1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.370 2007/12/13 21:54:11 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 37 /* 38 ** Allocate a new Select structure and return a pointer to that 39 ** structure. 40 */ 41 Select *sqlite3SelectNew( 42 Parse *pParse, /* Parsing context */ 43 ExprList *pEList, /* which columns to include in the result */ 44 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 45 Expr *pWhere, /* the WHERE clause */ 46 ExprList *pGroupBy, /* the GROUP BY clause */ 47 Expr *pHaving, /* the HAVING clause */ 48 ExprList *pOrderBy, /* the ORDER BY clause */ 49 int isDistinct, /* true if the DISTINCT keyword is present */ 50 Expr *pLimit, /* LIMIT value. NULL means not used */ 51 Expr *pOffset /* OFFSET value. NULL means no offset */ 52 ){ 53 Select *pNew; 54 Select standin; 55 sqlite3 *db = pParse->db; 56 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 57 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 58 if( pNew==0 ){ 59 pNew = &standin; 60 memset(pNew, 0, sizeof(*pNew)); 61 } 62 if( pEList==0 ){ 63 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 64 } 65 pNew->pEList = pEList; 66 pNew->pSrc = pSrc; 67 pNew->pWhere = pWhere; 68 pNew->pGroupBy = pGroupBy; 69 pNew->pHaving = pHaving; 70 pNew->pOrderBy = pOrderBy; 71 pNew->isDistinct = isDistinct; 72 pNew->op = TK_SELECT; 73 assert( pOffset==0 || pLimit!=0 ); 74 pNew->pLimit = pLimit; 75 pNew->pOffset = pOffset; 76 pNew->iLimit = -1; 77 pNew->iOffset = -1; 78 pNew->addrOpenEphm[0] = -1; 79 pNew->addrOpenEphm[1] = -1; 80 pNew->addrOpenEphm[2] = -1; 81 if( pNew==&standin) { 82 clearSelect(pNew); 83 pNew = 0; 84 } 85 return pNew; 86 } 87 88 /* 89 ** Delete the given Select structure and all of its substructures. 90 */ 91 void sqlite3SelectDelete(Select *p){ 92 if( p ){ 93 clearSelect(p); 94 sqlite3_free(p); 95 } 96 } 97 98 /* 99 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 100 ** type of join. Return an integer constant that expresses that type 101 ** in terms of the following bit values: 102 ** 103 ** JT_INNER 104 ** JT_CROSS 105 ** JT_OUTER 106 ** JT_NATURAL 107 ** JT_LEFT 108 ** JT_RIGHT 109 ** 110 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 111 ** 112 ** If an illegal or unsupported join type is seen, then still return 113 ** a join type, but put an error in the pParse structure. 114 */ 115 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 116 int jointype = 0; 117 Token *apAll[3]; 118 Token *p; 119 static const struct { 120 const char zKeyword[8]; 121 u8 nChar; 122 u8 code; 123 } keywords[] = { 124 { "natural", 7, JT_NATURAL }, 125 { "left", 4, JT_LEFT|JT_OUTER }, 126 { "right", 5, JT_RIGHT|JT_OUTER }, 127 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 128 { "outer", 5, JT_OUTER }, 129 { "inner", 5, JT_INNER }, 130 { "cross", 5, JT_INNER|JT_CROSS }, 131 }; 132 int i, j; 133 apAll[0] = pA; 134 apAll[1] = pB; 135 apAll[2] = pC; 136 for(i=0; i<3 && apAll[i]; i++){ 137 p = apAll[i]; 138 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 139 if( p->n==keywords[j].nChar 140 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 141 jointype |= keywords[j].code; 142 break; 143 } 144 } 145 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 146 jointype |= JT_ERROR; 147 break; 148 } 149 } 150 if( 151 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 152 (jointype & JT_ERROR)!=0 153 ){ 154 const char *zSp1 = " "; 155 const char *zSp2 = " "; 156 if( pB==0 ){ zSp1++; } 157 if( pC==0 ){ zSp2++; } 158 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 159 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 160 jointype = JT_INNER; 161 }else if( jointype & JT_RIGHT ){ 162 sqlite3ErrorMsg(pParse, 163 "RIGHT and FULL OUTER JOINs are not currently supported"); 164 jointype = JT_INNER; 165 } 166 return jointype; 167 } 168 169 /* 170 ** Return the index of a column in a table. Return -1 if the column 171 ** is not contained in the table. 172 */ 173 static int columnIndex(Table *pTab, const char *zCol){ 174 int i; 175 for(i=0; i<pTab->nCol; i++){ 176 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 177 } 178 return -1; 179 } 180 181 /* 182 ** Set the value of a token to a '\000'-terminated string. 183 */ 184 static void setToken(Token *p, const char *z){ 185 p->z = (u8*)z; 186 p->n = z ? strlen(z) : 0; 187 p->dyn = 0; 188 } 189 190 /* 191 ** Set the token to the double-quoted and escaped version of the string pointed 192 ** to by z. For example; 193 ** 194 ** {a"bc} -> {"a""bc"} 195 */ 196 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ 197 p->z = (u8 *)sqlite3MPrintf(0, "\"%w\"", z); 198 p->dyn = 1; 199 if( p->z ){ 200 p->n = strlen((char *)p->z); 201 }else{ 202 pParse->db->mallocFailed = 1; 203 } 204 } 205 206 /* 207 ** Create an expression node for an identifier with the name of zName 208 */ 209 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 210 Token dummy; 211 setToken(&dummy, zName); 212 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 213 } 214 215 216 /* 217 ** Add a term to the WHERE expression in *ppExpr that requires the 218 ** zCol column to be equal in the two tables pTab1 and pTab2. 219 */ 220 static void addWhereTerm( 221 Parse *pParse, /* Parsing context */ 222 const char *zCol, /* Name of the column */ 223 const Table *pTab1, /* First table */ 224 const char *zAlias1, /* Alias for first table. May be NULL */ 225 const Table *pTab2, /* Second table */ 226 const char *zAlias2, /* Alias for second table. May be NULL */ 227 int iRightJoinTable, /* VDBE cursor for the right table */ 228 Expr **ppExpr /* Add the equality term to this expression */ 229 ){ 230 Expr *pE1a, *pE1b, *pE1c; 231 Expr *pE2a, *pE2b, *pE2c; 232 Expr *pE; 233 234 pE1a = sqlite3CreateIdExpr(pParse, zCol); 235 pE2a = sqlite3CreateIdExpr(pParse, zCol); 236 if( zAlias1==0 ){ 237 zAlias1 = pTab1->zName; 238 } 239 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 240 if( zAlias2==0 ){ 241 zAlias2 = pTab2->zName; 242 } 243 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 244 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 245 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 246 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 247 if( pE ){ 248 ExprSetProperty(pE, EP_FromJoin); 249 pE->iRightJoinTable = iRightJoinTable; 250 } 251 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 252 } 253 254 /* 255 ** Set the EP_FromJoin property on all terms of the given expression. 256 ** And set the Expr.iRightJoinTable to iTable for every term in the 257 ** expression. 258 ** 259 ** The EP_FromJoin property is used on terms of an expression to tell 260 ** the LEFT OUTER JOIN processing logic that this term is part of the 261 ** join restriction specified in the ON or USING clause and not a part 262 ** of the more general WHERE clause. These terms are moved over to the 263 ** WHERE clause during join processing but we need to remember that they 264 ** originated in the ON or USING clause. 265 ** 266 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 267 ** expression depends on table iRightJoinTable even if that table is not 268 ** explicitly mentioned in the expression. That information is needed 269 ** for cases like this: 270 ** 271 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 272 ** 273 ** The where clause needs to defer the handling of the t1.x=5 274 ** term until after the t2 loop of the join. In that way, a 275 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 276 ** defer the handling of t1.x=5, it will be processed immediately 277 ** after the t1 loop and rows with t1.x!=5 will never appear in 278 ** the output, which is incorrect. 279 */ 280 static void setJoinExpr(Expr *p, int iTable){ 281 while( p ){ 282 ExprSetProperty(p, EP_FromJoin); 283 p->iRightJoinTable = iTable; 284 setJoinExpr(p->pLeft, iTable); 285 p = p->pRight; 286 } 287 } 288 289 /* 290 ** This routine processes the join information for a SELECT statement. 291 ** ON and USING clauses are converted into extra terms of the WHERE clause. 292 ** NATURAL joins also create extra WHERE clause terms. 293 ** 294 ** The terms of a FROM clause are contained in the Select.pSrc structure. 295 ** The left most table is the first entry in Select.pSrc. The right-most 296 ** table is the last entry. The join operator is held in the entry to 297 ** the left. Thus entry 0 contains the join operator for the join between 298 ** entries 0 and 1. Any ON or USING clauses associated with the join are 299 ** also attached to the left entry. 300 ** 301 ** This routine returns the number of errors encountered. 302 */ 303 static int sqliteProcessJoin(Parse *pParse, Select *p){ 304 SrcList *pSrc; /* All tables in the FROM clause */ 305 int i, j; /* Loop counters */ 306 struct SrcList_item *pLeft; /* Left table being joined */ 307 struct SrcList_item *pRight; /* Right table being joined */ 308 309 pSrc = p->pSrc; 310 pLeft = &pSrc->a[0]; 311 pRight = &pLeft[1]; 312 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 313 Table *pLeftTab = pLeft->pTab; 314 Table *pRightTab = pRight->pTab; 315 316 if( pLeftTab==0 || pRightTab==0 ) continue; 317 318 /* When the NATURAL keyword is present, add WHERE clause terms for 319 ** every column that the two tables have in common. 320 */ 321 if( pRight->jointype & JT_NATURAL ){ 322 if( pRight->pOn || pRight->pUsing ){ 323 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 324 "an ON or USING clause", 0); 325 return 1; 326 } 327 for(j=0; j<pLeftTab->nCol; j++){ 328 char *zName = pLeftTab->aCol[j].zName; 329 if( columnIndex(pRightTab, zName)>=0 ){ 330 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 331 pRightTab, pRight->zAlias, 332 pRight->iCursor, &p->pWhere); 333 334 } 335 } 336 } 337 338 /* Disallow both ON and USING clauses in the same join 339 */ 340 if( pRight->pOn && pRight->pUsing ){ 341 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 342 "clauses in the same join"); 343 return 1; 344 } 345 346 /* Add the ON clause to the end of the WHERE clause, connected by 347 ** an AND operator. 348 */ 349 if( pRight->pOn ){ 350 setJoinExpr(pRight->pOn, pRight->iCursor); 351 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 352 pRight->pOn = 0; 353 } 354 355 /* Create extra terms on the WHERE clause for each column named 356 ** in the USING clause. Example: If the two tables to be joined are 357 ** A and B and the USING clause names X, Y, and Z, then add this 358 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 359 ** Report an error if any column mentioned in the USING clause is 360 ** not contained in both tables to be joined. 361 */ 362 if( pRight->pUsing ){ 363 IdList *pList = pRight->pUsing; 364 for(j=0; j<pList->nId; j++){ 365 char *zName = pList->a[j].zName; 366 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 367 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 368 "not present in both tables", zName); 369 return 1; 370 } 371 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 372 pRightTab, pRight->zAlias, 373 pRight->iCursor, &p->pWhere); 374 } 375 } 376 } 377 return 0; 378 } 379 380 /* 381 ** Insert code into "v" that will push the record on the top of the 382 ** stack into the sorter. 383 */ 384 static void pushOntoSorter( 385 Parse *pParse, /* Parser context */ 386 ExprList *pOrderBy, /* The ORDER BY clause */ 387 Select *pSelect /* The whole SELECT statement */ 388 ){ 389 Vdbe *v = pParse->pVdbe; 390 sqlite3ExprCodeExprList(pParse, pOrderBy); 391 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); 392 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); 393 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); 394 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); 395 if( pSelect->iLimit>=0 ){ 396 int addr1, addr2; 397 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); 398 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); 399 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 400 sqlite3VdbeJumpHere(v, addr1); 401 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); 402 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); 403 sqlite3VdbeJumpHere(v, addr2); 404 pSelect->iLimit = -1; 405 } 406 } 407 408 /* 409 ** Add code to implement the OFFSET 410 */ 411 static void codeOffset( 412 Vdbe *v, /* Generate code into this VM */ 413 Select *p, /* The SELECT statement being coded */ 414 int iContinue, /* Jump here to skip the current record */ 415 int nPop /* Number of times to pop stack when jumping */ 416 ){ 417 if( p->iOffset>=0 && iContinue!=0 ){ 418 int addr; 419 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); 420 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); 421 if( nPop>0 ){ 422 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); 423 } 424 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); 425 VdbeComment((v, "# skip OFFSET records")); 426 sqlite3VdbeJumpHere(v, addr); 427 } 428 } 429 430 /* 431 ** Add code that will check to make sure the top N elements of the 432 ** stack are distinct. iTab is a sorting index that holds previously 433 ** seen combinations of the N values. A new entry is made in iTab 434 ** if the current N values are new. 435 ** 436 ** A jump to addrRepeat is made and the N+1 values are popped from the 437 ** stack if the top N elements are not distinct. 438 */ 439 static void codeDistinct( 440 Vdbe *v, /* Generate code into this VM */ 441 int iTab, /* A sorting index used to test for distinctness */ 442 int addrRepeat, /* Jump to here if not distinct */ 443 int N /* The top N elements of the stack must be distinct */ 444 ){ 445 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); 446 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); 447 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); 448 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); 449 VdbeComment((v, "# skip indistinct records")); 450 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); 451 } 452 453 /* 454 ** Generate an error message when a SELECT is used within a subexpression 455 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 456 ** column. We do this in a subroutine because the error occurs in multiple 457 ** places. 458 */ 459 static int checkForMultiColumnSelectError(Parse *pParse, int eDest, int nExpr){ 460 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 461 sqlite3ErrorMsg(pParse, "only a single result allowed for " 462 "a SELECT that is part of an expression"); 463 return 1; 464 }else{ 465 return 0; 466 } 467 } 468 469 /* 470 ** This routine generates the code for the inside of the inner loop 471 ** of a SELECT. 472 ** 473 ** If srcTab and nColumn are both zero, then the pEList expressions 474 ** are evaluated in order to get the data for this row. If nColumn>0 475 ** then data is pulled from srcTab and pEList is used only to get the 476 ** datatypes for each column. 477 */ 478 static int selectInnerLoop( 479 Parse *pParse, /* The parser context */ 480 Select *p, /* The complete select statement being coded */ 481 ExprList *pEList, /* List of values being extracted */ 482 int srcTab, /* Pull data from this table */ 483 int nColumn, /* Number of columns in the source table */ 484 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 485 int distinct, /* If >=0, make sure results are distinct */ 486 int eDest, /* How to dispose of the results */ 487 int iParm, /* An argument to the disposal method */ 488 int iContinue, /* Jump here to continue with next row */ 489 int iBreak, /* Jump here to break out of the inner loop */ 490 char *aff /* affinity string if eDest is SRT_Union */ 491 ){ 492 Vdbe *v = pParse->pVdbe; 493 int i; 494 int hasDistinct; /* True if the DISTINCT keyword is present */ 495 496 if( v==0 ) return 0; 497 assert( pEList!