1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 #ifndef SQLITE_OMIT_WINDOWFUNC 100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 101 sqlite3WindowListDelete(db, p->pWinDefn); 102 } 103 #endif 104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 105 if( bFree ) sqlite3DbFreeNN(db, p); 106 p = pPrior; 107 bFree = 1; 108 } 109 } 110 111 /* 112 ** Initialize a SelectDest structure. 113 */ 114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 115 pDest->eDest = (u8)eDest; 116 pDest->iSDParm = iParm; 117 pDest->zAffSdst = 0; 118 pDest->iSdst = 0; 119 pDest->nSdst = 0; 120 } 121 122 123 /* 124 ** Allocate a new Select structure and return a pointer to that 125 ** structure. 126 */ 127 Select *sqlite3SelectNew( 128 Parse *pParse, /* Parsing context */ 129 ExprList *pEList, /* which columns to include in the result */ 130 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 131 Expr *pWhere, /* the WHERE clause */ 132 ExprList *pGroupBy, /* the GROUP BY clause */ 133 Expr *pHaving, /* the HAVING clause */ 134 ExprList *pOrderBy, /* the ORDER BY clause */ 135 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 136 Expr *pLimit /* LIMIT value. NULL means not used */ 137 ){ 138 Select *pNew; 139 Select standin; 140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 141 if( pNew==0 ){ 142 assert( pParse->db->mallocFailed ); 143 pNew = &standin; 144 } 145 if( pEList==0 ){ 146 pEList = sqlite3ExprListAppend(pParse, 0, 147 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 148 } 149 pNew->pEList = pEList; 150 pNew->op = TK_SELECT; 151 pNew->selFlags = selFlags; 152 pNew->iLimit = 0; 153 pNew->iOffset = 0; 154 pNew->selId = ++pParse->nSelect; 155 pNew->addrOpenEphm[0] = -1; 156 pNew->addrOpenEphm[1] = -1; 157 pNew->nSelectRow = 0; 158 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 159 pNew->pSrc = pSrc; 160 pNew->pWhere = pWhere; 161 pNew->pGroupBy = pGroupBy; 162 pNew->pHaving = pHaving; 163 pNew->pOrderBy = pOrderBy; 164 pNew->pPrior = 0; 165 pNew->pNext = 0; 166 pNew->pLimit = pLimit; 167 pNew->pWith = 0; 168 #ifndef SQLITE_OMIT_WINDOWFUNC 169 pNew->pWin = 0; 170 pNew->pWinDefn = 0; 171 #endif 172 if( pParse->db->mallocFailed ) { 173 clearSelect(pParse->db, pNew, pNew!=&standin); 174 pNew = 0; 175 }else{ 176 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 177 } 178 assert( pNew!=&standin ); 179 return pNew; 180 } 181 182 183 /* 184 ** Delete the given Select structure and all of its substructures. 185 */ 186 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 187 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 188 } 189 190 /* 191 ** Return a pointer to the right-most SELECT statement in a compound. 192 */ 193 static Select *findRightmost(Select *p){ 194 while( p->pNext ) p = p->pNext; 195 return p; 196 } 197 198 /* 199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 200 ** type of join. Return an integer constant that expresses that type 201 ** in terms of the following bit values: 202 ** 203 ** JT_INNER 204 ** JT_CROSS 205 ** JT_OUTER 206 ** JT_NATURAL 207 ** JT_LEFT 208 ** JT_RIGHT 209 ** 210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 211 ** 212 ** If an illegal or unsupported join type is seen, then still return 213 ** a join type, but put an error in the pParse structure. 214 */ 215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 216 int jointype = 0; 217 Token *apAll[3]; 218 Token *p; 219 /* 0123456789 123456789 123456789 123 */ 220 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 221 static const struct { 222 u8 i; /* Beginning of keyword text in zKeyText[] */ 223 u8 nChar; /* Length of the keyword in characters */ 224 u8 code; /* Join type mask */ 225 } aKeyword[] = { 226 /* natural */ { 0, 7, JT_NATURAL }, 227 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 228 /* outer */ { 10, 5, JT_OUTER }, 229 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 230 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 231 /* inner */ { 23, 5, JT_INNER }, 232 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 233 }; 234 int i, j; 235 apAll[0] = pA; 236 apAll[1] = pB; 237 apAll[2] = pC; 238 for(i=0; i<3 && apAll[i]; i++){ 239 p = apAll[i]; 240 for(j=0; j<ArraySize(aKeyword); j++){ 241 if( p->n==aKeyword[j].nChar 242 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 243 jointype |= aKeyword[j].code; 244 break; 245 } 246 } 247 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 248 if( j>=ArraySize(aKeyword) ){ 249 jointype |= JT_ERROR; 250 break; 251 } 252 } 253 if( 254 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 255 (jointype & JT_ERROR)!=0 256 ){ 257 const char *zSp = " "; 258 assert( pB!=0 ); 259 if( pC==0 ){ zSp++; } 260 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 261 "%T %T%s%T", pA, pB, zSp, pC); 262 jointype = JT_INNER; 263 }else if( (jointype & JT_OUTER)!=0 264 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 265 sqlite3ErrorMsg(pParse, 266 "RIGHT and FULL OUTER JOINs are not currently supported"); 267 jointype = JT_INNER; 268 } 269 return jointype; 270 } 271 272 /* 273 ** Return the index of a column in a table. Return -1 if the column 274 ** is not contained in the table. 275 */ 276 static int columnIndex(Table *pTab, const char *zCol){ 277 int i; 278 for(i=0; i<pTab->nCol; i++){ 279 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 280 } 281 return -1; 282 } 283 284 /* 285 ** Search the first N tables in pSrc, from left to right, looking for a 286 ** table that has a column named zCol. 287 ** 288 ** When found, set *piTab and *piCol to the table index and column index 289 ** of the matching column and return TRUE. 290 ** 291 ** If not found, return FALSE. 292 */ 293 static int tableAndColumnIndex( 294 SrcList *pSrc, /* Array of tables to search */ 295 int N, /* Number of tables in pSrc->a[] to search */ 296 const char *zCol, /* Name of the column we are looking for */ 297 int *piTab, /* Write index of pSrc->a[] here */ 298 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 299 ){ 300 int i; /* For looping over tables in pSrc */ 301 int iCol; /* Index of column matching zCol */ 302 303 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 304 for(i=0; i<N; i++){ 305 iCol = columnIndex(pSrc->a[i].pTab, zCol); 306 if( iCol>=0 ){ 307 if( piTab ){ 308 *piTab = i; 309 *piCol = iCol; 310 } 311 return 1; 312 } 313 } 314 return 0; 315 } 316 317 /* 318 ** This function is used to add terms implied by JOIN syntax to the 319 ** WHERE clause expression of a SELECT statement. The new term, which 320 ** is ANDed with the existing WHERE clause, is of the form: 321 ** 322 ** (tab1.col1 = tab2.col2) 323 ** 324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 326 ** column iColRight of tab2. 327 */ 328 static void addWhereTerm( 329 Parse *pParse, /* Parsing context */ 330 SrcList *pSrc, /* List of tables in FROM clause */ 331 int iLeft, /* Index of first table to join in pSrc */ 332 int iColLeft, /* Index of column in first table */ 333 int iRight, /* Index of second table in pSrc */ 334 int iColRight, /* Index of column in second table */ 335 int isOuterJoin, /* True if this is an OUTER join */ 336 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 337 ){ 338 sqlite3 *db = pParse->db; 339 Expr *pE1; 340 Expr *pE2; 341 Expr *pEq; 342 343 assert( iLeft<iRight ); 344 assert( pSrc->nSrc>iRight ); 345 assert( pSrc->a[iLeft].pTab ); 346 assert( pSrc->a[iRight].pTab ); 347 348 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 349 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 350 351 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 352 if( pEq && isOuterJoin ){ 353 ExprSetProperty(pEq, EP_FromJoin); 354 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 355 ExprSetVVAProperty(pEq, EP_NoReduce); 356 pEq->iRightJoinTable = (i16)pE2->iTable; 357 } 358 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 359 } 360 361 /* 362 ** Set the EP_FromJoin property on all terms of the given expression. 363 ** And set the Expr.iRightJoinTable to iTable for every term in the 364 ** expression. 365 ** 366 ** The EP_FromJoin property is used on terms of an expression to tell 367 ** the LEFT OUTER JOIN processing logic that this term is part of the 368 ** join restriction specified in the ON or USING clause and not a part 369 ** of the more general WHERE clause. These terms are moved over to the 370 ** WHERE clause during join processing but we need to remember that they 371 ** originated in the ON or USING clause. 372 ** 373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 374 ** expression depends on table iRightJoinTable even if that table is not 375 ** explicitly mentioned in the expression. That information is needed 376 ** for cases like this: 377 ** 378 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 379 ** 380 ** The where clause needs to defer the handling of the t1.x=5 381 ** term until after the t2 loop of the join. In that way, a 382 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 383 ** defer the handling of t1.x=5, it will be processed immediately 384 ** after the t1 loop and rows with t1.x!=5 will never appear in 385 ** the output, which is incorrect. 386 */ 387 static void setJoinExpr(Expr *p, int iTable){ 388 while( p ){ 389 ExprSetProperty(p, EP_FromJoin); 390 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 391 ExprSetVVAProperty(p, EP_NoReduce); 392 p->iRightJoinTable = (i16)iTable; 393 if( p->op==TK_FUNCTION && p->x.pList ){ 394 int i; 395 for(i=0; i<p->x.pList->nExpr; i++){ 396 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 397 } 398 } 399 setJoinExpr(p->pLeft, iTable); 400 p = p->pRight; 401 } 402 } 403 404 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 406 ** an ordinary term that omits the EP_FromJoin mark. 407 ** 408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 409 */ 410 static void unsetJoinExpr(Expr *p, int iTable){ 411 while( p ){ 412 if( ExprHasProperty(p, EP_FromJoin) 413 && (iTable<0 || p->iRightJoinTable==iTable) ){ 414 ExprClearProperty(p, EP_FromJoin); 415 } 416 if( p->op==TK_FUNCTION && p->x.pList ){ 417 int i; 418 for(i=0; i<p->x.pList->nExpr; i++){ 419 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 420 } 421 } 422 unsetJoinExpr(p->pLeft, iTable); 423 p = p->pRight; 424 } 425 } 426 427 /* 428 ** This routine processes the join information for a SELECT statement. 429 ** ON and USING clauses are converted into extra terms of the WHERE clause. 430 ** NATURAL joins also create extra WHERE clause terms. 431 ** 432 ** The terms of a FROM clause are contained in the Select.pSrc structure. 433 ** The left most table is the first entry in Select.pSrc. The right-most 434 ** table is the last entry. The join operator is held in the entry to 435 ** the left. Thus entry 0 contains the join operator for the join between 436 ** entries 0 and 1. Any ON or USING clauses associated with the join are 437 ** also attached to the left entry. 438 ** 439 ** This routine returns the number of errors encountered. 440 */ 441 static int sqliteProcessJoin(Parse *pParse, Select *p){ 442 SrcList *pSrc; /* All tables in the FROM clause */ 443 int i, j; /* Loop counters */ 444 struct SrcList_item *pLeft; /* Left table being joined */ 445 struct SrcList_item *pRight; /* Right table being joined */ 446 447 pSrc = p->pSrc; 448 pLeft = &pSrc->a[0]; 449 pRight = &pLeft[1]; 450 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 451 Table *pRightTab = pRight->pTab; 452 int isOuter; 453 454 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 455 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 456 457 /* When the NATURAL keyword is present, add WHERE clause terms for 458 ** every column that the two tables have in common. 459 */ 460 if( pRight->fg.jointype & JT_NATURAL ){ 461 if( pRight->pOn || pRight->pUsing ){ 462 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 463 "an ON or USING clause", 0); 464 return 1; 465 } 466 for(j=0; j<pRightTab->nCol; j++){ 467 char *zName; /* Name of column in the right table */ 468 int iLeft; /* Matching left table */ 469 int iLeftCol; /* Matching column in the left table */ 470 471 zName = pRightTab->aCol[j].zName; 472 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 473 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 474 isOuter, &p->pWhere); 475 } 476 } 477 } 478 479 /* Disallow both ON and USING clauses in the same join 480 */ 481 if( pRight->pOn && pRight->pUsing ){ 482 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 483 "clauses in the same join"); 484 return 1; 485 } 486 487 /* Add the ON clause to the end of the WHERE clause, connected by 488 ** an AND operator. 489 */ 490 if( pRight->pOn ){ 491 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 492 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 493 pRight->pOn = 0; 494 } 495 496 /* Create extra terms on the WHERE clause for each column named 497 ** in the USING clause. Example: If the two tables to be joined are 498 ** A and B and the USING clause names X, Y, and Z, then add this 499 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 500 ** Report an error if any column mentioned in the USING clause is 501 ** not contained in both tables to be joined. 502 */ 503 if( pRight->pUsing ){ 504 IdList *pList = pRight->pUsing; 505 for(j=0; j<pList->nId; j++){ 506 char *zName; /* Name of the term in the USING clause */ 507 int iLeft; /* Table on the left with matching column name */ 508 int iLeftCol; /* Column number of matching column on the left */ 509 int iRightCol; /* Column number of matching column on the right */ 510 511 zName = pList->a[j].zName; 512 iRightCol = columnIndex(pRightTab, zName); 513 if( iRightCol<0 514 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 515 ){ 516 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 517 "not present in both tables", zName); 518 return 1; 519 } 520 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 521 isOuter, &p->pWhere); 522 } 523 } 524 } 525 return 0; 526 } 527 528 /* 529 ** An instance of this object holds information (beyond pParse and pSelect) 530 ** needed to load the next result row that is to be added to the sorter. 531 */ 532 typedef struct RowLoadInfo RowLoadInfo; 533 struct RowLoadInfo { 534 int regResult; /* Store results in array of registers here */ 535 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 537 ExprList *pExtra; /* Extra columns needed by sorter refs */ 538 int regExtraResult; /* Where to load the extra columns */ 539 #endif 540 }; 541 542 /* 543 ** This routine does the work of loading query data into an array of 544 ** registers so that it can be added to the sorter. 545 */ 546 static void innerLoopLoadRow( 547 Parse *pParse, /* Statement under construction */ 548 Select *pSelect, /* The query being coded */ 549 RowLoadInfo *pInfo /* Info needed to complete the row load */ 550 ){ 551 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 552 0, pInfo->ecelFlags); 553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 554 if( pInfo->pExtra ){ 555 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 556 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 557 } 558 #endif 559 } 560 561 /* 562 ** Code the OP_MakeRecord instruction that generates the entry to be 563 ** added into the sorter. 564 ** 565 ** Return the register in which the result is stored. 566 */ 567 static int makeSorterRecord( 568 Parse *pParse, 569 SortCtx *pSort, 570 Select *pSelect, 571 int regBase, 572 int nBase 573 ){ 574 int nOBSat = pSort->nOBSat; 575 Vdbe *v = pParse->pVdbe; 576 int regOut = ++pParse->nMem; 577 if( pSort->pDeferredRowLoad ){ 578 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 579 } 580 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 581 return regOut; 582 } 583 584 /* 585 ** Generate code that will push the record in registers regData 586 ** through regData+nData-1 onto the sorter. 587 */ 588 static void pushOntoSorter( 589 Parse *pParse, /* Parser context */ 590 SortCtx *pSort, /* Information about the ORDER BY clause */ 591 Select *pSelect, /* The whole SELECT statement */ 592 int regData, /* First register holding data to be sorted */ 593 int regOrigData, /* First register holding data before packing */ 594 int nData, /* Number of elements in the regData data array */ 595 int nPrefixReg /* No. of reg prior to regData available for use */ 596 ){ 597 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 598 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 599 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 600 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 601 int regBase; /* Regs for sorter record */ 602 int regRecord = 0; /* Assembled sorter record */ 603 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 604 int op; /* Opcode to add sorter record to sorter */ 605 int iLimit; /* LIMIT counter */ 606 int iSkip = 0; /* End of the sorter insert loop */ 607 608 assert( bSeq==0 || bSeq==1 ); 609 610 /* Three cases: 611 ** (1) The data to be sorted has already been packed into a Record 612 ** by a prior OP_MakeRecord. In this case nData==1 and regData 613 ** will be completely unrelated to regOrigData. 614 ** (2) All output columns are included in the sort record. In that 615 ** case regData==regOrigData. 616 ** (3) Some output columns are omitted from the sort record due to 617 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 618 ** SQLITE_ECEL_OMITREF optimization, or due to the 619 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 620 ** regOrigData is 0 to prevent this routine from trying to copy 621 ** values that might not yet exist. 622 */ 623 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 624 625 if( nPrefixReg ){ 626 assert( nPrefixReg==nExpr+bSeq ); 627 regBase = regData - nPrefixReg; 628 }else{ 629 regBase = pParse->nMem + 1; 630 pParse->nMem += nBase; 631 } 632 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 633 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 634 pSort->labelDone = sqlite3VdbeMakeLabel(v); 635 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 636 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 637 if( bSeq ){ 638 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 639 } 640 if( nPrefixReg==0 && nData>0 ){ 641 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 642 } 643 if( nOBSat>0 ){ 644 int regPrevKey; /* The first nOBSat columns of the previous row */ 645 int addrFirst; /* Address of the OP_IfNot opcode */ 646 int addrJmp; /* Address of the OP_Jump opcode */ 647 VdbeOp *pOp; /* Opcode that opens the sorter */ 648 int nKey; /* Number of sorting key columns, including OP_Sequence */ 649 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 650 651 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 652 regPrevKey = pParse->nMem+1; 653 pParse->nMem += pSort->nOBSat; 654 nKey = nExpr - pSort->nOBSat + bSeq; 655 if( bSeq ){ 656 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 657 }else{ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 659 } 660 VdbeCoverage(v); 661 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 662 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 663 if( pParse->db->mallocFailed ) return; 664 pOp->p2 = nKey + nData; 665 pKI = pOp->p4.pKeyInfo; 666 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 667 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 668 testcase( pKI->nAllField > pKI->nKeyField+2 ); 669 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 670 pKI->nAllField-pKI->nKeyField-1); 671 addrJmp = sqlite3VdbeCurrentAddr(v); 672 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 673 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 674 pSort->regReturn = ++pParse->nMem; 675 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 676 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 677 if( iLimit ){ 678 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 679 VdbeCoverage(v); 680 } 681 sqlite3VdbeJumpHere(v, addrFirst); 682 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 683 sqlite3VdbeJumpHere(v, addrJmp); 684 } 685 if( iLimit ){ 686 /* At this point the values for the new sorter entry are stored 687 ** in an array of registers. They need to be composed into a record 688 ** and inserted into the sorter if either (a) there are currently 689 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 690 ** the largest record currently in the sorter. If (b) is true and there 691 ** are already LIMIT+OFFSET items in the sorter, delete the largest 692 ** entry before inserting the new one. This way there are never more 693 ** than LIMIT+OFFSET items in the sorter. 694 ** 695 ** If the new record does not need to be inserted into the sorter, 696 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 697 ** value is not zero, then it is a label of where to jump. Otherwise, 698 ** just bypass the row insert logic. See the header comment on the 699 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 700 */ 701 int iCsr = pSort->iECursor; 702 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 703 VdbeCoverage(v); 704 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 705 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 706 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 707 VdbeCoverage(v); 708 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 709 } 710 if( regRecord==0 ){ 711 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 712 } 713 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 714 op = OP_SorterInsert; 715 }else{ 716 op = OP_IdxInsert; 717 } 718 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 719 regBase+nOBSat, nBase-nOBSat); 720 if( iSkip ){ 721 sqlite3VdbeChangeP2(v, iSkip, 722 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 723 } 724 } 725 726 /* 727 ** Add code to implement the OFFSET 728 */ 729 static void codeOffset( 730 Vdbe *v, /* Generate code into this VM */ 731 int iOffset, /* Register holding the offset counter */ 732 int iContinue /* Jump here to skip the current record */ 733 ){ 734 if( iOffset>0 ){ 735 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 736 VdbeComment((v, "OFFSET")); 737 } 738 } 739 740 /* 741 ** Add code that will check to make sure the N registers starting at iMem 742 ** form a distinct entry. iTab is a sorting index that holds previously 743 ** seen combinations of the N values. A new entry is made in iTab 744 ** if the current N values are new. 745 ** 746 ** A jump to addrRepeat is made and the N+1 values are popped from the 747 ** stack if the top N elements are not distinct. 748 */ 749 static void codeDistinct( 750 Parse *pParse, /* Parsing and code generating context */ 751 int iTab, /* A sorting index used to test for distinctness */ 752 int addrRepeat, /* Jump to here if not distinct */ 753 int N, /* Number of elements */ 754 int iMem /* First element */ 755 ){ 756 Vdbe *v; 757 int r1; 758 759 v = pParse->pVdbe; 760 r1 = sqlite3GetTempReg(pParse); 761 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 762 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 763 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 764 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 765 sqlite3ReleaseTempReg(pParse, r1); 766 } 767 768 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 769 /* 770 ** This function is called as part of inner-loop generation for a SELECT 771 ** statement with an ORDER BY that is not optimized by an index. It 772 ** determines the expressions, if any, that the sorter-reference 773 ** optimization should be used for. The sorter-reference optimization 774 ** is used for SELECT queries like: 775 ** 776 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 777 ** 778 ** If the optimization is used for expression "bigblob", then instead of 779 ** storing values read from that column in the sorter records, the PK of 780 ** the row from table t1 is stored instead. Then, as records are extracted from 781 ** the sorter to return to the user, the required value of bigblob is 782 ** retrieved directly from table t1. If the values are very large, this 783 ** can be more efficient than storing them directly in the sorter records. 784 ** 785 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 786 ** for which the sorter-reference optimization should be enabled. 787 ** Additionally, the pSort->aDefer[] array is populated with entries 788 ** for all cursors required to evaluate all selected expressions. Finally. 789 ** output variable (*ppExtra) is set to an expression list containing 790 ** expressions for all extra PK values that should be stored in the 791 ** sorter records. 792 */ 793 static void selectExprDefer( 794 Parse *pParse, /* Leave any error here */ 795 SortCtx *pSort, /* Sorter context */ 796 ExprList *pEList, /* Expressions destined for sorter */ 797 ExprList **ppExtra /* Expressions to append to sorter record */ 798 ){ 799 int i; 800 int nDefer = 0; 801 ExprList *pExtra = 0; 802 for(i=0; i<pEList->nExpr; i++){ 803 struct ExprList_item *pItem = &pEList->a[i]; 804 if( pItem->u.x.iOrderByCol==0 ){ 805 Expr *pExpr = pItem->pExpr; 806 Table *pTab = pExpr->pTab; 807 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 808 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 809 ){ 810 int j; 811 for(j=0; j<nDefer; j++){ 812 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 813 } 814 if( j==nDefer ){ 815 if( nDefer==ArraySize(pSort->aDefer) ){ 816 continue; 817 }else{ 818 int nKey = 1; 819 int k; 820 Index *pPk = 0; 821 if( !HasRowid(pTab) ){ 822 pPk = sqlite3PrimaryKeyIndex(pTab); 823 nKey = pPk->nKeyCol; 824 } 825 for(k=0; k<nKey; k++){ 826 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 827 if( pNew ){ 828 pNew->iTable = pExpr->iTable; 829 pNew->pTab = pExpr->pTab; 830 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 831 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 832 } 833 } 834 pSort->aDefer[nDefer].pTab = pExpr->pTab; 835 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 836 pSort->aDefer[nDefer].nKey = nKey; 837 nDefer++; 838 } 839 } 840 pItem->bSorterRef = 1; 841 } 842 } 843 } 844 pSort->nDefer = (u8)nDefer; 845 *ppExtra = pExtra; 846 } 847 #endif 848 849 /* 850 ** This routine generates the code for the inside of the inner loop 851 ** of a SELECT. 852 ** 853 ** If srcTab is negative, then the p->pEList expressions 854 ** are evaluated in order to get the data for this row. If srcTab is 855 ** zero or more, then data is pulled from srcTab and p->pEList is used only 856 ** to get the number of columns and the collation sequence for each column. 857 */ 858 static void selectInnerLoop( 859 Parse *pParse, /* The parser context */ 860 Select *p, /* The complete select statement being coded */ 861 int srcTab, /* Pull data from this table if non-negative */ 862 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 863 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 864 SelectDest *pDest, /* How to dispose of the results */ 865 int iContinue, /* Jump here to continue with next row */ 866 int iBreak /* Jump here to break out of the inner loop */ 867 ){ 868 Vdbe *v = pParse->pVdbe; 869 int i; 870 int hasDistinct; /* True if the DISTINCT keyword is present */ 871 int eDest = pDest->eDest; /* How to dispose of results */ 872 int iParm = pDest->iSDParm; /* First argument to disposal method */ 873 int nResultCol; /* Number of result columns */ 874 int nPrefixReg = 0; /* Number of extra registers before regResult */ 875 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 876 877 /* Usually, regResult is the first cell in an array of memory cells 878 ** containing the current result row. In this case regOrig is set to the 879 ** same value. However, if the results are being sent to the sorter, the 880 ** values for any expressions that are also part of the sort-key are omitted 881 ** from this array. In this case regOrig is set to zero. */ 882 int regResult; /* Start of memory holding current results */ 883 int regOrig; /* Start of memory holding full result (or 0) */ 884 885 assert( v ); 886 assert( p->pEList!=0 ); 887 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 888 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 889 if( pSort==0 && !hasDistinct ){ 890 assert( iContinue!=0 ); 891 codeOffset(v, p->iOffset, iContinue); 892 } 893 894 /* Pull the requested columns. 895 */ 896 nResultCol = p->pEList->nExpr; 897 898 if( pDest->iSdst==0 ){ 899 if( pSort ){ 900 nPrefixReg = pSort->pOrderBy->nExpr; 901 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 902 pParse->nMem += nPrefixReg; 903 } 904 pDest->iSdst = pParse->nMem+1; 905 pParse->nMem += nResultCol; 906 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 907 /* This is an error condition that can result, for example, when a SELECT 908 ** on the right-hand side of an INSERT contains more result columns than 909 ** there are columns in the table on the left. The error will be caught 910 ** and reported later. But we need to make sure enough memory is allocated 911 ** to avoid other spurious errors in the meantime. */ 912 pParse->nMem += nResultCol; 913 } 914 pDest->nSdst = nResultCol; 915 regOrig = regResult = pDest->iSdst; 916 if( srcTab>=0 ){ 917 for(i=0; i<nResultCol; i++){ 918 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 919 VdbeComment((v, "%s", p->pEList->a[i].zName)); 920 } 921 }else if( eDest!