1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 #ifndef SQLITE_OMIT_WINDOWFUNC 89 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 90 sqlite3WindowListDelete(db, p->pWinDefn); 91 } 92 #endif 93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 94 if( bFree ) sqlite3DbFreeNN(db, p); 95 p = pPrior; 96 bFree = 1; 97 } 98 } 99 100 /* 101 ** Initialize a SelectDest structure. 102 */ 103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 104 pDest->eDest = (u8)eDest; 105 pDest->iSDParm = iParm; 106 pDest->iSDParm2 = 0; 107 pDest->zAffSdst = 0; 108 pDest->iSdst = 0; 109 pDest->nSdst = 0; 110 } 111 112 113 /* 114 ** Allocate a new Select structure and return a pointer to that 115 ** structure. 116 */ 117 Select *sqlite3SelectNew( 118 Parse *pParse, /* Parsing context */ 119 ExprList *pEList, /* which columns to include in the result */ 120 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 121 Expr *pWhere, /* the WHERE clause */ 122 ExprList *pGroupBy, /* the GROUP BY clause */ 123 Expr *pHaving, /* the HAVING clause */ 124 ExprList *pOrderBy, /* the ORDER BY clause */ 125 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 126 Expr *pLimit /* LIMIT value. NULL means not used */ 127 ){ 128 Select *pNew, *pAllocated; 129 Select standin; 130 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 131 if( pNew==0 ){ 132 assert( pParse->db->mallocFailed ); 133 pNew = &standin; 134 } 135 if( pEList==0 ){ 136 pEList = sqlite3ExprListAppend(pParse, 0, 137 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 138 } 139 pNew->pEList = pEList; 140 pNew->op = TK_SELECT; 141 pNew->selFlags = selFlags; 142 pNew->iLimit = 0; 143 pNew->iOffset = 0; 144 pNew->selId = ++pParse->nSelect; 145 pNew->addrOpenEphm[0] = -1; 146 pNew->addrOpenEphm[1] = -1; 147 pNew->nSelectRow = 0; 148 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 149 pNew->pSrc = pSrc; 150 pNew->pWhere = pWhere; 151 pNew->pGroupBy = pGroupBy; 152 pNew->pHaving = pHaving; 153 pNew->pOrderBy = pOrderBy; 154 pNew->pPrior = 0; 155 pNew->pNext = 0; 156 pNew->pLimit = pLimit; 157 pNew->pWith = 0; 158 #ifndef SQLITE_OMIT_WINDOWFUNC 159 pNew->pWin = 0; 160 pNew->pWinDefn = 0; 161 #endif 162 if( pParse->db->mallocFailed ) { 163 clearSelect(pParse->db, pNew, pNew!=&standin); 164 pAllocated = 0; 165 }else{ 166 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 167 } 168 return pAllocated; 169 } 170 171 172 /* 173 ** Delete the given Select structure and all of its substructures. 174 */ 175 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 176 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 177 } 178 179 /* 180 ** Return a pointer to the right-most SELECT statement in a compound. 181 */ 182 static Select *findRightmost(Select *p){ 183 while( p->pNext ) p = p->pNext; 184 return p; 185 } 186 187 /* 188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 189 ** type of join. Return an integer constant that expresses that type 190 ** in terms of the following bit values: 191 ** 192 ** JT_INNER 193 ** JT_CROSS 194 ** JT_OUTER 195 ** JT_NATURAL 196 ** JT_LEFT 197 ** JT_RIGHT 198 ** 199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 200 ** 201 ** If an illegal or unsupported join type is seen, then still return 202 ** a join type, but put an error in the pParse structure. 203 */ 204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 205 int jointype = 0; 206 Token *apAll[3]; 207 Token *p; 208 /* 0123456789 123456789 123456789 123 */ 209 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 210 static const struct { 211 u8 i; /* Beginning of keyword text in zKeyText[] */ 212 u8 nChar; /* Length of the keyword in characters */ 213 u8 code; /* Join type mask */ 214 } aKeyword[] = { 215 /* natural */ { 0, 7, JT_NATURAL }, 216 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 217 /* outer */ { 10, 5, JT_OUTER }, 218 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 219 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 220 /* inner */ { 23, 5, JT_INNER }, 221 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 222 }; 223 int i, j; 224 apAll[0] = pA; 225 apAll[1] = pB; 226 apAll[2] = pC; 227 for(i=0; i<3 && apAll[i]; i++){ 228 p = apAll[i]; 229 for(j=0; j<ArraySize(aKeyword); j++){ 230 if( p->n==aKeyword[j].nChar 231 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 232 jointype |= aKeyword[j].code; 233 break; 234 } 235 } 236 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 237 if( j>=ArraySize(aKeyword) ){ 238 jointype |= JT_ERROR; 239 break; 240 } 241 } 242 if( 243 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 244 (jointype & JT_ERROR)!=0 245 ){ 246 const char *zSp = " "; 247 assert( pB!=0 ); 248 if( pC==0 ){ zSp++; } 249 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 250 "%T %T%s%T", pA, pB, zSp, pC); 251 jointype = JT_INNER; 252 }else if( (jointype & JT_OUTER)!=0 253 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 254 sqlite3ErrorMsg(pParse, 255 "RIGHT and FULL OUTER JOINs are not currently supported"); 256 jointype = JT_INNER; 257 } 258 return jointype; 259 } 260 261 /* 262 ** Return the index of a column in a table. Return -1 if the column 263 ** is not contained in the table. 264 */ 265 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 266 int i; 267 u8 h = sqlite3StrIHash(zCol); 268 Column *pCol; 269 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 270 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i; 271 } 272 return -1; 273 } 274 275 /* 276 ** Search the first N tables in pSrc, from left to right, looking for a 277 ** table that has a column named zCol. 278 ** 279 ** When found, set *piTab and *piCol to the table index and column index 280 ** of the matching column and return TRUE. 281 ** 282 ** If not found, return FALSE. 283 */ 284 static int tableAndColumnIndex( 285 SrcList *pSrc, /* Array of tables to search */ 286 int N, /* Number of tables in pSrc->a[] to search */ 287 const char *zCol, /* Name of the column we are looking for */ 288 int *piTab, /* Write index of pSrc->a[] here */ 289 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 290 int bIgnoreHidden /* True to ignore hidden columns */ 291 ){ 292 int i; /* For looping over tables in pSrc */ 293 int iCol; /* Index of column matching zCol */ 294 295 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 296 for(i=0; i<N; i++){ 297 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 298 if( iCol>=0 299 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 300 ){ 301 if( piTab ){ 302 *piTab = i; 303 *piCol = iCol; 304 } 305 return 1; 306 } 307 } 308 return 0; 309 } 310 311 /* 312 ** This function is used to add terms implied by JOIN syntax to the 313 ** WHERE clause expression of a SELECT statement. The new term, which 314 ** is ANDed with the existing WHERE clause, is of the form: 315 ** 316 ** (tab1.col1 = tab2.col2) 317 ** 318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 320 ** column iColRight of tab2. 321 */ 322 static void addWhereTerm( 323 Parse *pParse, /* Parsing context */ 324 SrcList *pSrc, /* List of tables in FROM clause */ 325 int iLeft, /* Index of first table to join in pSrc */ 326 int iColLeft, /* Index of column in first table */ 327 int iRight, /* Index of second table in pSrc */ 328 int iColRight, /* Index of column in second table */ 329 int isOuterJoin, /* True if this is an OUTER join */ 330 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 331 ){ 332 sqlite3 *db = pParse->db; 333 Expr *pE1; 334 Expr *pE2; 335 Expr *pEq; 336 337 assert( iLeft<iRight ); 338 assert( pSrc->nSrc>iRight ); 339 assert( pSrc->a[iLeft].pTab ); 340 assert( pSrc->a[iRight].pTab ); 341 342 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 343 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 344 345 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 346 if( pEq && isOuterJoin ){ 347 ExprSetProperty(pEq, EP_FromJoin); 348 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 349 ExprSetVVAProperty(pEq, EP_NoReduce); 350 pEq->iRightJoinTable = pE2->iTable; 351 } 352 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 353 } 354 355 /* 356 ** Set the EP_FromJoin property on all terms of the given expression. 357 ** And set the Expr.iRightJoinTable to iTable for every term in the 358 ** expression. 359 ** 360 ** The EP_FromJoin property is used on terms of an expression to tell 361 ** the LEFT OUTER JOIN processing logic that this term is part of the 362 ** join restriction specified in the ON or USING clause and not a part 363 ** of the more general WHERE clause. These terms are moved over to the 364 ** WHERE clause during join processing but we need to remember that they 365 ** originated in the ON or USING clause. 366 ** 367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 368 ** expression depends on table iRightJoinTable even if that table is not 369 ** explicitly mentioned in the expression. That information is needed 370 ** for cases like this: 371 ** 372 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 373 ** 374 ** The where clause needs to defer the handling of the t1.x=5 375 ** term until after the t2 loop of the join. In that way, a 376 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 377 ** defer the handling of t1.x=5, it will be processed immediately 378 ** after the t1 loop and rows with t1.x!=5 will never appear in 379 ** the output, which is incorrect. 380 */ 381 void sqlite3SetJoinExpr(Expr *p, int iTable){ 382 while( p ){ 383 ExprSetProperty(p, EP_FromJoin); 384 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 385 ExprSetVVAProperty(p, EP_NoReduce); 386 p->iRightJoinTable = iTable; 387 if( p->op==TK_FUNCTION && p->x.pList ){ 388 int i; 389 for(i=0; i<p->x.pList->nExpr; i++){ 390 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 391 } 392 } 393 sqlite3SetJoinExpr(p->pLeft, iTable); 394 p = p->pRight; 395 } 396 } 397 398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 400 ** an ordinary term that omits the EP_FromJoin mark. 401 ** 402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 403 */ 404 static void unsetJoinExpr(Expr *p, int iTable){ 405 while( p ){ 406 if( ExprHasProperty(p, EP_FromJoin) 407 && (iTable<0 || p->iRightJoinTable==iTable) ){ 408 ExprClearProperty(p, EP_FromJoin); 409 } 410 if( p->op==TK_COLUMN && p->iTable==iTable ){ 411 ExprClearProperty(p, EP_CanBeNull); 412 } 413 if( p->op==TK_FUNCTION && p->x.pList ){ 414 int i; 415 for(i=0; i<p->x.pList->nExpr; i++){ 416 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 417 } 418 } 419 unsetJoinExpr(p->pLeft, iTable); 420 p = p->pRight; 421 } 422 } 423 424 /* 425 ** This routine processes the join information for a SELECT statement. 426 ** ON and USING clauses are converted into extra terms of the WHERE clause. 427 ** NATURAL joins also create extra WHERE clause terms. 428 ** 429 ** The terms of a FROM clause are contained in the Select.pSrc structure. 430 ** The left most table is the first entry in Select.pSrc. The right-most 431 ** table is the last entry. The join operator is held in the entry to 432 ** the left. Thus entry 0 contains the join operator for the join between 433 ** entries 0 and 1. Any ON or USING clauses associated with the join are 434 ** also attached to the left entry. 435 ** 436 ** This routine returns the number of errors encountered. 437 */ 438 static int sqliteProcessJoin(Parse *pParse, Select *p){ 439 SrcList *pSrc; /* All tables in the FROM clause */ 440 int i, j; /* Loop counters */ 441 SrcItem *pLeft; /* Left table being joined */ 442 SrcItem *pRight; /* Right table being joined */ 443 444 pSrc = p->pSrc; 445 pLeft = &pSrc->a[0]; 446 pRight = &pLeft[1]; 447 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 448 Table *pRightTab = pRight->pTab; 449 int isOuter; 450 451 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 452 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 453 454 /* When the NATURAL keyword is present, add WHERE clause terms for 455 ** every column that the two tables have in common. 456 */ 457 if( pRight->fg.jointype & JT_NATURAL ){ 458 if( pRight->pOn || pRight->pUsing ){ 459 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 460 "an ON or USING clause", 0); 461 return 1; 462 } 463 for(j=0; j<pRightTab->nCol; j++){ 464 char *zName; /* Name of column in the right table */ 465 int iLeft; /* Matching left table */ 466 int iLeftCol; /* Matching column in the left table */ 467 468 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 469 zName = pRightTab->aCol[j].zName; 470 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 471 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 472 isOuter, &p->pWhere); 473 } 474 } 475 } 476 477 /* Disallow both ON and USING clauses in the same join 478 */ 479 if( pRight->pOn && pRight->pUsing ){ 480 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 481 "clauses in the same join"); 482 return 1; 483 } 484 485 /* Add the ON clause to the end of the WHERE clause, connected by 486 ** an AND operator. 487 */ 488 if( pRight->pOn ){ 489 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 490 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 491 pRight->pOn = 0; 492 } 493 494 /* Create extra terms on the WHERE clause for each column named 495 ** in the USING clause. Example: If the two tables to be joined are 496 ** A and B and the USING clause names X, Y, and Z, then add this 497 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 498 ** Report an error if any column mentioned in the USING clause is 499 ** not contained in both tables to be joined. 500 */ 501 if( pRight->pUsing ){ 502 IdList *pList = pRight->pUsing; 503 for(j=0; j<pList->nId; j++){ 504 char *zName; /* Name of the term in the USING clause */ 505 int iLeft; /* Table on the left with matching column name */ 506 int iLeftCol; /* Column number of matching column on the left */ 507 int iRightCol; /* Column number of matching column on the right */ 508 509 zName = pList->a[j].zName; 510 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 511 if( iRightCol<0 512 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 513 ){ 514 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 515 "not present in both tables", zName); 516 return 1; 517 } 518 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 519 isOuter, &p->pWhere); 520 } 521 } 522 } 523 return 0; 524 } 525 526 /* 527 ** An instance of this object holds information (beyond pParse and pSelect) 528 ** needed to load the next result row that is to be added to the sorter. 529 */ 530 typedef struct RowLoadInfo RowLoadInfo; 531 struct RowLoadInfo { 532 int regResult; /* Store results in array of registers here */ 533 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 534 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 535 ExprList *pExtra; /* Extra columns needed by sorter refs */ 536 int regExtraResult; /* Where to load the extra columns */ 537 #endif 538 }; 539 540 /* 541 ** This routine does the work of loading query data into an array of 542 ** registers so that it can be added to the sorter. 543 */ 544 static void innerLoopLoadRow( 545 Parse *pParse, /* Statement under construction */ 546 Select *pSelect, /* The query being coded */ 547 RowLoadInfo *pInfo /* Info needed to complete the row load */ 548 ){ 549 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 550 0, pInfo->ecelFlags); 551 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 552 if( pInfo->pExtra ){ 553 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 554 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 555 } 556 #endif 557 } 558 559 /* 560 ** Code the OP_MakeRecord instruction that generates the entry to be 561 ** added into the sorter. 562 ** 563 ** Return the register in which the result is stored. 564 */ 565 static int makeSorterRecord( 566 Parse *pParse, 567 SortCtx *pSort, 568 Select *pSelect, 569 int regBase, 570 int nBase 571 ){ 572 int nOBSat = pSort->nOBSat; 573 Vdbe *v = pParse->pVdbe; 574 int regOut = ++pParse->nMem; 575 if( pSort->pDeferredRowLoad ){ 576 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 577 } 578 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 579 return regOut; 580 } 581 582 /* 583 ** Generate code that will push the record in registers regData 584 ** through regData+nData-1 onto the sorter. 585 */ 586 static void pushOntoSorter( 587 Parse *pParse, /* Parser context */ 588 SortCtx *pSort, /* Information about the ORDER BY clause */ 589 Select *pSelect, /* The whole SELECT statement */ 590 int regData, /* First register holding data to be sorted */ 591 int regOrigData, /* First register holding data before packing */ 592 int nData, /* Number of elements in the regData data array */ 593 int nPrefixReg /* No. of reg prior to regData available for use */ 594 ){ 595 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 596 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 597 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 598 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 599 int regBase; /* Regs for sorter record */ 600 int regRecord = 0; /* Assembled sorter record */ 601 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 602 int op; /* Opcode to add sorter record to sorter */ 603 int iLimit; /* LIMIT counter */ 604 int iSkip = 0; /* End of the sorter insert loop */ 605 606 assert( bSeq==0 || bSeq==1 ); 607 608 /* Three cases: 609 ** (1) The data to be sorted has already been packed into a Record 610 ** by a prior OP_MakeRecord. In this case nData==1 and regData 611 ** will be completely unrelated to regOrigData. 612 ** (2) All output columns are included in the sort record. In that 613 ** case regData==regOrigData. 614 ** (3) Some output columns are omitted from the sort record due to 615 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 616 ** SQLITE_ECEL_OMITREF optimization, or due to the 617 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 618 ** regOrigData is 0 to prevent this routine from trying to copy 619 ** values that might not yet exist. 620 */ 621 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 622 623 if( nPrefixReg ){ 624 assert( nPrefixReg==nExpr+bSeq ); 625 regBase = regData - nPrefixReg; 626 }else{ 627 regBase = pParse->nMem + 1; 628 pParse->nMem += nBase; 629 } 630 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 631 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 632 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 633 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 634 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 635 if( bSeq ){ 636 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 637 } 638 if( nPrefixReg==0 && nData>0 ){ 639 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 640 } 641 if( nOBSat>0 ){ 642 int regPrevKey; /* The first nOBSat columns of the previous row */ 643 int addrFirst; /* Address of the OP_IfNot opcode */ 644 int addrJmp; /* Address of the OP_Jump opcode */ 645 VdbeOp *pOp; /* Opcode that opens the sorter */ 646 int nKey; /* Number of sorting key columns, including OP_Sequence */ 647 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 648 649 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 650 regPrevKey = pParse->nMem+1; 651 pParse->nMem += pSort->nOBSat; 652 nKey = nExpr - pSort->nOBSat + bSeq; 653 if( bSeq ){ 654 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 655 }else{ 656 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 657 } 658 VdbeCoverage(v); 659 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 660 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 661 if( pParse->db->mallocFailed ) return; 662 pOp->p2 = nKey + nData; 663 pKI = pOp->p4.pKeyInfo; 664 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 665 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 666 testcase( pKI->nAllField > pKI->nKeyField+2 ); 667 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 668 pKI->nAllField-pKI->nKeyField-1); 669 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 670 addrJmp = sqlite3VdbeCurrentAddr(v); 671 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 672 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 673 pSort->regReturn = ++pParse->nMem; 674 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 675 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 676 if( iLimit ){ 677 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 678 VdbeCoverage(v); 679 } 680 sqlite3VdbeJumpHere(v, addrFirst); 681 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 682 sqlite3VdbeJumpHere(v, addrJmp); 683 } 684 if( iLimit ){ 685 /* At this point the values for the new sorter entry are stored 686 ** in an array of registers. They need to be composed into a record 687 ** and inserted into the sorter if either (a) there are currently 688 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 689 ** the largest record currently in the sorter. If (b) is true and there 690 ** are already LIMIT+OFFSET items in the sorter, delete the largest 691 ** entry before inserting the new one. This way there are never more 692 ** than LIMIT+OFFSET items in the sorter. 693 ** 694 ** If the new record does not need to be inserted into the sorter, 695 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 696 ** value is not zero, then it is a label of where to jump. Otherwise, 697 ** just bypass the row insert logic. See the header comment on the 698 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 699 */ 700 int iCsr = pSort->iECursor; 701 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 702 VdbeCoverage(v); 703 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 704 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 705 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 706 VdbeCoverage(v); 707 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 708 } 709 if( regRecord==0 ){ 710 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 711 } 712 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 713 op = OP_SorterInsert; 714 }else{ 715 op = OP_IdxInsert; 716 } 717 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 718 regBase+nOBSat, nBase-nOBSat); 719 if( iSkip ){ 720 sqlite3VdbeChangeP2(v, iSkip, 721 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 722 } 723 } 724 725 /* 726 ** Add code to implement the OFFSET 727 */ 728 static void codeOffset( 729 Vdbe *v, /* Generate code into this VM */ 730 int iOffset, /* Register holding the offset counter */ 731 int iContinue /* Jump here to skip the current record */ 732 ){ 733 if( iOffset>0 ){ 734 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 735 VdbeComment((v, "OFFSET")); 736 } 737 } 738 739 /* 740 ** Add code that will check to make sure the N registers starting at iMem 741 ** form a distinct entry. iTab is a sorting index that holds previously 742 ** seen combinations of the N values. A new entry is made in iTab 743 ** if the current N values are new. 744 ** 745 ** A jump to addrRepeat is made and the N+1 values are popped from the 746 ** stack if the top N elements are not distinct. 747 */ 748 static void codeDistinct( 749 Parse *pParse, /* Parsing and code generating context */ 750 int iTab, /* A sorting index used to test for distinctness */ 751 int addrRepeat, /* Jump to here if not distinct */ 752 int N, /* Number of elements */ 753 int iMem /* First element */ 754 ){ 755 Vdbe *v; 756 int r1; 757 758 v = pParse->pVdbe; 759 r1 = sqlite3GetTempReg(pParse); 760 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 761 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 762 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 763 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 764 sqlite3ReleaseTempReg(pParse, r1); 765 } 766 767 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 768 /* 769 ** This function is called as part of inner-loop generation for a SELECT 770 ** statement with an ORDER BY that is not optimized by an index. It 771 ** determines the expressions, if any, that the sorter-reference 772 ** optimization should be used for. The sorter-reference optimization 773 ** is used for SELECT queries like: 774 ** 775 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 776 ** 777 ** If the optimization is used for expression "bigblob", then instead of 778 ** storing values read from that column in the sorter records, the PK of 779 ** the row from table t1 is stored instead. Then, as records are extracted from 780 ** the sorter to return to the user, the required value of bigblob is 781 ** retrieved directly from table t1. If the values are very large, this 782 ** can be more efficient than storing them directly in the sorter records. 783 ** 784 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 785 ** for which the sorter-reference optimization should be enabled. 786 ** Additionally, the pSort->aDefer[] array is populated with entries 787 ** for all cursors required to evaluate all selected expressions. Finally. 788 ** output variable (*ppExtra) is set to an expression list containing 789 ** expressions for all extra PK values that should be stored in the 790 ** sorter records. 791 */ 792 static void selectExprDefer( 793 Parse *pParse, /* Leave any error here */ 794 SortCtx *pSort, /* Sorter context */ 795 ExprList *pEList, /* Expressions destined for sorter */ 796 ExprList **ppExtra /* Expressions to append to sorter record */ 797 ){ 798 int i; 799 int nDefer = 0; 800 ExprList *pExtra = 0; 801 for(i=0; i<pEList->nExpr; i++){ 802 struct ExprList_item *pItem = &pEList->a[i]; 803 if( pItem->u.x.iOrderByCol==0 ){ 804 Expr *pExpr = pItem->pExpr; 805 Table *pTab = pExpr->y.pTab; 806 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 807 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 808 ){ 809 int j; 810 for(j=0; j<nDefer; j++){ 811 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 812 } 813 if( j==nDefer ){ 814 if( nDefer==ArraySize(pSort->aDefer) ){ 815 continue; 816 }else{ 817 int nKey = 1; 818 int k; 819 Index *pPk = 0; 820 if( !HasRowid(pTab) ){ 821 pPk = sqlite3PrimaryKeyIndex(pTab); 822 nKey = pPk->nKeyCol; 823 } 824 for(k=0; k<nKey; k++){ 825 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 826 if( pNew ){ 827 pNew->iTable = pExpr->iTable; 828 pNew->y.pTab = pExpr->y.pTab; 829 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 830 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 831 } 832 } 833 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 834 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 835 pSort->aDefer[nDefer].nKey = nKey; 836 nDefer++; 837 } 838 } 839 pItem->bSorterRef = 1; 840 } 841 } 842 } 843 pSort->nDefer = (u8)nDefer; 844 *ppExtra = pExtra; 845 } 846 #endif 847 848 /* 849 ** This routine generates the code for the inside of the inner loop 850 ** of a SELECT. 851 ** 852 ** If srcTab is negative, then the p->pEList expressions 853 ** are evaluated in order to get the data for this row. If srcTab is 854 ** zero or more, then data is pulled from srcTab and p->pEList is used only 855 ** to get the number of columns and the collation sequence for each column. 856 */ 857 static void selectInnerLoop( 858 Parse *pParse, /* The parser context */ 859 Select *p, /* The complete select statement being coded */ 860 int srcTab, /* Pull data from this table if non-negative */ 861 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 862 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 863 SelectDest *pDest, /* How to dispose of the results */ 864 int iContinue, /* Jump here to continue with next row */ 865 int iBreak /* Jump here to break out of the inner loop */ 866 ){ 867 Vdbe *v = pParse->pVdbe; 868 int i; 869 int hasDistinct; /* True if the DISTINCT keyword is present */ 870 int eDest = pDest->eDest; /* How to dispose of results */ 871 int iParm = pDest->iSDParm; /* First argument to disposal method */ 872 int nResultCol; /* Number of result columns */ 873 int nPrefixReg = 0; /* Number of extra registers before regResult */ 874 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 875 876 /* Usually, regResult is the first cell in an array of memory cells 877 ** containing the current result row. In this case regOrig is set to the 878 ** same value. However, if the results are being sent to the sorter, the 879 ** values for any expressions that are also part of the sort-key are omitted 880 ** from this array. In this case regOrig is set to zero. */ 881 int regResult; /* Start of memory holding current results */ 882 int regOrig; /* Start of memory holding full result (or 0) */ 883 884 assert( v ); 885 assert( p->pEList!=0 ); 886 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 887 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 888 if( pSort==0 && !hasDistinct ){ 889 assert( iContinue!=0 ); 890 codeOffset(v, p->iOffset, iContinue); 891 } 892 893 /* Pull the requested columns. 894 */ 895 nResultCol = p->pEList->nExpr; 896 897 if( pDest->iSdst==0 ){ 898 if( pSort ){ 899 nPrefixReg = pSort->pOrderBy->nExpr; 900 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 901 pParse->nMem += nPrefixReg; 902 } 903 pDest->iSdst = pParse->nMem+1; 904 pParse->nMem += nResultCol; 905 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 906 /* This is an error condition that can result, for example, when a SELECT 907 ** on the right-hand side of an INSERT contains more result columns than 908 ** there are columns in the table on the left. The error will be caught 909 ** and reported later. But we need to make sure enough memory is allocated 910 ** to avoid other spurious errors in the meantime. */ 911 pParse->nMem += nResultCol; 912 } 913 pDest->nSdst = nResultCol; 914 regOrig = regResult = pDest->iSdst; 915 if( srcTab>=0 ){ 916 for(i=0; i<nResultCol; i++){ 917 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 918 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 919 } 920 }else if( eDest!=SRT_Exists ){ 921 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 922 ExprList *pExtra = 0; 923 #endif 924 /* If the destination is an EXISTS(...) expression, the actual 925 ** values returned by the SELECT are not required. 926 */ 927 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 928 ExprList *pEList; 929 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 930 ecelFlags = SQLITE_ECEL_DUP; 931 }else{ 932 ecelFlags = 0; 933 } 934 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 935 /* For each expression in p->pEList that is a copy of an expression in 936 ** the ORDER BY clause (pSort->pOrderBy), set the associated 937 ** iOrderByCol value to one more than the index of the ORDER BY 938 ** expression within the sort-key that pushOntoSorter() will generate. 939 ** This allows the p->pEList field to be omitted from the sorted record, 940 ** saving space and CPU cycles. */ 941 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 942 943 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 944 int j; 945 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 946 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 947 } 948 } 949 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 950 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 951 if( pExtra && pParse->db->mallocFailed==0 ){ 952 /* If there are any extra PK columns to add to the sorter records, 953 ** allocate extra memory cells and adjust the OpenEphemeral 954 ** instruction to account for the larger records. This is only 955 ** required if there are one or more WITHOUT ROWID tables with 956 ** composite primary keys in the SortCtx.aDefer[] array. */ 957 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 958 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 959 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 960 pParse->nMem += pExtra->nExpr; 961 } 962 #endif 963 964 /* Adjust nResultCol to account for columns that are omitted 965 ** from the sorter by the optimizations in this branch */ 966 pEList = p->pEList; 967 for(i=0; i<pEList->nExpr; i++){ 968 if( pEList->a[i].u.x.iOrderByCol>0 969 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 970 || pEList->a[i].bSorterRef 971 #endif 972 ){ 973 nResultCol--; 974 regOrig = 0; 975 } 976 } 977 978 testcase( regOrig ); 979 testcase( eDest==SRT_Set ); 980 testcase( eDest==SRT_Mem ); 981 testcase( eDest==SRT_Coroutine ); 982 testcase( eDest==SRT_Output ); 983 assert( eDest==SRT_Set || eDest==SRT_Mem 984 || eDest==SRT_Coroutine || eDest==SRT_Output 985 || eDest==SRT_Upfrom ); 986 } 987 sRowLoadInfo.regResult = regResult; 988 sRowLoadInfo.ecelFlags = ecelFlags; 989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 990 sRowLoadInfo.pExtra = pExtra; 991 sRowLoadInfo.regExtraResult = regResult + nResultCol; 992 if( pExtra ) nResultCol += pExtra->nExpr; 993 #endif 994 if( p->iLimit 995 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 996 && nPrefixReg>0 997 ){ 998 assert( pSort!