xref: /sqlite-3.40.0/src/select.c (revision 85c6892a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101       sqlite3WindowListDelete(db, p->pWinDefn);
102     }
103 #endif
104     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105     if( bFree ) sqlite3DbFreeNN(db, p);
106     p = pPrior;
107     bFree = 1;
108   }
109 }
110 
111 /*
112 ** Initialize a SelectDest structure.
113 */
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115   pDest->eDest = (u8)eDest;
116   pDest->iSDParm = iParm;
117   pDest->zAffSdst = 0;
118   pDest->iSdst = 0;
119   pDest->nSdst = 0;
120 }
121 
122 
123 /*
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
126 */
127 Select *sqlite3SelectNew(
128   Parse *pParse,        /* Parsing context */
129   ExprList *pEList,     /* which columns to include in the result */
130   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
131   Expr *pWhere,         /* the WHERE clause */
132   ExprList *pGroupBy,   /* the GROUP BY clause */
133   Expr *pHaving,        /* the HAVING clause */
134   ExprList *pOrderBy,   /* the ORDER BY clause */
135   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
136   Expr *pLimit          /* LIMIT value.  NULL means not used */
137 ){
138   Select *pNew;
139   Select standin;
140   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141   if( pNew==0 ){
142     assert( pParse->db->mallocFailed );
143     pNew = &standin;
144   }
145   if( pEList==0 ){
146     pEList = sqlite3ExprListAppend(pParse, 0,
147                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
148   }
149   pNew->pEList = pEList;
150   pNew->op = TK_SELECT;
151   pNew->selFlags = selFlags;
152   pNew->iLimit = 0;
153   pNew->iOffset = 0;
154   pNew->selId = ++pParse->nSelect;
155   pNew->addrOpenEphm[0] = -1;
156   pNew->addrOpenEphm[1] = -1;
157   pNew->nSelectRow = 0;
158   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
159   pNew->pSrc = pSrc;
160   pNew->pWhere = pWhere;
161   pNew->pGroupBy = pGroupBy;
162   pNew->pHaving = pHaving;
163   pNew->pOrderBy = pOrderBy;
164   pNew->pPrior = 0;
165   pNew->pNext = 0;
166   pNew->pLimit = pLimit;
167   pNew->pWith = 0;
168 #ifndef SQLITE_OMIT_WINDOWFUNC
169   pNew->pWin = 0;
170   pNew->pWinDefn = 0;
171 #endif
172   if( pParse->db->mallocFailed ) {
173     clearSelect(pParse->db, pNew, pNew!=&standin);
174     pNew = 0;
175   }else{
176     assert( pNew->pSrc!=0 || pParse->nErr>0 );
177   }
178   assert( pNew!=&standin );
179   return pNew;
180 }
181 
182 
183 /*
184 ** Delete the given Select structure and all of its substructures.
185 */
186 void sqlite3SelectDelete(sqlite3 *db, Select *p){
187   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
188 }
189 
190 /*
191 ** Return a pointer to the right-most SELECT statement in a compound.
192 */
193 static Select *findRightmost(Select *p){
194   while( p->pNext ) p = p->pNext;
195   return p;
196 }
197 
198 /*
199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
200 ** type of join.  Return an integer constant that expresses that type
201 ** in terms of the following bit values:
202 **
203 **     JT_INNER
204 **     JT_CROSS
205 **     JT_OUTER
206 **     JT_NATURAL
207 **     JT_LEFT
208 **     JT_RIGHT
209 **
210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
211 **
212 ** If an illegal or unsupported join type is seen, then still return
213 ** a join type, but put an error in the pParse structure.
214 */
215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
216   int jointype = 0;
217   Token *apAll[3];
218   Token *p;
219                              /*   0123456789 123456789 123456789 123 */
220   static const char zKeyText[] = "naturaleftouterightfullinnercross";
221   static const struct {
222     u8 i;        /* Beginning of keyword text in zKeyText[] */
223     u8 nChar;    /* Length of the keyword in characters */
224     u8 code;     /* Join type mask */
225   } aKeyword[] = {
226     /* natural */ { 0,  7, JT_NATURAL                },
227     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
228     /* outer   */ { 10, 5, JT_OUTER                  },
229     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
230     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
231     /* inner   */ { 23, 5, JT_INNER                  },
232     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
233   };
234   int i, j;
235   apAll[0] = pA;
236   apAll[1] = pB;
237   apAll[2] = pC;
238   for(i=0; i<3 && apAll[i]; i++){
239     p = apAll[i];
240     for(j=0; j<ArraySize(aKeyword); j++){
241       if( p->n==aKeyword[j].nChar
242           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
243         jointype |= aKeyword[j].code;
244         break;
245       }
246     }
247     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
248     if( j>=ArraySize(aKeyword) ){
249       jointype |= JT_ERROR;
250       break;
251     }
252   }
253   if(
254      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
255      (jointype & JT_ERROR)!=0
256   ){
257     const char *zSp = " ";
258     assert( pB!=0 );
259     if( pC==0 ){ zSp++; }
260     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
261        "%T %T%s%T", pA, pB, zSp, pC);
262     jointype = JT_INNER;
263   }else if( (jointype & JT_OUTER)!=0
264          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
265     sqlite3ErrorMsg(pParse,
266       "RIGHT and FULL OUTER JOINs are not currently supported");
267     jointype = JT_INNER;
268   }
269   return jointype;
270 }
271 
272 /*
273 ** Return the index of a column in a table.  Return -1 if the column
274 ** is not contained in the table.
275 */
276 static int columnIndex(Table *pTab, const char *zCol){
277   int i;
278   for(i=0; i<pTab->nCol; i++){
279     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
280   }
281   return -1;
282 }
283 
284 /*
285 ** Search the first N tables in pSrc, from left to right, looking for a
286 ** table that has a column named zCol.
287 **
288 ** When found, set *piTab and *piCol to the table index and column index
289 ** of the matching column and return TRUE.
290 **
291 ** If not found, return FALSE.
292 */
293 static int tableAndColumnIndex(
294   SrcList *pSrc,       /* Array of tables to search */
295   int N,               /* Number of tables in pSrc->a[] to search */
296   const char *zCol,    /* Name of the column we are looking for */
297   int *piTab,          /* Write index of pSrc->a[] here */
298   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
299 ){
300   int i;               /* For looping over tables in pSrc */
301   int iCol;            /* Index of column matching zCol */
302 
303   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
304   for(i=0; i<N; i++){
305     iCol = columnIndex(pSrc->a[i].pTab, zCol);
306     if( iCol>=0 ){
307       if( piTab ){
308         *piTab = i;
309         *piCol = iCol;
310       }
311       return 1;
312     }
313   }
314   return 0;
315 }
316 
317 /*
318 ** This function is used to add terms implied by JOIN syntax to the
319 ** WHERE clause expression of a SELECT statement. The new term, which
320 ** is ANDed with the existing WHERE clause, is of the form:
321 **
322 **    (tab1.col1 = tab2.col2)
323 **
324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
326 ** column iColRight of tab2.
327 */
328 static void addWhereTerm(
329   Parse *pParse,                  /* Parsing context */
330   SrcList *pSrc,                  /* List of tables in FROM clause */
331   int iLeft,                      /* Index of first table to join in pSrc */
332   int iColLeft,                   /* Index of column in first table */
333   int iRight,                     /* Index of second table in pSrc */
334   int iColRight,                  /* Index of column in second table */
335   int isOuterJoin,                /* True if this is an OUTER join */
336   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
337 ){
338   sqlite3 *db = pParse->db;
339   Expr *pE1;
340   Expr *pE2;
341   Expr *pEq;
342 
343   assert( iLeft<iRight );
344   assert( pSrc->nSrc>iRight );
345   assert( pSrc->a[iLeft].pTab );
346   assert( pSrc->a[iRight].pTab );
347 
348   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
349   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
350 
351   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
352   if( pEq && isOuterJoin ){
353     ExprSetProperty(pEq, EP_FromJoin);
354     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
355     ExprSetVVAProperty(pEq, EP_NoReduce);
356     pEq->iRightJoinTable = (i16)pE2->iTable;
357   }
358   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
359 }
360 
361 /*
362 ** Set the EP_FromJoin property on all terms of the given expression.
363 ** And set the Expr.iRightJoinTable to iTable for every term in the
364 ** expression.
365 **
366 ** The EP_FromJoin property is used on terms of an expression to tell
367 ** the LEFT OUTER JOIN processing logic that this term is part of the
368 ** join restriction specified in the ON or USING clause and not a part
369 ** of the more general WHERE clause.  These terms are moved over to the
370 ** WHERE clause during join processing but we need to remember that they
371 ** originated in the ON or USING clause.
372 **
373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
374 ** expression depends on table iRightJoinTable even if that table is not
375 ** explicitly mentioned in the expression.  That information is needed
376 ** for cases like this:
377 **
378 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
379 **
380 ** The where clause needs to defer the handling of the t1.x=5
381 ** term until after the t2 loop of the join.  In that way, a
382 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
383 ** defer the handling of t1.x=5, it will be processed immediately
384 ** after the t1 loop and rows with t1.x!=5 will never appear in
385 ** the output, which is incorrect.
386 */
387 static void setJoinExpr(Expr *p, int iTable){
388   while( p ){
389     ExprSetProperty(p, EP_FromJoin);
390     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
391     ExprSetVVAProperty(p, EP_NoReduce);
392     p->iRightJoinTable = (i16)iTable;
393     if( p->op==TK_FUNCTION && p->x.pList ){
394       int i;
395       for(i=0; i<p->x.pList->nExpr; i++){
396         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
397       }
398     }
399     setJoinExpr(p->pLeft, iTable);
400     p = p->pRight;
401   }
402 }
403 
404 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
406 ** an ordinary term that omits the EP_FromJoin mark.
407 **
408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
409 */
410 static void unsetJoinExpr(Expr *p, int iTable){
411   while( p ){
412     if( ExprHasProperty(p, EP_FromJoin)
413      && (iTable<0 || p->iRightJoinTable==iTable) ){
414       ExprClearProperty(p, EP_FromJoin);
415     }
416     if( p->op==TK_FUNCTION && p->x.pList ){
417       int i;
418       for(i=0; i<p->x.pList->nExpr; i++){
419         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
420       }
421     }
422     unsetJoinExpr(p->pLeft, iTable);
423     p = p->pRight;
424   }
425 }
426 
427 /*
428 ** This routine processes the join information for a SELECT statement.
429 ** ON and USING clauses are converted into extra terms of the WHERE clause.
430 ** NATURAL joins also create extra WHERE clause terms.
431 **
432 ** The terms of a FROM clause are contained in the Select.pSrc structure.
433 ** The left most table is the first entry in Select.pSrc.  The right-most
434 ** table is the last entry.  The join operator is held in the entry to
435 ** the left.  Thus entry 0 contains the join operator for the join between
436 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
437 ** also attached to the left entry.
438 **
439 ** This routine returns the number of errors encountered.
440 */
441 static int sqliteProcessJoin(Parse *pParse, Select *p){
442   SrcList *pSrc;                  /* All tables in the FROM clause */
443   int i, j;                       /* Loop counters */
444   struct SrcList_item *pLeft;     /* Left table being joined */
445   struct SrcList_item *pRight;    /* Right table being joined */
446 
447   pSrc = p->pSrc;
448   pLeft = &pSrc->a[0];
449   pRight = &pLeft[1];
450   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
451     Table *pRightTab = pRight->pTab;
452     int isOuter;
453 
454     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
455     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
456 
457     /* When the NATURAL keyword is present, add WHERE clause terms for
458     ** every column that the two tables have in common.
459     */
460     if( pRight->fg.jointype & JT_NATURAL ){
461       if( pRight->pOn || pRight->pUsing ){
462         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
463            "an ON or USING clause", 0);
464         return 1;
465       }
466       for(j=0; j<pRightTab->nCol; j++){
467         char *zName;   /* Name of column in the right table */
468         int iLeft;     /* Matching left table */
469         int iLeftCol;  /* Matching column in the left table */
470 
471         zName = pRightTab->aCol[j].zName;
472         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
473           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
474                        isOuter, &p->pWhere);
475         }
476       }
477     }
478 
479     /* Disallow both ON and USING clauses in the same join
480     */
481     if( pRight->pOn && pRight->pUsing ){
482       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
483         "clauses in the same join");
484       return 1;
485     }
486 
487     /* Add the ON clause to the end of the WHERE clause, connected by
488     ** an AND operator.
489     */
490     if( pRight->pOn ){
491       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
492       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
493       pRight->pOn = 0;
494     }
495 
496     /* Create extra terms on the WHERE clause for each column named
497     ** in the USING clause.  Example: If the two tables to be joined are
498     ** A and B and the USING clause names X, Y, and Z, then add this
499     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
500     ** Report an error if any column mentioned in the USING clause is
501     ** not contained in both tables to be joined.
502     */
503     if( pRight->pUsing ){
504       IdList *pList = pRight->pUsing;
505       for(j=0; j<pList->nId; j++){
506         char *zName;     /* Name of the term in the USING clause */
507         int iLeft;       /* Table on the left with matching column name */
508         int iLeftCol;    /* Column number of matching column on the left */
509         int iRightCol;   /* Column number of matching column on the right */
510 
511         zName = pList->a[j].zName;
512         iRightCol = columnIndex(pRightTab, zName);
513         if( iRightCol<0
514          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
515         ){
516           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
517             "not present in both tables", zName);
518           return 1;
519         }
520         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
521                      isOuter, &p->pWhere);
522       }
523     }
524   }
525   return 0;
526 }
527 
528 /*
529 ** An instance of this object holds information (beyond pParse and pSelect)
530 ** needed to load the next result row that is to be added to the sorter.
531 */
532 typedef struct RowLoadInfo RowLoadInfo;
533 struct RowLoadInfo {
534   int regResult;               /* Store results in array of registers here */
535   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
537   ExprList *pExtra;            /* Extra columns needed by sorter refs */
538   int regExtraResult;          /* Where to load the extra columns */
539 #endif
540 };
541 
542 /*
543 ** This routine does the work of loading query data into an array of
544 ** registers so that it can be added to the sorter.
545 */
546 static void innerLoopLoadRow(
547   Parse *pParse,             /* Statement under construction */
548   Select *pSelect,           /* The query being coded */
549   RowLoadInfo *pInfo         /* Info needed to complete the row load */
550 ){
551   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
552                           0, pInfo->ecelFlags);
553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
554   if( pInfo->pExtra ){
555     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
556     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
557   }
558 #endif
559 }
560 
561 /*
562 ** Code the OP_MakeRecord instruction that generates the entry to be
563 ** added into the sorter.
564 **
565 ** Return the register in which the result is stored.
566 */
567 static int makeSorterRecord(
568   Parse *pParse,
569   SortCtx *pSort,
570   Select *pSelect,
571   int regBase,
572   int nBase
573 ){
574   int nOBSat = pSort->nOBSat;
575   Vdbe *v = pParse->pVdbe;
576   int regOut = ++pParse->nMem;
577   if( pSort->pDeferredRowLoad ){
578     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
579   }
580   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
581   return regOut;
582 }
583 
584 /*
585 ** Generate code that will push the record in registers regData
586 ** through regData+nData-1 onto the sorter.
587 */
588 static void pushOntoSorter(
589   Parse *pParse,         /* Parser context */
590   SortCtx *pSort,        /* Information about the ORDER BY clause */
591   Select *pSelect,       /* The whole SELECT statement */
592   int regData,           /* First register holding data to be sorted */
593   int regOrigData,       /* First register holding data before packing */
594   int nData,             /* Number of elements in the regData data array */
595   int nPrefixReg         /* No. of reg prior to regData available for use */
596 ){
597   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
598   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
599   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
600   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
601   int regBase;                                     /* Regs for sorter record */
602   int regRecord = 0;                               /* Assembled sorter record */
603   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
604   int op;                            /* Opcode to add sorter record to sorter */
605   int iLimit;                        /* LIMIT counter */
606   int iSkip = 0;                     /* End of the sorter insert loop */
607 
608   assert( bSeq==0 || bSeq==1 );
609 
610   /* Three cases:
611   **   (1) The data to be sorted has already been packed into a Record
612   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
613   **       will be completely unrelated to regOrigData.
614   **   (2) All output columns are included in the sort record.  In that
615   **       case regData==regOrigData.
616   **   (3) Some output columns are omitted from the sort record due to
617   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
618   **       SQLITE_ECEL_OMITREF optimization, or due to the
619   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
620   **       regOrigData is 0 to prevent this routine from trying to copy
621   **       values that might not yet exist.
622   */
623   assert( nData==1 || regData==regOrigData || regOrigData==0 );
624 
625   if( nPrefixReg ){
626     assert( nPrefixReg==nExpr+bSeq );
627     regBase = regData - nPrefixReg;
628   }else{
629     regBase = pParse->nMem + 1;
630     pParse->nMem += nBase;
631   }
632   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
633   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
634   pSort->labelDone = sqlite3VdbeMakeLabel(v);
635   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
636                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
637   if( bSeq ){
638     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
639   }
640   if( nPrefixReg==0 && nData>0 ){
641     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
642   }
643   if( nOBSat>0 ){
644     int regPrevKey;   /* The first nOBSat columns of the previous row */
645     int addrFirst;    /* Address of the OP_IfNot opcode */
646     int addrJmp;      /* Address of the OP_Jump opcode */
647     VdbeOp *pOp;      /* Opcode that opens the sorter */
648     int nKey;         /* Number of sorting key columns, including OP_Sequence */
649     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
650 
651     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
652     regPrevKey = pParse->nMem+1;
653     pParse->nMem += pSort->nOBSat;
654     nKey = nExpr - pSort->nOBSat + bSeq;
655     if( bSeq ){
656       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
657     }else{
658       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
659     }
660     VdbeCoverage(v);
661     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
662     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
663     if( pParse->db->mallocFailed ) return;
664     pOp->p2 = nKey + nData;
665     pKI = pOp->p4.pKeyInfo;
666     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
667     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
668     testcase( pKI->nAllField > pKI->nKeyField+2 );
669     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
670                                            pKI->nAllField-pKI->nKeyField-1);
671     addrJmp = sqlite3VdbeCurrentAddr(v);
672     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
673     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
674     pSort->regReturn = ++pParse->nMem;
675     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
676     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
677     if( iLimit ){
678       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
679       VdbeCoverage(v);
680     }
681     sqlite3VdbeJumpHere(v, addrFirst);
682     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
683     sqlite3VdbeJumpHere(v, addrJmp);
684   }
685   if( iLimit ){
686     /* At this point the values for the new sorter entry are stored
687     ** in an array of registers. They need to be composed into a record
688     ** and inserted into the sorter if either (a) there are currently
689     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
690     ** the largest record currently in the sorter. If (b) is true and there
691     ** are already LIMIT+OFFSET items in the sorter, delete the largest
692     ** entry before inserting the new one. This way there are never more
693     ** than LIMIT+OFFSET items in the sorter.
694     **
695     ** If the new record does not need to be inserted into the sorter,
696     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
697     ** value is not zero, then it is a label of where to jump.  Otherwise,
698     ** just bypass the row insert logic.  See the header comment on the
699     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
700     */
701     int iCsr = pSort->iECursor;
702     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
705     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
706                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
707     VdbeCoverage(v);
708     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
709   }
710   if( regRecord==0 ){
711     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
712   }
713   if( pSort->sortFlags & SORTFLAG_UseSorter ){
714     op = OP_SorterInsert;
715   }else{
716     op = OP_IdxInsert;
717   }
718   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
719                        regBase+nOBSat, nBase-nOBSat);
720   if( iSkip ){
721     sqlite3VdbeChangeP2(v, iSkip,
722          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
723   }
724 }
725 
726 /*
727 ** Add code to implement the OFFSET
728 */
729 static void codeOffset(
730   Vdbe *v,          /* Generate code into this VM */
731   int iOffset,      /* Register holding the offset counter */
732   int iContinue     /* Jump here to skip the current record */
733 ){
734   if( iOffset>0 ){
735     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
736     VdbeComment((v, "OFFSET"));
737   }
738 }
739 
740 /*
741 ** Add code that will check to make sure the N registers starting at iMem
742 ** form a distinct entry.  iTab is a sorting index that holds previously
743 ** seen combinations of the N values.  A new entry is made in iTab
744 ** if the current N values are new.
745 **
746 ** A jump to addrRepeat is made and the N+1 values are popped from the
747 ** stack if the top N elements are not distinct.
748 */
749 static void codeDistinct(
750   Parse *pParse,     /* Parsing and code generating context */
751   int iTab,          /* A sorting index used to test for distinctness */
752   int addrRepeat,    /* Jump to here if not distinct */
753   int N,             /* Number of elements */
754   int iMem           /* First element */
755 ){
756   Vdbe *v;
757   int r1;
758 
759   v = pParse->pVdbe;
760   r1 = sqlite3GetTempReg(pParse);
761   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
762   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
763   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
764   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
765   sqlite3ReleaseTempReg(pParse, r1);
766 }
767 
768 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
769 /*
770 ** This function is called as part of inner-loop generation for a SELECT
771 ** statement with an ORDER BY that is not optimized by an index. It
772 ** determines the expressions, if any, that the sorter-reference
773 ** optimization should be used for. The sorter-reference optimization
774 ** is used for SELECT queries like:
775 **
776 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
777 **
778 ** If the optimization is used for expression "bigblob", then instead of
779 ** storing values read from that column in the sorter records, the PK of
780 ** the row from table t1 is stored instead. Then, as records are extracted from
781 ** the sorter to return to the user, the required value of bigblob is
782 ** retrieved directly from table t1. If the values are very large, this
783 ** can be more efficient than storing them directly in the sorter records.
784 **
785 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
786 ** for which the sorter-reference optimization should be enabled.
787 ** Additionally, the pSort->aDefer[] array is populated with entries
788 ** for all cursors required to evaluate all selected expressions. Finally.
789 ** output variable (*ppExtra) is set to an expression list containing
790 ** expressions for all extra PK values that should be stored in the
791 ** sorter records.
792 */
793 static void selectExprDefer(
794   Parse *pParse,                  /* Leave any error here */
795   SortCtx *pSort,                 /* Sorter context */
796   ExprList *pEList,               /* Expressions destined for sorter */
797   ExprList **ppExtra              /* Expressions to append to sorter record */
798 ){
799   int i;
800   int nDefer = 0;
801   ExprList *pExtra = 0;
802   for(i=0; i<pEList->nExpr; i++){
803     struct ExprList_item *pItem = &pEList->a[i];
804     if( pItem->u.x.iOrderByCol==0 ){
805       Expr *pExpr = pItem->pExpr;
806       Table *pTab = pExpr->pTab;
807       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
808        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
809       ){
810         int j;
811         for(j=0; j<nDefer; j++){
812           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
813         }
814         if( j==nDefer ){
815           if( nDefer==ArraySize(pSort->aDefer) ){
816             continue;
817           }else{
818             int nKey = 1;
819             int k;
820             Index *pPk = 0;
821             if( !HasRowid(pTab) ){
822               pPk = sqlite3PrimaryKeyIndex(pTab);
823               nKey = pPk->nKeyCol;
824             }
825             for(k=0; k<nKey; k++){
826               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
827               if( pNew ){
828                 pNew->iTable = pExpr->iTable;
829                 pNew->pTab = pExpr->pTab;
830                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
831                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
832               }
833             }
834             pSort->aDefer[nDefer].pTab = pExpr->pTab;
835             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
836             pSort->aDefer[nDefer].nKey = nKey;
837             nDefer++;
838           }
839         }
840         pItem->bSorterRef = 1;
841       }
842     }
843   }
844   pSort->nDefer = (u8)nDefer;
845   *ppExtra = pExtra;
846 }
847 #endif
848 
849 /*
850 ** This routine generates the code for the inside of the inner loop
851 ** of a SELECT.
852 **
853 ** If srcTab is negative, then the p->pEList expressions
854 ** are evaluated in order to get the data for this row.  If srcTab is
855 ** zero or more, then data is pulled from srcTab and p->pEList is used only
856 ** to get the number of columns and the collation sequence for each column.
857 */
858 static void selectInnerLoop(
859   Parse *pParse,          /* The parser context */
860   Select *p,              /* The complete select statement being coded */
861   int srcTab,             /* Pull data from this table if non-negative */
862   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
863   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
864   SelectDest *pDest,      /* How to dispose of the results */
865   int iContinue,          /* Jump here to continue with next row */
866   int iBreak              /* Jump here to break out of the inner loop */
867 ){
868   Vdbe *v = pParse->pVdbe;
869   int i;
870   int hasDistinct;            /* True if the DISTINCT keyword is present */
871   int eDest = pDest->eDest;   /* How to dispose of results */
872   int iParm = pDest->iSDParm; /* First argument to disposal method */
873   int nResultCol;             /* Number of result columns */
874   int nPrefixReg = 0;         /* Number of extra registers before regResult */
875   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
876 
877   /* Usually, regResult is the first cell in an array of memory cells
878   ** containing the current result row. In this case regOrig is set to the
879   ** same value. However, if the results are being sent to the sorter, the
880   ** values for any expressions that are also part of the sort-key are omitted
881   ** from this array. In this case regOrig is set to zero.  */
882   int regResult;              /* Start of memory holding current results */
883   int regOrig;                /* Start of memory holding full result (or 0) */
884 
885   assert( v );
886   assert( p->pEList!=0 );
887   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
888   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
889   if( pSort==0 && !hasDistinct ){
890     assert( iContinue!=0 );
891     codeOffset(v, p->iOffset, iContinue);
892   }
893 
894   /* Pull the requested columns.
895   */
896   nResultCol = p->pEList->nExpr;
897 
898   if( pDest->iSdst==0 ){
899     if( pSort ){
900       nPrefixReg = pSort->pOrderBy->nExpr;
901       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
902       pParse->nMem += nPrefixReg;
903     }
904     pDest->iSdst = pParse->nMem+1;
905     pParse->nMem += nResultCol;
906   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
907     /* This is an error condition that can result, for example, when a SELECT
908     ** on the right-hand side of an INSERT contains more result columns than
909     ** there are columns in the table on the left.  The error will be caught
910     ** and reported later.  But we need to make sure enough memory is allocated
911     ** to avoid other spurious errors in the meantime. */
912     pParse->nMem += nResultCol;
913   }
914   pDest->nSdst = nResultCol;
915   regOrig = regResult = pDest->iSdst;
916   if( srcTab>=0 ){
917     for(i=0; i<nResultCol; i++){
918       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
919       VdbeComment((v, "%s", p->pEList->a[i].zName));
920     }
921   }else if( eDest!=SRT_Exists ){
922 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
923     ExprList *pExtra = 0;
924 #endif
925     /* If the destination is an EXISTS(...) expression, the actual
926     ** values returned by the SELECT are not required.
