xref: /sqlite-3.40.0/src/select.c (revision 7fdb522c)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.460 2008/07/28 19:34:53 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(sqlite3 *db, Select *p){
25   sqlite3ExprListDelete(db, p->pEList);
26   sqlite3SrcListDelete(db, p->pSrc);
27   sqlite3ExprDelete(db, p->pWhere);
28   sqlite3ExprListDelete(db, p->pGroupBy);
29   sqlite3ExprDelete(db, p->pHaving);
30   sqlite3ExprListDelete(db, p->pOrderBy);
31   sqlite3SelectDelete(db, p->pPrior);
32   sqlite3ExprDelete(db, p->pLimit);
33   sqlite3ExprDelete(db, p->pOffset);
34 }
35 
36 /*
37 ** Initialize a SelectDest structure.
38 */
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
40   pDest->eDest = eDest;
41   pDest->iParm = iParm;
42   pDest->affinity = 0;
43   pDest->iMem = 0;
44   pDest->nMem = 0;
45 }
46 
47 
48 /*
49 ** Allocate a new Select structure and return a pointer to that
50 ** structure.
51 */
52 Select *sqlite3SelectNew(
53   Parse *pParse,        /* Parsing context */
54   ExprList *pEList,     /* which columns to include in the result */
55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
56   Expr *pWhere,         /* the WHERE clause */
57   ExprList *pGroupBy,   /* the GROUP BY clause */
58   Expr *pHaving,        /* the HAVING clause */
59   ExprList *pOrderBy,   /* the ORDER BY clause */
60   int isDistinct,       /* true if the DISTINCT keyword is present */
61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
63 ){
64   Select *pNew;
65   Select standin;
66   sqlite3 *db = pParse->db;
67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
68   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
69   if( pNew==0 ){
70     pNew = &standin;
71     memset(pNew, 0, sizeof(*pNew));
72   }
73   if( pEList==0 ){
74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
75   }
76   pNew->pEList = pEList;
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->isDistinct = isDistinct;
83   pNew->op = TK_SELECT;
84   assert( pOffset==0 || pLimit!=0 );
85   pNew->pLimit = pLimit;
86   pNew->pOffset = pOffset;
87   pNew->addrOpenEphm[0] = -1;
88   pNew->addrOpenEphm[1] = -1;
89   pNew->addrOpenEphm[2] = -1;
90   if( pNew==&standin) {
91     clearSelect(db, pNew);
92     pNew = 0;
93   }
94   return pNew;
95 }
96 
97 /*
98 ** Delete the given Select structure and all of its substructures.
99 */
100 void sqlite3SelectDelete(sqlite3 *db, Select *p){
101   if( p ){
102     clearSelect(db, p);
103     sqlite3DbFree(db, p);
104   }
105 }
106 
107 /*
108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
109 ** type of join.  Return an integer constant that expresses that type
110 ** in terms of the following bit values:
111 **
112 **     JT_INNER
113 **     JT_CROSS
114 **     JT_OUTER
115 **     JT_NATURAL
116 **     JT_LEFT
117 **     JT_RIGHT
118 **
119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
120 **
121 ** If an illegal or unsupported join type is seen, then still return
122 ** a join type, but put an error in the pParse structure.
123 */
124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
125   int jointype = 0;
126   Token *apAll[3];
127   Token *p;
128   static const struct {
129     const char zKeyword[8];
130     u8 nChar;
131     u8 code;
132   } keywords[] = {
133     { "natural", 7, JT_NATURAL },
134     { "left",    4, JT_LEFT|JT_OUTER },
135     { "right",   5, JT_RIGHT|JT_OUTER },
136     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
137     { "outer",   5, JT_OUTER },
138     { "inner",   5, JT_INNER },
139     { "cross",   5, JT_INNER|JT_CROSS },
140   };
141   int i, j;
142   apAll[0] = pA;
143   apAll[1] = pB;
144   apAll[2] = pC;
145   for(i=0; i<3 && apAll[i]; i++){
146     p = apAll[i];
147     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
148       if( p->n==keywords[j].nChar
149           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
150         jointype |= keywords[j].code;
151         break;
152       }
153     }
154     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
155       jointype |= JT_ERROR;
156       break;
157     }
158   }
159   if(
160      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
161      (jointype & JT_ERROR)!=0
162   ){
163     const char *zSp = " ";
164     assert( pB!=0 );
165     if( pC==0 ){ zSp++; }
166     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
167        "%T %T%s%T", pA, pB, zSp, pC);
168     jointype = JT_INNER;
169   }else if( jointype & JT_RIGHT ){
170     sqlite3ErrorMsg(pParse,
171       "RIGHT and FULL OUTER JOINs are not currently supported");
172     jointype = JT_INNER;
173   }
174   return jointype;
175 }
176 
177 /*
178 ** Return the index of a column in a table.  Return -1 if the column
179 ** is not contained in the table.
180 */
181 static int columnIndex(Table *pTab, const char *zCol){
182   int i;
183   for(i=0; i<pTab->nCol; i++){
184     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
185   }
186   return -1;
187 }
188 
189 /*
190 ** Set the value of a token to a '\000'-terminated string.
191 */
192 static void setToken(Token *p, const char *z){
193   p->z = (u8*)z;
194   p->n = z ? strlen(z) : 0;
195   p->dyn = 0;
196 }
197 
198 /*
199 ** Set the token to the double-quoted and escaped version of the string pointed
200 ** to by z. For example;
201 **
202 **    {a"bc}  ->  {"a""bc"}
203 */
204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
205 
206   /* Check if the string contains any " characters. If it does, then
207   ** this function will malloc space to create a quoted version of
208   ** the string in. Otherwise, save a call to sqlite3MPrintf() by
209   ** just copying the pointer to the string.
210   */
211   const char *z2 = z;
212   while( *z2 ){
213     if( *z2=='"' ) break;
214     z2++;
215   }
216 
217   if( *z2 ){
218     /* String contains " characters - copy and quote the string. */
219     p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
220     if( p->z ){
221       p->n = strlen((char *)p->z);
222       p->dyn = 1;
223     }
224   }else{
225     /* String contains no " characters - copy the pointer. */
226     p->z = (u8*)z;
227     p->n = (z2 - z);
228     p->dyn = 0;
229   }
230 }
231 
232 /*
233 ** Create an expression node for an identifier with the name of zName
234 */
235 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
236   Token dummy;
237   setToken(&dummy, zName);
238   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
239 }
240 
241 /*
242 ** Add a term to the WHERE expression in *ppExpr that requires the
243 ** zCol column to be equal in the two tables pTab1 and pTab2.
244 */
245 static void addWhereTerm(
246   Parse *pParse,           /* Parsing context */
247   const char *zCol,        /* Name of the column */
248   const Table *pTab1,      /* First table */
249   const char *zAlias1,     /* Alias for first table.  May be NULL */
250   const Table *pTab2,      /* Second table */
251   const char *zAlias2,     /* Alias for second table.  May be NULL */
252   int iRightJoinTable,     /* VDBE cursor for the right table */
253   Expr **ppExpr,           /* Add the equality term to this expression */
254   int isOuterJoin          /* True if dealing with an OUTER join */
255 ){
256   Expr *pE1a, *pE1b, *pE1c;
257   Expr *pE2a, *pE2b, *pE2c;
258   Expr *pE;
259 
260   pE1a = sqlite3CreateIdExpr(pParse, zCol);
261   pE2a = sqlite3CreateIdExpr(pParse, zCol);
262   if( zAlias1==0 ){
263     zAlias1 = pTab1->zName;
264   }
265   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
266   if( zAlias2==0 ){
267     zAlias2 = pTab2->zName;
268   }
269   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
270   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
271   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
272   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
273   if( pE && isOuterJoin ){
274     ExprSetProperty(pE, EP_FromJoin);
275     pE->iRightJoinTable = iRightJoinTable;
276   }
277   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
278 }
279 
280 /*
281 ** Set the EP_FromJoin property on all terms of the given expression.
282 ** And set the Expr.iRightJoinTable to iTable for every term in the
283 ** expression.
284 **
285 ** The EP_FromJoin property is used on terms of an expression to tell
286 ** the LEFT OUTER JOIN processing logic that this term is part of the
287 ** join restriction specified in the ON or USING clause and not a part
288 ** of the more general WHERE clause.  These terms are moved over to the
289 ** WHERE clause during join processing but we need to remember that they
290 ** originated in the ON or USING clause.
291 **
292 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
293 ** expression depends on table iRightJoinTable even if that table is not
294 ** explicitly mentioned in the expression.  That information is needed
295 ** for cases like this:
296 **
297 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
298 **
299 ** The where clause needs to defer the handling of the t1.x=5
300 ** term until after the t2 loop of the join.  In that way, a
301 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
302 ** defer the handling of t1.x=5, it will be processed immediately
303 ** after the t1 loop and rows with t1.x!=5 will never appear in
304 ** the output, which is incorrect.
305 */
306 static void setJoinExpr(Expr *p, int iTable){
307   while( p ){
308     ExprSetProperty(p, EP_FromJoin);
309     p->iRightJoinTable = iTable;
310     setJoinExpr(p->pLeft, iTable);
311     p = p->pRight;
312   }
313 }
314 
315 /*
316 ** This routine processes the join information for a SELECT statement.
317 ** ON and USING clauses are converted into extra terms of the WHERE clause.
318 ** NATURAL joins also create extra WHERE clause terms.
319 **
320 ** The terms of a FROM clause are contained in the Select.pSrc structure.
321 ** The left most table is the first entry in Select.pSrc.  The right-most
322 ** table is the last entry.  The join operator is held in the entry to
323 ** the left.  Thus entry 0 contains the join operator for the join between
324 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
325 ** also attached to the left entry.
326 **
327 ** This routine returns the number of errors encountered.
328 */
329 static int sqliteProcessJoin(Parse *pParse, Select *p){
330   SrcList *pSrc;                  /* All tables in the FROM clause */
331   int i, j;                       /* Loop counters */
332   struct SrcList_item *pLeft;     /* Left table being joined */
333   struct SrcList_item *pRight;    /* Right table being joined */
334 
335   pSrc = p->pSrc;
336   pLeft = &pSrc->a[0];
337   pRight = &pLeft[1];
338   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
339     Table *pLeftTab = pLeft->pTab;
340     Table *pRightTab = pRight->pTab;
341     int isOuter;
342 
343     if( pLeftTab==0 || pRightTab==0 ) continue;
344     isOuter = (pRight->jointype & JT_OUTER)!=0;
345 
346     /* When the NATURAL keyword is present, add WHERE clause terms for
347     ** every column that the two tables have in common.
348     */
349     if( pRight->jointype & JT_NATURAL ){
350       if( pRight->pOn || pRight->pUsing ){
351         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
352            "an ON or USING clause", 0);
353         return 1;
354       }
355       for(j=0; j<pLeftTab->nCol; j++){
356         char *zName = pLeftTab->aCol[j].zName;
357         if( columnIndex(pRightTab, zName)>=0 ){
358           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
359                               pRightTab, pRight->zAlias,
360                               pRight->iCursor, &p->pWhere, isOuter);
361 
362         }
363       }
364     }
365 
366     /* Disallow both ON and USING clauses in the same join
367     */
368     if( pRight->pOn && pRight->pUsing ){
369       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
370         "clauses in the same join");
371       return 1;
372     }
373 
374     /* Add the ON clause to the end of the WHERE clause, connected by
375     ** an AND operator.
376     */
377     if( pRight->pOn ){
378       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
379       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
380       pRight->pOn = 0;
381     }
382 
383     /* Create extra terms on the WHERE clause for each column named
384     ** in the USING clause.  Example: If the two tables to be joined are
385     ** A and B and the USING clause names X, Y, and Z, then add this
386     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
387     ** Report an error if any column mentioned in the USING clause is
388     ** not contained in both tables to be joined.
389     */
390     if( pRight->pUsing ){
391       IdList *pList = pRight->pUsing;
392       for(j=0; j<pList->nId; j++){
393         char *zName = pList->a[j].zName;
394         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
395           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
396             "not present in both tables", zName);
397           return 1;
398         }
399         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
400                             pRightTab, pRight->zAlias,
401                             pRight->iCursor, &p->pWhere, isOuter);
402       }
403     }
404   }
405   return 0;
406 }
407 
408 /*
409 ** Insert code into "v" that will push the record on the top of the
410 ** stack into the sorter.
411 */
412 static void pushOntoSorter(
413   Parse *pParse,         /* Parser context */
414   ExprList *pOrderBy,    /* The ORDER BY clause */
415   Select *pSelect,       /* The whole SELECT statement */
416   int regData            /* Register holding data to be sorted */
417 ){
418   Vdbe *v = pParse->pVdbe;
419   int nExpr = pOrderBy->nExpr;
420   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
421   int regRecord = sqlite3GetTempReg(pParse);
422   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
423   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
424   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
425   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
426   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
427   sqlite3ReleaseTempReg(pParse, regRecord);
428   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
429   if( pSelect->iLimit ){
430     int addr1, addr2;
431     int iLimit;
432     if( pSelect->iOffset ){
433       iLimit = pSelect->iOffset+1;
434     }else{
435       iLimit = pSelect->iLimit;
436     }
437     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
438     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
439     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
440     sqlite3VdbeJumpHere(v, addr1);
441     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
442     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
443     sqlite3VdbeJumpHere(v, addr2);
444     pSelect->iLimit = 0;
445   }
446 }
447 
448 /*
449 ** Add code to implement the OFFSET
450 */
451 static void codeOffset(
452   Vdbe *v,          /* Generate code into this VM */
453   Select *p,        /* The SELECT statement being coded */
454   int iContinue     /* Jump here to skip the current record */
455 ){
456   if( p->iOffset && iContinue!=0 ){
457     int addr;
458     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
459     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
460     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
461     VdbeComment((v, "skip OFFSET records"));
462     sqlite3VdbeJumpHere(v, addr);
463   }
464 }
465 
466 /*
467 ** Add code that will check to make sure the N registers starting at iMem
468 ** form a distinct entry.  iTab is a sorting index that holds previously
469 ** seen combinations of the N values.  A new entry is made in iTab
470 ** if the current N values are new.
471 **
472 ** A jump to addrRepeat is made and the N+1 values are popped from the
473 ** stack if the top N elements are not distinct.
474 */
475 static void codeDistinct(
476   Parse *pParse,     /* Parsing and code generating context */
477   int iTab,          /* A sorting index used to test for distinctness */
478   int addrRepeat,    /* Jump to here if not distinct */
479   int N,             /* Number of elements */
480   int iMem           /* First element */
481 ){
482   Vdbe *v;
483   int r1;
484 
485   v = pParse->pVdbe;
486   r1 = sqlite3GetTempReg(pParse);
487   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
488   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
489   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
490   sqlite3ReleaseTempReg(pParse, r1);
491 }
492 
493 /*
494 ** Generate an error message when a SELECT is used within a subexpression
495 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
496 ** column.  We do this in a subroutine because the error occurs in multiple
497 ** places.
498 */
499 static int checkForMultiColumnSelectError(
500   Parse *pParse,       /* Parse context. */
501   SelectDest *pDest,   /* Destination of SELECT results */
502   int nExpr            /* Number of result columns returned by SELECT */
503 ){
504   int eDest = pDest->eDest;
505   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
506     sqlite3ErrorMsg(pParse, "only a single result allowed for "
507        "a SELECT that is part of an expression");
508     return 1;
509   }else{
510     return 0;
511   }
512 }
513 
514 /*
515 ** This routine generates the code for the inside of the inner loop
516 ** of a SELECT.
517 **
518 ** If srcTab and nColumn are both zero, then the pEList expressions
519 ** are evaluated in order to get the data for this row.  If nColumn>0
520 ** then data is pulled from srcTab and pEList is used only to get the
521 ** datatypes for each column.
522 */
523 static void selectInnerLoop(
524   Parse *pParse,          /* The parser context */
525   Select *p,              /* The complete select statement being coded */
526   ExprList *pEList,       /* List of values being extracted */
527   int srcTab,             /* Pull data from this table */
528   int nColumn,            /* Number of columns in the source table */
529   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
530   int distinct,           /* If >=0, make sure results are distinct */
531   SelectDest *pDest,      /* How to dispose of the results */
532   int iContinue,          /* Jump here to continue with next row */
533   int iBreak              /* Jump here to break out of the inner loop */
534 ){
535   Vdbe *v = pParse->pVdbe;
536   int i;
537   int hasDistinct;        /* True if the DISTINCT keyword is present */
538   int regResult;              /* Start of memory holding result set */
539   int eDest = pDest->eDest;   /* How to dispose of results */
540   int iParm = pDest->iParm;   /* First argument to disposal method */
541   int nResultCol;             /* Number of result columns */
542 
543   if( v==0 ) return;
544   assert( pEList!=0 );
545   hasDistinct = distinct>=0;
546   if( pOrderBy==0 && !hasDistinct ){
547     codeOffset(v, p, iContinue);
548   }
549 
550   /* Pull the requested columns.
551   */
552   if( nColumn>0 ){
553     nResultCol = nColumn;
554   }else{
555     nResultCol = pEList->nExpr;
556   }
557   if( pDest->iMem==0 ){
558     pDest->iMem = pParse->nMem+1;
559     pDest->nMem = nResultCol;
560     pParse->nMem += nResultCol;
561   }else if( pDest->nMem!=nResultCol ){
562     /* This happens when two SELECTs of a compound SELECT have differing
563     ** numbers of result columns.  The error message will be generated by
564     ** a higher-level routine. */
565     return;
566   }
567   regResult = pDest->iMem;
568   if( nColumn>0 ){
569     for(i=0; i<nColumn; i++){
570       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
571     }
572   }else if( eDest!=SRT_Exists ){
573     /* If the destination is an EXISTS(...) expression, the actual
574     ** values returned by the SELECT are not required.