=SRT_Exists ){ 922 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 923 ExprList *pExtra = 0; 924 #endif 925 /* If the destination is an EXISTS(...) expression, the actual 926 ** values returned by the SELECT are not required. 927 */ 928 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 929 ExprList *pEList; 930 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 931 ecelFlags = SQLITE_ECEL_DUP; 932 }else{ 933 ecelFlags = 0; 934 } 935 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 936 /* For each expression in p->pEList that is a copy of an expression in 937 ** the ORDER BY clause (pSort->pOrderBy), set the associated 938 ** iOrderByCol value to one more than the index of the ORDER BY 939 ** expression within the sort-key that pushOntoSorter() will generate. 940 ** This allows the p->pEList field to be omitted from the sorted record, 941 ** saving space and CPU cycles. */ 942 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 943 944 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 945 int j; 946 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 947 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 948 } 949 } 950 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 951 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 952 if( pExtra && pParse->db->mallocFailed==0 ){ 953 /* If there are any extra PK columns to add to the sorter records, 954 ** allocate extra memory cells and adjust the OpenEphemeral 955 ** instruction to account for the larger records. This is only 956 ** required if there are one or more WITHOUT ROWID tables with 957 ** composite primary keys in the SortCtx.aDefer[] array. */ 958 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 959 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 960 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 961 pParse->nMem += pExtra->nExpr; 962 } 963 #endif 964 965 /* Adjust nResultCol to account for columns that are omitted 966 ** from the sorter by the optimizations in this branch */ 967 pEList = p->pEList; 968 for(i=0; i<pEList->nExpr; i++){ 969 if( pEList->a[i].u.x.iOrderByCol>0 970 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 971 || pEList->a[i].bSorterRef 972 #endif 973 ){ 974 nResultCol--; 975 regOrig = 0; 976 } 977 } 978 979 testcase( regOrig ); 980 testcase( eDest==SRT_Set ); 981 testcase( eDest==SRT_Mem ); 982 testcase( eDest==SRT_Coroutine ); 983 testcase( eDest==SRT_Output ); 984 assert( eDest==SRT_Set || eDest==SRT_Mem 985 || eDest==SRT_Coroutine || eDest==SRT_Output ); 986 } 987 sRowLoadInfo.regResult = regResult; 988 sRowLoadInfo.ecelFlags = ecelFlags; 989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 990 sRowLoadInfo.pExtra = pExtra; 991 sRowLoadInfo.regExtraResult = regResult + nResultCol; 992 if( pExtra ) nResultCol += pExtra->nExpr; 993 #endif 994 if( p->iLimit 995 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 996 && nPrefixReg>0 997 ){ 998 assert( pSort!=0 ); 999 assert( hasDistinct==0 ); 1000 pSort->pDeferredRowLoad = &sRowLoadInfo; 1001 regOrig = 0; 1002 }else{ 1003 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1004 } 1005 } 1006 1007 /* If the DISTINCT keyword was present on the SELECT statement 1008 ** and this row has been seen before, then do not make this row 1009 ** part of the result. 1010 */ 1011 if( hasDistinct ){ 1012 switch( pDistinct->eTnctType ){ 1013 case WHERE_DISTINCT_ORDERED: { 1014 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1015 int iJump; /* Jump destination */ 1016 int regPrev; /* Previous row content */ 1017 1018 /* Allocate space for the previous row */ 1019 regPrev = pParse->nMem+1; 1020 pParse->nMem += nResultCol; 1021 1022 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1023 ** sets the MEM_Cleared bit on the first register of the 1024 ** previous value. This will cause the OP_Ne below to always 1025 ** fail on the first iteration of the loop even if the first 1026 ** row is all NULLs. 1027 */ 1028 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1029 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1030 pOp->opcode = OP_Null; 1031 pOp->p1 = 1; 1032 pOp->p2 = regPrev; 1033 1034 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1035 for(i=0; i<nResultCol; i++){ 1036 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1037 if( i<nResultCol-1 ){ 1038 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1039 VdbeCoverage(v); 1040 }else{ 1041 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1042 VdbeCoverage(v); 1043 } 1044 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1045 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1046 } 1047 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1048 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1049 break; 1050 } 1051 1052 case WHERE_DISTINCT_UNIQUE: { 1053 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1054 break; 1055 } 1056 1057 default: { 1058 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1059 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1060 regResult); 1061 break; 1062 } 1063 } 1064 if( pSort==0 ){ 1065 codeOffset(v, p->iOffset, iContinue); 1066 } 1067 } 1068 1069 switch( eDest ){ 1070 /* In this mode, write each query result to the key of the temporary 1071 ** table iParm. 1072 */ 1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1074 case SRT_Union: { 1075 int r1; 1076 r1 = sqlite3GetTempReg(pParse); 1077 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1078 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1079 sqlite3ReleaseTempReg(pParse, r1); 1080 break; 1081 } 1082 1083 /* Construct a record from the query result, but instead of 1084 ** saving that record, use it as a key to delete elements from 1085 ** the temporary table iParm. 1086 */ 1087 case SRT_Except: { 1088 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1089 break; 1090 } 1091 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1092 1093 /* Store the result as data using a unique key. 1094 */ 1095 case SRT_Fifo: 1096 case SRT_DistFifo: 1097 case SRT_Table: 1098 case SRT_EphemTab: { 1099 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1100 testcase( eDest==SRT_Table ); 1101 testcase( eDest==SRT_EphemTab ); 1102 testcase( eDest==SRT_Fifo ); 1103 testcase( eDest==SRT_DistFifo ); 1104 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1105 #ifndef SQLITE_OMIT_CTE 1106 if( eDest==SRT_DistFifo ){ 1107 /* If the destination is DistFifo, then cursor (iParm+1) is open 1108 ** on an ephemeral index. If the current row is already present 1109 ** in the index, do not write it to the output. If not, add the 1110 ** current row to the index and proceed with writing it to the 1111 ** output table as well. */ 1112 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1113 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1114 VdbeCoverage(v); 1115 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1116 assert( pSort==0 ); 1117 } 1118 #endif 1119 if( pSort ){ 1120 assert( regResult==regOrig ); 1121 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1122 }else{ 1123 int r2 = sqlite3GetTempReg(pParse); 1124 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1125 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1126 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1127 sqlite3ReleaseTempReg(pParse, r2); 1128 } 1129 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1130 break; 1131 } 1132 1133 #ifndef SQLITE_OMIT_SUBQUERY 1134 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1135 ** then there should be a single item on the stack. Write this 1136 ** item into the set table with bogus data. 1137 */ 1138 case SRT_Set: { 1139 if( pSort ){ 1140 /* At first glance you would think we could optimize out the 1141 ** ORDER BY in this case since the order of entries in the set 1142 ** does not matter. But there might be a LIMIT clause, in which 1143 ** case the order does matter */ 1144 pushOntoSorter( 1145 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1146 }else{ 1147 int r1 = sqlite3GetTempReg(pParse); 1148 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1149 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1150 r1, pDest->zAffSdst, nResultCol); 1151 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1152 sqlite3ReleaseTempReg(pParse, r1); 1153 } 1154 break; 1155 } 1156 1157 /* If any row exist in the result set, record that fact and abort. 1158 */ 1159 case SRT_Exists: { 1160 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1161 /* The LIMIT clause will terminate the loop for us */ 1162 break; 1163 } 1164 1165 /* If this is a scalar select that is part of an expression, then 1166 ** store the results in the appropriate memory cell or array of 1167 ** memory cells and break out of the scan loop. 1168 */ 1169 case SRT_Mem: { 1170 if( pSort ){ 1171 assert( nResultCol<=pDest->nSdst ); 1172 pushOntoSorter( 1173 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1174 }else{ 1175 assert( nResultCol==pDest->nSdst ); 1176 assert( regResult==iParm ); 1177 /* The LIMIT clause will jump out of the loop for us */ 1178 } 1179 break; 1180 } 1181 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1182 1183 case SRT_Coroutine: /* Send data to a co-routine */ 1184 case SRT_Output: { /* Return the results */ 1185 testcase( eDest==SRT_Coroutine ); 1186 testcase( eDest==SRT_Output ); 1187 if( pSort ){ 1188 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1189 nPrefixReg); 1190 }else if( eDest==SRT_Coroutine ){ 1191 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1192 }else{ 1193 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1194 } 1195 break; 1196 } 1197 1198 #ifndef SQLITE_OMIT_CTE 1199 /* Write the results into a priority queue that is order according to 1200 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1201 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1202 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1203 ** final OP_Sequence column. The last column is the record as a blob. 1204 */ 1205 case SRT_DistQueue: 1206 case SRT_Queue: { 1207 int nKey; 1208 int r1, r2, r3; 1209 int addrTest = 0; 1210 ExprList *pSO; 1211 pSO = pDest->pOrderBy; 1212 assert( pSO ); 1213 nKey = pSO->nExpr; 1214 r1 = sqlite3GetTempReg(pParse); 1215 r2 = sqlite3GetTempRange(pParse, nKey+2); 1216 r3 = r2+nKey+1; 1217 if( eDest==SRT_DistQueue ){ 1218 /* If the destination is DistQueue, then cursor (iParm+1) is open 1219 ** on a second ephemeral index that holds all values every previously 1220 ** added to the queue. */ 1221 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1222 regResult, nResultCol); 1223 VdbeCoverage(v); 1224 } 1225 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1226 if( eDest==SRT_DistQueue ){ 1227 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1228 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1229 } 1230 for(i=0; i<nKey; i++){ 1231 sqlite3VdbeAddOp2(v, OP_SCopy, 1232 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1233 r2+i); 1234 } 1235 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1236 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1237 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1238 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1239 sqlite3ReleaseTempReg(pParse, r1); 1240 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1241 break; 1242 } 1243 #endif /* SQLITE_OMIT_CTE */ 1244 1245 1246 1247 #if !defined(SQLITE_OMIT_TRIGGER) 1248 /* Discard the results. This is used for SELECT statements inside 1249 ** the body of a TRIGGER. The purpose of such selects is to call 1250 ** user-defined functions that have side effects. We do not care 1251 ** about the actual results of the select. 1252 */ 1253 default: { 1254 assert( eDest==SRT_Discard ); 1255 break; 1256 } 1257 #endif 1258 } 1259 1260 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1261 ** there is a sorter, in which case the sorter has already limited 1262 ** the output for us. 1263 */ 1264 if( pSort==0 && p->iLimit ){ 1265 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1266 } 1267 } 1268 1269 /* 1270 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1271 ** X extra columns. 1272 */ 1273 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1274 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1275 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1276 if( p ){ 1277 p->aSortOrder = (u8*)&p->aColl[N+X]; 1278 p->nKeyField = (u16)N; 1279 p->nAllField = (u16)(N+X); 1280 p->enc = ENC(db); 1281 p->db = db; 1282 p->nRef = 1; 1283 memset(&p[1], 0, nExtra); 1284 }else{ 1285 sqlite3OomFault(db); 1286 } 1287 return p; 1288 } 1289 1290 /* 1291 ** Deallocate a KeyInfo object 1292 */ 1293 void sqlite3KeyInfoUnref(KeyInfo *p){ 1294 if( p ){ 1295 assert( p->nRef>0 ); 1296 p->nRef--; 1297 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1298 } 1299 } 1300 1301 /* 1302 ** Make a new pointer to a KeyInfo object 1303 */ 1304 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1305 if( p ){ 1306 assert( p->nRef>0 ); 1307 p->nRef++; 1308 } 1309 return p; 1310 } 1311 1312 #ifdef SQLITE_DEBUG 1313 /* 1314 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1315 ** can only be changed if this is just a single reference to the object. 1316 ** 1317 ** This routine is used only inside of assert() statements. 1318 */ 1319 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1320 #endif /* SQLITE_DEBUG */ 1321 1322 /* 1323 ** Given an expression list, generate a KeyInfo structure that records 1324 ** the collating sequence for each expression in that expression list. 1325 ** 1326 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1327 ** KeyInfo structure is appropriate for initializing a virtual index to 1328 ** implement that clause. If the ExprList is the result set of a SELECT 1329 ** then the KeyInfo structure is appropriate for initializing a virtual 1330 ** index to implement a DISTINCT test. 1331 ** 1332 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1333 ** function is responsible for seeing that this structure is eventually 1334 ** freed. 1335 */ 1336 KeyInfo *sqlite3KeyInfoFromExprList( 1337 Parse *pParse, /* Parsing context */ 1338 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1339 int iStart, /* Begin with this column of pList */ 1340 int nExtra /* Add this many extra columns to the end */ 1341 ){ 1342 int nExpr; 1343 KeyInfo *pInfo; 1344 struct ExprList_item *pItem; 1345 sqlite3 *db = pParse->db; 1346 int i; 1347 1348 nExpr = pList->nExpr; 1349 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1350 if( pInfo ){ 1351 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1352 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1353 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1354 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1355 } 1356 } 1357 return pInfo; 1358 } 1359 1360 /* 1361 ** Name of the connection operator, used for error messages. 1362 */ 1363 static const char *selectOpName(int id){ 1364 char *z; 1365 switch( id ){ 1366 case TK_ALL: z = "UNION ALL"; break; 1367 case TK_INTERSECT: z = "INTERSECT"; break; 1368 case TK_EXCEPT: z = "EXCEPT"; break; 1369 default: z = "UNION"; break; 1370 } 1371 return z; 1372 } 1373 1374 #ifndef SQLITE_OMIT_EXPLAIN 1375 /* 1376 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1377 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1378 ** where the caption is of the form: 1379 ** 1380 ** "USE TEMP B-TREE FOR xxx" 1381 ** 1382 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1383 ** is determined by the zUsage argument. 1384 */ 1385 static void explainTempTable(Parse *pParse, const char *zUsage){ 1386 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1387 } 1388 1389 /* 1390 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1391 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1392 ** in sqlite3Select() to assign values to structure member variables that 1393 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1394 ** code with #ifndef directives. 1395 */ 1396 # define explainSetInteger(a, b) a = b 1397 1398 #else 1399 /* No-op versions of the explainXXX() functions and macros. */ 1400 # define explainTempTable(y,z) 1401 # define explainSetInteger(y,z) 1402 #endif 1403 1404 1405 /* 1406 ** If the inner loop was generated using a non-null pOrderBy argument, 1407 ** then the results were placed in a sorter. After the loop is terminated 1408 ** we need to run the sorter and output the results. The following 1409 ** routine generates the code needed to do that. 1410 */ 1411 static void generateSortTail( 1412 Parse *pParse, /* Parsing context */ 1413 Select *p, /* The SELECT statement */ 1414 SortCtx *pSort, /* Information on the ORDER BY clause */ 1415 int nColumn, /* Number of columns of data */ 1416 SelectDest *pDest /* Write the sorted results here */ 1417 ){ 1418 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1419 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1420 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1421 int addr; /* Top of output loop. Jump for Next. */ 1422 int addrOnce = 0; 1423 int iTab; 1424 ExprList *pOrderBy = pSort->pOrderBy; 1425 int eDest = pDest->eDest; 1426 int iParm = pDest->iSDParm; 1427 int regRow; 1428 int regRowid; 1429 int iCol; 1430 int nKey; /* Number of key columns in sorter record */ 1431 int iSortTab; /* Sorter cursor to read from */ 1432 int i; 1433 int bSeq; /* True if sorter record includes seq. no. */ 1434 int nRefKey = 0; 1435 struct ExprList_item *aOutEx = p->pEList->a; 1436 1437 assert( addrBreak<0 ); 1438 if( pSort->labelBkOut ){ 1439 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1440 sqlite3VdbeGoto(v, addrBreak); 1441 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1442 } 1443 1444 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1445 /* Open any cursors needed for sorter-reference expressions */ 1446 for(i=0; i<pSort->nDefer; i++){ 1447 Table *pTab = pSort->aDefer[i].pTab; 1448 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1449 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1450 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1451 } 1452 #endif 1453 1454 iTab = pSort->iECursor; 1455 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1456 regRowid = 0; 1457 regRow = pDest->iSdst; 1458 }else{ 1459 regRowid = sqlite3GetTempReg(pParse); 1460 regRow = sqlite3GetTempRange(pParse, nColumn); 1461 } 1462 nKey = pOrderBy->nExpr - pSort->nOBSat; 1463 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1464 int regSortOut = ++pParse->nMem; 1465 iSortTab = pParse->nTab++; 1466 if( pSort->labelBkOut ){ 1467 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1468 } 1469 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1470 nKey+1+nColumn+nRefKey); 1471 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1472 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1473 VdbeCoverage(v); 1474 codeOffset(v, p->iOffset, addrContinue); 1475 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1476 bSeq = 0; 1477 }else{ 1478 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1479 codeOffset(v, p->iOffset, addrContinue); 1480 iSortTab = iTab; 1481 bSeq = 1; 1482 } 1483 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1484 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1485 if( aOutEx[i].bSorterRef ) continue; 1486 #endif 1487 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1488 } 1489 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1490 if( pSort->nDefer ){ 1491 int iKey = iCol+1; 1492 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1493 1494 for(i=0; i<pSort->nDefer; i++){ 1495 int iCsr = pSort->aDefer[i].iCsr; 1496 Table *pTab = pSort->aDefer[i].pTab; 1497 int nKey = pSort->aDefer[i].nKey; 1498 1499 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1500 if( HasRowid(pTab) ){ 1501 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1502 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1503 sqlite3VdbeCurrentAddr(v)+1, regKey); 1504 }else{ 1505 int k; 1506 int iJmp; 1507 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1508 for(k=0; k<nKey; k++){ 1509 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1510 } 1511 iJmp = sqlite3VdbeCurrentAddr(v); 1512 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1513 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1514 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1515 } 1516 } 1517 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1518 } 1519 #endif 1520 for(i=nColumn-1; i>=0; i--){ 1521 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1522 if( aOutEx[i].bSorterRef ){ 1523 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1524 }else 1525 #endif 1526 { 1527 int iRead; 1528 if( aOutEx[i].u.x.iOrderByCol ){ 1529 iRead = aOutEx[i].u.x.iOrderByCol-1; 1530 }else{ 1531 iRead = iCol--; 1532 } 1533 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1534 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1535 } 1536 } 1537 switch( eDest ){ 1538 case SRT_Table: 1539 case SRT_EphemTab: { 1540 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1541 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1542 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1543 break; 1544 } 1545 #ifndef SQLITE_OMIT_SUBQUERY 1546 case SRT_Set: { 1547 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1548 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1549 pDest->zAffSdst, nColumn); 1550 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1551 break; 1552 } 1553 case SRT_Mem: { 1554 /* The LIMIT clause will terminate the loop for us */ 1555 break; 1556 } 1557 #endif 1558 default: { 1559 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1560 testcase( eDest==SRT_Output ); 1561 testcase( eDest==SRT_Coroutine ); 1562 if( eDest==SRT_Output ){ 1563 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1564 }else{ 1565 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1566 } 1567 break; 1568 } 1569 } 1570 if( regRowid ){ 1571 if( eDest==SRT_Set ){ 1572 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1573 }else{ 1574 sqlite3ReleaseTempReg(pParse, regRow); 1575 } 1576 sqlite3ReleaseTempReg(pParse, regRowid); 1577 } 1578 /* The bottom of the loop 1579 */ 1580 sqlite3VdbeResolveLabel(v, addrContinue); 1581 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1582 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1583 }else{ 1584 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1585 } 1586 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1587 sqlite3VdbeResolveLabel(v, addrBreak); 1588 } 1589 1590 /* 1591 ** Return a pointer to a string containing the 'declaration type' of the 1592 ** expression pExpr. The string may be treated as static by the caller. 1593 ** 1594 ** Also try to estimate the size of the returned value and return that 1595 ** result in *pEstWidth. 1596 ** 1597 ** The declaration type is the exact datatype definition extracted from the 1598 ** original CREATE TABLE statement if the expression is a column. The 1599 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1600 ** is considered a column can be complex in the presence of subqueries. The 1601 ** result-set expression in all of the following SELECT statements is 1602 ** considered a column by this function. 1603 ** 1604 ** SELECT col FROM tbl; 1605 ** SELECT (SELECT col FROM tbl; 1606 ** SELECT (SELECT col FROM tbl); 1607 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1608 ** 1609 ** The declaration type for any expression other than a column is NULL. 1610 ** 1611 ** This routine has either 3 or 6 parameters depending on whether or not 1612 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1613 */ 1614 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1615 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1616 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1617 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1618 #endif 1619 static const char *columnTypeImpl( 1620 NameContext *pNC, 1621 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1622 Expr *pExpr 1623 #else 1624 Expr *pExpr, 1625 const char **pzOrigDb, 1626 const char **pzOrigTab, 1627 const char **pzOrigCol 1628 #endif 1629 ){ 1630 char const *zType = 0; 1631 int j; 1632 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1633 char const *zOrigDb = 0; 1634 char const *zOrigTab = 0; 1635 char const *zOrigCol = 0; 1636 #endif 1637 1638 assert( pExpr!=0 ); 1639 assert( pNC->pSrcList!=0 ); 1640 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1641 ** are processed */ 1642 switch( pExpr->op ){ 1643 case TK_COLUMN: { 1644 /* The expression is a column. Locate the table the column is being 1645 ** extracted from in NameContext.pSrcList. This table may be real 1646 ** database table or a subquery. 1647 */ 1648 Table *pTab = 0; /* Table structure column is extracted from */ 1649 Select *pS = 0; /* Select the column is extracted from */ 1650 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1651 while( pNC && !pTab ){ 1652 SrcList *pTabList = pNC->pSrcList; 1653 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1654 if( j<pTabList->nSrc ){ 1655 pTab = pTabList->a[j].pTab; 1656 pS = pTabList->a[j].pSelect; 1657 }else{ 1658 pNC = pNC->pNext; 1659 } 1660 } 1661 1662 if( pTab==0 ){ 1663 /* At one time, code such as "SELECT new.x" within a trigger would 1664 ** cause this condition to run. Since then, we have restructured how 1665 ** trigger code is generated and so this condition is no longer 1666 ** possible. However, it can still be true for statements like 1667 ** the following: 1668 ** 1669 ** CREATE TABLE t1(col INTEGER); 1670 ** SELECT (SELECT t1.col) FROM FROM t1; 1671 ** 1672 ** when columnType() is called on the expression "t1.col" in the 1673 ** sub-select. In this case, set the column type to NULL, even 1674 ** though it should really be "INTEGER". 1675 ** 1676 ** This is not a problem, as the column type of "t1.col" is never 1677 ** used. When columnType() is called on the expression 1678 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1679 ** branch below. */ 1680 break; 1681 } 1682 1683 assert( pTab && pExpr->pTab==pTab ); 1684 if( pS ){ 1685 /* The "table" is actually a sub-select or a view in the FROM clause 1686 ** of the SELECT statement. Return the declaration type and origin 1687 ** data for the result-set column of the sub-select. 1688 */ 1689 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1690 /* If iCol is less than zero, then the expression requests the 1691 ** rowid of the sub-select or view. This expression is legal (see 1692 ** test case misc2.2.2) - it always evaluates to NULL. 1693 */ 1694 NameContext sNC; 1695 Expr *p = pS->pEList->a[iCol].pExpr; 1696 sNC.pSrcList = pS->pSrc; 1697 sNC.pNext = pNC; 1698 sNC.pParse = pNC->pParse; 1699 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1700 } 1701 }else{ 1702 /* A real table or a CTE table */ 1703 assert( !pS ); 1704 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1705 if( iCol<0 ) iCol = pTab->iPKey; 1706 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1707 if( iCol<0 ){ 1708 zType = "INTEGER"; 1709 zOrigCol = "rowid"; 1710 }else{ 1711 zOrigCol = pTab->aCol[iCol].zName; 1712 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1713 } 1714 zOrigTab = pTab->zName; 1715 if( pNC->pParse && pTab->pSchema ){ 1716 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1717 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1718 } 1719 #else 1720 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1721 if( iCol<0 ){ 1722 zType = "INTEGER"; 1723 }else{ 1724 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1725 } 1726 #endif 1727 } 1728 break; 1729 } 1730 #ifndef SQLITE_OMIT_SUBQUERY 1731 case TK_SELECT: { 1732 /* The expression is a sub-select. Return the declaration type and 1733 ** origin info for the single column in the result set of the SELECT 1734 ** statement. 1735 */ 1736 NameContext sNC; 1737 Select *pS = pExpr->x.pSelect; 1738 Expr *p = pS->pEList->a[0].pExpr; 1739 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1740 sNC.pSrcList = pS->pSrc; 1741 sNC.pNext = pNC; 1742 sNC.pParse = pNC->pParse; 1743 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1744 break; 1745 } 1746 #endif 1747 } 1748 1749 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1750 if( pzOrigDb ){ 1751 assert( pzOrigTab && pzOrigCol ); 1752 *pzOrigDb = zOrigDb; 1753 *pzOrigTab = zOrigTab; 1754 *pzOrigCol = zOrigCol; 1755 } 1756 #endif 1757 return zType; 1758 } 1759 1760 /* 1761 ** Generate code that will tell the VDBE the declaration types of columns 1762 ** in the result set. 1763 */ 1764 static void generateColumnTypes( 1765 Parse *pParse, /* Parser context */ 1766 SrcList *pTabList, /* List of tables */ 1767 ExprList *pEList /* Expressions defining the result set */ 1768 ){ 1769 #ifndef SQLITE_OMIT_DECLTYPE 1770 Vdbe *v = pParse->pVdbe; 1771 int i; 1772 NameContext sNC; 1773 sNC.pSrcList = pTabList; 1774 sNC.pParse = pParse; 1775 sNC.pNext = 0; 1776 for(i=0; i<pEList->nExpr; i++){ 1777 Expr *p = pEList->a[i].pExpr; 1778 const char *zType; 1779 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1780 const char *zOrigDb = 0; 1781 const char *zOrigTab = 0; 1782 const char *zOrigCol = 0; 1783 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1784 1785 /* The vdbe must make its own copy of the column-type and other 1786 ** column specific strings, in case the schema is reset before this 1787 ** virtual machine is deleted. 