927     */
928     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
929     ExprList *pEList;
930     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
931       ecelFlags = SQLITE_ECEL_DUP;
932     }else{
933       ecelFlags = 0;
934     }
935     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
936       /* For each expression in p->pEList that is a copy of an expression in
937       ** the ORDER BY clause (pSort->pOrderBy), set the associated
938       ** iOrderByCol value to one more than the index of the ORDER BY
939       ** expression within the sort-key that pushOntoSorter() will generate.
940       ** This allows the p->pEList field to be omitted from the sorted record,
941       ** saving space and CPU cycles.  */
942       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
943 
944       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
945         int j;
946         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
947           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
948         }
949       }
950 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
951       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
952       if( pExtra && pParse->db->mallocFailed==0 ){
953         /* If there are any extra PK columns to add to the sorter records,
954         ** allocate extra memory cells and adjust the OpenEphemeral
955         ** instruction to account for the larger records. This is only
956         ** required if there are one or more WITHOUT ROWID tables with
957         ** composite primary keys in the SortCtx.aDefer[] array.  */
958         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
959         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
960         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
961         pParse->nMem += pExtra->nExpr;
962       }
963 #endif
964 
965       /* Adjust nResultCol to account for columns that are omitted
966       ** from the sorter by the optimizations in this branch */
967       pEList = p->pEList;
968       for(i=0; i<pEList->nExpr; i++){
969         if( pEList->a[i].u.x.iOrderByCol>0
970 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
971          || pEList->a[i].bSorterRef
972 #endif
973         ){
974           nResultCol--;
975           regOrig = 0;
976         }
977       }
978 
979       testcase( regOrig );
980       testcase( eDest==SRT_Set );
981       testcase( eDest==SRT_Mem );
982       testcase( eDest==SRT_Coroutine );
983       testcase( eDest==SRT_Output );
984       assert( eDest==SRT_Set || eDest==SRT_Mem
985            || eDest==SRT_Coroutine || eDest==SRT_Output );
986     }
987     sRowLoadInfo.regResult = regResult;
988     sRowLoadInfo.ecelFlags = ecelFlags;
989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
990     sRowLoadInfo.pExtra = pExtra;
991     sRowLoadInfo.regExtraResult = regResult + nResultCol;
992     if( pExtra ) nResultCol += pExtra->nExpr;
993 #endif
994     if( p->iLimit
995      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
996      && nPrefixReg>0
997     ){
998       assert( pSort!=0 );
999       assert( hasDistinct==0 );
1000       pSort->pDeferredRowLoad = &sRowLoadInfo;
1001       regOrig = 0;
1002     }else{
1003       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1004     }
1005   }
1006 
1007   /* If the DISTINCT keyword was present on the SELECT statement
1008   ** and this row has been seen before, then do not make this row
1009   ** part of the result.
1010   */
1011   if( hasDistinct ){
1012     switch( pDistinct->eTnctType ){
1013       case WHERE_DISTINCT_ORDERED: {
1014         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1015         int iJump;              /* Jump destination */
1016         int regPrev;            /* Previous row content */
1017 
1018         /* Allocate space for the previous row */
1019         regPrev = pParse->nMem+1;
1020         pParse->nMem += nResultCol;
1021 
1022         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1023         ** sets the MEM_Cleared bit on the first register of the
1024         ** previous value.  This will cause the OP_Ne below to always
1025         ** fail on the first iteration of the loop even if the first
1026         ** row is all NULLs.
1027         */
1028         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1029         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1030         pOp->opcode = OP_Null;
1031         pOp->p1 = 1;
1032         pOp->p2 = regPrev;
1033 
1034         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1035         for(i=0; i<nResultCol; i++){
1036           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1037           if( i<nResultCol-1 ){
1038             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1039             VdbeCoverage(v);
1040           }else{
1041             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1042             VdbeCoverage(v);
1043            }
1044           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1045           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1046         }
1047         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1048         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1049         break;
1050       }
1051 
1052       case WHERE_DISTINCT_UNIQUE: {
1053         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1054         break;
1055       }
1056 
1057       default: {
1058         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1059         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1060                      regResult);
1061         break;
1062       }
1063     }
1064     if( pSort==0 ){
1065       codeOffset(v, p->iOffset, iContinue);
1066     }
1067   }
1068 
1069   switch( eDest ){
1070     /* In this mode, write each query result to the key of the temporary
1071     ** table iParm.
1072     */
1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1074     case SRT_Union: {
1075       int r1;
1076       r1 = sqlite3GetTempReg(pParse);
1077       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1078       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1079       sqlite3ReleaseTempReg(pParse, r1);
1080       break;
1081     }
1082 
1083     /* Construct a record from the query result, but instead of
1084     ** saving that record, use it as a key to delete elements from
1085     ** the temporary table iParm.
1086     */
1087     case SRT_Except: {
1088       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1089       break;
1090     }
1091 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1092 
1093     /* Store the result as data using a unique key.
1094     */
1095     case SRT_Fifo:
1096     case SRT_DistFifo:
1097     case SRT_Table:
1098     case SRT_EphemTab: {
1099       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1100       testcase( eDest==SRT_Table );
1101       testcase( eDest==SRT_EphemTab );
1102       testcase( eDest==SRT_Fifo );
1103       testcase( eDest==SRT_DistFifo );
1104       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1105 #ifndef SQLITE_OMIT_CTE
1106       if( eDest==SRT_DistFifo ){
1107         /* If the destination is DistFifo, then cursor (iParm+1) is open
1108         ** on an ephemeral index. If the current row is already present
1109         ** in the index, do not write it to the output. If not, add the
1110         ** current row to the index and proceed with writing it to the
1111         ** output table as well.  */
1112         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1113         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1114         VdbeCoverage(v);
1115         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1116         assert( pSort==0 );
1117       }
1118 #endif
1119       if( pSort ){
1120         assert( regResult==regOrig );
1121         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1122       }else{
1123         int r2 = sqlite3GetTempReg(pParse);
1124         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1125         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1126         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1127         sqlite3ReleaseTempReg(pParse, r2);
1128       }
1129       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1130       break;
1131     }
1132 
1133 #ifndef SQLITE_OMIT_SUBQUERY
1134     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1135     ** then there should be a single item on the stack.  Write this
1136     ** item into the set table with bogus data.
1137     */
1138     case SRT_Set: {
1139       if( pSort ){
1140         /* At first glance you would think we could optimize out the
1141         ** ORDER BY in this case since the order of entries in the set
1142         ** does not matter.  But there might be a LIMIT clause, in which
1143         ** case the order does matter */
1144         pushOntoSorter(
1145             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1146       }else{
1147         int r1 = sqlite3GetTempReg(pParse);
1148         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1149         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1150             r1, pDest->zAffSdst, nResultCol);
1151         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1152         sqlite3ReleaseTempReg(pParse, r1);
1153       }
1154       break;
1155     }
1156 
1157     /* If any row exist in the result set, record that fact and abort.
1158     */
1159     case SRT_Exists: {
1160       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1161       /* The LIMIT clause will terminate the loop for us */
1162       break;
1163     }
1164 
1165     /* If this is a scalar select that is part of an expression, then
1166     ** store the results in the appropriate memory cell or array of
1167     ** memory cells and break out of the scan loop.
1168     */
1169     case SRT_Mem: {
1170       if( pSort ){
1171         assert( nResultCol<=pDest->nSdst );
1172         pushOntoSorter(
1173             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1174       }else{
1175         assert( nResultCol==pDest->nSdst );
1176         assert( regResult==iParm );
1177         /* The LIMIT clause will jump out of the loop for us */
1178       }
1179       break;
1180     }
1181 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1182 
1183     case SRT_Coroutine:       /* Send data to a co-routine */
1184     case SRT_Output: {        /* Return the results */
1185       testcase( eDest==SRT_Coroutine );
1186       testcase( eDest==SRT_Output );
1187       if( pSort ){
1188         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1189                        nPrefixReg);
1190       }else if( eDest==SRT_Coroutine ){
1191         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1192       }else{
1193         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1194       }
1195       break;
1196     }
1197 
1198 #ifndef SQLITE_OMIT_CTE
1199     /* Write the results into a priority queue that is order according to
1200     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1201     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1202     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1203     ** final OP_Sequence column.  The last column is the record as a blob.
1204     */
1205     case SRT_DistQueue:
1206     case SRT_Queue: {
1207       int nKey;
1208       int r1, r2, r3;
1209       int addrTest = 0;
1210       ExprList *pSO;
1211       pSO = pDest->pOrderBy;
1212       assert( pSO );
1213       nKey = pSO->nExpr;
1214       r1 = sqlite3GetTempReg(pParse);
1215       r2 = sqlite3GetTempRange(pParse, nKey+2);
1216       r3 = r2+nKey+1;
1217       if( eDest==SRT_DistQueue ){
1218         /* If the destination is DistQueue, then cursor (iParm+1) is open
1219         ** on a second ephemeral index that holds all values every previously
1220         ** added to the queue. */
1221         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1222                                         regResult, nResultCol);
1223         VdbeCoverage(v);
1224       }
1225       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1226       if( eDest==SRT_DistQueue ){
1227         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1228         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1229       }
1230       for(i=0; i<nKey; i++){
1231         sqlite3VdbeAddOp2(v, OP_SCopy,
1232                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1233                           r2+i);
1234       }
1235       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1236       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1237       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1238       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1239       sqlite3ReleaseTempReg(pParse, r1);
1240       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1241       break;
1242     }
1243 #endif /* SQLITE_OMIT_CTE */
1244 
1245 
1246 
1247 #if !defined(SQLITE_OMIT_TRIGGER)
1248     /* Discard the results.  This is used for SELECT statements inside
1249     ** the body of a TRIGGER.  The purpose of such selects is to call
1250     ** user-defined functions that have side effects.  We do not care
1251     ** about the actual results of the select.
1252     */
1253     default: {
1254       assert( eDest==SRT_Discard );
1255       break;
1256     }
1257 #endif
1258   }
1259 
1260   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1261   ** there is a sorter, in which case the sorter has already limited
1262   ** the output for us.
1263   */
1264   if( pSort==0 && p->iLimit ){
1265     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1266   }
1267 }
1268 
1269 /*
1270 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1271 ** X extra columns.
1272 */
1273 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1274   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1275   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1276   if( p ){
1277     p->aSortOrder = (u8*)&p->aColl[N+X];
1278     p->nKeyField = (u16)N;
1279     p->nAllField = (u16)(N+X);
1280     p->enc = ENC(db);
1281     p->db = db;
1282     p->nRef = 1;
1283     memset(&p[1], 0, nExtra);
1284   }else{
1285     sqlite3OomFault(db);
1286   }
1287   return p;
1288 }
1289 
1290 /*
1291 ** Deallocate a KeyInfo object
1292 */
1293 void sqlite3KeyInfoUnref(KeyInfo *p){
1294   if( p ){
1295     assert( p->nRef>0 );
1296     p->nRef--;
1297     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1298   }
1299 }
1300 
1301 /*
1302 ** Make a new pointer to a KeyInfo object
1303 */
1304 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1305   if( p ){
1306     assert( p->nRef>0 );
1307     p->nRef++;
1308   }
1309   return p;
1310 }
1311 
1312 #ifdef SQLITE_DEBUG
1313 /*
1314 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1315 ** can only be changed if this is just a single reference to the object.
1316 **
1317 ** This routine is used only inside of assert() statements.
1318 */
1319 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1320 #endif /* SQLITE_DEBUG */
1321 
1322 /*
1323 ** Given an expression list, generate a KeyInfo structure that records
1324 ** the collating sequence for each expression in that expression list.
1325 **
1326 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1327 ** KeyInfo structure is appropriate for initializing a virtual index to
1328 ** implement that clause.  If the ExprList is the result set of a SELECT
1329 ** then the KeyInfo structure is appropriate for initializing a virtual
1330 ** index to implement a DISTINCT test.
1331 **
1332 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1333 ** function is responsible for seeing that this structure is eventually
1334 ** freed.
1335 */
1336 KeyInfo *sqlite3KeyInfoFromExprList(
1337   Parse *pParse,       /* Parsing context */
1338   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1339   int iStart,          /* Begin with this column of pList */
1340   int nExtra           /* Add this many extra columns to the end */
1341 ){
1342   int nExpr;
1343   KeyInfo *pInfo;
1344   struct ExprList_item *pItem;
1345   sqlite3 *db = pParse->db;
1346   int i;
1347 
1348   nExpr = pList->nExpr;
1349   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1350   if( pInfo ){
1351     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1352     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1353       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1354       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1355     }
1356   }
1357   return pInfo;
1358 }
1359 
1360 /*
1361 ** Name of the connection operator, used for error messages.
1362 */
1363 static const char *selectOpName(int id){
1364   char *z;
1365   switch( id ){
1366     case TK_ALL:       z = "UNION ALL";   break;
1367     case TK_INTERSECT: z = "INTERSECT";   break;
1368     case TK_EXCEPT:    z = "EXCEPT";      break;
1369     default:           z = "UNION";       break;
1370   }
1371   return z;
1372 }
1373 
1374 #ifndef SQLITE_OMIT_EXPLAIN
1375 /*
1376 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1377 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1378 ** where the caption is of the form:
1379 **
1380 **   "USE TEMP B-TREE FOR xxx"
1381 **
1382 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1383 ** is determined by the zUsage argument.
1384 */
1385 static void explainTempTable(Parse *pParse, const char *zUsage){
1386   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1387 }
1388 
1389 /*
1390 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1391 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1392 ** in sqlite3Select() to assign values to structure member variables that
1393 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1394 ** code with #ifndef directives.
1395 */
1396 # define explainSetInteger(a, b) a = b
1397 
1398 #else
1399 /* No-op versions of the explainXXX() functions and macros. */
1400 # define explainTempTable(y,z)
1401 # define explainSetInteger(y,z)
1402 #endif
1403 
1404 
1405 /*
1406 ** If the inner loop was generated using a non-null pOrderBy argument,
1407 ** then the results were placed in a sorter.  After the loop is terminated
1408 ** we need to run the sorter and output the results.  The following
1409 ** routine generates the code needed to do that.
1410 */
1411 static void generateSortTail(
1412   Parse *pParse,    /* Parsing context */
1413   Select *p,        /* The SELECT statement */
1414   SortCtx *pSort,   /* Information on the ORDER BY clause */
1415   int nColumn,      /* Number of columns of data */
1416   SelectDest *pDest /* Write the sorted results here */
1417 ){
1418   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1419   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1420   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1421   int addr;                       /* Top of output loop. Jump for Next. */
1422   int addrOnce = 0;
1423   int iTab;
1424   ExprList *pOrderBy = pSort->pOrderBy;
1425   int eDest = pDest->eDest;
1426   int iParm = pDest->iSDParm;
1427   int regRow;
1428   int regRowid;
1429   int iCol;
1430   int nKey;                       /* Number of key columns in sorter record */
1431   int iSortTab;                   /* Sorter cursor to read from */
1432   int i;
1433   int bSeq;                       /* True if sorter record includes seq. no. */
1434   int nRefKey = 0;
1435   struct ExprList_item *aOutEx = p->pEList->a;
1436 
1437   assert( addrBreak<0 );
1438   if( pSort->labelBkOut ){
1439     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1440     sqlite3VdbeGoto(v, addrBreak);
1441     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1442   }
1443 
1444 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1445   /* Open any cursors needed for sorter-reference expressions */
1446   for(i=0; i<pSort->nDefer; i++){
1447     Table *pTab = pSort->aDefer[i].pTab;
1448     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1449     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1450     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1451   }
1452 #endif
1453 
1454   iTab = pSort->iECursor;
1455   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1456     regRowid = 0;
1457     regRow = pDest->iSdst;
1458   }else{
1459     regRowid = sqlite3GetTempReg(pParse);
1460     regRow = sqlite3GetTempRange(pParse, nColumn);
1461   }
1462   nKey = pOrderBy->nExpr - pSort->nOBSat;
1463   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1464     int regSortOut = ++pParse->nMem;
1465     iSortTab = pParse->nTab++;
1466     if( pSort->labelBkOut ){
1467       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1468     }
1469     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1470         nKey+1+nColumn+nRefKey);
1471     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1472     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1473     VdbeCoverage(v);
1474     codeOffset(v, p->iOffset, addrContinue);
1475     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1476     bSeq = 0;
1477   }else{
1478     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1479     codeOffset(v, p->iOffset, addrContinue);
1480     iSortTab = iTab;
1481     bSeq = 1;
1482   }
1483   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1484 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1485     if( aOutEx[i].bSorterRef ) continue;
1486 #endif
1487     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1488   }
1489 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1490   if( pSort->nDefer ){
1491     int iKey = iCol+1;
1492     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1493 
1494     for(i=0; i<pSort->nDefer; i++){
1495       int iCsr = pSort->aDefer[i].iCsr;
1496       Table *pTab = pSort->aDefer[i].pTab;
1497       int nKey = pSort->aDefer[i].nKey;
1498 
1499       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1500       if( HasRowid(pTab) ){
1501         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1502         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1503             sqlite3VdbeCurrentAddr(v)+1, regKey);
1504       }else{
1505         int k;
1506         int iJmp;
1507         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1508         for(k=0; k<nKey; k++){
1509           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1510         }
1511         iJmp = sqlite3VdbeCurrentAddr(v);
1512         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1513         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1514         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1515       }
1516     }
1517     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1518   }
1519 #endif
1520   for(i=nColumn-1; i>=0; i--){
1521 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1522     if( aOutEx[i].bSorterRef ){
1523       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1524     }else
1525 #endif
1526     {
1527       int iRead;
1528       if( aOutEx[i].u.x.iOrderByCol ){
1529         iRead = aOutEx[i].u.x.iOrderByCol-1;
1530       }else{
1531         iRead = iCol--;
1532       }
1533       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1534       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1535     }
1536   }
1537   switch( eDest ){
1538     case SRT_Table:
1539     case SRT_EphemTab: {
1540       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1541       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1542       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1543       break;
1544     }
1545 #ifndef SQLITE_OMIT_SUBQUERY
1546     case SRT_Set: {
1547       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1548       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1549                         pDest->zAffSdst, nColumn);
1550       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1551       break;
1552     }
1553     case SRT_Mem: {
1554       /* The LIMIT clause will terminate the loop for us */
1555       break;
1556     }
1557 #endif
1558     default: {
1559       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1560       testcase( eDest==SRT_Output );
1561       testcase( eDest==SRT_Coroutine );
1562       if( eDest==SRT_Output ){
1563         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1564       }else{
1565         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1566       }
1567       break;
1568     }
1569   }
1570   if( regRowid ){
1571     if( eDest==SRT_Set ){
1572       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1573     }else{
1574       sqlite3ReleaseTempReg(pParse, regRow);
1575     }
1576     sqlite3ReleaseTempReg(pParse, regRowid);
1577   }
1578   /* The bottom of the loop
1579   */
1580   sqlite3VdbeResolveLabel(v, addrContinue);
1581   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1582     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1583   }else{
1584     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1585   }
1586   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1587   sqlite3VdbeResolveLabel(v, addrBreak);
1588 }
1589 
1590 /*
1591 ** Return a pointer to a string containing the 'declaration type' of the
1592 ** expression pExpr. The string may be treated as static by the caller.
1593 **
1594 ** Also try to estimate the size of the returned value and return that
1595 ** result in *pEstWidth.
1596 **
1597 ** The declaration type is the exact datatype definition extracted from the
1598 ** original CREATE TABLE statement if the expression is a column. The
1599 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1600 ** is considered a column can be complex in the presence of subqueries. The
1601 ** result-set expression in all of the following SELECT statements is
1602 ** considered a column by this function.
1603 **
1604 **   SELECT col FROM tbl;
1605 **   SELECT (SELECT col FROM tbl;
1606 **   SELECT (SELECT col FROM tbl);
1607 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1608 **
1609 ** The declaration type for any expression other than a column is NULL.
1610 **
1611 ** This routine has either 3 or 6 parameters depending on whether or not
1612 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1613 */
1614 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1615 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1616 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1617 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1618 #endif
1619 static const char *columnTypeImpl(
1620   NameContext *pNC,
1621 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1622   Expr *pExpr
1623 #else
1624   Expr *pExpr,
1625   const char **pzOrigDb,
1626   const char **pzOrigTab,
1627   const char **pzOrigCol
1628 #endif
1629 ){
1630   char const *zType = 0;
1631   int j;
1632 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1633   char const *zOrigDb = 0;
1634   char const *zOrigTab = 0;
1635   char const *zOrigCol = 0;
1636 #endif
1637 
1638   assert( pExpr!=0 );
1639   assert( pNC->pSrcList!=0 );
1640   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1641                                        ** are processed */
1642   switch( pExpr->op ){
1643     case TK_COLUMN: {
1644       /* The expression is a column. Locate the table the column is being
1645       ** extracted from in NameContext.pSrcList. This table may be real
1646       ** database table or a subquery.
1647       */
1648       Table *pTab = 0;            /* Table structure column is extracted from */
1649       Select *pS = 0;             /* Select the column is extracted from */
1650       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1651       while( pNC && !pTab ){
1652         SrcList *pTabList = pNC->pSrcList;
1653         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1654         if( j<pTabList->nSrc ){
1655           pTab = pTabList->a[j].pTab;
1656           pS = pTabList->a[j].pSelect;
1657         }else{
1658           pNC = pNC->pNext;
1659         }
1660       }
1661 
1662       if( pTab==0 ){
1663         /* At one time, code such as "SELECT new.x" within a trigger would
1664         ** cause this condition to run.  Since then, we have restructured how
1665         ** trigger code is generated and so this condition is no longer
1666         ** possible. However, it can still be true for statements like
1667         ** the following:
1668         **
1669         **   CREATE TABLE t1(col INTEGER);
1670         **   SELECT (SELECT t1.col) FROM FROM t1;
1671         **
1672         ** when columnType() is called on the expression "t1.col" in the
1673         ** sub-select. In this case, set the column type to NULL, even
1674         ** though it should really be "INTEGER".
1675         **
1676         ** This is not a problem, as the column type of "t1.col" is never
1677         ** used. When columnType() is called on the expression
1678         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1679         ** branch below.  */
1680         break;
1681       }
1682 
1683       assert( pTab && pExpr->pTab==pTab );
1684       if( pS ){
1685         /* The "table" is actually a sub-select or a view in the FROM clause
1686         ** of the SELECT statement. Return the declaration type and origin
1687         ** data for the result-set column of the sub-select.
1688         */
1689         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1690           /* If iCol is less than zero, then the expression requests the
1691           ** rowid of the sub-select or view. This expression is legal (see
1692           ** test case misc2.2.2) - it always evaluates to NULL.
1693           */
1694           NameContext sNC;
1695           Expr *p = pS->pEList->a[iCol].pExpr;
1696           sNC.pSrcList = pS->pSrc;
1697           sNC.pNext = pNC;
1698           sNC.pParse = pNC->pParse;
1699           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1700         }
1701       }else{
1702         /* A real table or a CTE table */
1703         assert( !pS );
1704 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1705         if( iCol<0 ) iCol = pTab->iPKey;
1706         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1707         if( iCol<0 ){
1708           zType = "INTEGER";
1709           zOrigCol = "rowid";
1710         }else{
1711           zOrigCol = pTab->aCol[iCol].zName;
1712           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1713         }
1714         zOrigTab = pTab->zName;
1715         if( pNC->pParse && pTab->pSchema ){
1716           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1717           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1718         }
1719 #else
1720         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1721         if( iCol<0 ){
1722           zType = "INTEGER";
1723         }else{
1724           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1725         }
1726 #endif
1727       }
1728       break;
1729     }
1730 #ifndef SQLITE_OMIT_SUBQUERY
1731     case TK_SELECT: {
1732       /* The expression is a sub-select. Return the declaration type and
1733       ** origin info for the single column in the result set of the SELECT
1734       ** statement.
1735       */
1736       NameContext sNC;
1737       Select *pS = pExpr->x.pSelect;
1738       Expr *p = pS->pEList->a[0].pExpr;
1739       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1740       sNC.pSrcList = pS->pSrc;
1741       sNC.pNext = pNC;
1742       sNC.pParse = pNC->pParse;
1743       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1744       break;
1745     }
1746 #endif
1747   }
1748 
1749 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1750   if( pzOrigDb ){
1751     assert( pzOrigTab && pzOrigCol );
1752     *pzOrigDb = zOrigDb;
1753     *pzOrigTab = zOrigTab;
1754     *pzOrigCol = zOrigCol;
1755   }
1756 #endif
1757   return zType;
1758 }
1759 
1760 /*
1761 ** Generate code that will tell the VDBE the declaration types of columns
1762 ** in the result set.
1763 */
1764 static void generateColumnTypes(
1765   Parse *pParse,      /* Parser context */
1766   SrcList *pTabList,  /* List of tables */
1767   ExprList *pEList    /* Expressions defining the result set */
1768 ){
1769 #ifndef SQLITE_OMIT_DECLTYPE
1770   Vdbe *v = pParse->pVdbe;
1771   int i;
1772   NameContext sNC;
1773   sNC.pSrcList = pTabList;
1774   sNC.pParse = pParse;
1775   sNC.pNext = 0;
1776   for(i=0; i<pEList->nExpr; i++){
1777     Expr *p = pEList->a[i].pExpr;
1778     const char *zType;
1779 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1780     const char *zOrigDb = 0;
1781     const char *zOrigTab = 0;
1782     const char *zOrigCol = 0;
1783     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1784 
1785     /* The vdbe must make its own copy of the column-type and other
1786     ** column specific strings, in case the schema is reset before this
1787     ** virtual machine is deleted.