575     */
576     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback);
577   }
578   nColumn = nResultCol;
579 
580   /* If the DISTINCT keyword was present on the SELECT statement
581   ** and this row has been seen before, then do not make this row
582   ** part of the result.
583   */
584   if( hasDistinct ){
585     assert( pEList!=0 );
586     assert( pEList->nExpr==nColumn );
587     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
588     if( pOrderBy==0 ){
589       codeOffset(v, p, iContinue);
590     }
591   }
592 
593   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
594     return;
595   }
596 
597   switch( eDest ){
598     /* In this mode, write each query result to the key of the temporary
599     ** table iParm.
600     */
601 #ifndef SQLITE_OMIT_COMPOUND_SELECT
602     case SRT_Union: {
603       int r1;
604       r1 = sqlite3GetTempReg(pParse);
605       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
606       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
607       sqlite3ReleaseTempReg(pParse, r1);
608       break;
609     }
610 
611     /* Construct a record from the query result, but instead of
612     ** saving that record, use it as a key to delete elements from
613     ** the temporary table iParm.
614     */
615     case SRT_Except: {
616       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
617       break;
618     }
619 #endif
620 
621     /* Store the result as data using a unique key.
622     */
623     case SRT_Table:
624     case SRT_EphemTab: {
625       int r1 = sqlite3GetTempReg(pParse);
626       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
627       if( pOrderBy ){
628         pushOntoSorter(pParse, pOrderBy, p, r1);
629       }else{
630         int r2 = sqlite3GetTempReg(pParse);
631         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
632         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
633         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
634         sqlite3ReleaseTempReg(pParse, r2);
635       }
636       sqlite3ReleaseTempReg(pParse, r1);
637       break;
638     }
639 
640 #ifndef SQLITE_OMIT_SUBQUERY
641     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
642     ** then there should be a single item on the stack.  Write this
643     ** item into the set table with bogus data.
644     */
645     case SRT_Set: {
646       assert( nColumn==1 );
647       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
648       if( pOrderBy ){
649         /* At first glance you would think we could optimize out the
650         ** ORDER BY in this case since the order of entries in the set
651         ** does not matter.  But there might be a LIMIT clause, in which
652         ** case the order does matter */
653         pushOntoSorter(pParse, pOrderBy, p, regResult);
654       }else{
655         int r1 = sqlite3GetTempReg(pParse);
656         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
657         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
658         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
659         sqlite3ReleaseTempReg(pParse, r1);
660       }
661       break;
662     }
663 
664     /* If any row exist in the result set, record that fact and abort.
665     */
666     case SRT_Exists: {
667       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
668       /* The LIMIT clause will terminate the loop for us */
669       break;
670     }
671 
672     /* If this is a scalar select that is part of an expression, then
673     ** store the results in the appropriate memory cell and break out
674     ** of the scan loop.
675     */
676     case SRT_Mem: {
677       assert( nColumn==1 );
678       if( pOrderBy ){
679         pushOntoSorter(pParse, pOrderBy, p, regResult);
680       }else{
681         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
682         /* The LIMIT clause will jump out of the loop for us */
683       }
684       break;
685     }
686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
687 
688     /* Send the data to the callback function or to a subroutine.  In the
689     ** case of a subroutine, the subroutine itself is responsible for
690     ** popping the data from the stack.
691     */
692     case SRT_Coroutine:
693     case SRT_Callback: {
694       if( pOrderBy ){
695         int r1 = sqlite3GetTempReg(pParse);
696         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
697         pushOntoSorter(pParse, pOrderBy, p, r1);
698         sqlite3ReleaseTempReg(pParse, r1);
699       }else if( eDest==SRT_Coroutine ){
700         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
701       }else{
702         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
703         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
704       }
705       break;
706     }
707 
708 #if !defined(SQLITE_OMIT_TRIGGER)
709     /* Discard the results.  This is used for SELECT statements inside
710     ** the body of a TRIGGER.  The purpose of such selects is to call
711     ** user-defined functions that have side effects.  We do not care
712     ** about the actual results of the select.
713     */
714     default: {
715       assert( eDest==SRT_Discard );
716       break;
717     }
718 #endif
719   }
720 
721   /* Jump to the end of the loop if the LIMIT is reached.
722   */
723   if( p->iLimit ){
724     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
725                             ** pushOntoSorter() would have cleared p->iLimit */
726     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
727     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
728   }
729 }
730 
731 /*
732 ** Given an expression list, generate a KeyInfo structure that records
733 ** the collating sequence for each expression in that expression list.
734 **
735 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
736 ** KeyInfo structure is appropriate for initializing a virtual index to
737 ** implement that clause.  If the ExprList is the result set of a SELECT
738 ** then the KeyInfo structure is appropriate for initializing a virtual
739 ** index to implement a DISTINCT test.
740 **
741 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
742 ** function is responsible for seeing that this structure is eventually
743 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
744 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
745 */
746 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
747   sqlite3 *db = pParse->db;
748   int nExpr;
749   KeyInfo *pInfo;
750   struct ExprList_item *pItem;
751   int i;
752 
753   nExpr = pList->nExpr;
754   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
755   if( pInfo ){
756     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
757     pInfo->nField = nExpr;
758     pInfo->enc = ENC(db);
759     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
760       CollSeq *pColl;
761       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
762       if( !pColl ){
763         pColl = db->pDfltColl;
764       }
765       pInfo->aColl[i] = pColl;
766       pInfo->aSortOrder[i] = pItem->sortOrder;
767     }
768   }
769   return pInfo;
770 }
771 
772 
773 /*
774 ** If the inner loop was generated using a non-null pOrderBy argument,
775 ** then the results were placed in a sorter.  After the loop is terminated
776 ** we need to run the sorter and output the results.  The following
777 ** routine generates the code needed to do that.
778 */
779 static void generateSortTail(
780   Parse *pParse,    /* Parsing context */
781   Select *p,        /* The SELECT statement */
782   Vdbe *v,          /* Generate code into this VDBE */
783   int nColumn,      /* Number of columns of data */
784   SelectDest *pDest /* Write the sorted results here */
785 ){
786   int brk = sqlite3VdbeMakeLabel(v);
787   int cont = sqlite3VdbeMakeLabel(v);
788   int addr;
789   int iTab;
790   int pseudoTab = 0;
791   ExprList *pOrderBy = p->pOrderBy;
792 
793   int eDest = pDest->eDest;
794   int iParm = pDest->iParm;
795 
796   int regRow;
797   int regRowid;
798 
799   iTab = pOrderBy->iECursor;
800   if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
801     pseudoTab = pParse->nTab++;
802     sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
803     sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback);
804   }
805   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
806   codeOffset(v, p, cont);
807   regRow = sqlite3GetTempReg(pParse);
808   regRowid = sqlite3GetTempReg(pParse);
809   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
810   switch( eDest ){
811     case SRT_Table:
812     case SRT_EphemTab: {
813       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
814       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
815       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
816       break;
817     }
818 #ifndef SQLITE_OMIT_SUBQUERY
819     case SRT_Set: {
820       assert( nColumn==1 );
821       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
822       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
823       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
824       break;
825     }
826     case SRT_Mem: {
827       assert( nColumn==1 );
828       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
829       /* The LIMIT clause will terminate the loop for us */
830       break;
831     }
832 #endif
833     case SRT_Callback:
834     case SRT_Coroutine: {
835       int i;
836       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
837       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
838       for(i=0; i<nColumn; i++){
839         assert( regRow!=pDest->iMem+i );
840         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
841       }
842       if( eDest==SRT_Callback ){
843         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
844         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
845       }else{
846         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
847       }
848       break;
849     }
850     default: {
851       /* Do nothing */
852       break;
853     }
854   }
855   sqlite3ReleaseTempReg(pParse, regRow);
856   sqlite3ReleaseTempReg(pParse, regRowid);
857 
858   /* LIMIT has been implemented by the pushOntoSorter() routine.
859   */
860   assert( p->iLimit==0 );
861 
862   /* The bottom of the loop
863   */
864   sqlite3VdbeResolveLabel(v, cont);
865   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
866   sqlite3VdbeResolveLabel(v, brk);
867   if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
868     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
869   }
870 
871 }
872 
873 /*
874 ** Return a pointer to a string containing the 'declaration type' of the
875 ** expression pExpr. The string may be treated as static by the caller.
876 **
877 ** The declaration type is the exact datatype definition extracted from the
878 ** original CREATE TABLE statement if the expression is a column. The
879 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
880 ** is considered a column can be complex in the presence of subqueries. The
881 ** result-set expression in all of the following SELECT statements is
882 ** considered a column by this function.
883 **
884 **   SELECT col FROM tbl;
885 **   SELECT (SELECT col FROM tbl;
886 **   SELECT (SELECT col FROM tbl);
887 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
888 **
889 ** The declaration type for any expression other than a column is NULL.
890 */
891 static const char *columnType(
892   NameContext *pNC,
893   Expr *pExpr,
894   const char **pzOriginDb,
895   const char **pzOriginTab,
896   const char **pzOriginCol
897 ){
898   char const *zType = 0;
899   char const *zOriginDb = 0;
900   char const *zOriginTab = 0;
901   char const *zOriginCol = 0;
902   int j;
903   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
904 
905   switch( pExpr->op ){
906     case TK_AGG_COLUMN:
907     case TK_COLUMN: {
908       /* The expression is a column. Locate the table the column is being
909       ** extracted from in NameContext.pSrcList. This table may be real
910       ** database table or a subquery.
911       */
912       Table *pTab = 0;            /* Table structure column is extracted from */
913       Select *pS = 0;             /* Select the column is extracted from */
914       int iCol = pExpr->iColumn;  /* Index of column in pTab */
915       while( pNC && !pTab ){
916         SrcList *pTabList = pNC->pSrcList;
917         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
918         if( j<pTabList->nSrc ){
919           pTab = pTabList->a[j].pTab;
920           pS = pTabList->a[j].pSelect;
921         }else{
922           pNC = pNC->pNext;
923         }
924       }
925 
926       if( pTab==0 ){
927         /* FIX ME:
928         ** This can occurs if you have something like "SELECT new.x;" inside
929         ** a trigger.  In other words, if you reference the special "new"
930         ** table in the result set of a select.  We do not have a good way
931         ** to find the actual table type, so call it "TEXT".  This is really
932         ** something of a bug, but I do not know how to fix it.
933         **
934         ** This code does not produce the correct answer - it just prevents
935         ** a segfault.  See ticket #1229.
936         */
937         zType = "TEXT";
938         break;
939       }
940 
941       assert( pTab );
942       if( pS ){
943         /* The "table" is actually a sub-select or a view in the FROM clause
944         ** of the SELECT statement. Return the declaration type and origin
945         ** data for the result-set column of the sub-select.
946         */
947         if( iCol>=0 && iCol<pS->pEList->nExpr ){
948           /* If iCol is less than zero, then the expression requests the
949           ** rowid of the sub-select or view. This expression is legal (see
950           ** test case misc2.2.2) - it always evaluates to NULL.
951           */
952           NameContext sNC;
953           Expr *p = pS->pEList->a[iCol].pExpr;
954           sNC.pSrcList = pS->pSrc;
955           sNC.pNext = 0;
956           sNC.pParse = pNC->pParse;
957           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
958         }
959       }else if( pTab->pSchema ){
960         /* A real table */
961         assert( !pS );
962         if( iCol<0 ) iCol = pTab->iPKey;
963         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
964         if( iCol<0 ){
965           zType = "INTEGER";
966           zOriginCol = "rowid";
967         }else{
968           zType = pTab->aCol[iCol].zType;
969           zOriginCol = pTab->aCol[iCol].zName;
970         }
971         zOriginTab = pTab->zName;
972         if( pNC->pParse ){
973           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
974           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
975         }
976       }
977       break;
978     }
979 #ifndef SQLITE_OMIT_SUBQUERY
980     case TK_SELECT: {
981       /* The expression is a sub-select. Return the declaration type and
982       ** origin info for the single column in the result set of the SELECT
983       ** statement.
984       */
985       NameContext sNC;
986       Select *pS = pExpr->pSelect;
987       Expr *p = pS->pEList->a[0].pExpr;
988       sNC.pSrcList = pS->pSrc;
989       sNC.pNext = pNC;
990       sNC.pParse = pNC->pParse;
991       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
992       break;
993     }
994 #endif
995   }
996 
997   if( pzOriginDb ){
998     assert( pzOriginTab && pzOriginCol );
999     *pzOriginDb = zOriginDb;
1000     *pzOriginTab = zOriginTab;
1001     *pzOriginCol = zOriginCol;
1002   }
1003   return zType;
1004 }
1005 
1006 /*
1007 ** Generate code that will tell the VDBE the declaration types of columns
1008 ** in the result set.
1009 */
1010 static void generateColumnTypes(
1011   Parse *pParse,      /* Parser context */
1012   SrcList *pTabList,  /* List of tables */
1013   ExprList *pEList    /* Expressions defining the result set */
1014 ){
1015 #ifndef SQLITE_OMIT_DECLTYPE
1016   Vdbe *v = pParse->pVdbe;
1017   int i;
1018   NameContext sNC;
1019   sNC.pSrcList = pTabList;
1020   sNC.pParse = pParse;
1021   for(i=0; i<pEList->nExpr; i++){
1022     Expr *p = pEList->a[i].pExpr;
1023     const char *zType;
1024 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1025     const char *zOrigDb = 0;
1026     const char *zOrigTab = 0;
1027     const char *zOrigCol = 0;
1028     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1029 
1030     /* The vdbe must make its own copy of the column-type and other
1031     ** column specific strings, in case the schema is reset before this
1032     ** virtual machine is deleted.
1033     */
1034     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
1035     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
1036     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
1037 #else
1038     zType = columnType(&sNC, p, 0, 0, 0);
1039 #endif
1040     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
1041   }
1042 #endif /* SQLITE_OMIT_DECLTYPE */
1043 }
1044 
1045 /*
1046 ** Generate code that will tell the VDBE the names of columns
1047 ** in the result set.  This information is used to provide the
1048 ** azCol[] values in the callback.
1049 */
1050 static void generateColumnNames(
1051   Parse *pParse,      /* Parser context */
1052   SrcList *pTabList,  /* List of tables */
1053   ExprList *pEList    /* Expressions defining the result set */
1054 ){
1055   Vdbe *v = pParse->pVdbe;
1056   int i, j;
1057   sqlite3 *db = pParse->db;
1058   int fullNames, shortNames;
1059 
1060 #ifndef SQLITE_OMIT_EXPLAIN
1061   /* If this is an EXPLAIN, skip this step */
1062   if( pParse->explain ){
1063     return;
1064   }
1065 #endif
1066 
1067   assert( v!=0 );
1068   if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
1069   pParse->colNamesSet = 1;
1070   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1071   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1072   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1073   for(i=0; i<pEList->nExpr; i++){
1074     Expr *p;
1075     p = pEList->a[i].pExpr;
1076     if( p==0 ) continue;
1077     if( pEList->a[i].zName ){
1078       char *zName = pEList->a[i].zName;
1079       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
1080     }else if( p->op==TK_COLUMN && pTabList ){
1081       Table *pTab;
1082       char *zCol;
1083       int iCol = p->iColumn;
1084       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
1085       assert( j<pTabList->nSrc );
1086       pTab = pTabList->a[j].pTab;
1087       if( iCol<0 ) iCol = pTab->iPKey;
1088       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1089       if( iCol<0 ){
1090         zCol = "rowid";
1091       }else{
1092         zCol = pTab->aCol[iCol].zName;
1093       }
1094       if( !shortNames && !fullNames ){
1095         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1096       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1097         char *zName = 0;
1098         char *zTab;
1099 
1100         zTab = pTabList->a[j].zAlias;
1101         if( fullNames || zTab==0 ) zTab = pTab->zName;
1102         zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
1103         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
1104       }else{
1105         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1106       }
1107     }else{
1108       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1109     }
1110   }
1111   generateColumnTypes(pParse, pTabList, pEList);
1112 }
1113 
1114 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1115 /*
1116 ** Name of the connection operator, used for error messages.
1117 */
1118 static const char *selectOpName(int id){
1119   char *z;
1120   switch( id ){
1121     case TK_ALL:       z = "UNION ALL";   break;
1122     case TK_INTERSECT: z = "INTERSECT";   break;
1123     case TK_EXCEPT:    z = "EXCEPT";      break;
1124     default:           z = "UNION";       break;
1125   }
1126   return z;
1127 }
1128 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1129 
1130 /*
1131 ** Forward declaration
1132 */
1133 static int prepSelectStmt(Parse*, Select*);
1134 
1135 /*
1136 ** Given a SELECT statement, generate a Table structure that describes
1137 ** the result set of that SELECT.
