xref: /sqlite-3.40.0/src/select.c (revision 8718f0b6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88 #ifndef SQLITE_OMIT_WINDOWFUNC
89     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
90       sqlite3WindowListDelete(db, p->pWinDefn);
91     }
92 #endif
93     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94     if( bFree ) sqlite3DbFreeNN(db, p);
95     p = pPrior;
96     bFree = 1;
97   }
98 }
99 
100 /*
101 ** Initialize a SelectDest structure.
102 */
103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
104   pDest->eDest = (u8)eDest;
105   pDest->iSDParm = iParm;
106   pDest->iSDParm2 = 0;
107   pDest->zAffSdst = 0;
108   pDest->iSdst = 0;
109   pDest->nSdst = 0;
110 }
111 
112 
113 /*
114 ** Allocate a new Select structure and return a pointer to that
115 ** structure.
116 */
117 Select *sqlite3SelectNew(
118   Parse *pParse,        /* Parsing context */
119   ExprList *pEList,     /* which columns to include in the result */
120   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
121   Expr *pWhere,         /* the WHERE clause */
122   ExprList *pGroupBy,   /* the GROUP BY clause */
123   Expr *pHaving,        /* the HAVING clause */
124   ExprList *pOrderBy,   /* the ORDER BY clause */
125   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
126   Expr *pLimit          /* LIMIT value.  NULL means not used */
127 ){
128   Select *pNew, *pAllocated;
129   Select standin;
130   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
131   if( pNew==0 ){
132     assert( pParse->db->mallocFailed );
133     pNew = &standin;
134   }
135   if( pEList==0 ){
136     pEList = sqlite3ExprListAppend(pParse, 0,
137                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
138   }
139   pNew->pEList = pEList;
140   pNew->op = TK_SELECT;
141   pNew->selFlags = selFlags;
142   pNew->iLimit = 0;
143   pNew->iOffset = 0;
144   pNew->selId = ++pParse->nSelect;
145   pNew->addrOpenEphm[0] = -1;
146   pNew->addrOpenEphm[1] = -1;
147   pNew->nSelectRow = 0;
148   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
149   pNew->pSrc = pSrc;
150   pNew->pWhere = pWhere;
151   pNew->pGroupBy = pGroupBy;
152   pNew->pHaving = pHaving;
153   pNew->pOrderBy = pOrderBy;
154   pNew->pPrior = 0;
155   pNew->pNext = 0;
156   pNew->pLimit = pLimit;
157   pNew->pWith = 0;
158 #ifndef SQLITE_OMIT_WINDOWFUNC
159   pNew->pWin = 0;
160   pNew->pWinDefn = 0;
161 #endif
162   if( pParse->db->mallocFailed ) {
163     clearSelect(pParse->db, pNew, pNew!=&standin);
164     pAllocated = 0;
165   }else{
166     assert( pNew->pSrc!=0 || pParse->nErr>0 );
167   }
168   return pAllocated;
169 }
170 
171 
172 /*
173 ** Delete the given Select structure and all of its substructures.
174 */
175 void sqlite3SelectDelete(sqlite3 *db, Select *p){
176   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
177 }
178 
179 /*
180 ** Return a pointer to the right-most SELECT statement in a compound.
181 */
182 static Select *findRightmost(Select *p){
183   while( p->pNext ) p = p->pNext;
184   return p;
185 }
186 
187 /*
188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
189 ** type of join.  Return an integer constant that expresses that type
190 ** in terms of the following bit values:
191 **
192 **     JT_INNER
193 **     JT_CROSS
194 **     JT_OUTER
195 **     JT_NATURAL
196 **     JT_LEFT
197 **     JT_RIGHT
198 **
199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
200 **
201 ** If an illegal or unsupported join type is seen, then still return
202 ** a join type, but put an error in the pParse structure.
203 */
204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
205   int jointype = 0;
206   Token *apAll[3];
207   Token *p;
208                              /*   0123456789 123456789 123456789 123 */
209   static const char zKeyText[] = "naturaleftouterightfullinnercross";
210   static const struct {
211     u8 i;        /* Beginning of keyword text in zKeyText[] */
212     u8 nChar;    /* Length of the keyword in characters */
213     u8 code;     /* Join type mask */
214   } aKeyword[] = {
215     /* natural */ { 0,  7, JT_NATURAL                },
216     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
217     /* outer   */ { 10, 5, JT_OUTER                  },
218     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
219     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
220     /* inner   */ { 23, 5, JT_INNER                  },
221     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
222   };
223   int i, j;
224   apAll[0] = pA;
225   apAll[1] = pB;
226   apAll[2] = pC;
227   for(i=0; i<3 && apAll[i]; i++){
228     p = apAll[i];
229     for(j=0; j<ArraySize(aKeyword); j++){
230       if( p->n==aKeyword[j].nChar
231           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
232         jointype |= aKeyword[j].code;
233         break;
234       }
235     }
236     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
237     if( j>=ArraySize(aKeyword) ){
238       jointype |= JT_ERROR;
239       break;
240     }
241   }
242   if(
243      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
244      (jointype & JT_ERROR)!=0
245   ){
246     const char *zSp = " ";
247     assert( pB!=0 );
248     if( pC==0 ){ zSp++; }
249     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
250        "%T %T%s%T", pA, pB, zSp, pC);
251     jointype = JT_INNER;
252   }else if( (jointype & JT_OUTER)!=0
253          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
254     sqlite3ErrorMsg(pParse,
255       "RIGHT and FULL OUTER JOINs are not currently supported");
256     jointype = JT_INNER;
257   }
258   return jointype;
259 }
260 
261 /*
262 ** Return the index of a column in a table.  Return -1 if the column
263 ** is not contained in the table.
264 */
265 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
266   int i;
267   u8 h = sqlite3StrIHash(zCol);
268   Column *pCol;
269   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
270     if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
271   }
272   return -1;
273 }
274 
275 /*
276 ** Search the first N tables in pSrc, from left to right, looking for a
277 ** table that has a column named zCol.
278 **
279 ** When found, set *piTab and *piCol to the table index and column index
280 ** of the matching column and return TRUE.
281 **
282 ** If not found, return FALSE.
283 */
284 static int tableAndColumnIndex(
285   SrcList *pSrc,       /* Array of tables to search */
286   int N,               /* Number of tables in pSrc->a[] to search */
287   const char *zCol,    /* Name of the column we are looking for */
288   int *piTab,          /* Write index of pSrc->a[] here */
289   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
290   int bIgnoreHidden    /* True to ignore hidden columns */
291 ){
292   int i;               /* For looping over tables in pSrc */
293   int iCol;            /* Index of column matching zCol */
294 
295   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
296   for(i=0; i<N; i++){
297     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
298     if( iCol>=0
299      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
300     ){
301       if( piTab ){
302         *piTab = i;
303         *piCol = iCol;
304       }
305       return 1;
306     }
307   }
308   return 0;
309 }
310 
311 /*
312 ** This function is used to add terms implied by JOIN syntax to the
313 ** WHERE clause expression of a SELECT statement. The new term, which
314 ** is ANDed with the existing WHERE clause, is of the form:
315 **
316 **    (tab1.col1 = tab2.col2)
317 **
318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
320 ** column iColRight of tab2.
321 */
322 static void addWhereTerm(
323   Parse *pParse,                  /* Parsing context */
324   SrcList *pSrc,                  /* List of tables in FROM clause */
325   int iLeft,                      /* Index of first table to join in pSrc */
326   int iColLeft,                   /* Index of column in first table */
327   int iRight,                     /* Index of second table in pSrc */
328   int iColRight,                  /* Index of column in second table */
329   int isOuterJoin,                /* True if this is an OUTER join */
330   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
331 ){
332   sqlite3 *db = pParse->db;
333   Expr *pE1;
334   Expr *pE2;
335   Expr *pEq;
336 
337   assert( iLeft<iRight );
338   assert( pSrc->nSrc>iRight );
339   assert( pSrc->a[iLeft].pTab );
340   assert( pSrc->a[iRight].pTab );
341 
342   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
343   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
344 
345   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
346   if( pEq && isOuterJoin ){
347     ExprSetProperty(pEq, EP_FromJoin);
348     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
349     ExprSetVVAProperty(pEq, EP_NoReduce);
350     pEq->iRightJoinTable = pE2->iTable;
351   }
352   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
353 }
354 
355 /*
356 ** Set the EP_FromJoin property on all terms of the given expression.
357 ** And set the Expr.iRightJoinTable to iTable for every term in the
358 ** expression.
359 **
360 ** The EP_FromJoin property is used on terms of an expression to tell
361 ** the LEFT OUTER JOIN processing logic that this term is part of the
362 ** join restriction specified in the ON or USING clause and not a part
363 ** of the more general WHERE clause.  These terms are moved over to the
364 ** WHERE clause during join processing but we need to remember that they
365 ** originated in the ON or USING clause.
366 **
367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
368 ** expression depends on table iRightJoinTable even if that table is not
369 ** explicitly mentioned in the expression.  That information is needed
370 ** for cases like this:
371 **
372 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
373 **
374 ** The where clause needs to defer the handling of the t1.x=5
375 ** term until after the t2 loop of the join.  In that way, a
376 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
377 ** defer the handling of t1.x=5, it will be processed immediately
378 ** after the t1 loop and rows with t1.x!=5 will never appear in
379 ** the output, which is incorrect.
380 */
381 void sqlite3SetJoinExpr(Expr *p, int iTable){
382   while( p ){
383     ExprSetProperty(p, EP_FromJoin);
384     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
385     ExprSetVVAProperty(p, EP_NoReduce);
386     p->iRightJoinTable = iTable;
387     if( p->op==TK_FUNCTION && p->x.pList ){
388       int i;
389       for(i=0; i<p->x.pList->nExpr; i++){
390         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
391       }
392     }
393     sqlite3SetJoinExpr(p->pLeft, iTable);
394     p = p->pRight;
395   }
396 }
397 
398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
400 ** an ordinary term that omits the EP_FromJoin mark.
401 **
402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
403 */
404 static void unsetJoinExpr(Expr *p, int iTable){
405   while( p ){
406     if( ExprHasProperty(p, EP_FromJoin)
407      && (iTable<0 || p->iRightJoinTable==iTable) ){
408       ExprClearProperty(p, EP_FromJoin);
409     }
410     if( p->op==TK_COLUMN && p->iTable==iTable ){
411       ExprClearProperty(p, EP_CanBeNull);
412     }
413     if( p->op==TK_FUNCTION && p->x.pList ){
414       int i;
415       for(i=0; i<p->x.pList->nExpr; i++){
416         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
417       }
418     }
419     unsetJoinExpr(p->pLeft, iTable);
420     p = p->pRight;
421   }
422 }
423 
424 /*
425 ** This routine processes the join information for a SELECT statement.
426 ** ON and USING clauses are converted into extra terms of the WHERE clause.
427 ** NATURAL joins also create extra WHERE clause terms.
428 **
429 ** The terms of a FROM clause are contained in the Select.pSrc structure.
430 ** The left most table is the first entry in Select.pSrc.  The right-most
431 ** table is the last entry.  The join operator is held in the entry to
432 ** the left.  Thus entry 0 contains the join operator for the join between
433 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
434 ** also attached to the left entry.
435 **
436 ** This routine returns the number of errors encountered.
437 */
438 static int sqliteProcessJoin(Parse *pParse, Select *p){
439   SrcList *pSrc;                  /* All tables in the FROM clause */
440   int i, j;                       /* Loop counters */
441   SrcItem *pLeft;                 /* Left table being joined */
442   SrcItem *pRight;                /* Right table being joined */
443 
444   pSrc = p->pSrc;
445   pLeft = &pSrc->a[0];
446   pRight = &pLeft[1];
447   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
448     Table *pRightTab = pRight->pTab;
449     int isOuter;
450 
451     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
452     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
453 
454     /* When the NATURAL keyword is present, add WHERE clause terms for
455     ** every column that the two tables have in common.
456     */
457     if( pRight->fg.jointype & JT_NATURAL ){
458       if( pRight->pOn || pRight->pUsing ){
459         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
460            "an ON or USING clause", 0);
461         return 1;
462       }
463       for(j=0; j<pRightTab->nCol; j++){
464         char *zName;   /* Name of column in the right table */
465         int iLeft;     /* Matching left table */
466         int iLeftCol;  /* Matching column in the left table */
467 
468         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
469         zName = pRightTab->aCol[j].zName;
470         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
471           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
472                 isOuter, &p->pWhere);
473         }
474       }
475     }
476 
477     /* Disallow both ON and USING clauses in the same join
478     */
479     if( pRight->pOn && pRight->pUsing ){
480       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
481         "clauses in the same join");
482       return 1;
483     }
484 
485     /* Add the ON clause to the end of the WHERE clause, connected by
486     ** an AND operator.
487     */
488     if( pRight->pOn ){
489       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
490       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
491       pRight->pOn = 0;
492     }
493 
494     /* Create extra terms on the WHERE clause for each column named
495     ** in the USING clause.  Example: If the two tables to be joined are
496     ** A and B and the USING clause names X, Y, and Z, then add this
497     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
498     ** Report an error if any column mentioned in the USING clause is
499     ** not contained in both tables to be joined.
500     */
501     if( pRight->pUsing ){
502       IdList *pList = pRight->pUsing;
503       for(j=0; j<pList->nId; j++){
504         char *zName;     /* Name of the term in the USING clause */
505         int iLeft;       /* Table on the left with matching column name */
506         int iLeftCol;    /* Column number of matching column on the left */
507         int iRightCol;   /* Column number of matching column on the right */
508 
509         zName = pList->a[j].zName;
510         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
511         if( iRightCol<0
512          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
513         ){
514           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
515             "not present in both tables", zName);
516           return 1;
517         }
518         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
519                      isOuter, &p->pWhere);
520       }
521     }
522   }
523   return 0;
524 }
525 
526 /*
527 ** An instance of this object holds information (beyond pParse and pSelect)
528 ** needed to load the next result row that is to be added to the sorter.
529 */
530 typedef struct RowLoadInfo RowLoadInfo;
531 struct RowLoadInfo {
532   int regResult;               /* Store results in array of registers here */
533   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
534 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
535   ExprList *pExtra;            /* Extra columns needed by sorter refs */
536   int regExtraResult;          /* Where to load the extra columns */
537 #endif
538 };
539 
540 /*
541 ** This routine does the work of loading query data into an array of
542 ** registers so that it can be added to the sorter.
543 */
544 static void innerLoopLoadRow(
545   Parse *pParse,             /* Statement under construction */
546   Select *pSelect,           /* The query being coded */
547   RowLoadInfo *pInfo         /* Info needed to complete the row load */
548 ){
549   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
550                           0, pInfo->ecelFlags);
551 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
552   if( pInfo->pExtra ){
553     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
554     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
555   }
556 #endif
557 }
558 
559 /*
560 ** Code the OP_MakeRecord instruction that generates the entry to be
561 ** added into the sorter.
562 **
563 ** Return the register in which the result is stored.
564 */
565 static int makeSorterRecord(
566   Parse *pParse,
567   SortCtx *pSort,
568   Select *pSelect,
569   int regBase,
570   int nBase
571 ){
572   int nOBSat = pSort->nOBSat;
573   Vdbe *v = pParse->pVdbe;
574   int regOut = ++pParse->nMem;
575   if( pSort->pDeferredRowLoad ){
576     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
577   }
578   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
579   return regOut;
580 }
581 
582 /*
583 ** Generate code that will push the record in registers regData
584 ** through regData+nData-1 onto the sorter.
585 */
586 static void pushOntoSorter(
587   Parse *pParse,         /* Parser context */
588   SortCtx *pSort,        /* Information about the ORDER BY clause */
589   Select *pSelect,       /* The whole SELECT statement */
590   int regData,           /* First register holding data to be sorted */
591   int regOrigData,       /* First register holding data before packing */
592   int nData,             /* Number of elements in the regData data array */
593   int nPrefixReg         /* No. of reg prior to regData available for use */
594 ){
595   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
596   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
597   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
598   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
599   int regBase;                                     /* Regs for sorter record */
600   int regRecord = 0;                               /* Assembled sorter record */
601   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
602   int op;                            /* Opcode to add sorter record to sorter */
603   int iLimit;                        /* LIMIT counter */
604   int iSkip = 0;                     /* End of the sorter insert loop */
605 
606   assert( bSeq==0 || bSeq==1 );
607 
608   /* Three cases:
609   **   (1) The data to be sorted has already been packed into a Record
610   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
611   **       will be completely unrelated to regOrigData.
612   **   (2) All output columns are included in the sort record.  In that
613   **       case regData==regOrigData.
614   **   (3) Some output columns are omitted from the sort record due to
615   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
616   **       SQLITE_ECEL_OMITREF optimization, or due to the
617   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
618   **       regOrigData is 0 to prevent this routine from trying to copy
619   **       values that might not yet exist.
620   */
621   assert( nData==1 || regData==regOrigData || regOrigData==0 );
622 
623   if( nPrefixReg ){
624     assert( nPrefixReg==nExpr+bSeq );
625     regBase = regData - nPrefixReg;
626   }else{
627     regBase = pParse->nMem + 1;
628     pParse->nMem += nBase;
629   }
630   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
631   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
632   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
633   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
634                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
635   if( bSeq ){
636     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
637   }
638   if( nPrefixReg==0 && nData>0 ){
639     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
640   }
641   if( nOBSat>0 ){
642     int regPrevKey;   /* The first nOBSat columns of the previous row */
643     int addrFirst;    /* Address of the OP_IfNot opcode */
644     int addrJmp;      /* Address of the OP_Jump opcode */
645     VdbeOp *pOp;      /* Opcode that opens the sorter */
646     int nKey;         /* Number of sorting key columns, including OP_Sequence */
647     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
648 
649     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
650     regPrevKey = pParse->nMem+1;
651     pParse->nMem += pSort->nOBSat;
652     nKey = nExpr - pSort->nOBSat + bSeq;
653     if( bSeq ){
654       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
655     }else{
656       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
657     }
658     VdbeCoverage(v);
659     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
660     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
661     if( pParse->db->mallocFailed ) return;
662     pOp->p2 = nKey + nData;
663     pKI = pOp->p4.pKeyInfo;
664     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
665     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
666     testcase( pKI->nAllField > pKI->nKeyField+2 );
667     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
668                                            pKI->nAllField-pKI->nKeyField-1);
669     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
670     addrJmp = sqlite3VdbeCurrentAddr(v);
671     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
672     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
673     pSort->regReturn = ++pParse->nMem;
674     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
675     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
676     if( iLimit ){
677       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
678       VdbeCoverage(v);
679     }
680     sqlite3VdbeJumpHere(v, addrFirst);
681     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
682     sqlite3VdbeJumpHere(v, addrJmp);
683   }
684   if( iLimit ){
685     /* At this point the values for the new sorter entry are stored
686     ** in an array of registers. They need to be composed into a record
687     ** and inserted into the sorter if either (a) there are currently
688     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
689     ** the largest record currently in the sorter. If (b) is true and there
690     ** are already LIMIT+OFFSET items in the sorter, delete the largest
691     ** entry before inserting the new one. This way there are never more
692     ** than LIMIT+OFFSET items in the sorter.
693     **
694     ** If the new record does not need to be inserted into the sorter,
695     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
696     ** value is not zero, then it is a label of where to jump.  Otherwise,
697     ** just bypass the row insert logic.  See the header comment on the
698     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
699     */
700     int iCsr = pSort->iECursor;
701     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
702     VdbeCoverage(v);
703     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
704     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
705                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
706     VdbeCoverage(v);
707     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
708   }
709   if( regRecord==0 ){
710     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
711   }
712   if( pSort->sortFlags & SORTFLAG_UseSorter ){
713     op = OP_SorterInsert;
714   }else{
715     op = OP_IdxInsert;
716   }
717   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
718                        regBase+nOBSat, nBase-nOBSat);
719   if( iSkip ){
720     sqlite3VdbeChangeP2(v, iSkip,
721          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
722   }
723 }
724 
725 /*
726 ** Add code to implement the OFFSET
727 */
728 static void codeOffset(
729   Vdbe *v,          /* Generate code into this VM */
730   int iOffset,      /* Register holding the offset counter */
731   int iContinue     /* Jump here to skip the current record */
732 ){
733   if( iOffset>0 ){
734     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
735     VdbeComment((v, "OFFSET"));
736   }
737 }
738 
739 /*
740 ** Add code that will check to make sure the N registers starting at iMem
741 ** form a distinct entry.  iTab is a sorting index that holds previously
742 ** seen combinations of the N values.  A new entry is made in iTab
743 ** if the current N values are new.
744 **
745 ** A jump to addrRepeat is made and the N+1 values are popped from the
746 ** stack if the top N elements are not distinct.
747 */
748 static void codeDistinct(
749   Parse *pParse,     /* Parsing and code generating context */
750   int iTab,          /* A sorting index used to test for distinctness */
751   int addrRepeat,    /* Jump to here if not distinct */
752   int N,             /* Number of elements */
753   int iMem           /* First element */
754 ){
755   Vdbe *v;
756   int r1;
757 
758   v = pParse->pVdbe;
759   r1 = sqlite3GetTempReg(pParse);
760   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
761   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
762   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
763   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
764   sqlite3ReleaseTempReg(pParse, r1);
765 }
766 
767 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
768 /*
769 ** This function is called as part of inner-loop generation for a SELECT
770 ** statement with an ORDER BY that is not optimized by an index. It
771 ** determines the expressions, if any, that the sorter-reference
772 ** optimization should be used for. The sorter-reference optimization
773 ** is used for SELECT queries like:
774 **
775 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
776 **
777 ** If the optimization is used for expression "bigblob", then instead of
778 ** storing values read from that column in the sorter records, the PK of
779 ** the row from table t1 is stored instead. Then, as records are extracted from
780 ** the sorter to return to the user, the required value of bigblob is
781 ** retrieved directly from table t1. If the values are very large, this
782 ** can be more efficient than storing them directly in the sorter records.
783 **
784 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
785 ** for which the sorter-reference optimization should be enabled.
786 ** Additionally, the pSort->aDefer[] array is populated with entries
787 ** for all cursors required to evaluate all selected expressions. Finally.
788 ** output variable (*ppExtra) is set to an expression list containing
789 ** expressions for all extra PK values that should be stored in the
790 ** sorter records.
791 */
792 static void selectExprDefer(
793   Parse *pParse,                  /* Leave any error here */
794   SortCtx *pSort,                 /* Sorter context */
795   ExprList *pEList,               /* Expressions destined for sorter */
796   ExprList **ppExtra              /* Expressions to append to sorter record */
797 ){
798   int i;
799   int nDefer = 0;
800   ExprList *pExtra = 0;
801   for(i=0; i<pEList->nExpr; i++){
802     struct ExprList_item *pItem = &pEList->a[i];
803     if( pItem->u.x.iOrderByCol==0 ){
804       Expr *pExpr = pItem->pExpr;
805       Table *pTab = pExpr->y.pTab;
806       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
807        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
808       ){
809         int j;
810         for(j=0; j<nDefer; j++){
811           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
812         }
813         if( j==nDefer ){
814           if( nDefer==ArraySize(pSort->aDefer) ){
815             continue;
816           }else{
817             int nKey = 1;
818             int k;
819             Index *pPk = 0;
820             if( !HasRowid(pTab) ){
821               pPk = sqlite3PrimaryKeyIndex(pTab);
822               nKey = pPk->nKeyCol;
823             }
824             for(k=0; k<nKey; k++){
825               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
826               if( pNew ){
827                 pNew->iTable = pExpr->iTable;
828                 pNew->y.pTab = pExpr->y.pTab;
829                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
830                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
831               }
832             }
833             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
834             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
835             pSort->aDefer[nDefer].nKey = nKey;
836             nDefer++;
837           }
838         }
839         pItem->bSorterRef = 1;
840       }
841     }
842   }
843   pSort->nDefer = (u8)nDefer;
844   *ppExtra = pExtra;
845 }
846 #endif
847 
848 /*
849 ** This routine generates the code for the inside of the inner loop
850 ** of a SELECT.
851 **
852 ** If srcTab is negative, then the p->pEList expressions
853 ** are evaluated in order to get the data for this row.  If srcTab is
854 ** zero or more, then data is pulled from srcTab and p->pEList is used only
855 ** to get the number of columns and the collation sequence for each column.
856 */
857 static void selectInnerLoop(
858   Parse *pParse,          /* The parser context */
859   Select *p,              /* The complete select statement being coded */
860   int srcTab,             /* Pull data from this table if non-negative */
861   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
862   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
863   SelectDest *pDest,      /* How to dispose of the results */
864   int iContinue,          /* Jump here to continue with next row */
865   int iBreak              /* Jump here to break out of the inner loop */
866 ){
867   Vdbe *v = pParse->pVdbe;
868   int i;
869   int hasDistinct;            /* True if the DISTINCT keyword is present */
870   int eDest = pDest->eDest;   /* How to dispose of results */
871   int iParm = pDest->iSDParm; /* First argument to disposal method */
872   int nResultCol;             /* Number of result columns */
873   int nPrefixReg = 0;         /* Number of extra registers before regResult */
874   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
875 
876   /* Usually, regResult is the first cell in an array of memory cells
877   ** containing the current result row. In this case regOrig is set to the
878   ** same value. However, if the results are being sent to the sorter, the
879   ** values for any expressions that are also part of the sort-key are omitted
880   ** from this array. In this case regOrig is set to zero.  */
881   int regResult;              /* Start of memory holding current results */
882   int regOrig;                /* Start of memory holding full result (or 0) */
883 
884   assert( v );
885   assert( p->pEList!=0 );
886   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
887   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
888   if( pSort==0 && !hasDistinct ){
889     assert( iContinue!=0 );
890     codeOffset(v, p->iOffset, iContinue);
891   }
892 
893   /* Pull the requested columns.
894   */
895   nResultCol = p->pEList->nExpr;
896 
897   if( pDest->iSdst==0 ){
898     if( pSort ){
899       nPrefixReg = pSort->pOrderBy->nExpr;
900       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
901       pParse->nMem += nPrefixReg;
902     }
903     pDest->iSdst = pParse->nMem+1;
904     pParse->nMem += nResultCol;
905   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
906     /* This is an error condition that can result, for example, when a SELECT
907     ** on the right-hand side of an INSERT contains more result columns than
908     ** there are columns in the table on the left.  The error will be caught
909     ** and reported later.  But we need to make sure enough memory is allocated
910     ** to avoid other spurious errors in the meantime. */
911     pParse->nMem += nResultCol;
912   }
913   pDest->nSdst = nResultCol;
914   regOrig = regResult = pDest->iSdst;
915   if( srcTab>=0 ){
916     for(i=0; i<nResultCol; i++){
917       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
918       VdbeComment((v, "%s", p->pEList->a[i].zEName));
919     }
920   }else if( eDest!=SRT_Exists ){
921 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
922     ExprList *pExtra = 0;
923 #endif
924     /* If the destination is an EXISTS(...) expression, the actual
925     ** values returned by the SELECT are not required.
926     */
927     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
928     ExprList *pEList;
929     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
930       ecelFlags = SQLITE_ECEL_DUP;
931     }else{
932       ecelFlags = 0;
933     }
934     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
935       /* For each expression in p->pEList that is a copy of an expression in
936       ** the ORDER BY clause (pSort->pOrderBy), set the associated
937       ** iOrderByCol value to one more than the index of the ORDER BY
938       ** expression within the sort-key that pushOntoSorter() will generate.