1788     */
1789     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1790     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1791     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1792 #else
1793     zType = columnType(&sNC, p, 0, 0, 0);
1794 #endif
1795     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1796   }
1797 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1798 }
1799 
1800 
1801 /*
1802 ** Compute the column names for a SELECT statement.
1803 **
1804 ** The only guarantee that SQLite makes about column names is that if the
1805 ** column has an AS clause assigning it a name, that will be the name used.
1806 ** That is the only documented guarantee.  However, countless applications
1807 ** developed over the years have made baseless assumptions about column names
1808 ** and will break if those assumptions changes.  Hence, use extreme caution
1809 ** when modifying this routine to avoid breaking legacy.
1810 **
1811 ** See Also: sqlite3ColumnsFromExprList()
1812 **
1813 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1814 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1815 ** applications should operate this way.  Nevertheless, we need to support the
1816 ** other modes for legacy:
1817 **
1818 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1819 **                              originally appears in the SELECT statement.  In
1820 **                              other words, the zSpan of the result expression.
1821 **
1822 **    short=ON, full=OFF:       (This is the default setting).  If the result
1823 **                              refers directly to a table column, then the
1824 **                              result column name is just the table column
1825 **                              name: COLUMN.  Otherwise use zSpan.
1826 **
1827 **    full=ON, short=ANY:       If the result refers directly to a table column,
1828 **                              then the result column name with the table name
1829 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1830 */
1831 static void generateColumnNames(
1832   Parse *pParse,      /* Parser context */
1833   Select *pSelect     /* Generate column names for this SELECT statement */
1834 ){
1835   Vdbe *v = pParse->pVdbe;
1836   int i;
1837   Table *pTab;
1838   SrcList *pTabList;
1839   ExprList *pEList;
1840   sqlite3 *db = pParse->db;
1841   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1842   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1843 
1844 #ifndef SQLITE_OMIT_EXPLAIN
1845   /* If this is an EXPLAIN, skip this step */
1846   if( pParse->explain ){
1847     return;
1848   }
1849 #endif
1850 
1851   if( pParse->colNamesSet ) return;
1852   /* Column names are determined by the left-most term of a compound select */
1853   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1854   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1855   pTabList = pSelect->pSrc;
1856   pEList = pSelect->pEList;
1857   assert( v!=0 );
1858   assert( pTabList!=0 );
1859   pParse->colNamesSet = 1;
1860   fullName = (db->flags & SQLITE_FullColNames)!=0;
1861   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1862   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1863   for(i=0; i<pEList->nExpr; i++){
1864     Expr *p = pEList->a[i].pExpr;
1865 
1866     assert( p!=0 );
1867     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1868     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1869     if( pEList->a[i].zName ){
1870       /* An AS clause always takes first priority */
1871       char *zName = pEList->a[i].zName;
1872       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1873     }else if( srcName && p->op==TK_COLUMN ){
1874       char *zCol;
1875       int iCol = p->iColumn;
1876       pTab = p->pTab;
1877       assert( pTab!=0 );
1878       if( iCol<0 ) iCol = pTab->iPKey;
1879       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1880       if( iCol<0 ){
1881         zCol = "rowid";
1882       }else{
1883         zCol = pTab->aCol[iCol].zName;
1884       }
1885       if( fullName ){
1886         char *zName = 0;
1887         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1888         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1889       }else{
1890         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1891       }
1892     }else{
1893       const char *z = pEList->a[i].zSpan;
1894       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1895       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1896     }
1897   }
1898   generateColumnTypes(pParse, pTabList, pEList);
1899 }
1900 
1901 /*
1902 ** Given an expression list (which is really the list of expressions
1903 ** that form the result set of a SELECT statement) compute appropriate
1904 ** column names for a table that would hold the expression list.
1905 **
1906 ** All column names will be unique.
1907 **
1908 ** Only the column names are computed.  Column.zType, Column.zColl,
1909 ** and other fields of Column are zeroed.
1910 **
1911 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1912 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1913 **
1914 ** The only guarantee that SQLite makes about column names is that if the
1915 ** column has an AS clause assigning it a name, that will be the name used.
1916 ** That is the only documented guarantee.  However, countless applications
1917 ** developed over the years have made baseless assumptions about column names
1918 ** and will break if those assumptions changes.  Hence, use extreme caution
1919 ** when modifying this routine to avoid breaking legacy.
1920 **
1921 ** See Also: generateColumnNames()
1922 */
1923 int sqlite3ColumnsFromExprList(
1924   Parse *pParse,          /* Parsing context */
1925   ExprList *pEList,       /* Expr list from which to derive column names */
1926   i16 *pnCol,             /* Write the number of columns here */
1927   Column **paCol          /* Write the new column list here */
1928 ){
1929   sqlite3 *db = pParse->db;   /* Database connection */
1930   int i, j;                   /* Loop counters */
1931   u32 cnt;                    /* Index added to make the name unique */
1932   Column *aCol, *pCol;        /* For looping over result columns */
1933   int nCol;                   /* Number of columns in the result set */
1934   char *zName;                /* Column name */
1935   int nName;                  /* Size of name in zName[] */
1936   Hash ht;                    /* Hash table of column names */
1937 
1938   sqlite3HashInit(&ht);
1939   if( pEList ){
1940     nCol = pEList->nExpr;
1941     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1942     testcase( aCol==0 );
1943     if( nCol>32767 ) nCol = 32767;
1944   }else{
1945     nCol = 0;
1946     aCol = 0;
1947   }
1948   assert( nCol==(i16)nCol );
1949   *pnCol = nCol;
1950   *paCol = aCol;
1951 
1952   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1953     /* Get an appropriate name for the column
1954     */
1955     if( (zName = pEList->a[i].zName)!=0 ){
1956       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1957     }else{
1958       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1959       while( pColExpr->op==TK_DOT ){
1960         pColExpr = pColExpr->pRight;
1961         assert( pColExpr!=0 );
1962       }
1963       assert( pColExpr->op!=TK_AGG_COLUMN );
1964       if( pColExpr->op==TK_COLUMN ){
1965         /* For columns use the column name name */
1966         int iCol = pColExpr->iColumn;
1967         Table *pTab = pColExpr->pTab;
1968         assert( pTab!=0 );
1969         if( iCol<0 ) iCol = pTab->iPKey;
1970         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1971       }else if( pColExpr->op==TK_ID ){
1972         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1973         zName = pColExpr->u.zToken;
1974       }else{
1975         /* Use the original text of the column expression as its name */
1976         zName = pEList->a[i].zSpan;
1977       }
1978     }
1979     if( zName ){
1980       zName = sqlite3DbStrDup(db, zName);
1981     }else{
1982       zName = sqlite3MPrintf(db,"column%d",i+1);
1983     }
1984 
1985     /* Make sure the column name is unique.  If the name is not unique,
1986     ** append an integer to the name so that it becomes unique.
1987     */
1988     cnt = 0;
1989     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1990       nName = sqlite3Strlen30(zName);
1991       if( nName>0 ){
1992         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1993         if( zName[j]==':' ) nName = j;
1994       }
1995       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1996       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1997     }
1998     pCol->zName = zName;
1999     sqlite3ColumnPropertiesFromName(0, pCol);
2000     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2001       sqlite3OomFault(db);
2002     }
2003   }
2004   sqlite3HashClear(&ht);
2005   if( db->mallocFailed ){
2006     for(j=0; j<i; j++){
2007       sqlite3DbFree(db, aCol[j].zName);
2008     }
2009     sqlite3DbFree(db, aCol);
2010     *paCol = 0;
2011     *pnCol = 0;
2012     return SQLITE_NOMEM_BKPT;
2013   }
2014   return SQLITE_OK;
2015 }
2016 
2017 /*
2018 ** Add type and collation information to a column list based on
2019 ** a SELECT statement.
2020 **
2021 ** The column list presumably came from selectColumnNamesFromExprList().
2022 ** The column list has only names, not types or collations.  This
2023 ** routine goes through and adds the types and collations.
2024 **
2025 ** This routine requires that all identifiers in the SELECT
2026 ** statement be resolved.
2027 */
2028 void sqlite3SelectAddColumnTypeAndCollation(
2029   Parse *pParse,        /* Parsing contexts */
2030   Table *pTab,          /* Add column type information to this table */
2031   Select *pSelect       /* SELECT used to determine types and collations */
2032 ){
2033   sqlite3 *db = pParse->db;
2034   NameContext sNC;
2035   Column *pCol;
2036   CollSeq *pColl;
2037   int i;
2038   Expr *p;
2039   struct ExprList_item *a;
2040 
2041   assert( pSelect!=0 );
2042   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2043   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2044   if( db->mallocFailed ) return;
2045   memset(&sNC, 0, sizeof(sNC));
2046   sNC.pSrcList = pSelect->pSrc;
2047   a = pSelect->pEList->a;
2048   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2049     const char *zType;
2050     int n, m;
2051     p = a[i].pExpr;
2052     zType = columnType(&sNC, p, 0, 0, 0);
2053     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2054     pCol->affinity = sqlite3ExprAffinity(p);
2055     if( zType ){
2056       m = sqlite3Strlen30(zType);
2057       n = sqlite3Strlen30(pCol->zName);
2058       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2059       if( pCol->zName ){
2060         memcpy(&pCol->zName[n+1], zType, m+1);
2061         pCol->colFlags |= COLFLAG_HASTYPE;
2062       }
2063     }
2064     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2065     pColl = sqlite3ExprCollSeq(pParse, p);
2066     if( pColl && pCol->zColl==0 ){
2067       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2068     }
2069   }
2070   pTab->szTabRow = 1; /* Any non-zero value works */
2071 }
2072 
2073 /*
2074 ** Given a SELECT statement, generate a Table structure that describes
2075 ** the result set of that SELECT.
2076 */
2077 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2078   Table *pTab;
2079   sqlite3 *db = pParse->db;
2080   int savedFlags;
2081 
2082   savedFlags = db->flags;
2083   db->flags &= ~SQLITE_FullColNames;
2084   db->flags |= SQLITE_ShortColNames;
2085   sqlite3SelectPrep(pParse, pSelect, 0);
2086   if( pParse->nErr ) return 0;
2087   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2088   db->flags = savedFlags;
2089   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2090   if( pTab==0 ){
2091     return 0;
2092   }
2093   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2094   ** is disabled */
2095   assert( db->lookaside.bDisable );
2096   pTab->nTabRef = 1;
2097   pTab->zName = 0;
2098   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2099   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2100   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2101   pTab->iPKey = -1;
2102   if( db->mallocFailed ){
2103     sqlite3DeleteTable(db, pTab);
2104     return 0;
2105   }
2106   return pTab;
2107 }
2108 
2109 /*
2110 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2111 ** If an error occurs, return NULL and leave a message in pParse.
2112 */
2113 Vdbe *sqlite3GetVdbe(Parse *pParse){
2114   if( pParse->pVdbe ){
2115     return pParse->pVdbe;
2116   }
2117   if( pParse->pToplevel==0
2118    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2119   ){
2120     pParse->okConstFactor = 1;
2121   }
2122   return sqlite3VdbeCreate(pParse);
2123 }
2124 
2125 
2126 /*
2127 ** Compute the iLimit and iOffset fields of the SELECT based on the
2128 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2129 ** that appear in the original SQL statement after the LIMIT and OFFSET
2130 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2131 ** are the integer memory register numbers for counters used to compute
2132 ** the limit and offset.  If there is no limit and/or offset, then
2133 ** iLimit and iOffset are negative.
2134 **
2135 ** This routine changes the values of iLimit and iOffset only if
2136 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2137 ** and iOffset should have been preset to appropriate default values (zero)
2138 ** prior to calling this routine.
2139 **
2140 ** The iOffset register (if it exists) is initialized to the value
2141 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2142 ** iOffset+1 is initialized to LIMIT+OFFSET.
2143 **
2144 ** Only if pLimit->pLeft!=0 do the limit registers get
2145 ** redefined.  The UNION ALL operator uses this property to force
2146 ** the reuse of the same limit and offset registers across multiple
2147 ** SELECT statements.
2148 */
2149 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2150   Vdbe *v = 0;
2151   int iLimit = 0;
2152   int iOffset;
2153   int n;
2154   Expr *pLimit = p->pLimit;
2155 
2156   if( p->iLimit ) return;
2157 
2158   /*
2159   ** "LIMIT -1" always shows all rows.  There is some
2160   ** controversy about what the correct behavior should be.
2161   ** The current implementation interprets "LIMIT 0" to mean
2162   ** no rows.
2163   */
2164   if( pLimit ){
2165     assert( pLimit->op==TK_LIMIT );
2166     assert( pLimit->pLeft!=0 );
2167     p->iLimit = iLimit = ++pParse->nMem;
2168     v = sqlite3GetVdbe(pParse);
2169     assert( v!=0 );
2170     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2171       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2172       VdbeComment((v, "LIMIT counter"));
2173       if( n==0 ){
2174         sqlite3VdbeGoto(v, iBreak);
2175       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2176         p->nSelectRow = sqlite3LogEst((u64)n);
2177         p->selFlags |= SF_FixedLimit;
2178       }
2179     }else{
2180       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2181       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2182       VdbeComment((v, "LIMIT counter"));
2183       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2184     }
2185     if( pLimit->pRight ){
2186       p->iOffset = iOffset = ++pParse->nMem;
2187       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2188       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2189       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2190       VdbeComment((v, "OFFSET counter"));
2191       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2192       VdbeComment((v, "LIMIT+OFFSET"));
2193     }
2194   }
2195 }
2196 
2197 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2198 /*
2199 ** Return the appropriate collating sequence for the iCol-th column of
2200 ** the result set for the compound-select statement "p".  Return NULL if
2201 ** the column has no default collating sequence.
2202 **
2203 ** The collating sequence for the compound select is taken from the
2204 ** left-most term of the select that has a collating sequence.
2205 */
2206 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2207   CollSeq *pRet;
2208   if( p->pPrior ){
2209     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2210   }else{
2211     pRet = 0;
2212   }
2213   assert( iCol>=0 );
2214   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2215   ** have been thrown during name resolution and we would not have gotten
2216   ** this far */
2217   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2218     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2219   }
2220   return pRet;
2221 }
2222 
2223 /*
2224 ** The select statement passed as the second parameter is a compound SELECT
2225 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2226 ** structure suitable for implementing the ORDER BY.
2227 **
2228 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2229 ** function is responsible for ensuring that this structure is eventually
2230 ** freed.
2231 */
2232 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2233   ExprList *pOrderBy = p->pOrderBy;
2234   int nOrderBy = p->pOrderBy->nExpr;
2235   sqlite3 *db = pParse->db;
2236   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2237   if( pRet ){
2238     int i;
2239     for(i=0; i<nOrderBy; i++){
2240       struct ExprList_item *pItem = &pOrderBy->a[i];
2241       Expr *pTerm = pItem->pExpr;
2242       CollSeq *pColl;
2243 
2244       if( pTerm->flags & EP_Collate ){
2245         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2246       }else{
2247         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2248         if( pColl==0 ) pColl = db->pDfltColl;
2249         pOrderBy->a[i].pExpr =
2250           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2251       }
2252       assert( sqlite3KeyInfoIsWriteable(pRet) );
2253       pRet->aColl[i] = pColl;
2254       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2255     }
2256   }
2257 
2258   return pRet;
2259 }
2260 
2261 #ifndef SQLITE_OMIT_CTE
2262 /*
2263 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2264 ** query of the form:
2265 **
2266 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2267 **                         \___________/             \_______________/
2268 **                           p->pPrior                      p
2269 **
2270 **
2271 ** There is exactly one reference to the recursive-table in the FROM clause
2272 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2273 **
2274 ** The setup-query runs once to generate an initial set of rows that go
2275 ** into a Queue table.  Rows are extracted from the Queue table one by
2276 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2277 ** extracted row (now in the iCurrent table) becomes the content of the
2278 ** recursive-table for a recursive-query run.  The output of the recursive-query
2279 ** is added back into the Queue table.  Then another row is extracted from Queue
2280 ** and the iteration continues until the Queue table is empty.
2281 **
2282 ** If the compound query operator is UNION then no duplicate rows are ever
2283 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2284 ** that have ever been inserted into Queue and causes duplicates to be
2285 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2286 **
2287 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2288 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2289 ** an ORDER BY, the Queue table is just a FIFO.
2290 **
2291 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2292 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2293 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2294 ** with a positive value, then the first OFFSET outputs are discarded rather
2295 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2296 ** rows have been skipped.
2297 */
2298 static void generateWithRecursiveQuery(
2299   Parse *pParse,        /* Parsing context */
2300   Select *p,            /* The recursive SELECT to be coded */
2301   SelectDest *pDest     /* What to do with query results */
2302 ){
2303   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2304   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2305   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2306   Select *pSetup = p->pPrior;   /* The setup query */
2307   int addrTop;                  /* Top of the loop */
2308   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2309   int iCurrent = 0;             /* The Current table */
2310   int regCurrent;               /* Register holding Current table */
2311   int iQueue;                   /* The Queue table */
2312   int iDistinct = 0;            /* To ensure unique results if UNION */
2313   int eDest = SRT_Fifo;         /* How to write to Queue */
2314   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2315   int i;                        /* Loop counter */
2316   int rc;                       /* Result code */
2317   ExprList *pOrderBy;           /* The ORDER BY clause */
2318   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2319   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2320 
2321   /* Obtain authorization to do a recursive query */
2322   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2323 
2324   /* Process the LIMIT and OFFSET clauses, if they exist */
2325   addrBreak = sqlite3VdbeMakeLabel(v);
2326   p->nSelectRow = 320;  /* 4 billion rows */
2327   computeLimitRegisters(pParse, p, addrBreak);
2328   pLimit = p->pLimit;
2329   regLimit = p->iLimit;
2330   regOffset = p->iOffset;
2331   p->pLimit = 0;
2332   p->iLimit = p->iOffset = 0;
2333   pOrderBy = p->pOrderBy;
2334 
2335   /* Locate the cursor number of the Current table */
2336   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2337     if( pSrc->a[i].fg.isRecursive ){
2338       iCurrent = pSrc->a[i].iCursor;
2339       break;
2340     }
2341   }
2342 
2343   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2344   ** the Distinct table must be exactly one greater than Queue in order
2345   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2346   iQueue = pParse->nTab++;
2347   if( p->op==TK_UNION ){
2348     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2349     iDistinct = pParse->nTab++;
2350   }else{
2351     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2352   }
2353   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2354 
2355   /* Allocate cursors for Current, Queue, and Distinct. */
2356   regCurrent = ++pParse->nMem;
2357   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2358   if( pOrderBy ){
2359     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2360     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2361                       (char*)pKeyInfo, P4_KEYINFO);
2362     destQueue.pOrderBy = pOrderBy;
2363   }else{
2364     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2365   }
2366   VdbeComment((v, "Queue table"));
2367   if( iDistinct ){
2368     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2369     p->selFlags |= SF_UsesEphemeral;
2370   }
2371 
2372   /* Detach the ORDER BY clause from the compound SELECT */
2373   p->pOrderBy = 0;
2374 
2375   /* Store the results of the setup-query in Queue. */
2376   pSetup->pNext = 0;
2377   ExplainQueryPlan((pParse, 1, "SETUP"));
2378   rc = sqlite3Select(pParse, pSetup, &destQueue);
2379   pSetup->pNext = p;
2380   if( rc ) goto end_of_recursive_query;
2381 
2382   /* Find the next row in the Queue and output that row */
2383   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2384 
2385   /* Transfer the next row in Queue over to Current */
2386   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2387   if( pOrderBy ){
2388     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2389   }else{
2390     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2391   }
2392   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2393 
2394   /* Output the single row in Current */
2395   addrCont = sqlite3VdbeMakeLabel(v);
2396   codeOffset(v, regOffset, addrCont);
2397   selectInnerLoop(pParse, p, iCurrent,
2398       0, 0, pDest, addrCont, addrBreak);
2399   if( regLimit ){
2400     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2401     VdbeCoverage(v);
2402   }
2403   sqlite3VdbeResolveLabel(v, addrCont);
2404 
2405   /* Execute the recursive SELECT taking the single row in Current as
2406   ** the value for the recursive-table. Store the results in the Queue.
2407   */
2408   if( p->selFlags & SF_Aggregate ){
2409     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2410   }else{
2411     p->pPrior = 0;
2412     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2413     sqlite3Select(pParse, p, &destQueue);
2414     assert( p->pPrior==0 );
2415     p->pPrior = pSetup;
2416   }
2417 
2418   /* Keep running the loop until the Queue is empty */
2419   sqlite3VdbeGoto(v, addrTop);
2420   sqlite3VdbeResolveLabel(v, addrBreak);
2421 
2422 end_of_recursive_query:
2423   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2424   p->pOrderBy = pOrderBy;
2425   p->pLimit = pLimit;
2426   return;
2427 }
2428 #endif /* SQLITE_OMIT_CTE */
2429 
2430 /* Forward references */
2431 static int multiSelectOrderBy(
2432   Parse *pParse,        /* Parsing context */
2433   Select *p,            /* The right-most of SELECTs to be coded */
2434   SelectDest *pDest     /* What to do with query results */
2435 );
2436 
2437 /*
2438 ** Handle the special case of a compound-select that originates from a
2439 ** VALUES clause.  By handling this as a special case, we avoid deep
2440 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2441 ** on a VALUES clause.
2442 **
2443 ** Because the Select object originates from a VALUES clause:
2444 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2445 **   (2) All terms are UNION ALL
2446 **   (3) There is no ORDER BY clause
2447 **
2448 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2449 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2450 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2451 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2452 */
2453 static int multiSelectValues(
2454   Parse *pParse,        /* Parsing context */
2455   Select *p,            /* The right-most of SELECTs to be coded */
2456   SelectDest *pDest     /* What to do with query results */
2457 ){
2458   int nRow = 1;
2459   int rc = 0;
2460   int bShowAll = p->pLimit==0;
2461   assert( p->selFlags & SF_MultiValue );
2462   do{
2463     assert( p->selFlags & SF_Values );
2464     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2465     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2466     if( p->pPrior==0 ) break;
2467     assert( p->pPrior->pNext==p );
2468     p = p->pPrior;
2469     nRow += bShowAll;
2470   }while(1);
2471   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2472                     nRow==1 ? "" : "S"));
2473   while( p ){
2474     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2475     if( !bShowAll ) break;
2476     p->nSelectRow = nRow;
2477     p = p->pNext;
2478   }
2479   return rc;
2480 }
2481 
2482 /*
2483 ** This routine is called to process a compound query form from
2484 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2485 ** INTERSECT
2486 **
2487 ** "p" points to the right-most of the two queries.  the query on the
2488 ** left is p->pPrior.  The left query could also be a compound query
2489 ** in which case this routine will be called recursively.
2490 **
2491 ** The results of the total query are to be written into a destination
2492 ** of type eDest with parameter iParm.
2493 **
2494 ** Example 1:  Consider a three-way compound SQL statement.
2495 **
2496 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2497 **
2498 ** This statement is parsed up as follows:
2499 **
2500 **     SELECT c FROM t3
2501 **      |
2502 **      `----->  SELECT b FROM t2
2503 **                |
2504 **                `------>  SELECT a FROM t1
2505 **
2506 ** The arrows in the diagram above represent the Select.pPrior pointer.
2507 ** So if this routine is called with p equal to the t3 query, then
2508 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2509 **
2510 ** Notice that because of the way SQLite parses compound SELECTs, the
2511 ** individual selects always group from left to right.
2512 */
2513 static int multiSelect(
2514   Parse *pParse,        /* Parsing context */
2515   Select *p,            /* The right-most of SELECTs to be coded */
2516   SelectDest *pDest     /* What to do with query results */
2517 ){
2518   int rc = SQLITE_OK;   /* Success code from a subroutine */
2519   Select *pPrior;       /* Another SELECT immediately to our left */
2520   Vdbe *v;              /* Generate code to this VDBE */
2521   SelectDest dest;      /* Alternative data destination */
2522   Select *pDelete = 0;  /* Chain of simple selects to delete */
2523   sqlite3 *db;          /* Database connection */
2524 
2525   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2526   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2527   */
2528   assert( p && p->pPrior );  /* Calling function guarantees this much */
2529   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2530   db = pParse->db;
2531   pPrior = p->pPrior;
2532   dest = *pDest;
2533   if( pPrior->pOrderBy || pPrior->pLimit ){
2534     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2535       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2536     rc = 1;
2537     goto multi_select_end;
2538   }
2539 
2540   v = sqlite3GetVdbe(pParse);
2541   assert( v!=0 );  /* The VDBE already created by calling function */
2542 
2543   /* Create the destination temporary table if necessary
2544   */
2545   if( dest.eDest==SRT_EphemTab ){
2546     assert( p->pEList );
2547     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2548     dest.eDest = SRT_Table;
2549   }
2550 
2551   /* Special handling for a compound-select that originates as a VALUES clause.
2552   */
2553   if( p->selFlags & SF_MultiValue ){
2554     rc = multiSelectValues(pParse, p, &dest);
2555     goto multi_select_end;
2556   }
2557 
2558   /* Make sure all SELECTs in the statement have the same number of elements
2559   ** in their result sets.
2560   */
2561   assert( p->pEList && pPrior->pEList );
2562   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2563 
2564 #ifndef SQLITE_OMIT_CTE
2565   if( p->selFlags & SF_Recursive ){
2566     generateWithRecursiveQuery(pParse, p, &dest);
2567   }else
2568 #endif
2569 
2570   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2571   */
2572   if( p->pOrderBy ){
2573     return multiSelectOrderBy(pParse, p, pDest);
2574   }else{
2575 
2576 #ifndef SQLITE_OMIT_EXPLAIN
2577     if( pPrior->pPrior==0 ){
2578       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2579       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2580     }
2581 #endif
2582 
2583     /* Generate code for the left and right SELECT statements.
