xref: /sqlite-3.40.0/src/select.c (revision 8749c183)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 
18 /*
19 ** Delete all the content of a Select structure but do not deallocate
20 ** the select structure itself.
21 */
22 static void clearSelect(sqlite3 *db, Select *p){
23   sqlite3ExprListDelete(db, p->pEList);
24   sqlite3SrcListDelete(db, p->pSrc);
25   sqlite3ExprDelete(db, p->pWhere);
26   sqlite3ExprListDelete(db, p->pGroupBy);
27   sqlite3ExprDelete(db, p->pHaving);
28   sqlite3ExprListDelete(db, p->pOrderBy);
29   sqlite3SelectDelete(db, p->pPrior);
30   sqlite3ExprDelete(db, p->pLimit);
31   sqlite3ExprDelete(db, p->pOffset);
32 }
33 
34 /*
35 ** Initialize a SelectDest structure.
36 */
37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
38   pDest->eDest = (u8)eDest;
39   pDest->iSDParm = iParm;
40   pDest->affSdst = 0;
41   pDest->iSdst = 0;
42   pDest->nSdst = 0;
43 }
44 
45 
46 /*
47 ** Allocate a new Select structure and return a pointer to that
48 ** structure.
49 */
50 Select *sqlite3SelectNew(
51   Parse *pParse,        /* Parsing context */
52   ExprList *pEList,     /* which columns to include in the result */
53   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
54   Expr *pWhere,         /* the WHERE clause */
55   ExprList *pGroupBy,   /* the GROUP BY clause */
56   Expr *pHaving,        /* the HAVING clause */
57   ExprList *pOrderBy,   /* the ORDER BY clause */
58   int isDistinct,       /* true if the DISTINCT keyword is present */
59   Expr *pLimit,         /* LIMIT value.  NULL means not used */
60   Expr *pOffset         /* OFFSET value.  NULL means no offset */
61 ){
62   Select *pNew;
63   Select standin;
64   sqlite3 *db = pParse->db;
65   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
66   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
67   if( pNew==0 ){
68     assert( db->mallocFailed );
69     pNew = &standin;
70     memset(pNew, 0, sizeof(*pNew));
71   }
72   if( pEList==0 ){
73     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
74   }
75   pNew->pEList = pEList;
76   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   assert( pOffset==0 || pLimit!=0 );
87   pNew->addrOpenEphm[0] = -1;
88   pNew->addrOpenEphm[1] = -1;
89   pNew->addrOpenEphm[2] = -1;
90   if( db->mallocFailed ) {
91     clearSelect(db, pNew);
92     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
93     pNew = 0;
94   }else{
95     assert( pNew->pSrc!=0 || pParse->nErr>0 );
96   }
97   assert( pNew!=&standin );
98   return pNew;
99 }
100 
101 /*
102 ** Delete the given Select structure and all of its substructures.
103 */
104 void sqlite3SelectDelete(sqlite3 *db, Select *p){
105   if( p ){
106     clearSelect(db, p);
107     sqlite3DbFree(db, p);
108   }
109 }
110 
111 /*
112 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
113 ** type of join.  Return an integer constant that expresses that type
114 ** in terms of the following bit values:
115 **
116 **     JT_INNER
117 **     JT_CROSS
118 **     JT_OUTER
119 **     JT_NATURAL
120 **     JT_LEFT
121 **     JT_RIGHT
122 **
123 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
124 **
125 ** If an illegal or unsupported join type is seen, then still return
126 ** a join type, but put an error in the pParse structure.
127 */
128 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
129   int jointype = 0;
130   Token *apAll[3];
131   Token *p;
132                              /*   0123456789 123456789 123456789 123 */
133   static const char zKeyText[] = "naturaleftouterightfullinnercross";
134   static const struct {
135     u8 i;        /* Beginning of keyword text in zKeyText[] */
136     u8 nChar;    /* Length of the keyword in characters */
137     u8 code;     /* Join type mask */
138   } aKeyword[] = {
139     /* natural */ { 0,  7, JT_NATURAL                },
140     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
141     /* outer   */ { 10, 5, JT_OUTER                  },
142     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
143     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
144     /* inner   */ { 23, 5, JT_INNER                  },
145     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
146   };
147   int i, j;
148   apAll[0] = pA;
149   apAll[1] = pB;
150   apAll[2] = pC;
151   for(i=0; i<3 && apAll[i]; i++){
152     p = apAll[i];
153     for(j=0; j<ArraySize(aKeyword); j++){
154       if( p->n==aKeyword[j].nChar
155           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
156         jointype |= aKeyword[j].code;
157         break;
158       }
159     }
160     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
161     if( j>=ArraySize(aKeyword) ){
162       jointype |= JT_ERROR;
163       break;
164     }
165   }
166   if(
167      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
168      (jointype & JT_ERROR)!=0
169   ){
170     const char *zSp = " ";
171     assert( pB!=0 );
172     if( pC==0 ){ zSp++; }
173     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
174        "%T %T%s%T", pA, pB, zSp, pC);
175     jointype = JT_INNER;
176   }else if( (jointype & JT_OUTER)!=0
177          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
178     sqlite3ErrorMsg(pParse,
179       "RIGHT and FULL OUTER JOINs are not currently supported");
180     jointype = JT_INNER;
181   }
182   return jointype;
183 }
184 
185 /*
186 ** Return the index of a column in a table.  Return -1 if the column
187 ** is not contained in the table.
188 */
189 static int columnIndex(Table *pTab, const char *zCol){
190   int i;
191   for(i=0; i<pTab->nCol; i++){
192     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
193   }
194   return -1;
195 }
196 
197 /*
198 ** Search the first N tables in pSrc, from left to right, looking for a
199 ** table that has a column named zCol.
200 **
201 ** When found, set *piTab and *piCol to the table index and column index
202 ** of the matching column and return TRUE.
203 **
204 ** If not found, return FALSE.
205 */
206 static int tableAndColumnIndex(
207   SrcList *pSrc,       /* Array of tables to search */
208   int N,               /* Number of tables in pSrc->a[] to search */
209   const char *zCol,    /* Name of the column we are looking for */
210   int *piTab,          /* Write index of pSrc->a[] here */
211   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
212 ){
213   int i;               /* For looping over tables in pSrc */
214   int iCol;            /* Index of column matching zCol */
215 
216   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
217   for(i=0; i<N; i++){
218     iCol = columnIndex(pSrc->a[i].pTab, zCol);
219     if( iCol>=0 ){
220       if( piTab ){
221         *piTab = i;
222         *piCol = iCol;
223       }
224       return 1;
225     }
226   }
227   return 0;
228 }
229 
230 /*
231 ** This function is used to add terms implied by JOIN syntax to the
232 ** WHERE clause expression of a SELECT statement. The new term, which
233 ** is ANDed with the existing WHERE clause, is of the form:
234 **
235 **    (tab1.col1 = tab2.col2)
236 **
237 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
238 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
239 ** column iColRight of tab2.
240 */
241 static void addWhereTerm(
242   Parse *pParse,                  /* Parsing context */
243   SrcList *pSrc,                  /* List of tables in FROM clause */
244   int iLeft,                      /* Index of first table to join in pSrc */
245   int iColLeft,                   /* Index of column in first table */
246   int iRight,                     /* Index of second table in pSrc */
247   int iColRight,                  /* Index of column in second table */
248   int isOuterJoin,                /* True if this is an OUTER join */
249   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
250 ){
251   sqlite3 *db = pParse->db;
252   Expr *pE1;
253   Expr *pE2;
254   Expr *pEq;
255 
256   assert( iLeft<iRight );
257   assert( pSrc->nSrc>iRight );
258   assert( pSrc->a[iLeft].pTab );
259   assert( pSrc->a[iRight].pTab );
260 
261   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
262   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
263 
264   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
265   if( pEq && isOuterJoin ){
266     ExprSetProperty(pEq, EP_FromJoin);
267     assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) );
268     ExprSetIrreducible(pEq);
269     pEq->iRightJoinTable = (i16)pE2->iTable;
270   }
271   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
272 }
273 
274 /*
275 ** Set the EP_FromJoin property on all terms of the given expression.
276 ** And set the Expr.iRightJoinTable to iTable for every term in the
277 ** expression.
278 **
279 ** The EP_FromJoin property is used on terms of an expression to tell
280 ** the LEFT OUTER JOIN processing logic that this term is part of the
281 ** join restriction specified in the ON or USING clause and not a part
282 ** of the more general WHERE clause.  These terms are moved over to the
283 ** WHERE clause during join processing but we need to remember that they
284 ** originated in the ON or USING clause.
285 **
286 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
287 ** expression depends on table iRightJoinTable even if that table is not
288 ** explicitly mentioned in the expression.  That information is needed
289 ** for cases like this:
290 **
291 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
292 **
293 ** The where clause needs to defer the handling of the t1.x=5
294 ** term until after the t2 loop of the join.  In that way, a
295 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
296 ** defer the handling of t1.x=5, it will be processed immediately
297 ** after the t1 loop and rows with t1.x!=5 will never appear in
298 ** the output, which is incorrect.
299 */
300 static void setJoinExpr(Expr *p, int iTable){
301   while( p ){
302     ExprSetProperty(p, EP_FromJoin);
303     assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
304     ExprSetIrreducible(p);
305     p->iRightJoinTable = (i16)iTable;
306     setJoinExpr(p->pLeft, iTable);
307     p = p->pRight;
308   }
309 }
310 
311 /*
312 ** This routine processes the join information for a SELECT statement.
313 ** ON and USING clauses are converted into extra terms of the WHERE clause.
314 ** NATURAL joins also create extra WHERE clause terms.
315 **
316 ** The terms of a FROM clause are contained in the Select.pSrc structure.
317 ** The left most table is the first entry in Select.pSrc.  The right-most
318 ** table is the last entry.  The join operator is held in the entry to
319 ** the left.  Thus entry 0 contains the join operator for the join between
320 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
321 ** also attached to the left entry.
322 **
323 ** This routine returns the number of errors encountered.
324 */
325 static int sqliteProcessJoin(Parse *pParse, Select *p){
326   SrcList *pSrc;                  /* All tables in the FROM clause */
327   int i, j;                       /* Loop counters */
328   struct SrcList_item *pLeft;     /* Left table being joined */
329   struct SrcList_item *pRight;    /* Right table being joined */
330 
331   pSrc = p->pSrc;
332   pLeft = &pSrc->a[0];
333   pRight = &pLeft[1];
334   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
335     Table *pLeftTab = pLeft->pTab;
336     Table *pRightTab = pRight->pTab;
337     int isOuter;
338 
339     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
340     isOuter = (pRight->jointype & JT_OUTER)!=0;
341 
342     /* When the NATURAL keyword is present, add WHERE clause terms for
343     ** every column that the two tables have in common.
344     */
345     if( pRight->jointype & JT_NATURAL ){
346       if( pRight->pOn || pRight->pUsing ){
347         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
348            "an ON or USING clause", 0);
349         return 1;
350       }
351       for(j=0; j<pRightTab->nCol; j++){
352         char *zName;   /* Name of column in the right table */
353         int iLeft;     /* Matching left table */
354         int iLeftCol;  /* Matching column in the left table */
355 
356         zName = pRightTab->aCol[j].zName;
357         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
358           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
359                        isOuter, &p->pWhere);
360         }
361       }
362     }
363 
364     /* Disallow both ON and USING clauses in the same join
365     */
366     if( pRight->pOn && pRight->pUsing ){
367       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
368         "clauses in the same join");
369       return 1;
370     }
371 
372     /* Add the ON clause to the end of the WHERE clause, connected by
373     ** an AND operator.
374     */
375     if( pRight->pOn ){
376       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
377       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
378       pRight->pOn = 0;
379     }
380 
381     /* Create extra terms on the WHERE clause for each column named
382     ** in the USING clause.  Example: If the two tables to be joined are
383     ** A and B and the USING clause names X, Y, and Z, then add this
384     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
385     ** Report an error if any column mentioned in the USING clause is
386     ** not contained in both tables to be joined.
387     */
388     if( pRight->pUsing ){
389       IdList *pList = pRight->pUsing;
390       for(j=0; j<pList->nId; j++){
391         char *zName;     /* Name of the term in the USING clause */
392         int iLeft;       /* Table on the left with matching column name */
393         int iLeftCol;    /* Column number of matching column on the left */
394         int iRightCol;   /* Column number of matching column on the right */
395 
396         zName = pList->a[j].zName;
397         iRightCol = columnIndex(pRightTab, zName);
398         if( iRightCol<0
399          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
400         ){
401           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
402             "not present in both tables", zName);
403           return 1;
404         }
405         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
406                      isOuter, &p->pWhere);
407       }
408     }
409   }
410   return 0;
411 }
412 
413 /*
414 ** Insert code into "v" that will push the record on the top of the
415 ** stack into the sorter.
416 */
417 static void pushOntoSorter(
418   Parse *pParse,         /* Parser context */
419   ExprList *pOrderBy,    /* The ORDER BY clause */
420   Select *pSelect,       /* The whole SELECT statement */
421   int regData            /* Register holding data to be sorted */
422 ){
423   Vdbe *v = pParse->pVdbe;
424   int nExpr = pOrderBy->nExpr;
425   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
426   int regRecord = sqlite3GetTempReg(pParse);
427   int op;
428   sqlite3ExprCacheClear(pParse);
429   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
430   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
431   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
432   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
433   if( pSelect->selFlags & SF_UseSorter ){
434     op = OP_SorterInsert;
435   }else{
436     op = OP_IdxInsert;
437   }
438   sqlite3VdbeAddOp2(v, op, pOrderBy->iECursor, regRecord);
439   sqlite3ReleaseTempReg(pParse, regRecord);
440   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
441   if( pSelect->iLimit ){
442     int addr1, addr2;
443     int iLimit;
444     if( pSelect->iOffset ){
445       iLimit = pSelect->iOffset+1;
446     }else{
447       iLimit = pSelect->iLimit;
448     }
449     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
450     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
451     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
452     sqlite3VdbeJumpHere(v, addr1);
453     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
454     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
455     sqlite3VdbeJumpHere(v, addr2);
456   }
457 }
458 
459 /*
460 ** Add code to implement the OFFSET
461 */
462 static void codeOffset(
463   Vdbe *v,          /* Generate code into this VM */
464   Select *p,        /* The SELECT statement being coded */
465   int iContinue     /* Jump here to skip the current record */
466 ){
467   if( p->iOffset && iContinue!=0 ){
468     int addr;
469     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
470     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
471     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
472     VdbeComment((v, "skip OFFSET records"));
473     sqlite3VdbeJumpHere(v, addr);
474   }
475 }
476 
477 /*
478 ** Add code that will check to make sure the N registers starting at iMem
479 ** form a distinct entry.  iTab is a sorting index that holds previously
480 ** seen combinations of the N values.  A new entry is made in iTab
481 ** if the current N values are new.
482 **
483 ** A jump to addrRepeat is made and the N+1 values are popped from the
484 ** stack if the top N elements are not distinct.
485 */
486 static void codeDistinct(
487   Parse *pParse,     /* Parsing and code generating context */
488   int iTab,          /* A sorting index used to test for distinctness */
489   int addrRepeat,    /* Jump to here if not distinct */
490   int N,             /* Number of elements */
491   int iMem           /* First element */
492 ){
493   Vdbe *v;
494   int r1;
495 
496   v = pParse->pVdbe;
497   r1 = sqlite3GetTempReg(pParse);
498   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N);
499   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
500   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
501   sqlite3ReleaseTempReg(pParse, r1);
502 }
503 
504 #ifndef SQLITE_OMIT_SUBQUERY
505 /*
506 ** Generate an error message when a SELECT is used within a subexpression
507 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
508 ** column.  We do this in a subroutine because the error used to occur
509 ** in multiple places.  (The error only occurs in one place now, but we
510 ** retain the subroutine to minimize code disruption.)
511 */
512 static int checkForMultiColumnSelectError(
513   Parse *pParse,       /* Parse context. */
514   SelectDest *pDest,   /* Destination of SELECT results */
515   int nExpr            /* Number of result columns returned by SELECT */
516 ){
517   int eDest = pDest->eDest;
518   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
519     sqlite3ErrorMsg(pParse, "only a single result allowed for "
520        "a SELECT that is part of an expression");
521     return 1;
522   }else{
523     return 0;
524   }
525 }
526 #endif
527 
528 /*
529 ** An instance of the following object is used to record information about
530 ** how to process the DISTINCT keyword, to simplify passing that information
531 ** into the selectInnerLoop() routine.
532 */
533 typedef struct DistinctCtx DistinctCtx;
534 struct DistinctCtx {
535   u8 isTnct;      /* True if the DISTINCT keyword is present */
536   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
537   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
538   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
539 };
540 
541 /*
542 ** This routine generates the code for the inside of the inner loop
543 ** of a SELECT.
544 **
545 ** If srcTab and nColumn are both zero, then the pEList expressions
546 ** are evaluated in order to get the data for this row.  If nColumn>0
547 ** then data is pulled from srcTab and pEList is used only to get the
548 ** datatypes for each column.
549 */
550 static void selectInnerLoop(
551   Parse *pParse,          /* The parser context */
552   Select *p,              /* The complete select statement being coded */
553   ExprList *pEList,       /* List of values being extracted */
554   int srcTab,             /* Pull data from this table */
555   int nColumn,            /* Number of columns in the source table */
556   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
557   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
558   SelectDest *pDest,      /* How to dispose of the results */
559   int iContinue,          /* Jump here to continue with next row */
560   int iBreak              /* Jump here to break out of the inner loop */
561 ){
562   Vdbe *v = pParse->pVdbe;
563   int i;
564   int hasDistinct;        /* True if the DISTINCT keyword is present */
565   int regResult;              /* Start of memory holding result set */
566   int eDest = pDest->eDest;   /* How to dispose of results */
567   int iParm = pDest->iSDParm; /* First argument to disposal method */
568   int nResultCol;             /* Number of result columns */
569 
570   assert( v );
571   if( NEVER(v==0) ) return;
572   assert( pEList!=0 );
573   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
574   if( pOrderBy==0 && !hasDistinct ){
575     codeOffset(v, p, iContinue);
576   }
577 
578   /* Pull the requested columns.
579   */
580   if( nColumn>0 ){
581     nResultCol = nColumn;
582   }else{
583     nResultCol = pEList->nExpr;
584   }
585   if( pDest->iSdst==0 ){
586     pDest->iSdst = pParse->nMem+1;
587     pDest->nSdst = nResultCol;
588     pParse->nMem += nResultCol;
589   }else{
590     assert( pDest->nSdst==nResultCol );
591   }
592   regResult = pDest->iSdst;
593   if( nColumn>0 ){
594     for(i=0; i<nColumn; i++){
595       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
596     }
597   }else if( eDest!=SRT_Exists ){
598     /* If the destination is an EXISTS(...) expression, the actual
599     ** values returned by the SELECT are not required.
