1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.460 2008/07/28 19:34:53 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(sqlite3 *db, Select *p){ 25 sqlite3ExprListDelete(db, p->pEList); 26 sqlite3SrcListDelete(db, p->pSrc); 27 sqlite3ExprDelete(db, p->pWhere); 28 sqlite3ExprListDelete(db, p->pGroupBy); 29 sqlite3ExprDelete(db, p->pHaving); 30 sqlite3ExprListDelete(db, p->pOrderBy); 31 sqlite3SelectDelete(db, p->pPrior); 32 sqlite3ExprDelete(db, p->pLimit); 33 sqlite3ExprDelete(db, p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->isDistinct = isDistinct; 83 pNew->op = TK_SELECT; 84 assert( pOffset==0 || pLimit!=0 ); 85 pNew->pLimit = pLimit; 86 pNew->pOffset = pOffset; 87 pNew->addrOpenEphm[0] = -1; 88 pNew->addrOpenEphm[1] = -1; 89 pNew->addrOpenEphm[2] = -1; 90 if( pNew==&standin) { 91 clearSelect(db, pNew); 92 pNew = 0; 93 } 94 return pNew; 95 } 96 97 /* 98 ** Delete the given Select structure and all of its substructures. 99 */ 100 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 101 if( p ){ 102 clearSelect(db, p); 103 sqlite3DbFree(db, p); 104 } 105 } 106 107 /* 108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 109 ** type of join. Return an integer constant that expresses that type 110 ** in terms of the following bit values: 111 ** 112 ** JT_INNER 113 ** JT_CROSS 114 ** JT_OUTER 115 ** JT_NATURAL 116 ** JT_LEFT 117 ** JT_RIGHT 118 ** 119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 120 ** 121 ** If an illegal or unsupported join type is seen, then still return 122 ** a join type, but put an error in the pParse structure. 123 */ 124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 125 int jointype = 0; 126 Token *apAll[3]; 127 Token *p; 128 static const struct { 129 const char zKeyword[8]; 130 u8 nChar; 131 u8 code; 132 } keywords[] = { 133 { "natural", 7, JT_NATURAL }, 134 { "left", 4, JT_LEFT|JT_OUTER }, 135 { "right", 5, JT_RIGHT|JT_OUTER }, 136 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 137 { "outer", 5, JT_OUTER }, 138 { "inner", 5, JT_INNER }, 139 { "cross", 5, JT_INNER|JT_CROSS }, 140 }; 141 int i, j; 142 apAll[0] = pA; 143 apAll[1] = pB; 144 apAll[2] = pC; 145 for(i=0; i<3 && apAll[i]; i++){ 146 p = apAll[i]; 147 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 148 if( p->n==keywords[j].nChar 149 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 150 jointype |= keywords[j].code; 151 break; 152 } 153 } 154 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 155 jointype |= JT_ERROR; 156 break; 157 } 158 } 159 if( 160 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 161 (jointype & JT_ERROR)!=0 162 ){ 163 const char *zSp = " "; 164 assert( pB!=0 ); 165 if( pC==0 ){ zSp++; } 166 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 167 "%T %T%s%T", pA, pB, zSp, pC); 168 jointype = JT_INNER; 169 }else if( jointype & JT_RIGHT ){ 170 sqlite3ErrorMsg(pParse, 171 "RIGHT and FULL OUTER JOINs are not currently supported"); 172 jointype = JT_INNER; 173 } 174 return jointype; 175 } 176 177 /* 178 ** Return the index of a column in a table. Return -1 if the column 179 ** is not contained in the table. 180 */ 181 static int columnIndex(Table *pTab, const char *zCol){ 182 int i; 183 for(i=0; i<pTab->nCol; i++){ 184 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 185 } 186 return -1; 187 } 188 189 /* 190 ** Set the value of a token to a '\000'-terminated string. 191 */ 192 static void setToken(Token *p, const char *z){ 193 p->z = (u8*)z; 194 p->n = z ? strlen(z) : 0; 195 p->dyn = 0; 196 } 197 198 /* 199 ** Set the token to the double-quoted and escaped version of the string pointed 200 ** to by z. For example; 201 ** 202 ** {a"bc} -> {"a""bc"} 203 */ 204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ 205 206 /* Check if the string contains any " characters. If it does, then 207 ** this function will malloc space to create a quoted version of 208 ** the string in. Otherwise, save a call to sqlite3MPrintf() by 209 ** just copying the pointer to the string. 210 */ 211 const char *z2 = z; 212 while( *z2 ){ 213 if( *z2=='"' ) break; 214 z2++; 215 } 216 217 if( *z2 ){ 218 /* String contains " characters - copy and quote the string. */ 219 p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); 220 if( p->z ){ 221 p->n = strlen((char *)p->z); 222 p->dyn = 1; 223 } 224 }else{ 225 /* String contains no " characters - copy the pointer. */ 226 p->z = (u8*)z; 227 p->n = (z2 - z); 228 p->dyn = 0; 229 } 230 } 231 232 /* 233 ** Create an expression node for an identifier with the name of zName 234 */ 235 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 236 Token dummy; 237 setToken(&dummy, zName); 238 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 239 } 240 241 /* 242 ** Add a term to the WHERE expression in *ppExpr that requires the 243 ** zCol column to be equal in the two tables pTab1 and pTab2. 244 */ 245 static void addWhereTerm( 246 Parse *pParse, /* Parsing context */ 247 const char *zCol, /* Name of the column */ 248 const Table *pTab1, /* First table */ 249 const char *zAlias1, /* Alias for first table. May be NULL */ 250 const Table *pTab2, /* Second table */ 251 const char *zAlias2, /* Alias for second table. May be NULL */ 252 int iRightJoinTable, /* VDBE cursor for the right table */ 253 Expr **ppExpr, /* Add the equality term to this expression */ 254 int isOuterJoin /* True if dealing with an OUTER join */ 255 ){ 256 Expr *pE1a, *pE1b, *pE1c; 257 Expr *pE2a, *pE2b, *pE2c; 258 Expr *pE; 259 260 pE1a = sqlite3CreateIdExpr(pParse, zCol); 261 pE2a = sqlite3CreateIdExpr(pParse, zCol); 262 if( zAlias1==0 ){ 263 zAlias1 = pTab1->zName; 264 } 265 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 266 if( zAlias2==0 ){ 267 zAlias2 = pTab2->zName; 268 } 269 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 270 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 271 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 272 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 273 if( pE && isOuterJoin ){ 274 ExprSetProperty(pE, EP_FromJoin); 275 pE->iRightJoinTable = iRightJoinTable; 276 } 277 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 278 } 279 280 /* 281 ** Set the EP_FromJoin property on all terms of the given expression. 282 ** And set the Expr.iRightJoinTable to iTable for every term in the 283 ** expression. 284 ** 285 ** The EP_FromJoin property is used on terms of an expression to tell 286 ** the LEFT OUTER JOIN processing logic that this term is part of the 287 ** join restriction specified in the ON or USING clause and not a part 288 ** of the more general WHERE clause. These terms are moved over to the 289 ** WHERE clause during join processing but we need to remember that they 290 ** originated in the ON or USING clause. 291 ** 292 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 293 ** expression depends on table iRightJoinTable even if that table is not 294 ** explicitly mentioned in the expression. That information is needed 295 ** for cases like this: 296 ** 297 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 298 ** 299 ** The where clause needs to defer the handling of the t1.x=5 300 ** term until after the t2 loop of the join. In that way, a 301 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 302 ** defer the handling of t1.x=5, it will be processed immediately 303 ** after the t1 loop and rows with t1.x!=5 will never appear in 304 ** the output, which is incorrect. 305 */ 306 static void setJoinExpr(Expr *p, int iTable){ 307 while( p ){ 308 ExprSetProperty(p, EP_FromJoin); 309 p->iRightJoinTable = iTable; 310 setJoinExpr(p->pLeft, iTable); 311 p = p->pRight; 312 } 313 } 314 315 /* 316 ** This routine processes the join information for a SELECT statement. 317 ** ON and USING clauses are converted into extra terms of the WHERE clause. 318 ** NATURAL joins also create extra WHERE clause terms. 319 ** 320 ** The terms of a FROM clause are contained in the Select.pSrc structure. 321 ** The left most table is the first entry in Select.pSrc. The right-most 322 ** table is the last entry. The join operator is held in the entry to 323 ** the left. Thus entry 0 contains the join operator for the join between 324 ** entries 0 and 1. Any ON or USING clauses associated with the join are 325 ** also attached to the left entry. 326 ** 327 ** This routine returns the number of errors encountered. 328 */ 329 static int sqliteProcessJoin(Parse *pParse, Select *p){ 330 SrcList *pSrc; /* All tables in the FROM clause */ 331 int i, j; /* Loop counters */ 332 struct SrcList_item *pLeft; /* Left table being joined */ 333 struct SrcList_item *pRight; /* Right table being joined */ 334 335 pSrc = p->pSrc; 336 pLeft = &pSrc->a[0]; 337 pRight = &pLeft[1]; 338 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 339 Table *pLeftTab = pLeft->pTab; 340 Table *pRightTab = pRight->pTab; 341 int isOuter; 342 343 if( pLeftTab==0 || pRightTab==0 ) continue; 344 isOuter = (pRight->jointype & JT_OUTER)!=0; 345 346 /* When the NATURAL keyword is present, add WHERE clause terms for 347 ** every column that the two tables have in common. 348 */ 349 if( pRight->jointype & JT_NATURAL ){ 350 if( pRight->pOn || pRight->pUsing ){ 351 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 352 "an ON or USING clause", 0); 353 return 1; 354 } 355 for(j=0; j<pLeftTab->nCol; j++){ 356 char *zName = pLeftTab->aCol[j].zName; 357 if( columnIndex(pRightTab, zName)>=0 ){ 358 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 359 pRightTab, pRight->zAlias, 360 pRight->iCursor, &p->pWhere, isOuter); 361 362 } 363 } 364 } 365 366 /* Disallow both ON and USING clauses in the same join 367 */ 368 if( pRight->pOn && pRight->pUsing ){ 369 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 370 "clauses in the same join"); 371 return 1; 372 } 373 374 /* Add the ON clause to the end of the WHERE clause, connected by 375 ** an AND operator. 376 */ 377 if( pRight->pOn ){ 378 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 379 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 380 pRight->pOn = 0; 381 } 382 383 /* Create extra terms on the WHERE clause for each column named 384 ** in the USING clause. Example: If the two tables to be joined are 385 ** A and B and the USING clause names X, Y, and Z, then add this 386 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 387 ** Report an error if any column mentioned in the USING clause is 388 ** not contained in both tables to be joined. 389 */ 390 if( pRight->pUsing ){ 391 IdList *pList = pRight->pUsing; 392 for(j=0; j<pList->nId; j++){ 393 char *zName = pList->a[j].zName; 394 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 395 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 396 "not present in both tables", zName); 397 return 1; 398 } 399 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 400 pRightTab, pRight->zAlias, 401 pRight->iCursor, &p->pWhere, isOuter); 402 } 403 } 404 } 405 return 0; 406 } 407 408 /* 409 ** Insert code into "v" that will push the record on the top of the 410 ** stack into the sorter. 411 */ 412 static void pushOntoSorter( 413 Parse *pParse, /* Parser context */ 414 ExprList *pOrderBy, /* The ORDER BY clause */ 415 Select *pSelect, /* The whole SELECT statement */ 416 int regData /* Register holding data to be sorted */ 417 ){ 418 Vdbe *v = pParse->pVdbe; 419 int nExpr = pOrderBy->nExpr; 420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 421 int regRecord = sqlite3GetTempReg(pParse); 422 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 423 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 424 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 425 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 426 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 427 sqlite3ReleaseTempReg(pParse, regRecord); 428 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 429 if( pSelect->iLimit ){ 430 int addr1, addr2; 431 int iLimit; 432 if( pSelect->iOffset ){ 433 iLimit = pSelect->iOffset+1; 434 }else{ 435 iLimit = pSelect->iLimit; 436 } 437 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 438 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 439 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 440 sqlite3VdbeJumpHere(v, addr1); 441 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 442 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 443 sqlite3VdbeJumpHere(v, addr2); 444 pSelect->iLimit = 0; 445 } 446 } 447 448 /* 449 ** Add code to implement the OFFSET 450 */ 451 static void codeOffset( 452 Vdbe *v, /* Generate code into this VM */ 453 Select *p, /* The SELECT statement being coded */ 454 int iContinue /* Jump here to skip the current record */ 455 ){ 456 if( p->iOffset && iContinue!=0 ){ 457 int addr; 458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 461 VdbeComment((v, "skip OFFSET records")); 462 sqlite3VdbeJumpHere(v, addr); 463 } 464 } 465 466 /* 467 ** Add code that will check to make sure the N registers starting at iMem 468 ** form a distinct entry. iTab is a sorting index that holds previously 469 ** seen combinations of the N values. A new entry is made in iTab 470 ** if the current N values are new. 471 ** 472 ** A jump to addrRepeat is made and the N+1 values are popped from the 473 ** stack if the top N elements are not distinct. 474 */ 475 static void codeDistinct( 476 Parse *pParse, /* Parsing and code generating context */ 477 int iTab, /* A sorting index used to test for distinctness */ 478 int addrRepeat, /* Jump to here if not distinct */ 479 int N, /* Number of elements */ 480 int iMem /* First element */ 481 ){ 482 Vdbe *v; 483 int r1; 484 485 v = pParse->pVdbe; 486 r1 = sqlite3GetTempReg(pParse); 487 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 488 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 490 sqlite3ReleaseTempReg(pParse, r1); 491 } 492 493 /* 494 ** Generate an error message when a SELECT is used within a subexpression 495 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 496 ** column. We do this in a subroutine because the error occurs in multiple 497 ** places. 498 */ 499 static int checkForMultiColumnSelectError( 500 Parse *pParse, /* Parse context. */ 501 SelectDest *pDest, /* Destination of SELECT results */ 502 int nExpr /* Number of result columns returned by SELECT */ 503 ){ 504 int eDest = pDest->eDest; 505 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 506 sqlite3ErrorMsg(pParse, "only a single result allowed for " 507 "a SELECT that is part of an expression"); 508 return 1; 509 }else{ 510 return 0; 511 } 512 } 513 514 /* 515 ** This routine generates the code for the inside of the inner loop 516 ** of a SELECT. 517 ** 518 ** If srcTab and nColumn are both zero, then the pEList expressions 519 ** are evaluated in order to get the data for this row. If nColumn>0 520 ** then data is pulled from srcTab and pEList is used only to get the 521 ** datatypes for each column. 522 */ 523 static void selectInnerLoop( 524 Parse *pParse, /* The parser context */ 525 Select *p, /* The complete select statement being coded */ 526 ExprList *pEList, /* List of values being extracted */ 527 int srcTab, /* Pull data from this table */ 528 int nColumn, /* Number of columns in the source table */ 529 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 530 int distinct, /* If >=0, make sure results are distinct */ 531 SelectDest *pDest, /* How to dispose of the results */ 532 int iContinue, /* Jump here to continue with next row */ 533 int iBreak /* Jump here to break out of the inner loop */ 534 ){ 535 Vdbe *v = pParse->pVdbe; 536 int i; 537 int hasDistinct; /* True if the DISTINCT keyword is present */ 538 int regResult; /* Start of memory holding result set */ 539 int eDest = pDest->eDest; /* How to dispose of results */ 540 int iParm = pDest->iParm; /* First argument to disposal method */ 541 int nResultCol; /* Number of result columns */ 542 543 if( v==0 ) return; 544 assert( pEList!=0 ); 545 hasDistinct = distinct>=0; 546 if( pOrderBy==0 && !hasDistinct ){ 547 codeOffset(v, p, iContinue); 548 } 549 550 /* Pull the requested columns. 551 */ 552 if( nColumn>0 ){ 553 nResultCol = nColumn; 554 }else{ 555 nResultCol = pEList->nExpr; 556 } 557 if( pDest->iMem==0 ){ 558 pDest->iMem = pParse->nMem+1; 559 pDest->nMem = nResultCol; 560 pParse->nMem += nResultCol; 561 }else if( pDest->nMem!=nResultCol ){ 562 /* This happens when two SELECTs of a compound SELECT have differing 563 ** numbers of result columns. The error message will be generated by 564 ** a higher-level routine. */ 565 return; 566 } 567 regResult = pDest->iMem; 568 if( nColumn>0 ){ 569 for(i=0; i<nColumn; i++){ 570 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 571 } 572 }else if( eDest!=SRT_Exists ){ 573 /* If the destination is an EXISTS(...) expression, the actual 574 ** values returned by the SELECT are not required. 575 */ 576 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback); 577 } 578 nColumn = nResultCol; 579 580 /* If the DISTINCT keyword was present on the SELECT statement 581 ** and this row has been seen before, then do not make this row 582 ** part of the result. 583 */ 584 if( hasDistinct ){ 585 assert( pEList!=0 ); 586 assert( pEList->nExpr==nColumn ); 587 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 588 if( pOrderBy==0 ){ 589 codeOffset(v, p, iContinue); 590 } 591 } 592 593 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 594 return; 595 } 596 597 switch( eDest ){ 598 /* In this mode, write each query result to the key of the temporary 599 ** table iParm. 600 */ 601 #ifndef SQLITE_OMIT_COMPOUND_SELECT 602 case SRT_Union: { 603 int r1; 604 r1 = sqlite3GetTempReg(pParse); 605 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 606 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 607 sqlite3ReleaseTempReg(pParse, r1); 608 break; 609 } 610 611 /* Construct a record from the query result, but instead of 612 ** saving that record, use it as a key to delete elements from 613 ** the temporary table iParm. 