2584     */
2585     switch( p->op ){
2586       case TK_ALL: {
2587         int addr = 0;
2588         int nLimit;
2589         assert( !pPrior->pLimit );
2590         pPrior->iLimit = p->iLimit;
2591         pPrior->iOffset = p->iOffset;
2592         pPrior->pLimit = p->pLimit;
2593         rc = sqlite3Select(pParse, pPrior, &dest);
2594         p->pLimit = 0;
2595         if( rc ){
2596           goto multi_select_end;
2597         }
2598         p->pPrior = 0;
2599         p->iLimit = pPrior->iLimit;
2600         p->iOffset = pPrior->iOffset;
2601         if( p->iLimit ){
2602           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2603           VdbeComment((v, "Jump ahead if LIMIT reached"));
2604           if( p->iOffset ){
2605             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2606                               p->iLimit, p->iOffset+1, p->iOffset);
2607           }
2608         }
2609         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2610         rc = sqlite3Select(pParse, p, &dest);
2611         testcase( rc!=SQLITE_OK );
2612         pDelete = p->pPrior;
2613         p->pPrior = pPrior;
2614         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2615         if( pPrior->pLimit
2616          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2617          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2618         ){
2619           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2620         }
2621         if( addr ){
2622           sqlite3VdbeJumpHere(v, addr);
2623         }
2624         break;
2625       }
2626       case TK_EXCEPT:
2627       case TK_UNION: {
2628         int unionTab;    /* Cursor number of the temp table holding result */
2629         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2630         int priorOp;     /* The SRT_ operation to apply to prior selects */
2631         Expr *pLimit;    /* Saved values of p->nLimit  */
2632         int addr;
2633         SelectDest uniondest;
2634 
2635         testcase( p->op==TK_EXCEPT );
2636         testcase( p->op==TK_UNION );
2637         priorOp = SRT_Union;
2638         if( dest.eDest==priorOp ){
2639           /* We can reuse a temporary table generated by a SELECT to our
2640           ** right.
2641           */
2642           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2643           unionTab = dest.iSDParm;
2644         }else{
2645           /* We will need to create our own temporary table to hold the
2646           ** intermediate results.
2647           */
2648           unionTab = pParse->nTab++;
2649           assert( p->pOrderBy==0 );
2650           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2651           assert( p->addrOpenEphm[0] == -1 );
2652           p->addrOpenEphm[0] = addr;
2653           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2654           assert( p->pEList );
2655         }
2656 
2657         /* Code the SELECT statements to our left
2658         */
2659         assert( !pPrior->pOrderBy );
2660         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2661         rc = sqlite3Select(pParse, pPrior, &uniondest);
2662         if( rc ){
2663           goto multi_select_end;
2664         }
2665 
2666         /* Code the current SELECT statement
2667         */
2668         if( p->op==TK_EXCEPT ){
2669           op = SRT_Except;
2670         }else{
2671           assert( p->op==TK_UNION );
2672           op = SRT_Union;
2673         }
2674         p->pPrior = 0;
2675         pLimit = p->pLimit;
2676         p->pLimit = 0;
2677         uniondest.eDest = op;
2678         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2679                           selectOpName(p->op)));
2680         rc = sqlite3Select(pParse, p, &uniondest);
2681         testcase( rc!=SQLITE_OK );
2682         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2683         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2684         sqlite3ExprListDelete(db, p->pOrderBy);
2685         pDelete = p->pPrior;
2686         p->pPrior = pPrior;
2687         p->pOrderBy = 0;
2688         if( p->op==TK_UNION ){
2689           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2690         }
2691         sqlite3ExprDelete(db, p->pLimit);
2692         p->pLimit = pLimit;
2693         p->iLimit = 0;
2694         p->iOffset = 0;
2695 
2696         /* Convert the data in the temporary table into whatever form
2697         ** it is that we currently need.
2698         */
2699         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2700         if( dest.eDest!=priorOp ){
2701           int iCont, iBreak, iStart;
2702           assert( p->pEList );
2703           iBreak = sqlite3VdbeMakeLabel(v);
2704           iCont = sqlite3VdbeMakeLabel(v);
2705           computeLimitRegisters(pParse, p, iBreak);
2706           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2707           iStart = sqlite3VdbeCurrentAddr(v);
2708           selectInnerLoop(pParse, p, unionTab,
2709                           0, 0, &dest, iCont, iBreak);
2710           sqlite3VdbeResolveLabel(v, iCont);
2711           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2712           sqlite3VdbeResolveLabel(v, iBreak);
2713           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2714         }
2715         break;
2716       }
2717       default: assert( p->op==TK_INTERSECT ); {
2718         int tab1, tab2;
2719         int iCont, iBreak, iStart;
2720         Expr *pLimit;
2721         int addr;
2722         SelectDest intersectdest;
2723         int r1;
2724 
2725         /* INTERSECT is different from the others since it requires
2726         ** two temporary tables.  Hence it has its own case.  Begin
2727         ** by allocating the tables we will need.
2728         */
2729         tab1 = pParse->nTab++;
2730         tab2 = pParse->nTab++;
2731         assert( p->pOrderBy==0 );
2732 
2733         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2734         assert( p->addrOpenEphm[0] == -1 );
2735         p->addrOpenEphm[0] = addr;
2736         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2737         assert( p->pEList );
2738 
2739         /* Code the SELECTs to our left into temporary table "tab1".
2740         */
2741         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2742         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2743         if( rc ){
2744           goto multi_select_end;
2745         }
2746 
2747         /* Code the current SELECT into temporary table "tab2"
2748         */
2749         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2750         assert( p->addrOpenEphm[1] == -1 );
2751         p->addrOpenEphm[1] = addr;
2752         p->pPrior = 0;
2753         pLimit = p->pLimit;
2754         p->pLimit = 0;
2755         intersectdest.iSDParm = tab2;
2756         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2757                           selectOpName(p->op)));
2758         rc = sqlite3Select(pParse, p, &intersectdest);
2759         testcase( rc!=SQLITE_OK );
2760         pDelete = p->pPrior;
2761         p->pPrior = pPrior;
2762         if( p->nSelectRow>pPrior->nSelectRow ){
2763           p->nSelectRow = pPrior->nSelectRow;
2764         }
2765         sqlite3ExprDelete(db, p->pLimit);
2766         p->pLimit = pLimit;
2767 
2768         /* Generate code to take the intersection of the two temporary
2769         ** tables.
2770         */
2771         assert( p->pEList );
2772         iBreak = sqlite3VdbeMakeLabel(v);
2773         iCont = sqlite3VdbeMakeLabel(v);
2774         computeLimitRegisters(pParse, p, iBreak);
2775         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2776         r1 = sqlite3GetTempReg(pParse);
2777         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2778         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2779         VdbeCoverage(v);
2780         sqlite3ReleaseTempReg(pParse, r1);
2781         selectInnerLoop(pParse, p, tab1,
2782                         0, 0, &dest, iCont, iBreak);
2783         sqlite3VdbeResolveLabel(v, iCont);
2784         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2785         sqlite3VdbeResolveLabel(v, iBreak);
2786         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2787         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2788         break;
2789       }
2790     }
2791 
2792   #ifndef SQLITE_OMIT_EXPLAIN
2793     if( p->pNext==0 ){
2794       ExplainQueryPlanPop(pParse);
2795     }
2796   #endif
2797   }
2798 
2799   /* Compute collating sequences used by
2800   ** temporary tables needed to implement the compound select.
2801   ** Attach the KeyInfo structure to all temporary tables.
2802   **
2803   ** This section is run by the right-most SELECT statement only.
2804   ** SELECT statements to the left always skip this part.  The right-most
2805   ** SELECT might also skip this part if it has no ORDER BY clause and
2806   ** no temp tables are required.
2807   */
2808   if( p->selFlags & SF_UsesEphemeral ){
2809     int i;                        /* Loop counter */
2810     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2811     Select *pLoop;                /* For looping through SELECT statements */
2812     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2813     int nCol;                     /* Number of columns in result set */
2814 
2815     assert( p->pNext==0 );
2816     nCol = p->pEList->nExpr;
2817     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2818     if( !pKeyInfo ){
2819       rc = SQLITE_NOMEM_BKPT;
2820       goto multi_select_end;
2821     }
2822     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2823       *apColl = multiSelectCollSeq(pParse, p, i);
2824       if( 0==*apColl ){
2825         *apColl = db->pDfltColl;
2826       }
2827     }
2828 
2829     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2830       for(i=0; i<2; i++){
2831         int addr = pLoop->addrOpenEphm[i];
2832         if( addr<0 ){
2833           /* If [0] is unused then [1] is also unused.  So we can
2834           ** always safely abort as soon as the first unused slot is found */
2835           assert( pLoop->addrOpenEphm[1]<0 );
2836           break;
2837         }
2838         sqlite3VdbeChangeP2(v, addr, nCol);
2839         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2840                             P4_KEYINFO);
2841         pLoop->addrOpenEphm[i] = -1;
2842       }
2843     }
2844     sqlite3KeyInfoUnref(pKeyInfo);
2845   }
2846 
2847 multi_select_end:
2848   pDest->iSdst = dest.iSdst;
2849   pDest->nSdst = dest.nSdst;
2850   sqlite3SelectDelete(db, pDelete);
2851   return rc;
2852 }
2853 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2854 
2855 /*
2856 ** Error message for when two or more terms of a compound select have different
2857 ** size result sets.
2858 */
2859 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2860   if( p->selFlags & SF_Values ){
2861     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2862   }else{
2863     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2864       " do not have the same number of result columns", selectOpName(p->op));
2865   }
2866 }
2867 
2868 /*
2869 ** Code an output subroutine for a coroutine implementation of a
2870 ** SELECT statment.
2871 **
2872 ** The data to be output is contained in pIn->iSdst.  There are
2873 ** pIn->nSdst columns to be output.  pDest is where the output should
2874 ** be sent.
2875 **
2876 ** regReturn is the number of the register holding the subroutine
2877 ** return address.
2878 **
2879 ** If regPrev>0 then it is the first register in a vector that
2880 ** records the previous output.  mem[regPrev] is a flag that is false
2881 ** if there has been no previous output.  If regPrev>0 then code is
2882 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2883 ** keys.
2884 **
2885 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2886 ** iBreak.
2887 */
2888 static int generateOutputSubroutine(
2889   Parse *pParse,          /* Parsing context */
2890   Select *p,              /* The SELECT statement */
2891   SelectDest *pIn,        /* Coroutine supplying data */
2892   SelectDest *pDest,      /* Where to send the data */
2893   int regReturn,          /* The return address register */
2894   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2895   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2896   int iBreak              /* Jump here if we hit the LIMIT */
2897 ){
2898   Vdbe *v = pParse->pVdbe;
2899   int iContinue;
2900   int addr;
2901 
2902   addr = sqlite3VdbeCurrentAddr(v);
2903   iContinue = sqlite3VdbeMakeLabel(v);
2904 
2905   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2906   */
2907   if( regPrev ){
2908     int addr1, addr2;
2909     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2910     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2911                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2912     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2913     sqlite3VdbeJumpHere(v, addr1);
2914     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2915     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2916   }
2917   if( pParse->db->mallocFailed ) return 0;
2918 
2919   /* Suppress the first OFFSET entries if there is an OFFSET clause
2920   */
2921   codeOffset(v, p->iOffset, iContinue);
2922 
2923   assert( pDest->eDest!=SRT_Exists );
2924   assert( pDest->eDest!=SRT_Table );
2925   switch( pDest->eDest ){
2926     /* Store the result as data using a unique key.
2927     */
2928     case SRT_EphemTab: {
2929       int r1 = sqlite3GetTempReg(pParse);
2930       int r2 = sqlite3GetTempReg(pParse);
2931       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2932       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2933       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2934       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2935       sqlite3ReleaseTempReg(pParse, r2);
2936       sqlite3ReleaseTempReg(pParse, r1);
2937       break;
2938     }
2939 
2940 #ifndef SQLITE_OMIT_SUBQUERY
2941     /* If we are creating a set for an "expr IN (SELECT ...)".
2942     */
2943     case SRT_Set: {
2944       int r1;
2945       testcase( pIn->nSdst>1 );
2946       r1 = sqlite3GetTempReg(pParse);
2947       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2948           r1, pDest->zAffSdst, pIn->nSdst);
2949       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2950                            pIn->iSdst, pIn->nSdst);
2951       sqlite3ReleaseTempReg(pParse, r1);
2952       break;
2953     }
2954 
2955     /* If this is a scalar select that is part of an expression, then
2956     ** store the results in the appropriate memory cell and break out
2957     ** of the scan loop.
2958     */
2959     case SRT_Mem: {
2960       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2961       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2962       /* The LIMIT clause will jump out of the loop for us */
2963       break;
2964     }
2965 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2966 
2967     /* The results are stored in a sequence of registers
2968     ** starting at pDest->iSdst.  Then the co-routine yields.
2969     */
2970     case SRT_Coroutine: {
2971       if( pDest->iSdst==0 ){
2972         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2973         pDest->nSdst = pIn->nSdst;
2974       }
2975       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2976       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2977       break;
2978     }
2979 
2980     /* If none of the above, then the result destination must be
2981     ** SRT_Output.  This routine is never called with any other
2982     ** destination other than the ones handled above or SRT_Output.
2983     **
2984     ** For SRT_Output, results are stored in a sequence of registers.
2985     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2986     ** return the next row of result.
2987     */
2988     default: {
2989       assert( pDest->eDest==SRT_Output );
2990       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2991       break;
2992     }
2993   }
2994 
2995   /* Jump to the end of the loop if the LIMIT is reached.
2996   */
2997   if( p->iLimit ){
2998     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
2999   }
3000 
3001   /* Generate the subroutine return
3002   */
3003   sqlite3VdbeResolveLabel(v, iContinue);
3004   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3005 
3006   return addr;
3007 }
3008 
3009 /*
3010 ** Alternative compound select code generator for cases when there
3011 ** is an ORDER BY clause.
3012 **
3013 ** We assume a query of the following form:
3014 **
3015 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3016 **
3017 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3018 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3019 ** co-routines.  Then run the co-routines in parallel and merge the results
3020 ** into the output.  In addition to the two coroutines (called selectA and
3021 ** selectB) there are 7 subroutines:
3022 **
3023 **    outA:    Move the output of the selectA coroutine into the output
3024 **             of the compound query.
3025 **
3026 **    outB:    Move the output of the selectB coroutine into the output
3027 **             of the compound query.  (Only generated for UNION and
3028 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3029 **             appears only in B.)
3030 **
3031 **    AltB:    Called when there is data from both coroutines and A<B.
3032 **
3033 **    AeqB:    Called when there is data from both coroutines and A==B.
3034 **
3035 **    AgtB:    Called when there is data from both coroutines and A>B.
3036 **
3037 **    EofA:    Called when data is exhausted from selectA.
3038 **
3039 **    EofB:    Called when data is exhausted from selectB.
3040 **
3041 ** The implementation of the latter five subroutines depend on which
3042 ** <operator> is used:
3043 **
3044 **
3045 **             UNION ALL         UNION            EXCEPT          INTERSECT
3046 **          -------------  -----------------  --------------  -----------------
3047 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3048 **
3049 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3050 **
3051 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3052 **
3053 **   EofA:   outB, nextB      outB, nextB          halt             halt
3054 **
3055 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3056 **
3057 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3058 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3059 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3060 ** following nextX causes a jump to the end of the select processing.
3061 **
3062 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3063 ** within the output subroutine.  The regPrev register set holds the previously
3064 ** output value.  A comparison is made against this value and the output
3065 ** is skipped if the next results would be the same as the previous.
3066 **
3067 ** The implementation plan is to implement the two coroutines and seven
3068 ** subroutines first, then put the control logic at the bottom.  Like this:
3069 **
3070 **          goto Init
3071 **     coA: coroutine for left query (A)
3072 **     coB: coroutine for right query (B)
3073 **    outA: output one row of A
3074 **    outB: output one row of B (UNION and UNION ALL only)
3075 **    EofA: ...
3076 **    EofB: ...
3077 **    AltB: ...
3078 **    AeqB: ...
3079 **    AgtB: ...
3080 **    Init: initialize coroutine registers
3081 **          yield coA
3082 **          if eof(A) goto EofA
3083 **          yield coB
3084 **          if eof(B) goto EofB
3085 **    Cmpr: Compare A, B
3086 **          Jump AltB, AeqB, AgtB
3087 **     End: ...
3088 **
3089 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3090 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3091 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3092 ** and AgtB jump to either L2 or to one of EofA or EofB.
3093 */
3094 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3095 static int multiSelectOrderBy(
3096   Parse *pParse,        /* Parsing context */
3097   Select *p,            /* The right-most of SELECTs to be coded */
3098   SelectDest *pDest     /* What to do with query results */
3099 ){
3100   int i, j;             /* Loop counters */
3101   Select *pPrior;       /* Another SELECT immediately to our left */
3102   Vdbe *v;              /* Generate code to this VDBE */
3103   SelectDest destA;     /* Destination for coroutine A */
3104   SelectDest destB;     /* Destination for coroutine B */
3105   int regAddrA;         /* Address register for select-A coroutine */
3106   int regAddrB;         /* Address register for select-B coroutine */
3107   int addrSelectA;      /* Address of the select-A coroutine */
3108   int addrSelectB;      /* Address of the select-B coroutine */
3109   int regOutA;          /* Address register for the output-A subroutine */
3110   int regOutB;          /* Address register for the output-B subroutine */
3111   int addrOutA;         /* Address of the output-A subroutine */
3112   int addrOutB = 0;     /* Address of the output-B subroutine */
3113   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3114   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3115   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3116   int addrAltB;         /* Address of the A<B subroutine */
3117   int addrAeqB;         /* Address of the A==B subroutine */
3118   int addrAgtB;         /* Address of the A>B subroutine */
3119   int regLimitA;        /* Limit register for select-A */
3120   int regLimitB;        /* Limit register for select-A */
3121   int regPrev;          /* A range of registers to hold previous output */
3122   int savedLimit;       /* Saved value of p->iLimit */
3123   int savedOffset;      /* Saved value of p->iOffset */
3124   int labelCmpr;        /* Label for the start of the merge algorithm */
3125   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3126   int addr1;            /* Jump instructions that get retargetted */
3127   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3128   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3129   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3130   sqlite3 *db;          /* Database connection */
3131   ExprList *pOrderBy;   /* The ORDER BY clause */
3132   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3133   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3134 
3135   assert( p->pOrderBy!=0 );
3136   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3137   db = pParse->db;
3138   v = pParse->pVdbe;
3139   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3140   labelEnd = sqlite3VdbeMakeLabel(v);
3141   labelCmpr = sqlite3VdbeMakeLabel(v);
3142 
3143 
3144   /* Patch up the ORDER BY clause
3145   */
3146   op = p->op;
3147   pPrior = p->pPrior;
3148   assert( pPrior->pOrderBy==0 );
3149   pOrderBy = p->pOrderBy;
3150   assert( pOrderBy );
3151   nOrderBy = pOrderBy->nExpr;
3152 
3153   /* For operators other than UNION ALL we have to make sure that
3154   ** the ORDER BY clause covers every term of the result set.  Add
3155   ** terms to the ORDER BY clause as necessary.
3156   */
3157   if( op!=TK_ALL ){
3158     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3159       struct ExprList_item *pItem;
3160       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3161         assert( pItem->u.x.iOrderByCol>0 );
3162         if( pItem->u.x.iOrderByCol==i ) break;
3163       }
3164       if( j==nOrderBy ){
3165         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3166         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3167         pNew->flags |= EP_IntValue;
3168         pNew->u.iValue = i;
3169         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3170         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3171       }
3172     }
3173   }
3174 
3175   /* Compute the comparison permutation and keyinfo that is used with
3176   ** the permutation used to determine if the next
3177   ** row of results comes from selectA or selectB.  Also add explicit
3178   ** collations to the ORDER BY clause terms so that when the subqueries
3179   ** to the right and the left are evaluated, they use the correct
3180   ** collation.
3181   */
3182   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3183   if( aPermute ){
3184     struct ExprList_item *pItem;
3185     aPermute[0] = nOrderBy;
3186     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3187       assert( pItem->u.x.iOrderByCol>0 );
3188       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3189       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3190     }
3191     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3192   }else{
3193     pKeyMerge = 0;
3194   }
3195 
3196   /* Reattach the ORDER BY clause to the query.
3197   */
3198   p->pOrderBy = pOrderBy;
3199   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3200 
3201   /* Allocate a range of temporary registers and the KeyInfo needed
3202   ** for the logic that removes duplicate result rows when the
3203   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3204   */
3205   if( op==TK_ALL ){
3206     regPrev = 0;
3207   }else{
3208     int nExpr = p->pEList->nExpr;
3209     assert( nOrderBy>=nExpr || db->mallocFailed );
3210     regPrev = pParse->nMem+1;
3211     pParse->nMem += nExpr+1;
3212     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3213     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3214     if( pKeyDup ){
3215       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3216       for(i=0; i<nExpr; i++){
3217         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3218         pKeyDup->aSortOrder[i] = 0;
3219       }
3220     }
3221   }
3222 
3223   /* Separate the left and the right query from one another
3224   */
3225   p->pPrior = 0;
3226   pPrior->pNext = 0;
3227   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3228   if( pPrior->pPrior==0 ){
3229     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3230   }
3231 
3232   /* Compute the limit registers */
3233   computeLimitRegisters(pParse, p, labelEnd);
3234   if( p->iLimit && op==TK_ALL ){
3235     regLimitA = ++pParse->nMem;
3236     regLimitB = ++pParse->nMem;
3237     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3238                                   regLimitA);
3239     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3240   }else{
3241     regLimitA = regLimitB = 0;
3242   }
3243   sqlite3ExprDelete(db, p->pLimit);
3244   p->pLimit = 0;
3245 
3246   regAddrA = ++pParse->nMem;
3247   regAddrB = ++pParse->nMem;
3248   regOutA = ++pParse->nMem;
3249   regOutB = ++pParse->nMem;
3250   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3251   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3252 
3253   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3254 
3255   /* Generate a coroutine to evaluate the SELECT statement to the
3256   ** left of the compound operator - the "A" select.
3257   */
3258   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3259   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3260   VdbeComment((v, "left SELECT"));
3261   pPrior->iLimit = regLimitA;
3262   ExplainQueryPlan((pParse, 1, "LEFT"));
3263   sqlite3Select(pParse, pPrior, &destA);
3264   sqlite3VdbeEndCoroutine(v, regAddrA);
3265   sqlite3VdbeJumpHere(v, addr1);
3266 
3267   /* Generate a coroutine to evaluate the SELECT statement on
3268   ** the right - the "B" select
3269   */
3270   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3271   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3272   VdbeComment((v, "right SELECT"));
3273   savedLimit = p->iLimit;
3274   savedOffset = p->iOffset;
3275   p->iLimit = regLimitB;
3276   p->iOffset = 0;
3277   ExplainQueryPlan((pParse, 1, "RIGHT"));
3278   sqlite3Select(pParse, p, &destB);
3279   p->iLimit = savedLimit;
3280   p->iOffset = savedOffset;
3281   sqlite3VdbeEndCoroutine(v, regAddrB);
3282 
3283   /* Generate a subroutine that outputs the current row of the A
3284   ** select as the next output row of the compound select.
3285   */
3286   VdbeNoopComment((v, "Output routine for A"));
3287   addrOutA = generateOutputSubroutine(pParse,
3288                  p, &destA, pDest, regOutA,
3289                  regPrev, pKeyDup, labelEnd);
3290 
3291   /* Generate a subroutine that outputs the current row of the B
3292   ** select as the next output row of the compound select.
3293   */
3294   if( op==TK_ALL || op==TK_UNION ){
3295     VdbeNoopComment((v, "Output routine for B"));
3296     addrOutB = generateOutputSubroutine(pParse,
3297                  p, &destB, pDest, regOutB,
3298                  regPrev, pKeyDup, labelEnd);
3299   }
3300   sqlite3KeyInfoUnref(pKeyDup);
3301 
3302   /* Generate a subroutine to run when the results from select A
3303   ** are exhausted and only data in select B remains.
3304   */
3305   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3306     addrEofA_noB = addrEofA = labelEnd;
3307   }else{
3308     VdbeNoopComment((v, "eof-A subroutine"));
3309     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3310     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3311                                      VdbeCoverage(v);
3312     sqlite3VdbeGoto(v, addrEofA);
3313     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3314   }
3315 
3316   /* Generate a subroutine to run when the results from select B
3317   ** are exhausted and only data in select A remains.
3318   */
3319   if( op==TK_INTERSECT ){
3320     addrEofB = addrEofA;
3321     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3322   }else{
3323     VdbeNoopComment((v, "eof-B subroutine"));
3324     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3325     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3326     sqlite3VdbeGoto(v, addrEofB);
3327   }
3328 
3329   /* Generate code to handle the case of A<B
3330   */
3331   VdbeNoopComment((v, "A-lt-B subroutine"));
3332   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3333   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3334   sqlite3VdbeGoto(v, labelCmpr);
3335 
3336   /* Generate code to handle the case of A==B
3337   */
3338   if( op==TK_ALL ){
3339     addrAeqB = addrAltB;
3340   }else if( op==TK_INTERSECT ){
3341     addrAeqB = addrAltB;
3342     addrAltB++;
3343   }else{
3344     VdbeNoopComment((v, "A-eq-B subroutine"));
3345     addrAeqB =
3346     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3347     sqlite3VdbeGoto(v, labelCmpr);
3348   }
3349 
3350   /* Generate code to handle the case of A>B
3351   */
3352   VdbeNoopComment((v, "A-gt-B subroutine"));
3353   addrAgtB = sqlite3VdbeCurrentAddr(v);
3354   if( op==TK_ALL || op==TK_UNION ){
3355     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3356   }
3357   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3358   sqlite3VdbeGoto(v, labelCmpr);
3359 
3360   /* This code runs once to initialize everything.
3361   */
3362   sqlite3VdbeJumpHere(v, addr1);
3363   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3364   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3365 
3366   /* Implement the main merge loop
3367   */
3368   sqlite3VdbeResolveLabel(v, labelCmpr);
3369   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3370   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3371                          (char*)pKeyMerge, P4_KEYINFO);
3372   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3373   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3374 
3375   /* Jump to the this point in order to terminate the query.
