1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 #ifndef SQLITE_OMIT_WINDOWFUNC 89 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 90 sqlite3WindowListDelete(db, p->pWinDefn); 91 } 92 #endif 93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 94 if( bFree ) sqlite3DbFreeNN(db, p); 95 p = pPrior; 96 bFree = 1; 97 } 98 } 99 100 /* 101 ** Initialize a SelectDest structure. 102 */ 103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 104 pDest->eDest = (u8)eDest; 105 pDest->iSDParm = iParm; 106 pDest->zAffSdst = 0; 107 pDest->iSdst = 0; 108 pDest->nSdst = 0; 109 } 110 111 112 /* 113 ** Allocate a new Select structure and return a pointer to that 114 ** structure. 115 */ 116 Select *sqlite3SelectNew( 117 Parse *pParse, /* Parsing context */ 118 ExprList *pEList, /* which columns to include in the result */ 119 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 120 Expr *pWhere, /* the WHERE clause */ 121 ExprList *pGroupBy, /* the GROUP BY clause */ 122 Expr *pHaving, /* the HAVING clause */ 123 ExprList *pOrderBy, /* the ORDER BY clause */ 124 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 125 Expr *pLimit /* LIMIT value. NULL means not used */ 126 ){ 127 Select *pNew, *pAllocated; 128 Select standin; 129 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 130 if( pNew==0 ){ 131 assert( pParse->db->mallocFailed ); 132 pNew = &standin; 133 } 134 if( pEList==0 ){ 135 pEList = sqlite3ExprListAppend(pParse, 0, 136 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 137 } 138 pNew->pEList = pEList; 139 pNew->op = TK_SELECT; 140 pNew->selFlags = selFlags; 141 pNew->iLimit = 0; 142 pNew->iOffset = 0; 143 pNew->selId = ++pParse->nSelect; 144 pNew->addrOpenEphm[0] = -1; 145 pNew->addrOpenEphm[1] = -1; 146 pNew->nSelectRow = 0; 147 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 148 pNew->pSrc = pSrc; 149 pNew->pWhere = pWhere; 150 pNew->pGroupBy = pGroupBy; 151 pNew->pHaving = pHaving; 152 pNew->pOrderBy = pOrderBy; 153 pNew->pPrior = 0; 154 pNew->pNext = 0; 155 pNew->pLimit = pLimit; 156 pNew->pWith = 0; 157 #ifndef SQLITE_OMIT_WINDOWFUNC 158 pNew->pWin = 0; 159 pNew->pWinDefn = 0; 160 #endif 161 if( pParse->db->mallocFailed ) { 162 clearSelect(pParse->db, pNew, pNew!=&standin); 163 pAllocated = 0; 164 }else{ 165 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 166 } 167 return pAllocated; 168 } 169 170 171 /* 172 ** Delete the given Select structure and all of its substructures. 173 */ 174 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 175 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 176 } 177 178 /* 179 ** Delete all the substructure for p, but keep p allocated. Redefine 180 ** p to be a single SELECT where every column of the result set has a 181 ** value of NULL. 182 */ 183 void sqlite3SelectReset(Parse *pParse, Select *p){ 184 if( ALWAYS(p) ){ 185 clearSelect(pParse->db, p, 0); 186 memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit)); 187 p->pEList = sqlite3ExprListAppend(pParse, 0, 188 sqlite3ExprAlloc(pParse->db,TK_NULL,0,0)); 189 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList)); 190 } 191 } 192 193 /* 194 ** Return a pointer to the right-most SELECT statement in a compound. 195 */ 196 static Select *findRightmost(Select *p){ 197 while( p->pNext ) p = p->pNext; 198 return p; 199 } 200 201 /* 202 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 203 ** type of join. Return an integer constant that expresses that type 204 ** in terms of the following bit values: 205 ** 206 ** JT_INNER 207 ** JT_CROSS 208 ** JT_OUTER 209 ** JT_NATURAL 210 ** JT_LEFT 211 ** JT_RIGHT 212 ** 213 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 214 ** 215 ** If an illegal or unsupported join type is seen, then still return 216 ** a join type, but put an error in the pParse structure. 217 */ 218 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 219 int jointype = 0; 220 Token *apAll[3]; 221 Token *p; 222 /* 0123456789 123456789 123456789 123 */ 223 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 224 static const struct { 225 u8 i; /* Beginning of keyword text in zKeyText[] */ 226 u8 nChar; /* Length of the keyword in characters */ 227 u8 code; /* Join type mask */ 228 } aKeyword[] = { 229 /* natural */ { 0, 7, JT_NATURAL }, 230 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 231 /* outer */ { 10, 5, JT_OUTER }, 232 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 233 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 234 /* inner */ { 23, 5, JT_INNER }, 235 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 236 }; 237 int i, j; 238 apAll[0] = pA; 239 apAll[1] = pB; 240 apAll[2] = pC; 241 for(i=0; i<3 && apAll[i]; i++){ 242 p = apAll[i]; 243 for(j=0; j<ArraySize(aKeyword); j++){ 244 if( p->n==aKeyword[j].nChar 245 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 246 jointype |= aKeyword[j].code; 247 break; 248 } 249 } 250 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 251 if( j>=ArraySize(aKeyword) ){ 252 jointype |= JT_ERROR; 253 break; 254 } 255 } 256 if( 257 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 258 (jointype & JT_ERROR)!=0 259 ){ 260 const char *zSp = " "; 261 assert( pB!=0 ); 262 if( pC==0 ){ zSp++; } 263 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 264 "%T %T%s%T", pA, pB, zSp, pC); 265 jointype = JT_INNER; 266 }else if( (jointype & JT_OUTER)!=0 267 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 268 sqlite3ErrorMsg(pParse, 269 "RIGHT and FULL OUTER JOINs are not currently supported"); 270 jointype = JT_INNER; 271 } 272 return jointype; 273 } 274 275 /* 276 ** Return the index of a column in a table. Return -1 if the column 277 ** is not contained in the table. 278 */ 279 static int columnIndex(Table *pTab, const char *zCol){ 280 int i; 281 for(i=0; i<pTab->nCol; i++){ 282 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 283 } 284 return -1; 285 } 286 287 /* 288 ** Search the first N tables in pSrc, from left to right, looking for a 289 ** table that has a column named zCol. 290 ** 291 ** When found, set *piTab and *piCol to the table index and column index 292 ** of the matching column and return TRUE. 293 ** 294 ** If not found, return FALSE. 295 */ 296 static int tableAndColumnIndex( 297 SrcList *pSrc, /* Array of tables to search */ 298 int N, /* Number of tables in pSrc->a[] to search */ 299 const char *zCol, /* Name of the column we are looking for */ 300 int *piTab, /* Write index of pSrc->a[] here */ 301 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 302 int bIgnoreHidden /* True to ignore hidden columns */ 303 ){ 304 int i; /* For looping over tables in pSrc */ 305 int iCol; /* Index of column matching zCol */ 306 307 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 308 for(i=0; i<N; i++){ 309 iCol = columnIndex(pSrc->a[i].pTab, zCol); 310 if( iCol>=0 311 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 312 ){ 313 if( piTab ){ 314 *piTab = i; 315 *piCol = iCol; 316 } 317 return 1; 318 } 319 } 320 return 0; 321 } 322 323 /* 324 ** This function is used to add terms implied by JOIN syntax to the 325 ** WHERE clause expression of a SELECT statement. The new term, which 326 ** is ANDed with the existing WHERE clause, is of the form: 327 ** 328 ** (tab1.col1 = tab2.col2) 329 ** 330 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 331 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 332 ** column iColRight of tab2. 333 */ 334 static void addWhereTerm( 335 Parse *pParse, /* Parsing context */ 336 SrcList *pSrc, /* List of tables in FROM clause */ 337 int iLeft, /* Index of first table to join in pSrc */ 338 int iColLeft, /* Index of column in first table */ 339 int iRight, /* Index of second table in pSrc */ 340 int iColRight, /* Index of column in second table */ 341 int isOuterJoin, /* True if this is an OUTER join */ 342 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 343 ){ 344 sqlite3 *db = pParse->db; 345 Expr *pE1; 346 Expr *pE2; 347 Expr *pEq; 348 349 assert( iLeft<iRight ); 350 assert( pSrc->nSrc>iRight ); 351 assert( pSrc->a[iLeft].pTab ); 352 assert( pSrc->a[iRight].pTab ); 353 354 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 355 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 356 357 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 358 if( pEq && isOuterJoin ){ 359 ExprSetProperty(pEq, EP_FromJoin); 360 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 361 ExprSetVVAProperty(pEq, EP_NoReduce); 362 pEq->iRightJoinTable = (i16)pE2->iTable; 363 } 364 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 365 } 366 367 /* 368 ** Set the EP_FromJoin property on all terms of the given expression. 369 ** And set the Expr.iRightJoinTable to iTable for every term in the 370 ** expression. 371 ** 372 ** The EP_FromJoin property is used on terms of an expression to tell 373 ** the LEFT OUTER JOIN processing logic that this term is part of the 374 ** join restriction specified in the ON or USING clause and not a part 375 ** of the more general WHERE clause. These terms are moved over to the 376 ** WHERE clause during join processing but we need to remember that they 377 ** originated in the ON or USING clause. 378 ** 379 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 380 ** expression depends on table iRightJoinTable even if that table is not 381 ** explicitly mentioned in the expression. That information is needed 382 ** for cases like this: 383 ** 384 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 385 ** 386 ** The where clause needs to defer the handling of the t1.x=5 387 ** term until after the t2 loop of the join. In that way, a 388 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 389 ** defer the handling of t1.x=5, it will be processed immediately 390 ** after the t1 loop and rows with t1.x!=5 will never appear in 391 ** the output, which is incorrect. 392 */ 393 void sqlite3SetJoinExpr(Expr *p, int iTable){ 394 while( p ){ 395 ExprSetProperty(p, EP_FromJoin); 396 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 397 ExprSetVVAProperty(p, EP_NoReduce); 398 p->iRightJoinTable = (i16)iTable; 399 if( p->op==TK_FUNCTION && p->x.pList ){ 400 int i; 401 for(i=0; i<p->x.pList->nExpr; i++){ 402 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 403 } 404 } 405 sqlite3SetJoinExpr(p->pLeft, iTable); 406 p = p->pRight; 407 } 408 } 409 410 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 411 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 412 ** an ordinary term that omits the EP_FromJoin mark. 413 ** 414 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 415 */ 416 static void unsetJoinExpr(Expr *p, int iTable){ 417 while( p ){ 418 if( ExprHasProperty(p, EP_FromJoin) 419 && (iTable<0 || p->iRightJoinTable==iTable) ){ 420 ExprClearProperty(p, EP_FromJoin); 421 } 422 if( p->op==TK_FUNCTION && p->x.pList ){ 423 int i; 424 for(i=0; i<p->x.pList->nExpr; i++){ 425 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 426 } 427 } 428 unsetJoinExpr(p->pLeft, iTable); 429 p = p->pRight; 430 } 431 } 432 433 /* 434 ** This routine processes the join information for a SELECT statement. 435 ** ON and USING clauses are converted into extra terms of the WHERE clause. 436 ** NATURAL joins also create extra WHERE clause terms. 437 ** 438 ** The terms of a FROM clause are contained in the Select.pSrc structure. 439 ** The left most table is the first entry in Select.pSrc. The right-most 440 ** table is the last entry. The join operator is held in the entry to 441 ** the left. Thus entry 0 contains the join operator for the join between 442 ** entries 0 and 1. Any ON or USING clauses associated with the join are 443 ** also attached to the left entry. 444 ** 445 ** This routine returns the number of errors encountered. 446 */ 447 static int sqliteProcessJoin(Parse *pParse, Select *p){ 448 SrcList *pSrc; /* All tables in the FROM clause */ 449 int i, j; /* Loop counters */ 450 struct SrcList_item *pLeft; /* Left table being joined */ 451 struct SrcList_item *pRight; /* Right table being joined */ 452 453 pSrc = p->pSrc; 454 pLeft = &pSrc->a[0]; 455 pRight = &pLeft[1]; 456 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 457 Table *pRightTab = pRight->pTab; 458 int isOuter; 459 460 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 461 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 462 463 /* When the NATURAL keyword is present, add WHERE clause terms for 464 ** every column that the two tables have in common. 