939       ** This allows the p->pEList field to be omitted from the sorted record,
940       ** saving space and CPU cycles.  */
941       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
942 
943       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
944         int j;
945         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
946           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
947         }
948       }
949 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
950       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
951       if( pExtra && pParse->db->mallocFailed==0 ){
952         /* If there are any extra PK columns to add to the sorter records,
953         ** allocate extra memory cells and adjust the OpenEphemeral
954         ** instruction to account for the larger records. This is only
955         ** required if there are one or more WITHOUT ROWID tables with
956         ** composite primary keys in the SortCtx.aDefer[] array.  */
957         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
958         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
959         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
960         pParse->nMem += pExtra->nExpr;
961       }
962 #endif
963 
964       /* Adjust nResultCol to account for columns that are omitted
965       ** from the sorter by the optimizations in this branch */
966       pEList = p->pEList;
967       for(i=0; i<pEList->nExpr; i++){
968         if( pEList->a[i].u.x.iOrderByCol>0
969 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
970          || pEList->a[i].bSorterRef
971 #endif
972         ){
973           nResultCol--;
974           regOrig = 0;
975         }
976       }
977 
978       testcase( regOrig );
979       testcase( eDest==SRT_Set );
980       testcase( eDest==SRT_Mem );
981       testcase( eDest==SRT_Coroutine );
982       testcase( eDest==SRT_Output );
983       assert( eDest==SRT_Set || eDest==SRT_Mem
984            || eDest==SRT_Coroutine || eDest==SRT_Output
985            || eDest==SRT_Upfrom );
986     }
987     sRowLoadInfo.regResult = regResult;
988     sRowLoadInfo.ecelFlags = ecelFlags;
989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
990     sRowLoadInfo.pExtra = pExtra;
991     sRowLoadInfo.regExtraResult = regResult + nResultCol;
992     if( pExtra ) nResultCol += pExtra->nExpr;
993 #endif
994     if( p->iLimit
995      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
996      && nPrefixReg>0
997     ){
998       assert( pSort!=0 );
999       assert( hasDistinct==0 );
1000       pSort->pDeferredRowLoad = &sRowLoadInfo;
1001       regOrig = 0;
1002     }else{
1003       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1004     }
1005   }
1006 
1007   /* If the DISTINCT keyword was present on the SELECT statement
1008   ** and this row has been seen before, then do not make this row
1009   ** part of the result.
1010   */
1011   if( hasDistinct ){
1012     switch( pDistinct->eTnctType ){
1013       case WHERE_DISTINCT_ORDERED: {
1014         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1015         int iJump;              /* Jump destination */
1016         int regPrev;            /* Previous row content */
1017 
1018         /* Allocate space for the previous row */
1019         regPrev = pParse->nMem+1;
1020         pParse->nMem += nResultCol;
1021 
1022         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1023         ** sets the MEM_Cleared bit on the first register of the
1024         ** previous value.  This will cause the OP_Ne below to always
1025         ** fail on the first iteration of the loop even if the first
1026         ** row is all NULLs.
1027         */
1028         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1029         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1030         pOp->opcode = OP_Null;
1031         pOp->p1 = 1;
1032         pOp->p2 = regPrev;
1033         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1034 
1035         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1036         for(i=0; i<nResultCol; i++){
1037           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1038           if( i<nResultCol-1 ){
1039             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1040             VdbeCoverage(v);
1041           }else{
1042             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1043             VdbeCoverage(v);
1044            }
1045           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1046           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1047         }
1048         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1049         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1050         break;
1051       }
1052 
1053       case WHERE_DISTINCT_UNIQUE: {
1054         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1055         break;
1056       }
1057 
1058       default: {
1059         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1060         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1061                      regResult);
1062         break;
1063       }
1064     }
1065     if( pSort==0 ){
1066       codeOffset(v, p->iOffset, iContinue);
1067     }
1068   }
1069 
1070   switch( eDest ){
1071     /* In this mode, write each query result to the key of the temporary
1072     ** table iParm.
1073     */
1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1075     case SRT_Union: {
1076       int r1;
1077       r1 = sqlite3GetTempReg(pParse);
1078       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1079       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1080       sqlite3ReleaseTempReg(pParse, r1);
1081       break;
1082     }
1083 
1084     /* Construct a record from the query result, but instead of
1085     ** saving that record, use it as a key to delete elements from
1086     ** the temporary table iParm.
1087     */
1088     case SRT_Except: {
1089       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1090       break;
1091     }
1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1093 
1094     /* Store the result as data using a unique key.
1095     */
1096     case SRT_Fifo:
1097     case SRT_DistFifo:
1098     case SRT_Table:
1099     case SRT_EphemTab: {
1100       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1101       testcase( eDest==SRT_Table );
1102       testcase( eDest==SRT_EphemTab );
1103       testcase( eDest==SRT_Fifo );
1104       testcase( eDest==SRT_DistFifo );
1105       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1106 #ifndef SQLITE_OMIT_CTE
1107       if( eDest==SRT_DistFifo ){
1108         /* If the destination is DistFifo, then cursor (iParm+1) is open
1109         ** on an ephemeral index. If the current row is already present
1110         ** in the index, do not write it to the output. If not, add the
1111         ** current row to the index and proceed with writing it to the
1112         ** output table as well.  */
1113         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1114         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1115         VdbeCoverage(v);
1116         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1117         assert( pSort==0 );
1118       }
1119 #endif
1120       if( pSort ){
1121         assert( regResult==regOrig );
1122         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1123       }else{
1124         int r2 = sqlite3GetTempReg(pParse);
1125         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1126         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1127         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1128         sqlite3ReleaseTempReg(pParse, r2);
1129       }
1130       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1131       break;
1132     }
1133 
1134     case SRT_Upfrom: {
1135       if( pSort ){
1136         pushOntoSorter(
1137             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1138       }else{
1139         int i2 = pDest->iSDParm2;
1140         int r1 = sqlite3GetTempReg(pParse);
1141 
1142         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1143         ** might still be trying to return one row, because that is what
1144         ** aggregates do.  Don't record that empty row in the output table. */
1145         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1146 
1147         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1148                           regResult+(i2<0), nResultCol-(i2<0), r1);
1149         if( i2<0 ){
1150           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1151         }else{
1152           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1153         }
1154       }
1155       break;
1156     }
1157 
1158 #ifndef SQLITE_OMIT_SUBQUERY
1159     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1160     ** then there should be a single item on the stack.  Write this
1161     ** item into the set table with bogus data.
1162     */
1163     case SRT_Set: {
1164       if( pSort ){
1165         /* At first glance you would think we could optimize out the
1166         ** ORDER BY in this case since the order of entries in the set
1167         ** does not matter.  But there might be a LIMIT clause, in which
1168         ** case the order does matter */
1169         pushOntoSorter(
1170             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1171       }else{
1172         int r1 = sqlite3GetTempReg(pParse);
1173         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1174         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1175             r1, pDest->zAffSdst, nResultCol);
1176         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1177         sqlite3ReleaseTempReg(pParse, r1);
1178       }
1179       break;
1180     }
1181 
1182 
1183     /* If any row exist in the result set, record that fact and abort.
1184     */
1185     case SRT_Exists: {
1186       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1187       /* The LIMIT clause will terminate the loop for us */
1188       break;
1189     }
1190 
1191     /* If this is a scalar select that is part of an expression, then
1192     ** store the results in the appropriate memory cell or array of
1193     ** memory cells and break out of the scan loop.
1194     */
1195     case SRT_Mem: {
1196       if( pSort ){
1197         assert( nResultCol<=pDest->nSdst );
1198         pushOntoSorter(
1199             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1200       }else{
1201         assert( nResultCol==pDest->nSdst );
1202         assert( regResult==iParm );
1203         /* The LIMIT clause will jump out of the loop for us */
1204       }
1205       break;
1206     }
1207 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1208 
1209     case SRT_Coroutine:       /* Send data to a co-routine */
1210     case SRT_Output: {        /* Return the results */
1211       testcase( eDest==SRT_Coroutine );
1212       testcase( eDest==SRT_Output );
1213       if( pSort ){
1214         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1215                        nPrefixReg);
1216       }else if( eDest==SRT_Coroutine ){
1217         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1218       }else{
1219         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1220       }
1221       break;
1222     }
1223 
1224 #ifndef SQLITE_OMIT_CTE
1225     /* Write the results into a priority queue that is order according to
1226     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1227     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1228     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1229     ** final OP_Sequence column.  The last column is the record as a blob.
1230     */
1231     case SRT_DistQueue:
1232     case SRT_Queue: {
1233       int nKey;
1234       int r1, r2, r3;
1235       int addrTest = 0;
1236       ExprList *pSO;
1237       pSO = pDest->pOrderBy;
1238       assert( pSO );
1239       nKey = pSO->nExpr;
1240       r1 = sqlite3GetTempReg(pParse);
1241       r2 = sqlite3GetTempRange(pParse, nKey+2);
1242       r3 = r2+nKey+1;
1243       if( eDest==SRT_DistQueue ){
1244         /* If the destination is DistQueue, then cursor (iParm+1) is open
1245         ** on a second ephemeral index that holds all values every previously
1246         ** added to the queue. */
1247         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1248                                         regResult, nResultCol);
1249         VdbeCoverage(v);
1250       }
1251       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1252       if( eDest==SRT_DistQueue ){
1253         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1254         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1255       }
1256       for(i=0; i<nKey; i++){
1257         sqlite3VdbeAddOp2(v, OP_SCopy,
1258                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1259                           r2+i);
1260       }
1261       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1262       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1263       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1264       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1265       sqlite3ReleaseTempReg(pParse, r1);
1266       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1267       break;
1268     }
1269 #endif /* SQLITE_OMIT_CTE */
1270 
1271 
1272 
1273 #if !defined(SQLITE_OMIT_TRIGGER)
1274     /* Discard the results.  This is used for SELECT statements inside
1275     ** the body of a TRIGGER.  The purpose of such selects is to call
1276     ** user-defined functions that have side effects.  We do not care
1277     ** about the actual results of the select.
1278     */
1279     default: {
1280       assert( eDest==SRT_Discard );
1281       break;
1282     }
1283 #endif
1284   }
1285 
1286   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1287   ** there is a sorter, in which case the sorter has already limited
1288   ** the output for us.
1289   */
1290   if( pSort==0 && p->iLimit ){
1291     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1292   }
1293 }
1294 
1295 /*
1296 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1297 ** X extra columns.
1298 */
1299 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1300   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1301   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1302   if( p ){
1303     p->aSortFlags = (u8*)&p->aColl[N+X];
1304     p->nKeyField = (u16)N;
1305     p->nAllField = (u16)(N+X);
1306     p->enc = ENC(db);
1307     p->db = db;
1308     p->nRef = 1;
1309     memset(&p[1], 0, nExtra);
1310   }else{
1311     sqlite3OomFault(db);
1312   }
1313   return p;
1314 }
1315 
1316 /*
1317 ** Deallocate a KeyInfo object
1318 */
1319 void sqlite3KeyInfoUnref(KeyInfo *p){
1320   if( p ){
1321     assert( p->nRef>0 );
1322     p->nRef--;
1323     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1324   }
1325 }
1326 
1327 /*
1328 ** Make a new pointer to a KeyInfo object
1329 */
1330 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1331   if( p ){
1332     assert( p->nRef>0 );
1333     p->nRef++;
1334   }
1335   return p;
1336 }
1337 
1338 #ifdef SQLITE_DEBUG
1339 /*
1340 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1341 ** can only be changed if this is just a single reference to the object.
1342 **
1343 ** This routine is used only inside of assert() statements.
1344 */
1345 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1346 #endif /* SQLITE_DEBUG */
1347 
1348 /*
1349 ** Given an expression list, generate a KeyInfo structure that records
1350 ** the collating sequence for each expression in that expression list.
1351 **
1352 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1353 ** KeyInfo structure is appropriate for initializing a virtual index to
1354 ** implement that clause.  If the ExprList is the result set of a SELECT
1355 ** then the KeyInfo structure is appropriate for initializing a virtual
1356 ** index to implement a DISTINCT test.
1357 **
1358 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1359 ** function is responsible for seeing that this structure is eventually
1360 ** freed.
1361 */
1362 KeyInfo *sqlite3KeyInfoFromExprList(
1363   Parse *pParse,       /* Parsing context */
1364   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1365   int iStart,          /* Begin with this column of pList */
1366   int nExtra           /* Add this many extra columns to the end */
1367 ){
1368   int nExpr;
1369   KeyInfo *pInfo;
1370   struct ExprList_item *pItem;
1371   sqlite3 *db = pParse->db;
1372   int i;
1373 
1374   nExpr = pList->nExpr;
1375   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1376   if( pInfo ){
1377     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1378     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1379       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1380       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1381     }
1382   }
1383   return pInfo;
1384 }
1385 
1386 /*
1387 ** Name of the connection operator, used for error messages.
1388 */
1389 static const char *selectOpName(int id){
1390   char *z;
1391   switch( id ){
1392     case TK_ALL:       z = "UNION ALL";   break;
1393     case TK_INTERSECT: z = "INTERSECT";   break;
1394     case TK_EXCEPT:    z = "EXCEPT";      break;
1395     default:           z = "UNION";       break;
1396   }
1397   return z;
1398 }
1399 
1400 #ifndef SQLITE_OMIT_EXPLAIN
1401 /*
1402 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1403 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1404 ** where the caption is of the form:
1405 **
1406 **   "USE TEMP B-TREE FOR xxx"
1407 **
1408 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1409 ** is determined by the zUsage argument.
1410 */
1411 static void explainTempTable(Parse *pParse, const char *zUsage){
1412   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1413 }
1414 
1415 /*
1416 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1417 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1418 ** in sqlite3Select() to assign values to structure member variables that
1419 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1420 ** code with #ifndef directives.
1421 */
1422 # define explainSetInteger(a, b) a = b
1423 
1424 #else
1425 /* No-op versions of the explainXXX() functions and macros. */
1426 # define explainTempTable(y,z)
1427 # define explainSetInteger(y,z)
1428 #endif
1429 
1430 
1431 /*
1432 ** If the inner loop was generated using a non-null pOrderBy argument,
1433 ** then the results were placed in a sorter.  After the loop is terminated
1434 ** we need to run the sorter and output the results.  The following
1435 ** routine generates the code needed to do that.
1436 */
1437 static void generateSortTail(
1438   Parse *pParse,    /* Parsing context */
1439   Select *p,        /* The SELECT statement */
1440   SortCtx *pSort,   /* Information on the ORDER BY clause */
1441   int nColumn,      /* Number of columns of data */
1442   SelectDest *pDest /* Write the sorted results here */
1443 ){
1444   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1445   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1446   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1447   int addr;                       /* Top of output loop. Jump for Next. */
1448   int addrOnce = 0;
1449   int iTab;
1450   ExprList *pOrderBy = pSort->pOrderBy;
1451   int eDest = pDest->eDest;
1452   int iParm = pDest->iSDParm;
1453   int regRow;
1454   int regRowid;
1455   int iCol;
1456   int nKey;                       /* Number of key columns in sorter record */
1457   int iSortTab;                   /* Sorter cursor to read from */
1458   int i;
1459   int bSeq;                       /* True if sorter record includes seq. no. */
1460   int nRefKey = 0;
1461   struct ExprList_item *aOutEx = p->pEList->a;
1462 
1463   assert( addrBreak<0 );
1464   if( pSort->labelBkOut ){
1465     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1466     sqlite3VdbeGoto(v, addrBreak);
1467     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1468   }
1469 
1470 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1471   /* Open any cursors needed for sorter-reference expressions */
1472   for(i=0; i<pSort->nDefer; i++){
1473     Table *pTab = pSort->aDefer[i].pTab;
1474     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1475     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1476     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1477   }
1478 #endif
1479 
1480   iTab = pSort->iECursor;
1481   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1482     regRowid = 0;
1483     regRow = pDest->iSdst;
1484   }else{
1485     regRowid = sqlite3GetTempReg(pParse);
1486     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1487       regRow = sqlite3GetTempReg(pParse);
1488       nColumn = 0;
1489     }else{
1490       regRow = sqlite3GetTempRange(pParse, nColumn);
1491     }
1492   }
1493   nKey = pOrderBy->nExpr - pSort->nOBSat;
1494   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1495     int regSortOut = ++pParse->nMem;
1496     iSortTab = pParse->nTab++;
1497     if( pSort->labelBkOut ){
1498       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1499     }
1500     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1501         nKey+1+nColumn+nRefKey);
1502     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1503     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1504     VdbeCoverage(v);
1505     codeOffset(v, p->iOffset, addrContinue);
1506     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1507     bSeq = 0;
1508   }else{
1509     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1510     codeOffset(v, p->iOffset, addrContinue);
1511     iSortTab = iTab;
1512     bSeq = 1;
1513   }
1514   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1515 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1516     if( aOutEx[i].bSorterRef ) continue;
1517 #endif
1518     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1519   }
1520 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1521   if( pSort->nDefer ){
1522     int iKey = iCol+1;
1523     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1524 
1525     for(i=0; i<pSort->nDefer; i++){
1526       int iCsr = pSort->aDefer[i].iCsr;
1527       Table *pTab = pSort->aDefer[i].pTab;
1528       int nKey = pSort->aDefer[i].nKey;
1529 
1530       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1531       if( HasRowid(pTab) ){
1532         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1533         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1534             sqlite3VdbeCurrentAddr(v)+1, regKey);
1535       }else{
1536         int k;
1537         int iJmp;
1538         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1539         for(k=0; k<nKey; k++){
1540           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1541         }
1542         iJmp = sqlite3VdbeCurrentAddr(v);
1543         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1544         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1545         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1546       }
1547     }
1548     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1549   }
1550 #endif
1551   for(i=nColumn-1; i>=0; i--){
1552 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1553     if( aOutEx[i].bSorterRef ){
1554       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1555     }else
1556 #endif
1557     {
1558       int iRead;
1559       if( aOutEx[i].u.x.iOrderByCol ){
1560         iRead = aOutEx[i].u.x.iOrderByCol-1;
1561       }else{
1562         iRead = iCol--;
1563       }
1564       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1565       VdbeComment((v, "%s", aOutEx[i].zEName));
1566     }
1567   }
1568   switch( eDest ){
1569     case SRT_Table:
1570     case SRT_EphemTab: {
1571       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1572       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1573       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1574       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1575       break;
1576     }
1577 #ifndef SQLITE_OMIT_SUBQUERY
1578     case SRT_Set: {
1579       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1580       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1581                         pDest->zAffSdst, nColumn);
1582       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1583       break;
1584     }
1585     case SRT_Mem: {
1586       /* The LIMIT clause will terminate the loop for us */
1587       break;
1588     }
1589 #endif
1590     case SRT_Upfrom: {
1591       int i2 = pDest->iSDParm2;
1592       int r1 = sqlite3GetTempReg(pParse);
1593       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1594       if( i2<0 ){
1595         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1596       }else{
1597         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1598       }
1599       break;
1600     }
1601     default: {
1602       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1603       testcase( eDest==SRT_Output );
1604       testcase( eDest==SRT_Coroutine );
1605       if( eDest==SRT_Output ){
1606         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1607       }else{
1608         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1609       }
1610       break;
1611     }
1612   }
1613   if( regRowid ){
1614     if( eDest==SRT_Set ){
1615       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1616     }else{
1617       sqlite3ReleaseTempReg(pParse, regRow);
1618     }
1619     sqlite3ReleaseTempReg(pParse, regRowid);
1620   }
1621   /* The bottom of the loop
1622   */
1623   sqlite3VdbeResolveLabel(v, addrContinue);
1624   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1625     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1626   }else{
1627     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1628   }
1629   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1630   sqlite3VdbeResolveLabel(v, addrBreak);
1631 }
1632 
1633 /*
1634 ** Return a pointer to a string containing the 'declaration type' of the
1635 ** expression pExpr. The string may be treated as static by the caller.
1636 **
1637 ** Also try to estimate the size of the returned value and return that
1638 ** result in *pEstWidth.
1639 **
1640 ** The declaration type is the exact datatype definition extracted from the
1641 ** original CREATE TABLE statement if the expression is a column. The
1642 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1643 ** is considered a column can be complex in the presence of subqueries. The
1644 ** result-set expression in all of the following SELECT statements is
1645 ** considered a column by this function.
1646 **
1647 **   SELECT col FROM tbl;
1648 **   SELECT (SELECT col FROM tbl;
1649 **   SELECT (SELECT col FROM tbl);
1650 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1651 **
1652 ** The declaration type for any expression other than a column is NULL.
1653 **
1654 ** This routine has either 3 or 6 parameters depending on whether or not
1655 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1656 */
1657 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1658 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1659 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1660 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1661 #endif
1662 static const char *columnTypeImpl(
1663   NameContext *pNC,
1664 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1665   Expr *pExpr
1666 #else
1667   Expr *pExpr,
1668   const char **pzOrigDb,
1669   const char **pzOrigTab,
1670   const char **pzOrigCol
1671 #endif
1672 ){
1673   char const *zType = 0;
1674   int j;
1675 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1676   char const *zOrigDb = 0;
1677   char const *zOrigTab = 0;
1678   char const *zOrigCol = 0;
1679 #endif
1680 
1681   assert( pExpr!=0 );
1682   assert( pNC->pSrcList!=0 );
1683   switch( pExpr->op ){
1684     case TK_COLUMN: {
1685       /* The expression is a column. Locate the table the column is being
1686       ** extracted from in NameContext.pSrcList. This table may be real
1687       ** database table or a subquery.
1688       */
1689       Table *pTab = 0;            /* Table structure column is extracted from */
1690       Select *pS = 0;             /* Select the column is extracted from */
1691       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1692       while( pNC && !pTab ){
1693         SrcList *pTabList = pNC->pSrcList;
1694         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1695         if( j<pTabList->nSrc ){
1696           pTab = pTabList->a[j].pTab;
1697           pS = pTabList->a[j].pSelect;
1698         }else{
1699           pNC = pNC->pNext;
1700         }
1701       }
1702 
1703       if( pTab==0 ){
1704         /* At one time, code such as "SELECT new.x" within a trigger would
1705         ** cause this condition to run.  Since then, we have restructured how
1706         ** trigger code is generated and so this condition is no longer
1707         ** possible. However, it can still be true for statements like
1708         ** the following:
1709         **
1710         **   CREATE TABLE t1(col INTEGER);
1711         **   SELECT (SELECT t1.col) FROM FROM t1;
1712         **
1713         ** when columnType() is called on the expression "t1.col" in the
1714         ** sub-select. In this case, set the column type to NULL, even
1715         ** though it should really be "INTEGER".
1716         **
1717         ** This is not a problem, as the column type of "t1.col" is never
1718         ** used. When columnType() is called on the expression
1719         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1720         ** branch below.  */
1721         break;
1722       }
1723 
1724       assert( pTab && pExpr->y.pTab==pTab );
1725       if( pS ){
1726         /* The "table" is actually a sub-select or a view in the FROM clause
1727         ** of the SELECT statement. Return the declaration type and origin
1728         ** data for the result-set column of the sub-select.
1729         */
1730         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1731           /* If iCol is less than zero, then the expression requests the
1732           ** rowid of the sub-select or view. This expression is legal (see
1733           ** test case misc2.2.2) - it always evaluates to NULL.
1734           */
1735           NameContext sNC;
1736           Expr *p = pS->pEList->a[iCol].pExpr;
1737           sNC.pSrcList = pS->pSrc;
1738           sNC.pNext = pNC;
1739           sNC.pParse = pNC->pParse;
1740           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1741         }
1742       }else{
1743         /* A real table or a CTE table */
1744         assert( !pS );
1745 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1746         if( iCol<0 ) iCol = pTab->iPKey;
1747         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1748         if( iCol<0 ){
1749           zType = "INTEGER";
1750           zOrigCol = "rowid";
1751         }else{
1752           zOrigCol = pTab->aCol[iCol].zName;
1753           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1754         }
1755         zOrigTab = pTab->zName;
1756         if( pNC->pParse && pTab->pSchema ){
1757           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1758           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1759         }
1760 #else
1761         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1762         if( iCol<0 ){
1763           zType = "INTEGER";
1764         }else{
1765           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1766         }
1767 #endif
1768       }
1769       break;
1770     }
1771 #ifndef SQLITE_OMIT_SUBQUERY
1772     case TK_SELECT: {
1773       /* The expression is a sub-select. Return the declaration type and
1774       ** origin info for the single column in the result set of the SELECT
1775       ** statement.
1776       */
1777       NameContext sNC;
1778       Select *pS = pExpr->x.pSelect;
1779       Expr *p = pS->pEList->a[0].pExpr;
1780       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1781       sNC.pSrcList = pS->pSrc;
1782       sNC.pNext = pNC;
1783       sNC.pParse = pNC->pParse;
1784       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1785       break;
1786     }
1787 #endif
1788   }
1789 
1790 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1791   if( pzOrigDb ){
1792     assert( pzOrigTab && pzOrigCol );
1793     *pzOrigDb = zOrigDb;
1794     *pzOrigTab = zOrigTab;
1795     *pzOrigCol = zOrigCol;
1796   }
1797 #endif
1798   return zType;
1799 }
1800 
1801 /*
1802 ** Generate code that will tell the VDBE the declaration types of columns
1803 ** in the result set.
1804 */
1805 static void generateColumnTypes(
1806   Parse *pParse,      /* Parser context */
1807   SrcList *pTabList,  /* List of tables */
1808   ExprList *pEList    /* Expressions defining the result set */
1809 ){
1810 #ifndef SQLITE_OMIT_DECLTYPE
1811   Vdbe *v = pParse->pVdbe;
1812   int i;
1813   NameContext sNC;
1814   sNC.pSrcList = pTabList;
1815   sNC.pParse = pParse;
1816   sNC.pNext = 0;
1817   for(i=0; i<pEList->nExpr; i++){
1818     Expr *p = pEList->a[i].pExpr;
1819     const char *zType;
1820 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1821     const char *zOrigDb = 0;
1822     const char *zOrigTab = 0;
1823     const char *zOrigCol = 0;
1824     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1825 
1826     /* The vdbe must make its own copy of the column-type and other
1827     ** column specific strings, in case the schema is reset before this
1828     ** virtual machine is deleted.
1829     */
1830     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1831     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1832     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1833 #else
1834     zType = columnType(&sNC, p, 0, 0, 0);
1835 #endif
1836     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1837   }
1838 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1839 }
1840 
1841 
1842 /*
1843 ** Compute the column names for a SELECT statement.
1844 **
1845 ** The only guarantee that SQLite makes about column names is that if the
1846 ** column has an AS clause assigning it a name, that will be the name used.
1847 ** That is the only documented guarantee.  However, countless applications
1848 ** developed over the years have made baseless assumptions about column names
1849 ** and will break if those assumptions changes.  Hence, use extreme caution
1850 ** when modifying this routine to avoid breaking legacy.
1851 **
1852 ** See Also: sqlite3ColumnsFromExprList()
1853 **
1854 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1855 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1856 ** applications should operate this way.  Nevertheless, we need to support the
1857 ** other modes for legacy:
1858 **
1859 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1860 **                              originally appears in the SELECT statement.  In
1861 **                              other words, the zSpan of the result expression.
1862 **
1863 **    short=ON, full=OFF:       (This is the default setting).  If the result
1864 **                              refers directly to a table column, then the
1865 **                              result column name is just the table column
1866 **                              name: COLUMN.  Otherwise use zSpan.
1867 **
1868 **    full=ON, short=ANY:       If the result refers directly to a table column,
1869 **                              then the result column name with the table name
1870 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1871 */
1872 static void generateColumnNames(
1873   Parse *pParse,      /* Parser context */
1874   Select *pSelect     /* Generate column names for this SELECT statement */
1875 ){
1876   Vdbe *v = pParse->pVdbe;
1877   int i;
1878   Table *pTab;
1879   SrcList *pTabList;
1880   ExprList *pEList;
1881   sqlite3 *db = pParse->db;
1882   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1883   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1884 
1885 #ifndef SQLITE_OMIT_EXPLAIN
1886   /* If this is an EXPLAIN, skip this step */
1887   if( pParse->explain ){
1888     return;
1889   }
1890 #endif
1891 
1892   if( pParse->colNamesSet ) return;
1893   /* Column names are determined by the left-most term of a compound select */
1894   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1895   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1896   pTabList = pSelect->pSrc;
1897   pEList = pSelect->pEList;
1898   assert( v!=0 );
1899   assert( pTabList!=0 );
1900   pParse->colNamesSet = 1;
1901   fullName = (db->flags & SQLITE_FullColNames)!=0;
1902   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1903   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1904   for(i=0; i<pEList->nExpr; i++){
1905     Expr *p = pEList->a[i].pExpr;
1906 
1907     assert( p!=0 );
1908     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1909     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1910     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1911       /* An AS clause always takes first priority */
1912       char *zName = pEList->a[i].zEName;
1913       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1914     }else if( srcName && p->op==TK_COLUMN ){
1915       char *zCol;
1916       int iCol = p->iColumn;
1917       pTab = p->y.pTab;
1918       assert( pTab!=0 );
1919       if( iCol<0 ) iCol = pTab->iPKey;
1920       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1921       if( iCol<0 ){
1922         zCol = "rowid";
1923       }else{
1924         zCol = pTab->aCol[iCol].zName;
1925       }
1926       if( fullName ){
1927         char *zName = 0;
1928         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1929         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1930       }else{
1931         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1932       }
1933     }else{
1934       const char *z = pEList->a[i].zEName;
1935       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1936       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1937     }
1938   }
1939   generateColumnTypes(pParse, pTabList, pEList);
1940 }
1941 
1942 /*
1943 ** Given an expression list (which is really the list of expressions
1944 ** that form the result set of a SELECT statement) compute appropriate
1945 ** column names for a table that would hold the expression list.
