ 683 ){ 684 Vdbe *v = pParse->pVdbe; 685 int i; 686 int hasDistinct; /* True if the DISTINCT keyword is present */ 687 int eDest = pDest->eDest; /* How to dispose of results */ 688 int iParm = pDest->iSDParm; /* First argument to disposal method */ 689 int nResultCol; /* Number of result columns */ 690 int nPrefixReg = 0; /* Number of extra registers before regResult */ 691 692 /* Usually, regResult is the first cell in an array of memory cells 693 ** containing the current result row. In this case regOrig is set to the 694 ** same value. However, if the results are being sent to the sorter, the 695 ** values for any expressions that are also part of the sort-key are omitted 696 ** from this array. In this case regOrig is set to zero. */ 697 int regResult; /* Start of memory holding current results */ 698 int regOrig; /* Start of memory holding full result (or 0) */ 699 700 assert( v ); 701 assert( pEList!=0 ); 702 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 703 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 704 if( pSort==0 && !hasDistinct ){ 705 assert( iContinue!=0 ); 706 codeOffset(v, p->iOffset, iContinue); 707 } 708 709 /* Pull the requested columns. 710 */ 711 nResultCol = pEList->nExpr; 712 713 if( pDest->iSdst==0 ){ 714 if( pSort ){ 715 nPrefixReg = pSort->pOrderBy->nExpr; 716 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 717 pParse->nMem += nPrefixReg; 718 } 719 pDest->iSdst = pParse->nMem+1; 720 pParse->nMem += nResultCol; 721 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 722 /* This is an error condition that can result, for example, when a SELECT 723 ** on the right-hand side of an INSERT contains more result columns than 724 ** there are columns in the table on the left. The error will be caught 725 ** and reported later. But we need to make sure enough memory is allocated 726 ** to avoid other spurious errors in the meantime. */ 727 pParse->nMem += nResultCol; 728 } 729 pDest->nSdst = nResultCol; 730 regOrig = regResult = pDest->iSdst; 731 if( srcTab>=0 ){ 732 for(i=0; i<nResultCol; i++){ 733 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 734 VdbeComment((v, "%s", pEList->a[i].zName)); 735 } 736 }else if( eDest!=SRT_Exists ){ 737 /* If the destination is an EXISTS(...) expression, the actual 738 ** values returned by the SELECT are not required. 739 */ 740 u8 ecelFlags; 741 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 742 ecelFlags = SQLITE_ECEL_DUP; 743 }else{ 744 ecelFlags = 0; 745 } 746 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 747 /* For each expression in pEList that is a copy of an expression in 748 ** the ORDER BY clause (pSort->pOrderBy), set the associated 749 ** iOrderByCol value to one more than the index of the ORDER BY 750 ** expression within the sort-key that pushOntoSorter() will generate. 751 ** This allows the pEList field to be omitted from the sorted record, 752 ** saving space and CPU cycles. */ 753 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 754 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 755 int j; 756 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 757 pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 758 } 759 } 760 regOrig = 0; 761 assert( eDest==SRT_Set || eDest==SRT_Mem 762 || eDest==SRT_Coroutine || eDest==SRT_Output ); 763 } 764 nResultCol = sqlite3ExprCodeExprList(pParse,pEList,regResult,0,ecelFlags); 765 } 766 767 /* If the DISTINCT keyword was present on the SELECT statement 768 ** and this row has been seen before, then do not make this row 769 ** part of the result. 770 */ 771 if( hasDistinct ){ 772 switch( pDistinct->eTnctType ){ 773 case WHERE_DISTINCT_ORDERED: { 774 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 775 int iJump; /* Jump destination */ 776 int regPrev; /* Previous row content */ 777 778 /* Allocate space for the previous row */ 779 regPrev = pParse->nMem+1; 780 pParse->nMem += nResultCol; 781 782 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 783 ** sets the MEM_Cleared bit on the first register of the 784 ** previous value. This will cause the OP_Ne below to always 785 ** fail on the first iteration of the loop even if the first 786 ** row is all NULLs. 787 */ 788 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 789 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 790 pOp->opcode = OP_Null; 791 pOp->p1 = 1; 792 pOp->p2 = regPrev; 793 794 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 795 for(i=0; i<nResultCol; i++){ 796 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 797 if( i<nResultCol-1 ){ 798 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 799 VdbeCoverage(v); 800 }else{ 801 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 802 VdbeCoverage(v); 803 } 804 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 805 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 806 } 807 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 808 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 809 break; 810 } 811 812 case WHERE_DISTINCT_UNIQUE: { 813 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 814 break; 815 } 816 817 default: { 818 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 819 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 820 regResult); 821 break; 822 } 823 } 824 if( pSort==0 ){ 825 codeOffset(v, p->iOffset, iContinue); 826 } 827 } 828 829 switch( eDest ){ 830 /* In this mode, write each query result to the key of the temporary 831 ** table iParm. 832 */ 833 #ifndef SQLITE_OMIT_COMPOUND_SELECT 834 case SRT_Union: { 835 int r1; 836 r1 = sqlite3GetTempReg(pParse); 837 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 838 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 839 sqlite3ReleaseTempReg(pParse, r1); 840 break; 841 } 842 843 /* Construct a record from the query result, but instead of 844 ** saving that record, use it as a key to delete elements from 845 ** the temporary table iParm. 846 */ 847 case SRT_Except: { 848 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 849 break; 850 } 851 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 852 853 /* Store the result as data using a unique key. 854 */ 855 case SRT_Fifo: 856 case SRT_DistFifo: 857 case SRT_Table: 858 case SRT_EphemTab: { 859 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 860 testcase( eDest==SRT_Table ); 861 testcase( eDest==SRT_EphemTab ); 862 testcase( eDest==SRT_Fifo ); 863 testcase( eDest==SRT_DistFifo ); 864 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 865 #ifndef SQLITE_OMIT_CTE 866 if( eDest==SRT_DistFifo ){ 867 /* If the destination is DistFifo, then cursor (iParm+1) is open 868 ** on an ephemeral index. If the current row is already present 869 ** in the index, do not write it to the output. If not, add the 870 ** current row to the index and proceed with writing it to the 871 ** output table as well. */ 872 int addr = sqlite3VdbeCurrentAddr(v) + 4; 873 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 874 VdbeCoverage(v); 875 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 876 assert( pSort==0 ); 877 } 878 #endif 879 if( pSort ){ 880 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); 881 }else{ 882 int r2 = sqlite3GetTempReg(pParse); 883 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 884 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 885 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 886 sqlite3ReleaseTempReg(pParse, r2); 887 } 888 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 889 break; 890 } 891 892 #ifndef SQLITE_OMIT_SUBQUERY 893 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 894 ** then there should be a single item on the stack. Write this 895 ** item into the set table with bogus data. 896 */ 897 case SRT_Set: { 898 if( pSort ){ 899 /* At first glance you would think we could optimize out the 900 ** ORDER BY in this case since the order of entries in the set 901 ** does not matter. But there might be a LIMIT clause, in which 902 ** case the order does matter */ 903 pushOntoSorter( 904 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 905 }else{ 906 int r1 = sqlite3GetTempReg(pParse); 907 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 908 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 909 r1, pDest->zAffSdst, nResultCol); 910 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 911 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 912 sqlite3ReleaseTempReg(pParse, r1); 913 } 914 break; 915 } 916 917 /* If any row exist in the result set, record that fact and abort. 918 */ 919 case SRT_Exists: { 920 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 921 /* The LIMIT clause will terminate the loop for us */ 922 break; 923 } 924 925 /* If this is a scalar select that is part of an expression, then 926 ** store the results in the appropriate memory cell or array of 927 ** memory cells and break out of the scan loop. 928 */ 929 case SRT_Mem: { 930 if( pSort ){ 931 assert( nResultCol<=pDest->nSdst ); 932 pushOntoSorter( 933 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 934 }else{ 935 assert( nResultCol==pDest->nSdst ); 936 assert( regResult==iParm ); 937 /* The LIMIT clause will jump out of the loop for us */ 938 } 939 break; 940 } 941 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 942 943 case SRT_Coroutine: /* Send data to a co-routine */ 944 case SRT_Output: { /* Return the results */ 945 testcase( eDest==SRT_Coroutine ); 946 testcase( eDest==SRT_Output ); 947 if( pSort ){ 948 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 949 nPrefixReg); 950 }else if( eDest==SRT_Coroutine ){ 951 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 952 }else{ 953 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 954 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 955 } 956 break; 957 } 958 959 #ifndef SQLITE_OMIT_CTE 960 /* Write the results into a priority queue that is order according to 961 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 962 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 963 ** pSO->nExpr columns, then make sure all keys are unique by adding a 964 ** final OP_Sequence column. The last column is the record as a blob. 965 */ 966 case SRT_DistQueue: 967 case SRT_Queue: { 968 int nKey; 969 int r1, r2, r3; 970 int addrTest = 0; 971 ExprList *pSO; 972 pSO = pDest->pOrderBy; 973 assert( pSO ); 974 nKey = pSO->nExpr; 975 r1 = sqlite3GetTempReg(pParse); 976 r2 = sqlite3GetTempRange(pParse, nKey+2); 977 r3 = r2+nKey+1; 978 if( eDest==SRT_DistQueue ){ 979 /* If the destination is DistQueue, then cursor (iParm+1) is open 980 ** on a second ephemeral index that holds all values every previously 981 ** added to the queue. */ 982 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 983 regResult, nResultCol); 984 VdbeCoverage(v); 985 } 986 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 987 if( eDest==SRT_DistQueue ){ 988 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 989 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 990 } 991 for(i=0; i<nKey; i++){ 992 sqlite3VdbeAddOp2(v, OP_SCopy, 993 regResult + pSO->a[i].u.x.iOrderByCol - 1, 994 r2+i); 995 } 996 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 997 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 998 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 999 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1000 sqlite3ReleaseTempReg(pParse, r1); 1001 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1002 break; 1003 } 1004 #endif /* SQLITE_OMIT_CTE */ 1005 1006 1007 1008 #if !defined(SQLITE_OMIT_TRIGGER) 1009 /* Discard the results. This is used for SELECT statements inside 1010 ** the body of a TRIGGER. The purpose of such selects is to call 1011 ** user-defined functions that have side effects. We do not care 1012 ** about the actual results of the select. 1013 */ 1014 default: { 1015 assert( eDest==SRT_Discard ); 1016 break; 1017 } 1018 #endif 1019 } 1020 1021 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1022 ** there is a sorter, in which case the sorter has already limited 1023 ** the output for us. 1024 */ 1025 if( pSort==0 && p->iLimit ){ 1026 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1027 } 1028 } 1029 1030 /* 1031 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1032 ** X extra columns. 1033 */ 1034 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1035 int nExtra = (N+X)*(sizeof(CollSeq*)+1); 1036 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1037 if( p ){ 1038 p->aSortOrder = (u8*)&p->aColl[N+X]; 1039 p->nField = (u16)N; 1040 p->nXField = (u16)X; 1041 p->enc = ENC(db); 1042 p->db = db; 1043 p->nRef = 1; 1044 memset(&p[1], 0, nExtra); 1045 }else{ 1046 sqlite3OomFault(db); 1047 } 1048 return p; 1049 } 1050 1051 /* 1052 ** Deallocate a KeyInfo object 1053 */ 1054 void sqlite3KeyInfoUnref(KeyInfo *p){ 1055 if( p ){ 1056 assert( p->nRef>0 ); 1057 p->nRef--; 1058 if( p->nRef==0 ) sqlite3DbFree(p->db, p); 1059 } 1060 } 1061 1062 /* 1063 ** Make a new pointer to a KeyInfo object 1064 */ 1065 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1066 if( p ){ 1067 assert( p->nRef>0 ); 1068 p->nRef++; 1069 } 1070 return p; 1071 } 1072 1073 #ifdef SQLITE_DEBUG 1074 /* 1075 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1076 ** can only be changed if this is just a single reference to the object. 1077 ** 1078 ** This routine is used only inside of assert() statements. 1079 */ 1080 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1081 #endif /* SQLITE_DEBUG */ 1082 1083 /* 1084 ** Given an expression list, generate a KeyInfo structure that records 1085 ** the collating sequence for each expression in that expression list. 1086 ** 1087 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1088 ** KeyInfo structure is appropriate for initializing a virtual index to 1089 ** implement that clause. If the ExprList is the result set of a SELECT 1090 ** then the KeyInfo structure is appropriate for initializing a virtual 1091 ** index to implement a DISTINCT test. 1092 ** 1093 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1094 ** function is responsible for seeing that this structure is eventually 1095 ** freed. 1096 */ 1097 static KeyInfo *keyInfoFromExprList( 1098 Parse *pParse, /* Parsing context */ 1099 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1100 int iStart, /* Begin with this column of pList */ 1101 int nExtra /* Add this many extra columns to the end */ 1102 ){ 1103 int nExpr; 1104 KeyInfo *pInfo; 1105 struct ExprList_item *pItem; 1106 sqlite3 *db = pParse->db; 1107 int i; 1108 1109 nExpr = pList->nExpr; 1110 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1111 if( pInfo ){ 1112 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1113 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1114 CollSeq *pColl; 1115 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1116 if( !pColl ) pColl = db->pDfltColl; 1117 pInfo->aColl[i-iStart] = pColl; 1118 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1119 } 1120 } 1121 return pInfo; 1122 } 1123 1124 /* 1125 ** Name of the connection operator, used for error messages. 1126 */ 1127 static const char *selectOpName(int id){ 1128 char *z; 1129 switch( id ){ 1130 case TK_ALL: z = "UNION ALL"; break; 1131 case TK_INTERSECT: z = "INTERSECT"; break; 1132 case TK_EXCEPT: z = "EXCEPT"; break; 1133 default: z = "UNION"; break; 1134 } 1135 return z; 1136 } 1137 1138 #ifndef SQLITE_OMIT_EXPLAIN 1139 /* 1140 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1141 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1142 ** where the caption is of the form: 1143 ** 1144 ** "USE TEMP B-TREE FOR xxx" 1145 ** 1146 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1147 ** is determined by the zUsage argument. 1148 */ 1149 static void explainTempTable(Parse *pParse, const char *zUsage){ 1150 if( pParse->explain==2 ){ 1151 Vdbe *v = pParse->pVdbe; 1152 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1153 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1154 } 1155 } 1156 1157 /* 1158 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1159 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1160 ** in sqlite3Select() to assign values to structure member variables that 1161 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1162 ** code with #ifndef directives. 1163 */ 1164 # define explainSetInteger(a, b) a = b 1165 1166 #else 1167 /* No-op versions of the explainXXX() functions and macros. */ 1168 # define explainTempTable(y,z) 1169 # define explainSetInteger(y,z) 1170 #endif 1171 1172 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1173 /* 1174 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1175 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1176 ** where the caption is of one of the two forms: 1177 ** 1178 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1179 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1180 ** 1181 ** where iSub1 and iSub2 are the integers passed as the corresponding 1182 ** function parameters, and op is the text representation of the parameter 1183 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1184 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1185 ** false, or the second form if it is true. 1186 */ 1187 static void explainComposite( 1188 Parse *pParse, /* Parse context */ 1189 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1190 int iSub1, /* Subquery id 1 */ 1191 int iSub2, /* Subquery id 2 */ 1192 int bUseTmp /* True if a temp table was used */ 1193 ){ 1194 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1195 if( pParse->explain==2 ){ 1196 Vdbe *v = pParse->pVdbe; 1197 char *zMsg = sqlite3MPrintf( 1198 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1199 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1200 ); 1201 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1202 } 1203 } 1204 #else 1205 /* No-op versions of the explainXXX() functions and macros. */ 1206 # define explainComposite(v,w,x,y,z) 1207 #endif 1208 1209 /* 1210 ** If the inner loop was generated using a non-null pOrderBy argument, 1211 ** then the results were placed in a sorter. After the loop is terminated 1212 ** we need to run the sorter and output the results. The following 1213 ** routine generates the code needed to do that. 1214 */ 1215 static void generateSortTail( 1216 Parse *pParse, /* Parsing context */ 1217 Select *p, /* The SELECT statement */ 1218 SortCtx *pSort, /* Information on the ORDER BY clause */ 1219 int nColumn, /* Number of columns of data */ 1220 SelectDest *pDest /* Write the sorted results here */ 1221 ){ 1222 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1223 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1224 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1225 int addr; 1226 int addrOnce = 0; 1227 int iTab; 1228 ExprList *pOrderBy = pSort->pOrderBy; 1229 int eDest = pDest->eDest; 1230 int iParm = pDest->iSDParm; 1231 int regRow; 1232 int regRowid; 1233 int iCol; 1234 int nKey; 1235 int iSortTab; /* Sorter cursor to read from */ 1236 int nSortData; /* Trailing values to read from sorter */ 1237 int i; 1238 int bSeq; /* True if sorter record includes seq. no. */ 1239 struct ExprList_item *aOutEx = p->pEList->a; 1240 1241 assert( addrBreak<0 ); 1242 if( pSort->labelBkOut ){ 1243 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1244 sqlite3VdbeGoto(v, addrBreak); 1245 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1246 } 1247 iTab = pSort->iECursor; 1248 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1249 regRowid = 0; 1250 regRow = pDest->iSdst; 1251 nSortData = nColumn; 1252 }else{ 1253 regRowid = sqlite3GetTempReg(pParse); 1254 regRow = sqlite3GetTempRange(pParse, nColumn); 1255 nSortData = nColumn; 1256 } 1257 nKey = pOrderBy->nExpr - pSort->nOBSat; 1258 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1259 int regSortOut = ++pParse->nMem; 1260 iSortTab = pParse->nTab++; 1261 if( pSort->labelBkOut ){ 1262 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1263 } 1264 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); 1265 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1266 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1267 VdbeCoverage(v); 1268 codeOffset(v, p->iOffset, addrContinue); 1269 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1270 bSeq = 0; 1271 }else{ 1272 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1273 codeOffset(v, p->iOffset, addrContinue); 1274 iSortTab = iTab; 1275 bSeq = 1; 1276 } 1277 for(i=0, iCol=nKey+bSeq; i<nSortData; i++){ 1278 int iRead; 1279 if( aOutEx[i].u.x.iOrderByCol ){ 1280 iRead = aOutEx[i].u.x.iOrderByCol-1; 1281 }else{ 1282 iRead = iCol++; 1283 } 1284 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1285 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); 1286 } 1287 switch( eDest ){ 1288 case SRT_Table: 1289 case SRT_EphemTab: { 1290 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1291 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1292 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1293 break; 1294 } 1295 #ifndef SQLITE_OMIT_SUBQUERY 1296 case SRT_Set: { 1297 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1298 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1299 pDest->zAffSdst, nColumn); 1300 sqlite3ExprCacheAffinityChange(pParse, regRow, nColumn); 1301 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1302 break; 1303 } 1304 case SRT_Mem: { 1305 /* The LIMIT clause will terminate the loop for us */ 1306 break; 1307 } 1308 #endif 1309 default: { 1310 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1311 testcase( eDest==SRT_Output ); 1312 testcase( eDest==SRT_Coroutine ); 1313 if( eDest==SRT_Output ){ 1314 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1315 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1316 }else{ 1317 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1318 } 1319 break; 1320 } 1321 } 1322 if( regRowid ){ 1323 if( eDest==SRT_Set ){ 1324 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1325 }else{ 1326 sqlite3ReleaseTempReg(pParse, regRow); 1327 } 1328 sqlite3ReleaseTempReg(pParse, regRowid); 1329 } 1330 /* The bottom of the loop 1331 */ 1332 sqlite3VdbeResolveLabel(v, addrContinue); 1333 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1334 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1335 }else{ 1336 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1337 } 1338 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1339 sqlite3VdbeResolveLabel(v, addrBreak); 1340 } 1341 1342 /* 1343 ** Return a pointer to a string containing the 'declaration type' of the 1344 ** expression pExpr. The string may be treated as static by the caller. 