465 */ 466 if( pRight->fg.jointype & JT_NATURAL ){ 467 if( pRight->pOn || pRight->pUsing ){ 468 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 469 "an ON or USING clause", 0); 470 return 1; 471 } 472 for(j=0; j<pRightTab->nCol; j++){ 473 char *zName; /* Name of column in the right table */ 474 int iLeft; /* Matching left table */ 475 int iLeftCol; /* Matching column in the left table */ 476 477 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 478 zName = pRightTab->aCol[j].zName; 479 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 480 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 481 isOuter, &p->pWhere); 482 } 483 } 484 } 485 486 /* Disallow both ON and USING clauses in the same join 487 */ 488 if( pRight->pOn && pRight->pUsing ){ 489 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 490 "clauses in the same join"); 491 return 1; 492 } 493 494 /* Add the ON clause to the end of the WHERE clause, connected by 495 ** an AND operator. 496 */ 497 if( pRight->pOn ){ 498 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 499 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 500 pRight->pOn = 0; 501 } 502 503 /* Create extra terms on the WHERE clause for each column named 504 ** in the USING clause. Example: If the two tables to be joined are 505 ** A and B and the USING clause names X, Y, and Z, then add this 506 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 507 ** Report an error if any column mentioned in the USING clause is 508 ** not contained in both tables to be joined. 509 */ 510 if( pRight->pUsing ){ 511 IdList *pList = pRight->pUsing; 512 for(j=0; j<pList->nId; j++){ 513 char *zName; /* Name of the term in the USING clause */ 514 int iLeft; /* Table on the left with matching column name */ 515 int iLeftCol; /* Column number of matching column on the left */ 516 int iRightCol; /* Column number of matching column on the right */ 517 518 zName = pList->a[j].zName; 519 iRightCol = columnIndex(pRightTab, zName); 520 if( iRightCol<0 521 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 522 ){ 523 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 524 "not present in both tables", zName); 525 return 1; 526 } 527 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 528 isOuter, &p->pWhere); 529 } 530 } 531 } 532 return 0; 533 } 534 535 /* 536 ** An instance of this object holds information (beyond pParse and pSelect) 537 ** needed to load the next result row that is to be added to the sorter. 538 */ 539 typedef struct RowLoadInfo RowLoadInfo; 540 struct RowLoadInfo { 541 int regResult; /* Store results in array of registers here */ 542 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 543 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 544 ExprList *pExtra; /* Extra columns needed by sorter refs */ 545 int regExtraResult; /* Where to load the extra columns */ 546 #endif 547 }; 548 549 /* 550 ** This routine does the work of loading query data into an array of 551 ** registers so that it can be added to the sorter. 552 */ 553 static void innerLoopLoadRow( 554 Parse *pParse, /* Statement under construction */ 555 Select *pSelect, /* The query being coded */ 556 RowLoadInfo *pInfo /* Info needed to complete the row load */ 557 ){ 558 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 559 0, pInfo->ecelFlags); 560 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 561 if( pInfo->pExtra ){ 562 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 563 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 564 } 565 #endif 566 } 567 568 /* 569 ** Code the OP_MakeRecord instruction that generates the entry to be 570 ** added into the sorter. 571 ** 572 ** Return the register in which the result is stored. 573 */ 574 static int makeSorterRecord( 575 Parse *pParse, 576 SortCtx *pSort, 577 Select *pSelect, 578 int regBase, 579 int nBase 580 ){ 581 int nOBSat = pSort->nOBSat; 582 Vdbe *v = pParse->pVdbe; 583 int regOut = ++pParse->nMem; 584 if( pSort->pDeferredRowLoad ){ 585 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 586 } 587 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 588 return regOut; 589 } 590 591 /* 592 ** Generate code that will push the record in registers regData 593 ** through regData+nData-1 onto the sorter. 594 */ 595 static void pushOntoSorter( 596 Parse *pParse, /* Parser context */ 597 SortCtx *pSort, /* Information about the ORDER BY clause */ 598 Select *pSelect, /* The whole SELECT statement */ 599 int regData, /* First register holding data to be sorted */ 600 int regOrigData, /* First register holding data before packing */ 601 int nData, /* Number of elements in the regData data array */ 602 int nPrefixReg /* No. of reg prior to regData available for use */ 603 ){ 604 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 605 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 606 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 607 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 608 int regBase; /* Regs for sorter record */ 609 int regRecord = 0; /* Assembled sorter record */ 610 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 611 int op; /* Opcode to add sorter record to sorter */ 612 int iLimit; /* LIMIT counter */ 613 int iSkip = 0; /* End of the sorter insert loop */ 614 615 assert( bSeq==0 || bSeq==1 ); 616 617 /* Three cases: 618 ** (1) The data to be sorted has already been packed into a Record 619 ** by a prior OP_MakeRecord. In this case nData==1 and regData 620 ** will be completely unrelated to regOrigData. 621 ** (2) All output columns are included in the sort record. In that 622 ** case regData==regOrigData. 623 ** (3) Some output columns are omitted from the sort record due to 624 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 625 ** SQLITE_ECEL_OMITREF optimization, or due to the 626 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 627 ** regOrigData is 0 to prevent this routine from trying to copy 628 ** values that might not yet exist. 629 */ 630 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 631 632 if( nPrefixReg ){ 633 assert( nPrefixReg==nExpr+bSeq ); 634 regBase = regData - nPrefixReg; 635 }else{ 636 regBase = pParse->nMem + 1; 637 pParse->nMem += nBase; 638 } 639 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 640 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 641 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 642 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 643 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 644 if( bSeq ){ 645 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 646 } 647 if( nPrefixReg==0 && nData>0 ){ 648 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 649 } 650 if( nOBSat>0 ){ 651 int regPrevKey; /* The first nOBSat columns of the previous row */ 652 int addrFirst; /* Address of the OP_IfNot opcode */ 653 int addrJmp; /* Address of the OP_Jump opcode */ 654 VdbeOp *pOp; /* Opcode that opens the sorter */ 655 int nKey; /* Number of sorting key columns, including OP_Sequence */ 656 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 657 658 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 659 regPrevKey = pParse->nMem+1; 660 pParse->nMem += pSort->nOBSat; 661 nKey = nExpr - pSort->nOBSat + bSeq; 662 if( bSeq ){ 663 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 664 }else{ 665 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 666 } 667 VdbeCoverage(v); 668 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 669 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 670 if( pParse->db->mallocFailed ) return; 671 pOp->p2 = nKey + nData; 672 pKI = pOp->p4.pKeyInfo; 673 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 674 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 675 testcase( pKI->nAllField > pKI->nKeyField+2 ); 676 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 677 pKI->nAllField-pKI->nKeyField-1); 678 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 679 addrJmp = sqlite3VdbeCurrentAddr(v); 680 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 681 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 682 pSort->regReturn = ++pParse->nMem; 683 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 684 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 685 if( iLimit ){ 686 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 687 VdbeCoverage(v); 688 } 689 sqlite3VdbeJumpHere(v, addrFirst); 690 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 691 sqlite3VdbeJumpHere(v, addrJmp); 692 } 693 if( iLimit ){ 694 /* At this point the values for the new sorter entry are stored 695 ** in an array of registers. They need to be composed into a record 696 ** and inserted into the sorter if either (a) there are currently 697 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 698 ** the largest record currently in the sorter. If (b) is true and there 699 ** are already LIMIT+OFFSET items in the sorter, delete the largest 700 ** entry before inserting the new one. This way there are never more 701 ** than LIMIT+OFFSET items in the sorter. 702 ** 703 ** If the new record does not need to be inserted into the sorter, 704 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 705 ** value is not zero, then it is a label of where to jump. Otherwise, 706 ** just bypass the row insert logic. See the header comment on the 707 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 708 */ 709 int iCsr = pSort->iECursor; 710 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 711 VdbeCoverage(v); 712 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 713 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 714 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 715 VdbeCoverage(v); 716 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 717 } 718 if( regRecord==0 ){ 719 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 720 } 721 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 722 op = OP_SorterInsert; 723 }else{ 724 op = OP_IdxInsert; 725 } 726 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 727 regBase+nOBSat, nBase-nOBSat); 728 if( iSkip ){ 729 sqlite3VdbeChangeP2(v, iSkip, 730 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 731 } 732 } 733 734 /* 735 ** Add code to implement the OFFSET 736 */ 737 static void codeOffset( 738 Vdbe *v, /* Generate code into this VM */ 739 int iOffset, /* Register holding the offset counter */ 740 int iContinue /* Jump here to skip the current record */ 741 ){ 742 if( iOffset>0 ){ 743 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 744 VdbeComment((v, "OFFSET")); 745 } 746 } 747 748 /* 749 ** Add code that will check to make sure the N registers starting at iMem 750 ** form a distinct entry. iTab is a sorting index that holds previously 751 ** seen combinations of the N values. A new entry is made in iTab 752 ** if the current N values are new. 753 ** 754 ** A jump to addrRepeat is made and the N+1 values are popped from the 755 ** stack if the top N elements are not distinct. 756 */ 757 static void codeDistinct( 758 Parse *pParse, /* Parsing and code generating context */ 759 int iTab, /* A sorting index used to test for distinctness */ 760 int addrRepeat, /* Jump to here if not distinct */ 761 int N, /* Number of elements */ 762 int iMem /* First element */ 763 ){ 764 Vdbe *v; 765 int r1; 766 767 v = pParse->pVdbe; 768 r1 = sqlite3GetTempReg(pParse); 769 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 770 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 771 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 772 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 773 sqlite3ReleaseTempReg(pParse, r1); 774 } 775 776 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 777 /* 778 ** This function is called as part of inner-loop generation for a SELECT 779 ** statement with an ORDER BY that is not optimized by an index. It 780 ** determines the expressions, if any, that the sorter-reference 781 ** optimization should be used for. The sorter-reference optimization 782 ** is used for SELECT queries like: 783 ** 784 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 785 ** 786 ** If the optimization is used for expression "bigblob", then instead of 787 ** storing values read from that column in the sorter records, the PK of 788 ** the row from table t1 is stored instead. Then, as records are extracted from 789 ** the sorter to return to the user, the required value of bigblob is 790 ** retrieved directly from table t1. If the values are very large, this 791 ** can be more efficient than storing them directly in the sorter records. 