=0 ); 498 499 /* If there was a LIMIT clause on the SELECT statement, then do the check 500 ** to see if this row should be output. 501 */ 502 hasDistinct = distinct>=0 && pEList->nExpr>0; 503 if( pOrderBy==0 && !hasDistinct ){ 504 codeOffset(v, p, iContinue, 0); 505 } 506 507 /* Pull the requested columns. 508 */ 509 if( nColumn>0 ){ 510 for(i=0; i<nColumn; i++){ 511 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); 512 } 513 }else{ 514 nColumn = pEList->nExpr; 515 sqlite3ExprCodeExprList(pParse, pEList); 516 } 517 518 /* If the DISTINCT keyword was present on the SELECT statement 519 ** and this row has been seen before, then do not make this row 520 ** part of the result. 521 */ 522 if( hasDistinct ){ 523 assert( pEList!=0 ); 524 assert( pEList->nExpr==nColumn ); 525 codeDistinct(v, distinct, iContinue, nColumn); 526 if( pOrderBy==0 ){ 527 codeOffset(v, p, iContinue, nColumn); 528 } 529 } 530 531 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 532 return 0; 533 } 534 535 switch( eDest ){ 536 /* In this mode, write each query result to the key of the temporary 537 ** table iParm. 538 */ 539 #ifndef SQLITE_OMIT_COMPOUND_SELECT 540 case SRT_Union: { 541 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 542 if( aff ){ 543 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 544 } 545 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); 546 break; 547 } 548 549 /* Construct a record from the query result, but instead of 550 ** saving that record, use it as a key to delete elements from 551 ** the temporary table iParm. 552 */ 553 case SRT_Except: { 554 int addr; 555 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 556 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 557 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); 558 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); 559 break; 560 } 561 #endif 562 563 /* Store the result as data using a unique key. 564 */ 565 case SRT_Table: 566 case SRT_EphemTab: { 567 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 568 if( pOrderBy ){ 569 pushOntoSorter(pParse, pOrderBy, p); 570 }else{ 571 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 572 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 573 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 574 } 575 break; 576 } 577 578 #ifndef SQLITE_OMIT_SUBQUERY 579 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 580 ** then there should be a single item on the stack. Write this 581 ** item into the set table with bogus data. 582 */ 583 case SRT_Set: { 584 int addr1 = sqlite3VdbeCurrentAddr(v); 585 int addr2; 586 587 assert( nColumn==1 ); 588 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); 589 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 590 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 591 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr,(iParm>>16)&0xff); 592 if( pOrderBy ){ 593 /* At first glance you would think we could optimize out the 594 ** ORDER BY in this case since the order of entries in the set 595 ** does not matter. But there might be a LIMIT clause, in which 596 ** case the order does matter */ 597 pushOntoSorter(pParse, pOrderBy, p); 598 }else{ 599 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 600 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 601 } 602 sqlite3VdbeJumpHere(v, addr2); 603 break; 604 } 605 606 /* If any row exist in the result set, record that fact and abort. 607 */ 608 case SRT_Exists: { 609 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); 610 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 611 /* The LIMIT clause will terminate the loop for us */ 612 break; 613 } 614 615 /* If this is a scalar select that is part of an expression, then 616 ** store the results in the appropriate memory cell and break out 617 ** of the scan loop. 618 */ 619 case SRT_Mem: { 620 assert( nColumn==1 ); 621 if( pOrderBy ){ 622 pushOntoSorter(pParse, pOrderBy, p); 623 }else{ 624 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 625 /* The LIMIT clause will jump out of the loop for us */ 626 } 627 break; 628 } 629 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 630 631 /* Send the data to the callback function or to a subroutine. In the 632 ** case of a subroutine, the subroutine itself is responsible for 633 ** popping the data from the stack. 634 */ 635 case SRT_Subroutine: 636 case SRT_Callback: { 637 if( pOrderBy ){ 638 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 639 pushOntoSorter(pParse, pOrderBy, p); 640 }else if( eDest==SRT_Subroutine ){ 641 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 642 }else{ 643 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 644 } 645 break; 646 } 647 648 #if !defined(SQLITE_OMIT_TRIGGER) 649 /* Discard the results. This is used for SELECT statements inside 650 ** the body of a TRIGGER. The purpose of such selects is to call 651 ** user-defined functions that have side effects. We do not care 652 ** about the actual results of the select. 653 */ 654 default: { 655 assert( eDest==SRT_Discard ); 656 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 657 break; 658 } 659 #endif 660 } 661 662 /* Jump to the end of the loop if the LIMIT is reached. 663 */ 664 if( p->iLimit>=0 && pOrderBy==0 ){ 665 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 666 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); 667 } 668 return 0; 669 } 670 671 /* 672 ** Given an expression list, generate a KeyInfo structure that records 673 ** the collating sequence for each expression in that expression list. 674 ** 675 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 676 ** KeyInfo structure is appropriate for initializing a virtual index to 677 ** implement that clause. If the ExprList is the result set of a SELECT 678 ** then the KeyInfo structure is appropriate for initializing a virtual 679 ** index to implement a DISTINCT test. 680 ** 681 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 682 ** function is responsible for seeing that this structure is eventually 683 ** freed. Add the KeyInfo structure to the P3 field of an opcode using 684 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. 685 */ 686 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 687 sqlite3 *db = pParse->db; 688 int nExpr; 689 KeyInfo *pInfo; 690 struct ExprList_item *pItem; 691 int i; 692 693 nExpr = pList->nExpr; 694 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 695 if( pInfo ){ 696 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 697 pInfo->nField = nExpr; 698 pInfo->enc = ENC(db); 699 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 700 CollSeq *pColl; 701 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 702 if( !pColl ){ 703 pColl = db->pDfltColl; 704 } 705 pInfo->aColl[i] = pColl; 706 pInfo->aSortOrder[i] = pItem->sortOrder; 707 } 708 } 709 return pInfo; 710 } 711 712 713 /* 714 ** If the inner loop was generated using a non-null pOrderBy argument, 715 ** then the results were placed in a sorter. After the loop is terminated 716 ** we need to run the sorter and output the results. The following 717 ** routine generates the code needed to do that. 718 */ 719 static void generateSortTail( 720 Parse *pParse, /* Parsing context */ 721 Select *p, /* The SELECT statement */ 722 Vdbe *v, /* Generate code into this VDBE */ 723 int nColumn, /* Number of columns of data */ 724 int eDest, /* Write the sorted results here */ 725 int iParm /* Optional parameter associated with eDest */ 726 ){ 727 int brk = sqlite3VdbeMakeLabel(v); 728 int cont = sqlite3VdbeMakeLabel(v); 729 int addr; 730 int iTab; 731 int pseudoTab = 0; 732 ExprList *pOrderBy = p->pOrderBy; 733 734 iTab = pOrderBy->iECursor; 735 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 736 pseudoTab = pParse->nTab++; 737 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); 738 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); 739 } 740 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); 741 codeOffset(v, p, cont, 0); 742 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 743 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 744 } 745 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); 746 switch( eDest ){ 747 case SRT_Table: 748 case SRT_EphemTab: { 749 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 750 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 751 sqlite3VdbeAddOp(v, OP_Insert, iParm, OPFLAG_APPEND); 752 break; 753 } 754 #ifndef SQLITE_OMIT_SUBQUERY 755 case SRT_Set: { 756 assert( nColumn==1 ); 757 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 758 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 759 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 760 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &p->affinity, 1); 761 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 762 break; 763 } 764 case SRT_Mem: { 765 assert( nColumn==1 ); 766 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 767 /* The LIMIT clause will terminate the loop for us */ 768 break; 769 } 770 #endif 771 case SRT_Callback: 772 case SRT_Subroutine: { 773 int i; 774 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); 775 for(i=0; i<nColumn; i++){ 776 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); 777 } 778 if( eDest==SRT_Callback ){ 779 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 780 }else{ 781 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 782 } 783 break; 784 } 785 default: { 786 /* Do nothing */ 787 break; 788 } 789 } 790 791 /* Jump to the end of the loop when the LIMIT is reached 792 */ 793 if( p->iLimit>=0 ){ 794 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 795 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); 796 } 797 798 /* The bottom of the loop 799 */ 800 sqlite3VdbeResolveLabel(v, cont); 801 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); 802 sqlite3VdbeResolveLabel(v, brk); 803 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 804 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); 805 } 806 807 } 808 809 /* 810 ** Return a pointer to a string containing the 'declaration type' of the 811 ** expression pExpr. The string may be treated as static by the caller. 812 ** 813 ** The declaration type is the exact datatype definition extracted from the 814 ** original CREATE TABLE statement if the expression is a column. The 815 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 816 ** is considered a column can be complex in the presence of subqueries. The 817 ** result-set expression in all of the following SELECT statements is 818 ** considered a column by this function. 819 ** 820 ** SELECT col FROM tbl; 821 ** SELECT (SELECT col FROM tbl; 822 ** SELECT (SELECT col FROM tbl); 823 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 824 ** 825 ** The declaration type for any expression other than a column is NULL. 826 */ 827 static const char *columnType( 828 NameContext *pNC, 829 Expr *pExpr, 830 const char **pzOriginDb, 831 const char **pzOriginTab, 832 const char **pzOriginCol 833 ){ 834 char const *zType = 0; 835 char const *zOriginDb = 0; 836 char const *zOriginTab = 0; 837 char const *zOriginCol = 0; 838 int j; 839 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 840 841 switch( pExpr->op ){ 842 case TK_AGG_COLUMN: 843 case TK_COLUMN: { 844 /* The expression is a column. Locate the table the column is being 845 ** extracted from in NameContext.pSrcList. This table may be real 846 ** database table or a subquery. 847 */ 848 Table *pTab = 0; /* Table structure column is extracted from */ 849 Select *pS = 0; /* Select the column is extracted from */ 850 int iCol = pExpr->iColumn; /* Index of column in pTab */ 851 while( pNC && !pTab ){ 852 SrcList *pTabList = pNC->pSrcList; 853 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 854 if( j<pTabList->nSrc ){ 855 pTab = pTabList->a[j].pTab; 856 pS = pTabList->a[j].pSelect; 857 }else{ 858 pNC = pNC->pNext; 859 } 860 } 861 862 if( pTab==0 ){ 863 /* FIX ME: 864 ** This can occurs if you have something like "SELECT new.x;" inside 865 ** a trigger. In other words, if you reference the special "new" 866 ** table in the result set of a select. We do not have a good way 867 ** to find the actual table type, so call it "TEXT". This is really 868 ** something of a bug, but I do not know how to fix it. 869 ** 870 ** This code does not produce the correct answer - it just prevents 871 ** a segfault. See ticket #1229. 872 */ 873 zType = "TEXT"; 874 break; 875 } 876 877 assert( pTab ); 878 if( pS ){ 879 /* The "table" is actually a sub-select or a view in the FROM clause 880 ** of the SELECT statement. Return the declaration type and origin 881 ** data for the result-set column of the sub-select. 882 */ 883 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 884 /* If iCol is less than zero, then the expression requests the 885 ** rowid of the sub-select or view. This expression is legal (see 886 ** test case misc2.2.2) - it always evaluates to NULL. 887 */ 888 NameContext sNC; 889 Expr *p = pS->pEList->a[iCol].pExpr; 890 sNC.pSrcList = pS->pSrc; 891 sNC.pNext = 0; 892 sNC.pParse = pNC->pParse; 893 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 894 } 895 }else if( pTab->pSchema ){ 896 /* A real table */ 897 assert( !pS ); 898 if( iCol<0 ) iCol = pTab->iPKey; 899 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 900 if( iCol<0 ){ 901 zType = "INTEGER"; 902 zOriginCol = "rowid"; 903 }else{ 904 zType = pTab->aCol[iCol].zType; 905 zOriginCol = pTab->aCol[iCol].zName; 906 } 907 zOriginTab = pTab->zName; 908 if( pNC->pParse ){ 909 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 910 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 911 } 912 } 913 break; 914 } 915 #ifndef SQLITE_OMIT_SUBQUERY 916 case TK_SELECT: { 917 /* The expression is a sub-select. Return the declaration type and 918 ** origin info for the single column in the result set of the SELECT 919 ** statement. 920 */ 921 NameContext sNC; 922 Select *pS = pExpr->pSelect; 923 Expr *p = pS->pEList->a[0].pExpr; 924 sNC.pSrcList = pS->pSrc; 925 sNC.pNext = pNC; 926 sNC.pParse = pNC->pParse; 927 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 928 break; 929 } 930 #endif 931 } 932 933 if( pzOriginDb ){ 934 assert( pzOriginTab && pzOriginCol ); 935 *pzOriginDb = zOriginDb; 936 *pzOriginTab = zOriginTab; 937 *pzOriginCol = zOriginCol; 938 } 939 return zType; 940 } 941 942 /* 943 ** Generate code that will tell the VDBE the declaration types of columns 944 ** in the result set. 945 */ 946 static void generateColumnTypes( 947 Parse *pParse, /* Parser context */ 948 SrcList *pTabList, /* List of tables */ 949 ExprList *pEList /* Expressions defining the result set */ 950 ){ 951 Vdbe *v = pParse->pVdbe; 952 int i; 953 NameContext sNC; 954 sNC.pSrcList = pTabList; 955 sNC.pParse = pParse; 956 for(i=0; i<pEList->nExpr; i++){ 957 Expr *p = pEList->a[i].pExpr; 958 const char *zOrigDb = 0; 959 const char *zOrigTab = 0; 960 const char *zOrigCol = 0; 961 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 962 963 /* The vdbe must make its own copy of the column-type and other 964 ** column specific strings, in case the schema is reset before this 965 ** virtual machine is deleted. 