1946 **
1947 ** All column names will be unique.
1948 **
1949 ** Only the column names are computed.  Column.zType, Column.zColl,
1950 ** and other fields of Column are zeroed.
1951 **
1952 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1953 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1954 **
1955 ** The only guarantee that SQLite makes about column names is that if the
1956 ** column has an AS clause assigning it a name, that will be the name used.
1957 ** That is the only documented guarantee.  However, countless applications
1958 ** developed over the years have made baseless assumptions about column names
1959 ** and will break if those assumptions changes.  Hence, use extreme caution
1960 ** when modifying this routine to avoid breaking legacy.
1961 **
1962 ** See Also: generateColumnNames()
1963 */
1964 int sqlite3ColumnsFromExprList(
1965   Parse *pParse,          /* Parsing context */
1966   ExprList *pEList,       /* Expr list from which to derive column names */
1967   i16 *pnCol,             /* Write the number of columns here */
1968   Column **paCol          /* Write the new column list here */
1969 ){
1970   sqlite3 *db = pParse->db;   /* Database connection */
1971   int i, j;                   /* Loop counters */
1972   u32 cnt;                    /* Index added to make the name unique */
1973   Column *aCol, *pCol;        /* For looping over result columns */
1974   int nCol;                   /* Number of columns in the result set */
1975   char *zName;                /* Column name */
1976   int nName;                  /* Size of name in zName[] */
1977   Hash ht;                    /* Hash table of column names */
1978   Table *pTab;
1979 
1980   sqlite3HashInit(&ht);
1981   if( pEList ){
1982     nCol = pEList->nExpr;
1983     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1984     testcase( aCol==0 );
1985     if( nCol>32767 ) nCol = 32767;
1986   }else{
1987     nCol = 0;
1988     aCol = 0;
1989   }
1990   assert( nCol==(i16)nCol );
1991   *pnCol = nCol;
1992   *paCol = aCol;
1993 
1994   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1995     /* Get an appropriate name for the column
1996     */
1997     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1998       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1999     }else{
2000       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2001       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2002         pColExpr = pColExpr->pRight;
2003         assert( pColExpr!=0 );
2004       }
2005       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2006         /* For columns use the column name name */
2007         int iCol = pColExpr->iColumn;
2008         if( iCol<0 ) iCol = pTab->iPKey;
2009         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2010       }else if( pColExpr->op==TK_ID ){
2011         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2012         zName = pColExpr->u.zToken;
2013       }else{
2014         /* Use the original text of the column expression as its name */
2015         zName = pEList->a[i].zEName;
2016       }
2017     }
2018     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2019       zName = sqlite3DbStrDup(db, zName);
2020     }else{
2021       zName = sqlite3MPrintf(db,"column%d",i+1);
2022     }
2023 
2024     /* Make sure the column name is unique.  If the name is not unique,
2025     ** append an integer to the name so that it becomes unique.
2026     */
2027     cnt = 0;
2028     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2029       nName = sqlite3Strlen30(zName);
2030       if( nName>0 ){
2031         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2032         if( zName[j]==':' ) nName = j;
2033       }
2034       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2035       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2036     }
2037     pCol->zName = zName;
2038     pCol->hName = sqlite3StrIHash(zName);
2039     sqlite3ColumnPropertiesFromName(0, pCol);
2040     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2041       sqlite3OomFault(db);
2042     }
2043   }
2044   sqlite3HashClear(&ht);
2045   if( db->mallocFailed ){
2046     for(j=0; j<i; j++){
2047       sqlite3DbFree(db, aCol[j].zName);
2048     }
2049     sqlite3DbFree(db, aCol);
2050     *paCol = 0;
2051     *pnCol = 0;
2052     return SQLITE_NOMEM_BKPT;
2053   }
2054   return SQLITE_OK;
2055 }
2056 
2057 /*
2058 ** Add type and collation information to a column list based on
2059 ** a SELECT statement.
2060 **
2061 ** The column list presumably came from selectColumnNamesFromExprList().
2062 ** The column list has only names, not types or collations.  This
2063 ** routine goes through and adds the types and collations.
2064 **
2065 ** This routine requires that all identifiers in the SELECT
2066 ** statement be resolved.
2067 */
2068 void sqlite3SelectAddColumnTypeAndCollation(
2069   Parse *pParse,        /* Parsing contexts */
2070   Table *pTab,          /* Add column type information to this table */
2071   Select *pSelect,      /* SELECT used to determine types and collations */
2072   char aff              /* Default affinity for columns */
2073 ){
2074   sqlite3 *db = pParse->db;
2075   NameContext sNC;
2076   Column *pCol;
2077   CollSeq *pColl;
2078   int i;
2079   Expr *p;
2080   struct ExprList_item *a;
2081 
2082   assert( pSelect!=0 );
2083   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2084   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2085   if( db->mallocFailed ) return;
2086   memset(&sNC, 0, sizeof(sNC));
2087   sNC.pSrcList = pSelect->pSrc;
2088   a = pSelect->pEList->a;
2089   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2090     const char *zType;
2091     int n, m;
2092     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2093     p = a[i].pExpr;
2094     zType = columnType(&sNC, p, 0, 0, 0);
2095     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2096     pCol->affinity = sqlite3ExprAffinity(p);
2097     if( zType ){
2098       m = sqlite3Strlen30(zType);
2099       n = sqlite3Strlen30(pCol->zName);
2100       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2101       if( pCol->zName ){
2102         memcpy(&pCol->zName[n+1], zType, m+1);
2103         pCol->colFlags |= COLFLAG_HASTYPE;
2104       }
2105     }
2106     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2107     pColl = sqlite3ExprCollSeq(pParse, p);
2108     if( pColl && pCol->zColl==0 ){
2109       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2110     }
2111   }
2112   pTab->szTabRow = 1; /* Any non-zero value works */
2113 }
2114 
2115 /*
2116 ** Given a SELECT statement, generate a Table structure that describes
2117 ** the result set of that SELECT.
2118 */
2119 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2120   Table *pTab;
2121   sqlite3 *db = pParse->db;
2122   u64 savedFlags;
2123 
2124   savedFlags = db->flags;
2125   db->flags &= ~(u64)SQLITE_FullColNames;
2126   db->flags |= SQLITE_ShortColNames;
2127   sqlite3SelectPrep(pParse, pSelect, 0);
2128   db->flags = savedFlags;
2129   if( pParse->nErr ) return 0;
2130   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2131   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2132   if( pTab==0 ){
2133     return 0;
2134   }
2135   pTab->nTabRef = 1;
2136   pTab->zName = 0;
2137   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2138   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2139   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2140   pTab->iPKey = -1;
2141   if( db->mallocFailed ){
2142     sqlite3DeleteTable(db, pTab);
2143     return 0;
2144   }
2145   return pTab;
2146 }
2147 
2148 /*
2149 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2150 ** If an error occurs, return NULL and leave a message in pParse.
2151 */
2152 Vdbe *sqlite3GetVdbe(Parse *pParse){
2153   if( pParse->pVdbe ){
2154     return pParse->pVdbe;
2155   }
2156   if( pParse->pToplevel==0
2157    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2158   ){
2159     pParse->okConstFactor = 1;
2160   }
2161   return sqlite3VdbeCreate(pParse);
2162 }
2163 
2164 
2165 /*
2166 ** Compute the iLimit and iOffset fields of the SELECT based on the
2167 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2168 ** that appear in the original SQL statement after the LIMIT and OFFSET
2169 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2170 ** are the integer memory register numbers for counters used to compute
2171 ** the limit and offset.  If there is no limit and/or offset, then
2172 ** iLimit and iOffset are negative.
2173 **
2174 ** This routine changes the values of iLimit and iOffset only if
2175 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2176 ** and iOffset should have been preset to appropriate default values (zero)
2177 ** prior to calling this routine.
2178 **
2179 ** The iOffset register (if it exists) is initialized to the value
2180 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2181 ** iOffset+1 is initialized to LIMIT+OFFSET.
2182 **
2183 ** Only if pLimit->pLeft!=0 do the limit registers get
2184 ** redefined.  The UNION ALL operator uses this property to force
2185 ** the reuse of the same limit and offset registers across multiple
2186 ** SELECT statements.
2187 */
2188 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2189   Vdbe *v = 0;
2190   int iLimit = 0;
2191   int iOffset;
2192   int n;
2193   Expr *pLimit = p->pLimit;
2194 
2195   if( p->iLimit ) return;
2196 
2197   /*
2198   ** "LIMIT -1" always shows all rows.  There is some
2199   ** controversy about what the correct behavior should be.
2200   ** The current implementation interprets "LIMIT 0" to mean
2201   ** no rows.
2202   */
2203   if( pLimit ){
2204     assert( pLimit->op==TK_LIMIT );
2205     assert( pLimit->pLeft!=0 );
2206     p->iLimit = iLimit = ++pParse->nMem;
2207     v = sqlite3GetVdbe(pParse);
2208     assert( v!=0 );
2209     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2210       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2211       VdbeComment((v, "LIMIT counter"));
2212       if( n==0 ){
2213         sqlite3VdbeGoto(v, iBreak);
2214       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2215         p->nSelectRow = sqlite3LogEst((u64)n);
2216         p->selFlags |= SF_FixedLimit;
2217       }
2218     }else{
2219       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2220       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2221       VdbeComment((v, "LIMIT counter"));
2222       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2223     }
2224     if( pLimit->pRight ){
2225       p->iOffset = iOffset = ++pParse->nMem;
2226       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2227       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2228       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2229       VdbeComment((v, "OFFSET counter"));
2230       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2231       VdbeComment((v, "LIMIT+OFFSET"));
2232     }
2233   }
2234 }
2235 
2236 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2237 /*
2238 ** Return the appropriate collating sequence for the iCol-th column of
2239 ** the result set for the compound-select statement "p".  Return NULL if
2240 ** the column has no default collating sequence.
2241 **
2242 ** The collating sequence for the compound select is taken from the
2243 ** left-most term of the select that has a collating sequence.
2244 */
2245 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2246   CollSeq *pRet;
2247   if( p->pPrior ){
2248     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2249   }else{
2250     pRet = 0;
2251   }
2252   assert( iCol>=0 );
2253   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2254   ** have been thrown during name resolution and we would not have gotten
2255   ** this far */
2256   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2257     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2258   }
2259   return pRet;
2260 }
2261 
2262 /*
2263 ** The select statement passed as the second parameter is a compound SELECT
2264 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2265 ** structure suitable for implementing the ORDER BY.
2266 **
2267 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2268 ** function is responsible for ensuring that this structure is eventually
2269 ** freed.
2270 */
2271 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2272   ExprList *pOrderBy = p->pOrderBy;
2273   int nOrderBy = p->pOrderBy->nExpr;
2274   sqlite3 *db = pParse->db;
2275   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2276   if( pRet ){
2277     int i;
2278     for(i=0; i<nOrderBy; i++){
2279       struct ExprList_item *pItem = &pOrderBy->a[i];
2280       Expr *pTerm = pItem->pExpr;
2281       CollSeq *pColl;
2282 
2283       if( pTerm->flags & EP_Collate ){
2284         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2285       }else{
2286         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2287         if( pColl==0 ) pColl = db->pDfltColl;
2288         pOrderBy->a[i].pExpr =
2289           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2290       }
2291       assert( sqlite3KeyInfoIsWriteable(pRet) );
2292       pRet->aColl[i] = pColl;
2293       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2294     }
2295   }
2296 
2297   return pRet;
2298 }
2299 
2300 #ifndef SQLITE_OMIT_CTE
2301 /*
2302 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2303 ** query of the form:
2304 **
2305 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2306 **                         \___________/             \_______________/
2307 **                           p->pPrior                      p
2308 **
2309 **
2310 ** There is exactly one reference to the recursive-table in the FROM clause
2311 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2312 **
2313 ** The setup-query runs once to generate an initial set of rows that go
2314 ** into a Queue table.  Rows are extracted from the Queue table one by
2315 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2316 ** extracted row (now in the iCurrent table) becomes the content of the
2317 ** recursive-table for a recursive-query run.  The output of the recursive-query
2318 ** is added back into the Queue table.  Then another row is extracted from Queue
2319 ** and the iteration continues until the Queue table is empty.
2320 **
2321 ** If the compound query operator is UNION then no duplicate rows are ever
2322 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2323 ** that have ever been inserted into Queue and causes duplicates to be
2324 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2325 **
2326 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2327 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2328 ** an ORDER BY, the Queue table is just a FIFO.
2329 **
2330 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2331 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2332 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2333 ** with a positive value, then the first OFFSET outputs are discarded rather
2334 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2335 ** rows have been skipped.
2336 */
2337 static void generateWithRecursiveQuery(
2338   Parse *pParse,        /* Parsing context */
2339   Select *p,            /* The recursive SELECT to be coded */
2340   SelectDest *pDest     /* What to do with query results */
2341 ){
2342   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2343   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2344   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2345   Select *pSetup = p->pPrior;   /* The setup query */
2346   Select *pFirstRec;            /* Left-most recursive term */
2347   int addrTop;                  /* Top of the loop */
2348   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2349   int iCurrent = 0;             /* The Current table */
2350   int regCurrent;               /* Register holding Current table */
2351   int iQueue;                   /* The Queue table */
2352   int iDistinct = 0;            /* To ensure unique results if UNION */
2353   int eDest = SRT_Fifo;         /* How to write to Queue */
2354   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2355   int i;                        /* Loop counter */
2356   int rc;                       /* Result code */
2357   ExprList *pOrderBy;           /* The ORDER BY clause */
2358   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2359   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2360 
2361 #ifndef SQLITE_OMIT_WINDOWFUNC
2362   if( p->pWin ){
2363     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2364     return;
2365   }
2366 #endif
2367 
2368   /* Obtain authorization to do a recursive query */
2369   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2370 
2371   /* Process the LIMIT and OFFSET clauses, if they exist */
2372   addrBreak = sqlite3VdbeMakeLabel(pParse);
2373   p->nSelectRow = 320;  /* 4 billion rows */
2374   computeLimitRegisters(pParse, p, addrBreak);
2375   pLimit = p->pLimit;
2376   regLimit = p->iLimit;
2377   regOffset = p->iOffset;
2378   p->pLimit = 0;
2379   p->iLimit = p->iOffset = 0;
2380   pOrderBy = p->pOrderBy;
2381 
2382   /* Locate the cursor number of the Current table */
2383   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2384     if( pSrc->a[i].fg.isRecursive ){
2385       iCurrent = pSrc->a[i].iCursor;
2386       break;
2387     }
2388   }
2389 
2390   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2391   ** the Distinct table must be exactly one greater than Queue in order
2392   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2393   iQueue = pParse->nTab++;
2394   if( p->op==TK_UNION ){
2395     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2396     iDistinct = pParse->nTab++;
2397   }else{
2398     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2399   }
2400   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2401 
2402   /* Allocate cursors for Current, Queue, and Distinct. */
2403   regCurrent = ++pParse->nMem;
2404   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2405   if( pOrderBy ){
2406     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2407     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2408                       (char*)pKeyInfo, P4_KEYINFO);
2409     destQueue.pOrderBy = pOrderBy;
2410   }else{
2411     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2412   }
2413   VdbeComment((v, "Queue table"));
2414   if( iDistinct ){
2415     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2416     p->selFlags |= SF_UsesEphemeral;
2417   }
2418 
2419   /* Detach the ORDER BY clause from the compound SELECT */
2420   p->pOrderBy = 0;
2421 
2422   /* Figure out how many elements of the compound SELECT are part of the
2423   ** recursive query.  Make sure no recursive elements use aggregate
2424   ** functions.  Mark the recursive elements as UNION ALL even if they
2425   ** are really UNION because the distinctness will be enforced by the
2426   ** iDistinct table.  pFirstRec is left pointing to the left-most
2427   ** recursive term of the CTE.
2428   */
2429   pFirstRec = p;
2430   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2431     if( pFirstRec->selFlags & SF_Aggregate ){
2432       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2433       goto end_of_recursive_query;
2434     }
2435     pFirstRec->op = TK_ALL;
2436     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2437   }
2438 
2439   /* Store the results of the setup-query in Queue. */
2440   pSetup = pFirstRec->pPrior;
2441   pSetup->pNext = 0;
2442   ExplainQueryPlan((pParse, 1, "SETUP"));
2443   rc = sqlite3Select(pParse, pSetup, &destQueue);
2444   pSetup->pNext = p;
2445   if( rc ) goto end_of_recursive_query;
2446 
2447   /* Find the next row in the Queue and output that row */
2448   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2449 
2450   /* Transfer the next row in Queue over to Current */
2451   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2452   if( pOrderBy ){
2453     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2454   }else{
2455     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2456   }
2457   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2458 
2459   /* Output the single row in Current */
2460   addrCont = sqlite3VdbeMakeLabel(pParse);
2461   codeOffset(v, regOffset, addrCont);
2462   selectInnerLoop(pParse, p, iCurrent,
2463       0, 0, pDest, addrCont, addrBreak);
2464   if( regLimit ){
2465     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2466     VdbeCoverage(v);
2467   }
2468   sqlite3VdbeResolveLabel(v, addrCont);
2469 
2470   /* Execute the recursive SELECT taking the single row in Current as
2471   ** the value for the recursive-table. Store the results in the Queue.
2472   */
2473   pFirstRec->pPrior = 0;
2474   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2475   sqlite3Select(pParse, p, &destQueue);
2476   assert( pFirstRec->pPrior==0 );
2477   pFirstRec->pPrior = pSetup;
2478 
2479   /* Keep running the loop until the Queue is empty */
2480   sqlite3VdbeGoto(v, addrTop);
2481   sqlite3VdbeResolveLabel(v, addrBreak);
2482 
2483 end_of_recursive_query:
2484   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2485   p->pOrderBy = pOrderBy;
2486   p->pLimit = pLimit;
2487   return;
2488 }
2489 #endif /* SQLITE_OMIT_CTE */
2490 
2491 /* Forward references */
2492 static int multiSelectOrderBy(
2493   Parse *pParse,        /* Parsing context */
2494   Select *p,            /* The right-most of SELECTs to be coded */
2495   SelectDest *pDest     /* What to do with query results */
2496 );
2497 
2498 /*
2499 ** Handle the special case of a compound-select that originates from a
2500 ** VALUES clause.  By handling this as a special case, we avoid deep
2501 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2502 ** on a VALUES clause.
2503 **
2504 ** Because the Select object originates from a VALUES clause:
2505 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2506 **   (2) All terms are UNION ALL
2507 **   (3) There is no ORDER BY clause
2508 **
2509 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2510 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2511 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2512 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2513 */
2514 static int multiSelectValues(
2515   Parse *pParse,        /* Parsing context */
2516   Select *p,            /* The right-most of SELECTs to be coded */
2517   SelectDest *pDest     /* What to do with query results */
2518 ){
2519   int nRow = 1;
2520   int rc = 0;
2521   int bShowAll = p->pLimit==0;
2522   assert( p->selFlags & SF_MultiValue );
2523   do{
2524     assert( p->selFlags & SF_Values );
2525     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2526     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2527 #ifndef SQLITE_OMIT_WINDOWFUNC
2528     if( p->pWin ) return -1;
2529 #endif
2530     if( p->pPrior==0 ) break;
2531     assert( p->pPrior->pNext==p );
2532     p = p->pPrior;
2533     nRow += bShowAll;
2534   }while(1);
2535   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2536                     nRow==1 ? "" : "S"));
2537   while( p ){
2538     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2539     if( !bShowAll ) break;
2540     p->nSelectRow = nRow;
2541     p = p->pNext;
2542   }
2543   return rc;
2544 }
2545 
2546 /*
2547 ** Return true if the SELECT statement which is known to be the recursive
2548 ** part of a recursive CTE still has its anchor terms attached.  If the
2549 ** anchor terms have already been removed, then return false.
2550 */
2551 static int hasAnchor(Select *p){
2552   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2553   return p!=0;
2554 }
2555 
2556 /*
2557 ** This routine is called to process a compound query form from
2558 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2559 ** INTERSECT
2560 **
2561 ** "p" points to the right-most of the two queries.  the query on the
2562 ** left is p->pPrior.  The left query could also be a compound query
2563 ** in which case this routine will be called recursively.
2564 **
2565 ** The results of the total query are to be written into a destination
2566 ** of type eDest with parameter iParm.
2567 **
2568 ** Example 1:  Consider a three-way compound SQL statement.
2569 **
2570 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2571 **
2572 ** This statement is parsed up as follows:
2573 **
2574 **     SELECT c FROM t3
2575 **      |
2576 **      `----->  SELECT b FROM t2
2577 **                |
2578 **                `------>  SELECT a FROM t1
2579 **
2580 ** The arrows in the diagram above represent the Select.pPrior pointer.
2581 ** So if this routine is called with p equal to the t3 query, then
2582 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2583 **
2584 ** Notice that because of the way SQLite parses compound SELECTs, the
2585 ** individual selects always group from left to right.
2586 */
2587 static int multiSelect(
2588   Parse *pParse,        /* Parsing context */
2589   Select *p,            /* The right-most of SELECTs to be coded */
2590   SelectDest *pDest     /* What to do with query results */
2591 ){
2592   int rc = SQLITE_OK;   /* Success code from a subroutine */
2593   Select *pPrior;       /* Another SELECT immediately to our left */
2594   Vdbe *v;              /* Generate code to this VDBE */
2595   SelectDest dest;      /* Alternative data destination */
2596   Select *pDelete = 0;  /* Chain of simple selects to delete */
2597   sqlite3 *db;          /* Database connection */
2598 
2599   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2600   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2601   */
2602   assert( p && p->pPrior );  /* Calling function guarantees this much */
2603   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2604   assert( p->selFlags & SF_Compound );
2605   db = pParse->db;
2606   pPrior = p->pPrior;
2607   dest = *pDest;
2608   if( pPrior->pOrderBy || pPrior->pLimit ){
2609     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2610       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2611     rc = 1;
2612     goto multi_select_end;
2613   }
2614 
2615   v = sqlite3GetVdbe(pParse);
2616   assert( v!=0 );  /* The VDBE already created by calling function */
2617 
2618   /* Create the destination temporary table if necessary
2619   */
2620   if( dest.eDest==SRT_EphemTab ){
2621     assert( p->pEList );
2622     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2623     dest.eDest = SRT_Table;
2624   }
2625 
2626   /* Special handling for a compound-select that originates as a VALUES clause.
2627   */
2628   if( p->selFlags & SF_MultiValue ){
2629     rc = multiSelectValues(pParse, p, &dest);
2630     if( rc>=0 ) goto multi_select_end;
2631     rc = SQLITE_OK;
2632   }
2633 
2634   /* Make sure all SELECTs in the statement have the same number of elements
2635   ** in their result sets.
2636   */
2637   assert( p->pEList && pPrior->pEList );
2638   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2639 
2640 #ifndef SQLITE_OMIT_CTE
2641   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2642     generateWithRecursiveQuery(pParse, p, &dest);
2643   }else
2644 #endif
2645 
2646   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2647   */
2648   if( p->pOrderBy ){
2649     return multiSelectOrderBy(pParse, p, pDest);
2650   }else{
2651 
2652 #ifndef SQLITE_OMIT_EXPLAIN
2653     if( pPrior->pPrior==0 ){
2654       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2655       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2656     }
2657 #endif
2658 
2659     /* Generate code for the left and right SELECT statements.
2660     */
2661     switch( p->op ){
2662       case TK_ALL: {
2663         int addr = 0;
2664         int nLimit;
2665         assert( !pPrior->pLimit );
2666         pPrior->iLimit = p->iLimit;
2667         pPrior->iOffset = p->iOffset;
2668         pPrior->pLimit = p->pLimit;
2669         rc = sqlite3Select(pParse, pPrior, &dest);
2670         p->pLimit = 0;
2671         if( rc ){
2672           goto multi_select_end;
2673         }
2674         p->pPrior = 0;
2675         p->iLimit = pPrior->iLimit;
2676         p->iOffset = pPrior->iOffset;
2677         if( p->iLimit ){
2678           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2679           VdbeComment((v, "Jump ahead if LIMIT reached"));
2680           if( p->iOffset ){
2681             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2682                               p->iLimit, p->iOffset+1, p->iOffset);
2683           }
2684         }
2685         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2686         rc = sqlite3Select(pParse, p, &dest);
2687         testcase( rc!=SQLITE_OK );
2688         pDelete = p->pPrior;
2689         p->pPrior = pPrior;
2690         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2691         if( pPrior->pLimit
2692          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2693          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2694         ){
2695           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2696         }
2697         if( addr ){
2698           sqlite3VdbeJumpHere(v, addr);
2699         }
2700         break;
2701       }
2702       case TK_EXCEPT:
2703       case TK_UNION: {
2704         int unionTab;    /* Cursor number of the temp table holding result */
2705         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2706         int priorOp;     /* The SRT_ operation to apply to prior selects */
2707         Expr *pLimit;    /* Saved values of p->nLimit  */
2708         int addr;
2709         SelectDest uniondest;
2710 
2711         testcase( p->op==TK_EXCEPT );
2712         testcase( p->op==TK_UNION );
2713         priorOp = SRT_Union;
2714         if( dest.eDest==priorOp ){
2715           /* We can reuse a temporary table generated by a SELECT to our
2716           ** right.
2717           */
2718           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2719           unionTab = dest.iSDParm;
2720         }else{
2721           /* We will need to create our own temporary table to hold the
2722           ** intermediate results.
2723           */
2724           unionTab = pParse->nTab++;
2725           assert( p->pOrderBy==0 );
2726           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2727           assert( p->addrOpenEphm[0] == -1 );
2728           p->addrOpenEphm[0] = addr;
2729           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2730           assert( p->pEList );
2731         }
2732 
2733 
2734         /* Code the SELECT statements to our left
2735         */
2736         assert( !pPrior->pOrderBy );
2737         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2738         rc = sqlite3Select(pParse, pPrior, &uniondest);
2739         if( rc ){
2740           goto multi_select_end;
2741         }
2742 
2743         /* Code the current SELECT statement
2744         */
2745         if( p->op==TK_EXCEPT ){
2746           op = SRT_Except;
2747         }else{
2748           assert( p->op==TK_UNION );
2749           op = SRT_Union;
2750         }
2751         p->pPrior = 0;
2752         pLimit = p->pLimit;
2753         p->pLimit = 0;
2754         uniondest.eDest = op;
2755         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2756                           selectOpName(p->op)));
2757         rc = sqlite3Select(pParse, p, &uniondest);
2758         testcase( rc!=SQLITE_OK );
2759         assert( p->pOrderBy==0 );
2760         pDelete = p->pPrior;
2761         p->pPrior = pPrior;
2762         p->pOrderBy = 0;
2763         if( p->op==TK_UNION ){
2764           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2765         }
2766         sqlite3ExprDelete(db, p->pLimit);
2767         p->pLimit = pLimit;
2768         p->iLimit = 0;
2769         p->iOffset = 0;
2770 
2771         /* Convert the data in the temporary table into whatever form
2772         ** it is that we currently need.
2773         */
2774         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2775         assert( p->pEList || db->mallocFailed );
2776         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2777           int iCont, iBreak, iStart;
2778           iBreak = sqlite3VdbeMakeLabel(pParse);
2779           iCont = sqlite3VdbeMakeLabel(pParse);
2780           computeLimitRegisters(pParse, p, iBreak);
2781           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2782           iStart = sqlite3VdbeCurrentAddr(v);
2783           selectInnerLoop(pParse, p, unionTab,
2784                           0, 0, &dest, iCont, iBreak);
2785           sqlite3VdbeResolveLabel(v, iCont);
2786           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2787           sqlite3VdbeResolveLabel(v, iBreak);
2788           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2789         }
2790         break;
2791       }
2792       default: assert( p->op==TK_INTERSECT ); {
2793         int tab1, tab2;
2794         int iCont, iBreak, iStart;
2795         Expr *pLimit;
2796         int addr;
2797         SelectDest intersectdest;
2798         int r1;
2799 
2800         /* INTERSECT is different from the others since it requires
2801         ** two temporary tables.  Hence it has its own case.  Begin
2802         ** by allocating the tables we will need.
2803         */
2804         tab1 = pParse->nTab++;
2805         tab2 = pParse->nTab++;
2806         assert( p->pOrderBy==0 );
2807 
2808         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2809         assert( p->addrOpenEphm[0] == -1 );
2810         p->addrOpenEphm[0] = addr;
2811         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2812         assert( p->pEList );
2813 
2814         /* Code the SELECTs to our left into temporary table "tab1".