614 */ 615 case SRT_Except: { 616 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 617 break; 618 } 619 #endif 620 621 /* Store the result as data using a unique key. 622 */ 623 case SRT_Table: 624 case SRT_EphemTab: { 625 int r1 = sqlite3GetTempReg(pParse); 626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 627 if( pOrderBy ){ 628 pushOntoSorter(pParse, pOrderBy, p, r1); 629 }else{ 630 int r2 = sqlite3GetTempReg(pParse); 631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 634 sqlite3ReleaseTempReg(pParse, r2); 635 } 636 sqlite3ReleaseTempReg(pParse, r1); 637 break; 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 642 ** then there should be a single item on the stack. Write this 643 ** item into the set table with bogus data. 644 */ 645 case SRT_Set: { 646 assert( nColumn==1 ); 647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 648 if( pOrderBy ){ 649 /* At first glance you would think we could optimize out the 650 ** ORDER BY in this case since the order of entries in the set 651 ** does not matter. But there might be a LIMIT clause, in which 652 ** case the order does matter */ 653 pushOntoSorter(pParse, pOrderBy, p, regResult); 654 }else{ 655 int r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 659 sqlite3ReleaseTempReg(pParse, r1); 660 } 661 break; 662 } 663 664 /* If any row exist in the result set, record that fact and abort. 665 */ 666 case SRT_Exists: { 667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 668 /* The LIMIT clause will terminate the loop for us */ 669 break; 670 } 671 672 /* If this is a scalar select that is part of an expression, then 673 ** store the results in the appropriate memory cell and break out 674 ** of the scan loop. 675 */ 676 case SRT_Mem: { 677 assert( nColumn==1 ); 678 if( pOrderBy ){ 679 pushOntoSorter(pParse, pOrderBy, p, regResult); 680 }else{ 681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 682 /* The LIMIT clause will jump out of the loop for us */ 683 } 684 break; 685 } 686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 687 688 /* Send the data to the callback function or to a subroutine. In the 689 ** case of a subroutine, the subroutine itself is responsible for 690 ** popping the data from the stack. 691 */ 692 case SRT_Coroutine: 693 case SRT_Callback: { 694 if( pOrderBy ){ 695 int r1 = sqlite3GetTempReg(pParse); 696 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 697 pushOntoSorter(pParse, pOrderBy, p, r1); 698 sqlite3ReleaseTempReg(pParse, r1); 699 }else if( eDest==SRT_Coroutine ){ 700 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 701 }else{ 702 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 703 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 704 } 705 break; 706 } 707 708 #if !defined(SQLITE_OMIT_TRIGGER) 709 /* Discard the results. This is used for SELECT statements inside 710 ** the body of a TRIGGER. The purpose of such selects is to call 711 ** user-defined functions that have side effects. We do not care 712 ** about the actual results of the select. 713 */ 714 default: { 715 assert( eDest==SRT_Discard ); 716 break; 717 } 718 #endif 719 } 720 721 /* Jump to the end of the loop if the LIMIT is reached. 722 */ 723 if( p->iLimit ){ 724 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 725 ** pushOntoSorter() would have cleared p->iLimit */ 726 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 727 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 728 } 729 } 730 731 /* 732 ** Given an expression list, generate a KeyInfo structure that records 733 ** the collating sequence for each expression in that expression list. 734 ** 735 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 736 ** KeyInfo structure is appropriate for initializing a virtual index to 737 ** implement that clause. If the ExprList is the result set of a SELECT 738 ** then the KeyInfo structure is appropriate for initializing a virtual 739 ** index to implement a DISTINCT test. 740 ** 741 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 742 ** function is responsible for seeing that this structure is eventually 743 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 744 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 745 */ 746 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 747 sqlite3 *db = pParse->db; 748 int nExpr; 749 KeyInfo *pInfo; 750 struct ExprList_item *pItem; 751 int i; 752 753 nExpr = pList->nExpr; 754 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 755 if( pInfo ){ 756 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 757 pInfo->nField = nExpr; 758 pInfo->enc = ENC(db); 759 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 760 CollSeq *pColl; 761 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 762 if( !pColl ){ 763 pColl = db->pDfltColl; 764 } 765 pInfo->aColl[i] = pColl; 766 pInfo->aSortOrder[i] = pItem->sortOrder; 767 } 768 } 769 return pInfo; 770 } 771 772 773 /* 774 ** If the inner loop was generated using a non-null pOrderBy argument, 775 ** then the results were placed in a sorter. After the loop is terminated 776 ** we need to run the sorter and output the results. The following 777 ** routine generates the code needed to do that. 778 */ 779 static void generateSortTail( 780 Parse *pParse, /* Parsing context */ 781 Select *p, /* The SELECT statement */ 782 Vdbe *v, /* Generate code into this VDBE */ 783 int nColumn, /* Number of columns of data */ 784 SelectDest *pDest /* Write the sorted results here */ 785 ){ 786 int brk = sqlite3VdbeMakeLabel(v); 787 int cont = sqlite3VdbeMakeLabel(v); 788 int addr; 789 int iTab; 790 int pseudoTab = 0; 791 ExprList *pOrderBy = p->pOrderBy; 792 793 int eDest = pDest->eDest; 794 int iParm = pDest->iParm; 795 796 int regRow; 797 int regRowid; 798 799 iTab = pOrderBy->iECursor; 800 if( eDest==SRT_Callback || eDest==SRT_Coroutine ){ 801 pseudoTab = pParse->nTab++; 802 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn); 803 sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback); 804 } 805 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk); 806 codeOffset(v, p, cont); 807 regRow = sqlite3GetTempReg(pParse); 808 regRowid = sqlite3GetTempReg(pParse); 809 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 810 switch( eDest ){ 811 case SRT_Table: 812 case SRT_EphemTab: { 813 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 814 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 815 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 816 break; 817 } 818 #ifndef SQLITE_OMIT_SUBQUERY 819 case SRT_Set: { 820 assert( nColumn==1 ); 821 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 822 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 823 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 824 break; 825 } 826 case SRT_Mem: { 827 assert( nColumn==1 ); 828 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 829 /* The LIMIT clause will terminate the loop for us */ 830 break; 831 } 832 #endif 833 case SRT_Callback: 834 case SRT_Coroutine: { 835 int i; 836 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); 837 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); 838 for(i=0; i<nColumn; i++){ 839 assert( regRow!=pDest->iMem+i ); 840 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 841 } 842 if( eDest==SRT_Callback ){ 843 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 844 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 845 }else{ 846 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 847 } 848 break; 849 } 850 default: { 851 /* Do nothing */ 852 break; 853 } 854 } 855 sqlite3ReleaseTempReg(pParse, regRow); 856 sqlite3ReleaseTempReg(pParse, regRowid); 857 858 /* LIMIT has been implemented by the pushOntoSorter() routine. 859 */ 860 assert( p->iLimit==0 ); 861 862 /* The bottom of the loop 863 */ 864 sqlite3VdbeResolveLabel(v, cont); 865 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 866 sqlite3VdbeResolveLabel(v, brk); 867 if( eDest==SRT_Callback || eDest==SRT_Coroutine ){ 868 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 869 } 870 871 } 872 873 /* 874 ** Return a pointer to a string containing the 'declaration type' of the 875 ** expression pExpr. The string may be treated as static by the caller. 876 ** 877 ** The declaration type is the exact datatype definition extracted from the 878 ** original CREATE TABLE statement if the expression is a column. The 879 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 880 ** is considered a column can be complex in the presence of subqueries. The 881 ** result-set expression in all of the following SELECT statements is 882 ** considered a column by this function. 883 ** 884 ** SELECT col FROM tbl; 885 ** SELECT (SELECT col FROM tbl; 886 ** SELECT (SELECT col FROM tbl); 887 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 888 ** 889 ** The declaration type for any expression other than a column is NULL. 890 */ 891 static const char *columnType( 892 NameContext *pNC, 893 Expr *pExpr, 894 const char **pzOriginDb, 895 const char **pzOriginTab, 896 const char **pzOriginCol 897 ){ 898 char const *zType = 0; 899 char const *zOriginDb = 0; 900 char const *zOriginTab = 0; 901 char const *zOriginCol = 0; 902 int j; 903 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 904 905 switch( pExpr->op ){ 906 case TK_AGG_COLUMN: 907 case TK_COLUMN: { 908 /* The expression is a column. Locate the table the column is being 909 ** extracted from in NameContext.pSrcList. This table may be real 910 ** database table or a subquery. 911 */ 912 Table *pTab = 0; /* Table structure column is extracted from */ 913 Select *pS = 0; /* Select the column is extracted from */ 914 int iCol = pExpr->iColumn; /* Index of column in pTab */ 915 while( pNC && !pTab ){ 916 SrcList *pTabList = pNC->pSrcList; 917 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 918 if( j<pTabList->nSrc ){ 919 pTab = pTabList->a[j].pTab; 920 pS = pTabList->a[j].pSelect; 921 }else{ 922 pNC = pNC->pNext; 923 } 924 } 925 926 if( pTab==0 ){ 927 /* FIX ME: 928 ** This can occurs if you have something like "SELECT new.x;" inside 929 ** a trigger. In other words, if you reference the special "new" 930 ** table in the result set of a select. We do not have a good way 931 ** to find the actual table type, so call it "TEXT". This is really 932 ** something of a bug, but I do not know how to fix it. 933 ** 934 ** This code does not produce the correct answer - it just prevents 935 ** a segfault. See ticket #1229. 936 */ 937 zType = "TEXT"; 938 break; 939 } 940 941 assert( pTab ); 942 if( pS ){ 943 /* The "table" is actually a sub-select or a view in the FROM clause 944 ** of the SELECT statement. Return the declaration type and origin 945 ** data for the result-set column of the sub-select. 946 */ 947 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 948 /* If iCol is less than zero, then the expression requests the 949 ** rowid of the sub-select or view. This expression is legal (see 950 ** test case misc2.2.2) - it always evaluates to NULL. 951 */ 952 NameContext sNC; 953 Expr *p = pS->pEList->a[iCol].pExpr; 954 sNC.pSrcList = pS->pSrc; 955 sNC.pNext = 0; 956 sNC.pParse = pNC->pParse; 957 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 958 } 959 }else if( pTab->pSchema ){ 960 /* A real table */ 961 assert( !pS ); 962 if( iCol<0 ) iCol = pTab->iPKey; 963 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 964 if( iCol<0 ){ 965 zType = "INTEGER"; 966 zOriginCol = "rowid"; 967 }else{ 968 zType = pTab->aCol[iCol].zType; 969 zOriginCol = pTab->aCol[iCol].zName; 970 } 971 zOriginTab = pTab->zName; 972 if( pNC->pParse ){ 973 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 974 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 975 } 976 } 977 break; 978 } 979 #ifndef SQLITE_OMIT_SUBQUERY 980 case TK_SELECT: { 981 /* The expression is a sub-select. Return the declaration type and 982 ** origin info for the single column in the result set of the SELECT 983 ** statement. 984 */ 985 NameContext sNC; 986 Select *pS = pExpr->pSelect; 987 Expr *p = pS->pEList->a[0].pExpr; 988 sNC.pSrcList = pS->pSrc; 989 sNC.pNext = pNC; 990 sNC.pParse = pNC->pParse; 991 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 992 break; 993 } 994 #endif 995 } 996 997 if( pzOriginDb ){ 998 assert( pzOriginTab && pzOriginCol ); 999 *pzOriginDb = zOriginDb; 1000 *pzOriginTab = zOriginTab; 1001 *pzOriginCol = zOriginCol; 1002 } 1003 return zType; 1004 } 1005 1006 /* 1007 ** Generate code that will tell the VDBE the declaration types of columns 1008 ** in the result set. 1009 */ 1010 static void generateColumnTypes( 1011 Parse *pParse, /* Parser context */ 1012 SrcList *pTabList, /* List of tables */ 1013 ExprList *pEList /* Expressions defining the result set */ 1014 ){ 1015 #ifndef SQLITE_OMIT_DECLTYPE 1016 Vdbe *v = pParse->pVdbe; 1017 int i; 1018 NameContext sNC; 1019 sNC.pSrcList = pTabList; 1020 sNC.pParse = pParse; 1021 for(i=0; i<pEList->nExpr; i++){ 1022 Expr *p = pEList->a[i].pExpr; 1023 const char *zType; 1024 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1025 const char *zOrigDb = 0; 1026 const char *zOrigTab = 0; 1027 const char *zOrigCol = 0; 1028 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1029 1030 /* The vdbe must make its own copy of the column-type and other 1031 ** column specific strings, in case the schema is reset before this 1032 ** virtual machine is deleted. 1033 */ 1034 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT); 1035 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT); 1036 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT); 1037 #else 1038 zType = columnType(&sNC, p, 0, 0, 0); 1039 #endif 1040 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT); 1041 } 1042 #endif /* SQLITE_OMIT_DECLTYPE */ 1043 } 1044 1045 /* 1046 ** Generate code that will tell the VDBE the names of columns 1047 ** in the result set. This information is used to provide the 1048 ** azCol[] values in the callback. 1049 */ 1050 static void generateColumnNames( 1051 Parse *pParse, /* Parser context */ 1052 SrcList *pTabList, /* List of tables */ 1053 ExprList *pEList /* Expressions defining the result set */ 1054 ){ 1055 Vdbe *v = pParse->pVdbe; 1056 int i, j; 1057 sqlite3 *db = pParse->db; 1058 int fullNames, shortNames; 1059 1060 #ifndef SQLITE_OMIT_EXPLAIN 1061 /* If this is an EXPLAIN, skip this step */ 1062 if( pParse->explain ){ 1063 return; 1064 } 1065 #endif 1066 1067 assert( v!=0 ); 1068 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; 1069 pParse->colNamesSet = 1; 1070 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1071 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1072 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1073 for(i=0; i<pEList->nExpr; i++){ 1074 Expr *p; 1075 p = pEList->a[i].pExpr; 1076 if( p==0 ) continue; 1077 if( pEList->a[i].zName ){ 1078 char *zName = pEList->a[i].zName; 1079 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 1080 }else if( p->op==TK_COLUMN && pTabList ){ 1081 Table *pTab; 1082 char *zCol; 1083 int iCol = p->iColumn; 1084 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 1085 assert( j<pTabList->nSrc ); 1086 pTab = pTabList->a[j].pTab; 1087 if( iCol<0 ) iCol = pTab->iPKey; 1088 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1089 if( iCol<0 ){ 1090 zCol = "rowid"; 1091 }else{ 1092 zCol = pTab->aCol[iCol].zName; 1093 } 1094 if( !shortNames && !fullNames ){ 1095 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1096 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1097 char *zName = 0; 1098 char *zTab; 1099 1100 zTab = pTabList->a[j].zAlias; 1101 if( fullNames || zTab==0 ) zTab = pTab->zName; 1102 zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol); 1103 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC); 1104 }else{ 1105 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1106 } 1107 }else{ 1108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1109 } 1110 } 1111 generateColumnTypes(pParse, pTabList, pEList); 1112 } 1113 1114 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1115 /* 1116 ** Name of the connection operator, used for error messages. 1117 */ 1118 static const char *selectOpName(int id){ 1119 char *z; 1120 switch( id ){ 1121 case TK_ALL: z = "UNION ALL"; break; 1122 case TK_INTERSECT: z = "INTERSECT"; break; 1123 case TK_EXCEPT: z = "EXCEPT"; break; 1124 default: z = "UNION"; break; 1125 } 1126 return z; 1127 } 1128 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1129 1130 /* 1131 ** Forward declaration 1132 */ 1133 static int prepSelectStmt(Parse*, Select*); 1134 1135 /* 1136 ** Given a SELECT statement, generate a Table structure that describes 1137 ** the result set of that SELECT. 1138 */ 1139 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1140 Table *pTab; 1141 int i, j, rc; 1142 ExprList *pEList; 1143 Column *aCol, *pCol; 1144 sqlite3 *db = pParse->db; 1145 int savedFlags; 1146 1147 savedFlags = db->flags; 1148 db->flags &= ~SQLITE_FullColNames; 1149 db->flags |= SQLITE_ShortColNames; 1150 rc = sqlite3SelectResolve(pParse, pSelect, 0); 1151 if( rc==SQLITE_OK ){ 1152 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1153 rc = prepSelectStmt(pParse, pSelect); 1154 if( rc==SQLITE_OK ){ 1155 rc = sqlite3SelectResolve(pParse, pSelect, 0); 1156 } 1157 } 1158 db->flags = savedFlags; 1159 if( rc ){ 1160 return 0; 1161 } 1162 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1163 if( pTab==0 ){ 1164 return 0; 1165 } 1166 pTab->db = db; 1167 pTab->nRef = 1; 1168 pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0; 1169 pEList = pSelect->pEList; 1170 pTab->nCol = pEList->nExpr; 1171 assert( pTab->nCol>0 ); 1172 pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol); 1173 testcase( aCol==0 ); 1174 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1175 Expr *p; 1176 char *zType; 1177 char *zName; 1178 int nName; 1179 CollSeq *pColl; 1180 int cnt; 1181 NameContext sNC; 1182 1183 /* Get an appropriate name for the column 1184 */ 1185 p = pEList->a[i].pExpr; 1186 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1187 if( (zName = pEList->a[i].zName)!