1345 ** 1346 ** Also try to estimate the size of the returned value and return that 1347 ** result in *pEstWidth. 1348 ** 1349 ** The declaration type is the exact datatype definition extracted from the 1350 ** original CREATE TABLE statement if the expression is a column. The 1351 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1352 ** is considered a column can be complex in the presence of subqueries. The 1353 ** result-set expression in all of the following SELECT statements is 1354 ** considered a column by this function. 1355 ** 1356 ** SELECT col FROM tbl; 1357 ** SELECT (SELECT col FROM tbl; 1358 ** SELECT (SELECT col FROM tbl); 1359 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1360 ** 1361 ** The declaration type for any expression other than a column is NULL. 1362 ** 1363 ** This routine has either 3 or 6 parameters depending on whether or not 1364 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1365 */ 1366 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1367 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1368 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1369 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1370 #endif 1371 static const char *columnTypeImpl( 1372 NameContext *pNC, 1373 Expr *pExpr, 1374 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1375 const char **pzOrigDb, 1376 const char **pzOrigTab, 1377 const char **pzOrigCol, 1378 #endif 1379 u8 *pEstWidth 1380 ){ 1381 char const *zType = 0; 1382 int j; 1383 u8 estWidth = 1; 1384 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1385 char const *zOrigDb = 0; 1386 char const *zOrigTab = 0; 1387 char const *zOrigCol = 0; 1388 #endif 1389 1390 assert( pExpr!=0 ); 1391 assert( pNC->pSrcList!=0 ); 1392 switch( pExpr->op ){ 1393 case TK_AGG_COLUMN: 1394 case TK_COLUMN: { 1395 /* The expression is a column. Locate the table the column is being 1396 ** extracted from in NameContext.pSrcList. This table may be real 1397 ** database table or a subquery. 1398 */ 1399 Table *pTab = 0; /* Table structure column is extracted from */ 1400 Select *pS = 0; /* Select the column is extracted from */ 1401 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1402 testcase( pExpr->op==TK_AGG_COLUMN ); 1403 testcase( pExpr->op==TK_COLUMN ); 1404 while( pNC && !pTab ){ 1405 SrcList *pTabList = pNC->pSrcList; 1406 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1407 if( j<pTabList->nSrc ){ 1408 pTab = pTabList->a[j].pTab; 1409 pS = pTabList->a[j].pSelect; 1410 }else{ 1411 pNC = pNC->pNext; 1412 } 1413 } 1414 1415 if( pTab==0 ){ 1416 /* At one time, code such as "SELECT new.x" within a trigger would 1417 ** cause this condition to run. Since then, we have restructured how 1418 ** trigger code is generated and so this condition is no longer 1419 ** possible. However, it can still be true for statements like 1420 ** the following: 1421 ** 1422 ** CREATE TABLE t1(col INTEGER); 1423 ** SELECT (SELECT t1.col) FROM FROM t1; 1424 ** 1425 ** when columnType() is called on the expression "t1.col" in the 1426 ** sub-select. In this case, set the column type to NULL, even 1427 ** though it should really be "INTEGER". 1428 ** 1429 ** This is not a problem, as the column type of "t1.col" is never 1430 ** used. When columnType() is called on the expression 1431 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1432 ** branch below. */ 1433 break; 1434 } 1435 1436 assert( pTab && pExpr->pTab==pTab ); 1437 if( pS ){ 1438 /* The "table" is actually a sub-select or a view in the FROM clause 1439 ** of the SELECT statement. Return the declaration type and origin 1440 ** data for the result-set column of the sub-select. 1441 */ 1442 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1443 /* If iCol is less than zero, then the expression requests the 1444 ** rowid of the sub-select or view. This expression is legal (see 1445 ** test case misc2.2.2) - it always evaluates to NULL. 1446 ** 1447 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been 1448 ** caught already by name resolution. 1449 */ 1450 NameContext sNC; 1451 Expr *p = pS->pEList->a[iCol].pExpr; 1452 sNC.pSrcList = pS->pSrc; 1453 sNC.pNext = pNC; 1454 sNC.pParse = pNC->pParse; 1455 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1456 } 1457 }else if( pTab->pSchema ){ 1458 /* A real table */ 1459 assert( !pS ); 1460 if( iCol<0 ) iCol = pTab->iPKey; 1461 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1462 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1463 if( iCol<0 ){ 1464 zType = "INTEGER"; 1465 zOrigCol = "rowid"; 1466 }else{ 1467 zOrigCol = pTab->aCol[iCol].zName; 1468 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1469 estWidth = pTab->aCol[iCol].szEst; 1470 } 1471 zOrigTab = pTab->zName; 1472 if( pNC->pParse ){ 1473 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1474 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1475 } 1476 #else 1477 if( iCol<0 ){ 1478 zType = "INTEGER"; 1479 }else{ 1480 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1481 estWidth = pTab->aCol[iCol].szEst; 1482 } 1483 #endif 1484 } 1485 break; 1486 } 1487 #ifndef SQLITE_OMIT_SUBQUERY 1488 case TK_SELECT: { 1489 /* The expression is a sub-select. Return the declaration type and 1490 ** origin info for the single column in the result set of the SELECT 1491 ** statement. 1492 */ 1493 NameContext sNC; 1494 Select *pS = pExpr->x.pSelect; 1495 Expr *p = pS->pEList->a[0].pExpr; 1496 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1497 sNC.pSrcList = pS->pSrc; 1498 sNC.pNext = pNC; 1499 sNC.pParse = pNC->pParse; 1500 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1501 break; 1502 } 1503 #endif 1504 } 1505 1506 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1507 if( pzOrigDb ){ 1508 assert( pzOrigTab && pzOrigCol ); 1509 *pzOrigDb = zOrigDb; 1510 *pzOrigTab = zOrigTab; 1511 *pzOrigCol = zOrigCol; 1512 } 1513 #endif 1514 if( pEstWidth ) *pEstWidth = estWidth; 1515 return zType; 1516 } 1517 1518 /* 1519 ** Generate code that will tell the VDBE the declaration types of columns 1520 ** in the result set. 1521 */ 1522 static void generateColumnTypes( 1523 Parse *pParse, /* Parser context */ 1524 SrcList *pTabList, /* List of tables */ 1525 ExprList *pEList /* Expressions defining the result set */ 1526 ){ 1527 #ifndef SQLITE_OMIT_DECLTYPE 1528 Vdbe *v = pParse->pVdbe; 1529 int i; 1530 NameContext sNC; 1531 sNC.pSrcList = pTabList; 1532 sNC.pParse = pParse; 1533 for(i=0; i<pEList->nExpr; i++){ 1534 Expr *p = pEList->a[i].pExpr; 1535 const char *zType; 1536 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1537 const char *zOrigDb = 0; 1538 const char *zOrigTab = 0; 1539 const char *zOrigCol = 0; 1540 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1541 1542 /* The vdbe must make its own copy of the column-type and other 1543 ** column specific strings, in case the schema is reset before this 1544 ** virtual machine is deleted. 1545 */ 1546 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1547 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1548 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1549 #else 1550 zType = columnType(&sNC, p, 0, 0, 0, 0); 1551 #endif 1552 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1553 } 1554 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1555 } 1556 1557 /* 1558 ** Generate code that will tell the VDBE the names of columns 1559 ** in the result set. This information is used to provide the 1560 ** azCol[] values in the callback. 1561 */ 1562 static void generateColumnNames( 1563 Parse *pParse, /* Parser context */ 1564 SrcList *pTabList, /* List of tables */ 1565 ExprList *pEList /* Expressions defining the result set */ 1566 ){ 1567 Vdbe *v = pParse->pVdbe; 1568 int i, j; 1569 sqlite3 *db = pParse->db; 1570 int fullNames, shortNames; 1571 1572 #ifndef SQLITE_OMIT_EXPLAIN 1573 /* If this is an EXPLAIN, skip this step */ 1574 if( pParse->explain ){ 1575 return; 1576 } 1577 #endif 1578 1579 if( pParse->colNamesSet || db->mallocFailed ) return; 1580 assert( v!=0 ); 1581 assert( pTabList!=0 ); 1582 pParse->colNamesSet = 1; 1583 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1584 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1585 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1586 for(i=0; i<pEList->nExpr; i++){ 1587 Expr *p; 1588 p = pEList->a[i].pExpr; 1589 if( NEVER(p==0) ) continue; 1590 if( pEList->a[i].zName ){ 1591 char *zName = pEList->a[i].zName; 1592 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1593 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){ 1594 Table *pTab; 1595 char *zCol; 1596 int iCol = p->iColumn; 1597 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1598 if( pTabList->a[j].iCursor==p->iTable ) break; 1599 } 1600 assert( j<pTabList->nSrc ); 1601 pTab = pTabList->a[j].pTab; 1602 if( iCol<0 ) iCol = pTab->iPKey; 1603 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1604 if( iCol<0 ){ 1605 zCol = "rowid"; 1606 }else{ 1607 zCol = pTab->aCol[iCol].zName; 1608 } 1609 if( !shortNames && !fullNames ){ 1610 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1611 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1612 }else if( fullNames ){ 1613 char *zName = 0; 1614 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1615 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1616 }else{ 1617 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1618 } 1619 }else{ 1620 const char *z = pEList->a[i].zSpan; 1621 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1622 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1623 } 1624 } 1625 generateColumnTypes(pParse, pTabList, pEList); 1626 } 1627 1628 /* 1629 ** Given an expression list (which is really the list of expressions 1630 ** that form the result set of a SELECT statement) compute appropriate 1631 ** column names for a table that would hold the expression list. 1632 ** 1633 ** All column names will be unique. 1634 ** 1635 ** Only the column names are computed. Column.zType, Column.zColl, 1636 ** and other fields of Column are zeroed. 1637 ** 1638 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1639 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1640 */ 1641 int sqlite3ColumnsFromExprList( 1642 Parse *pParse, /* Parsing context */ 1643 ExprList *pEList, /* Expr list from which to derive column names */ 1644 i16 *pnCol, /* Write the number of columns here */ 1645 Column **paCol /* Write the new column list here */ 1646 ){ 1647 sqlite3 *db = pParse->db; /* Database connection */ 1648 int i, j; /* Loop counters */ 1649 u32 cnt; /* Index added to make the name unique */ 1650 Column *aCol, *pCol; /* For looping over result columns */ 1651 int nCol; /* Number of columns in the result set */ 1652 Expr *p; /* Expression for a single result column */ 1653 char *zName; /* Column name */ 1654 int nName; /* Size of name in zName[] */ 1655 Hash ht; /* Hash table of column names */ 1656 1657 sqlite3HashInit(&ht); 1658 if( pEList ){ 1659 nCol = pEList->nExpr; 1660 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1661 testcase( aCol==0 ); 1662 }else{ 1663 nCol = 0; 1664 aCol = 0; 1665 } 1666 assert( nCol==(i16)nCol ); 1667 *pnCol = nCol; 1668 *paCol = aCol; 1669 1670 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1671 /* Get an appropriate name for the column 1672 */ 1673 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1674 if( (zName = pEList->a[i].zName)!=0 ){ 1675 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1676 }else{ 1677 Expr *pColExpr = p; /* The expression that is the result column name */ 1678 Table *pTab; /* Table associated with this expression */ 1679 while( pColExpr->op==TK_DOT ){ 1680 pColExpr = pColExpr->pRight; 1681 assert( pColExpr!=0 ); 1682 } 1683 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1684 /* For columns use the column name name */ 1685 int iCol = pColExpr->iColumn; 1686 pTab = pColExpr->pTab; 1687 if( iCol<0 ) iCol = pTab->iPKey; 1688 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1689 }else if( pColExpr->op==TK_ID ){ 1690 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1691 zName = pColExpr->u.zToken; 1692 }else{ 1693 /* Use the original text of the column expression as its name */ 1694 zName = pEList->a[i].zSpan; 1695 } 1696 } 1697 zName = sqlite3MPrintf(db, "%s", zName); 1698 1699 /* Make sure the column name is unique. If the name is not unique, 1700 ** append an integer to the name so that it becomes unique. 1701 */ 1702 cnt = 0; 1703 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1704 nName = sqlite3Strlen30(zName); 1705 if( nName>0 ){ 1706 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1707 if( zName[j]==':' ) nName = j; 1708 } 1709 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1710 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1711 } 1712 pCol->zName = zName; 1713 sqlite3ColumnPropertiesFromName(0, pCol); 1714 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 1715 sqlite3OomFault(db); 1716 } 1717 } 1718 sqlite3HashClear(&ht); 1719 if( db->mallocFailed ){ 1720 for(j=0; j<i; j++){ 1721 sqlite3DbFree(db, aCol[j].zName); 1722 } 1723 sqlite3DbFree(db, aCol); 1724 *paCol = 0; 1725 *pnCol = 0; 1726 return SQLITE_NOMEM_BKPT; 1727 } 1728 return SQLITE_OK; 1729 } 1730 1731 /* 1732 ** Add type and collation information to a column list based on 1733 ** a SELECT statement. 1734 ** 1735 ** The column list presumably came from selectColumnNamesFromExprList(). 1736 ** The column list has only names, not types or collations. This 1737 ** routine goes through and adds the types and collations. 1738 ** 1739 ** This routine requires that all identifiers in the SELECT 1740 ** statement be resolved. 1741 */ 1742 void sqlite3SelectAddColumnTypeAndCollation( 1743 Parse *pParse, /* Parsing contexts */ 1744 Table *pTab, /* Add column type information to this table */ 1745 Select *pSelect /* SELECT used to determine types and collations */ 1746 ){ 1747 sqlite3 *db = pParse->db; 1748 NameContext sNC; 1749 Column *pCol; 1750 CollSeq *pColl; 1751 int i; 1752 Expr *p; 1753 struct ExprList_item *a; 1754 u64 szAll = 0; 1755 1756 assert( pSelect!=0 ); 1757 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1758 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1759 if( db->mallocFailed ) return; 1760 memset(&sNC, 0, sizeof(sNC)); 1761 sNC.pSrcList = pSelect->pSrc; 1762 a = pSelect->pEList->a; 1763 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1764 const char *zType; 1765 int n, m; 1766 p = a[i].pExpr; 1767 zType = columnType(&sNC, p, 0, 0, 0, &pCol->szEst); 1768 szAll += pCol->szEst; 1769 pCol->affinity = sqlite3ExprAffinity(p); 1770 if( zType && (m = sqlite3Strlen30(zType))>0 ){ 1771 n = sqlite3Strlen30(pCol->zName); 1772 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 1773 if( pCol->zName ){ 1774 memcpy(&pCol->zName[n+1], zType, m+1); 1775 pCol->colFlags |= COLFLAG_HASTYPE; 1776 } 1777 } 1778 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 1779 pColl = sqlite3ExprCollSeq(pParse, p); 1780 if( pColl && pCol->zColl==0 ){ 1781 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1782 } 1783 } 1784 pTab->szTabRow = sqlite3LogEst(szAll*4); 1785 } 1786 1787 /* 1788 ** Given a SELECT statement, generate a Table structure that describes 1789 ** the result set of that SELECT. 1790 */ 1791 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1792 Table *pTab; 1793 sqlite3 *db = pParse->db; 1794 int savedFlags; 1795 1796 savedFlags = db->flags; 1797 db->flags &= ~SQLITE_FullColNames; 1798 db->flags |= SQLITE_ShortColNames; 1799 sqlite3SelectPrep(pParse, pSelect, 0); 1800 if( pParse->nErr ) return 0; 1801 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1802 db->flags = savedFlags; 1803 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1804 if( pTab==0 ){ 1805 return 0; 1806 } 1807 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1808 ** is disabled */ 1809 assert( db->lookaside.bDisable ); 1810 pTab->nTabRef = 1; 1811 pTab->zName = 0; 1812 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1813 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1814 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1815 pTab->iPKey = -1; 1816 if( db->mallocFailed ){ 1817 sqlite3DeleteTable(db, pTab); 1818 return 0; 1819 } 1820 return pTab; 1821 } 1822 1823 /* 1824 ** Get a VDBE for the given parser context. Create a new one if necessary. 1825 ** If an error occurs, return NULL and leave a message in pParse. 1826 */ 1827 static SQLITE_NOINLINE Vdbe *allocVdbe(Parse *pParse){ 1828 Vdbe *v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1829 if( v ) sqlite3VdbeAddOp2(v, OP_Init, 0, 1); 1830 if( pParse->pToplevel==0 1831 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1832 ){ 1833 pParse->okConstFactor = 1; 1834 } 1835 return v; 1836 } 1837 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1838 Vdbe *v = pParse->pVdbe; 1839 return v ? v : allocVdbe(pParse); 1840 } 1841 1842 1843 /* 1844 ** Compute the iLimit and iOffset fields of the SELECT based on the 1845 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1846 ** that appear in the original SQL statement after the LIMIT and OFFSET 1847 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1848 ** are the integer memory register numbers for counters used to compute 1849 ** the limit and offset. If there is no limit and/or offset, then 1850 ** iLimit and iOffset are negative. 1851 ** 1852 ** This routine changes the values of iLimit and iOffset only if 1853 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1854 ** iOffset should have been preset to appropriate default values (zero) 1855 ** prior to calling this routine. 1856 ** 1857 ** The iOffset register (if it exists) is initialized to the value 1858 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1859 ** iOffset+1 is initialized to LIMIT+OFFSET. 1860 ** 1861 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1862 ** redefined. The UNION ALL operator uses this property to force 1863 ** the reuse of the same limit and offset registers across multiple 1864 ** SELECT statements. 1865 */ 1866 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1867 Vdbe *v = 0; 1868 int iLimit = 0; 1869 int iOffset; 1870 int n; 1871 if( p->iLimit ) return; 1872 1873 /* 1874 ** "LIMIT -1" always shows all rows. There is some 1875 ** controversy about what the correct behavior should be. 1876 ** The current implementation interprets "LIMIT 0" to mean 1877 ** no rows. 1878 */ 1879 sqlite3ExprCacheClear(pParse); 1880 assert( p->pOffset==0 || p->pLimit!=0 ); 1881 if( p->pLimit ){ 1882 p->iLimit = iLimit = ++pParse->nMem; 1883 v = sqlite3GetVdbe(pParse); 1884 assert( v!=0 ); 1885 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1886 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1887 VdbeComment((v, "LIMIT counter")); 1888 if( n==0 ){ 1889 sqlite3VdbeGoto(v, iBreak); 1890 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 1891 p->nSelectRow = sqlite3LogEst((u64)n); 1892 p->selFlags |= SF_FixedLimit; 1893 } 1894 }else{ 1895 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1896 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1897 VdbeComment((v, "LIMIT counter")); 1898 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 1899 } 1900 if( p->pOffset ){ 1901 p->iOffset = iOffset = ++pParse->nMem; 1902 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1903 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1904 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1905 VdbeComment((v, "OFFSET counter")); 1906 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 1907 VdbeComment((v, "LIMIT+OFFSET")); 1908 } 1909 } 1910 } 1911 1912 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1913 /* 1914 ** Return the appropriate collating sequence for the iCol-th column of 1915 ** the result set for the compound-select statement "p". Return NULL if 1916 ** the column has no default collating sequence. 1917 ** 1918 ** The collating sequence for the compound select is taken from the 1919 ** left-most term of the select that has a collating sequence. 1920 */ 1921 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1922 CollSeq *pRet; 1923 if( p->pPrior ){ 1924 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1925 }else{ 1926 pRet = 0; 1927 } 1928 assert( iCol>=0 ); 1929 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 1930 ** have been thrown during name resolution and we would not have gotten 1931 ** this far */ 1932 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 1933 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1934 } 1935 return pRet; 1936 } 1937 1938 /* 1939 ** The select statement passed as the second parameter is a compound SELECT 1940 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1941 ** structure suitable for implementing the ORDER BY. 1942 ** 1943 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1944 ** function is responsible for ensuring that this structure is eventually 1945 ** freed. 1946 */ 1947 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1948 ExprList *pOrderBy = p->pOrderBy; 1949 int nOrderBy = p->pOrderBy->nExpr; 1950 sqlite3 *db = pParse->db; 1951 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1952 if( pRet ){ 1953 int i; 1954 for(i=0; i<nOrderBy; i++){ 1955 struct ExprList_item *pItem = &pOrderBy->a[i]; 1956 Expr *pTerm = pItem->pExpr; 1957 CollSeq *pColl; 1958 1959 if( pTerm->flags & EP_Collate ){ 1960 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1961 }else{ 1962 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1963 if( pColl==0 ) pColl = db->pDfltColl; 1964 pOrderBy->a[i].pExpr = 1965 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1966 } 1967 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1968 pRet->aColl[i] = pColl; 1969 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1970 } 1971 } 1972 1973 return pRet; 1974 } 1975 1976 #ifndef SQLITE_OMIT_CTE 1977 /* 1978 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1979 ** query of the form: 1980 ** 1981 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1982 ** \___________/ \_______________/ 1983 ** p->pPrior p 1984 ** 1985 ** 1986 ** There is exactly one reference to the recursive-table in the FROM clause 1987 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 1988 ** 1989 ** The setup-query runs once to generate an initial set of rows that go 1990 ** into a Queue table. Rows are extracted from the Queue table one by 1991 ** one. Each row extracted from Queue is output to pDest. Then the single 1992 ** extracted row (now in the iCurrent table) becomes the content of the 1993 ** recursive-table for a recursive-query run. The output of the recursive-query 1994 ** is added back into the Queue table. Then another row is extracted from Queue 1995 ** and the iteration continues until the Queue table is empty. 