=0 ); 999 assert( hasDistinct==0 ); 1000 pSort->pDeferredRowLoad = &sRowLoadInfo; 1001 regOrig = 0; 1002 }else{ 1003 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1004 } 1005 } 1006 1007 /* If the DISTINCT keyword was present on the SELECT statement 1008 ** and this row has been seen before, then do not make this row 1009 ** part of the result. 1010 */ 1011 if( hasDistinct ){ 1012 switch( pDistinct->eTnctType ){ 1013 case WHERE_DISTINCT_ORDERED: { 1014 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1015 int iJump; /* Jump destination */ 1016 int regPrev; /* Previous row content */ 1017 1018 /* Allocate space for the previous row */ 1019 regPrev = pParse->nMem+1; 1020 pParse->nMem += nResultCol; 1021 1022 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1023 ** sets the MEM_Cleared bit on the first register of the 1024 ** previous value. This will cause the OP_Ne below to always 1025 ** fail on the first iteration of the loop even if the first 1026 ** row is all NULLs. 1027 */ 1028 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1029 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1030 pOp->opcode = OP_Null; 1031 pOp->p1 = 1; 1032 pOp->p2 = regPrev; 1033 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1034 1035 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1036 for(i=0; i<nResultCol; i++){ 1037 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1038 if( i<nResultCol-1 ){ 1039 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1040 VdbeCoverage(v); 1041 }else{ 1042 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1043 VdbeCoverage(v); 1044 } 1045 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1046 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1047 } 1048 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1049 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1050 break; 1051 } 1052 1053 case WHERE_DISTINCT_UNIQUE: { 1054 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1055 break; 1056 } 1057 1058 default: { 1059 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1060 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1061 regResult); 1062 break; 1063 } 1064 } 1065 if( pSort==0 ){ 1066 codeOffset(v, p->iOffset, iContinue); 1067 } 1068 } 1069 1070 switch( eDest ){ 1071 /* In this mode, write each query result to the key of the temporary 1072 ** table iParm. 1073 */ 1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1075 case SRT_Union: { 1076 int r1; 1077 r1 = sqlite3GetTempReg(pParse); 1078 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1079 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1080 sqlite3ReleaseTempReg(pParse, r1); 1081 break; 1082 } 1083 1084 /* Construct a record from the query result, but instead of 1085 ** saving that record, use it as a key to delete elements from 1086 ** the temporary table iParm. 1087 */ 1088 case SRT_Except: { 1089 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1090 break; 1091 } 1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1093 1094 /* Store the result as data using a unique key. 1095 */ 1096 case SRT_Fifo: 1097 case SRT_DistFifo: 1098 case SRT_Table: 1099 case SRT_EphemTab: { 1100 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1101 testcase( eDest==SRT_Table ); 1102 testcase( eDest==SRT_EphemTab ); 1103 testcase( eDest==SRT_Fifo ); 1104 testcase( eDest==SRT_DistFifo ); 1105 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1106 #ifndef SQLITE_OMIT_CTE 1107 if( eDest==SRT_DistFifo ){ 1108 /* If the destination is DistFifo, then cursor (iParm+1) is open 1109 ** on an ephemeral index. If the current row is already present 1110 ** in the index, do not write it to the output. If not, add the 1111 ** current row to the index and proceed with writing it to the 1112 ** output table as well. */ 1113 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1114 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1115 VdbeCoverage(v); 1116 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1117 assert( pSort==0 ); 1118 } 1119 #endif 1120 if( pSort ){ 1121 assert( regResult==regOrig ); 1122 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1123 }else{ 1124 int r2 = sqlite3GetTempReg(pParse); 1125 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1126 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1127 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1128 sqlite3ReleaseTempReg(pParse, r2); 1129 } 1130 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1131 break; 1132 } 1133 1134 case SRT_Upfrom: { 1135 if( pSort ){ 1136 pushOntoSorter( 1137 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1138 }else{ 1139 int i2 = pDest->iSDParm2; 1140 int r1 = sqlite3GetTempReg(pParse); 1141 1142 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1143 ** might still be trying to return one row, because that is what 1144 ** aggregates do. Don't record that empty row in the output table. */ 1145 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1146 1147 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1148 regResult+(i2<0), nResultCol-(i2<0), r1); 1149 if( i2<0 ){ 1150 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1151 }else{ 1152 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1153 } 1154 } 1155 break; 1156 } 1157 1158 #ifndef SQLITE_OMIT_SUBQUERY 1159 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1160 ** then there should be a single item on the stack. Write this 1161 ** item into the set table with bogus data. 1162 */ 1163 case SRT_Set: { 1164 if( pSort ){ 1165 /* At first glance you would think we could optimize out the 1166 ** ORDER BY in this case since the order of entries in the set 1167 ** does not matter. But there might be a LIMIT clause, in which 1168 ** case the order does matter */ 1169 pushOntoSorter( 1170 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1171 }else{ 1172 int r1 = sqlite3GetTempReg(pParse); 1173 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1174 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1175 r1, pDest->zAffSdst, nResultCol); 1176 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1177 sqlite3ReleaseTempReg(pParse, r1); 1178 } 1179 break; 1180 } 1181 1182 1183 /* If any row exist in the result set, record that fact and abort. 1184 */ 1185 case SRT_Exists: { 1186 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1187 /* The LIMIT clause will terminate the loop for us */ 1188 break; 1189 } 1190 1191 /* If this is a scalar select that is part of an expression, then 1192 ** store the results in the appropriate memory cell or array of 1193 ** memory cells and break out of the scan loop. 1194 */ 1195 case SRT_Mem: { 1196 if( pSort ){ 1197 assert( nResultCol<=pDest->nSdst ); 1198 pushOntoSorter( 1199 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1200 }else{ 1201 assert( nResultCol==pDest->nSdst ); 1202 assert( regResult==iParm ); 1203 /* The LIMIT clause will jump out of the loop for us */ 1204 } 1205 break; 1206 } 1207 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1208 1209 case SRT_Coroutine: /* Send data to a co-routine */ 1210 case SRT_Output: { /* Return the results */ 1211 testcase( eDest==SRT_Coroutine ); 1212 testcase( eDest==SRT_Output ); 1213 if( pSort ){ 1214 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1215 nPrefixReg); 1216 }else if( eDest==SRT_Coroutine ){ 1217 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1218 }else{ 1219 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1220 } 1221 break; 1222 } 1223 1224 #ifndef SQLITE_OMIT_CTE 1225 /* Write the results into a priority queue that is order according to 1226 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1227 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1228 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1229 ** final OP_Sequence column. The last column is the record as a blob. 1230 */ 1231 case SRT_DistQueue: 1232 case SRT_Queue: { 1233 int nKey; 1234 int r1, r2, r3; 1235 int addrTest = 0; 1236 ExprList *pSO; 1237 pSO = pDest->pOrderBy; 1238 assert( pSO ); 1239 nKey = pSO->nExpr; 1240 r1 = sqlite3GetTempReg(pParse); 1241 r2 = sqlite3GetTempRange(pParse, nKey+2); 1242 r3 = r2+nKey+1; 1243 if( eDest==SRT_DistQueue ){ 1244 /* If the destination is DistQueue, then cursor (iParm+1) is open 1245 ** on a second ephemeral index that holds all values every previously 1246 ** added to the queue. */ 1247 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1248 regResult, nResultCol); 1249 VdbeCoverage(v); 1250 } 1251 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1252 if( eDest==SRT_DistQueue ){ 1253 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1254 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1255 } 1256 for(i=0; i<nKey; i++){ 1257 sqlite3VdbeAddOp2(v, OP_SCopy, 1258 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1259 r2+i); 1260 } 1261 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1262 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1263 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1264 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1265 sqlite3ReleaseTempReg(pParse, r1); 1266 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1267 break; 1268 } 1269 #endif /* SQLITE_OMIT_CTE */ 1270 1271 1272 1273 #if !defined(SQLITE_OMIT_TRIGGER) 1274 /* Discard the results. This is used for SELECT statements inside 1275 ** the body of a TRIGGER. The purpose of such selects is to call 1276 ** user-defined functions that have side effects. We do not care 1277 ** about the actual results of the select. 1278 */ 1279 default: { 1280 assert( eDest==SRT_Discard ); 1281 break; 1282 } 1283 #endif 1284 } 1285 1286 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1287 ** there is a sorter, in which case the sorter has already limited 1288 ** the output for us. 1289 */ 1290 if( pSort==0 && p->iLimit ){ 1291 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1292 } 1293 } 1294 1295 /* 1296 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1297 ** X extra columns. 1298 */ 1299 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1300 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1301 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1302 if( p ){ 1303 p->aSortFlags = (u8*)&p->aColl[N+X]; 1304 p->nKeyField = (u16)N; 1305 p->nAllField = (u16)(N+X); 1306 p->enc = ENC(db); 1307 p->db = db; 1308 p->nRef = 1; 1309 memset(&p[1], 0, nExtra); 1310 }else{ 1311 sqlite3OomFault(db); 1312 } 1313 return p; 1314 } 1315 1316 /* 1317 ** Deallocate a KeyInfo object 1318 */ 1319 void sqlite3KeyInfoUnref(KeyInfo *p){ 1320 if( p ){ 1321 assert( p->nRef>0 ); 1322 p->nRef--; 1323 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1324 } 1325 } 1326 1327 /* 1328 ** Make a new pointer to a KeyInfo object 1329 */ 1330 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1331 if( p ){ 1332 assert( p->nRef>0 ); 1333 p->nRef++; 1334 } 1335 return p; 1336 } 1337 1338 #ifdef SQLITE_DEBUG 1339 /* 1340 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1341 ** can only be changed if this is just a single reference to the object. 1342 ** 1343 ** This routine is used only inside of assert() statements. 1344 */ 1345 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1346 #endif /* SQLITE_DEBUG */ 1347 1348 /* 1349 ** Given an expression list, generate a KeyInfo structure that records 1350 ** the collating sequence for each expression in that expression list. 1351 ** 1352 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1353 ** KeyInfo structure is appropriate for initializing a virtual index to 1354 ** implement that clause. If the ExprList is the result set of a SELECT 1355 ** then the KeyInfo structure is appropriate for initializing a virtual 1356 ** index to implement a DISTINCT test. 1357 ** 1358 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1359 ** function is responsible for seeing that this structure is eventually 1360 ** freed. 1361 */ 1362 KeyInfo *sqlite3KeyInfoFromExprList( 1363 Parse *pParse, /* Parsing context */ 1364 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1365 int iStart, /* Begin with this column of pList */ 1366 int nExtra /* Add this many extra columns to the end */ 1367 ){ 1368 int nExpr; 1369 KeyInfo *pInfo; 1370 struct ExprList_item *pItem; 1371 sqlite3 *db = pParse->db; 1372 int i; 1373 1374 nExpr = pList->nExpr; 1375 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1376 if( pInfo ){ 1377 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1378 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1379 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1380 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1381 } 1382 } 1383 return pInfo; 1384 } 1385 1386 /* 1387 ** Name of the connection operator, used for error messages. 1388 */ 1389 static const char *selectOpName(int id){ 1390 char *z; 1391 switch( id ){ 1392 case TK_ALL: z = "UNION ALL"; break; 1393 case TK_INTERSECT: z = "INTERSECT"; break; 1394 case TK_EXCEPT: z = "EXCEPT"; break; 1395 default: z = "UNION"; break; 1396 } 1397 return z; 1398 } 1399 1400 #ifndef SQLITE_OMIT_EXPLAIN 1401 /* 1402 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1403 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1404 ** where the caption is of the form: 1405 ** 1406 ** "USE TEMP B-TREE FOR xxx" 1407 ** 1408 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1409 ** is determined by the zUsage argument. 1410 */ 1411 static void explainTempTable(Parse *pParse, const char *zUsage){ 1412 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1413 } 1414 1415 /* 1416 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1417 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1418 ** in sqlite3Select() to assign values to structure member variables that 1419 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1420 ** code with #ifndef directives. 1421 */ 1422 # define explainSetInteger(a, b) a = b 1423 1424 #else 1425 /* No-op versions of the explainXXX() functions and macros. */ 1426 # define explainTempTable(y,z) 1427 # define explainSetInteger(y,z) 1428 #endif 1429 1430 1431 /* 1432 ** If the inner loop was generated using a non-null pOrderBy argument, 1433 ** then the results were placed in a sorter. After the loop is terminated 1434 ** we need to run the sorter and output the results. The following 1435 ** routine generates the code needed to do that. 1436 */ 1437 static void generateSortTail( 1438 Parse *pParse, /* Parsing context */ 1439 Select *p, /* The SELECT statement */ 1440 SortCtx *pSort, /* Information on the ORDER BY clause */ 1441 int nColumn, /* Number of columns of data */ 1442 SelectDest *pDest /* Write the sorted results here */ 1443 ){ 1444 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1445 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1446 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1447 int addr; /* Top of output loop. Jump for Next. */ 1448 int addrOnce = 0; 1449 int iTab; 1450 ExprList *pOrderBy = pSort->pOrderBy; 1451 int eDest = pDest->eDest; 1452 int iParm = pDest->iSDParm; 1453 int regRow; 1454 int regRowid; 1455 int iCol; 1456 int nKey; /* Number of key columns in sorter record */ 1457 int iSortTab; /* Sorter cursor to read from */ 1458 int i; 1459 int bSeq; /* True if sorter record includes seq. no. */ 1460 int nRefKey = 0; 1461 struct ExprList_item *aOutEx = p->pEList->a; 1462 1463 assert( addrBreak<0 ); 1464 if( pSort->labelBkOut ){ 1465 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1466 sqlite3VdbeGoto(v, addrBreak); 1467 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1468 } 1469 1470 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1471 /* Open any cursors needed for sorter-reference expressions */ 1472 for(i=0; i<pSort->nDefer; i++){ 1473 Table *pTab = pSort->aDefer[i].pTab; 1474 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1475 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1476 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1477 } 1478 #endif 1479 1480 iTab = pSort->iECursor; 1481 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1482 regRowid = 0; 1483 regRow = pDest->iSdst; 1484 }else{ 1485 regRowid = sqlite3GetTempReg(pParse); 1486 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1487 regRow = sqlite3GetTempReg(pParse); 1488 nColumn = 0; 1489 }else{ 1490 regRow = sqlite3GetTempRange(pParse, nColumn); 1491 } 1492 } 1493 nKey = pOrderBy->nExpr - pSort->nOBSat; 1494 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1495 int regSortOut = ++pParse->nMem; 1496 iSortTab = pParse->nTab++; 1497 if( pSort->labelBkOut ){ 1498 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1499 } 1500 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1501 nKey+1+nColumn+nRefKey); 1502 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1503 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1504 VdbeCoverage(v); 1505 codeOffset(v, p->iOffset, addrContinue); 1506 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1507 bSeq = 0; 1508 }else{ 1509 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1510 codeOffset(v, p->iOffset, addrContinue); 1511 iSortTab = iTab; 1512 bSeq = 1; 1513 } 1514 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1515 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1516 if( aOutEx[i].bSorterRef ) continue; 1517 #endif 1518 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1519 } 1520 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1521 if( pSort->nDefer ){ 1522 int iKey = iCol+1; 1523 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1524 1525 for(i=0; i<pSort->nDefer; i++){ 1526 int iCsr = pSort->aDefer[i].iCsr; 1527 Table *pTab = pSort->aDefer[i].pTab; 1528 int nKey = pSort->aDefer[i].nKey; 1529 1530 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1531 if( HasRowid(pTab) ){ 1532 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1533 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1534 sqlite3VdbeCurrentAddr(v)+1, regKey); 1535 }else{ 1536 int k; 1537 int iJmp; 1538 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1539 for(k=0; k<nKey; k++){ 1540 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1541 } 1542 iJmp = sqlite3VdbeCurrentAddr(v); 1543 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1544 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1545 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1546 } 1547 } 1548 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1549 } 1550 #endif 1551 for(i=nColumn-1; i>=0; i--){ 1552 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1553 if( aOutEx[i].bSorterRef ){ 1554 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1555 }else 1556 #endif 1557 { 1558 int iRead; 1559 if( aOutEx[i].u.x.iOrderByCol ){ 1560 iRead = aOutEx[i].u.x.iOrderByCol-1; 1561 }else{ 1562 iRead = iCol--; 1563 } 1564 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1565 VdbeComment((v, "%s", aOutEx[i].zEName)); 1566 } 1567 } 1568 switch( eDest ){ 1569 case SRT_Table: 1570 case SRT_EphemTab: { 1571 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1572 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1573 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1574 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1575 break; 1576 } 1577 #ifndef SQLITE_OMIT_SUBQUERY 1578 case SRT_Set: { 1579 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1580 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1581 pDest->zAffSdst, nColumn); 1582 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1583 break; 1584 } 1585 case SRT_Mem: { 1586 /* The LIMIT clause will terminate the loop for us */ 1587 break; 1588 } 1589 #endif 1590 case SRT_Upfrom: { 1591 int i2 = pDest->iSDParm2; 1592 int r1 = sqlite3GetTempReg(pParse); 1593 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1594 if( i2<0 ){ 1595 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1596 }else{ 1597 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1598 } 1599 break; 1600 } 1601 default: { 1602 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1603 testcase( eDest==SRT_Output ); 1604 testcase( eDest==SRT_Coroutine ); 1605 if( eDest==SRT_Output ){ 1606 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1607 }else{ 1608 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1609 } 1610 break; 1611 } 1612 } 1613 if( regRowid ){ 1614 if( eDest==SRT_Set ){ 1615 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1616 }else{ 1617 sqlite3ReleaseTempReg(pParse, regRow); 1618 } 1619 sqlite3ReleaseTempReg(pParse, regRowid); 1620 } 1621 /* The bottom of the loop 1622 */ 1623 sqlite3VdbeResolveLabel(v, addrContinue); 1624 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1625 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1626 }else{ 1627 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1628 } 1629 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1630 sqlite3VdbeResolveLabel(v, addrBreak); 1631 } 1632 1633 /* 1634 ** Return a pointer to a string containing the 'declaration type' of the 1635 ** expression pExpr. The string may be treated as static by the caller. 1636 ** 1637 ** Also try to estimate the size of the returned value and return that 1638 ** result in *pEstWidth. 1639 ** 1640 ** The declaration type is the exact datatype definition extracted from the 1641 ** original CREATE TABLE statement if the expression is a column. The 1642 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1643 ** is considered a column can be complex in the presence of subqueries. The 1644 ** result-set expression in all of the following SELECT statements is 1645 ** considered a column by this function. 1646 ** 1647 ** SELECT col FROM tbl; 1648 ** SELECT (SELECT col FROM tbl; 1649 ** SELECT (SELECT col FROM tbl); 1650 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1651 ** 1652 ** The declaration type for any expression other than a column is NULL. 1653 ** 1654 ** This routine has either 3 or 6 parameters depending on whether or not 1655 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1656 */ 1657 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1658 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1659 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1660 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1661 #endif 1662 static const char *columnTypeImpl( 1663 NameContext *pNC, 1664 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1665 Expr *pExpr 1666 #else 1667 Expr *pExpr, 1668 const char **pzOrigDb, 1669 const char **pzOrigTab, 1670 const char **pzOrigCol 1671 #endif 1672 ){ 1673 char const *zType = 0; 1674 int j; 1675 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1676 char const *zOrigDb = 0; 1677 char const *zOrigTab = 0; 1678 char const *zOrigCol = 0; 1679 #endif 1680 1681 assert( pExpr!=0 ); 1682 assert( pNC->pSrcList!=0 ); 1683 switch( pExpr->op ){ 1684 case TK_COLUMN: { 1685 /* The expression is a column. Locate the table the column is being 1686 ** extracted from in NameContext.pSrcList. This table may be real 1687 ** database table or a subquery. 1688 */ 1689 Table *pTab = 0; /* Table structure column is extracted from */ 1690 Select *pS = 0; /* Select the column is extracted from */ 1691 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1692 while( pNC && !pTab ){ 1693 SrcList *pTabList = pNC->pSrcList; 1694 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1695 if( j<pTabList->nSrc ){ 1696 pTab = pTabList->a[j].pTab; 1697 pS = pTabList->a[j].pSelect; 1698 }else{ 1699 pNC = pNC->pNext; 1700 } 1701 } 1702 1703 if( pTab==0 ){ 1704 /* At one time, code such as "SELECT new.x" within a trigger would 1705 ** cause this condition to run. Since then, we have restructured how 1706 ** trigger code is generated and so this condition is no longer 1707 ** possible. However, it can still be true for statements like 1708 ** the following: 1709 ** 1710 ** CREATE TABLE t1(col INTEGER); 1711 ** SELECT (SELECT t1.col) FROM FROM t1; 1712 ** 1713 ** when columnType() is called on the expression "t1.col" in the 1714 ** sub-select. In this case, set the column type to NULL, even 1715 ** though it should really be "INTEGER". 1716 ** 1717 ** This is not a problem, as the column type of "t1.col" is never 1718 ** used. When columnType() is called on the expression 1719 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1720 ** branch below. */ 1721 break; 1722 } 1723 1724 assert( pTab && pExpr->y.pTab==pTab ); 1725 if( pS ){ 1726 /* The "table" is actually a sub-select or a view in the FROM clause 1727 ** of the SELECT statement. Return the declaration type and origin 1728 ** data for the result-set column of the sub-select. 1729 */ 1730 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1731 /* If iCol is less than zero, then the expression requests the 1732 ** rowid of the sub-select or view. This expression is legal (see 1733 ** test case misc2.2.2) - it always evaluates to NULL. 1734 */ 1735 NameContext sNC; 1736 Expr *p = pS->pEList->a[iCol].pExpr; 1737 sNC.pSrcList = pS->pSrc; 1738 sNC.pNext = pNC; 1739 sNC.pParse = pNC->pParse; 1740 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1741 } 1742 }else{ 1743 /* A real table or a CTE table */ 1744 assert( !pS ); 1745 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1746 if( iCol<0 ) iCol = pTab->iPKey; 1747 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1748 if( iCol<0 ){ 1749 zType = "INTEGER"; 1750 zOrigCol = "rowid"; 1751 }else{ 1752 zOrigCol = pTab->aCol[iCol].zName; 1753 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1754 } 1755 zOrigTab = pTab->zName; 1756 if( pNC->pParse && pTab->pSchema ){ 1757 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1758 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1759 } 1760 #else 1761 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1762 if( iCol<0 ){ 1763 zType = "INTEGER"; 1764 }else{ 1765 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1766 } 1767 #endif 1768 } 1769 break; 1770 } 1771 #ifndef SQLITE_OMIT_SUBQUERY 1772 case TK_SELECT: { 1773 /* The expression is a sub-select. Return the declaration type and 1774 ** origin info for the single column in the result set of the SELECT 1775 ** statement. 1776 */ 1777 NameContext sNC; 1778 Select *pS = pExpr->x.pSelect; 1779 Expr *p = pS->pEList->a[0].pExpr; 1780 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1781 sNC.pSrcList = pS->pSrc; 1782 sNC.pNext = pNC; 1783 sNC.pParse = pNC->pParse; 1784 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1785 break; 1786 } 1787 #endif 1788 } 1789 1790 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1791 if( pzOrigDb ){ 1792 assert( pzOrigTab && pzOrigCol ); 1793 *pzOrigDb = zOrigDb; 1794 *pzOrigTab = zOrigTab; 1795 *pzOrigCol = zOrigCol; 1796 } 1797 #endif 1798 return zType; 1799 } 1800 1801 /* 1802 ** Generate code that will tell the VDBE the declaration types of columns 1803 ** in the result set. 1804 */ 1805 static void generateColumnTypes( 1806 Parse *pParse, /* Parser context */ 1807 SrcList *pTabList, /* List of tables */ 1808 ExprList *pEList /* Expressions defining the result set */ 1809 ){ 1810 #ifndef SQLITE_OMIT_DECLTYPE 1811 Vdbe *v = pParse->pVdbe; 1812 int i; 1813 NameContext sNC; 1814 sNC.pSrcList = pTabList; 1815 sNC.pParse = pParse; 1816 sNC.pNext = 0; 1817 for(i=0; i<pEList->nExpr; i++){ 1818 Expr *p = pEList->a[i].pExpr; 1819 const char *zType; 1820 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1821 const char *zOrigDb = 0; 1822 const char *zOrigTab = 0; 1823 const char *zOrigCol = 0; 1824 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1825 1826 /* The vdbe must make its own copy of the column-type and other 1827 ** column specific strings, in case the schema is reset before this 1828 ** virtual machine is deleted. 1829 */ 1830 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1831 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1832 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1833 #else 1834 zType = columnType(&sNC, p, 0, 0, 0); 1835 #endif 1836 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1837 } 1838 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1839 } 1840 1841 1842 /* 1843 ** Compute the column names for a SELECT statement. 1844 ** 1845 ** The only guarantee that SQLite makes about column names is that if the 1846 ** column has an AS clause assigning it a name, that will be the name used. 1847 ** That is the only documented guarantee. However, countless applications 1848 ** developed over the years have made baseless assumptions about column names 1849 ** and will break if those assumptions changes. Hence, use extreme caution 1850 ** when modifying this routine to avoid breaking legacy. 1851 ** 1852 ** See Also: sqlite3ColumnsFromExprList() 1853 ** 1854 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1855 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1856 ** applications should operate this way. Nevertheless, we need to support the 1857 ** other modes for legacy: 1858 ** 1859 ** short=OFF, full=OFF: Column name is the text of the expression has it 1860 ** originally appears in the SELECT statement. In 1861 ** other words, the zSpan of the result expression. 1862 ** 1863 ** short=ON, full=OFF: (This is the default setting). If the result 1864 ** refers directly to a table column, then the 1865 ** result column name is just the table column 1866 ** name: COLUMN. Otherwise use zSpan. 1867 ** 1868 ** full=ON, short=ANY: If the result refers directly to a table column, 1869 ** then the result column name with the table name 1870 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1871 */ 1872 static void generateColumnNames( 1873 Parse *pParse, /* Parser context */ 1874 Select *pSelect /* Generate column names for this SELECT statement */ 1875 ){ 1876 Vdbe *v = pParse->pVdbe; 1877 int i; 1878 Table *pTab; 1879 SrcList *pTabList; 1880 ExprList *pEList; 1881 sqlite3 *db = pParse->db; 1882 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1883 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1884 1885 #ifndef SQLITE_OMIT_EXPLAIN 1886 /* If this is an EXPLAIN, skip this step */ 1887 if( pParse->explain ){ 1888 return; 1889 } 1890 #endif 1891 1892 if( pParse->colNamesSet ) return; 1893 /* Column names are determined by the left-most term of a compound select */ 1894 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1895 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1896 pTabList = pSelect->pSrc; 1897 pEList = pSelect->pEList; 1898 assert( v!=0 ); 1899 assert( pTabList!=0 ); 1900 pParse->colNamesSet = 1; 1901 fullName = (db->flags & SQLITE_FullColNames)!=0; 1902 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1903 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1904 for(i=0; i<pEList->nExpr; i++){ 1905 Expr *p = pEList->a[i].pExpr; 1906 1907 assert( p!