1788 */ 1789 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1790 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1791 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1792 #else 1793 zType = columnType(&sNC, p, 0, 0, 0); 1794 #endif 1795 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1796 } 1797 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1798 } 1799 1800 1801 /* 1802 ** Compute the column names for a SELECT statement. 1803 ** 1804 ** The only guarantee that SQLite makes about column names is that if the 1805 ** column has an AS clause assigning it a name, that will be the name used. 1806 ** That is the only documented guarantee. However, countless applications 1807 ** developed over the years have made baseless assumptions about column names 1808 ** and will break if those assumptions changes. Hence, use extreme caution 1809 ** when modifying this routine to avoid breaking legacy. 1810 ** 1811 ** See Also: sqlite3ColumnsFromExprList() 1812 ** 1813 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1814 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1815 ** applications should operate this way. Nevertheless, we need to support the 1816 ** other modes for legacy: 1817 ** 1818 ** short=OFF, full=OFF: Column name is the text of the expression has it 1819 ** originally appears in the SELECT statement. In 1820 ** other words, the zSpan of the result expression. 1821 ** 1822 ** short=ON, full=OFF: (This is the default setting). If the result 1823 ** refers directly to a table column, then the 1824 ** result column name is just the table column 1825 ** name: COLUMN. Otherwise use zSpan. 1826 ** 1827 ** full=ON, short=ANY: If the result refers directly to a table column, 1828 ** then the result column name with the table name 1829 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1830 */ 1831 static void generateColumnNames( 1832 Parse *pParse, /* Parser context */ 1833 Select *pSelect /* Generate column names for this SELECT statement */ 1834 ){ 1835 Vdbe *v = pParse->pVdbe; 1836 int i; 1837 Table *pTab; 1838 SrcList *pTabList; 1839 ExprList *pEList; 1840 sqlite3 *db = pParse->db; 1841 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1842 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1843 1844 #ifndef SQLITE_OMIT_EXPLAIN 1845 /* If this is an EXPLAIN, skip this step */ 1846 if( pParse->explain ){ 1847 return; 1848 } 1849 #endif 1850 1851 if( pParse->colNamesSet ) return; 1852 /* Column names are determined by the left-most term of a compound select */ 1853 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1854 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1855 pTabList = pSelect->pSrc; 1856 pEList = pSelect->pEList; 1857 assert( v!=0 ); 1858 assert( pTabList!=0 ); 1859 pParse->colNamesSet = 1; 1860 fullName = (db->flags & SQLITE_FullColNames)!=0; 1861 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1862 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1863 for(i=0; i<pEList->nExpr; i++){ 1864 Expr *p = pEList->a[i].pExpr; 1865 1866 assert( p!=0 ); 1867 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1868 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1869 if( pEList->a[i].zName ){ 1870 /* An AS clause always takes first priority */ 1871 char *zName = pEList->a[i].zName; 1872 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1873 }else if( srcName && p->op==TK_COLUMN ){ 1874 char *zCol; 1875 int iCol = p->iColumn; 1876 pTab = p->pTab; 1877 assert( pTab!=0 ); 1878 if( iCol<0 ) iCol = pTab->iPKey; 1879 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1880 if( iCol<0 ){ 1881 zCol = "rowid"; 1882 }else{ 1883 zCol = pTab->aCol[iCol].zName; 1884 } 1885 if( fullName ){ 1886 char *zName = 0; 1887 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1888 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1889 }else{ 1890 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1891 } 1892 }else{ 1893 const char *z = pEList->a[i].zSpan; 1894 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1895 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1896 } 1897 } 1898 generateColumnTypes(pParse, pTabList, pEList); 1899 } 1900 1901 /* 1902 ** Given an expression list (which is really the list of expressions 1903 ** that form the result set of a SELECT statement) compute appropriate 1904 ** column names for a table that would hold the expression list. 1905 ** 1906 ** All column names will be unique. 1907 ** 1908 ** Only the column names are computed. Column.zType, Column.zColl, 1909 ** and other fields of Column are zeroed. 1910 ** 1911 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1912 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1913 ** 1914 ** The only guarantee that SQLite makes about column names is that if the 1915 ** column has an AS clause assigning it a name, that will be the name used. 1916 ** That is the only documented guarantee. However, countless applications 1917 ** developed over the years have made baseless assumptions about column names 1918 ** and will break if those assumptions changes. Hence, use extreme caution 1919 ** when modifying this routine to avoid breaking legacy. 1920 ** 1921 ** See Also: generateColumnNames() 1922 */ 1923 int sqlite3ColumnsFromExprList( 1924 Parse *pParse, /* Parsing context */ 1925 ExprList *pEList, /* Expr list from which to derive column names */ 1926 i16 *pnCol, /* Write the number of columns here */ 1927 Column **paCol /* Write the new column list here */ 1928 ){ 1929 sqlite3 *db = pParse->db; /* Database connection */ 1930 int i, j; /* Loop counters */ 1931 u32 cnt; /* Index added to make the name unique */ 1932 Column *aCol, *pCol; /* For looping over result columns */ 1933 int nCol; /* Number of columns in the result set */ 1934 char *zName; /* Column name */ 1935 int nName; /* Size of name in zName[] */ 1936 Hash ht; /* Hash table of column names */ 1937 1938 sqlite3HashInit(&ht); 1939 if( pEList ){ 1940 nCol = pEList->nExpr; 1941 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1942 testcase( aCol==0 ); 1943 if( nCol>32767 ) nCol = 32767; 1944 }else{ 1945 nCol = 0; 1946 aCol = 0; 1947 } 1948 assert( nCol==(i16)nCol ); 1949 *pnCol = nCol; 1950 *paCol = aCol; 1951 1952 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1953 /* Get an appropriate name for the column 1954 */ 1955 if( (zName = pEList->a[i].zName)!=0 ){ 1956 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1957 }else{ 1958 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1959 while( pColExpr->op==TK_DOT ){ 1960 pColExpr = pColExpr->pRight; 1961 assert( pColExpr!=0 ); 1962 } 1963 assert( pColExpr->op!=TK_AGG_COLUMN ); 1964 if( pColExpr->op==TK_COLUMN ){ 1965 /* For columns use the column name name */ 1966 int iCol = pColExpr->iColumn; 1967 Table *pTab = pColExpr->pTab; 1968 assert( pTab!=0 ); 1969 if( iCol<0 ) iCol = pTab->iPKey; 1970 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1971 }else if( pColExpr->op==TK_ID ){ 1972 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1973 zName = pColExpr->u.zToken; 1974 }else{ 1975 /* Use the original text of the column expression as its name */ 1976 zName = pEList->a[i].zSpan; 1977 } 1978 } 1979 if( zName ){ 1980 zName = sqlite3DbStrDup(db, zName); 1981 }else{ 1982 zName = sqlite3MPrintf(db,"column%d",i+1); 1983 } 1984 1985 /* Make sure the column name is unique. If the name is not unique, 1986 ** append an integer to the name so that it becomes unique. 1987 */ 1988 cnt = 0; 1989 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1990 nName = sqlite3Strlen30(zName); 1991 if( nName>0 ){ 1992 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1993 if( zName[j]==':' ) nName = j; 1994 } 1995 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1996 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1997 } 1998 pCol->zName = zName; 1999 sqlite3ColumnPropertiesFromName(0, pCol); 2000 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2001 sqlite3OomFault(db); 2002 } 2003 } 2004 sqlite3HashClear(&ht); 2005 if( db->mallocFailed ){ 2006 for(j=0; j<i; j++){ 2007 sqlite3DbFree(db, aCol[j].zName); 2008 } 2009 sqlite3DbFree(db, aCol); 2010 *paCol = 0; 2011 *pnCol = 0; 2012 return SQLITE_NOMEM_BKPT; 2013 } 2014 return SQLITE_OK; 2015 } 2016 2017 /* 2018 ** Add type and collation information to a column list based on 2019 ** a SELECT statement. 2020 ** 2021 ** The column list presumably came from selectColumnNamesFromExprList(). 2022 ** The column list has only names, not types or collations. This 2023 ** routine goes through and adds the types and collations. 2024 ** 2025 ** This routine requires that all identifiers in the SELECT 2026 ** statement be resolved. 2027 */ 2028 void sqlite3SelectAddColumnTypeAndCollation( 2029 Parse *pParse, /* Parsing contexts */ 2030 Table *pTab, /* Add column type information to this table */ 2031 Select *pSelect /* SELECT used to determine types and collations */ 2032 ){ 2033 sqlite3 *db = pParse->db; 2034 NameContext sNC; 2035 Column *pCol; 2036 CollSeq *pColl; 2037 int i; 2038 Expr *p; 2039 struct ExprList_item *a; 2040 2041 assert( pSelect!=0 ); 2042 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2043 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2044 if( db->mallocFailed ) return; 2045 memset(&sNC, 0, sizeof(sNC)); 2046 sNC.pSrcList = pSelect->pSrc; 2047 a = pSelect->pEList->a; 2048 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2049 const char *zType; 2050 int n, m; 2051 p = a[i].pExpr; 2052 zType = columnType(&sNC, p, 0, 0, 0); 2053 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2054 pCol->affinity = sqlite3ExprAffinity(p); 2055 if( zType ){ 2056 m = sqlite3Strlen30(zType); 2057 n = sqlite3Strlen30(pCol->zName); 2058 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2059 if( pCol->zName ){ 2060 memcpy(&pCol->zName[n+1], zType, m+1); 2061 pCol->colFlags |= COLFLAG_HASTYPE; 2062 } 2063 } 2064 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2065 pColl = sqlite3ExprCollSeq(pParse, p); 2066 if( pColl && pCol->zColl==0 ){ 2067 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2068 } 2069 } 2070 pTab->szTabRow = 1; /* Any non-zero value works */ 2071 } 2072 2073 /* 2074 ** Given a SELECT statement, generate a Table structure that describes 2075 ** the result set of that SELECT. 2076 */ 2077 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2078 Table *pTab; 2079 sqlite3 *db = pParse->db; 2080 int savedFlags; 2081 2082 savedFlags = db->flags; 2083 db->flags &= ~SQLITE_FullColNames; 2084 db->flags |= SQLITE_ShortColNames; 2085 sqlite3SelectPrep(pParse, pSelect, 0); 2086 if( pParse->nErr ) return 0; 2087 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2088 db->flags = savedFlags; 2089 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2090 if( pTab==0 ){ 2091 return 0; 2092 } 2093 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2094 ** is disabled */ 2095 assert( db->lookaside.bDisable ); 2096 pTab->nTabRef = 1; 2097 pTab->zName = 0; 2098 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2099 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2100 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2101 pTab->iPKey = -1; 2102 if( db->mallocFailed ){ 2103 sqlite3DeleteTable(db, pTab); 2104 return 0; 2105 } 2106 return pTab; 2107 } 2108 2109 /* 2110 ** Get a VDBE for the given parser context. Create a new one if necessary. 2111 ** If an error occurs, return NULL and leave a message in pParse. 2112 */ 2113 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2114 if( pParse->pVdbe ){ 2115 return pParse->pVdbe; 2116 } 2117 if( pParse->pToplevel==0 2118 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2119 ){ 2120 pParse->okConstFactor = 1; 2121 } 2122 return sqlite3VdbeCreate(pParse); 2123 } 2124 2125 2126 /* 2127 ** Compute the iLimit and iOffset fields of the SELECT based on the 2128 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2129 ** that appear in the original SQL statement after the LIMIT and OFFSET 2130 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2131 ** are the integer memory register numbers for counters used to compute 2132 ** the limit and offset. If there is no limit and/or offset, then 2133 ** iLimit and iOffset are negative. 2134 ** 2135 ** This routine changes the values of iLimit and iOffset only if 2136 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2137 ** and iOffset should have been preset to appropriate default values (zero) 2138 ** prior to calling this routine. 2139 ** 2140 ** The iOffset register (if it exists) is initialized to the value 2141 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2142 ** iOffset+1 is initialized to LIMIT+OFFSET. 2143 ** 2144 ** Only if pLimit->pLeft!=0 do the limit registers get 2145 ** redefined. The UNION ALL operator uses this property to force 2146 ** the reuse of the same limit and offset registers across multiple 2147 ** SELECT statements. 2148 */ 2149 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2150 Vdbe *v = 0; 2151 int iLimit = 0; 2152 int iOffset; 2153 int n; 2154 Expr *pLimit = p->pLimit; 2155 2156 if( p->iLimit ) return; 2157 2158 /* 2159 ** "LIMIT -1" always shows all rows. There is some 2160 ** controversy about what the correct behavior should be. 2161 ** The current implementation interprets "LIMIT 0" to mean 2162 ** no rows. 2163 */ 2164 if( pLimit ){ 2165 assert( pLimit->op==TK_LIMIT ); 2166 assert( pLimit->pLeft!=0 ); 2167 p->iLimit = iLimit = ++pParse->nMem; 2168 v = sqlite3GetVdbe(pParse); 2169 assert( v!=0 ); 2170 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2171 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2172 VdbeComment((v, "LIMIT counter")); 2173 if( n==0 ){ 2174 sqlite3VdbeGoto(v, iBreak); 2175 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2176 p->nSelectRow = sqlite3LogEst((u64)n); 2177 p->selFlags |= SF_FixedLimit; 2178 } 2179 }else{ 2180 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2181 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2182 VdbeComment((v, "LIMIT counter")); 2183 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2184 } 2185 if( pLimit->pRight ){ 2186 p->iOffset = iOffset = ++pParse->nMem; 2187 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2188 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2189 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2190 VdbeComment((v, "OFFSET counter")); 2191 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2192 VdbeComment((v, "LIMIT+OFFSET")); 2193 } 2194 } 2195 } 2196 2197 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2198 /* 2199 ** Return the appropriate collating sequence for the iCol-th column of 2200 ** the result set for the compound-select statement "p". Return NULL if 2201 ** the column has no default collating sequence. 2202 ** 2203 ** The collating sequence for the compound select is taken from the 2204 ** left-most term of the select that has a collating sequence. 2205 */ 2206 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2207 CollSeq *pRet; 2208 if( p->pPrior ){ 2209 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2210 }else{ 2211 pRet = 0; 2212 } 2213 assert( iCol>=0 ); 2214 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2215 ** have been thrown during name resolution and we would not have gotten 2216 ** this far */ 2217 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2218 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2219 } 2220 return pRet; 2221 } 2222 2223 /* 2224 ** The select statement passed as the second parameter is a compound SELECT 2225 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2226 ** structure suitable for implementing the ORDER BY. 2227 ** 2228 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2229 ** function is responsible for ensuring that this structure is eventually 2230 ** freed. 2231 */ 2232 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2233 ExprList *pOrderBy = p->pOrderBy; 2234 int nOrderBy = p->pOrderBy->nExpr; 2235 sqlite3 *db = pParse->db; 2236 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2237 if( pRet ){ 2238 int i; 2239 for(i=0; i<nOrderBy; i++){ 2240 struct ExprList_item *pItem = &pOrderBy->a[i]; 2241 Expr *pTerm = pItem->pExpr; 2242 CollSeq *pColl; 2243 2244 if( pTerm->flags & EP_Collate ){ 2245 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2246 }else{ 2247 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2248 if( pColl==0 ) pColl = db->pDfltColl; 2249 pOrderBy->a[i].pExpr = 2250 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2251 } 2252 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2253 pRet->aColl[i] = pColl; 2254 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2255 } 2256 } 2257 2258 return pRet; 2259 } 2260 2261 #ifndef SQLITE_OMIT_CTE 2262 /* 2263 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2264 ** query of the form: 2265 ** 2266 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2267 ** \___________/ \_______________/ 2268 ** p->pPrior p 2269 ** 2270 ** 2271 ** There is exactly one reference to the recursive-table in the FROM clause 2272 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2273 ** 2274 ** The setup-query runs once to generate an initial set of rows that go 2275 ** into a Queue table. Rows are extracted from the Queue table one by 2276 ** one. Each row extracted from Queue is output to pDest. Then the single 2277 ** extracted row (now in the iCurrent table) becomes the content of the 2278 ** recursive-table for a recursive-query run. The output of the recursive-query 2279 ** is added back into the Queue table. Then another row is extracted from Queue 2280 ** and the iteration continues until the Queue table is empty. 2281 ** 2282 ** If the compound query operator is UNION then no duplicate rows are ever 2283 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2284 ** that have ever been inserted into Queue and causes duplicates to be 2285 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2286 ** 2287 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2288 ** ORDER BY order and the first entry is extracted for each cycle. Without 2289 ** an ORDER BY, the Queue table is just a FIFO. 2290 ** 2291 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2292 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2293 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2294 ** with a positive value, then the first OFFSET outputs are discarded rather 2295 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2296 ** rows have been skipped. 2297 */ 2298 static void generateWithRecursiveQuery( 2299 Parse *pParse, /* Parsing context */ 2300 Select *p, /* The recursive SELECT to be coded */ 2301 SelectDest *pDest /* What to do with query results */ 2302 ){ 2303 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2304 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2305 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2306 Select *pSetup = p->pPrior; /* The setup query */ 2307 int addrTop; /* Top of the loop */ 2308 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2309 int iCurrent = 0; /* The Current table */ 2310 int regCurrent; /* Register holding Current table */ 2311 int iQueue; /* The Queue table */ 2312 int iDistinct = 0; /* To ensure unique results if UNION */ 2313 int eDest = SRT_Fifo; /* How to write to Queue */ 2314 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2315 int i; /* Loop counter */ 2316 int rc; /* Result code */ 2317 ExprList *pOrderBy; /* The ORDER BY clause */ 2318 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2319 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2320 2321 /* Obtain authorization to do a recursive query */ 2322 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2323 2324 /* Process the LIMIT and OFFSET clauses, if they exist */ 2325 addrBreak = sqlite3VdbeMakeLabel(v); 2326 p->nSelectRow = 320; /* 4 billion rows */ 2327 computeLimitRegisters(pParse, p, addrBreak); 2328 pLimit = p->pLimit; 2329 regLimit = p->iLimit; 2330 regOffset = p->iOffset; 2331 p->pLimit = 0; 2332 p->iLimit = p->iOffset = 0; 2333 pOrderBy = p->pOrderBy; 2334 2335 /* Locate the cursor number of the Current table */ 2336 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2337 if( pSrc->a[i].fg.isRecursive ){ 2338 iCurrent = pSrc->a[i].iCursor; 2339 break; 2340 } 2341 } 2342 2343 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2344 ** the Distinct table must be exactly one greater than Queue in order 2345 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2346 iQueue = pParse->nTab++; 2347 if( p->op==TK_UNION ){ 2348 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2349 iDistinct = pParse->nTab++; 2350 }else{ 2351 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2352 } 2353 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2354 2355 /* Allocate cursors for Current, Queue, and Distinct. */ 2356 regCurrent = ++pParse->nMem; 2357 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2358 if( pOrderBy ){ 2359 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2360 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2361 (char*)pKeyInfo, P4_KEYINFO); 2362 destQueue.pOrderBy = pOrderBy; 2363 }else{ 2364 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2365 } 2366 VdbeComment((v, "Queue table")); 2367 if( iDistinct ){ 2368 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2369 p->selFlags |= SF_UsesEphemeral; 2370 } 2371 2372 /* Detach the ORDER BY clause from the compound SELECT */ 2373 p->pOrderBy = 0; 2374 2375 /* Store the results of the setup-query in Queue. */ 2376 pSetup->pNext = 0; 2377 ExplainQueryPlan((pParse, 1, "SETUP")); 2378 rc = sqlite3Select(pParse, pSetup, &destQueue); 2379 pSetup->pNext = p; 2380 if( rc ) goto end_of_recursive_query; 2381 2382 /* Find the next row in the Queue and output that row */ 2383 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2384 2385 /* Transfer the next row in Queue over to Current */ 2386 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2387 if( pOrderBy ){ 2388 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2389 }else{ 2390 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2391 } 2392 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2393 2394 /* Output the single row in Current */ 2395 addrCont = sqlite3VdbeMakeLabel(v); 2396 codeOffset(v, regOffset, addrCont); 2397 selectInnerLoop(pParse, p, iCurrent, 2398 0, 0, pDest, addrCont, addrBreak); 2399 if( regLimit ){ 2400 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2401 VdbeCoverage(v); 2402 } 2403 sqlite3VdbeResolveLabel(v, addrCont); 2404 2405 /* Execute the recursive SELECT taking the single row in Current as 2406 ** the value for the recursive-table. Store the results in the Queue. 2407 */ 2408 if( p->selFlags & SF_Aggregate ){ 2409 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2410 }else{ 2411 p->pPrior = 0; 2412 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2413 sqlite3Select(pParse, p, &destQueue); 2414 assert( p->pPrior==0 ); 2415 p->pPrior = pSetup; 2416 } 2417 2418 /* Keep running the loop until the Queue is empty */ 2419 sqlite3VdbeGoto(v, addrTop); 2420 sqlite3VdbeResolveLabel(v, addrBreak); 2421 2422 end_of_recursive_query: 2423 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2424 p->pOrderBy = pOrderBy; 2425 p->pLimit = pLimit; 2426 return; 2427 } 2428 #endif /* SQLITE_OMIT_CTE */ 2429 2430 /* Forward references */ 2431 static int multiSelectOrderBy( 2432 Parse *pParse, /* Parsing context */ 2433 Select *p, /* The right-most of SELECTs to be coded */ 2434 SelectDest *pDest /* What to do with query results */ 2435 ); 2436 2437 /* 2438 ** Handle the special case of a compound-select that originates from a 2439 ** VALUES clause. By handling this as a special case, we avoid deep 2440 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2441 ** on a VALUES clause. 2442 ** 2443 ** Because the Select object originates from a VALUES clause: 2444 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2445 ** (2) All terms are UNION ALL 2446 ** (3) There is no ORDER BY clause 2447 ** 2448 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2449 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2450 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2451 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2452 */ 2453 static int multiSelectValues( 2454 Parse *pParse, /* Parsing context */ 2455 Select *p, /* The right-most of SELECTs to be coded */ 2456 SelectDest *pDest /* What to do with query results */ 2457 ){ 2458 int nRow = 1; 2459 int rc = 0; 2460 int bShowAll = p->pLimit==0; 2461 assert( p->selFlags & SF_MultiValue ); 2462 do{ 2463 assert( p->selFlags & SF_Values ); 2464 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2465 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2466 if( p->pPrior==0 ) break; 2467 assert( p->pPrior->pNext==p ); 2468 p = p->pPrior; 2469 nRow += bShowAll; 2470 }while(1); 2471 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2472 nRow==1 ? "" : "S")); 2473 while( p ){ 2474 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2475 if( !bShowAll ) break; 2476 p->nSelectRow = nRow; 2477 p = p->pNext; 2478 } 2479 return rc; 2480 } 2481 2482 /* 2483 ** This routine is called to process a compound query form from 2484 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2485 ** INTERSECT 2486 ** 2487 ** "p" points to the right-most of the two queries. the query on the 2488 ** left is p->pPrior. The left query could also be a compound query 2489 ** in which case this routine will be called recursively. 2490 ** 2491 ** The results of the total query are to be written into a destination 2492 ** of type eDest with parameter iParm. 2493 ** 2494 ** Example 1: Consider a three-way compound SQL statement. 2495 ** 2496 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2497 ** 2498 ** This statement is parsed up as follows: 2499 ** 2500 ** SELECT c FROM t3 2501 ** | 2502 ** `-----> SELECT b FROM t2 2503 ** | 2504 ** `------> SELECT a FROM t1 2505 ** 2506 ** The arrows in the diagram above represent the Select.pPrior pointer. 2507 ** So if this routine is called with p equal to the t3 query, then 2508 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2509 ** 2510 ** Notice that because of the way SQLite parses compound SELECTs, the 2511 ** individual selects always group from left to right. 2512 */ 2513 static int multiSelect( 2514 Parse *pParse, /* Parsing context */ 2515 Select *p, /* The right-most of SELECTs to be coded */ 2516 SelectDest *pDest /* What to do with query results */ 2517 ){ 2518 int rc = SQLITE_OK; /* Success code from a subroutine */ 2519 Select *pPrior; /* Another SELECT immediately to our left */ 2520 Vdbe *v; /* Generate code to this VDBE */ 2521 SelectDest dest; /* Alternative data destination */ 2522 Select *pDelete = 0; /* Chain of simple selects to delete */ 2523 sqlite3 *db; /* Database connection */ 2524 2525 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2526 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2527 */ 2528 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2529 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2530 db = pParse->db; 2531 pPrior = p->pPrior; 2532 dest = *pDest; 2533 if( pPrior->pOrderBy || pPrior->pLimit ){ 2534 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2535 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2536 rc = 1; 2537 goto multi_select_end; 2538 } 2539 2540 v = sqlite3GetVdbe(pParse); 2541 assert( v!=0 ); /* The VDBE already created by calling function */ 2542 2543 /* Create the destination temporary table if necessary 2544 */ 2545 if( dest.eDest==SRT_EphemTab ){ 2546 assert( p->pEList ); 2547 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2548 dest.eDest = SRT_Table; 2549 } 2550 2551 /* Special handling for a compound-select that originates as a VALUES clause. 2552 */ 2553 if( p->selFlags & SF_MultiValue ){ 2554 rc = multiSelectValues(pParse, p, &dest); 2555 goto multi_select_end; 2556 } 2557 2558 /* Make sure all SELECTs in the statement have the same number of elements 2559 ** in their result sets. 2560 */ 2561 assert( p->pEList && pPrior->pEList ); 2562 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2563 2564 #ifndef SQLITE_OMIT_CTE 2565 if( p->selFlags & SF_Recursive ){ 2566 generateWithRecursiveQuery(pParse, p, &dest); 2567 }else 2568 #endif 2569 2570 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2571 */ 2572 if( p->pOrderBy ){ 2573 return multiSelectOrderBy(pParse, p, pDest); 2574 }else{ 2575 2576 #ifndef SQLITE_OMIT_EXPLAIN 2577 if( pPrior->pPrior==0 ){ 2578 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2579 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2580 } 2581 #endif 2582 2583 /* Generate code for the left and right SELECT statements. 