600     */
601     sqlite3ExprCacheClear(pParse);
602     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
603   }
604   nColumn = nResultCol;
605 
606   /* If the DISTINCT keyword was present on the SELECT statement
607   ** and this row has been seen before, then do not make this row
608   ** part of the result.
609   */
610   if( hasDistinct ){
611     assert( pEList!=0 );
612     assert( pEList->nExpr==nColumn );
613     switch( pDistinct->eTnctType ){
614       case WHERE_DISTINCT_ORDERED: {
615         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
616         int iJump;              /* Jump destination */
617         int regPrev;            /* Previous row content */
618 
619         /* Allocate space for the previous row */
620         regPrev = pParse->nMem+1;
621         pParse->nMem += nColumn;
622 
623         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
624         ** sets the MEM_Cleared bit on the first register of the
625         ** previous value.  This will cause the OP_Ne below to always
626         ** fail on the first iteration of the loop even if the first
627         ** row is all NULLs.
628         */
629         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
630         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
631         pOp->opcode = OP_Null;
632         pOp->p1 = 1;
633         pOp->p2 = regPrev;
634 
635         iJump = sqlite3VdbeCurrentAddr(v) + nColumn;
636         for(i=0; i<nColumn; i++){
637           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
638           if( i<nColumn-1 ){
639             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
640           }else{
641             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
642           }
643           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
644           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
645         }
646         assert( sqlite3VdbeCurrentAddr(v)==iJump );
647         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nColumn-1);
648         break;
649       }
650 
651       case WHERE_DISTINCT_UNIQUE: {
652         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
653         break;
654       }
655 
656       default: {
657         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
658         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nColumn, regResult);
659         break;
660       }
661     }
662     if( pOrderBy==0 ){
663       codeOffset(v, p, iContinue);
664     }
665   }
666 
667   switch( eDest ){
668     /* In this mode, write each query result to the key of the temporary
669     ** table iParm.
670     */
671 #ifndef SQLITE_OMIT_COMPOUND_SELECT
672     case SRT_Union: {
673       int r1;
674       r1 = sqlite3GetTempReg(pParse);
675       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
676       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
677       sqlite3ReleaseTempReg(pParse, r1);
678       break;
679     }
680 
681     /* Construct a record from the query result, but instead of
682     ** saving that record, use it as a key to delete elements from
683     ** the temporary table iParm.
684     */
685     case SRT_Except: {
686       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
687       break;
688     }
689 #endif
690 
691     /* Store the result as data using a unique key.
692     */
693     case SRT_Table:
694     case SRT_EphemTab: {
695       int r1 = sqlite3GetTempReg(pParse);
696       testcase( eDest==SRT_Table );
697       testcase( eDest==SRT_EphemTab );
698       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
699       if( pOrderBy ){
700         pushOntoSorter(pParse, pOrderBy, p, r1);
701       }else{
702         int r2 = sqlite3GetTempReg(pParse);
703         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
704         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
705         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
706         sqlite3ReleaseTempReg(pParse, r2);
707       }
708       sqlite3ReleaseTempReg(pParse, r1);
709       break;
710     }
711 
712 #ifndef SQLITE_OMIT_SUBQUERY
713     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
714     ** then there should be a single item on the stack.  Write this
715     ** item into the set table with bogus data.
716     */
717     case SRT_Set: {
718       assert( nColumn==1 );
719       pDest->affSdst =
720                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
721       if( pOrderBy ){
722         /* At first glance you would think we could optimize out the
723         ** ORDER BY in this case since the order of entries in the set
724         ** does not matter.  But there might be a LIMIT clause, in which
725         ** case the order does matter */
726         pushOntoSorter(pParse, pOrderBy, p, regResult);
727       }else{
728         int r1 = sqlite3GetTempReg(pParse);
729         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
730         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
731         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
732         sqlite3ReleaseTempReg(pParse, r1);
733       }
734       break;
735     }
736 
737     /* If any row exist in the result set, record that fact and abort.
738     */
739     case SRT_Exists: {
740       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
741       /* The LIMIT clause will terminate the loop for us */
742       break;
743     }
744 
745     /* If this is a scalar select that is part of an expression, then
746     ** store the results in the appropriate memory cell and break out
747     ** of the scan loop.
748     */
749     case SRT_Mem: {
750       assert( nColumn==1 );
751       if( pOrderBy ){
752         pushOntoSorter(pParse, pOrderBy, p, regResult);
753       }else{
754         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
755         /* The LIMIT clause will jump out of the loop for us */
756       }
757       break;
758     }
759 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
760 
761     /* Send the data to the callback function or to a subroutine.  In the
762     ** case of a subroutine, the subroutine itself is responsible for
763     ** popping the data from the stack.
764     */
765     case SRT_Coroutine:
766     case SRT_Output: {
767       testcase( eDest==SRT_Coroutine );
768       testcase( eDest==SRT_Output );
769       if( pOrderBy ){
770         int r1 = sqlite3GetTempReg(pParse);
771         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
772         pushOntoSorter(pParse, pOrderBy, p, r1);
773         sqlite3ReleaseTempReg(pParse, r1);
774       }else if( eDest==SRT_Coroutine ){
775         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
776       }else{
777         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
778         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
779       }
780       break;
781     }
782 
783 #if !defined(SQLITE_OMIT_TRIGGER)
784     /* Discard the results.  This is used for SELECT statements inside
785     ** the body of a TRIGGER.  The purpose of such selects is to call
786     ** user-defined functions that have side effects.  We do not care
787     ** about the actual results of the select.
788     */
789     default: {
790       assert( eDest==SRT_Discard );
791       break;
792     }
793 #endif
794   }
795 
796   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
797   ** there is a sorter, in which case the sorter has already limited
798   ** the output for us.
799   */
800   if( pOrderBy==0 && p->iLimit ){
801     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
802   }
803 }
804 
805 /*
806 ** Given an expression list, generate a KeyInfo structure that records
807 ** the collating sequence for each expression in that expression list.
808 **
809 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
810 ** KeyInfo structure is appropriate for initializing a virtual index to
811 ** implement that clause.  If the ExprList is the result set of a SELECT
812 ** then the KeyInfo structure is appropriate for initializing a virtual
813 ** index to implement a DISTINCT test.
814 **
815 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
816 ** function is responsible for seeing that this structure is eventually
817 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
818 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
819 */
820 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
821   sqlite3 *db = pParse->db;
822   int nExpr;
823   KeyInfo *pInfo;
824   struct ExprList_item *pItem;
825   int i;
826 
827   nExpr = pList->nExpr;
828   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
829   if( pInfo ){
830     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
831     pInfo->nField = (u16)nExpr;
832     pInfo->enc = ENC(db);
833     pInfo->db = db;
834     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
835       CollSeq *pColl;
836       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
837       if( !pColl ){
838         pColl = db->pDfltColl;
839       }
840       pInfo->aColl[i] = pColl;
841       pInfo->aSortOrder[i] = pItem->sortOrder;
842     }
843   }
844   return pInfo;
845 }
846 
847 #ifndef SQLITE_OMIT_COMPOUND_SELECT
848 /*
849 ** Name of the connection operator, used for error messages.
850 */
851 static const char *selectOpName(int id){
852   char *z;
853   switch( id ){
854     case TK_ALL:       z = "UNION ALL";   break;
855     case TK_INTERSECT: z = "INTERSECT";   break;
856     case TK_EXCEPT:    z = "EXCEPT";      break;
857     default:           z = "UNION";       break;
858   }
859   return z;
860 }
861 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
862 
863 #ifndef SQLITE_OMIT_EXPLAIN
864 /*
865 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
866 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
867 ** where the caption is of the form:
868 **
869 **   "USE TEMP B-TREE FOR xxx"
870 **
871 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
872 ** is determined by the zUsage argument.
873 */
874 static void explainTempTable(Parse *pParse, const char *zUsage){
875   if( pParse->explain==2 ){
876     Vdbe *v = pParse->pVdbe;
877     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
878     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
879   }
880 }
881 
882 /*
883 ** Assign expression b to lvalue a. A second, no-op, version of this macro
884 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
885 ** in sqlite3Select() to assign values to structure member variables that
886 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
887 ** code with #ifndef directives.
888 */
889 # define explainSetInteger(a, b) a = b
890 
891 #else
892 /* No-op versions of the explainXXX() functions and macros. */
893 # define explainTempTable(y,z)
894 # define explainSetInteger(y,z)
895 #endif
896 
897 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
898 /*
899 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
900 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
901 ** where the caption is of one of the two forms:
902 **
903 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
904 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
905 **
906 ** where iSub1 and iSub2 are the integers passed as the corresponding
907 ** function parameters, and op is the text representation of the parameter
908 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
909 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
910 ** false, or the second form if it is true.
911 */
912 static void explainComposite(
913   Parse *pParse,                  /* Parse context */
914   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
915   int iSub1,                      /* Subquery id 1 */
916   int iSub2,                      /* Subquery id 2 */
917   int bUseTmp                     /* True if a temp table was used */
918 ){
919   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
920   if( pParse->explain==2 ){
921     Vdbe *v = pParse->pVdbe;
922     char *zMsg = sqlite3MPrintf(
923         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
924         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
925     );
926     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
927   }
928 }
929 #else
930 /* No-op versions of the explainXXX() functions and macros. */
931 # define explainComposite(v,w,x,y,z)
932 #endif
933 
934 /*
935 ** If the inner loop was generated using a non-null pOrderBy argument,
936 ** then the results were placed in a sorter.  After the loop is terminated
937 ** we need to run the sorter and output the results.  The following
938 ** routine generates the code needed to do that.
939 */
940 static void generateSortTail(
941   Parse *pParse,    /* Parsing context */
942   Select *p,        /* The SELECT statement */
943   Vdbe *v,          /* Generate code into this VDBE */
944   int nColumn,      /* Number of columns of data */
945   SelectDest *pDest /* Write the sorted results here */
946 ){
947   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
948   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
949   int addr;
950   int iTab;
951   int pseudoTab = 0;
952   ExprList *pOrderBy = p->pOrderBy;
953 
954   int eDest = pDest->eDest;
955   int iParm = pDest->iSDParm;
956 
957   int regRow;
958   int regRowid;
959 
960   iTab = pOrderBy->iECursor;
961   regRow = sqlite3GetTempReg(pParse);
962   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
963     pseudoTab = pParse->nTab++;
964     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
965     regRowid = 0;
966   }else{
967     regRowid = sqlite3GetTempReg(pParse);
968   }
969   if( p->selFlags & SF_UseSorter ){
970     int regSortOut = ++pParse->nMem;
971     int ptab2 = pParse->nTab++;
972     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, pOrderBy->nExpr+2);
973     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
974     codeOffset(v, p, addrContinue);
975     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
976     sqlite3VdbeAddOp3(v, OP_Column, ptab2, pOrderBy->nExpr+1, regRow);
977     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
978   }else{
979     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
980     codeOffset(v, p, addrContinue);
981     sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr+1, regRow);
982   }
983   switch( eDest ){
984     case SRT_Table:
985     case SRT_EphemTab: {
986       testcase( eDest==SRT_Table );
987       testcase( eDest==SRT_EphemTab );
988       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
989       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
990       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
991       break;
992     }
993 #ifndef SQLITE_OMIT_SUBQUERY
994     case SRT_Set: {
995       assert( nColumn==1 );
996       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
997                         &pDest->affSdst, 1);
998       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
999       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1000       break;
1001     }
1002     case SRT_Mem: {
1003       assert( nColumn==1 );
1004       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1005       /* The LIMIT clause will terminate the loop for us */
1006       break;
1007     }
1008 #endif
1009     default: {
1010       int i;
1011       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1012       testcase( eDest==SRT_Output );
1013       testcase( eDest==SRT_Coroutine );
1014       for(i=0; i<nColumn; i++){
1015         assert( regRow!=pDest->iSdst+i );
1016         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
1017         if( i==0 ){
1018           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1019         }
1020       }
1021       if( eDest==SRT_Output ){
1022         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1023         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1024       }else{
1025         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1026       }
1027       break;
1028     }
1029   }
1030   sqlite3ReleaseTempReg(pParse, regRow);
1031   sqlite3ReleaseTempReg(pParse, regRowid);
1032 
1033   /* The bottom of the loop
1034   */
1035   sqlite3VdbeResolveLabel(v, addrContinue);
1036   if( p->selFlags & SF_UseSorter ){
1037     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr);
1038   }else{
1039     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
1040   }
1041   sqlite3VdbeResolveLabel(v, addrBreak);
1042   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1043     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
1044   }
1045 }
1046 
1047 /*
1048 ** Return a pointer to a string containing the 'declaration type' of the
1049 ** expression pExpr. The string may be treated as static by the caller.
1050 **
1051 ** The declaration type is the exact datatype definition extracted from the
1052 ** original CREATE TABLE statement if the expression is a column. The
1053 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1054 ** is considered a column can be complex in the presence of subqueries. The
1055 ** result-set expression in all of the following SELECT statements is
1056 ** considered a column by this function.
1057 **
1058 **   SELECT col FROM tbl;
1059 **   SELECT (SELECT col FROM tbl;
1060 **   SELECT (SELECT col FROM tbl);
1061 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1062 **
1063 ** The declaration type for any expression other than a column is NULL.
1064 */
1065 static const char *columnType(
1066   NameContext *pNC,
1067   Expr *pExpr,
1068   const char **pzOriginDb,
1069   const char **pzOriginTab,
1070   const char **pzOriginCol
1071 ){
1072   char const *zType = 0;
1073   char const *zOriginDb = 0;
1074   char const *zOriginTab = 0;
1075   char const *zOriginCol = 0;
1076   int j;
1077   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1078 
1079   switch( pExpr->op ){
1080     case TK_AGG_COLUMN:
1081     case TK_COLUMN: {
1082       /* The expression is a column. Locate the table the column is being
1083       ** extracted from in NameContext.pSrcList. This table may be real
1084       ** database table or a subquery.
1085       */
1086       Table *pTab = 0;            /* Table structure column is extracted from */
1087       Select *pS = 0;             /* Select the column is extracted from */
1088       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1089       testcase( pExpr->op==TK_AGG_COLUMN );
1090       testcase( pExpr->op==TK_COLUMN );
1091       while( pNC && !pTab ){
1092         SrcList *pTabList = pNC->pSrcList;
1093         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1094         if( j<pTabList->nSrc ){
1095           pTab = pTabList->a[j].pTab;
1096           pS = pTabList->a[j].pSelect;
1097         }else{
1098           pNC = pNC->pNext;
1099         }
1100       }
1101 
1102       if( pTab==0 ){
1103         /* At one time, code such as "SELECT new.x" within a trigger would
1104         ** cause this condition to run.  Since then, we have restructured how
1105         ** trigger code is generated and so this condition is no longer
1106         ** possible. However, it can still be true for statements like
1107         ** the following:
1108         **
1109         **   CREATE TABLE t1(col INTEGER);
1110         **   SELECT (SELECT t1.col) FROM FROM t1;
1111         **
1112         ** when columnType() is called on the expression "t1.col" in the
1113         ** sub-select. In this case, set the column type to NULL, even
1114         ** though it should really be "INTEGER".
1115         **
1116         ** This is not a problem, as the column type of "t1.col" is never
1117         ** used. When columnType() is called on the expression
1118         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1119         ** branch below.  */
1120         break;
1121       }
1122 
1123       assert( pTab && pExpr->pTab==pTab );
1124       if( pS ){
1125         /* The "table" is actually a sub-select or a view in the FROM clause
1126         ** of the SELECT statement. Return the declaration type and origin
1127         ** data for the result-set column of the sub-select.
1128         */
1129         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1130           /* If iCol is less than zero, then the expression requests the
1131           ** rowid of the sub-select or view. This expression is legal (see
1132           ** test case misc2.2.2) - it always evaluates to NULL.
1133           */
1134           NameContext sNC;
1135           Expr *p = pS->pEList->a[iCol].pExpr;
1136           sNC.pSrcList = pS->pSrc;
1137           sNC.pNext = pNC;
1138           sNC.pParse = pNC->pParse;
1139           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1140         }
1141       }else if( ALWAYS(pTab->pSchema) ){
1142         /* A real table */
1143         assert( !pS );
1144         if( iCol<0 ) iCol = pTab->iPKey;
1145         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1146         if( iCol<0 ){
1147           zType = "INTEGER";
1148           zOriginCol = "rowid";
1149         }else{
1150           zType = pTab->aCol[iCol].zType;
1151           zOriginCol = pTab->aCol[iCol].zName;
1152         }
1153         zOriginTab = pTab->zName;
1154         if( pNC->pParse ){
1155           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1156           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
1157         }
1158       }
1159       break;
1160     }
1161 #ifndef SQLITE_OMIT_SUBQUERY
1162     case TK_SELECT: {
1163       /* The expression is a sub-select. Return the declaration type and
1164       ** origin info for the single column in the result set of the SELECT
1165       ** statement.
1166       */
1167       NameContext sNC;
1168       Select *pS = pExpr->x.pSelect;
1169       Expr *p = pS->pEList->a[0].pExpr;
1170       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1171       sNC.pSrcList = pS->pSrc;
1172       sNC.pNext = pNC;
1173       sNC.pParse = pNC->pParse;
1174       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
1175       break;
1176     }
1177 #endif
1178   }
1179 
1180   if( pzOriginDb ){
1181     assert( pzOriginTab && pzOriginCol );
1182     *pzOriginDb = zOriginDb;
1183     *pzOriginTab = zOriginTab;
1184     *pzOriginCol = zOriginCol;
1185   }
1186   return zType;
1187 }
1188 
1189 /*
1190 ** Generate code that will tell the VDBE the declaration types of columns
1191 ** in the result set.
1192 */
1193 static void generateColumnTypes(
1194   Parse *pParse,      /* Parser context */
1195   SrcList *pTabList,  /* List of tables */
1196   ExprList *pEList    /* Expressions defining the result set */
1197 ){
1198 #ifndef SQLITE_OMIT_DECLTYPE
1199   Vdbe *v = pParse->pVdbe;
1200   int i;
1201   NameContext sNC;
1202   sNC.pSrcList = pTabList;
1203   sNC.pParse = pParse;
1204   for(i=0; i<pEList->nExpr; i++){
1205     Expr *p = pEList->a[i].pExpr;
1206     const char *zType;
1207 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1208     const char *zOrigDb = 0;
1209     const char *zOrigTab = 0;
1210     const char *zOrigCol = 0;
1211     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1212 
1213     /* The vdbe must make its own copy of the column-type and other
1214     ** column specific strings, in case the schema is reset before this
1215     ** virtual machine is deleted.
1216     */
1217     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1218     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1219     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1220 #else
1221     zType = columnType(&sNC, p, 0, 0, 0);
1222 #endif
1223     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1224   }
1225 #endif /* SQLITE_OMIT_DECLTYPE */
1226 }
1227 
1228 /*
1229 ** Generate code that will tell the VDBE the names of columns
1230 ** in the result set.  This information is used to provide the
1231 ** azCol[] values in the callback.