=0 ); 1908 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1909 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1910 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1911 /* An AS clause always takes first priority */ 1912 char *zName = pEList->a[i].zEName; 1913 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1914 }else if( srcName && p->op==TK_COLUMN ){ 1915 char *zCol; 1916 int iCol = p->iColumn; 1917 pTab = p->y.pTab; 1918 assert( pTab!=0 ); 1919 if( iCol<0 ) iCol = pTab->iPKey; 1920 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1921 if( iCol<0 ){ 1922 zCol = "rowid"; 1923 }else{ 1924 zCol = pTab->aCol[iCol].zName; 1925 } 1926 if( fullName ){ 1927 char *zName = 0; 1928 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1929 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1930 }else{ 1931 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1932 } 1933 }else{ 1934 const char *z = pEList->a[i].zEName; 1935 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1936 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1937 } 1938 } 1939 generateColumnTypes(pParse, pTabList, pEList); 1940 } 1941 1942 /* 1943 ** Given an expression list (which is really the list of expressions 1944 ** that form the result set of a SELECT statement) compute appropriate 1945 ** column names for a table that would hold the expression list. 1946 ** 1947 ** All column names will be unique. 1948 ** 1949 ** Only the column names are computed. Column.zType, Column.zColl, 1950 ** and other fields of Column are zeroed. 1951 ** 1952 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1953 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1954 ** 1955 ** The only guarantee that SQLite makes about column names is that if the 1956 ** column has an AS clause assigning it a name, that will be the name used. 1957 ** That is the only documented guarantee. However, countless applications 1958 ** developed over the years have made baseless assumptions about column names 1959 ** and will break if those assumptions changes. Hence, use extreme caution 1960 ** when modifying this routine to avoid breaking legacy. 1961 ** 1962 ** See Also: generateColumnNames() 1963 */ 1964 int sqlite3ColumnsFromExprList( 1965 Parse *pParse, /* Parsing context */ 1966 ExprList *pEList, /* Expr list from which to derive column names */ 1967 i16 *pnCol, /* Write the number of columns here */ 1968 Column **paCol /* Write the new column list here */ 1969 ){ 1970 sqlite3 *db = pParse->db; /* Database connection */ 1971 int i, j; /* Loop counters */ 1972 u32 cnt; /* Index added to make the name unique */ 1973 Column *aCol, *pCol; /* For looping over result columns */ 1974 int nCol; /* Number of columns in the result set */ 1975 char *zName; /* Column name */ 1976 int nName; /* Size of name in zName[] */ 1977 Hash ht; /* Hash table of column names */ 1978 Table *pTab; 1979 1980 sqlite3HashInit(&ht); 1981 if( pEList ){ 1982 nCol = pEList->nExpr; 1983 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1984 testcase( aCol==0 ); 1985 if( nCol>32767 ) nCol = 32767; 1986 }else{ 1987 nCol = 0; 1988 aCol = 0; 1989 } 1990 assert( nCol==(i16)nCol ); 1991 *pnCol = nCol; 1992 *paCol = aCol; 1993 1994 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1995 /* Get an appropriate name for the column 1996 */ 1997 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 1998 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1999 }else{ 2000 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2001 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2002 pColExpr = pColExpr->pRight; 2003 assert( pColExpr!=0 ); 2004 } 2005 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2006 /* For columns use the column name name */ 2007 int iCol = pColExpr->iColumn; 2008 if( iCol<0 ) iCol = pTab->iPKey; 2009 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 2010 }else if( pColExpr->op==TK_ID ){ 2011 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2012 zName = pColExpr->u.zToken; 2013 }else{ 2014 /* Use the original text of the column expression as its name */ 2015 zName = pEList->a[i].zEName; 2016 } 2017 } 2018 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2019 zName = sqlite3DbStrDup(db, zName); 2020 }else{ 2021 zName = sqlite3MPrintf(db,"column%d",i+1); 2022 } 2023 2024 /* Make sure the column name is unique. If the name is not unique, 2025 ** append an integer to the name so that it becomes unique. 2026 */ 2027 cnt = 0; 2028 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2029 nName = sqlite3Strlen30(zName); 2030 if( nName>0 ){ 2031 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2032 if( zName[j]==':' ) nName = j; 2033 } 2034 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2035 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2036 } 2037 pCol->zName = zName; 2038 pCol->hName = sqlite3StrIHash(zName); 2039 sqlite3ColumnPropertiesFromName(0, pCol); 2040 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2041 sqlite3OomFault(db); 2042 } 2043 } 2044 sqlite3HashClear(&ht); 2045 if( db->mallocFailed ){ 2046 for(j=0; j<i; j++){ 2047 sqlite3DbFree(db, aCol[j].zName); 2048 } 2049 sqlite3DbFree(db, aCol); 2050 *paCol = 0; 2051 *pnCol = 0; 2052 return SQLITE_NOMEM_BKPT; 2053 } 2054 return SQLITE_OK; 2055 } 2056 2057 /* 2058 ** Add type and collation information to a column list based on 2059 ** a SELECT statement. 2060 ** 2061 ** The column list presumably came from selectColumnNamesFromExprList(). 2062 ** The column list has only names, not types or collations. This 2063 ** routine goes through and adds the types and collations. 2064 ** 2065 ** This routine requires that all identifiers in the SELECT 2066 ** statement be resolved. 2067 */ 2068 void sqlite3SelectAddColumnTypeAndCollation( 2069 Parse *pParse, /* Parsing contexts */ 2070 Table *pTab, /* Add column type information to this table */ 2071 Select *pSelect, /* SELECT used to determine types and collations */ 2072 char aff /* Default affinity for columns */ 2073 ){ 2074 sqlite3 *db = pParse->db; 2075 NameContext sNC; 2076 Column *pCol; 2077 CollSeq *pColl; 2078 int i; 2079 Expr *p; 2080 struct ExprList_item *a; 2081 2082 assert( pSelect!=0 ); 2083 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2084 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2085 if( db->mallocFailed ) return; 2086 memset(&sNC, 0, sizeof(sNC)); 2087 sNC.pSrcList = pSelect->pSrc; 2088 a = pSelect->pEList->a; 2089 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2090 const char *zType; 2091 int n, m; 2092 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2093 p = a[i].pExpr; 2094 zType = columnType(&sNC, p, 0, 0, 0); 2095 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2096 pCol->affinity = sqlite3ExprAffinity(p); 2097 if( zType ){ 2098 m = sqlite3Strlen30(zType); 2099 n = sqlite3Strlen30(pCol->zName); 2100 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2101 if( pCol->zName ){ 2102 memcpy(&pCol->zName[n+1], zType, m+1); 2103 pCol->colFlags |= COLFLAG_HASTYPE; 2104 } 2105 } 2106 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2107 pColl = sqlite3ExprCollSeq(pParse, p); 2108 if( pColl && pCol->zColl==0 ){ 2109 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2110 } 2111 } 2112 pTab->szTabRow = 1; /* Any non-zero value works */ 2113 } 2114 2115 /* 2116 ** Given a SELECT statement, generate a Table structure that describes 2117 ** the result set of that SELECT. 2118 */ 2119 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2120 Table *pTab; 2121 sqlite3 *db = pParse->db; 2122 u64 savedFlags; 2123 2124 savedFlags = db->flags; 2125 db->flags &= ~(u64)SQLITE_FullColNames; 2126 db->flags |= SQLITE_ShortColNames; 2127 sqlite3SelectPrep(pParse, pSelect, 0); 2128 db->flags = savedFlags; 2129 if( pParse->nErr ) return 0; 2130 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2131 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2132 if( pTab==0 ){ 2133 return 0; 2134 } 2135 pTab->nTabRef = 1; 2136 pTab->zName = 0; 2137 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2138 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2139 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2140 pTab->iPKey = -1; 2141 if( db->mallocFailed ){ 2142 sqlite3DeleteTable(db, pTab); 2143 return 0; 2144 } 2145 return pTab; 2146 } 2147 2148 /* 2149 ** Get a VDBE for the given parser context. Create a new one if necessary. 2150 ** If an error occurs, return NULL and leave a message in pParse. 2151 */ 2152 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2153 if( pParse->pVdbe ){ 2154 return pParse->pVdbe; 2155 } 2156 if( pParse->pToplevel==0 2157 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2158 ){ 2159 pParse->okConstFactor = 1; 2160 } 2161 return sqlite3VdbeCreate(pParse); 2162 } 2163 2164 2165 /* 2166 ** Compute the iLimit and iOffset fields of the SELECT based on the 2167 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2168 ** that appear in the original SQL statement after the LIMIT and OFFSET 2169 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2170 ** are the integer memory register numbers for counters used to compute 2171 ** the limit and offset. If there is no limit and/or offset, then 2172 ** iLimit and iOffset are negative. 2173 ** 2174 ** This routine changes the values of iLimit and iOffset only if 2175 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2176 ** and iOffset should have been preset to appropriate default values (zero) 2177 ** prior to calling this routine. 2178 ** 2179 ** The iOffset register (if it exists) is initialized to the value 2180 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2181 ** iOffset+1 is initialized to LIMIT+OFFSET. 2182 ** 2183 ** Only if pLimit->pLeft!=0 do the limit registers get 2184 ** redefined. The UNION ALL operator uses this property to force 2185 ** the reuse of the same limit and offset registers across multiple 2186 ** SELECT statements. 2187 */ 2188 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2189 Vdbe *v = 0; 2190 int iLimit = 0; 2191 int iOffset; 2192 int n; 2193 Expr *pLimit = p->pLimit; 2194 2195 if( p->iLimit ) return; 2196 2197 /* 2198 ** "LIMIT -1" always shows all rows. There is some 2199 ** controversy about what the correct behavior should be. 2200 ** The current implementation interprets "LIMIT 0" to mean 2201 ** no rows. 2202 */ 2203 if( pLimit ){ 2204 assert( pLimit->op==TK_LIMIT ); 2205 assert( pLimit->pLeft!=0 ); 2206 p->iLimit = iLimit = ++pParse->nMem; 2207 v = sqlite3GetVdbe(pParse); 2208 assert( v!=0 ); 2209 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2210 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2211 VdbeComment((v, "LIMIT counter")); 2212 if( n==0 ){ 2213 sqlite3VdbeGoto(v, iBreak); 2214 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2215 p->nSelectRow = sqlite3LogEst((u64)n); 2216 p->selFlags |= SF_FixedLimit; 2217 } 2218 }else{ 2219 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2220 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2221 VdbeComment((v, "LIMIT counter")); 2222 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2223 } 2224 if( pLimit->pRight ){ 2225 p->iOffset = iOffset = ++pParse->nMem; 2226 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2227 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2228 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2229 VdbeComment((v, "OFFSET counter")); 2230 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2231 VdbeComment((v, "LIMIT+OFFSET")); 2232 } 2233 } 2234 } 2235 2236 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2237 /* 2238 ** Return the appropriate collating sequence for the iCol-th column of 2239 ** the result set for the compound-select statement "p". Return NULL if 2240 ** the column has no default collating sequence. 2241 ** 2242 ** The collating sequence for the compound select is taken from the 2243 ** left-most term of the select that has a collating sequence. 2244 */ 2245 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2246 CollSeq *pRet; 2247 if( p->pPrior ){ 2248 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2249 }else{ 2250 pRet = 0; 2251 } 2252 assert( iCol>=0 ); 2253 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2254 ** have been thrown during name resolution and we would not have gotten 2255 ** this far */ 2256 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2257 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2258 } 2259 return pRet; 2260 } 2261 2262 /* 2263 ** The select statement passed as the second parameter is a compound SELECT 2264 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2265 ** structure suitable for implementing the ORDER BY. 2266 ** 2267 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2268 ** function is responsible for ensuring that this structure is eventually 2269 ** freed. 2270 */ 2271 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2272 ExprList *pOrderBy = p->pOrderBy; 2273 int nOrderBy = p->pOrderBy->nExpr; 2274 sqlite3 *db = pParse->db; 2275 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2276 if( pRet ){ 2277 int i; 2278 for(i=0; i<nOrderBy; i++){ 2279 struct ExprList_item *pItem = &pOrderBy->a[i]; 2280 Expr *pTerm = pItem->pExpr; 2281 CollSeq *pColl; 2282 2283 if( pTerm->flags & EP_Collate ){ 2284 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2285 }else{ 2286 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2287 if( pColl==0 ) pColl = db->pDfltColl; 2288 pOrderBy->a[i].pExpr = 2289 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2290 } 2291 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2292 pRet->aColl[i] = pColl; 2293 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2294 } 2295 } 2296 2297 return pRet; 2298 } 2299 2300 #ifndef SQLITE_OMIT_CTE 2301 /* 2302 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2303 ** query of the form: 2304 ** 2305 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2306 ** \___________/ \_______________/ 2307 ** p->pPrior p 2308 ** 2309 ** 2310 ** There is exactly one reference to the recursive-table in the FROM clause 2311 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2312 ** 2313 ** The setup-query runs once to generate an initial set of rows that go 2314 ** into a Queue table. Rows are extracted from the Queue table one by 2315 ** one. Each row extracted from Queue is output to pDest. Then the single 2316 ** extracted row (now in the iCurrent table) becomes the content of the 2317 ** recursive-table for a recursive-query run. The output of the recursive-query 2318 ** is added back into the Queue table. Then another row is extracted from Queue 2319 ** and the iteration continues until the Queue table is empty. 2320 ** 2321 ** If the compound query operator is UNION then no duplicate rows are ever 2322 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2323 ** that have ever been inserted into Queue and causes duplicates to be 2324 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2325 ** 2326 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2327 ** ORDER BY order and the first entry is extracted for each cycle. Without 2328 ** an ORDER BY, the Queue table is just a FIFO. 2329 ** 2330 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2331 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2332 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2333 ** with a positive value, then the first OFFSET outputs are discarded rather 2334 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2335 ** rows have been skipped. 2336 */ 2337 static void generateWithRecursiveQuery( 2338 Parse *pParse, /* Parsing context */ 2339 Select *p, /* The recursive SELECT to be coded */ 2340 SelectDest *pDest /* What to do with query results */ 2341 ){ 2342 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2343 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2344 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2345 Select *pSetup = p->pPrior; /* The setup query */ 2346 Select *pFirstRec; /* Left-most recursive term */ 2347 int addrTop; /* Top of the loop */ 2348 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2349 int iCurrent = 0; /* The Current table */ 2350 int regCurrent; /* Register holding Current table */ 2351 int iQueue; /* The Queue table */ 2352 int iDistinct = 0; /* To ensure unique results if UNION */ 2353 int eDest = SRT_Fifo; /* How to write to Queue */ 2354 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2355 int i; /* Loop counter */ 2356 int rc; /* Result code */ 2357 ExprList *pOrderBy; /* The ORDER BY clause */ 2358 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2359 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2360 2361 #ifndef SQLITE_OMIT_WINDOWFUNC 2362 if( p->pWin ){ 2363 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2364 return; 2365 } 2366 #endif 2367 2368 /* Obtain authorization to do a recursive query */ 2369 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2370 2371 /* Process the LIMIT and OFFSET clauses, if they exist */ 2372 addrBreak = sqlite3VdbeMakeLabel(pParse); 2373 p->nSelectRow = 320; /* 4 billion rows */ 2374 computeLimitRegisters(pParse, p, addrBreak); 2375 pLimit = p->pLimit; 2376 regLimit = p->iLimit; 2377 regOffset = p->iOffset; 2378 p->pLimit = 0; 2379 p->iLimit = p->iOffset = 0; 2380 pOrderBy = p->pOrderBy; 2381 2382 /* Locate the cursor number of the Current table */ 2383 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2384 if( pSrc->a[i].fg.isRecursive ){ 2385 iCurrent = pSrc->a[i].iCursor; 2386 break; 2387 } 2388 } 2389 2390 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2391 ** the Distinct table must be exactly one greater than Queue in order 2392 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2393 iQueue = pParse->nTab++; 2394 if( p->op==TK_UNION ){ 2395 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2396 iDistinct = pParse->nTab++; 2397 }else{ 2398 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2399 } 2400 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2401 2402 /* Allocate cursors for Current, Queue, and Distinct. */ 2403 regCurrent = ++pParse->nMem; 2404 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2405 if( pOrderBy ){ 2406 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2407 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2408 (char*)pKeyInfo, P4_KEYINFO); 2409 destQueue.pOrderBy = pOrderBy; 2410 }else{ 2411 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2412 } 2413 VdbeComment((v, "Queue table")); 2414 if( iDistinct ){ 2415 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2416 p->selFlags |= SF_UsesEphemeral; 2417 } 2418 2419 /* Detach the ORDER BY clause from the compound SELECT */ 2420 p->pOrderBy = 0; 2421 2422 /* Figure out how many elements of the compound SELECT are part of the 2423 ** recursive query. Make sure no recursive elements use aggregate 2424 ** functions. Mark the recursive elements as UNION ALL even if they 2425 ** are really UNION because the distinctness will be enforced by the 2426 ** iDistinct table. pFirstRec is left pointing to the left-most 2427 ** recursive term of the CTE. 2428 */ 2429 pFirstRec = p; 2430 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2431 if( pFirstRec->selFlags & SF_Aggregate ){ 2432 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2433 goto end_of_recursive_query; 2434 } 2435 pFirstRec->op = TK_ALL; 2436 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2437 } 2438 2439 /* Store the results of the setup-query in Queue. */ 2440 pSetup = pFirstRec->pPrior; 2441 pSetup->pNext = 0; 2442 ExplainQueryPlan((pParse, 1, "SETUP")); 2443 rc = sqlite3Select(pParse, pSetup, &destQueue); 2444 pSetup->pNext = p; 2445 if( rc ) goto end_of_recursive_query; 2446 2447 /* Find the next row in the Queue and output that row */ 2448 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2449 2450 /* Transfer the next row in Queue over to Current */ 2451 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2452 if( pOrderBy ){ 2453 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2454 }else{ 2455 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2456 } 2457 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2458 2459 /* Output the single row in Current */ 2460 addrCont = sqlite3VdbeMakeLabel(pParse); 2461 codeOffset(v, regOffset, addrCont); 2462 selectInnerLoop(pParse, p, iCurrent, 2463 0, 0, pDest, addrCont, addrBreak); 2464 if( regLimit ){ 2465 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2466 VdbeCoverage(v); 2467 } 2468 sqlite3VdbeResolveLabel(v, addrCont); 2469 2470 /* Execute the recursive SELECT taking the single row in Current as 2471 ** the value for the recursive-table. Store the results in the Queue. 2472 */ 2473 pFirstRec->pPrior = 0; 2474 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2475 sqlite3Select(pParse, p, &destQueue); 2476 assert( pFirstRec->pPrior==0 ); 2477 pFirstRec->pPrior = pSetup; 2478 2479 /* Keep running the loop until the Queue is empty */ 2480 sqlite3VdbeGoto(v, addrTop); 2481 sqlite3VdbeResolveLabel(v, addrBreak); 2482 2483 end_of_recursive_query: 2484 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2485 p->pOrderBy = pOrderBy; 2486 p->pLimit = pLimit; 2487 return; 2488 } 2489 #endif /* SQLITE_OMIT_CTE */ 2490 2491 /* Forward references */ 2492 static int multiSelectOrderBy( 2493 Parse *pParse, /* Parsing context */ 2494 Select *p, /* The right-most of SELECTs to be coded */ 2495 SelectDest *pDest /* What to do with query results */ 2496 ); 2497 2498 /* 2499 ** Handle the special case of a compound-select that originates from a 2500 ** VALUES clause. By handling this as a special case, we avoid deep 2501 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2502 ** on a VALUES clause. 2503 ** 2504 ** Because the Select object originates from a VALUES clause: 2505 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2506 ** (2) All terms are UNION ALL 2507 ** (3) There is no ORDER BY clause 2508 ** 2509 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2510 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2511 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2512 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2513 */ 2514 static int multiSelectValues( 2515 Parse *pParse, /* Parsing context */ 2516 Select *p, /* The right-most of SELECTs to be coded */ 2517 SelectDest *pDest /* What to do with query results */ 2518 ){ 2519 int nRow = 1; 2520 int rc = 0; 2521 int bShowAll = p->pLimit==0; 2522 assert( p->selFlags & SF_MultiValue ); 2523 do{ 2524 assert( p->selFlags & SF_Values ); 2525 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2526 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2527 #ifndef SQLITE_OMIT_WINDOWFUNC 2528 if( p->pWin ) return -1; 2529 #endif 2530 if( p->pPrior==0 ) break; 2531 assert( p->pPrior->pNext==p ); 2532 p = p->pPrior; 2533 nRow += bShowAll; 2534 }while(1); 2535 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2536 nRow==1 ? "" : "S")); 2537 while( p ){ 2538 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2539 if( !bShowAll ) break; 2540 p->nSelectRow = nRow; 2541 p = p->pNext; 2542 } 2543 return rc; 2544 } 2545 2546 /* 2547 ** Return true if the SELECT statement which is known to be the recursive 2548 ** part of a recursive CTE still has its anchor terms attached. If the 2549 ** anchor terms have already been removed, then return false. 2550 */ 2551 static int hasAnchor(Select *p){ 2552 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2553 return p!=0; 2554 } 2555 2556 /* 2557 ** This routine is called to process a compound query form from 2558 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2559 ** INTERSECT 2560 ** 2561 ** "p" points to the right-most of the two queries. the query on the 2562 ** left is p->pPrior. The left query could also be a compound query 2563 ** in which case this routine will be called recursively. 2564 ** 2565 ** The results of the total query are to be written into a destination 2566 ** of type eDest with parameter iParm. 2567 ** 2568 ** Example 1: Consider a three-way compound SQL statement. 2569 ** 2570 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2571 ** 2572 ** This statement is parsed up as follows: 2573 ** 2574 ** SELECT c FROM t3 2575 ** | 2576 ** `-----> SELECT b FROM t2 2577 ** | 2578 ** `------> SELECT a FROM t1 2579 ** 2580 ** The arrows in the diagram above represent the Select.pPrior pointer. 2581 ** So if this routine is called with p equal to the t3 query, then 2582 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2583 ** 2584 ** Notice that because of the way SQLite parses compound SELECTs, the 2585 ** individual selects always group from left to right. 2586 */ 2587 static int multiSelect( 2588 Parse *pParse, /* Parsing context */ 2589 Select *p, /* The right-most of SELECTs to be coded */ 2590 SelectDest *pDest /* What to do with query results */ 2591 ){ 2592 int rc = SQLITE_OK; /* Success code from a subroutine */ 2593 Select *pPrior; /* Another SELECT immediately to our left */ 2594 Vdbe *v; /* Generate code to this VDBE */ 2595 SelectDest dest; /* Alternative data destination */ 2596 Select *pDelete = 0; /* Chain of simple selects to delete */ 2597 sqlite3 *db; /* Database connection */ 2598 2599 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2600 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2601 */ 2602 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2603 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2604 assert( p->selFlags & SF_Compound ); 2605 db = pParse->db; 2606 pPrior = p->pPrior; 2607 dest = *pDest; 2608 if( pPrior->pOrderBy || pPrior->pLimit ){ 2609 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2610 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2611 rc = 1; 2612 goto multi_select_end; 2613 } 2614 2615 v = sqlite3GetVdbe(pParse); 2616 assert( v!=0 ); /* The VDBE already created by calling function */ 2617 2618 /* Create the destination temporary table if necessary 2619 */ 2620 if( dest.eDest==SRT_EphemTab ){ 2621 assert( p->pEList ); 2622 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2623 dest.eDest = SRT_Table; 2624 } 2625 2626 /* Special handling for a compound-select that originates as a VALUES clause. 2627 */ 2628 if( p->selFlags & SF_MultiValue ){ 2629 rc = multiSelectValues(pParse, p, &dest); 2630 if( rc>=0 ) goto multi_select_end; 2631 rc = SQLITE_OK; 2632 } 2633 2634 /* Make sure all SELECTs in the statement have the same number of elements 2635 ** in their result sets. 2636 */ 2637 assert( p->pEList && pPrior->pEList ); 2638 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2639 2640 #ifndef SQLITE_OMIT_CTE 2641 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2642 generateWithRecursiveQuery(pParse, p, &dest); 2643 }else 2644 #endif 2645 2646 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2647 */ 2648 if( p->pOrderBy ){ 2649 return multiSelectOrderBy(pParse, p, pDest); 2650 }else{ 2651 2652 #ifndef SQLITE_OMIT_EXPLAIN 2653 if( pPrior->pPrior==0 ){ 2654 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2655 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2656 } 2657 #endif 2658 2659 /* Generate code for the left and right SELECT statements. 2660 */ 2661 switch( p->op ){ 2662 case TK_ALL: { 2663 int addr = 0; 2664 int nLimit; 2665 assert( !pPrior->pLimit ); 2666 pPrior->iLimit = p->iLimit; 2667 pPrior->iOffset = p->iOffset; 2668 pPrior->pLimit = p->pLimit; 2669 rc = sqlite3Select(pParse, pPrior, &dest); 2670 p->pLimit = 0; 2671 if( rc ){ 2672 goto multi_select_end; 2673 } 2674 p->pPrior = 0; 2675 p->iLimit = pPrior->iLimit; 2676 p->iOffset = pPrior->iOffset; 2677 if( p->iLimit ){ 2678 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2679 VdbeComment((v, "Jump ahead if LIMIT reached")); 2680 if( p->iOffset ){ 2681 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2682 p->iLimit, p->iOffset+1, p->iOffset); 2683 } 2684 } 2685 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2686 rc = sqlite3Select(pParse, p, &dest); 2687 testcase( rc!=SQLITE_OK ); 2688 pDelete = p->pPrior; 2689 p->pPrior = pPrior; 2690 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2691 if( pPrior->pLimit 2692 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2693 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2694 ){ 2695 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2696 } 2697 if( addr ){ 2698 sqlite3VdbeJumpHere(v, addr); 2699 } 2700 break; 2701 } 2702 case TK_EXCEPT: 2703 case TK_UNION: { 2704 int unionTab; /* Cursor number of the temp table holding result */ 2705 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2706 int priorOp; /* The SRT_ operation to apply to prior selects */ 2707 Expr *pLimit; /* Saved values of p->nLimit */ 2708 int addr; 2709 SelectDest uniondest; 2710 2711 testcase( p->op==TK_EXCEPT ); 2712 testcase( p->op==TK_UNION ); 2713 priorOp = SRT_Union; 2714 if( dest.eDest==priorOp ){ 2715 /* We can reuse a temporary table generated by a SELECT to our 2716 ** right. 2717 */ 2718 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2719 unionTab = dest.iSDParm; 2720 }else{ 2721 /* We will need to create our own temporary table to hold the 2722 ** intermediate results. 2723 */ 2724 unionTab = pParse->nTab++; 2725 assert( p->pOrderBy==0 ); 2726 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2727 assert( p->addrOpenEphm[0] == -1 ); 2728 p->addrOpenEphm[0] = addr; 2729 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2730 assert( p->pEList ); 2731 } 2732 2733 2734 /* Code the SELECT statements to our left 2735 */ 2736 assert( !pPrior->pOrderBy ); 2737 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2738 rc = sqlite3Select(pParse, pPrior, &uniondest); 2739 if( rc ){ 2740 goto multi_select_end; 2741 } 2742 2743 /* Code the current SELECT statement 2744 */ 2745 if( p->op==TK_EXCEPT ){ 2746 op = SRT_Except; 2747 }else{ 2748 assert( p->op==TK_UNION ); 2749 op = SRT_Union; 2750 } 2751 p->pPrior = 0; 2752 pLimit = p->pLimit; 2753 p->pLimit = 0; 2754 uniondest.eDest = op; 2755 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2756 selectOpName(p->op))); 2757 rc = sqlite3Select(pParse, p, &uniondest); 2758 testcase( rc!=SQLITE_OK ); 2759 assert( p->pOrderBy==0 ); 2760 pDelete = p->pPrior; 2761 p->pPrior = pPrior; 2762 p->pOrderBy = 0; 2763 if( p->op==TK_UNION ){ 2764 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2765 } 2766 sqlite3ExprDelete(db, p->pLimit); 2767 p->pLimit = pLimit; 2768 p->iLimit = 0; 2769 p->iOffset = 0; 2770 2771 /* Convert the data in the temporary table into whatever form 2772 ** it is that we currently need. 2773 */ 2774 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2775 assert( p->pEList || db->mallocFailed ); 2776 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2777 int iCont, iBreak, iStart; 2778 iBreak = sqlite3VdbeMakeLabel(pParse); 2779 iCont = sqlite3VdbeMakeLabel(pParse); 2780 computeLimitRegisters(pParse, p, iBreak); 2781 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2782 iStart = sqlite3VdbeCurrentAddr(v); 2783 selectInnerLoop(pParse, p, unionTab, 2784 0, 0, &dest, iCont, iBreak); 2785 sqlite3VdbeResolveLabel(v, iCont); 2786 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2787 sqlite3VdbeResolveLabel(v, iBreak); 2788 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2789 } 2790 break; 2791 } 2792 default: assert( p->op==TK_INTERSECT ); { 2793 int tab1, tab2; 2794 int iCont, iBreak, iStart; 2795 Expr *pLimit; 2796 int addr; 2797 SelectDest intersectdest; 2798 int r1; 2799 2800 /* INTERSECT is different from the others since it requires 2801 ** two temporary tables. Hence it has its own case. Begin 2802 ** by allocating the tables we will need. 2803 */ 2804 tab1 = pParse->nTab++; 2805 tab2 = pParse->nTab++; 2806 assert( p->pOrderBy==0 ); 2807 2808 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2809 assert( p->addrOpenEphm[0] == -1 ); 2810 p->addrOpenEphm[0] = addr; 2811 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2812 assert( p->pEList ); 2813 2814 /* Code the SELECTs to our left into temporary table "tab1". 