966 */ 967 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); 968 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); 969 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); 970 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); 971 } 972 } 973 974 /* 975 ** Generate code that will tell the VDBE the names of columns 976 ** in the result set. This information is used to provide the 977 ** azCol[] values in the callback. 978 */ 979 static void generateColumnNames( 980 Parse *pParse, /* Parser context */ 981 SrcList *pTabList, /* List of tables */ 982 ExprList *pEList /* Expressions defining the result set */ 983 ){ 984 Vdbe *v = pParse->pVdbe; 985 int i, j; 986 sqlite3 *db = pParse->db; 987 int fullNames, shortNames; 988 989 #ifndef SQLITE_OMIT_EXPLAIN 990 /* If this is an EXPLAIN, skip this step */ 991 if( pParse->explain ){ 992 return; 993 } 994 #endif 995 996 assert( v!=0 ); 997 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; 998 pParse->colNamesSet = 1; 999 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1000 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1001 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1002 for(i=0; i<pEList->nExpr; i++){ 1003 Expr *p; 1004 p = pEList->a[i].pExpr; 1005 if( p==0 ) continue; 1006 if( pEList->a[i].zName ){ 1007 char *zName = pEList->a[i].zName; 1008 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 1009 continue; 1010 } 1011 if( p->op==TK_COLUMN && pTabList ){ 1012 Table *pTab; 1013 char *zCol; 1014 int iCol = p->iColumn; 1015 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1016 assert( j<pTabList->nSrc ); 1017 pTab = pTabList->a[j].pTab; 1018 if( iCol<0 ) iCol = pTab->iPKey; 1019 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1020 if( iCol<0 ){ 1021 zCol = "rowid"; 1022 }else{ 1023 zCol = pTab->aCol[iCol].zName; 1024 } 1025 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ 1026 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1027 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1028 char *zName = 0; 1029 char *zTab; 1030 1031 zTab = pTabList->a[j].zAlias; 1032 if( fullNames || zTab==0 ) zTab = pTab->zName; 1033 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); 1034 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); 1035 }else{ 1036 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1037 } 1038 }else if( p->span.z && p->span.z[0] ){ 1039 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1040 /* sqlite3VdbeCompressSpace(v, addr); */ 1041 }else{ 1042 char zName[30]; 1043 assert( p->op!=TK_COLUMN || pTabList==0 ); 1044 sqlite3_snprintf(sizeof(zName), zName, "column%d", i+1); 1045 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); 1046 } 1047 } 1048 generateColumnTypes(pParse, pTabList, pEList); 1049 } 1050 1051 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1052 /* 1053 ** Name of the connection operator, used for error messages. 1054 */ 1055 static const char *selectOpName(int id){ 1056 char *z; 1057 switch( id ){ 1058 case TK_ALL: z = "UNION ALL"; break; 1059 case TK_INTERSECT: z = "INTERSECT"; break; 1060 case TK_EXCEPT: z = "EXCEPT"; break; 1061 default: z = "UNION"; break; 1062 } 1063 return z; 1064 } 1065 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1066 1067 /* 1068 ** Forward declaration 1069 */ 1070 static int prepSelectStmt(Parse*, Select*); 1071 1072 /* 1073 ** Given a SELECT statement, generate a Table structure that describes 1074 ** the result set of that SELECT. 1075 */ 1076 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1077 Table *pTab; 1078 int i, j; 1079 ExprList *pEList; 1080 Column *aCol, *pCol; 1081 sqlite3 *db = pParse->db; 1082 1083 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1084 if( prepSelectStmt(pParse, pSelect) ){ 1085 return 0; 1086 } 1087 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ 1088 return 0; 1089 } 1090 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1091 if( pTab==0 ){ 1092 return 0; 1093 } 1094 pTab->nRef = 1; 1095 pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0; 1096 pEList = pSelect->pEList; 1097 pTab->nCol = pEList->nExpr; 1098 assert( pTab->nCol>0 ); 1099 pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol); 1100 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1101 Expr *p, *pR; 1102 char *zType; 1103 char *zName; 1104 int nName; 1105 CollSeq *pColl; 1106 int cnt; 1107 NameContext sNC; 1108 1109 /* Get an appropriate name for the column 1110 */ 1111 p = pEList->a[i].pExpr; 1112 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1113 if( (zName = pEList->a[i].zName)!=0 ){ 1114 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1115 zName = sqlite3DbStrDup(db, zName); 1116 }else if( p->op==TK_DOT 1117 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ 1118 /* For columns of the from A.B use B as the name */ 1119 zName = sqlite3MPrintf(db, "%T", &pR->token); 1120 }else if( p->span.z && p->span.z[0] ){ 1121 /* Use the original text of the column expression as its name */ 1122 zName = sqlite3MPrintf(db, "%T", &p->span); 1123 }else{ 1124 /* If all else fails, make up a name */ 1125 zName = sqlite3MPrintf(db, "column%d", i+1); 1126 } 1127 if( !zName || db->mallocFailed ){ 1128 db->mallocFailed = 1; 1129 sqlite3_free(zName); 1130 sqlite3DeleteTable(pTab); 1131 return 0; 1132 } 1133 sqlite3Dequote(zName); 1134 1135 /* Make sure the column name is unique. If the name is not unique, 1136 ** append a integer to the name so that it becomes unique. 1137 */ 1138 nName = strlen(zName); 1139 for(j=cnt=0; j<i; j++){ 1140 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1141 zName[nName] = 0; 1142 zName = sqlite3MPrintf(db, "%z:%d", zName, ++cnt); 1143 j = -1; 1144 if( zName==0 ) break; 1145 } 1146 } 1147 pCol->zName = zName; 1148 1149 /* Get the typename, type affinity, and collating sequence for the 1150 ** column. 1151 */ 1152 memset(&sNC, 0, sizeof(sNC)); 1153 sNC.pSrcList = pSelect->pSrc; 1154 zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1155 pCol->zType = zType; 1156 pCol->affinity = sqlite3ExprAffinity(p); 1157 pColl = sqlite3ExprCollSeq(pParse, p); 1158 if( pColl ){ 1159 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1160 } 1161 } 1162 pTab->iPKey = -1; 1163 return pTab; 1164 } 1165 1166 /* 1167 ** Prepare a SELECT statement for processing by doing the following 1168 ** things: 1169 ** 1170 ** (1) Make sure VDBE cursor numbers have been assigned to every 1171 ** element of the FROM clause. 1172 ** 1173 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1174 ** defines FROM clause. When views appear in the FROM clause, 1175 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1176 ** that implements the view. A copy is made of the view's SELECT 1177 ** statement so that we can freely modify or delete that statement 1178 ** without worrying about messing up the presistent representation 1179 ** of the view. 1180 ** 1181 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1182 ** on joins and the ON and USING clause of joins. 1183 ** 1184 ** (4) Scan the list of columns in the result set (pEList) looking 1185 ** for instances of the "*" operator or the TABLE.* operator. 1186 ** If found, expand each "*" to be every column in every table 1187 ** and TABLE.* to be every column in TABLE. 1188 ** 1189 ** Return 0 on success. If there are problems, leave an error message 1190 ** in pParse and return non-zero. 1191 */ 1192 static int prepSelectStmt(Parse *pParse, Select *p){ 1193 int i, j, k, rc; 1194 SrcList *pTabList; 1195 ExprList *pEList; 1196 struct SrcList_item *pFrom; 1197 sqlite3 *db = pParse->db; 1198 1199 if( p==0 || p->pSrc==0 || db->mallocFailed ){ 1200 return 1; 1201 } 1202 pTabList = p->pSrc; 1203 pEList = p->pEList; 1204 1205 /* Make sure cursor numbers have been assigned to all entries in 1206 ** the FROM clause of the SELECT statement. 1207 */ 1208 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1209 1210 /* Look up every table named in the FROM clause of the select. If 1211 ** an entry of the FROM clause is a subquery instead of a table or view, 1212 ** then create a transient table structure to describe the subquery. 1213 */ 1214 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1215 Table *pTab; 1216 if( pFrom->pTab!=0 ){ 1217 /* This statement has already been prepared. There is no need 1218 ** to go further. */ 1219 assert( i==0 ); 1220 return 0; 1221 } 1222 if( pFrom->zName==0 ){ 1223 #ifndef SQLITE_OMIT_SUBQUERY 1224 /* A sub-query in the FROM clause of a SELECT */ 1225 assert( pFrom->pSelect!=0 ); 1226 if( pFrom->zAlias==0 ){ 1227 pFrom->zAlias = 1228 sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect); 1229 } 1230 assert( pFrom->pTab==0 ); 1231 pFrom->pTab = pTab = 1232 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1233 if( pTab==0 ){ 1234 return 1; 1235 } 1236 /* The isEphem flag indicates that the Table structure has been 1237 ** dynamically allocated and may be freed at any time. In other words, 1238 ** pTab is not pointing to a persistent table structure that defines 1239 ** part of the schema. */ 1240 pTab->isEphem = 1; 1241 #endif 1242 }else{ 1243 /* An ordinary table or view name in the FROM clause */ 1244 assert( pFrom->pTab==0 ); 1245 pFrom->pTab = pTab = 1246 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); 1247 if( pTab==0 ){ 1248 return 1; 1249 } 1250 pTab->nRef++; 1251 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1252 if( pTab->pSelect || IsVirtual(pTab) ){ 1253 /* We reach here if the named table is a really a view */ 1254 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1255 return 1; 1256 } 1257 /* If pFrom->pSelect!=0 it means we are dealing with a 1258 ** view within a view. The SELECT structure has already been 1259 ** copied by the outer view so we can skip the copy step here 1260 ** in the inner view. 1261 */ 1262 if( pFrom->pSelect==0 ){ 1263 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); 1264 } 1265 } 1266 #endif 1267 } 1268 } 1269 1270 /* Process NATURAL keywords, and ON and USING clauses of joins. 1271 */ 1272 if( sqliteProcessJoin(pParse, p) ) return 1; 1273 1274 /* For every "*" that occurs in the column list, insert the names of 1275 ** all columns in all tables. And for every TABLE.* insert the names 1276 ** of all columns in TABLE. The parser inserted a special expression 1277 ** with the TK_ALL operator for each "*" that it found in the column list. 1278 ** The following code just has to locate the TK_ALL expressions and expand 1279 ** each one to the list of all columns in all tables. 1280 ** 1281 ** The first loop just checks to see if there are any "*" operators 1282 ** that need expanding. 1283 */ 1284 for(k=0; k<pEList->nExpr; k++){ 1285 Expr *pE = pEList->a[k].pExpr; 1286 if( pE->op==TK_ALL ) break; 1287 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1288 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1289 } 1290 rc = 0; 1291 if( k<pEList->nExpr ){ 1292 /* 1293 ** If we get here it means the result set contains one or more "*" 1294 ** operators that need to be expanded. Loop through each expression 1295 ** in the result set and expand them one by one. 1296 */ 1297 struct ExprList_item *a = pEList->a; 1298 ExprList *pNew = 0; 1299 int flags = pParse->db->flags; 1300 int longNames = (flags & SQLITE_FullColNames)!=0 && 1301 (flags & SQLITE_ShortColNames)==0; 1302 1303 for(k=0; k<pEList->nExpr; k++){ 1304 Expr *pE = a[k].pExpr; 1305 if( pE->op!=TK_ALL && 1306 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1307 /* This particular expression does not need to be expanded. 1308 */ 1309 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 1310 if( pNew ){ 1311 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1312 }else{ 1313 rc = 1; 1314 } 1315 a[k].pExpr = 0; 1316 a[k].zName = 0; 1317 }else{ 1318 /* This expression is a "*" or a "TABLE.*" and needs to be 1319 ** expanded. */ 1320 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1321 char *zTName; /* text of name of TABLE */ 1322 if( pE->op==TK_DOT && pE->pLeft ){ 1323 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 1324 }else{ 1325 zTName = 0; 1326 } 1327 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1328 Table *pTab = pFrom->pTab; 1329 char *zTabName = pFrom->zAlias; 1330 if( zTabName==0 || zTabName[0]==0 ){ 1331 zTabName = pTab->zName; 1332 } 1333 if( zTName && (zTabName==0 || zTabName[0]==0 || 1334 sqlite3StrICmp(zTName, zTabName)!=0) ){ 1335 continue; 1336 } 1337 tableSeen = 1; 1338 for(j=0; j<pTab->nCol; j++){ 1339 Expr *pExpr, *pRight; 1340 char *zName = pTab->aCol[j].zName; 1341 1342 /* If a column is marked as 'hidden' (currently only possible 1343 ** for virtual tables), do not include it in the expanded 1344 ** result-set list. 1345 */ 1346 if( IsHiddenColumn(&pTab->aCol[j]) ){ 1347 assert(IsVirtual(pTab)); 1348 continue; 1349 } 1350 1351 if( i>0 ){ 1352 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1353 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1354 columnIndex(pLeft->pTab, zName)>=0 ){ 1355 /* In a NATURAL join, omit the join columns from the 1356 ** table on the right */ 1357 continue; 1358 } 1359 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1360 /* In a join with a USING clause, omit columns in the 1361 ** using clause from the table on the right. */ 1362 continue; 1363 } 1364 } 1365 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 1366 if( pRight==0 ) break; 1367 setQuotedToken(pParse, &pRight->token, zName); 1368 if( zTabName && (longNames || pTabList->nSrc>1) ){ 1369 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 1370 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 1371 if( pExpr==0 ) break; 1372 setQuotedToken(pParse, &pLeft->token, zTabName); 1373 setToken(&pExpr->span, 1374 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 1375 pExpr->span.dyn = 1; 1376 pExpr->token.z = 0; 1377 pExpr->token.n = 0; 1378 pExpr->token.dyn = 0; 1379 }else{ 1380 pExpr = pRight; 1381 pExpr->span = pExpr->token; 1382 pExpr->span.dyn = 0; 1383 } 1384 if( longNames ){ 1385 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 1386 }else{ 1387 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 1388 } 1389 } 1390 } 1391 if( !tableSeen ){ 1392 if( zTName ){ 1393 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1394 }else{ 1395 sqlite3ErrorMsg(pParse, "no tables specified"); 1396 } 1397 rc = 1; 1398 } 1399 sqlite3_free(zTName); 1400 } 1401 } 1402 sqlite3ExprListDelete(pEList); 1403 p->pEList = pNew; 1404 } 1405 if( p->pEList && p->pEList->nExpr>SQLITE_MAX_COLUMN ){ 1406 sqlite3ErrorMsg(pParse, "too many columns in result set"); 1407 rc = SQLITE_ERROR; 1408 } 1409 if( db->mallocFailed ){ 1410 rc = SQLITE_NOMEM; 1411 } 1412 return rc; 1413 } 1414 1415 /* 1416 ** pE is a pointer to an expression which is a single term in 1417 ** ORDER BY or GROUP BY clause. 1418 ** 1419 ** If pE evaluates to an integer constant i, then return i. 1420 ** This is an indication to the caller that it should sort 1421 ** by the i-th column of the result set. 1422 ** 1423 ** If pE is a well-formed expression and the SELECT statement 1424 ** is not compound, then return 0. This indicates to the 1425 ** caller that it should sort by the value of the ORDER BY 1426 ** expression. 1427 ** 1428 ** If the SELECT is compound, then attempt to match pE against 1429 ** result set columns in the left-most SELECT statement. Return 1430 ** the index i of the matching column, as an indication to the 1431 ** caller that it should sort by the i-th column. If there is 1432 ** no match, return -1 and leave an error message in pParse. 