1232 */
1233 static void generateColumnNames(
1234   Parse *pParse,      /* Parser context */
1235   SrcList *pTabList,  /* List of tables */
1236   ExprList *pEList    /* Expressions defining the result set */
1237 ){
1238   Vdbe *v = pParse->pVdbe;
1239   int i, j;
1240   sqlite3 *db = pParse->db;
1241   int fullNames, shortNames;
1242 
1243 #ifndef SQLITE_OMIT_EXPLAIN
1244   /* If this is an EXPLAIN, skip this step */
1245   if( pParse->explain ){
1246     return;
1247   }
1248 #endif
1249 
1250   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1251   pParse->colNamesSet = 1;
1252   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1253   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1254   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1255   for(i=0; i<pEList->nExpr; i++){
1256     Expr *p;
1257     p = pEList->a[i].pExpr;
1258     if( NEVER(p==0) ) continue;
1259     if( pEList->a[i].zName ){
1260       char *zName = pEList->a[i].zName;
1261       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1262     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1263       Table *pTab;
1264       char *zCol;
1265       int iCol = p->iColumn;
1266       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1267         if( pTabList->a[j].iCursor==p->iTable ) break;
1268       }
1269       assert( j<pTabList->nSrc );
1270       pTab = pTabList->a[j].pTab;
1271       if( iCol<0 ) iCol = pTab->iPKey;
1272       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1273       if( iCol<0 ){
1274         zCol = "rowid";
1275       }else{
1276         zCol = pTab->aCol[iCol].zName;
1277       }
1278       if( !shortNames && !fullNames ){
1279         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1280             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1281       }else if( fullNames ){
1282         char *zName = 0;
1283         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1284         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1285       }else{
1286         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1287       }
1288     }else{
1289       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1290           sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1291     }
1292   }
1293   generateColumnTypes(pParse, pTabList, pEList);
1294 }
1295 
1296 /*
1297 ** Given a an expression list (which is really the list of expressions
1298 ** that form the result set of a SELECT statement) compute appropriate
1299 ** column names for a table that would hold the expression list.
1300 **
1301 ** All column names will be unique.
1302 **
1303 ** Only the column names are computed.  Column.zType, Column.zColl,
1304 ** and other fields of Column are zeroed.
1305 **
1306 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1307 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1308 */
1309 static int selectColumnsFromExprList(
1310   Parse *pParse,          /* Parsing context */
1311   ExprList *pEList,       /* Expr list from which to derive column names */
1312   i16 *pnCol,             /* Write the number of columns here */
1313   Column **paCol          /* Write the new column list here */
1314 ){
1315   sqlite3 *db = pParse->db;   /* Database connection */
1316   int i, j;                   /* Loop counters */
1317   int cnt;                    /* Index added to make the name unique */
1318   Column *aCol, *pCol;        /* For looping over result columns */
1319   int nCol;                   /* Number of columns in the result set */
1320   Expr *p;                    /* Expression for a single result column */
1321   char *zName;                /* Column name */
1322   int nName;                  /* Size of name in zName[] */
1323 
1324   if( pEList ){
1325     nCol = pEList->nExpr;
1326     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1327     testcase( aCol==0 );
1328   }else{
1329     nCol = 0;
1330     aCol = 0;
1331   }
1332   *pnCol = nCol;
1333   *paCol = aCol;
1334 
1335   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1336     /* Get an appropriate name for the column
1337     */
1338     p = pEList->a[i].pExpr;
1339     assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue)
1340                || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 );
1341     if( (zName = pEList->a[i].zName)!=0 ){
1342       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1343       zName = sqlite3DbStrDup(db, zName);
1344     }else{
1345       Expr *pColExpr = p;  /* The expression that is the result column name */
1346       Table *pTab;         /* Table associated with this expression */
1347       while( pColExpr->op==TK_DOT ){
1348         pColExpr = pColExpr->pRight;
1349         assert( pColExpr!=0 );
1350       }
1351       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1352         /* For columns use the column name name */
1353         int iCol = pColExpr->iColumn;
1354         pTab = pColExpr->pTab;
1355         if( iCol<0 ) iCol = pTab->iPKey;
1356         zName = sqlite3MPrintf(db, "%s",
1357                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1358       }else if( pColExpr->op==TK_ID ){
1359         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1360         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1361       }else{
1362         /* Use the original text of the column expression as its name */
1363         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1364       }
1365     }
1366     if( db->mallocFailed ){
1367       sqlite3DbFree(db, zName);
1368       break;
1369     }
1370 
1371     /* Make sure the column name is unique.  If the name is not unique,
1372     ** append a integer to the name so that it becomes unique.
1373     */
1374     nName = sqlite3Strlen30(zName);
1375     for(j=cnt=0; j<i; j++){
1376       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1377         char *zNewName;
1378         zName[nName] = 0;
1379         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1380         sqlite3DbFree(db, zName);
1381         zName = zNewName;
1382         j = -1;
1383         if( zName==0 ) break;
1384       }
1385     }
1386     pCol->zName = zName;
1387   }
1388   if( db->mallocFailed ){
1389     for(j=0; j<i; j++){
1390       sqlite3DbFree(db, aCol[j].zName);
1391     }
1392     sqlite3DbFree(db, aCol);
1393     *paCol = 0;
1394     *pnCol = 0;
1395     return SQLITE_NOMEM;
1396   }
1397   return SQLITE_OK;
1398 }
1399 
1400 /*
1401 ** Add type and collation information to a column list based on
1402 ** a SELECT statement.
1403 **
1404 ** The column list presumably came from selectColumnNamesFromExprList().
1405 ** The column list has only names, not types or collations.  This
1406 ** routine goes through and adds the types and collations.
1407 **
1408 ** This routine requires that all identifiers in the SELECT
1409 ** statement be resolved.
1410 */
1411 static void selectAddColumnTypeAndCollation(
1412   Parse *pParse,        /* Parsing contexts */
1413   int nCol,             /* Number of columns */
1414   Column *aCol,         /* List of columns */
1415   Select *pSelect       /* SELECT used to determine types and collations */
1416 ){
1417   sqlite3 *db = pParse->db;
1418   NameContext sNC;
1419   Column *pCol;
1420   CollSeq *pColl;
1421   int i;
1422   Expr *p;
1423   struct ExprList_item *a;
1424 
1425   assert( pSelect!=0 );
1426   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1427   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1428   if( db->mallocFailed ) return;
1429   memset(&sNC, 0, sizeof(sNC));
1430   sNC.pSrcList = pSelect->pSrc;
1431   a = pSelect->pEList->a;
1432   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1433     p = a[i].pExpr;
1434     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1435     pCol->affinity = sqlite3ExprAffinity(p);
1436     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1437     pColl = sqlite3ExprCollSeq(pParse, p);
1438     if( pColl ){
1439       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1440     }
1441   }
1442 }
1443 
1444 /*
1445 ** Given a SELECT statement, generate a Table structure that describes
1446 ** the result set of that SELECT.
1447 */
1448 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1449   Table *pTab;
1450   sqlite3 *db = pParse->db;
1451   int savedFlags;
1452 
1453   savedFlags = db->flags;
1454   db->flags &= ~SQLITE_FullColNames;
1455   db->flags |= SQLITE_ShortColNames;
1456   sqlite3SelectPrep(pParse, pSelect, 0);
1457   if( pParse->nErr ) return 0;
1458   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1459   db->flags = savedFlags;
1460   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1461   if( pTab==0 ){
1462     return 0;
1463   }
1464   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1465   ** is disabled */
1466   assert( db->lookaside.bEnabled==0 );
1467   pTab->nRef = 1;
1468   pTab->zName = 0;
1469   pTab->nRowEst = 1000000;
1470   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1471   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1472   pTab->iPKey = -1;
1473   if( db->mallocFailed ){
1474     sqlite3DeleteTable(db, pTab);
1475     return 0;
1476   }
1477   return pTab;
1478 }
1479 
1480 /*
1481 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1482 ** If an error occurs, return NULL and leave a message in pParse.
1483 */
1484 Vdbe *sqlite3GetVdbe(Parse *pParse){
1485   Vdbe *v = pParse->pVdbe;
1486   if( v==0 ){
1487     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1488 #ifndef SQLITE_OMIT_TRACE
1489     if( v ){
1490       sqlite3VdbeAddOp0(v, OP_Trace);
1491     }
1492 #endif
1493   }
1494   return v;
1495 }
1496 
1497 
1498 /*
1499 ** Compute the iLimit and iOffset fields of the SELECT based on the
1500 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1501 ** that appear in the original SQL statement after the LIMIT and OFFSET
1502 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1503 ** are the integer memory register numbers for counters used to compute
1504 ** the limit and offset.  If there is no limit and/or offset, then
1505 ** iLimit and iOffset are negative.
1506 **
1507 ** This routine changes the values of iLimit and iOffset only if
1508 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1509 ** iOffset should have been preset to appropriate default values
1510 ** (usually but not always -1) prior to calling this routine.
1511 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1512 ** redefined.  The UNION ALL operator uses this property to force
1513 ** the reuse of the same limit and offset registers across multiple
1514 ** SELECT statements.
1515 */
1516 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1517   Vdbe *v = 0;
1518   int iLimit = 0;
1519   int iOffset;
1520   int addr1, n;
1521   if( p->iLimit ) return;
1522 
1523   /*
1524   ** "LIMIT -1" always shows all rows.  There is some
1525   ** contraversy about what the correct behavior should be.
1526   ** The current implementation interprets "LIMIT 0" to mean
1527   ** no rows.
1528   */
1529   sqlite3ExprCacheClear(pParse);
1530   assert( p->pOffset==0 || p->pLimit!=0 );
1531   if( p->pLimit ){
1532     p->iLimit = iLimit = ++pParse->nMem;
1533     v = sqlite3GetVdbe(pParse);
1534     if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
1535     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1536       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1537       VdbeComment((v, "LIMIT counter"));
1538       if( n==0 ){
1539         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1540       }else{
1541         if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
1542       }
1543     }else{
1544       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1545       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1546       VdbeComment((v, "LIMIT counter"));
1547       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1548     }
1549     if( p->pOffset ){
1550       p->iOffset = iOffset = ++pParse->nMem;
1551       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1552       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1553       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1554       VdbeComment((v, "OFFSET counter"));
1555       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1556       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1557       sqlite3VdbeJumpHere(v, addr1);
1558       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1559       VdbeComment((v, "LIMIT+OFFSET"));
1560       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1561       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1562       sqlite3VdbeJumpHere(v, addr1);
1563     }
1564   }
1565 }
1566 
1567 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1568 /*
1569 ** Return the appropriate collating sequence for the iCol-th column of
1570 ** the result set for the compound-select statement "p".  Return NULL if
1571 ** the column has no default collating sequence.
1572 **
1573 ** The collating sequence for the compound select is taken from the
1574 ** left-most term of the select that has a collating sequence.
1575 */
1576 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1577   CollSeq *pRet;
1578   if( p->pPrior ){
1579     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1580   }else{
1581     pRet = 0;
1582   }
1583   assert( iCol>=0 );
1584   if( pRet==0 && iCol<p->pEList->nExpr ){
1585     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1586   }
1587   return pRet;
1588 }
1589 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1590 
1591 /* Forward reference */
1592 static int multiSelectOrderBy(
1593   Parse *pParse,        /* Parsing context */
1594   Select *p,            /* The right-most of SELECTs to be coded */
1595   SelectDest *pDest     /* What to do with query results */
1596 );
1597 
1598 
1599 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1600 /*
1601 ** This routine is called to process a compound query form from
1602 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1603 ** INTERSECT
1604 **
1605 ** "p" points to the right-most of the two queries.  the query on the
1606 ** left is p->pPrior.  The left query could also be a compound query
1607 ** in which case this routine will be called recursively.
1608 **
1609 ** The results of the total query are to be written into a destination
1610 ** of type eDest with parameter iParm.
1611 **
1612 ** Example 1:  Consider a three-way compound SQL statement.
1613 **
1614 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1615 **
1616 ** This statement is parsed up as follows:
1617 **
1618 **     SELECT c FROM t3
1619 **      |
1620 **      `----->  SELECT b FROM t2
1621 **                |
1622 **                `------>  SELECT a FROM t1
1623 **
1624 ** The arrows in the diagram above represent the Select.pPrior pointer.
1625 ** So if this routine is called with p equal to the t3 query, then
1626 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1627 **
1628 ** Notice that because of the way SQLite parses compound SELECTs, the
1629 ** individual selects always group from left to right.
1630 */
1631 static int multiSelect(
1632   Parse *pParse,        /* Parsing context */
1633   Select *p,            /* The right-most of SELECTs to be coded */
1634   SelectDest *pDest     /* What to do with query results */
1635 ){
1636   int rc = SQLITE_OK;   /* Success code from a subroutine */
1637   Select *pPrior;       /* Another SELECT immediately to our left */
1638   Vdbe *v;              /* Generate code to this VDBE */
1639   SelectDest dest;      /* Alternative data destination */
1640   Select *pDelete = 0;  /* Chain of simple selects to delete */
1641   sqlite3 *db;          /* Database connection */
1642 #ifndef SQLITE_OMIT_EXPLAIN
1643   int iSub1;            /* EQP id of left-hand query */
1644   int iSub2;            /* EQP id of right-hand query */
1645 #endif
1646 
1647   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1648   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1649   */
1650   assert( p && p->pPrior );  /* Calling function guarantees this much */
1651   db = pParse->db;
1652   pPrior = p->pPrior;
1653   assert( pPrior->pRightmost!=pPrior );
1654   assert( pPrior->pRightmost==p->pRightmost );
1655   dest = *pDest;
1656   if( pPrior->pOrderBy ){
1657     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1658       selectOpName(p->op));
1659     rc = 1;
1660     goto multi_select_end;
1661   }
1662   if( pPrior->pLimit ){
1663     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1664       selectOpName(p->op));
1665     rc = 1;
1666     goto multi_select_end;
1667   }
1668 
1669   v = sqlite3GetVdbe(pParse);
1670   assert( v!=0 );  /* The VDBE already created by calling function */
1671 
1672   /* Create the destination temporary table if necessary
1673   */
1674   if( dest.eDest==SRT_EphemTab ){
1675     assert( p->pEList );
1676     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
1677     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1678     dest.eDest = SRT_Table;
1679   }
1680 
1681   /* Make sure all SELECTs in the statement have the same number of elements
1682   ** in their result sets.
1683   */
1684   assert( p->pEList && pPrior->pEList );
1685   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1686     if( p->selFlags & SF_Values ){
1687       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
1688     }else{
1689       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1690         " do not have the same number of result columns", selectOpName(p->op));
1691     }
1692     rc = 1;
1693     goto multi_select_end;
1694   }
1695 
1696   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1697   */
1698   if( p->pOrderBy ){
1699     return multiSelectOrderBy(pParse, p, pDest);
1700   }
1701 
1702   /* Generate code for the left and right SELECT statements.
1703   */
1704   switch( p->op ){
1705     case TK_ALL: {
1706       int addr = 0;
1707       int nLimit;
1708       assert( !pPrior->pLimit );
1709       pPrior->pLimit = p->pLimit;
1710       pPrior->pOffset = p->pOffset;
1711       explainSetInteger(iSub1, pParse->iNextSelectId);
1712       rc = sqlite3Select(pParse, pPrior, &dest);
1713       p->pLimit = 0;
1714       p->pOffset = 0;
1715       if( rc ){
1716         goto multi_select_end;
1717       }
1718       p->pPrior = 0;
1719       p->iLimit = pPrior->iLimit;
1720       p->iOffset = pPrior->iOffset;
1721       if( p->iLimit ){
1722         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1723         VdbeComment((v, "Jump ahead if LIMIT reached"));
1724       }
1725       explainSetInteger(iSub2, pParse->iNextSelectId);
1726       rc = sqlite3Select(pParse, p, &dest);
1727       testcase( rc!=SQLITE_OK );
1728       pDelete = p->pPrior;
1729       p->pPrior = pPrior;
1730       p->nSelectRow += pPrior->nSelectRow;
1731       if( pPrior->pLimit
1732        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
1733        && p->nSelectRow > (double)nLimit
1734       ){
1735         p->nSelectRow = (double)nLimit;
1736       }
1737       if( addr ){
1738         sqlite3VdbeJumpHere(v, addr);
1739       }
1740       break;
1741     }
1742     case TK_EXCEPT:
1743     case TK_UNION: {
1744       int unionTab;    /* Cursor number of the temporary table holding result */
1745       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1746       int priorOp;     /* The SRT_ operation to apply to prior selects */
1747       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1748       int addr;
1749       SelectDest uniondest;
1750 
1751       testcase( p->op==TK_EXCEPT );
1752       testcase( p->op==TK_UNION );
1753       priorOp = SRT_Union;
1754       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1755         /* We can reuse a temporary table generated by a SELECT to our
1756         ** right.
1757         */
1758         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1759                                      ** of a 3-way or more compound */
1760         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1761         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1762         unionTab = dest.iSDParm;
1763       }else{
1764         /* We will need to create our own temporary table to hold the
1765         ** intermediate results.
1766         */
1767         unionTab = pParse->nTab++;
1768         assert( p->pOrderBy==0 );
1769         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1770         assert( p->addrOpenEphm[0] == -1 );
1771         p->addrOpenEphm[0] = addr;
1772         p->pRightmost->selFlags |= SF_UsesEphemeral;
1773         assert( p->pEList );
1774       }
1775 
1776       /* Code the SELECT statements to our left
1777       */
1778       assert( !pPrior->pOrderBy );
1779       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1780       explainSetInteger(iSub1, pParse->iNextSelectId);
1781       rc = sqlite3Select(pParse, pPrior, &uniondest);
1782       if( rc ){
1783         goto multi_select_end;
1784       }
1785 
1786       /* Code the current SELECT statement
1787       */
1788       if( p->op==TK_EXCEPT ){
1789         op = SRT_Except;
1790       }else{
1791         assert( p->op==TK_UNION );
1792         op = SRT_Union;
1793       }
1794       p->pPrior = 0;
1795       pLimit = p->pLimit;
1796       p->pLimit = 0;
1797       pOffset = p->pOffset;
1798       p->pOffset = 0;
1799       uniondest.eDest = op;
1800       explainSetInteger(iSub2, pParse->iNextSelectId);
1801       rc = sqlite3Select(pParse, p, &uniondest);
1802       testcase( rc!=SQLITE_OK );
1803       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1804       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1805       sqlite3ExprListDelete(db, p->pOrderBy);
1806       pDelete = p->pPrior;
1807       p->pPrior = pPrior;
1808       p->pOrderBy = 0;
1809       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
1810       sqlite3ExprDelete(db, p->pLimit);
1811       p->pLimit = pLimit;
1812       p->pOffset = pOffset;
1813       p->iLimit = 0;
1814       p->iOffset = 0;
1815 
1816       /* Convert the data in the temporary table into whatever form
1817       ** it is that we currently need.