=0 ){ 1188 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1189 zName = sqlite3DbStrDup(db, zName); 1190 }else if( p->op==TK_COLUMN && p->pTab ){ 1191 /* For columns use the column name name */ 1192 int iCol = p->iColumn; 1193 if( iCol<0 ) iCol = p->pTab->iPKey; 1194 zName = sqlite3MPrintf(db, "%s", p->pTab->aCol[iCol].zName); 1195 }else{ 1196 /* Use the original text of the column expression as its name */ 1197 zName = sqlite3MPrintf(db, "%T", &p->span); 1198 } 1199 if( db->mallocFailed ){ 1200 sqlite3DbFree(db, zName); 1201 break; 1202 } 1203 sqlite3Dequote(zName); 1204 1205 /* Make sure the column name is unique. If the name is not unique, 1206 ** append a integer to the name so that it becomes unique. 1207 */ 1208 nName = strlen(zName); 1209 for(j=cnt=0; j<i; j++){ 1210 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1211 char *zNewName; 1212 zName[nName] = 0; 1213 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1214 sqlite3DbFree(db, zName); 1215 zName = zNewName; 1216 j = -1; 1217 if( zName==0 ) break; 1218 } 1219 } 1220 pCol->zName = zName; 1221 1222 /* Get the typename, type affinity, and collating sequence for the 1223 ** column. 1224 */ 1225 memset(&sNC, 0, sizeof(sNC)); 1226 sNC.pSrcList = pSelect->pSrc; 1227 zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1228 pCol->zType = zType; 1229 pCol->affinity = sqlite3ExprAffinity(p); 1230 pColl = sqlite3ExprCollSeq(pParse, p); 1231 if( pColl ){ 1232 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1233 } 1234 } 1235 pTab->iPKey = -1; 1236 if( db->mallocFailed ){ 1237 sqlite3DeleteTable(pTab); 1238 return 0; 1239 } 1240 return pTab; 1241 } 1242 1243 /* 1244 ** Prepare a SELECT statement for processing by doing the following 1245 ** things: 1246 ** 1247 ** (1) Make sure VDBE cursor numbers have been assigned to every 1248 ** element of the FROM clause. 1249 ** 1250 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1251 ** defines FROM clause. When views appear in the FROM clause, 1252 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1253 ** that implements the view. A copy is made of the view's SELECT 1254 ** statement so that we can freely modify or delete that statement 1255 ** without worrying about messing up the presistent representation 1256 ** of the view. 1257 ** 1258 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1259 ** on joins and the ON and USING clause of joins. 1260 ** 1261 ** (4) Scan the list of columns in the result set (pEList) looking 1262 ** for instances of the "*" operator or the TABLE.* operator. 1263 ** If found, expand each "*" to be every column in every table 1264 ** and TABLE.* to be every column in TABLE. 1265 ** 1266 ** Return 0 on success. If there are problems, leave an error message 1267 ** in pParse and return non-zero. 1268 */ 1269 static int prepSelectStmt(Parse *pParse, Select *p){ 1270 int i, j, k, rc; 1271 SrcList *pTabList; 1272 ExprList *pEList; 1273 struct SrcList_item *pFrom; 1274 sqlite3 *db = pParse->db; 1275 1276 if( p==0 || p->pSrc==0 || db->mallocFailed ){ 1277 return 1; 1278 } 1279 pTabList = p->pSrc; 1280 pEList = p->pEList; 1281 1282 /* Make sure cursor numbers have been assigned to all entries in 1283 ** the FROM clause of the SELECT statement. 1284 */ 1285 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1286 1287 /* Look up every table named in the FROM clause of the select. If 1288 ** an entry of the FROM clause is a subquery instead of a table or view, 1289 ** then create a transient table structure to describe the subquery. 1290 */ 1291 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1292 Table *pTab; 1293 if( pFrom->pTab!=0 ){ 1294 /* This statement has already been prepared. There is no need 1295 ** to go further. */ 1296 assert( i==0 ); 1297 return 0; 1298 } 1299 if( pFrom->zName==0 ){ 1300 #ifndef SQLITE_OMIT_SUBQUERY 1301 /* A sub-query in the FROM clause of a SELECT */ 1302 assert( pFrom->pSelect!=0 ); 1303 if( pFrom->zAlias==0 ){ 1304 pFrom->zAlias = 1305 sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect); 1306 } 1307 assert( pFrom->pTab==0 ); 1308 pFrom->pTab = pTab = 1309 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1310 if( pTab==0 ){ 1311 return 1; 1312 } 1313 /* The isEphem flag indicates that the Table structure has been 1314 ** dynamically allocated and may be freed at any time. In other words, 1315 ** pTab is not pointing to a persistent table structure that defines 1316 ** part of the schema. */ 1317 pTab->isEphem = 1; 1318 #endif 1319 }else{ 1320 /* An ordinary table or view name in the FROM clause */ 1321 assert( pFrom->pTab==0 ); 1322 pFrom->pTab = pTab = 1323 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 1324 if( pTab==0 ){ 1325 return 1; 1326 } 1327 pTab->nRef++; 1328 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1329 if( pTab->pSelect || IsVirtual(pTab) ){ 1330 /* We reach here if the named table is a really a view */ 1331 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1332 return 1; 1333 } 1334 /* If pFrom->pSelect!=0 it means we are dealing with a 1335 ** view within a view. The SELECT structure has already been 1336 ** copied by the outer view so we can skip the copy step here 1337 ** in the inner view. 1338 */ 1339 if( pFrom->pSelect==0 ){ 1340 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); 1341 } 1342 } 1343 #endif 1344 } 1345 } 1346 1347 /* Process NATURAL keywords, and ON and USING clauses of joins. 1348 */ 1349 if( sqliteProcessJoin(pParse, p) ) return 1; 1350 1351 /* For every "*" that occurs in the column list, insert the names of 1352 ** all columns in all tables. And for every TABLE.* insert the names 1353 ** of all columns in TABLE. The parser inserted a special expression 1354 ** with the TK_ALL operator for each "*" that it found in the column list. 1355 ** The following code just has to locate the TK_ALL expressions and expand 1356 ** each one to the list of all columns in all tables. 1357 ** 1358 ** The first loop just checks to see if there are any "*" operators 1359 ** that need expanding. 1360 */ 1361 for(k=0; k<pEList->nExpr; k++){ 1362 Expr *pE = pEList->a[k].pExpr; 1363 if( pE->op==TK_ALL ) break; 1364 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1365 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1366 } 1367 rc = 0; 1368 if( k<pEList->nExpr ){ 1369 /* 1370 ** If we get here it means the result set contains one or more "*" 1371 ** operators that need to be expanded. Loop through each expression 1372 ** in the result set and expand them one by one. 1373 */ 1374 struct ExprList_item *a = pEList->a; 1375 ExprList *pNew = 0; 1376 int flags = pParse->db->flags; 1377 int longNames = (flags & SQLITE_FullColNames)!=0 1378 && (flags & SQLITE_ShortColNames)==0; 1379 1380 for(k=0; k<pEList->nExpr; k++){ 1381 Expr *pE = a[k].pExpr; 1382 if( pE->op!=TK_ALL && 1383 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1384 /* This particular expression does not need to be expanded. 1385 */ 1386 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 1387 if( pNew ){ 1388 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1389 }else{ 1390 rc = 1; 1391 } 1392 a[k].pExpr = 0; 1393 a[k].zName = 0; 1394 }else{ 1395 /* This expression is a "*" or a "TABLE.*" and needs to be 1396 ** expanded. */ 1397 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1398 char *zTName; /* text of name of TABLE */ 1399 if( pE->op==TK_DOT && pE->pLeft ){ 1400 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 1401 }else{ 1402 zTName = 0; 1403 } 1404 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1405 Table *pTab = pFrom->pTab; 1406 char *zTabName = pFrom->zAlias; 1407 if( zTabName==0 || zTabName[0]==0 ){ 1408 zTabName = pTab->zName; 1409 } 1410 assert( zTabName ); 1411 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 1412 continue; 1413 } 1414 tableSeen = 1; 1415 for(j=0; j<pTab->nCol; j++){ 1416 Expr *pExpr, *pRight; 1417 char *zName = pTab->aCol[j].zName; 1418 1419 /* If a column is marked as 'hidden' (currently only possible 1420 ** for virtual tables), do not include it in the expanded 1421 ** result-set list. 1422 */ 1423 if( IsHiddenColumn(&pTab->aCol[j]) ){ 1424 assert(IsVirtual(pTab)); 1425 continue; 1426 } 1427 1428 if( i>0 ){ 1429 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1430 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1431 columnIndex(pLeft->pTab, zName)>=0 ){ 1432 /* In a NATURAL join, omit the join columns from the 1433 ** table on the right */ 1434 continue; 1435 } 1436 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1437 /* In a join with a USING clause, omit columns in the 1438 ** using clause from the table on the right. */ 1439 continue; 1440 } 1441 } 1442 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 1443 if( pRight==0 ) break; 1444 setQuotedToken(pParse, &pRight->token, zName); 1445 if( longNames || pTabList->nSrc>1 ){ 1446 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 1447 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 1448 if( pExpr==0 ) break; 1449 setQuotedToken(pParse, &pLeft->token, zTabName); 1450 #if 1 1451 setToken(&pExpr->span, 1452 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 1453 pExpr->span.dyn = 1; 1454 #else 1455 pExpr->span = pRight->token; 1456 pExpr->span.dyn = 0; 1457 #endif 1458 pExpr->token.z = 0; 1459 pExpr->token.n = 0; 1460 pExpr->token.dyn = 0; 1461 }else{ 1462 pExpr = pRight; 1463 pExpr->span = pExpr->token; 1464 pExpr->span.dyn = 0; 1465 } 1466 if( longNames ){ 1467 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 1468 }else{ 1469 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 1470 } 1471 } 1472 } 1473 if( !tableSeen ){ 1474 if( zTName ){ 1475 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1476 }else{ 1477 sqlite3ErrorMsg(pParse, "no tables specified"); 1478 } 1479 rc = 1; 1480 } 1481 sqlite3DbFree(db, zTName); 1482 } 1483 } 1484 sqlite3ExprListDelete(db, pEList); 1485 p->pEList = pNew; 1486 } 1487 #if SQLITE_MAX_COLUMN 1488 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1489 sqlite3ErrorMsg(pParse, "too many columns in result set"); 1490 rc = SQLITE_ERROR; 1491 } 1492 #endif 1493 if( db->mallocFailed ){ 1494 rc = SQLITE_NOMEM; 1495 } 1496 return rc; 1497 } 1498 1499 /* 1500 ** pE is a pointer to an expression which is a single term in 1501 ** ORDER BY or GROUP BY clause. 1502 ** 1503 ** At the point this routine is called, we already know that the 1504 ** ORDER BY term is not an integer index into the result set. That 1505 ** casee is handled by the calling routine. 1506 ** 1507 ** If pE is a well-formed expression and the SELECT statement 1508 ** is not compound, then return 0. This indicates to the 1509 ** caller that it should sort by the value of the ORDER BY 1510 ** expression. 1511 ** 1512 ** If the SELECT is compound, then attempt to match pE against 1513 ** result set columns in the left-most SELECT statement. Return 1514 ** the index i of the matching column, as an indication to the 1515 ** caller that it should sort by the i-th column. If there is 1516 ** no match, return -1 and leave an error message in pParse. 1517 */ 1518 static int matchOrderByTermToExprList( 1519 Parse *pParse, /* Parsing context for error messages */ 1520 Select *pSelect, /* The SELECT statement with the ORDER BY clause */ 1521 Expr *pE, /* The specific ORDER BY term */ 1522 int idx, /* When ORDER BY term is this */ 1523 int isCompound, /* True if this is a compound SELECT */ 1524 u8 *pHasAgg /* True if expression contains aggregate functions */ 1525 ){ 1526 int i; /* Loop counter */ 1527 ExprList *pEList; /* The columns of the result set */ 1528 NameContext nc; /* Name context for resolving pE */ 1529 1530 assert( sqlite3ExprIsInteger(pE, &i)==0 ); 1531 pEList = pSelect->pEList; 1532 1533 /* If the term is a simple identifier that try to match that identifier 1534 ** against a column name in the result set. 1535 */ 1536 if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){ 1537 sqlite3 *db = pParse->db; 1538 char *zCol = sqlite3NameFromToken(db, &pE->token); 1539 if( zCol==0 ){ 1540 return -1; 1541 } 1542 for(i=0; i<pEList->nExpr; i++){ 1543 char *zAs = pEList->a[i].zName; 1544 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ 1545 sqlite3DbFree(db, zCol); 1546 return i+1; 1547 } 1548 } 1549 sqlite3DbFree(db, zCol); 1550 } 1551 1552 /* Resolve all names in the ORDER BY term expression 1553 */ 1554 memset(&nc, 0, sizeof(nc)); 1555 nc.pParse = pParse; 1556 nc.pSrcList = pSelect->pSrc; 1557 nc.pEList = pEList; 1558 nc.allowAgg = 1; 1559 nc.nErr = 0; 1560 if( sqlite3ExprResolveNames(&nc, pE) ){ 1561 if( isCompound ){ 1562 sqlite3ErrorClear(pParse); 1563 return 0; 1564 }else{ 1565 return -1; 1566 } 1567 } 1568 if( nc.hasAgg && pHasAgg ){ 1569 *pHasAgg = 1; 1570 } 1571 1572 /* For a compound SELECT, we need to try to match the ORDER BY 1573 ** expression against an expression in the result set 1574 */ 1575 if( isCompound ){ 1576 for(i=0; i<pEList->nExpr; i++){ 1577 if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){ 1578 return i+1; 1579 } 1580 } 1581 } 1582 return 0; 1583 } 1584 1585 1586 /* 1587 ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement. 1588 ** Return the number of errors seen. 1589 ** 1590 ** Every term of the ORDER BY or GROUP BY clause needs to be an 1591 ** expression. If any expression is an integer constant, then 1592 ** that expression is replaced by the corresponding 1593 ** expression from the result set. 1594 */ 1595 static int processOrderGroupBy( 1596 Parse *pParse, /* Parsing context. Leave error messages here */ 1597 Select *pSelect, /* The SELECT statement containing the clause */ 1598 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 1599 int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */ 1600 u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */ 1601 ){ 1602 int i; 1603 sqlite3 *db = pParse->db; 1604 ExprList *pEList; 1605 1606 if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; 1607 #if SQLITE_MAX_COLUMN 1608 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1609 const char *zType = isOrder ? "ORDER" : "GROUP"; 1610 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); 1611 return 1; 1612 } 1613 #endif 1614 pEList = pSelect->pEList; 1615 if( pEList==0 ){ 1616 return 0; 1617 } 1618 for(i=0; i<pOrderBy->nExpr; i++){ 1619 int iCol; 1620 Expr *pE = pOrderBy->a[i].pExpr; 1621 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1622 if( iCol<=0 || iCol>pEList->nExpr ){ 1623 const char *zType = isOrder ? "ORDER" : "GROUP"; 1624 sqlite3ErrorMsg(pParse, 1625 "%r %s BY term out of range - should be " 1626 "between 1 and %d", i+1, zType, pEList->nExpr); 1627 return 1; 1628 } 1629 }else{ 1630 iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg); 1631 if( iCol<0 ){ 1632 return 1; 1633 } 1634 } 1635 if( iCol>0 ){ 1636 CollSeq *pColl = pE->pColl; 1637 int flags = pE->flags & EP_ExpCollate; 1638 sqlite3ExprDelete(db, pE); 1639 pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr); 1640 pOrderBy->a[i].pExpr = pE; 1641 if( pE && pColl && flags ){ 1642 pE->pColl = pColl; 1643 pE->flags |= flags; 1644 } 1645 } 1646 } 1647 return 0; 1648 } 1649 1650 /* 1651 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 1652 ** the number of errors seen. 1653 ** 1654 ** If iTable>0 then make the N-th term of the ORDER BY clause refer to 1655 ** the N-th column of table iTable. 1656 ** 1657 ** If iTable==0 then transform each term of the ORDER BY clause to refer 1658 ** to a column of the result set by number. 1659 */ 1660 static int processCompoundOrderBy( 1661 Parse *pParse, /* Parsing context. Leave error messages here */ 1662 Select *pSelect /* The SELECT statement containing the ORDER BY */ 1663 ){ 1664 int i; 1665 ExprList *pOrderBy; 1666 ExprList *pEList; 1667 sqlite3 *db; 1668 int moreToDo = 1; 1669 1670 pOrderBy = pSelect->pOrderBy; 1671 if( pOrderBy==0 ) return 0; 1672 db = pParse->db; 1673 #if SQLITE_MAX_COLUMN 1674 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 1675 sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); 1676 return 1; 1677 } 1678 #endif 1679 for(i=0; i<pOrderBy->nExpr; i++){ 1680 pOrderBy->a[i].done = 0; 1681 } 1682 while( pSelect->pPrior ){ 1683 pSelect = pSelect->pPrior; 1684 } 1685 while( pSelect && moreToDo ){ 1686 moreToDo = 0; 1687 pEList = pSelect->pEList; 1688 if( pEList==0 ){ 1689 return 1; 1690 } 1691 for(i=0; i<pOrderBy->nExpr; i++){ 1692 int iCol = -1; 1693 Expr *pE, *pDup; 1694 if( pOrderBy->a[i].done ) continue; 1695 pE = pOrderBy->a[i].pExpr; 1696 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1697 if( iCol<0 || iCol>pEList->nExpr ){ 1698 sqlite3ErrorMsg(pParse, 1699 "%r ORDER BY term out of range - should be " 1700 "between 1 and %d", i+1, pEList->nExpr); 1701 return 1; 1702 } 1703 }else{ 1704 pDup = sqlite3ExprDup(db, pE); 1705 if( !db->mallocFailed ){ 1706 assert(pDup); 1707 iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0); 1708 } 1709 sqlite3ExprDelete(db, pDup); 1710 if( iCol<0 ){ 1711 return 1; 1712 } 1713 } 1714 if( iCol>0 ){ 1715 pE->op = TK_INTEGER; 1716 pE->flags |= EP_IntValue; 1717 pE->iTable = iCol; 1718 pOrderBy->a[i].done = 1; 1719 }else{ 1720 moreToDo = 1; 1721 } 1722 } 1723 pSelect = pSelect->pNext; 1724 } 1725 for(i=0; i<pOrderBy->nExpr; i++){ 1726 if( pOrderBy->a[i].done==0 ){ 1727 sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " 1728 "column in the result set", i+1); 1729 return 1; 1730 } 1731 } 1732 return 0; 1733 } 1734 1735 /* 1736 ** Get a VDBE for the given parser context. Create a new one if necessary. 1737 ** If an error occurs, return NULL and leave a message in pParse. 1738 */ 1739 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1740 Vdbe *v = pParse->pVdbe; 1741 if( v==0 ){ 1742 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1743 #ifndef SQLITE_OMIT_TRACE 1744 if( v ){ 1745 sqlite3VdbeAddOp0(v, OP_Trace); 1746 } 1747 #endif 1748 } 1749 return v; 1750 } 1751 1752 1753 /* 1754 ** Compute the iLimit and iOffset fields of the SELECT based on the 1755 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1756 ** that appear in the original SQL statement after the LIMIT and OFFSET 1757 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1758 ** are the integer memory register numbers for counters used to compute 1759 ** the limit and offset. If there is no limit and/or offset, then 1760 ** iLimit and iOffset are negative. 