3376   */
3377   sqlite3VdbeResolveLabel(v, labelEnd);
3378 
3379   /* Reassembly the compound query so that it will be freed correctly
3380   ** by the calling function */
3381   if( p->pPrior ){
3382     sqlite3SelectDelete(db, p->pPrior);
3383   }
3384   p->pPrior = pPrior;
3385   pPrior->pNext = p;
3386 
3387   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3388   **** subqueries ****/
3389   ExplainQueryPlanPop(pParse);
3390   return pParse->nErr!=0;
3391 }
3392 #endif
3393 
3394 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3395 
3396 /* An instance of the SubstContext object describes an substitution edit
3397 ** to be performed on a parse tree.
3398 **
3399 ** All references to columns in table iTable are to be replaced by corresponding
3400 ** expressions in pEList.
3401 */
3402 typedef struct SubstContext {
3403   Parse *pParse;            /* The parsing context */
3404   int iTable;               /* Replace references to this table */
3405   int iNewTable;            /* New table number */
3406   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3407   ExprList *pEList;         /* Replacement expressions */
3408 } SubstContext;
3409 
3410 /* Forward Declarations */
3411 static void substExprList(SubstContext*, ExprList*);
3412 static void substSelect(SubstContext*, Select*, int);
3413 
3414 /*
3415 ** Scan through the expression pExpr.  Replace every reference to
3416 ** a column in table number iTable with a copy of the iColumn-th
3417 ** entry in pEList.  (But leave references to the ROWID column
3418 ** unchanged.)
3419 **
3420 ** This routine is part of the flattening procedure.  A subquery
3421 ** whose result set is defined by pEList appears as entry in the
3422 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3423 ** FORM clause entry is iTable.  This routine makes the necessary
3424 ** changes to pExpr so that it refers directly to the source table
3425 ** of the subquery rather the result set of the subquery.
3426 */
3427 static Expr *substExpr(
3428   SubstContext *pSubst,  /* Description of the substitution */
3429   Expr *pExpr            /* Expr in which substitution occurs */
3430 ){
3431   if( pExpr==0 ) return 0;
3432   if( ExprHasProperty(pExpr, EP_FromJoin)
3433    && pExpr->iRightJoinTable==pSubst->iTable
3434   ){
3435     pExpr->iRightJoinTable = pSubst->iNewTable;
3436   }
3437   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3438     if( pExpr->iColumn<0 ){
3439       pExpr->op = TK_NULL;
3440     }else{
3441       Expr *pNew;
3442       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3443       Expr ifNullRow;
3444       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3445       assert( pExpr->pRight==0 );
3446       if( sqlite3ExprIsVector(pCopy) ){
3447         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3448       }else{
3449         sqlite3 *db = pSubst->pParse->db;
3450         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3451           memset(&ifNullRow, 0, sizeof(ifNullRow));
3452           ifNullRow.op = TK_IF_NULL_ROW;
3453           ifNullRow.pLeft = pCopy;
3454           ifNullRow.iTable = pSubst->iNewTable;
3455           pCopy = &ifNullRow;
3456         }
3457         pNew = sqlite3ExprDup(db, pCopy, 0);
3458         if( pNew && pSubst->isLeftJoin ){
3459           ExprSetProperty(pNew, EP_CanBeNull);
3460         }
3461         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3462           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3463           ExprSetProperty(pNew, EP_FromJoin);
3464         }
3465         sqlite3ExprDelete(db, pExpr);
3466         pExpr = pNew;
3467       }
3468     }
3469   }else{
3470     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3471       pExpr->iTable = pSubst->iNewTable;
3472     }
3473     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3474     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3475     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3476       substSelect(pSubst, pExpr->x.pSelect, 1);
3477     }else{
3478       substExprList(pSubst, pExpr->x.pList);
3479     }
3480   }
3481   return pExpr;
3482 }
3483 static void substExprList(
3484   SubstContext *pSubst, /* Description of the substitution */
3485   ExprList *pList       /* List to scan and in which to make substitutes */
3486 ){
3487   int i;
3488   if( pList==0 ) return;
3489   for(i=0; i<pList->nExpr; i++){
3490     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3491   }
3492 }
3493 static void substSelect(
3494   SubstContext *pSubst, /* Description of the substitution */
3495   Select *p,            /* SELECT statement in which to make substitutions */
3496   int doPrior           /* Do substitutes on p->pPrior too */
3497 ){
3498   SrcList *pSrc;
3499   struct SrcList_item *pItem;
3500   int i;
3501   if( !p ) return;
3502   do{
3503     substExprList(pSubst, p->pEList);
3504     substExprList(pSubst, p->pGroupBy);
3505     substExprList(pSubst, p->pOrderBy);
3506     p->pHaving = substExpr(pSubst, p->pHaving);
3507     p->pWhere = substExpr(pSubst, p->pWhere);
3508     pSrc = p->pSrc;
3509     assert( pSrc!=0 );
3510     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3511       substSelect(pSubst, pItem->pSelect, 1);
3512       if( pItem->fg.isTabFunc ){
3513         substExprList(pSubst, pItem->u1.pFuncArg);
3514       }
3515     }
3516   }while( doPrior && (p = p->pPrior)!=0 );
3517 }
3518 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3519 
3520 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3521 /*
3522 ** This routine attempts to flatten subqueries as a performance optimization.
3523 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3524 **
3525 ** To understand the concept of flattening, consider the following
3526 ** query:
3527 **
3528 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3529 **
3530 ** The default way of implementing this query is to execute the
3531 ** subquery first and store the results in a temporary table, then
3532 ** run the outer query on that temporary table.  This requires two
3533 ** passes over the data.  Furthermore, because the temporary table
3534 ** has no indices, the WHERE clause on the outer query cannot be
3535 ** optimized.
3536 **
3537 ** This routine attempts to rewrite queries such as the above into
3538 ** a single flat select, like this:
3539 **
3540 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3541 **
3542 ** The code generated for this simplification gives the same result
3543 ** but only has to scan the data once.  And because indices might
3544 ** exist on the table t1, a complete scan of the data might be
3545 ** avoided.
3546 **
3547 ** Flattening is subject to the following constraints:
3548 **
3549 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3550 **        The subquery and the outer query cannot both be aggregates.
3551 **
3552 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3553 **        (2) If the subquery is an aggregate then
3554 **        (2a) the outer query must not be a join and
3555 **        (2b) the outer query must not use subqueries
3556 **             other than the one FROM-clause subquery that is a candidate
3557 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3558 **             from 2015-02-09.)
3559 **
3560 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3561 **        (3a) the subquery may not be a join and
3562 **        (3b) the FROM clause of the subquery may not contain a virtual
3563 **             table and
3564 **        (3c) the outer query may not be an aggregate.
3565 **
3566 **   (4)  The subquery can not be DISTINCT.
3567 **
3568 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3569 **        sub-queries that were excluded from this optimization. Restriction
3570 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3571 **
3572 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3573 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3574 **
3575 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3576 **        A FROM clause, consider adding a FROM clause with the special
3577 **        table sqlite_once that consists of a single row containing a
3578 **        single NULL.
3579 **
3580 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3581 **
3582 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3583 **
3584 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3585 **        accidently carried the comment forward until 2014-09-15.  Original
3586 **        constraint: "If the subquery is aggregate then the outer query
3587 **        may not use LIMIT."
3588 **
3589 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3590 **
3591 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3592 **        a separate restriction deriving from ticket #350.
3593 **
3594 **  (13)  The subquery and outer query may not both use LIMIT.
3595 **
3596 **  (14)  The subquery may not use OFFSET.
3597 **
3598 **  (15)  If the outer query is part of a compound select, then the
3599 **        subquery may not use LIMIT.
3600 **        (See ticket #2339 and ticket [02a8e81d44]).
3601 **
3602 **  (16)  If the outer query is aggregate, then the subquery may not
3603 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3604 **        until we introduced the group_concat() function.
3605 **
3606 **  (17)  If the subquery is a compound select, then
3607 **        (17a) all compound operators must be a UNION ALL, and
3608 **        (17b) no terms within the subquery compound may be aggregate
3609 **              or DISTINCT, and
3610 **        (17c) every term within the subquery compound must have a FROM clause
3611 **        (17d) the outer query may not be
3612 **              (17d1) aggregate, or
3613 **              (17d2) DISTINCT, or
3614 **              (17d3) a join.
3615 **
3616 **        The parent and sub-query may contain WHERE clauses. Subject to
3617 **        rules (11), (13) and (14), they may also contain ORDER BY,
3618 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3619 **        operator other than UNION ALL because all the other compound
3620 **        operators have an implied DISTINCT which is disallowed by
3621 **        restriction (4).
3622 **
3623 **        Also, each component of the sub-query must return the same number
3624 **        of result columns. This is actually a requirement for any compound
3625 **        SELECT statement, but all the code here does is make sure that no
3626 **        such (illegal) sub-query is flattened. The caller will detect the
3627 **        syntax error and return a detailed message.
3628 **
3629 **  (18)  If the sub-query is a compound select, then all terms of the
3630 **        ORDER BY clause of the parent must be simple references to
3631 **        columns of the sub-query.
3632 **
3633 **  (19)  If the subquery uses LIMIT then the outer query may not
3634 **        have a WHERE clause.
3635 **
3636 **  (20)  If the sub-query is a compound select, then it must not use
3637 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3638 **        somewhat by saying that the terms of the ORDER BY clause must
3639 **        appear as unmodified result columns in the outer query.  But we
3640 **        have other optimizations in mind to deal with that case.
3641 **
3642 **  (21)  If the subquery uses LIMIT then the outer query may not be
3643 **        DISTINCT.  (See ticket [752e1646fc]).
3644 **
3645 **  (22)  The subquery may not be a recursive CTE.
3646 **
3647 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3648 **        a recursive CTE, then the sub-query may not be a compound query.
3649 **        This restriction is because transforming the
3650 **        parent to a compound query confuses the code that handles
3651 **        recursive queries in multiSelect().
3652 **
3653 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3654 **        The subquery may not be an aggregate that uses the built-in min() or
3655 **        or max() functions.  (Without this restriction, a query like:
3656 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3657 **        return the value X for which Y was maximal.)
3658 **
3659 **  (25)  If either the subquery or the parent query contains a window
3660 **        function in the select list or ORDER BY clause, flattening
3661 **        is not attempted.
3662 **
3663 **
3664 ** In this routine, the "p" parameter is a pointer to the outer query.
3665 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3666 ** uses aggregates.
3667 **
3668 ** If flattening is not attempted, this routine is a no-op and returns 0.
3669 ** If flattening is attempted this routine returns 1.
3670 **
3671 ** All of the expression analysis must occur on both the outer query and
3672 ** the subquery before this routine runs.
3673 */
3674 static int flattenSubquery(
3675   Parse *pParse,       /* Parsing context */
3676   Select *p,           /* The parent or outer SELECT statement */
3677   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3678   int isAgg            /* True if outer SELECT uses aggregate functions */
3679 ){
3680   const char *zSavedAuthContext = pParse->zAuthContext;
3681   Select *pParent;    /* Current UNION ALL term of the other query */
3682   Select *pSub;       /* The inner query or "subquery" */
3683   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3684   SrcList *pSrc;      /* The FROM clause of the outer query */
3685   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3686   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3687   int iNewParent = -1;/* Replacement table for iParent */
3688   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3689   int i;              /* Loop counter */
3690   Expr *pWhere;                    /* The WHERE clause */
3691   struct SrcList_item *pSubitem;   /* The subquery */
3692   sqlite3 *db = pParse->db;
3693 
3694   /* Check to see if flattening is permitted.  Return 0 if not.
3695   */
3696   assert( p!=0 );
3697   assert( p->pPrior==0 );
3698   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3699   pSrc = p->pSrc;
3700   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3701   pSubitem = &pSrc->a[iFrom];
3702   iParent = pSubitem->iCursor;
3703   pSub = pSubitem->pSelect;
3704   assert( pSub!=0 );
3705 
3706 #ifndef SQLITE_OMIT_WINDOWFUNC
3707   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3708 #endif
3709 
3710   pSubSrc = pSub->pSrc;
3711   assert( pSubSrc );
3712   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3713   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3714   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3715   ** became arbitrary expressions, we were forced to add restrictions (13)
3716   ** and (14). */
3717   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3718   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3719   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3720     return 0;                                            /* Restriction (15) */
3721   }
3722   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3723   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3724   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3725      return 0;         /* Restrictions (8)(9) */
3726   }
3727   if( p->pOrderBy && pSub->pOrderBy ){
3728      return 0;                                           /* Restriction (11) */
3729   }
3730   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3731   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3732   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3733      return 0;         /* Restriction (21) */
3734   }
3735   if( pSub->selFlags & (SF_Recursive) ){
3736     return 0; /* Restrictions (22) */
3737   }
3738 
3739   /*
3740   ** If the subquery is the right operand of a LEFT JOIN, then the
3741   ** subquery may not be a join itself (3a). Example of why this is not
3742   ** allowed:
3743   **
3744   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3745   **
3746   ** If we flatten the above, we would get
3747   **
3748   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3749   **
3750   ** which is not at all the same thing.
3751   **
3752   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3753   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3754   ** aggregates are processed - there is no mechanism to determine if
3755   ** the LEFT JOIN table should be all-NULL.
3756   **
3757   ** See also tickets #306, #350, and #3300.
3758   */
3759   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3760     isLeftJoin = 1;
3761     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3762       /*  (3a)             (3c)     (3b) */
3763       return 0;
3764     }
3765   }
3766 #ifdef SQLITE_EXTRA_IFNULLROW
3767   else if( iFrom>0 && !isAgg ){
3768     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3769     ** every reference to any result column from subquery in a join, even
3770     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3771     ** opcode. */
3772     isLeftJoin = -1;
3773   }
3774 #endif
3775 
3776   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3777   ** use only the UNION ALL operator. And none of the simple select queries
3778   ** that make up the compound SELECT are allowed to be aggregate or distinct
3779   ** queries.
3780   */
3781   if( pSub->pPrior ){
3782     if( pSub->pOrderBy ){
3783       return 0;  /* Restriction (20) */
3784     }
3785     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3786       return 0; /* (17d1), (17d2), or (17d3) */
3787     }
3788     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3789       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3790       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3791       assert( pSub->pSrc!=0 );
3792       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3793       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3794        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3795        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3796       ){
3797         return 0;
3798       }
3799       testcase( pSub1->pSrc->nSrc>1 );
3800     }
3801 
3802     /* Restriction (18). */
3803     if( p->pOrderBy ){
3804       int ii;
3805       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3806         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3807       }
3808     }
3809   }
3810 
3811   /* Ex-restriction (23):
3812   ** The only way that the recursive part of a CTE can contain a compound
3813   ** subquery is for the subquery to be one term of a join.  But if the
3814   ** subquery is a join, then the flattening has already been stopped by
3815   ** restriction (17d3)
3816   */
3817   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3818 
3819   /***** If we reach this point, flattening is permitted. *****/
3820   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3821                    pSub->selId, pSub, iFrom));
3822 
3823   /* Authorize the subquery */
3824   pParse->zAuthContext = pSubitem->zName;
3825   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3826   testcase( i==SQLITE_DENY );
3827   pParse->zAuthContext = zSavedAuthContext;
3828 
3829   /* If the sub-query is a compound SELECT statement, then (by restrictions
3830   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3831   ** be of the form:
3832   **
3833   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3834   **
3835   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3836   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3837   ** OFFSET clauses and joins them to the left-hand-side of the original
3838   ** using UNION ALL operators. In this case N is the number of simple
3839   ** select statements in the compound sub-query.
3840   **
3841   ** Example:
3842   **
3843   **     SELECT a+1 FROM (
3844   **        SELECT x FROM tab
3845   **        UNION ALL
3846   **        SELECT y FROM tab
3847   **        UNION ALL
3848   **        SELECT abs(z*2) FROM tab2
3849   **     ) WHERE a!=5 ORDER BY 1
3850   **
3851   ** Transformed into:
3852   **
3853   **     SELECT x+1 FROM tab WHERE x+1!=5
3854   **     UNION ALL
3855   **     SELECT y+1 FROM tab WHERE y+1!=5
3856   **     UNION ALL
3857   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3858   **     ORDER BY 1
3859   **
3860   ** We call this the "compound-subquery flattening".
3861   */
3862   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3863     Select *pNew;
3864     ExprList *pOrderBy = p->pOrderBy;
3865     Expr *pLimit = p->pLimit;
3866     Select *pPrior = p->pPrior;
3867     p->pOrderBy = 0;
3868     p->pSrc = 0;
3869     p->pPrior = 0;
3870     p->pLimit = 0;
3871     pNew = sqlite3SelectDup(db, p, 0);
3872     p->pLimit = pLimit;
3873     p->pOrderBy = pOrderBy;
3874     p->pSrc = pSrc;
3875     p->op = TK_ALL;
3876     if( pNew==0 ){
3877       p->pPrior = pPrior;
3878     }else{
3879       pNew->pPrior = pPrior;
3880       if( pPrior ) pPrior->pNext = pNew;
3881       pNew->pNext = p;
3882       p->pPrior = pNew;
3883       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3884                               " creates %u as peer\n",pNew->selId));
3885     }
3886     if( db->mallocFailed ) return 1;
3887   }
3888 
3889   /* Begin flattening the iFrom-th entry of the FROM clause
3890   ** in the outer query.
3891   */
3892   pSub = pSub1 = pSubitem->pSelect;
3893 
3894   /* Delete the transient table structure associated with the
3895   ** subquery
3896   */
3897   sqlite3DbFree(db, pSubitem->zDatabase);
3898   sqlite3DbFree(db, pSubitem->zName);
3899   sqlite3DbFree(db, pSubitem->zAlias);
3900   pSubitem->zDatabase = 0;
3901   pSubitem->zName = 0;
3902   pSubitem->zAlias = 0;
3903   pSubitem->pSelect = 0;
3904 
3905   /* Defer deleting the Table object associated with the
3906   ** subquery until code generation is
3907   ** complete, since there may still exist Expr.pTab entries that
3908   ** refer to the subquery even after flattening.  Ticket #3346.
3909   **
3910   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3911   */
3912   if( ALWAYS(pSubitem->pTab!=0) ){
3913     Table *pTabToDel = pSubitem->pTab;
3914     if( pTabToDel->nTabRef==1 ){
3915       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3916       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3917       pToplevel->pZombieTab = pTabToDel;
3918     }else{
3919       pTabToDel->nTabRef--;
3920     }
3921     pSubitem->pTab = 0;
3922   }
3923 
3924   /* The following loop runs once for each term in a compound-subquery
3925   ** flattening (as described above).  If we are doing a different kind
3926   ** of flattening - a flattening other than a compound-subquery flattening -
3927   ** then this loop only runs once.
3928   **
3929   ** This loop moves all of the FROM elements of the subquery into the
3930   ** the FROM clause of the outer query.  Before doing this, remember
3931   ** the cursor number for the original outer query FROM element in
3932   ** iParent.  The iParent cursor will never be used.  Subsequent code
3933   ** will scan expressions looking for iParent references and replace
3934   ** those references with expressions that resolve to the subquery FROM
3935   ** elements we are now copying in.
3936   */
3937   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3938     int nSubSrc;
3939     u8 jointype = 0;
3940     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3941     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3942     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3943 
3944     if( pSrc ){
3945       assert( pParent==p );  /* First time through the loop */
3946       jointype = pSubitem->fg.jointype;
3947     }else{
3948       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3949       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3950       if( pSrc==0 ){
3951         assert( db->mallocFailed );
3952         break;
3953       }
3954     }
3955 
3956     /* The subquery uses a single slot of the FROM clause of the outer
3957     ** query.  If the subquery has more than one element in its FROM clause,
3958     ** then expand the outer query to make space for it to hold all elements
3959     ** of the subquery.
3960     **
3961     ** Example:
3962     **
3963     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3964     **
3965     ** The outer query has 3 slots in its FROM clause.  One slot of the
3966     ** outer query (the middle slot) is used by the subquery.  The next
3967     ** block of code will expand the outer query FROM clause to 4 slots.
3968     ** The middle slot is expanded to two slots in order to make space
3969     ** for the two elements in the FROM clause of the subquery.
3970     */
3971     if( nSubSrc>1 ){
3972       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3973       if( db->mallocFailed ){
3974         break;
3975       }
3976     }
3977 
3978     /* Transfer the FROM clause terms from the subquery into the
3979     ** outer query.
3980     */
3981     for(i=0; i<nSubSrc; i++){
3982       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3983       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3984       pSrc->a[i+iFrom] = pSubSrc->a[i];
3985       iNewParent = pSubSrc->a[i].iCursor;
3986       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3987     }
3988     pSrc->a[iFrom].fg.jointype = jointype;
3989 
3990     /* Now begin substituting subquery result set expressions for
3991     ** references to the iParent in the outer query.
3992     **
3993     ** Example:
3994     **
3995     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3996     **   \                     \_____________ subquery __________/          /
3997     **    \_____________________ outer query ______________________________/
3998     **
3999     ** We look at every expression in the outer query and every place we see
4000     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4001     */
4002     if( pSub->pOrderBy ){
4003       /* At this point, any non-zero iOrderByCol values indicate that the
4004       ** ORDER BY column expression is identical to the iOrderByCol'th
4005       ** expression returned by SELECT statement pSub. Since these values
4006       ** do not necessarily correspond to columns in SELECT statement pParent,
4007       ** zero them before transfering the ORDER BY clause.
4008       **
4009       ** Not doing this may cause an error if a subsequent call to this
4010       ** function attempts to flatten a compound sub-query into pParent
4011       ** (the only way this can happen is if the compound sub-query is
4012       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4013       ExprList *pOrderBy = pSub->pOrderBy;
4014       for(i=0; i<pOrderBy->nExpr; i++){
4015         pOrderBy->a[i].u.x.iOrderByCol = 0;
4016       }
4017       assert( pParent->pOrderBy==0 );
4018       pParent->pOrderBy = pOrderBy;
4019       pSub->pOrderBy = 0;
4020     }
4021     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4022     if( isLeftJoin>0 ){
4023       setJoinExpr(pWhere, iNewParent);
4024     }
4025     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4026     if( db->mallocFailed==0 ){
4027       SubstContext x;
4028       x.pParse = pParse;
4029       x.iTable = iParent;
4030       x.iNewTable = iNewParent;
4031       x.isLeftJoin = isLeftJoin;
4032       x.pEList = pSub->pEList;
4033       substSelect(&x, pParent, 0);
4034     }
4035 
4036     /* The flattened query is distinct if either the inner or the
4037     ** outer query is distinct.
4038     */
4039     pParent->selFlags |= pSub->selFlags & SF_Distinct;
4040 
4041     /*
4042     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4043     **
4044     ** One is tempted to try to add a and b to combine the limits.  But this
4045     ** does not work if either limit is negative.
4046     */
4047     if( pSub->pLimit ){
4048       pParent->pLimit = pSub->pLimit;
4049       pSub->pLimit = 0;
4050     }
4051   }
4052 
4053   /* Finially, delete what is left of the subquery and return
4054   ** success.
4055   */
4056   sqlite3SelectDelete(db, pSub1);
4057 
4058 #if SELECTTRACE_ENABLED
4059   if( sqlite3SelectTrace & 0x100 ){
4060     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4061     sqlite3TreeViewSelect(0, p, 0);
4062   }
4063 #endif
4064 
4065   return 1;
4066 }
4067 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4068 
4069 /*
4070 ** A structure to keep track of all of the column values that fixed to
4071 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4072 */
4073 typedef struct WhereConst WhereConst;
4074 struct WhereConst {
4075   Parse *pParse;   /* Parsing context */
4076   int nConst;      /* Number for COLUMN=CONSTANT terms */
4077   int nChng;       /* Number of times a constant is propagated */
4078   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4079 };
4080 
4081 /*
4082 ** Add a new entry to the pConst object
4083 */
4084 static void constInsert(
4085   WhereConst *pConst,
4086   Expr *pColumn,
4087   Expr *pValue
4088 ){
4089 
4090   pConst->nConst++;
4091   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4092                          pConst->nConst*2*sizeof(Expr*));
4093   if( pConst->apExpr==0 ){
4094     pConst->nConst = 0;
4095   }else{
4096     if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4097     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4098     pConst->apExpr[pConst->nConst*2-1] = pValue;
4099   }
4100 }
4101 
4102 /*
4103 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4104 ** is a constant expression and where the term must be true because it
4105 ** is part of the AND-connected terms of the expression.  For each term
4106 ** found, add it to the pConst structure.
4107 */
4108 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4109   Expr *pRight, *pLeft;
4110   if( pExpr==0 ) return;
4111   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4112   if( pExpr->op==TK_AND ){
4113     findConstInWhere(pConst, pExpr->pRight);
4114     findConstInWhere(pConst, pExpr->pLeft);
4115     return;
4116   }
4117   if( pExpr->op!=TK_EQ ) return;
4118   pRight = pExpr->pRight;
4119   pLeft = pExpr->pLeft;
4120   assert( pRight!=0 );
4121   assert( pLeft!=0 );
4122   if( pRight->op==TK_COLUMN
4123    && !ExprHasProperty(pRight, EP_FixedCol)
4124    && sqlite3ExprIsConstant(pLeft)
4125    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4126   ){
4127     constInsert(pConst, pRight, pLeft);
4128   }else
4129   if( pLeft->op==TK_COLUMN
4130    && !ExprHasProperty(pLeft, EP_FixedCol)
4131    && sqlite3ExprIsConstant(pRight)
4132    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4133   ){
4134     constInsert(pConst, pLeft, pRight);
4135   }
4136 }
4137 
4138 /*
4139 ** This is a Walker expression callback.  pExpr is a candidate expression
4140 ** to be replaced by a value.  If pExpr is equivalent to one of the
4141 ** columns named in pWalker->u.pConst, then overwrite it with its
4142 ** corresponding value.
4143 */
4144 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4145   int i;
4146   WhereConst *pConst;
4147   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4148   if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4149   pConst = pWalker->u.pConst;
4150   for(i=0; i<pConst->nConst; i++){
4151     Expr *pColumn = pConst->apExpr[i*2];
4152     if( pColumn==pExpr ) continue;
4153     if( pColumn->iTable!=pExpr->iTable ) continue;
4154     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4155     /* A match is found.  Add the EP_FixedCol property */
4156     pConst->nChng++;
4157     ExprClearProperty(pExpr, EP_Leaf);
4158     ExprSetProperty(pExpr, EP_FixedCol);
4159     assert( pExpr->pLeft==0 );
4160     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4161     break;
4162   }
4163   return WRC_Prune;
4164 }
4165 
4166 /*
4167 ** The WHERE-clause constant propagation optimization.