792 ** 793 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 794 ** for which the sorter-reference optimization should be enabled. 795 ** Additionally, the pSort->aDefer[] array is populated with entries 796 ** for all cursors required to evaluate all selected expressions. Finally. 797 ** output variable (*ppExtra) is set to an expression list containing 798 ** expressions for all extra PK values that should be stored in the 799 ** sorter records. 800 */ 801 static void selectExprDefer( 802 Parse *pParse, /* Leave any error here */ 803 SortCtx *pSort, /* Sorter context */ 804 ExprList *pEList, /* Expressions destined for sorter */ 805 ExprList **ppExtra /* Expressions to append to sorter record */ 806 ){ 807 int i; 808 int nDefer = 0; 809 ExprList *pExtra = 0; 810 for(i=0; i<pEList->nExpr; i++){ 811 struct ExprList_item *pItem = &pEList->a[i]; 812 if( pItem->u.x.iOrderByCol==0 ){ 813 Expr *pExpr = pItem->pExpr; 814 Table *pTab = pExpr->y.pTab; 815 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 816 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 817 ){ 818 int j; 819 for(j=0; j<nDefer; j++){ 820 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 821 } 822 if( j==nDefer ){ 823 if( nDefer==ArraySize(pSort->aDefer) ){ 824 continue; 825 }else{ 826 int nKey = 1; 827 int k; 828 Index *pPk = 0; 829 if( !HasRowid(pTab) ){ 830 pPk = sqlite3PrimaryKeyIndex(pTab); 831 nKey = pPk->nKeyCol; 832 } 833 for(k=0; k<nKey; k++){ 834 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 835 if( pNew ){ 836 pNew->iTable = pExpr->iTable; 837 pNew->y.pTab = pExpr->y.pTab; 838 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 839 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 840 } 841 } 842 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 843 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 844 pSort->aDefer[nDefer].nKey = nKey; 845 nDefer++; 846 } 847 } 848 pItem->bSorterRef = 1; 849 } 850 } 851 } 852 pSort->nDefer = (u8)nDefer; 853 *ppExtra = pExtra; 854 } 855 #endif 856 857 /* 858 ** This routine generates the code for the inside of the inner loop 859 ** of a SELECT. 860 ** 861 ** If srcTab is negative, then the p->pEList expressions 862 ** are evaluated in order to get the data for this row. If srcTab is 863 ** zero or more, then data is pulled from srcTab and p->pEList is used only 864 ** to get the number of columns and the collation sequence for each column. 865 */ 866 static void selectInnerLoop( 867 Parse *pParse, /* The parser context */ 868 Select *p, /* The complete select statement being coded */ 869 int srcTab, /* Pull data from this table if non-negative */ 870 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 871 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 872 SelectDest *pDest, /* How to dispose of the results */ 873 int iContinue, /* Jump here to continue with next row */ 874 int iBreak /* Jump here to break out of the inner loop */ 875 ){ 876 Vdbe *v = pParse->pVdbe; 877 int i; 878 int hasDistinct; /* True if the DISTINCT keyword is present */ 879 int eDest = pDest->eDest; /* How to dispose of results */ 880 int iParm = pDest->iSDParm; /* First argument to disposal method */ 881 int nResultCol; /* Number of result columns */ 882 int nPrefixReg = 0; /* Number of extra registers before regResult */ 883 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 884 885 /* Usually, regResult is the first cell in an array of memory cells 886 ** containing the current result row. In this case regOrig is set to the 887 ** same value. However, if the results are being sent to the sorter, the 888 ** values for any expressions that are also part of the sort-key are omitted 889 ** from this array. In this case regOrig is set to zero. */ 890 int regResult; /* Start of memory holding current results */ 891 int regOrig; /* Start of memory holding full result (or 0) */ 892 893 assert( v ); 894 assert( p->pEList!=0 ); 895 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 896 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 897 if( pSort==0 && !hasDistinct ){ 898 assert( iContinue!=0 ); 899 codeOffset(v, p->iOffset, iContinue); 900 } 901 902 /* Pull the requested columns. 903 */ 904 nResultCol = p->pEList->nExpr; 905 906 if( pDest->iSdst==0 ){ 907 if( pSort ){ 908 nPrefixReg = pSort->pOrderBy->nExpr; 909 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 910 pParse->nMem += nPrefixReg; 911 } 912 pDest->iSdst = pParse->nMem+1; 913 pParse->nMem += nResultCol; 914 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 915 /* This is an error condition that can result, for example, when a SELECT 916 ** on the right-hand side of an INSERT contains more result columns than 917 ** there are columns in the table on the left. The error will be caught 918 ** and reported later. But we need to make sure enough memory is allocated 919 ** to avoid other spurious errors in the meantime. */ 920 pParse->nMem += nResultCol; 921 } 922 pDest->nSdst = nResultCol; 923 regOrig = regResult = pDest->iSdst; 924 if( srcTab>=0 ){ 925 for(i=0; i<nResultCol; i++){ 926 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 927 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 928 } 929 }else if( eDest!=SRT_Exists ){ 930 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 931 ExprList *pExtra = 0; 932 #endif 933 /* If the destination is an EXISTS(...) expression, the actual 934 ** values returned by the SELECT are not required. 935 */ 936 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 937 ExprList *pEList; 938 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 939 ecelFlags = SQLITE_ECEL_DUP; 940 }else{ 941 ecelFlags = 0; 942 } 943 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 944 /* For each expression in p->pEList that is a copy of an expression in 945 ** the ORDER BY clause (pSort->pOrderBy), set the associated 946 ** iOrderByCol value to one more than the index of the ORDER BY 947 ** expression within the sort-key that pushOntoSorter() will generate. 948 ** This allows the p->pEList field to be omitted from the sorted record, 949 ** saving space and CPU cycles. */ 950 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 951 952 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 953 int j; 954 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 955 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 956 } 957 } 958 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 959 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 960 if( pExtra && pParse->db->mallocFailed==0 ){ 961 /* If there are any extra PK columns to add to the sorter records, 962 ** allocate extra memory cells and adjust the OpenEphemeral 963 ** instruction to account for the larger records. This is only 964 ** required if there are one or more WITHOUT ROWID tables with 965 ** composite primary keys in the SortCtx.aDefer[] array. */ 966 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 967 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 968 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 969 pParse->nMem += pExtra->nExpr; 970 } 971 #endif 972 973 /* Adjust nResultCol to account for columns that are omitted 974 ** from the sorter by the optimizations in this branch */ 975 pEList = p->pEList; 976 for(i=0; i<pEList->nExpr; i++){ 977 if( pEList->a[i].u.x.iOrderByCol>0 978 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 979 || pEList->a[i].bSorterRef 980 #endif 981 ){ 982 nResultCol--; 983 regOrig = 0; 984 } 985 } 986 987 testcase( regOrig ); 988 testcase( eDest==SRT_Set ); 989 testcase( eDest==SRT_Mem ); 990 testcase( eDest==SRT_Coroutine ); 991 testcase( eDest==SRT_Output ); 992 assert( eDest==SRT_Set || eDest==SRT_Mem 993 || eDest==SRT_Coroutine || eDest==SRT_Output ); 994 } 995 sRowLoadInfo.regResult = regResult; 996 sRowLoadInfo.ecelFlags = ecelFlags; 997 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 998 sRowLoadInfo.pExtra = pExtra; 999 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1000 if( pExtra ) nResultCol += pExtra->nExpr; 1001 #endif 1002 if( p->iLimit 1003 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1004 && nPrefixReg>0 1005 ){ 1006 assert( pSort!=0 ); 1007 assert( hasDistinct==0 ); 1008 pSort->pDeferredRowLoad = &sRowLoadInfo; 1009 regOrig = 0; 1010 }else{ 1011 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1012 } 1013 } 1014 1015 /* If the DISTINCT keyword was present on the SELECT statement 1016 ** and this row has been seen before, then do not make this row 1017 ** part of the result. 1018 */ 1019 if( hasDistinct ){ 1020 switch( pDistinct->eTnctType ){ 1021 case WHERE_DISTINCT_ORDERED: { 1022 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1023 int iJump; /* Jump destination */ 1024 int regPrev; /* Previous row content */ 1025 1026 /* Allocate space for the previous row */ 1027 regPrev = pParse->nMem+1; 1028 pParse->nMem += nResultCol; 1029 1030 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1031 ** sets the MEM_Cleared bit on the first register of the 1032 ** previous value. This will cause the OP_Ne below to always 1033 ** fail on the first iteration of the loop even if the first 1034 ** row is all NULLs. 1035 */ 1036 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1037 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1038 pOp->opcode = OP_Null; 1039 pOp->p1 = 1; 1040 pOp->p2 = regPrev; 1041 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */ 1042 1043 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1044 for(i=0; i<nResultCol; i++){ 1045 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1046 if( i<nResultCol-1 ){ 1047 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1048 VdbeCoverage(v); 1049 }else{ 1050 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1051 VdbeCoverage(v); 1052 } 1053 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1054 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1055 } 1056 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1057 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1058 break; 1059 } 1060 1061 case WHERE_DISTINCT_UNIQUE: { 1062 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1063 break; 1064 } 1065 1066 default: { 1067 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1068 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1069 regResult); 1070 break; 1071 } 1072 } 1073 if( pSort==0 ){ 1074 codeOffset(v, p->iOffset, iContinue); 1075 } 1076 } 1077 1078 switch( eDest ){ 1079 /* In this mode, write each query result to the key of the temporary 1080 ** table iParm. 1081 */ 1082 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1083 case SRT_Union: { 1084 int r1; 1085 r1 = sqlite3GetTempReg(pParse); 1086 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1087 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1088 sqlite3ReleaseTempReg(pParse, r1); 1089 break; 1090 } 1091 1092 /* Construct a record from the query result, but instead of 1093 ** saving that record, use it as a key to delete elements from 1094 ** the temporary table iParm. 