2815 */ 2816 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2817 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2818 if( rc ){ 2819 goto multi_select_end; 2820 } 2821 2822 /* Code the current SELECT into temporary table "tab2" 2823 */ 2824 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2825 assert( p->addrOpenEphm[1] == -1 ); 2826 p->addrOpenEphm[1] = addr; 2827 p->pPrior = 0; 2828 pLimit = p->pLimit; 2829 p->pLimit = 0; 2830 intersectdest.iSDParm = tab2; 2831 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2832 selectOpName(p->op))); 2833 rc = sqlite3Select(pParse, p, &intersectdest); 2834 testcase( rc!=SQLITE_OK ); 2835 pDelete = p->pPrior; 2836 p->pPrior = pPrior; 2837 if( p->nSelectRow>pPrior->nSelectRow ){ 2838 p->nSelectRow = pPrior->nSelectRow; 2839 } 2840 sqlite3ExprDelete(db, p->pLimit); 2841 p->pLimit = pLimit; 2842 2843 /* Generate code to take the intersection of the two temporary 2844 ** tables. 2845 */ 2846 if( rc ) break; 2847 assert( p->pEList ); 2848 iBreak = sqlite3VdbeMakeLabel(pParse); 2849 iCont = sqlite3VdbeMakeLabel(pParse); 2850 computeLimitRegisters(pParse, p, iBreak); 2851 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2852 r1 = sqlite3GetTempReg(pParse); 2853 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2854 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2855 VdbeCoverage(v); 2856 sqlite3ReleaseTempReg(pParse, r1); 2857 selectInnerLoop(pParse, p, tab1, 2858 0, 0, &dest, iCont, iBreak); 2859 sqlite3VdbeResolveLabel(v, iCont); 2860 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2861 sqlite3VdbeResolveLabel(v, iBreak); 2862 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2863 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2864 break; 2865 } 2866 } 2867 2868 #ifndef SQLITE_OMIT_EXPLAIN 2869 if( p->pNext==0 ){ 2870 ExplainQueryPlanPop(pParse); 2871 } 2872 #endif 2873 } 2874 if( pParse->nErr ) goto multi_select_end; 2875 2876 /* Compute collating sequences used by 2877 ** temporary tables needed to implement the compound select. 2878 ** Attach the KeyInfo structure to all temporary tables. 2879 ** 2880 ** This section is run by the right-most SELECT statement only. 2881 ** SELECT statements to the left always skip this part. The right-most 2882 ** SELECT might also skip this part if it has no ORDER BY clause and 2883 ** no temp tables are required. 2884 */ 2885 if( p->selFlags & SF_UsesEphemeral ){ 2886 int i; /* Loop counter */ 2887 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2888 Select *pLoop; /* For looping through SELECT statements */ 2889 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2890 int nCol; /* Number of columns in result set */ 2891 2892 assert( p->pNext==0 ); 2893 nCol = p->pEList->nExpr; 2894 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2895 if( !pKeyInfo ){ 2896 rc = SQLITE_NOMEM_BKPT; 2897 goto multi_select_end; 2898 } 2899 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2900 *apColl = multiSelectCollSeq(pParse, p, i); 2901 if( 0==*apColl ){ 2902 *apColl = db->pDfltColl; 2903 } 2904 } 2905 2906 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2907 for(i=0; i<2; i++){ 2908 int addr = pLoop->addrOpenEphm[i]; 2909 if( addr<0 ){ 2910 /* If [0] is unused then [1] is also unused. So we can 2911 ** always safely abort as soon as the first unused slot is found */ 2912 assert( pLoop->addrOpenEphm[1]<0 ); 2913 break; 2914 } 2915 sqlite3VdbeChangeP2(v, addr, nCol); 2916 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2917 P4_KEYINFO); 2918 pLoop->addrOpenEphm[i] = -1; 2919 } 2920 } 2921 sqlite3KeyInfoUnref(pKeyInfo); 2922 } 2923 2924 multi_select_end: 2925 pDest->iSdst = dest.iSdst; 2926 pDest->nSdst = dest.nSdst; 2927 sqlite3SelectDelete(db, pDelete); 2928 return rc; 2929 } 2930 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2931 2932 /* 2933 ** Error message for when two or more terms of a compound select have different 2934 ** size result sets. 2935 */ 2936 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2937 if( p->selFlags & SF_Values ){ 2938 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2939 }else{ 2940 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2941 " do not have the same number of result columns", selectOpName(p->op)); 2942 } 2943 } 2944 2945 /* 2946 ** Code an output subroutine for a coroutine implementation of a 2947 ** SELECT statment. 2948 ** 2949 ** The data to be output is contained in pIn->iSdst. There are 2950 ** pIn->nSdst columns to be output. pDest is where the output should 2951 ** be sent. 2952 ** 2953 ** regReturn is the number of the register holding the subroutine 2954 ** return address. 2955 ** 2956 ** If regPrev>0 then it is the first register in a vector that 2957 ** records the previous output. mem[regPrev] is a flag that is false 2958 ** if there has been no previous output. If regPrev>0 then code is 2959 ** generated to suppress duplicates. pKeyInfo is used for comparing 2960 ** keys. 2961 ** 2962 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2963 ** iBreak. 2964 */ 2965 static int generateOutputSubroutine( 2966 Parse *pParse, /* Parsing context */ 2967 Select *p, /* The SELECT statement */ 2968 SelectDest *pIn, /* Coroutine supplying data */ 2969 SelectDest *pDest, /* Where to send the data */ 2970 int regReturn, /* The return address register */ 2971 int regPrev, /* Previous result register. No uniqueness if 0 */ 2972 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2973 int iBreak /* Jump here if we hit the LIMIT */ 2974 ){ 2975 Vdbe *v = pParse->pVdbe; 2976 int iContinue; 2977 int addr; 2978 2979 addr = sqlite3VdbeCurrentAddr(v); 2980 iContinue = sqlite3VdbeMakeLabel(pParse); 2981 2982 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2983 */ 2984 if( regPrev ){ 2985 int addr1, addr2; 2986 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2987 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2988 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2989 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2990 sqlite3VdbeJumpHere(v, addr1); 2991 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2992 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2993 } 2994 if( pParse->db->mallocFailed ) return 0; 2995 2996 /* Suppress the first OFFSET entries if there is an OFFSET clause 2997 */ 2998 codeOffset(v, p->iOffset, iContinue); 2999 3000 assert( pDest->eDest!=SRT_Exists ); 3001 assert( pDest->eDest!=SRT_Table ); 3002 switch( pDest->eDest ){ 3003 /* Store the result as data using a unique key. 3004 */ 3005 case SRT_EphemTab: { 3006 int r1 = sqlite3GetTempReg(pParse); 3007 int r2 = sqlite3GetTempReg(pParse); 3008 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3009 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3010 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3011 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3012 sqlite3ReleaseTempReg(pParse, r2); 3013 sqlite3ReleaseTempReg(pParse, r1); 3014 break; 3015 } 3016 3017 #ifndef SQLITE_OMIT_SUBQUERY 3018 /* If we are creating a set for an "expr IN (SELECT ...)". 3019 */ 3020 case SRT_Set: { 3021 int r1; 3022 testcase( pIn->nSdst>1 ); 3023 r1 = sqlite3GetTempReg(pParse); 3024 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3025 r1, pDest->zAffSdst, pIn->nSdst); 3026 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3027 pIn->iSdst, pIn->nSdst); 3028 sqlite3ReleaseTempReg(pParse, r1); 3029 break; 3030 } 3031 3032 /* If this is a scalar select that is part of an expression, then 3033 ** store the results in the appropriate memory cell and break out 3034 ** of the scan loop. Note that the select might return multiple columns 3035 ** if it is the RHS of a row-value IN operator. 3036 */ 3037 case SRT_Mem: { 3038 if( pParse->nErr==0 ){ 3039 testcase( pIn->nSdst>1 ); 3040 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3041 } 3042 /* The LIMIT clause will jump out of the loop for us */ 3043 break; 3044 } 3045 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3046 3047 /* The results are stored in a sequence of registers 3048 ** starting at pDest->iSdst. Then the co-routine yields. 3049 */ 3050 case SRT_Coroutine: { 3051 if( pDest->iSdst==0 ){ 3052 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3053 pDest->nSdst = pIn->nSdst; 3054 } 3055 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3056 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3057 break; 3058 } 3059 3060 /* If none of the above, then the result destination must be 3061 ** SRT_Output. This routine is never called with any other 3062 ** destination other than the ones handled above or SRT_Output. 3063 ** 3064 ** For SRT_Output, results are stored in a sequence of registers. 3065 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3066 ** return the next row of result. 3067 */ 3068 default: { 3069 assert( pDest->eDest==SRT_Output ); 3070 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3071 break; 3072 } 3073 } 3074 3075 /* Jump to the end of the loop if the LIMIT is reached. 3076 */ 3077 if( p->iLimit ){ 3078 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3079 } 3080 3081 /* Generate the subroutine return 3082 */ 3083 sqlite3VdbeResolveLabel(v, iContinue); 3084 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3085 3086 return addr; 3087 } 3088 3089 /* 3090 ** Alternative compound select code generator for cases when there 3091 ** is an ORDER BY clause. 3092 ** 3093 ** We assume a query of the following form: 3094 ** 3095 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3096 ** 3097 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3098 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3099 ** co-routines. Then run the co-routines in parallel and merge the results 3100 ** into the output. In addition to the two coroutines (called selectA and 3101 ** selectB) there are 7 subroutines: 3102 ** 3103 ** outA: Move the output of the selectA coroutine into the output 3104 ** of the compound query. 3105 ** 3106 ** outB: Move the output of the selectB coroutine into the output 3107 ** of the compound query. (Only generated for UNION and 3108 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3109 ** appears only in B.) 3110 ** 3111 ** AltB: Called when there is data from both coroutines and A<B. 3112 ** 3113 ** AeqB: Called when there is data from both coroutines and A==B. 3114 ** 3115 ** AgtB: Called when there is data from both coroutines and A>B. 3116 ** 3117 ** EofA: Called when data is exhausted from selectA. 3118 ** 3119 ** EofB: Called when data is exhausted from selectB. 3120 ** 3121 ** The implementation of the latter five subroutines depend on which 3122 ** <operator> is used: 3123 ** 3124 ** 3125 ** UNION ALL UNION EXCEPT INTERSECT 3126 ** ------------- ----------------- -------------- ----------------- 3127 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3128 ** 3129 ** AeqB: outA, nextA nextA nextA outA, nextA 3130 ** 3131 ** AgtB: outB, nextB outB, nextB nextB nextB 3132 ** 3133 ** EofA: outB, nextB outB, nextB halt halt 3134 ** 3135 ** EofB: outA, nextA outA, nextA outA, nextA halt 3136 ** 3137 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3138 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3139 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3140 ** following nextX causes a jump to the end of the select processing. 3141 ** 3142 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3143 ** within the output subroutine. The regPrev register set holds the previously 3144 ** output value. A comparison is made against this value and the output 3145 ** is skipped if the next results would be the same as the previous. 3146 ** 3147 ** The implementation plan is to implement the two coroutines and seven 3148 ** subroutines first, then put the control logic at the bottom. Like this: 3149 ** 3150 ** goto Init 3151 ** coA: coroutine for left query (A) 3152 ** coB: coroutine for right query (B) 3153 ** outA: output one row of A 3154 ** outB: output one row of B (UNION and UNION ALL only) 3155 ** EofA: ... 3156 ** EofB: ... 3157 ** AltB: ... 3158 ** AeqB: ... 3159 ** AgtB: ... 3160 ** Init: initialize coroutine registers 3161 ** yield coA 3162 ** if eof(A) goto EofA 3163 ** yield coB 3164 ** if eof(B) goto EofB 3165 ** Cmpr: Compare A, B 3166 ** Jump AltB, AeqB, AgtB 3167 ** End: ... 3168 ** 3169 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3170 ** actually called using Gosub and they do not Return. EofA and EofB loop 3171 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3172 ** and AgtB jump to either L2 or to one of EofA or EofB. 3173 */ 3174 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3175 static int multiSelectOrderBy( 3176 Parse *pParse, /* Parsing context */ 3177 Select *p, /* The right-most of SELECTs to be coded */ 3178 SelectDest *pDest /* What to do with query results */ 3179 ){ 3180 int i, j; /* Loop counters */ 3181 Select *pPrior; /* Another SELECT immediately to our left */ 3182 Vdbe *v; /* Generate code to this VDBE */ 3183 SelectDest destA; /* Destination for coroutine A */ 3184 SelectDest destB; /* Destination for coroutine B */ 3185 int regAddrA; /* Address register for select-A coroutine */ 3186 int regAddrB; /* Address register for select-B coroutine */ 3187 int addrSelectA; /* Address of the select-A coroutine */ 3188 int addrSelectB; /* Address of the select-B coroutine */ 3189 int regOutA; /* Address register for the output-A subroutine */ 3190 int regOutB; /* Address register for the output-B subroutine */ 3191 int addrOutA; /* Address of the output-A subroutine */ 3192 int addrOutB = 0; /* Address of the output-B subroutine */ 3193 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3194 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3195 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3196 int addrAltB; /* Address of the A<B subroutine */ 3197 int addrAeqB; /* Address of the A==B subroutine */ 3198 int addrAgtB; /* Address of the A>B subroutine */ 3199 int regLimitA; /* Limit register for select-A */ 3200 int regLimitB; /* Limit register for select-A */ 3201 int regPrev; /* A range of registers to hold previous output */ 3202 int savedLimit; /* Saved value of p->iLimit */ 3203 int savedOffset; /* Saved value of p->iOffset */ 3204 int labelCmpr; /* Label for the start of the merge algorithm */ 3205 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3206 int addr1; /* Jump instructions that get retargetted */ 3207 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3208 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3209 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3210 sqlite3 *db; /* Database connection */ 3211 ExprList *pOrderBy; /* The ORDER BY clause */ 3212 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3213 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3214 3215 assert( p->pOrderBy!=0 ); 3216 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3217 db = pParse->db; 3218 v = pParse->pVdbe; 3219 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3220 labelEnd = sqlite3VdbeMakeLabel(pParse); 3221 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3222 3223 3224 /* Patch up the ORDER BY clause 3225 */ 3226 op = p->op; 3227 pPrior = p->pPrior; 3228 assert( pPrior->pOrderBy==0 ); 3229 pOrderBy = p->pOrderBy; 3230 assert( pOrderBy ); 3231 nOrderBy = pOrderBy->nExpr; 3232 3233 /* For operators other than UNION ALL we have to make sure that 3234 ** the ORDER BY clause covers every term of the result set. Add 3235 ** terms to the ORDER BY clause as necessary. 3236 */ 3237 if( op!=TK_ALL ){ 3238 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3239 struct ExprList_item *pItem; 3240 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3241 assert( pItem->u.x.iOrderByCol>0 ); 3242 if( pItem->u.x.iOrderByCol==i ) break; 3243 } 3244 if( j==nOrderBy ){ 3245 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3246 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3247 pNew->flags |= EP_IntValue; 3248 pNew->u.iValue = i; 3249 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3250 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3251 } 3252 } 3253 } 3254 3255 /* Compute the comparison permutation and keyinfo that is used with 3256 ** the permutation used to determine if the next 3257 ** row of results comes from selectA or selectB. Also add explicit 3258 ** collations to the ORDER BY clause terms so that when the subqueries 3259 ** to the right and the left are evaluated, they use the correct 3260 ** collation. 3261 */ 3262 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3263 if( aPermute ){ 3264 struct ExprList_item *pItem; 3265 aPermute[0] = nOrderBy; 3266 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3267 assert( pItem->u.x.iOrderByCol>0 ); 3268 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3269 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3270 } 3271 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3272 }else{ 3273 pKeyMerge = 0; 3274 } 3275 3276 /* Reattach the ORDER BY clause to the query. 3277 */ 3278 p->pOrderBy = pOrderBy; 3279 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3280 3281 /* Allocate a range of temporary registers and the KeyInfo needed 3282 ** for the logic that removes duplicate result rows when the 3283 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3284 */ 3285 if( op==TK_ALL ){ 3286 regPrev = 0; 3287 }else{ 3288 int nExpr = p->pEList->nExpr; 3289 assert( nOrderBy>=nExpr || db->mallocFailed ); 3290 regPrev = pParse->nMem+1; 3291 pParse->nMem += nExpr+1; 3292 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3293 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3294 if( pKeyDup ){ 3295 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3296 for(i=0; i<nExpr; i++){ 3297 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3298 pKeyDup->aSortFlags[i] = 0; 3299 } 3300 } 3301 } 3302 3303 /* Separate the left and the right query from one another 3304 */ 3305 p->pPrior = 0; 3306 pPrior->pNext = 0; 3307 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3308 if( pPrior->pPrior==0 ){ 3309 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3310 } 3311 3312 /* Compute the limit registers */ 3313 computeLimitRegisters(pParse, p, labelEnd); 3314 if( p->iLimit && op==TK_ALL ){ 3315 regLimitA = ++pParse->nMem; 3316 regLimitB = ++pParse->nMem; 3317 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3318 regLimitA); 3319 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3320 }else{ 3321 regLimitA = regLimitB = 0; 3322 } 3323 sqlite3ExprDelete(db, p->pLimit); 3324 p->pLimit = 0; 3325 3326 regAddrA = ++pParse->nMem; 3327 regAddrB = ++pParse->nMem; 3328 regOutA = ++pParse->nMem; 3329 regOutB = ++pParse->nMem; 3330 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3331 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3332 3333 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3334 3335 /* Generate a coroutine to evaluate the SELECT statement to the 3336 ** left of the compound operator - the "A" select. 3337 */ 3338 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3339 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3340 VdbeComment((v, "left SELECT")); 3341 pPrior->iLimit = regLimitA; 3342 ExplainQueryPlan((pParse, 1, "LEFT")); 3343 sqlite3Select(pParse, pPrior, &destA); 3344 sqlite3VdbeEndCoroutine(v, regAddrA); 3345 sqlite3VdbeJumpHere(v, addr1); 3346 3347 /* Generate a coroutine to evaluate the SELECT statement on 3348 ** the right - the "B" select 3349 */ 3350 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3351 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3352 VdbeComment((v, "right SELECT")); 3353 savedLimit = p->iLimit; 3354 savedOffset = p->iOffset; 3355 p->iLimit = regLimitB; 3356 p->iOffset = 0; 3357 ExplainQueryPlan((pParse, 1, "RIGHT")); 3358 sqlite3Select(pParse, p, &destB); 3359 p->iLimit = savedLimit; 3360 p->iOffset = savedOffset; 3361 sqlite3VdbeEndCoroutine(v, regAddrB); 3362 3363 /* Generate a subroutine that outputs the current row of the A 3364 ** select as the next output row of the compound select. 3365 */ 3366 VdbeNoopComment((v, "Output routine for A")); 3367 addrOutA = generateOutputSubroutine(pParse, 3368 p, &destA, pDest, regOutA, 3369 regPrev, pKeyDup, labelEnd); 3370 3371 /* Generate a subroutine that outputs the current row of the B 3372 ** select as the next output row of the compound select. 3373 */ 3374 if( op==TK_ALL || op==TK_UNION ){ 3375 VdbeNoopComment((v, "Output routine for B")); 3376 addrOutB = generateOutputSubroutine(pParse, 3377 p, &destB, pDest, regOutB, 3378 regPrev, pKeyDup, labelEnd); 3379 } 3380 sqlite3KeyInfoUnref(pKeyDup); 3381 3382 /* Generate a subroutine to run when the results from select A 3383 ** are exhausted and only data in select B remains. 3384 */ 3385 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3386 addrEofA_noB = addrEofA = labelEnd; 3387 }else{ 3388 VdbeNoopComment((v, "eof-A subroutine")); 3389 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3390 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3391 VdbeCoverage(v); 3392 sqlite3VdbeGoto(v, addrEofA); 3393 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3394 } 3395 3396 /* Generate a subroutine to run when the results from select B 3397 ** are exhausted and only data in select A remains. 3398 */ 3399 if( op==TK_INTERSECT ){ 3400 addrEofB = addrEofA; 3401 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3402 }else{ 3403 VdbeNoopComment((v, "eof-B subroutine")); 3404 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3405 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3406 sqlite3VdbeGoto(v, addrEofB); 3407 } 3408 3409 /* Generate code to handle the case of A<B 3410 */ 3411 VdbeNoopComment((v, "A-lt-B subroutine")); 3412 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3413 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3414 sqlite3VdbeGoto(v, labelCmpr); 3415 3416 /* Generate code to handle the case of A==B 3417 */ 3418 if( op==TK_ALL ){ 3419 addrAeqB = addrAltB; 3420 }else if( op==TK_INTERSECT ){ 3421 addrAeqB = addrAltB; 3422 addrAltB++; 3423 }else{ 3424 VdbeNoopComment((v, "A-eq-B subroutine")); 3425 addrAeqB = 3426 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3427 sqlite3VdbeGoto(v, labelCmpr); 3428 } 3429 3430 /* Generate code to handle the case of A>B 3431 */ 3432 VdbeNoopComment((v, "A-gt-B subroutine")); 3433 addrAgtB = sqlite3VdbeCurrentAddr(v); 3434 if( op==TK_ALL || op==TK_UNION ){ 3435 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3436 } 3437 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3438 sqlite3VdbeGoto(v, labelCmpr); 3439 3440 /* This code runs once to initialize everything. 3441 */ 3442 sqlite3VdbeJumpHere(v, addr1); 3443 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3444 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3445 3446 /* Implement the main merge loop 3447 */ 3448 sqlite3VdbeResolveLabel(v, labelCmpr); 3449 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3450 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3451 (char*)pKeyMerge, P4_KEYINFO); 3452 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3453 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3454 3455 /* Jump to the this point in order to terminate the query. 3456 */ 3457 sqlite3VdbeResolveLabel(v, labelEnd); 3458 3459 /* Reassembly the compound query so that it will be freed correctly 3460 ** by the calling function */ 3461 if( p->pPrior ){ 3462 sqlite3SelectDelete(db, p->pPrior); 3463 } 3464 p->pPrior = pPrior; 3465 pPrior->pNext = p; 3466 3467 /*** TBD: Insert subroutine calls to close cursors on incomplete 3468 **** subqueries ****/ 3469 ExplainQueryPlanPop(pParse); 3470 return pParse->nErr!=0; 3471 } 3472 #endif 3473 3474 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3475 3476 /* An instance of the SubstContext object describes an substitution edit 3477 ** to be performed on a parse tree. 3478 ** 3479 ** All references to columns in table iTable are to be replaced by corresponding 3480 ** expressions in pEList. 3481 */ 3482 typedef struct SubstContext { 3483 Parse *pParse; /* The parsing context */ 3484 int iTable; /* Replace references to this table */ 3485 int iNewTable; /* New table number */ 3486 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3487 ExprList *pEList; /* Replacement expressions */ 3488 } SubstContext; 3489 3490 /* Forward Declarations */ 3491 static void substExprList(SubstContext*, ExprList*); 3492 static void substSelect(SubstContext*, Select*, int); 3493 3494 /* 3495 ** Scan through the expression pExpr. Replace every reference to 3496 ** a column in table number iTable with a copy of the iColumn-th 3497 ** entry in pEList. (But leave references to the ROWID column 3498 ** unchanged.) 3499 ** 3500 ** This routine is part of the flattening procedure. A subquery 3501 ** whose result set is defined by pEList appears as entry in the 3502 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3503 ** FORM clause entry is iTable. This routine makes the necessary 3504 ** changes to pExpr so that it refers directly to the source table 3505 ** of the subquery rather the result set of the subquery. 3506 */ 3507 static Expr *substExpr( 3508 SubstContext *pSubst, /* Description of the substitution */ 3509 Expr *pExpr /* Expr in which substitution occurs */ 3510 ){ 3511 if( pExpr==0 ) return 0; 3512 if( ExprHasProperty(pExpr, EP_FromJoin) 3513 && pExpr->iRightJoinTable==pSubst->iTable 3514 ){ 3515 pExpr->iRightJoinTable = pSubst->iNewTable; 3516 } 3517 if( pExpr->op==TK_COLUMN 3518 && pExpr->iTable==pSubst->iTable 3519 && !ExprHasProperty(pExpr, EP_FixedCol) 3520 ){ 3521 if( pExpr->iColumn<0 ){ 3522 pExpr->op = TK_NULL; 3523 }else{ 3524 Expr *pNew; 3525 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3526 Expr ifNullRow; 3527 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3528 assert( pExpr->pRight==0 ); 3529 if( sqlite3ExprIsVector(pCopy) ){ 3530 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3531 }else{ 3532 sqlite3 *db = pSubst->pParse->db; 3533 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3534 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3535 ifNullRow.op = TK_IF_NULL_ROW; 3536 ifNullRow.pLeft = pCopy; 3537 ifNullRow.iTable = pSubst->iNewTable; 3538 ifNullRow.flags = EP_IfNullRow; 3539 pCopy = &ifNullRow; 3540 } 3541 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3542 pNew = sqlite3ExprDup(db, pCopy, 0); 3543 if( pNew && pSubst->isLeftJoin ){ 3544 ExprSetProperty(pNew, EP_CanBeNull); 3545 } 3546 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3547 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3548 } 3549 sqlite3ExprDelete(db, pExpr); 3550 pExpr = pNew; 3551 3552 /* Ensure that the expression now has an implicit collation sequence, 3553 ** just as it did when it was a column of a view or sub-query. */ 3554 if( pExpr ){ 3555 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3556 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3557 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3558 (pColl ? pColl->zName : "BINARY") 3559 ); 3560 } 3561 ExprClearProperty(pExpr, EP_Collate); 3562 } 3563 } 3564 } 3565 }else{ 3566 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3567 pExpr->iTable = pSubst->iNewTable; 3568 } 3569 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3570 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3571 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3572 substSelect(pSubst, pExpr->x.pSelect, 1); 3573 }else{ 3574 substExprList(pSubst, pExpr->x.pList); 3575 } 3576 #ifndef SQLITE_OMIT_WINDOWFUNC 3577 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3578 Window *pWin = pExpr->y.pWin; 3579 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3580 substExprList(pSubst, pWin->pPartition); 3581 substExprList(pSubst, pWin->pOrderBy); 3582 } 3583 #endif 3584 } 3585 return pExpr; 3586 } 3587 static void substExprList( 3588 SubstContext *pSubst, /* Description of the substitution */ 3589 ExprList *pList /* List to scan and in which to make substitutes */ 3590 ){ 3591 int i; 3592 if( pList==0 ) return; 3593 for(i=0; i<pList->nExpr; i++){ 3594 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3595 } 3596 } 3597 static void substSelect( 3598 SubstContext *pSubst, /* Description of the substitution */ 3599 Select *p, /* SELECT statement in which to make substitutions */ 3600 int doPrior /* Do substitutes on p->pPrior too */ 3601 ){ 3602 SrcList *pSrc; 3603 SrcItem *pItem; 3604 int i; 3605 if( !p ) return; 3606 do{ 3607 substExprList(pSubst, p->pEList); 3608 substExprList(pSubst, p->pGroupBy); 3609 substExprList(pSubst, p->pOrderBy); 3610 p->pHaving = substExpr(pSubst, p->pHaving); 3611 p->pWhere = substExpr(pSubst, p->pWhere); 3612 pSrc = p->pSrc; 3613 assert( pSrc!=0 ); 3614 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3615 substSelect(pSubst, pItem->pSelect, 1); 3616 if( pItem->fg.isTabFunc ){ 3617 substExprList(pSubst, pItem->u1.pFuncArg); 3618 } 3619 } 3620 }while( doPrior && (p = p->pPrior)!=0 ); 3621 } 3622 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3623 3624 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3625 /* 3626 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3627 ** clause of that SELECT. 3628 ** 3629 ** This routine scans the entire SELECT statement and recomputes the 3630 ** pSrcItem->colUsed mask. 3631 */ 3632 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3633 SrcItem *pItem; 3634 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3635 pItem = pWalker->u.pSrcItem; 3636 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3637 if( pExpr->iColumn<0 ) return WRC_Continue; 3638 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3639 return WRC_Continue; 3640 } 3641 static void recomputeColumnsUsed( 3642 Select *pSelect, /* The complete SELECT statement */ 3643 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3644 ){ 3645 Walker w; 3646 if( NEVER(pSrcItem->pTab==0) ) return; 3647 memset(&w, 0, sizeof(w)); 3648 w.xExprCallback = recomputeColumnsUsedExpr; 3649 w.xSelectCallback = sqlite3SelectWalkNoop; 3650 w.u.pSrcItem = pSrcItem; 3651 pSrcItem->colUsed = 0; 3652 sqlite3WalkSelect(&w, pSelect); 3653 } 3654 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3655 3656 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3657 /* 3658 ** Assign new cursor numbers to each of the items in pSrc. For each 3659 ** new cursor number assigned, set an entry in the aCsrMap[] array 3660 ** to map the old cursor number to the new: 3661 ** 3662 ** aCsrMap[iOld] = iNew; 3663 ** 3664 ** The array is guaranteed by the caller to be large enough for all 3665 ** existing cursor numbers in pSrc. 3666 ** 3667 ** If pSrc contains any sub-selects, call this routine recursively 3668 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3669 */ 3670 static void srclistRenumberCursors( 3671 Parse *pParse, /* Parse context */ 3672 int *aCsrMap, /* Array to store cursor mappings in */ 3673 SrcList *pSrc, /* FROM clause to renumber */ 3674 int iExcept /* FROM clause item to skip */ 3675 ){ 3676 int i; 3677 SrcItem *pItem; 3678 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3679 if( i!