1818       */
1819       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
1820       if( dest.eDest!=priorOp ){
1821         int iCont, iBreak, iStart;
1822         assert( p->pEList );
1823         if( dest.eDest==SRT_Output ){
1824           Select *pFirst = p;
1825           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1826           generateColumnNames(pParse, 0, pFirst->pEList);
1827         }
1828         iBreak = sqlite3VdbeMakeLabel(v);
1829         iCont = sqlite3VdbeMakeLabel(v);
1830         computeLimitRegisters(pParse, p, iBreak);
1831         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1832         iStart = sqlite3VdbeCurrentAddr(v);
1833         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1834                         0, 0, &dest, iCont, iBreak);
1835         sqlite3VdbeResolveLabel(v, iCont);
1836         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1837         sqlite3VdbeResolveLabel(v, iBreak);
1838         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1839       }
1840       break;
1841     }
1842     default: assert( p->op==TK_INTERSECT ); {
1843       int tab1, tab2;
1844       int iCont, iBreak, iStart;
1845       Expr *pLimit, *pOffset;
1846       int addr;
1847       SelectDest intersectdest;
1848       int r1;
1849 
1850       /* INTERSECT is different from the others since it requires
1851       ** two temporary tables.  Hence it has its own case.  Begin
1852       ** by allocating the tables we will need.
1853       */
1854       tab1 = pParse->nTab++;
1855       tab2 = pParse->nTab++;
1856       assert( p->pOrderBy==0 );
1857 
1858       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1859       assert( p->addrOpenEphm[0] == -1 );
1860       p->addrOpenEphm[0] = addr;
1861       p->pRightmost->selFlags |= SF_UsesEphemeral;
1862       assert( p->pEList );
1863 
1864       /* Code the SELECTs to our left into temporary table "tab1".
1865       */
1866       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1867       explainSetInteger(iSub1, pParse->iNextSelectId);
1868       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1869       if( rc ){
1870         goto multi_select_end;
1871       }
1872 
1873       /* Code the current SELECT into temporary table "tab2"
1874       */
1875       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1876       assert( p->addrOpenEphm[1] == -1 );
1877       p->addrOpenEphm[1] = addr;
1878       p->pPrior = 0;
1879       pLimit = p->pLimit;
1880       p->pLimit = 0;
1881       pOffset = p->pOffset;
1882       p->pOffset = 0;
1883       intersectdest.iSDParm = tab2;
1884       explainSetInteger(iSub2, pParse->iNextSelectId);
1885       rc = sqlite3Select(pParse, p, &intersectdest);
1886       testcase( rc!=SQLITE_OK );
1887       pDelete = p->pPrior;
1888       p->pPrior = pPrior;
1889       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
1890       sqlite3ExprDelete(db, p->pLimit);
1891       p->pLimit = pLimit;
1892       p->pOffset = pOffset;
1893 
1894       /* Generate code to take the intersection of the two temporary
1895       ** tables.
1896       */
1897       assert( p->pEList );
1898       if( dest.eDest==SRT_Output ){
1899         Select *pFirst = p;
1900         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1901         generateColumnNames(pParse, 0, pFirst->pEList);
1902       }
1903       iBreak = sqlite3VdbeMakeLabel(v);
1904       iCont = sqlite3VdbeMakeLabel(v);
1905       computeLimitRegisters(pParse, p, iBreak);
1906       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1907       r1 = sqlite3GetTempReg(pParse);
1908       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1909       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
1910       sqlite3ReleaseTempReg(pParse, r1);
1911       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1912                       0, 0, &dest, iCont, iBreak);
1913       sqlite3VdbeResolveLabel(v, iCont);
1914       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1915       sqlite3VdbeResolveLabel(v, iBreak);
1916       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1917       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1918       break;
1919     }
1920   }
1921 
1922   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
1923 
1924   /* Compute collating sequences used by
1925   ** temporary tables needed to implement the compound select.
1926   ** Attach the KeyInfo structure to all temporary tables.
1927   **
1928   ** This section is run by the right-most SELECT statement only.
1929   ** SELECT statements to the left always skip this part.  The right-most
1930   ** SELECT might also skip this part if it has no ORDER BY clause and
1931   ** no temp tables are required.
1932   */
1933   if( p->selFlags & SF_UsesEphemeral ){
1934     int i;                        /* Loop counter */
1935     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1936     Select *pLoop;                /* For looping through SELECT statements */
1937     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1938     int nCol;                     /* Number of columns in result set */
1939 
1940     assert( p->pRightmost==p );
1941     nCol = p->pEList->nExpr;
1942     pKeyInfo = sqlite3DbMallocZero(db,
1943                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1944     if( !pKeyInfo ){
1945       rc = SQLITE_NOMEM;
1946       goto multi_select_end;
1947     }
1948 
1949     pKeyInfo->enc = ENC(db);
1950     pKeyInfo->nField = (u16)nCol;
1951 
1952     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1953       *apColl = multiSelectCollSeq(pParse, p, i);
1954       if( 0==*apColl ){
1955         *apColl = db->pDfltColl;
1956       }
1957     }
1958     pKeyInfo->aSortOrder = (u8*)apColl;
1959 
1960     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1961       for(i=0; i<2; i++){
1962         int addr = pLoop->addrOpenEphm[i];
1963         if( addr<0 ){
1964           /* If [0] is unused then [1] is also unused.  So we can
1965           ** always safely abort as soon as the first unused slot is found */
1966           assert( pLoop->addrOpenEphm[1]<0 );
1967           break;
1968         }
1969         sqlite3VdbeChangeP2(v, addr, nCol);
1970         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1971         pLoop->addrOpenEphm[i] = -1;
1972       }
1973     }
1974     sqlite3DbFree(db, pKeyInfo);
1975   }
1976 
1977 multi_select_end:
1978   pDest->iSdst = dest.iSdst;
1979   pDest->nSdst = dest.nSdst;
1980   sqlite3SelectDelete(db, pDelete);
1981   return rc;
1982 }
1983 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1984 
1985 /*
1986 ** Code an output subroutine for a coroutine implementation of a
1987 ** SELECT statment.
1988 **
1989 ** The data to be output is contained in pIn->iSdst.  There are
1990 ** pIn->nSdst columns to be output.  pDest is where the output should
1991 ** be sent.
1992 **
1993 ** regReturn is the number of the register holding the subroutine
1994 ** return address.
1995 **
1996 ** If regPrev>0 then it is the first register in a vector that
1997 ** records the previous output.  mem[regPrev] is a flag that is false
1998 ** if there has been no previous output.  If regPrev>0 then code is
1999 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2000 ** keys.
2001 **
2002 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2003 ** iBreak.
2004 */
2005 static int generateOutputSubroutine(
2006   Parse *pParse,          /* Parsing context */
2007   Select *p,              /* The SELECT statement */
2008   SelectDest *pIn,        /* Coroutine supplying data */
2009   SelectDest *pDest,      /* Where to send the data */
2010   int regReturn,          /* The return address register */
2011   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2012   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2013   int p4type,             /* The p4 type for pKeyInfo */
2014   int iBreak              /* Jump here if we hit the LIMIT */
2015 ){
2016   Vdbe *v = pParse->pVdbe;
2017   int iContinue;
2018   int addr;
2019 
2020   addr = sqlite3VdbeCurrentAddr(v);
2021   iContinue = sqlite3VdbeMakeLabel(v);
2022 
2023   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2024   */
2025   if( regPrev ){
2026     int j1, j2;
2027     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
2028     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2029                               (char*)pKeyInfo, p4type);
2030     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
2031     sqlite3VdbeJumpHere(v, j1);
2032     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2033     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2034   }
2035   if( pParse->db->mallocFailed ) return 0;
2036 
2037   /* Suppress the first OFFSET entries if there is an OFFSET clause
2038   */
2039   codeOffset(v, p, iContinue);
2040 
2041   switch( pDest->eDest ){
2042     /* Store the result as data using a unique key.
2043     */
2044     case SRT_Table:
2045     case SRT_EphemTab: {
2046       int r1 = sqlite3GetTempReg(pParse);
2047       int r2 = sqlite3GetTempReg(pParse);
2048       testcase( pDest->eDest==SRT_Table );
2049       testcase( pDest->eDest==SRT_EphemTab );
2050       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2051       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2052       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2053       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2054       sqlite3ReleaseTempReg(pParse, r2);
2055       sqlite3ReleaseTempReg(pParse, r1);
2056       break;
2057     }
2058 
2059 #ifndef SQLITE_OMIT_SUBQUERY
2060     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2061     ** then there should be a single item on the stack.  Write this
2062     ** item into the set table with bogus data.
2063     */
2064     case SRT_Set: {
2065       int r1;
2066       assert( pIn->nSdst==1 );
2067       pDest->affSdst =
2068          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2069       r1 = sqlite3GetTempReg(pParse);
2070       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2071       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2072       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2073       sqlite3ReleaseTempReg(pParse, r1);
2074       break;
2075     }
2076 
2077 #if 0  /* Never occurs on an ORDER BY query */
2078     /* If any row exist in the result set, record that fact and abort.
2079     */
2080     case SRT_Exists: {
2081       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2082       /* The LIMIT clause will terminate the loop for us */
2083       break;
2084     }
2085 #endif
2086 
2087     /* If this is a scalar select that is part of an expression, then
2088     ** store the results in the appropriate memory cell and break out
2089     ** of the scan loop.
2090     */
2091     case SRT_Mem: {
2092       assert( pIn->nSdst==1 );
2093       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2094       /* The LIMIT clause will jump out of the loop for us */
2095       break;
2096     }
2097 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2098 
2099     /* The results are stored in a sequence of registers
2100     ** starting at pDest->iSdst.  Then the co-routine yields.
2101     */
2102     case SRT_Coroutine: {
2103       if( pDest->iSdst==0 ){
2104         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2105         pDest->nSdst = pIn->nSdst;
2106       }
2107       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2108       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2109       break;
2110     }
2111 
2112     /* If none of the above, then the result destination must be
2113     ** SRT_Output.  This routine is never called with any other
2114     ** destination other than the ones handled above or SRT_Output.
2115     **
2116     ** For SRT_Output, results are stored in a sequence of registers.
2117     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2118     ** return the next row of result.
2119     */
2120     default: {
2121       assert( pDest->eDest==SRT_Output );
2122       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2123       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2124       break;
2125     }
2126   }
2127 
2128   /* Jump to the end of the loop if the LIMIT is reached.
2129   */
2130   if( p->iLimit ){
2131     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1);
2132   }
2133 
2134   /* Generate the subroutine return
2135   */
2136   sqlite3VdbeResolveLabel(v, iContinue);
2137   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2138 
2139   return addr;
2140 }
2141 
2142 /*
2143 ** Alternative compound select code generator for cases when there
2144 ** is an ORDER BY clause.
2145 **
2146 ** We assume a query of the following form:
2147 **
2148 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2149 **
2150 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2151 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2152 ** co-routines.  Then run the co-routines in parallel and merge the results
2153 ** into the output.  In addition to the two coroutines (called selectA and
2154 ** selectB) there are 7 subroutines:
2155 **
2156 **    outA:    Move the output of the selectA coroutine into the output
2157 **             of the compound query.
2158 **
2159 **    outB:    Move the output of the selectB coroutine into the output
2160 **             of the compound query.  (Only generated for UNION and
2161 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2162 **             appears only in B.)
2163 **
2164 **    AltB:    Called when there is data from both coroutines and A<B.
2165 **
2166 **    AeqB:    Called when there is data from both coroutines and A==B.
2167 **
2168 **    AgtB:    Called when there is data from both coroutines and A>B.
2169 **
2170 **    EofA:    Called when data is exhausted from selectA.
2171 **
2172 **    EofB:    Called when data is exhausted from selectB.
2173 **
2174 ** The implementation of the latter five subroutines depend on which
2175 ** <operator> is used:
2176 **
2177 **
2178 **             UNION ALL         UNION            EXCEPT          INTERSECT
2179 **          -------------  -----------------  --------------  -----------------
2180 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2181 **
2182 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2183 **
2184 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2185 **
2186 **   EofA:   outB, nextB      outB, nextB          halt             halt
2187 **
2188 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2189 **
2190 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2191 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2192 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2193 ** following nextX causes a jump to the end of the select processing.
2194 **
2195 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2196 ** within the output subroutine.  The regPrev register set holds the previously
2197 ** output value.  A comparison is made against this value and the output
2198 ** is skipped if the next results would be the same as the previous.
2199 **
2200 ** The implementation plan is to implement the two coroutines and seven
2201 ** subroutines first, then put the control logic at the bottom.  Like this:
2202 **
2203 **          goto Init
2204 **     coA: coroutine for left query (A)
2205 **     coB: coroutine for right query (B)
2206 **    outA: output one row of A
2207 **    outB: output one row of B (UNION and UNION ALL only)
2208 **    EofA: ...
2209 **    EofB: ...
2210 **    AltB: ...
2211 **    AeqB: ...
2212 **    AgtB: ...
2213 **    Init: initialize coroutine registers
2214 **          yield coA
2215 **          if eof(A) goto EofA
2216 **          yield coB
2217 **          if eof(B) goto EofB
2218 **    Cmpr: Compare A, B
2219 **          Jump AltB, AeqB, AgtB
2220 **     End: ...
2221 **
2222 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2223 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2224 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2225 ** and AgtB jump to either L2 or to one of EofA or EofB.
2226 */
2227 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2228 static int multiSelectOrderBy(
2229   Parse *pParse,        /* Parsing context */
2230   Select *p,            /* The right-most of SELECTs to be coded */
2231   SelectDest *pDest     /* What to do with query results */
2232 ){
2233   int i, j;             /* Loop counters */
2234   Select *pPrior;       /* Another SELECT immediately to our left */
2235   Vdbe *v;              /* Generate code to this VDBE */
2236   SelectDest destA;     /* Destination for coroutine A */
2237   SelectDest destB;     /* Destination for coroutine B */
2238   int regAddrA;         /* Address register for select-A coroutine */
2239   int regEofA;          /* Flag to indicate when select-A is complete */
2240   int regAddrB;         /* Address register for select-B coroutine */
2241   int regEofB;          /* Flag to indicate when select-B is complete */
2242   int addrSelectA;      /* Address of the select-A coroutine */
2243   int addrSelectB;      /* Address of the select-B coroutine */
2244   int regOutA;          /* Address register for the output-A subroutine */
2245   int regOutB;          /* Address register for the output-B subroutine */
2246   int addrOutA;         /* Address of the output-A subroutine */
2247   int addrOutB = 0;     /* Address of the output-B subroutine */
2248   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2249   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2250   int addrAltB;         /* Address of the A<B subroutine */
2251   int addrAeqB;         /* Address of the A==B subroutine */
2252   int addrAgtB;         /* Address of the A>B subroutine */
2253   int regLimitA;        /* Limit register for select-A */
2254   int regLimitB;        /* Limit register for select-A */
2255   int regPrev;          /* A range of registers to hold previous output */
2256   int savedLimit;       /* Saved value of p->iLimit */
2257   int savedOffset;      /* Saved value of p->iOffset */
2258   int labelCmpr;        /* Label for the start of the merge algorithm */
2259   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2260   int j1;               /* Jump instructions that get retargetted */
2261   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2262   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2263   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2264   sqlite3 *db;          /* Database connection */
2265   ExprList *pOrderBy;   /* The ORDER BY clause */
2266   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2267   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2268 #ifndef SQLITE_OMIT_EXPLAIN
2269   int iSub1;            /* EQP id of left-hand query */
2270   int iSub2;            /* EQP id of right-hand query */
2271 #endif
2272 
2273   assert( p->pOrderBy!=0 );
2274   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2275   db = pParse->db;
2276   v = pParse->pVdbe;
2277   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2278   labelEnd = sqlite3VdbeMakeLabel(v);
2279   labelCmpr = sqlite3VdbeMakeLabel(v);
2280 
2281 
2282   /* Patch up the ORDER BY clause
2283   */
2284   op = p->op;
2285   pPrior = p->pPrior;
2286   assert( pPrior->pOrderBy==0 );
2287   pOrderBy = p->pOrderBy;
2288   assert( pOrderBy );
2289   nOrderBy = pOrderBy->nExpr;
2290 
2291   /* For operators other than UNION ALL we have to make sure that
2292   ** the ORDER BY clause covers every term of the result set.  Add
2293   ** terms to the ORDER BY clause as necessary.
2294   */
2295   if( op!=TK_ALL ){
2296     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2297       struct ExprList_item *pItem;
2298       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2299         assert( pItem->iOrderByCol>0 );
2300         if( pItem->iOrderByCol==i ) break;
2301       }
2302       if( j==nOrderBy ){
2303         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2304         if( pNew==0 ) return SQLITE_NOMEM;
2305         pNew->flags |= EP_IntValue;
2306         pNew->u.iValue = i;
2307         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2308         if( pOrderBy ) pOrderBy->a[nOrderBy++].iOrderByCol = (u16)i;
2309       }
2310     }
2311   }
2312 
2313   /* Compute the comparison permutation and keyinfo that is used with
2314   ** the permutation used to determine if the next
2315   ** row of results comes from selectA or selectB.  Also add explicit
2316   ** collations to the ORDER BY clause terms so that when the subqueries
2317   ** to the right and the left are evaluated, they use the correct
2318   ** collation.
2319   */
2320   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2321   if( aPermute ){
2322     struct ExprList_item *pItem;
2323     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2324       assert( pItem->iOrderByCol>0  && pItem->iOrderByCol<=p->pEList->nExpr );
2325       aPermute[i] = pItem->iOrderByCol - 1;
2326     }
2327     pKeyMerge =
2328       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2329     if( pKeyMerge ){
2330       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2331       pKeyMerge->nField = (u16)nOrderBy;
2332       pKeyMerge->enc = ENC(db);
2333       for(i=0; i<nOrderBy; i++){
2334         CollSeq *pColl;
2335         Expr *pTerm = pOrderBy->a[i].pExpr;
2336         if( pTerm->flags & EP_ExpCollate ){
2337           pColl = pTerm->pColl;
2338         }else{
2339           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2340           pTerm->flags |= EP_ExpCollate;
2341           pTerm->pColl = pColl;
2342         }
2343         pKeyMerge->aColl[i] = pColl;
2344         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2345       }
2346     }
2347   }else{
2348     pKeyMerge = 0;
2349   }
2350 
2351   /* Reattach the ORDER BY clause to the query.