4168 **
4169 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4170 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4171 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4172 ** then throughout the query replace all other occurrences of COLUMN
4173 ** with CONSTANT within the WHERE clause.
4174 **
4175 ** For example, the query:
4176 **
4177 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4178 **
4179 ** Is transformed into
4180 **
4181 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4182 **
4183 ** Return true if any transformations where made and false if not.
4184 **
4185 ** Implementation note:  Constant propagation is tricky due to affinity
4186 ** and collating sequence interactions.  Consider this example:
4187 **
4188 **    CREATE TABLE t1(a INT,b TEXT);
4189 **    INSERT INTO t1 VALUES(123,'0123');
4190 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4191 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4192 **
4193 ** The two SELECT statements above should return different answers.  b=a
4194 ** is alway true because the comparison uses numeric affinity, but b=123
4195 ** is false because it uses text affinity and '0123' is not the same as '123'.
4196 ** To work around this, the expression tree is not actually changed from
4197 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4198 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4199 ** routines know to generate the constant "123" instead of looking up the
4200 ** column value.  Also, to avoid collation problems, this optimization is
4201 ** only attempted if the "a=123" term uses the default BINARY collation.
4202 */
4203 static int propagateConstants(
4204   Parse *pParse,   /* The parsing context */
4205   Select *p        /* The query in which to propagate constants */
4206 ){
4207   WhereConst x;
4208   Walker w;
4209   int nChng = 0;
4210   x.pParse = pParse;
4211   do{
4212     x.nConst = 0;
4213     x.nChng = 0;
4214     x.apExpr = 0;
4215     findConstInWhere(&x, p->pWhere);
4216     if( x.nConst ){
4217       memset(&w, 0, sizeof(w));
4218       w.pParse = pParse;
4219       w.xExprCallback = propagateConstantExprRewrite;
4220       w.xSelectCallback = sqlite3SelectWalkNoop;
4221       w.xSelectCallback2 = 0;
4222       w.walkerDepth = 0;
4223       w.u.pConst = &x;
4224       sqlite3WalkExpr(&w, p->pWhere);
4225       sqlite3DbFree(x.pParse->db, x.apExpr);
4226       nChng += x.nChng;
4227     }
4228   }while( x.nChng );
4229   return nChng;
4230 }
4231 
4232 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4233 /*
4234 ** Make copies of relevant WHERE clause terms of the outer query into
4235 ** the WHERE clause of subquery.  Example:
4236 **
4237 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4238 **
4239 ** Transformed into:
4240 **
4241 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4242 **     WHERE x=5 AND y=10;
4243 **
4244 ** The hope is that the terms added to the inner query will make it more
4245 ** efficient.
4246 **
4247 ** Do not attempt this optimization if:
4248 **
4249 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4250 **           disallow this optimization for aggregate subqueries, but now
4251 **           it is allowed by putting the extra terms on the HAVING clause.
4252 **           The added HAVING clause is pointless if the subquery lacks
4253 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4254 **           so there does not appear to be any reason to add extra logic
4255 **           to suppress it. **)
4256 **
4257 **   (2) The inner query is the recursive part of a common table expression.
4258 **
4259 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4260 **       clause would change the meaning of the LIMIT).
4261 **
4262 **   (4) The inner query is the right operand of a LEFT JOIN and the
4263 **       expression to be pushed down does not come from the ON clause
4264 **       on that LEFT JOIN.
4265 **
4266 **   (5) The WHERE clause expression originates in the ON or USING clause
4267 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4268 **       left join.  An example:
4269 **
4270 **           SELECT *
4271 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4272 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4273 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4274 **
4275 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4276 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4277 **       then the (1,1,NULL) row would be suppressed.
4278 **
4279 **   (6) The inner query features one or more window-functions (since
4280 **       changes to the WHERE clause of the inner query could change the
4281 **       window over which window functions are calculated).
4282 **
4283 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4284 ** terms are duplicated into the subquery.
4285 */
4286 static int pushDownWhereTerms(
4287   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4288   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4289   Expr *pWhere,         /* The WHERE clause of the outer query */
4290   int iCursor,          /* Cursor number of the subquery */
4291   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4292 ){
4293   Expr *pNew;
4294   int nChng = 0;
4295   if( pWhere==0 ) return 0;
4296   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4297 
4298 #ifndef SQLITE_OMIT_WINDOWFUNC
4299   if( pSubq->pWin ) return 0;    /* restriction (6) */
4300 #endif
4301 
4302 #ifdef SQLITE_DEBUG
4303   /* Only the first term of a compound can have a WITH clause.  But make
4304   ** sure no other terms are marked SF_Recursive in case something changes
4305   ** in the future.
4306   */
4307   {
4308     Select *pX;
4309     for(pX=pSubq; pX; pX=pX->pPrior){
4310       assert( (pX->selFlags & (SF_Recursive))==0 );
4311     }
4312   }
4313 #endif
4314 
4315   if( pSubq->pLimit!=0 ){
4316     return 0; /* restriction (3) */
4317   }
4318   while( pWhere->op==TK_AND ){
4319     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4320                                 iCursor, isLeftJoin);
4321     pWhere = pWhere->pLeft;
4322   }
4323   if( isLeftJoin
4324    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4325          || pWhere->iRightJoinTable!=iCursor)
4326   ){
4327     return 0; /* restriction (4) */
4328   }
4329   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4330     return 0; /* restriction (5) */
4331   }
4332   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4333     nChng++;
4334     while( pSubq ){
4335       SubstContext x;
4336       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4337       unsetJoinExpr(pNew, -1);
4338       x.pParse = pParse;
4339       x.iTable = iCursor;
4340       x.iNewTable = iCursor;
4341       x.isLeftJoin = 0;
4342       x.pEList = pSubq->pEList;
4343       pNew = substExpr(&x, pNew);
4344       if( pSubq->selFlags & SF_Aggregate ){
4345         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4346       }else{
4347         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4348       }
4349       pSubq = pSubq->pPrior;
4350     }
4351   }
4352   return nChng;
4353 }
4354 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4355 
4356 /*
4357 ** The pFunc is the only aggregate function in the query.  Check to see
4358 ** if the query is a candidate for the min/max optimization.
4359 **
4360 ** If the query is a candidate for the min/max optimization, then set
4361 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4362 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4363 ** whether pFunc is a min() or max() function.
4364 **
4365 ** If the query is not a candidate for the min/max optimization, return
4366 ** WHERE_ORDERBY_NORMAL (which must be zero).
4367 **
4368 ** This routine must be called after aggregate functions have been
4369 ** located but before their arguments have been subjected to aggregate
4370 ** analysis.
4371 */
4372 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4373   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4374   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4375   const char *zFunc;                    /* Name of aggregate function pFunc */
4376   ExprList *pOrderBy;
4377   u8 sortOrder;
4378 
4379   assert( *ppMinMax==0 );
4380   assert( pFunc->op==TK_AGG_FUNCTION );
4381   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4382   zFunc = pFunc->u.zToken;
4383   if( sqlite3StrICmp(zFunc, "min")==0 ){
4384     eRet = WHERE_ORDERBY_MIN;
4385     sortOrder = SQLITE_SO_ASC;
4386   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4387     eRet = WHERE_ORDERBY_MAX;
4388     sortOrder = SQLITE_SO_DESC;
4389   }else{
4390     return eRet;
4391   }
4392   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4393   assert( pOrderBy!=0 || db->mallocFailed );
4394   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4395   return eRet;
4396 }
4397 
4398 /*
4399 ** The select statement passed as the first argument is an aggregate query.
4400 ** The second argument is the associated aggregate-info object. This
4401 ** function tests if the SELECT is of the form:
4402 **
4403 **   SELECT count(*) FROM <tbl>
4404 **
4405 ** where table is a database table, not a sub-select or view. If the query
4406 ** does match this pattern, then a pointer to the Table object representing
4407 ** <tbl> is returned. Otherwise, 0 is returned.
4408 */
4409 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4410   Table *pTab;
4411   Expr *pExpr;
4412 
4413   assert( !p->pGroupBy );
4414 
4415   if( p->pWhere || p->pEList->nExpr!=1
4416    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4417   ){
4418     return 0;
4419   }
4420   pTab = p->pSrc->a[0].pTab;
4421   pExpr = p->pEList->a[0].pExpr;
4422   assert( pTab && !pTab->pSelect && pExpr );
4423 
4424   if( IsVirtual(pTab) ) return 0;
4425   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4426   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4427   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4428   if( pExpr->flags&EP_Distinct ) return 0;
4429 
4430   return pTab;
4431 }
4432 
4433 /*
4434 ** If the source-list item passed as an argument was augmented with an
4435 ** INDEXED BY clause, then try to locate the specified index. If there
4436 ** was such a clause and the named index cannot be found, return
4437 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4438 ** pFrom->pIndex and return SQLITE_OK.
4439 */
4440 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4441   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4442     Table *pTab = pFrom->pTab;
4443     char *zIndexedBy = pFrom->u1.zIndexedBy;
4444     Index *pIdx;
4445     for(pIdx=pTab->pIndex;
4446         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4447         pIdx=pIdx->pNext
4448     );
4449     if( !pIdx ){
4450       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4451       pParse->checkSchema = 1;
4452       return SQLITE_ERROR;
4453     }
4454     pFrom->pIBIndex = pIdx;
4455   }
4456   return SQLITE_OK;
4457 }
4458 /*
4459 ** Detect compound SELECT statements that use an ORDER BY clause with
4460 ** an alternative collating sequence.
4461 **
4462 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4463 **
4464 ** These are rewritten as a subquery:
4465 **
4466 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4467 **     ORDER BY ... COLLATE ...
4468 **
4469 ** This transformation is necessary because the multiSelectOrderBy() routine
4470 ** above that generates the code for a compound SELECT with an ORDER BY clause
4471 ** uses a merge algorithm that requires the same collating sequence on the
4472 ** result columns as on the ORDER BY clause.  See ticket
4473 ** http://www.sqlite.org/src/info/6709574d2a
4474 **
4475 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4476 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4477 ** there are COLLATE terms in the ORDER BY.
4478 */
4479 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4480   int i;
4481   Select *pNew;
4482   Select *pX;
4483   sqlite3 *db;
4484   struct ExprList_item *a;
4485   SrcList *pNewSrc;
4486   Parse *pParse;
4487   Token dummy;
4488 
4489   if( p->pPrior==0 ) return WRC_Continue;
4490   if( p->pOrderBy==0 ) return WRC_Continue;
4491   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4492   if( pX==0 ) return WRC_Continue;
4493   a = p->pOrderBy->a;
4494   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4495     if( a[i].pExpr->flags & EP_Collate ) break;
4496   }
4497   if( i<0 ) return WRC_Continue;
4498 
4499   /* If we reach this point, that means the transformation is required. */
4500 
4501   pParse = pWalker->pParse;
4502   db = pParse->db;
4503   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4504   if( pNew==0 ) return WRC_Abort;
4505   memset(&dummy, 0, sizeof(dummy));
4506   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4507   if( pNewSrc==0 ) return WRC_Abort;
4508   *pNew = *p;
4509   p->pSrc = pNewSrc;
4510   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4511   p->op = TK_SELECT;
4512   p->pWhere = 0;
4513   pNew->pGroupBy = 0;
4514   pNew->pHaving = 0;
4515   pNew->pOrderBy = 0;
4516   p->pPrior = 0;
4517   p->pNext = 0;
4518   p->pWith = 0;
4519   p->selFlags &= ~SF_Compound;
4520   assert( (p->selFlags & SF_Converted)==0 );
4521   p->selFlags |= SF_Converted;
4522   assert( pNew->pPrior!=0 );
4523   pNew->pPrior->pNext = pNew;
4524   pNew->pLimit = 0;
4525   return WRC_Continue;
4526 }
4527 
4528 /*
4529 ** Check to see if the FROM clause term pFrom has table-valued function
4530 ** arguments.  If it does, leave an error message in pParse and return
4531 ** non-zero, since pFrom is not allowed to be a table-valued function.
4532 */
4533 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4534   if( pFrom->fg.isTabFunc ){
4535     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4536     return 1;
4537   }
4538   return 0;
4539 }
4540 
4541 #ifndef SQLITE_OMIT_CTE
4542 /*
4543 ** Argument pWith (which may be NULL) points to a linked list of nested
4544 ** WITH contexts, from inner to outermost. If the table identified by
4545 ** FROM clause element pItem is really a common-table-expression (CTE)
4546 ** then return a pointer to the CTE definition for that table. Otherwise
4547 ** return NULL.
4548 **
4549 ** If a non-NULL value is returned, set *ppContext to point to the With
4550 ** object that the returned CTE belongs to.
4551 */
4552 static struct Cte *searchWith(
4553   With *pWith,                    /* Current innermost WITH clause */
4554   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4555   With **ppContext                /* OUT: WITH clause return value belongs to */
4556 ){
4557   const char *zName;
4558   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4559     With *p;
4560     for(p=pWith; p; p=p->pOuter){
4561       int i;
4562       for(i=0; i<p->nCte; i++){
4563         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4564           *ppContext = p;
4565           return &p->a[i];
4566         }
4567       }
4568     }
4569   }
4570   return 0;
4571 }
4572 
4573 /* The code generator maintains a stack of active WITH clauses
4574 ** with the inner-most WITH clause being at the top of the stack.
4575 **
4576 ** This routine pushes the WITH clause passed as the second argument
4577 ** onto the top of the stack. If argument bFree is true, then this
4578 ** WITH clause will never be popped from the stack. In this case it
4579 ** should be freed along with the Parse object. In other cases, when
4580 ** bFree==0, the With object will be freed along with the SELECT
4581 ** statement with which it is associated.
4582 */
4583 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4584   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4585   if( pWith ){
4586     assert( pParse->pWith!=pWith );
4587     pWith->pOuter = pParse->pWith;
4588     pParse->pWith = pWith;
4589     if( bFree ) pParse->pWithToFree = pWith;
4590   }
4591 }
4592 
4593 /*
4594 ** This function checks if argument pFrom refers to a CTE declared by
4595 ** a WITH clause on the stack currently maintained by the parser. And,
4596 ** if currently processing a CTE expression, if it is a recursive
4597 ** reference to the current CTE.
4598 **
4599 ** If pFrom falls into either of the two categories above, pFrom->pTab
4600 ** and other fields are populated accordingly. The caller should check
4601 ** (pFrom->pTab!=0) to determine whether or not a successful match
4602 ** was found.
4603 **
4604 ** Whether or not a match is found, SQLITE_OK is returned if no error
4605 ** occurs. If an error does occur, an error message is stored in the
4606 ** parser and some error code other than SQLITE_OK returned.
4607 */
4608 static int withExpand(
4609   Walker *pWalker,
4610   struct SrcList_item *pFrom
4611 ){
4612   Parse *pParse = pWalker->pParse;
4613   sqlite3 *db = pParse->db;
4614   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4615   With *pWith;                    /* WITH clause that pCte belongs to */
4616 
4617   assert( pFrom->pTab==0 );
4618 
4619   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4620   if( pCte ){
4621     Table *pTab;
4622     ExprList *pEList;
4623     Select *pSel;
4624     Select *pLeft;                /* Left-most SELECT statement */
4625     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4626     With *pSavedWith;             /* Initial value of pParse->pWith */
4627 
4628     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4629     ** recursive reference to CTE pCte. Leave an error in pParse and return
4630     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4631     ** In this case, proceed.  */
4632     if( pCte->zCteErr ){
4633       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4634       return SQLITE_ERROR;
4635     }
4636     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4637 
4638     assert( pFrom->pTab==0 );
4639     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4640     if( pTab==0 ) return WRC_Abort;
4641     pTab->nTabRef = 1;
4642     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4643     pTab->iPKey = -1;
4644     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4645     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4646     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4647     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4648     assert( pFrom->pSelect );
4649 
4650     /* Check if this is a recursive CTE. */
4651     pSel = pFrom->pSelect;
4652     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4653     if( bMayRecursive ){
4654       int i;
4655       SrcList *pSrc = pFrom->pSelect->pSrc;
4656       for(i=0; i<pSrc->nSrc; i++){
4657         struct SrcList_item *pItem = &pSrc->a[i];
4658         if( pItem->zDatabase==0
4659          && pItem->zName!=0
4660          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4661           ){
4662           pItem->pTab = pTab;
4663           pItem->fg.isRecursive = 1;
4664           pTab->nTabRef++;
4665           pSel->selFlags |= SF_Recursive;
4666         }
4667       }
4668     }
4669 
4670     /* Only one recursive reference is permitted. */
4671     if( pTab->nTabRef>2 ){
4672       sqlite3ErrorMsg(
4673           pParse, "multiple references to recursive table: %s", pCte->zName
4674       );
4675       return SQLITE_ERROR;
4676     }
4677     assert( pTab->nTabRef==1 ||
4678             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4679 
4680     pCte->zCteErr = "circular reference: %s";
4681     pSavedWith = pParse->pWith;
4682     pParse->pWith = pWith;
4683     if( bMayRecursive ){
4684       Select *pPrior = pSel->pPrior;
4685       assert( pPrior->pWith==0 );
4686       pPrior->pWith = pSel->pWith;
4687       sqlite3WalkSelect(pWalker, pPrior);
4688       pPrior->pWith = 0;
4689     }else{
4690       sqlite3WalkSelect(pWalker, pSel);
4691     }
4692     pParse->pWith = pWith;
4693 
4694     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4695     pEList = pLeft->pEList;
4696     if( pCte->pCols ){
4697       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4698         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4699             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4700         );
4701         pParse->pWith = pSavedWith;
4702         return SQLITE_ERROR;
4703       }
4704       pEList = pCte->pCols;
4705     }
4706 
4707     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4708     if( bMayRecursive ){
4709       if( pSel->selFlags & SF_Recursive ){
4710         pCte->zCteErr = "multiple recursive references: %s";
4711       }else{
4712         pCte->zCteErr = "recursive reference in a subquery: %s";
4713       }
4714       sqlite3WalkSelect(pWalker, pSel);
4715     }
4716     pCte->zCteErr = 0;
4717     pParse->pWith = pSavedWith;
4718   }
4719 
4720   return SQLITE_OK;
4721 }
4722 #endif
4723 
4724 #ifndef SQLITE_OMIT_CTE
4725 /*
4726 ** If the SELECT passed as the second argument has an associated WITH
4727 ** clause, pop it from the stack stored as part of the Parse object.
4728 **
4729 ** This function is used as the xSelectCallback2() callback by
4730 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4731 ** names and other FROM clause elements.
4732 */
4733 static void selectPopWith(Walker *pWalker, Select *p){
4734   Parse *pParse = pWalker->pParse;
4735   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4736     With *pWith = findRightmost(p)->pWith;
4737     if( pWith!=0 ){
4738       assert( pParse->pWith==pWith );
4739       pParse->pWith = pWith->pOuter;
4740     }
4741   }
4742 }
4743 #else
4744 #define selectPopWith 0
4745 #endif
4746 
4747 /*
4748 ** The SrcList_item structure passed as the second argument represents a
4749 ** sub-query in the FROM clause of a SELECT statement. This function
4750 ** allocates and populates the SrcList_item.pTab object. If successful,
4751 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4752 ** SQLITE_NOMEM.
4753 */
4754 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4755   Select *pSel = pFrom->pSelect;
4756   Table *pTab;
4757 
4758   assert( pSel );
4759   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4760   if( pTab==0 ) return SQLITE_NOMEM;
4761   pTab->nTabRef = 1;
4762   if( pFrom->zAlias ){
4763     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4764   }else{
4765     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4766   }
4767   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4768   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4769   pTab->iPKey = -1;
4770   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4771   pTab->tabFlags |= TF_Ephemeral;
4772 
4773   return SQLITE_OK;
4774 }
4775 
4776 /*
4777 ** This routine is a Walker callback for "expanding" a SELECT statement.
4778 ** "Expanding" means to do the following:
4779 **
4780 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4781 **         element of the FROM clause.
4782 **
4783 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4784 **         defines FROM clause.  When views appear in the FROM clause,
4785 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4786 **         that implements the view.  A copy is made of the view's SELECT
4787 **         statement so that we can freely modify or delete that statement
4788 **         without worrying about messing up the persistent representation
4789 **         of the view.
4790 **
4791 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4792 **         on joins and the ON and USING clause of joins.
4793 **
4794 **    (4)  Scan the list of columns in the result set (pEList) looking
4795 **         for instances of the "*" operator or the TABLE.* operator.
4796 **         If found, expand each "*" to be every column in every table
4797 **         and TABLE.* to be every column in TABLE.
4798 **
4799 */
4800 static int selectExpander(Walker *pWalker, Select *p){
4801   Parse *pParse = pWalker->pParse;
4802   int i, j, k;
4803   SrcList *pTabList;
4804   ExprList *pEList;
4805   struct SrcList_item *pFrom;
4806   sqlite3 *db = pParse->db;
4807   Expr *pE, *pRight, *pExpr;
4808   u16 selFlags = p->selFlags;
4809   u32 elistFlags = 0;
4810 
4811   p->selFlags |= SF_Expanded;
4812   if( db->mallocFailed  ){
4813     return WRC_Abort;
4814   }
4815   assert( p->pSrc!=0 );
4816   if( (selFlags & SF_Expanded)!=0 ){
4817     return WRC_Prune;
4818   }
4819   pTabList = p->pSrc;
4820   pEList = p->pEList;
4821   sqlite3WithPush(pParse, p->pWith, 0);
4822 
4823   /* Make sure cursor numbers have been assigned to all entries in
4824   ** the FROM clause of the SELECT statement.
4825   */
4826   sqlite3SrcListAssignCursors(pParse, pTabList);
4827 
4828   /* Look up every table named in the FROM clause of the select.  If
4829   ** an entry of the FROM clause is a subquery instead of a table or view,
4830   ** then create a transient table structure to describe the subquery.
4831   */
4832   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4833     Table *pTab;
4834     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4835     if( pFrom->fg.isRecursive ) continue;
4836     assert( pFrom->pTab==0 );
4837 #ifndef SQLITE_OMIT_CTE
4838     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4839     if( pFrom->pTab ) {} else
4840 #endif
4841     if( pFrom->zName==0 ){
4842 #ifndef SQLITE_OMIT_SUBQUERY
4843       Select *pSel = pFrom->pSelect;
4844       /* A sub-query in the FROM clause of a SELECT */
4845       assert( pSel!=0 );
4846       assert( pFrom->pTab==0 );
4847       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4848       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4849 #endif
4850     }else{
4851       /* An ordinary table or view name in the FROM clause */
4852       assert( pFrom->pTab==0 );
4853       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4854       if( pTab==0 ) return WRC_Abort;
4855       if( pTab->nTabRef>=0xffff ){
4856         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4857            pTab->zName);
4858         pFrom->pTab = 0;
4859         return WRC_Abort;
4860       }
4861       pTab->nTabRef++;
4862       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4863         return WRC_Abort;
4864       }
4865 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4866       if( IsVirtual(pTab) || pTab->pSelect ){
4867         i16 nCol;
4868         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4869         assert( pFrom->pSelect==0 );
4870         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4871         nCol = pTab->nCol;
4872         pTab->nCol = -1;
4873         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4874         pTab->nCol = nCol;
4875       }
4876 #endif
4877     }
4878 
4879     /* Locate the index named by the INDEXED BY clause, if any. */
4880     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4881       return WRC_Abort;
4882     }
4883   }
4884 
4885   /* Process NATURAL keywords, and ON and USING clauses of joins.
4886   */
4887   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4888     return WRC_Abort;
4889   }
4890 
4891   /* For every "*" that occurs in the column list, insert the names of
4892   ** all columns in all tables.  And for every TABLE.* insert the names
4893   ** of all columns in TABLE.  The parser inserted a special expression
4894   ** with the TK_ASTERISK operator for each "*" that it found in the column
4895   ** list.  The following code just has to locate the TK_ASTERISK
4896   ** expressions and expand each one to the list of all columns in
4897   ** all tables.
4898   **
4899   ** The first loop just checks to see if there are any "*" operators
4900   ** that need expanding.
4901   */
4902   for(k=0; k<pEList->nExpr; k++){
4903     pE = pEList->a[k].pExpr;
4904     if( pE->op==TK_ASTERISK ) break;
4905     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4906     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4907     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4908     elistFlags |= pE->flags;
4909   }
4910   if( k<pEList->nExpr ){
4911     /*
4912     ** If we get here it means the result set contains one or more "*"
4913     ** operators that need to be expanded.  Loop through each expression
4914     ** in the result set and expand them one by one.
4915     */
4916     struct ExprList_item *a = pEList->a;
4917     ExprList *pNew = 0;
4918     int flags = pParse->db->flags;
4919     int longNames = (flags & SQLITE_FullColNames)!=0
4920                       && (flags & SQLITE_ShortColNames)==0;
4921 
4922     for(k=0; k<pEList->nExpr; k++){
4923       pE = a[k].pExpr;
4924       elistFlags |= pE->flags;
4925       pRight = pE->pRight;
4926       assert( pE->op!=TK_DOT || pRight!=0 );
4927       if( pE->op!=TK_ASTERISK
4928        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4929       ){
4930         /* This particular expression does not need to be expanded.