=iExcept ){ 3680 Select *p; 3681 pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++; 3682 for(p=pItem->pSelect; p; p=p->pPrior){ 3683 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3684 } 3685 } 3686 } 3687 } 3688 3689 /* 3690 ** Expression walker callback used by renumberCursors() to update 3691 ** Expr objects to match newly assigned cursor numbers. 3692 */ 3693 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3694 int *aCsrMap = pWalker->u.aiCol; 3695 int op = pExpr->op; 3696 if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){ 3697 pExpr->iTable = aCsrMap[pExpr->iTable]; 3698 } 3699 if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){ 3700 pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable]; 3701 } 3702 return WRC_Continue; 3703 } 3704 3705 /* 3706 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3707 ** of the SELECT statement passed as the second argument, and to each 3708 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3709 ** Except, do not assign a new cursor number to the iExcept'th element in 3710 ** the FROM clause of (*p). Update all expressions and other references 3711 ** to refer to the new cursor numbers. 3712 ** 3713 ** Argument aCsrMap is an array that may be used for temporary working 3714 ** space. Two guarantees are made by the caller: 3715 ** 3716 ** * the array is larger than the largest cursor number used within the 3717 ** select statement passed as an argument, and 3718 ** 3719 ** * the array entries for all cursor numbers that do *not* appear in 3720 ** FROM clauses of the select statement as described above are 3721 ** initialized to zero. 3722 */ 3723 static void renumberCursors( 3724 Parse *pParse, /* Parse context */ 3725 Select *p, /* Select to renumber cursors within */ 3726 int iExcept, /* FROM clause item to skip */ 3727 int *aCsrMap /* Working space */ 3728 ){ 3729 Walker w; 3730 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3731 memset(&w, 0, sizeof(w)); 3732 w.u.aiCol = aCsrMap; 3733 w.xExprCallback = renumberCursorsCb; 3734 w.xSelectCallback = sqlite3SelectWalkNoop; 3735 sqlite3WalkSelect(&w, p); 3736 } 3737 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3738 3739 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3740 /* 3741 ** This routine attempts to flatten subqueries as a performance optimization. 3742 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3743 ** 3744 ** To understand the concept of flattening, consider the following 3745 ** query: 3746 ** 3747 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3748 ** 3749 ** The default way of implementing this query is to execute the 3750 ** subquery first and store the results in a temporary table, then 3751 ** run the outer query on that temporary table. This requires two 3752 ** passes over the data. Furthermore, because the temporary table 3753 ** has no indices, the WHERE clause on the outer query cannot be 3754 ** optimized. 3755 ** 3756 ** This routine attempts to rewrite queries such as the above into 3757 ** a single flat select, like this: 3758 ** 3759 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3760 ** 3761 ** The code generated for this simplification gives the same result 3762 ** but only has to scan the data once. And because indices might 3763 ** exist on the table t1, a complete scan of the data might be 3764 ** avoided. 3765 ** 3766 ** Flattening is subject to the following constraints: 3767 ** 3768 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3769 ** The subquery and the outer query cannot both be aggregates. 3770 ** 3771 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3772 ** (2) If the subquery is an aggregate then 3773 ** (2a) the outer query must not be a join and 3774 ** (2b) the outer query must not use subqueries 3775 ** other than the one FROM-clause subquery that is a candidate 3776 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3777 ** from 2015-02-09.) 3778 ** 3779 ** (3) If the subquery is the right operand of a LEFT JOIN then 3780 ** (3a) the subquery may not be a join and 3781 ** (3b) the FROM clause of the subquery may not contain a virtual 3782 ** table and 3783 ** (3c) the outer query may not be an aggregate. 3784 ** (3d) the outer query may not be DISTINCT. 3785 ** 3786 ** (4) The subquery can not be DISTINCT. 3787 ** 3788 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3789 ** sub-queries that were excluded from this optimization. Restriction 3790 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3791 ** 3792 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3793 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3794 ** 3795 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3796 ** A FROM clause, consider adding a FROM clause with the special 3797 ** table sqlite_once that consists of a single row containing a 3798 ** single NULL. 3799 ** 3800 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3801 ** 3802 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3803 ** 3804 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3805 ** accidently carried the comment forward until 2014-09-15. Original 3806 ** constraint: "If the subquery is aggregate then the outer query 3807 ** may not use LIMIT." 3808 ** 3809 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3810 ** 3811 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3812 ** a separate restriction deriving from ticket #350. 3813 ** 3814 ** (13) The subquery and outer query may not both use LIMIT. 3815 ** 3816 ** (14) The subquery may not use OFFSET. 3817 ** 3818 ** (15) If the outer query is part of a compound select, then the 3819 ** subquery may not use LIMIT. 3820 ** (See ticket #2339 and ticket [02a8e81d44]). 3821 ** 3822 ** (16) If the outer query is aggregate, then the subquery may not 3823 ** use ORDER BY. (Ticket #2942) This used to not matter 3824 ** until we introduced the group_concat() function. 3825 ** 3826 ** (17) If the subquery is a compound select, then 3827 ** (17a) all compound operators must be a UNION ALL, and 3828 ** (17b) no terms within the subquery compound may be aggregate 3829 ** or DISTINCT, and 3830 ** (17c) every term within the subquery compound must have a FROM clause 3831 ** (17d) the outer query may not be 3832 ** (17d1) aggregate, or 3833 ** (17d2) DISTINCT 3834 ** (17e) the subquery may not contain window functions, and 3835 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3836 ** 3837 ** The parent and sub-query may contain WHERE clauses. Subject to 3838 ** rules (11), (13) and (14), they may also contain ORDER BY, 3839 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3840 ** operator other than UNION ALL because all the other compound 3841 ** operators have an implied DISTINCT which is disallowed by 3842 ** restriction (4). 3843 ** 3844 ** Also, each component of the sub-query must return the same number 3845 ** of result columns. This is actually a requirement for any compound 3846 ** SELECT statement, but all the code here does is make sure that no 3847 ** such (illegal) sub-query is flattened. The caller will detect the 3848 ** syntax error and return a detailed message. 3849 ** 3850 ** (18) If the sub-query is a compound select, then all terms of the 3851 ** ORDER BY clause of the parent must be copies of a term returned 3852 ** by the parent query. 3853 ** 3854 ** (19) If the subquery uses LIMIT then the outer query may not 3855 ** have a WHERE clause. 3856 ** 3857 ** (20) If the sub-query is a compound select, then it must not use 3858 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3859 ** somewhat by saying that the terms of the ORDER BY clause must 3860 ** appear as unmodified result columns in the outer query. But we 3861 ** have other optimizations in mind to deal with that case. 3862 ** 3863 ** (21) If the subquery uses LIMIT then the outer query may not be 3864 ** DISTINCT. (See ticket [752e1646fc]). 3865 ** 3866 ** (22) The subquery may not be a recursive CTE. 3867 ** 3868 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3869 ** a compound query. This restriction is because transforming the 3870 ** parent to a compound query confuses the code that handles 3871 ** recursive queries in multiSelect(). 3872 ** 3873 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3874 ** The subquery may not be an aggregate that uses the built-in min() or 3875 ** or max() functions. (Without this restriction, a query like: 3876 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3877 ** return the value X for which Y was maximal.) 3878 ** 3879 ** (25) If either the subquery or the parent query contains a window 3880 ** function in the select list or ORDER BY clause, flattening 3881 ** is not attempted. 3882 ** 3883 ** 3884 ** In this routine, the "p" parameter is a pointer to the outer query. 3885 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3886 ** uses aggregates. 3887 ** 3888 ** If flattening is not attempted, this routine is a no-op and returns 0. 3889 ** If flattening is attempted this routine returns 1. 3890 ** 3891 ** All of the expression analysis must occur on both the outer query and 3892 ** the subquery before this routine runs. 3893 */ 3894 static int flattenSubquery( 3895 Parse *pParse, /* Parsing context */ 3896 Select *p, /* The parent or outer SELECT statement */ 3897 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3898 int isAgg /* True if outer SELECT uses aggregate functions */ 3899 ){ 3900 const char *zSavedAuthContext = pParse->zAuthContext; 3901 Select *pParent; /* Current UNION ALL term of the other query */ 3902 Select *pSub; /* The inner query or "subquery" */ 3903 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3904 SrcList *pSrc; /* The FROM clause of the outer query */ 3905 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3906 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3907 int iNewParent = -1;/* Replacement table for iParent */ 3908 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3909 int i; /* Loop counter */ 3910 Expr *pWhere; /* The WHERE clause */ 3911 SrcItem *pSubitem; /* The subquery */ 3912 sqlite3 *db = pParse->db; 3913 Walker w; /* Walker to persist agginfo data */ 3914 int *aCsrMap = 0; 3915 3916 /* Check to see if flattening is permitted. Return 0 if not. 3917 */ 3918 assert( p!=0 ); 3919 assert( p->pPrior==0 ); 3920 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3921 pSrc = p->pSrc; 3922 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3923 pSubitem = &pSrc->a[iFrom]; 3924 iParent = pSubitem->iCursor; 3925 pSub = pSubitem->pSelect; 3926 assert( pSub!=0 ); 3927 3928 #ifndef SQLITE_OMIT_WINDOWFUNC 3929 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3930 #endif 3931 3932 pSubSrc = pSub->pSrc; 3933 assert( pSubSrc ); 3934 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3935 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3936 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3937 ** became arbitrary expressions, we were forced to add restrictions (13) 3938 ** and (14). */ 3939 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3940 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3941 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3942 return 0; /* Restriction (15) */ 3943 } 3944 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3945 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3946 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3947 return 0; /* Restrictions (8)(9) */ 3948 } 3949 if( p->pOrderBy && pSub->pOrderBy ){ 3950 return 0; /* Restriction (11) */ 3951 } 3952 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3953 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3954 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3955 return 0; /* Restriction (21) */ 3956 } 3957 if( pSub->selFlags & (SF_Recursive) ){ 3958 return 0; /* Restrictions (22) */ 3959 } 3960 3961 /* 3962 ** If the subquery is the right operand of a LEFT JOIN, then the 3963 ** subquery may not be a join itself (3a). Example of why this is not 3964 ** allowed: 3965 ** 3966 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3967 ** 3968 ** If we flatten the above, we would get 3969 ** 3970 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3971 ** 3972 ** which is not at all the same thing. 3973 ** 3974 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3975 ** query cannot be an aggregate. (3c) This is an artifact of the way 3976 ** aggregates are processed - there is no mechanism to determine if 3977 ** the LEFT JOIN table should be all-NULL. 3978 ** 3979 ** See also tickets #306, #350, and #3300. 3980 */ 3981 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3982 isLeftJoin = 1; 3983 if( pSubSrc->nSrc>1 /* (3a) */ 3984 || isAgg /* (3b) */ 3985 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3986 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3987 ){ 3988 return 0; 3989 } 3990 } 3991 #ifdef SQLITE_EXTRA_IFNULLROW 3992 else if( iFrom>0 && !isAgg ){ 3993 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3994 ** every reference to any result column from subquery in a join, even 3995 ** though they are not necessary. This will stress-test the OP_IfNullRow 3996 ** opcode. */ 3997 isLeftJoin = -1; 3998 } 3999 #endif 4000 4001 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4002 ** use only the UNION ALL operator. And none of the simple select queries 4003 ** that make up the compound SELECT are allowed to be aggregate or distinct 4004 ** queries. 4005 */ 4006 if( pSub->pPrior ){ 4007 if( pSub->pOrderBy ){ 4008 return 0; /* Restriction (20) */ 4009 } 4010 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4011 return 0; /* (17d1), (17d2), or (17f) */ 4012 } 4013 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4014 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4015 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4016 assert( pSub->pSrc!=0 ); 4017 assert( (pSub->selFlags & SF_Recursive)==0 ); 4018 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4019 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4020 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4021 || pSub1->pSrc->nSrc<1 /* (17c) */ 4022 #ifndef SQLITE_OMIT_WINDOWFUNC 4023 || pSub1->pWin /* (17e) */ 4024 #endif 4025 ){ 4026 return 0; 4027 } 4028 testcase( pSub1->pSrc->nSrc>1 ); 4029 } 4030 4031 /* Restriction (18). */ 4032 if( p->pOrderBy ){ 4033 int ii; 4034 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4035 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4036 } 4037 } 4038 4039 /* Restriction (23) */ 4040 if( (p->selFlags & SF_Recursive) ) return 0; 4041 4042 if( pSrc->nSrc>1 ){ 4043 aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int)); 4044 } 4045 } 4046 4047 /***** If we reach this point, flattening is permitted. *****/ 4048 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4049 pSub->selId, pSub, iFrom)); 4050 4051 /* Authorize the subquery */ 4052 pParse->zAuthContext = pSubitem->zName; 4053 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4054 testcase( i==SQLITE_DENY ); 4055 pParse->zAuthContext = zSavedAuthContext; 4056 4057 /* Delete the transient structures associated with thesubquery */ 4058 pSub1 = pSubitem->pSelect; 4059 sqlite3DbFree(db, pSubitem->zDatabase); 4060 sqlite3DbFree(db, pSubitem->zName); 4061 sqlite3DbFree(db, pSubitem->zAlias); 4062 pSubitem->zDatabase = 0; 4063 pSubitem->zName = 0; 4064 pSubitem->zAlias = 0; 4065 pSubitem->pSelect = 0; 4066 assert( pSubitem->pOn==0 ); 4067 4068 /* If the sub-query is a compound SELECT statement, then (by restrictions 4069 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4070 ** be of the form: 4071 ** 4072 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4073 ** 4074 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4075 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4076 ** OFFSET clauses and joins them to the left-hand-side of the original 4077 ** using UNION ALL operators. In this case N is the number of simple 4078 ** select statements in the compound sub-query. 4079 ** 4080 ** Example: 4081 ** 4082 ** SELECT a+1 FROM ( 4083 ** SELECT x FROM tab 4084 ** UNION ALL 4085 ** SELECT y FROM tab 4086 ** UNION ALL 4087 ** SELECT abs(z*2) FROM tab2 4088 ** ) WHERE a!=5 ORDER BY 1 4089 ** 4090 ** Transformed into: 4091 ** 4092 ** SELECT x+1 FROM tab WHERE x+1!=5 4093 ** UNION ALL 4094 ** SELECT y+1 FROM tab WHERE y+1!=5 4095 ** UNION ALL 4096 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4097 ** ORDER BY 1 4098 ** 4099 ** We call this the "compound-subquery flattening". 4100 */ 4101 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4102 Select *pNew; 4103 ExprList *pOrderBy = p->pOrderBy; 4104 Expr *pLimit = p->pLimit; 4105 Select *pPrior = p->pPrior; 4106 Table *pItemTab = pSubitem->pTab; 4107 pSubitem->pTab = 0; 4108 p->pOrderBy = 0; 4109 p->pPrior = 0; 4110 p->pLimit = 0; 4111 pNew = sqlite3SelectDup(db, p, 0); 4112 p->pLimit = pLimit; 4113 p->pOrderBy = pOrderBy; 4114 p->op = TK_ALL; 4115 pSubitem->pTab = pItemTab; 4116 if( pNew==0 ){ 4117 p->pPrior = pPrior; 4118 }else{ 4119 if( aCsrMap && db->mallocFailed==0 ){ 4120 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4121 } 4122 pNew->pPrior = pPrior; 4123 if( pPrior ) pPrior->pNext = pNew; 4124 pNew->pNext = p; 4125 p->pPrior = pNew; 4126 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4127 " creates %u as peer\n",pNew->selId)); 4128 } 4129 assert( pSubitem->pSelect==0 ); 4130 } 4131 sqlite3DbFree(db, aCsrMap); 4132 if( db->mallocFailed ){ 4133 pSubitem->pSelect = pSub1; 4134 return 1; 4135 } 4136 4137 /* Defer deleting the Table object associated with the 4138 ** subquery until code generation is 4139 ** complete, since there may still exist Expr.pTab entries that 4140 ** refer to the subquery even after flattening. Ticket #3346. 4141 ** 4142 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4143 */ 4144 if( ALWAYS(pSubitem->pTab!=0) ){ 4145 Table *pTabToDel = pSubitem->pTab; 4146 if( pTabToDel->nTabRef==1 ){ 4147 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4148 sqlite3ParserAddCleanup(pToplevel, 4149 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4150 pTabToDel); 4151 testcase( pToplevel->earlyCleanup ); 4152 }else{ 4153 pTabToDel->nTabRef--; 4154 } 4155 pSubitem->pTab = 0; 4156 } 4157 4158 /* The following loop runs once for each term in a compound-subquery 4159 ** flattening (as described above). If we are doing a different kind 4160 ** of flattening - a flattening other than a compound-subquery flattening - 4161 ** then this loop only runs once. 4162 ** 4163 ** This loop moves all of the FROM elements of the subquery into the 4164 ** the FROM clause of the outer query. Before doing this, remember 4165 ** the cursor number for the original outer query FROM element in 4166 ** iParent. The iParent cursor will never be used. Subsequent code 4167 ** will scan expressions looking for iParent references and replace 4168 ** those references with expressions that resolve to the subquery FROM 4169 ** elements we are now copying in. 4170 */ 4171 pSub = pSub1; 4172 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4173 int nSubSrc; 4174 u8 jointype = 0; 4175 assert( pSub!=0 ); 4176 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4177 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4178 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4179 4180 if( pParent==p ){ 4181 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4182 } 4183 4184 /* The subquery uses a single slot of the FROM clause of the outer 4185 ** query. If the subquery has more than one element in its FROM clause, 4186 ** then expand the outer query to make space for it to hold all elements 4187 ** of the subquery. 4188 ** 4189 ** Example: 4190 ** 4191 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4192 ** 4193 ** The outer query has 3 slots in its FROM clause. One slot of the 4194 ** outer query (the middle slot) is used by the subquery. The next 4195 ** block of code will expand the outer query FROM clause to 4 slots. 4196 ** The middle slot is expanded to two slots in order to make space 4197 ** for the two elements in the FROM clause of the subquery. 4198 */ 4199 if( nSubSrc>1 ){ 4200 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4201 if( pSrc==0 ) break; 4202 pParent->pSrc = pSrc; 4203 } 4204 4205 /* Transfer the FROM clause terms from the subquery into the 4206 ** outer query. 4207 */ 4208 for(i=0; i<nSubSrc; i++){ 4209 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4210 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4211 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4212 iNewParent = pSubSrc->a[i].iCursor; 4213 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4214 } 4215 pSrc->a[iFrom].fg.jointype = jointype; 4216 4217 /* Now begin substituting subquery result set expressions for 4218 ** references to the iParent in the outer query. 4219 ** 4220 ** Example: 4221 ** 4222 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4223 ** \ \_____________ subquery __________/ / 4224 ** \_____________________ outer query ______________________________/ 4225 ** 4226 ** We look at every expression in the outer query and every place we see 4227 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4228 */ 4229 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4230 /* At this point, any non-zero iOrderByCol values indicate that the 4231 ** ORDER BY column expression is identical to the iOrderByCol'th 4232 ** expression returned by SELECT statement pSub. Since these values 4233 ** do not necessarily correspond to columns in SELECT statement pParent, 4234 ** zero them before transfering the ORDER BY clause. 4235 ** 4236 ** Not doing this may cause an error if a subsequent call to this 4237 ** function attempts to flatten a compound sub-query into pParent 4238 ** (the only way this can happen is if the compound sub-query is 4239 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4240 ExprList *pOrderBy = pSub->pOrderBy; 4241 for(i=0; i<pOrderBy->nExpr; i++){ 4242 pOrderBy->a[i].u.x.iOrderByCol = 0; 4243 } 4244 assert( pParent->pOrderBy==0 ); 4245 pParent->pOrderBy = pOrderBy; 4246 pSub->pOrderBy = 0; 4247 } 4248 pWhere = pSub->pWhere; 4249 pSub->pWhere = 0; 4250 if( isLeftJoin>0 ){ 4251 sqlite3SetJoinExpr(pWhere, iNewParent); 4252 } 4253 if( pWhere ){ 4254 if( pParent->pWhere ){ 4255 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4256 }else{ 4257 pParent->pWhere = pWhere; 4258 } 4259 } 4260 if( db->mallocFailed==0 ){ 4261 SubstContext x; 4262 x.pParse = pParse; 4263 x.iTable = iParent; 4264 x.iNewTable = iNewParent; 4265 x.isLeftJoin = isLeftJoin; 4266 x.pEList = pSub->pEList; 4267 substSelect(&x, pParent, 0); 4268 } 4269 4270 /* The flattened query is a compound if either the inner or the 4271 ** outer query is a compound. */ 4272 pParent->selFlags |= pSub->selFlags & SF_Compound; 4273 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4274 4275 /* 4276 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4277 ** 4278 ** One is tempted to try to add a and b to combine the limits. But this 4279 ** does not work if either limit is negative. 4280 */ 4281 if( pSub->pLimit ){ 4282 pParent->pLimit = pSub->pLimit; 4283 pSub->pLimit = 0; 4284 } 4285 4286 /* Recompute the SrcList_item.colUsed masks for the flattened 4287 ** tables. */ 4288 for(i=0; i<nSubSrc; i++){ 4289 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4290 } 4291 } 4292 4293 /* Finially, delete what is left of the subquery and return 4294 ** success. 4295 */ 4296 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4297 sqlite3WalkSelect(&w,pSub1); 4298 sqlite3SelectDelete(db, pSub1); 4299 4300 #if SELECTTRACE_ENABLED 4301 if( sqlite3SelectTrace & 0x100 ){ 4302 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4303 sqlite3TreeViewSelect(0, p, 0); 4304 } 4305 #endif 4306 4307 return 1; 4308 } 4309 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4310 4311 /* 4312 ** A structure to keep track of all of the column values that are fixed to 4313 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4314 */ 4315 typedef struct WhereConst WhereConst; 4316 struct WhereConst { 4317 Parse *pParse; /* Parsing context */ 4318 int nConst; /* Number for COLUMN=CONSTANT terms */ 4319 int nChng; /* Number of times a constant is propagated */ 4320 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4321 }; 4322 4323 /* 4324 ** Add a new entry to the pConst object. Except, do not add duplicate 4325 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4326 ** 4327 ** The caller guarantees the pColumn is a column and pValue is a constant. 4328 ** This routine has to do some additional checks before completing the 4329 ** insert. 4330 */ 4331 static void constInsert( 4332 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4333 Expr *pColumn, /* The COLUMN part of the constraint */ 4334 Expr *pValue, /* The VALUE part of the constraint */ 4335 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4336 ){ 4337 int i; 4338 assert( pColumn->op==TK_COLUMN ); 4339 assert( sqlite3ExprIsConstant(pValue) ); 4340 4341 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4342 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4343 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4344 return; 4345 } 4346 4347 /* 2018-10-25 ticket [cf5ed20f] 4348 ** Make sure the same pColumn is not inserted more than once */ 4349 for(i=0; i<pConst->nConst; i++){ 4350 const Expr *pE2 = pConst->apExpr[i*2]; 4351 assert( pE2->op==TK_COLUMN ); 4352 if( pE2->iTable==pColumn->iTable 4353 && pE2->iColumn==pColumn->iColumn 4354 ){ 4355 return; /* Already present. Return without doing anything. */ 4356 } 4357 } 4358 4359 pConst->nConst++; 4360 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4361 pConst->nConst*2*sizeof(Expr*)); 4362 if( pConst->apExpr==0 ){ 4363 pConst->nConst = 0; 4364 }else{ 4365 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4366 pConst->apExpr[pConst->nConst*2-1] = pValue; 4367 } 4368 } 4369 4370 /* 4371 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4372 ** is a constant expression and where the term must be true because it 4373 ** is part of the AND-connected terms of the expression. For each term 4374 ** found, add it to the pConst structure. 4375 */ 4376 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4377 Expr *pRight, *pLeft; 4378 if( pExpr==0 ) return; 4379 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4380 if( pExpr->op==TK_AND ){ 4381 findConstInWhere(pConst, pExpr->pRight); 4382 findConstInWhere(pConst, pExpr->pLeft); 4383 return; 4384 } 4385 if( pExpr->op!=TK_EQ ) return; 4386 pRight = pExpr->pRight; 4387 pLeft = pExpr->pLeft; 4388 assert( pRight!=0 ); 4389 assert( pLeft!=0 ); 4390 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4391 constInsert(pConst,pRight,pLeft,pExpr); 4392 } 4393 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4394 constInsert(pConst,pLeft,pRight,pExpr); 4395 } 4396 } 4397 4398 /* 4399 ** This is a Walker expression callback. pExpr is a candidate expression 4400 ** to be replaced by a value. If pExpr is equivalent to one of the 4401 ** columns named in pWalker->u.pConst, then overwrite it with its 4402 ** corresponding value. 4403 */ 4404 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4405 int i; 4406 WhereConst *pConst; 4407 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4408 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4409 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4410 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4411 return WRC_Continue; 4412 } 4413 pConst = pWalker->u.pConst; 4414 for(i=0; i<pConst->nConst; i++){ 4415 Expr *pColumn = pConst->apExpr[i*2]; 4416 if( pColumn==pExpr ) continue; 4417 if( pColumn->iTable!=pExpr->iTable ) continue; 4418 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4419 /* A match is found. Add the EP_FixedCol property */ 4420 pConst->nChng++; 4421 ExprClearProperty(pExpr, EP_Leaf); 4422 ExprSetProperty(pExpr, EP_FixedCol); 4423 assert( pExpr->pLeft==0 ); 4424 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4425 break; 4426 } 4427 return WRC_Prune; 4428 } 4429 4430 /* 4431 ** The WHERE-clause constant propagation optimization. 4432 ** 4433 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4434 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4435 ** part of a ON clause from a LEFT JOIN, then throughout the query 4436 ** replace all other occurrences of COLUMN with CONSTANT. 4437 ** 4438 ** For example, the query: 4439 ** 4440 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4441 ** 4442 ** Is transformed into 4443 ** 4444 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4445 ** 4446 ** Return true if any transformations where made and false if not. 4447 ** 4448 ** Implementation note: Constant propagation is tricky due to affinity 4449 ** and collating sequence interactions. Consider this example: 4450 ** 4451 ** CREATE TABLE t1(a INT,b TEXT); 4452 ** INSERT INTO t1 VALUES(123,'0123'); 4453 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4454 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4455 ** 4456 ** The two SELECT statements above should return different answers. b=a 4457 ** is alway true because the comparison uses numeric affinity, but b=123 4458 ** is false because it uses text affinity and '0123' is not the same as '123'. 4459 ** To work around this, the expression tree is not actually changed from 4460 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4461 ** and the "123" value is hung off of the pLeft pointer. Code generator 4462 ** routines know to generate the constant "123" instead of looking up the 4463 ** column value. Also, to avoid collation problems, this optimization is 4464 ** only attempted if the "a=123" term uses the default BINARY collation. 4465 */ 4466 static int propagateConstants( 4467 Parse *pParse, /* The parsing context */ 4468 Select *p /* The query in which to propagate constants */ 4469 ){ 4470 WhereConst x; 4471 Walker w; 4472 int nChng = 0; 4473 x.pParse = pParse; 4474 do{ 4475 x.nConst = 0; 4476 x.nChng = 0; 4477 x.apExpr = 0; 4478 findConstInWhere(&x, p->pWhere); 4479 if( x.nConst ){ 4480 memset(&w, 0, sizeof(w)); 4481 w.pParse = pParse; 4482 w.xExprCallback = propagateConstantExprRewrite; 4483 w.xSelectCallback = sqlite3SelectWalkNoop; 4484 w.xSelectCallback2 = 0; 4485 w.walkerDepth = 0; 4486 w.u.pConst = &x; 4487 sqlite3WalkExpr(&w, p->pWhere); 4488 sqlite3DbFree(x.pParse->db, x.apExpr); 4489 nChng += x.nChng; 4490 } 4491 }while( x.nChng ); 4492 return nChng; 4493 } 4494 4495 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4496 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4497 /* 4498 ** This function is called to determine whether or not it is safe to 4499 ** push WHERE clause expression pExpr down to FROM clause sub-query 4500 ** pSubq, which contains at least one window function. Return 1 4501 ** if it is safe and the expression should be pushed down, or 0 4502 ** otherwise. 4503 ** 4504 ** It is only safe to push the expression down if it consists only 4505 ** of constants and copies of expressions that appear in the PARTITION 4506 ** BY clause of all window function used by the sub-query. It is safe 4507 ** to filter out entire partitions, but not rows within partitions, as 4508 ** this may change the results of the window functions. 4509 ** 4510 ** At the time this function is called it is guaranteed that 4511 ** 4512 ** * the sub-query uses only one distinct window frame, and 4513 ** * that the window frame has a PARTITION BY clase. 