1996 ** 1997 ** If the compound query operator is UNION then no duplicate rows are ever 1998 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1999 ** that have ever been inserted into Queue and causes duplicates to be 2000 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2001 ** 2002 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2003 ** ORDER BY order and the first entry is extracted for each cycle. Without 2004 ** an ORDER BY, the Queue table is just a FIFO. 2005 ** 2006 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2007 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2008 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2009 ** with a positive value, then the first OFFSET outputs are discarded rather 2010 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2011 ** rows have been skipped. 2012 */ 2013 static void generateWithRecursiveQuery( 2014 Parse *pParse, /* Parsing context */ 2015 Select *p, /* The recursive SELECT to be coded */ 2016 SelectDest *pDest /* What to do with query results */ 2017 ){ 2018 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2019 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2020 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2021 Select *pSetup = p->pPrior; /* The setup query */ 2022 int addrTop; /* Top of the loop */ 2023 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2024 int iCurrent = 0; /* The Current table */ 2025 int regCurrent; /* Register holding Current table */ 2026 int iQueue; /* The Queue table */ 2027 int iDistinct = 0; /* To ensure unique results if UNION */ 2028 int eDest = SRT_Fifo; /* How to write to Queue */ 2029 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2030 int i; /* Loop counter */ 2031 int rc; /* Result code */ 2032 ExprList *pOrderBy; /* The ORDER BY clause */ 2033 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 2034 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2035 2036 /* Obtain authorization to do a recursive query */ 2037 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2038 2039 /* Process the LIMIT and OFFSET clauses, if they exist */ 2040 addrBreak = sqlite3VdbeMakeLabel(v); 2041 p->nSelectRow = 320; /* 4 billion rows */ 2042 computeLimitRegisters(pParse, p, addrBreak); 2043 pLimit = p->pLimit; 2044 pOffset = p->pOffset; 2045 regLimit = p->iLimit; 2046 regOffset = p->iOffset; 2047 p->pLimit = p->pOffset = 0; 2048 p->iLimit = p->iOffset = 0; 2049 pOrderBy = p->pOrderBy; 2050 2051 /* Locate the cursor number of the Current table */ 2052 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2053 if( pSrc->a[i].fg.isRecursive ){ 2054 iCurrent = pSrc->a[i].iCursor; 2055 break; 2056 } 2057 } 2058 2059 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2060 ** the Distinct table must be exactly one greater than Queue in order 2061 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2062 iQueue = pParse->nTab++; 2063 if( p->op==TK_UNION ){ 2064 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2065 iDistinct = pParse->nTab++; 2066 }else{ 2067 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2068 } 2069 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2070 2071 /* Allocate cursors for Current, Queue, and Distinct. */ 2072 regCurrent = ++pParse->nMem; 2073 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2074 if( pOrderBy ){ 2075 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2076 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2077 (char*)pKeyInfo, P4_KEYINFO); 2078 destQueue.pOrderBy = pOrderBy; 2079 }else{ 2080 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2081 } 2082 VdbeComment((v, "Queue table")); 2083 if( iDistinct ){ 2084 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2085 p->selFlags |= SF_UsesEphemeral; 2086 } 2087 2088 /* Detach the ORDER BY clause from the compound SELECT */ 2089 p->pOrderBy = 0; 2090 2091 /* Store the results of the setup-query in Queue. */ 2092 pSetup->pNext = 0; 2093 rc = sqlite3Select(pParse, pSetup, &destQueue); 2094 pSetup->pNext = p; 2095 if( rc ) goto end_of_recursive_query; 2096 2097 /* Find the next row in the Queue and output that row */ 2098 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2099 2100 /* Transfer the next row in Queue over to Current */ 2101 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2102 if( pOrderBy ){ 2103 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2104 }else{ 2105 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2106 } 2107 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2108 2109 /* Output the single row in Current */ 2110 addrCont = sqlite3VdbeMakeLabel(v); 2111 codeOffset(v, regOffset, addrCont); 2112 selectInnerLoop(pParse, p, p->pEList, iCurrent, 2113 0, 0, pDest, addrCont, addrBreak); 2114 if( regLimit ){ 2115 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2116 VdbeCoverage(v); 2117 } 2118 sqlite3VdbeResolveLabel(v, addrCont); 2119 2120 /* Execute the recursive SELECT taking the single row in Current as 2121 ** the value for the recursive-table. Store the results in the Queue. 2122 */ 2123 if( p->selFlags & SF_Aggregate ){ 2124 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2125 }else{ 2126 p->pPrior = 0; 2127 sqlite3Select(pParse, p, &destQueue); 2128 assert( p->pPrior==0 ); 2129 p->pPrior = pSetup; 2130 } 2131 2132 /* Keep running the loop until the Queue is empty */ 2133 sqlite3VdbeGoto(v, addrTop); 2134 sqlite3VdbeResolveLabel(v, addrBreak); 2135 2136 end_of_recursive_query: 2137 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2138 p->pOrderBy = pOrderBy; 2139 p->pLimit = pLimit; 2140 p->pOffset = pOffset; 2141 return; 2142 } 2143 #endif /* SQLITE_OMIT_CTE */ 2144 2145 /* Forward references */ 2146 static int multiSelectOrderBy( 2147 Parse *pParse, /* Parsing context */ 2148 Select *p, /* The right-most of SELECTs to be coded */ 2149 SelectDest *pDest /* What to do with query results */ 2150 ); 2151 2152 /* 2153 ** Handle the special case of a compound-select that originates from a 2154 ** VALUES clause. By handling this as a special case, we avoid deep 2155 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2156 ** on a VALUES clause. 2157 ** 2158 ** Because the Select object originates from a VALUES clause: 2159 ** (1) It has no LIMIT or OFFSET 2160 ** (2) All terms are UNION ALL 2161 ** (3) There is no ORDER BY clause 2162 */ 2163 static int multiSelectValues( 2164 Parse *pParse, /* Parsing context */ 2165 Select *p, /* The right-most of SELECTs to be coded */ 2166 SelectDest *pDest /* What to do with query results */ 2167 ){ 2168 Select *pPrior; 2169 int nRow = 1; 2170 int rc = 0; 2171 assert( p->selFlags & SF_MultiValue ); 2172 do{ 2173 assert( p->selFlags & SF_Values ); 2174 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2175 assert( p->pLimit==0 ); 2176 assert( p->pOffset==0 ); 2177 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2178 if( p->pPrior==0 ) break; 2179 assert( p->pPrior->pNext==p ); 2180 p = p->pPrior; 2181 nRow++; 2182 }while(1); 2183 while( p ){ 2184 pPrior = p->pPrior; 2185 p->pPrior = 0; 2186 rc = sqlite3Select(pParse, p, pDest); 2187 p->pPrior = pPrior; 2188 if( rc ) break; 2189 p->nSelectRow = nRow; 2190 p = p->pNext; 2191 } 2192 return rc; 2193 } 2194 2195 /* 2196 ** This routine is called to process a compound query form from 2197 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2198 ** INTERSECT 2199 ** 2200 ** "p" points to the right-most of the two queries. the query on the 2201 ** left is p->pPrior. The left query could also be a compound query 2202 ** in which case this routine will be called recursively. 2203 ** 2204 ** The results of the total query are to be written into a destination 2205 ** of type eDest with parameter iParm. 2206 ** 2207 ** Example 1: Consider a three-way compound SQL statement. 2208 ** 2209 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2210 ** 2211 ** This statement is parsed up as follows: 2212 ** 2213 ** SELECT c FROM t3 2214 ** | 2215 ** `-----> SELECT b FROM t2 2216 ** | 2217 ** `------> SELECT a FROM t1 2218 ** 2219 ** The arrows in the diagram above represent the Select.pPrior pointer. 2220 ** So if this routine is called with p equal to the t3 query, then 2221 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2222 ** 2223 ** Notice that because of the way SQLite parses compound SELECTs, the 2224 ** individual selects always group from left to right. 2225 */ 2226 static int multiSelect( 2227 Parse *pParse, /* Parsing context */ 2228 Select *p, /* The right-most of SELECTs to be coded */ 2229 SelectDest *pDest /* What to do with query results */ 2230 ){ 2231 int rc = SQLITE_OK; /* Success code from a subroutine */ 2232 Select *pPrior; /* Another SELECT immediately to our left */ 2233 Vdbe *v; /* Generate code to this VDBE */ 2234 SelectDest dest; /* Alternative data destination */ 2235 Select *pDelete = 0; /* Chain of simple selects to delete */ 2236 sqlite3 *db; /* Database connection */ 2237 #ifndef SQLITE_OMIT_EXPLAIN 2238 int iSub1 = 0; /* EQP id of left-hand query */ 2239 int iSub2 = 0; /* EQP id of right-hand query */ 2240 #endif 2241 2242 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2243 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2244 */ 2245 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2246 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2247 db = pParse->db; 2248 pPrior = p->pPrior; 2249 dest = *pDest; 2250 if( pPrior->pOrderBy ){ 2251 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2252 selectOpName(p->op)); 2253 rc = 1; 2254 goto multi_select_end; 2255 } 2256 if( pPrior->pLimit ){ 2257 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2258 selectOpName(p->op)); 2259 rc = 1; 2260 goto multi_select_end; 2261 } 2262 2263 v = sqlite3GetVdbe(pParse); 2264 assert( v!=0 ); /* The VDBE already created by calling function */ 2265 2266 /* Create the destination temporary table if necessary 2267 */ 2268 if( dest.eDest==SRT_EphemTab ){ 2269 assert( p->pEList ); 2270 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2271 dest.eDest = SRT_Table; 2272 } 2273 2274 /* Special handling for a compound-select that originates as a VALUES clause. 2275 */ 2276 if( p->selFlags & SF_MultiValue ){ 2277 rc = multiSelectValues(pParse, p, &dest); 2278 goto multi_select_end; 2279 } 2280 2281 /* Make sure all SELECTs in the statement have the same number of elements 2282 ** in their result sets. 2283 */ 2284 assert( p->pEList && pPrior->pEList ); 2285 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2286 2287 #ifndef SQLITE_OMIT_CTE 2288 if( p->selFlags & SF_Recursive ){ 2289 generateWithRecursiveQuery(pParse, p, &dest); 2290 }else 2291 #endif 2292 2293 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2294 */ 2295 if( p->pOrderBy ){ 2296 return multiSelectOrderBy(pParse, p, pDest); 2297 }else 2298 2299 /* Generate code for the left and right SELECT statements. 2300 */ 2301 switch( p->op ){ 2302 case TK_ALL: { 2303 int addr = 0; 2304 int nLimit; 2305 assert( !pPrior->pLimit ); 2306 pPrior->iLimit = p->iLimit; 2307 pPrior->iOffset = p->iOffset; 2308 pPrior->pLimit = p->pLimit; 2309 pPrior->pOffset = p->pOffset; 2310 explainSetInteger(iSub1, pParse->iNextSelectId); 2311 rc = sqlite3Select(pParse, pPrior, &dest); 2312 p->pLimit = 0; 2313 p->pOffset = 0; 2314 if( rc ){ 2315 goto multi_select_end; 2316 } 2317 p->pPrior = 0; 2318 p->iLimit = pPrior->iLimit; 2319 p->iOffset = pPrior->iOffset; 2320 if( p->iLimit ){ 2321 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2322 VdbeComment((v, "Jump ahead if LIMIT reached")); 2323 if( p->iOffset ){ 2324 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2325 p->iLimit, p->iOffset+1, p->iOffset); 2326 } 2327 } 2328 explainSetInteger(iSub2, pParse->iNextSelectId); 2329 rc = sqlite3Select(pParse, p, &dest); 2330 testcase( rc!=SQLITE_OK ); 2331 pDelete = p->pPrior; 2332 p->pPrior = pPrior; 2333 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2334 if( pPrior->pLimit 2335 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2336 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2337 ){ 2338 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2339 } 2340 if( addr ){ 2341 sqlite3VdbeJumpHere(v, addr); 2342 } 2343 break; 2344 } 2345 case TK_EXCEPT: 2346 case TK_UNION: { 2347 int unionTab; /* Cursor number of the temporary table holding result */ 2348 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2349 int priorOp; /* The SRT_ operation to apply to prior selects */ 2350 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2351 int addr; 2352 SelectDest uniondest; 2353 2354 testcase( p->op==TK_EXCEPT ); 2355 testcase( p->op==TK_UNION ); 2356 priorOp = SRT_Union; 2357 if( dest.eDest==priorOp ){ 2358 /* We can reuse a temporary table generated by a SELECT to our 2359 ** right. 2360 */ 2361 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2362 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2363 unionTab = dest.iSDParm; 2364 }else{ 2365 /* We will need to create our own temporary table to hold the 2366 ** intermediate results. 2367 */ 2368 unionTab = pParse->nTab++; 2369 assert( p->pOrderBy==0 ); 2370 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2371 assert( p->addrOpenEphm[0] == -1 ); 2372 p->addrOpenEphm[0] = addr; 2373 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2374 assert( p->pEList ); 2375 } 2376 2377 /* Code the SELECT statements to our left 2378 */ 2379 assert( !pPrior->pOrderBy ); 2380 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2381 explainSetInteger(iSub1, pParse->iNextSelectId); 2382 rc = sqlite3Select(pParse, pPrior, &uniondest); 2383 if( rc ){ 2384 goto multi_select_end; 2385 } 2386 2387 /* Code the current SELECT statement 2388 */ 2389 if( p->op==TK_EXCEPT ){ 2390 op = SRT_Except; 2391 }else{ 2392 assert( p->op==TK_UNION ); 2393 op = SRT_Union; 2394 } 2395 p->pPrior = 0; 2396 pLimit = p->pLimit; 2397 p->pLimit = 0; 2398 pOffset = p->pOffset; 2399 p->pOffset = 0; 2400 uniondest.eDest = op; 2401 explainSetInteger(iSub2, pParse->iNextSelectId); 2402 rc = sqlite3Select(pParse, p, &uniondest); 2403 testcase( rc!=SQLITE_OK ); 2404 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2405 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2406 sqlite3ExprListDelete(db, p->pOrderBy); 2407 pDelete = p->pPrior; 2408 p->pPrior = pPrior; 2409 p->pOrderBy = 0; 2410 if( p->op==TK_UNION ){ 2411 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2412 } 2413 sqlite3ExprDelete(db, p->pLimit); 2414 p->pLimit = pLimit; 2415 p->pOffset = pOffset; 2416 p->iLimit = 0; 2417 p->iOffset = 0; 2418 2419 /* Convert the data in the temporary table into whatever form 2420 ** it is that we currently need. 2421 */ 2422 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2423 if( dest.eDest!=priorOp ){ 2424 int iCont, iBreak, iStart; 2425 assert( p->pEList ); 2426 if( dest.eDest==SRT_Output ){ 2427 Select *pFirst = p; 2428 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2429 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2430 } 2431 iBreak = sqlite3VdbeMakeLabel(v); 2432 iCont = sqlite3VdbeMakeLabel(v); 2433 computeLimitRegisters(pParse, p, iBreak); 2434 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2435 iStart = sqlite3VdbeCurrentAddr(v); 2436 selectInnerLoop(pParse, p, p->pEList, unionTab, 2437 0, 0, &dest, iCont, iBreak); 2438 sqlite3VdbeResolveLabel(v, iCont); 2439 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2440 sqlite3VdbeResolveLabel(v, iBreak); 2441 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2442 } 2443 break; 2444 } 2445 default: assert( p->op==TK_INTERSECT ); { 2446 int tab1, tab2; 2447 int iCont, iBreak, iStart; 2448 Expr *pLimit, *pOffset; 2449 int addr; 2450 SelectDest intersectdest; 2451 int r1; 2452 2453 /* INTERSECT is different from the others since it requires 2454 ** two temporary tables. Hence it has its own case. Begin 2455 ** by allocating the tables we will need. 2456 */ 2457 tab1 = pParse->nTab++; 2458 tab2 = pParse->nTab++; 2459 assert( p->pOrderBy==0 ); 2460 2461 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2462 assert( p->addrOpenEphm[0] == -1 ); 2463 p->addrOpenEphm[0] = addr; 2464 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2465 assert( p->pEList ); 2466 2467 /* Code the SELECTs to our left into temporary table "tab1". 2468 */ 2469 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2470 explainSetInteger(iSub1, pParse->iNextSelectId); 2471 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2472 if( rc ){ 2473 goto multi_select_end; 2474 } 2475 2476 /* Code the current SELECT into temporary table "tab2" 2477 */ 2478 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2479 assert( p->addrOpenEphm[1] == -1 ); 2480 p->addrOpenEphm[1] = addr; 2481 p->pPrior = 0; 2482 pLimit = p->pLimit; 2483 p->pLimit = 0; 2484 pOffset = p->pOffset; 2485 p->pOffset = 0; 2486 intersectdest.iSDParm = tab2; 2487 explainSetInteger(iSub2, pParse->iNextSelectId); 2488 rc = sqlite3Select(pParse, p, &intersectdest); 2489 testcase( rc!=SQLITE_OK ); 2490 pDelete = p->pPrior; 2491 p->pPrior = pPrior; 2492 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2493 sqlite3ExprDelete(db, p->pLimit); 2494 p->pLimit = pLimit; 2495 p->pOffset = pOffset; 2496 2497 /* Generate code to take the intersection of the two temporary 2498 ** tables. 2499 */ 2500 assert( p->pEList ); 2501 if( dest.eDest==SRT_Output ){ 2502 Select *pFirst = p; 2503 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2504 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 2505 } 2506 iBreak = sqlite3VdbeMakeLabel(v); 2507 iCont = sqlite3VdbeMakeLabel(v); 2508 computeLimitRegisters(pParse, p, iBreak); 2509 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2510 r1 = sqlite3GetTempReg(pParse); 2511 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2512 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2513 sqlite3ReleaseTempReg(pParse, r1); 2514 selectInnerLoop(pParse, p, p->pEList, tab1, 2515 0, 0, &dest, iCont, iBreak); 2516 sqlite3VdbeResolveLabel(v, iCont); 2517 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2518 sqlite3VdbeResolveLabel(v, iBreak); 2519 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2520 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2521 break; 2522 } 2523 } 2524 2525 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2526 2527 /* Compute collating sequences used by 2528 ** temporary tables needed to implement the compound select. 2529 ** Attach the KeyInfo structure to all temporary tables. 2530 ** 2531 ** This section is run by the right-most SELECT statement only. 2532 ** SELECT statements to the left always skip this part. The right-most 2533 ** SELECT might also skip this part if it has no ORDER BY clause and 2534 ** no temp tables are required. 2535 */ 2536 if( p->selFlags & SF_UsesEphemeral ){ 2537 int i; /* Loop counter */ 2538 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2539 Select *pLoop; /* For looping through SELECT statements */ 2540 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2541 int nCol; /* Number of columns in result set */ 2542 2543 assert( p->pNext==0 ); 2544 nCol = p->pEList->nExpr; 2545 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2546 if( !pKeyInfo ){ 2547 rc = SQLITE_NOMEM_BKPT; 2548 goto multi_select_end; 2549 } 2550 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2551 *apColl = multiSelectCollSeq(pParse, p, i); 2552 if( 0==*apColl ){ 2553 *apColl = db->pDfltColl; 2554 } 2555 } 2556 2557 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2558 for(i=0; i<2; i++){ 2559 int addr = pLoop->addrOpenEphm[i]; 2560 if( addr<0 ){ 2561 /* If [0] is unused then [1] is also unused. So we can 2562 ** always safely abort as soon as the first unused slot is found */ 2563 assert( pLoop->addrOpenEphm[1]<0 ); 2564 break; 2565 } 2566 sqlite3VdbeChangeP2(v, addr, nCol); 2567 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2568 P4_KEYINFO); 2569 pLoop->addrOpenEphm[i] = -1; 2570 } 2571 } 2572 sqlite3KeyInfoUnref(pKeyInfo); 2573 } 2574 2575 multi_select_end: 2576 pDest->iSdst = dest.iSdst; 2577 pDest->nSdst = dest.nSdst; 2578 sqlite3SelectDelete(db, pDelete); 2579 return rc; 2580 } 2581 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2582 2583 /* 2584 ** Error message for when two or more terms of a compound select have different 2585 ** size result sets. 2586 */ 2587 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2588 if( p->selFlags & SF_Values ){ 2589 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2590 }else{ 2591 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2592 " do not have the same number of result columns", selectOpName(p->op)); 2593 } 2594 } 2595 2596 /* 2597 ** Code an output subroutine for a coroutine implementation of a 2598 ** SELECT statment. 2599 ** 2600 ** The data to be output is contained in pIn->iSdst. There are 2601 ** pIn->nSdst columns to be output. pDest is where the output should 2602 ** be sent. 2603 ** 2604 ** regReturn is the number of the register holding the subroutine 2605 ** return address. 2606 ** 2607 ** If regPrev>0 then it is the first register in a vector that 2608 ** records the previous output. mem[regPrev] is a flag that is false 2609 ** if there has been no previous output. If regPrev>0 then code is 2610 ** generated to suppress duplicates. pKeyInfo is used for comparing 2611 ** keys. 2612 ** 2613 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2614 ** iBreak. 2615 */ 2616 static int generateOutputSubroutine( 2617 Parse *pParse, /* Parsing context */ 2618 Select *p, /* The SELECT statement */ 2619 SelectDest *pIn, /* Coroutine supplying data */ 2620 SelectDest *pDest, /* Where to send the data */ 2621 int regReturn, /* The return address register */ 2622 int regPrev, /* Previous result register. No uniqueness if 0 */ 2623 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2624 int iBreak /* Jump here if we hit the LIMIT */ 2625 ){ 2626 Vdbe *v = pParse->pVdbe; 2627 int iContinue; 2628 int addr; 2629 2630 addr = sqlite3VdbeCurrentAddr(v); 2631 iContinue = sqlite3VdbeMakeLabel(v); 2632 2633 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2634 */ 2635 if( regPrev ){ 2636 int addr1, addr2; 2637 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2638 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2639 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2640 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2641 sqlite3VdbeJumpHere(v, addr1); 2642 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2643 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2644 } 2645 if( pParse->db->mallocFailed ) return 0; 2646 2647 /* Suppress the first OFFSET entries if there is an OFFSET clause 2648 */ 2649 codeOffset(v, p->iOffset, iContinue); 2650 2651 assert( pDest->eDest!