1433 */ 1434 static int matchOrderByTermToExprList( 1435 Parse *pParse, /* Parsing context for error messages */ 1436 Select *pSelect, /* The SELECT statement with the ORDER BY clause */ 1437 Expr *pE, /* The specific ORDER BY term */ 1438 int idx, /* When ORDER BY term is this */ 1439 int isCompound, /* True if this is a compound SELECT */ 1440 u8 *pHasAgg /* True if expression contains aggregate functions */ 1441 ){ 1442 int i; /* Loop counter */ 1443 ExprList *pEList; /* The columns of the result set */ 1444 NameContext nc; /* Name context for resolving pE */ 1445 1446 1447 /* If the term is an integer constant, return the value of that 1448 ** constant */ 1449 pEList = pSelect->pEList; 1450 if( sqlite3ExprIsInteger(pE, &i) ){ 1451 if( i<=0 ){ 1452 /* If i is too small, make it too big. That way the calling 1453 ** function still sees a value that is out of range, but does 1454 ** not confuse the column number with 0 or -1 result code. 1455 */ 1456 i = pEList->nExpr+1; 1457 } 1458 return i; 1459 } 1460 1461 /* If the term is a simple identifier that try to match that identifier 1462 ** against a column name in the result set. 1463 */ 1464 if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){ 1465 sqlite3 *db = pParse->db; 1466 char *zCol = sqlite3NameFromToken(db, &pE->token); 1467 if( db->mallocFailed ){ 1468 sqlite3_free(zCol); 1469 return -1; 1470 } 1471 for(i=0; i<pEList->nExpr; i++){ 1472 char *zAs = pEList->a[i].zName; 1473 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1474 sqlite3_free(zCol); 1475 return i+1; 1476 } 1477 } 1478 sqlite3_free(zCol); 1479 } 1480 1481 /* Resolve all names in the ORDER BY term expression 1482 */ 1483 memset(&nc, 0, sizeof(nc)); 1484 nc.pParse = pParse; 1485 nc.pSrcList = pSelect->pSrc; 1486 nc.pEList = pEList; 1487 nc.allowAgg = 1; 1488 nc.nErr = 0; 1489 if( sqlite3ExprResolveNames(&nc, pE) ){ 1490 if( isCompound ){ 1491 sqlite3ErrorClear(pParse); 1492 return 0; 1493 }else{ 1494 return -1; 1495 } 1496 } 1497 if( nc.hasAgg && pHasAgg ){ 1498 *pHasAgg = 1; 1499 } 1500 1501 /* For a compound SELECT, we need to try to match the ORDER BY 1502 ** expression against an expression in the result set 1503 */ 1504 if( isCompound ){ 1505 for(i=0; i<pEList->nExpr; i++){ 1506 if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){ 1507 return i+1; 1508 } 1509 } 1510 } 1511 return 0; 1512 } 1513 1514 1515 /* 1516 ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement. 1517 ** Return the number of errors seen. 1518 ** 1519 ** Every term of the ORDER BY or GROUP BY clause needs to be an 1520 ** expression. If any expression is an integer constant, then 1521 ** that expression is replaced by the corresponding 1522 ** expression from the result set. 1523 */ 1524 static int processOrderGroupBy( 1525 Parse *pParse, /* Parsing context. Leave error messages here */ 1526 Select *pSelect, /* The SELECT statement containing the clause */ 1527 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 1528 int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */ 1529 u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */ 1530 ){ 1531 int i; 1532 sqlite3 *db = pParse->db; 1533 ExprList *pEList; 1534 1535 if( pOrderBy==0 ) return 0; 1536 if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){ 1537 const char *zType = isOrder ? "ORDER" : "GROUP"; 1538 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); 1539 return 1; 1540 } 1541 pEList = pSelect->pEList; 1542 if( pEList==0 ){ 1543 return 0; 1544 } 1545 for(i=0; i<pOrderBy->nExpr; i++){ 1546 int iCol; 1547 Expr *pE = pOrderBy->a[i].pExpr; 1548 iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg); 1549 if( iCol<0 ){ 1550 return 1; 1551 } 1552 if( iCol>pEList->nExpr ){ 1553 const char *zType = isOrder ? "ORDER" : "GROUP"; 1554 sqlite3ErrorMsg(pParse, 1555 "%r %s BY term out of range - should be " 1556 "between 1 and %d", i+1, zType, pEList->nExpr); 1557 return 1; 1558 } 1559 if( iCol>0 ){ 1560 CollSeq *pColl = pE->pColl; 1561 int flags = pE->flags & EP_ExpCollate; 1562 sqlite3ExprDelete(pE); 1563 pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr); 1564 pOrderBy->a[i].pExpr = pE; 1565 if( pColl && flags ){ 1566 pE->pColl = pColl; 1567 pE->flags |= flags; 1568 } 1569 } 1570 } 1571 return 0; 1572 } 1573 1574 /* 1575 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 1576 ** the number of errors seen. 1577 ** 1578 ** The processing depends on whether the SELECT is simple or compound. 1579 ** For a simple SELECT statement, evry term of the ORDER BY or GROUP BY 1580 ** clause needs to be an expression. If any expression is an integer 1581 ** constant, then that expression is replaced by the corresponding 1582 ** expression from the result set. 1583 ** 1584 ** For compound SELECT statements, every expression needs to be of 1585 ** type TK_COLUMN with a iTable value as given in the 4th parameter. 1586 ** If any expression is an integer, that becomes the column number. 1587 ** Otherwise, match the expression against result set columns from 1588 ** the left-most SELECT. 1589 */ 1590 static int processCompoundOrderBy( 1591 Parse *pParse, /* Parsing context. Leave error messages here */ 1592 Select *pSelect, /* The SELECT statement containing the ORDER BY */ 1593 int iTable /* Output table for compound SELECT statements */ 1594 ){ 1595 int i; 1596 ExprList *pOrderBy; 1597 ExprList *pEList; 1598 sqlite3 *db; 1599 int moreToDo = 1; 1600 1601 pOrderBy = pSelect->pOrderBy; 1602 if( pOrderBy==0 ) return 0; 1603 if( pOrderBy->nExpr>SQLITE_MAX_COLUMN ){ 1604 sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); 1605 return 1; 1606 } 1607 db = pParse->db; 1608 for(i=0; i<pOrderBy->nExpr; i++){ 1609 pOrderBy->a[i].done = 0; 1610 } 1611 while( pSelect->pPrior ){ 1612 pSelect = pSelect->pPrior; 1613 } 1614 while( pSelect && moreToDo ){ 1615 moreToDo = 0; 1616 for(i=0; i<pOrderBy->nExpr; i++){ 1617 int iCol; 1618 Expr *pE; 1619 if( pOrderBy->a[i].done ) continue; 1620 pE = pOrderBy->a[i].pExpr; 1621 Expr *pDup = sqlite3ExprDup(db, pE); 1622 if( pDup==0 ){ 1623 return 1; 1624 } 1625 iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0); 1626 sqlite3ExprDelete(pDup); 1627 if( iCol<0 ){ 1628 return 1; 1629 } 1630 pEList = pSelect->pEList; 1631 if( pEList==0 ){ 1632 return 1; 1633 } 1634 if( iCol>pEList->nExpr ){ 1635 sqlite3ErrorMsg(pParse, 1636 "%r ORDER BY term out of range - should be " 1637 "between 1 and %d", i+1, pEList->nExpr); 1638 return 1; 1639 } 1640 if( iCol>0 ){ 1641 pE->op = TK_COLUMN; 1642 pE->iTable = iTable; 1643 pE->iAgg = -1; 1644 pE->iColumn = iCol-1; 1645 pE->pTab = 0; 1646 pOrderBy->a[i].done = 1; 1647 }else{ 1648 moreToDo = 1; 1649 } 1650 } 1651 pSelect = pSelect->pNext; 1652 } 1653 for(i=0; i<pOrderBy->nExpr; i++){ 1654 if( pOrderBy->a[i].done==0 ){ 1655 sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " 1656 "column in the result set", i+1); 1657 return 1; 1658 } 1659 } 1660 return 0; 1661 } 1662 1663 /* 1664 ** Get a VDBE for the given parser context. Create a new one if necessary. 1665 ** If an error occurs, return NULL and leave a message in pParse. 1666 */ 1667 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1668 Vdbe *v = pParse->pVdbe; 1669 if( v==0 ){ 1670 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1671 } 1672 return v; 1673 } 1674 1675 1676 /* 1677 ** Compute the iLimit and iOffset fields of the SELECT based on the 1678 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1679 ** that appear in the original SQL statement after the LIMIT and OFFSET 1680 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1681 ** are the integer memory register numbers for counters used to compute 1682 ** the limit and offset. If there is no limit and/or offset, then 1683 ** iLimit and iOffset are negative. 1684 ** 1685 ** This routine changes the values of iLimit and iOffset only if 1686 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1687 ** iOffset should have been preset to appropriate default values 1688 ** (usually but not always -1) prior to calling this routine. 1689 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1690 ** redefined. The UNION ALL operator uses this property to force 1691 ** the reuse of the same limit and offset registers across multiple 1692 ** SELECT statements. 1693 */ 1694 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1695 Vdbe *v = 0; 1696 int iLimit = 0; 1697 int iOffset; 1698 int addr1, addr2; 1699 1700 /* 1701 ** "LIMIT -1" always shows all rows. There is some 1702 ** contraversy about what the correct behavior should be. 1703 ** The current implementation interprets "LIMIT 0" to mean 1704 ** no rows. 1705 */ 1706 if( p->pLimit ){ 1707 p->iLimit = iLimit = pParse->nMem; 1708 pParse->nMem += 2; 1709 v = sqlite3GetVdbe(pParse); 1710 if( v==0 ) return; 1711 sqlite3ExprCode(pParse, p->pLimit); 1712 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1713 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 1); 1714 VdbeComment((v, "# LIMIT counter")); 1715 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); 1716 sqlite3VdbeAddOp(v, OP_MemLoad, iLimit, 0); 1717 } 1718 if( p->pOffset ){ 1719 p->iOffset = iOffset = pParse->nMem++; 1720 v = sqlite3GetVdbe(pParse); 1721 if( v==0 ) return; 1722 sqlite3ExprCode(pParse, p->pOffset); 1723 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1724 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); 1725 VdbeComment((v, "# OFFSET counter")); 1726 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); 1727 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1728 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1729 sqlite3VdbeJumpHere(v, addr1); 1730 if( p->pLimit ){ 1731 sqlite3VdbeAddOp(v, OP_Add, 0, 0); 1732 } 1733 } 1734 if( p->pLimit ){ 1735 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); 1736 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1737 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); 1738 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1739 sqlite3VdbeJumpHere(v, addr1); 1740 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); 1741 VdbeComment((v, "# LIMIT+OFFSET")); 1742 sqlite3VdbeJumpHere(v, addr2); 1743 } 1744 } 1745 1746 /* 1747 ** Allocate a virtual index to use for sorting. 1748 */ 1749 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ 1750 if( pOrderBy ){ 1751 int addr; 1752 assert( pOrderBy->iECursor==0 ); 1753 pOrderBy->iECursor = pParse->nTab++; 1754 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, 1755 pOrderBy->iECursor, pOrderBy->nExpr+1); 1756 assert( p->addrOpenEphm[2] == -1 ); 1757 p->addrOpenEphm[2] = addr; 1758 } 1759 } 1760 1761 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1762 /* 1763 ** Return the appropriate collating sequence for the iCol-th column of 1764 ** the result set for the compound-select statement "p". Return NULL if 1765 ** the column has no default collating sequence. 1766 ** 1767 ** The collating sequence for the compound select is taken from the 1768 ** left-most term of the select that has a collating sequence. 1769 */ 1770 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1771 CollSeq *pRet; 1772 if( p->pPrior ){ 1773 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1774 }else{ 1775 pRet = 0; 1776 } 1777 if( pRet==0 ){ 1778 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1779 } 1780 return pRet; 1781 } 1782 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1783 1784 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1785 /* 1786 ** This routine is called to process a query that is really the union 1787 ** or intersection of two or more separate queries. 1788 ** 1789 ** "p" points to the right-most of the two queries. the query on the 1790 ** left is p->pPrior. The left query could also be a compound query 1791 ** in which case this routine will be called recursively. 1792 ** 1793 ** The results of the total query are to be written into a destination 1794 ** of type eDest with parameter iParm. 1795 ** 1796 ** Example 1: Consider a three-way compound SQL statement. 1797 ** 1798 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1799 ** 1800 ** This statement is parsed up as follows: 1801 ** 1802 ** SELECT c FROM t3 1803 ** | 1804 ** `-----> SELECT b FROM t2 1805 ** | 1806 ** `------> SELECT a FROM t1 1807 ** 1808 ** The arrows in the diagram above represent the Select.pPrior pointer. 1809 ** So if this routine is called with p equal to the t3 query, then 1810 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1811 ** 1812 ** Notice that because of the way SQLite parses compound SELECTs, the 1813 ** individual selects always group from left to right. 1814 */ 1815 static int multiSelect( 1816 Parse *pParse, /* Parsing context */ 1817 Select *p, /* The right-most of SELECTs to be coded */ 1818 int eDest, /* \___ Store query results as specified */ 1819 int iParm, /* / by these two parameters. */ 1820 char *aff /* If eDest is SRT_Union, the affinity string */ 1821 ){ 1822 int rc = SQLITE_OK; /* Success code from a subroutine */ 1823 Select *pPrior; /* Another SELECT immediately to our left */ 1824 Vdbe *v; /* Generate code to this VDBE */ 1825 int nCol; /* Number of columns in the result set */ 1826 ExprList *pOrderBy; /* The ORDER BY clause on p */ 1827 int aSetP2[2]; /* Set P2 value of these op to number of columns */ 1828 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ 1829 1830 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1831 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1832 */ 1833 if( p==0 || p->pPrior==0 ){ 1834 rc = 1; 1835 goto multi_select_end; 1836 } 1837 pPrior = p->pPrior; 1838 assert( pPrior->pRightmost!=pPrior ); 1839 assert( pPrior->pRightmost==p->pRightmost ); 1840 if( pPrior->pOrderBy ){ 1841 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1842 selectOpName(p->op)); 1843 rc = 1; 1844 goto multi_select_end; 1845 } 1846 if( pPrior->pLimit ){ 1847 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1848 selectOpName(p->op)); 1849 rc = 1; 1850 goto multi_select_end; 1851 } 1852 1853 /* Make sure we have a valid query engine. If not, create a new one. 1854 */ 1855 v = sqlite3GetVdbe(pParse); 1856 if( v==0 ){ 1857 rc = 1; 1858 goto multi_select_end; 1859 } 1860 1861 /* Create the destination temporary table if necessary 1862 */ 1863 if( eDest==SRT_EphemTab ){ 1864 assert( p->pEList ); 1865 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1866 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); 1867 eDest = SRT_Table; 1868 } 1869 1870 /* Generate code for the left and right SELECT statements. 1871 */ 1872 pOrderBy = p->pOrderBy; 1873 switch( p->op ){ 1874 case TK_ALL: { 1875 if( pOrderBy==0 ){ 1876 int addr = 0; 1877 assert( !pPrior->pLimit ); 1878 pPrior->pLimit = p->pLimit; 1879 pPrior->pOffset = p->pOffset; 1880 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); 1881 p->pLimit = 0; 1882 p->pOffset = 0; 1883 if( rc ){ 1884 goto multi_select_end; 1885 } 1886 p->pPrior = 0; 1887 p->iLimit = pPrior->iLimit; 1888 p->iOffset = pPrior->iOffset; 1889 if( p->iLimit>=0 ){ 1890 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); 1891 VdbeComment((v, "# Jump ahead if LIMIT reached")); 1892 } 1893 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); 1894 p->pPrior = pPrior; 1895 if( rc ){ 1896 goto multi_select_end; 1897 } 1898 if( addr ){ 1899 sqlite3VdbeJumpHere(v, addr); 1900 } 1901 break; 1902 } 1903 /* For UNION ALL ... ORDER BY fall through to the next case */ 1904 } 1905 case TK_EXCEPT: 1906 case TK_UNION: { 1907 int unionTab; /* Cursor number of the temporary table holding result */ 1908 int op = 0; /* One of the SRT_ operations to apply to self */ 1909 int priorOp; /* The SRT_ operation to apply to prior selects */ 1910 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1911 int addr; 1912 1913 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; 1914 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ 1915 /* We can reuse a temporary table generated by a SELECT to our 1916 ** right. 