1138 */
1139 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1140   Table *pTab;
1141   int i, j, rc;
1142   ExprList *pEList;
1143   Column *aCol, *pCol;
1144   sqlite3 *db = pParse->db;
1145   int savedFlags;
1146 
1147   savedFlags = db->flags;
1148   db->flags &= ~SQLITE_FullColNames;
1149   db->flags |= SQLITE_ShortColNames;
1150   rc = sqlite3SelectResolve(pParse, pSelect, 0);
1151   if( rc==SQLITE_OK ){
1152     while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1153     rc = prepSelectStmt(pParse, pSelect);
1154     if( rc==SQLITE_OK ){
1155       rc = sqlite3SelectResolve(pParse, pSelect, 0);
1156     }
1157   }
1158   db->flags = savedFlags;
1159   if( rc ){
1160     return 0;
1161   }
1162   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1163   if( pTab==0 ){
1164     return 0;
1165   }
1166   pTab->db = db;
1167   pTab->nRef = 1;
1168   pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
1169   pEList = pSelect->pEList;
1170   pTab->nCol = pEList->nExpr;
1171   assert( pTab->nCol>0 );
1172   pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
1173   testcase( aCol==0 );
1174   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1175     Expr *p;
1176     char *zType;
1177     char *zName;
1178     int nName;
1179     CollSeq *pColl;
1180     int cnt;
1181     NameContext sNC;
1182 
1183     /* Get an appropriate name for the column
1184     */
1185     p = pEList->a[i].pExpr;
1186     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1187     if( (zName = pEList->a[i].zName)!=0 ){
1188       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1189       zName = sqlite3DbStrDup(db, zName);
1190     }else if( p->op==TK_COLUMN && p->pTab ){
1191       /* For columns use the column name name */
1192       int iCol = p->iColumn;
1193       if( iCol<0 ) iCol = p->pTab->iPKey;
1194       zName = sqlite3MPrintf(db, "%s", p->pTab->aCol[iCol].zName);
1195     }else{
1196       /* Use the original text of the column expression as its name */
1197       zName = sqlite3MPrintf(db, "%T", &p->span);
1198     }
1199     if( db->mallocFailed ){
1200       sqlite3DbFree(db, zName);
1201       break;
1202     }
1203     sqlite3Dequote(zName);
1204 
1205     /* Make sure the column name is unique.  If the name is not unique,
1206     ** append a integer to the name so that it becomes unique.
1207     */
1208     nName = strlen(zName);
1209     for(j=cnt=0; j<i; j++){
1210       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1211         char *zNewName;
1212         zName[nName] = 0;
1213         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1214         sqlite3DbFree(db, zName);
1215         zName = zNewName;
1216         j = -1;
1217         if( zName==0 ) break;
1218       }
1219     }
1220     pCol->zName = zName;
1221 
1222     /* Get the typename, type affinity, and collating sequence for the
1223     ** column.
1224     */
1225     memset(&sNC, 0, sizeof(sNC));
1226     sNC.pSrcList = pSelect->pSrc;
1227     zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1228     pCol->zType = zType;
1229     pCol->affinity = sqlite3ExprAffinity(p);
1230     pColl = sqlite3ExprCollSeq(pParse, p);
1231     if( pColl ){
1232       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1233     }
1234   }
1235   pTab->iPKey = -1;
1236   if( db->mallocFailed ){
1237     sqlite3DeleteTable(pTab);
1238     return 0;
1239   }
1240   return pTab;
1241 }
1242 
1243 /*
1244 ** Prepare a SELECT statement for processing by doing the following
1245 ** things:
1246 **
1247 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1248 **         element of the FROM clause.
1249 **
1250 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1251 **         defines FROM clause.  When views appear in the FROM clause,
1252 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1253 **         that implements the view.  A copy is made of the view's SELECT
1254 **         statement so that we can freely modify or delete that statement
1255 **         without worrying about messing up the presistent representation
1256 **         of the view.
1257 **
1258 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1259 **         on joins and the ON and USING clause of joins.
1260 **
1261 **    (4)  Scan the list of columns in the result set (pEList) looking
1262 **         for instances of the "*" operator or the TABLE.* operator.
1263 **         If found, expand each "*" to be every column in every table
1264 **         and TABLE.* to be every column in TABLE.
1265 **
1266 ** Return 0 on success.  If there are problems, leave an error message
1267 ** in pParse and return non-zero.
1268 */
1269 static int prepSelectStmt(Parse *pParse, Select *p){
1270   int i, j, k, rc;
1271   SrcList *pTabList;
1272   ExprList *pEList;
1273   struct SrcList_item *pFrom;
1274   sqlite3 *db = pParse->db;
1275 
1276   if( p==0 || p->pSrc==0 || db->mallocFailed ){
1277     return 1;
1278   }
1279   pTabList = p->pSrc;
1280   pEList = p->pEList;
1281 
1282   /* Make sure cursor numbers have been assigned to all entries in
1283   ** the FROM clause of the SELECT statement.
1284   */
1285   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1286 
1287   /* Look up every table named in the FROM clause of the select.  If
1288   ** an entry of the FROM clause is a subquery instead of a table or view,
1289   ** then create a transient table structure to describe the subquery.
1290   */
1291   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1292     Table *pTab;
1293     if( pFrom->pTab!=0 ){
1294       /* This statement has already been prepared.  There is no need
1295       ** to go further. */
1296       assert( i==0 );
1297       return 0;
1298     }
1299     if( pFrom->zName==0 ){
1300 #ifndef SQLITE_OMIT_SUBQUERY
1301       /* A sub-query in the FROM clause of a SELECT */
1302       assert( pFrom->pSelect!=0 );
1303       if( pFrom->zAlias==0 ){
1304         pFrom->zAlias =
1305           sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
1306       }
1307       assert( pFrom->pTab==0 );
1308       pFrom->pTab = pTab =
1309         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1310       if( pTab==0 ){
1311         return 1;
1312       }
1313       /* The isEphem flag indicates that the Table structure has been
1314       ** dynamically allocated and may be freed at any time.  In other words,
1315       ** pTab is not pointing to a persistent table structure that defines
1316       ** part of the schema. */
1317       pTab->isEphem = 1;
1318 #endif
1319     }else{
1320       /* An ordinary table or view name in the FROM clause */
1321       assert( pFrom->pTab==0 );
1322       pFrom->pTab = pTab =
1323         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
1324       if( pTab==0 ){
1325         return 1;
1326       }
1327       pTab->nRef++;
1328 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1329       if( pTab->pSelect || IsVirtual(pTab) ){
1330         /* We reach here if the named table is a really a view */
1331         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1332           return 1;
1333         }
1334         /* If pFrom->pSelect!=0 it means we are dealing with a
1335         ** view within a view.  The SELECT structure has already been
1336         ** copied by the outer view so we can skip the copy step here
1337         ** in the inner view.
1338         */
1339         if( pFrom->pSelect==0 ){
1340           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
1341         }
1342       }
1343 #endif
1344     }
1345   }
1346 
1347   /* Process NATURAL keywords, and ON and USING clauses of joins.
1348   */
1349   if( sqliteProcessJoin(pParse, p) ) return 1;
1350 
1351   /* For every "*" that occurs in the column list, insert the names of
1352   ** all columns in all tables.  And for every TABLE.* insert the names
1353   ** of all columns in TABLE.  The parser inserted a special expression
1354   ** with the TK_ALL operator for each "*" that it found in the column list.
1355   ** The following code just has to locate the TK_ALL expressions and expand
1356   ** each one to the list of all columns in all tables.
1357   **
1358   ** The first loop just checks to see if there are any "*" operators
1359   ** that need expanding.
1360   */
1361   for(k=0; k<pEList->nExpr; k++){
1362     Expr *pE = pEList->a[k].pExpr;
1363     if( pE->op==TK_ALL ) break;
1364     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1365          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1366   }
1367   rc = 0;
1368   if( k<pEList->nExpr ){
1369     /*
1370     ** If we get here it means the result set contains one or more "*"
1371     ** operators that need to be expanded.  Loop through each expression
1372     ** in the result set and expand them one by one.
1373     */
1374     struct ExprList_item *a = pEList->a;
1375     ExprList *pNew = 0;
1376     int flags = pParse->db->flags;
1377     int longNames = (flags & SQLITE_FullColNames)!=0
1378                       && (flags & SQLITE_ShortColNames)==0;
1379 
1380     for(k=0; k<pEList->nExpr; k++){
1381       Expr *pE = a[k].pExpr;
1382       if( pE->op!=TK_ALL &&
1383            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1384         /* This particular expression does not need to be expanded.
1385         */
1386         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
1387         if( pNew ){
1388           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1389         }else{
1390           rc = 1;
1391         }
1392         a[k].pExpr = 0;
1393         a[k].zName = 0;
1394       }else{
1395         /* This expression is a "*" or a "TABLE.*" and needs to be
1396         ** expanded. */
1397         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1398         char *zTName;            /* text of name of TABLE */
1399         if( pE->op==TK_DOT && pE->pLeft ){
1400           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
1401         }else{
1402           zTName = 0;
1403         }
1404         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1405           Table *pTab = pFrom->pTab;
1406           char *zTabName = pFrom->zAlias;
1407           if( zTabName==0 || zTabName[0]==0 ){
1408             zTabName = pTab->zName;
1409           }
1410           assert( zTabName );
1411           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
1412             continue;
1413           }
1414           tableSeen = 1;
1415           for(j=0; j<pTab->nCol; j++){
1416             Expr *pExpr, *pRight;
1417             char *zName = pTab->aCol[j].zName;
1418 
1419             /* If a column is marked as 'hidden' (currently only possible
1420             ** for virtual tables), do not include it in the expanded
1421             ** result-set list.
1422             */
1423             if( IsHiddenColumn(&pTab->aCol[j]) ){
1424               assert(IsVirtual(pTab));
1425               continue;
1426             }
1427 
1428             if( i>0 ){
1429               struct SrcList_item *pLeft = &pTabList->a[i-1];
1430               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1431                         columnIndex(pLeft->pTab, zName)>=0 ){
1432                 /* In a NATURAL join, omit the join columns from the
1433                 ** table on the right */
1434                 continue;
1435               }
1436               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1437                 /* In a join with a USING clause, omit columns in the
1438                 ** using clause from the table on the right. */
1439                 continue;
1440               }
1441             }
1442             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
1443             if( pRight==0 ) break;
1444             setQuotedToken(pParse, &pRight->token, zName);
1445             if( longNames || pTabList->nSrc>1 ){
1446               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
1447               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
1448               if( pExpr==0 ) break;
1449               setQuotedToken(pParse, &pLeft->token, zTabName);
1450 #if 1
1451               setToken(&pExpr->span,
1452                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
1453               pExpr->span.dyn = 1;
1454 #else
1455               pExpr->span = pRight->token;
1456               pExpr->span.dyn = 0;
1457 #endif
1458               pExpr->token.z = 0;
1459               pExpr->token.n = 0;
1460               pExpr->token.dyn = 0;
1461             }else{
1462               pExpr = pRight;
1463               pExpr->span = pExpr->token;
1464               pExpr->span.dyn = 0;
1465             }
1466             if( longNames ){
1467               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
1468             }else{
1469               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
1470             }
1471           }
1472         }
1473         if( !tableSeen ){
1474           if( zTName ){
1475             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1476           }else{
1477             sqlite3ErrorMsg(pParse, "no tables specified");
1478           }
1479           rc = 1;
1480         }
1481         sqlite3DbFree(db, zTName);
1482       }
1483     }
1484     sqlite3ExprListDelete(db, pEList);
1485     p->pEList = pNew;
1486   }
1487 #if SQLITE_MAX_COLUMN
1488   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1489     sqlite3ErrorMsg(pParse, "too many columns in result set");
1490     rc = SQLITE_ERROR;
1491   }
1492 #endif
1493   if( db->mallocFailed ){
1494     rc = SQLITE_NOMEM;
1495   }
1496   return rc;
1497 }
1498 
1499 /*
1500 ** pE is a pointer to an expression which is a single term in
1501 ** ORDER BY or GROUP BY clause.
1502 **
1503 ** At the point this routine is called, we already know that the
1504 ** ORDER BY term is not an integer index into the result set.  That
1505 ** casee is handled by the calling routine.
1506 **
1507 ** If pE is a well-formed expression and the SELECT statement
1508 ** is not compound, then return 0.  This indicates to the
1509 ** caller that it should sort by the value of the ORDER BY
1510 ** expression.
1511 **
1512 ** If the SELECT is compound, then attempt to match pE against
1513 ** result set columns in the left-most SELECT statement.  Return
1514 ** the index i of the matching column, as an indication to the
1515 ** caller that it should sort by the i-th column.  If there is
1516 ** no match, return -1 and leave an error message in pParse.
1517 */
1518 static int matchOrderByTermToExprList(
1519   Parse *pParse,     /* Parsing context for error messages */
1520   Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
1521   Expr *pE,          /* The specific ORDER BY term */
1522   int idx,           /* When ORDER BY term is this */
1523   int isCompound,    /* True if this is a compound SELECT */
1524   u8 *pHasAgg        /* True if expression contains aggregate functions */
1525 ){
1526   int i;             /* Loop counter */
1527   ExprList *pEList;  /* The columns of the result set */
1528   NameContext nc;    /* Name context for resolving pE */
1529 
1530   assert( sqlite3ExprIsInteger(pE, &i)==0 );
1531   pEList = pSelect->pEList;
1532 
1533   /* If the term is a simple identifier that try to match that identifier
1534   ** against a column name in the result set.
1535   */
1536   if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
1537     sqlite3 *db = pParse->db;
1538     char *zCol = sqlite3NameFromToken(db, &pE->token);
1539     if( zCol==0 ){
1540       return -1;
1541     }
1542     for(i=0; i<pEList->nExpr; i++){
1543       char *zAs = pEList->a[i].zName;
1544       if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
1545         sqlite3DbFree(db, zCol);
1546         return i+1;
1547       }
1548     }
1549     sqlite3DbFree(db, zCol);
1550   }
1551 
1552   /* Resolve all names in the ORDER BY term expression
1553   */
1554   memset(&nc, 0, sizeof(nc));
1555   nc.pParse = pParse;
1556   nc.pSrcList = pSelect->pSrc;
1557   nc.pEList = pEList;
1558   nc.allowAgg = 1;
1559   nc.nErr = 0;
1560   if( sqlite3ExprResolveNames(&nc, pE) ){
1561     if( isCompound ){
1562       sqlite3ErrorClear(pParse);
1563       return 0;
1564     }else{
1565       return -1;
1566     }
1567   }
1568   if( nc.hasAgg && pHasAgg ){
1569     *pHasAgg = 1;
1570   }
1571 
1572   /* For a compound SELECT, we need to try to match the ORDER BY
1573   ** expression against an expression in the result set
1574   */
1575   if( isCompound ){
1576     for(i=0; i<pEList->nExpr; i++){
1577       if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
1578         return i+1;
1579       }
1580     }
1581   }
1582   return 0;
1583 }
1584 
1585 
1586 /*
1587 ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
1588 ** Return the number of errors seen.
1589 **
1590 ** Every term of the ORDER BY or GROUP BY clause needs to be an
1591 ** expression.  If any expression is an integer constant, then
1592 ** that expression is replaced by the corresponding
1593 ** expression from the result set.
1594 */
1595 static int processOrderGroupBy(
1596   Parse *pParse,        /* Parsing context.  Leave error messages here */
1597   Select *pSelect,      /* The SELECT statement containing the clause */
1598   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
1599   int isOrder,          /* 1 for ORDER BY.  0 for GROUP BY */
1600   u8 *pHasAgg           /* Set to TRUE if any term contains an aggregate */
1601 ){
1602   int i;
1603   sqlite3 *db = pParse->db;
1604   ExprList *pEList;
1605 
1606   if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
1607 #if SQLITE_MAX_COLUMN
1608   if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1609     const char *zType = isOrder ? "ORDER" : "GROUP";
1610     sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
1611     return 1;
1612   }
1613 #endif
1614   pEList = pSelect->pEList;
1615   if( pEList==0 ){
1616     return 0;
1617   }
1618   for(i=0; i<pOrderBy->nExpr; i++){
1619     int iCol;
1620     Expr *pE = pOrderBy->a[i].pExpr;
1621     if( sqlite3ExprIsInteger(pE, &iCol) ){
1622       if( iCol<=0 || iCol>pEList->nExpr ){
1623         const char *zType = isOrder ? "ORDER" : "GROUP";
1624         sqlite3ErrorMsg(pParse,
1625            "%r %s BY term out of range - should be "
1626            "between 1 and %d", i+1, zType, pEList->nExpr);
1627         return 1;
1628       }
1629     }else{
1630       iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
1631       if( iCol<0 ){
1632         return 1;
1633       }
1634     }
1635     if( iCol>0 ){
1636       CollSeq *pColl = pE->pColl;
1637       int flags = pE->flags & EP_ExpCollate;
1638       sqlite3ExprDelete(db, pE);
1639       pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
1640       pOrderBy->a[i].pExpr = pE;
1641       if( pE && pColl && flags ){
1642         pE->pColl = pColl;
1643         pE->flags |= flags;
1644       }
1645     }
1646   }
1647   return 0;
1648 }
1649 
1650 /*
1651 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
1652 ** the number of errors seen.
1653 **
1654 ** If iTable>0 then make the N-th term of the ORDER BY clause refer to
1655 ** the N-th column of table iTable.
1656 **
1657 ** If iTable==0 then transform each term of the ORDER BY clause to refer
1658 ** to a column of the result set by number.