2352   */
2353   p->pOrderBy = pOrderBy;
2354   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2355 
2356   /* Allocate a range of temporary registers and the KeyInfo needed
2357   ** for the logic that removes duplicate result rows when the
2358   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2359   */
2360   if( op==TK_ALL ){
2361     regPrev = 0;
2362   }else{
2363     int nExpr = p->pEList->nExpr;
2364     assert( nOrderBy>=nExpr || db->mallocFailed );
2365     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2366     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2367     pKeyDup = sqlite3DbMallocZero(db,
2368                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2369     if( pKeyDup ){
2370       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2371       pKeyDup->nField = (u16)nExpr;
2372       pKeyDup->enc = ENC(db);
2373       for(i=0; i<nExpr; i++){
2374         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2375         pKeyDup->aSortOrder[i] = 0;
2376       }
2377     }
2378   }
2379 
2380   /* Separate the left and the right query from one another
2381   */
2382   p->pPrior = 0;
2383   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2384   if( pPrior->pPrior==0 ){
2385     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2386   }
2387 
2388   /* Compute the limit registers */
2389   computeLimitRegisters(pParse, p, labelEnd);
2390   if( p->iLimit && op==TK_ALL ){
2391     regLimitA = ++pParse->nMem;
2392     regLimitB = ++pParse->nMem;
2393     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2394                                   regLimitA);
2395     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2396   }else{
2397     regLimitA = regLimitB = 0;
2398   }
2399   sqlite3ExprDelete(db, p->pLimit);
2400   p->pLimit = 0;
2401   sqlite3ExprDelete(db, p->pOffset);
2402   p->pOffset = 0;
2403 
2404   regAddrA = ++pParse->nMem;
2405   regEofA = ++pParse->nMem;
2406   regAddrB = ++pParse->nMem;
2407   regEofB = ++pParse->nMem;
2408   regOutA = ++pParse->nMem;
2409   regOutB = ++pParse->nMem;
2410   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2411   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2412 
2413   /* Jump past the various subroutines and coroutines to the main
2414   ** merge loop
2415   */
2416   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2417   addrSelectA = sqlite3VdbeCurrentAddr(v);
2418 
2419 
2420   /* Generate a coroutine to evaluate the SELECT statement to the
2421   ** left of the compound operator - the "A" select.
2422   */
2423   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2424   pPrior->iLimit = regLimitA;
2425   explainSetInteger(iSub1, pParse->iNextSelectId);
2426   sqlite3Select(pParse, pPrior, &destA);
2427   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2428   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2429   VdbeNoopComment((v, "End coroutine for left SELECT"));
2430 
2431   /* Generate a coroutine to evaluate the SELECT statement on
2432   ** the right - the "B" select
2433   */
2434   addrSelectB = sqlite3VdbeCurrentAddr(v);
2435   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2436   savedLimit = p->iLimit;
2437   savedOffset = p->iOffset;
2438   p->iLimit = regLimitB;
2439   p->iOffset = 0;
2440   explainSetInteger(iSub2, pParse->iNextSelectId);
2441   sqlite3Select(pParse, p, &destB);
2442   p->iLimit = savedLimit;
2443   p->iOffset = savedOffset;
2444   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2445   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2446   VdbeNoopComment((v, "End coroutine for right SELECT"));
2447 
2448   /* Generate a subroutine that outputs the current row of the A
2449   ** select as the next output row of the compound select.
2450   */
2451   VdbeNoopComment((v, "Output routine for A"));
2452   addrOutA = generateOutputSubroutine(pParse,
2453                  p, &destA, pDest, regOutA,
2454                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2455 
2456   /* Generate a subroutine that outputs the current row of the B
2457   ** select as the next output row of the compound select.
2458   */
2459   if( op==TK_ALL || op==TK_UNION ){
2460     VdbeNoopComment((v, "Output routine for B"));
2461     addrOutB = generateOutputSubroutine(pParse,
2462                  p, &destB, pDest, regOutB,
2463                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2464   }
2465 
2466   /* Generate a subroutine to run when the results from select A
2467   ** are exhausted and only data in select B remains.
2468   */
2469   VdbeNoopComment((v, "eof-A subroutine"));
2470   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2471     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2472   }else{
2473     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2474     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2475     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2476     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2477     p->nSelectRow += pPrior->nSelectRow;
2478   }
2479 
2480   /* Generate a subroutine to run when the results from select B
2481   ** are exhausted and only data in select A remains.
2482   */
2483   if( op==TK_INTERSECT ){
2484     addrEofB = addrEofA;
2485     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2486   }else{
2487     VdbeNoopComment((v, "eof-B subroutine"));
2488     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2489     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2490     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2491     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2492   }
2493 
2494   /* Generate code to handle the case of A<B
2495   */
2496   VdbeNoopComment((v, "A-lt-B subroutine"));
2497   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2498   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2499   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2500   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2501 
2502   /* Generate code to handle the case of A==B
2503   */
2504   if( op==TK_ALL ){
2505     addrAeqB = addrAltB;
2506   }else if( op==TK_INTERSECT ){
2507     addrAeqB = addrAltB;
2508     addrAltB++;
2509   }else{
2510     VdbeNoopComment((v, "A-eq-B subroutine"));
2511     addrAeqB =
2512     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2513     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2514     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2515   }
2516 
2517   /* Generate code to handle the case of A>B
2518   */
2519   VdbeNoopComment((v, "A-gt-B subroutine"));
2520   addrAgtB = sqlite3VdbeCurrentAddr(v);
2521   if( op==TK_ALL || op==TK_UNION ){
2522     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2523   }
2524   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2525   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2526   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2527 
2528   /* This code runs once to initialize everything.
2529   */
2530   sqlite3VdbeJumpHere(v, j1);
2531   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2532   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2533   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2534   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2535   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2536   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2537 
2538   /* Implement the main merge loop
2539   */
2540   sqlite3VdbeResolveLabel(v, labelCmpr);
2541   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2542   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2543                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2544   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2545 
2546   /* Release temporary registers
2547   */
2548   if( regPrev ){
2549     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2550   }
2551 
2552   /* Jump to the this point in order to terminate the query.
2553   */
2554   sqlite3VdbeResolveLabel(v, labelEnd);
2555 
2556   /* Set the number of output columns
2557   */
2558   if( pDest->eDest==SRT_Output ){
2559     Select *pFirst = pPrior;
2560     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2561     generateColumnNames(pParse, 0, pFirst->pEList);
2562   }
2563 
2564   /* Reassembly the compound query so that it will be freed correctly
2565   ** by the calling function */
2566   if( p->pPrior ){
2567     sqlite3SelectDelete(db, p->pPrior);
2568   }
2569   p->pPrior = pPrior;
2570 
2571   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2572   **** subqueries ****/
2573   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2574   return SQLITE_OK;
2575 }
2576 #endif
2577 
2578 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2579 /* Forward Declarations */
2580 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2581 static void substSelect(sqlite3*, Select *, int, ExprList *);
2582 
2583 /*
2584 ** Scan through the expression pExpr.  Replace every reference to
2585 ** a column in table number iTable with a copy of the iColumn-th
2586 ** entry in pEList.  (But leave references to the ROWID column
2587 ** unchanged.)
2588 **
2589 ** This routine is part of the flattening procedure.  A subquery
2590 ** whose result set is defined by pEList appears as entry in the
2591 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2592 ** FORM clause entry is iTable.  This routine make the necessary
2593 ** changes to pExpr so that it refers directly to the source table
2594 ** of the subquery rather the result set of the subquery.
2595 */
2596 static Expr *substExpr(
2597   sqlite3 *db,        /* Report malloc errors to this connection */
2598   Expr *pExpr,        /* Expr in which substitution occurs */
2599   int iTable,         /* Table to be substituted */
2600   ExprList *pEList    /* Substitute expressions */
2601 ){
2602   if( pExpr==0 ) return 0;
2603   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2604     if( pExpr->iColumn<0 ){
2605       pExpr->op = TK_NULL;
2606     }else{
2607       Expr *pNew;
2608       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2609       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2610       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2611       if( pNew && pExpr->pColl ){
2612         pNew->pColl = pExpr->pColl;
2613       }
2614       sqlite3ExprDelete(db, pExpr);
2615       pExpr = pNew;
2616     }
2617   }else{
2618     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
2619     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
2620     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2621       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2622     }else{
2623       substExprList(db, pExpr->x.pList, iTable, pEList);
2624     }
2625   }
2626   return pExpr;
2627 }
2628 static void substExprList(
2629   sqlite3 *db,         /* Report malloc errors here */
2630   ExprList *pList,     /* List to scan and in which to make substitutes */
2631   int iTable,          /* Table to be substituted */
2632   ExprList *pEList     /* Substitute values */
2633 ){
2634   int i;
2635   if( pList==0 ) return;
2636   for(i=0; i<pList->nExpr; i++){
2637     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
2638   }
2639 }
2640 static void substSelect(
2641   sqlite3 *db,         /* Report malloc errors here */
2642   Select *p,           /* SELECT statement in which to make substitutions */
2643   int iTable,          /* Table to be replaced */
2644   ExprList *pEList     /* Substitute values */
2645 ){
2646   SrcList *pSrc;
2647   struct SrcList_item *pItem;
2648   int i;
2649   if( !p ) return;
2650   substExprList(db, p->pEList, iTable, pEList);
2651   substExprList(db, p->pGroupBy, iTable, pEList);
2652   substExprList(db, p->pOrderBy, iTable, pEList);
2653   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
2654   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
2655   substSelect(db, p->pPrior, iTable, pEList);
2656   pSrc = p->pSrc;
2657   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2658   if( ALWAYS(pSrc) ){
2659     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2660       substSelect(db, pItem->pSelect, iTable, pEList);
2661     }
2662   }
2663 }
2664 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2665 
2666 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2667 /*
2668 ** This routine attempts to flatten subqueries as a performance optimization.
2669 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
2670 **
2671 ** To understand the concept of flattening, consider the following
2672 ** query:
2673 **
2674 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2675 **
2676 ** The default way of implementing this query is to execute the
2677 ** subquery first and store the results in a temporary table, then
2678 ** run the outer query on that temporary table.  This requires two
2679 ** passes over the data.  Furthermore, because the temporary table
2680 ** has no indices, the WHERE clause on the outer query cannot be
2681 ** optimized.
2682 **
2683 ** This routine attempts to rewrite queries such as the above into
2684 ** a single flat select, like this:
2685 **
2686 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2687 **
2688 ** The code generated for this simpification gives the same result
2689 ** but only has to scan the data once.  And because indices might
2690 ** exist on the table t1, a complete scan of the data might be
2691 ** avoided.
2692 **
2693 ** Flattening is only attempted if all of the following are true:
2694 **
2695 **   (1)  The subquery and the outer query do not both use aggregates.
2696 **
2697 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2698 **
2699 **   (3)  The subquery is not the right operand of a left outer join
2700 **        (Originally ticket #306.  Strengthened by ticket #3300)
2701 **
2702 **   (4)  The subquery is not DISTINCT.
2703 **
2704 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
2705 **        sub-queries that were excluded from this optimization. Restriction
2706 **        (4) has since been expanded to exclude all DISTINCT subqueries.
2707 **
2708 **   (6)  The subquery does not use aggregates or the outer query is not
2709 **        DISTINCT.
2710 **
2711 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
2712 **        A FROM clause, consider adding a FROM close with the special
2713 **        table sqlite_once that consists of a single row containing a
2714 **        single NULL.
2715 **
2716 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2717 **
2718 **   (9)  The subquery does not use LIMIT or the outer query does not use
2719 **        aggregates.
2720 **
2721 **  (10)  The subquery does not use aggregates or the outer query does not
2722 **        use LIMIT.
2723 **
2724 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2725 **
2726 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
2727 **        a separate restriction deriving from ticket #350.
2728 **
2729 **  (13)  The subquery and outer query do not both use LIMIT.
2730 **
2731 **  (14)  The subquery does not use OFFSET.
2732 **
2733 **  (15)  The outer query is not part of a compound select or the
2734 **        subquery does not have a LIMIT clause.
2735 **        (See ticket #2339 and ticket [02a8e81d44]).
2736 **
2737 **  (16)  The outer query is not an aggregate or the subquery does
2738 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2739 **        until we introduced the group_concat() function.
2740 **
2741 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2742 **        compound clause made up entirely of non-aggregate queries, and
2743 **        the parent query:
2744 **
2745 **          * is not itself part of a compound select,
2746 **          * is not an aggregate or DISTINCT query, and
2747 **          * is not a join
2748 **
2749 **        The parent and sub-query may contain WHERE clauses. Subject to
2750 **        rules (11), (13) and (14), they may also contain ORDER BY,
2751 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
2752 **        operator other than UNION ALL because all the other compound
2753 **        operators have an implied DISTINCT which is disallowed by
2754 **        restriction (4).
2755 **
2756 **        Also, each component of the sub-query must return the same number
2757 **        of result columns. This is actually a requirement for any compound
2758 **        SELECT statement, but all the code here does is make sure that no
2759 **        such (illegal) sub-query is flattened. The caller will detect the
2760 **        syntax error and return a detailed message.
2761 **
2762 **  (18)  If the sub-query is a compound select, then all terms of the
2763 **        ORDER by clause of the parent must be simple references to
2764 **        columns of the sub-query.
2765 **
2766 **  (19)  The subquery does not use LIMIT or the outer query does not
2767 **        have a WHERE clause.
2768 **
2769 **  (20)  If the sub-query is a compound select, then it must not use
2770 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2771 **        somewhat by saying that the terms of the ORDER BY clause must
2772 **        appear as unmodified result columns in the outer query.  But we
2773 **        have other optimizations in mind to deal with that case.
2774 **
2775 **  (21)  The subquery does not use LIMIT or the outer query is not
2776 **        DISTINCT.  (See ticket [752e1646fc]).
2777 **
2778 ** In this routine, the "p" parameter is a pointer to the outer query.
2779 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2780 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2781 **
2782 ** If flattening is not attempted, this routine is a no-op and returns 0.
2783 ** If flattening is attempted this routine returns 1.
2784 **
2785 ** All of the expression analysis must occur on both the outer query and
2786 ** the subquery before this routine runs.
2787 */
2788 static int flattenSubquery(
2789   Parse *pParse,       /* Parsing context */
2790   Select *p,           /* The parent or outer SELECT statement */
2791   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2792   int isAgg,           /* True if outer SELECT uses aggregate functions */
2793   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2794 ){
2795   const char *zSavedAuthContext = pParse->zAuthContext;
2796   Select *pParent;
2797   Select *pSub;       /* The inner query or "subquery" */
2798   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2799   SrcList *pSrc;      /* The FROM clause of the outer query */
2800   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2801   ExprList *pList;    /* The result set of the outer query */
2802   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2803   int i;              /* Loop counter */
2804   Expr *pWhere;                    /* The WHERE clause */
2805   struct SrcList_item *pSubitem;   /* The subquery */
2806   sqlite3 *db = pParse->db;
2807 
2808   /* Check to see if flattening is permitted.  Return 0 if not.
2809   */
2810   assert( p!=0 );
2811   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2812   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
2813   pSrc = p->pSrc;
2814   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2815   pSubitem = &pSrc->a[iFrom];
2816   iParent = pSubitem->iCursor;
2817   pSub = pSubitem->pSelect;
2818   assert( pSub!=0 );
2819   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2820   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2821   pSubSrc = pSub->pSrc;
2822   assert( pSubSrc );
2823   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2824   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2825   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2826   ** became arbitrary expressions, we were forced to add restrictions (13)
2827   ** and (14). */
2828   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2829   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2830   if( p->pRightmost && pSub->pLimit ){
2831     return 0;                                            /* Restriction (15) */
2832   }
2833   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2834   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
2835   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
2836      return 0;         /* Restrictions (8)(9) */
2837   }
2838   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2839      return 0;         /* Restriction (6)  */
2840   }
2841   if( p->pOrderBy && pSub->pOrderBy ){
2842      return 0;                                           /* Restriction (11) */
2843   }
2844   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2845   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2846   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
2847      return 0;         /* Restriction (21) */
2848   }
2849 
2850   /* OBSOLETE COMMENT 1:
2851   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2852   ** not used as the right operand of an outer join.  Examples of why this
2853   ** is not allowed:
2854   **
2855   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2856   **
2857   ** If we flatten the above, we would get
2858   **
2859   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2860   **
2861   ** which is not at all the same thing.
2862   **
2863   ** OBSOLETE COMMENT 2:
2864   ** Restriction 12:  If the subquery is the right operand of a left outer
2865   ** join, make sure the subquery has no WHERE clause.
2866   ** An examples of why this is not allowed:
2867   **
2868   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2869   **
2870   ** If we flatten the above, we would get
2871   **
2872   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2873   **
2874   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2875   ** effectively converts the OUTER JOIN into an INNER JOIN.
2876   **
2877   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2878   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2879   ** is fraught with danger.  Best to avoid the whole thing.  If the
2880   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2881   */
2882   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2883     return 0;
2884   }
2885 
2886   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2887   ** use only the UNION ALL operator. And none of the simple select queries
2888   ** that make up the compound SELECT are allowed to be aggregate or distinct
2889   ** queries.
2890   */
2891   if( pSub->pPrior ){
2892     if( pSub->pOrderBy ){
2893       return 0;  /* Restriction 20 */
2894     }
2895     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2896       return 0;
2897     }
2898     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2899       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2900       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2901       assert( pSub->pSrc!=0 );
2902       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2903        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2904        || pSub1->pSrc->nSrc<1
2905        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
2906       ){
2907         return 0;
2908       }
2909       testcase( pSub1->pSrc->nSrc>1 );
2910     }
2911 
2912     /* Restriction 18. */
2913     if( p->pOrderBy ){
2914       int ii;
2915       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2916         if( p->pOrderBy->a[ii].iOrderByCol==0 ) return 0;
2917       }
2918     }
2919   }
2920 
2921   /***** If we reach this point, flattening is permitted. *****/
2922 
2923   /* Authorize the subquery */
2924   pParse->zAuthContext = pSubitem->zName;
2925   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2926   testcase( i==SQLITE_DENY );
2927   pParse->zAuthContext = zSavedAuthContext;
2928 
2929   /* If the sub-query is a compound SELECT statement, then (by restrictions
2930   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2931   ** be of the form:
2932   **
2933   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2934   **
2935   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2936   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2937   ** OFFSET clauses and joins them to the left-hand-side of the original
2938   ** using UNION ALL operators. In this case N is the number of simple
2939   ** select statements in the compound sub-query.
2940   **
2941   ** Example:
2942   **
2943   **     SELECT a+1 FROM (
2944   **        SELECT x FROM tab
2945   **        UNION ALL
2946   **        SELECT y FROM tab
2947   **        UNION ALL
2948   **        SELECT abs(z*2) FROM tab2
2949   **     ) WHERE a!=5 ORDER BY 1
2950   **
2951   ** Transformed into:
2952   **
2953   **     SELECT x+1 FROM tab WHERE x+1!=5
2954   **     UNION ALL
2955   **     SELECT y+1 FROM tab WHERE y+1!=5
2956   **     UNION ALL
2957   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2958   **     ORDER BY 1
2959   **
2960   ** We call this the "compound-subquery flattening".