=SRT_Exists ); 2652 assert( pDest->eDest!=SRT_Table ); 2653 switch( pDest->eDest ){ 2654 /* Store the result as data using a unique key. 2655 */ 2656 case SRT_EphemTab: { 2657 int r1 = sqlite3GetTempReg(pParse); 2658 int r2 = sqlite3GetTempReg(pParse); 2659 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2660 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2661 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2662 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2663 sqlite3ReleaseTempReg(pParse, r2); 2664 sqlite3ReleaseTempReg(pParse, r1); 2665 break; 2666 } 2667 2668 #ifndef SQLITE_OMIT_SUBQUERY 2669 /* If we are creating a set for an "expr IN (SELECT ...)". 2670 */ 2671 case SRT_Set: { 2672 int r1; 2673 testcase( pIn->nSdst>1 ); 2674 r1 = sqlite3GetTempReg(pParse); 2675 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2676 r1, pDest->zAffSdst, pIn->nSdst); 2677 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2678 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2679 pIn->iSdst, pIn->nSdst); 2680 sqlite3ReleaseTempReg(pParse, r1); 2681 break; 2682 } 2683 2684 /* If this is a scalar select that is part of an expression, then 2685 ** store the results in the appropriate memory cell and break out 2686 ** of the scan loop. 2687 */ 2688 case SRT_Mem: { 2689 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2690 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2691 /* The LIMIT clause will jump out of the loop for us */ 2692 break; 2693 } 2694 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2695 2696 /* The results are stored in a sequence of registers 2697 ** starting at pDest->iSdst. Then the co-routine yields. 2698 */ 2699 case SRT_Coroutine: { 2700 if( pDest->iSdst==0 ){ 2701 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2702 pDest->nSdst = pIn->nSdst; 2703 } 2704 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2705 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2706 break; 2707 } 2708 2709 /* If none of the above, then the result destination must be 2710 ** SRT_Output. This routine is never called with any other 2711 ** destination other than the ones handled above or SRT_Output. 2712 ** 2713 ** For SRT_Output, results are stored in a sequence of registers. 2714 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2715 ** return the next row of result. 2716 */ 2717 default: { 2718 assert( pDest->eDest==SRT_Output ); 2719 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2720 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2721 break; 2722 } 2723 } 2724 2725 /* Jump to the end of the loop if the LIMIT is reached. 2726 */ 2727 if( p->iLimit ){ 2728 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2729 } 2730 2731 /* Generate the subroutine return 2732 */ 2733 sqlite3VdbeResolveLabel(v, iContinue); 2734 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2735 2736 return addr; 2737 } 2738 2739 /* 2740 ** Alternative compound select code generator for cases when there 2741 ** is an ORDER BY clause. 2742 ** 2743 ** We assume a query of the following form: 2744 ** 2745 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2746 ** 2747 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2748 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2749 ** co-routines. Then run the co-routines in parallel and merge the results 2750 ** into the output. In addition to the two coroutines (called selectA and 2751 ** selectB) there are 7 subroutines: 2752 ** 2753 ** outA: Move the output of the selectA coroutine into the output 2754 ** of the compound query. 2755 ** 2756 ** outB: Move the output of the selectB coroutine into the output 2757 ** of the compound query. (Only generated for UNION and 2758 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2759 ** appears only in B.) 2760 ** 2761 ** AltB: Called when there is data from both coroutines and A<B. 2762 ** 2763 ** AeqB: Called when there is data from both coroutines and A==B. 2764 ** 2765 ** AgtB: Called when there is data from both coroutines and A>B. 2766 ** 2767 ** EofA: Called when data is exhausted from selectA. 2768 ** 2769 ** EofB: Called when data is exhausted from selectB. 2770 ** 2771 ** The implementation of the latter five subroutines depend on which 2772 ** <operator> is used: 2773 ** 2774 ** 2775 ** UNION ALL UNION EXCEPT INTERSECT 2776 ** ------------- ----------------- -------------- ----------------- 2777 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2778 ** 2779 ** AeqB: outA, nextA nextA nextA outA, nextA 2780 ** 2781 ** AgtB: outB, nextB outB, nextB nextB nextB 2782 ** 2783 ** EofA: outB, nextB outB, nextB halt halt 2784 ** 2785 ** EofB: outA, nextA outA, nextA outA, nextA halt 2786 ** 2787 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2788 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2789 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2790 ** following nextX causes a jump to the end of the select processing. 2791 ** 2792 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2793 ** within the output subroutine. The regPrev register set holds the previously 2794 ** output value. A comparison is made against this value and the output 2795 ** is skipped if the next results would be the same as the previous. 2796 ** 2797 ** The implementation plan is to implement the two coroutines and seven 2798 ** subroutines first, then put the control logic at the bottom. Like this: 2799 ** 2800 ** goto Init 2801 ** coA: coroutine for left query (A) 2802 ** coB: coroutine for right query (B) 2803 ** outA: output one row of A 2804 ** outB: output one row of B (UNION and UNION ALL only) 2805 ** EofA: ... 2806 ** EofB: ... 2807 ** AltB: ... 2808 ** AeqB: ... 2809 ** AgtB: ... 2810 ** Init: initialize coroutine registers 2811 ** yield coA 2812 ** if eof(A) goto EofA 2813 ** yield coB 2814 ** if eof(B) goto EofB 2815 ** Cmpr: Compare A, B 2816 ** Jump AltB, AeqB, AgtB 2817 ** End: ... 2818 ** 2819 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2820 ** actually called using Gosub and they do not Return. EofA and EofB loop 2821 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2822 ** and AgtB jump to either L2 or to one of EofA or EofB. 2823 */ 2824 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2825 static int multiSelectOrderBy( 2826 Parse *pParse, /* Parsing context */ 2827 Select *p, /* The right-most of SELECTs to be coded */ 2828 SelectDest *pDest /* What to do with query results */ 2829 ){ 2830 int i, j; /* Loop counters */ 2831 Select *pPrior; /* Another SELECT immediately to our left */ 2832 Vdbe *v; /* Generate code to this VDBE */ 2833 SelectDest destA; /* Destination for coroutine A */ 2834 SelectDest destB; /* Destination for coroutine B */ 2835 int regAddrA; /* Address register for select-A coroutine */ 2836 int regAddrB; /* Address register for select-B coroutine */ 2837 int addrSelectA; /* Address of the select-A coroutine */ 2838 int addrSelectB; /* Address of the select-B coroutine */ 2839 int regOutA; /* Address register for the output-A subroutine */ 2840 int regOutB; /* Address register for the output-B subroutine */ 2841 int addrOutA; /* Address of the output-A subroutine */ 2842 int addrOutB = 0; /* Address of the output-B subroutine */ 2843 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2844 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2845 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2846 int addrAltB; /* Address of the A<B subroutine */ 2847 int addrAeqB; /* Address of the A==B subroutine */ 2848 int addrAgtB; /* Address of the A>B subroutine */ 2849 int regLimitA; /* Limit register for select-A */ 2850 int regLimitB; /* Limit register for select-A */ 2851 int regPrev; /* A range of registers to hold previous output */ 2852 int savedLimit; /* Saved value of p->iLimit */ 2853 int savedOffset; /* Saved value of p->iOffset */ 2854 int labelCmpr; /* Label for the start of the merge algorithm */ 2855 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2856 int addr1; /* Jump instructions that get retargetted */ 2857 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2858 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2859 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2860 sqlite3 *db; /* Database connection */ 2861 ExprList *pOrderBy; /* The ORDER BY clause */ 2862 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2863 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2864 #ifndef SQLITE_OMIT_EXPLAIN 2865 int iSub1; /* EQP id of left-hand query */ 2866 int iSub2; /* EQP id of right-hand query */ 2867 #endif 2868 2869 assert( p->pOrderBy!=0 ); 2870 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2871 db = pParse->db; 2872 v = pParse->pVdbe; 2873 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2874 labelEnd = sqlite3VdbeMakeLabel(v); 2875 labelCmpr = sqlite3VdbeMakeLabel(v); 2876 2877 2878 /* Patch up the ORDER BY clause 2879 */ 2880 op = p->op; 2881 pPrior = p->pPrior; 2882 assert( pPrior->pOrderBy==0 ); 2883 pOrderBy = p->pOrderBy; 2884 assert( pOrderBy ); 2885 nOrderBy = pOrderBy->nExpr; 2886 2887 /* For operators other than UNION ALL we have to make sure that 2888 ** the ORDER BY clause covers every term of the result set. Add 2889 ** terms to the ORDER BY clause as necessary. 2890 */ 2891 if( op!=TK_ALL ){ 2892 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2893 struct ExprList_item *pItem; 2894 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2895 assert( pItem->u.x.iOrderByCol>0 ); 2896 if( pItem->u.x.iOrderByCol==i ) break; 2897 } 2898 if( j==nOrderBy ){ 2899 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2900 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 2901 pNew->flags |= EP_IntValue; 2902 pNew->u.iValue = i; 2903 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2904 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2905 } 2906 } 2907 } 2908 2909 /* Compute the comparison permutation and keyinfo that is used with 2910 ** the permutation used to determine if the next 2911 ** row of results comes from selectA or selectB. Also add explicit 2912 ** collations to the ORDER BY clause terms so that when the subqueries 2913 ** to the right and the left are evaluated, they use the correct 2914 ** collation. 2915 */ 2916 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 2917 if( aPermute ){ 2918 struct ExprList_item *pItem; 2919 aPermute[0] = nOrderBy; 2920 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 2921 assert( pItem->u.x.iOrderByCol>0 ); 2922 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2923 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2924 } 2925 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2926 }else{ 2927 pKeyMerge = 0; 2928 } 2929 2930 /* Reattach the ORDER BY clause to the query. 2931 */ 2932 p->pOrderBy = pOrderBy; 2933 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2934 2935 /* Allocate a range of temporary registers and the KeyInfo needed 2936 ** for the logic that removes duplicate result rows when the 2937 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2938 */ 2939 if( op==TK_ALL ){ 2940 regPrev = 0; 2941 }else{ 2942 int nExpr = p->pEList->nExpr; 2943 assert( nOrderBy>=nExpr || db->mallocFailed ); 2944 regPrev = pParse->nMem+1; 2945 pParse->nMem += nExpr+1; 2946 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2947 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2948 if( pKeyDup ){ 2949 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2950 for(i=0; i<nExpr; i++){ 2951 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2952 pKeyDup->aSortOrder[i] = 0; 2953 } 2954 } 2955 } 2956 2957 /* Separate the left and the right query from one another 2958 */ 2959 p->pPrior = 0; 2960 pPrior->pNext = 0; 2961 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2962 if( pPrior->pPrior==0 ){ 2963 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2964 } 2965 2966 /* Compute the limit registers */ 2967 computeLimitRegisters(pParse, p, labelEnd); 2968 if( p->iLimit && op==TK_ALL ){ 2969 regLimitA = ++pParse->nMem; 2970 regLimitB = ++pParse->nMem; 2971 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2972 regLimitA); 2973 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2974 }else{ 2975 regLimitA = regLimitB = 0; 2976 } 2977 sqlite3ExprDelete(db, p->pLimit); 2978 p->pLimit = 0; 2979 sqlite3ExprDelete(db, p->pOffset); 2980 p->pOffset = 0; 2981 2982 regAddrA = ++pParse->nMem; 2983 regAddrB = ++pParse->nMem; 2984 regOutA = ++pParse->nMem; 2985 regOutB = ++pParse->nMem; 2986 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2987 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2988 2989 /* Generate a coroutine to evaluate the SELECT statement to the 2990 ** left of the compound operator - the "A" select. 2991 */ 2992 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2993 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2994 VdbeComment((v, "left SELECT")); 2995 pPrior->iLimit = regLimitA; 2996 explainSetInteger(iSub1, pParse->iNextSelectId); 2997 sqlite3Select(pParse, pPrior, &destA); 2998 sqlite3VdbeEndCoroutine(v, regAddrA); 2999 sqlite3VdbeJumpHere(v, addr1); 3000 3001 /* Generate a coroutine to evaluate the SELECT statement on 3002 ** the right - the "B" select 3003 */ 3004 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3005 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3006 VdbeComment((v, "right SELECT")); 3007 savedLimit = p->iLimit; 3008 savedOffset = p->iOffset; 3009 p->iLimit = regLimitB; 3010 p->iOffset = 0; 3011 explainSetInteger(iSub2, pParse->iNextSelectId); 3012 sqlite3Select(pParse, p, &destB); 3013 p->iLimit = savedLimit; 3014 p->iOffset = savedOffset; 3015 sqlite3VdbeEndCoroutine(v, regAddrB); 3016 3017 /* Generate a subroutine that outputs the current row of the A 3018 ** select as the next output row of the compound select. 3019 */ 3020 VdbeNoopComment((v, "Output routine for A")); 3021 addrOutA = generateOutputSubroutine(pParse, 3022 p, &destA, pDest, regOutA, 3023 regPrev, pKeyDup, labelEnd); 3024 3025 /* Generate a subroutine that outputs the current row of the B 3026 ** select as the next output row of the compound select. 3027 */ 3028 if( op==TK_ALL || op==TK_UNION ){ 3029 VdbeNoopComment((v, "Output routine for B")); 3030 addrOutB = generateOutputSubroutine(pParse, 3031 p, &destB, pDest, regOutB, 3032 regPrev, pKeyDup, labelEnd); 3033 } 3034 sqlite3KeyInfoUnref(pKeyDup); 3035 3036 /* Generate a subroutine to run when the results from select A 3037 ** are exhausted and only data in select B remains. 3038 */ 3039 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3040 addrEofA_noB = addrEofA = labelEnd; 3041 }else{ 3042 VdbeNoopComment((v, "eof-A subroutine")); 3043 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3044 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3045 VdbeCoverage(v); 3046 sqlite3VdbeGoto(v, addrEofA); 3047 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3048 } 3049 3050 /* Generate a subroutine to run when the results from select B 3051 ** are exhausted and only data in select A remains. 3052 */ 3053 if( op==TK_INTERSECT ){ 3054 addrEofB = addrEofA; 3055 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3056 }else{ 3057 VdbeNoopComment((v, "eof-B subroutine")); 3058 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3059 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3060 sqlite3VdbeGoto(v, addrEofB); 3061 } 3062 3063 /* Generate code to handle the case of A<B 3064 */ 3065 VdbeNoopComment((v, "A-lt-B subroutine")); 3066 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3067 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3068 sqlite3VdbeGoto(v, labelCmpr); 3069 3070 /* Generate code to handle the case of A==B 3071 */ 3072 if( op==TK_ALL ){ 3073 addrAeqB = addrAltB; 3074 }else if( op==TK_INTERSECT ){ 3075 addrAeqB = addrAltB; 3076 addrAltB++; 3077 }else{ 3078 VdbeNoopComment((v, "A-eq-B subroutine")); 3079 addrAeqB = 3080 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3081 sqlite3VdbeGoto(v, labelCmpr); 3082 } 3083 3084 /* Generate code to handle the case of A>B 3085 */ 3086 VdbeNoopComment((v, "A-gt-B subroutine")); 3087 addrAgtB = sqlite3VdbeCurrentAddr(v); 3088 if( op==TK_ALL || op==TK_UNION ){ 3089 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3090 } 3091 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3092 sqlite3VdbeGoto(v, labelCmpr); 3093 3094 /* This code runs once to initialize everything. 3095 */ 3096 sqlite3VdbeJumpHere(v, addr1); 3097 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3098 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3099 3100 /* Implement the main merge loop 3101 */ 3102 sqlite3VdbeResolveLabel(v, labelCmpr); 3103 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3104 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3105 (char*)pKeyMerge, P4_KEYINFO); 3106 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3107 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3108 3109 /* Jump to the this point in order to terminate the query. 3110 */ 3111 sqlite3VdbeResolveLabel(v, labelEnd); 3112 3113 /* Set the number of output columns 3114 */ 3115 if( pDest->eDest==SRT_Output ){ 3116 Select *pFirst = pPrior; 3117 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 3118 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); 3119 } 3120 3121 /* Reassembly the compound query so that it will be freed correctly 3122 ** by the calling function */ 3123 if( p->pPrior ){ 3124 sqlite3SelectDelete(db, p->pPrior); 3125 } 3126 p->pPrior = pPrior; 3127 pPrior->pNext = p; 3128 3129 /*** TBD: Insert subroutine calls to close cursors on incomplete 3130 **** subqueries ****/ 3131 explainComposite(pParse, p->op, iSub1, iSub2, 0); 3132 return pParse->nErr!=0; 3133 } 3134 #endif 3135 3136 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3137 /* Forward Declarations */ 3138 static void substExprList(Parse*, ExprList*, int, ExprList*); 3139 static void substSelect(Parse*, Select *, int, ExprList*, int); 3140 3141 /* 3142 ** Scan through the expression pExpr. Replace every reference to 3143 ** a column in table number iTable with a copy of the iColumn-th 3144 ** entry in pEList. (But leave references to the ROWID column 3145 ** unchanged.) 3146 ** 3147 ** This routine is part of the flattening procedure. A subquery 3148 ** whose result set is defined by pEList appears as entry in the 3149 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3150 ** FORM clause entry is iTable. This routine make the necessary 3151 ** changes to pExpr so that it refers directly to the source table 3152 ** of the subquery rather the result set of the subquery. 3153 */ 3154 static Expr *substExpr( 3155 Parse *pParse, /* Report errors here */ 3156 Expr *pExpr, /* Expr in which substitution occurs */ 3157 int iTable, /* Table to be substituted */ 3158 ExprList *pEList /* Substitute expressions */ 3159 ){ 3160 sqlite3 *db = pParse->db; 3161 if( pExpr==0 ) return 0; 3162 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 3163 if( pExpr->iColumn<0 ){ 3164 pExpr->op = TK_NULL; 3165 }else{ 3166 Expr *pNew; 3167 Expr *pCopy = pEList->a[pExpr->iColumn].pExpr; 3168 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 3169 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 3170 if( sqlite3ExprIsVector(pCopy) ){ 3171 sqlite3VectorErrorMsg(pParse, pCopy); 3172 }else{ 3173 pNew = sqlite3ExprDup(db, pCopy, 0); 3174 if( pNew && (pExpr->flags & EP_FromJoin) ){ 3175 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3176 pNew->flags |= EP_FromJoin; 3177 } 3178 sqlite3ExprDelete(db, pExpr); 3179 pExpr = pNew; 3180 } 3181 } 3182 }else{ 3183 pExpr->pLeft = substExpr(pParse, pExpr->pLeft, iTable, pEList); 3184 pExpr->pRight = substExpr(pParse, pExpr->pRight, iTable, pEList); 3185 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3186 substSelect(pParse, pExpr->x.pSelect, iTable, pEList, 1); 3187 }else{ 3188 substExprList(pParse, pExpr->x.pList, iTable, pEList); 3189 } 3190 } 3191 return pExpr; 3192 } 3193 static void substExprList( 3194 Parse *pParse, /* Report errors here */ 3195 ExprList *pList, /* List to scan and in which to make substitutes */ 3196 int iTable, /* Table to be substituted */ 3197 ExprList *pEList /* Substitute values */ 3198 ){ 3199 int i; 3200 if( pList==0 ) return; 3201 for(i=0; i<pList->nExpr; i++){ 3202 pList->a[i].pExpr = substExpr(pParse, pList->a[i].pExpr, iTable, pEList); 3203 } 3204 } 3205 static void substSelect( 3206 Parse *pParse, /* Report errors here */ 3207 Select *p, /* SELECT statement in which to make substitutions */ 3208 int iTable, /* Table to be replaced */ 3209 ExprList *pEList, /* Substitute values */ 3210 int doPrior /* Do substitutes on p->pPrior too */ 3211 ){ 3212 SrcList *pSrc; 3213 struct SrcList_item *pItem; 3214 int i; 3215 if( !p ) return; 3216 do{ 3217 substExprList(pParse, p->pEList, iTable, pEList); 3218 substExprList(pParse, p->pGroupBy, iTable, pEList); 3219 substExprList(pParse, p->pOrderBy, iTable, pEList); 3220 p->pHaving = substExpr(pParse, p->pHaving, iTable, pEList); 3221 p->pWhere = substExpr(pParse, p->pWhere, iTable, pEList); 3222 pSrc = p->pSrc; 3223 assert( pSrc!=0 ); 3224 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3225 substSelect(pParse, pItem->pSelect, iTable, pEList, 1); 3226 if( pItem->fg.isTabFunc ){ 3227 substExprList(pParse, pItem->u1.pFuncArg, iTable, pEList); 3228 } 3229 } 3230 }while( doPrior && (p = p->pPrior)!=0 ); 3231 } 3232 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3233 3234 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3235 /* 3236 ** This routine attempts to flatten subqueries as a performance optimization. 3237 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3238 ** 3239 ** To understand the concept of flattening, consider the following 3240 ** query: 3241 ** 3242 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3243 ** 3244 ** The default way of implementing this query is to execute the 3245 ** subquery first and store the results in a temporary table, then 3246 ** run the outer query on that temporary table. This requires two 3247 ** passes over the data. Furthermore, because the temporary table 3248 ** has no indices, the WHERE clause on the outer query cannot be 3249 ** optimized. 