4514 */ 4515 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4516 assert( pSubq->pWin->pPartition ); 4517 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4518 assert( pSubq->pPrior==0 ); 4519 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4520 } 4521 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4522 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4523 4524 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4525 /* 4526 ** Make copies of relevant WHERE clause terms of the outer query into 4527 ** the WHERE clause of subquery. Example: 4528 ** 4529 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4530 ** 4531 ** Transformed into: 4532 ** 4533 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4534 ** WHERE x=5 AND y=10; 4535 ** 4536 ** The hope is that the terms added to the inner query will make it more 4537 ** efficient. 4538 ** 4539 ** Do not attempt this optimization if: 4540 ** 4541 ** (1) (** This restriction was removed on 2017-09-29. We used to 4542 ** disallow this optimization for aggregate subqueries, but now 4543 ** it is allowed by putting the extra terms on the HAVING clause. 4544 ** The added HAVING clause is pointless if the subquery lacks 4545 ** a GROUP BY clause. But such a HAVING clause is also harmless 4546 ** so there does not appear to be any reason to add extra logic 4547 ** to suppress it. **) 4548 ** 4549 ** (2) The inner query is the recursive part of a common table expression. 4550 ** 4551 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4552 ** clause would change the meaning of the LIMIT). 4553 ** 4554 ** (4) The inner query is the right operand of a LEFT JOIN and the 4555 ** expression to be pushed down does not come from the ON clause 4556 ** on that LEFT JOIN. 4557 ** 4558 ** (5) The WHERE clause expression originates in the ON or USING clause 4559 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4560 ** left join. An example: 4561 ** 4562 ** SELECT * 4563 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4564 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4565 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4566 ** 4567 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4568 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4569 ** then the (1,1,NULL) row would be suppressed. 4570 ** 4571 ** (6) Window functions make things tricky as changes to the WHERE clause 4572 ** of the inner query could change the window over which window 4573 ** functions are calculated. Therefore, do not attempt the optimization 4574 ** if: 4575 ** 4576 ** (6a) The inner query uses multiple incompatible window partitions. 4577 ** 4578 ** (6b) The inner query is a compound and uses window-functions. 4579 ** 4580 ** (6c) The WHERE clause does not consist entirely of constants and 4581 ** copies of expressions found in the PARTITION BY clause of 4582 ** all window-functions used by the sub-query. It is safe to 4583 ** filter out entire partitions, as this does not change the 4584 ** window over which any window-function is calculated. 4585 ** 4586 ** (7) The inner query is a Common Table Expression (CTE) that should 4587 ** be materialized. (This restriction is implemented in the calling 4588 ** routine.) 4589 ** 4590 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4591 ** terms are duplicated into the subquery. 4592 */ 4593 static int pushDownWhereTerms( 4594 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4595 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4596 Expr *pWhere, /* The WHERE clause of the outer query */ 4597 int iCursor, /* Cursor number of the subquery */ 4598 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4599 ){ 4600 Expr *pNew; 4601 int nChng = 0; 4602 if( pWhere==0 ) return 0; 4603 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4604 4605 #ifndef SQLITE_OMIT_WINDOWFUNC 4606 if( pSubq->pPrior ){ 4607 Select *pSel; 4608 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4609 if( pSel->pWin ) return 0; /* restriction (6b) */ 4610 } 4611 }else{ 4612 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4613 } 4614 #endif 4615 4616 #ifdef SQLITE_DEBUG 4617 /* Only the first term of a compound can have a WITH clause. But make 4618 ** sure no other terms are marked SF_Recursive in case something changes 4619 ** in the future. 4620 */ 4621 { 4622 Select *pX; 4623 for(pX=pSubq; pX; pX=pX->pPrior){ 4624 assert( (pX->selFlags & (SF_Recursive))==0 ); 4625 } 4626 } 4627 #endif 4628 4629 if( pSubq->pLimit!=0 ){ 4630 return 0; /* restriction (3) */ 4631 } 4632 while( pWhere->op==TK_AND ){ 4633 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4634 iCursor, isLeftJoin); 4635 pWhere = pWhere->pLeft; 4636 } 4637 if( isLeftJoin 4638 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4639 || pWhere->iRightJoinTable!=iCursor) 4640 ){ 4641 return 0; /* restriction (4) */ 4642 } 4643 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4644 return 0; /* restriction (5) */ 4645 } 4646 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4647 nChng++; 4648 pSubq->selFlags |= SF_PushDown; 4649 while( pSubq ){ 4650 SubstContext x; 4651 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4652 unsetJoinExpr(pNew, -1); 4653 x.pParse = pParse; 4654 x.iTable = iCursor; 4655 x.iNewTable = iCursor; 4656 x.isLeftJoin = 0; 4657 x.pEList = pSubq->pEList; 4658 pNew = substExpr(&x, pNew); 4659 #ifndef SQLITE_OMIT_WINDOWFUNC 4660 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4661 /* Restriction 6c has prevented push-down in this case */ 4662 sqlite3ExprDelete(pParse->db, pNew); 4663 nChng--; 4664 break; 4665 } 4666 #endif 4667 if( pSubq->selFlags & SF_Aggregate ){ 4668 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4669 }else{ 4670 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4671 } 4672 pSubq = pSubq->pPrior; 4673 } 4674 } 4675 return nChng; 4676 } 4677 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4678 4679 /* 4680 ** The pFunc is the only aggregate function in the query. Check to see 4681 ** if the query is a candidate for the min/max optimization. 4682 ** 4683 ** If the query is a candidate for the min/max optimization, then set 4684 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4685 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4686 ** whether pFunc is a min() or max() function. 4687 ** 4688 ** If the query is not a candidate for the min/max optimization, return 4689 ** WHERE_ORDERBY_NORMAL (which must be zero). 4690 ** 4691 ** This routine must be called after aggregate functions have been 4692 ** located but before their arguments have been subjected to aggregate 4693 ** analysis. 4694 */ 4695 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4696 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4697 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4698 const char *zFunc; /* Name of aggregate function pFunc */ 4699 ExprList *pOrderBy; 4700 u8 sortFlags = 0; 4701 4702 assert( *ppMinMax==0 ); 4703 assert( pFunc->op==TK_AGG_FUNCTION ); 4704 assert( !IsWindowFunc(pFunc) ); 4705 if( pEList==0 4706 || pEList->nExpr!=1 4707 || ExprHasProperty(pFunc, EP_WinFunc) 4708 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4709 ){ 4710 return eRet; 4711 } 4712 zFunc = pFunc->u.zToken; 4713 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4714 eRet = WHERE_ORDERBY_MIN; 4715 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4716 sortFlags = KEYINFO_ORDER_BIGNULL; 4717 } 4718 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4719 eRet = WHERE_ORDERBY_MAX; 4720 sortFlags = KEYINFO_ORDER_DESC; 4721 }else{ 4722 return eRet; 4723 } 4724 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4725 assert( pOrderBy!=0 || db->mallocFailed ); 4726 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4727 return eRet; 4728 } 4729 4730 /* 4731 ** The select statement passed as the first argument is an aggregate query. 4732 ** The second argument is the associated aggregate-info object. This 4733 ** function tests if the SELECT is of the form: 4734 ** 4735 ** SELECT count(*) FROM <tbl> 4736 ** 4737 ** where table is a database table, not a sub-select or view. If the query 4738 ** does match this pattern, then a pointer to the Table object representing 4739 ** <tbl> is returned. Otherwise, 0 is returned. 4740 */ 4741 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4742 Table *pTab; 4743 Expr *pExpr; 4744 4745 assert( !p->pGroupBy ); 4746 4747 if( p->pWhere || p->pEList->nExpr!=1 4748 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4749 ){ 4750 return 0; 4751 } 4752 pTab = p->pSrc->a[0].pTab; 4753 pExpr = p->pEList->a[0].pExpr; 4754 assert( pTab && !pTab->pSelect && pExpr ); 4755 4756 if( IsVirtual(pTab) ) return 0; 4757 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4758 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4759 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4760 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4761 4762 return pTab; 4763 } 4764 4765 /* 4766 ** If the source-list item passed as an argument was augmented with an 4767 ** INDEXED BY clause, then try to locate the specified index. If there 4768 ** was such a clause and the named index cannot be found, return 4769 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4770 ** pFrom->pIndex and return SQLITE_OK. 4771 */ 4772 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4773 Table *pTab = pFrom->pTab; 4774 char *zIndexedBy = pFrom->u1.zIndexedBy; 4775 Index *pIdx; 4776 assert( pTab!=0 ); 4777 assert( pFrom->fg.isIndexedBy!=0 ); 4778 4779 for(pIdx=pTab->pIndex; 4780 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4781 pIdx=pIdx->pNext 4782 ); 4783 if( !pIdx ){ 4784 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4785 pParse->checkSchema = 1; 4786 return SQLITE_ERROR; 4787 } 4788 pFrom->u2.pIBIndex = pIdx; 4789 return SQLITE_OK; 4790 } 4791 4792 /* 4793 ** Detect compound SELECT statements that use an ORDER BY clause with 4794 ** an alternative collating sequence. 4795 ** 4796 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4797 ** 4798 ** These are rewritten as a subquery: 4799 ** 4800 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4801 ** ORDER BY ... COLLATE ... 4802 ** 4803 ** This transformation is necessary because the multiSelectOrderBy() routine 4804 ** above that generates the code for a compound SELECT with an ORDER BY clause 4805 ** uses a merge algorithm that requires the same collating sequence on the 4806 ** result columns as on the ORDER BY clause. See ticket 4807 ** http://www.sqlite.org/src/info/6709574d2a 4808 ** 4809 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4810 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4811 ** there are COLLATE terms in the ORDER BY. 4812 */ 4813 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4814 int i; 4815 Select *pNew; 4816 Select *pX; 4817 sqlite3 *db; 4818 struct ExprList_item *a; 4819 SrcList *pNewSrc; 4820 Parse *pParse; 4821 Token dummy; 4822 4823 if( p->pPrior==0 ) return WRC_Continue; 4824 if( p->pOrderBy==0 ) return WRC_Continue; 4825 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4826 if( pX==0 ) return WRC_Continue; 4827 a = p->pOrderBy->a; 4828 #ifndef SQLITE_OMIT_WINDOWFUNC 4829 /* If iOrderByCol is already non-zero, then it has already been matched 4830 ** to a result column of the SELECT statement. This occurs when the 4831 ** SELECT is rewritten for window-functions processing and then passed 4832 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 4833 ** by this function is not required in this case. */ 4834 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 4835 #endif 4836 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4837 if( a[i].pExpr->flags & EP_Collate ) break; 4838 } 4839 if( i<0 ) return WRC_Continue; 4840 4841 /* If we reach this point, that means the transformation is required. */ 4842 4843 pParse = pWalker->pParse; 4844 db = pParse->db; 4845 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4846 if( pNew==0 ) return WRC_Abort; 4847 memset(&dummy, 0, sizeof(dummy)); 4848 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4849 if( pNewSrc==0 ) return WRC_Abort; 4850 *pNew = *p; 4851 p->pSrc = pNewSrc; 4852 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4853 p->op = TK_SELECT; 4854 p->pWhere = 0; 4855 pNew->pGroupBy = 0; 4856 pNew->pHaving = 0; 4857 pNew->pOrderBy = 0; 4858 p->pPrior = 0; 4859 p->pNext = 0; 4860 p->pWith = 0; 4861 #ifndef SQLITE_OMIT_WINDOWFUNC 4862 p->pWinDefn = 0; 4863 #endif 4864 p->selFlags &= ~SF_Compound; 4865 assert( (p->selFlags & SF_Converted)==0 ); 4866 p->selFlags |= SF_Converted; 4867 assert( pNew->pPrior!=0 ); 4868 pNew->pPrior->pNext = pNew; 4869 pNew->pLimit = 0; 4870 return WRC_Continue; 4871 } 4872 4873 /* 4874 ** Check to see if the FROM clause term pFrom has table-valued function 4875 ** arguments. If it does, leave an error message in pParse and return 4876 ** non-zero, since pFrom is not allowed to be a table-valued function. 4877 */ 4878 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 4879 if( pFrom->fg.isTabFunc ){ 4880 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4881 return 1; 4882 } 4883 return 0; 4884 } 4885 4886 #ifndef SQLITE_OMIT_CTE 4887 /* 4888 ** Argument pWith (which may be NULL) points to a linked list of nested 4889 ** WITH contexts, from inner to outermost. If the table identified by 4890 ** FROM clause element pItem is really a common-table-expression (CTE) 4891 ** then return a pointer to the CTE definition for that table. Otherwise 4892 ** return NULL. 4893 ** 4894 ** If a non-NULL value is returned, set *ppContext to point to the With 4895 ** object that the returned CTE belongs to. 4896 */ 4897 static struct Cte *searchWith( 4898 With *pWith, /* Current innermost WITH clause */ 4899 SrcItem *pItem, /* FROM clause element to resolve */ 4900 With **ppContext /* OUT: WITH clause return value belongs to */ 4901 ){ 4902 const char *zName = pItem->zName; 4903 With *p; 4904 assert( pItem->zDatabase==0 ); 4905 assert( zName!=0 ); 4906 for(p=pWith; p; p=p->pOuter){ 4907 int i; 4908 for(i=0; i<p->nCte; i++){ 4909 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4910 *ppContext = p; 4911 return &p->a[i]; 4912 } 4913 } 4914 } 4915 return 0; 4916 } 4917 4918 /* The code generator maintains a stack of active WITH clauses 4919 ** with the inner-most WITH clause being at the top of the stack. 4920 ** 4921 ** This routine pushes the WITH clause passed as the second argument 4922 ** onto the top of the stack. If argument bFree is true, then this 4923 ** WITH clause will never be popped from the stack. In this case it 4924 ** should be freed along with the Parse object. In other cases, when 4925 ** bFree==0, the With object will be freed along with the SELECT 4926 ** statement with which it is associated. 4927 */ 4928 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4929 if( pWith ){ 4930 assert( pParse->pWith!=pWith ); 4931 pWith->pOuter = pParse->pWith; 4932 pParse->pWith = pWith; 4933 if( bFree ){ 4934 sqlite3ParserAddCleanup(pParse, 4935 (void(*)(sqlite3*,void*))sqlite3WithDelete, 4936 pWith); 4937 testcase( pParse->earlyCleanup ); 4938 } 4939 } 4940 } 4941 4942 /* 4943 ** This function checks if argument pFrom refers to a CTE declared by 4944 ** a WITH clause on the stack currently maintained by the parser (on the 4945 ** pParse->pWith linked list). And if currently processing a CTE 4946 ** CTE expression, through routine checks to see if the reference is 4947 ** a recursive reference to the CTE. 4948 ** 4949 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 4950 ** and other fields are populated accordingly. 4951 ** 4952 ** Return 0 if no match is found. 4953 ** Return 1 if a match is found. 4954 ** Return 2 if an error condition is detected. 4955 */ 4956 static int resolveFromTermToCte( 4957 Parse *pParse, /* The parsing context */ 4958 Walker *pWalker, /* Current tree walker */ 4959 SrcItem *pFrom /* The FROM clause term to check */ 4960 ){ 4961 Cte *pCte; /* Matched CTE (or NULL if no match) */ 4962 With *pWith; /* The matching WITH */ 4963 4964 assert( pFrom->pTab==0 ); 4965 if( pParse->pWith==0 ){ 4966 /* There are no WITH clauses in the stack. No match is possible */ 4967 return 0; 4968 } 4969 if( pFrom->zDatabase!=0 ){ 4970 /* The FROM term contains a schema qualifier (ex: main.t1) and so 4971 ** it cannot possibly be a CTE reference. */ 4972 return 0; 4973 } 4974 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4975 if( pCte ){ 4976 sqlite3 *db = pParse->db; 4977 Table *pTab; 4978 ExprList *pEList; 4979 Select *pSel; 4980 Select *pLeft; /* Left-most SELECT statement */ 4981 Select *pRecTerm; /* Left-most recursive term */ 4982 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4983 With *pSavedWith; /* Initial value of pParse->pWith */ 4984 int iRecTab = -1; /* Cursor for recursive table */ 4985 CteUse *pCteUse; 4986 4987 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4988 ** recursive reference to CTE pCte. Leave an error in pParse and return 4989 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4990 ** In this case, proceed. */ 4991 if( pCte->zCteErr ){ 4992 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4993 return 2; 4994 } 4995 if( cannotBeFunction(pParse, pFrom) ) return 2; 4996 4997 assert( pFrom->pTab==0 ); 4998 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4999 if( pTab==0 ) return 2; 5000 pCteUse = pCte->pUse; 5001 if( pCteUse==0 ){ 5002 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5003 if( pCteUse==0 5004 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5005 ){ 5006 sqlite3DbFree(db, pTab); 5007 return 2; 5008 } 5009 pCteUse->eM10d = pCte->eM10d; 5010 } 5011 pFrom->pTab = pTab; 5012 pTab->nTabRef = 1; 5013 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5014 pTab->iPKey = -1; 5015 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5016 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5017 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5018 if( db->mallocFailed ) return 2; 5019 assert( pFrom->pSelect ); 5020 pFrom->fg.isCte = 1; 5021 pFrom->u2.pCteUse = pCteUse; 5022 pCteUse->nUse++; 5023 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5024 pCteUse->eM10d = M10d_Yes; 5025 } 5026 5027 /* Check if this is a recursive CTE. */ 5028 pRecTerm = pSel = pFrom->pSelect; 5029 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5030 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5031 int i; 5032 SrcList *pSrc = pRecTerm->pSrc; 5033 assert( pRecTerm->pPrior!=0 ); 5034 for(i=0; i<pSrc->nSrc; i++){ 5035 SrcItem *pItem = &pSrc->a[i]; 5036 if( pItem->zDatabase==0 5037 && pItem->zName!=0 5038 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5039 ){ 5040 pItem->pTab = pTab; 5041 pTab->nTabRef++; 5042 pItem->fg.isRecursive = 1; 5043 if( pRecTerm->selFlags & SF_Recursive ){ 5044 sqlite3ErrorMsg(pParse, 5045 "multiple references to recursive table: %s", pCte->zName 5046 ); 5047 return 2; 5048 } 5049 pRecTerm->selFlags |= SF_Recursive; 5050 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5051 pItem->iCursor = iRecTab; 5052 } 5053 } 5054 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5055 pRecTerm = pRecTerm->pPrior; 5056 } 5057 5058 pCte->zCteErr = "circular reference: %s"; 5059 pSavedWith = pParse->pWith; 5060 pParse->pWith = pWith; 5061 if( pSel->selFlags & SF_Recursive ){ 5062 assert( pRecTerm!=0 ); 5063 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5064 assert( pRecTerm->pNext!=0 ); 5065 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5066 assert( pRecTerm->pWith==0 ); 5067 pRecTerm->pWith = pSel->pWith; 5068 sqlite3WalkSelect(pWalker, pRecTerm); 5069 pRecTerm->pWith = 0; 5070 }else{ 5071 sqlite3WalkSelect(pWalker, pSel); 5072 } 5073 pParse->pWith = pWith; 5074 5075 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5076 pEList = pLeft->pEList; 5077 if( pCte->pCols ){ 5078 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5079 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5080 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5081 ); 5082 pParse->pWith = pSavedWith; 5083 return 2; 5084 } 5085 pEList = pCte->pCols; 5086 } 5087 5088 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5089 if( bMayRecursive ){ 5090 if( pSel->selFlags & SF_Recursive ){ 5091 pCte->zCteErr = "multiple recursive references: %s"; 5092 }else{ 5093 pCte->zCteErr = "recursive reference in a subquery: %s"; 5094 } 5095 sqlite3WalkSelect(pWalker, pSel); 5096 } 5097 pCte->zCteErr = 0; 5098 pParse->pWith = pSavedWith; 5099 return 1; /* Success */ 5100 } 5101 return 0; /* No match */ 5102 } 5103 #endif 5104 5105 #ifndef SQLITE_OMIT_CTE 5106 /* 5107 ** If the SELECT passed as the second argument has an associated WITH 5108 ** clause, pop it from the stack stored as part of the Parse object. 5109 ** 5110 ** This function is used as the xSelectCallback2() callback by 5111 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5112 ** names and other FROM clause elements. 5113 */ 5114 static void selectPopWith(Walker *pWalker, Select *p){ 5115 Parse *pParse = pWalker->pParse; 5116 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5117 With *pWith = findRightmost(p)->pWith; 5118 if( pWith!=0 ){ 5119 assert( pParse->pWith==pWith || pParse->nErr ); 5120 pParse->pWith = pWith->pOuter; 5121 } 5122 } 5123 } 5124 #else 5125 #define selectPopWith 0 5126 #endif 5127 5128 /* 5129 ** The SrcList_item structure passed as the second argument represents a 5130 ** sub-query in the FROM clause of a SELECT statement. This function 5131 ** allocates and populates the SrcList_item.pTab object. If successful, 5132 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5133 ** SQLITE_NOMEM. 5134 */ 5135 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5136 Select *pSel = pFrom->pSelect; 5137 Table *pTab; 5138 5139 assert( pSel ); 5140 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5141 if( pTab==0 ) return SQLITE_NOMEM; 5142 pTab->nTabRef = 1; 5143 if( pFrom->zAlias ){ 5144 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5145 }else{ 5146 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5147 } 5148 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5149 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5150 pTab->iPKey = -1; 5151 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5152 pTab->tabFlags |= TF_Ephemeral; 5153 5154 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5155 } 5156 5157 /* 5158 ** This routine is a Walker callback for "expanding" a SELECT statement. 5159 ** "Expanding" means to do the following: 5160 ** 5161 ** (1) Make sure VDBE cursor numbers have been assigned to every 5162 ** element of the FROM clause. 5163 ** 5164 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5165 ** defines FROM clause. When views appear in the FROM clause, 5166 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5167 ** that implements the view. A copy is made of the view's SELECT 5168 ** statement so that we can freely modify or delete that statement 5169 ** without worrying about messing up the persistent representation 5170 ** of the view. 5171 ** 5172 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5173 ** on joins and the ON and USING clause of joins. 5174 ** 5175 ** (4) Scan the list of columns in the result set (pEList) looking 5176 ** for instances of the "*" operator or the TABLE.* operator. 5177 ** If found, expand each "*" to be every column in every table 5178 ** and TABLE.* to be every column in TABLE. 5179 ** 5180 */ 5181 static int selectExpander(Walker *pWalker, Select *p){ 5182 Parse *pParse = pWalker->pParse; 5183 int i, j, k, rc; 5184 SrcList *pTabList; 5185 ExprList *pEList; 5186 SrcItem *pFrom; 5187 sqlite3 *db = pParse->db; 5188 Expr *pE, *pRight, *pExpr; 5189 u16 selFlags = p->selFlags; 5190 u32 elistFlags = 0; 5191 5192 p->selFlags |= SF_Expanded; 5193 if( db->mallocFailed ){ 5194 return WRC_Abort; 5195 } 5196 assert( p->pSrc!=0 ); 5197 if( (selFlags & SF_Expanded)!=0 ){ 5198 return WRC_Prune; 5199 } 5200 if( pWalker->eCode ){ 5201 /* Renumber selId because it has been copied from a view */ 5202 p->selId = ++pParse->nSelect; 5203 } 5204 pTabList = p->pSrc; 5205 pEList = p->pEList; 5206 sqlite3WithPush(pParse, p->pWith, 0); 5207 5208 /* Make sure cursor numbers have been assigned to all entries in 5209 ** the FROM clause of the SELECT statement. 5210 */ 5211 sqlite3SrcListAssignCursors(pParse, pTabList); 5212 5213 /* Look up every table named in the FROM clause of the select. If 5214 ** an entry of the FROM clause is a subquery instead of a table or view, 5215 ** then create a transient table structure to describe the subquery. 5216 */ 5217 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5218 Table *pTab; 5219 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5220 if( pFrom->pTab ) continue; 5221 assert( pFrom->fg.isRecursive==0 ); 5222 if( pFrom->zName==0 ){ 5223 #ifndef SQLITE_OMIT_SUBQUERY 5224 Select *pSel = pFrom->pSelect; 5225 /* A sub-query in the FROM clause of a SELECT */ 5226 assert( pSel!=0 ); 5227 assert( pFrom->pTab==0 ); 5228 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5229 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5230 #endif 5231 #ifndef SQLITE_OMIT_CTE 5232 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5233 if( rc>1 ) return WRC_Abort; 5234 pTab = pFrom->pTab; 5235 assert( pTab!=0 ); 5236 #endif 5237 }else{ 5238 /* An ordinary table or view name in the FROM clause */ 5239 assert( pFrom->pTab==0 ); 5240 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5241 if( pTab==0 ) return WRC_Abort; 5242 if( pTab->nTabRef>=0xffff ){ 5243 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5244 pTab->zName); 5245 pFrom->pTab = 0; 5246 return WRC_Abort; 5247 } 5248 pTab->nTabRef++; 5249 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5250 return WRC_Abort; 5251 } 5252 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5253 if( IsVirtual(pTab) || pTab->pSelect ){ 5254 i16 nCol; 5255 u8 eCodeOrig = pWalker->eCode; 5256 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5257 assert( pFrom->pSelect==0 ); 5258 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 5259 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5260 pTab->zName); 5261 } 5262 #ifndef SQLITE_OMIT_VIRTUALTABLE 5263 if( IsVirtual(pTab) 5264 && pFrom->fg.fromDDL 5265 && ALWAYS(pTab->pVTable!=0) 5266 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5267 ){ 5268 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5269 pTab->zName); 5270 } 5271 #endif 5272 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5273 nCol = pTab->nCol; 5274 pTab->nCol = -1; 5275 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5276 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5277 pWalker->eCode = eCodeOrig; 5278 pTab->nCol = nCol; 5279 } 5280 #endif 5281 } 5282 5283 /* Locate the index named by the INDEXED BY clause, if any. */ 5284 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5285 return WRC_Abort; 5286 } 5287 } 5288 5289 /* Process NATURAL keywords, and ON and USING clauses of joins. 5290 */ 5291 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5292 return WRC_Abort; 5293 } 5294 5295 /* For every "*" that occurs in the column list, insert the names of 5296 ** all columns in all tables. And for every TABLE.* insert the names 5297 ** of all columns in TABLE. The parser inserted a special expression 5298 ** with the TK_ASTERISK operator for each "*" that it found in the column 5299 ** list. The following code just has to locate the TK_ASTERISK 5300 ** expressions and expand each one to the list of all columns in 5301 ** all tables. 5302 ** 5303 ** The first loop just checks to see if there are any "*" operators 5304 ** that need expanding. 5305 */ 5306 for(k=0; k<pEList->nExpr; k++){ 5307 pE = pEList->a[k].pExpr; 5308 if( pE->op==TK_ASTERISK ) break; 5309 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5310 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5311 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5312 elistFlags |= pE->flags; 5313 } 5314 if( k<pEList->nExpr ){ 5315 /* 5316 ** If we get here it means the result set contains one or more "*" 5317 ** operators that need to be expanded. Loop through each expression 5318 ** in the result set and expand them one by one. 5319 */ 5320 struct ExprList_item *a = pEList->a; 5321 ExprList *pNew = 0; 5322 int flags = pParse->db->flags; 5323 int longNames = (flags & SQLITE_FullColNames)!=0 5324 && (flags & SQLITE_ShortColNames)==0; 5325 5326 for(k=0; k<pEList->nExpr; k++){ 5327 pE = a[k].pExpr; 5328 elistFlags |= pE->flags; 5329 pRight = pE->pRight; 5330 assert( pE->op!=TK_DOT || pRight!=0 ); 5331 if( pE->op!=TK_ASTERISK 5332 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5333 ){ 5334 /* This particular expression does not need to be expanded. 5335 */ 5336 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5337 if( pNew ){ 5338 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5339 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5340 a[k].zEName = 0; 5341 } 5342 a[k].pExpr = 0; 5343 }else{ 5344 /* This expression is a "*" or a "TABLE.*" and needs to be 5345 ** expanded. */ 5346 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5347 char *zTName = 0; /* text of name of TABLE */ 5348 if( pE->op==TK_DOT ){ 5349 assert( pE->pLeft!=0 ); 5350 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5351 zTName = pE->pLeft->u.zToken; 5352 } 5353 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5354 Table *pTab = pFrom->pTab; 5355 Select *pSub = pFrom->pSelect; 5356 char *zTabName = pFrom->zAlias; 5357 const char *zSchemaName = 0; 5358 int iDb; 5359 if( zTabName==0 ){ 5360 zTabName = pTab->zName; 5361 } 5362 if( db->mallocFailed ) break; 5363 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5364 pSub = 0; 5365 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5366 continue; 5367 } 5368 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5369 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5370 } 5371 for(j=0; j<pTab->nCol; j++){ 5372 char *zName = pTab->aCol[j].zName; 5373 char *zColname; /* The computed column name */ 5374 char *zToFree; /* Malloced string that needs to be freed */ 5375 Token sColname; /* Computed column name as a token */ 5376 5377 assert( zName ); 5378 if( zTName && pSub 5379 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5380 ){ 5381 continue; 5382 } 5383 5384 /* If a column is marked as 'hidden', omit it from the expanded 5385 ** result-set list unless the SELECT has the SF_IncludeHidden 5386 ** bit set. 5387 */ 5388 if( (p->selFlags & SF_IncludeHidden)==0 5389 && IsHiddenColumn(&pTab->aCol[j]) 5390 ){ 5391 continue; 5392 } 5393 tableSeen = 1; 5394 5395 if( i>0 && zTName==0 ){ 5396 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5397 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5398 ){ 5399 /* In a NATURAL join, omit the join columns from the 5400 ** table to the right of the join */ 5401 continue; 5402 } 5403 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5404 /* In a join with a USING clause, omit columns in the 5405 ** using clause from the table on the right. */ 5406 continue; 5407 } 5408 } 5409 pRight = sqlite3Expr(db, TK_ID, zName); 5410 zColname = zName; 5411 zToFree = 0; 5412 if( longNames || pTabList->nSrc>1 ){ 5413 Expr *pLeft; 5414 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5415 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5416 if( zSchemaName ){ 5417 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5418 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5419 } 5420 if( longNames ){ 5421 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5422 zToFree = zColname; 5423 } 5424 }else{ 5425 pExpr = pRight; 5426 } 5427 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5428 sqlite3TokenInit(&sColname, zColname); 5429 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5430 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5431 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5432 sqlite3DbFree(db, pX->zEName); 5433 if( pSub ){ 5434 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5435 testcase( pX->zEName==0 ); 5436 }else{ 5437 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5438 zSchemaName, zTabName, zColname); 5439 testcase( pX->zEName==0 ); 5440 } 5441 pX->eEName = ENAME_TAB; 5442 } 5443 sqlite3DbFree(db, zToFree); 5444 } 5445 } 5446 if( !tableSeen ){ 5447 if( zTName ){ 5448 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5449 }else{ 5450 sqlite3ErrorMsg(pParse, "no tables specified"); 5451 } 5452 } 5453 } 5454 } 5455 sqlite3ExprListDelete(db, pEList); 5456 p->pEList = pNew; 5457 } 5458 if( p->pEList ){ 5459 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5460 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5461 return WRC_Abort; 5462 } 5463 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5464 p->selFlags |= SF_ComplexResult; 5465 } 5466 } 5467 return WRC_Continue; 5468 } 5469 5470 #if SQLITE_DEBUG 5471 /* 5472 ** Always assert. This xSelectCallback2 implementation proves that the 5473 ** xSelectCallback2 is never invoked. 