2961   */
2962   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2963     Select *pNew;
2964     ExprList *pOrderBy = p->pOrderBy;
2965     Expr *pLimit = p->pLimit;
2966     Select *pPrior = p->pPrior;
2967     p->pOrderBy = 0;
2968     p->pSrc = 0;
2969     p->pPrior = 0;
2970     p->pLimit = 0;
2971     pNew = sqlite3SelectDup(db, p, 0);
2972     p->pLimit = pLimit;
2973     p->pOrderBy = pOrderBy;
2974     p->pSrc = pSrc;
2975     p->op = TK_ALL;
2976     p->pRightmost = 0;
2977     if( pNew==0 ){
2978       pNew = pPrior;
2979     }else{
2980       pNew->pPrior = pPrior;
2981       pNew->pRightmost = 0;
2982     }
2983     p->pPrior = pNew;
2984     if( db->mallocFailed ) return 1;
2985   }
2986 
2987   /* Begin flattening the iFrom-th entry of the FROM clause
2988   ** in the outer query.
2989   */
2990   pSub = pSub1 = pSubitem->pSelect;
2991 
2992   /* Delete the transient table structure associated with the
2993   ** subquery
2994   */
2995   sqlite3DbFree(db, pSubitem->zDatabase);
2996   sqlite3DbFree(db, pSubitem->zName);
2997   sqlite3DbFree(db, pSubitem->zAlias);
2998   pSubitem->zDatabase = 0;
2999   pSubitem->zName = 0;
3000   pSubitem->zAlias = 0;
3001   pSubitem->pSelect = 0;
3002 
3003   /* Defer deleting the Table object associated with the
3004   ** subquery until code generation is
3005   ** complete, since there may still exist Expr.pTab entries that
3006   ** refer to the subquery even after flattening.  Ticket #3346.
3007   **
3008   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3009   */
3010   if( ALWAYS(pSubitem->pTab!=0) ){
3011     Table *pTabToDel = pSubitem->pTab;
3012     if( pTabToDel->nRef==1 ){
3013       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3014       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3015       pToplevel->pZombieTab = pTabToDel;
3016     }else{
3017       pTabToDel->nRef--;
3018     }
3019     pSubitem->pTab = 0;
3020   }
3021 
3022   /* The following loop runs once for each term in a compound-subquery
3023   ** flattening (as described above).  If we are doing a different kind
3024   ** of flattening - a flattening other than a compound-subquery flattening -
3025   ** then this loop only runs once.
3026   **
3027   ** This loop moves all of the FROM elements of the subquery into the
3028   ** the FROM clause of the outer query.  Before doing this, remember
3029   ** the cursor number for the original outer query FROM element in
3030   ** iParent.  The iParent cursor will never be used.  Subsequent code
3031   ** will scan expressions looking for iParent references and replace
3032   ** those references with expressions that resolve to the subquery FROM
3033   ** elements we are now copying in.
3034   */
3035   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3036     int nSubSrc;
3037     u8 jointype = 0;
3038     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3039     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3040     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3041 
3042     if( pSrc ){
3043       assert( pParent==p );  /* First time through the loop */
3044       jointype = pSubitem->jointype;
3045     }else{
3046       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3047       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3048       if( pSrc==0 ){
3049         assert( db->mallocFailed );
3050         break;
3051       }
3052     }
3053 
3054     /* The subquery uses a single slot of the FROM clause of the outer
3055     ** query.  If the subquery has more than one element in its FROM clause,
3056     ** then expand the outer query to make space for it to hold all elements
3057     ** of the subquery.
3058     **
3059     ** Example:
3060     **
3061     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3062     **
3063     ** The outer query has 3 slots in its FROM clause.  One slot of the
3064     ** outer query (the middle slot) is used by the subquery.  The next
3065     ** block of code will expand the out query to 4 slots.  The middle
3066     ** slot is expanded to two slots in order to make space for the
3067     ** two elements in the FROM clause of the subquery.
3068     */
3069     if( nSubSrc>1 ){
3070       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3071       if( db->mallocFailed ){
3072         break;
3073       }
3074     }
3075 
3076     /* Transfer the FROM clause terms from the subquery into the
3077     ** outer query.
3078     */
3079     for(i=0; i<nSubSrc; i++){
3080       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3081       pSrc->a[i+iFrom] = pSubSrc->a[i];
3082       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3083     }
3084     pSrc->a[iFrom].jointype = jointype;
3085 
3086     /* Now begin substituting subquery result set expressions for
3087     ** references to the iParent in the outer query.
3088     **
3089     ** Example:
3090     **
3091     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3092     **   \                     \_____________ subquery __________/          /
3093     **    \_____________________ outer query ______________________________/
3094     **
3095     ** We look at every expression in the outer query and every place we see
3096     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3097     */
3098     pList = pParent->pEList;
3099     for(i=0; i<pList->nExpr; i++){
3100       if( pList->a[i].zName==0 ){
3101         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3102         sqlite3Dequote(zName);
3103         pList->a[i].zName = zName;
3104       }
3105     }
3106     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3107     if( isAgg ){
3108       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3109       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3110     }
3111     if( pSub->pOrderBy ){
3112       assert( pParent->pOrderBy==0 );
3113       pParent->pOrderBy = pSub->pOrderBy;
3114       pSub->pOrderBy = 0;
3115     }else if( pParent->pOrderBy ){
3116       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3117     }
3118     if( pSub->pWhere ){
3119       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3120     }else{
3121       pWhere = 0;
3122     }
3123     if( subqueryIsAgg ){
3124       assert( pParent->pHaving==0 );
3125       pParent->pHaving = pParent->pWhere;
3126       pParent->pWhere = pWhere;
3127       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3128       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3129                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3130       assert( pParent->pGroupBy==0 );
3131       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3132     }else{
3133       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3134       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3135     }
3136 
3137     /* The flattened query is distinct if either the inner or the
3138     ** outer query is distinct.
3139     */
3140     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3141 
3142     /*
3143     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3144     **
3145     ** One is tempted to try to add a and b to combine the limits.  But this
3146     ** does not work if either limit is negative.
3147     */
3148     if( pSub->pLimit ){
3149       pParent->pLimit = pSub->pLimit;
3150       pSub->pLimit = 0;
3151     }
3152   }
3153 
3154   /* Finially, delete what is left of the subquery and return
3155   ** success.
3156   */
3157   sqlite3SelectDelete(db, pSub1);
3158 
3159   return 1;
3160 }
3161 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3162 
3163 /*
3164 ** Analyze the SELECT statement passed as an argument to see if it
3165 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
3166 ** it is, or 0 otherwise. At present, a query is considered to be
3167 ** a min()/max() query if:
3168 **
3169 **   1. There is a single object in the FROM clause.
3170 **
3171 **   2. There is a single expression in the result set, and it is
3172 **      either min(x) or max(x), where x is a column reference.
3173 */
3174 static u8 minMaxQuery(Select *p){
3175   Expr *pExpr;
3176   ExprList *pEList = p->pEList;
3177 
3178   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
3179   pExpr = pEList->a[0].pExpr;
3180   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3181   if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0;
3182   pEList = pExpr->x.pList;
3183   if( pEList==0 || pEList->nExpr!=1 ) return 0;
3184   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
3185   assert( !ExprHasProperty(pExpr, EP_IntValue) );
3186   if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){
3187     return WHERE_ORDERBY_MIN;
3188   }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){
3189     return WHERE_ORDERBY_MAX;
3190   }
3191   return WHERE_ORDERBY_NORMAL;
3192 }
3193 
3194 /*
3195 ** The select statement passed as the first argument is an aggregate query.
3196 ** The second argment is the associated aggregate-info object. This
3197 ** function tests if the SELECT is of the form:
3198 **
3199 **   SELECT count(*) FROM <tbl>
3200 **
3201 ** where table is a database table, not a sub-select or view. If the query
3202 ** does match this pattern, then a pointer to the Table object representing
3203 ** <tbl> is returned. Otherwise, 0 is returned.
3204 */
3205 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3206   Table *pTab;
3207   Expr *pExpr;
3208 
3209   assert( !p->pGroupBy );
3210 
3211   if( p->pWhere || p->pEList->nExpr!=1
3212    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3213   ){
3214     return 0;
3215   }
3216   pTab = p->pSrc->a[0].pTab;
3217   pExpr = p->pEList->a[0].pExpr;
3218   assert( pTab && !pTab->pSelect && pExpr );
3219 
3220   if( IsVirtual(pTab) ) return 0;
3221   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3222   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3223   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
3224   if( pExpr->flags&EP_Distinct ) return 0;
3225 
3226   return pTab;
3227 }
3228 
3229 /*
3230 ** If the source-list item passed as an argument was augmented with an
3231 ** INDEXED BY clause, then try to locate the specified index. If there
3232 ** was such a clause and the named index cannot be found, return
3233 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3234 ** pFrom->pIndex and return SQLITE_OK.
3235 */
3236 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3237   if( pFrom->pTab && pFrom->zIndex ){
3238     Table *pTab = pFrom->pTab;
3239     char *zIndex = pFrom->zIndex;
3240     Index *pIdx;
3241     for(pIdx=pTab->pIndex;
3242         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3243         pIdx=pIdx->pNext
3244     );
3245     if( !pIdx ){
3246       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3247       pParse->checkSchema = 1;
3248       return SQLITE_ERROR;
3249     }
3250     pFrom->pIndex = pIdx;
3251   }
3252   return SQLITE_OK;
3253 }
3254 
3255 /*
3256 ** This routine is a Walker callback for "expanding" a SELECT statement.
3257 ** "Expanding" means to do the following:
3258 **
3259 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3260 **         element of the FROM clause.
3261 **
3262 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3263 **         defines FROM clause.  When views appear in the FROM clause,
3264 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3265 **         that implements the view.  A copy is made of the view's SELECT
3266 **         statement so that we can freely modify or delete that statement
3267 **         without worrying about messing up the presistent representation
3268 **         of the view.
3269 **
3270 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3271 **         on joins and the ON and USING clause of joins.
3272 **
3273 **    (4)  Scan the list of columns in the result set (pEList) looking
3274 **         for instances of the "*" operator or the TABLE.* operator.
3275 **         If found, expand each "*" to be every column in every table
3276 **         and TABLE.* to be every column in TABLE.
3277 **
3278 */
3279 static int selectExpander(Walker *pWalker, Select *p){
3280   Parse *pParse = pWalker->pParse;
3281   int i, j, k;
3282   SrcList *pTabList;
3283   ExprList *pEList;
3284   struct SrcList_item *pFrom;
3285   sqlite3 *db = pParse->db;
3286 
3287   if( db->mallocFailed  ){
3288     return WRC_Abort;
3289   }
3290   if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){
3291     return WRC_Prune;
3292   }
3293   p->selFlags |= SF_Expanded;
3294   pTabList = p->pSrc;
3295   pEList = p->pEList;
3296 
3297   /* Make sure cursor numbers have been assigned to all entries in
3298   ** the FROM clause of the SELECT statement.
3299   */
3300   sqlite3SrcListAssignCursors(pParse, pTabList);
3301 
3302   /* Look up every table named in the FROM clause of the select.  If
3303   ** an entry of the FROM clause is a subquery instead of a table or view,
3304   ** then create a transient table structure to describe the subquery.
3305   */
3306   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3307     Table *pTab;
3308     if( pFrom->pTab!=0 ){
3309       /* This statement has already been prepared.  There is no need
3310       ** to go further. */
3311       assert( i==0 );
3312       return WRC_Prune;
3313     }
3314     if( pFrom->zName==0 ){
3315 #ifndef SQLITE_OMIT_SUBQUERY
3316       Select *pSel = pFrom->pSelect;
3317       /* A sub-query in the FROM clause of a SELECT */
3318       assert( pSel!=0 );
3319       assert( pFrom->pTab==0 );
3320       sqlite3WalkSelect(pWalker, pSel);
3321       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3322       if( pTab==0 ) return WRC_Abort;
3323       pTab->nRef = 1;
3324       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3325       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3326       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3327       pTab->iPKey = -1;
3328       pTab->nRowEst = 1000000;
3329       pTab->tabFlags |= TF_Ephemeral;
3330 #endif
3331     }else{
3332       /* An ordinary table or view name in the FROM clause */
3333       assert( pFrom->pTab==0 );
3334       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
3335       if( pTab==0 ) return WRC_Abort;
3336       pTab->nRef++;
3337 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3338       if( pTab->pSelect || IsVirtual(pTab) ){
3339         /* We reach here if the named table is a really a view */
3340         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3341         assert( pFrom->pSelect==0 );
3342         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3343         sqlite3WalkSelect(pWalker, pFrom->pSelect);
3344       }
3345 #endif
3346     }
3347 
3348     /* Locate the index named by the INDEXED BY clause, if any. */
3349     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3350       return WRC_Abort;
3351     }
3352   }
3353 
3354   /* Process NATURAL keywords, and ON and USING clauses of joins.
3355   */
3356   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3357     return WRC_Abort;
3358   }
3359 
3360   /* For every "*" that occurs in the column list, insert the names of
3361   ** all columns in all tables.  And for every TABLE.* insert the names
3362   ** of all columns in TABLE.  The parser inserted a special expression
3363   ** with the TK_ALL operator for each "*" that it found in the column list.
3364   ** The following code just has to locate the TK_ALL expressions and expand
3365   ** each one to the list of all columns in all tables.
3366   **
3367   ** The first loop just checks to see if there are any "*" operators
3368   ** that need expanding.
3369   */
3370   for(k=0; k<pEList->nExpr; k++){
3371     Expr *pE = pEList->a[k].pExpr;
3372     if( pE->op==TK_ALL ) break;
3373     assert( pE->op!=TK_DOT || pE->pRight!=0 );
3374     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
3375     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
3376   }
3377   if( k<pEList->nExpr ){
3378     /*
3379     ** If we get here it means the result set contains one or more "*"
3380     ** operators that need to be expanded.  Loop through each expression
3381     ** in the result set and expand them one by one.
3382     */
3383     struct ExprList_item *a = pEList->a;
3384     ExprList *pNew = 0;
3385     int flags = pParse->db->flags;
3386     int longNames = (flags & SQLITE_FullColNames)!=0
3387                       && (flags & SQLITE_ShortColNames)==0;
3388 
3389     for(k=0; k<pEList->nExpr; k++){
3390       Expr *pE = a[k].pExpr;
3391       assert( pE->op!=TK_DOT || pE->pRight!=0 );
3392       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){
3393         /* This particular expression does not need to be expanded.
3394         */
3395         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
3396         if( pNew ){
3397           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3398           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
3399           a[k].zName = 0;
3400           a[k].zSpan = 0;
3401         }
3402         a[k].pExpr = 0;
3403       }else{
3404         /* This expression is a "*" or a "TABLE.*" and needs to be
3405         ** expanded. */
3406         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3407         char *zTName;            /* text of name of TABLE */
3408         if( pE->op==TK_DOT ){
3409           assert( pE->pLeft!=0 );
3410           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
3411           zTName = pE->pLeft->u.zToken;
3412         }else{
3413           zTName = 0;
3414         }
3415         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3416           Table *pTab = pFrom->pTab;
3417           char *zTabName = pFrom->zAlias;
3418           if( zTabName==0 ){
3419             zTabName = pTab->zName;
3420           }
3421           if( db->mallocFailed ) break;
3422           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3423             continue;
3424           }
3425           tableSeen = 1;
3426           for(j=0; j<pTab->nCol; j++){
3427             Expr *pExpr, *pRight;
3428             char *zName = pTab->aCol[j].zName;
3429             char *zColname;  /* The computed column name */
3430             char *zToFree;   /* Malloced string that needs to be freed */
3431             Token sColname;  /* Computed column name as a token */
3432 
3433             /* If a column is marked as 'hidden' (currently only possible
3434             ** for virtual tables), do not include it in the expanded
3435             ** result-set list.
3436             */
3437             if( IsHiddenColumn(&pTab->aCol[j]) ){
3438               assert(IsVirtual(pTab));
3439               continue;
3440             }
3441 
3442             if( i>0 && zTName==0 ){
3443               if( (pFrom->jointype & JT_NATURAL)!=0
3444                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
3445               ){
3446                 /* In a NATURAL join, omit the join columns from the
3447                 ** table to the right of the join */
3448                 continue;
3449               }
3450               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
3451                 /* In a join with a USING clause, omit columns in the
3452                 ** using clause from the table on the right. */
3453                 continue;
3454               }
3455             }
3456             pRight = sqlite3Expr(db, TK_ID, zName);
3457             zColname = zName;
3458             zToFree = 0;
3459             if( longNames || pTabList->nSrc>1 ){
3460               Expr *pLeft;
3461               pLeft = sqlite3Expr(db, TK_ID, zTabName);
3462               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3463               if( longNames ){
3464                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
3465                 zToFree = zColname;
3466               }
3467             }else{
3468               pExpr = pRight;
3469             }
3470             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
3471             sColname.z = zColname;
3472             sColname.n = sqlite3Strlen30(zColname);
3473             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
3474             sqlite3DbFree(db, zToFree);
3475           }
3476         }
3477         if( !tableSeen ){
3478           if( zTName ){
3479             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3480           }else{
3481             sqlite3ErrorMsg(pParse, "no tables specified");
3482           }
3483         }
3484       }
3485     }
3486     sqlite3ExprListDelete(db, pEList);
3487     p->pEList = pNew;
3488   }
3489 #if SQLITE_MAX_COLUMN
3490   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3491     sqlite3ErrorMsg(pParse, "too many columns in result set");
3492   }
3493 #endif
3494   return WRC_Continue;
3495 }
3496 
3497 /*
3498 ** No-op routine for the parse-tree walker.
3499 **
3500 ** When this routine is the Walker.xExprCallback then expression trees
3501 ** are walked without any actions being taken at each node.  Presumably,
3502 ** when this routine is used for Walker.xExprCallback then
3503 ** Walker.xSelectCallback is set to do something useful for every
3504 ** subquery in the parser tree.
3505 */
3506 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3507   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3508   return WRC_Continue;
3509 }
3510 
3511 /*
3512 ** This routine "expands" a SELECT statement and all of its subqueries.
3513 ** For additional information on what it means to "expand" a SELECT
3514 ** statement, see the comment on the selectExpand worker callback above.
3515 **
3516 ** Expanding a SELECT statement is the first step in processing a
3517 ** SELECT statement.  The SELECT statement must be expanded before
3518 ** name resolution is performed.
3519 **
3520 ** If anything goes wrong, an error message is written into pParse.
3521 ** The calling function can detect the problem by looking at pParse->nErr
3522 ** and/or pParse->db->mallocFailed.
3523 */
3524 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3525   Walker w;
3526   w.xSelectCallback = selectExpander;
3527   w.xExprCallback = exprWalkNoop;
3528   w.pParse = pParse;
3529   sqlite3WalkSelect(&w, pSelect);
3530 }
3531 
3532 
3533 #ifndef SQLITE_OMIT_SUBQUERY
3534 /*
3535 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3536 ** interface.
3537 **
3538 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3539 ** information to the Table structure that represents the result set
3540 ** of that subquery.