1095 */ 1096 case SRT_Except: { 1097 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1098 break; 1099 } 1100 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1101 1102 /* Store the result as data using a unique key. 1103 */ 1104 case SRT_Fifo: 1105 case SRT_DistFifo: 1106 case SRT_Table: 1107 case SRT_EphemTab: { 1108 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1109 testcase( eDest==SRT_Table ); 1110 testcase( eDest==SRT_EphemTab ); 1111 testcase( eDest==SRT_Fifo ); 1112 testcase( eDest==SRT_DistFifo ); 1113 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1114 #ifndef SQLITE_OMIT_CTE 1115 if( eDest==SRT_DistFifo ){ 1116 /* If the destination is DistFifo, then cursor (iParm+1) is open 1117 ** on an ephemeral index. If the current row is already present 1118 ** in the index, do not write it to the output. If not, add the 1119 ** current row to the index and proceed with writing it to the 1120 ** output table as well. */ 1121 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1122 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1123 VdbeCoverage(v); 1124 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1125 assert( pSort==0 ); 1126 } 1127 #endif 1128 if( pSort ){ 1129 assert( regResult==regOrig ); 1130 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1131 }else{ 1132 int r2 = sqlite3GetTempReg(pParse); 1133 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1134 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1135 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1136 sqlite3ReleaseTempReg(pParse, r2); 1137 } 1138 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1139 break; 1140 } 1141 1142 #ifndef SQLITE_OMIT_SUBQUERY 1143 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1144 ** then there should be a single item on the stack. Write this 1145 ** item into the set table with bogus data. 1146 */ 1147 case SRT_Set: { 1148 if( pSort ){ 1149 /* At first glance you would think we could optimize out the 1150 ** ORDER BY in this case since the order of entries in the set 1151 ** does not matter. But there might be a LIMIT clause, in which 1152 ** case the order does matter */ 1153 pushOntoSorter( 1154 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1155 }else{ 1156 int r1 = sqlite3GetTempReg(pParse); 1157 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1158 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1159 r1, pDest->zAffSdst, nResultCol); 1160 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1161 sqlite3ReleaseTempReg(pParse, r1); 1162 } 1163 break; 1164 } 1165 1166 /* If any row exist in the result set, record that fact and abort. 1167 */ 1168 case SRT_Exists: { 1169 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1170 /* The LIMIT clause will terminate the loop for us */ 1171 break; 1172 } 1173 1174 /* If this is a scalar select that is part of an expression, then 1175 ** store the results in the appropriate memory cell or array of 1176 ** memory cells and break out of the scan loop. 1177 */ 1178 case SRT_Mem: { 1179 if( pSort ){ 1180 assert( nResultCol<=pDest->nSdst ); 1181 pushOntoSorter( 1182 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1183 }else{ 1184 assert( nResultCol==pDest->nSdst ); 1185 assert( regResult==iParm ); 1186 /* The LIMIT clause will jump out of the loop for us */ 1187 } 1188 break; 1189 } 1190 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1191 1192 case SRT_Coroutine: /* Send data to a co-routine */ 1193 case SRT_Output: { /* Return the results */ 1194 testcase( eDest==SRT_Coroutine ); 1195 testcase( eDest==SRT_Output ); 1196 if( pSort ){ 1197 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1198 nPrefixReg); 1199 }else if( eDest==SRT_Coroutine ){ 1200 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1201 }else{ 1202 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1203 } 1204 break; 1205 } 1206 1207 #ifndef SQLITE_OMIT_CTE 1208 /* Write the results into a priority queue that is order according to 1209 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1210 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1211 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1212 ** final OP_Sequence column. The last column is the record as a blob. 1213 */ 1214 case SRT_DistQueue: 1215 case SRT_Queue: { 1216 int nKey; 1217 int r1, r2, r3; 1218 int addrTest = 0; 1219 ExprList *pSO; 1220 pSO = pDest->pOrderBy; 1221 assert( pSO ); 1222 nKey = pSO->nExpr; 1223 r1 = sqlite3GetTempReg(pParse); 1224 r2 = sqlite3GetTempRange(pParse, nKey+2); 1225 r3 = r2+nKey+1; 1226 if( eDest==SRT_DistQueue ){ 1227 /* If the destination is DistQueue, then cursor (iParm+1) is open 1228 ** on a second ephemeral index that holds all values every previously 1229 ** added to the queue. */ 1230 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1231 regResult, nResultCol); 1232 VdbeCoverage(v); 1233 } 1234 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1235 if( eDest==SRT_DistQueue ){ 1236 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1237 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1238 } 1239 for(i=0; i<nKey; i++){ 1240 sqlite3VdbeAddOp2(v, OP_SCopy, 1241 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1242 r2+i); 1243 } 1244 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1245 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1246 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1247 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1248 sqlite3ReleaseTempReg(pParse, r1); 1249 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1250 break; 1251 } 1252 #endif /* SQLITE_OMIT_CTE */ 1253 1254 1255 1256 #if !defined(SQLITE_OMIT_TRIGGER) 1257 /* Discard the results. This is used for SELECT statements inside 1258 ** the body of a TRIGGER. The purpose of such selects is to call 1259 ** user-defined functions that have side effects. We do not care 1260 ** about the actual results of the select. 1261 */ 1262 default: { 1263 assert( eDest==SRT_Discard ); 1264 break; 1265 } 1266 #endif 1267 } 1268 1269 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1270 ** there is a sorter, in which case the sorter has already limited 1271 ** the output for us. 1272 */ 1273 if( pSort==0 && p->iLimit ){ 1274 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1275 } 1276 } 1277 1278 /* 1279 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1280 ** X extra columns. 1281 */ 1282 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1283 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1284 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1285 if( p ){ 1286 p->aSortFlags = (u8*)&p->aColl[N+X]; 1287 p->nKeyField = (u16)N; 1288 p->nAllField = (u16)(N+X); 1289 p->enc = ENC(db); 1290 p->db = db; 1291 p->nRef = 1; 1292 memset(&p[1], 0, nExtra); 1293 }else{ 1294 sqlite3OomFault(db); 1295 } 1296 return p; 1297 } 1298 1299 /* 1300 ** Deallocate a KeyInfo object 1301 */ 1302 void sqlite3KeyInfoUnref(KeyInfo *p){ 1303 if( p ){ 1304 assert( p->nRef>0 ); 1305 p->nRef--; 1306 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1307 } 1308 } 1309 1310 /* 1311 ** Make a new pointer to a KeyInfo object 1312 */ 1313 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1314 if( p ){ 1315 assert( p->nRef>0 ); 1316 p->nRef++; 1317 } 1318 return p; 1319 } 1320 1321 #ifdef SQLITE_DEBUG 1322 /* 1323 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1324 ** can only be changed if this is just a single reference to the object. 1325 ** 1326 ** This routine is used only inside of assert() statements. 1327 */ 1328 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1329 #endif /* SQLITE_DEBUG */ 1330 1331 /* 1332 ** Given an expression list, generate a KeyInfo structure that records 1333 ** the collating sequence for each expression in that expression list. 1334 ** 1335 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1336 ** KeyInfo structure is appropriate for initializing a virtual index to 1337 ** implement that clause. If the ExprList is the result set of a SELECT 1338 ** then the KeyInfo structure is appropriate for initializing a virtual 1339 ** index to implement a DISTINCT test. 1340 ** 1341 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1342 ** function is responsible for seeing that this structure is eventually 1343 ** freed. 1344 */ 1345 KeyInfo *sqlite3KeyInfoFromExprList( 1346 Parse *pParse, /* Parsing context */ 1347 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1348 int iStart, /* Begin with this column of pList */ 1349 int nExtra /* Add this many extra columns to the end */ 1350 ){ 1351 int nExpr; 1352 KeyInfo *pInfo; 1353 struct ExprList_item *pItem; 1354 sqlite3 *db = pParse->db; 1355 int i; 1356 1357 nExpr = pList->nExpr; 1358 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1359 if( pInfo ){ 1360 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1361 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1362 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1363 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1364 } 1365 } 1366 return pInfo; 1367 } 1368 1369 /* 1370 ** Name of the connection operator, used for error messages. 1371 */ 1372 static const char *selectOpName(int id){ 1373 char *z; 1374 switch( id ){ 1375 case TK_ALL: z = "UNION ALL"; break; 1376 case TK_INTERSECT: z = "INTERSECT"; break; 1377 case TK_EXCEPT: z = "EXCEPT"; break; 1378 default: z = "UNION"; break; 1379 } 1380 return z; 1381 } 1382 1383 #ifndef SQLITE_OMIT_EXPLAIN 1384 /* 1385 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1386 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1387 ** where the caption is of the form: 1388 ** 1389 ** "USE TEMP B-TREE FOR xxx" 1390 ** 1391 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1392 ** is determined by the zUsage argument. 1393 */ 1394 static void explainTempTable(Parse *pParse, const char *zUsage){ 1395 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1396 } 1397 1398 /* 1399 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1400 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1401 ** in sqlite3Select() to assign values to structure member variables that 1402 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1403 ** code with #ifndef directives. 1404 */ 1405 # define explainSetInteger(a, b) a = b 1406 1407 #else 1408 /* No-op versions of the explainXXX() functions and macros. */ 1409 # define explainTempTable(y,z) 1410 # define explainSetInteger(y,z) 1411 #endif 1412 1413 1414 /* 1415 ** If the inner loop was generated using a non-null pOrderBy argument, 1416 ** then the results were placed in a sorter. After the loop is terminated 1417 ** we need to run the sorter and output the results. The following 1418 ** routine generates the code needed to do that. 1419 */ 1420 static void generateSortTail( 1421 Parse *pParse, /* Parsing context */ 1422 Select *p, /* The SELECT statement */ 1423 SortCtx *pSort, /* Information on the ORDER BY clause */ 1424 int nColumn, /* Number of columns of data */ 1425 SelectDest *pDest /* Write the sorted results here */ 1426 ){ 1427 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1428 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1429 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1430 int addr; /* Top of output loop. Jump for Next. */ 1431 int addrOnce = 0; 1432 int iTab; 1433 ExprList *pOrderBy = pSort->pOrderBy; 1434 int eDest = pDest->eDest; 1435 int iParm = pDest->iSDParm; 1436 int regRow; 1437 int regRowid; 1438 int iCol; 1439 int nKey; /* Number of key columns in sorter record */ 1440 int iSortTab; /* Sorter cursor to read from */ 1441 int i; 1442 int bSeq; /* True if sorter record includes seq. no. */ 1443 int nRefKey = 0; 1444 struct ExprList_item *aOutEx = p->pEList->a; 1445 1446 assert( addrBreak<0 ); 1447 if( pSort->labelBkOut ){ 1448 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1449 sqlite3VdbeGoto(v, addrBreak); 1450 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1451 } 1452 1453 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1454 /* Open any cursors needed for sorter-reference expressions */ 1455 for(i=0; i<pSort->nDefer; i++){ 1456 Table *pTab = pSort->aDefer[i].pTab; 1457 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1458 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1459 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1460 } 1461 #endif 1462 1463 iTab = pSort->iECursor; 1464 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1465 regRowid = 0; 1466 regRow = pDest->iSdst; 1467 }else{ 1468 regRowid = sqlite3GetTempReg(pParse); 1469 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1470 regRow = sqlite3GetTempReg(pParse); 1471 nColumn = 0; 1472 }else{ 1473 regRow = sqlite3GetTempRange(pParse, nColumn); 1474 } 1475 } 1476 nKey = pOrderBy->nExpr - pSort->nOBSat; 1477 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1478 int regSortOut = ++pParse->nMem; 1479 iSortTab = pParse->nTab++; 1480 if( pSort->labelBkOut ){ 1481 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1482 } 1483 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1484 nKey+1+nColumn+nRefKey); 1485 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1486 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1487 VdbeCoverage(v); 1488 codeOffset(v, p->iOffset, addrContinue); 1489 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1490 bSeq = 0; 1491 }else{ 1492 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1493 codeOffset(v, p->iOffset, addrContinue); 1494 iSortTab = iTab; 1495 bSeq = 1; 1496 } 1497 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1498 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1499 if( aOutEx[i].bSorterRef ) continue; 1500 #endif 1501 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1502 } 1503 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1504 if( pSort->nDefer ){ 1505 int iKey = iCol+1; 1506 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1507 1508 for(i=0; i<pSort->nDefer; i++){ 1509 int iCsr = pSort->aDefer[i].iCsr; 1510 Table *pTab = pSort->aDefer[i].pTab; 1511 int nKey = pSort->aDefer[i].nKey; 1512 1513 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1514 if( HasRowid(pTab) ){ 1515 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1516 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1517 sqlite3VdbeCurrentAddr(v)+1, regKey); 1518 }else{ 1519 int k; 1520 int iJmp; 1521 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1522 for(k=0; k<nKey; k++){ 1523 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1524 } 1525 iJmp = sqlite3VdbeCurrentAddr(v); 1526 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1527 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1528 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1529 } 1530 } 1531 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1532 } 1533 #endif 1534 for(i=nColumn-1; i>=0; i--){ 1535 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1536 if( aOutEx[i].bSorterRef ){ 1537 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1538 }else 1539 #endif 1540 { 1541 int iRead; 1542 if( aOutEx[i].u.x.iOrderByCol ){ 1543 iRead = aOutEx[i].u.x.iOrderByCol-1; 1544 }else{ 1545 iRead = iCol--; 1546 } 1547 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1548 VdbeComment((v, "%s", aOutEx[i].zEName)); 1549 } 1550 } 1551 switch( eDest ){ 1552 case SRT_Table: 1553 case SRT_EphemTab: { 1554 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1555 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1556 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1557 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1558 break; 1559 } 1560 #ifndef SQLITE_OMIT_SUBQUERY 1561 case SRT_Set: { 1562 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1563 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1564 pDest->zAffSdst, nColumn); 1565 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1566 break; 1567 } 1568 case SRT_Mem: { 1569 /* The LIMIT clause will terminate the loop for us */ 1570 break; 1571 } 1572 #endif 1573 default: { 1574 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1575 testcase( eDest==SRT_Output ); 1576 testcase( eDest==SRT_Coroutine ); 1577 if( eDest==SRT_Output ){ 1578 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1579 }else{ 1580 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1581 } 1582 break; 1583 } 1584 } 1585 if( regRowid ){ 1586 if( eDest==SRT_Set ){ 1587 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1588 }else{ 1589 sqlite3ReleaseTempReg(pParse, regRow); 1590 } 1591 sqlite3ReleaseTempReg(pParse, regRowid); 1592 } 1593 /* The bottom of the loop 1594 */ 1595 sqlite3VdbeResolveLabel(v, addrContinue); 1596 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1597 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1598 }else{ 1599 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1600 } 1601 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1602 sqlite3VdbeResolveLabel(v, addrBreak); 1603 } 1604 1605 /* 1606 ** Return a pointer to a string containing the 'declaration type' of the 1607 ** expression pExpr. The string may be treated as static by the caller. 1608 ** 1609 ** Also try to estimate the size of the returned value and return that 1610 ** result in *pEstWidth. 1611 ** 1612 ** The declaration type is the exact datatype definition extracted from the 1613 ** original CREATE TABLE statement if the expression is a column. The 1614 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1615 ** is considered a column can be complex in the presence of subqueries. The 1616 ** result-set expression in all of the following SELECT statements is 1617 ** considered a column by this function. 1618 ** 1619 ** SELECT col FROM tbl; 1620 ** SELECT (SELECT col FROM tbl; 1621 ** SELECT (SELECT col FROM tbl); 1622 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1623 ** 1624 ** The declaration type for any expression other than a column is NULL. 1625 ** 1626 ** This routine has either 3 or 6 parameters depending on whether or not 1627 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1628 */ 1629 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1630 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1631 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1632 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1633 #endif 1634 static const char *columnTypeImpl( 1635 NameContext *pNC, 1636 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1637 Expr *pExpr 1638 #else 1639 Expr *pExpr, 1640 const char **pzOrigDb, 1641 const char **pzOrigTab, 1642 const char **pzOrigCol 1643 #endif 1644 ){ 1645 char const *zType = 0; 1646 int j; 1647 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1648 char const *zOrigDb = 0; 1649 char const *zOrigTab = 0; 1650 char const *zOrigCol = 0; 1651 #endif 1652 1653 assert( pExpr!=0 ); 1654 assert( pNC->pSrcList!=0 ); 1655 switch( pExpr->op ){ 1656 case TK_COLUMN: { 1657 /* The expression is a column. Locate the table the column is being 1658 ** extracted from in NameContext.pSrcList. This table may be real 1659 ** database table or a subquery. 1660 */ 1661 Table *pTab = 0; /* Table structure column is extracted from */ 1662 Select *pS = 0; /* Select the column is extracted from */ 1663 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1664 while( pNC && !pTab ){ 1665 SrcList *pTabList = pNC->pSrcList; 1666 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1667 if( j<pTabList->nSrc ){ 1668 pTab = pTabList->a[j].pTab; 1669 pS = pTabList->a[j].pSelect; 1670 }else{ 1671 pNC = pNC->pNext; 1672 } 1673 } 1674 1675 if( pTab==0 ){ 1676 /* At one time, code such as "SELECT new.x" within a trigger would 1677 ** cause this condition to run. Since then, we have restructured how 1678 ** trigger code is generated and so this condition is no longer 1679 ** possible. However, it can still be true for statements like 1680 ** the following: 1681 ** 1682 ** CREATE TABLE t1(col INTEGER); 1683 ** SELECT (SELECT t1.col) FROM FROM t1; 1684 ** 1685 ** when columnType() is called on the expression "t1.col" in the 1686 ** sub-select. In this case, set the column type to NULL, even 1687 ** though it should really be "INTEGER". 1688 ** 1689 ** This is not a problem, as the column type of "t1.col" is never 1690 ** used. When columnType() is called on the expression 1691 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1692 ** branch below. */ 1693 break; 1694 } 1695 1696 assert( pTab && pExpr->y.pTab==pTab ); 1697 if( pS ){ 1698 /* The "table" is actually a sub-select or a view in the FROM clause 1699 ** of the SELECT statement. Return the declaration type and origin 1700 ** data for the result-set column of the sub-select. 1701 */ 1702 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1703 /* If iCol is less than zero, then the expression requests the 1704 ** rowid of the sub-select or view. This expression is legal (see 1705 ** test case misc2.2.2) - it always evaluates to NULL. 1706 */ 1707 NameContext sNC; 1708 Expr *p = pS->pEList->a[iCol].pExpr; 1709 sNC.pSrcList = pS->pSrc; 1710 sNC.pNext = pNC; 1711 sNC.pParse = pNC->pParse; 1712 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1713 } 1714 }else{ 1715 /* A real table or a CTE table */ 1716 assert( !pS ); 1717 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1718 if( iCol<0 ) iCol = pTab->iPKey; 1719 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1720 if( iCol<0 ){ 1721 zType = "INTEGER"; 1722 zOrigCol = "rowid"; 1723 }else{ 1724 zOrigCol = pTab->aCol[iCol].zName; 1725 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1726 } 1727 zOrigTab = pTab->zName; 1728 if( pNC->pParse && pTab->pSchema ){ 1729 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1730 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1731 } 1732 #else 1733 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1734 if( iCol<0 ){ 1735 zType = "INTEGER"; 1736 }else{ 1737 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1738 } 1739 #endif 1740 } 1741 break; 1742 } 1743 #ifndef SQLITE_OMIT_SUBQUERY 1744 case TK_SELECT: { 1745 /* The expression is a sub-select. Return the declaration type and 1746 ** origin info for the single column in the result set of the SELECT 1747 ** statement. 1748 */ 1749 NameContext sNC; 1750 Select *pS = pExpr->x.pSelect; 1751 Expr *p = pS->pEList->a[0].pExpr; 1752 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1753 sNC.pSrcList = pS->pSrc; 1754 sNC.pNext = pNC; 1755 sNC.pParse = pNC->pParse; 1756 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1757 break; 1758 } 1759 #endif 1760 } 1761 1762 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1763 if( pzOrigDb ){ 1764 assert( pzOrigTab && pzOrigCol ); 1765 *pzOrigDb = zOrigDb; 1766 *pzOrigTab = zOrigTab; 1767 *pzOrigCol = zOrigCol; 1768 } 1769 #endif 1770 return zType; 1771 } 1772 1773 /* 1774 ** Generate code that will tell the VDBE the declaration types of columns 1775 ** in the result set. 1776 */ 1777 static void generateColumnTypes( 1778 Parse *pParse, /* Parser context */ 1779 SrcList *pTabList, /* List of tables */ 1780 ExprList *pEList /* Expressions defining the result set */ 1781 ){ 1782 #ifndef SQLITE_OMIT_DECLTYPE 1783 Vdbe *v = pParse->pVdbe; 1784 int i; 1785 NameContext sNC; 1786 sNC.pSrcList = pTabList; 1787 sNC.pParse = pParse; 1788 sNC.pNext = 0; 1789 for(i=0; i<pEList->nExpr; i++){ 1790 Expr *p = pEList->a[i].pExpr; 1791 const char *zType; 1792 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1793 const char *zOrigDb = 0; 1794 const char *zOrigTab = 0; 1795 const char *zOrigCol = 0; 1796 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1797 1798 /* The vdbe must make its own copy of the column-type and other 1799 ** column specific strings, in case the schema is reset before this 1800 ** virtual machine is deleted. 1801 */ 1802 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1803 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1804 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1805 #else 1806 zType = columnType(&sNC, p, 0, 0, 0); 1807 #endif 1808 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1809 } 1810 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1811 } 1812 1813 1814 /* 1815 ** Compute the column names for a SELECT statement. 1816 ** 1817 ** The only guarantee that SQLite makes about column names is that if the 1818 ** column has an AS clause assigning it a name, that will be the name used. 1819 ** That is the only documented guarantee. However, countless applications 1820 ** developed over the years have made baseless assumptions about column names 1821 ** and will break if those assumptions changes. Hence, use extreme caution 1822 ** when modifying this routine to avoid breaking legacy. 