2584 */ 2585 switch( p->op ){ 2586 case TK_ALL: { 2587 int addr = 0; 2588 int nLimit; 2589 assert( !pPrior->pLimit ); 2590 pPrior->iLimit = p->iLimit; 2591 pPrior->iOffset = p->iOffset; 2592 pPrior->pLimit = p->pLimit; 2593 rc = sqlite3Select(pParse, pPrior, &dest); 2594 p->pLimit = 0; 2595 if( rc ){ 2596 goto multi_select_end; 2597 } 2598 p->pPrior = 0; 2599 p->iLimit = pPrior->iLimit; 2600 p->iOffset = pPrior->iOffset; 2601 if( p->iLimit ){ 2602 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2603 VdbeComment((v, "Jump ahead if LIMIT reached")); 2604 if( p->iOffset ){ 2605 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2606 p->iLimit, p->iOffset+1, p->iOffset); 2607 } 2608 } 2609 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2610 rc = sqlite3Select(pParse, p, &dest); 2611 testcase( rc!=SQLITE_OK ); 2612 pDelete = p->pPrior; 2613 p->pPrior = pPrior; 2614 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2615 if( pPrior->pLimit 2616 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2617 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2618 ){ 2619 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2620 } 2621 if( addr ){ 2622 sqlite3VdbeJumpHere(v, addr); 2623 } 2624 break; 2625 } 2626 case TK_EXCEPT: 2627 case TK_UNION: { 2628 int unionTab; /* Cursor number of the temp table holding result */ 2629 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2630 int priorOp; /* The SRT_ operation to apply to prior selects */ 2631 Expr *pLimit; /* Saved values of p->nLimit */ 2632 int addr; 2633 SelectDest uniondest; 2634 2635 testcase( p->op==TK_EXCEPT ); 2636 testcase( p->op==TK_UNION ); 2637 priorOp = SRT_Union; 2638 if( dest.eDest==priorOp ){ 2639 /* We can reuse a temporary table generated by a SELECT to our 2640 ** right. 2641 */ 2642 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2643 unionTab = dest.iSDParm; 2644 }else{ 2645 /* We will need to create our own temporary table to hold the 2646 ** intermediate results. 2647 */ 2648 unionTab = pParse->nTab++; 2649 assert( p->pOrderBy==0 ); 2650 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2651 assert( p->addrOpenEphm[0] == -1 ); 2652 p->addrOpenEphm[0] = addr; 2653 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2654 assert( p->pEList ); 2655 } 2656 2657 /* Code the SELECT statements to our left 2658 */ 2659 assert( !pPrior->pOrderBy ); 2660 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2661 rc = sqlite3Select(pParse, pPrior, &uniondest); 2662 if( rc ){ 2663 goto multi_select_end; 2664 } 2665 2666 /* Code the current SELECT statement 2667 */ 2668 if( p->op==TK_EXCEPT ){ 2669 op = SRT_Except; 2670 }else{ 2671 assert( p->op==TK_UNION ); 2672 op = SRT_Union; 2673 } 2674 p->pPrior = 0; 2675 pLimit = p->pLimit; 2676 p->pLimit = 0; 2677 uniondest.eDest = op; 2678 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2679 selectOpName(p->op))); 2680 rc = sqlite3Select(pParse, p, &uniondest); 2681 testcase( rc!=SQLITE_OK ); 2682 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2683 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2684 sqlite3ExprListDelete(db, p->pOrderBy); 2685 pDelete = p->pPrior; 2686 p->pPrior = pPrior; 2687 p->pOrderBy = 0; 2688 if( p->op==TK_UNION ){ 2689 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2690 } 2691 sqlite3ExprDelete(db, p->pLimit); 2692 p->pLimit = pLimit; 2693 p->iLimit = 0; 2694 p->iOffset = 0; 2695 2696 /* Convert the data in the temporary table into whatever form 2697 ** it is that we currently need. 2698 */ 2699 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2700 if( dest.eDest!=priorOp ){ 2701 int iCont, iBreak, iStart; 2702 assert( p->pEList ); 2703 iBreak = sqlite3VdbeMakeLabel(v); 2704 iCont = sqlite3VdbeMakeLabel(v); 2705 computeLimitRegisters(pParse, p, iBreak); 2706 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2707 iStart = sqlite3VdbeCurrentAddr(v); 2708 selectInnerLoop(pParse, p, unionTab, 2709 0, 0, &dest, iCont, iBreak); 2710 sqlite3VdbeResolveLabel(v, iCont); 2711 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2712 sqlite3VdbeResolveLabel(v, iBreak); 2713 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2714 } 2715 break; 2716 } 2717 default: assert( p->op==TK_INTERSECT ); { 2718 int tab1, tab2; 2719 int iCont, iBreak, iStart; 2720 Expr *pLimit; 2721 int addr; 2722 SelectDest intersectdest; 2723 int r1; 2724 2725 /* INTERSECT is different from the others since it requires 2726 ** two temporary tables. Hence it has its own case. Begin 2727 ** by allocating the tables we will need. 2728 */ 2729 tab1 = pParse->nTab++; 2730 tab2 = pParse->nTab++; 2731 assert( p->pOrderBy==0 ); 2732 2733 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2734 assert( p->addrOpenEphm[0] == -1 ); 2735 p->addrOpenEphm[0] = addr; 2736 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2737 assert( p->pEList ); 2738 2739 /* Code the SELECTs to our left into temporary table "tab1". 2740 */ 2741 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2742 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2743 if( rc ){ 2744 goto multi_select_end; 2745 } 2746 2747 /* Code the current SELECT into temporary table "tab2" 2748 */ 2749 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2750 assert( p->addrOpenEphm[1] == -1 ); 2751 p->addrOpenEphm[1] = addr; 2752 p->pPrior = 0; 2753 pLimit = p->pLimit; 2754 p->pLimit = 0; 2755 intersectdest.iSDParm = tab2; 2756 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2757 selectOpName(p->op))); 2758 rc = sqlite3Select(pParse, p, &intersectdest); 2759 testcase( rc!=SQLITE_OK ); 2760 pDelete = p->pPrior; 2761 p->pPrior = pPrior; 2762 if( p->nSelectRow>pPrior->nSelectRow ){ 2763 p->nSelectRow = pPrior->nSelectRow; 2764 } 2765 sqlite3ExprDelete(db, p->pLimit); 2766 p->pLimit = pLimit; 2767 2768 /* Generate code to take the intersection of the two temporary 2769 ** tables. 2770 */ 2771 assert( p->pEList ); 2772 iBreak = sqlite3VdbeMakeLabel(v); 2773 iCont = sqlite3VdbeMakeLabel(v); 2774 computeLimitRegisters(pParse, p, iBreak); 2775 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2776 r1 = sqlite3GetTempReg(pParse); 2777 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2778 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2779 VdbeCoverage(v); 2780 sqlite3ReleaseTempReg(pParse, r1); 2781 selectInnerLoop(pParse, p, tab1, 2782 0, 0, &dest, iCont, iBreak); 2783 sqlite3VdbeResolveLabel(v, iCont); 2784 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2785 sqlite3VdbeResolveLabel(v, iBreak); 2786 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2787 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2788 break; 2789 } 2790 } 2791 2792 #ifndef SQLITE_OMIT_EXPLAIN 2793 if( p->pNext==0 ){ 2794 ExplainQueryPlanPop(pParse); 2795 } 2796 #endif 2797 } 2798 2799 /* Compute collating sequences used by 2800 ** temporary tables needed to implement the compound select. 2801 ** Attach the KeyInfo structure to all temporary tables. 2802 ** 2803 ** This section is run by the right-most SELECT statement only. 2804 ** SELECT statements to the left always skip this part. The right-most 2805 ** SELECT might also skip this part if it has no ORDER BY clause and 2806 ** no temp tables are required. 2807 */ 2808 if( p->selFlags & SF_UsesEphemeral ){ 2809 int i; /* Loop counter */ 2810 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2811 Select *pLoop; /* For looping through SELECT statements */ 2812 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2813 int nCol; /* Number of columns in result set */ 2814 2815 assert( p->pNext==0 ); 2816 nCol = p->pEList->nExpr; 2817 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2818 if( !pKeyInfo ){ 2819 rc = SQLITE_NOMEM_BKPT; 2820 goto multi_select_end; 2821 } 2822 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2823 *apColl = multiSelectCollSeq(pParse, p, i); 2824 if( 0==*apColl ){ 2825 *apColl = db->pDfltColl; 2826 } 2827 } 2828 2829 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2830 for(i=0; i<2; i++){ 2831 int addr = pLoop->addrOpenEphm[i]; 2832 if( addr<0 ){ 2833 /* If [0] is unused then [1] is also unused. So we can 2834 ** always safely abort as soon as the first unused slot is found */ 2835 assert( pLoop->addrOpenEphm[1]<0 ); 2836 break; 2837 } 2838 sqlite3VdbeChangeP2(v, addr, nCol); 2839 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2840 P4_KEYINFO); 2841 pLoop->addrOpenEphm[i] = -1; 2842 } 2843 } 2844 sqlite3KeyInfoUnref(pKeyInfo); 2845 } 2846 2847 multi_select_end: 2848 pDest->iSdst = dest.iSdst; 2849 pDest->nSdst = dest.nSdst; 2850 sqlite3SelectDelete(db, pDelete); 2851 return rc; 2852 } 2853 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2854 2855 /* 2856 ** Error message for when two or more terms of a compound select have different 2857 ** size result sets. 2858 */ 2859 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2860 if( p->selFlags & SF_Values ){ 2861 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2862 }else{ 2863 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2864 " do not have the same number of result columns", selectOpName(p->op)); 2865 } 2866 } 2867 2868 /* 2869 ** Code an output subroutine for a coroutine implementation of a 2870 ** SELECT statment. 2871 ** 2872 ** The data to be output is contained in pIn->iSdst. There are 2873 ** pIn->nSdst columns to be output. pDest is where the output should 2874 ** be sent. 2875 ** 2876 ** regReturn is the number of the register holding the subroutine 2877 ** return address. 2878 ** 2879 ** If regPrev>0 then it is the first register in a vector that 2880 ** records the previous output. mem[regPrev] is a flag that is false 2881 ** if there has been no previous output. If regPrev>0 then code is 2882 ** generated to suppress duplicates. pKeyInfo is used for comparing 2883 ** keys. 2884 ** 2885 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2886 ** iBreak. 2887 */ 2888 static int generateOutputSubroutine( 2889 Parse *pParse, /* Parsing context */ 2890 Select *p, /* The SELECT statement */ 2891 SelectDest *pIn, /* Coroutine supplying data */ 2892 SelectDest *pDest, /* Where to send the data */ 2893 int regReturn, /* The return address register */ 2894 int regPrev, /* Previous result register. No uniqueness if 0 */ 2895 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2896 int iBreak /* Jump here if we hit the LIMIT */ 2897 ){ 2898 Vdbe *v = pParse->pVdbe; 2899 int iContinue; 2900 int addr; 2901 2902 addr = sqlite3VdbeCurrentAddr(v); 2903 iContinue = sqlite3VdbeMakeLabel(v); 2904 2905 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2906 */ 2907 if( regPrev ){ 2908 int addr1, addr2; 2909 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2910 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2911 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2912 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2913 sqlite3VdbeJumpHere(v, addr1); 2914 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2915 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2916 } 2917 if( pParse->db->mallocFailed ) return 0; 2918 2919 /* Suppress the first OFFSET entries if there is an OFFSET clause 2920 */ 2921 codeOffset(v, p->iOffset, iContinue); 2922 2923 assert( pDest->eDest!=SRT_Exists ); 2924 assert( pDest->eDest!=SRT_Table ); 2925 switch( pDest->eDest ){ 2926 /* Store the result as data using a unique key. 2927 */ 2928 case SRT_EphemTab: { 2929 int r1 = sqlite3GetTempReg(pParse); 2930 int r2 = sqlite3GetTempReg(pParse); 2931 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2932 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2933 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2934 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2935 sqlite3ReleaseTempReg(pParse, r2); 2936 sqlite3ReleaseTempReg(pParse, r1); 2937 break; 2938 } 2939 2940 #ifndef SQLITE_OMIT_SUBQUERY 2941 /* If we are creating a set for an "expr IN (SELECT ...)". 2942 */ 2943 case SRT_Set: { 2944 int r1; 2945 testcase( pIn->nSdst>1 ); 2946 r1 = sqlite3GetTempReg(pParse); 2947 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2948 r1, pDest->zAffSdst, pIn->nSdst); 2949 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2950 pIn->iSdst, pIn->nSdst); 2951 sqlite3ReleaseTempReg(pParse, r1); 2952 break; 2953 } 2954 2955 /* If this is a scalar select that is part of an expression, then 2956 ** store the results in the appropriate memory cell and break out 2957 ** of the scan loop. 2958 */ 2959 case SRT_Mem: { 2960 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2961 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2962 /* The LIMIT clause will jump out of the loop for us */ 2963 break; 2964 } 2965 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2966 2967 /* The results are stored in a sequence of registers 2968 ** starting at pDest->iSdst. Then the co-routine yields. 2969 */ 2970 case SRT_Coroutine: { 2971 if( pDest->iSdst==0 ){ 2972 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2973 pDest->nSdst = pIn->nSdst; 2974 } 2975 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2976 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2977 break; 2978 } 2979 2980 /* If none of the above, then the result destination must be 2981 ** SRT_Output. This routine is never called with any other 2982 ** destination other than the ones handled above or SRT_Output. 2983 ** 2984 ** For SRT_Output, results are stored in a sequence of registers. 2985 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2986 ** return the next row of result. 2987 */ 2988 default: { 2989 assert( pDest->eDest==SRT_Output ); 2990 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2991 break; 2992 } 2993 } 2994 2995 /* Jump to the end of the loop if the LIMIT is reached. 2996 */ 2997 if( p->iLimit ){ 2998 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 2999 } 3000 3001 /* Generate the subroutine return 3002 */ 3003 sqlite3VdbeResolveLabel(v, iContinue); 3004 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3005 3006 return addr; 3007 } 3008 3009 /* 3010 ** Alternative compound select code generator for cases when there 3011 ** is an ORDER BY clause. 3012 ** 3013 ** We assume a query of the following form: 3014 ** 3015 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3016 ** 3017 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3018 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3019 ** co-routines. Then run the co-routines in parallel and merge the results 3020 ** into the output. In addition to the two coroutines (called selectA and 3021 ** selectB) there are 7 subroutines: 3022 ** 3023 ** outA: Move the output of the selectA coroutine into the output 3024 ** of the compound query. 3025 ** 3026 ** outB: Move the output of the selectB coroutine into the output 3027 ** of the compound query. (Only generated for UNION and 3028 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3029 ** appears only in B.) 3030 ** 3031 ** AltB: Called when there is data from both coroutines and A<B. 3032 ** 3033 ** AeqB: Called when there is data from both coroutines and A==B. 3034 ** 3035 ** AgtB: Called when there is data from both coroutines and A>B. 3036 ** 3037 ** EofA: Called when data is exhausted from selectA. 3038 ** 3039 ** EofB: Called when data is exhausted from selectB. 3040 ** 3041 ** The implementation of the latter five subroutines depend on which 3042 ** <operator> is used: 3043 ** 3044 ** 3045 ** UNION ALL UNION EXCEPT INTERSECT 3046 ** ------------- ----------------- -------------- ----------------- 3047 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3048 ** 3049 ** AeqB: outA, nextA nextA nextA outA, nextA 3050 ** 3051 ** AgtB: outB, nextB outB, nextB nextB nextB 3052 ** 3053 ** EofA: outB, nextB outB, nextB halt halt 3054 ** 3055 ** EofB: outA, nextA outA, nextA outA, nextA halt 3056 ** 3057 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3058 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3059 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3060 ** following nextX causes a jump to the end of the select processing. 3061 ** 3062 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3063 ** within the output subroutine. The regPrev register set holds the previously 3064 ** output value. A comparison is made against this value and the output 3065 ** is skipped if the next results would be the same as the previous. 3066 ** 3067 ** The implementation plan is to implement the two coroutines and seven 3068 ** subroutines first, then put the control logic at the bottom. Like this: 3069 ** 3070 ** goto Init 3071 ** coA: coroutine for left query (A) 3072 ** coB: coroutine for right query (B) 3073 ** outA: output one row of A 3074 ** outB: output one row of B (UNION and UNION ALL only) 3075 ** EofA: ... 3076 ** EofB: ... 3077 ** AltB: ... 3078 ** AeqB: ... 3079 ** AgtB: ... 3080 ** Init: initialize coroutine registers 3081 ** yield coA 3082 ** if eof(A) goto EofA 3083 ** yield coB 3084 ** if eof(B) goto EofB 3085 ** Cmpr: Compare A, B 3086 ** Jump AltB, AeqB, AgtB 3087 ** End: ... 3088 ** 3089 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3090 ** actually called using Gosub and they do not Return. EofA and EofB loop 3091 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3092 ** and AgtB jump to either L2 or to one of EofA or EofB. 3093 */ 3094 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3095 static int multiSelectOrderBy( 3096 Parse *pParse, /* Parsing context */ 3097 Select *p, /* The right-most of SELECTs to be coded */ 3098 SelectDest *pDest /* What to do with query results */ 3099 ){ 3100 int i, j; /* Loop counters */ 3101 Select *pPrior; /* Another SELECT immediately to our left */ 3102 Vdbe *v; /* Generate code to this VDBE */ 3103 SelectDest destA; /* Destination for coroutine A */ 3104 SelectDest destB; /* Destination for coroutine B */ 3105 int regAddrA; /* Address register for select-A coroutine */ 3106 int regAddrB; /* Address register for select-B coroutine */ 3107 int addrSelectA; /* Address of the select-A coroutine */ 3108 int addrSelectB; /* Address of the select-B coroutine */ 3109 int regOutA; /* Address register for the output-A subroutine */ 3110 int regOutB; /* Address register for the output-B subroutine */ 3111 int addrOutA; /* Address of the output-A subroutine */ 3112 int addrOutB = 0; /* Address of the output-B subroutine */ 3113 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3114 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3115 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3116 int addrAltB; /* Address of the A<B subroutine */ 3117 int addrAeqB; /* Address of the A==B subroutine */ 3118 int addrAgtB; /* Address of the A>B subroutine */ 3119 int regLimitA; /* Limit register for select-A */ 3120 int regLimitB; /* Limit register for select-A */ 3121 int regPrev; /* A range of registers to hold previous output */ 3122 int savedLimit; /* Saved value of p->iLimit */ 3123 int savedOffset; /* Saved value of p->iOffset */ 3124 int labelCmpr; /* Label for the start of the merge algorithm */ 3125 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3126 int addr1; /* Jump instructions that get retargetted */ 3127 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3128 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3129 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3130 sqlite3 *db; /* Database connection */ 3131 ExprList *pOrderBy; /* The ORDER BY clause */ 3132 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3133 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3134 3135 assert( p->pOrderBy!=0 ); 3136 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3137 db = pParse->db; 3138 v = pParse->pVdbe; 3139 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3140 labelEnd = sqlite3VdbeMakeLabel(v); 3141 labelCmpr = sqlite3VdbeMakeLabel(v); 3142 3143 3144 /* Patch up the ORDER BY clause 3145 */ 3146 op = p->op; 3147 pPrior = p->pPrior; 3148 assert( pPrior->pOrderBy==0 ); 3149 pOrderBy = p->pOrderBy; 3150 assert( pOrderBy ); 3151 nOrderBy = pOrderBy->nExpr; 3152 3153 /* For operators other than UNION ALL we have to make sure that 3154 ** the ORDER BY clause covers every term of the result set. Add 3155 ** terms to the ORDER BY clause as necessary. 3156 */ 3157 if( op!=TK_ALL ){ 3158 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3159 struct ExprList_item *pItem; 3160 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3161 assert( pItem->u.x.iOrderByCol>0 ); 3162 if( pItem->u.x.iOrderByCol==i ) break; 3163 } 3164 if( j==nOrderBy ){ 3165 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3166 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3167 pNew->flags |= EP_IntValue; 3168 pNew->u.iValue = i; 3169 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3170 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3171 } 3172 } 3173 } 3174 3175 /* Compute the comparison permutation and keyinfo that is used with 3176 ** the permutation used to determine if the next 3177 ** row of results comes from selectA or selectB. Also add explicit 3178 ** collations to the ORDER BY clause terms so that when the subqueries 3179 ** to the right and the left are evaluated, they use the correct 3180 ** collation. 3181 */ 3182 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3183 if( aPermute ){ 3184 struct ExprList_item *pItem; 3185 aPermute[0] = nOrderBy; 3186 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3187 assert( pItem->u.x.iOrderByCol>0 ); 3188 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3189 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3190 } 3191 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3192 }else{ 3193 pKeyMerge = 0; 3194 } 3195 3196 /* Reattach the ORDER BY clause to the query. 3197 */ 3198 p->pOrderBy = pOrderBy; 3199 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3200 3201 /* Allocate a range of temporary registers and the KeyInfo needed 3202 ** for the logic that removes duplicate result rows when the 3203 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3204 */ 3205 if( op==TK_ALL ){ 3206 regPrev = 0; 3207 }else{ 3208 int nExpr = p->pEList->nExpr; 3209 assert( nOrderBy>=nExpr || db->mallocFailed ); 3210 regPrev = pParse->nMem+1; 3211 pParse->nMem += nExpr+1; 3212 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3213 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3214 if( pKeyDup ){ 3215 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3216 for(i=0; i<nExpr; i++){ 3217 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3218 pKeyDup->aSortOrder[i] = 0; 3219 } 3220 } 3221 } 3222 3223 /* Separate the left and the right query from one another 3224 */ 3225 p->pPrior = 0; 3226 pPrior->pNext = 0; 3227 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3228 if( pPrior->pPrior==0 ){ 3229 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3230 } 3231 3232 /* Compute the limit registers */ 3233 computeLimitRegisters(pParse, p, labelEnd); 3234 if( p->iLimit && op==TK_ALL ){ 3235 regLimitA = ++pParse->nMem; 3236 regLimitB = ++pParse->nMem; 3237 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3238 regLimitA); 3239 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3240 }else{ 3241 regLimitA = regLimitB = 0; 3242 } 3243 sqlite3ExprDelete(db, p->pLimit); 3244 p->pLimit = 0; 3245 3246 regAddrA = ++pParse->nMem; 3247 regAddrB = ++pParse->nMem; 3248 regOutA = ++pParse->nMem; 3249 regOutB = ++pParse->nMem; 3250 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3251 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3252 3253 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3254 3255 /* Generate a coroutine to evaluate the SELECT statement to the 3256 ** left of the compound operator - the "A" select. 3257 */ 3258 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3259 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3260 VdbeComment((v, "left SELECT")); 3261 pPrior->iLimit = regLimitA; 3262 ExplainQueryPlan((pParse, 1, "LEFT")); 3263 sqlite3Select(pParse, pPrior, &destA); 3264 sqlite3VdbeEndCoroutine(v, regAddrA); 3265 sqlite3VdbeJumpHere(v, addr1); 3266 3267 /* Generate a coroutine to evaluate the SELECT statement on 3268 ** the right - the "B" select 3269 */ 3270 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3271 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3272 VdbeComment((v, "right SELECT")); 3273 savedLimit = p->iLimit; 3274 savedOffset = p->iOffset; 3275 p->iLimit = regLimitB; 3276 p->iOffset = 0; 3277 ExplainQueryPlan((pParse, 1, "RIGHT")); 3278 sqlite3Select(pParse, p, &destB); 3279 p->iLimit = savedLimit; 3280 p->iOffset = savedOffset; 3281 sqlite3VdbeEndCoroutine(v, regAddrB); 3282 3283 /* Generate a subroutine that outputs the current row of the A 3284 ** select as the next output row of the compound select. 3285 */ 3286 VdbeNoopComment((v, "Output routine for A")); 3287 addrOutA = generateOutputSubroutine(pParse, 3288 p, &destA, pDest, regOutA, 3289 regPrev, pKeyDup, labelEnd); 3290 3291 /* Generate a subroutine that outputs the current row of the B 3292 ** select as the next output row of the compound select. 3293 */ 3294 if( op==TK_ALL || op==TK_UNION ){ 3295 VdbeNoopComment((v, "Output routine for B")); 3296 addrOutB = generateOutputSubroutine(pParse, 3297 p, &destB, pDest, regOutB, 3298 regPrev, pKeyDup, labelEnd); 3299 } 3300 sqlite3KeyInfoUnref(pKeyDup); 3301 3302 /* Generate a subroutine to run when the results from select A 3303 ** are exhausted and only data in select B remains. 3304 */ 3305 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3306 addrEofA_noB = addrEofA = labelEnd; 3307 }else{ 3308 VdbeNoopComment((v, "eof-A subroutine")); 3309 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3310 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3311 VdbeCoverage(v); 3312 sqlite3VdbeGoto(v, addrEofA); 3313 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3314 } 3315 3316 /* Generate a subroutine to run when the results from select B 3317 ** are exhausted and only data in select A remains. 3318 */ 3319 if( op==TK_INTERSECT ){ 3320 addrEofB = addrEofA; 3321 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3322 }else{ 3323 VdbeNoopComment((v, "eof-B subroutine")); 3324 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3325 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3326 sqlite3VdbeGoto(v, addrEofB); 3327 } 3328 3329 /* Generate code to handle the case of A<B 3330 */ 3331 VdbeNoopComment((v, "A-lt-B subroutine")); 3332 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3333 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3334 sqlite3VdbeGoto(v, labelCmpr); 3335 3336 /* Generate code to handle the case of A==B 3337 */ 3338 if( op==TK_ALL ){ 3339 addrAeqB = addrAltB; 3340 }else if( op==TK_INTERSECT ){ 3341 addrAeqB = addrAltB; 3342 addrAltB++; 3343 }else{ 3344 VdbeNoopComment((v, "A-eq-B subroutine")); 3345 addrAeqB = 3346 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3347 sqlite3VdbeGoto(v, labelCmpr); 3348 } 3349 3350 /* Generate code to handle the case of A>B 3351 */ 3352 VdbeNoopComment((v, "A-gt-B subroutine")); 3353 addrAgtB = sqlite3VdbeCurrentAddr(v); 3354 if( op==TK_ALL || op==TK_UNION ){ 3355 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3356 } 3357 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3358 sqlite3VdbeGoto(v, labelCmpr); 3359 3360 /* This code runs once to initialize everything. 3361 */ 3362 sqlite3VdbeJumpHere(v, addr1); 3363 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3364 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3365 3366 /* Implement the main merge loop 3367 */ 3368 sqlite3VdbeResolveLabel(v, labelCmpr); 3369 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3370 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3371 (char*)pKeyMerge, P4_KEYINFO); 3372 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3373 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3374 3375 /* Jump to the this point in order to terminate the query. 3376 */ 3377 sqlite3VdbeResolveLabel(v, labelEnd); 3378 3379 /* Reassembly the compound query so that it will be freed correctly 3380 ** by the calling function */ 3381 if( p->pPrior ){ 3382 sqlite3SelectDelete(db, p->pPrior); 3383 } 3384 p->pPrior = pPrior; 3385 pPrior->pNext = p; 3386 3387 /*** TBD: Insert subroutine calls to close cursors on incomplete 3388 **** subqueries ****/ 3389 ExplainQueryPlanPop(pParse); 3390 return pParse->nErr!=0; 3391 } 3392 #endif 3393 3394 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3395 3396 /* An instance of the SubstContext object describes an substitution edit 3397 ** to be performed on a parse tree. 3398 ** 3399 ** All references to columns in table iTable are to be replaced by corresponding 3400 ** expressions in pEList. 