2815         */
2816         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2817         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2818         if( rc ){
2819           goto multi_select_end;
2820         }
2821 
2822         /* Code the current SELECT into temporary table "tab2"
2823         */
2824         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2825         assert( p->addrOpenEphm[1] == -1 );
2826         p->addrOpenEphm[1] = addr;
2827         p->pPrior = 0;
2828         pLimit = p->pLimit;
2829         p->pLimit = 0;
2830         intersectdest.iSDParm = tab2;
2831         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2832                           selectOpName(p->op)));
2833         rc = sqlite3Select(pParse, p, &intersectdest);
2834         testcase( rc!=SQLITE_OK );
2835         pDelete = p->pPrior;
2836         p->pPrior = pPrior;
2837         if( p->nSelectRow>pPrior->nSelectRow ){
2838           p->nSelectRow = pPrior->nSelectRow;
2839         }
2840         sqlite3ExprDelete(db, p->pLimit);
2841         p->pLimit = pLimit;
2842 
2843         /* Generate code to take the intersection of the two temporary
2844         ** tables.
2845         */
2846         if( rc ) break;
2847         assert( p->pEList );
2848         iBreak = sqlite3VdbeMakeLabel(pParse);
2849         iCont = sqlite3VdbeMakeLabel(pParse);
2850         computeLimitRegisters(pParse, p, iBreak);
2851         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2852         r1 = sqlite3GetTempReg(pParse);
2853         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2854         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2855         VdbeCoverage(v);
2856         sqlite3ReleaseTempReg(pParse, r1);
2857         selectInnerLoop(pParse, p, tab1,
2858                         0, 0, &dest, iCont, iBreak);
2859         sqlite3VdbeResolveLabel(v, iCont);
2860         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2861         sqlite3VdbeResolveLabel(v, iBreak);
2862         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2863         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2864         break;
2865       }
2866     }
2867 
2868   #ifndef SQLITE_OMIT_EXPLAIN
2869     if( p->pNext==0 ){
2870       ExplainQueryPlanPop(pParse);
2871     }
2872   #endif
2873   }
2874   if( pParse->nErr ) goto multi_select_end;
2875 
2876   /* Compute collating sequences used by
2877   ** temporary tables needed to implement the compound select.
2878   ** Attach the KeyInfo structure to all temporary tables.
2879   **
2880   ** This section is run by the right-most SELECT statement only.
2881   ** SELECT statements to the left always skip this part.  The right-most
2882   ** SELECT might also skip this part if it has no ORDER BY clause and
2883   ** no temp tables are required.
2884   */
2885   if( p->selFlags & SF_UsesEphemeral ){
2886     int i;                        /* Loop counter */
2887     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2888     Select *pLoop;                /* For looping through SELECT statements */
2889     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2890     int nCol;                     /* Number of columns in result set */
2891 
2892     assert( p->pNext==0 );
2893     nCol = p->pEList->nExpr;
2894     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2895     if( !pKeyInfo ){
2896       rc = SQLITE_NOMEM_BKPT;
2897       goto multi_select_end;
2898     }
2899     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2900       *apColl = multiSelectCollSeq(pParse, p, i);
2901       if( 0==*apColl ){
2902         *apColl = db->pDfltColl;
2903       }
2904     }
2905 
2906     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2907       for(i=0; i<2; i++){
2908         int addr = pLoop->addrOpenEphm[i];
2909         if( addr<0 ){
2910           /* If [0] is unused then [1] is also unused.  So we can
2911           ** always safely abort as soon as the first unused slot is found */
2912           assert( pLoop->addrOpenEphm[1]<0 );
2913           break;
2914         }
2915         sqlite3VdbeChangeP2(v, addr, nCol);
2916         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2917                             P4_KEYINFO);
2918         pLoop->addrOpenEphm[i] = -1;
2919       }
2920     }
2921     sqlite3KeyInfoUnref(pKeyInfo);
2922   }
2923 
2924 multi_select_end:
2925   pDest->iSdst = dest.iSdst;
2926   pDest->nSdst = dest.nSdst;
2927   sqlite3SelectDelete(db, pDelete);
2928   return rc;
2929 }
2930 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2931 
2932 /*
2933 ** Error message for when two or more terms of a compound select have different
2934 ** size result sets.
2935 */
2936 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2937   if( p->selFlags & SF_Values ){
2938     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2939   }else{
2940     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2941       " do not have the same number of result columns", selectOpName(p->op));
2942   }
2943 }
2944 
2945 /*
2946 ** Code an output subroutine for a coroutine implementation of a
2947 ** SELECT statment.
2948 **
2949 ** The data to be output is contained in pIn->iSdst.  There are
2950 ** pIn->nSdst columns to be output.  pDest is where the output should
2951 ** be sent.
2952 **
2953 ** regReturn is the number of the register holding the subroutine
2954 ** return address.
2955 **
2956 ** If regPrev>0 then it is the first register in a vector that
2957 ** records the previous output.  mem[regPrev] is a flag that is false
2958 ** if there has been no previous output.  If regPrev>0 then code is
2959 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2960 ** keys.
2961 **
2962 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2963 ** iBreak.
2964 */
2965 static int generateOutputSubroutine(
2966   Parse *pParse,          /* Parsing context */
2967   Select *p,              /* The SELECT statement */
2968   SelectDest *pIn,        /* Coroutine supplying data */
2969   SelectDest *pDest,      /* Where to send the data */
2970   int regReturn,          /* The return address register */
2971   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2972   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2973   int iBreak              /* Jump here if we hit the LIMIT */
2974 ){
2975   Vdbe *v = pParse->pVdbe;
2976   int iContinue;
2977   int addr;
2978 
2979   addr = sqlite3VdbeCurrentAddr(v);
2980   iContinue = sqlite3VdbeMakeLabel(pParse);
2981 
2982   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2983   */
2984   if( regPrev ){
2985     int addr1, addr2;
2986     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2987     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2988                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2989     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2990     sqlite3VdbeJumpHere(v, addr1);
2991     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2992     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2993   }
2994   if( pParse->db->mallocFailed ) return 0;
2995 
2996   /* Suppress the first OFFSET entries if there is an OFFSET clause
2997   */
2998   codeOffset(v, p->iOffset, iContinue);
2999 
3000   assert( pDest->eDest!=SRT_Exists );
3001   assert( pDest->eDest!=SRT_Table );
3002   switch( pDest->eDest ){
3003     /* Store the result as data using a unique key.
3004     */
3005     case SRT_EphemTab: {
3006       int r1 = sqlite3GetTempReg(pParse);
3007       int r2 = sqlite3GetTempReg(pParse);
3008       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3009       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3010       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3011       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3012       sqlite3ReleaseTempReg(pParse, r2);
3013       sqlite3ReleaseTempReg(pParse, r1);
3014       break;
3015     }
3016 
3017 #ifndef SQLITE_OMIT_SUBQUERY
3018     /* If we are creating a set for an "expr IN (SELECT ...)".
3019     */
3020     case SRT_Set: {
3021       int r1;
3022       testcase( pIn->nSdst>1 );
3023       r1 = sqlite3GetTempReg(pParse);
3024       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3025           r1, pDest->zAffSdst, pIn->nSdst);
3026       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3027                            pIn->iSdst, pIn->nSdst);
3028       sqlite3ReleaseTempReg(pParse, r1);
3029       break;
3030     }
3031 
3032     /* If this is a scalar select that is part of an expression, then
3033     ** store the results in the appropriate memory cell and break out
3034     ** of the scan loop.  Note that the select might return multiple columns
3035     ** if it is the RHS of a row-value IN operator.
3036     */
3037     case SRT_Mem: {
3038       if( pParse->nErr==0 ){
3039         testcase( pIn->nSdst>1 );
3040         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3041       }
3042       /* The LIMIT clause will jump out of the loop for us */
3043       break;
3044     }
3045 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3046 
3047     /* The results are stored in a sequence of registers
3048     ** starting at pDest->iSdst.  Then the co-routine yields.
3049     */
3050     case SRT_Coroutine: {
3051       if( pDest->iSdst==0 ){
3052         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3053         pDest->nSdst = pIn->nSdst;
3054       }
3055       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3056       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3057       break;
3058     }
3059 
3060     /* If none of the above, then the result destination must be
3061     ** SRT_Output.  This routine is never called with any other
3062     ** destination other than the ones handled above or SRT_Output.
3063     **
3064     ** For SRT_Output, results are stored in a sequence of registers.
3065     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3066     ** return the next row of result.
3067     */
3068     default: {
3069       assert( pDest->eDest==SRT_Output );
3070       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3071       break;
3072     }
3073   }
3074 
3075   /* Jump to the end of the loop if the LIMIT is reached.
3076   */
3077   if( p->iLimit ){
3078     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3079   }
3080 
3081   /* Generate the subroutine return
3082   */
3083   sqlite3VdbeResolveLabel(v, iContinue);
3084   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3085 
3086   return addr;
3087 }
3088 
3089 /*
3090 ** Alternative compound select code generator for cases when there
3091 ** is an ORDER BY clause.
3092 **
3093 ** We assume a query of the following form:
3094 **
3095 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3096 **
3097 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3098 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3099 ** co-routines.  Then run the co-routines in parallel and merge the results
3100 ** into the output.  In addition to the two coroutines (called selectA and
3101 ** selectB) there are 7 subroutines:
3102 **
3103 **    outA:    Move the output of the selectA coroutine into the output
3104 **             of the compound query.
3105 **
3106 **    outB:    Move the output of the selectB coroutine into the output
3107 **             of the compound query.  (Only generated for UNION and
3108 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3109 **             appears only in B.)
3110 **
3111 **    AltB:    Called when there is data from both coroutines and A<B.
3112 **
3113 **    AeqB:    Called when there is data from both coroutines and A==B.
3114 **
3115 **    AgtB:    Called when there is data from both coroutines and A>B.
3116 **
3117 **    EofA:    Called when data is exhausted from selectA.
3118 **
3119 **    EofB:    Called when data is exhausted from selectB.
3120 **
3121 ** The implementation of the latter five subroutines depend on which
3122 ** <operator> is used:
3123 **
3124 **
3125 **             UNION ALL         UNION            EXCEPT          INTERSECT
3126 **          -------------  -----------------  --------------  -----------------
3127 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3128 **
3129 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3130 **
3131 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3132 **
3133 **   EofA:   outB, nextB      outB, nextB          halt             halt
3134 **
3135 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3136 **
3137 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3138 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3139 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3140 ** following nextX causes a jump to the end of the select processing.
3141 **
3142 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3143 ** within the output subroutine.  The regPrev register set holds the previously
3144 ** output value.  A comparison is made against this value and the output
3145 ** is skipped if the next results would be the same as the previous.
3146 **
3147 ** The implementation plan is to implement the two coroutines and seven
3148 ** subroutines first, then put the control logic at the bottom.  Like this:
3149 **
3150 **          goto Init
3151 **     coA: coroutine for left query (A)
3152 **     coB: coroutine for right query (B)
3153 **    outA: output one row of A
3154 **    outB: output one row of B (UNION and UNION ALL only)
3155 **    EofA: ...
3156 **    EofB: ...
3157 **    AltB: ...
3158 **    AeqB: ...
3159 **    AgtB: ...
3160 **    Init: initialize coroutine registers
3161 **          yield coA
3162 **          if eof(A) goto EofA
3163 **          yield coB
3164 **          if eof(B) goto EofB
3165 **    Cmpr: Compare A, B
3166 **          Jump AltB, AeqB, AgtB
3167 **     End: ...
3168 **
3169 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3170 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3171 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3172 ** and AgtB jump to either L2 or to one of EofA or EofB.
3173 */
3174 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3175 static int multiSelectOrderBy(
3176   Parse *pParse,        /* Parsing context */
3177   Select *p,            /* The right-most of SELECTs to be coded */
3178   SelectDest *pDest     /* What to do with query results */
3179 ){
3180   int i, j;             /* Loop counters */
3181   Select *pPrior;       /* Another SELECT immediately to our left */
3182   Vdbe *v;              /* Generate code to this VDBE */
3183   SelectDest destA;     /* Destination for coroutine A */
3184   SelectDest destB;     /* Destination for coroutine B */
3185   int regAddrA;         /* Address register for select-A coroutine */
3186   int regAddrB;         /* Address register for select-B coroutine */
3187   int addrSelectA;      /* Address of the select-A coroutine */
3188   int addrSelectB;      /* Address of the select-B coroutine */
3189   int regOutA;          /* Address register for the output-A subroutine */
3190   int regOutB;          /* Address register for the output-B subroutine */
3191   int addrOutA;         /* Address of the output-A subroutine */
3192   int addrOutB = 0;     /* Address of the output-B subroutine */
3193   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3194   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3195   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3196   int addrAltB;         /* Address of the A<B subroutine */
3197   int addrAeqB;         /* Address of the A==B subroutine */
3198   int addrAgtB;         /* Address of the A>B subroutine */
3199   int regLimitA;        /* Limit register for select-A */
3200   int regLimitB;        /* Limit register for select-A */
3201   int regPrev;          /* A range of registers to hold previous output */
3202   int savedLimit;       /* Saved value of p->iLimit */
3203   int savedOffset;      /* Saved value of p->iOffset */
3204   int labelCmpr;        /* Label for the start of the merge algorithm */
3205   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3206   int addr1;            /* Jump instructions that get retargetted */
3207   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3208   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3209   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3210   sqlite3 *db;          /* Database connection */
3211   ExprList *pOrderBy;   /* The ORDER BY clause */
3212   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3213   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3214 
3215   assert( p->pOrderBy!=0 );
3216   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3217   db = pParse->db;
3218   v = pParse->pVdbe;
3219   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3220   labelEnd = sqlite3VdbeMakeLabel(pParse);
3221   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3222 
3223 
3224   /* Patch up the ORDER BY clause
3225   */
3226   op = p->op;
3227   pPrior = p->pPrior;
3228   assert( pPrior->pOrderBy==0 );
3229   pOrderBy = p->pOrderBy;
3230   assert( pOrderBy );
3231   nOrderBy = pOrderBy->nExpr;
3232 
3233   /* For operators other than UNION ALL we have to make sure that
3234   ** the ORDER BY clause covers every term of the result set.  Add
3235   ** terms to the ORDER BY clause as necessary.
3236   */
3237   if( op!=TK_ALL ){
3238     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3239       struct ExprList_item *pItem;
3240       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3241         assert( pItem->u.x.iOrderByCol>0 );
3242         if( pItem->u.x.iOrderByCol==i ) break;
3243       }
3244       if( j==nOrderBy ){
3245         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3246         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3247         pNew->flags |= EP_IntValue;
3248         pNew->u.iValue = i;
3249         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3250         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3251       }
3252     }
3253   }
3254 
3255   /* Compute the comparison permutation and keyinfo that is used with
3256   ** the permutation used to determine if the next
3257   ** row of results comes from selectA or selectB.  Also add explicit
3258   ** collations to the ORDER BY clause terms so that when the subqueries
3259   ** to the right and the left are evaluated, they use the correct
3260   ** collation.
3261   */
3262   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3263   if( aPermute ){
3264     struct ExprList_item *pItem;
3265     aPermute[0] = nOrderBy;
3266     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3267       assert( pItem->u.x.iOrderByCol>0 );
3268       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3269       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3270     }
3271     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3272   }else{
3273     pKeyMerge = 0;
3274   }
3275 
3276   /* Reattach the ORDER BY clause to the query.
3277   */
3278   p->pOrderBy = pOrderBy;
3279   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3280 
3281   /* Allocate a range of temporary registers and the KeyInfo needed
3282   ** for the logic that removes duplicate result rows when the
3283   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3284   */
3285   if( op==TK_ALL ){
3286     regPrev = 0;
3287   }else{
3288     int nExpr = p->pEList->nExpr;
3289     assert( nOrderBy>=nExpr || db->mallocFailed );
3290     regPrev = pParse->nMem+1;
3291     pParse->nMem += nExpr+1;
3292     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3293     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3294     if( pKeyDup ){
3295       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3296       for(i=0; i<nExpr; i++){
3297         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3298         pKeyDup->aSortFlags[i] = 0;
3299       }
3300     }
3301   }
3302 
3303   /* Separate the left and the right query from one another
3304   */
3305   p->pPrior = 0;
3306   pPrior->pNext = 0;
3307   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3308   if( pPrior->pPrior==0 ){
3309     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3310   }
3311 
3312   /* Compute the limit registers */
3313   computeLimitRegisters(pParse, p, labelEnd);
3314   if( p->iLimit && op==TK_ALL ){
3315     regLimitA = ++pParse->nMem;
3316     regLimitB = ++pParse->nMem;
3317     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3318                                   regLimitA);
3319     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3320   }else{
3321     regLimitA = regLimitB = 0;
3322   }
3323   sqlite3ExprDelete(db, p->pLimit);
3324   p->pLimit = 0;
3325 
3326   regAddrA = ++pParse->nMem;
3327   regAddrB = ++pParse->nMem;
3328   regOutA = ++pParse->nMem;
3329   regOutB = ++pParse->nMem;
3330   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3331   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3332 
3333   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3334 
3335   /* Generate a coroutine to evaluate the SELECT statement to the
3336   ** left of the compound operator - the "A" select.
3337   */
3338   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3339   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3340   VdbeComment((v, "left SELECT"));
3341   pPrior->iLimit = regLimitA;
3342   ExplainQueryPlan((pParse, 1, "LEFT"));
3343   sqlite3Select(pParse, pPrior, &destA);
3344   sqlite3VdbeEndCoroutine(v, regAddrA);
3345   sqlite3VdbeJumpHere(v, addr1);
3346 
3347   /* Generate a coroutine to evaluate the SELECT statement on
3348   ** the right - the "B" select
3349   */
3350   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3351   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3352   VdbeComment((v, "right SELECT"));
3353   savedLimit = p->iLimit;
3354   savedOffset = p->iOffset;
3355   p->iLimit = regLimitB;
3356   p->iOffset = 0;
3357   ExplainQueryPlan((pParse, 1, "RIGHT"));
3358   sqlite3Select(pParse, p, &destB);
3359   p->iLimit = savedLimit;
3360   p->iOffset = savedOffset;
3361   sqlite3VdbeEndCoroutine(v, regAddrB);
3362 
3363   /* Generate a subroutine that outputs the current row of the A
3364   ** select as the next output row of the compound select.
3365   */
3366   VdbeNoopComment((v, "Output routine for A"));
3367   addrOutA = generateOutputSubroutine(pParse,
3368                  p, &destA, pDest, regOutA,
3369                  regPrev, pKeyDup, labelEnd);
3370 
3371   /* Generate a subroutine that outputs the current row of the B
3372   ** select as the next output row of the compound select.
3373   */
3374   if( op==TK_ALL || op==TK_UNION ){
3375     VdbeNoopComment((v, "Output routine for B"));
3376     addrOutB = generateOutputSubroutine(pParse,
3377                  p, &destB, pDest, regOutB,
3378                  regPrev, pKeyDup, labelEnd);
3379   }
3380   sqlite3KeyInfoUnref(pKeyDup);
3381 
3382   /* Generate a subroutine to run when the results from select A
3383   ** are exhausted and only data in select B remains.
3384   */
3385   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3386     addrEofA_noB = addrEofA = labelEnd;
3387   }else{
3388     VdbeNoopComment((v, "eof-A subroutine"));
3389     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3390     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3391                                      VdbeCoverage(v);
3392     sqlite3VdbeGoto(v, addrEofA);
3393     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3394   }
3395 
3396   /* Generate a subroutine to run when the results from select B
3397   ** are exhausted and only data in select A remains.
3398   */
3399   if( op==TK_INTERSECT ){
3400     addrEofB = addrEofA;
3401     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3402   }else{
3403     VdbeNoopComment((v, "eof-B subroutine"));
3404     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3405     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3406     sqlite3VdbeGoto(v, addrEofB);
3407   }
3408 
3409   /* Generate code to handle the case of A<B
3410   */
3411   VdbeNoopComment((v, "A-lt-B subroutine"));
3412   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3413   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3414   sqlite3VdbeGoto(v, labelCmpr);
3415 
3416   /* Generate code to handle the case of A==B
3417   */
3418   if( op==TK_ALL ){
3419     addrAeqB = addrAltB;
3420   }else if( op==TK_INTERSECT ){
3421     addrAeqB = addrAltB;
3422     addrAltB++;
3423   }else{
3424     VdbeNoopComment((v, "A-eq-B subroutine"));
3425     addrAeqB =
3426     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3427     sqlite3VdbeGoto(v, labelCmpr);
3428   }
3429 
3430   /* Generate code to handle the case of A>B
3431   */
3432   VdbeNoopComment((v, "A-gt-B subroutine"));
3433   addrAgtB = sqlite3VdbeCurrentAddr(v);
3434   if( op==TK_ALL || op==TK_UNION ){
3435     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3436   }
3437   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3438   sqlite3VdbeGoto(v, labelCmpr);
3439 
3440   /* This code runs once to initialize everything.
3441   */
3442   sqlite3VdbeJumpHere(v, addr1);
3443   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3444   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3445 
3446   /* Implement the main merge loop
3447   */
3448   sqlite3VdbeResolveLabel(v, labelCmpr);
3449   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3450   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3451                          (char*)pKeyMerge, P4_KEYINFO);
3452   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3453   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3454 
3455   /* Jump to the this point in order to terminate the query.
3456   */
3457   sqlite3VdbeResolveLabel(v, labelEnd);
3458 
3459   /* Reassembly the compound query so that it will be freed correctly
3460   ** by the calling function */
3461   if( p->pPrior ){
3462     sqlite3SelectDelete(db, p->pPrior);
3463   }
3464   p->pPrior = pPrior;
3465   pPrior->pNext = p;
3466 
3467   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3468   **** subqueries ****/
3469   ExplainQueryPlanPop(pParse);
3470   return pParse->nErr!=0;
3471 }
3472 #endif
3473 
3474 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3475 
3476 /* An instance of the SubstContext object describes an substitution edit
3477 ** to be performed on a parse tree.
3478 **
3479 ** All references to columns in table iTable are to be replaced by corresponding
3480 ** expressions in pEList.
3481 */
3482 typedef struct SubstContext {
3483   Parse *pParse;            /* The parsing context */
3484   int iTable;               /* Replace references to this table */
3485   int iNewTable;            /* New table number */
3486   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3487   ExprList *pEList;         /* Replacement expressions */
3488 } SubstContext;
3489 
3490 /* Forward Declarations */
3491 static void substExprList(SubstContext*, ExprList*);
3492 static void substSelect(SubstContext*, Select*, int);
3493 
3494 /*
3495 ** Scan through the expression pExpr.  Replace every reference to
3496 ** a column in table number iTable with a copy of the iColumn-th
3497 ** entry in pEList.  (But leave references to the ROWID column
3498 ** unchanged.)
3499 **
3500 ** This routine is part of the flattening procedure.  A subquery
3501 ** whose result set is defined by pEList appears as entry in the
3502 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3503 ** FORM clause entry is iTable.  This routine makes the necessary
3504 ** changes to pExpr so that it refers directly to the source table
3505 ** of the subquery rather the result set of the subquery.
3506 */
3507 static Expr *substExpr(
3508   SubstContext *pSubst,  /* Description of the substitution */
3509   Expr *pExpr            /* Expr in which substitution occurs */
3510 ){
3511   if( pExpr==0 ) return 0;
3512   if( ExprHasProperty(pExpr, EP_FromJoin)
3513    && pExpr->iRightJoinTable==pSubst->iTable
3514   ){
3515     pExpr->iRightJoinTable = pSubst->iNewTable;
3516   }
3517   if( pExpr->op==TK_COLUMN
3518    && pExpr->iTable==pSubst->iTable
3519    && !ExprHasProperty(pExpr, EP_FixedCol)
3520   ){
3521     if( pExpr->iColumn<0 ){
3522       pExpr->op = TK_NULL;
3523     }else{
3524       Expr *pNew;
3525       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3526       Expr ifNullRow;
3527       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3528       assert( pExpr->pRight==0 );
3529       if( sqlite3ExprIsVector(pCopy) ){
3530         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3531       }else{
3532         sqlite3 *db = pSubst->pParse->db;
3533         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3534           memset(&ifNullRow, 0, sizeof(ifNullRow));
3535           ifNullRow.op = TK_IF_NULL_ROW;
3536           ifNullRow.pLeft = pCopy;
3537           ifNullRow.iTable = pSubst->iNewTable;
3538           ifNullRow.flags = EP_IfNullRow;
3539           pCopy = &ifNullRow;
3540         }
3541         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3542         pNew = sqlite3ExprDup(db, pCopy, 0);
3543         if( pNew && pSubst->isLeftJoin ){
3544           ExprSetProperty(pNew, EP_CanBeNull);
3545         }
3546         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3547           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3548         }
3549         sqlite3ExprDelete(db, pExpr);
3550         pExpr = pNew;
3551 
3552         /* Ensure that the expression now has an implicit collation sequence,
3553         ** just as it did when it was a column of a view or sub-query. */
3554         if( pExpr ){
3555           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3556             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3557             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3558                 (pColl ? pColl->zName : "BINARY")
3559             );
3560           }
3561           ExprClearProperty(pExpr, EP_Collate);
3562         }
3563       }
3564     }
3565   }else{
3566     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3567       pExpr->iTable = pSubst->iNewTable;
3568     }
3569     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3570     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3571     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3572       substSelect(pSubst, pExpr->x.pSelect, 1);
3573     }else{
3574       substExprList(pSubst, pExpr->x.pList);
3575     }
3576 #ifndef SQLITE_OMIT_WINDOWFUNC
3577     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3578       Window *pWin = pExpr->y.pWin;
3579       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3580       substExprList(pSubst, pWin->pPartition);
3581       substExprList(pSubst, pWin->pOrderBy);
3582     }
3583 #endif
3584   }
3585   return pExpr;
3586 }
3587 static void substExprList(
3588   SubstContext *pSubst, /* Description of the substitution */
3589   ExprList *pList       /* List to scan and in which to make substitutes */
3590 ){
3591   int i;
3592   if( pList==0 ) return;
3593   for(i=0; i<pList->nExpr; i++){
3594     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3595   }
3596 }
3597 static void substSelect(
3598   SubstContext *pSubst, /* Description of the substitution */
3599   Select *p,            /* SELECT statement in which to make substitutions */
3600   int doPrior           /* Do substitutes on p->pPrior too */
3601 ){
3602   SrcList *pSrc;
3603   SrcItem *pItem;
3604   int i;
3605   if( !p ) return;
3606   do{
3607     substExprList(pSubst, p->pEList);
3608     substExprList(pSubst, p->pGroupBy);
3609     substExprList(pSubst, p->pOrderBy);
3610     p->pHaving = substExpr(pSubst, p->pHaving);
3611     p->pWhere = substExpr(pSubst, p->pWhere);
3612     pSrc = p->pSrc;
3613     assert( pSrc!=0 );
3614     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3615       substSelect(pSubst, pItem->pSelect, 1);
3616       if( pItem->fg.isTabFunc ){
3617         substExprList(pSubst, pItem->u1.pFuncArg);
3618       }
3619     }
3620   }while( doPrior && (p = p->pPrior)!=0 );
3621 }
3622 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3623 
3624 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3625 /*
3626 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3627 ** clause of that SELECT.
3628 **
3629 ** This routine scans the entire SELECT statement and recomputes the
3630 ** pSrcItem->colUsed mask.
3631 */
3632 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3633   SrcItem *pItem;
3634   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3635   pItem = pWalker->u.pSrcItem;
3636   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3637   if( pExpr->iColumn<0 ) return WRC_Continue;
3638   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3639   return WRC_Continue;
3640 }
3641 static void recomputeColumnsUsed(
3642   Select *pSelect,                 /* The complete SELECT statement */
3643   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3644 ){
3645   Walker w;
3646   if( NEVER(pSrcItem->pTab==0) ) return;
3647   memset(&w, 0, sizeof(w));
3648   w.xExprCallback = recomputeColumnsUsedExpr;
3649   w.xSelectCallback = sqlite3SelectWalkNoop;
3650   w.u.pSrcItem = pSrcItem;
3651   pSrcItem->colUsed = 0;
3652   sqlite3WalkSelect(&w, pSelect);
3653 }
3654 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3655 
3656 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3657 /*
3658 ** Assign new cursor numbers to each of the items in pSrc. For each
3659 ** new cursor number assigned, set an entry in the aCsrMap[] array
3660 ** to map the old cursor number to the new:
3661 **
3662 **     aCsrMap[iOld] = iNew;
3663 **
3664 ** The array is guaranteed by the caller to be large enough for all
3665 ** existing cursor numbers in pSrc.