1761 ** 1762 ** This routine changes the values of iLimit and iOffset only if 1763 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1764 ** iOffset should have been preset to appropriate default values 1765 ** (usually but not always -1) prior to calling this routine. 1766 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1767 ** redefined. The UNION ALL operator uses this property to force 1768 ** the reuse of the same limit and offset registers across multiple 1769 ** SELECT statements. 1770 */ 1771 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1772 Vdbe *v = 0; 1773 int iLimit = 0; 1774 int iOffset; 1775 int addr1; 1776 if( p->iLimit ) return; 1777 1778 /* 1779 ** "LIMIT -1" always shows all rows. There is some 1780 ** contraversy about what the correct behavior should be. 1781 ** The current implementation interprets "LIMIT 0" to mean 1782 ** no rows. 1783 */ 1784 if( p->pLimit ){ 1785 p->iLimit = iLimit = ++pParse->nMem; 1786 v = sqlite3GetVdbe(pParse); 1787 if( v==0 ) return; 1788 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1789 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1790 VdbeComment((v, "LIMIT counter")); 1791 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1792 } 1793 if( p->pOffset ){ 1794 p->iOffset = iOffset = ++pParse->nMem; 1795 if( p->pLimit ){ 1796 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1797 } 1798 v = sqlite3GetVdbe(pParse); 1799 if( v==0 ) return; 1800 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1801 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1802 VdbeComment((v, "OFFSET counter")); 1803 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1804 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1805 sqlite3VdbeJumpHere(v, addr1); 1806 if( p->pLimit ){ 1807 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1808 VdbeComment((v, "LIMIT+OFFSET")); 1809 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1810 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1811 sqlite3VdbeJumpHere(v, addr1); 1812 } 1813 } 1814 } 1815 1816 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1817 /* 1818 ** Return the appropriate collating sequence for the iCol-th column of 1819 ** the result set for the compound-select statement "p". Return NULL if 1820 ** the column has no default collating sequence. 1821 ** 1822 ** The collating sequence for the compound select is taken from the 1823 ** left-most term of the select that has a collating sequence. 1824 */ 1825 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1826 CollSeq *pRet; 1827 if( p->pPrior ){ 1828 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1829 }else{ 1830 pRet = 0; 1831 } 1832 if( pRet==0 ){ 1833 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1834 } 1835 return pRet; 1836 } 1837 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1838 1839 /* Forward reference */ 1840 static int multiSelectOrderBy( 1841 Parse *pParse, /* Parsing context */ 1842 Select *p, /* The right-most of SELECTs to be coded */ 1843 SelectDest *pDest /* What to do with query results */ 1844 ); 1845 1846 1847 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1848 /* 1849 ** This routine is called to process a compound query form from 1850 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1851 ** INTERSECT 1852 ** 1853 ** "p" points to the right-most of the two queries. the query on the 1854 ** left is p->pPrior. The left query could also be a compound query 1855 ** in which case this routine will be called recursively. 1856 ** 1857 ** The results of the total query are to be written into a destination 1858 ** of type eDest with parameter iParm. 1859 ** 1860 ** Example 1: Consider a three-way compound SQL statement. 1861 ** 1862 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1863 ** 1864 ** This statement is parsed up as follows: 1865 ** 1866 ** SELECT c FROM t3 1867 ** | 1868 ** `-----> SELECT b FROM t2 1869 ** | 1870 ** `------> SELECT a FROM t1 1871 ** 1872 ** The arrows in the diagram above represent the Select.pPrior pointer. 1873 ** So if this routine is called with p equal to the t3 query, then 1874 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1875 ** 1876 ** Notice that because of the way SQLite parses compound SELECTs, the 1877 ** individual selects always group from left to right. 1878 */ 1879 static int multiSelect( 1880 Parse *pParse, /* Parsing context */ 1881 Select *p, /* The right-most of SELECTs to be coded */ 1882 SelectDest *pDest /* What to do with query results */ 1883 ){ 1884 int rc = SQLITE_OK; /* Success code from a subroutine */ 1885 Select *pPrior; /* Another SELECT immediately to our left */ 1886 Vdbe *v; /* Generate code to this VDBE */ 1887 SelectDest dest; /* Alternative data destination */ 1888 Select *pDelete = 0; /* Chain of simple selects to delete */ 1889 sqlite3 *db; /* Database connection */ 1890 1891 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1892 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1893 */ 1894 if( p==0 || p->pPrior==0 ){ 1895 rc = 1; 1896 goto multi_select_end; 1897 } 1898 db = pParse->db; 1899 pPrior = p->pPrior; 1900 assert( pPrior->pRightmost!=pPrior ); 1901 assert( pPrior->pRightmost==p->pRightmost ); 1902 if( pPrior->pOrderBy ){ 1903 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1904 selectOpName(p->op)); 1905 rc = 1; 1906 goto multi_select_end; 1907 } 1908 if( pPrior->pLimit ){ 1909 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1910 selectOpName(p->op)); 1911 rc = 1; 1912 goto multi_select_end; 1913 } 1914 1915 /* Make sure we have a valid query engine. If not, create a new one. 1916 */ 1917 v = sqlite3GetVdbe(pParse); 1918 if( v==0 ){ 1919 rc = 1; 1920 goto multi_select_end; 1921 } 1922 1923 /* Create the destination temporary table if necessary 1924 */ 1925 dest = *pDest; 1926 if( dest.eDest==SRT_EphemTab ){ 1927 assert( p->pEList ); 1928 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1929 dest.eDest = SRT_Table; 1930 } 1931 1932 /* Make sure all SELECTs in the statement have the same number of elements 1933 ** in their result sets. 1934 */ 1935 assert( p->pEList && pPrior->pEList ); 1936 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1937 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1938 " do not have the same number of result columns", selectOpName(p->op)); 1939 rc = 1; 1940 goto multi_select_end; 1941 } 1942 1943 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1944 */ 1945 if( p->pOrderBy ){ 1946 return multiSelectOrderBy(pParse, p, pDest); 1947 } 1948 1949 /* Generate code for the left and right SELECT statements. 1950 */ 1951 switch( p->op ){ 1952 case TK_ALL: { 1953 int addr = 0; 1954 assert( !pPrior->pLimit ); 1955 pPrior->pLimit = p->pLimit; 1956 pPrior->pOffset = p->pOffset; 1957 rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0); 1958 p->pLimit = 0; 1959 p->pOffset = 0; 1960 if( rc ){ 1961 goto multi_select_end; 1962 } 1963 p->pPrior = 0; 1964 p->iLimit = pPrior->iLimit; 1965 p->iOffset = pPrior->iOffset; 1966 if( p->iLimit ){ 1967 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1968 VdbeComment((v, "Jump ahead if LIMIT reached")); 1969 } 1970 rc = sqlite3Select(pParse, p, &dest, 0, 0, 0); 1971 pDelete = p->pPrior; 1972 p->pPrior = pPrior; 1973 if( rc ){ 1974 goto multi_select_end; 1975 } 1976 if( addr ){ 1977 sqlite3VdbeJumpHere(v, addr); 1978 } 1979 break; 1980 } 1981 case TK_EXCEPT: 1982 case TK_UNION: { 1983 int unionTab; /* Cursor number of the temporary table holding result */ 1984 int op = 0; /* One of the SRT_ operations to apply to self */ 1985 int priorOp; /* The SRT_ operation to apply to prior selects */ 1986 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1987 int addr; 1988 SelectDest uniondest; 1989 1990 priorOp = SRT_Union; 1991 if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){ 1992 /* We can reuse a temporary table generated by a SELECT to our 1993 ** right. 1994 */ 1995 unionTab = dest.iParm; 1996 }else{ 1997 /* We will need to create our own temporary table to hold the 1998 ** intermediate results. 1999 */ 2000 unionTab = pParse->nTab++; 2001 assert( p->pOrderBy==0 ); 2002 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2003 assert( p->addrOpenEphm[0] == -1 ); 2004 p->addrOpenEphm[0] = addr; 2005 p->pRightmost->usesEphm = 1; 2006 assert( p->pEList ); 2007 } 2008 2009 /* Code the SELECT statements to our left 2010 */ 2011 assert( !pPrior->pOrderBy ); 2012 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2013 rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0); 2014 if( rc ){ 2015 goto multi_select_end; 2016 } 2017 2018 /* Code the current SELECT statement 2019 */ 2020 switch( p->op ){ 2021 case TK_EXCEPT: op = SRT_Except; break; 2022 case TK_UNION: op = SRT_Union; break; 2023 case TK_ALL: op = SRT_Table; break; 2024 } 2025 p->pPrior = 0; 2026 p->disallowOrderBy = 0; 2027 pLimit = p->pLimit; 2028 p->pLimit = 0; 2029 pOffset = p->pOffset; 2030 p->pOffset = 0; 2031 uniondest.eDest = op; 2032 rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0); 2033 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2034 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2035 sqlite3ExprListDelete(db, p->pOrderBy); 2036 pDelete = p->pPrior; 2037 p->pPrior = pPrior; 2038 p->pOrderBy = 0; 2039 sqlite3ExprDelete(db, p->pLimit); 2040 p->pLimit = pLimit; 2041 p->pOffset = pOffset; 2042 p->iLimit = 0; 2043 p->iOffset = 0; 2044 if( rc ){ 2045 goto multi_select_end; 2046 } 2047 2048 2049 /* Convert the data in the temporary table into whatever form 2050 ** it is that we currently need. 2051 */ 2052 if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ 2053 int iCont, iBreak, iStart; 2054 assert( p->pEList ); 2055 if( dest.eDest==SRT_Callback ){ 2056 Select *pFirst = p; 2057 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2058 generateColumnNames(pParse, 0, pFirst->pEList); 2059 } 2060 iBreak = sqlite3VdbeMakeLabel(v); 2061 iCont = sqlite3VdbeMakeLabel(v); 2062 computeLimitRegisters(pParse, p, iBreak); 2063 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 2064 iStart = sqlite3VdbeCurrentAddr(v); 2065 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 2066 0, -1, &dest, iCont, iBreak); 2067 sqlite3VdbeResolveLabel(v, iCont); 2068 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 2069 sqlite3VdbeResolveLabel(v, iBreak); 2070 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2071 } 2072 break; 2073 } 2074 case TK_INTERSECT: { 2075 int tab1, tab2; 2076 int iCont, iBreak, iStart; 2077 Expr *pLimit, *pOffset; 2078 int addr; 2079 SelectDest intersectdest; 2080 int r1; 2081 2082 /* INTERSECT is different from the others since it requires 2083 ** two temporary tables. Hence it has its own case. Begin 2084 ** by allocating the tables we will need. 2085 */ 2086 tab1 = pParse->nTab++; 2087 tab2 = pParse->nTab++; 2088 assert( p->pOrderBy==0 ); 2089 2090 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2091 assert( p->addrOpenEphm[0] == -1 ); 2092 p->addrOpenEphm[0] = addr; 2093 p->pRightmost->usesEphm = 1; 2094 assert( p->pEList ); 2095 2096 /* Code the SELECTs to our left into temporary table "tab1". 2097 */ 2098 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2099 rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0); 2100 if( rc ){ 2101 goto multi_select_end; 2102 } 2103 2104 /* Code the current SELECT into temporary table "tab2" 2105 */ 2106 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2107 assert( p->addrOpenEphm[1] == -1 ); 2108 p->addrOpenEphm[1] = addr; 2109 p->pPrior = 0; 2110 pLimit = p->pLimit; 2111 p->pLimit = 0; 2112 pOffset = p->pOffset; 2113 p->pOffset = 0; 2114 intersectdest.iParm = tab2; 2115 rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0); 2116 pDelete = p->pPrior; 2117 p->pPrior = pPrior; 2118 sqlite3ExprDelete(db, p->pLimit); 2119 p->pLimit = pLimit; 2120 p->pOffset = pOffset; 2121 if( rc ){ 2122 goto multi_select_end; 2123 } 2124 2125 /* Generate code to take the intersection of the two temporary 2126 ** tables. 2127 */ 2128 assert( p->pEList ); 2129 if( dest.eDest==SRT_Callback ){ 2130 Select *pFirst = p; 2131 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2132 generateColumnNames(pParse, 0, pFirst->pEList); 2133 } 2134 iBreak = sqlite3VdbeMakeLabel(v); 2135 iCont = sqlite3VdbeMakeLabel(v); 2136 computeLimitRegisters(pParse, p, iBreak); 2137 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 2138 r1 = sqlite3GetTempReg(pParse); 2139 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2140 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 2141 sqlite3ReleaseTempReg(pParse, r1); 2142 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 2143 0, -1, &dest, iCont, iBreak); 2144 sqlite3VdbeResolveLabel(v, iCont); 2145 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 2146 sqlite3VdbeResolveLabel(v, iBreak); 2147 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2148 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2149 break; 2150 } 2151 } 2152 2153 /* Compute collating sequences used by 2154 ** temporary tables needed to implement the compound select. 2155 ** Attach the KeyInfo structure to all temporary tables. 2156 ** 2157 ** This section is run by the right-most SELECT statement only. 2158 ** SELECT statements to the left always skip this part. The right-most 2159 ** SELECT might also skip this part if it has no ORDER BY clause and 2160 ** no temp tables are required. 2161 */ 2162 if( p->usesEphm ){ 2163 int i; /* Loop counter */ 2164 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2165 Select *pLoop; /* For looping through SELECT statements */ 2166 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2167 int nCol; /* Number of columns in result set */ 2168 2169 assert( p->pRightmost==p ); 2170 nCol = p->pEList->nExpr; 2171 pKeyInfo = sqlite3DbMallocZero(db, 2172 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 2173 if( !pKeyInfo ){ 2174 rc = SQLITE_NOMEM; 2175 goto multi_select_end; 2176 } 2177 2178 pKeyInfo->enc = ENC(db); 2179 pKeyInfo->nField = nCol; 2180 2181 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2182 *apColl = multiSelectCollSeq(pParse, p, i); 2183 if( 0==*apColl ){ 2184 *apColl = db->pDfltColl; 2185 } 2186 } 2187 2188 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2189 for(i=0; i<2; i++){ 2190 int addr = pLoop->addrOpenEphm[i]; 2191 if( addr<0 ){ 2192 /* If [0] is unused then [1] is also unused. So we can 2193 ** always safely abort as soon as the first unused slot is found */ 2194 assert( pLoop->addrOpenEphm[1]<0 ); 2195 break; 2196 } 2197 sqlite3VdbeChangeP2(v, addr, nCol); 2198 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 2199 pLoop->addrOpenEphm[i] = -1; 2200 } 2201 } 2202 sqlite3DbFree(db, pKeyInfo); 2203 } 2204 2205 multi_select_end: 2206 pDest->iMem = dest.iMem; 2207 pDest->nMem = dest.nMem; 2208 sqlite3SelectDelete(db, pDelete); 2209 return rc; 2210 } 2211 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2212 2213 /* 2214 ** Code an output subroutine for a coroutine implementation of a 2215 ** SELECT statment. 2216 ** 2217 ** The data to be output is contained in pIn->iMem. There are 2218 ** pIn->nMem columns to be output. pDest is where the output should 2219 ** be sent. 2220 ** 2221 ** regReturn is the number of the register holding the subroutine 2222 ** return address. 2223 ** 2224 ** If regPrev>0 then it is a the first register in a vector that 2225 ** records the previous output. mem[regPrev] is a flag that is false 2226 ** if there has been no previous output. If regPrev>0 then code is 2227 ** generated to suppress duplicates. pKeyInfo is used for comparing 2228 ** keys. 2229 ** 2230 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2231 ** iBreak. 2232 */ 2233 static int generateOutputSubroutine( 2234 Parse *pParse, /* Parsing context */ 2235 Select *p, /* The SELECT statement */ 2236 SelectDest *pIn, /* Coroutine supplying data */ 2237 SelectDest *pDest, /* Where to send the data */ 2238 int regReturn, /* The return address register */ 2239 int regPrev, /* Previous result register. No uniqueness if 0 */ 2240 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2241 int p4type, /* The p4 type for pKeyInfo */ 2242 int iBreak /* Jump here if we hit the LIMIT */ 2243 ){ 2244 Vdbe *v = pParse->pVdbe; 2245 int iContinue; 2246 int addr; 2247 2248 addr = sqlite3VdbeCurrentAddr(v); 2249 iContinue = sqlite3VdbeMakeLabel(v); 2250 2251 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2252 */ 2253 if( regPrev ){ 2254 int j1, j2; 2255 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 2256 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 2257 (char*)pKeyInfo, p4type); 2258 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 2259 sqlite3VdbeJumpHere(v, j1); 2260 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 2261 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2262 } 2263 if( pParse->db->mallocFailed ) return 0; 2264 2265 /* Suppress the the first OFFSET entries if there is an OFFSET clause 2266 */ 2267 codeOffset(v, p, iContinue); 2268 2269 switch( pDest->eDest ){ 2270 /* Store the result as data using a unique key. 2271 */ 2272 case SRT_Table: 2273 case SRT_EphemTab: { 2274 int r1 = sqlite3GetTempReg(pParse); 2275 int r2 = sqlite3GetTempReg(pParse); 2276 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 2277 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 2278 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 2279 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2280 sqlite3ReleaseTempReg(pParse, r2); 2281 sqlite3ReleaseTempReg(pParse, r1); 2282 break; 2283 } 2284 2285 #ifndef SQLITE_OMIT_SUBQUERY 2286 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2287 ** then there should be a single item on the stack. Write this 2288 ** item into the set table with bogus data. 2289 */ 2290 case SRT_Set: { 2291 int r1; 2292 assert( pIn->nMem==1 ); 2293 p->affinity = 2294 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 2295 r1 = sqlite3GetTempReg(pParse); 2296 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 2297 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 2298 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 2299 sqlite3ReleaseTempReg(pParse, r1); 2300 break; 2301 } 2302 2303 #if 0 /* Never occurs on an ORDER BY query */ 2304 /* If any row exist in the result set, record that fact and abort. 