3401 */ 3402 typedef struct SubstContext { 3403 Parse *pParse; /* The parsing context */ 3404 int iTable; /* Replace references to this table */ 3405 int iNewTable; /* New table number */ 3406 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3407 ExprList *pEList; /* Replacement expressions */ 3408 } SubstContext; 3409 3410 /* Forward Declarations */ 3411 static void substExprList(SubstContext*, ExprList*); 3412 static void substSelect(SubstContext*, Select*, int); 3413 3414 /* 3415 ** Scan through the expression pExpr. Replace every reference to 3416 ** a column in table number iTable with a copy of the iColumn-th 3417 ** entry in pEList. (But leave references to the ROWID column 3418 ** unchanged.) 3419 ** 3420 ** This routine is part of the flattening procedure. A subquery 3421 ** whose result set is defined by pEList appears as entry in the 3422 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3423 ** FORM clause entry is iTable. This routine makes the necessary 3424 ** changes to pExpr so that it refers directly to the source table 3425 ** of the subquery rather the result set of the subquery. 3426 */ 3427 static Expr *substExpr( 3428 SubstContext *pSubst, /* Description of the substitution */ 3429 Expr *pExpr /* Expr in which substitution occurs */ 3430 ){ 3431 if( pExpr==0 ) return 0; 3432 if( ExprHasProperty(pExpr, EP_FromJoin) 3433 && pExpr->iRightJoinTable==pSubst->iTable 3434 ){ 3435 pExpr->iRightJoinTable = pSubst->iNewTable; 3436 } 3437 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3438 if( pExpr->iColumn<0 ){ 3439 pExpr->op = TK_NULL; 3440 }else{ 3441 Expr *pNew; 3442 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3443 Expr ifNullRow; 3444 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3445 assert( pExpr->pRight==0 ); 3446 if( sqlite3ExprIsVector(pCopy) ){ 3447 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3448 }else{ 3449 sqlite3 *db = pSubst->pParse->db; 3450 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3451 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3452 ifNullRow.op = TK_IF_NULL_ROW; 3453 ifNullRow.pLeft = pCopy; 3454 ifNullRow.iTable = pSubst->iNewTable; 3455 pCopy = &ifNullRow; 3456 } 3457 pNew = sqlite3ExprDup(db, pCopy, 0); 3458 if( pNew && pSubst->isLeftJoin ){ 3459 ExprSetProperty(pNew, EP_CanBeNull); 3460 } 3461 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3462 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3463 ExprSetProperty(pNew, EP_FromJoin); 3464 } 3465 sqlite3ExprDelete(db, pExpr); 3466 pExpr = pNew; 3467 } 3468 } 3469 }else{ 3470 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3471 pExpr->iTable = pSubst->iNewTable; 3472 } 3473 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3474 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3475 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3476 substSelect(pSubst, pExpr->x.pSelect, 1); 3477 }else{ 3478 substExprList(pSubst, pExpr->x.pList); 3479 } 3480 } 3481 return pExpr; 3482 } 3483 static void substExprList( 3484 SubstContext *pSubst, /* Description of the substitution */ 3485 ExprList *pList /* List to scan and in which to make substitutes */ 3486 ){ 3487 int i; 3488 if( pList==0 ) return; 3489 for(i=0; i<pList->nExpr; i++){ 3490 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3491 } 3492 } 3493 static void substSelect( 3494 SubstContext *pSubst, /* Description of the substitution */ 3495 Select *p, /* SELECT statement in which to make substitutions */ 3496 int doPrior /* Do substitutes on p->pPrior too */ 3497 ){ 3498 SrcList *pSrc; 3499 struct SrcList_item *pItem; 3500 int i; 3501 if( !p ) return; 3502 do{ 3503 substExprList(pSubst, p->pEList); 3504 substExprList(pSubst, p->pGroupBy); 3505 substExprList(pSubst, p->pOrderBy); 3506 p->pHaving = substExpr(pSubst, p->pHaving); 3507 p->pWhere = substExpr(pSubst, p->pWhere); 3508 pSrc = p->pSrc; 3509 assert( pSrc!=0 ); 3510 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3511 substSelect(pSubst, pItem->pSelect, 1); 3512 if( pItem->fg.isTabFunc ){ 3513 substExprList(pSubst, pItem->u1.pFuncArg); 3514 } 3515 } 3516 }while( doPrior && (p = p->pPrior)!=0 ); 3517 } 3518 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3519 3520 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3521 /* 3522 ** This routine attempts to flatten subqueries as a performance optimization. 3523 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3524 ** 3525 ** To understand the concept of flattening, consider the following 3526 ** query: 3527 ** 3528 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3529 ** 3530 ** The default way of implementing this query is to execute the 3531 ** subquery first and store the results in a temporary table, then 3532 ** run the outer query on that temporary table. This requires two 3533 ** passes over the data. Furthermore, because the temporary table 3534 ** has no indices, the WHERE clause on the outer query cannot be 3535 ** optimized. 3536 ** 3537 ** This routine attempts to rewrite queries such as the above into 3538 ** a single flat select, like this: 3539 ** 3540 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3541 ** 3542 ** The code generated for this simplification gives the same result 3543 ** but only has to scan the data once. And because indices might 3544 ** exist on the table t1, a complete scan of the data might be 3545 ** avoided. 3546 ** 3547 ** Flattening is subject to the following constraints: 3548 ** 3549 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3550 ** The subquery and the outer query cannot both be aggregates. 3551 ** 3552 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3553 ** (2) If the subquery is an aggregate then 3554 ** (2a) the outer query must not be a join and 3555 ** (2b) the outer query must not use subqueries 3556 ** other than the one FROM-clause subquery that is a candidate 3557 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3558 ** from 2015-02-09.) 3559 ** 3560 ** (3) If the subquery is the right operand of a LEFT JOIN then 3561 ** (3a) the subquery may not be a join and 3562 ** (3b) the FROM clause of the subquery may not contain a virtual 3563 ** table and 3564 ** (3c) the outer query may not be an aggregate. 3565 ** 3566 ** (4) The subquery can not be DISTINCT. 3567 ** 3568 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3569 ** sub-queries that were excluded from this optimization. Restriction 3570 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3571 ** 3572 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3573 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3574 ** 3575 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3576 ** A FROM clause, consider adding a FROM clause with the special 3577 ** table sqlite_once that consists of a single row containing a 3578 ** single NULL. 3579 ** 3580 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3581 ** 3582 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3583 ** 3584 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3585 ** accidently carried the comment forward until 2014-09-15. Original 3586 ** constraint: "If the subquery is aggregate then the outer query 3587 ** may not use LIMIT." 3588 ** 3589 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3590 ** 3591 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3592 ** a separate restriction deriving from ticket #350. 3593 ** 3594 ** (13) The subquery and outer query may not both use LIMIT. 3595 ** 3596 ** (14) The subquery may not use OFFSET. 3597 ** 3598 ** (15) If the outer query is part of a compound select, then the 3599 ** subquery may not use LIMIT. 3600 ** (See ticket #2339 and ticket [02a8e81d44]). 3601 ** 3602 ** (16) If the outer query is aggregate, then the subquery may not 3603 ** use ORDER BY. (Ticket #2942) This used to not matter 3604 ** until we introduced the group_concat() function. 3605 ** 3606 ** (17) If the subquery is a compound select, then 3607 ** (17a) all compound operators must be a UNION ALL, and 3608 ** (17b) no terms within the subquery compound may be aggregate 3609 ** or DISTINCT, and 3610 ** (17c) every term within the subquery compound must have a FROM clause 3611 ** (17d) the outer query may not be 3612 ** (17d1) aggregate, or 3613 ** (17d2) DISTINCT, or 3614 ** (17d3) a join. 3615 ** 3616 ** The parent and sub-query may contain WHERE clauses. Subject to 3617 ** rules (11), (13) and (14), they may also contain ORDER BY, 3618 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3619 ** operator other than UNION ALL because all the other compound 3620 ** operators have an implied DISTINCT which is disallowed by 3621 ** restriction (4). 3622 ** 3623 ** Also, each component of the sub-query must return the same number 3624 ** of result columns. This is actually a requirement for any compound 3625 ** SELECT statement, but all the code here does is make sure that no 3626 ** such (illegal) sub-query is flattened. The caller will detect the 3627 ** syntax error and return a detailed message. 3628 ** 3629 ** (18) If the sub-query is a compound select, then all terms of the 3630 ** ORDER BY clause of the parent must be simple references to 3631 ** columns of the sub-query. 3632 ** 3633 ** (19) If the subquery uses LIMIT then the outer query may not 3634 ** have a WHERE clause. 3635 ** 3636 ** (20) If the sub-query is a compound select, then it must not use 3637 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3638 ** somewhat by saying that the terms of the ORDER BY clause must 3639 ** appear as unmodified result columns in the outer query. But we 3640 ** have other optimizations in mind to deal with that case. 3641 ** 3642 ** (21) If the subquery uses LIMIT then the outer query may not be 3643 ** DISTINCT. (See ticket [752e1646fc]). 3644 ** 3645 ** (22) The subquery may not be a recursive CTE. 3646 ** 3647 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3648 ** a recursive CTE, then the sub-query may not be a compound query. 3649 ** This restriction is because transforming the 3650 ** parent to a compound query confuses the code that handles 3651 ** recursive queries in multiSelect(). 3652 ** 3653 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3654 ** The subquery may not be an aggregate that uses the built-in min() or 3655 ** or max() functions. (Without this restriction, a query like: 3656 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3657 ** return the value X for which Y was maximal.) 3658 ** 3659 ** (25) If either the subquery or the parent query contains a window 3660 ** function in the select list or ORDER BY clause, flattening 3661 ** is not attempted. 3662 ** 3663 ** 3664 ** In this routine, the "p" parameter is a pointer to the outer query. 3665 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3666 ** uses aggregates. 3667 ** 3668 ** If flattening is not attempted, this routine is a no-op and returns 0. 3669 ** If flattening is attempted this routine returns 1. 3670 ** 3671 ** All of the expression analysis must occur on both the outer query and 3672 ** the subquery before this routine runs. 3673 */ 3674 static int flattenSubquery( 3675 Parse *pParse, /* Parsing context */ 3676 Select *p, /* The parent or outer SELECT statement */ 3677 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3678 int isAgg /* True if outer SELECT uses aggregate functions */ 3679 ){ 3680 const char *zSavedAuthContext = pParse->zAuthContext; 3681 Select *pParent; /* Current UNION ALL term of the other query */ 3682 Select *pSub; /* The inner query or "subquery" */ 3683 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3684 SrcList *pSrc; /* The FROM clause of the outer query */ 3685 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3686 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3687 int iNewParent = -1;/* Replacement table for iParent */ 3688 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3689 int i; /* Loop counter */ 3690 Expr *pWhere; /* The WHERE clause */ 3691 struct SrcList_item *pSubitem; /* The subquery */ 3692 sqlite3 *db = pParse->db; 3693 3694 /* Check to see if flattening is permitted. Return 0 if not. 3695 */ 3696 assert( p!=0 ); 3697 assert( p->pPrior==0 ); 3698 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3699 pSrc = p->pSrc; 3700 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3701 pSubitem = &pSrc->a[iFrom]; 3702 iParent = pSubitem->iCursor; 3703 pSub = pSubitem->pSelect; 3704 assert( pSub!=0 ); 3705 3706 #ifndef SQLITE_OMIT_WINDOWFUNC 3707 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3708 #endif 3709 3710 pSubSrc = pSub->pSrc; 3711 assert( pSubSrc ); 3712 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3713 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3714 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3715 ** became arbitrary expressions, we were forced to add restrictions (13) 3716 ** and (14). */ 3717 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3718 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3719 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3720 return 0; /* Restriction (15) */ 3721 } 3722 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3723 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3724 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3725 return 0; /* Restrictions (8)(9) */ 3726 } 3727 if( p->pOrderBy && pSub->pOrderBy ){ 3728 return 0; /* Restriction (11) */ 3729 } 3730 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3731 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3732 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3733 return 0; /* Restriction (21) */ 3734 } 3735 if( pSub->selFlags & (SF_Recursive) ){ 3736 return 0; /* Restrictions (22) */ 3737 } 3738 3739 /* 3740 ** If the subquery is the right operand of a LEFT JOIN, then the 3741 ** subquery may not be a join itself (3a). Example of why this is not 3742 ** allowed: 3743 ** 3744 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3745 ** 3746 ** If we flatten the above, we would get 3747 ** 3748 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3749 ** 3750 ** which is not at all the same thing. 3751 ** 3752 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3753 ** query cannot be an aggregate. (3c) This is an artifact of the way 3754 ** aggregates are processed - there is no mechanism to determine if 3755 ** the LEFT JOIN table should be all-NULL. 3756 ** 3757 ** See also tickets #306, #350, and #3300. 3758 */ 3759 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3760 isLeftJoin = 1; 3761 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3762 /* (3a) (3c) (3b) */ 3763 return 0; 3764 } 3765 } 3766 #ifdef SQLITE_EXTRA_IFNULLROW 3767 else if( iFrom>0 && !isAgg ){ 3768 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3769 ** every reference to any result column from subquery in a join, even 3770 ** though they are not necessary. This will stress-test the OP_IfNullRow 3771 ** opcode. */ 3772 isLeftJoin = -1; 3773 } 3774 #endif 3775 3776 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3777 ** use only the UNION ALL operator. And none of the simple select queries 3778 ** that make up the compound SELECT are allowed to be aggregate or distinct 3779 ** queries. 3780 */ 3781 if( pSub->pPrior ){ 3782 if( pSub->pOrderBy ){ 3783 return 0; /* Restriction (20) */ 3784 } 3785 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3786 return 0; /* (17d1), (17d2), or (17d3) */ 3787 } 3788 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3789 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3790 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3791 assert( pSub->pSrc!=0 ); 3792 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3793 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3794 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3795 || pSub1->pSrc->nSrc<1 /* (17c) */ 3796 ){ 3797 return 0; 3798 } 3799 testcase( pSub1->pSrc->nSrc>1 ); 3800 } 3801 3802 /* Restriction (18). */ 3803 if( p->pOrderBy ){ 3804 int ii; 3805 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3806 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3807 } 3808 } 3809 } 3810 3811 /* Ex-restriction (23): 3812 ** The only way that the recursive part of a CTE can contain a compound 3813 ** subquery is for the subquery to be one term of a join. But if the 3814 ** subquery is a join, then the flattening has already been stopped by 3815 ** restriction (17d3) 3816 */ 3817 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3818 3819 /***** If we reach this point, flattening is permitted. *****/ 3820 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3821 pSub->selId, pSub, iFrom)); 3822 3823 /* Authorize the subquery */ 3824 pParse->zAuthContext = pSubitem->zName; 3825 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3826 testcase( i==SQLITE_DENY ); 3827 pParse->zAuthContext = zSavedAuthContext; 3828 3829 /* If the sub-query is a compound SELECT statement, then (by restrictions 3830 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3831 ** be of the form: 3832 ** 3833 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3834 ** 3835 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3836 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3837 ** OFFSET clauses and joins them to the left-hand-side of the original 3838 ** using UNION ALL operators. In this case N is the number of simple 3839 ** select statements in the compound sub-query. 3840 ** 3841 ** Example: 3842 ** 3843 ** SELECT a+1 FROM ( 3844 ** SELECT x FROM tab 3845 ** UNION ALL 3846 ** SELECT y FROM tab 3847 ** UNION ALL 3848 ** SELECT abs(z*2) FROM tab2 3849 ** ) WHERE a!=5 ORDER BY 1 3850 ** 3851 ** Transformed into: 3852 ** 3853 ** SELECT x+1 FROM tab WHERE x+1!=5 3854 ** UNION ALL 3855 ** SELECT y+1 FROM tab WHERE y+1!=5 3856 ** UNION ALL 3857 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3858 ** ORDER BY 1 3859 ** 3860 ** We call this the "compound-subquery flattening". 3861 */ 3862 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3863 Select *pNew; 3864 ExprList *pOrderBy = p->pOrderBy; 3865 Expr *pLimit = p->pLimit; 3866 Select *pPrior = p->pPrior; 3867 p->pOrderBy = 0; 3868 p->pSrc = 0; 3869 p->pPrior = 0; 3870 p->pLimit = 0; 3871 pNew = sqlite3SelectDup(db, p, 0); 3872 p->pLimit = pLimit; 3873 p->pOrderBy = pOrderBy; 3874 p->pSrc = pSrc; 3875 p->op = TK_ALL; 3876 if( pNew==0 ){ 3877 p->pPrior = pPrior; 3878 }else{ 3879 pNew->pPrior = pPrior; 3880 if( pPrior ) pPrior->pNext = pNew; 3881 pNew->pNext = p; 3882 p->pPrior = pNew; 3883 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3884 " creates %u as peer\n",pNew->selId)); 3885 } 3886 if( db->mallocFailed ) return 1; 3887 } 3888 3889 /* Begin flattening the iFrom-th entry of the FROM clause 3890 ** in the outer query. 3891 */ 3892 pSub = pSub1 = pSubitem->pSelect; 3893 3894 /* Delete the transient table structure associated with the 3895 ** subquery 3896 */ 3897 sqlite3DbFree(db, pSubitem->zDatabase); 3898 sqlite3DbFree(db, pSubitem->zName); 3899 sqlite3DbFree(db, pSubitem->zAlias); 3900 pSubitem->zDatabase = 0; 3901 pSubitem->zName = 0; 3902 pSubitem->zAlias = 0; 3903 pSubitem->pSelect = 0; 3904 3905 /* Defer deleting the Table object associated with the 3906 ** subquery until code generation is 3907 ** complete, since there may still exist Expr.pTab entries that 3908 ** refer to the subquery even after flattening. Ticket #3346. 3909 ** 3910 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3911 */ 3912 if( ALWAYS(pSubitem->pTab!=0) ){ 3913 Table *pTabToDel = pSubitem->pTab; 3914 if( pTabToDel->nTabRef==1 ){ 3915 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3916 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3917 pToplevel->pZombieTab = pTabToDel; 3918 }else{ 3919 pTabToDel->nTabRef--; 3920 } 3921 pSubitem->pTab = 0; 3922 } 3923 3924 /* The following loop runs once for each term in a compound-subquery 3925 ** flattening (as described above). If we are doing a different kind 3926 ** of flattening - a flattening other than a compound-subquery flattening - 3927 ** then this loop only runs once. 3928 ** 3929 ** This loop moves all of the FROM elements of the subquery into the 3930 ** the FROM clause of the outer query. Before doing this, remember 3931 ** the cursor number for the original outer query FROM element in 3932 ** iParent. The iParent cursor will never be used. Subsequent code 3933 ** will scan expressions looking for iParent references and replace 3934 ** those references with expressions that resolve to the subquery FROM 3935 ** elements we are now copying in. 3936 */ 3937 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3938 int nSubSrc; 3939 u8 jointype = 0; 3940 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3941 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3942 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3943 3944 if( pSrc ){ 3945 assert( pParent==p ); /* First time through the loop */ 3946 jointype = pSubitem->fg.jointype; 3947 }else{ 3948 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3949 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3950 if( pSrc==0 ){ 3951 assert( db->mallocFailed ); 3952 break; 3953 } 3954 } 3955 3956 /* The subquery uses a single slot of the FROM clause of the outer 3957 ** query. If the subquery has more than one element in its FROM clause, 3958 ** then expand the outer query to make space for it to hold all elements 3959 ** of the subquery. 3960 ** 3961 ** Example: 3962 ** 3963 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3964 ** 3965 ** The outer query has 3 slots in its FROM clause. One slot of the 3966 ** outer query (the middle slot) is used by the subquery. The next 3967 ** block of code will expand the outer query FROM clause to 4 slots. 3968 ** The middle slot is expanded to two slots in order to make space 3969 ** for the two elements in the FROM clause of the subquery. 3970 */ 3971 if( nSubSrc>1 ){ 3972 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3973 if( db->mallocFailed ){ 3974 break; 3975 } 3976 } 3977 3978 /* Transfer the FROM clause terms from the subquery into the 3979 ** outer query. 3980 */ 3981 for(i=0; i<nSubSrc; i++){ 3982 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3983 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3984 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3985 iNewParent = pSubSrc->a[i].iCursor; 3986 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3987 } 3988 pSrc->a[iFrom].fg.jointype = jointype; 3989 3990 /* Now begin substituting subquery result set expressions for 3991 ** references to the iParent in the outer query. 3992 ** 3993 ** Example: 3994 ** 3995 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3996 ** \ \_____________ subquery __________/ / 3997 ** \_____________________ outer query ______________________________/ 3998 ** 3999 ** We look at every expression in the outer query and every place we see 4000 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4001 */ 4002 if( pSub->pOrderBy ){ 4003 /* At this point, any non-zero iOrderByCol values indicate that the 4004 ** ORDER BY column expression is identical to the iOrderByCol'th 4005 ** expression returned by SELECT statement pSub. Since these values 4006 ** do not necessarily correspond to columns in SELECT statement pParent, 4007 ** zero them before transfering the ORDER BY clause. 4008 ** 4009 ** Not doing this may cause an error if a subsequent call to this 4010 ** function attempts to flatten a compound sub-query into pParent 4011 ** (the only way this can happen is if the compound sub-query is 4012 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4013 ExprList *pOrderBy = pSub->pOrderBy; 4014 for(i=0; i<pOrderBy->nExpr; i++){ 4015 pOrderBy->a[i].u.x.iOrderByCol = 0; 4016 } 4017 assert( pParent->pOrderBy==0 ); 4018 pParent->pOrderBy = pOrderBy; 4019 pSub->pOrderBy = 0; 4020 } 4021 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 4022 if( isLeftJoin>0 ){ 4023 setJoinExpr(pWhere, iNewParent); 4024 } 4025 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 4026 if( db->mallocFailed==0 ){ 4027 SubstContext x; 4028 x.pParse = pParse; 4029 x.iTable = iParent; 4030 x.iNewTable = iNewParent; 4031 x.isLeftJoin = isLeftJoin; 4032 x.pEList = pSub->pEList; 4033 substSelect(&x, pParent, 0); 4034 } 4035 4036 /* The flattened query is distinct if either the inner or the 4037 ** outer query is distinct. 4038 */ 4039 pParent->selFlags |= pSub->selFlags & SF_Distinct; 4040 4041 /* 4042 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4043 ** 4044 ** One is tempted to try to add a and b to combine the limits. But this 4045 ** does not work if either limit is negative. 4046 */ 4047 if( pSub->pLimit ){ 4048 pParent->pLimit = pSub->pLimit; 4049 pSub->pLimit = 0; 4050 } 4051 } 4052 4053 /* Finially, delete what is left of the subquery and return 4054 ** success. 4055 */ 4056 sqlite3SelectDelete(db, pSub1); 4057 4058 #if SELECTTRACE_ENABLED 4059 if( sqlite3SelectTrace & 0x100 ){ 4060 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4061 sqlite3TreeViewSelect(0, p, 0); 4062 } 4063 #endif 4064 4065 return 1; 4066 } 4067 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4068 4069 /* 4070 ** A structure to keep track of all of the column values that fixed to 4071 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4072 */ 4073 typedef struct WhereConst WhereConst; 4074 struct WhereConst { 4075 Parse *pParse; /* Parsing context */ 4076 int nConst; /* Number for COLUMN=CONSTANT terms */ 4077 int nChng; /* Number of times a constant is propagated */ 4078 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4079 }; 4080 4081 /* 4082 ** Add a new entry to the pConst object 4083 */ 4084 static void constInsert( 4085 WhereConst *pConst, 4086 Expr *pColumn, 4087 Expr *pValue 4088 ){ 4089 4090 pConst->nConst++; 4091 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4092 pConst->nConst*2*sizeof(Expr*)); 4093 if( pConst->apExpr==0 ){ 4094 pConst->nConst = 0; 4095 }else{ 4096 if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft; 4097 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4098 pConst->apExpr[pConst->nConst*2-1] = pValue; 4099 } 4100 } 4101 4102 /* 4103 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4104 ** is a constant expression and where the term must be true because it 4105 ** is part of the AND-connected terms of the expression. For each term 4106 ** found, add it to the pConst structure. 4107 */ 4108 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4109 Expr *pRight, *pLeft; 4110 if( pExpr==0 ) return; 4111 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4112 if( pExpr->op==TK_AND ){ 4113 findConstInWhere(pConst, pExpr->pRight); 4114 findConstInWhere(pConst, pExpr->pLeft); 4115 return; 4116 } 4117 if( pExpr->op!=TK_EQ ) return; 4118 pRight = pExpr->pRight; 4119 pLeft = pExpr->pLeft; 4120 assert( pRight!=0 ); 4121 assert( pLeft!=0 ); 4122 if( pRight->op==TK_COLUMN 4123 && !ExprHasProperty(pRight, EP_FixedCol) 4124 && sqlite3ExprIsConstant(pLeft) 4125 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4126 ){ 4127 constInsert(pConst, pRight, pLeft); 4128 }else 4129 if( pLeft->op==TK_COLUMN 4130 && !ExprHasProperty(pLeft, EP_FixedCol) 4131 && sqlite3ExprIsConstant(pRight) 4132 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4133 ){ 4134 constInsert(pConst, pLeft, pRight); 4135 } 4136 } 4137 4138 /* 4139 ** This is a Walker expression callback. pExpr is a candidate expression 4140 ** to be replaced by a value. If pExpr is equivalent to one of the 4141 ** columns named in pWalker->u.pConst, then overwrite it with its 4142 ** corresponding value. 4143 */ 4144 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4145 int i; 4146 WhereConst *pConst; 4147 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4148 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue; 4149 pConst = pWalker->u.pConst; 4150 for(i=0; i<pConst->nConst; i++){ 4151 Expr *pColumn = pConst->apExpr[i*2]; 4152 if( pColumn==pExpr ) continue; 4153 if( pColumn->iTable!=pExpr->iTable ) continue; 4154 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4155 /* A match is found. Add the EP_FixedCol property */ 4156 pConst->nChng++; 4157 ExprClearProperty(pExpr, EP_Leaf); 4158 ExprSetProperty(pExpr, EP_FixedCol); 4159 assert( pExpr->pLeft==0 ); 4160 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4161 break; 4162 } 4163 return WRC_Prune; 4164 } 4165 4166 /* 4167 ** The WHERE-clause constant propagation optimization. 4168 ** 4169 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4170 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level 4171 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN) 4172 ** then throughout the query replace all other occurrences of COLUMN 4173 ** with CONSTANT within the WHERE clause. 