3666 **
3667 ** If pSrc contains any sub-selects, call this routine recursively
3668 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3669 */
3670 static void srclistRenumberCursors(
3671   Parse *pParse,                  /* Parse context */
3672   int *aCsrMap,                   /* Array to store cursor mappings in */
3673   SrcList *pSrc,                  /* FROM clause to renumber */
3674   int iExcept                     /* FROM clause item to skip */
3675 ){
3676   int i;
3677   SrcItem *pItem;
3678   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3679     if( i!=iExcept ){
3680       Select *p;
3681       pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++;
3682       for(p=pItem->pSelect; p; p=p->pPrior){
3683         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3684       }
3685     }
3686   }
3687 }
3688 
3689 /*
3690 ** Expression walker callback used by renumberCursors() to update
3691 ** Expr objects to match newly assigned cursor numbers.
3692 */
3693 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3694   int *aCsrMap = pWalker->u.aiCol;
3695   int op = pExpr->op;
3696   if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){
3697     pExpr->iTable = aCsrMap[pExpr->iTable];
3698   }
3699   if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){
3700     pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable];
3701   }
3702   return WRC_Continue;
3703 }
3704 
3705 /*
3706 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3707 ** of the SELECT statement passed as the second argument, and to each
3708 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3709 ** Except, do not assign a new cursor number to the iExcept'th element in
3710 ** the FROM clause of (*p). Update all expressions and other references
3711 ** to refer to the new cursor numbers.
3712 **
3713 ** Argument aCsrMap is an array that may be used for temporary working
3714 ** space. Two guarantees are made by the caller:
3715 **
3716 **   * the array is larger than the largest cursor number used within the
3717 **     select statement passed as an argument, and
3718 **
3719 **   * the array entries for all cursor numbers that do *not* appear in
3720 **     FROM clauses of the select statement as described above are
3721 **     initialized to zero.
3722 */
3723 static void renumberCursors(
3724   Parse *pParse,                  /* Parse context */
3725   Select *p,                      /* Select to renumber cursors within */
3726   int iExcept,                    /* FROM clause item to skip */
3727   int *aCsrMap                    /* Working space */
3728 ){
3729   Walker w;
3730   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3731   memset(&w, 0, sizeof(w));
3732   w.u.aiCol = aCsrMap;
3733   w.xExprCallback = renumberCursorsCb;
3734   w.xSelectCallback = sqlite3SelectWalkNoop;
3735   sqlite3WalkSelect(&w, p);
3736 }
3737 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3738 
3739 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3740 /*
3741 ** This routine attempts to flatten subqueries as a performance optimization.
3742 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3743 **
3744 ** To understand the concept of flattening, consider the following
3745 ** query:
3746 **
3747 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3748 **
3749 ** The default way of implementing this query is to execute the
3750 ** subquery first and store the results in a temporary table, then
3751 ** run the outer query on that temporary table.  This requires two
3752 ** passes over the data.  Furthermore, because the temporary table
3753 ** has no indices, the WHERE clause on the outer query cannot be
3754 ** optimized.
3755 **
3756 ** This routine attempts to rewrite queries such as the above into
3757 ** a single flat select, like this:
3758 **
3759 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3760 **
3761 ** The code generated for this simplification gives the same result
3762 ** but only has to scan the data once.  And because indices might
3763 ** exist on the table t1, a complete scan of the data might be
3764 ** avoided.
3765 **
3766 ** Flattening is subject to the following constraints:
3767 **
3768 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3769 **        The subquery and the outer query cannot both be aggregates.
3770 **
3771 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3772 **        (2) If the subquery is an aggregate then
3773 **        (2a) the outer query must not be a join and
3774 **        (2b) the outer query must not use subqueries
3775 **             other than the one FROM-clause subquery that is a candidate
3776 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3777 **             from 2015-02-09.)
3778 **
3779 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3780 **        (3a) the subquery may not be a join and
3781 **        (3b) the FROM clause of the subquery may not contain a virtual
3782 **             table and
3783 **        (3c) the outer query may not be an aggregate.
3784 **        (3d) the outer query may not be DISTINCT.
3785 **
3786 **   (4)  The subquery can not be DISTINCT.
3787 **
3788 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3789 **        sub-queries that were excluded from this optimization. Restriction
3790 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3791 **
3792 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3793 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3794 **
3795 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3796 **        A FROM clause, consider adding a FROM clause with the special
3797 **        table sqlite_once that consists of a single row containing a
3798 **        single NULL.
3799 **
3800 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3801 **
3802 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3803 **
3804 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3805 **        accidently carried the comment forward until 2014-09-15.  Original
3806 **        constraint: "If the subquery is aggregate then the outer query
3807 **        may not use LIMIT."
3808 **
3809 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3810 **
3811 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3812 **        a separate restriction deriving from ticket #350.
3813 **
3814 **  (13)  The subquery and outer query may not both use LIMIT.
3815 **
3816 **  (14)  The subquery may not use OFFSET.
3817 **
3818 **  (15)  If the outer query is part of a compound select, then the
3819 **        subquery may not use LIMIT.
3820 **        (See ticket #2339 and ticket [02a8e81d44]).
3821 **
3822 **  (16)  If the outer query is aggregate, then the subquery may not
3823 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3824 **        until we introduced the group_concat() function.
3825 **
3826 **  (17)  If the subquery is a compound select, then
3827 **        (17a) all compound operators must be a UNION ALL, and
3828 **        (17b) no terms within the subquery compound may be aggregate
3829 **              or DISTINCT, and
3830 **        (17c) every term within the subquery compound must have a FROM clause
3831 **        (17d) the outer query may not be
3832 **              (17d1) aggregate, or
3833 **              (17d2) DISTINCT
3834 **        (17e) the subquery may not contain window functions, and
3835 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3836 **
3837 **        The parent and sub-query may contain WHERE clauses. Subject to
3838 **        rules (11), (13) and (14), they may also contain ORDER BY,
3839 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3840 **        operator other than UNION ALL because all the other compound
3841 **        operators have an implied DISTINCT which is disallowed by
3842 **        restriction (4).
3843 **
3844 **        Also, each component of the sub-query must return the same number
3845 **        of result columns. This is actually a requirement for any compound
3846 **        SELECT statement, but all the code here does is make sure that no
3847 **        such (illegal) sub-query is flattened. The caller will detect the
3848 **        syntax error and return a detailed message.
3849 **
3850 **  (18)  If the sub-query is a compound select, then all terms of the
3851 **        ORDER BY clause of the parent must be copies of a term returned
3852 **        by the parent query.
3853 **
3854 **  (19)  If the subquery uses LIMIT then the outer query may not
3855 **        have a WHERE clause.
3856 **
3857 **  (20)  If the sub-query is a compound select, then it must not use
3858 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3859 **        somewhat by saying that the terms of the ORDER BY clause must
3860 **        appear as unmodified result columns in the outer query.  But we
3861 **        have other optimizations in mind to deal with that case.
3862 **
3863 **  (21)  If the subquery uses LIMIT then the outer query may not be
3864 **        DISTINCT.  (See ticket [752e1646fc]).
3865 **
3866 **  (22)  The subquery may not be a recursive CTE.
3867 **
3868 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
3869 **        a compound query.  This restriction is because transforming the
3870 **        parent to a compound query confuses the code that handles
3871 **        recursive queries in multiSelect().
3872 **
3873 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3874 **        The subquery may not be an aggregate that uses the built-in min() or
3875 **        or max() functions.  (Without this restriction, a query like:
3876 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3877 **        return the value X for which Y was maximal.)
3878 **
3879 **  (25)  If either the subquery or the parent query contains a window
3880 **        function in the select list or ORDER BY clause, flattening
3881 **        is not attempted.
3882 **
3883 **
3884 ** In this routine, the "p" parameter is a pointer to the outer query.
3885 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3886 ** uses aggregates.
3887 **
3888 ** If flattening is not attempted, this routine is a no-op and returns 0.
3889 ** If flattening is attempted this routine returns 1.
3890 **
3891 ** All of the expression analysis must occur on both the outer query and
3892 ** the subquery before this routine runs.
3893 */
3894 static int flattenSubquery(
3895   Parse *pParse,       /* Parsing context */
3896   Select *p,           /* The parent or outer SELECT statement */
3897   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3898   int isAgg            /* True if outer SELECT uses aggregate functions */
3899 ){
3900   const char *zSavedAuthContext = pParse->zAuthContext;
3901   Select *pParent;    /* Current UNION ALL term of the other query */
3902   Select *pSub;       /* The inner query or "subquery" */
3903   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3904   SrcList *pSrc;      /* The FROM clause of the outer query */
3905   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3906   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3907   int iNewParent = -1;/* Replacement table for iParent */
3908   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3909   int i;              /* Loop counter */
3910   Expr *pWhere;                    /* The WHERE clause */
3911   SrcItem *pSubitem;               /* The subquery */
3912   sqlite3 *db = pParse->db;
3913   Walker w;                        /* Walker to persist agginfo data */
3914   int *aCsrMap = 0;
3915 
3916   /* Check to see if flattening is permitted.  Return 0 if not.
3917   */
3918   assert( p!=0 );
3919   assert( p->pPrior==0 );
3920   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3921   pSrc = p->pSrc;
3922   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3923   pSubitem = &pSrc->a[iFrom];
3924   iParent = pSubitem->iCursor;
3925   pSub = pSubitem->pSelect;
3926   assert( pSub!=0 );
3927 
3928 #ifndef SQLITE_OMIT_WINDOWFUNC
3929   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3930 #endif
3931 
3932   pSubSrc = pSub->pSrc;
3933   assert( pSubSrc );
3934   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3935   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3936   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3937   ** became arbitrary expressions, we were forced to add restrictions (13)
3938   ** and (14). */
3939   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3940   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3941   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3942     return 0;                                            /* Restriction (15) */
3943   }
3944   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3945   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3946   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3947      return 0;         /* Restrictions (8)(9) */
3948   }
3949   if( p->pOrderBy && pSub->pOrderBy ){
3950      return 0;                                           /* Restriction (11) */
3951   }
3952   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3953   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3954   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3955      return 0;         /* Restriction (21) */
3956   }
3957   if( pSub->selFlags & (SF_Recursive) ){
3958     return 0; /* Restrictions (22) */
3959   }
3960 
3961   /*
3962   ** If the subquery is the right operand of a LEFT JOIN, then the
3963   ** subquery may not be a join itself (3a). Example of why this is not
3964   ** allowed:
3965   **
3966   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3967   **
3968   ** If we flatten the above, we would get
3969   **
3970   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3971   **
3972   ** which is not at all the same thing.
3973   **
3974   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3975   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3976   ** aggregates are processed - there is no mechanism to determine if
3977   ** the LEFT JOIN table should be all-NULL.
3978   **
3979   ** See also tickets #306, #350, and #3300.
3980   */
3981   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3982     isLeftJoin = 1;
3983     if( pSubSrc->nSrc>1                   /* (3a) */
3984      || isAgg                             /* (3b) */
3985      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3986      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3987     ){
3988       return 0;
3989     }
3990   }
3991 #ifdef SQLITE_EXTRA_IFNULLROW
3992   else if( iFrom>0 && !isAgg ){
3993     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3994     ** every reference to any result column from subquery in a join, even
3995     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3996     ** opcode. */
3997     isLeftJoin = -1;
3998   }
3999 #endif
4000 
4001   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4002   ** use only the UNION ALL operator. And none of the simple select queries
4003   ** that make up the compound SELECT are allowed to be aggregate or distinct
4004   ** queries.
4005   */
4006   if( pSub->pPrior ){
4007     if( pSub->pOrderBy ){
4008       return 0;  /* Restriction (20) */
4009     }
4010     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4011       return 0; /* (17d1), (17d2), or (17f) */
4012     }
4013     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4014       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4015       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4016       assert( pSub->pSrc!=0 );
4017       assert( (pSub->selFlags & SF_Recursive)==0 );
4018       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4019       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4020        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4021        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4022 #ifndef SQLITE_OMIT_WINDOWFUNC
4023        || pSub1->pWin                                          /* (17e) */
4024 #endif
4025       ){
4026         return 0;
4027       }
4028       testcase( pSub1->pSrc->nSrc>1 );
4029     }
4030 
4031     /* Restriction (18). */
4032     if( p->pOrderBy ){
4033       int ii;
4034       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4035         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4036       }
4037     }
4038 
4039     /* Restriction (23) */
4040     if( (p->selFlags & SF_Recursive) ) return 0;
4041 
4042     if( pSrc->nSrc>1 ){
4043       aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int));
4044     }
4045   }
4046 
4047   /***** If we reach this point, flattening is permitted. *****/
4048   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4049                    pSub->selId, pSub, iFrom));
4050 
4051   /* Authorize the subquery */
4052   pParse->zAuthContext = pSubitem->zName;
4053   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4054   testcase( i==SQLITE_DENY );
4055   pParse->zAuthContext = zSavedAuthContext;
4056 
4057   /* Delete the transient structures associated with thesubquery */
4058   pSub1 = pSubitem->pSelect;
4059   sqlite3DbFree(db, pSubitem->zDatabase);
4060   sqlite3DbFree(db, pSubitem->zName);
4061   sqlite3DbFree(db, pSubitem->zAlias);
4062   pSubitem->zDatabase = 0;
4063   pSubitem->zName = 0;
4064   pSubitem->zAlias = 0;
4065   pSubitem->pSelect = 0;
4066   assert( pSubitem->pOn==0 );
4067 
4068   /* If the sub-query is a compound SELECT statement, then (by restrictions
4069   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4070   ** be of the form:
4071   **
4072   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4073   **
4074   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4075   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4076   ** OFFSET clauses and joins them to the left-hand-side of the original
4077   ** using UNION ALL operators. In this case N is the number of simple
4078   ** select statements in the compound sub-query.
4079   **
4080   ** Example:
4081   **
4082   **     SELECT a+1 FROM (
4083   **        SELECT x FROM tab
4084   **        UNION ALL
4085   **        SELECT y FROM tab
4086   **        UNION ALL
4087   **        SELECT abs(z*2) FROM tab2
4088   **     ) WHERE a!=5 ORDER BY 1
4089   **
4090   ** Transformed into:
4091   **
4092   **     SELECT x+1 FROM tab WHERE x+1!=5
4093   **     UNION ALL
4094   **     SELECT y+1 FROM tab WHERE y+1!=5
4095   **     UNION ALL
4096   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4097   **     ORDER BY 1
4098   **
4099   ** We call this the "compound-subquery flattening".
4100   */
4101   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4102     Select *pNew;
4103     ExprList *pOrderBy = p->pOrderBy;
4104     Expr *pLimit = p->pLimit;
4105     Select *pPrior = p->pPrior;
4106     Table *pItemTab = pSubitem->pTab;
4107     pSubitem->pTab = 0;
4108     p->pOrderBy = 0;
4109     p->pPrior = 0;
4110     p->pLimit = 0;
4111     pNew = sqlite3SelectDup(db, p, 0);
4112     p->pLimit = pLimit;
4113     p->pOrderBy = pOrderBy;
4114     p->op = TK_ALL;
4115     pSubitem->pTab = pItemTab;
4116     if( pNew==0 ){
4117       p->pPrior = pPrior;
4118     }else{
4119       if( aCsrMap && db->mallocFailed==0 ){
4120         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4121       }
4122       pNew->pPrior = pPrior;
4123       if( pPrior ) pPrior->pNext = pNew;
4124       pNew->pNext = p;
4125       p->pPrior = pNew;
4126       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4127                               " creates %u as peer\n",pNew->selId));
4128     }
4129     assert( pSubitem->pSelect==0 );
4130   }
4131   sqlite3DbFree(db, aCsrMap);
4132   if( db->mallocFailed ){
4133     pSubitem->pSelect = pSub1;
4134     return 1;
4135   }
4136 
4137   /* Defer deleting the Table object associated with the
4138   ** subquery until code generation is
4139   ** complete, since there may still exist Expr.pTab entries that
4140   ** refer to the subquery even after flattening.  Ticket #3346.
4141   **
4142   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4143   */
4144   if( ALWAYS(pSubitem->pTab!=0) ){
4145     Table *pTabToDel = pSubitem->pTab;
4146     if( pTabToDel->nTabRef==1 ){
4147       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4148       sqlite3ParserAddCleanup(pToplevel,
4149          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4150          pTabToDel);
4151       testcase( pToplevel->earlyCleanup );
4152     }else{
4153       pTabToDel->nTabRef--;
4154     }
4155     pSubitem->pTab = 0;
4156   }
4157 
4158   /* The following loop runs once for each term in a compound-subquery
4159   ** flattening (as described above).  If we are doing a different kind
4160   ** of flattening - a flattening other than a compound-subquery flattening -
4161   ** then this loop only runs once.
4162   **
4163   ** This loop moves all of the FROM elements of the subquery into the
4164   ** the FROM clause of the outer query.  Before doing this, remember
4165   ** the cursor number for the original outer query FROM element in
4166   ** iParent.  The iParent cursor will never be used.  Subsequent code
4167   ** will scan expressions looking for iParent references and replace
4168   ** those references with expressions that resolve to the subquery FROM
4169   ** elements we are now copying in.
4170   */
4171   pSub = pSub1;
4172   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4173     int nSubSrc;
4174     u8 jointype = 0;
4175     assert( pSub!=0 );
4176     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4177     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4178     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4179 
4180     if( pParent==p ){
4181       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4182     }
4183 
4184     /* The subquery uses a single slot of the FROM clause of the outer
4185     ** query.  If the subquery has more than one element in its FROM clause,
4186     ** then expand the outer query to make space for it to hold all elements
4187     ** of the subquery.
4188     **
4189     ** Example:
4190     **
4191     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4192     **
4193     ** The outer query has 3 slots in its FROM clause.  One slot of the
4194     ** outer query (the middle slot) is used by the subquery.  The next
4195     ** block of code will expand the outer query FROM clause to 4 slots.
4196     ** The middle slot is expanded to two slots in order to make space
4197     ** for the two elements in the FROM clause of the subquery.
4198     */
4199     if( nSubSrc>1 ){
4200       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4201       if( pSrc==0 ) break;
4202       pParent->pSrc = pSrc;
4203     }
4204 
4205     /* Transfer the FROM clause terms from the subquery into the
4206     ** outer query.
4207     */
4208     for(i=0; i<nSubSrc; i++){
4209       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4210       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4211       pSrc->a[i+iFrom] = pSubSrc->a[i];
4212       iNewParent = pSubSrc->a[i].iCursor;
4213       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4214     }
4215     pSrc->a[iFrom].fg.jointype = jointype;
4216 
4217     /* Now begin substituting subquery result set expressions for
4218     ** references to the iParent in the outer query.
4219     **
4220     ** Example:
4221     **
4222     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4223     **   \                     \_____________ subquery __________/          /
4224     **    \_____________________ outer query ______________________________/
4225     **
4226     ** We look at every expression in the outer query and every place we see
4227     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4228     */
4229     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4230       /* At this point, any non-zero iOrderByCol values indicate that the
4231       ** ORDER BY column expression is identical to the iOrderByCol'th
4232       ** expression returned by SELECT statement pSub. Since these values
4233       ** do not necessarily correspond to columns in SELECT statement pParent,
4234       ** zero them before transfering the ORDER BY clause.
4235       **
4236       ** Not doing this may cause an error if a subsequent call to this
4237       ** function attempts to flatten a compound sub-query into pParent
4238       ** (the only way this can happen is if the compound sub-query is
4239       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4240       ExprList *pOrderBy = pSub->pOrderBy;
4241       for(i=0; i<pOrderBy->nExpr; i++){
4242         pOrderBy->a[i].u.x.iOrderByCol = 0;
4243       }
4244       assert( pParent->pOrderBy==0 );
4245       pParent->pOrderBy = pOrderBy;
4246       pSub->pOrderBy = 0;
4247     }
4248     pWhere = pSub->pWhere;
4249     pSub->pWhere = 0;
4250     if( isLeftJoin>0 ){
4251       sqlite3SetJoinExpr(pWhere, iNewParent);
4252     }
4253     if( pWhere ){
4254       if( pParent->pWhere ){
4255         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4256       }else{
4257         pParent->pWhere = pWhere;
4258       }
4259     }
4260     if( db->mallocFailed==0 ){
4261       SubstContext x;
4262       x.pParse = pParse;
4263       x.iTable = iParent;
4264       x.iNewTable = iNewParent;
4265       x.isLeftJoin = isLeftJoin;
4266       x.pEList = pSub->pEList;
4267       substSelect(&x, pParent, 0);
4268     }
4269 
4270     /* The flattened query is a compound if either the inner or the
4271     ** outer query is a compound. */
4272     pParent->selFlags |= pSub->selFlags & SF_Compound;
4273     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4274 
4275     /*
4276     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4277     **
4278     ** One is tempted to try to add a and b to combine the limits.  But this
4279     ** does not work if either limit is negative.
4280     */
4281     if( pSub->pLimit ){
4282       pParent->pLimit = pSub->pLimit;
4283       pSub->pLimit = 0;
4284     }
4285 
4286     /* Recompute the SrcList_item.colUsed masks for the flattened
4287     ** tables. */
4288     for(i=0; i<nSubSrc; i++){
4289       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4290     }
4291   }
4292 
4293   /* Finially, delete what is left of the subquery and return
4294   ** success.
4295   */
4296   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4297   sqlite3WalkSelect(&w,pSub1);
4298   sqlite3SelectDelete(db, pSub1);
4299 
4300 #if SELECTTRACE_ENABLED
4301   if( sqlite3SelectTrace & 0x100 ){
4302     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4303     sqlite3TreeViewSelect(0, p, 0);
4304   }
4305 #endif
4306 
4307   return 1;
4308 }
4309 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4310 
4311 /*
4312 ** A structure to keep track of all of the column values that are fixed to
4313 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4314 */
4315 typedef struct WhereConst WhereConst;
4316 struct WhereConst {
4317   Parse *pParse;   /* Parsing context */
4318   int nConst;      /* Number for COLUMN=CONSTANT terms */
4319   int nChng;       /* Number of times a constant is propagated */
4320   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4321 };
4322 
4323 /*
4324 ** Add a new entry to the pConst object.  Except, do not add duplicate
4325 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4326 **
4327 ** The caller guarantees the pColumn is a column and pValue is a constant.
4328 ** This routine has to do some additional checks before completing the
4329 ** insert.
4330 */
4331 static void constInsert(
4332   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4333   Expr *pColumn,       /* The COLUMN part of the constraint */
4334   Expr *pValue,        /* The VALUE part of the constraint */
4335   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4336 ){
4337   int i;
4338   assert( pColumn->op==TK_COLUMN );
4339   assert( sqlite3ExprIsConstant(pValue) );
4340 
4341   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4342   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4343   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4344     return;
4345   }
4346 
4347   /* 2018-10-25 ticket [cf5ed20f]
4348   ** Make sure the same pColumn is not inserted more than once */
4349   for(i=0; i<pConst->nConst; i++){
4350     const Expr *pE2 = pConst->apExpr[i*2];
4351     assert( pE2->op==TK_COLUMN );
4352     if( pE2->iTable==pColumn->iTable
4353      && pE2->iColumn==pColumn->iColumn
4354     ){
4355       return;  /* Already present.  Return without doing anything. */
4356     }
4357   }
4358 
4359   pConst->nConst++;
4360   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4361                          pConst->nConst*2*sizeof(Expr*));
4362   if( pConst->apExpr==0 ){
4363     pConst->nConst = 0;
4364   }else{
4365     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4366     pConst->apExpr[pConst->nConst*2-1] = pValue;
4367   }
4368 }
4369 
4370 /*
4371 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4372 ** is a constant expression and where the term must be true because it
4373 ** is part of the AND-connected terms of the expression.  For each term
4374 ** found, add it to the pConst structure.
4375 */
4376 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4377   Expr *pRight, *pLeft;
4378   if( pExpr==0 ) return;
4379   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4380   if( pExpr->op==TK_AND ){
4381     findConstInWhere(pConst, pExpr->pRight);
4382     findConstInWhere(pConst, pExpr->pLeft);
4383     return;
4384   }
4385   if( pExpr->op!=TK_EQ ) return;
4386   pRight = pExpr->pRight;
4387   pLeft = pExpr->pLeft;
4388   assert( pRight!=0 );
4389   assert( pLeft!=0 );
4390   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4391     constInsert(pConst,pRight,pLeft,pExpr);
4392   }
4393   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4394     constInsert(pConst,pLeft,pRight,pExpr);
4395   }
4396 }
4397 
4398 /*
4399 ** This is a Walker expression callback.  pExpr is a candidate expression
4400 ** to be replaced by a value.  If pExpr is equivalent to one of the
4401 ** columns named in pWalker->u.pConst, then overwrite it with its
4402 ** corresponding value.
4403 */
4404 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4405   int i;
4406   WhereConst *pConst;
4407   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4408   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4409     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4410     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4411     return WRC_Continue;
4412   }
4413   pConst = pWalker->u.pConst;
4414   for(i=0; i<pConst->nConst; i++){
4415     Expr *pColumn = pConst->apExpr[i*2];
4416     if( pColumn==pExpr ) continue;
4417     if( pColumn->iTable!=pExpr->iTable ) continue;
4418     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4419     /* A match is found.  Add the EP_FixedCol property */
4420     pConst->nChng++;
4421     ExprClearProperty(pExpr, EP_Leaf);
4422     ExprSetProperty(pExpr, EP_FixedCol);
4423     assert( pExpr->pLeft==0 );
4424     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4425     break;
4426   }
4427   return WRC_Prune;
4428 }
4429 
4430 /*
4431 ** The WHERE-clause constant propagation optimization.
4432 **
4433 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4434 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4435 ** part of a ON clause from a LEFT JOIN, then throughout the query
4436 ** replace all other occurrences of COLUMN with CONSTANT.
4437 **
4438 ** For example, the query:
4439 **
4440 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4441 **
4442 ** Is transformed into
4443 **
4444 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4445 **
4446 ** Return true if any transformations where made and false if not.
4447 **
4448 ** Implementation note:  Constant propagation is tricky due to affinity
4449 ** and collating sequence interactions.  Consider this example:
4450 **
4451 **    CREATE TABLE t1(a INT,b TEXT);
4452 **    INSERT INTO t1 VALUES(123,'0123');
4453 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4454 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4455 **
4456 ** The two SELECT statements above should return different answers.  b=a
4457 ** is alway true because the comparison uses numeric affinity, but b=123
4458 ** is false because it uses text affinity and '0123' is not the same as '123'.
4459 ** To work around this, the expression tree is not actually changed from
4460 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4461 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4462 ** routines know to generate the constant "123" instead of looking up the
4463 ** column value.  Also, to avoid collation problems, this optimization is
4464 ** only attempted if the "a=123" term uses the default BINARY collation.
4465 */
4466 static int propagateConstants(
4467   Parse *pParse,   /* The parsing context */
4468   Select *p        /* The query in which to propagate constants */
4469 ){
4470   WhereConst x;
4471   Walker w;
4472   int nChng = 0;
4473   x.pParse = pParse;
4474   do{
4475     x.nConst = 0;
4476     x.nChng = 0;
4477     x.apExpr = 0;
4478     findConstInWhere(&x, p->pWhere);
4479     if( x.nConst ){
4480       memset(&w, 0, sizeof(w));
4481       w.pParse = pParse;
4482       w.xExprCallback = propagateConstantExprRewrite;
4483       w.xSelectCallback = sqlite3SelectWalkNoop;
4484       w.xSelectCallback2 = 0;
4485       w.walkerDepth = 0;
4486       w.u.pConst = &x;
4487       sqlite3WalkExpr(&w, p->pWhere);
4488       sqlite3DbFree(x.pParse->db, x.apExpr);
4489       nChng += x.nChng;
4490     }
4491   }while( x.nChng );
4492   return nChng;
4493 }
4494 
4495 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4496 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4497 /*
4498 ** This function is called to determine whether or not it is safe to
4499 ** push WHERE clause expression pExpr down to FROM clause sub-query
4500 ** pSubq, which contains at least one window function. Return 1
4501 ** if it is safe and the expression should be pushed down, or 0
4502 ** otherwise.
4503 **
4504 ** It is only safe to push the expression down if it consists only
4505 ** of constants and copies of expressions that appear in the PARTITION
4506 ** BY clause of all window function used by the sub-query. It is safe
4507 ** to filter out entire partitions, but not rows within partitions, as
4508 ** this may change the results of the window functions.