2305 */ 2306 case SRT_Exists: { 2307 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 2308 /* The LIMIT clause will terminate the loop for us */ 2309 break; 2310 } 2311 #endif 2312 2313 /* If this is a scalar select that is part of an expression, then 2314 ** store the results in the appropriate memory cell and break out 2315 ** of the scan loop. 2316 */ 2317 case SRT_Mem: { 2318 assert( pIn->nMem==1 ); 2319 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 2320 /* The LIMIT clause will jump out of the loop for us */ 2321 break; 2322 } 2323 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2324 2325 /* Send the data to the callback function or to a subroutine. In the 2326 ** case of a subroutine, the subroutine itself is responsible for 2327 ** popping the data from the stack. 2328 */ 2329 case SRT_Coroutine: { 2330 if( pDest->iMem==0 ){ 2331 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 2332 pDest->nMem = pIn->nMem; 2333 } 2334 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 2335 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 2336 break; 2337 } 2338 2339 case SRT_Callback: { 2340 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 2341 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 2342 break; 2343 } 2344 2345 #if !defined(SQLITE_OMIT_TRIGGER) 2346 /* Discard the results. This is used for SELECT statements inside 2347 ** the body of a TRIGGER. The purpose of such selects is to call 2348 ** user-defined functions that have side effects. We do not care 2349 ** about the actual results of the select. 2350 */ 2351 default: { 2352 break; 2353 } 2354 #endif 2355 } 2356 2357 /* Jump to the end of the loop if the LIMIT is reached. 2358 */ 2359 if( p->iLimit ){ 2360 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 2361 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 2362 } 2363 2364 /* Generate the subroutine return 2365 */ 2366 sqlite3VdbeResolveLabel(v, iContinue); 2367 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2368 2369 return addr; 2370 } 2371 2372 /* 2373 ** Alternative compound select code generator for cases when there 2374 ** is an ORDER BY clause. 2375 ** 2376 ** We assume a query of the following form: 2377 ** 2378 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2379 ** 2380 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2381 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2382 ** co-routines. Then run the co-routines in parallel and merge the results 2383 ** into the output. In addition to the two coroutines (called selectA and 2384 ** selectB) there are 7 subroutines: 2385 ** 2386 ** outA: Move the output of the selectA coroutine into the output 2387 ** of the compound query. 2388 ** 2389 ** outB: Move the output of the selectB coroutine into the output 2390 ** of the compound query. (Only generated for UNION and 2391 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2392 ** appears only in B.) 2393 ** 2394 ** AltB: Called when there is data from both coroutines and A<B. 2395 ** 2396 ** AeqB: Called when there is data from both coroutines and A==B. 2397 ** 2398 ** AgtB: Called when there is data from both coroutines and A>B. 2399 ** 2400 ** EofA: Called when data is exhausted from selectA. 2401 ** 2402 ** EofB: Called when data is exhausted from selectB. 2403 ** 2404 ** The implementation of the latter five subroutines depend on which 2405 ** <operator> is used: 2406 ** 2407 ** 2408 ** UNION ALL UNION EXCEPT INTERSECT 2409 ** ------------- ----------------- -------------- ----------------- 2410 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2411 ** 2412 ** AeqB: outA, nextA nextA nextA outA, nextA 2413 ** 2414 ** AgtB: outB, nextB outB, nextB nextB nextB 2415 ** 2416 ** EofA: outB, nextB outB, nextB halt halt 2417 ** 2418 ** EofB: outA, nextA outA, nextA outA, nextA halt 2419 ** 2420 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2421 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2422 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2423 ** following nextX causes a jump to the end of the select processing. 2424 ** 2425 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2426 ** within the output subroutine. The regPrev register set holds the previously 2427 ** output value. A comparison is made against this value and the output 2428 ** is skipped if the next results would be the same as the previous. 2429 ** 2430 ** The implementation plan is to implement the two coroutines and seven 2431 ** subroutines first, then put the control logic at the bottom. Like this: 2432 ** 2433 ** goto Init 2434 ** coA: coroutine for left query (A) 2435 ** coB: coroutine for right query (B) 2436 ** outA: output one row of A 2437 ** outB: output one row of B (UNION and UNION ALL only) 2438 ** EofA: ... 2439 ** EofB: ... 2440 ** AltB: ... 2441 ** AeqB: ... 2442 ** AgtB: ... 2443 ** Init: initialize coroutine registers 2444 ** yield coA 2445 ** if eof(A) goto EofA 2446 ** yield coB 2447 ** if eof(B) goto EofB 2448 ** Cmpr: Compare A, B 2449 ** Jump AltB, AeqB, AgtB 2450 ** End: ... 2451 ** 2452 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2453 ** actually called using Gosub and they do not Return. EofA and EofB loop 2454 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2455 ** and AgtB jump to either L2 or to one of EofA or EofB. 2456 */ 2457 static int multiSelectOrderBy( 2458 Parse *pParse, /* Parsing context */ 2459 Select *p, /* The right-most of SELECTs to be coded */ 2460 SelectDest *pDest /* What to do with query results */ 2461 ){ 2462 int i, j; /* Loop counters */ 2463 Select *pPrior; /* Another SELECT immediately to our left */ 2464 Vdbe *v; /* Generate code to this VDBE */ 2465 SelectDest destA; /* Destination for coroutine A */ 2466 SelectDest destB; /* Destination for coroutine B */ 2467 int regAddrA; /* Address register for select-A coroutine */ 2468 int regEofA; /* Flag to indicate when select-A is complete */ 2469 int regAddrB; /* Address register for select-B coroutine */ 2470 int regEofB; /* Flag to indicate when select-B is complete */ 2471 int addrSelectA; /* Address of the select-A coroutine */ 2472 int addrSelectB; /* Address of the select-B coroutine */ 2473 int regOutA; /* Address register for the output-A subroutine */ 2474 int regOutB; /* Address register for the output-B subroutine */ 2475 int addrOutA; /* Address of the output-A subroutine */ 2476 int addrOutB; /* Address of the output-B subroutine */ 2477 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2478 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2479 int addrAltB; /* Address of the A<B subroutine */ 2480 int addrAeqB; /* Address of the A==B subroutine */ 2481 int addrAgtB; /* Address of the A>B subroutine */ 2482 int regLimitA; /* Limit register for select-A */ 2483 int regLimitB; /* Limit register for select-A */ 2484 int regPrev; /* A range of registers to hold previous output */ 2485 int savedLimit; /* Saved value of p->iLimit */ 2486 int savedOffset; /* Saved value of p->iOffset */ 2487 int labelCmpr; /* Label for the start of the merge algorithm */ 2488 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2489 int j1; /* Jump instructions that get retargetted */ 2490 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2491 KeyInfo *pKeyDup; /* Comparison information for duplicate removal */ 2492 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2493 sqlite3 *db; /* Database connection */ 2494 ExprList *pOrderBy; /* The ORDER BY clause */ 2495 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2496 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2497 u8 NotUsed; /* Dummy variables */ 2498 2499 assert( p->pOrderBy!=0 ); 2500 db = pParse->db; 2501 v = pParse->pVdbe; 2502 if( v==0 ) return SQLITE_NOMEM; 2503 labelEnd = sqlite3VdbeMakeLabel(v); 2504 labelCmpr = sqlite3VdbeMakeLabel(v); 2505 2506 2507 /* Patch up the ORDER BY clause 2508 */ 2509 op = p->op; 2510 pPrior = p->pPrior; 2511 assert( pPrior->pOrderBy==0 ); 2512 pOrderBy = p->pOrderBy; 2513 assert( pOrderBy ); 2514 if( processCompoundOrderBy(pParse, p) ){ 2515 return SQLITE_ERROR; 2516 } 2517 nOrderBy = pOrderBy->nExpr; 2518 2519 /* For operators other than UNION ALL we have to make sure that 2520 ** the ORDER BY clause covers every term of the result set. Add 2521 ** terms to the ORDER BY clause as necessary. 2522 */ 2523 if( op!=TK_ALL ){ 2524 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2525 for(j=0; j<nOrderBy; j++){ 2526 Expr *pTerm = pOrderBy->a[j].pExpr; 2527 assert( pTerm->op==TK_INTEGER ); 2528 assert( (pTerm->flags & EP_IntValue)!=0 ); 2529 if( pTerm->iTable==i ) break; 2530 } 2531 if( j==nOrderBy ){ 2532 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); 2533 if( pNew==0 ) return SQLITE_NOMEM; 2534 pNew->flags |= EP_IntValue; 2535 pNew->iTable = i; 2536 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); 2537 nOrderBy++; 2538 } 2539 } 2540 } 2541 2542 /* Compute the comparison permutation and keyinfo that is used with 2543 ** the permutation in order to comparisons to determine if the next 2544 ** row of results comes from selectA or selectB. Also add explicit 2545 ** collations to the ORDER BY clause terms so that when the subqueries 2546 ** to the right and the left are evaluated, they use the correct 2547 ** collation. 2548 */ 2549 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2550 if( aPermute ){ 2551 for(i=0; i<nOrderBy; i++){ 2552 Expr *pTerm = pOrderBy->a[i].pExpr; 2553 assert( pTerm->op==TK_INTEGER ); 2554 assert( (pTerm->flags & EP_IntValue)!=0 ); 2555 aPermute[i] = pTerm->iTable-1; 2556 assert( aPermute[i]>=0 && aPermute[i]<p->pEList->nExpr ); 2557 } 2558 pKeyMerge = 2559 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2560 if( pKeyMerge ){ 2561 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2562 pKeyMerge->nField = nOrderBy; 2563 pKeyMerge->enc = ENC(db); 2564 for(i=0; i<nOrderBy; i++){ 2565 CollSeq *pColl; 2566 Expr *pTerm = pOrderBy->a[i].pExpr; 2567 if( pTerm->flags & EP_ExpCollate ){ 2568 pColl = pTerm->pColl; 2569 }else{ 2570 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2571 pTerm->flags |= EP_ExpCollate; 2572 pTerm->pColl = pColl; 2573 } 2574 pKeyMerge->aColl[i] = pColl; 2575 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2576 } 2577 } 2578 }else{ 2579 pKeyMerge = 0; 2580 } 2581 2582 /* Reattach the ORDER BY clause to the query. 2583 */ 2584 p->pOrderBy = pOrderBy; 2585 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy); 2586 2587 /* Allocate a range of temporary registers and the KeyInfo needed 2588 ** for the logic that removes duplicate result rows when the 2589 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2590 */ 2591 if( op==TK_ALL ){ 2592 regPrev = 0; 2593 }else{ 2594 int nExpr = p->pEList->nExpr; 2595 assert( nOrderBy>=nExpr ); 2596 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2597 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2598 pKeyDup = sqlite3DbMallocZero(db, 2599 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2600 if( pKeyDup ){ 2601 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2602 pKeyDup->nField = nExpr; 2603 pKeyDup->enc = ENC(db); 2604 for(i=0; i<nExpr; i++){ 2605 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2606 pKeyDup->aSortOrder[i] = 0; 2607 } 2608 } 2609 } 2610 2611 /* Separate the left and the right query from one another 2612 */ 2613 p->pPrior = 0; 2614 pPrior->pRightmost = 0; 2615 processOrderGroupBy(pParse, p, p->pOrderBy, 1, &NotUsed); 2616 if( pPrior->pPrior==0 ){ 2617 processOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, 1, &NotUsed); 2618 } 2619 2620 /* Compute the limit registers */ 2621 computeLimitRegisters(pParse, p, labelEnd); 2622 if( p->iLimit && op==TK_ALL ){ 2623 regLimitA = ++pParse->nMem; 2624 regLimitB = ++pParse->nMem; 2625 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2626 regLimitA); 2627 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2628 }else{ 2629 regLimitA = regLimitB = 0; 2630 } 2631 sqlite3ExprDelete(db, p->pLimit); 2632 p->pLimit = 0; 2633 sqlite3ExprDelete(db, p->pOffset); 2634 p->pOffset = 0; 2635 2636 regAddrA = ++pParse->nMem; 2637 regEofA = ++pParse->nMem; 2638 regAddrB = ++pParse->nMem; 2639 regEofB = ++pParse->nMem; 2640 regOutA = ++pParse->nMem; 2641 regOutB = ++pParse->nMem; 2642 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2643 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2644 2645 /* Jump past the various subroutines and coroutines to the main 2646 ** merge loop 2647 */ 2648 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2649 addrSelectA = sqlite3VdbeCurrentAddr(v); 2650 2651 2652 /* Generate a coroutine to evaluate the SELECT statement to the 2653 ** left of the compound operator - the "A" select. 2654 */ 2655 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2656 pPrior->iLimit = regLimitA; 2657 sqlite3Select(pParse, pPrior, &destA, 0, 0, 0); 2658 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2659 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2660 VdbeNoopComment((v, "End coroutine for left SELECT")); 2661 2662 /* Generate a coroutine to evaluate the SELECT statement on 2663 ** the right - the "B" select 2664 */ 2665 addrSelectB = sqlite3VdbeCurrentAddr(v); 2666 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2667 savedLimit = p->iLimit; 2668 savedOffset = p->iOffset; 2669 p->iLimit = regLimitB; 2670 p->iOffset = 0; 2671 sqlite3Select(pParse, p, &destB, 0, 0, 0); 2672 p->iLimit = savedLimit; 2673 p->iOffset = savedOffset; 2674 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2675 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2676 VdbeNoopComment((v, "End coroutine for right SELECT")); 2677 2678 /* Generate a subroutine that outputs the current row of the A 2679 ** select as the next output row of the compound select. 2680 */ 2681 VdbeNoopComment((v, "Output routine for A")); 2682 addrOutA = generateOutputSubroutine(pParse, 2683 p, &destA, pDest, regOutA, 2684 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2685 2686 /* Generate a subroutine that outputs the current row of the B 2687 ** select as the next output row of the compound select. 2688 */ 2689 if( op==TK_ALL || op==TK_UNION ){ 2690 VdbeNoopComment((v, "Output routine for B")); 2691 addrOutB = generateOutputSubroutine(pParse, 2692 p, &destB, pDest, regOutB, 2693 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2694 } 2695 2696 /* Generate a subroutine to run when the results from select A 2697 ** are exhausted and only data in select B remains. 2698 */ 2699 VdbeNoopComment((v, "eof-A subroutine")); 2700 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2701 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2702 }else{ 2703 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2704 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2705 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2706 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2707 } 2708 2709 /* Generate a subroutine to run when the results from select B 2710 ** are exhausted and only data in select A remains. 2711 */ 2712 if( op==TK_INTERSECT ){ 2713 addrEofB = addrEofA; 2714 }else{ 2715 VdbeNoopComment((v, "eof-B subroutine")); 2716 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2717 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2718 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2719 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2720 } 2721 2722 /* Generate code to handle the case of A<B 2723 */ 2724 VdbeNoopComment((v, "A-lt-B subroutine")); 2725 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2726 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2727 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2728 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2729 2730 /* Generate code to handle the case of A==B 2731 */ 2732 if( op==TK_ALL ){ 2733 addrAeqB = addrAltB; 2734 }else if( op==TK_INTERSECT ){ 2735 addrAeqB = addrAltB; 2736 addrAltB++; 2737 }else{ 2738 VdbeNoopComment((v, "A-eq-B subroutine")); 2739 addrAeqB = 2740 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2741 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2742 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2743 } 2744 2745 /* Generate code to handle the case of A>B 2746 */ 2747 VdbeNoopComment((v, "A-gt-B subroutine")); 2748 addrAgtB = sqlite3VdbeCurrentAddr(v); 2749 if( op==TK_ALL || op==TK_UNION ){ 2750 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2751 } 2752 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2753 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2754 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2755 2756 /* This code runs once to initialize everything. 2757 */ 2758 sqlite3VdbeJumpHere(v, j1); 2759 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2760 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2761 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2762 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2763 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2764 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2765 2766 /* Implement the main merge loop 2767 */ 2768 sqlite3VdbeResolveLabel(v, labelCmpr); 2769 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2770 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2771 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2772 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2773 2774 /* Release temporary registers 2775 */ 2776 if( regPrev ){ 2777 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2778 } 2779 2780 /* Jump to the this point in order to terminate the query. 