4174 ** 4175 ** For example, the query: 4176 ** 4177 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4178 ** 4179 ** Is transformed into 4180 ** 4181 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4182 ** 4183 ** Return true if any transformations where made and false if not. 4184 ** 4185 ** Implementation note: Constant propagation is tricky due to affinity 4186 ** and collating sequence interactions. Consider this example: 4187 ** 4188 ** CREATE TABLE t1(a INT,b TEXT); 4189 ** INSERT INTO t1 VALUES(123,'0123'); 4190 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4191 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4192 ** 4193 ** The two SELECT statements above should return different answers. b=a 4194 ** is alway true because the comparison uses numeric affinity, but b=123 4195 ** is false because it uses text affinity and '0123' is not the same as '123'. 4196 ** To work around this, the expression tree is not actually changed from 4197 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4198 ** and the "123" value is hung off of the pLeft pointer. Code generator 4199 ** routines know to generate the constant "123" instead of looking up the 4200 ** column value. Also, to avoid collation problems, this optimization is 4201 ** only attempted if the "a=123" term uses the default BINARY collation. 4202 */ 4203 static int propagateConstants( 4204 Parse *pParse, /* The parsing context */ 4205 Select *p /* The query in which to propagate constants */ 4206 ){ 4207 WhereConst x; 4208 Walker w; 4209 int nChng = 0; 4210 x.pParse = pParse; 4211 do{ 4212 x.nConst = 0; 4213 x.nChng = 0; 4214 x.apExpr = 0; 4215 findConstInWhere(&x, p->pWhere); 4216 if( x.nConst ){ 4217 memset(&w, 0, sizeof(w)); 4218 w.pParse = pParse; 4219 w.xExprCallback = propagateConstantExprRewrite; 4220 w.xSelectCallback = sqlite3SelectWalkNoop; 4221 w.xSelectCallback2 = 0; 4222 w.walkerDepth = 0; 4223 w.u.pConst = &x; 4224 sqlite3WalkExpr(&w, p->pWhere); 4225 sqlite3DbFree(x.pParse->db, x.apExpr); 4226 nChng += x.nChng; 4227 } 4228 }while( x.nChng ); 4229 return nChng; 4230 } 4231 4232 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4233 /* 4234 ** Make copies of relevant WHERE clause terms of the outer query into 4235 ** the WHERE clause of subquery. Example: 4236 ** 4237 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4238 ** 4239 ** Transformed into: 4240 ** 4241 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4242 ** WHERE x=5 AND y=10; 4243 ** 4244 ** The hope is that the terms added to the inner query will make it more 4245 ** efficient. 4246 ** 4247 ** Do not attempt this optimization if: 4248 ** 4249 ** (1) (** This restriction was removed on 2017-09-29. We used to 4250 ** disallow this optimization for aggregate subqueries, but now 4251 ** it is allowed by putting the extra terms on the HAVING clause. 4252 ** The added HAVING clause is pointless if the subquery lacks 4253 ** a GROUP BY clause. But such a HAVING clause is also harmless 4254 ** so there does not appear to be any reason to add extra logic 4255 ** to suppress it. **) 4256 ** 4257 ** (2) The inner query is the recursive part of a common table expression. 4258 ** 4259 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4260 ** clause would change the meaning of the LIMIT). 4261 ** 4262 ** (4) The inner query is the right operand of a LEFT JOIN and the 4263 ** expression to be pushed down does not come from the ON clause 4264 ** on that LEFT JOIN. 4265 ** 4266 ** (5) The WHERE clause expression originates in the ON or USING clause 4267 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4268 ** left join. An example: 4269 ** 4270 ** SELECT * 4271 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4272 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4273 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4274 ** 4275 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4276 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4277 ** then the (1,1,NULL) row would be suppressed. 4278 ** 4279 ** (6) The inner query features one or more window-functions (since 4280 ** changes to the WHERE clause of the inner query could change the 4281 ** window over which window functions are calculated). 4282 ** 4283 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4284 ** terms are duplicated into the subquery. 4285 */ 4286 static int pushDownWhereTerms( 4287 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4288 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4289 Expr *pWhere, /* The WHERE clause of the outer query */ 4290 int iCursor, /* Cursor number of the subquery */ 4291 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4292 ){ 4293 Expr *pNew; 4294 int nChng = 0; 4295 if( pWhere==0 ) return 0; 4296 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4297 4298 #ifndef SQLITE_OMIT_WINDOWFUNC 4299 if( pSubq->pWin ) return 0; /* restriction (6) */ 4300 #endif 4301 4302 #ifdef SQLITE_DEBUG 4303 /* Only the first term of a compound can have a WITH clause. But make 4304 ** sure no other terms are marked SF_Recursive in case something changes 4305 ** in the future. 4306 */ 4307 { 4308 Select *pX; 4309 for(pX=pSubq; pX; pX=pX->pPrior){ 4310 assert( (pX->selFlags & (SF_Recursive))==0 ); 4311 } 4312 } 4313 #endif 4314 4315 if( pSubq->pLimit!=0 ){ 4316 return 0; /* restriction (3) */ 4317 } 4318 while( pWhere->op==TK_AND ){ 4319 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4320 iCursor, isLeftJoin); 4321 pWhere = pWhere->pLeft; 4322 } 4323 if( isLeftJoin 4324 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4325 || pWhere->iRightJoinTable!=iCursor) 4326 ){ 4327 return 0; /* restriction (4) */ 4328 } 4329 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4330 return 0; /* restriction (5) */ 4331 } 4332 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4333 nChng++; 4334 while( pSubq ){ 4335 SubstContext x; 4336 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4337 unsetJoinExpr(pNew, -1); 4338 x.pParse = pParse; 4339 x.iTable = iCursor; 4340 x.iNewTable = iCursor; 4341 x.isLeftJoin = 0; 4342 x.pEList = pSubq->pEList; 4343 pNew = substExpr(&x, pNew); 4344 if( pSubq->selFlags & SF_Aggregate ){ 4345 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4346 }else{ 4347 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4348 } 4349 pSubq = pSubq->pPrior; 4350 } 4351 } 4352 return nChng; 4353 } 4354 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4355 4356 /* 4357 ** The pFunc is the only aggregate function in the query. Check to see 4358 ** if the query is a candidate for the min/max optimization. 4359 ** 4360 ** If the query is a candidate for the min/max optimization, then set 4361 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4362 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4363 ** whether pFunc is a min() or max() function. 4364 ** 4365 ** If the query is not a candidate for the min/max optimization, return 4366 ** WHERE_ORDERBY_NORMAL (which must be zero). 4367 ** 4368 ** This routine must be called after aggregate functions have been 4369 ** located but before their arguments have been subjected to aggregate 4370 ** analysis. 4371 */ 4372 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4373 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4374 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4375 const char *zFunc; /* Name of aggregate function pFunc */ 4376 ExprList *pOrderBy; 4377 u8 sortOrder; 4378 4379 assert( *ppMinMax==0 ); 4380 assert( pFunc->op==TK_AGG_FUNCTION ); 4381 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4382 zFunc = pFunc->u.zToken; 4383 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4384 eRet = WHERE_ORDERBY_MIN; 4385 sortOrder = SQLITE_SO_ASC; 4386 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4387 eRet = WHERE_ORDERBY_MAX; 4388 sortOrder = SQLITE_SO_DESC; 4389 }else{ 4390 return eRet; 4391 } 4392 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4393 assert( pOrderBy!=0 || db->mallocFailed ); 4394 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4395 return eRet; 4396 } 4397 4398 /* 4399 ** The select statement passed as the first argument is an aggregate query. 4400 ** The second argument is the associated aggregate-info object. This 4401 ** function tests if the SELECT is of the form: 4402 ** 4403 ** SELECT count(*) FROM <tbl> 4404 ** 4405 ** where table is a database table, not a sub-select or view. If the query 4406 ** does match this pattern, then a pointer to the Table object representing 4407 ** <tbl> is returned. Otherwise, 0 is returned. 4408 */ 4409 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4410 Table *pTab; 4411 Expr *pExpr; 4412 4413 assert( !p->pGroupBy ); 4414 4415 if( p->pWhere || p->pEList->nExpr!=1 4416 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4417 ){ 4418 return 0; 4419 } 4420 pTab = p->pSrc->a[0].pTab; 4421 pExpr = p->pEList->a[0].pExpr; 4422 assert( pTab && !pTab->pSelect && pExpr ); 4423 4424 if( IsVirtual(pTab) ) return 0; 4425 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4426 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4427 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4428 if( pExpr->flags&EP_Distinct ) return 0; 4429 4430 return pTab; 4431 } 4432 4433 /* 4434 ** If the source-list item passed as an argument was augmented with an 4435 ** INDEXED BY clause, then try to locate the specified index. If there 4436 ** was such a clause and the named index cannot be found, return 4437 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4438 ** pFrom->pIndex and return SQLITE_OK. 4439 */ 4440 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4441 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4442 Table *pTab = pFrom->pTab; 4443 char *zIndexedBy = pFrom->u1.zIndexedBy; 4444 Index *pIdx; 4445 for(pIdx=pTab->pIndex; 4446 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4447 pIdx=pIdx->pNext 4448 ); 4449 if( !pIdx ){ 4450 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4451 pParse->checkSchema = 1; 4452 return SQLITE_ERROR; 4453 } 4454 pFrom->pIBIndex = pIdx; 4455 } 4456 return SQLITE_OK; 4457 } 4458 /* 4459 ** Detect compound SELECT statements that use an ORDER BY clause with 4460 ** an alternative collating sequence. 4461 ** 4462 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4463 ** 4464 ** These are rewritten as a subquery: 4465 ** 4466 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4467 ** ORDER BY ... COLLATE ... 4468 ** 4469 ** This transformation is necessary because the multiSelectOrderBy() routine 4470 ** above that generates the code for a compound SELECT with an ORDER BY clause 4471 ** uses a merge algorithm that requires the same collating sequence on the 4472 ** result columns as on the ORDER BY clause. See ticket 4473 ** http://www.sqlite.org/src/info/6709574d2a 4474 ** 4475 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4476 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4477 ** there are COLLATE terms in the ORDER BY. 4478 */ 4479 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4480 int i; 4481 Select *pNew; 4482 Select *pX; 4483 sqlite3 *db; 4484 struct ExprList_item *a; 4485 SrcList *pNewSrc; 4486 Parse *pParse; 4487 Token dummy; 4488 4489 if( p->pPrior==0 ) return WRC_Continue; 4490 if( p->pOrderBy==0 ) return WRC_Continue; 4491 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4492 if( pX==0 ) return WRC_Continue; 4493 a = p->pOrderBy->a; 4494 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4495 if( a[i].pExpr->flags & EP_Collate ) break; 4496 } 4497 if( i<0 ) return WRC_Continue; 4498 4499 /* If we reach this point, that means the transformation is required. */ 4500 4501 pParse = pWalker->pParse; 4502 db = pParse->db; 4503 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4504 if( pNew==0 ) return WRC_Abort; 4505 memset(&dummy, 0, sizeof(dummy)); 4506 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4507 if( pNewSrc==0 ) return WRC_Abort; 4508 *pNew = *p; 4509 p->pSrc = pNewSrc; 4510 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4511 p->op = TK_SELECT; 4512 p->pWhere = 0; 4513 pNew->pGroupBy = 0; 4514 pNew->pHaving = 0; 4515 pNew->pOrderBy = 0; 4516 p->pPrior = 0; 4517 p->pNext = 0; 4518 p->pWith = 0; 4519 p->selFlags &= ~SF_Compound; 4520 assert( (p->selFlags & SF_Converted)==0 ); 4521 p->selFlags |= SF_Converted; 4522 assert( pNew->pPrior!=0 ); 4523 pNew->pPrior->pNext = pNew; 4524 pNew->pLimit = 0; 4525 return WRC_Continue; 4526 } 4527 4528 /* 4529 ** Check to see if the FROM clause term pFrom has table-valued function 4530 ** arguments. If it does, leave an error message in pParse and return 4531 ** non-zero, since pFrom is not allowed to be a table-valued function. 4532 */ 4533 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4534 if( pFrom->fg.isTabFunc ){ 4535 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4536 return 1; 4537 } 4538 return 0; 4539 } 4540 4541 #ifndef SQLITE_OMIT_CTE 4542 /* 4543 ** Argument pWith (which may be NULL) points to a linked list of nested 4544 ** WITH contexts, from inner to outermost. If the table identified by 4545 ** FROM clause element pItem is really a common-table-expression (CTE) 4546 ** then return a pointer to the CTE definition for that table. Otherwise 4547 ** return NULL. 4548 ** 4549 ** If a non-NULL value is returned, set *ppContext to point to the With 4550 ** object that the returned CTE belongs to. 4551 */ 4552 static struct Cte *searchWith( 4553 With *pWith, /* Current innermost WITH clause */ 4554 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4555 With **ppContext /* OUT: WITH clause return value belongs to */ 4556 ){ 4557 const char *zName; 4558 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4559 With *p; 4560 for(p=pWith; p; p=p->pOuter){ 4561 int i; 4562 for(i=0; i<p->nCte; i++){ 4563 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4564 *ppContext = p; 4565 return &p->a[i]; 4566 } 4567 } 4568 } 4569 } 4570 return 0; 4571 } 4572 4573 /* The code generator maintains a stack of active WITH clauses 4574 ** with the inner-most WITH clause being at the top of the stack. 4575 ** 4576 ** This routine pushes the WITH clause passed as the second argument 4577 ** onto the top of the stack. If argument bFree is true, then this 4578 ** WITH clause will never be popped from the stack. In this case it 4579 ** should be freed along with the Parse object. In other cases, when 4580 ** bFree==0, the With object will be freed along with the SELECT 4581 ** statement with which it is associated. 4582 */ 4583 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4584 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4585 if( pWith ){ 4586 assert( pParse->pWith!=pWith ); 4587 pWith->pOuter = pParse->pWith; 4588 pParse->pWith = pWith; 4589 if( bFree ) pParse->pWithToFree = pWith; 4590 } 4591 } 4592 4593 /* 4594 ** This function checks if argument pFrom refers to a CTE declared by 4595 ** a WITH clause on the stack currently maintained by the parser. And, 4596 ** if currently processing a CTE expression, if it is a recursive 4597 ** reference to the current CTE. 4598 ** 4599 ** If pFrom falls into either of the two categories above, pFrom->pTab 4600 ** and other fields are populated accordingly. The caller should check 4601 ** (pFrom->pTab!=0) to determine whether or not a successful match 4602 ** was found. 4603 ** 4604 ** Whether or not a match is found, SQLITE_OK is returned if no error 4605 ** occurs. If an error does occur, an error message is stored in the 4606 ** parser and some error code other than SQLITE_OK returned. 4607 */ 4608 static int withExpand( 4609 Walker *pWalker, 4610 struct SrcList_item *pFrom 4611 ){ 4612 Parse *pParse = pWalker->pParse; 4613 sqlite3 *db = pParse->db; 4614 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4615 With *pWith; /* WITH clause that pCte belongs to */ 4616 4617 assert( pFrom->pTab==0 ); 4618 4619 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4620 if( pCte ){ 4621 Table *pTab; 4622 ExprList *pEList; 4623 Select *pSel; 4624 Select *pLeft; /* Left-most SELECT statement */ 4625 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4626 With *pSavedWith; /* Initial value of pParse->pWith */ 4627 4628 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4629 ** recursive reference to CTE pCte. Leave an error in pParse and return 4630 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4631 ** In this case, proceed. */ 4632 if( pCte->zCteErr ){ 4633 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4634 return SQLITE_ERROR; 4635 } 4636 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4637 4638 assert( pFrom->pTab==0 ); 4639 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4640 if( pTab==0 ) return WRC_Abort; 4641 pTab->nTabRef = 1; 4642 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4643 pTab->iPKey = -1; 4644 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4645 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4646 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4647 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4648 assert( pFrom->pSelect ); 4649 4650 /* Check if this is a recursive CTE. */ 4651 pSel = pFrom->pSelect; 4652 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4653 if( bMayRecursive ){ 4654 int i; 4655 SrcList *pSrc = pFrom->pSelect->pSrc; 4656 for(i=0; i<pSrc->nSrc; i++){ 4657 struct SrcList_item *pItem = &pSrc->a[i]; 4658 if( pItem->zDatabase==0 4659 && pItem->zName!=0 4660 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4661 ){ 4662 pItem->pTab = pTab; 4663 pItem->fg.isRecursive = 1; 4664 pTab->nTabRef++; 4665 pSel->selFlags |= SF_Recursive; 4666 } 4667 } 4668 } 4669 4670 /* Only one recursive reference is permitted. */ 4671 if( pTab->nTabRef>2 ){ 4672 sqlite3ErrorMsg( 4673 pParse, "multiple references to recursive table: %s", pCte->zName 4674 ); 4675 return SQLITE_ERROR; 4676 } 4677 assert( pTab->nTabRef==1 || 4678 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4679 4680 pCte->zCteErr = "circular reference: %s"; 4681 pSavedWith = pParse->pWith; 4682 pParse->pWith = pWith; 4683 if( bMayRecursive ){ 4684 Select *pPrior = pSel->pPrior; 4685 assert( pPrior->pWith==0 ); 4686 pPrior->pWith = pSel->pWith; 4687 sqlite3WalkSelect(pWalker, pPrior); 4688 pPrior->pWith = 0; 4689 }else{ 4690 sqlite3WalkSelect(pWalker, pSel); 4691 } 4692 pParse->pWith = pWith; 4693 4694 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4695 pEList = pLeft->pEList; 4696 if( pCte->pCols ){ 4697 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4698 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4699 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4700 ); 4701 pParse->pWith = pSavedWith; 4702 return SQLITE_ERROR; 4703 } 4704 pEList = pCte->pCols; 4705 } 4706 4707 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4708 if( bMayRecursive ){ 4709 if( pSel->selFlags & SF_Recursive ){ 4710 pCte->zCteErr = "multiple recursive references: %s"; 4711 }else{ 4712 pCte->zCteErr = "recursive reference in a subquery: %s"; 4713 } 4714 sqlite3WalkSelect(pWalker, pSel); 4715 } 4716 pCte->zCteErr = 0; 4717 pParse->pWith = pSavedWith; 4718 } 4719 4720 return SQLITE_OK; 4721 } 4722 #endif 4723 4724 #ifndef SQLITE_OMIT_CTE 4725 /* 4726 ** If the SELECT passed as the second argument has an associated WITH 4727 ** clause, pop it from the stack stored as part of the Parse object. 4728 ** 4729 ** This function is used as the xSelectCallback2() callback by 4730 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4731 ** names and other FROM clause elements. 4732 */ 4733 static void selectPopWith(Walker *pWalker, Select *p){ 4734 Parse *pParse = pWalker->pParse; 4735 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4736 With *pWith = findRightmost(p)->pWith; 4737 if( pWith!=0 ){ 4738 assert( pParse->pWith==pWith ); 4739 pParse->pWith = pWith->pOuter; 4740 } 4741 } 4742 } 4743 #else 4744 #define selectPopWith 0 4745 #endif 4746 4747 /* 4748 ** The SrcList_item structure passed as the second argument represents a 4749 ** sub-query in the FROM clause of a SELECT statement. This function 4750 ** allocates and populates the SrcList_item.pTab object. If successful, 4751 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4752 ** SQLITE_NOMEM. 4753 */ 4754 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4755 Select *pSel = pFrom->pSelect; 4756 Table *pTab; 4757 4758 assert( pSel ); 4759 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4760 if( pTab==0 ) return SQLITE_NOMEM; 4761 pTab->nTabRef = 1; 4762 if( pFrom->zAlias ){ 4763 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4764 }else{ 4765 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4766 } 4767 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4768 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4769 pTab->iPKey = -1; 4770 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4771 pTab->tabFlags |= TF_Ephemeral; 4772 4773 return SQLITE_OK; 4774 } 4775 4776 /* 4777 ** This routine is a Walker callback for "expanding" a SELECT statement. 4778 ** "Expanding" means to do the following: 4779 ** 4780 ** (1) Make sure VDBE cursor numbers have been assigned to every 4781 ** element of the FROM clause. 4782 ** 4783 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4784 ** defines FROM clause. When views appear in the FROM clause, 4785 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4786 ** that implements the view. A copy is made of the view's SELECT 4787 ** statement so that we can freely modify or delete that statement 4788 ** without worrying about messing up the persistent representation 4789 ** of the view. 4790 ** 4791 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4792 ** on joins and the ON and USING clause of joins. 4793 ** 4794 ** (4) Scan the list of columns in the result set (pEList) looking 4795 ** for instances of the "*" operator or the TABLE.* operator. 4796 ** If found, expand each "*" to be every column in every table 4797 ** and TABLE.* to be every column in TABLE. 4798 ** 4799 */ 4800 static int selectExpander(Walker *pWalker, Select *p){ 4801 Parse *pParse = pWalker->pParse; 4802 int i, j, k; 4803 SrcList *pTabList; 4804 ExprList *pEList; 4805 struct SrcList_item *pFrom; 4806 sqlite3 *db = pParse->db; 4807 Expr *pE, *pRight, *pExpr; 4808 u16 selFlags = p->selFlags; 4809 u32 elistFlags = 0; 4810 4811 p->selFlags |= SF_Expanded; 4812 if( db->mallocFailed ){ 4813 return WRC_Abort; 4814 } 4815 assert( p->pSrc!=0 ); 4816 if( (selFlags & SF_Expanded)!=0 ){ 4817 return WRC_Prune; 4818 } 4819 pTabList = p->pSrc; 4820 pEList = p->pEList; 4821 sqlite3WithPush(pParse, p->pWith, 0); 4822 4823 /* Make sure cursor numbers have been assigned to all entries in 4824 ** the FROM clause of the SELECT statement. 4825 */ 4826 sqlite3SrcListAssignCursors(pParse, pTabList); 4827 4828 /* Look up every table named in the FROM clause of the select. If 4829 ** an entry of the FROM clause is a subquery instead of a table or view, 4830 ** then create a transient table structure to describe the subquery. 4831 */ 4832 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4833 Table *pTab; 4834 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4835 if( pFrom->fg.isRecursive ) continue; 4836 assert( pFrom->pTab==0 ); 4837 #ifndef SQLITE_OMIT_CTE 4838 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4839 if( pFrom->pTab ) {} else 4840 #endif 4841 if( pFrom->zName==0 ){ 4842 #ifndef SQLITE_OMIT_SUBQUERY 4843 Select *pSel = pFrom->pSelect; 4844 /* A sub-query in the FROM clause of a SELECT */ 4845 assert( pSel!=0 ); 4846 assert( pFrom->pTab==0 ); 4847 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4848 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4849 #endif 4850 }else{ 4851 /* An ordinary table or view name in the FROM clause */ 4852 assert( pFrom->pTab==0 ); 4853 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4854 if( pTab==0 ) return WRC_Abort; 4855 if( pTab->nTabRef>=0xffff ){ 4856 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4857 pTab->zName); 4858 pFrom->pTab = 0; 4859 return WRC_Abort; 4860 } 4861 pTab->nTabRef++; 4862 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4863 return WRC_Abort; 4864 } 4865 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4866 if( IsVirtual(pTab) || pTab->pSelect ){ 4867 i16 nCol; 4868 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4869 assert( pFrom->pSelect==0 ); 4870 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4871 nCol = pTab->nCol; 4872 pTab->nCol = -1; 4873 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4874 pTab->nCol = nCol; 4875 } 4876 #endif 4877 } 4878 4879 /* Locate the index named by the INDEXED BY clause, if any. */ 4880 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4881 return WRC_Abort; 4882 } 4883 } 4884 4885 /* Process NATURAL keywords, and ON and USING clauses of joins. 4886 */ 4887 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4888 return WRC_Abort; 4889 } 4890 4891 /* For every "*" that occurs in the column list, insert the names of 4892 ** all columns in all tables. And for every TABLE.* insert the names 4893 ** of all columns in TABLE. The parser inserted a special expression 4894 ** with the TK_ASTERISK operator for each "*" that it found in the column 4895 ** list. The following code just has to locate the TK_ASTERISK 4896 ** expressions and expand each one to the list of all columns in 4897 ** all tables. 4898 ** 4899 ** The first loop just checks to see if there are any "*" operators 4900 ** that need expanding. 4901 */ 4902 for(k=0; k<pEList->nExpr; k++){ 4903 pE = pEList->a[k].pExpr; 4904 if( pE->op==TK_ASTERISK ) break; 4905 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4906 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4907 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4908 elistFlags |= pE->flags; 4909 } 4910 if( k<pEList->nExpr ){ 4911 /* 4912 ** If we get here it means the result set contains one or more "*" 4913 ** operators that need to be expanded. Loop through each expression 4914 ** in the result set and expand them one by one. 4915 */ 4916 struct ExprList_item *a = pEList->a; 4917 ExprList *pNew = 0; 4918 int flags = pParse->db->flags; 4919 int longNames = (flags & SQLITE_FullColNames)!=0 4920 && (flags & SQLITE_ShortColNames)==0; 4921 4922 for(k=0; k<pEList->nExpr; k++){ 4923 pE = a[k].pExpr; 4924 elistFlags |= pE->flags; 4925 pRight = pE->pRight; 4926 assert( pE->op!=TK_DOT || pRight!=0 ); 4927 if( pE->op!=TK_ASTERISK 4928 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4929 ){ 4930 /* This particular expression does not need to be expanded. 4931 */ 4932 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4933 if( pNew ){ 4934 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4935 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4936 a[k].zName = 0; 4937 a[k].zSpan = 0; 4938 } 4939 a[k].pExpr = 0; 4940 }else{ 4941 /* This expression is a "*" or a "TABLE.*" and needs to be 4942 ** expanded. */ 4943 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4944 char *zTName = 0; /* text of name of TABLE */ 4945 if( pE->op==TK_DOT ){ 4946 assert( pE->pLeft!=0 ); 4947 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4948 zTName = pE->pLeft->u.zToken; 4949 } 4950 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4951 Table *pTab = pFrom->pTab; 4952 Select *pSub = pFrom->pSelect; 4953 char *zTabName = pFrom->zAlias; 4954 const char *zSchemaName = 0; 4955 int iDb; 4956 if( zTabName==0 ){ 4957 zTabName = pTab->zName; 4958 } 4959 if( db->mallocFailed ) break; 4960 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4961 pSub = 0; 4962 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4963 continue; 4964 } 4965 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4966 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4967 } 4968 for(j=0; j<pTab->nCol; j++){ 4969 char *zName = pTab->aCol[j].zName; 4970 char *zColname; /* The computed column name */ 4971 char *zToFree; /* Malloced string that needs to be freed */ 4972 Token sColname; /* Computed column name as a token */ 4973 4974 assert( zName ); 4975 if( zTName && pSub 4976 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4977 ){ 4978 continue; 4979 } 4980 4981 /* If a column is marked as 'hidden', omit it from the expanded 4982 ** result-set list unless the SELECT has the SF_IncludeHidden 4983 ** bit set. 4984 */ 4985 if( (p->selFlags & SF_IncludeHidden)==0 4986 && IsHiddenColumn(&pTab->aCol[j]) 4987 ){ 4988 continue; 4989 } 4990 tableSeen = 1; 4991 4992 if( i>0 && zTName==0 ){ 4993 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4994 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4995 ){ 4996 /* In a NATURAL join, omit the join columns from the 4997 ** table to the right of the join */ 4998 continue; 4999 } 5000 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5001 /* In a join with a USING clause, omit columns in the 5002 ** using clause from the table on the right. */ 5003 continue; 5004 } 5005 } 5006 pRight = sqlite3Expr(db, TK_ID, zName); 5007 zColname = zName; 5008 zToFree = 0; 5009 if( longNames || pTabList->nSrc>1 ){ 5010 Expr *pLeft; 5011 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5012 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5013 if( zSchemaName ){ 5014 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5015 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5016 } 5017 if( longNames ){ 5018 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5019 zToFree = zColname; 5020 } 5021 }else{ 5022 pExpr = pRight; 5023 } 5024 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5025 sqlite3TokenInit(&sColname, zColname); 5026 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5027 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 5028 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5029 if( pSub ){ 5030 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 5031 testcase( pX->zSpan==0 ); 5032 }else{ 5033 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 5034 zSchemaName, zTabName, zColname); 5035 testcase( pX->zSpan==0 ); 5036 } 5037 pX->bSpanIsTab = 1; 5038 } 5039 sqlite3DbFree(db, zToFree); 5040 } 5041 } 5042 if( !tableSeen ){ 5043 if( zTName ){ 5044 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5045 }else{ 5046 sqlite3ErrorMsg(pParse, "no tables specified"); 5047 } 5048 } 5049 } 5050 } 5051 sqlite3ExprListDelete(db, pEList); 5052 p->pEList = pNew; 5053 } 5054 if( p->pEList ){ 5055 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5056 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5057 return WRC_Abort; 5058 } 5059 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5060 p->selFlags |= SF_ComplexResult; 5061 } 5062 } 5063 return WRC_Continue; 5064 } 5065 5066 /* 5067 ** No-op routine for the parse-tree walker. 