1659 */
1660 static int processCompoundOrderBy(
1661   Parse *pParse,        /* Parsing context.  Leave error messages here */
1662   Select *pSelect       /* The SELECT statement containing the ORDER BY */
1663 ){
1664   int i;
1665   ExprList *pOrderBy;
1666   ExprList *pEList;
1667   sqlite3 *db;
1668   int moreToDo = 1;
1669 
1670   pOrderBy = pSelect->pOrderBy;
1671   if( pOrderBy==0 ) return 0;
1672   db = pParse->db;
1673 #if SQLITE_MAX_COLUMN
1674   if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1675     sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
1676     return 1;
1677   }
1678 #endif
1679   for(i=0; i<pOrderBy->nExpr; i++){
1680     pOrderBy->a[i].done = 0;
1681   }
1682   while( pSelect->pPrior ){
1683     pSelect = pSelect->pPrior;
1684   }
1685   while( pSelect && moreToDo ){
1686     moreToDo = 0;
1687     pEList = pSelect->pEList;
1688     if( pEList==0 ){
1689       return 1;
1690     }
1691     for(i=0; i<pOrderBy->nExpr; i++){
1692       int iCol = -1;
1693       Expr *pE, *pDup;
1694       if( pOrderBy->a[i].done ) continue;
1695       pE = pOrderBy->a[i].pExpr;
1696       if( sqlite3ExprIsInteger(pE, &iCol) ){
1697         if( iCol<0 || iCol>pEList->nExpr ){
1698           sqlite3ErrorMsg(pParse,
1699              "%r ORDER BY term out of range - should be "
1700              "between 1 and %d", i+1, pEList->nExpr);
1701           return 1;
1702         }
1703       }else{
1704         pDup = sqlite3ExprDup(db, pE);
1705         if( !db->mallocFailed ){
1706           assert(pDup);
1707           iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
1708         }
1709         sqlite3ExprDelete(db, pDup);
1710         if( iCol<0 ){
1711           return 1;
1712         }
1713       }
1714       if( iCol>0 ){
1715         pE->op = TK_INTEGER;
1716         pE->flags |= EP_IntValue;
1717         pE->iTable = iCol;
1718         pOrderBy->a[i].done = 1;
1719       }else{
1720         moreToDo = 1;
1721       }
1722     }
1723     pSelect = pSelect->pNext;
1724   }
1725   for(i=0; i<pOrderBy->nExpr; i++){
1726     if( pOrderBy->a[i].done==0 ){
1727       sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
1728             "column in the result set", i+1);
1729       return 1;
1730     }
1731   }
1732   return 0;
1733 }
1734 
1735 /*
1736 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1737 ** If an error occurs, return NULL and leave a message in pParse.
1738 */
1739 Vdbe *sqlite3GetVdbe(Parse *pParse){
1740   Vdbe *v = pParse->pVdbe;
1741   if( v==0 ){
1742     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1743 #ifndef SQLITE_OMIT_TRACE
1744     if( v ){
1745       sqlite3VdbeAddOp0(v, OP_Trace);
1746     }
1747 #endif
1748   }
1749   return v;
1750 }
1751 
1752 
1753 /*
1754 ** Compute the iLimit and iOffset fields of the SELECT based on the
1755 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1756 ** that appear in the original SQL statement after the LIMIT and OFFSET
1757 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1758 ** are the integer memory register numbers for counters used to compute
1759 ** the limit and offset.  If there is no limit and/or offset, then
1760 ** iLimit and iOffset are negative.
1761 **
1762 ** This routine changes the values of iLimit and iOffset only if
1763 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1764 ** iOffset should have been preset to appropriate default values
1765 ** (usually but not always -1) prior to calling this routine.
1766 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1767 ** redefined.  The UNION ALL operator uses this property to force
1768 ** the reuse of the same limit and offset registers across multiple
1769 ** SELECT statements.
1770 */
1771 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1772   Vdbe *v = 0;
1773   int iLimit = 0;
1774   int iOffset;
1775   int addr1;
1776   if( p->iLimit ) return;
1777 
1778   /*
1779   ** "LIMIT -1" always shows all rows.  There is some
1780   ** contraversy about what the correct behavior should be.
1781   ** The current implementation interprets "LIMIT 0" to mean
1782   ** no rows.
1783   */
1784   if( p->pLimit ){
1785     p->iLimit = iLimit = ++pParse->nMem;
1786     v = sqlite3GetVdbe(pParse);
1787     if( v==0 ) return;
1788     sqlite3ExprCode(pParse, p->pLimit, iLimit);
1789     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1790     VdbeComment((v, "LIMIT counter"));
1791     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1792   }
1793   if( p->pOffset ){
1794     p->iOffset = iOffset = ++pParse->nMem;
1795     if( p->pLimit ){
1796       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1797     }
1798     v = sqlite3GetVdbe(pParse);
1799     if( v==0 ) return;
1800     sqlite3ExprCode(pParse, p->pOffset, iOffset);
1801     sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1802     VdbeComment((v, "OFFSET counter"));
1803     addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1804     sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1805     sqlite3VdbeJumpHere(v, addr1);
1806     if( p->pLimit ){
1807       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1808       VdbeComment((v, "LIMIT+OFFSET"));
1809       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1810       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1811       sqlite3VdbeJumpHere(v, addr1);
1812     }
1813   }
1814 }
1815 
1816 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1817 /*
1818 ** Return the appropriate collating sequence for the iCol-th column of
1819 ** the result set for the compound-select statement "p".  Return NULL if
1820 ** the column has no default collating sequence.
1821 **
1822 ** The collating sequence for the compound select is taken from the
1823 ** left-most term of the select that has a collating sequence.
1824 */
1825 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1826   CollSeq *pRet;
1827   if( p->pPrior ){
1828     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1829   }else{
1830     pRet = 0;
1831   }
1832   if( pRet==0 ){
1833     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1834   }
1835   return pRet;
1836 }
1837 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1838 
1839 /* Forward reference */
1840 static int multiSelectOrderBy(
1841   Parse *pParse,        /* Parsing context */
1842   Select *p,            /* The right-most of SELECTs to be coded */
1843   SelectDest *pDest     /* What to do with query results */
1844 );
1845 
1846 
1847 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1848 /*
1849 ** This routine is called to process a compound query form from
1850 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1851 ** INTERSECT
1852 **
1853 ** "p" points to the right-most of the two queries.  the query on the
1854 ** left is p->pPrior.  The left query could also be a compound query
1855 ** in which case this routine will be called recursively.
1856 **
1857 ** The results of the total query are to be written into a destination
1858 ** of type eDest with parameter iParm.
1859 **
1860 ** Example 1:  Consider a three-way compound SQL statement.
1861 **
1862 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1863 **
1864 ** This statement is parsed up as follows:
1865 **
1866 **     SELECT c FROM t3
1867 **      |
1868 **      `----->  SELECT b FROM t2
1869 **                |
1870 **                `------>  SELECT a FROM t1
1871 **
1872 ** The arrows in the diagram above represent the Select.pPrior pointer.
1873 ** So if this routine is called with p equal to the t3 query, then
1874 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1875 **
1876 ** Notice that because of the way SQLite parses compound SELECTs, the
1877 ** individual selects always group from left to right.
1878 */
1879 static int multiSelect(
1880   Parse *pParse,        /* Parsing context */
1881   Select *p,            /* The right-most of SELECTs to be coded */
1882   SelectDest *pDest     /* What to do with query results */
1883 ){
1884   int rc = SQLITE_OK;   /* Success code from a subroutine */
1885   Select *pPrior;       /* Another SELECT immediately to our left */
1886   Vdbe *v;              /* Generate code to this VDBE */
1887   SelectDest dest;      /* Alternative data destination */
1888   Select *pDelete = 0;  /* Chain of simple selects to delete */
1889   sqlite3 *db;          /* Database connection */
1890 
1891   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1892   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1893   */
1894   if( p==0 || p->pPrior==0 ){
1895     rc = 1;
1896     goto multi_select_end;
1897   }
1898   db = pParse->db;
1899   pPrior = p->pPrior;
1900   assert( pPrior->pRightmost!=pPrior );
1901   assert( pPrior->pRightmost==p->pRightmost );
1902   if( pPrior->pOrderBy ){
1903     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1904       selectOpName(p->op));
1905     rc = 1;
1906     goto multi_select_end;
1907   }
1908   if( pPrior->pLimit ){
1909     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1910       selectOpName(p->op));
1911     rc = 1;
1912     goto multi_select_end;
1913   }
1914 
1915   /* Make sure we have a valid query engine.  If not, create a new one.
1916   */
1917   v = sqlite3GetVdbe(pParse);
1918   if( v==0 ){
1919     rc = 1;
1920     goto multi_select_end;
1921   }
1922 
1923   /* Create the destination temporary table if necessary
1924   */
1925   dest = *pDest;
1926   if( dest.eDest==SRT_EphemTab ){
1927     assert( p->pEList );
1928     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1929     dest.eDest = SRT_Table;
1930   }
1931 
1932   /* Make sure all SELECTs in the statement have the same number of elements
1933   ** in their result sets.
1934   */
1935   assert( p->pEList && pPrior->pEList );
1936   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1937     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1938       " do not have the same number of result columns", selectOpName(p->op));
1939     rc = 1;
1940     goto multi_select_end;
1941   }
1942 
1943   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1944   */
1945   if( p->pOrderBy ){
1946     return multiSelectOrderBy(pParse, p, pDest);
1947   }
1948 
1949   /* Generate code for the left and right SELECT statements.
1950   */
1951   switch( p->op ){
1952     case TK_ALL: {
1953       int addr = 0;
1954       assert( !pPrior->pLimit );
1955       pPrior->pLimit = p->pLimit;
1956       pPrior->pOffset = p->pOffset;
1957       rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0);
1958       p->pLimit = 0;
1959       p->pOffset = 0;
1960       if( rc ){
1961         goto multi_select_end;
1962       }
1963       p->pPrior = 0;
1964       p->iLimit = pPrior->iLimit;
1965       p->iOffset = pPrior->iOffset;
1966       if( p->iLimit ){
1967         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1968         VdbeComment((v, "Jump ahead if LIMIT reached"));
1969       }
1970       rc = sqlite3Select(pParse, p, &dest, 0, 0, 0);
1971       pDelete = p->pPrior;
1972       p->pPrior = pPrior;
1973       if( rc ){
1974         goto multi_select_end;
1975       }
1976       if( addr ){
1977         sqlite3VdbeJumpHere(v, addr);
1978       }
1979       break;
1980     }
1981     case TK_EXCEPT:
1982     case TK_UNION: {
1983       int unionTab;    /* Cursor number of the temporary table holding result */
1984       int op = 0;      /* One of the SRT_ operations to apply to self */
1985       int priorOp;     /* The SRT_ operation to apply to prior selects */
1986       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1987       int addr;
1988       SelectDest uniondest;
1989 
1990       priorOp = SRT_Union;
1991       if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
1992         /* We can reuse a temporary table generated by a SELECT to our
1993         ** right.
1994         */
1995         unionTab = dest.iParm;
1996       }else{
1997         /* We will need to create our own temporary table to hold the
1998         ** intermediate results.
1999         */
2000         unionTab = pParse->nTab++;
2001         assert( p->pOrderBy==0 );
2002         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2003         assert( p->addrOpenEphm[0] == -1 );
2004         p->addrOpenEphm[0] = addr;
2005         p->pRightmost->usesEphm = 1;
2006         assert( p->pEList );
2007       }
2008 
2009       /* Code the SELECT statements to our left
2010       */
2011       assert( !pPrior->pOrderBy );
2012       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2013       rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0);
2014       if( rc ){
2015         goto multi_select_end;
2016       }
2017 
2018       /* Code the current SELECT statement
2019       */
2020       switch( p->op ){
2021          case TK_EXCEPT:  op = SRT_Except;   break;
2022          case TK_UNION:   op = SRT_Union;    break;
2023          case TK_ALL:     op = SRT_Table;    break;
2024       }
2025       p->pPrior = 0;
2026       p->disallowOrderBy = 0;
2027       pLimit = p->pLimit;
2028       p->pLimit = 0;
2029       pOffset = p->pOffset;
2030       p->pOffset = 0;
2031       uniondest.eDest = op;
2032       rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0);
2033       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2034       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2035       sqlite3ExprListDelete(db, p->pOrderBy);
2036       pDelete = p->pPrior;
2037       p->pPrior = pPrior;
2038       p->pOrderBy = 0;
2039       sqlite3ExprDelete(db, p->pLimit);
2040       p->pLimit = pLimit;
2041       p->pOffset = pOffset;
2042       p->iLimit = 0;
2043       p->iOffset = 0;
2044       if( rc ){
2045         goto multi_select_end;
2046       }
2047 
2048 
2049       /* Convert the data in the temporary table into whatever form
2050       ** it is that we currently need.
2051       */
2052       if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
2053         int iCont, iBreak, iStart;
2054         assert( p->pEList );
2055         if( dest.eDest==SRT_Callback ){
2056           Select *pFirst = p;
2057           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2058           generateColumnNames(pParse, 0, pFirst->pEList);
2059         }
2060         iBreak = sqlite3VdbeMakeLabel(v);
2061         iCont = sqlite3VdbeMakeLabel(v);
2062         computeLimitRegisters(pParse, p, iBreak);
2063         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
2064         iStart = sqlite3VdbeCurrentAddr(v);
2065         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
2066                         0, -1, &dest, iCont, iBreak);
2067         sqlite3VdbeResolveLabel(v, iCont);
2068         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
2069         sqlite3VdbeResolveLabel(v, iBreak);
2070         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2071       }
2072       break;
2073     }
2074     case TK_INTERSECT: {
2075       int tab1, tab2;
2076       int iCont, iBreak, iStart;
2077       Expr *pLimit, *pOffset;
2078       int addr;
2079       SelectDest intersectdest;
2080       int r1;
2081 
2082       /* INTERSECT is different from the others since it requires
2083       ** two temporary tables.  Hence it has its own case.  Begin
2084       ** by allocating the tables we will need.
2085       */
2086       tab1 = pParse->nTab++;
2087       tab2 = pParse->nTab++;
2088       assert( p->pOrderBy==0 );
2089 
2090       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2091       assert( p->addrOpenEphm[0] == -1 );
2092       p->addrOpenEphm[0] = addr;
2093       p->pRightmost->usesEphm = 1;
2094       assert( p->pEList );
2095 
2096       /* Code the SELECTs to our left into temporary table "tab1".
2097       */
2098       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2099       rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0);
2100       if( rc ){
2101         goto multi_select_end;
2102       }
2103 
2104       /* Code the current SELECT into temporary table "tab2"
2105       */
2106       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2107       assert( p->addrOpenEphm[1] == -1 );
2108       p->addrOpenEphm[1] = addr;
2109       p->pPrior = 0;
2110       pLimit = p->pLimit;
2111       p->pLimit = 0;
2112       pOffset = p->pOffset;
2113       p->pOffset = 0;
2114       intersectdest.iParm = tab2;
2115       rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0);
2116       pDelete = p->pPrior;
2117       p->pPrior = pPrior;
2118       sqlite3ExprDelete(db, p->pLimit);
2119       p->pLimit = pLimit;
2120       p->pOffset = pOffset;
2121       if( rc ){
2122         goto multi_select_end;
2123       }
2124 
2125       /* Generate code to take the intersection of the two temporary
2126       ** tables.
2127       */
2128       assert( p->pEList );
2129       if( dest.eDest==SRT_Callback ){
2130         Select *pFirst = p;
2131         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2132         generateColumnNames(pParse, 0, pFirst->pEList);
2133       }
2134       iBreak = sqlite3VdbeMakeLabel(v);
2135       iCont = sqlite3VdbeMakeLabel(v);
2136       computeLimitRegisters(pParse, p, iBreak);
2137       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
2138       r1 = sqlite3GetTempReg(pParse);
2139       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2140       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
2141       sqlite3ReleaseTempReg(pParse, r1);
2142       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
2143                       0, -1, &dest, iCont, iBreak);
2144       sqlite3VdbeResolveLabel(v, iCont);
2145       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
2146       sqlite3VdbeResolveLabel(v, iBreak);
2147       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2148       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2149       break;
2150     }
2151   }
2152 
2153   /* Compute collating sequences used by
2154   ** temporary tables needed to implement the compound select.
2155   ** Attach the KeyInfo structure to all temporary tables.
2156   **
2157   ** This section is run by the right-most SELECT statement only.
2158   ** SELECT statements to the left always skip this part.  The right-most
2159   ** SELECT might also skip this part if it has no ORDER BY clause and
2160   ** no temp tables are required.
2161   */
2162   if( p->usesEphm ){
2163     int i;                        /* Loop counter */
2164     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2165     Select *pLoop;                /* For looping through SELECT statements */
2166     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2167     int nCol;                     /* Number of columns in result set */
2168 
2169     assert( p->pRightmost==p );
2170     nCol = p->pEList->nExpr;
2171     pKeyInfo = sqlite3DbMallocZero(db,
2172                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
2173     if( !pKeyInfo ){
2174       rc = SQLITE_NOMEM;
2175       goto multi_select_end;
2176     }
2177 
2178     pKeyInfo->enc = ENC(db);
2179     pKeyInfo->nField = nCol;
2180 
2181     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2182       *apColl = multiSelectCollSeq(pParse, p, i);
2183       if( 0==*apColl ){
2184         *apColl = db->pDfltColl;
2185       }
2186     }
2187 
2188     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2189       for(i=0; i<2; i++){
2190         int addr = pLoop->addrOpenEphm[i];
2191         if( addr<0 ){
2192           /* If [0] is unused then [1] is also unused.  So we can
2193           ** always safely abort as soon as the first unused slot is found */
2194           assert( pLoop->addrOpenEphm[1]<0 );
2195           break;
2196         }
2197         sqlite3VdbeChangeP2(v, addr, nCol);
2198         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
2199         pLoop->addrOpenEphm[i] = -1;
2200       }
2201     }
2202     sqlite3DbFree(db, pKeyInfo);
2203   }
2204 
2205 multi_select_end:
2206   pDest->iMem = dest.iMem;
2207   pDest->nMem = dest.nMem;
2208   sqlite3SelectDelete(db, pDelete);
2209   return rc;
2210 }
2211 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2212 
2213 /*
2214 ** Code an output subroutine for a coroutine implementation of a
2215 ** SELECT statment.