3250 ** 3251 ** This routine attempts to rewrite queries such as the above into 3252 ** a single flat select, like this: 3253 ** 3254 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3255 ** 3256 ** The code generated for this simplification gives the same result 3257 ** but only has to scan the data once. And because indices might 3258 ** exist on the table t1, a complete scan of the data might be 3259 ** avoided. 3260 ** 3261 ** Flattening is only attempted if all of the following are true: 3262 ** 3263 ** (1) The subquery and the outer query do not both use aggregates. 3264 ** 3265 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join 3266 ** and (2b) the outer query does not use subqueries other than the one 3267 ** FROM-clause subquery that is a candidate for flattening. (2b is 3268 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) 3269 ** 3270 ** (3) The subquery is not the right operand of a left outer join 3271 ** (Originally ticket #306. Strengthened by ticket #3300) 3272 ** 3273 ** (4) The subquery is not DISTINCT. 3274 ** 3275 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3276 ** sub-queries that were excluded from this optimization. Restriction 3277 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3278 ** 3279 ** (6) The subquery does not use aggregates or the outer query is not 3280 ** DISTINCT. 3281 ** 3282 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3283 ** A FROM clause, consider adding a FROM close with the special 3284 ** table sqlite_once that consists of a single row containing a 3285 ** single NULL. 3286 ** 3287 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3288 ** 3289 ** (9) The subquery does not use LIMIT or the outer query does not use 3290 ** aggregates. 3291 ** 3292 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3293 ** accidently carried the comment forward until 2014-09-15. Original 3294 ** text: "The subquery does not use aggregates or the outer query 3295 ** does not use LIMIT." 3296 ** 3297 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3298 ** 3299 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3300 ** a separate restriction deriving from ticket #350. 3301 ** 3302 ** (13) The subquery and outer query do not both use LIMIT. 3303 ** 3304 ** (14) The subquery does not use OFFSET. 3305 ** 3306 ** (15) The outer query is not part of a compound select or the 3307 ** subquery does not have a LIMIT clause. 3308 ** (See ticket #2339 and ticket [02a8e81d44]). 3309 ** 3310 ** (16) The outer query is not an aggregate or the subquery does 3311 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3312 ** until we introduced the group_concat() function. 3313 ** 3314 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3315 ** compound clause made up entirely of non-aggregate queries, and 3316 ** the parent query: 3317 ** 3318 ** * is not itself part of a compound select, 3319 ** * is not an aggregate or DISTINCT query, and 3320 ** * is not a join 3321 ** 3322 ** The parent and sub-query may contain WHERE clauses. Subject to 3323 ** rules (11), (13) and (14), they may also contain ORDER BY, 3324 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3325 ** operator other than UNION ALL because all the other compound 3326 ** operators have an implied DISTINCT which is disallowed by 3327 ** restriction (4). 3328 ** 3329 ** Also, each component of the sub-query must return the same number 3330 ** of result columns. This is actually a requirement for any compound 3331 ** SELECT statement, but all the code here does is make sure that no 3332 ** such (illegal) sub-query is flattened. The caller will detect the 3333 ** syntax error and return a detailed message. 3334 ** 3335 ** (18) If the sub-query is a compound select, then all terms of the 3336 ** ORDER by clause of the parent must be simple references to 3337 ** columns of the sub-query. 3338 ** 3339 ** (19) The subquery does not use LIMIT or the outer query does not 3340 ** have a WHERE clause. 3341 ** 3342 ** (20) If the sub-query is a compound select, then it must not use 3343 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3344 ** somewhat by saying that the terms of the ORDER BY clause must 3345 ** appear as unmodified result columns in the outer query. But we 3346 ** have other optimizations in mind to deal with that case. 3347 ** 3348 ** (21) The subquery does not use LIMIT or the outer query is not 3349 ** DISTINCT. (See ticket [752e1646fc]). 3350 ** 3351 ** (22) The subquery is not a recursive CTE. 3352 ** 3353 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3354 ** compound query. This restriction is because transforming the 3355 ** parent to a compound query confuses the code that handles 3356 ** recursive queries in multiSelect(). 3357 ** 3358 ** (24) The subquery is not an aggregate that uses the built-in min() or 3359 ** or max() functions. (Without this restriction, a query like: 3360 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3361 ** return the value X for which Y was maximal.) 3362 ** 3363 ** 3364 ** In this routine, the "p" parameter is a pointer to the outer query. 3365 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3366 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3367 ** 3368 ** If flattening is not attempted, this routine is a no-op and returns 0. 3369 ** If flattening is attempted this routine returns 1. 3370 ** 3371 ** All of the expression analysis must occur on both the outer query and 3372 ** the subquery before this routine runs. 3373 */ 3374 static int flattenSubquery( 3375 Parse *pParse, /* Parsing context */ 3376 Select *p, /* The parent or outer SELECT statement */ 3377 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3378 int isAgg, /* True if outer SELECT uses aggregate functions */ 3379 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3380 ){ 3381 const char *zSavedAuthContext = pParse->zAuthContext; 3382 Select *pParent; /* Current UNION ALL term of the other query */ 3383 Select *pSub; /* The inner query or "subquery" */ 3384 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3385 SrcList *pSrc; /* The FROM clause of the outer query */ 3386 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3387 ExprList *pList; /* The result set of the outer query */ 3388 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3389 int i; /* Loop counter */ 3390 Expr *pWhere; /* The WHERE clause */ 3391 struct SrcList_item *pSubitem; /* The subquery */ 3392 sqlite3 *db = pParse->db; 3393 3394 /* Check to see if flattening is permitted. Return 0 if not. 3395 */ 3396 assert( p!=0 ); 3397 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3398 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3399 pSrc = p->pSrc; 3400 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3401 pSubitem = &pSrc->a[iFrom]; 3402 iParent = pSubitem->iCursor; 3403 pSub = pSubitem->pSelect; 3404 assert( pSub!=0 ); 3405 if( subqueryIsAgg ){ 3406 if( isAgg ) return 0; /* Restriction (1) */ 3407 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ 3408 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) 3409 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 3410 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 3411 ){ 3412 return 0; /* Restriction (2b) */ 3413 } 3414 } 3415 3416 pSubSrc = pSub->pSrc; 3417 assert( pSubSrc ); 3418 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3419 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3420 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3421 ** became arbitrary expressions, we were forced to add restrictions (13) 3422 ** and (14). */ 3423 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3424 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3425 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3426 return 0; /* Restriction (15) */ 3427 } 3428 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3429 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3430 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3431 return 0; /* Restrictions (8)(9) */ 3432 } 3433 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3434 return 0; /* Restriction (6) */ 3435 } 3436 if( p->pOrderBy && pSub->pOrderBy ){ 3437 return 0; /* Restriction (11) */ 3438 } 3439 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3440 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3441 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3442 return 0; /* Restriction (21) */ 3443 } 3444 testcase( pSub->selFlags & SF_Recursive ); 3445 testcase( pSub->selFlags & SF_MinMaxAgg ); 3446 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ 3447 return 0; /* Restrictions (22) and (24) */ 3448 } 3449 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ 3450 return 0; /* Restriction (23) */ 3451 } 3452 3453 /* OBSOLETE COMMENT 1: 3454 ** Restriction 3: If the subquery is a join, make sure the subquery is 3455 ** not used as the right operand of an outer join. Examples of why this 3456 ** is not allowed: 3457 ** 3458 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3459 ** 3460 ** If we flatten the above, we would get 3461 ** 3462 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3463 ** 3464 ** which is not at all the same thing. 3465 ** 3466 ** OBSOLETE COMMENT 2: 3467 ** Restriction 12: If the subquery is the right operand of a left outer 3468 ** join, make sure the subquery has no WHERE clause. 3469 ** An examples of why this is not allowed: 3470 ** 3471 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3472 ** 3473 ** If we flatten the above, we would get 3474 ** 3475 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3476 ** 3477 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3478 ** effectively converts the OUTER JOIN into an INNER JOIN. 3479 ** 3480 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3481 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3482 ** is fraught with danger. Best to avoid the whole thing. If the 3483 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3484 */ 3485 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3486 return 0; 3487 } 3488 3489 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3490 ** use only the UNION ALL operator. And none of the simple select queries 3491 ** that make up the compound SELECT are allowed to be aggregate or distinct 3492 ** queries. 3493 */ 3494 if( pSub->pPrior ){ 3495 if( pSub->pOrderBy ){ 3496 return 0; /* Restriction 20 */ 3497 } 3498 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3499 return 0; 3500 } 3501 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3502 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3503 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3504 assert( pSub->pSrc!=0 ); 3505 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3506 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3507 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3508 || pSub1->pSrc->nSrc<1 3509 ){ 3510 return 0; 3511 } 3512 testcase( pSub1->pSrc->nSrc>1 ); 3513 } 3514 3515 /* Restriction 18. */ 3516 if( p->pOrderBy ){ 3517 int ii; 3518 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3519 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3520 } 3521 } 3522 } 3523 3524 /***** If we reach this point, flattening is permitted. *****/ 3525 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", 3526 pSub->zSelName, pSub, iFrom)); 3527 3528 /* Authorize the subquery */ 3529 pParse->zAuthContext = pSubitem->zName; 3530 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3531 testcase( i==SQLITE_DENY ); 3532 pParse->zAuthContext = zSavedAuthContext; 3533 3534 /* If the sub-query is a compound SELECT statement, then (by restrictions 3535 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3536 ** be of the form: 3537 ** 3538 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3539 ** 3540 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3541 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3542 ** OFFSET clauses and joins them to the left-hand-side of the original 3543 ** using UNION ALL operators. In this case N is the number of simple 3544 ** select statements in the compound sub-query. 3545 ** 3546 ** Example: 3547 ** 3548 ** SELECT a+1 FROM ( 3549 ** SELECT x FROM tab 3550 ** UNION ALL 3551 ** SELECT y FROM tab 3552 ** UNION ALL 3553 ** SELECT abs(z*2) FROM tab2 3554 ** ) WHERE a!=5 ORDER BY 1 3555 ** 3556 ** Transformed into: 3557 ** 3558 ** SELECT x+1 FROM tab WHERE x+1!=5 3559 ** UNION ALL 3560 ** SELECT y+1 FROM tab WHERE y+1!=5 3561 ** UNION ALL 3562 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3563 ** ORDER BY 1 3564 ** 3565 ** We call this the "compound-subquery flattening". 3566 */ 3567 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3568 Select *pNew; 3569 ExprList *pOrderBy = p->pOrderBy; 3570 Expr *pLimit = p->pLimit; 3571 Expr *pOffset = p->pOffset; 3572 Select *pPrior = p->pPrior; 3573 p->pOrderBy = 0; 3574 p->pSrc = 0; 3575 p->pPrior = 0; 3576 p->pLimit = 0; 3577 p->pOffset = 0; 3578 pNew = sqlite3SelectDup(db, p, 0); 3579 sqlite3SelectSetName(pNew, pSub->zSelName); 3580 p->pOffset = pOffset; 3581 p->pLimit = pLimit; 3582 p->pOrderBy = pOrderBy; 3583 p->pSrc = pSrc; 3584 p->op = TK_ALL; 3585 if( pNew==0 ){ 3586 p->pPrior = pPrior; 3587 }else{ 3588 pNew->pPrior = pPrior; 3589 if( pPrior ) pPrior->pNext = pNew; 3590 pNew->pNext = p; 3591 p->pPrior = pNew; 3592 SELECTTRACE(2,pParse,p, 3593 ("compound-subquery flattener creates %s.%p as peer\n", 3594 pNew->zSelName, pNew)); 3595 } 3596 if( db->mallocFailed ) return 1; 3597 } 3598 3599 /* Begin flattening the iFrom-th entry of the FROM clause 3600 ** in the outer query. 3601 */ 3602 pSub = pSub1 = pSubitem->pSelect; 3603 3604 /* Delete the transient table structure associated with the 3605 ** subquery 3606 */ 3607 sqlite3DbFree(db, pSubitem->zDatabase); 3608 sqlite3DbFree(db, pSubitem->zName); 3609 sqlite3DbFree(db, pSubitem->zAlias); 3610 pSubitem->zDatabase = 0; 3611 pSubitem->zName = 0; 3612 pSubitem->zAlias = 0; 3613 pSubitem->pSelect = 0; 3614 3615 /* Defer deleting the Table object associated with the 3616 ** subquery until code generation is 3617 ** complete, since there may still exist Expr.pTab entries that 3618 ** refer to the subquery even after flattening. Ticket #3346. 3619 ** 3620 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3621 */ 3622 if( ALWAYS(pSubitem->pTab!=0) ){ 3623 Table *pTabToDel = pSubitem->pTab; 3624 if( pTabToDel->nTabRef==1 ){ 3625 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3626 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3627 pToplevel->pZombieTab = pTabToDel; 3628 }else{ 3629 pTabToDel->nTabRef--; 3630 } 3631 pSubitem->pTab = 0; 3632 } 3633 3634 /* The following loop runs once for each term in a compound-subquery 3635 ** flattening (as described above). If we are doing a different kind 3636 ** of flattening - a flattening other than a compound-subquery flattening - 3637 ** then this loop only runs once. 3638 ** 3639 ** This loop moves all of the FROM elements of the subquery into the 3640 ** the FROM clause of the outer query. Before doing this, remember 3641 ** the cursor number for the original outer query FROM element in 3642 ** iParent. The iParent cursor will never be used. Subsequent code 3643 ** will scan expressions looking for iParent references and replace 3644 ** those references with expressions that resolve to the subquery FROM 3645 ** elements we are now copying in. 3646 */ 3647 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3648 int nSubSrc; 3649 u8 jointype = 0; 3650 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3651 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3652 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3653 3654 if( pSrc ){ 3655 assert( pParent==p ); /* First time through the loop */ 3656 jointype = pSubitem->fg.jointype; 3657 }else{ 3658 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3659 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3660 if( pSrc==0 ){ 3661 assert( db->mallocFailed ); 3662 break; 3663 } 3664 } 3665 3666 /* The subquery uses a single slot of the FROM clause of the outer 3667 ** query. If the subquery has more than one element in its FROM clause, 3668 ** then expand the outer query to make space for it to hold all elements 3669 ** of the subquery. 3670 ** 3671 ** Example: 3672 ** 3673 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3674 ** 3675 ** The outer query has 3 slots in its FROM clause. One slot of the 3676 ** outer query (the middle slot) is used by the subquery. The next 3677 ** block of code will expand the outer query FROM clause to 4 slots. 3678 ** The middle slot is expanded to two slots in order to make space 3679 ** for the two elements in the FROM clause of the subquery. 3680 */ 3681 if( nSubSrc>1 ){ 3682 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3683 if( db->mallocFailed ){ 3684 break; 3685 } 3686 } 3687 3688 /* Transfer the FROM clause terms from the subquery into the 3689 ** outer query. 3690 */ 3691 for(i=0; i<nSubSrc; i++){ 3692 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3693 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3694 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3695 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3696 } 3697 pSrc->a[iFrom].fg.jointype = jointype; 3698 3699 /* Now begin substituting subquery result set expressions for 3700 ** references to the iParent in the outer query. 3701 ** 3702 ** Example: 3703 ** 3704 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3705 ** \ \_____________ subquery __________/ / 3706 ** \_____________________ outer query ______________________________/ 3707 ** 3708 ** We look at every expression in the outer query and every place we see 3709 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3710 */ 3711 pList = pParent->pEList; 3712 for(i=0; i<pList->nExpr; i++){ 3713 if( pList->a[i].zName==0 ){ 3714 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3715 sqlite3Dequote(zName); 3716 pList->a[i].zName = zName; 3717 } 3718 } 3719 if( pSub->pOrderBy ){ 3720 /* At this point, any non-zero iOrderByCol values indicate that the 3721 ** ORDER BY column expression is identical to the iOrderByCol'th 3722 ** expression returned by SELECT statement pSub. Since these values 3723 ** do not necessarily correspond to columns in SELECT statement pParent, 3724 ** zero them before transfering the ORDER BY clause. 3725 ** 3726 ** Not doing this may cause an error if a subsequent call to this 3727 ** function attempts to flatten a compound sub-query into pParent 3728 ** (the only way this can happen is if the compound sub-query is 3729 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 3730 ExprList *pOrderBy = pSub->pOrderBy; 3731 for(i=0; i<pOrderBy->nExpr; i++){ 3732 pOrderBy->a[i].u.x.iOrderByCol = 0; 3733 } 3734 assert( pParent->pOrderBy==0 ); 3735 assert( pSub->pPrior==0 ); 3736 pParent->pOrderBy = pOrderBy; 3737 pSub->pOrderBy = 0; 3738 } 3739 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3740 if( subqueryIsAgg ){ 3741 assert( pParent->pHaving==0 ); 3742 pParent->pHaving = pParent->pWhere; 3743 pParent->pWhere = pWhere; 3744 pParent->pHaving = sqlite3ExprAnd(db, 3745 sqlite3ExprDup(db, pSub->pHaving, 0), pParent->pHaving 3746 ); 3747 assert( pParent->pGroupBy==0 ); 3748 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3749 }else{ 3750 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 3751 } 3752 substSelect(pParse, pParent, iParent, pSub->pEList, 0); 3753 3754 /* The flattened query is distinct if either the inner or the 3755 ** outer query is distinct. 3756 */ 3757 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3758 3759 /* 3760 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3761 ** 3762 ** One is tempted to try to add a and b to combine the limits. But this 3763 ** does not work if either limit is negative. 3764 */ 3765 if( pSub->pLimit ){ 3766 pParent->pLimit = pSub->pLimit; 3767 pSub->pLimit = 0; 3768 } 3769 } 3770 3771 /* Finially, delete what is left of the subquery and return 3772 ** success. 3773 */ 3774 sqlite3SelectDelete(db, pSub1); 3775 3776 #if SELECTTRACE_ENABLED 3777 if( sqlite3SelectTrace & 0x100 ){ 3778 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 3779 sqlite3TreeViewSelect(0, p, 0); 3780 } 3781 #endif 3782 3783 return 1; 3784 } 3785 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3786 3787 3788 3789 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3790 /* 3791 ** Make copies of relevant WHERE clause terms of the outer query into 3792 ** the WHERE clause of subquery. Example: 3793 ** 3794 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 3795 ** 3796 ** Transformed into: 3797 ** 3798 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 3799 ** WHERE x=5 AND y=10; 3800 ** 3801 ** The hope is that the terms added to the inner query will make it more 3802 ** efficient. 3803 ** 3804 ** Do not attempt this optimization if: 3805 ** 3806 ** (1) The inner query is an aggregate. (In that case, we'd really want 3807 ** to copy the outer WHERE-clause terms onto the HAVING clause of the 3808 ** inner query. But they probably won't help there so do not bother.) 3809 ** 3810 ** (2) The inner query is the recursive part of a common table expression. 3811 ** 3812 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 3813 ** close would change the meaning of the LIMIT). 3814 ** 3815 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller 3816 ** enforces this restriction since this routine does not have enough 3817 ** information to know.) 3818 ** 3819 ** (5) The WHERE clause expression originates in the ON or USING clause 3820 ** of a LEFT JOIN. 3821 ** 3822 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 3823 ** terms are duplicated into the subquery. 3824 */ 3825 static int pushDownWhereTerms( 3826 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 3827 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 3828 Expr *pWhere, /* The WHERE clause of the outer query */ 3829 int iCursor /* Cursor number of the subquery */ 3830 ){ 3831 Expr *pNew; 3832 int nChng = 0; 3833 Select *pX; /* For looping over compound SELECTs in pSubq */ 3834 if( pWhere==0 ) return 0; 3835 for(pX=pSubq; pX; pX=pX->pPrior){ 3836 if( (pX->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ 3837 testcase( pX->selFlags & SF_Aggregate ); 3838 testcase( pX->selFlags & SF_Recursive ); 3839 testcase( pX!=pSubq ); 3840 return 0; /* restrictions (1) and (2) */ 3841 } 3842 } 3843 if( pSubq->pLimit!