5474 */ 5475 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5476 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5477 assert( 0 ); 5478 } 5479 #endif 5480 /* 5481 ** This routine "expands" a SELECT statement and all of its subqueries. 5482 ** For additional information on what it means to "expand" a SELECT 5483 ** statement, see the comment on the selectExpand worker callback above. 5484 ** 5485 ** Expanding a SELECT statement is the first step in processing a 5486 ** SELECT statement. The SELECT statement must be expanded before 5487 ** name resolution is performed. 5488 ** 5489 ** If anything goes wrong, an error message is written into pParse. 5490 ** The calling function can detect the problem by looking at pParse->nErr 5491 ** and/or pParse->db->mallocFailed. 5492 */ 5493 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5494 Walker w; 5495 w.xExprCallback = sqlite3ExprWalkNoop; 5496 w.pParse = pParse; 5497 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5498 w.xSelectCallback = convertCompoundSelectToSubquery; 5499 w.xSelectCallback2 = 0; 5500 sqlite3WalkSelect(&w, pSelect); 5501 } 5502 w.xSelectCallback = selectExpander; 5503 w.xSelectCallback2 = selectPopWith; 5504 w.eCode = 0; 5505 sqlite3WalkSelect(&w, pSelect); 5506 } 5507 5508 5509 #ifndef SQLITE_OMIT_SUBQUERY 5510 /* 5511 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5512 ** interface. 5513 ** 5514 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5515 ** information to the Table structure that represents the result set 5516 ** of that subquery. 5517 ** 5518 ** The Table structure that represents the result set was constructed 5519 ** by selectExpander() but the type and collation information was omitted 5520 ** at that point because identifiers had not yet been resolved. This 5521 ** routine is called after identifier resolution. 5522 */ 5523 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5524 Parse *pParse; 5525 int i; 5526 SrcList *pTabList; 5527 SrcItem *pFrom; 5528 5529 assert( p->selFlags & SF_Resolved ); 5530 if( p->selFlags & SF_HasTypeInfo ) return; 5531 p->selFlags |= SF_HasTypeInfo; 5532 pParse = pWalker->pParse; 5533 pTabList = p->pSrc; 5534 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5535 Table *pTab = pFrom->pTab; 5536 assert( pTab!=0 ); 5537 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5538 /* A sub-query in the FROM clause of a SELECT */ 5539 Select *pSel = pFrom->pSelect; 5540 if( pSel ){ 5541 while( pSel->pPrior ) pSel = pSel->pPrior; 5542 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5543 SQLITE_AFF_NONE); 5544 } 5545 } 5546 } 5547 } 5548 #endif 5549 5550 5551 /* 5552 ** This routine adds datatype and collating sequence information to 5553 ** the Table structures of all FROM-clause subqueries in a 5554 ** SELECT statement. 5555 ** 5556 ** Use this routine after name resolution. 5557 */ 5558 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5559 #ifndef SQLITE_OMIT_SUBQUERY 5560 Walker w; 5561 w.xSelectCallback = sqlite3SelectWalkNoop; 5562 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5563 w.xExprCallback = sqlite3ExprWalkNoop; 5564 w.pParse = pParse; 5565 sqlite3WalkSelect(&w, pSelect); 5566 #endif 5567 } 5568 5569 5570 /* 5571 ** This routine sets up a SELECT statement for processing. The 5572 ** following is accomplished: 5573 ** 5574 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5575 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5576 ** * ON and USING clauses are shifted into WHERE statements 5577 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5578 ** * Identifiers in expression are matched to tables. 5579 ** 5580 ** This routine acts recursively on all subqueries within the SELECT. 5581 */ 5582 void sqlite3SelectPrep( 5583 Parse *pParse, /* The parser context */ 5584 Select *p, /* The SELECT statement being coded. */ 5585 NameContext *pOuterNC /* Name context for container */ 5586 ){ 5587 assert( p!=0 || pParse->db->mallocFailed ); 5588 if( pParse->db->mallocFailed ) return; 5589 if( p->selFlags & SF_HasTypeInfo ) return; 5590 sqlite3SelectExpand(pParse, p); 5591 if( pParse->nErr || pParse->db->mallocFailed ) return; 5592 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5593 if( pParse->nErr || pParse->db->mallocFailed ) return; 5594 sqlite3SelectAddTypeInfo(pParse, p); 5595 } 5596 5597 /* 5598 ** Reset the aggregate accumulator. 5599 ** 5600 ** The aggregate accumulator is a set of memory cells that hold 5601 ** intermediate results while calculating an aggregate. This 5602 ** routine generates code that stores NULLs in all of those memory 5603 ** cells. 5604 */ 5605 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5606 Vdbe *v = pParse->pVdbe; 5607 int i; 5608 struct AggInfo_func *pFunc; 5609 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5610 if( nReg==0 ) return; 5611 if( pParse->nErr || pParse->db->mallocFailed ) return; 5612 #ifdef SQLITE_DEBUG 5613 /* Verify that all AggInfo registers are within the range specified by 5614 ** AggInfo.mnReg..AggInfo.mxReg */ 5615 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5616 for(i=0; i<pAggInfo->nColumn; i++){ 5617 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5618 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5619 } 5620 for(i=0; i<pAggInfo->nFunc; i++){ 5621 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5622 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5623 } 5624 #endif 5625 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5626 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5627 if( pFunc->iDistinct>=0 ){ 5628 Expr *pE = pFunc->pFExpr; 5629 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5630 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5631 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5632 "argument"); 5633 pFunc->iDistinct = -1; 5634 }else{ 5635 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5636 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5637 (char*)pKeyInfo, P4_KEYINFO); 5638 } 5639 } 5640 } 5641 } 5642 5643 /* 5644 ** Invoke the OP_AggFinalize opcode for every aggregate function 5645 ** in the AggInfo structure. 5646 */ 5647 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5648 Vdbe *v = pParse->pVdbe; 5649 int i; 5650 struct AggInfo_func *pF; 5651 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5652 ExprList *pList = pF->pFExpr->x.pList; 5653 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5654 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5655 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5656 } 5657 } 5658 5659 5660 /* 5661 ** Update the accumulator memory cells for an aggregate based on 5662 ** the current cursor position. 5663 ** 5664 ** If regAcc is non-zero and there are no min() or max() aggregates 5665 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5666 ** registers if register regAcc contains 0. The caller will take care 5667 ** of setting and clearing regAcc. 5668 */ 5669 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5670 Vdbe *v = pParse->pVdbe; 5671 int i; 5672 int regHit = 0; 5673 int addrHitTest = 0; 5674 struct AggInfo_func *pF; 5675 struct AggInfo_col *pC; 5676 5677 pAggInfo->directMode = 1; 5678 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5679 int nArg; 5680 int addrNext = 0; 5681 int regAgg; 5682 ExprList *pList = pF->pFExpr->x.pList; 5683 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5684 assert( !IsWindowFunc(pF->pFExpr) ); 5685 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5686 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5687 if( pAggInfo->nAccumulator 5688 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5689 && regAcc 5690 ){ 5691 /* If regAcc==0, there there exists some min() or max() function 5692 ** without a FILTER clause that will ensure the magnet registers 5693 ** are populated. */ 5694 if( regHit==0 ) regHit = ++pParse->nMem; 5695 /* If this is the first row of the group (regAcc contains 0), clear the 5696 ** "magnet" register regHit so that the accumulator registers 5697 ** are populated if the FILTER clause jumps over the the 5698 ** invocation of min() or max() altogether. Or, if this is not 5699 ** the first row (regAcc contains 1), set the magnet register so that 5700 ** the accumulators are not populated unless the min()/max() is invoked 5701 ** and indicates that they should be. */ 5702 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5703 } 5704 addrNext = sqlite3VdbeMakeLabel(pParse); 5705 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5706 } 5707 if( pList ){ 5708 nArg = pList->nExpr; 5709 regAgg = sqlite3GetTempRange(pParse, nArg); 5710 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5711 }else{ 5712 nArg = 0; 5713 regAgg = 0; 5714 } 5715 if( pF->iDistinct>=0 ){ 5716 if( addrNext==0 ){ 5717 addrNext = sqlite3VdbeMakeLabel(pParse); 5718 } 5719 testcase( nArg==0 ); /* Error condition */ 5720 testcase( nArg>1 ); /* Also an error */ 5721 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5722 } 5723 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5724 CollSeq *pColl = 0; 5725 struct ExprList_item *pItem; 5726 int j; 5727 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5728 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5729 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5730 } 5731 if( !pColl ){ 5732 pColl = pParse->db->pDfltColl; 5733 } 5734 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5735 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5736 } 5737 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5738 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5739 sqlite3VdbeChangeP5(v, (u8)nArg); 5740 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5741 if( addrNext ){ 5742 sqlite3VdbeResolveLabel(v, addrNext); 5743 } 5744 } 5745 if( regHit==0 && pAggInfo->nAccumulator ){ 5746 regHit = regAcc; 5747 } 5748 if( regHit ){ 5749 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5750 } 5751 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5752 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5753 } 5754 5755 pAggInfo->directMode = 0; 5756 if( addrHitTest ){ 5757 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5758 } 5759 } 5760 5761 /* 5762 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5763 ** count(*) query ("SELECT count(*) FROM pTab"). 5764 */ 5765 #ifndef SQLITE_OMIT_EXPLAIN 5766 static void explainSimpleCount( 5767 Parse *pParse, /* Parse context */ 5768 Table *pTab, /* Table being queried */ 5769 Index *pIdx /* Index used to optimize scan, or NULL */ 5770 ){ 5771 if( pParse->explain==2 ){ 5772 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5773 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5774 pTab->zName, 5775 bCover ? " USING COVERING INDEX " : "", 5776 bCover ? pIdx->zName : "" 5777 ); 5778 } 5779 } 5780 #else 5781 # define explainSimpleCount(a,b,c) 5782 #endif 5783 5784 /* 5785 ** sqlite3WalkExpr() callback used by havingToWhere(). 5786 ** 5787 ** If the node passed to the callback is a TK_AND node, return 5788 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5789 ** 5790 ** Otherwise, return WRC_Prune. In this case, also check if the 5791 ** sub-expression matches the criteria for being moved to the WHERE 5792 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5793 ** within the HAVING expression with a constant "1". 5794 */ 5795 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5796 if( pExpr->op!=TK_AND ){ 5797 Select *pS = pWalker->u.pSelect; 5798 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 5799 && ExprAlwaysFalse(pExpr)==0 5800 ){ 5801 sqlite3 *db = pWalker->pParse->db; 5802 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5803 if( pNew ){ 5804 Expr *pWhere = pS->pWhere; 5805 SWAP(Expr, *pNew, *pExpr); 5806 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5807 pS->pWhere = pNew; 5808 pWalker->eCode = 1; 5809 } 5810 } 5811 return WRC_Prune; 5812 } 5813 return WRC_Continue; 5814 } 5815 5816 /* 5817 ** Transfer eligible terms from the HAVING clause of a query, which is 5818 ** processed after grouping, to the WHERE clause, which is processed before 5819 ** grouping. For example, the query: 5820 ** 5821 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5822 ** 5823 ** can be rewritten as: 5824 ** 5825 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5826 ** 5827 ** A term of the HAVING expression is eligible for transfer if it consists 5828 ** entirely of constants and expressions that are also GROUP BY terms that 5829 ** use the "BINARY" collation sequence. 5830 */ 5831 static void havingToWhere(Parse *pParse, Select *p){ 5832 Walker sWalker; 5833 memset(&sWalker, 0, sizeof(sWalker)); 5834 sWalker.pParse = pParse; 5835 sWalker.xExprCallback = havingToWhereExprCb; 5836 sWalker.u.pSelect = p; 5837 sqlite3WalkExpr(&sWalker, p->pHaving); 5838 #if SELECTTRACE_ENABLED 5839 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5840 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5841 sqlite3TreeViewSelect(0, p, 0); 5842 } 5843 #endif 5844 } 5845 5846 /* 5847 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5848 ** If it is, then return the SrcList_item for the prior view. If it is not, 5849 ** then return 0. 5850 */ 5851 static SrcItem *isSelfJoinView( 5852 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5853 SrcItem *pThis /* Search for prior reference to this subquery */ 5854 ){ 5855 SrcItem *pItem; 5856 assert( pThis->pSelect!=0 ); 5857 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 5858 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5859 Select *pS1; 5860 if( pItem->pSelect==0 ) continue; 5861 if( pItem->fg.viaCoroutine ) continue; 5862 if( pItem->zName==0 ) continue; 5863 assert( pItem->pTab!=0 ); 5864 assert( pThis->pTab!=0 ); 5865 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5866 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5867 pS1 = pItem->pSelect; 5868 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5869 /* The query flattener left two different CTE tables with identical 5870 ** names in the same FROM clause. */ 5871 continue; 5872 } 5873 if( pItem->pSelect->selFlags & SF_PushDown ){ 5874 /* The view was modified by some other optimization such as 5875 ** pushDownWhereTerms() */ 5876 continue; 5877 } 5878 return pItem; 5879 } 5880 return 0; 5881 } 5882 5883 /* 5884 ** Deallocate a single AggInfo object 5885 */ 5886 static void agginfoFree(sqlite3 *db, AggInfo *p){ 5887 sqlite3DbFree(db, p->aCol); 5888 sqlite3DbFree(db, p->aFunc); 5889 sqlite3DbFreeNN(db, p); 5890 } 5891 5892 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5893 /* 5894 ** Attempt to transform a query of the form 5895 ** 5896 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5897 ** 5898 ** Into this: 5899 ** 5900 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5901 ** 5902 ** The transformation only works if all of the following are true: 5903 ** 5904 ** * The subquery is a UNION ALL of two or more terms 5905 ** * The subquery does not have a LIMIT clause 5906 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5907 ** * The outer query is a simple count(*) with no WHERE clause or other 5908 ** extraneous syntax. 5909 ** 5910 ** Return TRUE if the optimization is undertaken. 5911 */ 5912 static int countOfViewOptimization(Parse *pParse, Select *p){ 5913 Select *pSub, *pPrior; 5914 Expr *pExpr; 5915 Expr *pCount; 5916 sqlite3 *db; 5917 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5918 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5919 if( p->pWhere ) return 0; 5920 if( p->pGroupBy ) return 0; 5921 pExpr = p->pEList->a[0].pExpr; 5922 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5923 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5924 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5925 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5926 pSub = p->pSrc->a[0].pSelect; 5927 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5928 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5929 do{ 5930 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5931 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5932 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5933 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5934 pSub = pSub->pPrior; /* Repeat over compound */ 5935 }while( pSub ); 5936 5937 /* If we reach this point then it is OK to perform the transformation */ 5938 5939 db = pParse->db; 5940 pCount = pExpr; 5941 pExpr = 0; 5942 pSub = p->pSrc->a[0].pSelect; 5943 p->pSrc->a[0].pSelect = 0; 5944 sqlite3SrcListDelete(db, p->pSrc); 5945 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5946 while( pSub ){ 5947 Expr *pTerm; 5948 pPrior = pSub->pPrior; 5949 pSub->pPrior = 0; 5950 pSub->pNext = 0; 5951 pSub->selFlags |= SF_Aggregate; 5952 pSub->selFlags &= ~SF_Compound; 5953 pSub->nSelectRow = 0; 5954 sqlite3ExprListDelete(db, pSub->pEList); 5955 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5956 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5957 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5958 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5959 if( pExpr==0 ){ 5960 pExpr = pTerm; 5961 }else{ 5962 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5963 } 5964 pSub = pPrior; 5965 } 5966 p->pEList->a[0].pExpr = pExpr; 5967 p->selFlags &= ~SF_Aggregate; 5968 5969 #if SELECTTRACE_ENABLED 5970 if( sqlite3SelectTrace & 0x400 ){ 5971 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5972 sqlite3TreeViewSelect(0, p, 0); 5973 } 5974 #endif 5975 return 1; 5976 } 5977 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5978 5979 /* 5980 ** Generate code for the SELECT statement given in the p argument. 5981 ** 5982 ** The results are returned according to the SelectDest structure. 5983 ** See comments in sqliteInt.h for further information. 5984 ** 5985 ** This routine returns the number of errors. If any errors are 5986 ** encountered, then an appropriate error message is left in 5987 ** pParse->zErrMsg. 5988 ** 5989 ** This routine does NOT free the Select structure passed in. The 5990 ** calling function needs to do that. 5991 */ 5992 int sqlite3Select( 5993 Parse *pParse, /* The parser context */ 5994 Select *p, /* The SELECT statement being coded. */ 5995 SelectDest *pDest /* What to do with the query results */ 5996 ){ 5997 int i, j; /* Loop counters */ 5998 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5999 Vdbe *v; /* The virtual machine under construction */ 6000 int isAgg; /* True for select lists like "count(*)" */ 6001 ExprList *pEList = 0; /* List of columns to extract. */ 6002 SrcList *pTabList; /* List of tables to select from */ 6003 Expr *pWhere; /* The WHERE clause. May be NULL */ 6004 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6005 Expr *pHaving; /* The HAVING clause. May be NULL */ 6006 AggInfo *pAggInfo = 0; /* Aggregate information */ 6007 int rc = 1; /* Value to return from this function */ 6008 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6009 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6010 int iEnd; /* Address of the end of the query */ 6011 sqlite3 *db; /* The database connection */ 6012 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6013 u8 minMaxFlag; /* Flag for min/max queries */ 6014 6015 db = pParse->db; 6016 v = sqlite3GetVdbe(pParse); 6017 if( p==0 || db->mallocFailed || pParse->nErr ){ 6018 return 1; 6019 } 6020 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6021 #if SELECTTRACE_ENABLED 6022 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6023 if( sqlite3SelectTrace & 0x100 ){ 6024 sqlite3TreeViewSelect(0, p, 0); 6025 } 6026 #endif 6027 6028 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6029 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6030 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6031 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6032 if( IgnorableDistinct(pDest) ){ 6033 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6034 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6035 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6036 /* All of these destinations are also able to ignore the ORDER BY clause */ 6037 if( p->pOrderBy ){ 6038 #if SELECTTRACE_ENABLED 6039 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6040 if( sqlite3SelectTrace & 0x100 ){ 6041 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6042 } 6043 #endif 6044 sqlite3ParserAddCleanup(pParse, 6045 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6046 p->pOrderBy); 6047 p->pOrderBy = 0; 6048 } 6049 p->selFlags &= ~SF_Distinct; 6050 p->selFlags |= SF_NoopOrderBy; 6051 } 6052 sqlite3SelectPrep(pParse, p, 0); 6053 if( pParse->nErr || db->mallocFailed ){ 6054 goto select_end; 6055 } 6056 assert( p->pEList!=0 ); 6057 #if SELECTTRACE_ENABLED 6058 if( sqlite3SelectTrace & 0x104 ){ 6059 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6060 sqlite3TreeViewSelect(0, p, 0); 6061 } 6062 #endif 6063 6064 /* If the SF_UpdateFrom flag is set, then this function is being called 6065 ** as part of populating the temp table for an UPDATE...FROM statement. 6066 ** In this case, it is an error if the target object (pSrc->a[0]) name 6067 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */ 6068 if( p->selFlags & SF_UpdateFrom ){ 6069 SrcItem *p0 = &p->pSrc->a[0]; 6070 for(i=1; i<p->pSrc->nSrc; i++){ 6071 SrcItem *p1 = &p->pSrc->a[i]; 6072 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6073 sqlite3ErrorMsg(pParse, 6074 "target object/alias may not appear in FROM clause: %s", 6075 p0->zAlias ? p0->zAlias : p0->pTab->zName 6076 ); 6077 goto select_end; 6078 } 6079 } 6080 } 6081 6082 if( pDest->eDest==SRT_Output ){ 6083 generateColumnNames(pParse, p); 6084 } 6085 6086 #ifndef SQLITE_OMIT_WINDOWFUNC 6087 rc = sqlite3WindowRewrite(pParse, p); 6088 if( rc ){ 6089 assert( db->mallocFailed || pParse->nErr>0 ); 6090 goto select_end; 6091 } 6092 #if SELECTTRACE_ENABLED 6093 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6094 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6095 sqlite3TreeViewSelect(0, p, 0); 6096 } 6097 #endif 6098 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6099 pTabList = p->pSrc; 6100 isAgg = (p->selFlags & SF_Aggregate)!=0; 6101 memset(&sSort, 0, sizeof(sSort)); 6102 sSort.pOrderBy = p->pOrderBy; 6103 6104 /* Try to do various optimizations (flattening subqueries, and strength 6105 ** reduction of join operators) in the FROM clause up into the main query 6106 */ 6107 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6108 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6109 SrcItem *pItem = &pTabList->a[i]; 6110 Select *pSub = pItem->pSelect; 6111 Table *pTab = pItem->pTab; 6112 6113 /* The expander should have already created transient Table objects 6114 ** even for FROM clause elements such as subqueries that do not correspond 6115 ** to a real table */ 6116 assert( pTab!=0 ); 6117 6118 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6119 ** of the LEFT JOIN used in the WHERE clause. 6120 */ 6121 if( (pItem->fg.jointype & JT_LEFT)!=0 6122 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6123 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6124 ){ 6125 SELECTTRACE(0x100,pParse,p, 6126 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6127 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6128 unsetJoinExpr(p->pWhere, pItem->iCursor); 6129 } 6130 6131 /* No futher action if this term of the FROM clause is no a subquery */ 6132 if( pSub==0 ) continue; 6133 6134 /* Catch mismatch in the declared columns of a view and the number of 6135 ** columns in the SELECT on the RHS */ 6136 if( pTab->nCol!=pSub->pEList->nExpr ){ 6137 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6138 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6139 goto select_end; 6140 } 6141 6142 /* Do not try to flatten an aggregate subquery. 6143 ** 6144 ** Flattening an aggregate subquery is only possible if the outer query 6145 ** is not a join. But if the outer query is not a join, then the subquery 6146 ** will be implemented as a co-routine and there is no advantage to 6147 ** flattening in that case. 6148 */ 6149 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6150 assert( pSub->pGroupBy==0 ); 6151 6152 /* If the outer query contains a "complex" result set (that is, 6153 ** if the result set of the outer query uses functions or subqueries) 6154 ** and if the subquery contains an ORDER BY clause and if 6155 ** it will be implemented as a co-routine, then do not flatten. This 6156 ** restriction allows SQL constructs like this: 6157 ** 6158 ** SELECT expensive_function(x) 6159 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6160 ** 6161 ** The expensive_function() is only computed on the 10 rows that 6162 ** are output, rather than every row of the table. 6163 ** 6164 ** The requirement that the outer query have a complex result set 6165 ** means that flattening does occur on simpler SQL constraints without 6166 ** the expensive_function() like: 6167 ** 6168 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6169 */ 6170 if( pSub->pOrderBy!=0 6171 && i==0 6172 && (p->selFlags & SF_ComplexResult)!=0 6173 && (pTabList->nSrc==1 6174 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6175 ){ 6176 continue; 6177 } 6178 6179 if( flattenSubquery(pParse, p, i, isAgg) ){ 6180 if( pParse->nErr ) goto select_end; 6181 /* This subquery can be absorbed into its parent. */ 6182 i = -1; 6183 } 6184 pTabList = p->pSrc; 6185 if( db->mallocFailed ) goto select_end; 6186 if( !IgnorableOrderby(pDest) ){ 6187 sSort.pOrderBy = p->pOrderBy; 6188 } 6189 } 6190 #endif 6191 6192 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6193 /* Handle compound SELECT statements using the separate multiSelect() 6194 ** procedure. 6195 */ 6196 if( p->pPrior ){ 6197 rc = multiSelect(pParse, p, pDest); 6198 #if SELECTTRACE_ENABLED 6199 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6200 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6201 sqlite3TreeViewSelect(0, p, 0); 6202 } 6203 #endif 6204 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6205 return rc; 6206 } 6207 #endif 6208 6209 /* Do the WHERE-clause constant propagation optimization if this is 6210 ** a join. No need to speed time on this operation for non-join queries 6211 ** as the equivalent optimization will be handled by query planner in 6212 ** sqlite3WhereBegin(). 6213 */ 6214 if( pTabList->nSrc>1 6215 && OptimizationEnabled(db, SQLITE_PropagateConst) 6216 && propagateConstants(pParse, p) 6217 ){ 6218 #if SELECTTRACE_ENABLED 6219 if( sqlite3SelectTrace & 0x100 ){ 6220 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6221 sqlite3TreeViewSelect(0, p, 0); 6222 } 6223 #endif 6224 }else{ 6225 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6226 } 6227 6228 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6229 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6230 && countOfViewOptimization(pParse, p) 6231 ){ 6232 if( db->mallocFailed ) goto select_end; 6233 pEList = p->pEList; 6234 pTabList = p->pSrc; 6235 } 6236 #endif 6237 6238 /* For each term in the FROM clause, do two things: 6239 ** (1) Authorized unreferenced tables 6240 ** (2) Generate code for all sub-queries 6241 */ 6242 for(i=0; i<pTabList->nSrc; i++){ 6243 SrcItem *pItem = &pTabList->a[i]; 6244 SrcItem *pPrior; 6245 SelectDest dest; 6246 Select *pSub; 6247 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6248 const char *zSavedAuthContext; 6249 #endif 6250 6251 /* Issue SQLITE_READ authorizations with a fake column name for any 6252 ** tables that are referenced but from which no values are extracted. 6253 ** Examples of where these kinds of null SQLITE_READ authorizations 6254 ** would occur: 6255 ** 6256 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6257 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6258 ** 6259 ** The fake column name is an empty string. It is possible for a table to 6260 ** have a column named by the empty string, in which case there is no way to 6261 ** distinguish between an unreferenced table and an actual reference to the 6262 ** "" column. The original design was for the fake column name to be a NULL, 6263 ** which would be unambiguous. But legacy authorization callbacks might 6264 ** assume the column name is non-NULL and segfault. The use of an empty 6265 ** string for the fake column name seems safer. 6266 */ 6267 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6268 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6269 } 6270 6271 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6272 /* Generate code for all sub-queries in the FROM clause 6273 */ 6274 pSub = pItem->pSelect; 6275 if( pSub==0 ) continue; 6276 6277 /* The code for a subquery should only be generated once, though it is 6278 ** technically harmless for it to be generated multiple times. The 6279 ** following assert() will detect if something changes to cause 6280 ** the same subquery to be coded multiple times, as a signal to the 6281 ** developers to try to optimize the situation. 6282 ** 6283 ** Update 2019-07-24: 6284 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6285 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6286 ** coded twice. So this assert() now becomes a testcase(). It should 6287 ** be very rare, though. 6288 */ 6289 testcase( pItem->addrFillSub!=0 ); 6290 6291 /* Increment Parse.nHeight by the height of the largest expression 6292 ** tree referred to by this, the parent select. The child select 6293 ** may contain expression trees of at most 6294 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6295 ** more conservative than necessary, but much easier than enforcing 6296 ** an exact limit. 6297 */ 6298 pParse->nHeight += sqlite3SelectExprHeight(p); 6299 6300 /* Make copies of constant WHERE-clause terms in the outer query down 6301 ** inside the subquery. This can help the subquery to run more efficiently. 6302 */ 6303 if( OptimizationEnabled(db, SQLITE_PushDown) 6304 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) 6305 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6306 (pItem->fg.jointype & JT_OUTER)!=0) 6307 ){ 6308 #if SELECTTRACE_ENABLED 6309 if( sqlite3SelectTrace & 0x100 ){ 6310 SELECTTRACE(0x100,pParse,p, 6311 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6312 sqlite3TreeViewSelect(0, p, 0); 6313 } 6314 #endif 6315 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6316 }else{ 6317 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6318 } 6319 6320 zSavedAuthContext = pParse->zAuthContext; 6321 pParse->zAuthContext = pItem->zName; 6322 6323 /* Generate code to implement the subquery 6324 ** 6325 ** The subquery is implemented as a co-routine if: 6326 ** (1) the subquery is guaranteed to be the outer loop (so that 6327 ** it does not need to be computed more than once), and 6328 ** (2) the subquery is not a CTE that should be materialized 6329 ** 6330 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6331 ** implementation? 