4931         */
4932         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4933         if( pNew ){
4934           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4935           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4936           a[k].zName = 0;
4937           a[k].zSpan = 0;
4938         }
4939         a[k].pExpr = 0;
4940       }else{
4941         /* This expression is a "*" or a "TABLE.*" and needs to be
4942         ** expanded. */
4943         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4944         char *zTName = 0;       /* text of name of TABLE */
4945         if( pE->op==TK_DOT ){
4946           assert( pE->pLeft!=0 );
4947           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4948           zTName = pE->pLeft->u.zToken;
4949         }
4950         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4951           Table *pTab = pFrom->pTab;
4952           Select *pSub = pFrom->pSelect;
4953           char *zTabName = pFrom->zAlias;
4954           const char *zSchemaName = 0;
4955           int iDb;
4956           if( zTabName==0 ){
4957             zTabName = pTab->zName;
4958           }
4959           if( db->mallocFailed ) break;
4960           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4961             pSub = 0;
4962             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4963               continue;
4964             }
4965             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4966             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4967           }
4968           for(j=0; j<pTab->nCol; j++){
4969             char *zName = pTab->aCol[j].zName;
4970             char *zColname;  /* The computed column name */
4971             char *zToFree;   /* Malloced string that needs to be freed */
4972             Token sColname;  /* Computed column name as a token */
4973 
4974             assert( zName );
4975             if( zTName && pSub
4976              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4977             ){
4978               continue;
4979             }
4980 
4981             /* If a column is marked as 'hidden', omit it from the expanded
4982             ** result-set list unless the SELECT has the SF_IncludeHidden
4983             ** bit set.
4984             */
4985             if( (p->selFlags & SF_IncludeHidden)==0
4986              && IsHiddenColumn(&pTab->aCol[j])
4987             ){
4988               continue;
4989             }
4990             tableSeen = 1;
4991 
4992             if( i>0 && zTName==0 ){
4993               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4994                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4995               ){
4996                 /* In a NATURAL join, omit the join columns from the
4997                 ** table to the right of the join */
4998                 continue;
4999               }
5000               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5001                 /* In a join with a USING clause, omit columns in the
5002                 ** using clause from the table on the right. */
5003                 continue;
5004               }
5005             }
5006             pRight = sqlite3Expr(db, TK_ID, zName);
5007             zColname = zName;
5008             zToFree = 0;
5009             if( longNames || pTabList->nSrc>1 ){
5010               Expr *pLeft;
5011               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5012               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5013               if( zSchemaName ){
5014                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5015                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5016               }
5017               if( longNames ){
5018                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5019                 zToFree = zColname;
5020               }
5021             }else{
5022               pExpr = pRight;
5023             }
5024             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5025             sqlite3TokenInit(&sColname, zColname);
5026             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5027             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5028               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5029               if( pSub ){
5030                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
5031                 testcase( pX->zSpan==0 );
5032               }else{
5033                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
5034                                            zSchemaName, zTabName, zColname);
5035                 testcase( pX->zSpan==0 );
5036               }
5037               pX->bSpanIsTab = 1;
5038             }
5039             sqlite3DbFree(db, zToFree);
5040           }
5041         }
5042         if( !tableSeen ){
5043           if( zTName ){
5044             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5045           }else{
5046             sqlite3ErrorMsg(pParse, "no tables specified");
5047           }
5048         }
5049       }
5050     }
5051     sqlite3ExprListDelete(db, pEList);
5052     p->pEList = pNew;
5053   }
5054   if( p->pEList ){
5055     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5056       sqlite3ErrorMsg(pParse, "too many columns in result set");
5057       return WRC_Abort;
5058     }
5059     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5060       p->selFlags |= SF_ComplexResult;
5061     }
5062   }
5063   return WRC_Continue;
5064 }
5065 
5066 /*
5067 ** No-op routine for the parse-tree walker.
5068 **
5069 ** When this routine is the Walker.xExprCallback then expression trees
5070 ** are walked without any actions being taken at each node.  Presumably,
5071 ** when this routine is used for Walker.xExprCallback then
5072 ** Walker.xSelectCallback is set to do something useful for every
5073 ** subquery in the parser tree.
5074 */
5075 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5076   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5077   return WRC_Continue;
5078 }
5079 
5080 /*
5081 ** No-op routine for the parse-tree walker for SELECT statements.
5082 ** subquery in the parser tree.
5083 */
5084 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5085   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5086   return WRC_Continue;
5087 }
5088 
5089 #if SQLITE_DEBUG
5090 /*
5091 ** Always assert.  This xSelectCallback2 implementation proves that the
5092 ** xSelectCallback2 is never invoked.
5093 */
5094 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5095   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5096   assert( 0 );
5097 }
5098 #endif
5099 /*
5100 ** This routine "expands" a SELECT statement and all of its subqueries.
5101 ** For additional information on what it means to "expand" a SELECT
5102 ** statement, see the comment on the selectExpand worker callback above.
5103 **
5104 ** Expanding a SELECT statement is the first step in processing a
5105 ** SELECT statement.  The SELECT statement must be expanded before
5106 ** name resolution is performed.
5107 **
5108 ** If anything goes wrong, an error message is written into pParse.
5109 ** The calling function can detect the problem by looking at pParse->nErr
5110 ** and/or pParse->db->mallocFailed.
5111 */
5112 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5113   Walker w;
5114   w.xExprCallback = sqlite3ExprWalkNoop;
5115   w.pParse = pParse;
5116   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5117     w.xSelectCallback = convertCompoundSelectToSubquery;
5118     w.xSelectCallback2 = 0;
5119     sqlite3WalkSelect(&w, pSelect);
5120   }
5121   w.xSelectCallback = selectExpander;
5122   w.xSelectCallback2 = selectPopWith;
5123   sqlite3WalkSelect(&w, pSelect);
5124 }
5125 
5126 
5127 #ifndef SQLITE_OMIT_SUBQUERY
5128 /*
5129 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5130 ** interface.
5131 **
5132 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5133 ** information to the Table structure that represents the result set
5134 ** of that subquery.
5135 **
5136 ** The Table structure that represents the result set was constructed
5137 ** by selectExpander() but the type and collation information was omitted
5138 ** at that point because identifiers had not yet been resolved.  This
5139 ** routine is called after identifier resolution.
5140 */
5141 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5142   Parse *pParse;
5143   int i;
5144   SrcList *pTabList;
5145   struct SrcList_item *pFrom;
5146 
5147   assert( p->selFlags & SF_Resolved );
5148   if( p->selFlags & SF_HasTypeInfo ) return;
5149   p->selFlags |= SF_HasTypeInfo;
5150   pParse = pWalker->pParse;
5151   pTabList = p->pSrc;
5152   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5153     Table *pTab = pFrom->pTab;
5154     assert( pTab!=0 );
5155     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5156       /* A sub-query in the FROM clause of a SELECT */
5157       Select *pSel = pFrom->pSelect;
5158       if( pSel ){
5159         while( pSel->pPrior ) pSel = pSel->pPrior;
5160         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5161       }
5162     }
5163   }
5164 }
5165 #endif
5166 
5167 
5168 /*
5169 ** This routine adds datatype and collating sequence information to
5170 ** the Table structures of all FROM-clause subqueries in a
5171 ** SELECT statement.
5172 **
5173 ** Use this routine after name resolution.
5174 */
5175 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5176 #ifndef SQLITE_OMIT_SUBQUERY
5177   Walker w;
5178   w.xSelectCallback = sqlite3SelectWalkNoop;
5179   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5180   w.xExprCallback = sqlite3ExprWalkNoop;
5181   w.pParse = pParse;
5182   sqlite3WalkSelect(&w, pSelect);
5183 #endif
5184 }
5185 
5186 
5187 /*
5188 ** This routine sets up a SELECT statement for processing.  The
5189 ** following is accomplished:
5190 **
5191 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5192 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5193 **     *  ON and USING clauses are shifted into WHERE statements
5194 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5195 **     *  Identifiers in expression are matched to tables.
5196 **
5197 ** This routine acts recursively on all subqueries within the SELECT.
5198 */
5199 void sqlite3SelectPrep(
5200   Parse *pParse,         /* The parser context */
5201   Select *p,             /* The SELECT statement being coded. */
5202   NameContext *pOuterNC  /* Name context for container */
5203 ){
5204   assert( p!=0 || pParse->db->mallocFailed );
5205   if( pParse->db->mallocFailed ) return;
5206   if( p->selFlags & SF_HasTypeInfo ) return;
5207   sqlite3SelectExpand(pParse, p);
5208   if( pParse->nErr || pParse->db->mallocFailed ) return;
5209   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5210   if( pParse->nErr || pParse->db->mallocFailed ) return;
5211   sqlite3SelectAddTypeInfo(pParse, p);
5212 }
5213 
5214 /*
5215 ** Reset the aggregate accumulator.
5216 **
5217 ** The aggregate accumulator is a set of memory cells that hold
5218 ** intermediate results while calculating an aggregate.  This
5219 ** routine generates code that stores NULLs in all of those memory
5220 ** cells.
5221 */
5222 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5223   Vdbe *v = pParse->pVdbe;
5224   int i;
5225   struct AggInfo_func *pFunc;
5226   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5227   if( nReg==0 ) return;
5228 #ifdef SQLITE_DEBUG
5229   /* Verify that all AggInfo registers are within the range specified by
5230   ** AggInfo.mnReg..AggInfo.mxReg */
5231   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5232   for(i=0; i<pAggInfo->nColumn; i++){
5233     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5234          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5235   }
5236   for(i=0; i<pAggInfo->nFunc; i++){
5237     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5238          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5239   }
5240 #endif
5241   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5242   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5243     if( pFunc->iDistinct>=0 ){
5244       Expr *pE = pFunc->pExpr;
5245       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5246       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5247         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5248            "argument");
5249         pFunc->iDistinct = -1;
5250       }else{
5251         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5252         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5253                           (char*)pKeyInfo, P4_KEYINFO);
5254       }
5255     }
5256   }
5257 }
5258 
5259 /*
5260 ** Invoke the OP_AggFinalize opcode for every aggregate function
5261 ** in the AggInfo structure.
5262 */
5263 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5264   Vdbe *v = pParse->pVdbe;
5265   int i;
5266   struct AggInfo_func *pF;
5267   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5268     ExprList *pList = pF->pExpr->x.pList;
5269     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5270     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5271     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5272   }
5273 }
5274 
5275 
5276 /*
5277 ** Update the accumulator memory cells for an aggregate based on
5278 ** the current cursor position.
5279 **
5280 ** If regAcc is non-zero and there are no min() or max() aggregates
5281 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5282 ** registers i register regAcc contains 0. The caller will take care
5283 ** of setting and clearing regAcc.
5284 */
5285 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5286   Vdbe *v = pParse->pVdbe;
5287   int i;
5288   int regHit = 0;
5289   int addrHitTest = 0;
5290   struct AggInfo_func *pF;
5291   struct AggInfo_col *pC;
5292 
5293   pAggInfo->directMode = 1;
5294   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5295     int nArg;
5296     int addrNext = 0;
5297     int regAgg;
5298     ExprList *pList = pF->pExpr->x.pList;
5299     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5300     if( pList ){
5301       nArg = pList->nExpr;
5302       regAgg = sqlite3GetTempRange(pParse, nArg);
5303       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5304     }else{
5305       nArg = 0;
5306       regAgg = 0;
5307     }
5308     if( pF->iDistinct>=0 ){
5309       addrNext = sqlite3VdbeMakeLabel(v);
5310       testcase( nArg==0 );  /* Error condition */
5311       testcase( nArg>1 );   /* Also an error */
5312       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5313     }
5314     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5315       CollSeq *pColl = 0;
5316       struct ExprList_item *pItem;
5317       int j;
5318       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5319       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5320         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5321       }
5322       if( !pColl ){
5323         pColl = pParse->db->pDfltColl;
5324       }
5325       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5326       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5327     }
5328     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5329     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5330     sqlite3VdbeChangeP5(v, (u8)nArg);
5331     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5332     if( addrNext ){
5333       sqlite3VdbeResolveLabel(v, addrNext);
5334     }
5335   }
5336   if( regHit==0 && pAggInfo->nAccumulator ){
5337     regHit = regAcc;
5338   }
5339   if( regHit ){
5340     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5341   }
5342   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5343     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5344   }
5345   pAggInfo->directMode = 0;
5346   if( addrHitTest ){
5347     sqlite3VdbeJumpHere(v, addrHitTest);
5348   }
5349 }
5350 
5351 /*
5352 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5353 ** count(*) query ("SELECT count(*) FROM pTab").
5354 */
5355 #ifndef SQLITE_OMIT_EXPLAIN
5356 static void explainSimpleCount(
5357   Parse *pParse,                  /* Parse context */
5358   Table *pTab,                    /* Table being queried */
5359   Index *pIdx                     /* Index used to optimize scan, or NULL */
5360 ){
5361   if( pParse->explain==2 ){
5362     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5363     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5364         pTab->zName,
5365         bCover ? " USING COVERING INDEX " : "",
5366         bCover ? pIdx->zName : ""
5367     );
5368   }
5369 }
5370 #else
5371 # define explainSimpleCount(a,b,c)
5372 #endif
5373 
5374 /*
5375 ** sqlite3WalkExpr() callback used by havingToWhere().
5376 **
5377 ** If the node passed to the callback is a TK_AND node, return
5378 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5379 **
5380 ** Otherwise, return WRC_Prune. In this case, also check if the
5381 ** sub-expression matches the criteria for being moved to the WHERE
5382 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5383 ** within the HAVING expression with a constant "1".
5384 */
5385 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5386   if( pExpr->op!=TK_AND ){
5387     Select *pS = pWalker->u.pSelect;
5388     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5389       sqlite3 *db = pWalker->pParse->db;
5390       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5391       if( pNew ){
5392         Expr *pWhere = pS->pWhere;
5393         SWAP(Expr, *pNew, *pExpr);
5394         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5395         pS->pWhere = pNew;
5396         pWalker->eCode = 1;
5397       }
5398     }
5399     return WRC_Prune;
5400   }
5401   return WRC_Continue;
5402 }
5403 
5404 /*
5405 ** Transfer eligible terms from the HAVING clause of a query, which is
5406 ** processed after grouping, to the WHERE clause, which is processed before
5407 ** grouping. For example, the query:
5408 **
5409 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5410 **
5411 ** can be rewritten as:
5412 **
5413 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5414 **
5415 ** A term of the HAVING expression is eligible for transfer if it consists
5416 ** entirely of constants and expressions that are also GROUP BY terms that
5417 ** use the "BINARY" collation sequence.
5418 */
5419 static void havingToWhere(Parse *pParse, Select *p){
5420   Walker sWalker;
5421   memset(&sWalker, 0, sizeof(sWalker));
5422   sWalker.pParse = pParse;
5423   sWalker.xExprCallback = havingToWhereExprCb;
5424   sWalker.u.pSelect = p;
5425   sqlite3WalkExpr(&sWalker, p->pHaving);
5426 #if SELECTTRACE_ENABLED
5427   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5428     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5429     sqlite3TreeViewSelect(0, p, 0);
5430   }
5431 #endif
5432 }
5433 
5434 /*
5435 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5436 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5437 ** then return 0.
5438 */
5439 static struct SrcList_item *isSelfJoinView(
5440   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5441   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5442 ){
5443   struct SrcList_item *pItem;
5444   for(pItem = pTabList->a; pItem<pThis; pItem++){
5445     if( pItem->pSelect==0 ) continue;
5446     if( pItem->fg.viaCoroutine ) continue;
5447     if( pItem->zName==0 ) continue;
5448     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5449     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5450     if( sqlite3ExprCompare(0,
5451           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5452     ){
5453       /* The view was modified by some other optimization such as
5454       ** pushDownWhereTerms() */
5455       continue;
5456     }
5457     return pItem;
5458   }
5459   return 0;
5460 }
5461 
5462 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5463 /*
5464 ** Attempt to transform a query of the form
5465 **
5466 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5467 **
5468 ** Into this:
5469 **
5470 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5471 **
5472 ** The transformation only works if all of the following are true:
5473 **
5474 **   *  The subquery is a UNION ALL of two or more terms
5475 **   *  The subquery does not have a LIMIT clause
5476 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5477 **   *  The outer query is a simple count(*)
5478 **
5479 ** Return TRUE if the optimization is undertaken.
5480 */
5481 static int countOfViewOptimization(Parse *pParse, Select *p){
5482   Select *pSub, *pPrior;
5483   Expr *pExpr;
5484   Expr *pCount;
5485   sqlite3 *db;
5486   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5487   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5488   pExpr = p->pEList->a[0].pExpr;
5489   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5490   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5491   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5492   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5493   pSub = p->pSrc->a[0].pSelect;
5494   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5495   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5496   do{
5497     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5498     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5499     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5500     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5501     pSub = pSub->pPrior;                              /* Repeat over compound */
5502   }while( pSub );
5503 
5504   /* If we reach this point then it is OK to perform the transformation */
5505 
5506   db = pParse->db;
5507   pCount = pExpr;
5508   pExpr = 0;
5509   pSub = p->pSrc->a[0].pSelect;
5510   p->pSrc->a[0].pSelect = 0;
5511   sqlite3SrcListDelete(db, p->pSrc);
5512   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5513   while( pSub ){
5514     Expr *pTerm;
5515     pPrior = pSub->pPrior;
5516     pSub->pPrior = 0;
5517     pSub->pNext = 0;
5518     pSub->selFlags |= SF_Aggregate;
5519     pSub->selFlags &= ~SF_Compound;
5520     pSub->nSelectRow = 0;
5521     sqlite3ExprListDelete(db, pSub->pEList);
5522     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5523     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5524     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5525     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5526     if( pExpr==0 ){
5527       pExpr = pTerm;
5528     }else{
5529       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5530     }
5531     pSub = pPrior;
5532   }
5533   p->pEList->a[0].pExpr = pExpr;
5534   p->selFlags &= ~SF_Aggregate;
5535 
5536 #if SELECTTRACE_ENABLED
5537   if( sqlite3SelectTrace & 0x400 ){
5538     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5539     sqlite3TreeViewSelect(0, p, 0);
5540   }
5541 #endif
5542   return 1;
5543 }
5544 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5545 
5546 /*
5547 ** Generate code for the SELECT statement given in the p argument.
5548 **
5549 ** The results are returned according to the SelectDest structure.
5550 ** See comments in sqliteInt.h for further information.
5551 **
5552 ** This routine returns the number of errors.  If any errors are
5553 ** encountered, then an appropriate error message is left in
5554 ** pParse->zErrMsg.
5555 **
5556 ** This routine does NOT free the Select structure passed in.  The
5557 ** calling function needs to do that.
5558 */
5559 int sqlite3Select(
5560   Parse *pParse,         /* The parser context */
5561   Select *p,             /* The SELECT statement being coded. */
5562   SelectDest *pDest      /* What to do with the query results */
5563 ){
5564   int i, j;              /* Loop counters */
5565   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5566   Vdbe *v;               /* The virtual machine under construction */
5567   int isAgg;             /* True for select lists like "count(*)" */
5568   ExprList *pEList = 0;  /* List of columns to extract. */
5569   SrcList *pTabList;     /* List of tables to select from */
5570   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5571   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5572   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5573   int rc = 1;            /* Value to return from this function */
5574   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5575   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5576   AggInfo sAggInfo;      /* Information used by aggregate queries */
5577   int iEnd;              /* Address of the end of the query */
5578   sqlite3 *db;           /* The database connection */
5579   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5580   u8 minMaxFlag;                 /* Flag for min/max queries */
5581 
5582   db = pParse->db;
5583   v = sqlite3GetVdbe(pParse);
5584   if( p==0 || db->mallocFailed || pParse->nErr ){
5585     return 1;
5586   }
5587   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5588   memset(&sAggInfo, 0, sizeof(sAggInfo));
5589 #if SELECTTRACE_ENABLED
5590   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5591   if( sqlite3SelectTrace & 0x100 ){
5592     sqlite3TreeViewSelect(0, p, 0);
5593   }
5594 #endif
5595 
5596   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5597   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5598   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5599   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5600   if( IgnorableOrderby(pDest) ){
5601     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5602            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5603            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5604            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5605     /* If ORDER BY makes no difference in the output then neither does
5606     ** DISTINCT so it can be removed too. */
5607     sqlite3ExprListDelete(db, p->pOrderBy);
5608     p->pOrderBy = 0;
5609     p->selFlags &= ~SF_Distinct;
5610   }
5611   sqlite3SelectPrep(pParse, p, 0);
5612   if( pParse->nErr || db->mallocFailed ){
5613     goto select_end;
5614   }
5615   assert( p->pEList!=0 );
5616 #if SELECTTRACE_ENABLED
5617   if( sqlite3SelectTrace & 0x104 ){
5618     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5619     sqlite3TreeViewSelect(0, p, 0);
5620   }
5621 #endif
5622 
5623   if( pDest->eDest==SRT_Output ){
5624     generateColumnNames(pParse, p);
5625   }
5626 
5627 #ifndef SQLITE_OMIT_WINDOWFUNC
5628   if( sqlite3WindowRewrite(pParse, p) ){
5629     goto select_end;
5630   }
5631 #if SELECTTRACE_ENABLED
5632   if( sqlite3SelectTrace & 0x108 ){
5633     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5634     sqlite3TreeViewSelect(0, p, 0);
5635   }
5636 #endif
5637 #endif /* SQLITE_OMIT_WINDOWFUNC */
5638   pTabList = p->pSrc;
5639   isAgg = (p->selFlags & SF_Aggregate)!=0;
5640   memset(&sSort, 0, sizeof(sSort));
5641   sSort.pOrderBy = p->pOrderBy;
5642 
5643   /* Try to various optimizations (flattening subqueries, and strength
5644   ** reduction of join operators) in the FROM clause up into the main query
5645   */
5646 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5647   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5648     struct SrcList_item *pItem = &pTabList->a[i];
5649     Select *pSub = pItem->pSelect;
5650     Table *pTab = pItem->pTab;
5651 
5652     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5653     ** of the LEFT JOIN used in the WHERE clause.
5654     */
5655     if( (pItem->fg.jointype & JT_LEFT)!=0
5656      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5657      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5658     ){
5659       SELECTTRACE(0x100,pParse,p,
5660                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5661       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5662       unsetJoinExpr(p->pWhere, pItem->iCursor);
5663     }
5664 
5665     /* No futher action if this term of the FROM clause is no a subquery */
5666     if( pSub==0 ) continue;
5667 
5668     /* Catch mismatch in the declared columns of a view and the number of
5669     ** columns in the SELECT on the RHS */
5670     if( pTab->nCol!=pSub->pEList->nExpr ){
5671       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5672                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5673       goto select_end;
5674     }
5675 
5676     /* Do not try to flatten an aggregate subquery.
5677     **
5678     ** Flattening an aggregate subquery is only possible if the outer query
5679     ** is not a join.  But if the outer query is not a join, then the subquery
5680     ** will be implemented as a co-routine and there is no advantage to
5681     ** flattening in that case.
5682     */
5683     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5684     assert( pSub->pGroupBy==0 );
5685 
5686     /* If the outer query contains a "complex" result set (that is,
5687     ** if the result set of the outer query uses functions or subqueries)
5688     ** and if the subquery contains an ORDER BY clause and if
5689     ** it will be implemented as a co-routine, then do not flatten.  This
5690     ** restriction allows SQL constructs like this:
5691     **
5692     **  SELECT expensive_function(x)
5693     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5694     **
5695     ** The expensive_function() is only computed on the 10 rows that
5696     ** are output, rather than every row of the table.
5697     **
5698     ** The requirement that the outer query have a complex result set
5699     ** means that flattening does occur on simpler SQL constraints without
5700     ** the expensive_function() like:
5701     **
5702     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5703     */
5704     if( pSub->pOrderBy!=0
5705      && i==0
5706      && (p->selFlags & SF_ComplexResult)!=0
5707      && (pTabList->nSrc==1
5708          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5709     ){
5710       continue;
5711     }
5712 
5713     if( flattenSubquery(pParse, p, i, isAgg) ){
5714       /* This subquery can be absorbed into its parent. */
5715       i = -1;
5716     }
5717     pTabList = p->pSrc;
5718     if( db->mallocFailed ) goto select_end;
5719     if( !IgnorableOrderby(pDest) ){
5720       sSort.pOrderBy = p->pOrderBy;
5721     }
5722   }
5723 #endif
5724 
5725 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5726   /* Handle compound SELECT statements using the separate multiSelect()
5727   ** procedure.
5728   */
5729   if( p->pPrior ){
5730     rc = multiSelect(pParse, p, pDest);
5731 #if SELECTTRACE_ENABLED
5732     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5733     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5734       sqlite3TreeViewSelect(0, p, 0);
5735     }
5736 #endif
5737     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5738     return rc;
5739   }
5740 #endif
5741 
5742   /* Do the WHERE-clause constant propagation optimization if this is
5743   ** a join.  No need to speed time on this operation for non-join queries
5744   ** as the equivalent optimization will be handled by query planner in
5745   ** sqlite3WhereBegin().
5746   */
5747   if( pTabList->nSrc>1
5748    && OptimizationEnabled(db, SQLITE_PropagateConst)
5749    && propagateConstants(pParse, p)
5750   ){
5751 #if SELECTTRACE_ENABLED
5752     if( sqlite3SelectTrace & 0x100 ){
5753       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5754       sqlite3TreeViewSelect(0, p, 0);
5755     }
5756 #endif
5757   }else{
5758     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5759   }
5760 
5761 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5762   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5763    && countOfViewOptimization(pParse, p)
5764   ){
5765     if( db->mallocFailed ) goto select_end;
5766     pEList = p->pEList;
5767     pTabList = p->pSrc;
5768   }
5769 #endif
5770 
5771   /* For each term in the FROM clause, do two things:
5772   ** (1) Authorized unreferenced tables
5773   ** (2) Generate code for all sub-queries
5774   */
5775   for(i=0; i<pTabList->nSrc; i++){
5776     struct SrcList_item *pItem = &pTabList->a[i];
5777     SelectDest dest;
5778     Select *pSub;
5779 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5780     const char *zSavedAuthContext;
5781 #endif
5782 
5783     /* Issue SQLITE_READ authorizations with a fake column name for any
5784     ** tables that are referenced but from which no values are extracted.
5785     ** Examples of where these kinds of null SQLITE_READ authorizations
5786     ** would occur:
5787     **
5788     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5789     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5790     **
5791     ** The fake column name is an empty string.  It is possible for a table to
5792     ** have a column named by the empty string, in which case there is no way to
5793     ** distinguish between an unreferenced table and an actual reference to the
5794     ** "" column. The original design was for the fake column name to be a NULL,
5795     ** which would be unambiguous.  But legacy authorization callbacks might
5796     ** assume the column name is non-NULL and segfault.  The use of an empty
5797     ** string for the fake column name seems safer.