=0 ){ 3844 return 0; /* restriction (3) */ 3845 } 3846 while( pWhere->op==TK_AND ){ 3847 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor); 3848 pWhere = pWhere->pLeft; 3849 } 3850 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ 3851 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 3852 nChng++; 3853 while( pSubq ){ 3854 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 3855 pNew = substExpr(pParse, pNew, iCursor, pSubq->pEList); 3856 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 3857 pSubq = pSubq->pPrior; 3858 } 3859 } 3860 return nChng; 3861 } 3862 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3863 3864 /* 3865 ** Based on the contents of the AggInfo structure indicated by the first 3866 ** argument, this function checks if the following are true: 3867 ** 3868 ** * the query contains just a single aggregate function, 3869 ** * the aggregate function is either min() or max(), and 3870 ** * the argument to the aggregate function is a column value. 3871 ** 3872 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3873 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3874 ** list of arguments passed to the aggregate before returning. 3875 ** 3876 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3877 ** WHERE_ORDERBY_NORMAL is returned. 3878 */ 3879 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3880 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3881 3882 *ppMinMax = 0; 3883 if( pAggInfo->nFunc==1 ){ 3884 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3885 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3886 3887 assert( pExpr->op==TK_AGG_FUNCTION ); 3888 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3889 const char *zFunc = pExpr->u.zToken; 3890 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3891 eRet = WHERE_ORDERBY_MIN; 3892 *ppMinMax = pEList; 3893 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3894 eRet = WHERE_ORDERBY_MAX; 3895 *ppMinMax = pEList; 3896 } 3897 } 3898 } 3899 3900 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3901 return eRet; 3902 } 3903 3904 /* 3905 ** The select statement passed as the first argument is an aggregate query. 3906 ** The second argument is the associated aggregate-info object. This 3907 ** function tests if the SELECT is of the form: 3908 ** 3909 ** SELECT count(*) FROM <tbl> 3910 ** 3911 ** where table is a database table, not a sub-select or view. If the query 3912 ** does match this pattern, then a pointer to the Table object representing 3913 ** <tbl> is returned. Otherwise, 0 is returned. 3914 */ 3915 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3916 Table *pTab; 3917 Expr *pExpr; 3918 3919 assert( !p->pGroupBy ); 3920 3921 if( p->pWhere || p->pEList->nExpr!=1 3922 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3923 ){ 3924 return 0; 3925 } 3926 pTab = p->pSrc->a[0].pTab; 3927 pExpr = p->pEList->a[0].pExpr; 3928 assert( pTab && !pTab->pSelect && pExpr ); 3929 3930 if( IsVirtual(pTab) ) return 0; 3931 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3932 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3933 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3934 if( pExpr->flags&EP_Distinct ) return 0; 3935 3936 return pTab; 3937 } 3938 3939 /* 3940 ** If the source-list item passed as an argument was augmented with an 3941 ** INDEXED BY clause, then try to locate the specified index. If there 3942 ** was such a clause and the named index cannot be found, return 3943 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3944 ** pFrom->pIndex and return SQLITE_OK. 3945 */ 3946 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3947 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 3948 Table *pTab = pFrom->pTab; 3949 char *zIndexedBy = pFrom->u1.zIndexedBy; 3950 Index *pIdx; 3951 for(pIdx=pTab->pIndex; 3952 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 3953 pIdx=pIdx->pNext 3954 ); 3955 if( !pIdx ){ 3956 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 3957 pParse->checkSchema = 1; 3958 return SQLITE_ERROR; 3959 } 3960 pFrom->pIBIndex = pIdx; 3961 } 3962 return SQLITE_OK; 3963 } 3964 /* 3965 ** Detect compound SELECT statements that use an ORDER BY clause with 3966 ** an alternative collating sequence. 3967 ** 3968 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3969 ** 3970 ** These are rewritten as a subquery: 3971 ** 3972 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3973 ** ORDER BY ... COLLATE ... 3974 ** 3975 ** This transformation is necessary because the multiSelectOrderBy() routine 3976 ** above that generates the code for a compound SELECT with an ORDER BY clause 3977 ** uses a merge algorithm that requires the same collating sequence on the 3978 ** result columns as on the ORDER BY clause. See ticket 3979 ** http://www.sqlite.org/src/info/6709574d2a 3980 ** 3981 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3982 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3983 ** there are COLLATE terms in the ORDER BY. 3984 */ 3985 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3986 int i; 3987 Select *pNew; 3988 Select *pX; 3989 sqlite3 *db; 3990 struct ExprList_item *a; 3991 SrcList *pNewSrc; 3992 Parse *pParse; 3993 Token dummy; 3994 3995 if( p->pPrior==0 ) return WRC_Continue; 3996 if( p->pOrderBy==0 ) return WRC_Continue; 3997 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3998 if( pX==0 ) return WRC_Continue; 3999 a = p->pOrderBy->a; 4000 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4001 if( a[i].pExpr->flags & EP_Collate ) break; 4002 } 4003 if( i<0 ) return WRC_Continue; 4004 4005 /* If we reach this point, that means the transformation is required. */ 4006 4007 pParse = pWalker->pParse; 4008 db = pParse->db; 4009 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4010 if( pNew==0 ) return WRC_Abort; 4011 memset(&dummy, 0, sizeof(dummy)); 4012 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4013 if( pNewSrc==0 ) return WRC_Abort; 4014 *pNew = *p; 4015 p->pSrc = pNewSrc; 4016 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4017 p->op = TK_SELECT; 4018 p->pWhere = 0; 4019 pNew->pGroupBy = 0; 4020 pNew->pHaving = 0; 4021 pNew->pOrderBy = 0; 4022 p->pPrior = 0; 4023 p->pNext = 0; 4024 p->pWith = 0; 4025 p->selFlags &= ~SF_Compound; 4026 assert( (p->selFlags & SF_Converted)==0 ); 4027 p->selFlags |= SF_Converted; 4028 assert( pNew->pPrior!=0 ); 4029 pNew->pPrior->pNext = pNew; 4030 pNew->pLimit = 0; 4031 pNew->pOffset = 0; 4032 return WRC_Continue; 4033 } 4034 4035 /* 4036 ** Check to see if the FROM clause term pFrom has table-valued function 4037 ** arguments. If it does, leave an error message in pParse and return 4038 ** non-zero, since pFrom is not allowed to be a table-valued function. 4039 */ 4040 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4041 if( pFrom->fg.isTabFunc ){ 4042 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4043 return 1; 4044 } 4045 return 0; 4046 } 4047 4048 #ifndef SQLITE_OMIT_CTE 4049 /* 4050 ** Argument pWith (which may be NULL) points to a linked list of nested 4051 ** WITH contexts, from inner to outermost. If the table identified by 4052 ** FROM clause element pItem is really a common-table-expression (CTE) 4053 ** then return a pointer to the CTE definition for that table. Otherwise 4054 ** return NULL. 4055 ** 4056 ** If a non-NULL value is returned, set *ppContext to point to the With 4057 ** object that the returned CTE belongs to. 4058 */ 4059 static struct Cte *searchWith( 4060 With *pWith, /* Current innermost WITH clause */ 4061 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4062 With **ppContext /* OUT: WITH clause return value belongs to */ 4063 ){ 4064 const char *zName; 4065 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4066 With *p; 4067 for(p=pWith; p; p=p->pOuter){ 4068 int i; 4069 for(i=0; i<p->nCte; i++){ 4070 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4071 *ppContext = p; 4072 return &p->a[i]; 4073 } 4074 } 4075 } 4076 } 4077 return 0; 4078 } 4079 4080 /* The code generator maintains a stack of active WITH clauses 4081 ** with the inner-most WITH clause being at the top of the stack. 4082 ** 4083 ** This routine pushes the WITH clause passed as the second argument 4084 ** onto the top of the stack. If argument bFree is true, then this 4085 ** WITH clause will never be popped from the stack. In this case it 4086 ** should be freed along with the Parse object. In other cases, when 4087 ** bFree==0, the With object will be freed along with the SELECT 4088 ** statement with which it is associated. 4089 */ 4090 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4091 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4092 if( pWith ){ 4093 assert( pParse->pWith!=pWith ); 4094 pWith->pOuter = pParse->pWith; 4095 pParse->pWith = pWith; 4096 if( bFree ) pParse->pWithToFree = pWith; 4097 } 4098 } 4099 4100 /* 4101 ** This function checks if argument pFrom refers to a CTE declared by 4102 ** a WITH clause on the stack currently maintained by the parser. And, 4103 ** if currently processing a CTE expression, if it is a recursive 4104 ** reference to the current CTE. 4105 ** 4106 ** If pFrom falls into either of the two categories above, pFrom->pTab 4107 ** and other fields are populated accordingly. The caller should check 4108 ** (pFrom->pTab!=0) to determine whether or not a successful match 4109 ** was found. 4110 ** 4111 ** Whether or not a match is found, SQLITE_OK is returned if no error 4112 ** occurs. If an error does occur, an error message is stored in the 4113 ** parser and some error code other than SQLITE_OK returned. 4114 */ 4115 static int withExpand( 4116 Walker *pWalker, 4117 struct SrcList_item *pFrom 4118 ){ 4119 Parse *pParse = pWalker->pParse; 4120 sqlite3 *db = pParse->db; 4121 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4122 With *pWith; /* WITH clause that pCte belongs to */ 4123 4124 assert( pFrom->pTab==0 ); 4125 4126 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4127 if( pCte ){ 4128 Table *pTab; 4129 ExprList *pEList; 4130 Select *pSel; 4131 Select *pLeft; /* Left-most SELECT statement */ 4132 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4133 With *pSavedWith; /* Initial value of pParse->pWith */ 4134 4135 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4136 ** recursive reference to CTE pCte. Leave an error in pParse and return 4137 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4138 ** In this case, proceed. */ 4139 if( pCte->zCteErr ){ 4140 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4141 return SQLITE_ERROR; 4142 } 4143 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4144 4145 assert( pFrom->pTab==0 ); 4146 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4147 if( pTab==0 ) return WRC_Abort; 4148 pTab->nTabRef = 1; 4149 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4150 pTab->iPKey = -1; 4151 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4152 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4153 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4154 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4155 assert( pFrom->pSelect ); 4156 4157 /* Check if this is a recursive CTE. */ 4158 pSel = pFrom->pSelect; 4159 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4160 if( bMayRecursive ){ 4161 int i; 4162 SrcList *pSrc = pFrom->pSelect->pSrc; 4163 for(i=0; i<pSrc->nSrc; i++){ 4164 struct SrcList_item *pItem = &pSrc->a[i]; 4165 if( pItem->zDatabase==0 4166 && pItem->zName!=0 4167 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4168 ){ 4169 pItem->pTab = pTab; 4170 pItem->fg.isRecursive = 1; 4171 pTab->nTabRef++; 4172 pSel->selFlags |= SF_Recursive; 4173 } 4174 } 4175 } 4176 4177 /* Only one recursive reference is permitted. */ 4178 if( pTab->nTabRef>2 ){ 4179 sqlite3ErrorMsg( 4180 pParse, "multiple references to recursive table: %s", pCte->zName 4181 ); 4182 return SQLITE_ERROR; 4183 } 4184 assert( pTab->nTabRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4185 4186 pCte->zCteErr = "circular reference: %s"; 4187 pSavedWith = pParse->pWith; 4188 pParse->pWith = pWith; 4189 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 4190 pParse->pWith = pWith; 4191 4192 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4193 pEList = pLeft->pEList; 4194 if( pCte->pCols ){ 4195 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4196 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4197 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4198 ); 4199 pParse->pWith = pSavedWith; 4200 return SQLITE_ERROR; 4201 } 4202 pEList = pCte->pCols; 4203 } 4204 4205 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4206 if( bMayRecursive ){ 4207 if( pSel->selFlags & SF_Recursive ){ 4208 pCte->zCteErr = "multiple recursive references: %s"; 4209 }else{ 4210 pCte->zCteErr = "recursive reference in a subquery: %s"; 4211 } 4212 sqlite3WalkSelect(pWalker, pSel); 4213 } 4214 pCte->zCteErr = 0; 4215 pParse->pWith = pSavedWith; 4216 } 4217 4218 return SQLITE_OK; 4219 } 4220 #endif 4221 4222 #ifndef SQLITE_OMIT_CTE 4223 /* 4224 ** If the SELECT passed as the second argument has an associated WITH 4225 ** clause, pop it from the stack stored as part of the Parse object. 4226 ** 4227 ** This function is used as the xSelectCallback2() callback by 4228 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4229 ** names and other FROM clause elements. 4230 */ 4231 static void selectPopWith(Walker *pWalker, Select *p){ 4232 Parse *pParse = pWalker->pParse; 4233 With *pWith = findRightmost(p)->pWith; 4234 if( pWith!=0 ){ 4235 assert( pParse->pWith==pWith ); 4236 pParse->pWith = pWith->pOuter; 4237 } 4238 } 4239 #else 4240 #define selectPopWith 0 4241 #endif 4242 4243 /* 4244 ** This routine is a Walker callback for "expanding" a SELECT statement. 4245 ** "Expanding" means to do the following: 4246 ** 4247 ** (1) Make sure VDBE cursor numbers have been assigned to every 4248 ** element of the FROM clause. 4249 ** 4250 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4251 ** defines FROM clause. When views appear in the FROM clause, 4252 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4253 ** that implements the view. A copy is made of the view's SELECT 4254 ** statement so that we can freely modify or delete that statement 4255 ** without worrying about messing up the persistent representation 4256 ** of the view. 4257 ** 4258 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4259 ** on joins and the ON and USING clause of joins. 4260 ** 4261 ** (4) Scan the list of columns in the result set (pEList) looking 4262 ** for instances of the "*" operator or the TABLE.* operator. 4263 ** If found, expand each "*" to be every column in every table 4264 ** and TABLE.* to be every column in TABLE. 4265 ** 4266 */ 4267 static int selectExpander(Walker *pWalker, Select *p){ 4268 Parse *pParse = pWalker->pParse; 4269 int i, j, k; 4270 SrcList *pTabList; 4271 ExprList *pEList; 4272 struct SrcList_item *pFrom; 4273 sqlite3 *db = pParse->db; 4274 Expr *pE, *pRight, *pExpr; 4275 u16 selFlags = p->selFlags; 4276 4277 p->selFlags |= SF_Expanded; 4278 if( db->mallocFailed ){ 4279 return WRC_Abort; 4280 } 4281 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 4282 return WRC_Prune; 4283 } 4284 pTabList = p->pSrc; 4285 pEList = p->pEList; 4286 if( pWalker->xSelectCallback2==selectPopWith ){ 4287 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 4288 } 4289 4290 /* Make sure cursor numbers have been assigned to all entries in 4291 ** the FROM clause of the SELECT statement. 4292 */ 4293 sqlite3SrcListAssignCursors(pParse, pTabList); 4294 4295 /* Look up every table named in the FROM clause of the select. If 4296 ** an entry of the FROM clause is a subquery instead of a table or view, 4297 ** then create a transient table structure to describe the subquery. 4298 */ 4299 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4300 Table *pTab; 4301 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4302 if( pFrom->fg.isRecursive ) continue; 4303 assert( pFrom->pTab==0 ); 4304 #ifndef SQLITE_OMIT_CTE 4305 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4306 if( pFrom->pTab ) {} else 4307 #endif 4308 if( pFrom->zName==0 ){ 4309 #ifndef SQLITE_OMIT_SUBQUERY 4310 Select *pSel = pFrom->pSelect; 4311 /* A sub-query in the FROM clause of a SELECT */ 4312 assert( pSel!=0 ); 4313 assert( pFrom->pTab==0 ); 4314 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4315 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4316 if( pTab==0 ) return WRC_Abort; 4317 pTab->nTabRef = 1; 4318 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4319 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4320 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4321 pTab->iPKey = -1; 4322 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4323 pTab->tabFlags |= TF_Ephemeral; 4324 #endif 4325 }else{ 4326 /* An ordinary table or view name in the FROM clause */ 4327 assert( pFrom->pTab==0 ); 4328 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4329 if( pTab==0 ) return WRC_Abort; 4330 if( pTab->nTabRef>=0xffff ){ 4331 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4332 pTab->zName); 4333 pFrom->pTab = 0; 4334 return WRC_Abort; 4335 } 4336 pTab->nTabRef++; 4337 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4338 return WRC_Abort; 4339 } 4340 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4341 if( IsVirtual(pTab) || pTab->pSelect ){ 4342 i16 nCol; 4343 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4344 assert( pFrom->pSelect==0 ); 4345 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4346 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); 4347 nCol = pTab->nCol; 4348 pTab->nCol = -1; 4349 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4350 pTab->nCol = nCol; 4351 } 4352 #endif 4353 } 4354 4355 /* Locate the index named by the INDEXED BY clause, if any. */ 4356 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4357 return WRC_Abort; 4358 } 4359 } 4360 4361 /* Process NATURAL keywords, and ON and USING clauses of joins. 4362 */ 4363 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4364 return WRC_Abort; 4365 } 4366 4367 /* For every "*" that occurs in the column list, insert the names of 4368 ** all columns in all tables. And for every TABLE.* insert the names 4369 ** of all columns in TABLE. The parser inserted a special expression 4370 ** with the TK_ASTERISK operator for each "*" that it found in the column 4371 ** list. The following code just has to locate the TK_ASTERISK 4372 ** expressions and expand each one to the list of all columns in 4373 ** all tables. 4374 ** 4375 ** The first loop just checks to see if there are any "*" operators 4376 ** that need expanding. 4377 */ 4378 for(k=0; k<pEList->nExpr; k++){ 4379 pE = pEList->a[k].pExpr; 4380 if( pE->op==TK_ASTERISK ) break; 4381 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4382 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4383 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4384 } 4385 if( k<pEList->nExpr ){ 4386 /* 4387 ** If we get here it means the result set contains one or more "*" 4388 ** operators that need to be expanded. Loop through each expression 4389 ** in the result set and expand them one by one. 4390 */ 4391 struct ExprList_item *a = pEList->a; 4392 ExprList *pNew = 0; 4393 int flags = pParse->db->flags; 4394 int longNames = (flags & SQLITE_FullColNames)!=0 4395 && (flags & SQLITE_ShortColNames)==0; 4396 4397 for(k=0; k<pEList->nExpr; k++){ 4398 pE = a[k].pExpr; 4399 pRight = pE->pRight; 4400 assert( pE->op!=TK_DOT || pRight!=0 ); 4401 if( pE->op!=TK_ASTERISK 4402 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4403 ){ 4404 /* This particular expression does not need to be expanded. 4405 */ 4406 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4407 if( pNew ){ 4408 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4409 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4410 a[k].zName = 0; 4411 a[k].zSpan = 0; 4412 } 4413 a[k].pExpr = 0; 4414 }else{ 4415 /* This expression is a "*" or a "TABLE.*" and needs to be 4416 ** expanded. */ 4417 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4418 char *zTName = 0; /* text of name of TABLE */ 4419 if( pE->op==TK_DOT ){ 4420 assert( pE->pLeft!=0 ); 4421 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4422 zTName = pE->pLeft->u.zToken; 4423 } 4424 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4425 Table *pTab = pFrom->pTab; 4426 Select *pSub = pFrom->pSelect; 4427 char *zTabName = pFrom->zAlias; 4428 const char *zSchemaName = 0; 4429 int iDb; 4430 if( zTabName==0 ){ 4431 zTabName = pTab->zName; 4432 } 4433 if( db->mallocFailed ) break; 4434 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4435 pSub = 0; 4436 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4437 continue; 4438 } 4439 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4440 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4441 } 4442 for(j=0; j<pTab->nCol; j++){ 4443 char *zName = pTab->aCol[j].zName; 4444 char *zColname; /* The computed column name */ 4445 char *zToFree; /* Malloced string that needs to be freed */ 4446 Token sColname; /* Computed column name as a token */ 4447 4448 assert( zName ); 4449 if( zTName && pSub 4450 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4451 ){ 4452 continue; 4453 } 4454 4455 /* If a column is marked as 'hidden', omit it from the expanded 4456 ** result-set list unless the SELECT has the SF_IncludeHidden 4457 ** bit set. 4458 */ 4459 if( (p->selFlags & SF_IncludeHidden)==0 4460 && IsHiddenColumn(&pTab->aCol[j]) 4461 ){ 4462 continue; 4463 } 4464 tableSeen = 1; 4465 4466 if( i>0 && zTName==0 ){ 4467 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4468 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4469 ){ 4470 /* In a NATURAL join, omit the join columns from the 4471 ** table to the right of the join */ 4472 continue; 4473 } 4474 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4475 /* In a join with a USING clause, omit columns in the 4476 ** using clause from the table on the right. */ 4477 continue; 4478 } 4479 } 4480 pRight = sqlite3Expr(db, TK_ID, zName); 4481 zColname = zName; 4482 zToFree = 0; 4483 if( longNames || pTabList->nSrc>1 ){ 4484 Expr *pLeft; 4485 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4486 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 4487 if( zSchemaName ){ 4488 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4489 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 4490 } 4491 if( longNames ){ 4492 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4493 zToFree = zColname; 4494 } 4495 }else{ 4496 pExpr = pRight; 4497 } 4498 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4499 sqlite3TokenInit(&sColname, zColname); 4500 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4501 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4502 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4503 if( pSub ){ 4504 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4505 testcase( pX->zSpan==0 ); 4506 }else{ 4507 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4508 zSchemaName, zTabName, zColname); 4509 testcase( pX->zSpan==0 ); 4510 } 4511 pX->bSpanIsTab = 1; 4512 } 4513 sqlite3DbFree(db, zToFree); 4514 } 4515 } 4516 if( !tableSeen ){ 4517 if( zTName ){ 4518 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4519 }else{ 4520 sqlite3ErrorMsg(pParse, "no tables specified"); 4521 } 4522 } 4523 } 4524 } 4525 sqlite3ExprListDelete(db, pEList); 4526 p->pEList = pNew; 4527 } 4528 #if SQLITE_MAX_COLUMN 4529 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4530 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4531 return WRC_Abort; 4532 } 4533 #endif 4534 return WRC_Continue; 4535 } 4536 4537 /* 4538 ** No-op routine for the parse-tree walker. 