2781 */ 2782 sqlite3VdbeResolveLabel(v, labelEnd); 2783 2784 /* Set the number of output columns 2785 */ 2786 if( pDest->eDest==SRT_Callback ){ 2787 Select *pFirst = pPrior; 2788 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2789 generateColumnNames(pParse, 0, pFirst->pEList); 2790 } 2791 2792 /* Reassembly the compound query so that it will be freed correctly 2793 ** by the calling function */ 2794 if( p->pPrior ){ 2795 sqlite3SelectDelete(db, p->pPrior); 2796 } 2797 p->pPrior = pPrior; 2798 2799 /*** TBD: Insert subroutine calls to close cursors on incomplete 2800 **** subqueries ****/ 2801 return SQLITE_OK; 2802 } 2803 2804 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2805 /* Forward Declarations */ 2806 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2807 static void substSelect(sqlite3*, Select *, int, ExprList *); 2808 2809 /* 2810 ** Scan through the expression pExpr. Replace every reference to 2811 ** a column in table number iTable with a copy of the iColumn-th 2812 ** entry in pEList. (But leave references to the ROWID column 2813 ** unchanged.) 2814 ** 2815 ** This routine is part of the flattening procedure. A subquery 2816 ** whose result set is defined by pEList appears as entry in the 2817 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2818 ** FORM clause entry is iTable. This routine make the necessary 2819 ** changes to pExpr so that it refers directly to the source table 2820 ** of the subquery rather the result set of the subquery. 2821 */ 2822 static void substExpr( 2823 sqlite3 *db, /* Report malloc errors to this connection */ 2824 Expr *pExpr, /* Expr in which substitution occurs */ 2825 int iTable, /* Table to be substituted */ 2826 ExprList *pEList /* Substitute expressions */ 2827 ){ 2828 if( pExpr==0 ) return; 2829 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2830 if( pExpr->iColumn<0 ){ 2831 pExpr->op = TK_NULL; 2832 }else{ 2833 Expr *pNew; 2834 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2835 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2836 pNew = pEList->a[pExpr->iColumn].pExpr; 2837 assert( pNew!=0 ); 2838 pExpr->op = pNew->op; 2839 assert( pExpr->pLeft==0 ); 2840 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); 2841 assert( pExpr->pRight==0 ); 2842 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); 2843 assert( pExpr->pList==0 ); 2844 pExpr->pList = sqlite3ExprListDup(db, pNew->pList); 2845 pExpr->iTable = pNew->iTable; 2846 pExpr->pTab = pNew->pTab; 2847 pExpr->iColumn = pNew->iColumn; 2848 pExpr->iAgg = pNew->iAgg; 2849 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2850 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2851 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); 2852 pExpr->flags = pNew->flags; 2853 } 2854 }else{ 2855 substExpr(db, pExpr->pLeft, iTable, pEList); 2856 substExpr(db, pExpr->pRight, iTable, pEList); 2857 substSelect(db, pExpr->pSelect, iTable, pEList); 2858 substExprList(db, pExpr->pList, iTable, pEList); 2859 } 2860 } 2861 static void substExprList( 2862 sqlite3 *db, /* Report malloc errors here */ 2863 ExprList *pList, /* List to scan and in which to make substitutes */ 2864 int iTable, /* Table to be substituted */ 2865 ExprList *pEList /* Substitute values */ 2866 ){ 2867 int i; 2868 if( pList==0 ) return; 2869 for(i=0; i<pList->nExpr; i++){ 2870 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2871 } 2872 } 2873 static void substSelect( 2874 sqlite3 *db, /* Report malloc errors here */ 2875 Select *p, /* SELECT statement in which to make substitutions */ 2876 int iTable, /* Table to be replaced */ 2877 ExprList *pEList /* Substitute values */ 2878 ){ 2879 if( !p ) return; 2880 substExprList(db, p->pEList, iTable, pEList); 2881 substExprList(db, p->pGroupBy, iTable, pEList); 2882 substExprList(db, p->pOrderBy, iTable, pEList); 2883 substExpr(db, p->pHaving, iTable, pEList); 2884 substExpr(db, p->pWhere, iTable, pEList); 2885 substSelect(db, p->pPrior, iTable, pEList); 2886 } 2887 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2888 2889 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2890 /* 2891 ** This routine attempts to flatten subqueries in order to speed 2892 ** execution. It returns 1 if it makes changes and 0 if no flattening 2893 ** occurs. 2894 ** 2895 ** To understand the concept of flattening, consider the following 2896 ** query: 2897 ** 2898 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2899 ** 2900 ** The default way of implementing this query is to execute the 2901 ** subquery first and store the results in a temporary table, then 2902 ** run the outer query on that temporary table. This requires two 2903 ** passes over the data. Furthermore, because the temporary table 2904 ** has no indices, the WHERE clause on the outer query cannot be 2905 ** optimized. 2906 ** 2907 ** This routine attempts to rewrite queries such as the above into 2908 ** a single flat select, like this: 2909 ** 2910 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2911 ** 2912 ** The code generated for this simpification gives the same result 2913 ** but only has to scan the data once. And because indices might 2914 ** exist on the table t1, a complete scan of the data might be 2915 ** avoided. 2916 ** 2917 ** Flattening is only attempted if all of the following are true: 2918 ** 2919 ** (1) The subquery and the outer query do not both use aggregates. 2920 ** 2921 ** (2) The subquery is not an aggregate or the outer query is not a join. 2922 ** 2923 ** (3) The subquery is not the right operand of a left outer join, or 2924 ** the subquery is not itself a join. (Ticket #306) 2925 ** 2926 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2927 ** 2928 ** (5) The subquery is not DISTINCT or the outer query does not use 2929 ** aggregates. 2930 ** 2931 ** (6) The subquery does not use aggregates or the outer query is not 2932 ** DISTINCT. 2933 ** 2934 ** (7) The subquery has a FROM clause. 2935 ** 2936 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2937 ** 2938 ** (9) The subquery does not use LIMIT or the outer query does not use 2939 ** aggregates. 2940 ** 2941 ** (10) The subquery does not use aggregates or the outer query does not 2942 ** use LIMIT. 2943 ** 2944 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2945 ** 2946 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2947 ** subquery has no WHERE clause. (added by ticket #350) 2948 ** 2949 ** (13) The subquery and outer query do not both use LIMIT 2950 ** 2951 ** (14) The subquery does not use OFFSET 2952 ** 2953 ** (15) The outer query is not part of a compound select or the 2954 ** subquery does not have both an ORDER BY and a LIMIT clause. 2955 ** (See ticket #2339) 2956 ** 2957 ** (16) The outer query is not an aggregate or the subquery does 2958 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2959 ** until we introduced the group_concat() function. 2960 ** 2961 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2962 ** compound clause made up entirely of non-aggregate queries, and 2963 ** the parent query: 2964 ** 2965 ** * is not itself part of a compound select, 2966 ** * is not an aggregate or DISTINCT query, and 2967 ** * has no other tables or sub-selects in the FROM clause. 2968 ** 2969 ** The parent and sub-query may contain WHERE clauses. Subject to 2970 ** rules (11), (13) and (14), they may also contain ORDER BY, 2971 ** LIMIT and OFFSET clauses. 2972 ** 2973 ** (18) If the sub-query is a compound select, then all terms of the 2974 ** ORDER by clause of the parent must be simple references to 2975 ** columns of the sub-query. 2976 ** 2977 ** In this routine, the "p" parameter is a pointer to the outer query. 2978 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2979 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2980 ** 2981 ** If flattening is not attempted, this routine is a no-op and returns 0. 2982 ** If flattening is attempted this routine returns 1. 2983 ** 2984 ** All of the expression analysis must occur on both the outer query and 2985 ** the subquery before this routine runs. 2986 */ 2987 static int flattenSubquery( 2988 Parse *pParse, /* Parsing context */ 2989 Select *p, /* The parent or outer SELECT statement */ 2990 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2991 int isAgg, /* True if outer SELECT uses aggregate functions */ 2992 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2993 ){ 2994 const char *zSavedAuthContext = pParse->zAuthContext; 2995 Select *pParent; 2996 Select *pSub; /* The inner query or "subquery" */ 2997 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2998 SrcList *pSrc; /* The FROM clause of the outer query */ 2999 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3000 ExprList *pList; /* The result set of the outer query */ 3001 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3002 int i; /* Loop counter */ 3003 Expr *pWhere; /* The WHERE clause */ 3004 struct SrcList_item *pSubitem; /* The subquery */ 3005 sqlite3 *db = pParse->db; 3006 3007 /* Check to see if flattening is permitted. Return 0 if not. 3008 */ 3009 if( p==0 ) return 0; 3010 pSrc = p->pSrc; 3011 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3012 pSubitem = &pSrc->a[iFrom]; 3013 iParent = pSubitem->iCursor; 3014 pSub = pSubitem->pSelect; 3015 assert( pSub!=0 ); 3016 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3017 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3018 pSubSrc = pSub->pSrc; 3019 assert( pSubSrc ); 3020 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3021 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 3022 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3023 ** became arbitrary expressions, we were forced to add restrictions (13) 3024 ** and (14). */ 3025 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3026 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3027 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 3028 return 0; /* Restriction (15) */ 3029 } 3030 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3031 if( (pSub->isDistinct || pSub->pLimit) 3032 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 3033 return 0; 3034 } 3035 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 3036 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 3037 return 0; /* Restriction (11) */ 3038 } 3039 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3040 3041 /* Restriction 3: If the subquery is a join, make sure the subquery is 3042 ** not used as the right operand of an outer join. Examples of why this 3043 ** is not allowed: 3044 ** 3045 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3046 ** 3047 ** If we flatten the above, we would get 3048 ** 3049 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3050 ** 3051 ** which is not at all the same thing. 3052 */ 3053 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 3054 return 0; 3055 } 3056 3057 /* Restriction 12: If the subquery is the right operand of a left outer 3058 ** join, make sure the subquery has no WHERE clause. 3059 ** An examples of why this is not allowed: 3060 ** 3061 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3062 ** 3063 ** If we flatten the above, we would get 3064 ** 3065 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3066 ** 3067 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3068 ** effectively converts the OUTER JOIN into an INNER JOIN. 3069 */ 3070 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 3071 return 0; 3072 } 3073 3074 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3075 ** use only the UNION ALL operator. And none of the simple select queries 3076 ** that make up the compound SELECT are allowed to be aggregate or distinct 3077 ** queries. 3078 */ 3079 if( pSub->pPrior ){ 3080 if( p->pPrior || isAgg || p->isDistinct || pSrc->nSrc!=1 ){ 3081 return 0; 3082 } 3083 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3084 if( pSub1->isAgg || pSub1->isDistinct 3085 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3086 || !pSub1->pSrc || pSub1->pSrc->nSrc!=1 3087 ){ 3088 return 0; 3089 } 3090 } 3091 3092 /* Restriction 18. */ 3093 if( p->pOrderBy ){ 3094 int ii; 3095 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3096 Expr *pExpr = p->pOrderBy->a[ii].pExpr; 3097 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=iParent ){ 3098 return 0; 3099 } 3100 } 3101 } 3102 } 3103 3104 pParse->zAuthContext = pSubitem->zName; 3105 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3106 pParse->zAuthContext = zSavedAuthContext; 3107 3108 /* If the sub-query is a compound SELECT statement, then it must be 3109 ** a UNION ALL and the parent query must be of the form: 3110 ** 3111 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3112 ** 3113 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3114 ** creates N copies of the parent query without any ORDER BY, LIMIT or 3115 ** OFFSET clauses and joins them to the left-hand-side of the original 3116 ** using UNION ALL operators. In this case N is the number of simple 3117 ** select statements in the compound sub-query. 3118 */ 3119 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3120 Select *pNew; 3121 ExprList *pOrderBy = p->pOrderBy; 3122 Expr *pLimit = p->pLimit; 3123 Expr *pOffset = p->pOffset; 3124 Select *pPrior = p->pPrior; 3125 p->pOrderBy = 0; 3126 p->pSrc = 0; 3127 p->pPrior = 0; 3128 p->pLimit = 0; 3129 pNew = sqlite3SelectDup(db, p); 3130 pNew->pPrior = pPrior; 3131 p->pPrior = pNew; 3132 p->pOrderBy = pOrderBy; 3133 p->op = TK_ALL; 3134 p->pSrc = pSrc; 3135 p->pLimit = pLimit; 3136 p->pOffset = pOffset; 3137 p->pRightmost = 0; 3138 pNew->pRightmost = 0; 3139 } 3140 3141 /* If we reach this point, it means flattening is permitted for the 3142 ** iFrom-th entry of the FROM clause in the outer query. 3143 */ 3144 pSub = pSub1 = pSubitem->pSelect; 3145 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3146 int nSubSrc = pSubSrc->nSrc; 3147 int jointype = 0; 3148 pSubSrc = pSub->pSrc; 3149 pSrc = pParent->pSrc; 3150 3151 /* Move all of the FROM elements of the subquery into the 3152 ** the FROM clause of the outer query. Before doing this, remember 3153 ** the cursor number for the original outer query FROM element in 3154 ** iParent. The iParent cursor will never be used. Subsequent code 3155 ** will scan expressions looking for iParent references and replace 3156 ** those references with expressions that resolve to the subquery FROM 3157 ** elements we are now copying in. 3158 */ 3159 if( pSrc ){ 3160 pSubitem = &pSrc->a[iFrom]; 3161 nSubSrc = pSubSrc->nSrc; 3162 jointype = pSubitem->jointype; 3163 sqlite3DeleteTable(pSubitem->pTab); 3164 sqlite3DbFree(db, pSubitem->zDatabase); 3165 sqlite3DbFree(db, pSubitem->zName); 3166 sqlite3DbFree(db, pSubitem->zAlias); 3167 pSubitem->pTab = 0; 3168 pSubitem->zDatabase = 0; 3169 pSubitem->zName = 0; 3170 pSubitem->zAlias = 0; 3171 } 3172 if( nSubSrc!=1 || !pSrc ){ 3173 int extra = nSubSrc - 1; 3174 for(i=(pSrc?1:0); i<nSubSrc; i++){ 3175 pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0); 3176 if( pSrc==0 ){ 3177 pParent->pSrc = 0; 3178 return 1; 3179 } 3180 } 3181 pParent->pSrc = pSrc; 3182 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 3183 pSrc->a[i] = pSrc->a[i-extra]; 3184 } 3185 } 3186 for(i=0; i<nSubSrc; i++){ 3187 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3188 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3189 } 3190 pSrc->a[iFrom].jointype = jointype; 3191 3192 /* Now begin substituting subquery result set expressions for 3193 ** references to the iParent in the outer query. 3194 ** 3195 ** Example: 3196 ** 3197 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3198 ** \ \_____________ subquery __________/ / 3199 ** \_____________________ outer query ______________________________/ 3200 ** 3201 ** We look at every expression in the outer query and every place we see 3202 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3203 */ 3204 pList = pParent->pEList; 3205 for(i=0; i<pList->nExpr; i++){ 3206 Expr *pExpr; 3207 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 3208 pList->a[i].zName = 3209 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 3210 } 3211 } 3212 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3213 if( isAgg ){ 3214 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3215 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3216 } 3217 if( pSub->pOrderBy ){ 3218 assert( pParent->pOrderBy==0 ); 3219 pParent->pOrderBy = pSub->pOrderBy; 3220 pSub->pOrderBy = 0; 3221 }else if( pParent->pOrderBy ){ 3222 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3223 } 3224 if( pSub->pWhere ){ 3225 pWhere = sqlite3ExprDup(db, pSub->pWhere); 3226 }else{ 3227 pWhere = 0; 3228 } 3229 if( subqueryIsAgg ){ 3230 assert( pParent->pHaving==0 ); 3231 pParent->pHaving = pParent->pWhere; 3232 pParent->pWhere = pWhere; 3233 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3234 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3235 sqlite3ExprDup(db, pSub->pHaving)); 3236 assert( pParent->pGroupBy==0 ); 3237 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); 3238 }else{ 3239 substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3240 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3241 } 3242 3243 /* The flattened query is distinct if either the inner or the 3244 ** outer query is distinct. 3245 */ 3246 pParent->isDistinct = pParent->isDistinct || pSub->isDistinct; 3247 3248 /* 3249 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3250 ** 3251 ** One is tempted to try to add a and b to combine the limits. But this 3252 ** does not work if either limit is negative. 3253 */ 3254 if( pSub->pLimit ){ 3255 pParent->pLimit = pSub->pLimit; 3256 pSub->pLimit = 0; 3257 } 3258 } 3259 3260 /* Finially, delete what is left of the subquery and return 3261 ** success. 