2216 **
2217 ** The data to be output is contained in pIn->iMem.  There are
2218 ** pIn->nMem columns to be output.  pDest is where the output should
2219 ** be sent.
2220 **
2221 ** regReturn is the number of the register holding the subroutine
2222 ** return address.
2223 **
2224 ** If regPrev>0 then it is a the first register in a vector that
2225 ** records the previous output.  mem[regPrev] is a flag that is false
2226 ** if there has been no previous output.  If regPrev>0 then code is
2227 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2228 ** keys.
2229 **
2230 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2231 ** iBreak.
2232 */
2233 static int generateOutputSubroutine(
2234   Parse *pParse,          /* Parsing context */
2235   Select *p,              /* The SELECT statement */
2236   SelectDest *pIn,        /* Coroutine supplying data */
2237   SelectDest *pDest,      /* Where to send the data */
2238   int regReturn,          /* The return address register */
2239   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2240   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2241   int p4type,             /* The p4 type for pKeyInfo */
2242   int iBreak              /* Jump here if we hit the LIMIT */
2243 ){
2244   Vdbe *v = pParse->pVdbe;
2245   int iContinue;
2246   int addr;
2247 
2248   addr = sqlite3VdbeCurrentAddr(v);
2249   iContinue = sqlite3VdbeMakeLabel(v);
2250 
2251   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2252   */
2253   if( regPrev ){
2254     int j1, j2;
2255     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
2256     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
2257                               (char*)pKeyInfo, p4type);
2258     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
2259     sqlite3VdbeJumpHere(v, j1);
2260     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
2261     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2262   }
2263   if( pParse->db->mallocFailed ) return 0;
2264 
2265   /* Suppress the the first OFFSET entries if there is an OFFSET clause
2266   */
2267   codeOffset(v, p, iContinue);
2268 
2269   switch( pDest->eDest ){
2270     /* Store the result as data using a unique key.
2271     */
2272     case SRT_Table:
2273     case SRT_EphemTab: {
2274       int r1 = sqlite3GetTempReg(pParse);
2275       int r2 = sqlite3GetTempReg(pParse);
2276       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
2277       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
2278       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
2279       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2280       sqlite3ReleaseTempReg(pParse, r2);
2281       sqlite3ReleaseTempReg(pParse, r1);
2282       break;
2283     }
2284 
2285 #ifndef SQLITE_OMIT_SUBQUERY
2286     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2287     ** then there should be a single item on the stack.  Write this
2288     ** item into the set table with bogus data.
2289     */
2290     case SRT_Set: {
2291       int r1;
2292       assert( pIn->nMem==1 );
2293       p->affinity =
2294          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
2295       r1 = sqlite3GetTempReg(pParse);
2296       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
2297       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
2298       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
2299       sqlite3ReleaseTempReg(pParse, r1);
2300       break;
2301     }
2302 
2303 #if 0  /* Never occurs on an ORDER BY query */
2304     /* If any row exist in the result set, record that fact and abort.
2305     */
2306     case SRT_Exists: {
2307       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
2308       /* The LIMIT clause will terminate the loop for us */
2309       break;
2310     }
2311 #endif
2312 
2313     /* If this is a scalar select that is part of an expression, then
2314     ** store the results in the appropriate memory cell and break out
2315     ** of the scan loop.
2316     */
2317     case SRT_Mem: {
2318       assert( pIn->nMem==1 );
2319       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
2320       /* The LIMIT clause will jump out of the loop for us */
2321       break;
2322     }
2323 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2324 
2325     /* Send the data to the callback function or to a subroutine.  In the
2326     ** case of a subroutine, the subroutine itself is responsible for
2327     ** popping the data from the stack.
2328     */
2329     case SRT_Coroutine: {
2330       if( pDest->iMem==0 ){
2331         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
2332         pDest->nMem = pIn->nMem;
2333       }
2334       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
2335       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
2336       break;
2337     }
2338 
2339     case SRT_Callback: {
2340       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
2341       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
2342       break;
2343     }
2344 
2345 #if !defined(SQLITE_OMIT_TRIGGER)
2346     /* Discard the results.  This is used for SELECT statements inside
2347     ** the body of a TRIGGER.  The purpose of such selects is to call
2348     ** user-defined functions that have side effects.  We do not care
2349     ** about the actual results of the select.
2350     */
2351     default: {
2352       break;
2353     }
2354 #endif
2355   }
2356 
2357   /* Jump to the end of the loop if the LIMIT is reached.
2358   */
2359   if( p->iLimit ){
2360     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
2361     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
2362   }
2363 
2364   /* Generate the subroutine return
2365   */
2366   sqlite3VdbeResolveLabel(v, iContinue);
2367   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2368 
2369   return addr;
2370 }
2371 
2372 /*
2373 ** Alternative compound select code generator for cases when there
2374 ** is an ORDER BY clause.
2375 **
2376 ** We assume a query of the following form:
2377 **
2378 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2379 **
2380 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2381 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2382 ** co-routines.  Then run the co-routines in parallel and merge the results
2383 ** into the output.  In addition to the two coroutines (called selectA and
2384 ** selectB) there are 7 subroutines:
2385 **
2386 **    outA:    Move the output of the selectA coroutine into the output
2387 **             of the compound query.
2388 **
2389 **    outB:    Move the output of the selectB coroutine into the output
2390 **             of the compound query.  (Only generated for UNION and
2391 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2392 **             appears only in B.)
2393 **
2394 **    AltB:    Called when there is data from both coroutines and A<B.
2395 **
2396 **    AeqB:    Called when there is data from both coroutines and A==B.
2397 **
2398 **    AgtB:    Called when there is data from both coroutines and A>B.
2399 **
2400 **    EofA:    Called when data is exhausted from selectA.
2401 **
2402 **    EofB:    Called when data is exhausted from selectB.
2403 **
2404 ** The implementation of the latter five subroutines depend on which
2405 ** <operator> is used:
2406 **
2407 **
2408 **             UNION ALL         UNION            EXCEPT          INTERSECT
2409 **          -------------  -----------------  --------------  -----------------
2410 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2411 **
2412 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2413 **
2414 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2415 **
2416 **   EofA:   outB, nextB      outB, nextB          halt             halt
2417 **
2418 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2419 **
2420 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2421 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2422 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2423 ** following nextX causes a jump to the end of the select processing.
2424 **
2425 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2426 ** within the output subroutine.  The regPrev register set holds the previously
2427 ** output value.  A comparison is made against this value and the output
2428 ** is skipped if the next results would be the same as the previous.
2429 **
2430 ** The implementation plan is to implement the two coroutines and seven
2431 ** subroutines first, then put the control logic at the bottom.  Like this:
2432 **
2433 **          goto Init
2434 **     coA: coroutine for left query (A)
2435 **     coB: coroutine for right query (B)
2436 **    outA: output one row of A
2437 **    outB: output one row of B (UNION and UNION ALL only)
2438 **    EofA: ...
2439 **    EofB: ...
2440 **    AltB: ...
2441 **    AeqB: ...
2442 **    AgtB: ...
2443 **    Init: initialize coroutine registers
2444 **          yield coA
2445 **          if eof(A) goto EofA
2446 **          yield coB
2447 **          if eof(B) goto EofB
2448 **    Cmpr: Compare A, B
2449 **          Jump AltB, AeqB, AgtB
2450 **     End: ...
2451 **
2452 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2453 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2454 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2455 ** and AgtB jump to either L2 or to one of EofA or EofB.
2456 */
2457 static int multiSelectOrderBy(
2458   Parse *pParse,        /* Parsing context */
2459   Select *p,            /* The right-most of SELECTs to be coded */
2460   SelectDest *pDest     /* What to do with query results */
2461 ){
2462   int i, j;             /* Loop counters */
2463   Select *pPrior;       /* Another SELECT immediately to our left */
2464   Vdbe *v;              /* Generate code to this VDBE */
2465   SelectDest destA;     /* Destination for coroutine A */
2466   SelectDest destB;     /* Destination for coroutine B */
2467   int regAddrA;         /* Address register for select-A coroutine */
2468   int regEofA;          /* Flag to indicate when select-A is complete */
2469   int regAddrB;         /* Address register for select-B coroutine */
2470   int regEofB;          /* Flag to indicate when select-B is complete */
2471   int addrSelectA;      /* Address of the select-A coroutine */
2472   int addrSelectB;      /* Address of the select-B coroutine */
2473   int regOutA;          /* Address register for the output-A subroutine */
2474   int regOutB;          /* Address register for the output-B subroutine */
2475   int addrOutA;         /* Address of the output-A subroutine */
2476   int addrOutB;         /* Address of the output-B subroutine */
2477   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2478   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2479   int addrAltB;         /* Address of the A<B subroutine */
2480   int addrAeqB;         /* Address of the A==B subroutine */
2481   int addrAgtB;         /* Address of the A>B subroutine */
2482   int regLimitA;        /* Limit register for select-A */
2483   int regLimitB;        /* Limit register for select-A */
2484   int regPrev;          /* A range of registers to hold previous output */
2485   int savedLimit;       /* Saved value of p->iLimit */
2486   int savedOffset;      /* Saved value of p->iOffset */
2487   int labelCmpr;        /* Label for the start of the merge algorithm */
2488   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2489   int j1;               /* Jump instructions that get retargetted */
2490   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2491   KeyInfo *pKeyDup;     /* Comparison information for duplicate removal */
2492   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2493   sqlite3 *db;          /* Database connection */
2494   ExprList *pOrderBy;   /* The ORDER BY clause */
2495   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2496   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2497   u8 NotUsed;           /* Dummy variables */
2498 
2499   assert( p->pOrderBy!=0 );
2500   db = pParse->db;
2501   v = pParse->pVdbe;
2502   if( v==0 ) return SQLITE_NOMEM;
2503   labelEnd = sqlite3VdbeMakeLabel(v);
2504   labelCmpr = sqlite3VdbeMakeLabel(v);
2505 
2506 
2507   /* Patch up the ORDER BY clause
2508   */
2509   op = p->op;
2510   pPrior = p->pPrior;
2511   assert( pPrior->pOrderBy==0 );
2512   pOrderBy = p->pOrderBy;
2513   assert( pOrderBy );
2514   if( processCompoundOrderBy(pParse, p) ){
2515     return SQLITE_ERROR;
2516   }
2517   nOrderBy = pOrderBy->nExpr;
2518 
2519   /* For operators other than UNION ALL we have to make sure that
2520   ** the ORDER BY clause covers every term of the result set.  Add
2521   ** terms to the ORDER BY clause as necessary.
2522   */
2523   if( op!=TK_ALL ){
2524     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2525       for(j=0; j<nOrderBy; j++){
2526         Expr *pTerm = pOrderBy->a[j].pExpr;
2527         assert( pTerm->op==TK_INTEGER );
2528         assert( (pTerm->flags & EP_IntValue)!=0 );
2529         if( pTerm->iTable==i ) break;
2530       }
2531       if( j==nOrderBy ){
2532         Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
2533         if( pNew==0 ) return SQLITE_NOMEM;
2534         pNew->flags |= EP_IntValue;
2535         pNew->iTable = i;
2536         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
2537         nOrderBy++;
2538       }
2539     }
2540   }
2541 
2542   /* Compute the comparison permutation and keyinfo that is used with
2543   ** the permutation in order to comparisons to determine if the next
2544   ** row of results comes from selectA or selectB.  Also add explicit
2545   ** collations to the ORDER BY clause terms so that when the subqueries
2546   ** to the right and the left are evaluated, they use the correct
2547   ** collation.
2548   */
2549   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2550   if( aPermute ){
2551     for(i=0; i<nOrderBy; i++){
2552       Expr *pTerm = pOrderBy->a[i].pExpr;
2553       assert( pTerm->op==TK_INTEGER );
2554       assert( (pTerm->flags & EP_IntValue)!=0 );
2555       aPermute[i] = pTerm->iTable-1;
2556       assert( aPermute[i]>=0 && aPermute[i]<p->pEList->nExpr );
2557     }
2558     pKeyMerge =
2559       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2560     if( pKeyMerge ){
2561       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2562       pKeyMerge->nField = nOrderBy;
2563       pKeyMerge->enc = ENC(db);
2564       for(i=0; i<nOrderBy; i++){
2565         CollSeq *pColl;
2566         Expr *pTerm = pOrderBy->a[i].pExpr;
2567         if( pTerm->flags & EP_ExpCollate ){
2568           pColl = pTerm->pColl;
2569         }else{
2570           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2571           pTerm->flags |= EP_ExpCollate;
2572           pTerm->pColl = pColl;
2573         }
2574         pKeyMerge->aColl[i] = pColl;
2575         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2576       }
2577     }
2578   }else{
2579     pKeyMerge = 0;
2580   }
2581 
2582   /* Reattach the ORDER BY clause to the query.
2583   */
2584   p->pOrderBy = pOrderBy;
2585   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
2586 
2587   /* Allocate a range of temporary registers and the KeyInfo needed
2588   ** for the logic that removes duplicate result rows when the
2589   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2590   */
2591   if( op==TK_ALL ){
2592     regPrev = 0;
2593   }else{
2594     int nExpr = p->pEList->nExpr;
2595     assert( nOrderBy>=nExpr );
2596     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2597     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2598     pKeyDup = sqlite3DbMallocZero(db,
2599                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2600     if( pKeyDup ){
2601       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2602       pKeyDup->nField = nExpr;
2603       pKeyDup->enc = ENC(db);
2604       for(i=0; i<nExpr; i++){
2605         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2606         pKeyDup->aSortOrder[i] = 0;
2607       }
2608     }
2609   }
2610 
2611   /* Separate the left and the right query from one another
2612   */
2613   p->pPrior = 0;
2614   pPrior->pRightmost = 0;
2615   processOrderGroupBy(pParse, p, p->pOrderBy, 1, &NotUsed);
2616   if( pPrior->pPrior==0 ){
2617     processOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, 1, &NotUsed);
2618   }
2619 
2620   /* Compute the limit registers */
2621   computeLimitRegisters(pParse, p, labelEnd);
2622   if( p->iLimit && op==TK_ALL ){
2623     regLimitA = ++pParse->nMem;
2624     regLimitB = ++pParse->nMem;
2625     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2626                                   regLimitA);
2627     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2628   }else{
2629     regLimitA = regLimitB = 0;
2630   }
2631   sqlite3ExprDelete(db, p->pLimit);
2632   p->pLimit = 0;
2633   sqlite3ExprDelete(db, p->pOffset);
2634   p->pOffset = 0;
2635 
2636   regAddrA = ++pParse->nMem;
2637   regEofA = ++pParse->nMem;
2638   regAddrB = ++pParse->nMem;
2639   regEofB = ++pParse->nMem;
2640   regOutA = ++pParse->nMem;
2641   regOutB = ++pParse->nMem;
2642   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2643   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2644 
2645   /* Jump past the various subroutines and coroutines to the main
2646   ** merge loop
2647   */
2648   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2649   addrSelectA = sqlite3VdbeCurrentAddr(v);
2650 
2651 
2652   /* Generate a coroutine to evaluate the SELECT statement to the
2653   ** left of the compound operator - the "A" select.
2654   */
2655   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2656   pPrior->iLimit = regLimitA;
2657   sqlite3Select(pParse, pPrior, &destA, 0, 0, 0);
2658   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2659   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2660   VdbeNoopComment((v, "End coroutine for left SELECT"));
2661 
2662   /* Generate a coroutine to evaluate the SELECT statement on
2663   ** the right - the "B" select
2664   */
2665   addrSelectB = sqlite3VdbeCurrentAddr(v);
2666   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2667   savedLimit = p->iLimit;
2668   savedOffset = p->iOffset;
2669   p->iLimit = regLimitB;
2670   p->iOffset = 0;
2671   sqlite3Select(pParse, p, &destB, 0, 0, 0);
2672   p->iLimit = savedLimit;
2673   p->iOffset = savedOffset;
2674   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2675   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2676   VdbeNoopComment((v, "End coroutine for right SELECT"));
2677 
2678   /* Generate a subroutine that outputs the current row of the A
2679   ** select as the next output row of the compound select.
2680   */
2681   VdbeNoopComment((v, "Output routine for A"));
2682   addrOutA = generateOutputSubroutine(pParse,
2683                  p, &destA, pDest, regOutA,
2684                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2685 
2686   /* Generate a subroutine that outputs the current row of the B
2687   ** select as the next output row of the compound select.
2688   */
2689   if( op==TK_ALL || op==TK_UNION ){
2690     VdbeNoopComment((v, "Output routine for B"));
2691     addrOutB = generateOutputSubroutine(pParse,
2692                  p, &destB, pDest, regOutB,
2693                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2694   }
2695 
2696   /* Generate a subroutine to run when the results from select A
2697   ** are exhausted and only data in select B remains.