1917 */ 1918 unionTab = iParm; 1919 }else{ 1920 /* We will need to create our own temporary table to hold the 1921 ** intermediate results. 1922 */ 1923 unionTab = pParse->nTab++; 1924 if( processCompoundOrderBy(pParse, p, unionTab) ){ 1925 rc = 1; 1926 goto multi_select_end; 1927 } 1928 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); 1929 if( priorOp==SRT_Table ){ 1930 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1931 aSetP2[nSetP2++] = addr; 1932 }else{ 1933 assert( p->addrOpenEphm[0] == -1 ); 1934 p->addrOpenEphm[0] = addr; 1935 p->pRightmost->usesEphm = 1; 1936 } 1937 createSortingIndex(pParse, p, pOrderBy); 1938 assert( p->pEList ); 1939 } 1940 1941 /* Code the SELECT statements to our left 1942 */ 1943 assert( !pPrior->pOrderBy ); 1944 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); 1945 if( rc ){ 1946 goto multi_select_end; 1947 } 1948 1949 /* Code the current SELECT statement 1950 */ 1951 switch( p->op ){ 1952 case TK_EXCEPT: op = SRT_Except; break; 1953 case TK_UNION: op = SRT_Union; break; 1954 case TK_ALL: op = SRT_Table; break; 1955 } 1956 p->pPrior = 0; 1957 p->pOrderBy = 0; 1958 p->disallowOrderBy = pOrderBy!=0; 1959 pLimit = p->pLimit; 1960 p->pLimit = 0; 1961 pOffset = p->pOffset; 1962 p->pOffset = 0; 1963 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); 1964 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1965 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1966 sqlite3ExprListDelete(p->pOrderBy); 1967 p->pPrior = pPrior; 1968 p->pOrderBy = pOrderBy; 1969 sqlite3ExprDelete(p->pLimit); 1970 p->pLimit = pLimit; 1971 p->pOffset = pOffset; 1972 p->iLimit = -1; 1973 p->iOffset = -1; 1974 if( rc ){ 1975 goto multi_select_end; 1976 } 1977 1978 1979 /* Convert the data in the temporary table into whatever form 1980 ** it is that we currently need. 1981 */ 1982 if( eDest!=priorOp || unionTab!=iParm ){ 1983 int iCont, iBreak, iStart; 1984 assert( p->pEList ); 1985 if( eDest==SRT_Callback ){ 1986 Select *pFirst = p; 1987 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1988 generateColumnNames(pParse, 0, pFirst->pEList); 1989 } 1990 iBreak = sqlite3VdbeMakeLabel(v); 1991 iCont = sqlite3VdbeMakeLabel(v); 1992 computeLimitRegisters(pParse, p, iBreak); 1993 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); 1994 iStart = sqlite3VdbeCurrentAddr(v); 1995 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1996 pOrderBy, -1, eDest, iParm, 1997 iCont, iBreak, 0); 1998 if( rc ){ 1999 rc = 1; 2000 goto multi_select_end; 2001 } 2002 sqlite3VdbeResolveLabel(v, iCont); 2003 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); 2004 sqlite3VdbeResolveLabel(v, iBreak); 2005 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); 2006 } 2007 break; 2008 } 2009 case TK_INTERSECT: { 2010 int tab1, tab2; 2011 int iCont, iBreak, iStart; 2012 Expr *pLimit, *pOffset; 2013 int addr; 2014 2015 /* INTERSECT is different from the others since it requires 2016 ** two temporary tables. Hence it has its own case. Begin 2017 ** by allocating the tables we will need. 2018 */ 2019 tab1 = pParse->nTab++; 2020 tab2 = pParse->nTab++; 2021 if( processCompoundOrderBy(pParse, p, tab1) ){ 2022 rc = 1; 2023 goto multi_select_end; 2024 } 2025 createSortingIndex(pParse, p, pOrderBy); 2026 2027 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); 2028 assert( p->addrOpenEphm[0] == -1 ); 2029 p->addrOpenEphm[0] = addr; 2030 p->pRightmost->usesEphm = 1; 2031 assert( p->pEList ); 2032 2033 /* Code the SELECTs to our left into temporary table "tab1". 2034 */ 2035 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); 2036 if( rc ){ 2037 goto multi_select_end; 2038 } 2039 2040 /* Code the current SELECT into temporary table "tab2" 2041 */ 2042 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); 2043 assert( p->addrOpenEphm[1] == -1 ); 2044 p->addrOpenEphm[1] = addr; 2045 p->pPrior = 0; 2046 pLimit = p->pLimit; 2047 p->pLimit = 0; 2048 pOffset = p->pOffset; 2049 p->pOffset = 0; 2050 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); 2051 p->pPrior = pPrior; 2052 sqlite3ExprDelete(p->pLimit); 2053 p->pLimit = pLimit; 2054 p->pOffset = pOffset; 2055 if( rc ){ 2056 goto multi_select_end; 2057 } 2058 2059 /* Generate code to take the intersection of the two temporary 2060 ** tables. 2061 */ 2062 assert( p->pEList ); 2063 if( eDest==SRT_Callback ){ 2064 Select *pFirst = p; 2065 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2066 generateColumnNames(pParse, 0, pFirst->pEList); 2067 } 2068 iBreak = sqlite3VdbeMakeLabel(v); 2069 iCont = sqlite3VdbeMakeLabel(v); 2070 computeLimitRegisters(pParse, p, iBreak); 2071 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); 2072 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); 2073 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); 2074 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 2075 pOrderBy, -1, eDest, iParm, 2076 iCont, iBreak, 0); 2077 if( rc ){ 2078 rc = 1; 2079 goto multi_select_end; 2080 } 2081 sqlite3VdbeResolveLabel(v, iCont); 2082 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); 2083 sqlite3VdbeResolveLabel(v, iBreak); 2084 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); 2085 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); 2086 break; 2087 } 2088 } 2089 2090 /* Make sure all SELECTs in the statement have the same number of elements 2091 ** in their result sets. 2092 */ 2093 assert( p->pEList && pPrior->pEList ); 2094 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2095 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2096 " do not have the same number of result columns", selectOpName(p->op)); 2097 rc = 1; 2098 goto multi_select_end; 2099 } 2100 2101 /* Set the number of columns in temporary tables 2102 */ 2103 nCol = p->pEList->nExpr; 2104 while( nSetP2 ){ 2105 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); 2106 } 2107 2108 /* Compute collating sequences used by either the ORDER BY clause or 2109 ** by any temporary tables needed to implement the compound select. 2110 ** Attach the KeyInfo structure to all temporary tables. Invoke the 2111 ** ORDER BY processing if there is an ORDER BY clause. 2112 ** 2113 ** This section is run by the right-most SELECT statement only. 2114 ** SELECT statements to the left always skip this part. The right-most 2115 ** SELECT might also skip this part if it has no ORDER BY clause and 2116 ** no temp tables are required. 2117 */ 2118 if( pOrderBy || p->usesEphm ){ 2119 int i; /* Loop counter */ 2120 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2121 Select *pLoop; /* For looping through SELECT statements */ 2122 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ 2123 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2124 CollSeq **aCopy; /* A copy of pKeyInfo->aColl[] */ 2125 2126 assert( p->pRightmost==p ); 2127 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); 2128 pKeyInfo = sqlite3DbMallocZero(pParse->db, 2129 sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); 2130 if( !pKeyInfo ){ 2131 rc = SQLITE_NOMEM; 2132 goto multi_select_end; 2133 } 2134 2135 pKeyInfo->enc = ENC(pParse->db); 2136 pKeyInfo->nField = nCol; 2137 2138 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2139 *apColl = multiSelectCollSeq(pParse, p, i); 2140 if( 0==*apColl ){ 2141 *apColl = pParse->db->pDfltColl; 2142 } 2143 } 2144 2145 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2146 for(i=0; i<2; i++){ 2147 int addr = pLoop->addrOpenEphm[i]; 2148 if( addr<0 ){ 2149 /* If [0] is unused then [1] is also unused. So we can 2150 ** always safely abort as soon as the first unused slot is found */ 2151 assert( pLoop->addrOpenEphm[1]<0 ); 2152 break; 2153 } 2154 sqlite3VdbeChangeP2(v, addr, nCol); 2155 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); 2156 pLoop->addrOpenEphm[i] = -1; 2157 } 2158 } 2159 2160 if( pOrderBy ){ 2161 struct ExprList_item *pOTerm = pOrderBy->a; 2162 int nOrderByExpr = pOrderBy->nExpr; 2163 int addr; 2164 u8 *pSortOrder; 2165 2166 /* Reuse the same pKeyInfo for the ORDER BY as was used above for 2167 ** the compound select statements. Except we have to change out the 2168 ** pKeyInfo->aColl[] values. Some of the aColl[] values will be 2169 ** reused when constructing the pKeyInfo for the ORDER BY, so make 2170 ** a copy. Sufficient space to hold both the nCol entries for 2171 ** the compound select and the nOrderbyExpr entries for the ORDER BY 2172 ** was allocated above. But we need to move the compound select 2173 ** entries out of the way before constructing the ORDER BY entries. 2174 ** Move the compound select entries into aCopy[] where they can be 2175 ** accessed and reused when constructing the ORDER BY entries. 2176 ** Because nCol might be greater than or less than nOrderByExpr 2177 ** we have to use memmove() when doing the copy. 2178 */ 2179 aCopy = &pKeyInfo->aColl[nOrderByExpr]; 2180 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; 2181 memmove(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); 2182 2183 apColl = pKeyInfo->aColl; 2184 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ 2185 Expr *pExpr = pOTerm->pExpr; 2186 if( (pExpr->flags & EP_ExpCollate) ){ 2187 assert( pExpr->pColl!=0 ); 2188 *apColl = pExpr->pColl; 2189 }else{ 2190 *apColl = aCopy[pExpr->iColumn]; 2191 } 2192 *pSortOrder = pOTerm->sortOrder; 2193 } 2194 assert( p->pRightmost==p ); 2195 assert( p->addrOpenEphm[2]>=0 ); 2196 addr = p->addrOpenEphm[2]; 2197 sqlite3VdbeChangeP2(v, addr, p->pOrderBy->nExpr+2); 2198 pKeyInfo->nField = nOrderByExpr; 2199 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2200 pKeyInfo = 0; 2201 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); 2202 } 2203 2204 sqlite3_free(pKeyInfo); 2205 } 2206 2207 multi_select_end: 2208 return rc; 2209 } 2210 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2211 2212 #ifndef SQLITE_OMIT_VIEW 2213 /* Forward Declarations */ 2214 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2215 static void substSelect(sqlite3*, Select *, int, ExprList *); 2216 2217 /* 2218 ** Scan through the expression pExpr. Replace every reference to 2219 ** a column in table number iTable with a copy of the iColumn-th 2220 ** entry in pEList. (But leave references to the ROWID column 2221 ** unchanged.) 2222 ** 2223 ** This routine is part of the flattening procedure. A subquery 2224 ** whose result set is defined by pEList appears as entry in the 2225 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2226 ** FORM clause entry is iTable. This routine make the necessary 2227 ** changes to pExpr so that it refers directly to the source table 2228 ** of the subquery rather the result set of the subquery. 2229 */ 2230 static void substExpr( 2231 sqlite3 *db, /* Report malloc errors to this connection */ 2232 Expr *pExpr, /* Expr in which substitution occurs */ 2233 int iTable, /* Table to be substituted */ 2234 ExprList *pEList /* Substitute expressions */ 2235 ){ 2236 if( pExpr==0 ) return; 2237 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2238 if( pExpr->iColumn<0 ){ 2239 pExpr->op = TK_NULL; 2240 }else{ 2241 Expr *pNew; 2242 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2243 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2244 pNew = pEList->a[pExpr->iColumn].pExpr; 2245 assert( pNew!=0 ); 2246 pExpr->op = pNew->op; 2247 assert( pExpr->pLeft==0 ); 2248 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); 2249 assert( pExpr->pRight==0 ); 2250 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); 2251 assert( pExpr->pList==0 ); 2252 pExpr->pList = sqlite3ExprListDup(db, pNew->pList); 2253 pExpr->iTable = pNew->iTable; 2254 pExpr->pTab = pNew->pTab; 2255 pExpr->iColumn = pNew->iColumn; 2256 pExpr->iAgg = pNew->iAgg; 2257 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2258 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2259 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); 2260 pExpr->flags = pNew->flags; 2261 } 2262 }else{ 2263 substExpr(db, pExpr->pLeft, iTable, pEList); 2264 substExpr(db, pExpr->pRight, iTable, pEList); 2265 substSelect(db, pExpr->pSelect, iTable, pEList); 2266 substExprList(db, pExpr->pList, iTable, pEList); 2267 } 2268 } 2269 static void substExprList( 2270 sqlite3 *db, /* Report malloc errors here */ 2271 ExprList *pList, /* List to scan and in which to make substitutes */ 2272 int iTable, /* Table to be substituted */ 2273 ExprList *pEList /* Substitute values */ 2274 ){ 2275 int i; 2276 if( pList==0 ) return; 2277 for(i=0; i<pList->nExpr; i++){ 2278 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2279 } 2280 } 2281 static void substSelect( 2282 sqlite3 *db, /* Report malloc errors here */ 2283 Select *p, /* SELECT statement in which to make substitutions */ 2284 int iTable, /* Table to be replaced */ 2285 ExprList *pEList /* Substitute values */ 2286 ){ 2287 if( !p ) return; 2288 substExprList(db, p->pEList, iTable, pEList); 2289 substExprList(db, p->pGroupBy, iTable, pEList); 2290 substExprList(db, p->pOrderBy, iTable, pEList); 2291 substExpr(db, p->pHaving, iTable, pEList); 2292 substExpr(db, p->pWhere, iTable, pEList); 2293 substSelect(db, p->pPrior, iTable, pEList); 2294 } 2295 #endif /* !defined(SQLITE_OMIT_VIEW) */ 2296 2297 #ifndef SQLITE_OMIT_VIEW 2298 /* 2299 ** This routine attempts to flatten subqueries in order to speed 2300 ** execution. It returns 1 if it makes changes and 0 if no flattening 2301 ** occurs. 2302 ** 2303 ** To understand the concept of flattening, consider the following 2304 ** query: 2305 ** 2306 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2307 ** 2308 ** The default way of implementing this query is to execute the 2309 ** subquery first and store the results in a temporary table, then 2310 ** run the outer query on that temporary table. This requires two 2311 ** passes over the data. Furthermore, because the temporary table 2312 ** has no indices, the WHERE clause on the outer query cannot be 2313 ** optimized. 2314 ** 2315 ** This routine attempts to rewrite queries such as the above into 2316 ** a single flat select, like this: 2317 ** 2318 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2319 ** 2320 ** The code generated for this simpification gives the same result 2321 ** but only has to scan the data once. And because indices might 2322 ** exist on the table t1, a complete scan of the data might be 2323 ** avoided. 2324 ** 2325 ** Flattening is only attempted if all of the following are true: 2326 ** 2327 ** (1) The subquery and the outer query do not both use aggregates. 2328 ** 2329 ** (2) The subquery is not an aggregate or the outer query is not a join. 2330 ** 2331 ** (3) The subquery is not the right operand of a left outer join, or 2332 ** the subquery is not itself a join. (Ticket #306) 2333 ** 2334 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2335 ** 2336 ** (5) The subquery is not DISTINCT or the outer query does not use 2337 ** aggregates. 2338 ** 2339 ** (6) The subquery does not use aggregates or the outer query is not 2340 ** DISTINCT. 2341 ** 2342 ** (7) The subquery has a FROM clause. 2343 ** 2344 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2345 ** 2346 ** (9) The subquery does not use LIMIT or the outer query does not use 2347 ** aggregates. 2348 ** 2349 ** (10) The subquery does not use aggregates or the outer query does not 2350 ** use LIMIT. 