4509 **
4510 ** At the time this function is called it is guaranteed that
4511 **
4512 **   * the sub-query uses only one distinct window frame, and
4513 **   * that the window frame has a PARTITION BY clase.
4514 */
4515 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4516   assert( pSubq->pWin->pPartition );
4517   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4518   assert( pSubq->pPrior==0 );
4519   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4520 }
4521 # endif /* SQLITE_OMIT_WINDOWFUNC */
4522 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4523 
4524 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4525 /*
4526 ** Make copies of relevant WHERE clause terms of the outer query into
4527 ** the WHERE clause of subquery.  Example:
4528 **
4529 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4530 **
4531 ** Transformed into:
4532 **
4533 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4534 **     WHERE x=5 AND y=10;
4535 **
4536 ** The hope is that the terms added to the inner query will make it more
4537 ** efficient.
4538 **
4539 ** Do not attempt this optimization if:
4540 **
4541 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4542 **           disallow this optimization for aggregate subqueries, but now
4543 **           it is allowed by putting the extra terms on the HAVING clause.
4544 **           The added HAVING clause is pointless if the subquery lacks
4545 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4546 **           so there does not appear to be any reason to add extra logic
4547 **           to suppress it. **)
4548 **
4549 **   (2) The inner query is the recursive part of a common table expression.
4550 **
4551 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4552 **       clause would change the meaning of the LIMIT).
4553 **
4554 **   (4) The inner query is the right operand of a LEFT JOIN and the
4555 **       expression to be pushed down does not come from the ON clause
4556 **       on that LEFT JOIN.
4557 **
4558 **   (5) The WHERE clause expression originates in the ON or USING clause
4559 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4560 **       left join.  An example:
4561 **
4562 **           SELECT *
4563 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4564 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4565 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4566 **
4567 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4568 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4569 **       then the (1,1,NULL) row would be suppressed.
4570 **
4571 **   (6) Window functions make things tricky as changes to the WHERE clause
4572 **       of the inner query could change the window over which window
4573 **       functions are calculated. Therefore, do not attempt the optimization
4574 **       if:
4575 **
4576 **     (6a) The inner query uses multiple incompatible window partitions.
4577 **
4578 **     (6b) The inner query is a compound and uses window-functions.
4579 **
4580 **     (6c) The WHERE clause does not consist entirely of constants and
4581 **          copies of expressions found in the PARTITION BY clause of
4582 **          all window-functions used by the sub-query. It is safe to
4583 **          filter out entire partitions, as this does not change the
4584 **          window over which any window-function is calculated.
4585 **
4586 **   (7) The inner query is a Common Table Expression (CTE) that should
4587 **       be materialized.  (This restriction is implemented in the calling
4588 **       routine.)
4589 **
4590 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4591 ** terms are duplicated into the subquery.
4592 */
4593 static int pushDownWhereTerms(
4594   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4595   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4596   Expr *pWhere,         /* The WHERE clause of the outer query */
4597   int iCursor,          /* Cursor number of the subquery */
4598   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4599 ){
4600   Expr *pNew;
4601   int nChng = 0;
4602   if( pWhere==0 ) return 0;
4603   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4604 
4605 #ifndef SQLITE_OMIT_WINDOWFUNC
4606   if( pSubq->pPrior ){
4607     Select *pSel;
4608     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4609       if( pSel->pWin ) return 0;    /* restriction (6b) */
4610     }
4611   }else{
4612     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4613   }
4614 #endif
4615 
4616 #ifdef SQLITE_DEBUG
4617   /* Only the first term of a compound can have a WITH clause.  But make
4618   ** sure no other terms are marked SF_Recursive in case something changes
4619   ** in the future.
4620   */
4621   {
4622     Select *pX;
4623     for(pX=pSubq; pX; pX=pX->pPrior){
4624       assert( (pX->selFlags & (SF_Recursive))==0 );
4625     }
4626   }
4627 #endif
4628 
4629   if( pSubq->pLimit!=0 ){
4630     return 0; /* restriction (3) */
4631   }
4632   while( pWhere->op==TK_AND ){
4633     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4634                                 iCursor, isLeftJoin);
4635     pWhere = pWhere->pLeft;
4636   }
4637   if( isLeftJoin
4638    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4639          || pWhere->iRightJoinTable!=iCursor)
4640   ){
4641     return 0; /* restriction (4) */
4642   }
4643   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4644     return 0; /* restriction (5) */
4645   }
4646   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4647     nChng++;
4648     pSubq->selFlags |= SF_PushDown;
4649     while( pSubq ){
4650       SubstContext x;
4651       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4652       unsetJoinExpr(pNew, -1);
4653       x.pParse = pParse;
4654       x.iTable = iCursor;
4655       x.iNewTable = iCursor;
4656       x.isLeftJoin = 0;
4657       x.pEList = pSubq->pEList;
4658       pNew = substExpr(&x, pNew);
4659 #ifndef SQLITE_OMIT_WINDOWFUNC
4660       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4661         /* Restriction 6c has prevented push-down in this case */
4662         sqlite3ExprDelete(pParse->db, pNew);
4663         nChng--;
4664         break;
4665       }
4666 #endif
4667       if( pSubq->selFlags & SF_Aggregate ){
4668         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4669       }else{
4670         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4671       }
4672       pSubq = pSubq->pPrior;
4673     }
4674   }
4675   return nChng;
4676 }
4677 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4678 
4679 /*
4680 ** The pFunc is the only aggregate function in the query.  Check to see
4681 ** if the query is a candidate for the min/max optimization.
4682 **
4683 ** If the query is a candidate for the min/max optimization, then set
4684 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4685 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4686 ** whether pFunc is a min() or max() function.
4687 **
4688 ** If the query is not a candidate for the min/max optimization, return
4689 ** WHERE_ORDERBY_NORMAL (which must be zero).
4690 **
4691 ** This routine must be called after aggregate functions have been
4692 ** located but before their arguments have been subjected to aggregate
4693 ** analysis.
4694 */
4695 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4696   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4697   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4698   const char *zFunc;                    /* Name of aggregate function pFunc */
4699   ExprList *pOrderBy;
4700   u8 sortFlags = 0;
4701 
4702   assert( *ppMinMax==0 );
4703   assert( pFunc->op==TK_AGG_FUNCTION );
4704   assert( !IsWindowFunc(pFunc) );
4705   if( pEList==0
4706    || pEList->nExpr!=1
4707    || ExprHasProperty(pFunc, EP_WinFunc)
4708    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4709   ){
4710     return eRet;
4711   }
4712   zFunc = pFunc->u.zToken;
4713   if( sqlite3StrICmp(zFunc, "min")==0 ){
4714     eRet = WHERE_ORDERBY_MIN;
4715     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4716       sortFlags = KEYINFO_ORDER_BIGNULL;
4717     }
4718   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4719     eRet = WHERE_ORDERBY_MAX;
4720     sortFlags = KEYINFO_ORDER_DESC;
4721   }else{
4722     return eRet;
4723   }
4724   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4725   assert( pOrderBy!=0 || db->mallocFailed );
4726   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4727   return eRet;
4728 }
4729 
4730 /*
4731 ** The select statement passed as the first argument is an aggregate query.
4732 ** The second argument is the associated aggregate-info object. This
4733 ** function tests if the SELECT is of the form:
4734 **
4735 **   SELECT count(*) FROM <tbl>
4736 **
4737 ** where table is a database table, not a sub-select or view. If the query
4738 ** does match this pattern, then a pointer to the Table object representing
4739 ** <tbl> is returned. Otherwise, 0 is returned.
4740 */
4741 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4742   Table *pTab;
4743   Expr *pExpr;
4744 
4745   assert( !p->pGroupBy );
4746 
4747   if( p->pWhere || p->pEList->nExpr!=1
4748    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4749   ){
4750     return 0;
4751   }
4752   pTab = p->pSrc->a[0].pTab;
4753   pExpr = p->pEList->a[0].pExpr;
4754   assert( pTab && !pTab->pSelect && pExpr );
4755 
4756   if( IsVirtual(pTab) ) return 0;
4757   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4758   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4759   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4760   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4761 
4762   return pTab;
4763 }
4764 
4765 /*
4766 ** If the source-list item passed as an argument was augmented with an
4767 ** INDEXED BY clause, then try to locate the specified index. If there
4768 ** was such a clause and the named index cannot be found, return
4769 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4770 ** pFrom->pIndex and return SQLITE_OK.
4771 */
4772 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
4773   Table *pTab = pFrom->pTab;
4774   char *zIndexedBy = pFrom->u1.zIndexedBy;
4775   Index *pIdx;
4776   assert( pTab!=0 );
4777   assert( pFrom->fg.isIndexedBy!=0 );
4778 
4779   for(pIdx=pTab->pIndex;
4780       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4781       pIdx=pIdx->pNext
4782   );
4783   if( !pIdx ){
4784     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4785     pParse->checkSchema = 1;
4786     return SQLITE_ERROR;
4787   }
4788   pFrom->u2.pIBIndex = pIdx;
4789   return SQLITE_OK;
4790 }
4791 
4792 /*
4793 ** Detect compound SELECT statements that use an ORDER BY clause with
4794 ** an alternative collating sequence.
4795 **
4796 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4797 **
4798 ** These are rewritten as a subquery:
4799 **
4800 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4801 **     ORDER BY ... COLLATE ...
4802 **
4803 ** This transformation is necessary because the multiSelectOrderBy() routine
4804 ** above that generates the code for a compound SELECT with an ORDER BY clause
4805 ** uses a merge algorithm that requires the same collating sequence on the
4806 ** result columns as on the ORDER BY clause.  See ticket
4807 ** http://www.sqlite.org/src/info/6709574d2a
4808 **
4809 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4810 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4811 ** there are COLLATE terms in the ORDER BY.
4812 */
4813 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4814   int i;
4815   Select *pNew;
4816   Select *pX;
4817   sqlite3 *db;
4818   struct ExprList_item *a;
4819   SrcList *pNewSrc;
4820   Parse *pParse;
4821   Token dummy;
4822 
4823   if( p->pPrior==0 ) return WRC_Continue;
4824   if( p->pOrderBy==0 ) return WRC_Continue;
4825   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4826   if( pX==0 ) return WRC_Continue;
4827   a = p->pOrderBy->a;
4828 #ifndef SQLITE_OMIT_WINDOWFUNC
4829   /* If iOrderByCol is already non-zero, then it has already been matched
4830   ** to a result column of the SELECT statement. This occurs when the
4831   ** SELECT is rewritten for window-functions processing and then passed
4832   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4833   ** by this function is not required in this case. */
4834   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
4835 #endif
4836   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4837     if( a[i].pExpr->flags & EP_Collate ) break;
4838   }
4839   if( i<0 ) return WRC_Continue;
4840 
4841   /* If we reach this point, that means the transformation is required. */
4842 
4843   pParse = pWalker->pParse;
4844   db = pParse->db;
4845   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4846   if( pNew==0 ) return WRC_Abort;
4847   memset(&dummy, 0, sizeof(dummy));
4848   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4849   if( pNewSrc==0 ) return WRC_Abort;
4850   *pNew = *p;
4851   p->pSrc = pNewSrc;
4852   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4853   p->op = TK_SELECT;
4854   p->pWhere = 0;
4855   pNew->pGroupBy = 0;
4856   pNew->pHaving = 0;
4857   pNew->pOrderBy = 0;
4858   p->pPrior = 0;
4859   p->pNext = 0;
4860   p->pWith = 0;
4861 #ifndef SQLITE_OMIT_WINDOWFUNC
4862   p->pWinDefn = 0;
4863 #endif
4864   p->selFlags &= ~SF_Compound;
4865   assert( (p->selFlags & SF_Converted)==0 );
4866   p->selFlags |= SF_Converted;
4867   assert( pNew->pPrior!=0 );
4868   pNew->pPrior->pNext = pNew;
4869   pNew->pLimit = 0;
4870   return WRC_Continue;
4871 }
4872 
4873 /*
4874 ** Check to see if the FROM clause term pFrom has table-valued function
4875 ** arguments.  If it does, leave an error message in pParse and return
4876 ** non-zero, since pFrom is not allowed to be a table-valued function.
4877 */
4878 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
4879   if( pFrom->fg.isTabFunc ){
4880     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4881     return 1;
4882   }
4883   return 0;
4884 }
4885 
4886 #ifndef SQLITE_OMIT_CTE
4887 /*
4888 ** Argument pWith (which may be NULL) points to a linked list of nested
4889 ** WITH contexts, from inner to outermost. If the table identified by
4890 ** FROM clause element pItem is really a common-table-expression (CTE)
4891 ** then return a pointer to the CTE definition for that table. Otherwise
4892 ** return NULL.
4893 **
4894 ** If a non-NULL value is returned, set *ppContext to point to the With
4895 ** object that the returned CTE belongs to.
4896 */
4897 static struct Cte *searchWith(
4898   With *pWith,                    /* Current innermost WITH clause */
4899   SrcItem *pItem,                 /* FROM clause element to resolve */
4900   With **ppContext                /* OUT: WITH clause return value belongs to */
4901 ){
4902   const char *zName = pItem->zName;
4903   With *p;
4904   assert( pItem->zDatabase==0 );
4905   assert( zName!=0 );
4906   for(p=pWith; p; p=p->pOuter){
4907     int i;
4908     for(i=0; i<p->nCte; i++){
4909       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4910         *ppContext = p;
4911         return &p->a[i];
4912       }
4913     }
4914   }
4915   return 0;
4916 }
4917 
4918 /* The code generator maintains a stack of active WITH clauses
4919 ** with the inner-most WITH clause being at the top of the stack.
4920 **
4921 ** This routine pushes the WITH clause passed as the second argument
4922 ** onto the top of the stack. If argument bFree is true, then this
4923 ** WITH clause will never be popped from the stack. In this case it
4924 ** should be freed along with the Parse object. In other cases, when
4925 ** bFree==0, the With object will be freed along with the SELECT
4926 ** statement with which it is associated.
4927 */
4928 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4929   if( pWith ){
4930     assert( pParse->pWith!=pWith );
4931     pWith->pOuter = pParse->pWith;
4932     pParse->pWith = pWith;
4933     if( bFree ){
4934       sqlite3ParserAddCleanup(pParse,
4935          (void(*)(sqlite3*,void*))sqlite3WithDelete,
4936          pWith);
4937       testcase( pParse->earlyCleanup );
4938     }
4939   }
4940 }
4941 
4942 /*
4943 ** This function checks if argument pFrom refers to a CTE declared by
4944 ** a WITH clause on the stack currently maintained by the parser (on the
4945 ** pParse->pWith linked list).  And if currently processing a CTE
4946 ** CTE expression, through routine checks to see if the reference is
4947 ** a recursive reference to the CTE.
4948 **
4949 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
4950 ** and other fields are populated accordingly.
4951 **
4952 ** Return 0 if no match is found.
4953 ** Return 1 if a match is found.
4954 ** Return 2 if an error condition is detected.
4955 */
4956 static int resolveFromTermToCte(
4957   Parse *pParse,                  /* The parsing context */
4958   Walker *pWalker,                /* Current tree walker */
4959   SrcItem *pFrom                  /* The FROM clause term to check */
4960 ){
4961   Cte *pCte;               /* Matched CTE (or NULL if no match) */
4962   With *pWith;             /* The matching WITH */
4963 
4964   assert( pFrom->pTab==0 );
4965   if( pParse->pWith==0 ){
4966     /* There are no WITH clauses in the stack.  No match is possible */
4967     return 0;
4968   }
4969   if( pFrom->zDatabase!=0 ){
4970     /* The FROM term contains a schema qualifier (ex: main.t1) and so
4971     ** it cannot possibly be a CTE reference. */
4972     return 0;
4973   }
4974   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4975   if( pCte ){
4976     sqlite3 *db = pParse->db;
4977     Table *pTab;
4978     ExprList *pEList;
4979     Select *pSel;
4980     Select *pLeft;                /* Left-most SELECT statement */
4981     Select *pRecTerm;             /* Left-most recursive term */
4982     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4983     With *pSavedWith;             /* Initial value of pParse->pWith */
4984     int iRecTab = -1;             /* Cursor for recursive table */
4985     CteUse *pCteUse;
4986 
4987     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4988     ** recursive reference to CTE pCte. Leave an error in pParse and return
4989     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4990     ** In this case, proceed.  */
4991     if( pCte->zCteErr ){
4992       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4993       return 2;
4994     }
4995     if( cannotBeFunction(pParse, pFrom) ) return 2;
4996 
4997     assert( pFrom->pTab==0 );
4998     pTab = sqlite3DbMallocZero(db, sizeof(Table));
4999     if( pTab==0 ) return 2;
5000     pCteUse = pCte->pUse;
5001     if( pCteUse==0 ){
5002       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5003       if( pCteUse==0
5004        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5005       ){
5006         sqlite3DbFree(db, pTab);
5007         return 2;
5008       }
5009       pCteUse->eM10d = pCte->eM10d;
5010     }
5011     pFrom->pTab = pTab;
5012     pTab->nTabRef = 1;
5013     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5014     pTab->iPKey = -1;
5015     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5016     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5017     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5018     if( db->mallocFailed ) return 2;
5019     assert( pFrom->pSelect );
5020     pFrom->fg.isCte = 1;
5021     pFrom->u2.pCteUse = pCteUse;
5022     pCteUse->nUse++;
5023     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5024       pCteUse->eM10d = M10d_Yes;
5025     }
5026 
5027     /* Check if this is a recursive CTE. */
5028     pRecTerm = pSel = pFrom->pSelect;
5029     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5030     while( bMayRecursive && pRecTerm->op==pSel->op ){
5031       int i;
5032       SrcList *pSrc = pRecTerm->pSrc;
5033       assert( pRecTerm->pPrior!=0 );
5034       for(i=0; i<pSrc->nSrc; i++){
5035         SrcItem *pItem = &pSrc->a[i];
5036         if( pItem->zDatabase==0
5037          && pItem->zName!=0
5038          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5039         ){
5040           pItem->pTab = pTab;
5041           pTab->nTabRef++;
5042           pItem->fg.isRecursive = 1;
5043           if( pRecTerm->selFlags & SF_Recursive ){
5044             sqlite3ErrorMsg(pParse,
5045                "multiple references to recursive table: %s", pCte->zName
5046             );
5047             return 2;
5048           }
5049           pRecTerm->selFlags |= SF_Recursive;
5050           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5051           pItem->iCursor = iRecTab;
5052         }
5053       }
5054       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5055       pRecTerm = pRecTerm->pPrior;
5056     }
5057 
5058     pCte->zCteErr = "circular reference: %s";
5059     pSavedWith = pParse->pWith;
5060     pParse->pWith = pWith;
5061     if( pSel->selFlags & SF_Recursive ){
5062       assert( pRecTerm!=0 );
5063       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5064       assert( pRecTerm->pNext!=0 );
5065       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5066       assert( pRecTerm->pWith==0 );
5067       pRecTerm->pWith = pSel->pWith;
5068       sqlite3WalkSelect(pWalker, pRecTerm);
5069       pRecTerm->pWith = 0;
5070     }else{
5071       sqlite3WalkSelect(pWalker, pSel);
5072     }
5073     pParse->pWith = pWith;
5074 
5075     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5076     pEList = pLeft->pEList;
5077     if( pCte->pCols ){
5078       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5079         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5080             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5081         );
5082         pParse->pWith = pSavedWith;
5083         return 2;
5084       }
5085       pEList = pCte->pCols;
5086     }
5087 
5088     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5089     if( bMayRecursive ){
5090       if( pSel->selFlags & SF_Recursive ){
5091         pCte->zCteErr = "multiple recursive references: %s";
5092       }else{
5093         pCte->zCteErr = "recursive reference in a subquery: %s";
5094       }
5095       sqlite3WalkSelect(pWalker, pSel);
5096     }
5097     pCte->zCteErr = 0;
5098     pParse->pWith = pSavedWith;
5099     return 1;  /* Success */
5100   }
5101   return 0;  /* No match */
5102 }
5103 #endif
5104 
5105 #ifndef SQLITE_OMIT_CTE
5106 /*
5107 ** If the SELECT passed as the second argument has an associated WITH
5108 ** clause, pop it from the stack stored as part of the Parse object.
5109 **
5110 ** This function is used as the xSelectCallback2() callback by
5111 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5112 ** names and other FROM clause elements.
5113 */
5114 static void selectPopWith(Walker *pWalker, Select *p){
5115   Parse *pParse = pWalker->pParse;
5116   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5117     With *pWith = findRightmost(p)->pWith;
5118     if( pWith!=0 ){
5119       assert( pParse->pWith==pWith || pParse->nErr );
5120       pParse->pWith = pWith->pOuter;
5121     }
5122   }
5123 }
5124 #else
5125 #define selectPopWith 0
5126 #endif
5127 
5128 /*
5129 ** The SrcList_item structure passed as the second argument represents a
5130 ** sub-query in the FROM clause of a SELECT statement. This function
5131 ** allocates and populates the SrcList_item.pTab object. If successful,
5132 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5133 ** SQLITE_NOMEM.
5134 */
5135 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5136   Select *pSel = pFrom->pSelect;
5137   Table *pTab;
5138 
5139   assert( pSel );
5140   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5141   if( pTab==0 ) return SQLITE_NOMEM;
5142   pTab->nTabRef = 1;
5143   if( pFrom->zAlias ){
5144     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5145   }else{
5146     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5147   }
5148   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5149   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5150   pTab->iPKey = -1;
5151   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5152   pTab->tabFlags |= TF_Ephemeral;
5153 
5154   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5155 }
5156 
5157 /*
5158 ** This routine is a Walker callback for "expanding" a SELECT statement.
5159 ** "Expanding" means to do the following:
5160 **
5161 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5162 **         element of the FROM clause.
5163 **
5164 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5165 **         defines FROM clause.  When views appear in the FROM clause,
5166 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5167 **         that implements the view.  A copy is made of the view's SELECT
5168 **         statement so that we can freely modify or delete that statement
5169 **         without worrying about messing up the persistent representation
5170 **         of the view.
5171 **
5172 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5173 **         on joins and the ON and USING clause of joins.
5174 **
5175 **    (4)  Scan the list of columns in the result set (pEList) looking
5176 **         for instances of the "*" operator or the TABLE.* operator.
5177 **         If found, expand each "*" to be every column in every table
5178 **         and TABLE.* to be every column in TABLE.
5179 **
5180 */
5181 static int selectExpander(Walker *pWalker, Select *p){
5182   Parse *pParse = pWalker->pParse;
5183   int i, j, k, rc;
5184   SrcList *pTabList;
5185   ExprList *pEList;
5186   SrcItem *pFrom;
5187   sqlite3 *db = pParse->db;
5188   Expr *pE, *pRight, *pExpr;
5189   u16 selFlags = p->selFlags;
5190   u32 elistFlags = 0;
5191 
5192   p->selFlags |= SF_Expanded;
5193   if( db->mallocFailed  ){
5194     return WRC_Abort;
5195   }
5196   assert( p->pSrc!=0 );
5197   if( (selFlags & SF_Expanded)!=0 ){
5198     return WRC_Prune;
5199   }
5200   if( pWalker->eCode ){
5201     /* Renumber selId because it has been copied from a view */
5202     p->selId = ++pParse->nSelect;
5203   }
5204   pTabList = p->pSrc;
5205   pEList = p->pEList;
5206   sqlite3WithPush(pParse, p->pWith, 0);
5207 
5208   /* Make sure cursor numbers have been assigned to all entries in
5209   ** the FROM clause of the SELECT statement.
5210   */
5211   sqlite3SrcListAssignCursors(pParse, pTabList);
5212 
5213   /* Look up every table named in the FROM clause of the select.  If
5214   ** an entry of the FROM clause is a subquery instead of a table or view,
5215   ** then create a transient table structure to describe the subquery.
5216   */
5217   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5218     Table *pTab;
5219     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5220     if( pFrom->pTab ) continue;
5221     assert( pFrom->fg.isRecursive==0 );
5222     if( pFrom->zName==0 ){
5223 #ifndef SQLITE_OMIT_SUBQUERY
5224       Select *pSel = pFrom->pSelect;
5225       /* A sub-query in the FROM clause of a SELECT */
5226       assert( pSel!=0 );
5227       assert( pFrom->pTab==0 );
5228       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5229       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5230 #endif
5231 #ifndef SQLITE_OMIT_CTE
5232     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5233       if( rc>1 ) return WRC_Abort;
5234       pTab = pFrom->pTab;
5235       assert( pTab!=0 );
5236 #endif
5237     }else{
5238       /* An ordinary table or view name in the FROM clause */
5239       assert( pFrom->pTab==0 );
5240       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5241       if( pTab==0 ) return WRC_Abort;
5242       if( pTab->nTabRef>=0xffff ){
5243         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5244            pTab->zName);
5245         pFrom->pTab = 0;
5246         return WRC_Abort;
5247       }
5248       pTab->nTabRef++;
5249       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5250         return WRC_Abort;
5251       }
5252 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5253       if( IsVirtual(pTab) || pTab->pSelect ){
5254         i16 nCol;
5255         u8 eCodeOrig = pWalker->eCode;
5256         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5257         assert( pFrom->pSelect==0 );
5258         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
5259           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5260             pTab->zName);
5261         }
5262 #ifndef SQLITE_OMIT_VIRTUALTABLE
5263         if( IsVirtual(pTab)
5264          && pFrom->fg.fromDDL
5265          && ALWAYS(pTab->pVTable!=0)
5266          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5267         ){
5268           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5269                                   pTab->zName);
5270         }
5271 #endif
5272         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5273         nCol = pTab->nCol;
5274         pTab->nCol = -1;
5275         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5276         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5277         pWalker->eCode = eCodeOrig;
5278         pTab->nCol = nCol;
5279       }
5280 #endif
5281     }
5282 
5283     /* Locate the index named by the INDEXED BY clause, if any. */
5284     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5285       return WRC_Abort;
5286     }
5287   }
5288 
5289   /* Process NATURAL keywords, and ON and USING clauses of joins.
5290   */
5291   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5292     return WRC_Abort;
5293   }
5294 
5295   /* For every "*" that occurs in the column list, insert the names of
5296   ** all columns in all tables.  And for every TABLE.* insert the names
5297   ** of all columns in TABLE.  The parser inserted a special expression
5298   ** with the TK_ASTERISK operator for each "*" that it found in the column
5299   ** list.  The following code just has to locate the TK_ASTERISK
5300   ** expressions and expand each one to the list of all columns in
5301   ** all tables.
5302   **
5303   ** The first loop just checks to see if there are any "*" operators
5304   ** that need expanding.
5305   */
5306   for(k=0; k<pEList->nExpr; k++){
5307     pE = pEList->a[k].pExpr;
5308     if( pE->op==TK_ASTERISK ) break;
5309     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5310     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5311     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5312     elistFlags |= pE->flags;
5313   }
5314   if( k<pEList->nExpr ){
5315     /*
5316     ** If we get here it means the result set contains one or more "*"
5317     ** operators that need to be expanded.  Loop through each expression
5318     ** in the result set and expand them one by one.
5319     */
5320     struct ExprList_item *a = pEList->a;
5321     ExprList *pNew = 0;
5322     int flags = pParse->db->flags;
5323     int longNames = (flags & SQLITE_FullColNames)!=0
5324                       && (flags & SQLITE_ShortColNames)==0;
5325 
5326     for(k=0; k<pEList->nExpr; k++){
5327       pE = a[k].pExpr;
5328       elistFlags |= pE->flags;
5329       pRight = pE->pRight;
5330       assert( pE->op!=TK_DOT || pRight!=0 );
5331       if( pE->op!=TK_ASTERISK
5332        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5333       ){
5334         /* This particular expression does not need to be expanded.
5335         */
5336         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5337         if( pNew ){
5338           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5339           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5340           a[k].zEName = 0;
5341         }
5342         a[k].pExpr = 0;
5343       }else{
5344         /* This expression is a "*" or a "TABLE.*" and needs to be
5345         ** expanded. */
5346         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5347         char *zTName = 0;       /* text of name of TABLE */
5348         if( pE->op==TK_DOT ){
5349           assert( pE->pLeft!=0 );
5350           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5351           zTName = pE->pLeft->u.zToken;
5352         }
5353         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5354           Table *pTab = pFrom->pTab;
5355           Select *pSub = pFrom->pSelect;
5356           char *zTabName = pFrom->zAlias;
5357           const char *zSchemaName = 0;
5358           int iDb;
5359           if( zTabName==0 ){
5360             zTabName = pTab->zName;
5361           }
5362           if( db->mallocFailed ) break;
5363           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5364             pSub = 0;
5365             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5366               continue;
5367             }
5368             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5369             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5370           }
5371           for(j=0; j<pTab->nCol; j++){
5372             char *zName = pTab->aCol[j].zName;
5373             char *zColname;  /* The computed column name */
5374             char *zToFree;   /* Malloced string that needs to be freed */
5375             Token sColname;  /* Computed column name as a token */
5376 
5377             assert( zName );
5378             if( zTName && pSub
5379              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5380             ){
5381               continue;
5382             }
5383 
5384             /* If a column is marked as 'hidden', omit it from the expanded
5385             ** result-set list unless the SELECT has the SF_IncludeHidden
5386             ** bit set.