1823 ** 1824 ** See Also: sqlite3ColumnsFromExprList() 1825 ** 1826 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1827 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1828 ** applications should operate this way. Nevertheless, we need to support the 1829 ** other modes for legacy: 1830 ** 1831 ** short=OFF, full=OFF: Column name is the text of the expression has it 1832 ** originally appears in the SELECT statement. In 1833 ** other words, the zSpan of the result expression. 1834 ** 1835 ** short=ON, full=OFF: (This is the default setting). If the result 1836 ** refers directly to a table column, then the 1837 ** result column name is just the table column 1838 ** name: COLUMN. Otherwise use zSpan. 1839 ** 1840 ** full=ON, short=ANY: If the result refers directly to a table column, 1841 ** then the result column name with the table name 1842 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1843 */ 1844 static void generateColumnNames( 1845 Parse *pParse, /* Parser context */ 1846 Select *pSelect /* Generate column names for this SELECT statement */ 1847 ){ 1848 Vdbe *v = pParse->pVdbe; 1849 int i; 1850 Table *pTab; 1851 SrcList *pTabList; 1852 ExprList *pEList; 1853 sqlite3 *db = pParse->db; 1854 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1855 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1856 1857 #ifndef SQLITE_OMIT_EXPLAIN 1858 /* If this is an EXPLAIN, skip this step */ 1859 if( pParse->explain ){ 1860 return; 1861 } 1862 #endif 1863 1864 if( pParse->colNamesSet ) return; 1865 /* Column names are determined by the left-most term of a compound select */ 1866 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1867 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1868 pTabList = pSelect->pSrc; 1869 pEList = pSelect->pEList; 1870 assert( v!=0 ); 1871 assert( pTabList!=0 ); 1872 pParse->colNamesSet = 1; 1873 fullName = (db->flags & SQLITE_FullColNames)!=0; 1874 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1875 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1876 for(i=0; i<pEList->nExpr; i++){ 1877 Expr *p = pEList->a[i].pExpr; 1878 1879 assert( p!=0 ); 1880 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1881 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1882 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1883 /* An AS clause always takes first priority */ 1884 char *zName = pEList->a[i].zEName; 1885 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1886 }else if( srcName && p->op==TK_COLUMN ){ 1887 char *zCol; 1888 int iCol = p->iColumn; 1889 pTab = p->y.pTab; 1890 assert( pTab!=0 ); 1891 if( iCol<0 ) iCol = pTab->iPKey; 1892 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1893 if( iCol<0 ){ 1894 zCol = "rowid"; 1895 }else{ 1896 zCol = pTab->aCol[iCol].zName; 1897 } 1898 if( fullName ){ 1899 char *zName = 0; 1900 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1901 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1902 }else{ 1903 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1904 } 1905 }else{ 1906 const char *z = pEList->a[i].zEName; 1907 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1908 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1909 } 1910 } 1911 generateColumnTypes(pParse, pTabList, pEList); 1912 } 1913 1914 /* 1915 ** Given an expression list (which is really the list of expressions 1916 ** that form the result set of a SELECT statement) compute appropriate 1917 ** column names for a table that would hold the expression list. 1918 ** 1919 ** All column names will be unique. 1920 ** 1921 ** Only the column names are computed. Column.zType, Column.zColl, 1922 ** and other fields of Column are zeroed. 1923 ** 1924 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1925 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1926 ** 1927 ** The only guarantee that SQLite makes about column names is that if the 1928 ** column has an AS clause assigning it a name, that will be the name used. 1929 ** That is the only documented guarantee. However, countless applications 1930 ** developed over the years have made baseless assumptions about column names 1931 ** and will break if those assumptions changes. Hence, use extreme caution 1932 ** when modifying this routine to avoid breaking legacy. 1933 ** 1934 ** See Also: generateColumnNames() 1935 */ 1936 int sqlite3ColumnsFromExprList( 1937 Parse *pParse, /* Parsing context */ 1938 ExprList *pEList, /* Expr list from which to derive column names */ 1939 i16 *pnCol, /* Write the number of columns here */ 1940 Column **paCol /* Write the new column list here */ 1941 ){ 1942 sqlite3 *db = pParse->db; /* Database connection */ 1943 int i, j; /* Loop counters */ 1944 u32 cnt; /* Index added to make the name unique */ 1945 Column *aCol, *pCol; /* For looping over result columns */ 1946 int nCol; /* Number of columns in the result set */ 1947 char *zName; /* Column name */ 1948 int nName; /* Size of name in zName[] */ 1949 Hash ht; /* Hash table of column names */ 1950 1951 sqlite3HashInit(&ht); 1952 if( pEList ){ 1953 nCol = pEList->nExpr; 1954 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1955 testcase( aCol==0 ); 1956 if( nCol>32767 ) nCol = 32767; 1957 }else{ 1958 nCol = 0; 1959 aCol = 0; 1960 } 1961 assert( nCol==(i16)nCol ); 1962 *pnCol = nCol; 1963 *paCol = aCol; 1964 1965 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1966 /* Get an appropriate name for the column 1967 */ 1968 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 1969 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1970 }else{ 1971 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 1972 while( pColExpr->op==TK_DOT ){ 1973 pColExpr = pColExpr->pRight; 1974 assert( pColExpr!=0 ); 1975 } 1976 if( pColExpr->op==TK_COLUMN ){ 1977 /* For columns use the column name name */ 1978 int iCol = pColExpr->iColumn; 1979 Table *pTab = pColExpr->y.pTab; 1980 assert( pTab!=0 ); 1981 if( iCol<0 ) iCol = pTab->iPKey; 1982 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1983 }else if( pColExpr->op==TK_ID ){ 1984 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1985 zName = pColExpr->u.zToken; 1986 }else{ 1987 /* Use the original text of the column expression as its name */ 1988 zName = pEList->a[i].zEName; 1989 } 1990 } 1991 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 1992 zName = sqlite3DbStrDup(db, zName); 1993 }else{ 1994 zName = sqlite3MPrintf(db,"column%d",i+1); 1995 } 1996 1997 /* Make sure the column name is unique. If the name is not unique, 1998 ** append an integer to the name so that it becomes unique. 1999 */ 2000 cnt = 0; 2001 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2002 nName = sqlite3Strlen30(zName); 2003 if( nName>0 ){ 2004 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2005 if( zName[j]==':' ) nName = j; 2006 } 2007 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2008 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2009 } 2010 pCol->zName = zName; 2011 pCol->hName = sqlite3StrIHash(zName); 2012 sqlite3ColumnPropertiesFromName(0, pCol); 2013 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2014 sqlite3OomFault(db); 2015 } 2016 } 2017 sqlite3HashClear(&ht); 2018 if( db->mallocFailed ){ 2019 for(j=0; j<i; j++){ 2020 sqlite3DbFree(db, aCol[j].zName); 2021 } 2022 sqlite3DbFree(db, aCol); 2023 *paCol = 0; 2024 *pnCol = 0; 2025 return SQLITE_NOMEM_BKPT; 2026 } 2027 return SQLITE_OK; 2028 } 2029 2030 /* 2031 ** Add type and collation information to a column list based on 2032 ** a SELECT statement. 2033 ** 2034 ** The column list presumably came from selectColumnNamesFromExprList(). 2035 ** The column list has only names, not types or collations. This 2036 ** routine goes through and adds the types and collations. 2037 ** 2038 ** This routine requires that all identifiers in the SELECT 2039 ** statement be resolved. 2040 */ 2041 void sqlite3SelectAddColumnTypeAndCollation( 2042 Parse *pParse, /* Parsing contexts */ 2043 Table *pTab, /* Add column type information to this table */ 2044 Select *pSelect, /* SELECT used to determine types and collations */ 2045 char aff /* Default affinity for columns */ 2046 ){ 2047 sqlite3 *db = pParse->db; 2048 NameContext sNC; 2049 Column *pCol; 2050 CollSeq *pColl; 2051 int i; 2052 Expr *p; 2053 struct ExprList_item *a; 2054 2055 assert( pSelect!=0 ); 2056 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2057 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2058 if( db->mallocFailed ) return; 2059 memset(&sNC, 0, sizeof(sNC)); 2060 sNC.pSrcList = pSelect->pSrc; 2061 a = pSelect->pEList->a; 2062 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2063 const char *zType; 2064 int n, m; 2065 p = a[i].pExpr; 2066 zType = columnType(&sNC, p, 0, 0, 0); 2067 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2068 pCol->affinity = sqlite3ExprAffinity(p); 2069 if( zType ){ 2070 m = sqlite3Strlen30(zType); 2071 n = sqlite3Strlen30(pCol->zName); 2072 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2073 if( pCol->zName ){ 2074 memcpy(&pCol->zName[n+1], zType, m+1); 2075 pCol->colFlags |= COLFLAG_HASTYPE; 2076 } 2077 } 2078 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2079 pColl = sqlite3ExprCollSeq(pParse, p); 2080 if( pColl && pCol->zColl==0 ){ 2081 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2082 } 2083 } 2084 pTab->szTabRow = 1; /* Any non-zero value works */ 2085 } 2086 2087 /* 2088 ** Given a SELECT statement, generate a Table structure that describes 2089 ** the result set of that SELECT. 2090 */ 2091 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2092 Table *pTab; 2093 sqlite3 *db = pParse->db; 2094 u64 savedFlags; 2095 2096 savedFlags = db->flags; 2097 db->flags &= ~(u64)SQLITE_FullColNames; 2098 db->flags |= SQLITE_ShortColNames; 2099 sqlite3SelectPrep(pParse, pSelect, 0); 2100 db->flags = savedFlags; 2101 if( pParse->nErr ) return 0; 2102 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2103 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2104 if( pTab==0 ){ 2105 return 0; 2106 } 2107 pTab->nTabRef = 1; 2108 pTab->zName = 0; 2109 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2110 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2111 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2112 pTab->iPKey = -1; 2113 if( db->mallocFailed ){ 2114 sqlite3DeleteTable(db, pTab); 2115 return 0; 2116 } 2117 return pTab; 2118 } 2119 2120 /* 2121 ** Get a VDBE for the given parser context. Create a new one if necessary. 2122 ** If an error occurs, return NULL and leave a message in pParse. 2123 */ 2124 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2125 if( pParse->pVdbe ){ 2126 return pParse->pVdbe; 2127 } 2128 if( pParse->pToplevel==0 2129 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2130 ){ 2131 pParse->okConstFactor = 1; 2132 } 2133 return sqlite3VdbeCreate(pParse); 2134 } 2135 2136 2137 /* 2138 ** Compute the iLimit and iOffset fields of the SELECT based on the 2139 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2140 ** that appear in the original SQL statement after the LIMIT and OFFSET 2141 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2142 ** are the integer memory register numbers for counters used to compute 2143 ** the limit and offset. If there is no limit and/or offset, then 2144 ** iLimit and iOffset are negative. 2145 ** 2146 ** This routine changes the values of iLimit and iOffset only if 2147 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2148 ** and iOffset should have been preset to appropriate default values (zero) 2149 ** prior to calling this routine. 2150 ** 2151 ** The iOffset register (if it exists) is initialized to the value 2152 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2153 ** iOffset+1 is initialized to LIMIT+OFFSET. 2154 ** 2155 ** Only if pLimit->pLeft!=0 do the limit registers get 2156 ** redefined. The UNION ALL operator uses this property to force 2157 ** the reuse of the same limit and offset registers across multiple 2158 ** SELECT statements. 2159 */ 2160 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2161 Vdbe *v = 0; 2162 int iLimit = 0; 2163 int iOffset; 2164 int n; 2165 Expr *pLimit = p->pLimit; 2166 2167 if( p->iLimit ) return; 2168 2169 /* 2170 ** "LIMIT -1" always shows all rows. There is some 2171 ** controversy about what the correct behavior should be. 2172 ** The current implementation interprets "LIMIT 0" to mean 2173 ** no rows. 2174 */ 2175 if( pLimit ){ 2176 assert( pLimit->op==TK_LIMIT ); 2177 assert( pLimit->pLeft!