5798     */
5799     if( pItem->colUsed==0 ){
5800       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5801     }
5802 
5803 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5804     /* Generate code for all sub-queries in the FROM clause
5805     */
5806     pSub = pItem->pSelect;
5807     if( pSub==0 ) continue;
5808 
5809     /* Sometimes the code for a subquery will be generated more than
5810     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5811     ** for example.  In that case, do not regenerate the code to manifest
5812     ** a view or the co-routine to implement a view.  The first instance
5813     ** is sufficient, though the subroutine to manifest the view does need
5814     ** to be invoked again. */
5815     if( pItem->addrFillSub ){
5816       if( pItem->fg.viaCoroutine==0 ){
5817         /* The subroutine that manifests the view might be a one-time routine,
5818         ** or it might need to be rerun on each iteration because it
5819         ** encodes a correlated subquery. */
5820         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5821         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5822       }
5823       continue;
5824     }
5825 
5826     /* Increment Parse.nHeight by the height of the largest expression
5827     ** tree referred to by this, the parent select. The child select
5828     ** may contain expression trees of at most
5829     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5830     ** more conservative than necessary, but much easier than enforcing
5831     ** an exact limit.
5832     */
5833     pParse->nHeight += sqlite3SelectExprHeight(p);
5834 
5835     /* Make copies of constant WHERE-clause terms in the outer query down
5836     ** inside the subquery.  This can help the subquery to run more efficiently.
5837     */
5838     if( OptimizationEnabled(db, SQLITE_PushDown)
5839      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5840                            (pItem->fg.jointype & JT_OUTER)!=0)
5841     ){
5842 #if SELECTTRACE_ENABLED
5843       if( sqlite3SelectTrace & 0x100 ){
5844         SELECTTRACE(0x100,pParse,p,
5845             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5846         sqlite3TreeViewSelect(0, p, 0);
5847       }
5848 #endif
5849     }else{
5850       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5851     }
5852 
5853     zSavedAuthContext = pParse->zAuthContext;
5854     pParse->zAuthContext = pItem->zName;
5855 
5856     /* Generate code to implement the subquery
5857     **
5858     ** The subquery is implemented as a co-routine if the subquery is
5859     ** guaranteed to be the outer loop (so that it does not need to be
5860     ** computed more than once)
5861     **
5862     ** TODO: Are there other reasons beside (1) to use a co-routine
5863     ** implementation?
5864     */
5865     if( i==0
5866      && (pTabList->nSrc==1
5867             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5868     ){
5869       /* Implement a co-routine that will return a single row of the result
5870       ** set on each invocation.
5871       */
5872       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5873 
5874       pItem->regReturn = ++pParse->nMem;
5875       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5876       VdbeComment((v, "%s", pItem->pTab->zName));
5877       pItem->addrFillSub = addrTop;
5878       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5879       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5880       sqlite3Select(pParse, pSub, &dest);
5881       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5882       pItem->fg.viaCoroutine = 1;
5883       pItem->regResult = dest.iSdst;
5884       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5885       sqlite3VdbeJumpHere(v, addrTop-1);
5886       sqlite3ClearTempRegCache(pParse);
5887     }else{
5888       /* Generate a subroutine that will fill an ephemeral table with
5889       ** the content of this subquery.  pItem->addrFillSub will point
5890       ** to the address of the generated subroutine.  pItem->regReturn
5891       ** is a register allocated to hold the subroutine return address
5892       */
5893       int topAddr;
5894       int onceAddr = 0;
5895       int retAddr;
5896       struct SrcList_item *pPrior;
5897 
5898       assert( pItem->addrFillSub==0 );
5899       pItem->regReturn = ++pParse->nMem;
5900       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5901       pItem->addrFillSub = topAddr+1;
5902       if( pItem->fg.isCorrelated==0 ){
5903         /* If the subquery is not correlated and if we are not inside of
5904         ** a trigger, then we only need to compute the value of the subquery
5905         ** once. */
5906         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5907         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5908       }else{
5909         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5910       }
5911       pPrior = isSelfJoinView(pTabList, pItem);
5912       if( pPrior ){
5913         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5914         assert( pPrior->pSelect!=0 );
5915         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5916       }else{
5917         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5918         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
5919         sqlite3Select(pParse, pSub, &dest);
5920       }
5921       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5922       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5923       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5924       VdbeComment((v, "end %s", pItem->pTab->zName));
5925       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5926       sqlite3ClearTempRegCache(pParse);
5927     }
5928     if( db->mallocFailed ) goto select_end;
5929     pParse->nHeight -= sqlite3SelectExprHeight(p);
5930     pParse->zAuthContext = zSavedAuthContext;
5931 #endif
5932   }
5933 
5934   /* Various elements of the SELECT copied into local variables for
5935   ** convenience */
5936   pEList = p->pEList;
5937   pWhere = p->pWhere;
5938   pGroupBy = p->pGroupBy;
5939   pHaving = p->pHaving;
5940   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5941 
5942 #if SELECTTRACE_ENABLED
5943   if( sqlite3SelectTrace & 0x400 ){
5944     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5945     sqlite3TreeViewSelect(0, p, 0);
5946   }
5947 #endif
5948 
5949   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5950   ** if the select-list is the same as the ORDER BY list, then this query
5951   ** can be rewritten as a GROUP BY. In other words, this:
5952   **
5953   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5954   **
5955   ** is transformed to:
5956   **
5957   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5958   **
5959   ** The second form is preferred as a single index (or temp-table) may be
5960   ** used for both the ORDER BY and DISTINCT processing. As originally
5961   ** written the query must use a temp-table for at least one of the ORDER
5962   ** BY and DISTINCT, and an index or separate temp-table for the other.
5963   */
5964   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5965    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5966   ){
5967     p->selFlags &= ~SF_Distinct;
5968     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5969     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5970     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5971     ** original setting of the SF_Distinct flag, not the current setting */
5972     assert( sDistinct.isTnct );
5973 
5974 #if SELECTTRACE_ENABLED
5975     if( sqlite3SelectTrace & 0x400 ){
5976       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5977       sqlite3TreeViewSelect(0, p, 0);
5978     }
5979 #endif
5980   }
5981 
5982   /* If there is an ORDER BY clause, then create an ephemeral index to
5983   ** do the sorting.  But this sorting ephemeral index might end up
5984   ** being unused if the data can be extracted in pre-sorted order.
5985   ** If that is the case, then the OP_OpenEphemeral instruction will be
5986   ** changed to an OP_Noop once we figure out that the sorting index is
5987   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5988   ** that change.
5989   */
5990   if( sSort.pOrderBy ){
5991     KeyInfo *pKeyInfo;
5992     pKeyInfo = sqlite3KeyInfoFromExprList(
5993         pParse, sSort.pOrderBy, 0, pEList->nExpr);
5994     sSort.iECursor = pParse->nTab++;
5995     sSort.addrSortIndex =
5996       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5997           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5998           (char*)pKeyInfo, P4_KEYINFO
5999       );
6000   }else{
6001     sSort.addrSortIndex = -1;
6002   }
6003 
6004   /* If the output is destined for a temporary table, open that table.
6005   */
6006   if( pDest->eDest==SRT_EphemTab ){
6007     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6008   }
6009 
6010   /* Set the limiter.
6011   */
6012   iEnd = sqlite3VdbeMakeLabel(v);
6013   if( (p->selFlags & SF_FixedLimit)==0 ){
6014     p->nSelectRow = 320;  /* 4 billion rows */
6015   }
6016   computeLimitRegisters(pParse, p, iEnd);
6017   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6018     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6019     sSort.sortFlags |= SORTFLAG_UseSorter;
6020   }
6021 
6022   /* Open an ephemeral index to use for the distinct set.
6023   */
6024   if( p->selFlags & SF_Distinct ){
6025     sDistinct.tabTnct = pParse->nTab++;
6026     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6027                        sDistinct.tabTnct, 0, 0,
6028                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6029                        P4_KEYINFO);
6030     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6031     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6032   }else{
6033     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6034   }
6035 
6036   if( !isAgg && pGroupBy==0 ){
6037     /* No aggregate functions and no GROUP BY clause */
6038     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6039                    | (p->selFlags & SF_FixedLimit);
6040 #ifndef SQLITE_OMIT_WINDOWFUNC
6041     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6042     if( pWin ){
6043       sqlite3WindowCodeInit(pParse, pWin);
6044     }
6045 #endif
6046     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6047 
6048 
6049     /* Begin the database scan. */
6050     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6051     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6052                                p->pEList, wctrlFlags, p->nSelectRow);
6053     if( pWInfo==0 ) goto select_end;
6054     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6055       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6056     }
6057     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6058       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6059     }
6060     if( sSort.pOrderBy ){
6061       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6062       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6063       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6064         sSort.pOrderBy = 0;
6065       }
6066     }
6067 
6068     /* If sorting index that was created by a prior OP_OpenEphemeral
6069     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6070     ** into an OP_Noop.
6071     */
6072     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6073       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6074     }
6075 
6076     assert( p->pEList==pEList );
6077 #ifndef SQLITE_OMIT_WINDOWFUNC
6078     if( pWin ){
6079       int addrGosub = sqlite3VdbeMakeLabel(v);
6080       int iCont = sqlite3VdbeMakeLabel(v);
6081       int iBreak = sqlite3VdbeMakeLabel(v);
6082       int regGosub = ++pParse->nMem;
6083 
6084       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6085 
6086       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6087       sqlite3VdbeResolveLabel(v, addrGosub);
6088       VdbeNoopComment((v, "inner-loop subroutine"));
6089       sSort.labelOBLopt = 0;
6090       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6091       sqlite3VdbeResolveLabel(v, iCont);
6092       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6093       VdbeComment((v, "end inner-loop subroutine"));
6094       sqlite3VdbeResolveLabel(v, iBreak);
6095     }else
6096 #endif /* SQLITE_OMIT_WINDOWFUNC */
6097     {
6098       /* Use the standard inner loop. */
6099       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6100           sqlite3WhereContinueLabel(pWInfo),
6101           sqlite3WhereBreakLabel(pWInfo));
6102 
6103       /* End the database scan loop.
6104       */
6105       sqlite3WhereEnd(pWInfo);
6106     }
6107   }else{
6108     /* This case when there exist aggregate functions or a GROUP BY clause
6109     ** or both */
6110     NameContext sNC;    /* Name context for processing aggregate information */
6111     int iAMem;          /* First Mem address for storing current GROUP BY */
6112     int iBMem;          /* First Mem address for previous GROUP BY */
6113     int iUseFlag;       /* Mem address holding flag indicating that at least
6114                         ** one row of the input to the aggregator has been
6115                         ** processed */
6116     int iAbortFlag;     /* Mem address which causes query abort if positive */
6117     int groupBySort;    /* Rows come from source in GROUP BY order */
6118     int addrEnd;        /* End of processing for this SELECT */
6119     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6120     int sortOut = 0;    /* Output register from the sorter */
6121     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6122 
6123     /* Remove any and all aliases between the result set and the
6124     ** GROUP BY clause.
6125     */
6126     if( pGroupBy ){
6127       int k;                        /* Loop counter */
6128       struct ExprList_item *pItem;  /* For looping over expression in a list */
6129 
6130       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6131         pItem->u.x.iAlias = 0;
6132       }
6133       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6134         pItem->u.x.iAlias = 0;
6135       }
6136       assert( 66==sqlite3LogEst(100) );
6137       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6138     }else{
6139       assert( 0==sqlite3LogEst(1) );
6140       p->nSelectRow = 0;
6141     }
6142 
6143     /* If there is both a GROUP BY and an ORDER BY clause and they are
6144     ** identical, then it may be possible to disable the ORDER BY clause
6145     ** on the grounds that the GROUP BY will cause elements to come out
6146     ** in the correct order. It also may not - the GROUP BY might use a
6147     ** database index that causes rows to be grouped together as required
6148     ** but not actually sorted. Either way, record the fact that the
6149     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6150     ** variable.  */
6151     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6152       orderByGrp = 1;
6153     }
6154 
6155     /* Create a label to jump to when we want to abort the query */
6156     addrEnd = sqlite3VdbeMakeLabel(v);
6157 
6158     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6159     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6160     ** SELECT statement.
6161     */
6162     memset(&sNC, 0, sizeof(sNC));
6163     sNC.pParse = pParse;
6164     sNC.pSrcList = pTabList;
6165     sNC.uNC.pAggInfo = &sAggInfo;
6166     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6167     sAggInfo.mnReg = pParse->nMem+1;
6168     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6169     sAggInfo.pGroupBy = pGroupBy;
6170     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6171     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6172     if( pHaving ){
6173       if( pGroupBy ){
6174         assert( pWhere==p->pWhere );
6175         assert( pHaving==p->pHaving );
6176         assert( pGroupBy==p->pGroupBy );
6177         havingToWhere(pParse, p);
6178         pWhere = p->pWhere;
6179       }
6180       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6181     }
6182     sAggInfo.nAccumulator = sAggInfo.nColumn;
6183     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6184       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6185     }else{
6186       minMaxFlag = WHERE_ORDERBY_NORMAL;
6187     }
6188     for(i=0; i<sAggInfo.nFunc; i++){
6189       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6190       sNC.ncFlags |= NC_InAggFunc;
6191       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6192       sNC.ncFlags &= ~NC_InAggFunc;
6193     }
6194     sAggInfo.mxReg = pParse->nMem;
6195     if( db->mallocFailed ) goto select_end;
6196 #if SELECTTRACE_ENABLED
6197     if( sqlite3SelectTrace & 0x400 ){
6198       int ii;
6199       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6200       sqlite3TreeViewSelect(0, p, 0);
6201       for(ii=0; ii<sAggInfo.nColumn; ii++){
6202         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6203             ii, sAggInfo.aCol[ii].iMem);
6204         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6205       }
6206       for(ii=0; ii<sAggInfo.nFunc; ii++){
6207         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6208             ii, sAggInfo.aFunc[ii].iMem);
6209         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6210       }
6211     }
6212 #endif
6213 
6214 
6215     /* Processing for aggregates with GROUP BY is very different and
6216     ** much more complex than aggregates without a GROUP BY.
6217     */
6218     if( pGroupBy ){
6219       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6220       int addr1;          /* A-vs-B comparision jump */
6221       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6222       int regOutputRow;   /* Return address register for output subroutine */
6223       int addrSetAbort;   /* Set the abort flag and return */
6224       int addrTopOfLoop;  /* Top of the input loop */
6225       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6226       int addrReset;      /* Subroutine for resetting the accumulator */
6227       int regReset;       /* Return address register for reset subroutine */
6228 
6229       /* If there is a GROUP BY clause we might need a sorting index to
6230       ** implement it.  Allocate that sorting index now.  If it turns out
6231       ** that we do not need it after all, the OP_SorterOpen instruction
6232       ** will be converted into a Noop.
6233       */
6234       sAggInfo.sortingIdx = pParse->nTab++;
6235       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6236       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6237           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6238           0, (char*)pKeyInfo, P4_KEYINFO);
6239 
6240       /* Initialize memory locations used by GROUP BY aggregate processing
6241       */
6242       iUseFlag = ++pParse->nMem;
6243       iAbortFlag = ++pParse->nMem;
6244       regOutputRow = ++pParse->nMem;
6245       addrOutputRow = sqlite3VdbeMakeLabel(v);
6246       regReset = ++pParse->nMem;
6247       addrReset = sqlite3VdbeMakeLabel(v);
6248       iAMem = pParse->nMem + 1;
6249       pParse->nMem += pGroupBy->nExpr;
6250       iBMem = pParse->nMem + 1;
6251       pParse->nMem += pGroupBy->nExpr;
6252       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6253       VdbeComment((v, "clear abort flag"));
6254       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6255 
6256       /* Begin a loop that will extract all source rows in GROUP BY order.
6257       ** This might involve two separate loops with an OP_Sort in between, or
6258       ** it might be a single loop that uses an index to extract information
6259       ** in the right order to begin with.
6260       */
6261       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6262       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6263       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6264           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6265       );
6266       if( pWInfo==0 ) goto select_end;
6267       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6268         /* The optimizer is able to deliver rows in group by order so
6269         ** we do not have to sort.  The OP_OpenEphemeral table will be
6270         ** cancelled later because we still need to use the pKeyInfo
6271         */
6272         groupBySort = 0;
6273       }else{
6274         /* Rows are coming out in undetermined order.  We have to push
6275         ** each row into a sorting index, terminate the first loop,
6276         ** then loop over the sorting index in order to get the output
6277         ** in sorted order
6278         */
6279         int regBase;
6280         int regRecord;
6281         int nCol;
6282         int nGroupBy;
6283 
6284         explainTempTable(pParse,
6285             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6286                     "DISTINCT" : "GROUP BY");
6287 
6288         groupBySort = 1;
6289         nGroupBy = pGroupBy->nExpr;
6290         nCol = nGroupBy;
6291         j = nGroupBy;
6292         for(i=0; i<sAggInfo.nColumn; i++){
6293           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6294             nCol++;
6295             j++;
6296           }
6297         }
6298         regBase = sqlite3GetTempRange(pParse, nCol);
6299         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6300         j = nGroupBy;
6301         for(i=0; i<sAggInfo.nColumn; i++){
6302           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6303           if( pCol->iSorterColumn>=j ){
6304             int r1 = j + regBase;
6305             sqlite3ExprCodeGetColumnOfTable(v,
6306                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6307             j++;
6308           }
6309         }
6310         regRecord = sqlite3GetTempReg(pParse);
6311         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6312         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6313         sqlite3ReleaseTempReg(pParse, regRecord);
6314         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6315         sqlite3WhereEnd(pWInfo);
6316         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6317         sortOut = sqlite3GetTempReg(pParse);
6318         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6319         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6320         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6321         sAggInfo.useSortingIdx = 1;
6322       }
6323 
6324       /* If the index or temporary table used by the GROUP BY sort
6325       ** will naturally deliver rows in the order required by the ORDER BY
6326       ** clause, cancel the ephemeral table open coded earlier.
6327       **
6328       ** This is an optimization - the correct answer should result regardless.
6329       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6330       ** disable this optimization for testing purposes.  */
6331       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6332        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6333       ){
6334         sSort.pOrderBy = 0;
6335         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6336       }
6337 
6338       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6339       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6340       ** Then compare the current GROUP BY terms against the GROUP BY terms
6341       ** from the previous row currently stored in a0, a1, a2...
6342       */
6343       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6344       if( groupBySort ){
6345         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6346                           sortOut, sortPTab);
6347       }
6348       for(j=0; j<pGroupBy->nExpr; j++){
6349         if( groupBySort ){
6350           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6351         }else{
6352           sAggInfo.directMode = 1;
6353           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6354         }
6355       }
6356       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6357                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6358       addr1 = sqlite3VdbeCurrentAddr(v);
6359       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6360 
6361       /* Generate code that runs whenever the GROUP BY changes.
6362       ** Changes in the GROUP BY are detected by the previous code
6363       ** block.  If there were no changes, this block is skipped.
6364       **
6365       ** This code copies current group by terms in b0,b1,b2,...
6366       ** over to a0,a1,a2.  It then calls the output subroutine
6367       ** and resets the aggregate accumulator registers in preparation
6368       ** for the next GROUP BY batch.
6369       */
6370       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6371       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6372       VdbeComment((v, "output one row"));
6373       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6374       VdbeComment((v, "check abort flag"));
6375       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6376       VdbeComment((v, "reset accumulator"));
6377 
6378       /* Update the aggregate accumulators based on the content of
6379       ** the current row
6380       */
6381       sqlite3VdbeJumpHere(v, addr1);
6382       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6383       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6384       VdbeComment((v, "indicate data in accumulator"));
6385 
6386       /* End of the loop
6387       */
6388       if( groupBySort ){
6389         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6390         VdbeCoverage(v);
6391       }else{
6392         sqlite3WhereEnd(pWInfo);
6393         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6394       }
6395 
6396       /* Output the final row of result
6397       */
6398       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6399       VdbeComment((v, "output final row"));
6400 
6401       /* Jump over the subroutines
6402       */
6403       sqlite3VdbeGoto(v, addrEnd);
6404 
6405       /* Generate a subroutine that outputs a single row of the result
6406       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6407       ** is less than or equal to zero, the subroutine is a no-op.  If
6408       ** the processing calls for the query to abort, this subroutine
6409       ** increments the iAbortFlag memory location before returning in
6410       ** order to signal the caller to abort.
6411       */
6412       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6413       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6414       VdbeComment((v, "set abort flag"));
6415       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6416       sqlite3VdbeResolveLabel(v, addrOutputRow);
6417       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6418       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6419       VdbeCoverage(v);
6420       VdbeComment((v, "Groupby result generator entry point"));
6421       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6422       finalizeAggFunctions(pParse, &sAggInfo);
6423       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6424       selectInnerLoop(pParse, p, -1, &sSort,
6425                       &sDistinct, pDest,
6426                       addrOutputRow+1, addrSetAbort);
6427       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6428       VdbeComment((v, "end groupby result generator"));
6429 
6430       /* Generate a subroutine that will reset the group-by accumulator
6431       */
6432       sqlite3VdbeResolveLabel(v, addrReset);
6433       resetAccumulator(pParse, &sAggInfo);
6434       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6435       VdbeComment((v, "indicate accumulator empty"));
6436       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6437 
6438     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6439     else {
6440 #ifndef SQLITE_OMIT_BTREECOUNT
6441       Table *pTab;
6442       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6443         /* If isSimpleCount() returns a pointer to a Table structure, then
6444         ** the SQL statement is of the form:
6445         **
6446         **   SELECT count(*) FROM <tbl>
6447         **
6448         ** where the Table structure returned represents table <tbl>.
6449         **
6450         ** This statement is so common that it is optimized specially. The
6451         ** OP_Count instruction is executed either on the intkey table that
6452         ** contains the data for table <tbl> or on one of its indexes. It
6453         ** is better to execute the op on an index, as indexes are almost
6454         ** always spread across less pages than their corresponding tables.
6455         */
6456         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6457         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6458         Index *pIdx;                         /* Iterator variable */
6459         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6460         Index *pBest = 0;                    /* Best index found so far */
6461         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6462 
6463         sqlite3CodeVerifySchema(pParse, iDb);
6464         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6465 
6466         /* Search for the index that has the lowest scan cost.
6467         **
6468         ** (2011-04-15) Do not do a full scan of an unordered index.
6469         **
6470         ** (2013-10-03) Do not count the entries in a partial index.
6471         **
6472         ** In practice the KeyInfo structure will not be used. It is only
6473         ** passed to keep OP_OpenRead happy.
6474         */
6475         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6476         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6477           if( pIdx->bUnordered==0
6478            && pIdx->szIdxRow<pTab->szTabRow
6479            && pIdx->pPartIdxWhere==0
6480            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6481           ){
6482             pBest = pIdx;
6483           }
6484         }
6485         if( pBest ){
6486           iRoot = pBest->tnum;
6487           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6488         }
6489 
6490         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6491         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6492         if( pKeyInfo ){
6493           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6494         }
6495         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6496         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6497         explainSimpleCount(pParse, pTab, pBest);
6498       }else
6499 #endif /* SQLITE_OMIT_BTREECOUNT */
6500       {
6501         int regAcc = 0;           /* "populate accumulators" flag */
6502 
6503         /* If there are accumulator registers but no min() or max() functions,
6504         ** allocate register regAcc. Register regAcc will contain 0 the first
6505         ** time the inner loop runs, and 1 thereafter. The code generated
6506         ** by updateAccumulator() only updates the accumulator registers if
6507         ** regAcc contains 0.  */
6508         if( sAggInfo.nAccumulator ){
6509           for(i=0; i<sAggInfo.nFunc; i++){
6510             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6511           }
6512           if( i==sAggInfo.nFunc ){
6513             regAcc = ++pParse->nMem;
6514             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6515           }
6516         }
6517 
6518         /* This case runs if the aggregate has no GROUP BY clause.  The
6519         ** processing is much simpler since there is only a single row
6520         ** of output.
6521         */
6522         assert( p->pGroupBy==0 );
6523         resetAccumulator(pParse, &sAggInfo);
6524 
6525         /* If this query is a candidate for the min/max optimization, then
6526         ** minMaxFlag will have been previously set to either
6527         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6528         ** be an appropriate ORDER BY expression for the optimization.
6529         */
6530         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6531         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6532 
6533         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6534         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6535                                    0, minMaxFlag, 0);
6536         if( pWInfo==0 ){
6537           goto select_end;
6538         }
6539         updateAccumulator(pParse, regAcc, &sAggInfo);
6540         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6541         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6542           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6543           VdbeComment((v, "%s() by index",
6544                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6545         }
6546         sqlite3WhereEnd(pWInfo);
6547         finalizeAggFunctions(pParse, &sAggInfo);
6548       }
6549 
6550       sSort.pOrderBy = 0;
6551       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6552       selectInnerLoop(pParse, p, -1, 0, 0,
6553                       pDest, addrEnd, addrEnd);
6554     }
6555     sqlite3VdbeResolveLabel(v, addrEnd);
6556 
6557   } /* endif aggregate query */
6558 
6559   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6560     explainTempTable(pParse, "DISTINCT");
6561   }
6562 
6563   /* If there is an ORDER BY clause, then we need to sort the results
6564   ** and send them to the callback one by one.
6565   */
6566   if( sSort.pOrderBy ){
6567     explainTempTable(pParse,
6568                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6569     assert( p->pEList==pEList );
6570     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6571   }
6572 
6573   /* Jump here to skip this query
6574   */
6575   sqlite3VdbeResolveLabel(v, iEnd);
6576 
6577   /* The SELECT has been coded. If there is an error in the Parse structure,
6578   ** set the return code to 1. Otherwise 0. */
6579   rc = (pParse->nErr>0);
6580 
6581   /* Control jumps to here if an error is encountered above, or upon
6582   ** successful coding of the SELECT.
6583   */
6584 select_end:
6585   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6586   sqlite3DbFree(db, sAggInfo.aCol);
6587   sqlite3DbFree(db, sAggInfo.aFunc);
6588 #if SELECTTRACE_ENABLED
6589   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6590   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6591     sqlite3TreeViewSelect(0, p, 0);
6592   }
6593 #endif
6594   ExplainQueryPlanPop(pParse);
6595   return rc;
6596 }
6597