5387             */
5388             if( (p->selFlags & SF_IncludeHidden)==0
5389              && IsHiddenColumn(&pTab->aCol[j])
5390             ){
5391               continue;
5392             }
5393             tableSeen = 1;
5394 
5395             if( i>0 && zTName==0 ){
5396               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5397                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5398               ){
5399                 /* In a NATURAL join, omit the join columns from the
5400                 ** table to the right of the join */
5401                 continue;
5402               }
5403               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5404                 /* In a join with a USING clause, omit columns in the
5405                 ** using clause from the table on the right. */
5406                 continue;
5407               }
5408             }
5409             pRight = sqlite3Expr(db, TK_ID, zName);
5410             zColname = zName;
5411             zToFree = 0;
5412             if( longNames || pTabList->nSrc>1 ){
5413               Expr *pLeft;
5414               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5415               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5416               if( zSchemaName ){
5417                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5418                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5419               }
5420               if( longNames ){
5421                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5422                 zToFree = zColname;
5423               }
5424             }else{
5425               pExpr = pRight;
5426             }
5427             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5428             sqlite3TokenInit(&sColname, zColname);
5429             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5430             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5431               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5432               sqlite3DbFree(db, pX->zEName);
5433               if( pSub ){
5434                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5435                 testcase( pX->zEName==0 );
5436               }else{
5437                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5438                                            zSchemaName, zTabName, zColname);
5439                 testcase( pX->zEName==0 );
5440               }
5441               pX->eEName = ENAME_TAB;
5442             }
5443             sqlite3DbFree(db, zToFree);
5444           }
5445         }
5446         if( !tableSeen ){
5447           if( zTName ){
5448             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5449           }else{
5450             sqlite3ErrorMsg(pParse, "no tables specified");
5451           }
5452         }
5453       }
5454     }
5455     sqlite3ExprListDelete(db, pEList);
5456     p->pEList = pNew;
5457   }
5458   if( p->pEList ){
5459     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5460       sqlite3ErrorMsg(pParse, "too many columns in result set");
5461       return WRC_Abort;
5462     }
5463     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5464       p->selFlags |= SF_ComplexResult;
5465     }
5466   }
5467   return WRC_Continue;
5468 }
5469 
5470 #if SQLITE_DEBUG
5471 /*
5472 ** Always assert.  This xSelectCallback2 implementation proves that the
5473 ** xSelectCallback2 is never invoked.
5474 */
5475 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5476   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5477   assert( 0 );
5478 }
5479 #endif
5480 /*
5481 ** This routine "expands" a SELECT statement and all of its subqueries.
5482 ** For additional information on what it means to "expand" a SELECT
5483 ** statement, see the comment on the selectExpand worker callback above.
5484 **
5485 ** Expanding a SELECT statement is the first step in processing a
5486 ** SELECT statement.  The SELECT statement must be expanded before
5487 ** name resolution is performed.
5488 **
5489 ** If anything goes wrong, an error message is written into pParse.
5490 ** The calling function can detect the problem by looking at pParse->nErr
5491 ** and/or pParse->db->mallocFailed.
5492 */
5493 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5494   Walker w;
5495   w.xExprCallback = sqlite3ExprWalkNoop;
5496   w.pParse = pParse;
5497   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5498     w.xSelectCallback = convertCompoundSelectToSubquery;
5499     w.xSelectCallback2 = 0;
5500     sqlite3WalkSelect(&w, pSelect);
5501   }
5502   w.xSelectCallback = selectExpander;
5503   w.xSelectCallback2 = selectPopWith;
5504   w.eCode = 0;
5505   sqlite3WalkSelect(&w, pSelect);
5506 }
5507 
5508 
5509 #ifndef SQLITE_OMIT_SUBQUERY
5510 /*
5511 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5512 ** interface.
5513 **
5514 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5515 ** information to the Table structure that represents the result set
5516 ** of that subquery.
5517 **
5518 ** The Table structure that represents the result set was constructed
5519 ** by selectExpander() but the type and collation information was omitted
5520 ** at that point because identifiers had not yet been resolved.  This
5521 ** routine is called after identifier resolution.
5522 */
5523 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5524   Parse *pParse;
5525   int i;
5526   SrcList *pTabList;
5527   SrcItem *pFrom;
5528 
5529   assert( p->selFlags & SF_Resolved );
5530   if( p->selFlags & SF_HasTypeInfo ) return;
5531   p->selFlags |= SF_HasTypeInfo;
5532   pParse = pWalker->pParse;
5533   pTabList = p->pSrc;
5534   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5535     Table *pTab = pFrom->pTab;
5536     assert( pTab!=0 );
5537     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5538       /* A sub-query in the FROM clause of a SELECT */
5539       Select *pSel = pFrom->pSelect;
5540       if( pSel ){
5541         while( pSel->pPrior ) pSel = pSel->pPrior;
5542         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5543                                                SQLITE_AFF_NONE);
5544       }
5545     }
5546   }
5547 }
5548 #endif
5549 
5550 
5551 /*
5552 ** This routine adds datatype and collating sequence information to
5553 ** the Table structures of all FROM-clause subqueries in a
5554 ** SELECT statement.
5555 **
5556 ** Use this routine after name resolution.
5557 */
5558 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5559 #ifndef SQLITE_OMIT_SUBQUERY
5560   Walker w;
5561   w.xSelectCallback = sqlite3SelectWalkNoop;
5562   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5563   w.xExprCallback = sqlite3ExprWalkNoop;
5564   w.pParse = pParse;
5565   sqlite3WalkSelect(&w, pSelect);
5566 #endif
5567 }
5568 
5569 
5570 /*
5571 ** This routine sets up a SELECT statement for processing.  The
5572 ** following is accomplished:
5573 **
5574 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5575 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5576 **     *  ON and USING clauses are shifted into WHERE statements
5577 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5578 **     *  Identifiers in expression are matched to tables.
5579 **
5580 ** This routine acts recursively on all subqueries within the SELECT.
5581 */
5582 void sqlite3SelectPrep(
5583   Parse *pParse,         /* The parser context */
5584   Select *p,             /* The SELECT statement being coded. */
5585   NameContext *pOuterNC  /* Name context for container */
5586 ){
5587   assert( p!=0 || pParse->db->mallocFailed );
5588   if( pParse->db->mallocFailed ) return;
5589   if( p->selFlags & SF_HasTypeInfo ) return;
5590   sqlite3SelectExpand(pParse, p);
5591   if( pParse->nErr || pParse->db->mallocFailed ) return;
5592   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5593   if( pParse->nErr || pParse->db->mallocFailed ) return;
5594   sqlite3SelectAddTypeInfo(pParse, p);
5595 }
5596 
5597 /*
5598 ** Reset the aggregate accumulator.
5599 **
5600 ** The aggregate accumulator is a set of memory cells that hold
5601 ** intermediate results while calculating an aggregate.  This
5602 ** routine generates code that stores NULLs in all of those memory
5603 ** cells.
5604 */
5605 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5606   Vdbe *v = pParse->pVdbe;
5607   int i;
5608   struct AggInfo_func *pFunc;
5609   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5610   if( nReg==0 ) return;
5611   if( pParse->nErr || pParse->db->mallocFailed ) return;
5612 #ifdef SQLITE_DEBUG
5613   /* Verify that all AggInfo registers are within the range specified by
5614   ** AggInfo.mnReg..AggInfo.mxReg */
5615   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5616   for(i=0; i<pAggInfo->nColumn; i++){
5617     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5618          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5619   }
5620   for(i=0; i<pAggInfo->nFunc; i++){
5621     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5622          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5623   }
5624 #endif
5625   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5626   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5627     if( pFunc->iDistinct>=0 ){
5628       Expr *pE = pFunc->pFExpr;
5629       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5630       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5631         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5632            "argument");
5633         pFunc->iDistinct = -1;
5634       }else{
5635         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5636         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5637                           (char*)pKeyInfo, P4_KEYINFO);
5638       }
5639     }
5640   }
5641 }
5642 
5643 /*
5644 ** Invoke the OP_AggFinalize opcode for every aggregate function
5645 ** in the AggInfo structure.
5646 */
5647 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5648   Vdbe *v = pParse->pVdbe;
5649   int i;
5650   struct AggInfo_func *pF;
5651   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5652     ExprList *pList = pF->pFExpr->x.pList;
5653     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5654     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5655     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5656   }
5657 }
5658 
5659 
5660 /*
5661 ** Update the accumulator memory cells for an aggregate based on
5662 ** the current cursor position.
5663 **
5664 ** If regAcc is non-zero and there are no min() or max() aggregates
5665 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5666 ** registers if register regAcc contains 0. The caller will take care
5667 ** of setting and clearing regAcc.
5668 */
5669 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5670   Vdbe *v = pParse->pVdbe;
5671   int i;
5672   int regHit = 0;
5673   int addrHitTest = 0;
5674   struct AggInfo_func *pF;
5675   struct AggInfo_col *pC;
5676 
5677   pAggInfo->directMode = 1;
5678   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5679     int nArg;
5680     int addrNext = 0;
5681     int regAgg;
5682     ExprList *pList = pF->pFExpr->x.pList;
5683     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5684     assert( !IsWindowFunc(pF->pFExpr) );
5685     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5686       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5687       if( pAggInfo->nAccumulator
5688        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5689        && regAcc
5690       ){
5691         /* If regAcc==0, there there exists some min() or max() function
5692         ** without a FILTER clause that will ensure the magnet registers
5693         ** are populated. */
5694         if( regHit==0 ) regHit = ++pParse->nMem;
5695         /* If this is the first row of the group (regAcc contains 0), clear the
5696         ** "magnet" register regHit so that the accumulator registers
5697         ** are populated if the FILTER clause jumps over the the
5698         ** invocation of min() or max() altogether. Or, if this is not
5699         ** the first row (regAcc contains 1), set the magnet register so that
5700         ** the accumulators are not populated unless the min()/max() is invoked
5701         ** and indicates that they should be.  */
5702         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5703       }
5704       addrNext = sqlite3VdbeMakeLabel(pParse);
5705       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5706     }
5707     if( pList ){
5708       nArg = pList->nExpr;
5709       regAgg = sqlite3GetTempRange(pParse, nArg);
5710       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5711     }else{
5712       nArg = 0;
5713       regAgg = 0;
5714     }
5715     if( pF->iDistinct>=0 ){
5716       if( addrNext==0 ){
5717         addrNext = sqlite3VdbeMakeLabel(pParse);
5718       }
5719       testcase( nArg==0 );  /* Error condition */
5720       testcase( nArg>1 );   /* Also an error */
5721       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5722     }
5723     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5724       CollSeq *pColl = 0;
5725       struct ExprList_item *pItem;
5726       int j;
5727       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5728       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5729         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5730       }
5731       if( !pColl ){
5732         pColl = pParse->db->pDfltColl;
5733       }
5734       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5735       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5736     }
5737     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5738     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5739     sqlite3VdbeChangeP5(v, (u8)nArg);
5740     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5741     if( addrNext ){
5742       sqlite3VdbeResolveLabel(v, addrNext);
5743     }
5744   }
5745   if( regHit==0 && pAggInfo->nAccumulator ){
5746     regHit = regAcc;
5747   }
5748   if( regHit ){
5749     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5750   }
5751   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5752     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5753   }
5754 
5755   pAggInfo->directMode = 0;
5756   if( addrHitTest ){
5757     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5758   }
5759 }
5760 
5761 /*
5762 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5763 ** count(*) query ("SELECT count(*) FROM pTab").
5764 */
5765 #ifndef SQLITE_OMIT_EXPLAIN
5766 static void explainSimpleCount(
5767   Parse *pParse,                  /* Parse context */
5768   Table *pTab,                    /* Table being queried */
5769   Index *pIdx                     /* Index used to optimize scan, or NULL */
5770 ){
5771   if( pParse->explain==2 ){
5772     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5773     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5774         pTab->zName,
5775         bCover ? " USING COVERING INDEX " : "",
5776         bCover ? pIdx->zName : ""
5777     );
5778   }
5779 }
5780 #else
5781 # define explainSimpleCount(a,b,c)
5782 #endif
5783 
5784 /*
5785 ** sqlite3WalkExpr() callback used by havingToWhere().
5786 **
5787 ** If the node passed to the callback is a TK_AND node, return
5788 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5789 **
5790 ** Otherwise, return WRC_Prune. In this case, also check if the
5791 ** sub-expression matches the criteria for being moved to the WHERE
5792 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5793 ** within the HAVING expression with a constant "1".
5794 */
5795 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5796   if( pExpr->op!=TK_AND ){
5797     Select *pS = pWalker->u.pSelect;
5798     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
5799      && ExprAlwaysFalse(pExpr)==0
5800     ){
5801       sqlite3 *db = pWalker->pParse->db;
5802       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5803       if( pNew ){
5804         Expr *pWhere = pS->pWhere;
5805         SWAP(Expr, *pNew, *pExpr);
5806         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5807         pS->pWhere = pNew;
5808         pWalker->eCode = 1;
5809       }
5810     }
5811     return WRC_Prune;
5812   }
5813   return WRC_Continue;
5814 }
5815 
5816 /*
5817 ** Transfer eligible terms from the HAVING clause of a query, which is
5818 ** processed after grouping, to the WHERE clause, which is processed before
5819 ** grouping. For example, the query:
5820 **
5821 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5822 **
5823 ** can be rewritten as:
5824 **
5825 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5826 **
5827 ** A term of the HAVING expression is eligible for transfer if it consists
5828 ** entirely of constants and expressions that are also GROUP BY terms that
5829 ** use the "BINARY" collation sequence.
5830 */
5831 static void havingToWhere(Parse *pParse, Select *p){
5832   Walker sWalker;
5833   memset(&sWalker, 0, sizeof(sWalker));
5834   sWalker.pParse = pParse;
5835   sWalker.xExprCallback = havingToWhereExprCb;
5836   sWalker.u.pSelect = p;
5837   sqlite3WalkExpr(&sWalker, p->pHaving);
5838 #if SELECTTRACE_ENABLED
5839   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5840     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5841     sqlite3TreeViewSelect(0, p, 0);
5842   }
5843 #endif
5844 }
5845 
5846 /*
5847 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5848 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5849 ** then return 0.
5850 */
5851 static SrcItem *isSelfJoinView(
5852   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5853   SrcItem *pThis               /* Search for prior reference to this subquery */
5854 ){
5855   SrcItem *pItem;
5856   assert( pThis->pSelect!=0 );
5857   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
5858   for(pItem = pTabList->a; pItem<pThis; pItem++){
5859     Select *pS1;
5860     if( pItem->pSelect==0 ) continue;
5861     if( pItem->fg.viaCoroutine ) continue;
5862     if( pItem->zName==0 ) continue;
5863     assert( pItem->pTab!=0 );
5864     assert( pThis->pTab!=0 );
5865     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5866     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5867     pS1 = pItem->pSelect;
5868     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5869       /* The query flattener left two different CTE tables with identical
5870       ** names in the same FROM clause. */
5871       continue;
5872     }
5873     if( pItem->pSelect->selFlags & SF_PushDown ){
5874       /* The view was modified by some other optimization such as
5875       ** pushDownWhereTerms() */
5876       continue;
5877     }
5878     return pItem;
5879   }
5880   return 0;
5881 }
5882 
5883 /*
5884 ** Deallocate a single AggInfo object
5885 */
5886 static void agginfoFree(sqlite3 *db, AggInfo *p){
5887   sqlite3DbFree(db, p->aCol);
5888   sqlite3DbFree(db, p->aFunc);
5889   sqlite3DbFreeNN(db, p);
5890 }
5891 
5892 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5893 /*
5894 ** Attempt to transform a query of the form
5895 **
5896 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5897 **
5898 ** Into this:
5899 **
5900 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5901 **
5902 ** The transformation only works if all of the following are true:
5903 **
5904 **   *  The subquery is a UNION ALL of two or more terms
5905 **   *  The subquery does not have a LIMIT clause
5906 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5907 **   *  The outer query is a simple count(*) with no WHERE clause or other
5908 **      extraneous syntax.
5909 **
5910 ** Return TRUE if the optimization is undertaken.
5911 */
5912 static int countOfViewOptimization(Parse *pParse, Select *p){
5913   Select *pSub, *pPrior;
5914   Expr *pExpr;
5915   Expr *pCount;
5916   sqlite3 *db;
5917   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5918   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5919   if( p->pWhere ) return 0;
5920   if( p->pGroupBy ) return 0;
5921   pExpr = p->pEList->a[0].pExpr;
5922   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5923   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5924   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5925   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5926   pSub = p->pSrc->a[0].pSelect;
5927   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5928   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5929   do{
5930     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5931     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5932     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5933     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5934     pSub = pSub->pPrior;                              /* Repeat over compound */
5935   }while( pSub );
5936 
5937   /* If we reach this point then it is OK to perform the transformation */
5938 
5939   db = pParse->db;
5940   pCount = pExpr;
5941   pExpr = 0;
5942   pSub = p->pSrc->a[0].pSelect;
5943   p->pSrc->a[0].pSelect = 0;
5944   sqlite3SrcListDelete(db, p->pSrc);
5945   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5946   while( pSub ){
5947     Expr *pTerm;
5948     pPrior = pSub->pPrior;
5949     pSub->pPrior = 0;
5950     pSub->pNext = 0;
5951     pSub->selFlags |= SF_Aggregate;
5952     pSub->selFlags &= ~SF_Compound;
5953     pSub->nSelectRow = 0;
5954     sqlite3ExprListDelete(db, pSub->pEList);
5955     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5956     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5957     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5958     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5959     if( pExpr==0 ){
5960       pExpr = pTerm;
5961     }else{
5962       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5963     }
5964     pSub = pPrior;
5965   }
5966   p->pEList->a[0].pExpr = pExpr;
5967   p->selFlags &= ~SF_Aggregate;
5968 
5969 #if SELECTTRACE_ENABLED
5970   if( sqlite3SelectTrace & 0x400 ){
5971     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5972     sqlite3TreeViewSelect(0, p, 0);
5973   }
5974 #endif
5975   return 1;
5976 }
5977 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5978 
5979 /*
5980 ** Generate code for the SELECT statement given in the p argument.
5981 **
5982 ** The results are returned according to the SelectDest structure.
5983 ** See comments in sqliteInt.h for further information.
5984 **
5985 ** This routine returns the number of errors.  If any errors are
5986 ** encountered, then an appropriate error message is left in
5987 ** pParse->zErrMsg.
5988 **
5989 ** This routine does NOT free the Select structure passed in.  The
5990 ** calling function needs to do that.
5991 */
5992 int sqlite3Select(
5993   Parse *pParse,         /* The parser context */
5994   Select *p,             /* The SELECT statement being coded. */
5995   SelectDest *pDest      /* What to do with the query results */
5996 ){
5997   int i, j;              /* Loop counters */
5998   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5999   Vdbe *v;               /* The virtual machine under construction */
6000   int isAgg;             /* True for select lists like "count(*)" */
6001   ExprList *pEList = 0;  /* List of columns to extract. */
6002   SrcList *pTabList;     /* List of tables to select from */
6003   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6004   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6005   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6006   AggInfo *pAggInfo = 0; /* Aggregate information */
6007   int rc = 1;            /* Value to return from this function */
6008   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6009   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6010   int iEnd;              /* Address of the end of the query */
6011   sqlite3 *db;           /* The database connection */
6012   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6013   u8 minMaxFlag;                 /* Flag for min/max queries */
6014 
6015   db = pParse->db;
6016   v = sqlite3GetVdbe(pParse);
6017   if( p==0 || db->mallocFailed || pParse->nErr ){
6018     return 1;
6019   }
6020   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6021 #if SELECTTRACE_ENABLED
6022   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6023   if( sqlite3SelectTrace & 0x100 ){
6024     sqlite3TreeViewSelect(0, p, 0);
6025   }
6026 #endif
6027 
6028   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6029   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6030   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6031   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6032   if( IgnorableDistinct(pDest) ){
6033     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6034            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6035            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6036     /* All of these destinations are also able to ignore the ORDER BY clause */
6037     if( p->pOrderBy ){
6038 #if SELECTTRACE_ENABLED
6039       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6040       if( sqlite3SelectTrace & 0x100 ){
6041         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6042       }
6043 #endif
6044       sqlite3ParserAddCleanup(pParse,
6045         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6046         p->pOrderBy);
6047       p->pOrderBy = 0;
6048     }
6049     p->selFlags &= ~SF_Distinct;
6050     p->selFlags |= SF_NoopOrderBy;
6051   }
6052   sqlite3SelectPrep(pParse, p, 0);
6053   if( pParse->nErr || db->mallocFailed ){
6054     goto select_end;
6055   }
6056   assert( p->pEList!=0 );
6057 #if SELECTTRACE_ENABLED
6058   if( sqlite3SelectTrace & 0x104 ){
6059     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6060     sqlite3TreeViewSelect(0, p, 0);
6061   }
6062 #endif
6063 
6064   /* If the SF_UpdateFrom flag is set, then this function is being called
6065   ** as part of populating the temp table for an UPDATE...FROM statement.
6066   ** In this case, it is an error if the target object (pSrc->a[0]) name
6067   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).  */
6068   if( p->selFlags & SF_UpdateFrom ){
6069     SrcItem *p0 = &p->pSrc->a[0];
6070     for(i=1; i<p->pSrc->nSrc; i++){
6071       SrcItem *p1 = &p->pSrc->a[i];
6072       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6073         sqlite3ErrorMsg(pParse,
6074             "target object/alias may not appear in FROM clause: %s",
6075             p0->zAlias ? p0->zAlias : p0->pTab->zName
6076         );
6077         goto select_end;
6078       }
6079     }
6080   }
6081 
6082   if( pDest->eDest==SRT_Output ){
6083     generateColumnNames(pParse, p);
6084   }
6085 
6086 #ifndef SQLITE_OMIT_WINDOWFUNC
6087   rc = sqlite3WindowRewrite(pParse, p);
6088   if( rc ){
6089     assert( db->mallocFailed || pParse->nErr>0 );
6090     goto select_end;
6091   }
6092 #if SELECTTRACE_ENABLED
6093   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6094     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6095     sqlite3TreeViewSelect(0, p, 0);
6096   }
6097 #endif
6098 #endif /* SQLITE_OMIT_WINDOWFUNC */
6099   pTabList = p->pSrc;
6100   isAgg = (p->selFlags & SF_Aggregate)!=0;
6101   memset(&sSort, 0, sizeof(sSort));
6102   sSort.pOrderBy = p->pOrderBy;
6103 
6104   /* Try to do various optimizations (flattening subqueries, and strength
6105   ** reduction of join operators) in the FROM clause up into the main query
6106   */
6107 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6108   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6109     SrcItem *pItem = &pTabList->a[i];
6110     Select *pSub = pItem->pSelect;
6111     Table *pTab = pItem->pTab;
6112 
6113     /* The expander should have already created transient Table objects
6114     ** even for FROM clause elements such as subqueries that do not correspond
6115     ** to a real table */
6116     assert( pTab!=0 );
6117 
6118     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6119     ** of the LEFT JOIN used in the WHERE clause.
6120     */
6121     if( (pItem->fg.jointype & JT_LEFT)!=0
6122      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6123      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6124     ){
6125       SELECTTRACE(0x100,pParse,p,
6126                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6127       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6128       unsetJoinExpr(p->pWhere, pItem->iCursor);
6129     }
6130 
6131     /* No futher action if this term of the FROM clause is no a subquery */
6132     if( pSub==0 ) continue;
6133 
6134     /* Catch mismatch in the declared columns of a view and the number of
6135     ** columns in the SELECT on the RHS */
6136     if( pTab->nCol!=pSub->pEList->nExpr ){
6137       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6138                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6139       goto select_end;
6140     }
6141 
6142     /* Do not try to flatten an aggregate subquery.
6143     **
6144     ** Flattening an aggregate subquery is only possible if the outer query
6145     ** is not a join.  But if the outer query is not a join, then the subquery
6146     ** will be implemented as a co-routine and there is no advantage to
6147     ** flattening in that case.
6148     */
6149     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6150     assert( pSub->pGroupBy==0 );
6151 
6152     /* If the outer query contains a "complex" result set (that is,
6153     ** if the result set of the outer query uses functions or subqueries)
6154     ** and if the subquery contains an ORDER BY clause and if
6155     ** it will be implemented as a co-routine, then do not flatten.  This
6156     ** restriction allows SQL constructs like this:
6157     **
6158     **  SELECT expensive_function(x)
6159     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6160     **
6161     ** The expensive_function() is only computed on the 10 rows that
6162     ** are output, rather than every row of the table.
6163     **
6164     ** The requirement that the outer query have a complex result set
6165     ** means that flattening does occur on simpler SQL constraints without
6166     ** the expensive_function() like:
6167     **
6168     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6169     */
6170     if( pSub->pOrderBy!=0
6171      && i==0
6172      && (p->selFlags & SF_ComplexResult)!=0
6173      && (pTabList->nSrc==1
6174          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6175     ){
6176       continue;
6177     }
6178 
6179     if( flattenSubquery(pParse, p, i, isAgg) ){
6180       if( pParse->nErr ) goto select_end;
6181       /* This subquery can be absorbed into its parent. */
6182       i = -1;
6183     }
6184     pTabList = p->pSrc;
6185     if( db->mallocFailed ) goto select_end;
6186     if( !IgnorableOrderby(pDest) ){
6187       sSort.pOrderBy = p->pOrderBy;
6188     }
6189   }
6190 #endif
6191 
6192 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6193   /* Handle compound SELECT statements using the separate multiSelect()
6194   ** procedure.
6195   */
6196   if( p->pPrior ){
6197     rc = multiSelect(pParse, p, pDest);
6198 #if SELECTTRACE_ENABLED
6199     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6200     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6201       sqlite3TreeViewSelect(0, p, 0);
6202     }
6203 #endif
6204     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6205     return rc;
6206   }
6207 #endif
6208 
6209   /* Do the WHERE-clause constant propagation optimization if this is
6210   ** a join.  No need to speed time on this operation for non-join queries
6211   ** as the equivalent optimization will be handled by query planner in
6212   ** sqlite3WhereBegin().
6213   */
6214   if( pTabList->nSrc>1
6215    && OptimizationEnabled(db, SQLITE_PropagateConst)
6216    && propagateConstants(pParse, p)
6217   ){
6218 #if SELECTTRACE_ENABLED
6219     if( sqlite3SelectTrace & 0x100 ){
6220       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6221       sqlite3TreeViewSelect(0, p, 0);
6222     }
6223 #endif
6224   }else{
6225     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6226   }
6227 
6228 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6229   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6230    && countOfViewOptimization(pParse, p)
6231   ){
6232     if( db->mallocFailed ) goto select_end;
6233     pEList = p->pEList;
6234     pTabList = p->pSrc;
6235   }
6236 #endif
6237 
6238   /* For each term in the FROM clause, do two things:
6239   ** (1) Authorized unreferenced tables
6240   ** (2) Generate code for all sub-queries
6241   */
6242   for(i=0; i<pTabList->nSrc; i++){
6243     SrcItem *pItem = &pTabList->a[i];
6244     SrcItem *pPrior;
6245     SelectDest dest;
6246     Select *pSub;
6247 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6248     const char *zSavedAuthContext;
6249 #endif
6250 
6251     /* Issue SQLITE_READ authorizations with a fake column name for any
6252     ** tables that are referenced but from which no values are extracted.
6253     ** Examples of where these kinds of null SQLITE_READ authorizations
6254     ** would occur:
6255     **
6256     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6257     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6258     **
6259     ** The fake column name is an empty string.  It is possible for a table to
6260     ** have a column named by the empty string, in which case there is no way to
6261     ** distinguish between an unreferenced table and an actual reference to the
6262     ** "" column. The original design was for the fake column name to be a NULL,
6263     ** which would be unambiguous.  But legacy authorization callbacks might
6264     ** assume the column name is non-NULL and segfault.  The use of an empty
6265     ** string for the fake column name seems safer.