2698   */
2699   VdbeNoopComment((v, "eof-A subroutine"));
2700   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2701     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2702   }else{
2703     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2704     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2705     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2706     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2707   }
2708 
2709   /* Generate a subroutine to run when the results from select B
2710   ** are exhausted and only data in select A remains.
2711   */
2712   if( op==TK_INTERSECT ){
2713     addrEofB = addrEofA;
2714   }else{
2715     VdbeNoopComment((v, "eof-B subroutine"));
2716     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2717     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2718     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2719     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2720   }
2721 
2722   /* Generate code to handle the case of A<B
2723   */
2724   VdbeNoopComment((v, "A-lt-B subroutine"));
2725   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2726   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2727   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2728   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2729 
2730   /* Generate code to handle the case of A==B
2731   */
2732   if( op==TK_ALL ){
2733     addrAeqB = addrAltB;
2734   }else if( op==TK_INTERSECT ){
2735     addrAeqB = addrAltB;
2736     addrAltB++;
2737   }else{
2738     VdbeNoopComment((v, "A-eq-B subroutine"));
2739     addrAeqB =
2740     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2741     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2742     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2743   }
2744 
2745   /* Generate code to handle the case of A>B
2746   */
2747   VdbeNoopComment((v, "A-gt-B subroutine"));
2748   addrAgtB = sqlite3VdbeCurrentAddr(v);
2749   if( op==TK_ALL || op==TK_UNION ){
2750     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2751   }
2752   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2753   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2754   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2755 
2756   /* This code runs once to initialize everything.
2757   */
2758   sqlite3VdbeJumpHere(v, j1);
2759   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2760   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2761   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2762   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2763   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2764   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2765 
2766   /* Implement the main merge loop
2767   */
2768   sqlite3VdbeResolveLabel(v, labelCmpr);
2769   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2770   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2771                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2772   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2773 
2774   /* Release temporary registers
2775   */
2776   if( regPrev ){
2777     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2778   }
2779 
2780   /* Jump to the this point in order to terminate the query.
2781   */
2782   sqlite3VdbeResolveLabel(v, labelEnd);
2783 
2784   /* Set the number of output columns
2785   */
2786   if( pDest->eDest==SRT_Callback ){
2787     Select *pFirst = pPrior;
2788     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2789     generateColumnNames(pParse, 0, pFirst->pEList);
2790   }
2791 
2792   /* Reassembly the compound query so that it will be freed correctly
2793   ** by the calling function */
2794   if( p->pPrior ){
2795     sqlite3SelectDelete(db, p->pPrior);
2796   }
2797   p->pPrior = pPrior;
2798 
2799   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2800   **** subqueries ****/
2801   return SQLITE_OK;
2802 }
2803 
2804 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2805 /* Forward Declarations */
2806 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2807 static void substSelect(sqlite3*, Select *, int, ExprList *);
2808 
2809 /*
2810 ** Scan through the expression pExpr.  Replace every reference to
2811 ** a column in table number iTable with a copy of the iColumn-th
2812 ** entry in pEList.  (But leave references to the ROWID column
2813 ** unchanged.)
2814 **
2815 ** This routine is part of the flattening procedure.  A subquery
2816 ** whose result set is defined by pEList appears as entry in the
2817 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2818 ** FORM clause entry is iTable.  This routine make the necessary
2819 ** changes to pExpr so that it refers directly to the source table
2820 ** of the subquery rather the result set of the subquery.
2821 */
2822 static void substExpr(
2823   sqlite3 *db,        /* Report malloc errors to this connection */
2824   Expr *pExpr,        /* Expr in which substitution occurs */
2825   int iTable,         /* Table to be substituted */
2826   ExprList *pEList    /* Substitute expressions */
2827 ){
2828   if( pExpr==0 ) return;
2829   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2830     if( pExpr->iColumn<0 ){
2831       pExpr->op = TK_NULL;
2832     }else{
2833       Expr *pNew;
2834       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2835       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2836       pNew = pEList->a[pExpr->iColumn].pExpr;
2837       assert( pNew!=0 );
2838       pExpr->op = pNew->op;
2839       assert( pExpr->pLeft==0 );
2840       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
2841       assert( pExpr->pRight==0 );
2842       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
2843       assert( pExpr->pList==0 );
2844       pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
2845       pExpr->iTable = pNew->iTable;
2846       pExpr->pTab = pNew->pTab;
2847       pExpr->iColumn = pNew->iColumn;
2848       pExpr->iAgg = pNew->iAgg;
2849       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2850       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2851       pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
2852       pExpr->flags = pNew->flags;
2853     }
2854   }else{
2855     substExpr(db, pExpr->pLeft, iTable, pEList);
2856     substExpr(db, pExpr->pRight, iTable, pEList);
2857     substSelect(db, pExpr->pSelect, iTable, pEList);
2858     substExprList(db, pExpr->pList, iTable, pEList);
2859   }
2860 }
2861 static void substExprList(
2862   sqlite3 *db,         /* Report malloc errors here */
2863   ExprList *pList,     /* List to scan and in which to make substitutes */
2864   int iTable,          /* Table to be substituted */
2865   ExprList *pEList     /* Substitute values */
2866 ){
2867   int i;
2868   if( pList==0 ) return;
2869   for(i=0; i<pList->nExpr; i++){
2870     substExpr(db, pList->a[i].pExpr, iTable, pEList);
2871   }
2872 }
2873 static void substSelect(
2874   sqlite3 *db,         /* Report malloc errors here */
2875   Select *p,           /* SELECT statement in which to make substitutions */
2876   int iTable,          /* Table to be replaced */
2877   ExprList *pEList     /* Substitute values */
2878 ){
2879   if( !p ) return;
2880   substExprList(db, p->pEList, iTable, pEList);
2881   substExprList(db, p->pGroupBy, iTable, pEList);
2882   substExprList(db, p->pOrderBy, iTable, pEList);
2883   substExpr(db, p->pHaving, iTable, pEList);
2884   substExpr(db, p->pWhere, iTable, pEList);
2885   substSelect(db, p->pPrior, iTable, pEList);
2886 }
2887 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2888 
2889 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2890 /*
2891 ** This routine attempts to flatten subqueries in order to speed
2892 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2893 ** occurs.
2894 **
2895 ** To understand the concept of flattening, consider the following
2896 ** query:
2897 **
2898 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2899 **
2900 ** The default way of implementing this query is to execute the
2901 ** subquery first and store the results in a temporary table, then
2902 ** run the outer query on that temporary table.  This requires two
2903 ** passes over the data.  Furthermore, because the temporary table
2904 ** has no indices, the WHERE clause on the outer query cannot be
2905 ** optimized.
2906 **
2907 ** This routine attempts to rewrite queries such as the above into
2908 ** a single flat select, like this:
2909 **
2910 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2911 **
2912 ** The code generated for this simpification gives the same result
2913 ** but only has to scan the data once.  And because indices might
2914 ** exist on the table t1, a complete scan of the data might be
2915 ** avoided.
2916 **
2917 ** Flattening is only attempted if all of the following are true:
2918 **
2919 **   (1)  The subquery and the outer query do not both use aggregates.
2920 **
2921 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2922 **
2923 **   (3)  The subquery is not the right operand of a left outer join, or
2924 **        the subquery is not itself a join.  (Ticket #306)
2925 **
2926 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2927 **
2928 **   (5)  The subquery is not DISTINCT or the outer query does not use
2929 **        aggregates.
2930 **
2931 **   (6)  The subquery does not use aggregates or the outer query is not
2932 **        DISTINCT.
2933 **
2934 **   (7)  The subquery has a FROM clause.
2935 **
2936 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2937 **
2938 **   (9)  The subquery does not use LIMIT or the outer query does not use
2939 **        aggregates.
2940 **
2941 **  (10)  The subquery does not use aggregates or the outer query does not
2942 **        use LIMIT.
2943 **
2944 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2945 **
2946 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2947 **        subquery has no WHERE clause.  (added by ticket #350)
2948 **
2949 **  (13)  The subquery and outer query do not both use LIMIT
2950 **
2951 **  (14)  The subquery does not use OFFSET
2952 **
2953 **  (15)  The outer query is not part of a compound select or the
2954 **        subquery does not have both an ORDER BY and a LIMIT clause.
2955 **        (See ticket #2339)
2956 **
2957 **  (16)  The outer query is not an aggregate or the subquery does
2958 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2959 **        until we introduced the group_concat() function.
2960 **
2961 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2962 **        compound clause made up entirely of non-aggregate queries, and
2963 **        the parent query:
2964 **
2965 **          * is not itself part of a compound select,
2966 **          * is not an aggregate or DISTINCT query, and
2967 **          * has no other tables or sub-selects in the FROM clause.
2968 **
2969 **        The parent and sub-query may contain WHERE clauses. Subject to
2970 **        rules (11), (13) and (14), they may also contain ORDER BY,
2971 **        LIMIT and OFFSET clauses.
2972 **
2973 **  (18)  If the sub-query is a compound select, then all terms of the
2974 **        ORDER by clause of the parent must be simple references to
2975 **        columns of the sub-query.
2976 **
2977 ** In this routine, the "p" parameter is a pointer to the outer query.
2978 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2979 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2980 **
2981 ** If flattening is not attempted, this routine is a no-op and returns 0.
2982 ** If flattening is attempted this routine returns 1.
2983 **
2984 ** All of the expression analysis must occur on both the outer query and
2985 ** the subquery before this routine runs.
2986 */
2987 static int flattenSubquery(
2988   Parse *pParse,       /* Parsing context */
2989   Select *p,           /* The parent or outer SELECT statement */
2990   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2991   int isAgg,           /* True if outer SELECT uses aggregate functions */
2992   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2993 ){
2994   const char *zSavedAuthContext = pParse->zAuthContext;
2995   Select *pParent;
2996   Select *pSub;       /* The inner query or "subquery" */
2997   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2998   SrcList *pSrc;      /* The FROM clause of the outer query */
2999   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3000   ExprList *pList;    /* The result set of the outer query */
3001   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3002   int i;              /* Loop counter */
3003   Expr *pWhere;                    /* The WHERE clause */
3004   struct SrcList_item *pSubitem;   /* The subquery */
3005   sqlite3 *db = pParse->db;
3006 
3007   /* Check to see if flattening is permitted.  Return 0 if not.
3008   */
3009   if( p==0 ) return 0;
3010   pSrc = p->pSrc;
3011   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3012   pSubitem = &pSrc->a[iFrom];
3013   iParent = pSubitem->iCursor;
3014   pSub = pSubitem->pSelect;
3015   assert( pSub!=0 );
3016   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3017   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3018   pSubSrc = pSub->pSrc;
3019   assert( pSubSrc );
3020   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3021   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
3022   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3023   ** became arbitrary expressions, we were forced to add restrictions (13)
3024   ** and (14). */
3025   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3026   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3027   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
3028     return 0;                                            /* Restriction (15) */
3029   }
3030   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3031   if( (pSub->isDistinct || pSub->pLimit)
3032          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
3033      return 0;
3034   }
3035   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
3036   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
3037      return 0;                                           /* Restriction (11) */
3038   }
3039   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3040 
3041   /* Restriction 3:  If the subquery is a join, make sure the subquery is
3042   ** not used as the right operand of an outer join.  Examples of why this
3043   ** is not allowed:
3044   **
3045   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3046   **
3047   ** If we flatten the above, we would get
3048   **
3049   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3050   **
3051   ** which is not at all the same thing.
3052   */
3053   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
3054     return 0;
3055   }
3056 
3057   /* Restriction 12:  If the subquery is the right operand of a left outer
3058   ** join, make sure the subquery has no WHERE clause.
3059   ** An examples of why this is not allowed:
3060   **
3061   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3062   **
3063   ** If we flatten the above, we would get
3064   **
3065   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3066   **
3067   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3068   ** effectively converts the OUTER JOIN into an INNER JOIN.
3069   */
3070   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
3071     return 0;
3072   }
3073 
3074   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3075   ** use only the UNION ALL operator. And none of the simple select queries
3076   ** that make up the compound SELECT are allowed to be aggregate or distinct
3077   ** queries.
3078   */
3079   if( pSub->pPrior ){
3080     if( p->pPrior || isAgg || p->isDistinct || pSrc->nSrc!=1 ){
3081       return 0;
3082     }
3083     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3084       if( pSub1->isAgg || pSub1->isDistinct
3085        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3086        || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
3087       ){
3088         return 0;
3089       }
3090     }
3091 
3092     /* Restriction 18. */
3093     if( p->pOrderBy ){
3094       int ii;
3095       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3096         Expr *pExpr = p->pOrderBy->a[ii].pExpr;
3097         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=iParent ){
3098           return 0;
3099         }
3100       }
3101     }
3102   }
3103 
3104   pParse->zAuthContext = pSubitem->zName;
3105   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3106   pParse->zAuthContext = zSavedAuthContext;
3107 
3108   /* If the sub-query is a compound SELECT statement, then it must be
3109   ** a UNION ALL and the parent query must be of the form:
3110   **
3111   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3112   **
3113   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3114   ** creates N copies of the parent query without any ORDER BY, LIMIT or
3115   ** OFFSET clauses and joins them to the left-hand-side of the original
3116   ** using UNION ALL operators. In this case N is the number of simple
3117   ** select statements in the compound sub-query.
3118   */
3119   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3120     Select *pNew;
3121     ExprList *pOrderBy = p->pOrderBy;
3122     Expr *pLimit = p->pLimit;
3123     Expr *pOffset = p->pOffset;
3124     Select *pPrior = p->pPrior;
3125     p->pOrderBy = 0;
3126     p->pSrc = 0;
3127     p->pPrior = 0;
3128     p->pLimit = 0;
3129     pNew = sqlite3SelectDup(db, p);
3130     pNew->pPrior = pPrior;
3131     p->pPrior = pNew;
3132     p->pOrderBy = pOrderBy;
3133     p->op = TK_ALL;
3134     p->pSrc = pSrc;
3135     p->pLimit = pLimit;
3136     p->pOffset = pOffset;
3137     p->pRightmost = 0;
3138     pNew->pRightmost = 0;
3139   }
3140 
3141   /* If we reach this point, it means flattening is permitted for the
3142   ** iFrom-th entry of the FROM clause in the outer query.
3143   */
3144   pSub = pSub1 = pSubitem->pSelect;
3145   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3146     int nSubSrc = pSubSrc->nSrc;
3147     int jointype = 0;
3148     pSubSrc = pSub->pSrc;
3149     pSrc = pParent->pSrc;
3150 
3151     /* Move all of the FROM elements of the subquery into the
3152     ** the FROM clause of the outer query.  Before doing this, remember
3153     ** the cursor number for the original outer query FROM element in
3154     ** iParent.  The iParent cursor will never be used.  Subsequent code
3155     ** will scan expressions looking for iParent references and replace
3156     ** those references with expressions that resolve to the subquery FROM
3157     ** elements we are now copying in.
3158     */
3159     if( pSrc ){
3160       pSubitem = &pSrc->a[iFrom];
3161       nSubSrc = pSubSrc->nSrc;
3162       jointype = pSubitem->jointype;
3163       sqlite3DeleteTable(pSubitem->pTab);
3164       sqlite3DbFree(db, pSubitem->zDatabase);
3165       sqlite3DbFree(db, pSubitem->zName);
3166       sqlite3DbFree(db, pSubitem->zAlias);
3167       pSubitem->pTab = 0;
3168       pSubitem->zDatabase = 0;
3169       pSubitem->zName = 0;
3170       pSubitem->zAlias = 0;
3171     }
3172     if( nSubSrc!=1 || !pSrc ){
3173       int extra = nSubSrc - 1;
3174       for(i=(pSrc?1:0); i<nSubSrc; i++){
3175         pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
3176         if( pSrc==0 ){
3177           pParent->pSrc = 0;
3178           return 1;
3179         }
3180       }
3181       pParent->pSrc = pSrc;
3182       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
3183         pSrc->a[i] = pSrc->a[i-extra];
3184       }
3185     }
3186     for(i=0; i<nSubSrc; i++){
3187       pSrc->a[i+iFrom] = pSubSrc->a[i];
3188       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3189     }
3190     pSrc->a[iFrom].jointype = jointype;
3191 
3192     /* Now begin substituting subquery result set expressions for
3193     ** references to the iParent in the outer query.
3194     **
3195     ** Example:
3196     **
3197     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3198     **   \                     \_____________ subquery __________/          /
3199     **    \_____________________ outer query ______________________________/
3200     **
3201     ** We look at every expression in the outer query and every place we see
3202     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3203     */
3204     pList = pParent->pEList;
3205     for(i=0; i<pList->nExpr; i++){
3206       Expr *pExpr;
3207       if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
3208         pList->a[i].zName =
3209                sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
3210       }
3211     }
3212     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3213     if( isAgg ){
3214       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3215       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3216     }
3217     if( pSub->pOrderBy ){
3218       assert( pParent->pOrderBy==0 );
3219       pParent->pOrderBy = pSub->pOrderBy;
3220       pSub->pOrderBy = 0;
3221     }else if( pParent->pOrderBy ){
3222       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3223     }
3224     if( pSub->pWhere ){
3225       pWhere = sqlite3ExprDup(db, pSub->pWhere);
3226     }else{
3227       pWhere = 0;
3228     }
3229     if( subqueryIsAgg ){
3230       assert( pParent->pHaving==0 );
3231       pParent->pHaving = pParent->pWhere;
3232       pParent->pWhere = pWhere;
3233       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3234       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3235                                   sqlite3ExprDup(db, pSub->pHaving));
3236       assert( pParent->pGroupBy==0 );
3237       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
3238     }else{
3239       substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3240       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3241     }
3242 
3243     /* The flattened query is distinct if either the inner or the
3244     ** outer query is distinct.