4539 ** 4540 ** When this routine is the Walker.xExprCallback then expression trees 4541 ** are walked without any actions being taken at each node. Presumably, 4542 ** when this routine is used for Walker.xExprCallback then 4543 ** Walker.xSelectCallback is set to do something useful for every 4544 ** subquery in the parser tree. 4545 */ 4546 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4547 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4548 return WRC_Continue; 4549 } 4550 4551 /* 4552 ** This routine "expands" a SELECT statement and all of its subqueries. 4553 ** For additional information on what it means to "expand" a SELECT 4554 ** statement, see the comment on the selectExpand worker callback above. 4555 ** 4556 ** Expanding a SELECT statement is the first step in processing a 4557 ** SELECT statement. The SELECT statement must be expanded before 4558 ** name resolution is performed. 4559 ** 4560 ** If anything goes wrong, an error message is written into pParse. 4561 ** The calling function can detect the problem by looking at pParse->nErr 4562 ** and/or pParse->db->mallocFailed. 4563 */ 4564 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4565 Walker w; 4566 memset(&w, 0, sizeof(w)); 4567 w.xExprCallback = sqlite3ExprWalkNoop; 4568 w.pParse = pParse; 4569 if( pParse->hasCompound ){ 4570 w.xSelectCallback = convertCompoundSelectToSubquery; 4571 sqlite3WalkSelect(&w, pSelect); 4572 } 4573 w.xSelectCallback = selectExpander; 4574 if( (pSelect->selFlags & SF_MultiValue)==0 ){ 4575 w.xSelectCallback2 = selectPopWith; 4576 } 4577 sqlite3WalkSelect(&w, pSelect); 4578 } 4579 4580 4581 #ifndef SQLITE_OMIT_SUBQUERY 4582 /* 4583 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4584 ** interface. 4585 ** 4586 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4587 ** information to the Table structure that represents the result set 4588 ** of that subquery. 4589 ** 4590 ** The Table structure that represents the result set was constructed 4591 ** by selectExpander() but the type and collation information was omitted 4592 ** at that point because identifiers had not yet been resolved. This 4593 ** routine is called after identifier resolution. 4594 */ 4595 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4596 Parse *pParse; 4597 int i; 4598 SrcList *pTabList; 4599 struct SrcList_item *pFrom; 4600 4601 assert( p->selFlags & SF_Resolved ); 4602 assert( (p->selFlags & SF_HasTypeInfo)==0 ); 4603 p->selFlags |= SF_HasTypeInfo; 4604 pParse = pWalker->pParse; 4605 pTabList = p->pSrc; 4606 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4607 Table *pTab = pFrom->pTab; 4608 assert( pTab!=0 ); 4609 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4610 /* A sub-query in the FROM clause of a SELECT */ 4611 Select *pSel = pFrom->pSelect; 4612 if( pSel ){ 4613 while( pSel->pPrior ) pSel = pSel->pPrior; 4614 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 4615 } 4616 } 4617 } 4618 } 4619 #endif 4620 4621 4622 /* 4623 ** This routine adds datatype and collating sequence information to 4624 ** the Table structures of all FROM-clause subqueries in a 4625 ** SELECT statement. 4626 ** 4627 ** Use this routine after name resolution. 4628 */ 4629 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4630 #ifndef SQLITE_OMIT_SUBQUERY 4631 Walker w; 4632 memset(&w, 0, sizeof(w)); 4633 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4634 w.xExprCallback = sqlite3ExprWalkNoop; 4635 w.pParse = pParse; 4636 sqlite3WalkSelect(&w, pSelect); 4637 #endif 4638 } 4639 4640 4641 /* 4642 ** This routine sets up a SELECT statement for processing. The 4643 ** following is accomplished: 4644 ** 4645 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4646 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4647 ** * ON and USING clauses are shifted into WHERE statements 4648 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4649 ** * Identifiers in expression are matched to tables. 4650 ** 4651 ** This routine acts recursively on all subqueries within the SELECT. 4652 */ 4653 void sqlite3SelectPrep( 4654 Parse *pParse, /* The parser context */ 4655 Select *p, /* The SELECT statement being coded. */ 4656 NameContext *pOuterNC /* Name context for container */ 4657 ){ 4658 sqlite3 *db; 4659 if( NEVER(p==0) ) return; 4660 db = pParse->db; 4661 if( db->mallocFailed ) return; 4662 if( p->selFlags & SF_HasTypeInfo ) return; 4663 sqlite3SelectExpand(pParse, p); 4664 if( pParse->nErr || db->mallocFailed ) return; 4665 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4666 if( pParse->nErr || db->mallocFailed ) return; 4667 sqlite3SelectAddTypeInfo(pParse, p); 4668 } 4669 4670 /* 4671 ** Reset the aggregate accumulator. 4672 ** 4673 ** The aggregate accumulator is a set of memory cells that hold 4674 ** intermediate results while calculating an aggregate. This 4675 ** routine generates code that stores NULLs in all of those memory 4676 ** cells. 4677 */ 4678 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4679 Vdbe *v = pParse->pVdbe; 4680 int i; 4681 struct AggInfo_func *pFunc; 4682 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4683 if( nReg==0 ) return; 4684 #ifdef SQLITE_DEBUG 4685 /* Verify that all AggInfo registers are within the range specified by 4686 ** AggInfo.mnReg..AggInfo.mxReg */ 4687 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4688 for(i=0; i<pAggInfo->nColumn; i++){ 4689 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4690 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4691 } 4692 for(i=0; i<pAggInfo->nFunc; i++){ 4693 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4694 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4695 } 4696 #endif 4697 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4698 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4699 if( pFunc->iDistinct>=0 ){ 4700 Expr *pE = pFunc->pExpr; 4701 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4702 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4703 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4704 "argument"); 4705 pFunc->iDistinct = -1; 4706 }else{ 4707 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4708 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4709 (char*)pKeyInfo, P4_KEYINFO); 4710 } 4711 } 4712 } 4713 } 4714 4715 /* 4716 ** Invoke the OP_AggFinalize opcode for every aggregate function 4717 ** in the AggInfo structure. 4718 */ 4719 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4720 Vdbe *v = pParse->pVdbe; 4721 int i; 4722 struct AggInfo_func *pF; 4723 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4724 ExprList *pList = pF->pExpr->x.pList; 4725 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4726 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 4727 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4728 } 4729 } 4730 4731 /* 4732 ** Update the accumulator memory cells for an aggregate based on 4733 ** the current cursor position. 4734 */ 4735 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4736 Vdbe *v = pParse->pVdbe; 4737 int i; 4738 int regHit = 0; 4739 int addrHitTest = 0; 4740 struct AggInfo_func *pF; 4741 struct AggInfo_col *pC; 4742 4743 pAggInfo->directMode = 1; 4744 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4745 int nArg; 4746 int addrNext = 0; 4747 int regAgg; 4748 ExprList *pList = pF->pExpr->x.pList; 4749 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4750 if( pList ){ 4751 nArg = pList->nExpr; 4752 regAgg = sqlite3GetTempRange(pParse, nArg); 4753 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 4754 }else{ 4755 nArg = 0; 4756 regAgg = 0; 4757 } 4758 if( pF->iDistinct>=0 ){ 4759 addrNext = sqlite3VdbeMakeLabel(v); 4760 testcase( nArg==0 ); /* Error condition */ 4761 testcase( nArg>1 ); /* Also an error */ 4762 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4763 } 4764 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4765 CollSeq *pColl = 0; 4766 struct ExprList_item *pItem; 4767 int j; 4768 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4769 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4770 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4771 } 4772 if( !pColl ){ 4773 pColl = pParse->db->pDfltColl; 4774 } 4775 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4776 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4777 } 4778 sqlite3VdbeAddOp3(v, OP_AggStep0, 0, regAgg, pF->iMem); 4779 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 4780 sqlite3VdbeChangeP5(v, (u8)nArg); 4781 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4782 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4783 if( addrNext ){ 4784 sqlite3VdbeResolveLabel(v, addrNext); 4785 sqlite3ExprCacheClear(pParse); 4786 } 4787 } 4788 4789 /* Before populating the accumulator registers, clear the column cache. 4790 ** Otherwise, if any of the required column values are already present 4791 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4792 ** to pC->iMem. But by the time the value is used, the original register 4793 ** may have been used, invalidating the underlying buffer holding the 4794 ** text or blob value. See ticket [883034dcb5]. 4795 ** 4796 ** Another solution would be to change the OP_SCopy used to copy cached 4797 ** values to an OP_Copy. 4798 */ 4799 if( regHit ){ 4800 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4801 } 4802 sqlite3ExprCacheClear(pParse); 4803 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4804 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4805 } 4806 pAggInfo->directMode = 0; 4807 sqlite3ExprCacheClear(pParse); 4808 if( addrHitTest ){ 4809 sqlite3VdbeJumpHere(v, addrHitTest); 4810 } 4811 } 4812 4813 /* 4814 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4815 ** count(*) query ("SELECT count(*) FROM pTab"). 4816 */ 4817 #ifndef SQLITE_OMIT_EXPLAIN 4818 static void explainSimpleCount( 4819 Parse *pParse, /* Parse context */ 4820 Table *pTab, /* Table being queried */ 4821 Index *pIdx /* Index used to optimize scan, or NULL */ 4822 ){ 4823 if( pParse->explain==2 ){ 4824 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 4825 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4826 pTab->zName, 4827 bCover ? " USING COVERING INDEX " : "", 4828 bCover ? pIdx->zName : "" 4829 ); 4830 sqlite3VdbeAddOp4( 4831 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4832 ); 4833 } 4834 } 4835 #else 4836 # define explainSimpleCount(a,b,c) 4837 #endif 4838 4839 /* 4840 ** Generate code for the SELECT statement given in the p argument. 4841 ** 4842 ** The results are returned according to the SelectDest structure. 4843 ** See comments in sqliteInt.h for further information. 4844 ** 4845 ** This routine returns the number of errors. If any errors are 4846 ** encountered, then an appropriate error message is left in 4847 ** pParse->zErrMsg. 4848 ** 4849 ** This routine does NOT free the Select structure passed in. The 4850 ** calling function needs to do that. 4851 */ 4852 int sqlite3Select( 4853 Parse *pParse, /* The parser context */ 4854 Select *p, /* The SELECT statement being coded. */ 4855 SelectDest *pDest /* What to do with the query results */ 4856 ){ 4857 int i, j; /* Loop counters */ 4858 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4859 Vdbe *v; /* The virtual machine under construction */ 4860 int isAgg; /* True for select lists like "count(*)" */ 4861 ExprList *pEList = 0; /* List of columns to extract. */ 4862 SrcList *pTabList; /* List of tables to select from */ 4863 Expr *pWhere; /* The WHERE clause. May be NULL */ 4864 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4865 Expr *pHaving; /* The HAVING clause. May be NULL */ 4866 int rc = 1; /* Value to return from this function */ 4867 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4868 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4869 AggInfo sAggInfo; /* Information used by aggregate queries */ 4870 int iEnd; /* Address of the end of the query */ 4871 sqlite3 *db; /* The database connection */ 4872 4873 #ifndef SQLITE_OMIT_EXPLAIN 4874 int iRestoreSelectId = pParse->iSelectId; 4875 pParse->iSelectId = pParse->iNextSelectId++; 4876 #endif 4877 4878 db = pParse->db; 4879 if( p==0 || db->mallocFailed || pParse->nErr ){ 4880 return 1; 4881 } 4882 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4883 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4884 #if SELECTTRACE_ENABLED 4885 pParse->nSelectIndent++; 4886 SELECTTRACE(1,pParse,p, ("begin processing:\n")); 4887 if( sqlite3SelectTrace & 0x100 ){ 4888 sqlite3TreeViewSelect(0, p, 0); 4889 } 4890 #endif 4891 4892 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4893 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4894 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4895 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4896 if( IgnorableOrderby(pDest) ){ 4897 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4898 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4899 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4900 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4901 /* If ORDER BY makes no difference in the output then neither does 4902 ** DISTINCT so it can be removed too. */ 4903 sqlite3ExprListDelete(db, p->pOrderBy); 4904 p->pOrderBy = 0; 4905 p->selFlags &= ~SF_Distinct; 4906 } 4907 sqlite3SelectPrep(pParse, p, 0); 4908 memset(&sSort, 0, sizeof(sSort)); 4909 sSort.pOrderBy = p->pOrderBy; 4910 pTabList = p->pSrc; 4911 if( pParse->nErr || db->mallocFailed ){ 4912 goto select_end; 4913 } 4914 assert( p->pEList!=0 ); 4915 isAgg = (p->selFlags & SF_Aggregate)!=0; 4916 #if SELECTTRACE_ENABLED 4917 if( sqlite3SelectTrace & 0x100 ){ 4918 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); 4919 sqlite3TreeViewSelect(0, p, 0); 4920 } 4921 #endif 4922 4923 /* Try to flatten subqueries in the FROM clause up into the main query 4924 */ 4925 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4926 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4927 struct SrcList_item *pItem = &pTabList->a[i]; 4928 Select *pSub = pItem->pSelect; 4929 int isAggSub; 4930 Table *pTab = pItem->pTab; 4931 if( pSub==0 ) continue; 4932 4933 /* Catch mismatch in the declared columns of a view and the number of 4934 ** columns in the SELECT on the RHS */ 4935 if( pTab->nCol!=pSub->pEList->nExpr ){ 4936 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 4937 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 4938 goto select_end; 4939 } 4940 4941 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4942 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4943 /* This subquery can be absorbed into its parent. */ 4944 if( isAggSub ){ 4945 isAgg = 1; 4946 p->selFlags |= SF_Aggregate; 4947 } 4948 i = -1; 4949 } 4950 pTabList = p->pSrc; 4951 if( db->mallocFailed ) goto select_end; 4952 if( !IgnorableOrderby(pDest) ){ 4953 sSort.pOrderBy = p->pOrderBy; 4954 } 4955 } 4956 #endif 4957 4958 /* Get a pointer the VDBE under construction, allocating a new VDBE if one 4959 ** does not already exist */ 4960 v = sqlite3GetVdbe(pParse); 4961 if( v==0 ) goto select_end; 4962 4963 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4964 /* Handle compound SELECT statements using the separate multiSelect() 4965 ** procedure. 4966 */ 4967 if( p->pPrior ){ 4968 rc = multiSelect(pParse, p, pDest); 4969 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4970 #if SELECTTRACE_ENABLED 4971 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); 4972 pParse->nSelectIndent--; 4973 #endif 4974 return rc; 4975 } 4976 #endif 4977 4978 /* Generate code for all sub-queries in the FROM clause 4979 */ 4980 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4981 for(i=0; i<pTabList->nSrc; i++){ 4982 struct SrcList_item *pItem = &pTabList->a[i]; 4983 SelectDest dest; 4984 Select *pSub = pItem->pSelect; 4985 if( pSub==0 ) continue; 4986 4987 /* Sometimes the code for a subquery will be generated more than 4988 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4989 ** for example. In that case, do not regenerate the code to manifest 4990 ** a view or the co-routine to implement a view. The first instance 4991 ** is sufficient, though the subroutine to manifest the view does need 4992 ** to be invoked again. */ 4993 if( pItem->addrFillSub ){ 4994 if( pItem->fg.viaCoroutine==0 ){ 4995 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4996 } 4997 continue; 4998 } 4999 5000 /* Increment Parse.nHeight by the height of the largest expression 5001 ** tree referred to by this, the parent select. The child select 5002 ** may contain expression trees of at most 5003 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5004 ** more conservative than necessary, but much easier than enforcing 5005 ** an exact limit. 5006 */ 5007 pParse->nHeight += sqlite3SelectExprHeight(p); 5008 5009 /* Make copies of constant WHERE-clause terms in the outer query down 5010 ** inside the subquery. This can help the subquery to run more efficiently. 5011 */ 5012 if( (pItem->fg.jointype & JT_OUTER)==0 5013 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor) 5014 ){ 5015 #if SELECTTRACE_ENABLED 5016 if( sqlite3SelectTrace & 0x100 ){ 5017 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); 5018 sqlite3TreeViewSelect(0, p, 0); 5019 } 5020 #endif 5021 } 5022 5023 /* Generate code to implement the subquery 5024 ** 5025 ** The subquery is implemented as a co-routine if all of these are true: 5026 ** (1) The subquery is guaranteed to be the outer loop (so that it 5027 ** does not need to be computed more than once) 5028 ** (2) The ALL keyword after SELECT is omitted. (Applications are 5029 ** allowed to say "SELECT ALL" instead of just "SELECT" to disable 5030 ** the use of co-routines.) 5031 ** (3) Co-routines are not disabled using sqlite3_test_control() 5032 ** with SQLITE_TESTCTRL_OPTIMIZATIONS. 5033 ** 5034 ** TODO: Are there other reasons beside (1) to use a co-routine 5035 ** implementation? 5036 */ 5037 if( i==0 5038 && (pTabList->nSrc==1 5039 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5040 && (p->selFlags & SF_All)==0 /* (2) */ 5041 && OptimizationEnabled(db, SQLITE_SubqCoroutine) /* (3) */ 5042 ){ 5043 /* Implement a co-routine that will return a single row of the result 5044 ** set on each invocation. 5045 */ 5046 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5047 pItem->regReturn = ++pParse->nMem; 5048 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5049 VdbeComment((v, "%s", pItem->pTab->zName)); 5050 pItem->addrFillSub = addrTop; 5051 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5052 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5053 sqlite3Select(pParse, pSub, &dest); 5054 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5055 pItem->fg.viaCoroutine = 1; 5056 pItem->regResult = dest.iSdst; 5057 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5058 sqlite3VdbeJumpHere(v, addrTop-1); 5059 sqlite3ClearTempRegCache(pParse); 5060 }else{ 5061 /* Generate a subroutine that will fill an ephemeral table with 5062 ** the content of this subquery. pItem->addrFillSub will point 5063 ** to the address of the generated subroutine. pItem->regReturn 5064 ** is a register allocated to hold the subroutine return address 5065 */ 5066 int topAddr; 5067 int onceAddr = 0; 5068 int retAddr; 5069 assert( pItem->addrFillSub==0 ); 5070 pItem->regReturn = ++pParse->nMem; 5071 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5072 pItem->addrFillSub = topAddr+1; 5073 if( pItem->fg.isCorrelated==0 ){ 5074 /* If the subquery is not correlated and if we are not inside of 5075 ** a trigger, then we only need to compute the value of the subquery 5076 ** once. */ 5077 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5078 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5079 }else{ 5080 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5081 } 5082 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5083 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 5084 sqlite3Select(pParse, pSub, &dest); 5085 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5086 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5087 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5088 VdbeComment((v, "end %s", pItem->pTab->zName)); 5089 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5090 sqlite3ClearTempRegCache(pParse); 5091 } 5092 if( db->mallocFailed ) goto select_end; 5093 pParse->nHeight -= sqlite3SelectExprHeight(p); 5094 } 5095 #endif 5096 5097 /* Various elements of the SELECT copied into local variables for 5098 ** convenience */ 5099 pEList = p->pEList; 5100 pWhere = p->pWhere; 5101 pGroupBy = p->pGroupBy; 5102 pHaving = p->pHaving; 5103 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5104 5105 #if SELECTTRACE_ENABLED 5106 if( sqlite3SelectTrace & 0x400 ){ 5107 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5108 sqlite3TreeViewSelect(0, p, 0); 5109 } 5110 #endif 5111 5112 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5113 ** if the select-list is the same as the ORDER BY list, then this query 5114 ** can be rewritten as a GROUP BY. In other words, this: 5115 ** 5116 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5117 ** 5118 ** is transformed to: 5119 ** 5120 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5121 ** 5122 ** The second form is preferred as a single index (or temp-table) may be 5123 ** used for both the ORDER BY and DISTINCT processing. As originally 5124 ** written the query must use a temp-table for at least one of the ORDER 5125 ** BY and DISTINCT, and an index or separate temp-table for the other. 