2351 ** 2352 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2353 ** 2354 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2355 ** subquery has no WHERE clause. (added by ticket #350) 2356 ** 2357 ** (13) The subquery and outer query do not both use LIMIT 2358 ** 2359 ** (14) The subquery does not use OFFSET 2360 ** 2361 ** (15) The outer query is not part of a compound select or the 2362 ** subquery does not have both an ORDER BY and a LIMIT clause. 2363 ** (See ticket #2339) 2364 ** 2365 ** In this routine, the "p" parameter is a pointer to the outer query. 2366 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2367 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2368 ** 2369 ** If flattening is not attempted, this routine is a no-op and returns 0. 2370 ** If flattening is attempted this routine returns 1. 2371 ** 2372 ** All of the expression analysis must occur on both the outer query and 2373 ** the subquery before this routine runs. 2374 */ 2375 static int flattenSubquery( 2376 sqlite3 *db, /* Database connection */ 2377 Select *p, /* The parent or outer SELECT statement */ 2378 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2379 int isAgg, /* True if outer SELECT uses aggregate functions */ 2380 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2381 ){ 2382 Select *pSub; /* The inner query or "subquery" */ 2383 SrcList *pSrc; /* The FROM clause of the outer query */ 2384 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2385 ExprList *pList; /* The result set of the outer query */ 2386 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2387 int i; /* Loop counter */ 2388 Expr *pWhere; /* The WHERE clause */ 2389 struct SrcList_item *pSubitem; /* The subquery */ 2390 2391 /* Check to see if flattening is permitted. Return 0 if not. 2392 */ 2393 if( p==0 ) return 0; 2394 pSrc = p->pSrc; 2395 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2396 pSubitem = &pSrc->a[iFrom]; 2397 pSub = pSubitem->pSelect; 2398 assert( pSub!=0 ); 2399 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2400 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2401 pSubSrc = pSub->pSrc; 2402 assert( pSubSrc ); 2403 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2404 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2405 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2406 ** became arbitrary expressions, we were forced to add restrictions (13) 2407 ** and (14). */ 2408 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2409 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2410 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2411 return 0; /* Restriction (15) */ 2412 } 2413 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2414 if( (pSub->isDistinct || pSub->pLimit) 2415 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2416 return 0; 2417 } 2418 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 2419 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 2420 return 0; /* Restriction (11) */ 2421 } 2422 2423 /* Restriction 3: If the subquery is a join, make sure the subquery is 2424 ** not used as the right operand of an outer join. Examples of why this 2425 ** is not allowed: 2426 ** 2427 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2428 ** 2429 ** If we flatten the above, we would get 2430 ** 2431 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2432 ** 2433 ** which is not at all the same thing. 2434 */ 2435 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 2436 return 0; 2437 } 2438 2439 /* Restriction 12: If the subquery is the right operand of a left outer 2440 ** join, make sure the subquery has no WHERE clause. 2441 ** An examples of why this is not allowed: 2442 ** 2443 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2444 ** 2445 ** If we flatten the above, we would get 2446 ** 2447 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2448 ** 2449 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2450 ** effectively converts the OUTER JOIN into an INNER JOIN. 2451 */ 2452 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 2453 return 0; 2454 } 2455 2456 /* If we reach this point, it means flattening is permitted for the 2457 ** iFrom-th entry of the FROM clause in the outer query. 2458 */ 2459 2460 /* Move all of the FROM elements of the subquery into the 2461 ** the FROM clause of the outer query. Before doing this, remember 2462 ** the cursor number for the original outer query FROM element in 2463 ** iParent. The iParent cursor will never be used. Subsequent code 2464 ** will scan expressions looking for iParent references and replace 2465 ** those references with expressions that resolve to the subquery FROM 2466 ** elements we are now copying in. 2467 */ 2468 iParent = pSubitem->iCursor; 2469 { 2470 int nSubSrc = pSubSrc->nSrc; 2471 int jointype = pSubitem->jointype; 2472 2473 sqlite3DeleteTable(pSubitem->pTab); 2474 sqlite3_free(pSubitem->zDatabase); 2475 sqlite3_free(pSubitem->zName); 2476 sqlite3_free(pSubitem->zAlias); 2477 pSubitem->pTab = 0; 2478 pSubitem->zDatabase = 0; 2479 pSubitem->zName = 0; 2480 pSubitem->zAlias = 0; 2481 if( nSubSrc>1 ){ 2482 int extra = nSubSrc - 1; 2483 for(i=1; i<nSubSrc; i++){ 2484 pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0); 2485 if( pSrc==0 ){ 2486 p->pSrc = 0; 2487 return 1; 2488 } 2489 } 2490 p->pSrc = pSrc; 2491 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2492 pSrc->a[i] = pSrc->a[i-extra]; 2493 } 2494 } 2495 for(i=0; i<nSubSrc; i++){ 2496 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2497 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2498 } 2499 pSrc->a[iFrom].jointype = jointype; 2500 } 2501 2502 /* Now begin substituting subquery result set expressions for 2503 ** references to the iParent in the outer query. 2504 ** 2505 ** Example: 2506 ** 2507 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2508 ** \ \_____________ subquery __________/ / 2509 ** \_____________________ outer query ______________________________/ 2510 ** 2511 ** We look at every expression in the outer query and every place we see 2512 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2513 */ 2514 pList = p->pEList; 2515 for(i=0; i<pList->nExpr; i++){ 2516 Expr *pExpr; 2517 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2518 pList->a[i].zName = 2519 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 2520 } 2521 } 2522 substExprList(db, p->pEList, iParent, pSub->pEList); 2523 if( isAgg ){ 2524 substExprList(db, p->pGroupBy, iParent, pSub->pEList); 2525 substExpr(db, p->pHaving, iParent, pSub->pEList); 2526 } 2527 if( pSub->pOrderBy ){ 2528 assert( p->pOrderBy==0 ); 2529 p->pOrderBy = pSub->pOrderBy; 2530 pSub->pOrderBy = 0; 2531 }else if( p->pOrderBy ){ 2532 substExprList(db, p->pOrderBy, iParent, pSub->pEList); 2533 } 2534 if( pSub->pWhere ){ 2535 pWhere = sqlite3ExprDup(db, pSub->pWhere); 2536 }else{ 2537 pWhere = 0; 2538 } 2539 if( subqueryIsAgg ){ 2540 assert( p->pHaving==0 ); 2541 p->pHaving = p->pWhere; 2542 p->pWhere = pWhere; 2543 substExpr(db, p->pHaving, iParent, pSub->pEList); 2544 p->pHaving = sqlite3ExprAnd(db, p->pHaving, 2545 sqlite3ExprDup(db, pSub->pHaving)); 2546 assert( p->pGroupBy==0 ); 2547 p->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); 2548 }else{ 2549 substExpr(db, p->pWhere, iParent, pSub->pEList); 2550 p->pWhere = sqlite3ExprAnd(db, p->pWhere, pWhere); 2551 } 2552 2553 /* The flattened query is distinct if either the inner or the 2554 ** outer query is distinct. 2555 */ 2556 p->isDistinct = p->isDistinct || pSub->isDistinct; 2557 2558 /* 2559 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2560 ** 2561 ** One is tempted to try to add a and b to combine the limits. But this 2562 ** does not work if either limit is negative. 2563 */ 2564 if( pSub->pLimit ){ 2565 p->pLimit = pSub->pLimit; 2566 pSub->pLimit = 0; 2567 } 2568 2569 /* Finially, delete what is left of the subquery and return 2570 ** success. 2571 */ 2572 sqlite3SelectDelete(pSub); 2573 return 1; 2574 } 2575 #endif /* SQLITE_OMIT_VIEW */ 2576 2577 /* 2578 ** Analyze the SELECT statement passed in as an argument to see if it 2579 ** is a simple min() or max() query. If it is and this query can be 2580 ** satisfied using a single seek to the beginning or end of an index, 2581 ** then generate the code for this SELECT and return 1. If this is not a 2582 ** simple min() or max() query, then return 0; 2583 ** 2584 ** A simply min() or max() query looks like this: 2585 ** 2586 ** SELECT min(a) FROM table; 2587 ** SELECT max(a) FROM table; 2588 ** 2589 ** The query may have only a single table in its FROM argument. There 2590 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must 2591 ** be the min() or max() of a single column of the table. The column 2592 ** in the min() or max() function must be indexed. 2593 ** 2594 ** The parameters to this routine are the same as for sqlite3Select(). 2595 ** See the header comment on that routine for additional information. 2596 */ 2597 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ 2598 Expr *pExpr; 2599 int iCol; 2600 Table *pTab; 2601 Index *pIdx; 2602 int base; 2603 Vdbe *v; 2604 int seekOp; 2605 ExprList *pEList, *pList, eList; 2606 struct ExprList_item eListItem; 2607 SrcList *pSrc; 2608 int brk; 2609 int iDb; 2610 2611 /* Check to see if this query is a simple min() or max() query. Return 2612 ** zero if it is not. 2613 */ 2614 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; 2615 pSrc = p->pSrc; 2616 if( pSrc->nSrc!=1 ) return 0; 2617 pEList = p->pEList; 2618 if( pEList->nExpr!=1 ) return 0; 2619 pExpr = pEList->a[0].pExpr; 2620 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2621 pList = pExpr->pList; 2622 if( pList==0 || pList->nExpr!=1 ) return 0; 2623 if( pExpr->token.n!=3 ) return 0; 2624 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2625 seekOp = OP_Rewind; 2626 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2627 seekOp = OP_Last; 2628 }else{ 2629 return 0; 2630 } 2631 pExpr = pList->a[0].pExpr; 2632 if( pExpr->op!=TK_COLUMN ) return 0; 2633 iCol = pExpr->iColumn; 2634 pTab = pSrc->a[0].pTab; 2635 2636 /* This optimization cannot be used with virtual tables. */ 2637 if( IsVirtual(pTab) ) return 0; 2638 2639 /* If we get to here, it means the query is of the correct form. 2640 ** Check to make sure we have an index and make pIdx point to the 2641 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY 2642 ** key column, no index is necessary so set pIdx to NULL. If no 2643 ** usable index is found, return 0. 2644 */ 2645 if( iCol<0 ){ 2646 pIdx = 0; 2647 }else{ 2648 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2649 if( pColl==0 ) return 0; 2650 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2651 assert( pIdx->nColumn>=1 ); 2652 if( pIdx->aiColumn[0]==iCol && 2653 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ 2654 break; 2655 } 2656 } 2657 if( pIdx==0 ) return 0; 2658 } 2659 2660 /* Identify column types if we will be using the callback. This 2661 ** step is skipped if the output is going to a table or a memory cell. 2662 ** The column names have already been generated in the calling function. 2663 */ 2664 v = sqlite3GetVdbe(pParse); 2665 if( v==0 ) return 0; 2666 2667 /* If the output is destined for a temporary table, open that table. 2668 */ 2669 if( eDest==SRT_EphemTab ){ 2670 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); 2671 } 2672 2673 /* Generating code to find the min or the max. Basically all we have 2674 ** to do is find the first or the last entry in the chosen index. If 2675 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first 2676 ** or last entry in the main table. 2677 */ 2678 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2679 assert( iDb>=0 || pTab->isEphem ); 2680 sqlite3CodeVerifySchema(pParse, iDb); 2681 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2682 base = pSrc->a[0].iCursor; 2683 brk = sqlite3VdbeMakeLabel(v); 2684 computeLimitRegisters(pParse, p, brk); 2685 if( pSrc->a[0].pSelect==0 ){ 2686 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); 2687 } 2688 if( pIdx==0 ){ 2689 sqlite3VdbeAddOp(v, seekOp, base, 0); 2690 }else{ 2691 /* Even though the cursor used to open the index here is closed 2692 ** as soon as a single value has been read from it, allocate it 2693 ** using (pParse->nTab++) to prevent the cursor id from being 2694 ** reused. This is important for statements of the form 2695 ** "INSERT INTO x SELECT max() FROM x". 2696 */ 2697 int iIdx; 2698 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 2699 iIdx = pParse->nTab++; 2700 assert( pIdx->pSchema==pTab->pSchema ); 2701 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2702 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 2703 (char*)pKey, P3_KEYINFO_HANDOFF); 2704 if( seekOp==OP_Rewind ){ 2705 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2706 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); 2707 seekOp = OP_MoveGt; 2708 } 2709 if( pIdx->aSortOrder[0]==SQLITE_SO_DESC ){ 2710 /* Ticket #2514: invert the seek operator if we are using 2711 ** a descending index. */ 2712 if( seekOp==OP_Last ){ 2713 seekOp = OP_Rewind; 2714 }else{ 2715 assert( seekOp==OP_MoveGt ); 2716 seekOp = OP_MoveLt; 2717 } 2718 } 2719 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); 2720 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); 2721 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2722 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 2723 } 2724 eList.nExpr = 1; 2725 memset(&eListItem, 0, sizeof(eListItem)); 2726 eList.a = &eListItem; 2727 eList.a[0].pExpr = pExpr; 2728 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); 2729 sqlite3VdbeResolveLabel(v, brk); 2730 sqlite3VdbeAddOp(v, OP_Close, base, 0); 2731 2732 return 1; 2733 } 2734 2735 /* 2736 ** This routine resolves any names used in the result set of the 2737 ** supplied SELECT statement. If the SELECT statement being resolved 2738 ** is a sub-select, then pOuterNC is a pointer to the NameContext 2739 ** of the parent SELECT. 2740 */ 2741 int sqlite3SelectResolve( 2742 Parse *pParse, /* The parser context */ 2743 Select *p, /* The SELECT statement being coded. */ 2744 NameContext *pOuterNC /* The outer name context. May be NULL. */ 2745 ){ 2746 ExprList *pEList; /* Result set. */ 2747 int i; /* For-loop variable used in multiple places */ 2748 NameContext sNC; /* Local name-context */ 2749 ExprList *pGroupBy; /* The group by clause */ 2750 2751 /* If this routine has run before, return immediately. */ 2752 if( p->isResolved ){ 2753 assert( !pOuterNC ); 2754 return SQLITE_OK; 2755 } 2756 p->isResolved = 1; 2757 2758 /* If there have already been errors, do nothing. */ 2759 if( pParse->nErr>0 ){ 2760 return SQLITE_ERROR; 2761 } 2762 2763 /* Prepare the select statement. This call will allocate all cursors 2764 ** required to handle the tables and subqueries in the FROM clause. 2765 */ 2766 if( prepSelectStmt(pParse, p) ){ 2767 return SQLITE_ERROR; 2768 } 2769 2770 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 2771 ** are not allowed to refer to any names, so pass an empty NameContext. 