3245     */
3246     pParent->isDistinct = pParent->isDistinct || pSub->isDistinct;
3247 
3248     /*
3249     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3250     **
3251     ** One is tempted to try to add a and b to combine the limits.  But this
3252     ** does not work if either limit is negative.
3253     */
3254     if( pSub->pLimit ){
3255       pParent->pLimit = pSub->pLimit;
3256       pSub->pLimit = 0;
3257     }
3258   }
3259 
3260   /* Finially, delete what is left of the subquery and return
3261   ** success.
3262   */
3263   sqlite3SelectDelete(db, pSub1);
3264 
3265   return 1;
3266 }
3267 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3268 
3269 /*
3270 ** Analyze the SELECT statement passed as an argument to see if it
3271 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
3272 ** it is, or 0 otherwise. At present, a query is considered to be
3273 ** a min()/max() query if:
3274 **
3275 **   1. There is a single object in the FROM clause.
3276 **
3277 **   2. There is a single expression in the result set, and it is
3278 **      either min(x) or max(x), where x is a column reference.
3279 */
3280 static int minMaxQuery(Parse *pParse, Select *p){
3281   Expr *pExpr;
3282   ExprList *pEList = p->pEList;
3283 
3284   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
3285   pExpr = pEList->a[0].pExpr;
3286   pEList = pExpr->pList;
3287   if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
3288   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
3289   if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
3290   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
3291     return WHERE_ORDERBY_MIN;
3292   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
3293     return WHERE_ORDERBY_MAX;
3294   }
3295   return WHERE_ORDERBY_NORMAL;
3296 }
3297 
3298 /*
3299 ** This routine resolves any names used in the result set of the
3300 ** supplied SELECT statement. If the SELECT statement being resolved
3301 ** is a sub-select, then pOuterNC is a pointer to the NameContext
3302 ** of the parent SELECT.
3303 */
3304 int sqlite3SelectResolve(
3305   Parse *pParse,         /* The parser context */
3306   Select *p,             /* The SELECT statement being coded. */
3307   NameContext *pOuterNC  /* The outer name context. May be NULL. */
3308 ){
3309   ExprList *pEList;          /* Result set. */
3310   int i;                     /* For-loop variable used in multiple places */
3311   NameContext sNC;           /* Local name-context */
3312   ExprList *pGroupBy;        /* The group by clause */
3313 
3314   /* If this routine has run before, return immediately. */
3315   if( p->isResolved ){
3316     assert( !pOuterNC );
3317     return SQLITE_OK;
3318   }
3319   p->isResolved = 1;
3320 
3321   /* If there have already been errors, do nothing. */
3322   if( pParse->nErr>0 ){
3323     return SQLITE_ERROR;
3324   }
3325 
3326   /* Prepare the select statement. This call will allocate all cursors
3327   ** required to handle the tables and subqueries in the FROM clause.
3328   */
3329   if( prepSelectStmt(pParse, p) ){
3330     return SQLITE_ERROR;
3331   }
3332 
3333   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
3334   ** are not allowed to refer to any names, so pass an empty NameContext.
3335   */
3336   memset(&sNC, 0, sizeof(sNC));
3337   sNC.pParse = pParse;
3338   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
3339       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
3340     return SQLITE_ERROR;
3341   }
3342 
3343   /* Set up the local name-context to pass to ExprResolveNames() to
3344   ** resolve the expression-list.
3345   */
3346   sNC.allowAgg = 1;
3347   sNC.pSrcList = p->pSrc;
3348   sNC.pNext = pOuterNC;
3349 
3350   /* Resolve names in the result set. */
3351   pEList = p->pEList;
3352   if( !pEList ) return SQLITE_ERROR;
3353   for(i=0; i<pEList->nExpr; i++){
3354     Expr *pX = pEList->a[i].pExpr;
3355     if( sqlite3ExprResolveNames(&sNC, pX) ){
3356       return SQLITE_ERROR;
3357     }
3358   }
3359 
3360   /* If there are no aggregate functions in the result-set, and no GROUP BY
3361   ** expression, do not allow aggregates in any of the other expressions.
3362   */
3363   assert( !p->isAgg );
3364   pGroupBy = p->pGroupBy;
3365   if( pGroupBy || sNC.hasAgg ){
3366     p->isAgg = 1;
3367   }else{
3368     sNC.allowAgg = 0;
3369   }
3370 
3371   /* If a HAVING clause is present, then there must be a GROUP BY clause.
3372   */
3373   if( p->pHaving && !pGroupBy ){
3374     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
3375     return SQLITE_ERROR;
3376   }
3377 
3378   /* Add the expression list to the name-context before parsing the
3379   ** other expressions in the SELECT statement. This is so that
3380   ** expressions in the WHERE clause (etc.) can refer to expressions by
3381   ** aliases in the result set.
3382   **
3383   ** Minor point: If this is the case, then the expression will be
3384   ** re-evaluated for each reference to it.
3385   */
3386   sNC.pEList = p->pEList;
3387   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
3388      sqlite3ExprResolveNames(&sNC, p->pHaving) ){
3389     return SQLITE_ERROR;
3390   }
3391   if( p->pPrior==0 ){
3392     if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
3393       return SQLITE_ERROR;
3394     }
3395   }
3396   if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
3397     return SQLITE_ERROR;
3398   }
3399 
3400   if( pParse->db->mallocFailed ){
3401     return SQLITE_NOMEM;
3402   }
3403 
3404   /* Make sure the GROUP BY clause does not contain aggregate functions.
3405   */
3406   if( pGroupBy ){
3407     struct ExprList_item *pItem;
3408 
3409     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
3410       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
3411         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
3412             "the GROUP BY clause");
3413         return SQLITE_ERROR;
3414       }
3415     }
3416   }
3417 
3418   /* If this is one SELECT of a compound, be sure to resolve names
3419   ** in the other SELECTs.
3420   */
3421   if( p->pPrior ){
3422     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
3423   }else{
3424     return SQLITE_OK;
3425   }
3426 }
3427 
3428 /*
3429 ** Reset the aggregate accumulator.
3430 **
3431 ** The aggregate accumulator is a set of memory cells that hold
3432 ** intermediate results while calculating an aggregate.  This
3433 ** routine simply stores NULLs in all of those memory cells.
3434 */
3435 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3436   Vdbe *v = pParse->pVdbe;
3437   int i;
3438   struct AggInfo_func *pFunc;
3439   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3440     return;
3441   }
3442   for(i=0; i<pAggInfo->nColumn; i++){
3443     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3444   }
3445   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3446     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3447     if( pFunc->iDistinct>=0 ){
3448       Expr *pE = pFunc->pExpr;
3449       if( pE->pList==0 || pE->pList->nExpr!=1 ){
3450         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
3451            "by an expression");
3452         pFunc->iDistinct = -1;
3453       }else{
3454         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
3455         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3456                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3457       }
3458     }
3459   }
3460 }
3461 
3462 /*
3463 ** Invoke the OP_AggFinalize opcode for every aggregate function
3464 ** in the AggInfo structure.
3465 */
3466 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3467   Vdbe *v = pParse->pVdbe;
3468   int i;
3469   struct AggInfo_func *pF;
3470   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3471     ExprList *pList = pF->pExpr->pList;
3472     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3473                       (void*)pF->pFunc, P4_FUNCDEF);
3474   }
3475 }
3476 
3477 /*
3478 ** Update the accumulator memory cells for an aggregate based on
3479 ** the current cursor position.
3480 */
3481 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3482   Vdbe *v = pParse->pVdbe;
3483   int i;
3484   struct AggInfo_func *pF;
3485   struct AggInfo_col *pC;
3486 
3487   pAggInfo->directMode = 1;
3488   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3489     int nArg;
3490     int addrNext = 0;
3491     int regAgg;
3492     ExprList *pList = pF->pExpr->pList;
3493     if( pList ){
3494       nArg = pList->nExpr;
3495       regAgg = sqlite3GetTempRange(pParse, nArg);
3496       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3497     }else{
3498       nArg = 0;
3499       regAgg = 0;
3500     }
3501     if( pF->iDistinct>=0 ){
3502       addrNext = sqlite3VdbeMakeLabel(v);
3503       assert( nArg==1 );
3504       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3505     }
3506     if( pF->pFunc->needCollSeq ){
3507       CollSeq *pColl = 0;
3508       struct ExprList_item *pItem;
3509       int j;
3510       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
3511       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3512         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3513       }
3514       if( !pColl ){
3515         pColl = pParse->db->pDfltColl;
3516       }
3517       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3518     }
3519     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3520                       (void*)pF->pFunc, P4_FUNCDEF);
3521     sqlite3VdbeChangeP5(v, nArg);
3522     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3523     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3524     if( addrNext ){
3525       sqlite3VdbeResolveLabel(v, addrNext);
3526     }
3527   }
3528   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3529     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3530   }
3531   pAggInfo->directMode = 0;
3532 }
3533 
3534 /*
3535 ** Generate code for the given SELECT statement.
3536 **
3537 ** The results are distributed in various ways depending on the
3538 ** contents of the SelectDest structure pointed to by argument pDest
3539 ** as follows:
3540 **
3541 **     pDest->eDest    Result
3542 **     ------------    -------------------------------------------
3543 **     SRT_Callback    Invoke the callback for each row of the result.
3544 **
3545 **     SRT_Mem         Store first result in memory cell pDest->iParm
3546 **
3547 **     SRT_Set         Store results as keys of table pDest->iParm.
3548 **                     Apply the affinity pDest->affinity before storing them.
3549 **
3550 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3551 **
3552 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3553 **
3554 **     SRT_Table       Store results in temporary table pDest->iParm
3555 **
3556 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3557 **                     the result there. The cursor is left open after
3558 **                     returning.
3559 **
3560 **     SRT_Coroutine   Invoke a co-routine to compute a single row of
3561 **                     the result
3562 **
3563 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3564 **                     set is not empty.
3565 **
3566 **     SRT_Discard     Throw the results away.
3567 **
3568 ** See the selectInnerLoop() function for a canonical listing of the
3569 ** allowed values of eDest and their meanings.
3570 **
3571 ** This routine returns the number of errors.  If any errors are
3572 ** encountered, then an appropriate error message is left in
3573 ** pParse->zErrMsg.
3574 **
3575 ** This routine does NOT free the Select structure passed in.  The
3576 ** calling function needs to do that.
3577 **
3578 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
3579 ** SELECT is a subquery.  This routine may try to combine this SELECT
3580 ** with its parent to form a single flat query.  In so doing, it might
3581 ** change the parent query from a non-aggregate to an aggregate query.
3582 ** For that reason, the pParentAgg flag is passed as a pointer, so it
3583 ** can be changed.
3584 **
3585 ** Example 1:   The meaning of the pParent parameter.
3586 **
3587 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
3588 **    \                      \_______ subquery _______/        /
3589 **     \                                                      /
3590 **      \____________________ outer query ___________________/
3591 **
3592 ** This routine is called for the outer query first.   For that call,
3593 ** pParent will be NULL.  During the processing of the outer query, this
3594 ** routine is called recursively to handle the subquery.  For the recursive
3595 ** call, pParent will point to the outer query.  Because the subquery is
3596 ** the second element in a three-way join, the parentTab parameter will
3597 ** be 1 (the 2nd value of a 0-indexed array.)
3598 */
3599 int sqlite3Select(
3600   Parse *pParse,         /* The parser context */
3601   Select *p,             /* The SELECT statement being coded. */
3602   SelectDest *pDest,     /* What to do with the query results */
3603   Select *pParent,       /* Another SELECT for which this is a sub-query */
3604   int parentTab,         /* Index in pParent->pSrc of this query */
3605   int *pParentAgg        /* True if pParent uses aggregate functions */
3606 ){
3607   int i, j;              /* Loop counters */
3608   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3609   Vdbe *v;               /* The virtual machine under construction */
3610   int isAgg;             /* True for select lists like "count(*)" */
3611   ExprList *pEList;      /* List of columns to extract. */
3612   SrcList *pTabList;     /* List of tables to select from */
3613   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3614   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3615   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3616   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3617   int isDistinct;        /* True if the DISTINCT keyword is present */
3618   int distinct;          /* Table to use for the distinct set */
3619   int rc = 1;            /* Value to return from this function */
3620   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3621   AggInfo sAggInfo;      /* Information used by aggregate queries */
3622   int iEnd;              /* Address of the end of the query */
3623   sqlite3 *db;           /* The database connection */
3624 
3625   db = pParse->db;
3626   if( p==0 || db->mallocFailed || pParse->nErr ){
3627     return 1;
3628   }
3629   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3630   memset(&sAggInfo, 0, sizeof(sAggInfo));
3631 
3632   pOrderBy = p->pOrderBy;
3633   if( IgnorableOrderby(pDest) ){
3634     p->pOrderBy = 0;
3635 
3636     /* In these cases the DISTINCT operator makes no difference to the
3637     ** results, so remove it if it were specified.
3638     */
3639     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3640            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3641     p->isDistinct = 0;
3642   }
3643   if( sqlite3SelectResolve(pParse, p, 0) ){
3644     goto select_end;
3645   }
3646   p->pOrderBy = pOrderBy;
3647 
3648 
3649   /* Make local copies of the parameters for this query.
3650   */
3651   pTabList = p->pSrc;
3652   isAgg = p->isAgg;
3653   pEList = p->pEList;
3654   if( pEList==0 ) goto select_end;
3655 
3656   /*
3657   ** Do not even attempt to generate any code if we have already seen
3658   ** errors before this routine starts.
3659   */
3660   if( pParse->nErr>0 ) goto select_end;
3661 
3662   /* ORDER BY is ignored for some destinations.
3663   */
3664   if( IgnorableOrderby(pDest) ){
3665     pOrderBy = 0;
3666   }
3667 
3668   /* Begin generating code.
3669   */
3670   v = sqlite3GetVdbe(pParse);
3671   if( v==0 ) goto select_end;
3672 
3673   /* Generate code for all sub-queries in the FROM clause
3674   */
3675 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3676   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3677     struct SrcList_item *pItem = &pTabList->a[i];
3678     SelectDest dest;
3679     Select *pSub = pItem->pSelect;
3680     int isAggSub;
3681     char *zName = pItem->zName;
3682 
3683     if( pSub==0 || pItem->isPopulated ) continue;
3684     if( zName!=0 ){   /* An sql view */
3685       const char *zSavedAuthContext = pParse->zAuthContext;
3686       pParse->zAuthContext = zName;
3687       rc = sqlite3SelectResolve(pParse, pSub, 0);
3688       pParse->zAuthContext = zSavedAuthContext;
3689       if( rc ){
3690         goto select_end;
3691       }
3692     }
3693 
3694     /* Increment Parse.nHeight by the height of the largest expression
3695     ** tree refered to by this, the parent select. The child select
3696     ** may contain expression trees of at most
3697     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3698     ** more conservative than necessary, but much easier than enforcing
3699     ** an exact limit.
3700     */
3701     pParse->nHeight += sqlite3SelectExprHeight(p);
3702 
3703     /* Check to see if the subquery can be absorbed into the parent. */
3704     isAggSub = pSub->isAgg;
3705     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3706       if( isAggSub ){
3707         p->isAgg = isAgg = 1;
3708       }
3709       i = -1;
3710     }else{
3711       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3712       sqlite3Select(pParse, pSub, &dest, p, i, &isAgg);
3713     }
3714     if( pParse->nErr || db->mallocFailed ){
3715       goto select_end;
3716     }
3717     pParse->nHeight -= sqlite3SelectExprHeight(p);
3718     pTabList = p->pSrc;
3719     if( !IgnorableOrderby(pDest) ){
3720       pOrderBy = p->pOrderBy;
3721     }
3722   }
3723   pEList = p->pEList;
3724 #endif
3725   pWhere = p->pWhere;
3726   pGroupBy = p->pGroupBy;
3727   pHaving = p->pHaving;
3728   isDistinct = p->isDistinct;
3729 
3730 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3731   /* If there is are a sequence of queries, do the earlier ones first.
3732   */
3733   if( p->pPrior ){
3734     if( p->pRightmost==0 ){
3735       Select *pLoop, *pRight = 0;
3736       int cnt = 0;
3737       int mxSelect;
3738       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3739         pLoop->pRightmost = p;
3740         pLoop->pNext = pRight;
3741         pRight = pLoop;
3742       }
3743       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3744       if( mxSelect && cnt>mxSelect ){
3745         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3746         return 1;
3747       }
3748     }
3749     return multiSelect(pParse, p, pDest);
3750   }
3751 #endif
3752 
3753   /* If writing to memory or generating a set
3754   ** only a single column may be output.
3755   */
3756 #ifndef SQLITE_OMIT_SUBQUERY
3757   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3758     goto select_end;
3759   }
3760 #endif
3761 
3762   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3763   ** GROUP BY may use an index, DISTINCT never does.
3764   */
3765   if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
3766     p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
3767     pGroupBy = p->pGroupBy;
3768     p->isDistinct = 0;
3769     isDistinct = 0;
3770   }
3771 
3772   /* If there is an ORDER BY clause, then this sorting
3773   ** index might end up being unused if the data can be
3774   ** extracted in pre-sorted order.  If that is the case, then the
3775   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3776   ** we figure out that the sorting index is not needed.  The addrSortIndex
3777   ** variable is used to facilitate that change.