6266     */
6267     if( pItem->colUsed==0 && pItem->zName!=0 ){
6268       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6269     }
6270 
6271 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6272     /* Generate code for all sub-queries in the FROM clause
6273     */
6274     pSub = pItem->pSelect;
6275     if( pSub==0 ) continue;
6276 
6277     /* The code for a subquery should only be generated once, though it is
6278     ** technically harmless for it to be generated multiple times. The
6279     ** following assert() will detect if something changes to cause
6280     ** the same subquery to be coded multiple times, as a signal to the
6281     ** developers to try to optimize the situation.
6282     **
6283     ** Update 2019-07-24:
6284     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6285     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6286     ** coded twice.  So this assert() now becomes a testcase().  It should
6287     ** be very rare, though.
6288     */
6289     testcase( pItem->addrFillSub!=0 );
6290 
6291     /* Increment Parse.nHeight by the height of the largest expression
6292     ** tree referred to by this, the parent select. The child select
6293     ** may contain expression trees of at most
6294     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6295     ** more conservative than necessary, but much easier than enforcing
6296     ** an exact limit.
6297     */
6298     pParse->nHeight += sqlite3SelectExprHeight(p);
6299 
6300     /* Make copies of constant WHERE-clause terms in the outer query down
6301     ** inside the subquery.  This can help the subquery to run more efficiently.
6302     */
6303     if( OptimizationEnabled(db, SQLITE_PushDown)
6304      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)
6305      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6306                            (pItem->fg.jointype & JT_OUTER)!=0)
6307     ){
6308 #if SELECTTRACE_ENABLED
6309       if( sqlite3SelectTrace & 0x100 ){
6310         SELECTTRACE(0x100,pParse,p,
6311             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6312         sqlite3TreeViewSelect(0, p, 0);
6313       }
6314 #endif
6315       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6316     }else{
6317       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6318     }
6319 
6320     zSavedAuthContext = pParse->zAuthContext;
6321     pParse->zAuthContext = pItem->zName;
6322 
6323     /* Generate code to implement the subquery
6324     **
6325     ** The subquery is implemented as a co-routine if:
6326     **    (1)  the subquery is guaranteed to be the outer loop (so that
6327     **         it does not need to be computed more than once), and
6328     **    (2)  the subquery is not a CTE that should be materialized
6329     **
6330     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6331     ** implementation?
6332     */
6333     if( i==0
6334      && (pTabList->nSrc==1
6335             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6336      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6337     ){
6338       /* Implement a co-routine that will return a single row of the result
6339       ** set on each invocation.
6340       */
6341       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6342 
6343       pItem->regReturn = ++pParse->nMem;
6344       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6345       VdbeComment((v, "%s", pItem->pTab->zName));
6346       pItem->addrFillSub = addrTop;
6347       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6348       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6349       sqlite3Select(pParse, pSub, &dest);
6350       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6351       pItem->fg.viaCoroutine = 1;
6352       pItem->regResult = dest.iSdst;
6353       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6354       sqlite3VdbeJumpHere(v, addrTop-1);
6355       sqlite3ClearTempRegCache(pParse);
6356     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6357       /* This is a CTE for which materialization code has already been
6358       ** generated.  Invoke the subroutine to compute the materialization,
6359       ** the make the pItem->iCursor be a copy of the ephemerial table that
6360       ** holds the result of the materialization. */
6361       CteUse *pCteUse = pItem->u2.pCteUse;
6362       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6363       if( pItem->iCursor!=pCteUse->iCur ){
6364         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6365       }
6366       pSub->nSelectRow = pCteUse->nRowEst;
6367     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6368       /* This view has already been materialized by a prior entry in
6369       ** this same FROM clause.  Reuse it. */
6370       if( pPrior->addrFillSub ){
6371         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6372       }
6373       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6374       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6375     }else{
6376       /* Generate a subroutine that will materialize the view. */
6377       int topAddr;
6378       int onceAddr = 0;
6379       int retAddr;
6380 
6381       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6382       pItem->regReturn = ++pParse->nMem;
6383       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6384       pItem->addrFillSub = topAddr+1;
6385       if( pItem->fg.isCorrelated==0 ){
6386         /* If the subquery is not correlated and if we are not inside of
6387         ** a trigger, then we only need to compute the value of the subquery
6388         ** once. */
6389         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6390         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6391       }else{
6392         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6393       }
6394       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6395       ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6396       sqlite3Select(pParse, pSub, &dest);
6397       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6398       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6399       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6400       VdbeComment((v, "end %s", pItem->pTab->zName));
6401       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6402       sqlite3ClearTempRegCache(pParse);
6403       if( pItem->fg.isCte ){
6404         CteUse *pCteUse = pItem->u2.pCteUse;
6405         pCteUse->addrM9e = pItem->addrFillSub;
6406         pCteUse->regRtn = pItem->regReturn;
6407         pCteUse->iCur = pItem->iCursor;
6408         pCteUse->nRowEst = pSub->nSelectRow;
6409       }
6410     }
6411     if( db->mallocFailed ) goto select_end;
6412     pParse->nHeight -= sqlite3SelectExprHeight(p);
6413     pParse->zAuthContext = zSavedAuthContext;
6414 #endif
6415   }
6416 
6417   /* Various elements of the SELECT copied into local variables for
6418   ** convenience */
6419   pEList = p->pEList;
6420   pWhere = p->pWhere;
6421   pGroupBy = p->pGroupBy;
6422   pHaving = p->pHaving;
6423   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6424 
6425 #if SELECTTRACE_ENABLED
6426   if( sqlite3SelectTrace & 0x400 ){
6427     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6428     sqlite3TreeViewSelect(0, p, 0);
6429   }
6430 #endif
6431 
6432   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6433   ** if the select-list is the same as the ORDER BY list, then this query
6434   ** can be rewritten as a GROUP BY. In other words, this:
6435   **
6436   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6437   **
6438   ** is transformed to:
6439   **
6440   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6441   **
6442   ** The second form is preferred as a single index (or temp-table) may be
6443   ** used for both the ORDER BY and DISTINCT processing. As originally
6444   ** written the query must use a temp-table for at least one of the ORDER
6445   ** BY and DISTINCT, and an index or separate temp-table for the other.
6446   */
6447   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6448    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6449 #ifndef SQLITE_OMIT_WINDOWFUNC
6450    && p->pWin==0
6451 #endif
6452   ){
6453     p->selFlags &= ~SF_Distinct;
6454     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6455     p->selFlags |= SF_Aggregate;
6456     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6457     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6458     ** original setting of the SF_Distinct flag, not the current setting */
6459     assert( sDistinct.isTnct );
6460 
6461 #if SELECTTRACE_ENABLED
6462     if( sqlite3SelectTrace & 0x400 ){
6463       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6464       sqlite3TreeViewSelect(0, p, 0);
6465     }
6466 #endif
6467   }
6468 
6469   /* If there is an ORDER BY clause, then create an ephemeral index to
6470   ** do the sorting.  But this sorting ephemeral index might end up
6471   ** being unused if the data can be extracted in pre-sorted order.
6472   ** If that is the case, then the OP_OpenEphemeral instruction will be
6473   ** changed to an OP_Noop once we figure out that the sorting index is
6474   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6475   ** that change.
6476   */
6477   if( sSort.pOrderBy ){
6478     KeyInfo *pKeyInfo;
6479     pKeyInfo = sqlite3KeyInfoFromExprList(
6480         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6481     sSort.iECursor = pParse->nTab++;
6482     sSort.addrSortIndex =
6483       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6484           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6485           (char*)pKeyInfo, P4_KEYINFO
6486       );
6487   }else{
6488     sSort.addrSortIndex = -1;
6489   }
6490 
6491   /* If the output is destined for a temporary table, open that table.
6492   */
6493   if( pDest->eDest==SRT_EphemTab ){
6494     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6495   }
6496 
6497   /* Set the limiter.
6498   */
6499   iEnd = sqlite3VdbeMakeLabel(pParse);
6500   if( (p->selFlags & SF_FixedLimit)==0 ){
6501     p->nSelectRow = 320;  /* 4 billion rows */
6502   }
6503   computeLimitRegisters(pParse, p, iEnd);
6504   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6505     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6506     sSort.sortFlags |= SORTFLAG_UseSorter;
6507   }
6508 
6509   /* Open an ephemeral index to use for the distinct set.
6510   */
6511   if( p->selFlags & SF_Distinct ){
6512     sDistinct.tabTnct = pParse->nTab++;
6513     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6514                        sDistinct.tabTnct, 0, 0,
6515                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6516                        P4_KEYINFO);
6517     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6518     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6519   }else{
6520     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6521   }
6522 
6523   if( !isAgg && pGroupBy==0 ){
6524     /* No aggregate functions and no GROUP BY clause */
6525     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6526                    | (p->selFlags & SF_FixedLimit);
6527 #ifndef SQLITE_OMIT_WINDOWFUNC
6528     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6529     if( pWin ){
6530       sqlite3WindowCodeInit(pParse, p);
6531     }
6532 #endif
6533     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6534 
6535 
6536     /* Begin the database scan. */
6537     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6538     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6539                                p->pEList, wctrlFlags, p->nSelectRow);
6540     if( pWInfo==0 ) goto select_end;
6541     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6542       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6543     }
6544     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6545       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6546     }
6547     if( sSort.pOrderBy ){
6548       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6549       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6550       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6551         sSort.pOrderBy = 0;
6552       }
6553     }
6554     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6555 
6556     /* If sorting index that was created by a prior OP_OpenEphemeral
6557     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6558     ** into an OP_Noop.
6559     */
6560     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6561       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6562     }
6563 
6564     assert( p->pEList==pEList );
6565 #ifndef SQLITE_OMIT_WINDOWFUNC
6566     if( pWin ){
6567       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6568       int iCont = sqlite3VdbeMakeLabel(pParse);
6569       int iBreak = sqlite3VdbeMakeLabel(pParse);
6570       int regGosub = ++pParse->nMem;
6571 
6572       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6573 
6574       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6575       sqlite3VdbeResolveLabel(v, addrGosub);
6576       VdbeNoopComment((v, "inner-loop subroutine"));
6577       sSort.labelOBLopt = 0;
6578       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6579       sqlite3VdbeResolveLabel(v, iCont);
6580       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6581       VdbeComment((v, "end inner-loop subroutine"));
6582       sqlite3VdbeResolveLabel(v, iBreak);
6583     }else
6584 #endif /* SQLITE_OMIT_WINDOWFUNC */
6585     {
6586       /* Use the standard inner loop. */
6587       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6588           sqlite3WhereContinueLabel(pWInfo),
6589           sqlite3WhereBreakLabel(pWInfo));
6590 
6591       /* End the database scan loop.
6592       */
6593       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6594       sqlite3WhereEnd(pWInfo);
6595     }
6596   }else{
6597     /* This case when there exist aggregate functions or a GROUP BY clause
6598     ** or both */
6599     NameContext sNC;    /* Name context for processing aggregate information */
6600     int iAMem;          /* First Mem address for storing current GROUP BY */
6601     int iBMem;          /* First Mem address for previous GROUP BY */
6602     int iUseFlag;       /* Mem address holding flag indicating that at least
6603                         ** one row of the input to the aggregator has been
6604                         ** processed */
6605     int iAbortFlag;     /* Mem address which causes query abort if positive */
6606     int groupBySort;    /* Rows come from source in GROUP BY order */
6607     int addrEnd;        /* End of processing for this SELECT */
6608     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6609     int sortOut = 0;    /* Output register from the sorter */
6610     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6611 
6612     /* Remove any and all aliases between the result set and the
6613     ** GROUP BY clause.
6614     */
6615     if( pGroupBy ){
6616       int k;                        /* Loop counter */
6617       struct ExprList_item *pItem;  /* For looping over expression in a list */
6618 
6619       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6620         pItem->u.x.iAlias = 0;
6621       }
6622       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6623         pItem->u.x.iAlias = 0;
6624       }
6625       assert( 66==sqlite3LogEst(100) );
6626       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6627 
6628       /* If there is both a GROUP BY and an ORDER BY clause and they are
6629       ** identical, then it may be possible to disable the ORDER BY clause
6630       ** on the grounds that the GROUP BY will cause elements to come out
6631       ** in the correct order. It also may not - the GROUP BY might use a
6632       ** database index that causes rows to be grouped together as required
6633       ** but not actually sorted. Either way, record the fact that the
6634       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6635       ** variable.  */
6636       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6637         int ii;
6638         /* The GROUP BY processing doesn't care whether rows are delivered in
6639         ** ASC or DESC order - only that each group is returned contiguously.
6640         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6641         ** ORDER BY to maximize the chances of rows being delivered in an
6642         ** order that makes the ORDER BY redundant.  */
6643         for(ii=0; ii<pGroupBy->nExpr; ii++){
6644           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6645           pGroupBy->a[ii].sortFlags = sortFlags;
6646         }
6647         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6648           orderByGrp = 1;
6649         }
6650       }
6651     }else{
6652       assert( 0==sqlite3LogEst(1) );
6653       p->nSelectRow = 0;
6654     }
6655 
6656     /* Create a label to jump to when we want to abort the query */
6657     addrEnd = sqlite3VdbeMakeLabel(pParse);
6658 
6659     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6660     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6661     ** SELECT statement.
6662     */
6663     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6664     if( pAggInfo ){
6665       sqlite3ParserAddCleanup(pParse,
6666           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6667     }
6668     if( db->mallocFailed ){
6669       goto select_end;
6670     }
6671     pAggInfo->selId = p->selId;
6672     memset(&sNC, 0, sizeof(sNC));
6673     sNC.pParse = pParse;
6674     sNC.pSrcList = pTabList;
6675     sNC.uNC.pAggInfo = pAggInfo;
6676     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6677     pAggInfo->mnReg = pParse->nMem+1;
6678     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6679     pAggInfo->pGroupBy = pGroupBy;
6680     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6681     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6682     if( pHaving ){
6683       if( pGroupBy ){
6684         assert( pWhere==p->pWhere );
6685         assert( pHaving==p->pHaving );
6686         assert( pGroupBy==p->pGroupBy );
6687         havingToWhere(pParse, p);
6688         pWhere = p->pWhere;
6689       }
6690       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6691     }
6692     pAggInfo->nAccumulator = pAggInfo->nColumn;
6693     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6694       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6695     }else{
6696       minMaxFlag = WHERE_ORDERBY_NORMAL;
6697     }
6698     for(i=0; i<pAggInfo->nFunc; i++){
6699       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6700       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6701       sNC.ncFlags |= NC_InAggFunc;
6702       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6703 #ifndef SQLITE_OMIT_WINDOWFUNC
6704       assert( !IsWindowFunc(pExpr) );
6705       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6706         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6707       }
6708 #endif
6709       sNC.ncFlags &= ~NC_InAggFunc;
6710     }
6711     pAggInfo->mxReg = pParse->nMem;
6712     if( db->mallocFailed ) goto select_end;
6713 #if SELECTTRACE_ENABLED
6714     if( sqlite3SelectTrace & 0x400 ){
6715       int ii;
6716       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6717       sqlite3TreeViewSelect(0, p, 0);
6718       if( minMaxFlag ){
6719         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
6720         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
6721       }
6722       for(ii=0; ii<pAggInfo->nColumn; ii++){
6723         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6724             ii, pAggInfo->aCol[ii].iMem);
6725         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6726       }
6727       for(ii=0; ii<pAggInfo->nFunc; ii++){
6728         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6729             ii, pAggInfo->aFunc[ii].iMem);
6730         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6731       }
6732     }
6733 #endif
6734 
6735 
6736     /* Processing for aggregates with GROUP BY is very different and
6737     ** much more complex than aggregates without a GROUP BY.
6738     */
6739     if( pGroupBy ){
6740       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6741       int addr1;          /* A-vs-B comparision jump */
6742       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6743       int regOutputRow;   /* Return address register for output subroutine */
6744       int addrSetAbort;   /* Set the abort flag and return */
6745       int addrTopOfLoop;  /* Top of the input loop */
6746       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6747       int addrReset;      /* Subroutine for resetting the accumulator */
6748       int regReset;       /* Return address register for reset subroutine */
6749 
6750       /* If there is a GROUP BY clause we might need a sorting index to
6751       ** implement it.  Allocate that sorting index now.  If it turns out
6752       ** that we do not need it after all, the OP_SorterOpen instruction
6753       ** will be converted into a Noop.
6754       */
6755       pAggInfo->sortingIdx = pParse->nTab++;
6756       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6757                                             0, pAggInfo->nColumn);
6758       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6759           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6760           0, (char*)pKeyInfo, P4_KEYINFO);
6761 
6762       /* Initialize memory locations used by GROUP BY aggregate processing
6763       */
6764       iUseFlag = ++pParse->nMem;
6765       iAbortFlag = ++pParse->nMem;
6766       regOutputRow = ++pParse->nMem;
6767       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6768       regReset = ++pParse->nMem;
6769       addrReset = sqlite3VdbeMakeLabel(pParse);
6770       iAMem = pParse->nMem + 1;
6771       pParse->nMem += pGroupBy->nExpr;
6772       iBMem = pParse->nMem + 1;
6773       pParse->nMem += pGroupBy->nExpr;
6774       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6775       VdbeComment((v, "clear abort flag"));
6776       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6777 
6778       /* Begin a loop that will extract all source rows in GROUP BY order.
6779       ** This might involve two separate loops with an OP_Sort in between, or
6780       ** it might be a single loop that uses an index to extract information
6781       ** in the right order to begin with.
6782       */
6783       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6784       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6785       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6786           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6787       );
6788       if( pWInfo==0 ) goto select_end;
6789       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6790       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6791         /* The optimizer is able to deliver rows in group by order so
6792         ** we do not have to sort.  The OP_OpenEphemeral table will be
6793         ** cancelled later because we still need to use the pKeyInfo
6794         */
6795         groupBySort = 0;
6796       }else{
6797         /* Rows are coming out in undetermined order.  We have to push
6798         ** each row into a sorting index, terminate the first loop,
6799         ** then loop over the sorting index in order to get the output
6800         ** in sorted order
6801         */
6802         int regBase;
6803         int regRecord;
6804         int nCol;
6805         int nGroupBy;
6806 
6807         explainTempTable(pParse,
6808             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6809                     "DISTINCT" : "GROUP BY");
6810 
6811         groupBySort = 1;
6812         nGroupBy = pGroupBy->nExpr;
6813         nCol = nGroupBy;
6814         j = nGroupBy;
6815         for(i=0; i<pAggInfo->nColumn; i++){
6816           if( pAggInfo->aCol[i].iSorterColumn>=j ){
6817             nCol++;
6818             j++;
6819           }
6820         }
6821         regBase = sqlite3GetTempRange(pParse, nCol);
6822         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6823         j = nGroupBy;
6824         for(i=0; i<pAggInfo->nColumn; i++){
6825           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
6826           if( pCol->iSorterColumn>=j ){
6827             int r1 = j + regBase;
6828             sqlite3ExprCodeGetColumnOfTable(v,
6829                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6830             j++;
6831           }
6832         }
6833         regRecord = sqlite3GetTempReg(pParse);
6834         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6835         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
6836         sqlite3ReleaseTempReg(pParse, regRecord);
6837         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6838         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6839         sqlite3WhereEnd(pWInfo);
6840         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
6841         sortOut = sqlite3GetTempReg(pParse);
6842         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6843         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
6844         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6845         pAggInfo->useSortingIdx = 1;
6846       }
6847 
6848       /* If the index or temporary table used by the GROUP BY sort
6849       ** will naturally deliver rows in the order required by the ORDER BY
6850       ** clause, cancel the ephemeral table open coded earlier.
6851       **
6852       ** This is an optimization - the correct answer should result regardless.
6853       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6854       ** disable this optimization for testing purposes.  */
6855       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6856        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6857       ){
6858         sSort.pOrderBy = 0;
6859         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6860       }
6861 
6862       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6863       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6864       ** Then compare the current GROUP BY terms against the GROUP BY terms
6865       ** from the previous row currently stored in a0, a1, a2...
6866       */
6867       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6868       if( groupBySort ){
6869         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
6870                           sortOut, sortPTab);
6871       }
6872       for(j=0; j<pGroupBy->nExpr; j++){
6873         if( groupBySort ){
6874           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6875         }else{
6876           pAggInfo->directMode = 1;
6877           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6878         }
6879       }
6880       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6881                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6882       addr1 = sqlite3VdbeCurrentAddr(v);
6883       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6884 
6885       /* Generate code that runs whenever the GROUP BY changes.
6886       ** Changes in the GROUP BY are detected by the previous code
6887       ** block.  If there were no changes, this block is skipped.
6888       **
6889       ** This code copies current group by terms in b0,b1,b2,...
6890       ** over to a0,a1,a2.  It then calls the output subroutine
6891       ** and resets the aggregate accumulator registers in preparation
6892       ** for the next GROUP BY batch.
6893       */
6894       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6895       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6896       VdbeComment((v, "output one row"));
6897       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6898       VdbeComment((v, "check abort flag"));
6899       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6900       VdbeComment((v, "reset accumulator"));
6901 
6902       /* Update the aggregate accumulators based on the content of
6903       ** the current row
6904       */
6905       sqlite3VdbeJumpHere(v, addr1);
6906       updateAccumulator(pParse, iUseFlag, pAggInfo);
6907       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6908       VdbeComment((v, "indicate data in accumulator"));
6909 
6910       /* End of the loop
6911       */
6912       if( groupBySort ){
6913         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
6914         VdbeCoverage(v);
6915       }else{
6916         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6917         sqlite3WhereEnd(pWInfo);
6918         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6919       }
6920 
6921       /* Output the final row of result
6922       */
6923       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6924       VdbeComment((v, "output final row"));
6925 
6926       /* Jump over the subroutines
6927       */
6928       sqlite3VdbeGoto(v, addrEnd);
6929 
6930       /* Generate a subroutine that outputs a single row of the result
6931       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6932       ** is less than or equal to zero, the subroutine is a no-op.  If
6933       ** the processing calls for the query to abort, this subroutine
6934       ** increments the iAbortFlag memory location before returning in
6935       ** order to signal the caller to abort.
6936       */
6937       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6938       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6939       VdbeComment((v, "set abort flag"));
6940       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6941       sqlite3VdbeResolveLabel(v, addrOutputRow);
6942       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6943       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6944       VdbeCoverage(v);
6945       VdbeComment((v, "Groupby result generator entry point"));
6946       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6947       finalizeAggFunctions(pParse, pAggInfo);
6948       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6949       selectInnerLoop(pParse, p, -1, &sSort,
6950                       &sDistinct, pDest,
6951                       addrOutputRow+1, addrSetAbort);
6952       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6953       VdbeComment((v, "end groupby result generator"));
6954 
6955       /* Generate a subroutine that will reset the group-by accumulator
6956       */
6957       sqlite3VdbeResolveLabel(v, addrReset);
6958       resetAccumulator(pParse, pAggInfo);
6959       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6960       VdbeComment((v, "indicate accumulator empty"));
6961       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6962 
6963     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6964     else {
6965       Table *pTab;
6966       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
6967         /* If isSimpleCount() returns a pointer to a Table structure, then
6968         ** the SQL statement is of the form:
6969         **
6970         **   SELECT count(*) FROM <tbl>
6971         **
6972         ** where the Table structure returned represents table <tbl>.
6973         **
6974         ** This statement is so common that it is optimized specially. The
6975         ** OP_Count instruction is executed either on the intkey table that
6976         ** contains the data for table <tbl> or on one of its indexes. It
6977         ** is better to execute the op on an index, as indexes are almost
6978         ** always spread across less pages than their corresponding tables.
6979         */
6980         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6981         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6982         Index *pIdx;                         /* Iterator variable */
6983         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6984         Index *pBest = 0;                    /* Best index found so far */
6985         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
6986 
6987         sqlite3CodeVerifySchema(pParse, iDb);
6988         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6989 
6990         /* Search for the index that has the lowest scan cost.
6991         **
6992         ** (2011-04-15) Do not do a full scan of an unordered index.
6993         **
6994         ** (2013-10-03) Do not count the entries in a partial index.
6995         **
6996         ** In practice the KeyInfo structure will not be used. It is only
6997         ** passed to keep OP_OpenRead happy.
6998         */
6999         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7000         if( !p->pSrc->a[0].fg.notIndexed ){
7001           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7002             if( pIdx->bUnordered==0
7003              && pIdx->szIdxRow<pTab->szTabRow
7004              && pIdx->pPartIdxWhere==0
7005              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7006             ){
7007               pBest = pIdx;
7008             }
7009           }
7010         }
7011         if( pBest ){
7012           iRoot = pBest->tnum;
7013           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7014         }
7015 
7016         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7017         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7018         if( pKeyInfo ){
7019           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7020         }
7021         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7022         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7023         explainSimpleCount(pParse, pTab, pBest);
7024       }else{
7025         int regAcc = 0;           /* "populate accumulators" flag */
7026 
7027         /* If there are accumulator registers but no min() or max() functions
7028         ** without FILTER clauses, allocate register regAcc. Register regAcc
7029         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7030         ** The code generated by updateAccumulator() uses this to ensure
7031         ** that the accumulator registers are (a) updated only once if
7032         ** there are no min() or max functions or (b) always updated for the
7033         ** first row visited by the aggregate, so that they are updated at
7034         ** least once even if the FILTER clause means the min() or max()
7035         ** function visits zero rows.  */
7036         if( pAggInfo->nAccumulator ){
7037           for(i=0; i<pAggInfo->nFunc; i++){
7038             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7039               continue;
7040             }
7041             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7042               break;
7043             }
7044           }
7045           if( i==pAggInfo->nFunc ){
7046             regAcc = ++pParse->nMem;
7047             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7048           }
7049         }
7050 
7051         /* This case runs if the aggregate has no GROUP BY clause.  The
7052         ** processing is much simpler since there is only a single row
7053         ** of output.
7054         */
7055         assert( p->pGroupBy==0 );
7056         resetAccumulator(pParse, pAggInfo);
7057 
7058         /* If this query is a candidate for the min/max optimization, then
7059         ** minMaxFlag will have been previously set to either
7060         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7061         ** be an appropriate ORDER BY expression for the optimization.
7062         */
7063         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7064         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7065 
7066         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7067         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7068                                    0, minMaxFlag, 0);
7069         if( pWInfo==0 ){
7070           goto select_end;
7071         }
7072         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7073         updateAccumulator(pParse, regAcc, pAggInfo);
7074         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7075         if( minMaxFlag ){
7076           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7077         }
7078         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7079         sqlite3WhereEnd(pWInfo);
7080         finalizeAggFunctions(pParse, pAggInfo);
7081       }
7082 
7083       sSort.pOrderBy = 0;
7084       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7085       selectInnerLoop(pParse, p, -1, 0, 0,
7086                       pDest, addrEnd, addrEnd);
7087     }
7088     sqlite3VdbeResolveLabel(v, addrEnd);
7089 
7090   } /* endif aggregate query */
7091 
7092   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7093     explainTempTable(pParse, "DISTINCT");
7094   }
7095 
7096   /* If there is an ORDER BY clause, then we need to sort the results
7097   ** and send them to the callback one by one.
7098   */
7099   if( sSort.pOrderBy ){
7100     explainTempTable(pParse,
7101                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7102     assert( p->pEList==pEList );
7103     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7104   }
7105 
7106   /* Jump here to skip this query
7107   */
7108   sqlite3VdbeResolveLabel(v, iEnd);
7109 
7110   /* The SELECT has been coded. If there is an error in the Parse structure,
7111   ** set the return code to 1. Otherwise 0. */
7112   rc = (pParse->nErr>0);
7113 
7114   /* Control jumps to here if an error is encountered above, or upon
7115   ** successful coding of the SELECT.
7116   */
7117 select_end:
7118   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7119 #ifdef SQLITE_DEBUG
7120   if( pAggInfo && !db->mallocFailed ){
7121     for(i=0; i<pAggInfo->nColumn; i++){
7122       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7123       assert( pExpr!=0 );
7124       assert( pExpr->pAggInfo==pAggInfo );
7125       assert( pExpr->iAgg==i );
7126     }
7127     for(i=0; i<pAggInfo->nFunc; i++){
7128       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7129       assert( pExpr!=0 );
7130       assert( pExpr->pAggInfo==pAggInfo );
7131       assert( pExpr->iAgg==i );
7132     }
7133   }
7134 #endif
7135 
7136 #if SELECTTRACE_ENABLED
7137   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7138   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7139     sqlite3TreeViewSelect(0, p, 0);
7140   }
7141 #endif
7142   ExplainQueryPlanPop(pParse);
7143   return rc;
7144 }
7145