3262 */ 3263 sqlite3SelectDelete(db, pSub1); 3264 3265 return 1; 3266 } 3267 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3268 3269 /* 3270 ** Analyze the SELECT statement passed as an argument to see if it 3271 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 3272 ** it is, or 0 otherwise. At present, a query is considered to be 3273 ** a min()/max() query if: 3274 ** 3275 ** 1. There is a single object in the FROM clause. 3276 ** 3277 ** 2. There is a single expression in the result set, and it is 3278 ** either min(x) or max(x), where x is a column reference. 3279 */ 3280 static int minMaxQuery(Parse *pParse, Select *p){ 3281 Expr *pExpr; 3282 ExprList *pEList = p->pEList; 3283 3284 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 3285 pExpr = pEList->a[0].pExpr; 3286 pEList = pExpr->pList; 3287 if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; 3288 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 3289 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; 3290 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 3291 return WHERE_ORDERBY_MIN; 3292 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 3293 return WHERE_ORDERBY_MAX; 3294 } 3295 return WHERE_ORDERBY_NORMAL; 3296 } 3297 3298 /* 3299 ** This routine resolves any names used in the result set of the 3300 ** supplied SELECT statement. If the SELECT statement being resolved 3301 ** is a sub-select, then pOuterNC is a pointer to the NameContext 3302 ** of the parent SELECT. 3303 */ 3304 int sqlite3SelectResolve( 3305 Parse *pParse, /* The parser context */ 3306 Select *p, /* The SELECT statement being coded. */ 3307 NameContext *pOuterNC /* The outer name context. May be NULL. */ 3308 ){ 3309 ExprList *pEList; /* Result set. */ 3310 int i; /* For-loop variable used in multiple places */ 3311 NameContext sNC; /* Local name-context */ 3312 ExprList *pGroupBy; /* The group by clause */ 3313 3314 /* If this routine has run before, return immediately. */ 3315 if( p->isResolved ){ 3316 assert( !pOuterNC ); 3317 return SQLITE_OK; 3318 } 3319 p->isResolved = 1; 3320 3321 /* If there have already been errors, do nothing. */ 3322 if( pParse->nErr>0 ){ 3323 return SQLITE_ERROR; 3324 } 3325 3326 /* Prepare the select statement. This call will allocate all cursors 3327 ** required to handle the tables and subqueries in the FROM clause. 3328 */ 3329 if( prepSelectStmt(pParse, p) ){ 3330 return SQLITE_ERROR; 3331 } 3332 3333 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 3334 ** are not allowed to refer to any names, so pass an empty NameContext. 3335 */ 3336 memset(&sNC, 0, sizeof(sNC)); 3337 sNC.pParse = pParse; 3338 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 3339 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 3340 return SQLITE_ERROR; 3341 } 3342 3343 /* Set up the local name-context to pass to ExprResolveNames() to 3344 ** resolve the expression-list. 3345 */ 3346 sNC.allowAgg = 1; 3347 sNC.pSrcList = p->pSrc; 3348 sNC.pNext = pOuterNC; 3349 3350 /* Resolve names in the result set. */ 3351 pEList = p->pEList; 3352 if( !pEList ) return SQLITE_ERROR; 3353 for(i=0; i<pEList->nExpr; i++){ 3354 Expr *pX = pEList->a[i].pExpr; 3355 if( sqlite3ExprResolveNames(&sNC, pX) ){ 3356 return SQLITE_ERROR; 3357 } 3358 } 3359 3360 /* If there are no aggregate functions in the result-set, and no GROUP BY 3361 ** expression, do not allow aggregates in any of the other expressions. 3362 */ 3363 assert( !p->isAgg ); 3364 pGroupBy = p->pGroupBy; 3365 if( pGroupBy || sNC.hasAgg ){ 3366 p->isAgg = 1; 3367 }else{ 3368 sNC.allowAgg = 0; 3369 } 3370 3371 /* If a HAVING clause is present, then there must be a GROUP BY clause. 3372 */ 3373 if( p->pHaving && !pGroupBy ){ 3374 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 3375 return SQLITE_ERROR; 3376 } 3377 3378 /* Add the expression list to the name-context before parsing the 3379 ** other expressions in the SELECT statement. This is so that 3380 ** expressions in the WHERE clause (etc.) can refer to expressions by 3381 ** aliases in the result set. 3382 ** 3383 ** Minor point: If this is the case, then the expression will be 3384 ** re-evaluated for each reference to it. 3385 */ 3386 sNC.pEList = p->pEList; 3387 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 3388 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ 3389 return SQLITE_ERROR; 3390 } 3391 if( p->pPrior==0 ){ 3392 if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){ 3393 return SQLITE_ERROR; 3394 } 3395 } 3396 if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){ 3397 return SQLITE_ERROR; 3398 } 3399 3400 if( pParse->db->mallocFailed ){ 3401 return SQLITE_NOMEM; 3402 } 3403 3404 /* Make sure the GROUP BY clause does not contain aggregate functions. 3405 */ 3406 if( pGroupBy ){ 3407 struct ExprList_item *pItem; 3408 3409 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 3410 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 3411 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 3412 "the GROUP BY clause"); 3413 return SQLITE_ERROR; 3414 } 3415 } 3416 } 3417 3418 /* If this is one SELECT of a compound, be sure to resolve names 3419 ** in the other SELECTs. 3420 */ 3421 if( p->pPrior ){ 3422 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 3423 }else{ 3424 return SQLITE_OK; 3425 } 3426 } 3427 3428 /* 3429 ** Reset the aggregate accumulator. 3430 ** 3431 ** The aggregate accumulator is a set of memory cells that hold 3432 ** intermediate results while calculating an aggregate. This 3433 ** routine simply stores NULLs in all of those memory cells. 3434 */ 3435 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3436 Vdbe *v = pParse->pVdbe; 3437 int i; 3438 struct AggInfo_func *pFunc; 3439 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3440 return; 3441 } 3442 for(i=0; i<pAggInfo->nColumn; i++){ 3443 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3444 } 3445 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3446 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3447 if( pFunc->iDistinct>=0 ){ 3448 Expr *pE = pFunc->pExpr; 3449 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 3450 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 3451 "by an expression"); 3452 pFunc->iDistinct = -1; 3453 }else{ 3454 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 3455 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3456 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3457 } 3458 } 3459 } 3460 } 3461 3462 /* 3463 ** Invoke the OP_AggFinalize opcode for every aggregate function 3464 ** in the AggInfo structure. 3465 */ 3466 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3467 Vdbe *v = pParse->pVdbe; 3468 int i; 3469 struct AggInfo_func *pF; 3470 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3471 ExprList *pList = pF->pExpr->pList; 3472 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3473 (void*)pF->pFunc, P4_FUNCDEF); 3474 } 3475 } 3476 3477 /* 3478 ** Update the accumulator memory cells for an aggregate based on 3479 ** the current cursor position. 3480 */ 3481 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3482 Vdbe *v = pParse->pVdbe; 3483 int i; 3484 struct AggInfo_func *pF; 3485 struct AggInfo_col *pC; 3486 3487 pAggInfo->directMode = 1; 3488 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3489 int nArg; 3490 int addrNext = 0; 3491 int regAgg; 3492 ExprList *pList = pF->pExpr->pList; 3493 if( pList ){ 3494 nArg = pList->nExpr; 3495 regAgg = sqlite3GetTempRange(pParse, nArg); 3496 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3497 }else{ 3498 nArg = 0; 3499 regAgg = 0; 3500 } 3501 if( pF->iDistinct>=0 ){ 3502 addrNext = sqlite3VdbeMakeLabel(v); 3503 assert( nArg==1 ); 3504 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3505 } 3506 if( pF->pFunc->needCollSeq ){ 3507 CollSeq *pColl = 0; 3508 struct ExprList_item *pItem; 3509 int j; 3510 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 3511 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3512 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3513 } 3514 if( !pColl ){ 3515 pColl = pParse->db->pDfltColl; 3516 } 3517 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3518 } 3519 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3520 (void*)pF->pFunc, P4_FUNCDEF); 3521 sqlite3VdbeChangeP5(v, nArg); 3522 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3523 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3524 if( addrNext ){ 3525 sqlite3VdbeResolveLabel(v, addrNext); 3526 } 3527 } 3528 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3529 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3530 } 3531 pAggInfo->directMode = 0; 3532 } 3533 3534 /* 3535 ** Generate code for the given SELECT statement. 3536 ** 3537 ** The results are distributed in various ways depending on the 3538 ** contents of the SelectDest structure pointed to by argument pDest 3539 ** as follows: 3540 ** 3541 ** pDest->eDest Result 3542 ** ------------ ------------------------------------------- 3543 ** SRT_Callback Invoke the callback for each row of the result. 3544 ** 3545 ** SRT_Mem Store first result in memory cell pDest->iParm 3546 ** 3547 ** SRT_Set Store results as keys of table pDest->iParm. 3548 ** Apply the affinity pDest->affinity before storing them. 3549 ** 3550 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3551 ** 3552 ** SRT_Except Remove results from the temporary table pDest->iParm. 3553 ** 3554 ** SRT_Table Store results in temporary table pDest->iParm 3555 ** 3556 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3557 ** the result there. The cursor is left open after 3558 ** returning. 3559 ** 3560 ** SRT_Coroutine Invoke a co-routine to compute a single row of 3561 ** the result 3562 ** 3563 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3564 ** set is not empty. 3565 ** 3566 ** SRT_Discard Throw the results away. 3567 ** 3568 ** See the selectInnerLoop() function for a canonical listing of the 3569 ** allowed values of eDest and their meanings. 3570 ** 3571 ** This routine returns the number of errors. If any errors are 3572 ** encountered, then an appropriate error message is left in 3573 ** pParse->zErrMsg. 3574 ** 3575 ** This routine does NOT free the Select structure passed in. The 3576 ** calling function needs to do that. 3577 ** 3578 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 3579 ** SELECT is a subquery. This routine may try to combine this SELECT 3580 ** with its parent to form a single flat query. In so doing, it might 3581 ** change the parent query from a non-aggregate to an aggregate query. 3582 ** For that reason, the pParentAgg flag is passed as a pointer, so it 3583 ** can be changed. 3584 ** 3585 ** Example 1: The meaning of the pParent parameter. 3586 ** 3587 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 3588 ** \ \_______ subquery _______/ / 3589 ** \ / 3590 ** \____________________ outer query ___________________/ 3591 ** 3592 ** This routine is called for the outer query first. For that call, 3593 ** pParent will be NULL. During the processing of the outer query, this 3594 ** routine is called recursively to handle the subquery. For the recursive 3595 ** call, pParent will point to the outer query. Because the subquery is 3596 ** the second element in a three-way join, the parentTab parameter will 3597 ** be 1 (the 2nd value of a 0-indexed array.) 3598 */ 3599 int sqlite3Select( 3600 Parse *pParse, /* The parser context */ 3601 Select *p, /* The SELECT statement being coded. */ 3602 SelectDest *pDest, /* What to do with the query results */ 3603 Select *pParent, /* Another SELECT for which this is a sub-query */ 3604 int parentTab, /* Index in pParent->pSrc of this query */ 3605 int *pParentAgg /* True if pParent uses aggregate functions */ 3606 ){ 3607 int i, j; /* Loop counters */ 3608 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3609 Vdbe *v; /* The virtual machine under construction */ 3610 int isAgg; /* True for select lists like "count(*)" */ 3611 ExprList *pEList; /* List of columns to extract. */ 3612 SrcList *pTabList; /* List of tables to select from */ 3613 Expr *pWhere; /* The WHERE clause. May be NULL */ 3614 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3615 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3616 Expr *pHaving; /* The HAVING clause. May be NULL */ 3617 int isDistinct; /* True if the DISTINCT keyword is present */ 3618 int distinct; /* Table to use for the distinct set */ 3619 int rc = 1; /* Value to return from this function */ 3620 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3621 AggInfo sAggInfo; /* Information used by aggregate queries */ 3622 int iEnd; /* Address of the end of the query */ 3623 sqlite3 *db; /* The database connection */ 3624 3625 db = pParse->db; 3626 if( p==0 || db->mallocFailed || pParse->nErr ){ 3627 return 1; 3628 } 3629 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3630 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3631 3632 pOrderBy = p->pOrderBy; 3633 if( IgnorableOrderby(pDest) ){ 3634 p->pOrderBy = 0; 3635 3636 /* In these cases the DISTINCT operator makes no difference to the 3637 ** results, so remove it if it were specified. 3638 */ 3639 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3640 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3641 p->isDistinct = 0; 3642 } 3643 if( sqlite3SelectResolve(pParse, p, 0) ){ 3644 goto select_end; 3645 } 3646 p->pOrderBy = pOrderBy; 3647 3648 3649 /* Make local copies of the parameters for this query. 3650 */ 3651 pTabList = p->pSrc; 3652 isAgg = p->isAgg; 3653 pEList = p->pEList; 3654 if( pEList==0 ) goto select_end; 3655 3656 /* 3657 ** Do not even attempt to generate any code if we have already seen 3658 ** errors before this routine starts. 3659 */ 3660 if( pParse->nErr>0 ) goto select_end; 3661 3662 /* ORDER BY is ignored for some destinations. 3663 */ 3664 if( IgnorableOrderby(pDest) ){ 3665 pOrderBy = 0; 3666 } 3667 3668 /* Begin generating code. 3669 */ 3670 v = sqlite3GetVdbe(pParse); 3671 if( v==0 ) goto select_end; 3672 3673 /* Generate code for all sub-queries in the FROM clause 3674 */ 3675 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3676 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3677 struct SrcList_item *pItem = &pTabList->a[i]; 3678 SelectDest dest; 3679 Select *pSub = pItem->pSelect; 3680 int isAggSub; 3681 char *zName = pItem->zName; 3682 3683 if( pSub==0 || pItem->isPopulated ) continue; 3684 if( zName!=0 ){ /* An sql view */ 3685 const char *zSavedAuthContext = pParse->zAuthContext; 3686 pParse->zAuthContext = zName; 3687 rc = sqlite3SelectResolve(pParse, pSub, 0); 3688 pParse->zAuthContext = zSavedAuthContext; 3689 if( rc ){ 3690 goto select_end; 3691 } 3692 } 3693 3694 /* Increment Parse.nHeight by the height of the largest expression 3695 ** tree refered to by this, the parent select. The child select 3696 ** may contain expression trees of at most 3697 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3698 ** more conservative than necessary, but much easier than enforcing 3699 ** an exact limit. 3700 */ 3701 pParse->nHeight += sqlite3SelectExprHeight(p); 3702 3703 /* Check to see if the subquery can be absorbed into the parent. */ 3704 isAggSub = pSub->isAgg; 3705 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3706 if( isAggSub ){ 3707 p->isAgg = isAgg = 1; 3708 } 3709 i = -1; 3710 }else{ 3711 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3712 sqlite3Select(pParse, pSub, &dest, p, i, &isAgg); 3713 } 3714 if( pParse->nErr || db->mallocFailed ){ 3715 goto select_end; 3716 } 3717 pParse->nHeight -= sqlite3SelectExprHeight(p); 3718 pTabList = p->pSrc; 3719 if( !IgnorableOrderby(pDest) ){ 3720 pOrderBy = p->pOrderBy; 3721 } 3722 } 3723 pEList = p->pEList; 3724 #endif 3725 pWhere = p->pWhere; 3726 pGroupBy = p->pGroupBy; 3727 pHaving = p->pHaving; 3728 isDistinct = p->isDistinct; 3729 3730 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3731 /* If there is are a sequence of queries, do the earlier ones first. 3732 */ 3733 if( p->pPrior ){ 3734 if( p->pRightmost==0 ){ 3735 Select *pLoop, *pRight = 0; 3736 int cnt = 0; 3737 int mxSelect; 3738 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3739 pLoop->pRightmost = p; 3740 pLoop->pNext = pRight; 3741 pRight = pLoop; 3742 } 3743 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3744 if( mxSelect && cnt>mxSelect ){ 3745 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3746 return 1; 3747 } 3748 } 3749 return multiSelect(pParse, p, pDest); 3750 } 3751 #endif 3752 3753 /* If writing to memory or generating a set 3754 ** only a single column may be output. 3755 */ 3756 #ifndef SQLITE_OMIT_SUBQUERY 3757 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3758 goto select_end; 3759 } 3760 #endif 3761 3762 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3763 ** GROUP BY may use an index, DISTINCT never does. 3764 */ 3765 if( p->isDistinct && !p->isAgg && !p->pGroupBy ){ 3766 p->pGroupBy = sqlite3ExprListDup(db, p->pEList); 3767 pGroupBy = p->pGroupBy; 3768 p->isDistinct = 0; 3769 isDistinct = 0; 3770 } 3771 3772 /* If there is an ORDER BY clause, then this sorting 3773 ** index might end up being unused if the data can be 3774 ** extracted in pre-sorted order. If that is the case, then the 3775 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3776 ** we figure out that the sorting index is not needed. The addrSortIndex 3777 ** variable is used to facilitate that change. 3778 */ 3779 if( pOrderBy ){ 3780 KeyInfo *pKeyInfo; 3781 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3782 pOrderBy->iECursor = pParse->nTab++; 3783 p->addrOpenEphm[2] = addrSortIndex = 3784 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3785 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3786 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3787 }else{ 3788 addrSortIndex = -1; 3789 } 3790 3791 /* If the output is destined for a temporary table, open that table. 3792 */ 3793 if( pDest->eDest==SRT_EphemTab ){ 3794 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3795 } 3796 3797 /* Set the limiter. 