3541 **
3542 ** The Table structure that represents the result set was constructed
3543 ** by selectExpander() but the type and collation information was omitted
3544 ** at that point because identifiers had not yet been resolved.  This
3545 ** routine is called after identifier resolution.
3546 */
3547 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3548   Parse *pParse;
3549   int i;
3550   SrcList *pTabList;
3551   struct SrcList_item *pFrom;
3552 
3553   assert( p->selFlags & SF_Resolved );
3554   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3555     p->selFlags |= SF_HasTypeInfo;
3556     pParse = pWalker->pParse;
3557     pTabList = p->pSrc;
3558     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3559       Table *pTab = pFrom->pTab;
3560       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3561         /* A sub-query in the FROM clause of a SELECT */
3562         Select *pSel = pFrom->pSelect;
3563         assert( pSel );
3564         while( pSel->pPrior ) pSel = pSel->pPrior;
3565         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3566       }
3567     }
3568   }
3569   return WRC_Continue;
3570 }
3571 #endif
3572 
3573 
3574 /*
3575 ** This routine adds datatype and collating sequence information to
3576 ** the Table structures of all FROM-clause subqueries in a
3577 ** SELECT statement.
3578 **
3579 ** Use this routine after name resolution.
3580 */
3581 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3582 #ifndef SQLITE_OMIT_SUBQUERY
3583   Walker w;
3584   w.xSelectCallback = selectAddSubqueryTypeInfo;
3585   w.xExprCallback = exprWalkNoop;
3586   w.pParse = pParse;
3587   sqlite3WalkSelect(&w, pSelect);
3588 #endif
3589 }
3590 
3591 
3592 /*
3593 ** This routine sets up a SELECT statement for processing.  The
3594 ** following is accomplished:
3595 **
3596 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3597 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3598 **     *  ON and USING clauses are shifted into WHERE statements
3599 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3600 **     *  Identifiers in expression are matched to tables.
3601 **
3602 ** This routine acts recursively on all subqueries within the SELECT.
3603 */
3604 void sqlite3SelectPrep(
3605   Parse *pParse,         /* The parser context */
3606   Select *p,             /* The SELECT statement being coded. */
3607   NameContext *pOuterNC  /* Name context for container */
3608 ){
3609   sqlite3 *db;
3610   if( NEVER(p==0) ) return;
3611   db = pParse->db;
3612   if( p->selFlags & SF_HasTypeInfo ) return;
3613   sqlite3SelectExpand(pParse, p);
3614   if( pParse->nErr || db->mallocFailed ) return;
3615   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3616   if( pParse->nErr || db->mallocFailed ) return;
3617   sqlite3SelectAddTypeInfo(pParse, p);
3618 }
3619 
3620 /*
3621 ** Reset the aggregate accumulator.
3622 **
3623 ** The aggregate accumulator is a set of memory cells that hold
3624 ** intermediate results while calculating an aggregate.  This
3625 ** routine generates code that stores NULLs in all of those memory
3626 ** cells.
3627 */
3628 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3629   Vdbe *v = pParse->pVdbe;
3630   int i;
3631   struct AggInfo_func *pFunc;
3632   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3633     return;
3634   }
3635   for(i=0; i<pAggInfo->nColumn; i++){
3636     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3637   }
3638   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3639     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3640     if( pFunc->iDistinct>=0 ){
3641       Expr *pE = pFunc->pExpr;
3642       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3643       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3644         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3645            "argument");
3646         pFunc->iDistinct = -1;
3647       }else{
3648         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3649         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3650                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3651       }
3652     }
3653   }
3654 }
3655 
3656 /*
3657 ** Invoke the OP_AggFinalize opcode for every aggregate function
3658 ** in the AggInfo structure.
3659 */
3660 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3661   Vdbe *v = pParse->pVdbe;
3662   int i;
3663   struct AggInfo_func *pF;
3664   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3665     ExprList *pList = pF->pExpr->x.pList;
3666     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3667     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3668                       (void*)pF->pFunc, P4_FUNCDEF);
3669   }
3670 }
3671 
3672 /*
3673 ** Update the accumulator memory cells for an aggregate based on
3674 ** the current cursor position.
3675 */
3676 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3677   Vdbe *v = pParse->pVdbe;
3678   int i;
3679   int regHit = 0;
3680   int addrHitTest = 0;
3681   struct AggInfo_func *pF;
3682   struct AggInfo_col *pC;
3683 
3684   pAggInfo->directMode = 1;
3685   sqlite3ExprCacheClear(pParse);
3686   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3687     int nArg;
3688     int addrNext = 0;
3689     int regAgg;
3690     ExprList *pList = pF->pExpr->x.pList;
3691     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3692     if( pList ){
3693       nArg = pList->nExpr;
3694       regAgg = sqlite3GetTempRange(pParse, nArg);
3695       sqlite3ExprCodeExprList(pParse, pList, regAgg, 1);
3696     }else{
3697       nArg = 0;
3698       regAgg = 0;
3699     }
3700     if( pF->iDistinct>=0 ){
3701       addrNext = sqlite3VdbeMakeLabel(v);
3702       assert( nArg==1 );
3703       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3704     }
3705     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3706       CollSeq *pColl = 0;
3707       struct ExprList_item *pItem;
3708       int j;
3709       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3710       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3711         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3712       }
3713       if( !pColl ){
3714         pColl = pParse->db->pDfltColl;
3715       }
3716       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
3717       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
3718     }
3719     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3720                       (void*)pF->pFunc, P4_FUNCDEF);
3721     sqlite3VdbeChangeP5(v, (u8)nArg);
3722     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3723     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3724     if( addrNext ){
3725       sqlite3VdbeResolveLabel(v, addrNext);
3726       sqlite3ExprCacheClear(pParse);
3727     }
3728   }
3729 
3730   /* Before populating the accumulator registers, clear the column cache.
3731   ** Otherwise, if any of the required column values are already present
3732   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
3733   ** to pC->iMem. But by the time the value is used, the original register
3734   ** may have been used, invalidating the underlying buffer holding the
3735   ** text or blob value. See ticket [883034dcb5].
3736   **
3737   ** Another solution would be to change the OP_SCopy used to copy cached
3738   ** values to an OP_Copy.
3739   */
3740   if( regHit ){
3741     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit);
3742   }
3743   sqlite3ExprCacheClear(pParse);
3744   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3745     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3746   }
3747   pAggInfo->directMode = 0;
3748   sqlite3ExprCacheClear(pParse);
3749   if( addrHitTest ){
3750     sqlite3VdbeJumpHere(v, addrHitTest);
3751   }
3752 }
3753 
3754 /*
3755 ** Add a single OP_Explain instruction to the VDBE to explain a simple
3756 ** count(*) query ("SELECT count(*) FROM pTab").
3757 */
3758 #ifndef SQLITE_OMIT_EXPLAIN
3759 static void explainSimpleCount(
3760   Parse *pParse,                  /* Parse context */
3761   Table *pTab,                    /* Table being queried */
3762   Index *pIdx                     /* Index used to optimize scan, or NULL */
3763 ){
3764   if( pParse->explain==2 ){
3765     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
3766         pTab->zName,
3767         pIdx ? "USING COVERING INDEX " : "",
3768         pIdx ? pIdx->zName : "",
3769         pTab->nRowEst
3770     );
3771     sqlite3VdbeAddOp4(
3772         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
3773     );
3774   }
3775 }
3776 #else
3777 # define explainSimpleCount(a,b,c)
3778 #endif
3779 
3780 /*
3781 ** Generate code for the SELECT statement given in the p argument.
3782 **
3783 ** The results are distributed in various ways depending on the
3784 ** contents of the SelectDest structure pointed to by argument pDest
3785 ** as follows:
3786 **
3787 **     pDest->eDest    Result
3788 **     ------------    -------------------------------------------
3789 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3790 **                     opcode) for each row in the result set.
3791 **
3792 **     SRT_Mem         Only valid if the result is a single column.
3793 **                     Store the first column of the first result row
3794 **                     in register pDest->iSDParm then abandon the rest
3795 **                     of the query.  This destination implies "LIMIT 1".
3796 **
3797 **     SRT_Set         The result must be a single column.  Store each
3798 **                     row of result as the key in table pDest->iSDParm.
3799 **                     Apply the affinity pDest->affSdst before storing
3800 **                     results.  Used to implement "IN (SELECT ...)".
3801 **
3802 **     SRT_Union       Store results as a key in a temporary table
3803 **                     identified by pDest->iSDParm.
3804 **
3805 **     SRT_Except      Remove results from the temporary table pDest->iSDParm.
3806 **
3807 **     SRT_Table       Store results in temporary table pDest->iSDParm.
3808 **                     This is like SRT_EphemTab except that the table
3809 **                     is assumed to already be open.
3810 **
3811 **     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
3812 **                     the result there. The cursor is left open after
3813 **                     returning.  This is like SRT_Table except that
3814 **                     this destination uses OP_OpenEphemeral to create
3815 **                     the table first.
3816 **
3817 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3818 **                     results each time it is invoked.  The entry point
3819 **                     of the co-routine is stored in register pDest->iSDParm.
3820 **
3821 **     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
3822 **                     set is not empty.
3823 **
3824 **     SRT_Discard     Throw the results away.  This is used by SELECT
3825 **                     statements within triggers whose only purpose is
3826 **                     the side-effects of functions.
3827 **
3828 ** This routine returns the number of errors.  If any errors are
3829 ** encountered, then an appropriate error message is left in
3830 ** pParse->zErrMsg.
3831 **
3832 ** This routine does NOT free the Select structure passed in.  The
3833 ** calling function needs to do that.
3834 */
3835 int sqlite3Select(
3836   Parse *pParse,         /* The parser context */
3837   Select *p,             /* The SELECT statement being coded. */
3838   SelectDest *pDest      /* What to do with the query results */
3839 ){
3840   int i, j;              /* Loop counters */
3841   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3842   Vdbe *v;               /* The virtual machine under construction */
3843   int isAgg;             /* True for select lists like "count(*)" */
3844   ExprList *pEList;      /* List of columns to extract. */
3845   SrcList *pTabList;     /* List of tables to select from */
3846   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3847   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3848   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3849   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3850   int rc = 1;            /* Value to return from this function */
3851   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3852   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
3853   AggInfo sAggInfo;      /* Information used by aggregate queries */
3854   int iEnd;              /* Address of the end of the query */
3855   sqlite3 *db;           /* The database connection */
3856 
3857 #ifndef SQLITE_OMIT_EXPLAIN
3858   int iRestoreSelectId = pParse->iSelectId;
3859   pParse->iSelectId = pParse->iNextSelectId++;
3860 #endif
3861 
3862   db = pParse->db;
3863   if( p==0 || db->mallocFailed || pParse->nErr ){
3864     return 1;
3865   }
3866   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3867   memset(&sAggInfo, 0, sizeof(sAggInfo));
3868 
3869   if( IgnorableOrderby(pDest) ){
3870     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3871            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3872     /* If ORDER BY makes no difference in the output then neither does
3873     ** DISTINCT so it can be removed too. */
3874     sqlite3ExprListDelete(db, p->pOrderBy);
3875     p->pOrderBy = 0;
3876     p->selFlags &= ~SF_Distinct;
3877   }
3878   sqlite3SelectPrep(pParse, p, 0);
3879   pOrderBy = p->pOrderBy;
3880   pTabList = p->pSrc;
3881   pEList = p->pEList;
3882   if( pParse->nErr || db->mallocFailed ){
3883     goto select_end;
3884   }
3885   isAgg = (p->selFlags & SF_Aggregate)!=0;
3886   assert( pEList!=0 );
3887 
3888   /* Begin generating code.
3889   */
3890   v = sqlite3GetVdbe(pParse);
3891   if( v==0 ) goto select_end;
3892 
3893   /* If writing to memory or generating a set
3894   ** only a single column may be output.
3895   */
3896 #ifndef SQLITE_OMIT_SUBQUERY
3897   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3898     goto select_end;
3899   }
3900 #endif
3901 
3902   /* Generate code for all sub-queries in the FROM clause
3903   */
3904 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3905   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3906     struct SrcList_item *pItem = &pTabList->a[i];
3907     SelectDest dest;
3908     Select *pSub = pItem->pSelect;
3909     int isAggSub;
3910 
3911     if( pSub==0 ) continue;
3912     if( pItem->addrFillSub ){
3913       sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
3914       continue;
3915     }
3916 
3917     /* Increment Parse.nHeight by the height of the largest expression
3918     ** tree refered to by this, the parent select. The child select
3919     ** may contain expression trees of at most
3920     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3921     ** more conservative than necessary, but much easier than enforcing
3922     ** an exact limit.
3923     */
3924     pParse->nHeight += sqlite3SelectExprHeight(p);
3925 
3926     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3927     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3928       /* This subquery can be absorbed into its parent. */
3929       if( isAggSub ){
3930         isAgg = 1;
3931         p->selFlags |= SF_Aggregate;
3932       }
3933       i = -1;
3934     }else{
3935       /* Generate a subroutine that will fill an ephemeral table with
3936       ** the content of this subquery.  pItem->addrFillSub will point
3937       ** to the address of the generated subroutine.  pItem->regReturn
3938       ** is a register allocated to hold the subroutine return address
3939       */
3940       int topAddr;
3941       int onceAddr = 0;
3942       int retAddr;
3943       assert( pItem->addrFillSub==0 );
3944       pItem->regReturn = ++pParse->nMem;
3945       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
3946       pItem->addrFillSub = topAddr+1;
3947       VdbeNoopComment((v, "materialize %s", pItem->pTab->zName));
3948       if( pItem->isCorrelated==0 ){
3949         /* If the subquery is no correlated and if we are not inside of
3950         ** a trigger, then we only need to compute the value of the subquery
3951         ** once. */
3952         onceAddr = sqlite3CodeOnce(pParse);
3953       }
3954       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3955       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
3956       sqlite3Select(pParse, pSub, &dest);
3957       pItem->pTab->nRowEst = (unsigned)pSub->nSelectRow;
3958       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
3959       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
3960       VdbeComment((v, "end %s", pItem->pTab->zName));
3961       sqlite3VdbeChangeP1(v, topAddr, retAddr);
3962       sqlite3ClearTempRegCache(pParse);
3963     }
3964     if( /*pParse->nErr ||*/ db->mallocFailed ){
3965       goto select_end;
3966     }
3967     pParse->nHeight -= sqlite3SelectExprHeight(p);
3968     pTabList = p->pSrc;
3969     if( !IgnorableOrderby(pDest) ){
3970       pOrderBy = p->pOrderBy;
3971     }
3972   }
3973   pEList = p->pEList;
3974 #endif
3975   pWhere = p->pWhere;
3976   pGroupBy = p->pGroupBy;
3977   pHaving = p->pHaving;
3978   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
3979 
3980 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3981   /* If there is are a sequence of queries, do the earlier ones first.
3982   */
3983   if( p->pPrior ){
3984     if( p->pRightmost==0 ){
3985       Select *pLoop, *pRight = 0;
3986       int cnt = 0;
3987       int mxSelect;
3988       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3989         pLoop->pRightmost = p;
3990         pLoop->pNext = pRight;
3991         pRight = pLoop;
3992       }
3993       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3994       if( mxSelect && cnt>mxSelect ){
3995         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3996         goto select_end;
3997       }
3998     }
3999     rc = multiSelect(pParse, p, pDest);
4000     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4001     return rc;
4002   }
4003 #endif
4004 
4005   /* If there is both a GROUP BY and an ORDER BY clause and they are
4006   ** identical, then disable the ORDER BY clause since the GROUP BY
4007   ** will cause elements to come out in the correct order.  This is
4008   ** an optimization - the correct answer should result regardless.
4009   ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
4010   ** to disable this optimization for testing purposes.
4011   */
4012   if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
4013          && OptimizationEnabled(db, SQLITE_GroupByOrder) ){
4014     pOrderBy = 0;
4015   }
4016 
4017   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4018   ** if the select-list is the same as the ORDER BY list, then this query
4019   ** can be rewritten as a GROUP BY. In other words, this:
4020   **
4021   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4022   **
4023   ** is transformed to:
4024   **
4025   **     SELECT xyz FROM ... GROUP BY xyz
4026   **
4027   ** The second form is preferred as a single index (or temp-table) may be
4028   ** used for both the ORDER BY and DISTINCT processing. As originally
4029   ** written the query must use a temp-table for at least one of the ORDER
4030   ** BY and DISTINCT, and an index or separate temp-table for the other.
4031   */
4032   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4033    && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
4034   ){
4035     p->selFlags &= ~SF_Distinct;
4036     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4037     pGroupBy = p->pGroupBy;
4038     pOrderBy = 0;
4039     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4040     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4041     ** original setting of the SF_Distinct flag, not the current setting */
4042     assert( sDistinct.isTnct );
4043   }
4044 
4045   /* If there is an ORDER BY clause, then this sorting
4046   ** index might end up being unused if the data can be
4047   ** extracted in pre-sorted order.  If that is the case, then the
4048   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4049   ** we figure out that the sorting index is not needed.  The addrSortIndex
4050   ** variable is used to facilitate that change.
4051   */
4052   if( pOrderBy ){
4053     KeyInfo *pKeyInfo;
4054     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
4055     pOrderBy->iECursor = pParse->nTab++;
4056     p->addrOpenEphm[2] = addrSortIndex =
4057       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4058                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
4059                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4060   }else{
4061     addrSortIndex = -1;
4062   }
4063 
4064   /* If the output is destined for a temporary table, open that table.
4065   */
4066   if( pDest->eDest==SRT_EphemTab ){
4067     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4068   }
4069 
4070   /* Set the limiter.
4071   */
4072   iEnd = sqlite3VdbeMakeLabel(v);
4073   p->nSelectRow = (double)LARGEST_INT64;
4074   computeLimitRegisters(pParse, p, iEnd);
4075   if( p->iLimit==0 && addrSortIndex>=0 ){
4076     sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
4077     p->selFlags |= SF_UseSorter;
4078   }
4079 
4080   /* Open a virtual index to use for the distinct set.
4081   */
4082   if( p->selFlags & SF_Distinct ){
4083     sDistinct.tabTnct = pParse->nTab++;
4084     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4085                                 sDistinct.tabTnct, 0, 0,
4086                                 (char*)keyInfoFromExprList(pParse, p->pEList),
4087                                 P4_KEYINFO_HANDOFF);
4088     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4089     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4090   }else{
4091     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4092   }
4093 
4094   if( !isAgg && pGroupBy==0 ){
4095     /* No aggregate functions and no GROUP BY clause */
4096     ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0);
4097 
4098     /* Begin the database scan. */
4099     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0);
4100     if( pWInfo==0 ) goto select_end;
4101     if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;
4102     if( pWInfo->eDistinct ) sDistinct.eTnctType = pWInfo->eDistinct;
4103     if( pOrderBy && pWInfo->nOBSat==pOrderBy->nExpr ) pOrderBy = 0;
4104 
4105     /* If sorting index that was created by a prior OP_OpenEphemeral
4106     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4107     ** into an OP_Noop.