6332 */ 6333 if( i==0 6334 && (pTabList->nSrc==1 6335 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6336 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6337 ){ 6338 /* Implement a co-routine that will return a single row of the result 6339 ** set on each invocation. 6340 */ 6341 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6342 6343 pItem->regReturn = ++pParse->nMem; 6344 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6345 VdbeComment((v, "%s", pItem->pTab->zName)); 6346 pItem->addrFillSub = addrTop; 6347 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6348 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6349 sqlite3Select(pParse, pSub, &dest); 6350 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6351 pItem->fg.viaCoroutine = 1; 6352 pItem->regResult = dest.iSdst; 6353 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6354 sqlite3VdbeJumpHere(v, addrTop-1); 6355 sqlite3ClearTempRegCache(pParse); 6356 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6357 /* This is a CTE for which materialization code has already been 6358 ** generated. Invoke the subroutine to compute the materialization, 6359 ** the make the pItem->iCursor be a copy of the ephemerial table that 6360 ** holds the result of the materialization. */ 6361 CteUse *pCteUse = pItem->u2.pCteUse; 6362 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6363 if( pItem->iCursor!=pCteUse->iCur ){ 6364 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6365 } 6366 pSub->nSelectRow = pCteUse->nRowEst; 6367 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6368 /* This view has already been materialized by a prior entry in 6369 ** this same FROM clause. Reuse it. */ 6370 if( pPrior->addrFillSub ){ 6371 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6372 } 6373 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6374 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6375 }else{ 6376 /* Generate a subroutine that will materialize the view. */ 6377 int topAddr; 6378 int onceAddr = 0; 6379 int retAddr; 6380 6381 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6382 pItem->regReturn = ++pParse->nMem; 6383 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6384 pItem->addrFillSub = topAddr+1; 6385 if( pItem->fg.isCorrelated==0 ){ 6386 /* If the subquery is not correlated and if we are not inside of 6387 ** a trigger, then we only need to compute the value of the subquery 6388 ** once. */ 6389 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6390 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6391 }else{ 6392 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6393 } 6394 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6395 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6396 sqlite3Select(pParse, pSub, &dest); 6397 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6398 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6399 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6400 VdbeComment((v, "end %s", pItem->pTab->zName)); 6401 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6402 sqlite3ClearTempRegCache(pParse); 6403 if( pItem->fg.isCte ){ 6404 CteUse *pCteUse = pItem->u2.pCteUse; 6405 pCteUse->addrM9e = pItem->addrFillSub; 6406 pCteUse->regRtn = pItem->regReturn; 6407 pCteUse->iCur = pItem->iCursor; 6408 pCteUse->nRowEst = pSub->nSelectRow; 6409 } 6410 } 6411 if( db->mallocFailed ) goto select_end; 6412 pParse->nHeight -= sqlite3SelectExprHeight(p); 6413 pParse->zAuthContext = zSavedAuthContext; 6414 #endif 6415 } 6416 6417 /* Various elements of the SELECT copied into local variables for 6418 ** convenience */ 6419 pEList = p->pEList; 6420 pWhere = p->pWhere; 6421 pGroupBy = p->pGroupBy; 6422 pHaving = p->pHaving; 6423 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6424 6425 #if SELECTTRACE_ENABLED 6426 if( sqlite3SelectTrace & 0x400 ){ 6427 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6428 sqlite3TreeViewSelect(0, p, 0); 6429 } 6430 #endif 6431 6432 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6433 ** if the select-list is the same as the ORDER BY list, then this query 6434 ** can be rewritten as a GROUP BY. In other words, this: 6435 ** 6436 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6437 ** 6438 ** is transformed to: 6439 ** 6440 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6441 ** 6442 ** The second form is preferred as a single index (or temp-table) may be 6443 ** used for both the ORDER BY and DISTINCT processing. As originally 6444 ** written the query must use a temp-table for at least one of the ORDER 6445 ** BY and DISTINCT, and an index or separate temp-table for the other. 6446 */ 6447 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6448 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6449 #ifndef SQLITE_OMIT_WINDOWFUNC 6450 && p->pWin==0 6451 #endif 6452 ){ 6453 p->selFlags &= ~SF_Distinct; 6454 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6455 p->selFlags |= SF_Aggregate; 6456 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6457 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6458 ** original setting of the SF_Distinct flag, not the current setting */ 6459 assert( sDistinct.isTnct ); 6460 6461 #if SELECTTRACE_ENABLED 6462 if( sqlite3SelectTrace & 0x400 ){ 6463 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6464 sqlite3TreeViewSelect(0, p, 0); 6465 } 6466 #endif 6467 } 6468 6469 /* If there is an ORDER BY clause, then create an ephemeral index to 6470 ** do the sorting. But this sorting ephemeral index might end up 6471 ** being unused if the data can be extracted in pre-sorted order. 6472 ** If that is the case, then the OP_OpenEphemeral instruction will be 6473 ** changed to an OP_Noop once we figure out that the sorting index is 6474 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6475 ** that change. 6476 */ 6477 if( sSort.pOrderBy ){ 6478 KeyInfo *pKeyInfo; 6479 pKeyInfo = sqlite3KeyInfoFromExprList( 6480 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6481 sSort.iECursor = pParse->nTab++; 6482 sSort.addrSortIndex = 6483 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6484 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6485 (char*)pKeyInfo, P4_KEYINFO 6486 ); 6487 }else{ 6488 sSort.addrSortIndex = -1; 6489 } 6490 6491 /* If the output is destined for a temporary table, open that table. 6492 */ 6493 if( pDest->eDest==SRT_EphemTab ){ 6494 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6495 } 6496 6497 /* Set the limiter. 6498 */ 6499 iEnd = sqlite3VdbeMakeLabel(pParse); 6500 if( (p->selFlags & SF_FixedLimit)==0 ){ 6501 p->nSelectRow = 320; /* 4 billion rows */ 6502 } 6503 computeLimitRegisters(pParse, p, iEnd); 6504 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6505 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6506 sSort.sortFlags |= SORTFLAG_UseSorter; 6507 } 6508 6509 /* Open an ephemeral index to use for the distinct set. 6510 */ 6511 if( p->selFlags & SF_Distinct ){ 6512 sDistinct.tabTnct = pParse->nTab++; 6513 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6514 sDistinct.tabTnct, 0, 0, 6515 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6516 P4_KEYINFO); 6517 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6518 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6519 }else{ 6520 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6521 } 6522 6523 if( !isAgg && pGroupBy==0 ){ 6524 /* No aggregate functions and no GROUP BY clause */ 6525 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6526 | (p->selFlags & SF_FixedLimit); 6527 #ifndef SQLITE_OMIT_WINDOWFUNC 6528 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6529 if( pWin ){ 6530 sqlite3WindowCodeInit(pParse, p); 6531 } 6532 #endif 6533 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6534 6535 6536 /* Begin the database scan. */ 6537 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6538 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6539 p->pEList, wctrlFlags, p->nSelectRow); 6540 if( pWInfo==0 ) goto select_end; 6541 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6542 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6543 } 6544 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6545 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6546 } 6547 if( sSort.pOrderBy ){ 6548 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6549 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6550 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6551 sSort.pOrderBy = 0; 6552 } 6553 } 6554 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6555 6556 /* If sorting index that was created by a prior OP_OpenEphemeral 6557 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6558 ** into an OP_Noop. 6559 */ 6560 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6561 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6562 } 6563 6564 assert( p->pEList==pEList ); 6565 #ifndef SQLITE_OMIT_WINDOWFUNC 6566 if( pWin ){ 6567 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6568 int iCont = sqlite3VdbeMakeLabel(pParse); 6569 int iBreak = sqlite3VdbeMakeLabel(pParse); 6570 int regGosub = ++pParse->nMem; 6571 6572 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6573 6574 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6575 sqlite3VdbeResolveLabel(v, addrGosub); 6576 VdbeNoopComment((v, "inner-loop subroutine")); 6577 sSort.labelOBLopt = 0; 6578 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6579 sqlite3VdbeResolveLabel(v, iCont); 6580 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6581 VdbeComment((v, "end inner-loop subroutine")); 6582 sqlite3VdbeResolveLabel(v, iBreak); 6583 }else 6584 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6585 { 6586 /* Use the standard inner loop. */ 6587 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6588 sqlite3WhereContinueLabel(pWInfo), 6589 sqlite3WhereBreakLabel(pWInfo)); 6590 6591 /* End the database scan loop. 6592 */ 6593 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6594 sqlite3WhereEnd(pWInfo); 6595 } 6596 }else{ 6597 /* This case when there exist aggregate functions or a GROUP BY clause 6598 ** or both */ 6599 NameContext sNC; /* Name context for processing aggregate information */ 6600 int iAMem; /* First Mem address for storing current GROUP BY */ 6601 int iBMem; /* First Mem address for previous GROUP BY */ 6602 int iUseFlag; /* Mem address holding flag indicating that at least 6603 ** one row of the input to the aggregator has been 6604 ** processed */ 6605 int iAbortFlag; /* Mem address which causes query abort if positive */ 6606 int groupBySort; /* Rows come from source in GROUP BY order */ 6607 int addrEnd; /* End of processing for this SELECT */ 6608 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6609 int sortOut = 0; /* Output register from the sorter */ 6610 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6611 6612 /* Remove any and all aliases between the result set and the 6613 ** GROUP BY clause. 6614 */ 6615 if( pGroupBy ){ 6616 int k; /* Loop counter */ 6617 struct ExprList_item *pItem; /* For looping over expression in a list */ 6618 6619 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6620 pItem->u.x.iAlias = 0; 6621 } 6622 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6623 pItem->u.x.iAlias = 0; 6624 } 6625 assert( 66==sqlite3LogEst(100) ); 6626 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6627 6628 /* If there is both a GROUP BY and an ORDER BY clause and they are 6629 ** identical, then it may be possible to disable the ORDER BY clause 6630 ** on the grounds that the GROUP BY will cause elements to come out 6631 ** in the correct order. It also may not - the GROUP BY might use a 6632 ** database index that causes rows to be grouped together as required 6633 ** but not actually sorted. Either way, record the fact that the 6634 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6635 ** variable. */ 6636 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6637 int ii; 6638 /* The GROUP BY processing doesn't care whether rows are delivered in 6639 ** ASC or DESC order - only that each group is returned contiguously. 6640 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6641 ** ORDER BY to maximize the chances of rows being delivered in an 6642 ** order that makes the ORDER BY redundant. */ 6643 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6644 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6645 pGroupBy->a[ii].sortFlags = sortFlags; 6646 } 6647 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6648 orderByGrp = 1; 6649 } 6650 } 6651 }else{ 6652 assert( 0==sqlite3LogEst(1) ); 6653 p->nSelectRow = 0; 6654 } 6655 6656 /* Create a label to jump to when we want to abort the query */ 6657 addrEnd = sqlite3VdbeMakeLabel(pParse); 6658 6659 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6660 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6661 ** SELECT statement. 6662 */ 6663 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6664 if( pAggInfo ){ 6665 sqlite3ParserAddCleanup(pParse, 6666 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6667 } 6668 if( db->mallocFailed ){ 6669 goto select_end; 6670 } 6671 pAggInfo->selId = p->selId; 6672 memset(&sNC, 0, sizeof(sNC)); 6673 sNC.pParse = pParse; 6674 sNC.pSrcList = pTabList; 6675 sNC.uNC.pAggInfo = pAggInfo; 6676 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6677 pAggInfo->mnReg = pParse->nMem+1; 6678 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6679 pAggInfo->pGroupBy = pGroupBy; 6680 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6681 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6682 if( pHaving ){ 6683 if( pGroupBy ){ 6684 assert( pWhere==p->pWhere ); 6685 assert( pHaving==p->pHaving ); 6686 assert( pGroupBy==p->pGroupBy ); 6687 havingToWhere(pParse, p); 6688 pWhere = p->pWhere; 6689 } 6690 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6691 } 6692 pAggInfo->nAccumulator = pAggInfo->nColumn; 6693 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6694 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6695 }else{ 6696 minMaxFlag = WHERE_ORDERBY_NORMAL; 6697 } 6698 for(i=0; i<pAggInfo->nFunc; i++){ 6699 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6700 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6701 sNC.ncFlags |= NC_InAggFunc; 6702 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6703 #ifndef SQLITE_OMIT_WINDOWFUNC 6704 assert( !IsWindowFunc(pExpr) ); 6705 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6706 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6707 } 6708 #endif 6709 sNC.ncFlags &= ~NC_InAggFunc; 6710 } 6711 pAggInfo->mxReg = pParse->nMem; 6712 if( db->mallocFailed ) goto select_end; 6713 #if SELECTTRACE_ENABLED 6714 if( sqlite3SelectTrace & 0x400 ){ 6715 int ii; 6716 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 6717 sqlite3TreeViewSelect(0, p, 0); 6718 if( minMaxFlag ){ 6719 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 6720 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 6721 } 6722 for(ii=0; ii<pAggInfo->nColumn; ii++){ 6723 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6724 ii, pAggInfo->aCol[ii].iMem); 6725 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 6726 } 6727 for(ii=0; ii<pAggInfo->nFunc; ii++){ 6728 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6729 ii, pAggInfo->aFunc[ii].iMem); 6730 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 6731 } 6732 } 6733 #endif 6734 6735 6736 /* Processing for aggregates with GROUP BY is very different and 6737 ** much more complex than aggregates without a GROUP BY. 6738 */ 6739 if( pGroupBy ){ 6740 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6741 int addr1; /* A-vs-B comparision jump */ 6742 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6743 int regOutputRow; /* Return address register for output subroutine */ 6744 int addrSetAbort; /* Set the abort flag and return */ 6745 int addrTopOfLoop; /* Top of the input loop */ 6746 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6747 int addrReset; /* Subroutine for resetting the accumulator */ 6748 int regReset; /* Return address register for reset subroutine */ 6749 6750 /* If there is a GROUP BY clause we might need a sorting index to 6751 ** implement it. Allocate that sorting index now. If it turns out 6752 ** that we do not need it after all, the OP_SorterOpen instruction 6753 ** will be converted into a Noop. 6754 */ 6755 pAggInfo->sortingIdx = pParse->nTab++; 6756 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 6757 0, pAggInfo->nColumn); 6758 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6759 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 6760 0, (char*)pKeyInfo, P4_KEYINFO); 6761 6762 /* Initialize memory locations used by GROUP BY aggregate processing 6763 */ 6764 iUseFlag = ++pParse->nMem; 6765 iAbortFlag = ++pParse->nMem; 6766 regOutputRow = ++pParse->nMem; 6767 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6768 regReset = ++pParse->nMem; 6769 addrReset = sqlite3VdbeMakeLabel(pParse); 6770 iAMem = pParse->nMem + 1; 6771 pParse->nMem += pGroupBy->nExpr; 6772 iBMem = pParse->nMem + 1; 6773 pParse->nMem += pGroupBy->nExpr; 6774 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6775 VdbeComment((v, "clear abort flag")); 6776 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6777 6778 /* Begin a loop that will extract all source rows in GROUP BY order. 6779 ** This might involve two separate loops with an OP_Sort in between, or 6780 ** it might be a single loop that uses an index to extract information 6781 ** in the right order to begin with. 6782 */ 6783 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6784 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6785 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6786 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6787 ); 6788 if( pWInfo==0 ) goto select_end; 6789 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6790 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6791 /* The optimizer is able to deliver rows in group by order so 6792 ** we do not have to sort. The OP_OpenEphemeral table will be 6793 ** cancelled later because we still need to use the pKeyInfo 6794 */ 6795 groupBySort = 0; 6796 }else{ 6797 /* Rows are coming out in undetermined order. We have to push 6798 ** each row into a sorting index, terminate the first loop, 6799 ** then loop over the sorting index in order to get the output 6800 ** in sorted order 6801 */ 6802 int regBase; 6803 int regRecord; 6804 int nCol; 6805 int nGroupBy; 6806 6807 explainTempTable(pParse, 6808 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6809 "DISTINCT" : "GROUP BY"); 6810 6811 groupBySort = 1; 6812 nGroupBy = pGroupBy->nExpr; 6813 nCol = nGroupBy; 6814 j = nGroupBy; 6815 for(i=0; i<pAggInfo->nColumn; i++){ 6816 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 6817 nCol++; 6818 j++; 6819 } 6820 } 6821 regBase = sqlite3GetTempRange(pParse, nCol); 6822 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6823 j = nGroupBy; 6824 for(i=0; i<pAggInfo->nColumn; i++){ 6825 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 6826 if( pCol->iSorterColumn>=j ){ 6827 int r1 = j + regBase; 6828 sqlite3ExprCodeGetColumnOfTable(v, 6829 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6830 j++; 6831 } 6832 } 6833 regRecord = sqlite3GetTempReg(pParse); 6834 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6835 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 6836 sqlite3ReleaseTempReg(pParse, regRecord); 6837 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6838 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6839 sqlite3WhereEnd(pWInfo); 6840 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 6841 sortOut = sqlite3GetTempReg(pParse); 6842 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6843 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 6844 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6845 pAggInfo->useSortingIdx = 1; 6846 } 6847 6848 /* If the index or temporary table used by the GROUP BY sort 6849 ** will naturally deliver rows in the order required by the ORDER BY 6850 ** clause, cancel the ephemeral table open coded earlier. 6851 ** 6852 ** This is an optimization - the correct answer should result regardless. 6853 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6854 ** disable this optimization for testing purposes. */ 6855 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6856 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6857 ){ 6858 sSort.pOrderBy = 0; 6859 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6860 } 6861 6862 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6863 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6864 ** Then compare the current GROUP BY terms against the GROUP BY terms 6865 ** from the previous row currently stored in a0, a1, a2... 6866 */ 6867 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6868 if( groupBySort ){ 6869 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 6870 sortOut, sortPTab); 6871 } 6872 for(j=0; j<pGroupBy->nExpr; j++){ 6873 if( groupBySort ){ 6874 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6875 }else{ 6876 pAggInfo->directMode = 1; 6877 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6878 } 6879 } 6880 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6881 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6882 addr1 = sqlite3VdbeCurrentAddr(v); 6883 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6884 6885 /* Generate code that runs whenever the GROUP BY changes. 6886 ** Changes in the GROUP BY are detected by the previous code 6887 ** block. If there were no changes, this block is skipped. 6888 ** 6889 ** This code copies current group by terms in b0,b1,b2,... 6890 ** over to a0,a1,a2. It then calls the output subroutine 6891 ** and resets the aggregate accumulator registers in preparation 6892 ** for the next GROUP BY batch. 6893 */ 6894 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6895 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6896 VdbeComment((v, "output one row")); 6897 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6898 VdbeComment((v, "check abort flag")); 6899 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6900 VdbeComment((v, "reset accumulator")); 6901 6902 /* Update the aggregate accumulators based on the content of 6903 ** the current row 6904 */ 6905 sqlite3VdbeJumpHere(v, addr1); 6906 updateAccumulator(pParse, iUseFlag, pAggInfo); 6907 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6908 VdbeComment((v, "indicate data in accumulator")); 6909 6910 /* End of the loop 6911 */ 6912 if( groupBySort ){ 6913 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 6914 VdbeCoverage(v); 6915 }else{ 6916 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6917 sqlite3WhereEnd(pWInfo); 6918 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6919 } 6920 6921 /* Output the final row of result 6922 */ 6923 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6924 VdbeComment((v, "output final row")); 6925 6926 /* Jump over the subroutines 6927 */ 6928 sqlite3VdbeGoto(v, addrEnd); 6929 6930 /* Generate a subroutine that outputs a single row of the result 6931 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6932 ** is less than or equal to zero, the subroutine is a no-op. If 6933 ** the processing calls for the query to abort, this subroutine 6934 ** increments the iAbortFlag memory location before returning in 6935 ** order to signal the caller to abort. 6936 */ 6937 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6938 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6939 VdbeComment((v, "set abort flag")); 6940 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6941 sqlite3VdbeResolveLabel(v, addrOutputRow); 6942 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6943 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6944 VdbeCoverage(v); 6945 VdbeComment((v, "Groupby result generator entry point")); 6946 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6947 finalizeAggFunctions(pParse, pAggInfo); 6948 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6949 selectInnerLoop(pParse, p, -1, &sSort, 6950 &sDistinct, pDest, 6951 addrOutputRow+1, addrSetAbort); 6952 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6953 VdbeComment((v, "end groupby result generator")); 6954 6955 /* Generate a subroutine that will reset the group-by accumulator 6956 */ 6957 sqlite3VdbeResolveLabel(v, addrReset); 6958 resetAccumulator(pParse, pAggInfo); 6959 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6960 VdbeComment((v, "indicate accumulator empty")); 6961 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6962 6963 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6964 else { 6965 Table *pTab; 6966 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 6967 /* If isSimpleCount() returns a pointer to a Table structure, then 6968 ** the SQL statement is of the form: 6969 ** 6970 ** SELECT count(*) FROM <tbl> 6971 ** 6972 ** where the Table structure returned represents table <tbl>. 6973 ** 6974 ** This statement is so common that it is optimized specially. The 6975 ** OP_Count instruction is executed either on the intkey table that 6976 ** contains the data for table <tbl> or on one of its indexes. It 6977 ** is better to execute the op on an index, as indexes are almost 6978 ** always spread across less pages than their corresponding tables. 6979 */ 6980 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6981 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6982 Index *pIdx; /* Iterator variable */ 6983 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6984 Index *pBest = 0; /* Best index found so far */ 6985 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6986 6987 sqlite3CodeVerifySchema(pParse, iDb); 6988 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6989 6990 /* Search for the index that has the lowest scan cost. 6991 ** 6992 ** (2011-04-15) Do not do a full scan of an unordered index. 6993 ** 6994 ** (2013-10-03) Do not count the entries in a partial index. 6995 ** 6996 ** In practice the KeyInfo structure will not be used. It is only 6997 ** passed to keep OP_OpenRead happy. 6998 */ 6999 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7000 if( !p->pSrc->a[0].fg.notIndexed ){ 7001 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7002 if( pIdx->bUnordered==0 7003 && pIdx->szIdxRow<pTab->szTabRow 7004 && pIdx->pPartIdxWhere==0 7005 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7006 ){ 7007 pBest = pIdx; 7008 } 7009 } 7010 } 7011 if( pBest ){ 7012 iRoot = pBest->tnum; 7013 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7014 } 7015 7016 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7017 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7018 if( pKeyInfo ){ 7019 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7020 } 7021 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7022 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7023 explainSimpleCount(pParse, pTab, pBest); 7024 }else{ 7025 int regAcc = 0; /* "populate accumulators" flag */ 7026 7027 /* If there are accumulator registers but no min() or max() functions 7028 ** without FILTER clauses, allocate register regAcc. Register regAcc 7029 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7030 ** The code generated by updateAccumulator() uses this to ensure 7031 ** that the accumulator registers are (a) updated only once if 7032 ** there are no min() or max functions or (b) always updated for the 7033 ** first row visited by the aggregate, so that they are updated at 7034 ** least once even if the FILTER clause means the min() or max() 7035 ** function visits zero rows. */ 7036 if( pAggInfo->nAccumulator ){ 7037 for(i=0; i<pAggInfo->nFunc; i++){ 7038 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7039 continue; 7040 } 7041 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7042 break; 7043 } 7044 } 7045 if( i==pAggInfo->nFunc ){ 7046 regAcc = ++pParse->nMem; 7047 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7048 } 7049 } 7050 7051 /* This case runs if the aggregate has no GROUP BY clause. The 7052 ** processing is much simpler since there is only a single row 7053 ** of output. 7054 */ 7055 assert( p->pGroupBy==0 ); 7056 resetAccumulator(pParse, pAggInfo); 7057 7058 /* If this query is a candidate for the min/max optimization, then 7059 ** minMaxFlag will have been previously set to either 7060 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7061 ** be an appropriate ORDER BY expression for the optimization. 7062 */ 7063 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7064 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7065 7066 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7067 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7068 0, minMaxFlag, 0); 7069 if( pWInfo==0 ){ 7070 goto select_end; 7071 } 7072 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7073 updateAccumulator(pParse, regAcc, pAggInfo); 7074 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7075 if( minMaxFlag ){ 7076 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7077 } 7078 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7079 sqlite3WhereEnd(pWInfo); 7080 finalizeAggFunctions(pParse, pAggInfo); 7081 } 7082 7083 sSort.pOrderBy = 0; 7084 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7085 selectInnerLoop(pParse, p, -1, 0, 0, 7086 pDest, addrEnd, addrEnd); 7087 } 7088 sqlite3VdbeResolveLabel(v, addrEnd); 7089 7090 } /* endif aggregate query */ 7091 7092 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7093 explainTempTable(pParse, "DISTINCT"); 7094 } 7095 7096 /* If there is an ORDER BY clause, then we need to sort the results 7097 ** and send them to the callback one by one. 7098 */ 7099 if( sSort.pOrderBy ){ 7100 explainTempTable(pParse, 7101 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7102 assert( p->pEList==pEList ); 7103 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7104 } 7105 7106 /* Jump here to skip this query 7107 */ 7108 sqlite3VdbeResolveLabel(v, iEnd); 7109 7110 /* The SELECT has been coded. If there is an error in the Parse structure, 7111 ** set the return code to 1. Otherwise 0. */ 7112 rc = (pParse->nErr>0); 7113 7114 /* Control jumps to here if an error is encountered above, or upon 7115 ** successful coding of the SELECT. 7116 */ 7117 select_end: 7118 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7119 #ifdef SQLITE_DEBUG 7120 if( pAggInfo && !db->mallocFailed ){ 7121 for(i=0; i<pAggInfo->nColumn; i++){ 7122 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7123 assert( pExpr!=0 ); 7124 assert( pExpr->pAggInfo==pAggInfo ); 7125 assert( pExpr->iAgg==i ); 7126 } 7127 for(i=0; i<pAggInfo->nFunc; i++){ 7128 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7129 assert( pExpr!=0 ); 7130 assert( pExpr->pAggInfo==pAggInfo ); 7131 assert( pExpr->iAgg==i ); 7132 } 7133 } 7134 #endif 7135 7136 #if SELECTTRACE_ENABLED 7137 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7138 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7139 sqlite3TreeViewSelect(0, p, 0); 7140 } 7141 #endif 7142 ExplainQueryPlanPop(pParse); 7143 return rc; 7144 } 7145