=0 ); 2178 p->iLimit = iLimit = ++pParse->nMem; 2179 v = sqlite3GetVdbe(pParse); 2180 assert( v!=0 ); 2181 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2182 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2183 VdbeComment((v, "LIMIT counter")); 2184 if( n==0 ){ 2185 sqlite3VdbeGoto(v, iBreak); 2186 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2187 p->nSelectRow = sqlite3LogEst((u64)n); 2188 p->selFlags |= SF_FixedLimit; 2189 } 2190 }else{ 2191 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2192 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2193 VdbeComment((v, "LIMIT counter")); 2194 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2195 } 2196 if( pLimit->pRight ){ 2197 p->iOffset = iOffset = ++pParse->nMem; 2198 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2199 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2200 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2201 VdbeComment((v, "OFFSET counter")); 2202 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2203 VdbeComment((v, "LIMIT+OFFSET")); 2204 } 2205 } 2206 } 2207 2208 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2209 /* 2210 ** Return the appropriate collating sequence for the iCol-th column of 2211 ** the result set for the compound-select statement "p". Return NULL if 2212 ** the column has no default collating sequence. 2213 ** 2214 ** The collating sequence for the compound select is taken from the 2215 ** left-most term of the select that has a collating sequence. 2216 */ 2217 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2218 CollSeq *pRet; 2219 if( p->pPrior ){ 2220 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2221 }else{ 2222 pRet = 0; 2223 } 2224 assert( iCol>=0 ); 2225 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2226 ** have been thrown during name resolution and we would not have gotten 2227 ** this far */ 2228 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2229 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2230 } 2231 return pRet; 2232 } 2233 2234 /* 2235 ** The select statement passed as the second parameter is a compound SELECT 2236 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2237 ** structure suitable for implementing the ORDER BY. 2238 ** 2239 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2240 ** function is responsible for ensuring that this structure is eventually 2241 ** freed. 2242 */ 2243 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2244 ExprList *pOrderBy = p->pOrderBy; 2245 int nOrderBy = p->pOrderBy->nExpr; 2246 sqlite3 *db = pParse->db; 2247 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2248 if( pRet ){ 2249 int i; 2250 for(i=0; i<nOrderBy; i++){ 2251 struct ExprList_item *pItem = &pOrderBy->a[i]; 2252 Expr *pTerm = pItem->pExpr; 2253 CollSeq *pColl; 2254 2255 if( pTerm->flags & EP_Collate ){ 2256 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2257 }else{ 2258 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2259 if( pColl==0 ) pColl = db->pDfltColl; 2260 pOrderBy->a[i].pExpr = 2261 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2262 } 2263 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2264 pRet->aColl[i] = pColl; 2265 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2266 } 2267 } 2268 2269 return pRet; 2270 } 2271 2272 #ifndef SQLITE_OMIT_CTE 2273 /* 2274 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2275 ** query of the form: 2276 ** 2277 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2278 ** \___________/ \_______________/ 2279 ** p->pPrior p 2280 ** 2281 ** 2282 ** There is exactly one reference to the recursive-table in the FROM clause 2283 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2284 ** 2285 ** The setup-query runs once to generate an initial set of rows that go 2286 ** into a Queue table. Rows are extracted from the Queue table one by 2287 ** one. Each row extracted from Queue is output to pDest. Then the single 2288 ** extracted row (now in the iCurrent table) becomes the content of the 2289 ** recursive-table for a recursive-query run. The output of the recursive-query 2290 ** is added back into the Queue table. Then another row is extracted from Queue 2291 ** and the iteration continues until the Queue table is empty. 2292 ** 2293 ** If the compound query operator is UNION then no duplicate rows are ever 2294 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2295 ** that have ever been inserted into Queue and causes duplicates to be 2296 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2297 ** 2298 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2299 ** ORDER BY order and the first entry is extracted for each cycle. Without 2300 ** an ORDER BY, the Queue table is just a FIFO. 2301 ** 2302 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2303 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2304 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2305 ** with a positive value, then the first OFFSET outputs are discarded rather 2306 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2307 ** rows have been skipped. 2308 */ 2309 static void generateWithRecursiveQuery( 2310 Parse *pParse, /* Parsing context */ 2311 Select *p, /* The recursive SELECT to be coded */ 2312 SelectDest *pDest /* What to do with query results */ 2313 ){ 2314 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2315 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2316 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2317 Select *pSetup = p->pPrior; /* The setup query */ 2318 int addrTop; /* Top of the loop */ 2319 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2320 int iCurrent = 0; /* The Current table */ 2321 int regCurrent; /* Register holding Current table */ 2322 int iQueue; /* The Queue table */ 2323 int iDistinct = 0; /* To ensure unique results if UNION */ 2324 int eDest = SRT_Fifo; /* How to write to Queue */ 2325 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2326 int i; /* Loop counter */ 2327 int rc; /* Result code */ 2328 ExprList *pOrderBy; /* The ORDER BY clause */ 2329 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2330 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2331 2332 #ifndef SQLITE_OMIT_WINDOWFUNC 2333 if( p->pWin ){ 2334 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2335 return; 2336 } 2337 #endif 2338 2339 /* Obtain authorization to do a recursive query */ 2340 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2341 2342 /* Process the LIMIT and OFFSET clauses, if they exist */ 2343 addrBreak = sqlite3VdbeMakeLabel(pParse); 2344 p->nSelectRow = 320; /* 4 billion rows */ 2345 computeLimitRegisters(pParse, p, addrBreak); 2346 pLimit = p->pLimit; 2347 regLimit = p->iLimit; 2348 regOffset = p->iOffset; 2349 p->pLimit = 0; 2350 p->iLimit = p->iOffset = 0; 2351 pOrderBy = p->pOrderBy; 2352 2353 /* Locate the cursor number of the Current table */ 2354 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2355 if( pSrc->a[i].fg.isRecursive ){ 2356 iCurrent = pSrc->a[i].iCursor; 2357 break; 2358 } 2359 } 2360 2361 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2362 ** the Distinct table must be exactly one greater than Queue in order 2363 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2364 iQueue = pParse->nTab++; 2365 if( p->op==TK_UNION ){ 2366 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2367 iDistinct = pParse->nTab++; 2368 }else{ 2369 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2370 } 2371 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2372 2373 /* Allocate cursors for Current, Queue, and Distinct. */ 2374 regCurrent = ++pParse->nMem; 2375 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2376 if( pOrderBy ){ 2377 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2378 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2379 (char*)pKeyInfo, P4_KEYINFO); 2380 destQueue.pOrderBy = pOrderBy; 2381 }else{ 2382 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2383 } 2384 VdbeComment((v, "Queue table")); 2385 if( iDistinct ){ 2386 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2387 p->selFlags |= SF_UsesEphemeral; 2388 } 2389 2390 /* Detach the ORDER BY clause from the compound SELECT */ 2391 p->pOrderBy = 0; 2392 2393 /* Store the results of the setup-query in Queue. */ 2394 pSetup->pNext = 0; 2395 ExplainQueryPlan((pParse, 1, "SETUP")); 2396 rc = sqlite3Select(pParse, pSetup, &destQueue); 2397 pSetup->pNext = p; 2398 if( rc ) goto end_of_recursive_query; 2399 2400 /* Find the next row in the Queue and output that row */ 2401 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2402 2403 /* Transfer the next row in Queue over to Current */ 2404 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2405 if( pOrderBy ){ 2406 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2407 }else{ 2408 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2409 } 2410 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2411 2412 /* Output the single row in Current */ 2413 addrCont = sqlite3VdbeMakeLabel(pParse); 2414 codeOffset(v, regOffset, addrCont); 2415 selectInnerLoop(pParse, p, iCurrent, 2416 0, 0, pDest, addrCont, addrBreak); 2417 if( regLimit ){ 2418 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2419 VdbeCoverage(v); 2420 } 2421 sqlite3VdbeResolveLabel(v, addrCont); 2422 2423 /* Execute the recursive SELECT taking the single row in Current as 2424 ** the value for the recursive-table. Store the results in the Queue. 2425 */ 2426 if( p->selFlags & SF_Aggregate ){ 2427 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2428 }else{ 2429 p->pPrior = 0; 2430 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2431 sqlite3Select(pParse, p, &destQueue); 2432 assert( p->pPrior==0 ); 2433 p->pPrior = pSetup; 2434 } 2435 2436 /* Keep running the loop until the Queue is empty */ 2437 sqlite3VdbeGoto(v, addrTop); 2438 sqlite3VdbeResolveLabel(v, addrBreak); 2439 2440 end_of_recursive_query: 2441 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2442 p->pOrderBy = pOrderBy; 2443 p->pLimit = pLimit; 2444 return; 2445 } 2446 #endif /* SQLITE_OMIT_CTE */ 2447 2448 /* Forward references */ 2449 static int multiSelectOrderBy( 2450 Parse *pParse, /* Parsing context */ 2451 Select *p, /* The right-most of SELECTs to be coded */ 2452 SelectDest *pDest /* What to do with query results */ 2453 ); 2454 2455 /* 2456 ** Handle the special case of a compound-select that originates from a 2457 ** VALUES clause. By handling this as a special case, we avoid deep 2458 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2459 ** on a VALUES clause. 2460 ** 2461 ** Because the Select object originates from a VALUES clause: 2462 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2463 ** (2) All terms are UNION ALL 2464 ** (3) There is no ORDER BY clause 2465 ** 2466 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2467 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2468 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2469 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2470 */ 2471 static int multiSelectValues( 2472 Parse *pParse, /* Parsing context */ 2473 Select *p, /* The right-most of SELECTs to be coded */ 2474 SelectDest *pDest /* What to do with query results */ 2475 ){ 2476 int nRow = 1; 2477 int rc = 0; 2478 int bShowAll = p->pLimit==0; 2479 assert( p->selFlags & SF_MultiValue ); 2480 do{ 2481 assert( p->selFlags & SF_Values ); 2482 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2483 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2484 #ifndef SQLITE_OMIT_WINDOWFUNC 2485 if( p->pWin ) return -1; 2486 #endif 2487 if( p->pPrior==0 ) break; 2488 assert( p->pPrior->pNext==p ); 2489 p = p->pPrior; 2490 nRow += bShowAll; 2491 }while(1); 2492 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2493 nRow==1 ? "" : "S")); 2494 while( p ){ 2495 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2496 if( !bShowAll ) break; 2497 p->nSelectRow = nRow; 2498 p = p->pNext; 2499 } 2500 return rc; 2501 } 2502 2503 /* 2504 ** This routine is called to process a compound query form from 2505 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2506 ** INTERSECT 2507 ** 2508 ** "p" points to the right-most of the two queries. the query on the 2509 ** left is p->pPrior. The left query could also be a compound query 2510 ** in which case this routine will be called recursively. 