5126 */ 5127 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5128 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5129 ){ 5130 p->selFlags &= ~SF_Distinct; 5131 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5132 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5133 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5134 ** original setting of the SF_Distinct flag, not the current setting */ 5135 assert( sDistinct.isTnct ); 5136 5137 #if SELECTTRACE_ENABLED 5138 if( sqlite3SelectTrace & 0x400 ){ 5139 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5140 sqlite3TreeViewSelect(0, p, 0); 5141 } 5142 #endif 5143 } 5144 5145 /* If there is an ORDER BY clause, then create an ephemeral index to 5146 ** do the sorting. But this sorting ephemeral index might end up 5147 ** being unused if the data can be extracted in pre-sorted order. 5148 ** If that is the case, then the OP_OpenEphemeral instruction will be 5149 ** changed to an OP_Noop once we figure out that the sorting index is 5150 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5151 ** that change. 5152 */ 5153 if( sSort.pOrderBy ){ 5154 KeyInfo *pKeyInfo; 5155 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); 5156 sSort.iECursor = pParse->nTab++; 5157 sSort.addrSortIndex = 5158 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5159 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5160 (char*)pKeyInfo, P4_KEYINFO 5161 ); 5162 }else{ 5163 sSort.addrSortIndex = -1; 5164 } 5165 5166 /* If the output is destined for a temporary table, open that table. 5167 */ 5168 if( pDest->eDest==SRT_EphemTab ){ 5169 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 5170 } 5171 5172 /* Set the limiter. 5173 */ 5174 iEnd = sqlite3VdbeMakeLabel(v); 5175 if( (p->selFlags & SF_FixedLimit)==0 ){ 5176 p->nSelectRow = 320; /* 4 billion rows */ 5177 } 5178 computeLimitRegisters(pParse, p, iEnd); 5179 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 5180 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 5181 sSort.sortFlags |= SORTFLAG_UseSorter; 5182 } 5183 5184 /* Open an ephemeral index to use for the distinct set. 5185 */ 5186 if( p->selFlags & SF_Distinct ){ 5187 sDistinct.tabTnct = pParse->nTab++; 5188 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5189 sDistinct.tabTnct, 0, 0, 5190 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 5191 P4_KEYINFO); 5192 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 5193 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 5194 }else{ 5195 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 5196 } 5197 5198 if( !isAgg && pGroupBy==0 ){ 5199 /* No aggregate functions and no GROUP BY clause */ 5200 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 5201 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 5202 wctrlFlags |= p->selFlags & SF_FixedLimit; 5203 5204 /* Begin the database scan. */ 5205 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 5206 p->pEList, wctrlFlags, p->nSelectRow); 5207 if( pWInfo==0 ) goto select_end; 5208 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 5209 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 5210 } 5211 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 5212 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 5213 } 5214 if( sSort.pOrderBy ){ 5215 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 5216 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 5217 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 5218 sSort.pOrderBy = 0; 5219 } 5220 } 5221 5222 /* If sorting index that was created by a prior OP_OpenEphemeral 5223 ** instruction ended up not being needed, then change the OP_OpenEphemeral 5224 ** into an OP_Noop. 5225 */ 5226 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 5227 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5228 } 5229 5230 /* Use the standard inner loop. */ 5231 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 5232 sqlite3WhereContinueLabel(pWInfo), 5233 sqlite3WhereBreakLabel(pWInfo)); 5234 5235 /* End the database scan loop. 5236 */ 5237 sqlite3WhereEnd(pWInfo); 5238 }else{ 5239 /* This case when there exist aggregate functions or a GROUP BY clause 5240 ** or both */ 5241 NameContext sNC; /* Name context for processing aggregate information */ 5242 int iAMem; /* First Mem address for storing current GROUP BY */ 5243 int iBMem; /* First Mem address for previous GROUP BY */ 5244 int iUseFlag; /* Mem address holding flag indicating that at least 5245 ** one row of the input to the aggregator has been 5246 ** processed */ 5247 int iAbortFlag; /* Mem address which causes query abort if positive */ 5248 int groupBySort; /* Rows come from source in GROUP BY order */ 5249 int addrEnd; /* End of processing for this SELECT */ 5250 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 5251 int sortOut = 0; /* Output register from the sorter */ 5252 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 5253 5254 /* Remove any and all aliases between the result set and the 5255 ** GROUP BY clause. 5256 */ 5257 if( pGroupBy ){ 5258 int k; /* Loop counter */ 5259 struct ExprList_item *pItem; /* For looping over expression in a list */ 5260 5261 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 5262 pItem->u.x.iAlias = 0; 5263 } 5264 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 5265 pItem->u.x.iAlias = 0; 5266 } 5267 assert( 66==sqlite3LogEst(100) ); 5268 if( p->nSelectRow>66 ) p->nSelectRow = 66; 5269 }else{ 5270 assert( 0==sqlite3LogEst(1) ); 5271 p->nSelectRow = 0; 5272 } 5273 5274 /* If there is both a GROUP BY and an ORDER BY clause and they are 5275 ** identical, then it may be possible to disable the ORDER BY clause 5276 ** on the grounds that the GROUP BY will cause elements to come out 5277 ** in the correct order. It also may not - the GROUP BY might use a 5278 ** database index that causes rows to be grouped together as required 5279 ** but not actually sorted. Either way, record the fact that the 5280 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 5281 ** variable. */ 5282 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 5283 orderByGrp = 1; 5284 } 5285 5286 /* Create a label to jump to when we want to abort the query */ 5287 addrEnd = sqlite3VdbeMakeLabel(v); 5288 5289 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 5290 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 5291 ** SELECT statement. 5292 */ 5293 memset(&sNC, 0, sizeof(sNC)); 5294 sNC.pParse = pParse; 5295 sNC.pSrcList = pTabList; 5296 sNC.pAggInfo = &sAggInfo; 5297 sAggInfo.mnReg = pParse->nMem+1; 5298 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 5299 sAggInfo.pGroupBy = pGroupBy; 5300 sqlite3ExprAnalyzeAggList(&sNC, pEList); 5301 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 5302 if( pHaving ){ 5303 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 5304 } 5305 sAggInfo.nAccumulator = sAggInfo.nColumn; 5306 for(i=0; i<sAggInfo.nFunc; i++){ 5307 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 5308 sNC.ncFlags |= NC_InAggFunc; 5309 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 5310 sNC.ncFlags &= ~NC_InAggFunc; 5311 } 5312 sAggInfo.mxReg = pParse->nMem; 5313 if( db->mallocFailed ) goto select_end; 5314 5315 /* Processing for aggregates with GROUP BY is very different and 5316 ** much more complex than aggregates without a GROUP BY. 5317 */ 5318 if( pGroupBy ){ 5319 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 5320 int addr1; /* A-vs-B comparision jump */ 5321 int addrOutputRow; /* Start of subroutine that outputs a result row */ 5322 int regOutputRow; /* Return address register for output subroutine */ 5323 int addrSetAbort; /* Set the abort flag and return */ 5324 int addrTopOfLoop; /* Top of the input loop */ 5325 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 5326 int addrReset; /* Subroutine for resetting the accumulator */ 5327 int regReset; /* Return address register for reset subroutine */ 5328 5329 /* If there is a GROUP BY clause we might need a sorting index to 5330 ** implement it. Allocate that sorting index now. If it turns out 5331 ** that we do not need it after all, the OP_SorterOpen instruction 5332 ** will be converted into a Noop. 5333 */ 5334 sAggInfo.sortingIdx = pParse->nTab++; 5335 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); 5336 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 5337 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 5338 0, (char*)pKeyInfo, P4_KEYINFO); 5339 5340 /* Initialize memory locations used by GROUP BY aggregate processing 5341 */ 5342 iUseFlag = ++pParse->nMem; 5343 iAbortFlag = ++pParse->nMem; 5344 regOutputRow = ++pParse->nMem; 5345 addrOutputRow = sqlite3VdbeMakeLabel(v); 5346 regReset = ++pParse->nMem; 5347 addrReset = sqlite3VdbeMakeLabel(v); 5348 iAMem = pParse->nMem + 1; 5349 pParse->nMem += pGroupBy->nExpr; 5350 iBMem = pParse->nMem + 1; 5351 pParse->nMem += pGroupBy->nExpr; 5352 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 5353 VdbeComment((v, "clear abort flag")); 5354 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 5355 VdbeComment((v, "indicate accumulator empty")); 5356 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 5357 5358 /* Begin a loop that will extract all source rows in GROUP BY order. 5359 ** This might involve two separate loops with an OP_Sort in between, or 5360 ** it might be a single loop that uses an index to extract information 5361 ** in the right order to begin with. 5362 */ 5363 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5364 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 5365 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 5366 ); 5367 if( pWInfo==0 ) goto select_end; 5368 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 5369 /* The optimizer is able to deliver rows in group by order so 5370 ** we do not have to sort. The OP_OpenEphemeral table will be 5371 ** cancelled later because we still need to use the pKeyInfo 5372 */ 5373 groupBySort = 0; 5374 }else{ 5375 /* Rows are coming out in undetermined order. We have to push 5376 ** each row into a sorting index, terminate the first loop, 5377 ** then loop over the sorting index in order to get the output 5378 ** in sorted order 5379 */ 5380 int regBase; 5381 int regRecord; 5382 int nCol; 5383 int nGroupBy; 5384 5385 explainTempTable(pParse, 5386 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 5387 "DISTINCT" : "GROUP BY"); 5388 5389 groupBySort = 1; 5390 nGroupBy = pGroupBy->nExpr; 5391 nCol = nGroupBy; 5392 j = nGroupBy; 5393 for(i=0; i<sAggInfo.nColumn; i++){ 5394 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 5395 nCol++; 5396 j++; 5397 } 5398 } 5399 regBase = sqlite3GetTempRange(pParse, nCol); 5400 sqlite3ExprCacheClear(pParse); 5401 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 5402 j = nGroupBy; 5403 for(i=0; i<sAggInfo.nColumn; i++){ 5404 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5405 if( pCol->iSorterColumn>=j ){ 5406 int r1 = j + regBase; 5407 sqlite3ExprCodeGetColumnToReg(pParse, 5408 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 5409 j++; 5410 } 5411 } 5412 regRecord = sqlite3GetTempReg(pParse); 5413 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5414 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5415 sqlite3ReleaseTempReg(pParse, regRecord); 5416 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5417 sqlite3WhereEnd(pWInfo); 5418 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5419 sortOut = sqlite3GetTempReg(pParse); 5420 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5421 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5422 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5423 sAggInfo.useSortingIdx = 1; 5424 sqlite3ExprCacheClear(pParse); 5425 5426 } 5427 5428 /* If the index or temporary table used by the GROUP BY sort 5429 ** will naturally deliver rows in the order required by the ORDER BY 5430 ** clause, cancel the ephemeral table open coded earlier. 5431 ** 5432 ** This is an optimization - the correct answer should result regardless. 5433 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5434 ** disable this optimization for testing purposes. */ 5435 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5436 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5437 ){ 5438 sSort.pOrderBy = 0; 5439 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5440 } 5441 5442 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5443 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5444 ** Then compare the current GROUP BY terms against the GROUP BY terms 5445 ** from the previous row currently stored in a0, a1, a2... 5446 */ 5447 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5448 sqlite3ExprCacheClear(pParse); 5449 if( groupBySort ){ 5450 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 5451 sortOut, sortPTab); 5452 } 5453 for(j=0; j<pGroupBy->nExpr; j++){ 5454 if( groupBySort ){ 5455 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5456 }else{ 5457 sAggInfo.directMode = 1; 5458 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5459 } 5460 } 5461 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5462 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5463 addr1 = sqlite3VdbeCurrentAddr(v); 5464 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 5465 5466 /* Generate code that runs whenever the GROUP BY changes. 5467 ** Changes in the GROUP BY are detected by the previous code 5468 ** block. If there were no changes, this block is skipped. 5469 ** 5470 ** This code copies current group by terms in b0,b1,b2,... 5471 ** over to a0,a1,a2. It then calls the output subroutine 5472 ** and resets the aggregate accumulator registers in preparation 5473 ** for the next GROUP BY batch. 5474 */ 5475 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5476 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5477 VdbeComment((v, "output one row")); 5478 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5479 VdbeComment((v, "check abort flag")); 5480 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5481 VdbeComment((v, "reset accumulator")); 5482 5483 /* Update the aggregate accumulators based on the content of 5484 ** the current row 5485 */ 5486 sqlite3VdbeJumpHere(v, addr1); 5487 updateAccumulator(pParse, &sAggInfo); 5488 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5489 VdbeComment((v, "indicate data in accumulator")); 5490 5491 /* End of the loop 5492 */ 5493 if( groupBySort ){ 5494 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5495 VdbeCoverage(v); 5496 }else{ 5497 sqlite3WhereEnd(pWInfo); 5498 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5499 } 5500 5501 /* Output the final row of result 5502 */ 5503 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5504 VdbeComment((v, "output final row")); 5505 5506 /* Jump over the subroutines 5507 */ 5508 sqlite3VdbeGoto(v, addrEnd); 5509 5510 /* Generate a subroutine that outputs a single row of the result 5511 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5512 ** is less than or equal to zero, the subroutine is a no-op. If 5513 ** the processing calls for the query to abort, this subroutine 5514 ** increments the iAbortFlag memory location before returning in 5515 ** order to signal the caller to abort. 5516 */ 5517 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5518 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5519 VdbeComment((v, "set abort flag")); 5520 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5521 sqlite3VdbeResolveLabel(v, addrOutputRow); 5522 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5523 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 5524 VdbeCoverage(v); 5525 VdbeComment((v, "Groupby result generator entry point")); 5526 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5527 finalizeAggFunctions(pParse, &sAggInfo); 5528 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5529 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5530 &sDistinct, pDest, 5531 addrOutputRow+1, addrSetAbort); 5532 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5533 VdbeComment((v, "end groupby result generator")); 5534 5535 /* Generate a subroutine that will reset the group-by accumulator 5536 */ 5537 sqlite3VdbeResolveLabel(v, addrReset); 5538 resetAccumulator(pParse, &sAggInfo); 5539 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5540 5541 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5542 else { 5543 ExprList *pDel = 0; 5544 #ifndef SQLITE_OMIT_BTREECOUNT 5545 Table *pTab; 5546 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5547 /* If isSimpleCount() returns a pointer to a Table structure, then 5548 ** the SQL statement is of the form: 5549 ** 5550 ** SELECT count(*) FROM <tbl> 5551 ** 5552 ** where the Table structure returned represents table <tbl>. 5553 ** 5554 ** This statement is so common that it is optimized specially. The 5555 ** OP_Count instruction is executed either on the intkey table that 5556 ** contains the data for table <tbl> or on one of its indexes. It 5557 ** is better to execute the op on an index, as indexes are almost 5558 ** always spread across less pages than their corresponding tables. 5559 */ 5560 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5561 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5562 Index *pIdx; /* Iterator variable */ 5563 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5564 Index *pBest = 0; /* Best index found so far */ 5565 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5566 5567 sqlite3CodeVerifySchema(pParse, iDb); 5568 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5569 5570 /* Search for the index that has the lowest scan cost. 5571 ** 5572 ** (2011-04-15) Do not do a full scan of an unordered index. 5573 ** 5574 ** (2013-10-03) Do not count the entries in a partial index. 5575 ** 5576 ** In practice the KeyInfo structure will not be used. It is only 5577 ** passed to keep OP_OpenRead happy. 5578 */ 5579 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5580 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5581 if( pIdx->bUnordered==0 5582 && pIdx->szIdxRow<pTab->szTabRow 5583 && pIdx->pPartIdxWhere==0 5584 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5585 ){ 5586 pBest = pIdx; 5587 } 5588 } 5589 if( pBest ){ 5590 iRoot = pBest->tnum; 5591 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5592 } 5593 5594 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5595 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5596 if( pKeyInfo ){ 5597 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5598 } 5599 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5600 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5601 explainSimpleCount(pParse, pTab, pBest); 5602 }else 5603 #endif /* SQLITE_OMIT_BTREECOUNT */ 5604 { 5605 /* Check if the query is of one of the following forms: 5606 ** 5607 ** SELECT min(x) FROM ... 5608 ** SELECT max(x) FROM ... 5609 ** 5610 ** If it is, then ask the code in where.c to attempt to sort results 5611 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5612 ** If where.c is able to produce results sorted in this order, then 5613 ** add vdbe code to break out of the processing loop after the 5614 ** first iteration (since the first iteration of the loop is 5615 ** guaranteed to operate on the row with the minimum or maximum 5616 ** value of x, the only row required). 5617 ** 5618 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5619 ** modify behavior as follows: 5620 ** 5621 ** + If the query is a "SELECT min(x)", then the loop coded by 5622 ** where.c should not iterate over any values with a NULL value 5623 ** for x. 5624 ** 5625 ** + The optimizer code in where.c (the thing that decides which 5626 ** index or indices to use) should place a different priority on 5627 ** satisfying the 'ORDER BY' clause than it does in other cases. 5628 ** Refer to code and comments in where.c for details. 5629 */ 5630 ExprList *pMinMax = 0; 5631 u8 flag = WHERE_ORDERBY_NORMAL; 5632 5633 assert( p->pGroupBy==0 ); 5634 assert( flag==0 ); 5635 if( p->pHaving==0 ){ 5636 flag = minMaxQuery(&sAggInfo, &pMinMax); 5637 } 5638 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5639 5640 if( flag ){ 5641 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5642 pDel = pMinMax; 5643 assert( db->mallocFailed || pMinMax!=0 ); 5644 if( !db->mallocFailed ){ 5645 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5646 pMinMax->a[0].pExpr->op = TK_COLUMN; 5647 } 5648 } 5649 5650 /* This case runs if the aggregate has no GROUP BY clause. The 5651 ** processing is much simpler since there is only a single row 5652 ** of output. 5653 */ 5654 resetAccumulator(pParse, &sAggInfo); 5655 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax, 0,flag,0); 5656 if( pWInfo==0 ){ 5657 sqlite3ExprListDelete(db, pDel); 5658 goto select_end; 5659 } 5660 updateAccumulator(pParse, &sAggInfo); 5661 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5662 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5663 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 5664 VdbeComment((v, "%s() by index", 5665 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5666 } 5667 sqlite3WhereEnd(pWInfo); 5668 finalizeAggFunctions(pParse, &sAggInfo); 5669 } 5670 5671 sSort.pOrderBy = 0; 5672 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5673 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5674 pDest, addrEnd, addrEnd); 5675 sqlite3ExprListDelete(db, pDel); 5676 } 5677 sqlite3VdbeResolveLabel(v, addrEnd); 5678 5679 } /* endif aggregate query */ 5680 5681 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5682 explainTempTable(pParse, "DISTINCT"); 5683 } 5684 5685 /* If there is an ORDER BY clause, then we need to sort the results 5686 ** and send them to the callback one by one. 5687 */ 5688 if( sSort.pOrderBy ){ 5689 explainTempTable(pParse, 5690 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5691 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5692 } 5693 5694 /* Jump here to skip this query 5695 */ 5696 sqlite3VdbeResolveLabel(v, iEnd); 5697 5698 /* The SELECT has been coded. If there is an error in the Parse structure, 5699 ** set the return code to 1. Otherwise 0. */ 5700 rc = (pParse->nErr>0); 5701 5702 /* Control jumps to here if an error is encountered above, or upon 5703 ** successful coding of the SELECT. 5704 */ 5705 select_end: 5706 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5707 5708 /* Identify column names if results of the SELECT are to be output. 5709 */ 5710 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5711 generateColumnNames(pParse, pTabList, pEList); 5712 } 5713 5714 sqlite3DbFree(db, sAggInfo.aCol); 5715 sqlite3DbFree(db, sAggInfo.aFunc); 5716 #if SELECTTRACE_ENABLED 5717 SELECTTRACE(1,pParse,p,("end processing\n")); 5718 pParse->nSelectIndent--; 5719 #endif 5720 return rc; 5721 } 5722