2772 */ 2773 memset(&sNC, 0, sizeof(sNC)); 2774 sNC.pParse = pParse; 2775 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 2776 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 2777 return SQLITE_ERROR; 2778 } 2779 2780 /* Set up the local name-context to pass to ExprResolveNames() to 2781 ** resolve the expression-list. 2782 */ 2783 sNC.allowAgg = 1; 2784 sNC.pSrcList = p->pSrc; 2785 sNC.pNext = pOuterNC; 2786 2787 /* Resolve names in the result set. */ 2788 pEList = p->pEList; 2789 if( !pEList ) return SQLITE_ERROR; 2790 for(i=0; i<pEList->nExpr; i++){ 2791 Expr *pX = pEList->a[i].pExpr; 2792 if( sqlite3ExprResolveNames(&sNC, pX) ){ 2793 return SQLITE_ERROR; 2794 } 2795 } 2796 2797 /* If there are no aggregate functions in the result-set, and no GROUP BY 2798 ** expression, do not allow aggregates in any of the other expressions. 2799 */ 2800 assert( !p->isAgg ); 2801 pGroupBy = p->pGroupBy; 2802 if( pGroupBy || sNC.hasAgg ){ 2803 p->isAgg = 1; 2804 }else{ 2805 sNC.allowAgg = 0; 2806 } 2807 2808 /* If a HAVING clause is present, then there must be a GROUP BY clause. 2809 */ 2810 if( p->pHaving && !pGroupBy ){ 2811 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 2812 return SQLITE_ERROR; 2813 } 2814 2815 /* Add the expression list to the name-context before parsing the 2816 ** other expressions in the SELECT statement. This is so that 2817 ** expressions in the WHERE clause (etc.) can refer to expressions by 2818 ** aliases in the result set. 2819 ** 2820 ** Minor point: If this is the case, then the expression will be 2821 ** re-evaluated for each reference to it. 2822 */ 2823 sNC.pEList = p->pEList; 2824 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 2825 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ 2826 return SQLITE_ERROR; 2827 } 2828 if( p->pPrior==0 ){ 2829 if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){ 2830 return SQLITE_ERROR; 2831 } 2832 } 2833 if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){ 2834 return SQLITE_ERROR; 2835 } 2836 2837 if( pParse->db->mallocFailed ){ 2838 return SQLITE_NOMEM; 2839 } 2840 2841 /* Make sure the GROUP BY clause does not contain aggregate functions. 2842 */ 2843 if( pGroupBy ){ 2844 struct ExprList_item *pItem; 2845 2846 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 2847 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 2848 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 2849 "the GROUP BY clause"); 2850 return SQLITE_ERROR; 2851 } 2852 } 2853 } 2854 2855 /* If this is one SELECT of a compound, be sure to resolve names 2856 ** in the other SELECTs. 2857 */ 2858 if( p->pPrior ){ 2859 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 2860 }else{ 2861 return SQLITE_OK; 2862 } 2863 } 2864 2865 /* 2866 ** Reset the aggregate accumulator. 2867 ** 2868 ** The aggregate accumulator is a set of memory cells that hold 2869 ** intermediate results while calculating an aggregate. This 2870 ** routine simply stores NULLs in all of those memory cells. 2871 */ 2872 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2873 Vdbe *v = pParse->pVdbe; 2874 int i; 2875 struct AggInfo_func *pFunc; 2876 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 2877 return; 2878 } 2879 for(i=0; i<pAggInfo->nColumn; i++){ 2880 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); 2881 } 2882 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 2883 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); 2884 if( pFunc->iDistinct>=0 ){ 2885 Expr *pE = pFunc->pExpr; 2886 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 2887 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 2888 "by an expression"); 2889 pFunc->iDistinct = -1; 2890 }else{ 2891 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 2892 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 2893 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2894 } 2895 } 2896 } 2897 } 2898 2899 /* 2900 ** Invoke the OP_AggFinalize opcode for every aggregate function 2901 ** in the AggInfo structure. 2902 */ 2903 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 2904 Vdbe *v = pParse->pVdbe; 2905 int i; 2906 struct AggInfo_func *pF; 2907 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2908 ExprList *pList = pF->pExpr->pList; 2909 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 2910 (void*)pF->pFunc, P3_FUNCDEF); 2911 } 2912 } 2913 2914 /* 2915 ** Update the accumulator memory cells for an aggregate based on 2916 ** the current cursor position. 2917 */ 2918 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2919 Vdbe *v = pParse->pVdbe; 2920 int i; 2921 struct AggInfo_func *pF; 2922 struct AggInfo_col *pC; 2923 2924 pAggInfo->directMode = 1; 2925 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2926 int nArg; 2927 int addrNext = 0; 2928 ExprList *pList = pF->pExpr->pList; 2929 if( pList ){ 2930 nArg = pList->nExpr; 2931 sqlite3ExprCodeExprList(pParse, pList); 2932 }else{ 2933 nArg = 0; 2934 } 2935 if( pF->iDistinct>=0 ){ 2936 addrNext = sqlite3VdbeMakeLabel(v); 2937 assert( nArg==1 ); 2938 codeDistinct(v, pF->iDistinct, addrNext, 1); 2939 } 2940 if( pF->pFunc->needCollSeq ){ 2941 CollSeq *pColl = 0; 2942 struct ExprList_item *pItem; 2943 int j; 2944 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 2945 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 2946 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 2947 } 2948 if( !pColl ){ 2949 pColl = pParse->db->pDfltColl; 2950 } 2951 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2952 } 2953 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); 2954 if( addrNext ){ 2955 sqlite3VdbeResolveLabel(v, addrNext); 2956 } 2957 } 2958 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 2959 sqlite3ExprCode(pParse, pC->pExpr); 2960 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); 2961 } 2962 pAggInfo->directMode = 0; 2963 } 2964 2965 2966 /* 2967 ** Generate code for the given SELECT statement. 2968 ** 2969 ** The results are distributed in various ways depending on the 2970 ** value of eDest and iParm. 2971 ** 2972 ** eDest Value Result 2973 ** ------------ ------------------------------------------- 2974 ** SRT_Callback Invoke the callback for each row of the result. 2975 ** 2976 ** SRT_Mem Store first result in memory cell iParm 2977 ** 2978 ** SRT_Set Store results as keys of table iParm. 2979 ** 2980 ** SRT_Union Store results as a key in a temporary table iParm 2981 ** 2982 ** SRT_Except Remove results from the temporary table iParm. 2983 ** 2984 ** SRT_Table Store results in temporary table iParm 2985 ** 2986 ** The table above is incomplete. Additional eDist value have be added 2987 ** since this comment was written. See the selectInnerLoop() function for 2988 ** a complete listing of the allowed values of eDest and their meanings. 2989 ** 2990 ** This routine returns the number of errors. If any errors are 2991 ** encountered, then an appropriate error message is left in 2992 ** pParse->zErrMsg. 2993 ** 2994 ** This routine does NOT free the Select structure passed in. The 2995 ** calling function needs to do that. 2996 ** 2997 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 2998 ** SELECT is a subquery. This routine may try to combine this SELECT 2999 ** with its parent to form a single flat query. In so doing, it might 3000 ** change the parent query from a non-aggregate to an aggregate query. 3001 ** For that reason, the pParentAgg flag is passed as a pointer, so it 3002 ** can be changed. 3003 ** 3004 ** Example 1: The meaning of the pParent parameter. 3005 ** 3006 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 3007 ** \ \_______ subquery _______/ / 3008 ** \ / 3009 ** \____________________ outer query ___________________/ 3010 ** 3011 ** This routine is called for the outer query first. For that call, 3012 ** pParent will be NULL. During the processing of the outer query, this 3013 ** routine is called recursively to handle the subquery. For the recursive 3014 ** call, pParent will point to the outer query. Because the subquery is 3015 ** the second element in a three-way join, the parentTab parameter will 3016 ** be 1 (the 2nd value of a 0-indexed array.) 3017 */ 3018 int sqlite3Select( 3019 Parse *pParse, /* The parser context */ 3020 Select *p, /* The SELECT statement being coded. */ 3021 int eDest, /* How to dispose of the results */ 3022 int iParm, /* A parameter used by the eDest disposal method */ 3023 Select *pParent, /* Another SELECT for which this is a sub-query */ 3024 int parentTab, /* Index in pParent->pSrc of this query */ 3025 int *pParentAgg, /* True if pParent uses aggregate functions */ 3026 char *aff /* If eDest is SRT_Union, the affinity string */ 3027 ){ 3028 int i, j; /* Loop counters */ 3029 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3030 Vdbe *v; /* The virtual machine under construction */ 3031 int isAgg; /* True for select lists like "count(*)" */ 3032 ExprList *pEList; /* List of columns to extract. */ 3033 SrcList *pTabList; /* List of tables to select from */ 3034 Expr *pWhere; /* The WHERE clause. May be NULL */ 3035 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3036 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3037 Expr *pHaving; /* The HAVING clause. May be NULL */ 3038 int isDistinct; /* True if the DISTINCT keyword is present */ 3039 int distinct; /* Table to use for the distinct set */ 3040 int rc = 1; /* Value to return from this function */ 3041 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3042 AggInfo sAggInfo; /* Information used by aggregate queries */ 3043 int iEnd; /* Address of the end of the query */ 3044 sqlite3 *db; /* The database connection */ 3045 3046 db = pParse->db; 3047 if( p==0 || db->mallocFailed || pParse->nErr ){ 3048 return 1; 3049 } 3050 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3051 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3052 3053 pOrderBy = p->pOrderBy; 3054 if( IgnorableOrderby(eDest) ){ 3055 p->pOrderBy = 0; 3056 } 3057 if( sqlite3SelectResolve(pParse, p, 0) ){ 3058 goto select_end; 3059 } 3060 p->pOrderBy = pOrderBy; 3061 3062 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3063 /* If there is are a sequence of queries, do the earlier ones first. 3064 */ 3065 if( p->pPrior ){ 3066 if( p->pRightmost==0 ){ 3067 Select *pLoop, *pRight = 0; 3068 int cnt = 0; 3069 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3070 pLoop->pRightmost = p; 3071 pLoop->pNext = pRight; 3072 pRight = pLoop; 3073 } 3074 if( SQLITE_MAX_COMPOUND_SELECT>0 && cnt>SQLITE_MAX_COMPOUND_SELECT ){ 3075 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3076 return 1; 3077 } 3078 } 3079 return multiSelect(pParse, p, eDest, iParm, aff); 3080 } 3081 #endif 3082 3083 /* Make local copies of the parameters for this query. 3084 */ 3085 pTabList = p->pSrc; 3086 pWhere = p->pWhere; 3087 pGroupBy = p->pGroupBy; 3088 pHaving = p->pHaving; 3089 isAgg = p->isAgg; 3090 isDistinct = p->isDistinct; 3091 pEList = p->pEList; 3092 if( pEList==0 ) goto select_end; 3093 3094 /* 3095 ** Do not even attempt to generate any code if we have already seen 3096 ** errors before this routine starts. 3097 */ 3098 if( pParse->nErr>0 ) goto select_end; 3099 3100 /* If writing to memory or generating a set 3101 ** only a single column may be output. 3102 */ 3103 #ifndef SQLITE_OMIT_SUBQUERY 3104 if( checkForMultiColumnSelectError(pParse, eDest, pEList->nExpr) ){ 3105 goto select_end; 3106 } 3107 #endif 3108 3109 /* ORDER BY is ignored for some destinations. 3110 */ 3111 if( IgnorableOrderby(eDest) ){ 3112 pOrderBy = 0; 3113 } 3114 3115 /* Begin generating code. 3116 */ 3117 v = sqlite3GetVdbe(pParse); 3118 if( v==0 ) goto select_end; 3119 3120 /* Generate code for all sub-queries in the FROM clause 3121 */ 3122 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3123 for(i=0; i<pTabList->nSrc; i++){ 3124 const char *zSavedAuthContext = 0; 3125 int needRestoreContext; 3126 struct SrcList_item *pItem = &pTabList->a[i]; 3127 3128 if( pItem->pSelect==0 || pItem->isPopulated ) continue; 3129 if( pItem->zName!=0 ){ 3130 zSavedAuthContext = pParse->zAuthContext; 3131 pParse->zAuthContext = pItem->zName; 3132 needRestoreContext = 1; 3133 }else{ 3134 needRestoreContext = 0; 3135 } 3136 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 3137 /* Increment Parse.nHeight by the height of the largest expression 3138 ** tree refered to by this, the parent select. The child select 3139 ** may contain expression trees of at most 3140 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3141 ** more conservative than necessary, but much easier than enforcing 3142 ** an exact limit. 3143 */ 3144 pParse->nHeight += sqlite3SelectExprHeight(p); 3145 #endif 3146 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 3147 pItem->iCursor, p, i, &isAgg, 0); 3148 if( db->mallocFailed ){ 3149 goto select_end; 3150 } 3151 #if defined(SQLITE_TEST) || SQLITE_MAX_EXPR_DEPTH>0 3152 pParse->nHeight -= sqlite3SelectExprHeight(p); 3153 #endif 3154 if( needRestoreContext ){ 3155 pParse->zAuthContext = zSavedAuthContext; 3156 } 3157 pTabList = p->pSrc; 3158 pWhere = p->pWhere; 3159 if( !IgnorableOrderby(eDest) ){ 3160 pOrderBy = p->pOrderBy; 3161 } 3162 pGroupBy = p->pGroupBy; 3163 pHaving = p->pHaving; 3164 isDistinct = p->isDistinct; 3165 } 3166 #endif 3167 3168 /* Check for the special case of a min() or max() function by itself 3169 ** in the result set. 3170 */ 3171 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ 3172 rc = 0; 3173 goto select_end; 3174 } 3175 3176 /* Check to see if this is a subquery that can be "flattened" into its parent. 3177 ** If flattening is a possiblity, do so and return immediately. 3178 */ 3179 #ifndef SQLITE_OMIT_VIEW 3180 if( pParent && pParentAgg && 3181 flattenSubquery(db, pParent, parentTab, *pParentAgg, isAgg) ){ 3182 if( isAgg ) *pParentAgg = 1; 3183 goto select_end; 3184 } 3185 #endif 3186 3187 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3188 ** GROUP BY may use an index, DISTINCT never does. 3189 */ 3190 if( p->isDistinct && !p->isAgg && !p->pGroupBy ){ 3191 p->pGroupBy = sqlite3ExprListDup(db, p->pEList); 3192 pGroupBy = p->pGroupBy; 3193 p->isDistinct = 0; 3194 isDistinct = 0; 3195 } 3196 3197 /* If there is an ORDER BY clause, then this sorting 3198 ** index might end up being unused if the data can be 3199 ** extracted in pre-sorted order. If that is the case, then the 3200 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3201 ** we figure out that the sorting index is not needed. The addrSortIndex 3202 ** variable is used to facilitate that change. 3203 */ 3204 if( pOrderBy ){ 3205 KeyInfo *pKeyInfo; 3206 if( pParse->nErr ){ 3207 goto select_end; 3208 } 3209 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3210 pOrderBy->iECursor = pParse->nTab++; 3211 p->addrOpenEphm[2] = addrSortIndex = 3212 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3213 }else{ 3214 addrSortIndex = -1; 3215 } 3216 3217 /* If the output is destined for a temporary table, open that table. 3218 */ 3219 if( eDest==SRT_EphemTab ){ 3220 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); 3221 } 3222 3223 /* Set the limiter. 