5068 ** 5069 ** When this routine is the Walker.xExprCallback then expression trees 5070 ** are walked without any actions being taken at each node. Presumably, 5071 ** when this routine is used for Walker.xExprCallback then 5072 ** Walker.xSelectCallback is set to do something useful for every 5073 ** subquery in the parser tree. 5074 */ 5075 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5076 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5077 return WRC_Continue; 5078 } 5079 5080 /* 5081 ** No-op routine for the parse-tree walker for SELECT statements. 5082 ** subquery in the parser tree. 5083 */ 5084 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5085 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5086 return WRC_Continue; 5087 } 5088 5089 #if SQLITE_DEBUG 5090 /* 5091 ** Always assert. This xSelectCallback2 implementation proves that the 5092 ** xSelectCallback2 is never invoked. 5093 */ 5094 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5095 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5096 assert( 0 ); 5097 } 5098 #endif 5099 /* 5100 ** This routine "expands" a SELECT statement and all of its subqueries. 5101 ** For additional information on what it means to "expand" a SELECT 5102 ** statement, see the comment on the selectExpand worker callback above. 5103 ** 5104 ** Expanding a SELECT statement is the first step in processing a 5105 ** SELECT statement. The SELECT statement must be expanded before 5106 ** name resolution is performed. 5107 ** 5108 ** If anything goes wrong, an error message is written into pParse. 5109 ** The calling function can detect the problem by looking at pParse->nErr 5110 ** and/or pParse->db->mallocFailed. 5111 */ 5112 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5113 Walker w; 5114 w.xExprCallback = sqlite3ExprWalkNoop; 5115 w.pParse = pParse; 5116 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5117 w.xSelectCallback = convertCompoundSelectToSubquery; 5118 w.xSelectCallback2 = 0; 5119 sqlite3WalkSelect(&w, pSelect); 5120 } 5121 w.xSelectCallback = selectExpander; 5122 w.xSelectCallback2 = selectPopWith; 5123 sqlite3WalkSelect(&w, pSelect); 5124 } 5125 5126 5127 #ifndef SQLITE_OMIT_SUBQUERY 5128 /* 5129 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5130 ** interface. 5131 ** 5132 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5133 ** information to the Table structure that represents the result set 5134 ** of that subquery. 5135 ** 5136 ** The Table structure that represents the result set was constructed 5137 ** by selectExpander() but the type and collation information was omitted 5138 ** at that point because identifiers had not yet been resolved. This 5139 ** routine is called after identifier resolution. 5140 */ 5141 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5142 Parse *pParse; 5143 int i; 5144 SrcList *pTabList; 5145 struct SrcList_item *pFrom; 5146 5147 assert( p->selFlags & SF_Resolved ); 5148 if( p->selFlags & SF_HasTypeInfo ) return; 5149 p->selFlags |= SF_HasTypeInfo; 5150 pParse = pWalker->pParse; 5151 pTabList = p->pSrc; 5152 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5153 Table *pTab = pFrom->pTab; 5154 assert( pTab!=0 ); 5155 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5156 /* A sub-query in the FROM clause of a SELECT */ 5157 Select *pSel = pFrom->pSelect; 5158 if( pSel ){ 5159 while( pSel->pPrior ) pSel = pSel->pPrior; 5160 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 5161 } 5162 } 5163 } 5164 } 5165 #endif 5166 5167 5168 /* 5169 ** This routine adds datatype and collating sequence information to 5170 ** the Table structures of all FROM-clause subqueries in a 5171 ** SELECT statement. 5172 ** 5173 ** Use this routine after name resolution. 5174 */ 5175 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5176 #ifndef SQLITE_OMIT_SUBQUERY 5177 Walker w; 5178 w.xSelectCallback = sqlite3SelectWalkNoop; 5179 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5180 w.xExprCallback = sqlite3ExprWalkNoop; 5181 w.pParse = pParse; 5182 sqlite3WalkSelect(&w, pSelect); 5183 #endif 5184 } 5185 5186 5187 /* 5188 ** This routine sets up a SELECT statement for processing. The 5189 ** following is accomplished: 5190 ** 5191 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5192 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5193 ** * ON and USING clauses are shifted into WHERE statements 5194 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5195 ** * Identifiers in expression are matched to tables. 5196 ** 5197 ** This routine acts recursively on all subqueries within the SELECT. 5198 */ 5199 void sqlite3SelectPrep( 5200 Parse *pParse, /* The parser context */ 5201 Select *p, /* The SELECT statement being coded. */ 5202 NameContext *pOuterNC /* Name context for container */ 5203 ){ 5204 assert( p!=0 || pParse->db->mallocFailed ); 5205 if( pParse->db->mallocFailed ) return; 5206 if( p->selFlags & SF_HasTypeInfo ) return; 5207 sqlite3SelectExpand(pParse, p); 5208 if( pParse->nErr || pParse->db->mallocFailed ) return; 5209 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5210 if( pParse->nErr || pParse->db->mallocFailed ) return; 5211 sqlite3SelectAddTypeInfo(pParse, p); 5212 } 5213 5214 /* 5215 ** Reset the aggregate accumulator. 5216 ** 5217 ** The aggregate accumulator is a set of memory cells that hold 5218 ** intermediate results while calculating an aggregate. This 5219 ** routine generates code that stores NULLs in all of those memory 5220 ** cells. 5221 */ 5222 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5223 Vdbe *v = pParse->pVdbe; 5224 int i; 5225 struct AggInfo_func *pFunc; 5226 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5227 if( nReg==0 ) return; 5228 #ifdef SQLITE_DEBUG 5229 /* Verify that all AggInfo registers are within the range specified by 5230 ** AggInfo.mnReg..AggInfo.mxReg */ 5231 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5232 for(i=0; i<pAggInfo->nColumn; i++){ 5233 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5234 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5235 } 5236 for(i=0; i<pAggInfo->nFunc; i++){ 5237 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5238 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5239 } 5240 #endif 5241 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5242 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5243 if( pFunc->iDistinct>=0 ){ 5244 Expr *pE = pFunc->pExpr; 5245 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5246 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5247 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5248 "argument"); 5249 pFunc->iDistinct = -1; 5250 }else{ 5251 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5252 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5253 (char*)pKeyInfo, P4_KEYINFO); 5254 } 5255 } 5256 } 5257 } 5258 5259 /* 5260 ** Invoke the OP_AggFinalize opcode for every aggregate function 5261 ** in the AggInfo structure. 5262 */ 5263 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5264 Vdbe *v = pParse->pVdbe; 5265 int i; 5266 struct AggInfo_func *pF; 5267 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5268 ExprList *pList = pF->pExpr->x.pList; 5269 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5270 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5271 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5272 } 5273 } 5274 5275 5276 /* 5277 ** Update the accumulator memory cells for an aggregate based on 5278 ** the current cursor position. 5279 ** 5280 ** If regAcc is non-zero and there are no min() or max() aggregates 5281 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5282 ** registers i register regAcc contains 0. The caller will take care 5283 ** of setting and clearing regAcc. 5284 */ 5285 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5286 Vdbe *v = pParse->pVdbe; 5287 int i; 5288 int regHit = 0; 5289 int addrHitTest = 0; 5290 struct AggInfo_func *pF; 5291 struct AggInfo_col *pC; 5292 5293 pAggInfo->directMode = 1; 5294 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5295 int nArg; 5296 int addrNext = 0; 5297 int regAgg; 5298 ExprList *pList = pF->pExpr->x.pList; 5299 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5300 if( pList ){ 5301 nArg = pList->nExpr; 5302 regAgg = sqlite3GetTempRange(pParse, nArg); 5303 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5304 }else{ 5305 nArg = 0; 5306 regAgg = 0; 5307 } 5308 if( pF->iDistinct>=0 ){ 5309 addrNext = sqlite3VdbeMakeLabel(v); 5310 testcase( nArg==0 ); /* Error condition */ 5311 testcase( nArg>1 ); /* Also an error */ 5312 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5313 } 5314 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5315 CollSeq *pColl = 0; 5316 struct ExprList_item *pItem; 5317 int j; 5318 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5319 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5320 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5321 } 5322 if( !pColl ){ 5323 pColl = pParse->db->pDfltColl; 5324 } 5325 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5326 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5327 } 5328 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5329 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5330 sqlite3VdbeChangeP5(v, (u8)nArg); 5331 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5332 if( addrNext ){ 5333 sqlite3VdbeResolveLabel(v, addrNext); 5334 } 5335 } 5336 if( regHit==0 && pAggInfo->nAccumulator ){ 5337 regHit = regAcc; 5338 } 5339 if( regHit ){ 5340 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5341 } 5342 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5343 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5344 } 5345 pAggInfo->directMode = 0; 5346 if( addrHitTest ){ 5347 sqlite3VdbeJumpHere(v, addrHitTest); 5348 } 5349 } 5350 5351 /* 5352 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5353 ** count(*) query ("SELECT count(*) FROM pTab"). 5354 */ 5355 #ifndef SQLITE_OMIT_EXPLAIN 5356 static void explainSimpleCount( 5357 Parse *pParse, /* Parse context */ 5358 Table *pTab, /* Table being queried */ 5359 Index *pIdx /* Index used to optimize scan, or NULL */ 5360 ){ 5361 if( pParse->explain==2 ){ 5362 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5363 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5364 pTab->zName, 5365 bCover ? " USING COVERING INDEX " : "", 5366 bCover ? pIdx->zName : "" 5367 ); 5368 } 5369 } 5370 #else 5371 # define explainSimpleCount(a,b,c) 5372 #endif 5373 5374 /* 5375 ** sqlite3WalkExpr() callback used by havingToWhere(). 5376 ** 5377 ** If the node passed to the callback is a TK_AND node, return 5378 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5379 ** 5380 ** Otherwise, return WRC_Prune. In this case, also check if the 5381 ** sub-expression matches the criteria for being moved to the WHERE 5382 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5383 ** within the HAVING expression with a constant "1". 5384 */ 5385 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5386 if( pExpr->op!=TK_AND ){ 5387 Select *pS = pWalker->u.pSelect; 5388 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5389 sqlite3 *db = pWalker->pParse->db; 5390 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5391 if( pNew ){ 5392 Expr *pWhere = pS->pWhere; 5393 SWAP(Expr, *pNew, *pExpr); 5394 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5395 pS->pWhere = pNew; 5396 pWalker->eCode = 1; 5397 } 5398 } 5399 return WRC_Prune; 5400 } 5401 return WRC_Continue; 5402 } 5403 5404 /* 5405 ** Transfer eligible terms from the HAVING clause of a query, which is 5406 ** processed after grouping, to the WHERE clause, which is processed before 5407 ** grouping. For example, the query: 5408 ** 5409 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5410 ** 5411 ** can be rewritten as: 5412 ** 5413 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5414 ** 5415 ** A term of the HAVING expression is eligible for transfer if it consists 5416 ** entirely of constants and expressions that are also GROUP BY terms that 5417 ** use the "BINARY" collation sequence. 5418 */ 5419 static void havingToWhere(Parse *pParse, Select *p){ 5420 Walker sWalker; 5421 memset(&sWalker, 0, sizeof(sWalker)); 5422 sWalker.pParse = pParse; 5423 sWalker.xExprCallback = havingToWhereExprCb; 5424 sWalker.u.pSelect = p; 5425 sqlite3WalkExpr(&sWalker, p->pHaving); 5426 #if SELECTTRACE_ENABLED 5427 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5428 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5429 sqlite3TreeViewSelect(0, p, 0); 5430 } 5431 #endif 5432 } 5433 5434 /* 5435 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5436 ** If it is, then return the SrcList_item for the prior view. If it is not, 5437 ** then return 0. 5438 */ 5439 static struct SrcList_item *isSelfJoinView( 5440 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5441 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5442 ){ 5443 struct SrcList_item *pItem; 5444 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5445 if( pItem->pSelect==0 ) continue; 5446 if( pItem->fg.viaCoroutine ) continue; 5447 if( pItem->zName==0 ) continue; 5448 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5449 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5450 if( sqlite3ExprCompare(0, 5451 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5452 ){ 5453 /* The view was modified by some other optimization such as 5454 ** pushDownWhereTerms() */ 5455 continue; 5456 } 5457 return pItem; 5458 } 5459 return 0; 5460 } 5461 5462 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5463 /* 5464 ** Attempt to transform a query of the form 5465 ** 5466 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5467 ** 5468 ** Into this: 5469 ** 5470 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5471 ** 5472 ** The transformation only works if all of the following are true: 5473 ** 5474 ** * The subquery is a UNION ALL of two or more terms 5475 ** * The subquery does not have a LIMIT clause 5476 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5477 ** * The outer query is a simple count(*) 5478 ** 5479 ** Return TRUE if the optimization is undertaken. 5480 */ 5481 static int countOfViewOptimization(Parse *pParse, Select *p){ 5482 Select *pSub, *pPrior; 5483 Expr *pExpr; 5484 Expr *pCount; 5485 sqlite3 *db; 5486 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5487 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5488 pExpr = p->pEList->a[0].pExpr; 5489 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5490 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5491 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5492 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5493 pSub = p->pSrc->a[0].pSelect; 5494 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5495 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5496 do{ 5497 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5498 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5499 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5500 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5501 pSub = pSub->pPrior; /* Repeat over compound */ 5502 }while( pSub ); 5503 5504 /* If we reach this point then it is OK to perform the transformation */ 5505 5506 db = pParse->db; 5507 pCount = pExpr; 5508 pExpr = 0; 5509 pSub = p->pSrc->a[0].pSelect; 5510 p->pSrc->a[0].pSelect = 0; 5511 sqlite3SrcListDelete(db, p->pSrc); 5512 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5513 while( pSub ){ 5514 Expr *pTerm; 5515 pPrior = pSub->pPrior; 5516 pSub->pPrior = 0; 5517 pSub->pNext = 0; 5518 pSub->selFlags |= SF_Aggregate; 5519 pSub->selFlags &= ~SF_Compound; 5520 pSub->nSelectRow = 0; 5521 sqlite3ExprListDelete(db, pSub->pEList); 5522 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5523 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5524 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5525 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5526 if( pExpr==0 ){ 5527 pExpr = pTerm; 5528 }else{ 5529 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5530 } 5531 pSub = pPrior; 5532 } 5533 p->pEList->a[0].pExpr = pExpr; 5534 p->selFlags &= ~SF_Aggregate; 5535 5536 #if SELECTTRACE_ENABLED 5537 if( sqlite3SelectTrace & 0x400 ){ 5538 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5539 sqlite3TreeViewSelect(0, p, 0); 5540 } 5541 #endif 5542 return 1; 5543 } 5544 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5545 5546 /* 5547 ** Generate code for the SELECT statement given in the p argument. 5548 ** 5549 ** The results are returned according to the SelectDest structure. 5550 ** See comments in sqliteInt.h for further information. 5551 ** 5552 ** This routine returns the number of errors. If any errors are 5553 ** encountered, then an appropriate error message is left in 5554 ** pParse->zErrMsg. 5555 ** 5556 ** This routine does NOT free the Select structure passed in. The 5557 ** calling function needs to do that. 5558 */ 5559 int sqlite3Select( 5560 Parse *pParse, /* The parser context */ 5561 Select *p, /* The SELECT statement being coded. */ 5562 SelectDest *pDest /* What to do with the query results */ 5563 ){ 5564 int i, j; /* Loop counters */ 5565 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5566 Vdbe *v; /* The virtual machine under construction */ 5567 int isAgg; /* True for select lists like "count(*)" */ 5568 ExprList *pEList = 0; /* List of columns to extract. */ 5569 SrcList *pTabList; /* List of tables to select from */ 5570 Expr *pWhere; /* The WHERE clause. May be NULL */ 5571 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5572 Expr *pHaving; /* The HAVING clause. May be NULL */ 5573 int rc = 1; /* Value to return from this function */ 5574 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5575 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5576 AggInfo sAggInfo; /* Information used by aggregate queries */ 5577 int iEnd; /* Address of the end of the query */ 5578 sqlite3 *db; /* The database connection */ 5579 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5580 u8 minMaxFlag; /* Flag for min/max queries */ 5581 5582 db = pParse->db; 5583 v = sqlite3GetVdbe(pParse); 5584 if( p==0 || db->mallocFailed || pParse->nErr ){ 5585 return 1; 5586 } 5587 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5588 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5589 #if SELECTTRACE_ENABLED 5590 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5591 if( sqlite3SelectTrace & 0x100 ){ 5592 sqlite3TreeViewSelect(0, p, 0); 5593 } 5594 #endif 5595 5596 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5597 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5598 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5599 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5600 if( IgnorableOrderby(pDest) ){ 5601 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5602 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5603 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5604 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5605 /* If ORDER BY makes no difference in the output then neither does 5606 ** DISTINCT so it can be removed too. */ 5607 sqlite3ExprListDelete(db, p->pOrderBy); 5608 p->pOrderBy = 0; 5609 p->selFlags &= ~SF_Distinct; 5610 } 5611 sqlite3SelectPrep(pParse, p, 0); 5612 if( pParse->nErr || db->mallocFailed ){ 5613 goto select_end; 5614 } 5615 assert( p->pEList!=0 ); 5616 #if SELECTTRACE_ENABLED 5617 if( sqlite3SelectTrace & 0x104 ){ 5618 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5619 sqlite3TreeViewSelect(0, p, 0); 5620 } 5621 #endif 5622 5623 if( pDest->eDest==SRT_Output ){ 5624 generateColumnNames(pParse, p); 5625 } 5626 5627 #ifndef SQLITE_OMIT_WINDOWFUNC 5628 if( sqlite3WindowRewrite(pParse, p) ){ 5629 goto select_end; 5630 } 5631 #if SELECTTRACE_ENABLED 5632 if( sqlite3SelectTrace & 0x108 ){ 5633 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5634 sqlite3TreeViewSelect(0, p, 0); 5635 } 5636 #endif 5637 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5638 pTabList = p->pSrc; 5639 isAgg = (p->selFlags & SF_Aggregate)!=0; 5640 memset(&sSort, 0, sizeof(sSort)); 5641 sSort.pOrderBy = p->pOrderBy; 5642 5643 /* Try to various optimizations (flattening subqueries, and strength 5644 ** reduction of join operators) in the FROM clause up into the main query 5645 */ 5646 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5647 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5648 struct SrcList_item *pItem = &pTabList->a[i]; 5649 Select *pSub = pItem->pSelect; 5650 Table *pTab = pItem->pTab; 5651 5652 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5653 ** of the LEFT JOIN used in the WHERE clause. 5654 */ 5655 if( (pItem->fg.jointype & JT_LEFT)!=0 5656 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5657 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5658 ){ 5659 SELECTTRACE(0x100,pParse,p, 5660 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5661 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5662 unsetJoinExpr(p->pWhere, pItem->iCursor); 5663 } 5664 5665 /* No futher action if this term of the FROM clause is no a subquery */ 5666 if( pSub==0 ) continue; 5667 5668 /* Catch mismatch in the declared columns of a view and the number of 5669 ** columns in the SELECT on the RHS */ 5670 if( pTab->nCol!=pSub->pEList->nExpr ){ 5671 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5672 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5673 goto select_end; 5674 } 5675 5676 /* Do not try to flatten an aggregate subquery. 5677 ** 5678 ** Flattening an aggregate subquery is only possible if the outer query 5679 ** is not a join. But if the outer query is not a join, then the subquery 5680 ** will be implemented as a co-routine and there is no advantage to 5681 ** flattening in that case. 5682 */ 5683 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5684 assert( pSub->pGroupBy==0 ); 5685 5686 /* If the outer query contains a "complex" result set (that is, 5687 ** if the result set of the outer query uses functions or subqueries) 5688 ** and if the subquery contains an ORDER BY clause and if 5689 ** it will be implemented as a co-routine, then do not flatten. This 5690 ** restriction allows SQL constructs like this: 5691 ** 5692 ** SELECT expensive_function(x) 5693 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5694 ** 5695 ** The expensive_function() is only computed on the 10 rows that 5696 ** are output, rather than every row of the table. 5697 ** 5698 ** The requirement that the outer query have a complex result set 5699 ** means that flattening does occur on simpler SQL constraints without 5700 ** the expensive_function() like: 5701 ** 5702 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5703 */ 5704 if( pSub->pOrderBy!=0 5705 && i==0 5706 && (p->selFlags & SF_ComplexResult)!=0 5707 && (pTabList->nSrc==1 5708 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5709 ){ 5710 continue; 5711 } 5712 5713 if( flattenSubquery(pParse, p, i, isAgg) ){ 5714 /* This subquery can be absorbed into its parent. */ 5715 i = -1; 5716 } 5717 pTabList = p->pSrc; 5718 if( db->mallocFailed ) goto select_end; 5719 if( !IgnorableOrderby(pDest) ){ 5720 sSort.pOrderBy = p->pOrderBy; 5721 } 5722 } 5723 #endif 5724 5725 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5726 /* Handle compound SELECT statements using the separate multiSelect() 5727 ** procedure. 5728 */ 5729 if( p->pPrior ){ 5730 rc = multiSelect(pParse, p, pDest); 5731 #if SELECTTRACE_ENABLED 5732 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5733 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5734 sqlite3TreeViewSelect(0, p, 0); 5735 } 5736 #endif 5737 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5738 return rc; 5739 } 5740 #endif 5741 5742 /* Do the WHERE-clause constant propagation optimization if this is 5743 ** a join. No need to speed time on this operation for non-join queries 5744 ** as the equivalent optimization will be handled by query planner in 5745 ** sqlite3WhereBegin(). 5746 */ 5747 if( pTabList->nSrc>1 5748 && OptimizationEnabled(db, SQLITE_PropagateConst) 5749 && propagateConstants(pParse, p) 5750 ){ 5751 #if SELECTTRACE_ENABLED 5752 if( sqlite3SelectTrace & 0x100 ){ 5753 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5754 sqlite3TreeViewSelect(0, p, 0); 5755 } 5756 #endif 5757 }else{ 5758 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5759 } 5760 5761 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5762 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5763 && countOfViewOptimization(pParse, p) 5764 ){ 5765 if( db->mallocFailed ) goto select_end; 5766 pEList = p->pEList; 5767 pTabList = p->pSrc; 5768 } 5769 #endif 5770 5771 /* For each term in the FROM clause, do two things: 5772 ** (1) Authorized unreferenced tables 5773 ** (2) Generate code for all sub-queries 5774 */ 5775 for(i=0; i<pTabList->nSrc; i++){ 5776 struct SrcList_item *pItem = &pTabList->a[i]; 5777 SelectDest dest; 5778 Select *pSub; 5779 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5780 const char *zSavedAuthContext; 5781 #endif 5782 5783 /* Issue SQLITE_READ authorizations with a fake column name for any 5784 ** tables that are referenced but from which no values are extracted. 5785 ** Examples of where these kinds of null SQLITE_READ authorizations 5786 ** would occur: 5787 ** 5788 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5789 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5790 ** 5791 ** The fake column name is an empty string. It is possible for a table to 5792 ** have a column named by the empty string, in which case there is no way to 5793 ** distinguish between an unreferenced table and an actual reference to the 5794 ** "" column. The original design was for the fake column name to be a NULL, 5795 ** which would be unambiguous. But legacy authorization callbacks might 5796 ** assume the column name is non-NULL and segfault. The use of an empty 5797 ** string for the fake column name seems safer. 5798 */ 5799 if( pItem->colUsed==0 ){ 5800 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5801 } 5802 5803 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5804 /* Generate code for all sub-queries in the FROM clause 5805 */ 5806 pSub = pItem->pSelect; 5807 if( pSub==0 ) continue; 5808 5809 /* Sometimes the code for a subquery will be generated more than 5810 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5811 ** for example. In that case, do not regenerate the code to manifest 5812 ** a view or the co-routine to implement a view. The first instance 5813 ** is sufficient, though the subroutine to manifest the view does need 5814 ** to be invoked again. */ 5815 if( pItem->addrFillSub ){ 5816 if( pItem->fg.viaCoroutine==0 ){ 5817 /* The subroutine that manifests the view might be a one-time routine, 5818 ** or it might need to be rerun on each iteration because it 5819 ** encodes a correlated subquery. */ 5820 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5821 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5822 } 5823 continue; 5824 } 5825 5826 /* Increment Parse.nHeight by the height of the largest expression 5827 ** tree referred to by this, the parent select. The child select 5828 ** may contain expression trees of at most 5829 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5830 ** more conservative than necessary, but much easier than enforcing 5831 ** an exact limit. 