3798 */ 3799 iEnd = sqlite3VdbeMakeLabel(v); 3800 computeLimitRegisters(pParse, p, iEnd); 3801 3802 /* Open a virtual index to use for the distinct set. 3803 */ 3804 if( isDistinct ){ 3805 KeyInfo *pKeyInfo; 3806 assert( isAgg || pGroupBy ); 3807 distinct = pParse->nTab++; 3808 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3809 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3810 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3811 }else{ 3812 distinct = -1; 3813 } 3814 3815 /* Aggregate and non-aggregate queries are handled differently */ 3816 if( !isAgg && pGroupBy==0 ){ 3817 /* This case is for non-aggregate queries 3818 ** Begin the database scan 3819 */ 3820 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3821 if( pWInfo==0 ) goto select_end; 3822 3823 /* If sorting index that was created by a prior OP_OpenEphemeral 3824 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3825 ** into an OP_Noop. 3826 */ 3827 if( addrSortIndex>=0 && pOrderBy==0 ){ 3828 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3829 p->addrOpenEphm[2] = -1; 3830 } 3831 3832 /* Use the standard inner loop 3833 */ 3834 assert(!isDistinct); 3835 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3836 pWInfo->iContinue, pWInfo->iBreak); 3837 3838 /* End the database scan loop. 3839 */ 3840 sqlite3WhereEnd(pWInfo); 3841 }else{ 3842 /* This is the processing for aggregate queries */ 3843 NameContext sNC; /* Name context for processing aggregate information */ 3844 int iAMem; /* First Mem address for storing current GROUP BY */ 3845 int iBMem; /* First Mem address for previous GROUP BY */ 3846 int iUseFlag; /* Mem address holding flag indicating that at least 3847 ** one row of the input to the aggregator has been 3848 ** processed */ 3849 int iAbortFlag; /* Mem address which causes query abort if positive */ 3850 int groupBySort; /* Rows come from source in GROUP BY order */ 3851 3852 3853 /* The following variables hold addresses or labels for parts of the 3854 ** virtual machine program we are putting together */ 3855 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3856 int regOutputRow; /* Return address register for output subroutine */ 3857 int addrSetAbort; /* Set the abort flag and return */ 3858 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3859 int addrTopOfLoop; /* Top of the input loop */ 3860 int addrEnd; /* End of all processing */ 3861 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3862 int addrReset; /* Subroutine for resetting the accumulator */ 3863 int regReset; /* Return address register for reset subroutine */ 3864 3865 addrEnd = sqlite3VdbeMakeLabel(v); 3866 3867 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3868 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3869 ** SELECT statement. 3870 */ 3871 memset(&sNC, 0, sizeof(sNC)); 3872 sNC.pParse = pParse; 3873 sNC.pSrcList = pTabList; 3874 sNC.pAggInfo = &sAggInfo; 3875 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3876 sAggInfo.pGroupBy = pGroupBy; 3877 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3878 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3879 if( pHaving ){ 3880 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3881 } 3882 sAggInfo.nAccumulator = sAggInfo.nColumn; 3883 for(i=0; i<sAggInfo.nFunc; i++){ 3884 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList); 3885 } 3886 if( db->mallocFailed ) goto select_end; 3887 3888 /* Processing for aggregates with GROUP BY is very different and 3889 ** much more complex than aggregates without a GROUP BY. 3890 */ 3891 if( pGroupBy ){ 3892 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3893 int j1; 3894 3895 /* Create labels that we will be needing 3896 */ 3897 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3898 3899 /* If there is a GROUP BY clause we might need a sorting index to 3900 ** implement it. Allocate that sorting index now. If it turns out 3901 ** that we do not need it after all, the OpenEphemeral instruction 3902 ** will be converted into a Noop. 3903 */ 3904 sAggInfo.sortingIdx = pParse->nTab++; 3905 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3906 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3907 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3908 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3909 3910 /* Initialize memory locations used by GROUP BY aggregate processing 3911 */ 3912 iUseFlag = ++pParse->nMem; 3913 iAbortFlag = ++pParse->nMem; 3914 iAMem = pParse->nMem + 1; 3915 pParse->nMem += pGroupBy->nExpr; 3916 iBMem = pParse->nMem + 1; 3917 pParse->nMem += pGroupBy->nExpr; 3918 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3919 VdbeComment((v, "clear abort flag")); 3920 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3921 VdbeComment((v, "indicate accumulator empty")); 3922 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop); 3923 3924 /* Generate a subroutine that outputs a single row of the result 3925 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3926 ** is less than or equal to zero, the subroutine is a no-op. If 3927 ** the processing calls for the query to abort, this subroutine 3928 ** increments the iAbortFlag memory location before returning in 3929 ** order to signal the caller to abort. 3930 */ 3931 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3932 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 3933 VdbeComment((v, "set abort flag")); 3934 regOutputRow = ++pParse->nMem; 3935 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3936 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3937 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 3938 VdbeComment((v, "Groupby result generator entry point")); 3939 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3940 finalizeAggFunctions(pParse, &sAggInfo); 3941 if( pHaving ){ 3942 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 3943 } 3944 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3945 distinct, pDest, 3946 addrOutputRow+1, addrSetAbort); 3947 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 3948 VdbeComment((v, "end groupby result generator")); 3949 3950 /* Generate a subroutine that will reset the group-by accumulator 3951 */ 3952 addrReset = sqlite3VdbeCurrentAddr(v); 3953 regReset = ++pParse->nMem; 3954 resetAccumulator(pParse, &sAggInfo); 3955 sqlite3VdbeAddOp1(v, OP_Return, regReset); 3956 3957 /* Begin a loop that will extract all source rows in GROUP BY order. 3958 ** This might involve two separate loops with an OP_Sort in between, or 3959 ** it might be a single loop that uses an index to extract information 3960 ** in the right order to begin with. 3961 */ 3962 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3963 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3964 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3965 if( pWInfo==0 ) goto select_end; 3966 if( pGroupBy==0 ){ 3967 /* The optimizer is able to deliver rows in group by order so 3968 ** we do not have to sort. The OP_OpenEphemeral table will be 3969 ** cancelled later because we still need to use the pKeyInfo 3970 */ 3971 pGroupBy = p->pGroupBy; 3972 groupBySort = 0; 3973 }else{ 3974 /* Rows are coming out in undetermined order. We have to push 3975 ** each row into a sorting index, terminate the first loop, 3976 ** then loop over the sorting index in order to get the output 3977 ** in sorted order 3978 */ 3979 int regBase; 3980 int regRecord; 3981 int nCol; 3982 int nGroupBy; 3983 3984 groupBySort = 1; 3985 nGroupBy = pGroupBy->nExpr; 3986 nCol = nGroupBy + 1; 3987 j = nGroupBy+1; 3988 for(i=0; i<sAggInfo.nColumn; i++){ 3989 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3990 nCol++; 3991 j++; 3992 } 3993 } 3994 regBase = sqlite3GetTempRange(pParse, nCol); 3995 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3996 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3997 j = nGroupBy+1; 3998 for(i=0; i<sAggInfo.nColumn; i++){ 3999 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 4000 if( pCol->iSorterColumn>=j ){ 4001 int r1 = j + regBase; 4002 int r2 = sqlite3ExprCodeGetColumn(pParse, 4003 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 4004 if( r1!=r2 ){ 4005 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 4006 } 4007 j++; 4008 } 4009 } 4010 regRecord = sqlite3GetTempReg(pParse); 4011 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 4012 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 4013 sqlite3ReleaseTempReg(pParse, regRecord); 4014 sqlite3ReleaseTempRange(pParse, regBase, nCol); 4015 sqlite3WhereEnd(pWInfo); 4016 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 4017 VdbeComment((v, "GROUP BY sort")); 4018 sAggInfo.useSortingIdx = 1; 4019 } 4020 4021 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 4022 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 4023 ** Then compare the current GROUP BY terms against the GROUP BY terms 4024 ** from the previous row currently stored in a0, a1, a2... 4025 */ 4026 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 4027 for(j=0; j<pGroupBy->nExpr; j++){ 4028 if( groupBySort ){ 4029 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 4030 }else{ 4031 sAggInfo.directMode = 1; 4032 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 4033 } 4034 } 4035 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 4036 (char*)pKeyInfo, P4_KEYINFO); 4037 j1 = sqlite3VdbeCurrentAddr(v); 4038 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 4039 4040 /* Generate code that runs whenever the GROUP BY changes. 4041 ** Changes in the GROUP BY are detected by the previous code 4042 ** block. If there were no changes, this block is skipped. 4043 ** 4044 ** This code copies current group by terms in b0,b1,b2,... 4045 ** over to a0,a1,a2. It then calls the output subroutine 4046 ** and resets the aggregate accumulator registers in preparation 4047 ** for the next GROUP BY batch. 4048 */ 4049 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 4050 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4051 VdbeComment((v, "output one row")); 4052 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 4053 VdbeComment((v, "check abort flag")); 4054 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4055 VdbeComment((v, "reset accumulator")); 4056 4057 /* Update the aggregate accumulators based on the content of 4058 ** the current row 4059 */ 4060 sqlite3VdbeJumpHere(v, j1); 4061 updateAccumulator(pParse, &sAggInfo); 4062 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4063 VdbeComment((v, "indicate data in accumulator")); 4064 4065 /* End of the loop 4066 */ 4067 if( groupBySort ){ 4068 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 4069 }else{ 4070 sqlite3WhereEnd(pWInfo); 4071 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 4072 } 4073 4074 /* Output the final row of result 4075 */ 4076 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4077 VdbeComment((v, "output final row")); 4078 4079 } /* endif pGroupBy */ 4080 else { 4081 ExprList *pMinMax = 0; 4082 ExprList *pDel = 0; 4083 u8 flag; 4084 4085 /* Check if the query is of one of the following forms: 4086 ** 4087 ** SELECT min(x) FROM ... 4088 ** SELECT max(x) FROM ... 4089 ** 4090 ** If it is, then ask the code in where.c to attempt to sort results 4091 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4092 ** If where.c is able to produce results sorted in this order, then 4093 ** add vdbe code to break out of the processing loop after the 4094 ** first iteration (since the first iteration of the loop is 4095 ** guaranteed to operate on the row with the minimum or maximum 4096 ** value of x, the only row required). 4097 ** 4098 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4099 ** modify behaviour as follows: 4100 ** 4101 ** + If the query is a "SELECT min(x)", then the loop coded by 4102 ** where.c should not iterate over any values with a NULL value 4103 ** for x. 4104 ** 4105 ** + The optimizer code in where.c (the thing that decides which 4106 ** index or indices to use) should place a different priority on 4107 ** satisfying the 'ORDER BY' clause than it does in other cases. 4108 ** Refer to code and comments in where.c for details. 4109 */ 4110 flag = minMaxQuery(pParse, p); 4111 if( flag ){ 4112 pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList); 4113 if( pMinMax && !db->mallocFailed ){ 4114 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN; 4115 pMinMax->a[0].pExpr->op = TK_COLUMN; 4116 } 4117 } 4118 4119 /* This case runs if the aggregate has no GROUP BY clause. The 4120 ** processing is much simpler since there is only a single row 4121 ** of output. 4122 */ 4123 resetAccumulator(pParse, &sAggInfo); 4124 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4125 if( pWInfo==0 ){ 4126 sqlite3ExprListDelete(db, pDel); 4127 goto select_end; 4128 } 4129 updateAccumulator(pParse, &sAggInfo); 4130 if( !pMinMax && flag ){ 4131 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4132 VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max"))); 4133 } 4134 sqlite3WhereEnd(pWInfo); 4135 finalizeAggFunctions(pParse, &sAggInfo); 4136 pOrderBy = 0; 4137 if( pHaving ){ 4138 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4139 } 4140 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4141 pDest, addrEnd, addrEnd); 4142 4143 sqlite3ExprListDelete(db, pDel); 4144 } 4145 sqlite3VdbeResolveLabel(v, addrEnd); 4146 4147 } /* endif aggregate query */ 4148 4149 /* If there is an ORDER BY clause, then we need to sort the results 4150 ** and send them to the callback one by one. 4151 */ 4152 if( pOrderBy ){ 4153 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4154 } 4155 4156 #ifndef SQLITE_OMIT_SUBQUERY 4157 /* If this was a subquery, we have now converted the subquery into a 4158 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 4159 ** this subquery from being evaluated again and to force the use of 4160 ** the temporary table. 4161 */ 4162 if( pParent ){ 4163 assert( pParent->pSrc->nSrc>parentTab ); 4164 assert( pParent->pSrc->a[parentTab].pSelect==p ); 4165 pParent->pSrc->a[parentTab].isPopulated = 1; 4166 } 4167 #endif 4168 4169 /* Jump here to skip this query 4170 */ 4171 sqlite3VdbeResolveLabel(v, iEnd); 4172 4173 /* The SELECT was successfully coded. Set the return code to 0 4174 ** to indicate no errors. 4175 */ 4176 rc = 0; 4177 4178 /* Control jumps to here if an error is encountered above, or upon 4179 ** successful coding of the SELECT. 4180 */ 4181 select_end: 4182 4183 /* Identify column names if we will be using them in a callback. This 4184 ** step is skipped if the output is going to some other destination. 4185 */ 4186 if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){ 4187 generateColumnNames(pParse, pTabList, pEList); 4188 } 4189 4190 sqlite3DbFree(db, sAggInfo.aCol); 4191 sqlite3DbFree(db, sAggInfo.aFunc); 4192 return rc; 4193 } 4194 4195 #if defined(SQLITE_DEBUG) 4196 /* 4197 ******************************************************************************* 4198 ** The following code is used for testing and debugging only. The code 4199 ** that follows does not appear in normal builds. 4200 ** 4201 ** These routines are used to print out the content of all or part of a 4202 ** parse structures such as Select or Expr. Such printouts are useful 4203 ** for helping to understand what is happening inside the code generator 4204 ** during the execution of complex SELECT statements. 4205 ** 4206 ** These routine are not called anywhere from within the normal 4207 ** code base. Then are intended to be called from within the debugger 4208 ** or from temporary "printf" statements inserted for debugging. 4209 */ 4210 void sqlite3PrintExpr(Expr *p){ 4211 if( p->token.z && p->token.n>0 ){ 4212 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 4213 }else{ 4214 sqlite3DebugPrintf("(%d", p->op); 4215 } 4216 if( p->pLeft ){ 4217 sqlite3DebugPrintf(" "); 4218 sqlite3PrintExpr(p->pLeft); 4219 } 4220 if( p->pRight ){ 4221 sqlite3DebugPrintf(" "); 4222 sqlite3PrintExpr(p->pRight); 4223 } 4224 sqlite3DebugPrintf(")"); 4225 } 4226 void sqlite3PrintExprList(ExprList *pList){ 4227 int i; 4228 for(i=0; i<pList->nExpr; i++){ 4229 sqlite3PrintExpr(pList->a[i].pExpr); 4230 if( i<pList->nExpr-1 ){ 4231 sqlite3DebugPrintf(", "); 4232 } 4233 } 4234 } 4235 void sqlite3PrintSelect(Select *p, int indent){ 4236 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4237 sqlite3PrintExprList(p->pEList); 4238 sqlite3DebugPrintf("\n"); 4239 if( p->pSrc ){ 4240 char *zPrefix; 4241 int i; 4242 zPrefix = "FROM"; 4243 for(i=0; i<p->pSrc->nSrc; i++){ 4244 struct SrcList_item *pItem = &p->pSrc->a[i]; 4245 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4246 zPrefix = ""; 4247 if( pItem->pSelect ){ 4248 sqlite3DebugPrintf("(\n"); 4249 sqlite3PrintSelect(pItem->pSelect, indent+10); 4250 sqlite3DebugPrintf("%*s)", indent+8, ""); 4251 }else if( pItem->zName ){ 4252 sqlite3DebugPrintf("%s", pItem->zName); 4253 } 4254 if( pItem->pTab ){ 4255 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4256 } 4257 if( pItem->zAlias ){ 4258 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4259 } 4260 if( i<p->pSrc->nSrc-1 ){ 4261 sqlite3DebugPrintf(","); 4262 } 4263 sqlite3DebugPrintf("\n"); 4264 } 4265 } 4266 if( p->pWhere ){ 4267 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4268 sqlite3PrintExpr(p->pWhere); 4269 sqlite3DebugPrintf("\n"); 4270 } 4271 if( p->pGroupBy ){ 4272 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4273 sqlite3PrintExprList(p->pGroupBy); 4274 sqlite3DebugPrintf("\n"); 4275 } 4276 if( p->pHaving ){ 4277 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4278 sqlite3PrintExpr(p->pHaving); 4279 sqlite3DebugPrintf("\n"); 4280 } 4281 if( p->pOrderBy ){ 4282 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4283 sqlite3PrintExprList(p->pOrderBy); 4284 sqlite3DebugPrintf("\n"); 4285 } 4286 } 4287 /* End of the structure debug printing code 4288 *****************************************************************************/ 4289 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4290