4108     */
4109     if( addrSortIndex>=0 && pOrderBy==0 ){
4110       sqlite3VdbeChangeToNoop(v, addrSortIndex);
4111       p->addrOpenEphm[2] = -1;
4112     }
4113 
4114     /* Use the standard inner loop. */
4115     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest,
4116                     pWInfo->iContinue, pWInfo->iBreak);
4117 
4118     /* End the database scan loop.
4119     */
4120     sqlite3WhereEnd(pWInfo);
4121   }else{
4122     /* This case when there exist aggregate functions or a GROUP BY clause
4123     ** or both */
4124     NameContext sNC;    /* Name context for processing aggregate information */
4125     int iAMem;          /* First Mem address for storing current GROUP BY */
4126     int iBMem;          /* First Mem address for previous GROUP BY */
4127     int iUseFlag;       /* Mem address holding flag indicating that at least
4128                         ** one row of the input to the aggregator has been
4129                         ** processed */
4130     int iAbortFlag;     /* Mem address which causes query abort if positive */
4131     int groupBySort;    /* Rows come from source in GROUP BY order */
4132     int addrEnd;        /* End of processing for this SELECT */
4133     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4134     int sortOut = 0;    /* Output register from the sorter */
4135 
4136     /* Remove any and all aliases between the result set and the
4137     ** GROUP BY clause.
4138     */
4139     if( pGroupBy ){
4140       int k;                        /* Loop counter */
4141       struct ExprList_item *pItem;  /* For looping over expression in a list */
4142 
4143       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4144         pItem->iAlias = 0;
4145       }
4146       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4147         pItem->iAlias = 0;
4148       }
4149       if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
4150     }else{
4151       p->nSelectRow = (double)1;
4152     }
4153 
4154 
4155     /* Create a label to jump to when we want to abort the query */
4156     addrEnd = sqlite3VdbeMakeLabel(v);
4157 
4158     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4159     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4160     ** SELECT statement.
4161     */
4162     memset(&sNC, 0, sizeof(sNC));
4163     sNC.pParse = pParse;
4164     sNC.pSrcList = pTabList;
4165     sNC.pAggInfo = &sAggInfo;
4166     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4167     sAggInfo.pGroupBy = pGroupBy;
4168     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4169     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
4170     if( pHaving ){
4171       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4172     }
4173     sAggInfo.nAccumulator = sAggInfo.nColumn;
4174     for(i=0; i<sAggInfo.nFunc; i++){
4175       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4176       sNC.ncFlags |= NC_InAggFunc;
4177       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4178       sNC.ncFlags &= ~NC_InAggFunc;
4179     }
4180     if( db->mallocFailed ) goto select_end;
4181 
4182     /* Processing for aggregates with GROUP BY is very different and
4183     ** much more complex than aggregates without a GROUP BY.
4184     */
4185     if( pGroupBy ){
4186       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4187       int j1;             /* A-vs-B comparision jump */
4188       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4189       int regOutputRow;   /* Return address register for output subroutine */
4190       int addrSetAbort;   /* Set the abort flag and return */
4191       int addrTopOfLoop;  /* Top of the input loop */
4192       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4193       int addrReset;      /* Subroutine for resetting the accumulator */
4194       int regReset;       /* Return address register for reset subroutine */
4195 
4196       /* If there is a GROUP BY clause we might need a sorting index to
4197       ** implement it.  Allocate that sorting index now.  If it turns out
4198       ** that we do not need it after all, the OP_SorterOpen instruction
4199       ** will be converted into a Noop.
4200       */
4201       sAggInfo.sortingIdx = pParse->nTab++;
4202       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
4203       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4204           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4205           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
4206 
4207       /* Initialize memory locations used by GROUP BY aggregate processing
4208       */
4209       iUseFlag = ++pParse->nMem;
4210       iAbortFlag = ++pParse->nMem;
4211       regOutputRow = ++pParse->nMem;
4212       addrOutputRow = sqlite3VdbeMakeLabel(v);
4213       regReset = ++pParse->nMem;
4214       addrReset = sqlite3VdbeMakeLabel(v);
4215       iAMem = pParse->nMem + 1;
4216       pParse->nMem += pGroupBy->nExpr;
4217       iBMem = pParse->nMem + 1;
4218       pParse->nMem += pGroupBy->nExpr;
4219       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4220       VdbeComment((v, "clear abort flag"));
4221       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4222       VdbeComment((v, "indicate accumulator empty"));
4223       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4224 
4225       /* Begin a loop that will extract all source rows in GROUP BY order.
4226       ** This might involve two separate loops with an OP_Sort in between, or
4227       ** it might be a single loop that uses an index to extract information
4228       ** in the right order to begin with.
4229       */
4230       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4231       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 0, 0);
4232       if( pWInfo==0 ) goto select_end;
4233       if( pWInfo->nOBSat==pGroupBy->nExpr ){
4234         /* The optimizer is able to deliver rows in group by order so
4235         ** we do not have to sort.  The OP_OpenEphemeral table will be
4236         ** cancelled later because we still need to use the pKeyInfo
4237         */
4238         groupBySort = 0;
4239       }else{
4240         /* Rows are coming out in undetermined order.  We have to push
4241         ** each row into a sorting index, terminate the first loop,
4242         ** then loop over the sorting index in order to get the output
4243         ** in sorted order
4244         */
4245         int regBase;
4246         int regRecord;
4247         int nCol;
4248         int nGroupBy;
4249 
4250         explainTempTable(pParse,
4251             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
4252                     "DISTINCT" : "GROUP BY");
4253 
4254         groupBySort = 1;
4255         nGroupBy = pGroupBy->nExpr;
4256         nCol = nGroupBy + 1;
4257         j = nGroupBy+1;
4258         for(i=0; i<sAggInfo.nColumn; i++){
4259           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4260             nCol++;
4261             j++;
4262           }
4263         }
4264         regBase = sqlite3GetTempRange(pParse, nCol);
4265         sqlite3ExprCacheClear(pParse);
4266         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4267         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4268         j = nGroupBy+1;
4269         for(i=0; i<sAggInfo.nColumn; i++){
4270           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4271           if( pCol->iSorterColumn>=j ){
4272             int r1 = j + regBase;
4273             int r2;
4274 
4275             r2 = sqlite3ExprCodeGetColumn(pParse,
4276                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
4277             if( r1!=r2 ){
4278               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4279             }
4280             j++;
4281           }
4282         }
4283         regRecord = sqlite3GetTempReg(pParse);
4284         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4285         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
4286         sqlite3ReleaseTempReg(pParse, regRecord);
4287         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4288         sqlite3WhereEnd(pWInfo);
4289         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
4290         sortOut = sqlite3GetTempReg(pParse);
4291         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
4292         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
4293         VdbeComment((v, "GROUP BY sort"));
4294         sAggInfo.useSortingIdx = 1;
4295         sqlite3ExprCacheClear(pParse);
4296       }
4297 
4298       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4299       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4300       ** Then compare the current GROUP BY terms against the GROUP BY terms
4301       ** from the previous row currently stored in a0, a1, a2...
4302       */
4303       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4304       sqlite3ExprCacheClear(pParse);
4305       if( groupBySort ){
4306         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
4307       }
4308       for(j=0; j<pGroupBy->nExpr; j++){
4309         if( groupBySort ){
4310           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
4311           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
4312         }else{
4313           sAggInfo.directMode = 1;
4314           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4315         }
4316       }
4317       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4318                           (char*)pKeyInfo, P4_KEYINFO);
4319       j1 = sqlite3VdbeCurrentAddr(v);
4320       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4321 
4322       /* Generate code that runs whenever the GROUP BY changes.
4323       ** Changes in the GROUP BY are detected by the previous code
4324       ** block.  If there were no changes, this block is skipped.
4325       **
4326       ** This code copies current group by terms in b0,b1,b2,...
4327       ** over to a0,a1,a2.  It then calls the output subroutine
4328       ** and resets the aggregate accumulator registers in preparation
4329       ** for the next GROUP BY batch.
4330       */
4331       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4332       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4333       VdbeComment((v, "output one row"));
4334       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4335       VdbeComment((v, "check abort flag"));
4336       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4337       VdbeComment((v, "reset accumulator"));
4338 
4339       /* Update the aggregate accumulators based on the content of
4340       ** the current row
4341       */
4342       sqlite3VdbeJumpHere(v, j1);
4343       updateAccumulator(pParse, &sAggInfo);
4344       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4345       VdbeComment((v, "indicate data in accumulator"));
4346 
4347       /* End of the loop
4348       */
4349       if( groupBySort ){
4350         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
4351       }else{
4352         sqlite3WhereEnd(pWInfo);
4353         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
4354       }
4355 
4356       /* Output the final row of result
4357       */
4358       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4359       VdbeComment((v, "output final row"));
4360 
4361       /* Jump over the subroutines
4362       */
4363       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4364 
4365       /* Generate a subroutine that outputs a single row of the result
4366       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4367       ** is less than or equal to zero, the subroutine is a no-op.  If
4368       ** the processing calls for the query to abort, this subroutine
4369       ** increments the iAbortFlag memory location before returning in
4370       ** order to signal the caller to abort.
4371       */
4372       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4373       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4374       VdbeComment((v, "set abort flag"));
4375       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4376       sqlite3VdbeResolveLabel(v, addrOutputRow);
4377       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4378       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4379       VdbeComment((v, "Groupby result generator entry point"));
4380       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4381       finalizeAggFunctions(pParse, &sAggInfo);
4382       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4383       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4384                       &sDistinct, pDest,
4385                       addrOutputRow+1, addrSetAbort);
4386       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4387       VdbeComment((v, "end groupby result generator"));
4388 
4389       /* Generate a subroutine that will reset the group-by accumulator
4390       */
4391       sqlite3VdbeResolveLabel(v, addrReset);
4392       resetAccumulator(pParse, &sAggInfo);
4393       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4394 
4395     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
4396     else {
4397       ExprList *pDel = 0;
4398 #ifndef SQLITE_OMIT_BTREECOUNT
4399       Table *pTab;
4400       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4401         /* If isSimpleCount() returns a pointer to a Table structure, then
4402         ** the SQL statement is of the form:
4403         **
4404         **   SELECT count(*) FROM <tbl>
4405         **
4406         ** where the Table structure returned represents table <tbl>.
4407         **
4408         ** This statement is so common that it is optimized specially. The
4409         ** OP_Count instruction is executed either on the intkey table that
4410         ** contains the data for table <tbl> or on one of its indexes. It
4411         ** is better to execute the op on an index, as indexes are almost
4412         ** always spread across less pages than their corresponding tables.
4413         */
4414         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4415         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4416         Index *pIdx;                         /* Iterator variable */
4417         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4418         Index *pBest = 0;                    /* Best index found so far */
4419         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4420 
4421         sqlite3CodeVerifySchema(pParse, iDb);
4422         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4423 
4424         /* Search for the index that has the least amount of columns. If
4425         ** there is such an index, and it has less columns than the table
4426         ** does, then we can assume that it consumes less space on disk and
4427         ** will therefore be cheaper to scan to determine the query result.
4428         ** In this case set iRoot to the root page number of the index b-tree
4429         ** and pKeyInfo to the KeyInfo structure required to navigate the
4430         ** index.
4431         **
4432         ** (2011-04-15) Do not do a full scan of an unordered index.
4433         **
4434         ** In practice the KeyInfo structure will not be used. It is only
4435         ** passed to keep OP_OpenRead happy.
4436         */
4437         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4438           if( pIdx->bUnordered==0 && (!pBest || pIdx->nColumn<pBest->nColumn) ){
4439             pBest = pIdx;
4440           }
4441         }
4442         if( pBest && pBest->nColumn<pTab->nCol ){
4443           iRoot = pBest->tnum;
4444           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4445         }
4446 
4447         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4448         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4449         if( pKeyInfo ){
4450           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4451         }
4452         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4453         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4454         explainSimpleCount(pParse, pTab, pBest);
4455       }else
4456 #endif /* SQLITE_OMIT_BTREECOUNT */
4457       {
4458         /* Check if the query is of one of the following forms:
4459         **
4460         **   SELECT min(x) FROM ...
4461         **   SELECT max(x) FROM ...
4462         **
4463         ** If it is, then ask the code in where.c to attempt to sort results
4464         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4465         ** If where.c is able to produce results sorted in this order, then
4466         ** add vdbe code to break out of the processing loop after the
4467         ** first iteration (since the first iteration of the loop is
4468         ** guaranteed to operate on the row with the minimum or maximum
4469         ** value of x, the only row required).
4470         **
4471         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4472         ** modify behaviour as follows:
4473         **
4474         **   + If the query is a "SELECT min(x)", then the loop coded by
4475         **     where.c should not iterate over any values with a NULL value
4476         **     for x.
4477         **
4478         **   + The optimizer code in where.c (the thing that decides which
4479         **     index or indices to use) should place a different priority on
4480         **     satisfying the 'ORDER BY' clause than it does in other cases.
4481         **     Refer to code and comments in where.c for details.
4482         */
4483         ExprList *pMinMax = 0;
4484         u8 flag = minMaxQuery(p);
4485         if( flag ){
4486           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4487           assert( p->pEList->a[0].pExpr->x.pList->nExpr==1 );
4488           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4489           pDel = pMinMax;
4490           if( pMinMax && !db->mallocFailed ){
4491             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4492             pMinMax->a[0].pExpr->op = TK_COLUMN;
4493           }
4494         }
4495 
4496         /* This case runs if the aggregate has no GROUP BY clause.  The
4497         ** processing is much simpler since there is only a single row
4498         ** of output.
4499         */
4500         resetAccumulator(pParse, &sAggInfo);
4501         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
4502         if( pWInfo==0 ){
4503           sqlite3ExprListDelete(db, pDel);
4504           goto select_end;
4505         }
4506         updateAccumulator(pParse, &sAggInfo);
4507         assert( pMinMax==0 || pMinMax->nExpr==1 );
4508         if( pWInfo->nOBSat>0 ){
4509           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4510           VdbeComment((v, "%s() by index",
4511                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4512         }
4513         sqlite3WhereEnd(pWInfo);
4514         finalizeAggFunctions(pParse, &sAggInfo);
4515       }
4516 
4517       pOrderBy = 0;
4518       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4519       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, 0,
4520                       pDest, addrEnd, addrEnd);
4521       sqlite3ExprListDelete(db, pDel);
4522     }
4523     sqlite3VdbeResolveLabel(v, addrEnd);
4524 
4525   } /* endif aggregate query */
4526 
4527   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
4528     explainTempTable(pParse, "DISTINCT");
4529   }
4530 
4531   /* If there is an ORDER BY clause, then we need to sort the results
4532   ** and send them to the callback one by one.
4533   */
4534   if( pOrderBy ){
4535     explainTempTable(pParse, "ORDER BY");
4536     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4537   }
4538 
4539   /* Jump here to skip this query
4540   */
4541   sqlite3VdbeResolveLabel(v, iEnd);
4542 
4543   /* The SELECT was successfully coded.   Set the return code to 0
4544   ** to indicate no errors.
4545   */
4546   rc = 0;
4547 
4548   /* Control jumps to here if an error is encountered above, or upon
4549   ** successful coding of the SELECT.
4550   */
4551 select_end:
4552   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4553 
4554   /* Identify column names if results of the SELECT are to be output.
4555   */
4556   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4557     generateColumnNames(pParse, pTabList, pEList);
4558   }
4559 
4560   sqlite3DbFree(db, sAggInfo.aCol);
4561   sqlite3DbFree(db, sAggInfo.aFunc);
4562   return rc;
4563 }
4564 
4565 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
4566 /*
4567 ** Generate a human-readable description of a the Select object.
4568 */
4569 static void explainOneSelect(Vdbe *pVdbe, Select *p){
4570   sqlite3ExplainPrintf(pVdbe, "SELECT ");
4571   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
4572     if( p->selFlags & SF_Distinct ){
4573       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
4574     }
4575     if( p->selFlags & SF_Aggregate ){
4576       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
4577     }
4578     sqlite3ExplainNL(pVdbe);
4579     sqlite3ExplainPrintf(pVdbe, "   ");
4580   }
4581   sqlite3ExplainExprList(pVdbe, p->pEList);
4582   sqlite3ExplainNL(pVdbe);
4583   if( p->pSrc && p->pSrc->nSrc ){
4584     int i;
4585     sqlite3ExplainPrintf(pVdbe, "FROM ");
4586     sqlite3ExplainPush(pVdbe);
4587     for(i=0; i<p->pSrc->nSrc; i++){
4588       struct SrcList_item *pItem = &p->pSrc->a[i];
4589       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
4590       if( pItem->pSelect ){
4591         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
4592         if( pItem->pTab ){
4593           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
4594         }
4595       }else if( pItem->zName ){
4596         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
4597       }
4598       if( pItem->zAlias ){
4599         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
4600       }
4601       if( pItem->jointype & JT_LEFT ){
4602         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
4603       }
4604       sqlite3ExplainNL(pVdbe);
4605     }
4606     sqlite3ExplainPop(pVdbe);
4607   }
4608   if( p->pWhere ){
4609     sqlite3ExplainPrintf(pVdbe, "WHERE ");
4610     sqlite3ExplainExpr(pVdbe, p->pWhere);
4611     sqlite3ExplainNL(pVdbe);
4612   }
4613   if( p->pGroupBy ){
4614     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
4615     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
4616     sqlite3ExplainNL(pVdbe);
4617   }
4618   if( p->pHaving ){
4619     sqlite3ExplainPrintf(pVdbe, "HAVING ");
4620     sqlite3ExplainExpr(pVdbe, p->pHaving);
4621     sqlite3ExplainNL(pVdbe);
4622   }
4623   if( p->pOrderBy ){
4624     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
4625     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
4626     sqlite3ExplainNL(pVdbe);
4627   }
4628   if( p->pLimit ){
4629     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
4630     sqlite3ExplainExpr(pVdbe, p->pLimit);
4631     sqlite3ExplainNL(pVdbe);
4632   }
4633   if( p->pOffset ){
4634     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
4635     sqlite3ExplainExpr(pVdbe, p->pOffset);
4636     sqlite3ExplainNL(pVdbe);
4637   }
4638 }
4639 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
4640   if( p==0 ){
4641     sqlite3ExplainPrintf(pVdbe, "(null-select)");
4642     return;
4643   }
4644   while( p->pPrior ) p = p->pPrior;
4645   sqlite3ExplainPush(pVdbe);
4646   while( p ){
4647     explainOneSelect(pVdbe, p);
4648     p = p->pNext;
4649     if( p==0 ) break;
4650     sqlite3ExplainNL(pVdbe);
4651     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
4652   }
4653   sqlite3ExplainPrintf(pVdbe, "END");
4654   sqlite3ExplainPop(pVdbe);
4655 }
4656 
4657 /* End of the structure debug printing code
4658 *****************************************************************************/
4659 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
4660