5832 */ 5833 pParse->nHeight += sqlite3SelectExprHeight(p); 5834 5835 /* Make copies of constant WHERE-clause terms in the outer query down 5836 ** inside the subquery. This can help the subquery to run more efficiently. 5837 */ 5838 if( OptimizationEnabled(db, SQLITE_PushDown) 5839 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5840 (pItem->fg.jointype & JT_OUTER)!=0) 5841 ){ 5842 #if SELECTTRACE_ENABLED 5843 if( sqlite3SelectTrace & 0x100 ){ 5844 SELECTTRACE(0x100,pParse,p, 5845 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 5846 sqlite3TreeViewSelect(0, p, 0); 5847 } 5848 #endif 5849 }else{ 5850 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5851 } 5852 5853 zSavedAuthContext = pParse->zAuthContext; 5854 pParse->zAuthContext = pItem->zName; 5855 5856 /* Generate code to implement the subquery 5857 ** 5858 ** The subquery is implemented as a co-routine if the subquery is 5859 ** guaranteed to be the outer loop (so that it does not need to be 5860 ** computed more than once) 5861 ** 5862 ** TODO: Are there other reasons beside (1) to use a co-routine 5863 ** implementation? 5864 */ 5865 if( i==0 5866 && (pTabList->nSrc==1 5867 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5868 ){ 5869 /* Implement a co-routine that will return a single row of the result 5870 ** set on each invocation. 5871 */ 5872 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5873 5874 pItem->regReturn = ++pParse->nMem; 5875 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5876 VdbeComment((v, "%s", pItem->pTab->zName)); 5877 pItem->addrFillSub = addrTop; 5878 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5879 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 5880 sqlite3Select(pParse, pSub, &dest); 5881 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5882 pItem->fg.viaCoroutine = 1; 5883 pItem->regResult = dest.iSdst; 5884 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5885 sqlite3VdbeJumpHere(v, addrTop-1); 5886 sqlite3ClearTempRegCache(pParse); 5887 }else{ 5888 /* Generate a subroutine that will fill an ephemeral table with 5889 ** the content of this subquery. pItem->addrFillSub will point 5890 ** to the address of the generated subroutine. pItem->regReturn 5891 ** is a register allocated to hold the subroutine return address 5892 */ 5893 int topAddr; 5894 int onceAddr = 0; 5895 int retAddr; 5896 struct SrcList_item *pPrior; 5897 5898 assert( pItem->addrFillSub==0 ); 5899 pItem->regReturn = ++pParse->nMem; 5900 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5901 pItem->addrFillSub = topAddr+1; 5902 if( pItem->fg.isCorrelated==0 ){ 5903 /* If the subquery is not correlated and if we are not inside of 5904 ** a trigger, then we only need to compute the value of the subquery 5905 ** once. */ 5906 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5907 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5908 }else{ 5909 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5910 } 5911 pPrior = isSelfJoinView(pTabList, pItem); 5912 if( pPrior ){ 5913 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5914 assert( pPrior->pSelect!=0 ); 5915 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5916 }else{ 5917 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5918 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 5919 sqlite3Select(pParse, pSub, &dest); 5920 } 5921 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5922 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5923 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5924 VdbeComment((v, "end %s", pItem->pTab->zName)); 5925 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5926 sqlite3ClearTempRegCache(pParse); 5927 } 5928 if( db->mallocFailed ) goto select_end; 5929 pParse->nHeight -= sqlite3SelectExprHeight(p); 5930 pParse->zAuthContext = zSavedAuthContext; 5931 #endif 5932 } 5933 5934 /* Various elements of the SELECT copied into local variables for 5935 ** convenience */ 5936 pEList = p->pEList; 5937 pWhere = p->pWhere; 5938 pGroupBy = p->pGroupBy; 5939 pHaving = p->pHaving; 5940 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5941 5942 #if SELECTTRACE_ENABLED 5943 if( sqlite3SelectTrace & 0x400 ){ 5944 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5945 sqlite3TreeViewSelect(0, p, 0); 5946 } 5947 #endif 5948 5949 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5950 ** if the select-list is the same as the ORDER BY list, then this query 5951 ** can be rewritten as a GROUP BY. In other words, this: 5952 ** 5953 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5954 ** 5955 ** is transformed to: 5956 ** 5957 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5958 ** 5959 ** The second form is preferred as a single index (or temp-table) may be 5960 ** used for both the ORDER BY and DISTINCT processing. As originally 5961 ** written the query must use a temp-table for at least one of the ORDER 5962 ** BY and DISTINCT, and an index or separate temp-table for the other. 5963 */ 5964 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5965 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5966 ){ 5967 p->selFlags &= ~SF_Distinct; 5968 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5969 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5970 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5971 ** original setting of the SF_Distinct flag, not the current setting */ 5972 assert( sDistinct.isTnct ); 5973 5974 #if SELECTTRACE_ENABLED 5975 if( sqlite3SelectTrace & 0x400 ){ 5976 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5977 sqlite3TreeViewSelect(0, p, 0); 5978 } 5979 #endif 5980 } 5981 5982 /* If there is an ORDER BY clause, then create an ephemeral index to 5983 ** do the sorting. But this sorting ephemeral index might end up 5984 ** being unused if the data can be extracted in pre-sorted order. 5985 ** If that is the case, then the OP_OpenEphemeral instruction will be 5986 ** changed to an OP_Noop once we figure out that the sorting index is 5987 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5988 ** that change. 5989 */ 5990 if( sSort.pOrderBy ){ 5991 KeyInfo *pKeyInfo; 5992 pKeyInfo = sqlite3KeyInfoFromExprList( 5993 pParse, sSort.pOrderBy, 0, pEList->nExpr); 5994 sSort.iECursor = pParse->nTab++; 5995 sSort.addrSortIndex = 5996 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5997 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5998 (char*)pKeyInfo, P4_KEYINFO 5999 ); 6000 }else{ 6001 sSort.addrSortIndex = -1; 6002 } 6003 6004 /* If the output is destined for a temporary table, open that table. 6005 */ 6006 if( pDest->eDest==SRT_EphemTab ){ 6007 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6008 } 6009 6010 /* Set the limiter. 6011 */ 6012 iEnd = sqlite3VdbeMakeLabel(v); 6013 if( (p->selFlags & SF_FixedLimit)==0 ){ 6014 p->nSelectRow = 320; /* 4 billion rows */ 6015 } 6016 computeLimitRegisters(pParse, p, iEnd); 6017 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6018 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6019 sSort.sortFlags |= SORTFLAG_UseSorter; 6020 } 6021 6022 /* Open an ephemeral index to use for the distinct set. 6023 */ 6024 if( p->selFlags & SF_Distinct ){ 6025 sDistinct.tabTnct = pParse->nTab++; 6026 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6027 sDistinct.tabTnct, 0, 0, 6028 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6029 P4_KEYINFO); 6030 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6031 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6032 }else{ 6033 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6034 } 6035 6036 if( !isAgg && pGroupBy==0 ){ 6037 /* No aggregate functions and no GROUP BY clause */ 6038 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6039 | (p->selFlags & SF_FixedLimit); 6040 #ifndef SQLITE_OMIT_WINDOWFUNC 6041 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6042 if( pWin ){ 6043 sqlite3WindowCodeInit(pParse, pWin); 6044 } 6045 #endif 6046 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6047 6048 6049 /* Begin the database scan. */ 6050 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6051 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6052 p->pEList, wctrlFlags, p->nSelectRow); 6053 if( pWInfo==0 ) goto select_end; 6054 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6055 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6056 } 6057 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6058 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6059 } 6060 if( sSort.pOrderBy ){ 6061 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6062 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6063 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6064 sSort.pOrderBy = 0; 6065 } 6066 } 6067 6068 /* If sorting index that was created by a prior OP_OpenEphemeral 6069 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6070 ** into an OP_Noop. 6071 */ 6072 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6073 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6074 } 6075 6076 assert( p->pEList==pEList ); 6077 #ifndef SQLITE_OMIT_WINDOWFUNC 6078 if( pWin ){ 6079 int addrGosub = sqlite3VdbeMakeLabel(v); 6080 int iCont = sqlite3VdbeMakeLabel(v); 6081 int iBreak = sqlite3VdbeMakeLabel(v); 6082 int regGosub = ++pParse->nMem; 6083 6084 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6085 6086 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6087 sqlite3VdbeResolveLabel(v, addrGosub); 6088 VdbeNoopComment((v, "inner-loop subroutine")); 6089 sSort.labelOBLopt = 0; 6090 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6091 sqlite3VdbeResolveLabel(v, iCont); 6092 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6093 VdbeComment((v, "end inner-loop subroutine")); 6094 sqlite3VdbeResolveLabel(v, iBreak); 6095 }else 6096 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6097 { 6098 /* Use the standard inner loop. */ 6099 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6100 sqlite3WhereContinueLabel(pWInfo), 6101 sqlite3WhereBreakLabel(pWInfo)); 6102 6103 /* End the database scan loop. 6104 */ 6105 sqlite3WhereEnd(pWInfo); 6106 } 6107 }else{ 6108 /* This case when there exist aggregate functions or a GROUP BY clause 6109 ** or both */ 6110 NameContext sNC; /* Name context for processing aggregate information */ 6111 int iAMem; /* First Mem address for storing current GROUP BY */ 6112 int iBMem; /* First Mem address for previous GROUP BY */ 6113 int iUseFlag; /* Mem address holding flag indicating that at least 6114 ** one row of the input to the aggregator has been 6115 ** processed */ 6116 int iAbortFlag; /* Mem address which causes query abort if positive */ 6117 int groupBySort; /* Rows come from source in GROUP BY order */ 6118 int addrEnd; /* End of processing for this SELECT */ 6119 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6120 int sortOut = 0; /* Output register from the sorter */ 6121 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6122 6123 /* Remove any and all aliases between the result set and the 6124 ** GROUP BY clause. 6125 */ 6126 if( pGroupBy ){ 6127 int k; /* Loop counter */ 6128 struct ExprList_item *pItem; /* For looping over expression in a list */ 6129 6130 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6131 pItem->u.x.iAlias = 0; 6132 } 6133 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6134 pItem->u.x.iAlias = 0; 6135 } 6136 assert( 66==sqlite3LogEst(100) ); 6137 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6138 }else{ 6139 assert( 0==sqlite3LogEst(1) ); 6140 p->nSelectRow = 0; 6141 } 6142 6143 /* If there is both a GROUP BY and an ORDER BY clause and they are 6144 ** identical, then it may be possible to disable the ORDER BY clause 6145 ** on the grounds that the GROUP BY will cause elements to come out 6146 ** in the correct order. It also may not - the GROUP BY might use a 6147 ** database index that causes rows to be grouped together as required 6148 ** but not actually sorted. Either way, record the fact that the 6149 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6150 ** variable. */ 6151 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6152 orderByGrp = 1; 6153 } 6154 6155 /* Create a label to jump to when we want to abort the query */ 6156 addrEnd = sqlite3VdbeMakeLabel(v); 6157 6158 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6159 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6160 ** SELECT statement. 6161 */ 6162 memset(&sNC, 0, sizeof(sNC)); 6163 sNC.pParse = pParse; 6164 sNC.pSrcList = pTabList; 6165 sNC.uNC.pAggInfo = &sAggInfo; 6166 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6167 sAggInfo.mnReg = pParse->nMem+1; 6168 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6169 sAggInfo.pGroupBy = pGroupBy; 6170 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6171 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6172 if( pHaving ){ 6173 if( pGroupBy ){ 6174 assert( pWhere==p->pWhere ); 6175 assert( pHaving==p->pHaving ); 6176 assert( pGroupBy==p->pGroupBy ); 6177 havingToWhere(pParse, p); 6178 pWhere = p->pWhere; 6179 } 6180 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6181 } 6182 sAggInfo.nAccumulator = sAggInfo.nColumn; 6183 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6184 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6185 }else{ 6186 minMaxFlag = WHERE_ORDERBY_NORMAL; 6187 } 6188 for(i=0; i<sAggInfo.nFunc; i++){ 6189 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 6190 sNC.ncFlags |= NC_InAggFunc; 6191 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 6192 sNC.ncFlags &= ~NC_InAggFunc; 6193 } 6194 sAggInfo.mxReg = pParse->nMem; 6195 if( db->mallocFailed ) goto select_end; 6196 #if SELECTTRACE_ENABLED 6197 if( sqlite3SelectTrace & 0x400 ){ 6198 int ii; 6199 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6200 sqlite3TreeViewSelect(0, p, 0); 6201 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6202 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6203 ii, sAggInfo.aCol[ii].iMem); 6204 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6205 } 6206 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6207 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6208 ii, sAggInfo.aFunc[ii].iMem); 6209 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6210 } 6211 } 6212 #endif 6213 6214 6215 /* Processing for aggregates with GROUP BY is very different and 6216 ** much more complex than aggregates without a GROUP BY. 6217 */ 6218 if( pGroupBy ){ 6219 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6220 int addr1; /* A-vs-B comparision jump */ 6221 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6222 int regOutputRow; /* Return address register for output subroutine */ 6223 int addrSetAbort; /* Set the abort flag and return */ 6224 int addrTopOfLoop; /* Top of the input loop */ 6225 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6226 int addrReset; /* Subroutine for resetting the accumulator */ 6227 int regReset; /* Return address register for reset subroutine */ 6228 6229 /* If there is a GROUP BY clause we might need a sorting index to 6230 ** implement it. Allocate that sorting index now. If it turns out 6231 ** that we do not need it after all, the OP_SorterOpen instruction 6232 ** will be converted into a Noop. 6233 */ 6234 sAggInfo.sortingIdx = pParse->nTab++; 6235 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6236 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6237 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6238 0, (char*)pKeyInfo, P4_KEYINFO); 6239 6240 /* Initialize memory locations used by GROUP BY aggregate processing 6241 */ 6242 iUseFlag = ++pParse->nMem; 6243 iAbortFlag = ++pParse->nMem; 6244 regOutputRow = ++pParse->nMem; 6245 addrOutputRow = sqlite3VdbeMakeLabel(v); 6246 regReset = ++pParse->nMem; 6247 addrReset = sqlite3VdbeMakeLabel(v); 6248 iAMem = pParse->nMem + 1; 6249 pParse->nMem += pGroupBy->nExpr; 6250 iBMem = pParse->nMem + 1; 6251 pParse->nMem += pGroupBy->nExpr; 6252 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6253 VdbeComment((v, "clear abort flag")); 6254 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6255 6256 /* Begin a loop that will extract all source rows in GROUP BY order. 6257 ** This might involve two separate loops with an OP_Sort in between, or 6258 ** it might be a single loop that uses an index to extract information 6259 ** in the right order to begin with. 6260 */ 6261 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6262 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6263 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6264 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6265 ); 6266 if( pWInfo==0 ) goto select_end; 6267 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6268 /* The optimizer is able to deliver rows in group by order so 6269 ** we do not have to sort. The OP_OpenEphemeral table will be 6270 ** cancelled later because we still need to use the pKeyInfo 6271 */ 6272 groupBySort = 0; 6273 }else{ 6274 /* Rows are coming out in undetermined order. We have to push 6275 ** each row into a sorting index, terminate the first loop, 6276 ** then loop over the sorting index in order to get the output 6277 ** in sorted order 6278 */ 6279 int regBase; 6280 int regRecord; 6281 int nCol; 6282 int nGroupBy; 6283 6284 explainTempTable(pParse, 6285 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6286 "DISTINCT" : "GROUP BY"); 6287 6288 groupBySort = 1; 6289 nGroupBy = pGroupBy->nExpr; 6290 nCol = nGroupBy; 6291 j = nGroupBy; 6292 for(i=0; i<sAggInfo.nColumn; i++){ 6293 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6294 nCol++; 6295 j++; 6296 } 6297 } 6298 regBase = sqlite3GetTempRange(pParse, nCol); 6299 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6300 j = nGroupBy; 6301 for(i=0; i<sAggInfo.nColumn; i++){ 6302 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6303 if( pCol->iSorterColumn>=j ){ 6304 int r1 = j + regBase; 6305 sqlite3ExprCodeGetColumnOfTable(v, 6306 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6307 j++; 6308 } 6309 } 6310 regRecord = sqlite3GetTempReg(pParse); 6311 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6312 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6313 sqlite3ReleaseTempReg(pParse, regRecord); 6314 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6315 sqlite3WhereEnd(pWInfo); 6316 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6317 sortOut = sqlite3GetTempReg(pParse); 6318 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6319 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6320 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6321 sAggInfo.useSortingIdx = 1; 6322 } 6323 6324 /* If the index or temporary table used by the GROUP BY sort 6325 ** will naturally deliver rows in the order required by the ORDER BY 6326 ** clause, cancel the ephemeral table open coded earlier. 6327 ** 6328 ** This is an optimization - the correct answer should result regardless. 6329 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6330 ** disable this optimization for testing purposes. */ 6331 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6332 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6333 ){ 6334 sSort.pOrderBy = 0; 6335 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6336 } 6337 6338 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6339 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6340 ** Then compare the current GROUP BY terms against the GROUP BY terms 6341 ** from the previous row currently stored in a0, a1, a2... 6342 */ 6343 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6344 if( groupBySort ){ 6345 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6346 sortOut, sortPTab); 6347 } 6348 for(j=0; j<pGroupBy->nExpr; j++){ 6349 if( groupBySort ){ 6350 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6351 }else{ 6352 sAggInfo.directMode = 1; 6353 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6354 } 6355 } 6356 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6357 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6358 addr1 = sqlite3VdbeCurrentAddr(v); 6359 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6360 6361 /* Generate code that runs whenever the GROUP BY changes. 6362 ** Changes in the GROUP BY are detected by the previous code 6363 ** block. If there were no changes, this block is skipped. 6364 ** 6365 ** This code copies current group by terms in b0,b1,b2,... 6366 ** over to a0,a1,a2. It then calls the output subroutine 6367 ** and resets the aggregate accumulator registers in preparation 6368 ** for the next GROUP BY batch. 6369 */ 6370 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6371 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6372 VdbeComment((v, "output one row")); 6373 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6374 VdbeComment((v, "check abort flag")); 6375 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6376 VdbeComment((v, "reset accumulator")); 6377 6378 /* Update the aggregate accumulators based on the content of 6379 ** the current row 6380 */ 6381 sqlite3VdbeJumpHere(v, addr1); 6382 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6383 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6384 VdbeComment((v, "indicate data in accumulator")); 6385 6386 /* End of the loop 6387 */ 6388 if( groupBySort ){ 6389 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6390 VdbeCoverage(v); 6391 }else{ 6392 sqlite3WhereEnd(pWInfo); 6393 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6394 } 6395 6396 /* Output the final row of result 6397 */ 6398 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6399 VdbeComment((v, "output final row")); 6400 6401 /* Jump over the subroutines 6402 */ 6403 sqlite3VdbeGoto(v, addrEnd); 6404 6405 /* Generate a subroutine that outputs a single row of the result 6406 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6407 ** is less than or equal to zero, the subroutine is a no-op. If 6408 ** the processing calls for the query to abort, this subroutine 6409 ** increments the iAbortFlag memory location before returning in 6410 ** order to signal the caller to abort. 6411 */ 6412 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6413 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6414 VdbeComment((v, "set abort flag")); 6415 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6416 sqlite3VdbeResolveLabel(v, addrOutputRow); 6417 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6418 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6419 VdbeCoverage(v); 6420 VdbeComment((v, "Groupby result generator entry point")); 6421 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6422 finalizeAggFunctions(pParse, &sAggInfo); 6423 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6424 selectInnerLoop(pParse, p, -1, &sSort, 6425 &sDistinct, pDest, 6426 addrOutputRow+1, addrSetAbort); 6427 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6428 VdbeComment((v, "end groupby result generator")); 6429 6430 /* Generate a subroutine that will reset the group-by accumulator 6431 */ 6432 sqlite3VdbeResolveLabel(v, addrReset); 6433 resetAccumulator(pParse, &sAggInfo); 6434 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6435 VdbeComment((v, "indicate accumulator empty")); 6436 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6437 6438 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6439 else { 6440 #ifndef SQLITE_OMIT_BTREECOUNT 6441 Table *pTab; 6442 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6443 /* If isSimpleCount() returns a pointer to a Table structure, then 6444 ** the SQL statement is of the form: 6445 ** 6446 ** SELECT count(*) FROM <tbl> 6447 ** 6448 ** where the Table structure returned represents table <tbl>. 6449 ** 6450 ** This statement is so common that it is optimized specially. The 6451 ** OP_Count instruction is executed either on the intkey table that 6452 ** contains the data for table <tbl> or on one of its indexes. It 6453 ** is better to execute the op on an index, as indexes are almost 6454 ** always spread across less pages than their corresponding tables. 6455 */ 6456 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6457 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6458 Index *pIdx; /* Iterator variable */ 6459 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6460 Index *pBest = 0; /* Best index found so far */ 6461 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6462 6463 sqlite3CodeVerifySchema(pParse, iDb); 6464 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6465 6466 /* Search for the index that has the lowest scan cost. 6467 ** 6468 ** (2011-04-15) Do not do a full scan of an unordered index. 6469 ** 6470 ** (2013-10-03) Do not count the entries in a partial index. 6471 ** 6472 ** In practice the KeyInfo structure will not be used. It is only 6473 ** passed to keep OP_OpenRead happy. 6474 */ 6475 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6476 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6477 if( pIdx->bUnordered==0 6478 && pIdx->szIdxRow<pTab->szTabRow 6479 && pIdx->pPartIdxWhere==0 6480 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6481 ){ 6482 pBest = pIdx; 6483 } 6484 } 6485 if( pBest ){ 6486 iRoot = pBest->tnum; 6487 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6488 } 6489 6490 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6491 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6492 if( pKeyInfo ){ 6493 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6494 } 6495 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6496 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6497 explainSimpleCount(pParse, pTab, pBest); 6498 }else 6499 #endif /* SQLITE_OMIT_BTREECOUNT */ 6500 { 6501 int regAcc = 0; /* "populate accumulators" flag */ 6502 6503 /* If there are accumulator registers but no min() or max() functions, 6504 ** allocate register regAcc. Register regAcc will contain 0 the first 6505 ** time the inner loop runs, and 1 thereafter. The code generated 6506 ** by updateAccumulator() only updates the accumulator registers if 6507 ** regAcc contains 0. */ 6508 if( sAggInfo.nAccumulator ){ 6509 for(i=0; i<sAggInfo.nFunc; i++){ 6510 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6511 } 6512 if( i==sAggInfo.nFunc ){ 6513 regAcc = ++pParse->nMem; 6514 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6515 } 6516 } 6517 6518 /* This case runs if the aggregate has no GROUP BY clause. The 6519 ** processing is much simpler since there is only a single row 6520 ** of output. 6521 */ 6522 assert( p->pGroupBy==0 ); 6523 resetAccumulator(pParse, &sAggInfo); 6524 6525 /* If this query is a candidate for the min/max optimization, then 6526 ** minMaxFlag will have been previously set to either 6527 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6528 ** be an appropriate ORDER BY expression for the optimization. 6529 */ 6530 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6531 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6532 6533 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6534 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6535 0, minMaxFlag, 0); 6536 if( pWInfo==0 ){ 6537 goto select_end; 6538 } 6539 updateAccumulator(pParse, regAcc, &sAggInfo); 6540 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6541 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6542 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6543 VdbeComment((v, "%s() by index", 6544 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6545 } 6546 sqlite3WhereEnd(pWInfo); 6547 finalizeAggFunctions(pParse, &sAggInfo); 6548 } 6549 6550 sSort.pOrderBy = 0; 6551 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6552 selectInnerLoop(pParse, p, -1, 0, 0, 6553 pDest, addrEnd, addrEnd); 6554 } 6555 sqlite3VdbeResolveLabel(v, addrEnd); 6556 6557 } /* endif aggregate query */ 6558 6559 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6560 explainTempTable(pParse, "DISTINCT"); 6561 } 6562 6563 /* If there is an ORDER BY clause, then we need to sort the results 6564 ** and send them to the callback one by one. 6565 */ 6566 if( sSort.pOrderBy ){ 6567 explainTempTable(pParse, 6568 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6569 assert( p->pEList==pEList ); 6570 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6571 } 6572 6573 /* Jump here to skip this query 6574 */ 6575 sqlite3VdbeResolveLabel(v, iEnd); 6576 6577 /* The SELECT has been coded. If there is an error in the Parse structure, 6578 ** set the return code to 1. Otherwise 0. */ 6579 rc = (pParse->nErr>0); 6580 6581 /* Control jumps to here if an error is encountered above, or upon 6582 ** successful coding of the SELECT. 6583 */ 6584 select_end: 6585 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6586 sqlite3DbFree(db, sAggInfo.aCol); 6587 sqlite3DbFree(db, sAggInfo.aFunc); 6588 #if SELECTTRACE_ENABLED 6589 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6590 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6591 sqlite3TreeViewSelect(0, p, 0); 6592 } 6593 #endif 6594 ExplainQueryPlanPop(pParse); 6595 return rc; 6596 } 6597