3778   */
3779   if( pOrderBy ){
3780     KeyInfo *pKeyInfo;
3781     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3782     pOrderBy->iECursor = pParse->nTab++;
3783     p->addrOpenEphm[2] = addrSortIndex =
3784       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3785                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3786                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3787   }else{
3788     addrSortIndex = -1;
3789   }
3790 
3791   /* If the output is destined for a temporary table, open that table.
3792   */
3793   if( pDest->eDest==SRT_EphemTab ){
3794     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3795   }
3796 
3797   /* Set the limiter.
3798   */
3799   iEnd = sqlite3VdbeMakeLabel(v);
3800   computeLimitRegisters(pParse, p, iEnd);
3801 
3802   /* Open a virtual index to use for the distinct set.
3803   */
3804   if( isDistinct ){
3805     KeyInfo *pKeyInfo;
3806     assert( isAgg || pGroupBy );
3807     distinct = pParse->nTab++;
3808     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3809     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3810                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3811   }else{
3812     distinct = -1;
3813   }
3814 
3815   /* Aggregate and non-aggregate queries are handled differently */
3816   if( !isAgg && pGroupBy==0 ){
3817     /* This case is for non-aggregate queries
3818     ** Begin the database scan
3819     */
3820     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3821     if( pWInfo==0 ) goto select_end;
3822 
3823     /* If sorting index that was created by a prior OP_OpenEphemeral
3824     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3825     ** into an OP_Noop.
3826     */
3827     if( addrSortIndex>=0 && pOrderBy==0 ){
3828       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3829       p->addrOpenEphm[2] = -1;
3830     }
3831 
3832     /* Use the standard inner loop
3833     */
3834     assert(!isDistinct);
3835     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3836                     pWInfo->iContinue, pWInfo->iBreak);
3837 
3838     /* End the database scan loop.
3839     */
3840     sqlite3WhereEnd(pWInfo);
3841   }else{
3842     /* This is the processing for aggregate queries */
3843     NameContext sNC;    /* Name context for processing aggregate information */
3844     int iAMem;          /* First Mem address for storing current GROUP BY */
3845     int iBMem;          /* First Mem address for previous GROUP BY */
3846     int iUseFlag;       /* Mem address holding flag indicating that at least
3847                         ** one row of the input to the aggregator has been
3848                         ** processed */
3849     int iAbortFlag;     /* Mem address which causes query abort if positive */
3850     int groupBySort;    /* Rows come from source in GROUP BY order */
3851 
3852 
3853     /* The following variables hold addresses or labels for parts of the
3854     ** virtual machine program we are putting together */
3855     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3856     int regOutputRow;       /* Return address register for output subroutine */
3857     int addrSetAbort;       /* Set the abort flag and return */
3858     int addrInitializeLoop; /* Start of code that initializes the input loop */
3859     int addrTopOfLoop;      /* Top of the input loop */
3860     int addrEnd;            /* End of all processing */
3861     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3862     int addrReset;          /* Subroutine for resetting the accumulator */
3863     int regReset;           /* Return address register for reset subroutine */
3864 
3865     addrEnd = sqlite3VdbeMakeLabel(v);
3866 
3867     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3868     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3869     ** SELECT statement.
3870     */
3871     memset(&sNC, 0, sizeof(sNC));
3872     sNC.pParse = pParse;
3873     sNC.pSrcList = pTabList;
3874     sNC.pAggInfo = &sAggInfo;
3875     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3876     sAggInfo.pGroupBy = pGroupBy;
3877     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3878     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3879     if( pHaving ){
3880       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3881     }
3882     sAggInfo.nAccumulator = sAggInfo.nColumn;
3883     for(i=0; i<sAggInfo.nFunc; i++){
3884       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
3885     }
3886     if( db->mallocFailed ) goto select_end;
3887 
3888     /* Processing for aggregates with GROUP BY is very different and
3889     ** much more complex than aggregates without a GROUP BY.
3890     */
3891     if( pGroupBy ){
3892       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3893       int j1;
3894 
3895       /* Create labels that we will be needing
3896       */
3897       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3898 
3899       /* If there is a GROUP BY clause we might need a sorting index to
3900       ** implement it.  Allocate that sorting index now.  If it turns out
3901       ** that we do not need it after all, the OpenEphemeral instruction
3902       ** will be converted into a Noop.
3903       */
3904       sAggInfo.sortingIdx = pParse->nTab++;
3905       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3906       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3907           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3908           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3909 
3910       /* Initialize memory locations used by GROUP BY aggregate processing
3911       */
3912       iUseFlag = ++pParse->nMem;
3913       iAbortFlag = ++pParse->nMem;
3914       iAMem = pParse->nMem + 1;
3915       pParse->nMem += pGroupBy->nExpr;
3916       iBMem = pParse->nMem + 1;
3917       pParse->nMem += pGroupBy->nExpr;
3918       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3919       VdbeComment((v, "clear abort flag"));
3920       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3921       VdbeComment((v, "indicate accumulator empty"));
3922       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);
3923 
3924       /* Generate a subroutine that outputs a single row of the result
3925       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3926       ** is less than or equal to zero, the subroutine is a no-op.  If
3927       ** the processing calls for the query to abort, this subroutine
3928       ** increments the iAbortFlag memory location before returning in
3929       ** order to signal the caller to abort.
3930       */
3931       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3932       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
3933       VdbeComment((v, "set abort flag"));
3934       regOutputRow = ++pParse->nMem;
3935       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3936       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3937       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
3938       VdbeComment((v, "Groupby result generator entry point"));
3939       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3940       finalizeAggFunctions(pParse, &sAggInfo);
3941       if( pHaving ){
3942         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
3943       }
3944       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3945                       distinct, pDest,
3946                       addrOutputRow+1, addrSetAbort);
3947       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
3948       VdbeComment((v, "end groupby result generator"));
3949 
3950       /* Generate a subroutine that will reset the group-by accumulator
3951       */
3952       addrReset = sqlite3VdbeCurrentAddr(v);
3953       regReset = ++pParse->nMem;
3954       resetAccumulator(pParse, &sAggInfo);
3955       sqlite3VdbeAddOp1(v, OP_Return, regReset);
3956 
3957       /* Begin a loop that will extract all source rows in GROUP BY order.
3958       ** This might involve two separate loops with an OP_Sort in between, or
3959       ** it might be a single loop that uses an index to extract information
3960       ** in the right order to begin with.
3961       */
3962       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3963       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3964       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3965       if( pWInfo==0 ) goto select_end;
3966       if( pGroupBy==0 ){
3967         /* The optimizer is able to deliver rows in group by order so
3968         ** we do not have to sort.  The OP_OpenEphemeral table will be
3969         ** cancelled later because we still need to use the pKeyInfo
3970         */
3971         pGroupBy = p->pGroupBy;
3972         groupBySort = 0;
3973       }else{
3974         /* Rows are coming out in undetermined order.  We have to push
3975         ** each row into a sorting index, terminate the first loop,
3976         ** then loop over the sorting index in order to get the output
3977         ** in sorted order
3978         */
3979         int regBase;
3980         int regRecord;
3981         int nCol;
3982         int nGroupBy;
3983 
3984         groupBySort = 1;
3985         nGroupBy = pGroupBy->nExpr;
3986         nCol = nGroupBy + 1;
3987         j = nGroupBy+1;
3988         for(i=0; i<sAggInfo.nColumn; i++){
3989           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3990             nCol++;
3991             j++;
3992           }
3993         }
3994         regBase = sqlite3GetTempRange(pParse, nCol);
3995         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3996         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3997         j = nGroupBy+1;
3998         for(i=0; i<sAggInfo.nColumn; i++){
3999           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
4000           if( pCol->iSorterColumn>=j ){
4001             int r1 = j + regBase;
4002             int r2 = sqlite3ExprCodeGetColumn(pParse,
4003                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
4004             if( r1!=r2 ){
4005               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
4006             }
4007             j++;
4008           }
4009         }
4010         regRecord = sqlite3GetTempReg(pParse);
4011         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
4012         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
4013         sqlite3ReleaseTempReg(pParse, regRecord);
4014         sqlite3ReleaseTempRange(pParse, regBase, nCol);
4015         sqlite3WhereEnd(pWInfo);
4016         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
4017         VdbeComment((v, "GROUP BY sort"));
4018         sAggInfo.useSortingIdx = 1;
4019       }
4020 
4021       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
4022       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
4023       ** Then compare the current GROUP BY terms against the GROUP BY terms
4024       ** from the previous row currently stored in a0, a1, a2...
4025       */
4026       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
4027       for(j=0; j<pGroupBy->nExpr; j++){
4028         if( groupBySort ){
4029           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
4030         }else{
4031           sAggInfo.directMode = 1;
4032           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
4033         }
4034       }
4035       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
4036                           (char*)pKeyInfo, P4_KEYINFO);
4037       j1 = sqlite3VdbeCurrentAddr(v);
4038       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
4039 
4040       /* Generate code that runs whenever the GROUP BY changes.
4041       ** Changes in the GROUP BY are detected by the previous code
4042       ** block.  If there were no changes, this block is skipped.
4043       **
4044       ** This code copies current group by terms in b0,b1,b2,...
4045       ** over to a0,a1,a2.  It then calls the output subroutine
4046       ** and resets the aggregate accumulator registers in preparation
4047       ** for the next GROUP BY batch.
4048       */
4049       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
4050       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4051       VdbeComment((v, "output one row"));
4052       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
4053       VdbeComment((v, "check abort flag"));
4054       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4055       VdbeComment((v, "reset accumulator"));
4056 
4057       /* Update the aggregate accumulators based on the content of
4058       ** the current row
4059       */
4060       sqlite3VdbeJumpHere(v, j1);
4061       updateAccumulator(pParse, &sAggInfo);
4062       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4063       VdbeComment((v, "indicate data in accumulator"));
4064 
4065       /* End of the loop
4066       */
4067       if( groupBySort ){
4068         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
4069       }else{
4070         sqlite3WhereEnd(pWInfo);
4071         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
4072       }
4073 
4074       /* Output the final row of result
4075       */
4076       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4077       VdbeComment((v, "output final row"));
4078 
4079     } /* endif pGroupBy */
4080     else {
4081       ExprList *pMinMax = 0;
4082       ExprList *pDel = 0;
4083       u8 flag;
4084 
4085       /* Check if the query is of one of the following forms:
4086       **
4087       **   SELECT min(x) FROM ...
4088       **   SELECT max(x) FROM ...
4089       **
4090       ** If it is, then ask the code in where.c to attempt to sort results
4091       ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4092       ** If where.c is able to produce results sorted in this order, then
4093       ** add vdbe code to break out of the processing loop after the
4094       ** first iteration (since the first iteration of the loop is
4095       ** guaranteed to operate on the row with the minimum or maximum
4096       ** value of x, the only row required).
4097       **
4098       ** A special flag must be passed to sqlite3WhereBegin() to slightly
4099       ** modify behaviour as follows:
4100       **
4101       **   + If the query is a "SELECT min(x)", then the loop coded by
4102       **     where.c should not iterate over any values with a NULL value
4103       **     for x.
4104       **
4105       **   + The optimizer code in where.c (the thing that decides which
4106       **     index or indices to use) should place a different priority on
4107       **     satisfying the 'ORDER BY' clause than it does in other cases.
4108       **     Refer to code and comments in where.c for details.
4109       */
4110       flag = minMaxQuery(pParse, p);
4111       if( flag ){
4112         pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
4113         if( pMinMax && !db->mallocFailed ){
4114           pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
4115           pMinMax->a[0].pExpr->op = TK_COLUMN;
4116         }
4117       }
4118 
4119       /* This case runs if the aggregate has no GROUP BY clause.  The
4120       ** processing is much simpler since there is only a single row
4121       ** of output.
4122       */
4123       resetAccumulator(pParse, &sAggInfo);
4124       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4125       if( pWInfo==0 ){
4126         sqlite3ExprListDelete(db, pDel);
4127         goto select_end;
4128       }
4129       updateAccumulator(pParse, &sAggInfo);
4130       if( !pMinMax && flag ){
4131         sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4132         VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
4133       }
4134       sqlite3WhereEnd(pWInfo);
4135       finalizeAggFunctions(pParse, &sAggInfo);
4136       pOrderBy = 0;
4137       if( pHaving ){
4138         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4139       }
4140       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4141                       pDest, addrEnd, addrEnd);
4142 
4143       sqlite3ExprListDelete(db, pDel);
4144     }
4145     sqlite3VdbeResolveLabel(v, addrEnd);
4146 
4147   } /* endif aggregate query */
4148 
4149   /* If there is an ORDER BY clause, then we need to sort the results
4150   ** and send them to the callback one by one.
4151   */
4152   if( pOrderBy ){
4153     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4154   }
4155 
4156 #ifndef SQLITE_OMIT_SUBQUERY
4157   /* If this was a subquery, we have now converted the subquery into a
4158   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
4159   ** this subquery from being evaluated again and to force the use of
4160   ** the temporary table.
4161   */
4162   if( pParent ){
4163     assert( pParent->pSrc->nSrc>parentTab );
4164     assert( pParent->pSrc->a[parentTab].pSelect==p );
4165     pParent->pSrc->a[parentTab].isPopulated = 1;
4166   }
4167 #endif
4168 
4169   /* Jump here to skip this query
4170   */
4171   sqlite3VdbeResolveLabel(v, iEnd);
4172 
4173   /* The SELECT was successfully coded.   Set the return code to 0
4174   ** to indicate no errors.
4175   */
4176   rc = 0;
4177 
4178   /* Control jumps to here if an error is encountered above, or upon
4179   ** successful coding of the SELECT.
4180   */
4181 select_end:
4182 
4183   /* Identify column names if we will be using them in a callback.  This
4184   ** step is skipped if the output is going to some other destination.
4185   */
4186   if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){
4187     generateColumnNames(pParse, pTabList, pEList);
4188   }
4189 
4190   sqlite3DbFree(db, sAggInfo.aCol);
4191   sqlite3DbFree(db, sAggInfo.aFunc);
4192   return rc;
4193 }
4194 
4195 #if defined(SQLITE_DEBUG)
4196 /*
4197 *******************************************************************************
4198 ** The following code is used for testing and debugging only.  The code
4199 ** that follows does not appear in normal builds.
4200 **
4201 ** These routines are used to print out the content of all or part of a
4202 ** parse structures such as Select or Expr.  Such printouts are useful
4203 ** for helping to understand what is happening inside the code generator
4204 ** during the execution of complex SELECT statements.
4205 **
4206 ** These routine are not called anywhere from within the normal
4207 ** code base.  Then are intended to be called from within the debugger
4208 ** or from temporary "printf" statements inserted for debugging.
4209 */
4210 void sqlite3PrintExpr(Expr *p){
4211   if( p->token.z && p->token.n>0 ){
4212     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
4213   }else{
4214     sqlite3DebugPrintf("(%d", p->op);
4215   }
4216   if( p->pLeft ){
4217     sqlite3DebugPrintf(" ");
4218     sqlite3PrintExpr(p->pLeft);
4219   }
4220   if( p->pRight ){
4221     sqlite3DebugPrintf(" ");
4222     sqlite3PrintExpr(p->pRight);
4223   }
4224   sqlite3DebugPrintf(")");
4225 }
4226 void sqlite3PrintExprList(ExprList *pList){
4227   int i;
4228   for(i=0; i<pList->nExpr; i++){
4229     sqlite3PrintExpr(pList->a[i].pExpr);
4230     if( i<pList->nExpr-1 ){
4231       sqlite3DebugPrintf(", ");
4232     }
4233   }
4234 }
4235 void sqlite3PrintSelect(Select *p, int indent){
4236   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4237   sqlite3PrintExprList(p->pEList);
4238   sqlite3DebugPrintf("\n");
4239   if( p->pSrc ){
4240     char *zPrefix;
4241     int i;
4242     zPrefix = "FROM";
4243     for(i=0; i<p->pSrc->nSrc; i++){
4244       struct SrcList_item *pItem = &p->pSrc->a[i];
4245       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4246       zPrefix = "";
4247       if( pItem->pSelect ){
4248         sqlite3DebugPrintf("(\n");
4249         sqlite3PrintSelect(pItem->pSelect, indent+10);
4250         sqlite3DebugPrintf("%*s)", indent+8, "");
4251       }else if( pItem->zName ){
4252         sqlite3DebugPrintf("%s", pItem->zName);
4253       }
4254       if( pItem->pTab ){
4255         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4256       }
4257       if( pItem->zAlias ){
4258         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4259       }
4260       if( i<p->pSrc->nSrc-1 ){
4261         sqlite3DebugPrintf(",");
4262       }
4263       sqlite3DebugPrintf("\n");
4264     }
4265   }
4266   if( p->pWhere ){
4267     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4268     sqlite3PrintExpr(p->pWhere);
4269     sqlite3DebugPrintf("\n");
4270   }
4271   if( p->pGroupBy ){
4272     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4273     sqlite3PrintExprList(p->pGroupBy);
4274     sqlite3DebugPrintf("\n");
4275   }
4276   if( p->pHaving ){
4277     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4278     sqlite3PrintExpr(p->pHaving);
4279     sqlite3DebugPrintf("\n");
4280   }
4281   if( p->pOrderBy ){
4282     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4283     sqlite3PrintExprList(p->pOrderBy);
4284     sqlite3DebugPrintf("\n");
4285   }
4286 }
4287 /* End of the structure debug printing code
4288 *****************************************************************************/
4289 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4290