3224 */ 3225 iEnd = sqlite3VdbeMakeLabel(v); 3226 computeLimitRegisters(pParse, p, iEnd); 3227 3228 /* Open a virtual index to use for the distinct set. 3229 */ 3230 if( isDistinct ){ 3231 KeyInfo *pKeyInfo; 3232 assert( isAgg || pGroupBy ); 3233 distinct = pParse->nTab++; 3234 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3235 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 3236 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3237 }else{ 3238 distinct = -1; 3239 } 3240 3241 /* Aggregate and non-aggregate queries are handled differently */ 3242 if( !isAgg && pGroupBy==0 ){ 3243 /* This case is for non-aggregate queries 3244 ** Begin the database scan 3245 */ 3246 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); 3247 if( pWInfo==0 ) goto select_end; 3248 3249 /* If sorting index that was created by a prior OP_OpenEphemeral 3250 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3251 ** into an OP_Noop. 3252 */ 3253 if( addrSortIndex>=0 && pOrderBy==0 ){ 3254 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3255 p->addrOpenEphm[2] = -1; 3256 } 3257 3258 /* Use the standard inner loop 3259 */ 3260 assert(!isDistinct); 3261 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, eDest, 3262 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ 3263 goto select_end; 3264 } 3265 3266 /* End the database scan loop. 3267 */ 3268 sqlite3WhereEnd(pWInfo); 3269 }else{ 3270 /* This is the processing for aggregate queries */ 3271 NameContext sNC; /* Name context for processing aggregate information */ 3272 int iAMem; /* First Mem address for storing current GROUP BY */ 3273 int iBMem; /* First Mem address for previous GROUP BY */ 3274 int iUseFlag; /* Mem address holding flag indicating that at least 3275 ** one row of the input to the aggregator has been 3276 ** processed */ 3277 int iAbortFlag; /* Mem address which causes query abort if positive */ 3278 int groupBySort; /* Rows come from source in GROUP BY order */ 3279 3280 3281 /* The following variables hold addresses or labels for parts of the 3282 ** virtual machine program we are putting together */ 3283 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3284 int addrSetAbort; /* Set the abort flag and return */ 3285 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3286 int addrTopOfLoop; /* Top of the input loop */ 3287 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ 3288 int addrProcessRow; /* Code to process a single input row */ 3289 int addrEnd; /* End of all processing */ 3290 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3291 int addrReset; /* Subroutine for resetting the accumulator */ 3292 3293 addrEnd = sqlite3VdbeMakeLabel(v); 3294 3295 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3296 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3297 ** SELECT statement. 3298 */ 3299 memset(&sNC, 0, sizeof(sNC)); 3300 sNC.pParse = pParse; 3301 sNC.pSrcList = pTabList; 3302 sNC.pAggInfo = &sAggInfo; 3303 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3304 sAggInfo.pGroupBy = pGroupBy; 3305 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ 3306 goto select_end; 3307 } 3308 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ 3309 goto select_end; 3310 } 3311 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ 3312 goto select_end; 3313 } 3314 sAggInfo.nAccumulator = sAggInfo.nColumn; 3315 for(i=0; i<sAggInfo.nFunc; i++){ 3316 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ 3317 goto select_end; 3318 } 3319 } 3320 if( db->mallocFailed ) goto select_end; 3321 3322 /* Processing for aggregates with GROUP BY is very different and 3323 ** much more complex than aggregates without a GROUP BY. 3324 */ 3325 if( pGroupBy ){ 3326 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3327 3328 /* Create labels that we will be needing 3329 */ 3330 3331 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3332 addrGroupByChange = sqlite3VdbeMakeLabel(v); 3333 addrProcessRow = sqlite3VdbeMakeLabel(v); 3334 3335 /* If there is a GROUP BY clause we might need a sorting index to 3336 ** implement it. Allocate that sorting index now. If it turns out 3337 ** that we do not need it after all, the OpenEphemeral instruction 3338 ** will be converted into a Noop. 3339 */ 3340 sAggInfo.sortingIdx = pParse->nTab++; 3341 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3342 addrSortingIdx = 3343 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, 3344 sAggInfo.nSortingColumn, 3345 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3346 3347 /* Initialize memory locations used by GROUP BY aggregate processing 3348 */ 3349 iUseFlag = pParse->nMem++; 3350 iAbortFlag = pParse->nMem++; 3351 iAMem = pParse->nMem; 3352 pParse->nMem += pGroupBy->nExpr; 3353 iBMem = pParse->nMem; 3354 pParse->nMem += pGroupBy->nExpr; 3355 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); 3356 VdbeComment((v, "# clear abort flag")); 3357 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); 3358 VdbeComment((v, "# indicate accumulator empty")); 3359 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); 3360 3361 /* Generate a subroutine that outputs a single row of the result 3362 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3363 ** is less than or equal to zero, the subroutine is a no-op. If 3364 ** the processing calls for the query to abort, this subroutine 3365 ** increments the iAbortFlag memory location before returning in 3366 ** order to signal the caller to abort. 3367 */ 3368 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3369 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); 3370 VdbeComment((v, "# set abort flag")); 3371 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3372 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3373 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); 3374 VdbeComment((v, "# Groupby result generator entry point")); 3375 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3376 finalizeAggFunctions(pParse, &sAggInfo); 3377 if( pHaving ){ 3378 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); 3379 } 3380 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3381 distinct, eDest, iParm, 3382 addrOutputRow+1, addrSetAbort, aff); 3383 if( rc ){ 3384 goto select_end; 3385 } 3386 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3387 VdbeComment((v, "# end groupby result generator")); 3388 3389 /* Generate a subroutine that will reset the group-by accumulator 3390 */ 3391 addrReset = sqlite3VdbeCurrentAddr(v); 3392 resetAccumulator(pParse, &sAggInfo); 3393 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3394 3395 /* Begin a loop that will extract all source rows in GROUP BY order. 3396 ** This might involve two separate loops with an OP_Sort in between, or 3397 ** it might be a single loop that uses an index to extract information 3398 ** in the right order to begin with. 3399 */ 3400 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3401 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3402 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); 3403 if( pWInfo==0 ) goto select_end; 3404 if( pGroupBy==0 ){ 3405 /* The optimizer is able to deliver rows in group by order so 3406 ** we do not have to sort. The OP_OpenEphemeral table will be 3407 ** cancelled later because we still need to use the pKeyInfo 3408 */ 3409 pGroupBy = p->pGroupBy; 3410 groupBySort = 0; 3411 }else{ 3412 /* Rows are coming out in undetermined order. We have to push 3413 ** each row into a sorting index, terminate the first loop, 3414 ** then loop over the sorting index in order to get the output 3415 ** in sorted order 3416 */ 3417 groupBySort = 1; 3418 sqlite3ExprCodeExprList(pParse, pGroupBy); 3419 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); 3420 j = pGroupBy->nExpr+1; 3421 for(i=0; i<sAggInfo.nColumn; i++){ 3422 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3423 if( pCol->iSorterColumn<j ) continue; 3424 sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable); 3425 j++; 3426 } 3427 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); 3428 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); 3429 sqlite3WhereEnd(pWInfo); 3430 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3431 VdbeComment((v, "# GROUP BY sort")); 3432 sAggInfo.useSortingIdx = 1; 3433 } 3434 3435 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3436 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3437 ** Then compare the current GROUP BY terms against the GROUP BY terms 3438 ** from the previous row currently stored in a0, a1, a2... 3439 */ 3440 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3441 for(j=0; j<pGroupBy->nExpr; j++){ 3442 if( groupBySort ){ 3443 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); 3444 }else{ 3445 sAggInfo.directMode = 1; 3446 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); 3447 } 3448 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); 3449 } 3450 for(j=pGroupBy->nExpr-1; j>=0; j--){ 3451 if( j<pGroupBy->nExpr-1 ){ 3452 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); 3453 } 3454 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); 3455 if( j==0 ){ 3456 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); 3457 }else{ 3458 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); 3459 } 3460 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); 3461 } 3462 3463 /* Generate code that runs whenever the GROUP BY changes. 3464 ** Change in the GROUP BY are detected by the previous code 3465 ** block. If there were no changes, this block is skipped. 3466 ** 3467 ** This code copies current group by terms in b0,b1,b2,... 3468 ** over to a0,a1,a2. It then calls the output subroutine 3469 ** and resets the aggregate accumulator registers in preparation 3470 ** for the next GROUP BY batch. 3471 */ 3472 sqlite3VdbeResolveLabel(v, addrGroupByChange); 3473 for(j=0; j<pGroupBy->nExpr; j++){ 3474 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); 3475 } 3476 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3477 VdbeComment((v, "# output one row")); 3478 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); 3479 VdbeComment((v, "# check abort flag")); 3480 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3481 VdbeComment((v, "# reset accumulator")); 3482 3483 /* Update the aggregate accumulators based on the content of 3484 ** the current row 3485 */ 3486 sqlite3VdbeResolveLabel(v, addrProcessRow); 3487 updateAccumulator(pParse, &sAggInfo); 3488 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); 3489 VdbeComment((v, "# indicate data in accumulator")); 3490 3491 /* End of the loop 3492 */ 3493 if( groupBySort ){ 3494 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3495 }else{ 3496 sqlite3WhereEnd(pWInfo); 3497 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3498 } 3499 3500 /* Output the final row of result 3501 */ 3502 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3503 VdbeComment((v, "# output final row")); 3504 3505 } /* endif pGroupBy */ 3506 else { 3507 /* This case runs if the aggregate has no GROUP BY clause. The 3508 ** processing is much simpler since there is only a single row 3509 ** of output. 3510 */ 3511 resetAccumulator(pParse, &sAggInfo); 3512 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); 3513 if( pWInfo==0 ) goto select_end; 3514 updateAccumulator(pParse, &sAggInfo); 3515 sqlite3WhereEnd(pWInfo); 3516 finalizeAggFunctions(pParse, &sAggInfo); 3517 pOrderBy = 0; 3518 if( pHaving ){ 3519 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); 3520 } 3521 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3522 eDest, iParm, addrEnd, addrEnd, aff); 3523 } 3524 sqlite3VdbeResolveLabel(v, addrEnd); 3525 3526 } /* endif aggregate query */ 3527 3528 /* If there is an ORDER BY clause, then we need to sort the results 3529 ** and send them to the callback one by one. 3530 */ 3531 if( pOrderBy ){ 3532 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); 3533 } 3534 3535 #ifndef SQLITE_OMIT_SUBQUERY 3536 /* If this was a subquery, we have now converted the subquery into a 3537 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 3538 ** this subquery from being evaluated again and to force the use of 3539 ** the temporary table. 3540 */ 3541 if( pParent ){ 3542 assert( pParent->pSrc->nSrc>parentTab ); 3543 assert( pParent->pSrc->a[parentTab].pSelect==p ); 3544 pParent->pSrc->a[parentTab].isPopulated = 1; 3545 } 3546 #endif 3547 3548 /* Jump here to skip this query 3549 */ 3550 sqlite3VdbeResolveLabel(v, iEnd); 3551 3552 /* The SELECT was successfully coded. Set the return code to 0 3553 ** to indicate no errors. 3554 */ 3555 rc = 0; 3556 3557 /* Control jumps to here if an error is encountered above, or upon 3558 ** successful coding of the SELECT. 3559 */ 3560 select_end: 3561 3562 /* Identify column names if we will be using them in a callback. This 3563 ** step is skipped if the output is going to some other destination. 3564 */ 3565 if( rc==SQLITE_OK && eDest==SRT_Callback ){ 3566 generateColumnNames(pParse, pTabList, pEList); 3567 } 3568 3569 sqlite3_free(sAggInfo.aCol); 3570 sqlite3_free(sAggInfo.aFunc); 3571 return rc; 3572 } 3573 3574 #if defined(SQLITE_DEBUG) 3575 /* 3576 ******************************************************************************* 3577 ** The following code is used for testing and debugging only. The code 3578 ** that follows does not appear in normal builds. 3579 ** 3580 ** These routines are used to print out the content of all or part of a 3581 ** parse structures such as Select or Expr. Such printouts are useful 3582 ** for helping to understand what is happening inside the code generator 3583 ** during the execution of complex SELECT statements. 3584 ** 3585 ** These routine are not called anywhere from within the normal 3586 ** code base. Then are intended to be called from within the debugger 3587 ** or from temporary "printf" statements inserted for debugging. 3588 */ 3589 void sqlite3PrintExpr(Expr *p){ 3590 if( p->token.z && p->token.n>0 ){ 3591 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 3592 }else{ 3593 sqlite3DebugPrintf("(%d", p->op); 3594 } 3595 if( p->pLeft ){ 3596 sqlite3DebugPrintf(" "); 3597 sqlite3PrintExpr(p->pLeft); 3598 } 3599 if( p->pRight ){ 3600 sqlite3DebugPrintf(" "); 3601 sqlite3PrintExpr(p->pRight); 3602 } 3603 sqlite3DebugPrintf(")"); 3604 } 3605 void sqlite3PrintExprList(ExprList *pList){ 3606 int i; 3607 for(i=0; i<pList->nExpr; i++){ 3608 sqlite3PrintExpr(pList->a[i].pExpr); 3609 if( i<pList->nExpr-1 ){ 3610 sqlite3DebugPrintf(", "); 3611 } 3612 } 3613 } 3614 void sqlite3PrintSelect(Select *p, int indent){ 3615 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 3616 sqlite3PrintExprList(p->pEList); 3617 sqlite3DebugPrintf("\n"); 3618 if( p->pSrc ){ 3619 char *zPrefix; 3620 int i; 3621 zPrefix = "FROM"; 3622 for(i=0; i<p->pSrc->nSrc; i++){ 3623 struct SrcList_item *pItem = &p->pSrc->a[i]; 3624 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 3625 zPrefix = ""; 3626 if( pItem->pSelect ){ 3627 sqlite3DebugPrintf("(\n"); 3628 sqlite3PrintSelect(pItem->pSelect, indent+10); 3629 sqlite3DebugPrintf("%*s)", indent+8, ""); 3630 }else if( pItem->zName ){ 3631 sqlite3DebugPrintf("%s", pItem->zName); 3632 } 3633 if( pItem->pTab ){ 3634 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 3635 } 3636 if( pItem->zAlias ){ 3637 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 3638 } 3639 if( i<p->pSrc->nSrc-1 ){ 3640 sqlite3DebugPrintf(","); 3641 } 3642 sqlite3DebugPrintf("\n"); 3643 } 3644 } 3645 if( p->pWhere ){ 3646 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 3647 sqlite3PrintExpr(p->pWhere); 3648 sqlite3DebugPrintf("\n"); 3649 } 3650 if( p->pGroupBy ){ 3651 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 3652 sqlite3PrintExprList(p->pGroupBy); 3653 sqlite3DebugPrintf("\n"); 3654 } 3655 if( p->pHaving ){ 3656 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 3657 sqlite3PrintExpr(p->pHaving); 3658 sqlite3DebugPrintf("\n"); 3659 } 3660 if( p->pOrderBy ){ 3661 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 3662 sqlite3PrintExprList(p->pOrderBy); 3663 sqlite3DebugPrintf("\n"); 3664 } 3665 } 3666 /* End of the structure debug printing code 3667 *****************************************************************************/ 3668 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 3669