2511 ** 2512 ** The results of the total query are to be written into a destination 2513 ** of type eDest with parameter iParm. 2514 ** 2515 ** Example 1: Consider a three-way compound SQL statement. 2516 ** 2517 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2518 ** 2519 ** This statement is parsed up as follows: 2520 ** 2521 ** SELECT c FROM t3 2522 ** | 2523 ** `-----> SELECT b FROM t2 2524 ** | 2525 ** `------> SELECT a FROM t1 2526 ** 2527 ** The arrows in the diagram above represent the Select.pPrior pointer. 2528 ** So if this routine is called with p equal to the t3 query, then 2529 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2530 ** 2531 ** Notice that because of the way SQLite parses compound SELECTs, the 2532 ** individual selects always group from left to right. 2533 */ 2534 static int multiSelect( 2535 Parse *pParse, /* Parsing context */ 2536 Select *p, /* The right-most of SELECTs to be coded */ 2537 SelectDest *pDest /* What to do with query results */ 2538 ){ 2539 int rc = SQLITE_OK; /* Success code from a subroutine */ 2540 Select *pPrior; /* Another SELECT immediately to our left */ 2541 Vdbe *v; /* Generate code to this VDBE */ 2542 SelectDest dest; /* Alternative data destination */ 2543 Select *pDelete = 0; /* Chain of simple selects to delete */ 2544 sqlite3 *db; /* Database connection */ 2545 2546 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2547 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2548 */ 2549 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2550 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2551 assert( p->selFlags & SF_Compound ); 2552 db = pParse->db; 2553 pPrior = p->pPrior; 2554 dest = *pDest; 2555 if( pPrior->pOrderBy || pPrior->pLimit ){ 2556 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2557 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2558 rc = 1; 2559 goto multi_select_end; 2560 } 2561 2562 v = sqlite3GetVdbe(pParse); 2563 assert( v!=0 ); /* The VDBE already created by calling function */ 2564 2565 /* Create the destination temporary table if necessary 2566 */ 2567 if( dest.eDest==SRT_EphemTab ){ 2568 assert( p->pEList ); 2569 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2570 dest.eDest = SRT_Table; 2571 } 2572 2573 /* Special handling for a compound-select that originates as a VALUES clause. 2574 */ 2575 if( p->selFlags & SF_MultiValue ){ 2576 rc = multiSelectValues(pParse, p, &dest); 2577 if( rc>=0 ) goto multi_select_end; 2578 rc = SQLITE_OK; 2579 } 2580 2581 /* Make sure all SELECTs in the statement have the same number of elements 2582 ** in their result sets. 2583 */ 2584 assert( p->pEList && pPrior->pEList ); 2585 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2586 2587 #ifndef SQLITE_OMIT_CTE 2588 if( p->selFlags & SF_Recursive ){ 2589 generateWithRecursiveQuery(pParse, p, &dest); 2590 }else 2591 #endif 2592 2593 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2594 */ 2595 if( p->pOrderBy ){ 2596 return multiSelectOrderBy(pParse, p, pDest); 2597 }else{ 2598 2599 #ifndef SQLITE_OMIT_EXPLAIN 2600 if( pPrior->pPrior==0 ){ 2601 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2602 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2603 } 2604 #endif 2605 2606 /* Generate code for the left and right SELECT statements. 2607 */ 2608 switch( p->op ){ 2609 case TK_ALL: { 2610 int addr = 0; 2611 int nLimit; 2612 assert( !pPrior->pLimit ); 2613 pPrior->iLimit = p->iLimit; 2614 pPrior->iOffset = p->iOffset; 2615 pPrior->pLimit = p->pLimit; 2616 rc = sqlite3Select(pParse, pPrior, &dest); 2617 p->pLimit = 0; 2618 if( rc ){ 2619 goto multi_select_end; 2620 } 2621 p->pPrior = 0; 2622 p->iLimit = pPrior->iLimit; 2623 p->iOffset = pPrior->iOffset; 2624 if( p->iLimit ){ 2625 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2626 VdbeComment((v, "Jump ahead if LIMIT reached")); 2627 if( p->iOffset ){ 2628 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2629 p->iLimit, p->iOffset+1, p->iOffset); 2630 } 2631 } 2632 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2633 rc = sqlite3Select(pParse, p, &dest); 2634 testcase( rc!=SQLITE_OK ); 2635 pDelete = p->pPrior; 2636 p->pPrior = pPrior; 2637 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2638 if( pPrior->pLimit 2639 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2640 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2641 ){ 2642 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2643 } 2644 if( addr ){ 2645 sqlite3VdbeJumpHere(v, addr); 2646 } 2647 break; 2648 } 2649 case TK_EXCEPT: 2650 case TK_UNION: { 2651 int unionTab; /* Cursor number of the temp table holding result */ 2652 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2653 int priorOp; /* The SRT_ operation to apply to prior selects */ 2654 Expr *pLimit; /* Saved values of p->nLimit */ 2655 int addr; 2656 SelectDest uniondest; 2657 2658 testcase( p->op==TK_EXCEPT ); 2659 testcase( p->op==TK_UNION ); 2660 priorOp = SRT_Union; 2661 if( dest.eDest==priorOp ){ 2662 /* We can reuse a temporary table generated by a SELECT to our 2663 ** right. 2664 */ 2665 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2666 unionTab = dest.iSDParm; 2667 }else{ 2668 /* We will need to create our own temporary table to hold the 2669 ** intermediate results. 2670 */ 2671 unionTab = pParse->nTab++; 2672 assert( p->pOrderBy==0 ); 2673 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2674 assert( p->addrOpenEphm[0] == -1 ); 2675 p->addrOpenEphm[0] = addr; 2676 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2677 assert( p->pEList ); 2678 } 2679 2680 /* Code the SELECT statements to our left 2681 */ 2682 assert( !pPrior->pOrderBy ); 2683 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2684 rc = sqlite3Select(pParse, pPrior, &uniondest); 2685 if( rc ){ 2686 goto multi_select_end; 2687 } 2688 2689 /* Code the current SELECT statement 2690 */ 2691 if( p->op==TK_EXCEPT ){ 2692 op = SRT_Except; 2693 }else{ 2694 assert( p->op==TK_UNION ); 2695 op = SRT_Union; 2696 } 2697 p->pPrior = 0; 2698 pLimit = p->pLimit; 2699 p->pLimit = 0; 2700 uniondest.eDest = op; 2701 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2702 selectOpName(p->op))); 2703 rc = sqlite3Select(pParse, p, &uniondest); 2704 testcase( rc!=SQLITE_OK ); 2705 assert( p->pOrderBy==0 ); 2706 pDelete = p->pPrior; 2707 p->pPrior = pPrior; 2708 p->pOrderBy = 0; 2709 if( p->op==TK_UNION ){ 2710 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2711 } 2712 sqlite3ExprDelete(db, p->pLimit); 2713 p->pLimit = pLimit; 2714 p->iLimit = 0; 2715 p->iOffset = 0; 2716 2717 /* Convert the data in the temporary table into whatever form 2718 ** it is that we currently need. 2719 */ 2720 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2721 assert( p->pEList || db->mallocFailed ); 2722 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2723 int iCont, iBreak, iStart; 2724 iBreak = sqlite3VdbeMakeLabel(pParse); 2725 iCont = sqlite3VdbeMakeLabel(pParse); 2726 computeLimitRegisters(pParse, p, iBreak); 2727 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2728 iStart = sqlite3VdbeCurrentAddr(v); 2729 selectInnerLoop(pParse, p, unionTab, 2730 0, 0, &dest, iCont, iBreak); 2731 sqlite3VdbeResolveLabel(v, iCont); 2732 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2733 sqlite3VdbeResolveLabel(v, iBreak); 2734 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2735 } 2736 break; 2737 } 2738 default: assert( p->op==TK_INTERSECT ); { 2739 int tab1, tab2; 2740 int iCont, iBreak, iStart; 2741 Expr *pLimit; 2742 int addr; 2743 SelectDest intersectdest; 2744 int r1; 2745 2746 /* INTERSECT is different from the others since it requires 2747 ** two temporary tables. Hence it has its own case. Begin 2748 ** by allocating the tables we will need. 2749 */ 2750 tab1 = pParse->nTab++; 2751 tab2 = pParse->nTab++; 2752 assert( p->pOrderBy==0 ); 2753 2754 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2755 assert( p->addrOpenEphm[0] == -1 ); 2756 p->addrOpenEphm[0] = addr; 2757 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2758 assert( p->pEList ); 2759 2760 /* Code the SELECTs to our left into temporary table "tab1". 2761 */ 2762 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2763 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2764 if( rc ){ 2765 goto multi_select_end; 2766 } 2767 2768 /* Code the current SELECT into temporary table "tab2" 2769 */ 2770 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2771 assert( p->addrOpenEphm[1] == -1 ); 2772 p->addrOpenEphm[1] = addr; 2773 p->pPrior = 0; 2774 pLimit = p->pLimit; 2775 p->pLimit = 0; 2776 intersectdest.iSDParm = tab2; 2777 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2778 selectOpName(p->op))); 2779 rc = sqlite3Select(pParse, p, &intersectdest); 2780 testcase( rc!=SQLITE_OK ); 2781 pDelete = p->pPrior; 2782 p->pPrior = pPrior; 2783 if( p->nSelectRow>pPrior->nSelectRow ){ 2784 p->nSelectRow = pPrior->nSelectRow; 2785 } 2786 sqlite3ExprDelete(db, p->pLimit); 2787 p->pLimit = pLimit; 2788 2789 /* Generate code to take the intersection of the two temporary 2790 ** tables. 2791 */ 2792 if( rc ) break; 2793 assert( p->pEList ); 2794 iBreak = sqlite3VdbeMakeLabel(pParse); 2795 iCont = sqlite3VdbeMakeLabel(pParse); 2796 computeLimitRegisters(pParse, p, iBreak); 2797 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2798 r1 = sqlite3GetTempReg(pParse); 2799 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2800 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2801 VdbeCoverage(v); 2802 sqlite3ReleaseTempReg(pParse, r1); 2803 selectInnerLoop(pParse, p, tab1, 2804 0, 0, &dest, iCont, iBreak); 2805 sqlite3VdbeResolveLabel(v, iCont); 2806 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2807 sqlite3VdbeResolveLabel(v, iBreak); 2808 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2809 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2810 break; 2811 } 2812 } 2813 2814 #ifndef SQLITE_OMIT_EXPLAIN 2815 if( p->pNext==0 ){ 2816 ExplainQueryPlanPop(pParse); 2817 } 2818 #endif 2819 } 2820 if( pParse->nErr ) goto multi_select_end; 2821 2822 /* Compute collating sequences used by 2823 ** temporary tables needed to implement the compound select. 2824 ** Attach the KeyInfo structure to all temporary tables. 2825 ** 2826 ** This section is run by the right-most SELECT statement only. 2827 ** SELECT statements to the left always skip this part. The right-most 2828 ** SELECT might also skip this part if it has no ORDER BY clause and 2829 ** no temp tables are required. 2830 */ 2831 if( p->selFlags & SF_UsesEphemeral ){ 2832 int i; /* Loop counter */ 2833 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2834 Select *pLoop; /* For looping through SELECT statements */ 2835 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2836 int nCol; /* Number of columns in result set */ 2837 2838 assert( p->pNext==0 ); 2839 nCol = p->pEList->nExpr; 2840 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2841 if( !pKeyInfo ){ 2842 rc = SQLITE_NOMEM_BKPT; 2843 goto multi_select_end; 2844 } 2845 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2846 *apColl = multiSelectCollSeq(pParse, p, i); 2847 if( 0==*apColl ){ 2848 *apColl = db->pDfltColl; 2849 } 2850 } 2851 2852 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2853 for(i=0; i<2; i++){ 2854 int addr = pLoop->addrOpenEphm[i]; 2855 if( addr<0 ){ 2856 /* If [0] is unused then [1] is also unused. So we can 2857 ** always safely abort as soon as the first unused slot is found */ 2858 assert( pLoop->addrOpenEphm[1]<0 ); 2859 break; 2860 } 2861 sqlite3VdbeChangeP2(v, addr, nCol); 2862 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2863 P4_KEYINFO); 2864 pLoop->addrOpenEphm[i] = -1; 2865 } 2866 } 2867 sqlite3KeyInfoUnref(pKeyInfo); 2868 } 2869 2870 multi_select_end: 2871 pDest->iSdst = dest.iSdst; 2872 pDest->nSdst = dest.nSdst; 2873 sqlite3SelectDelete(db, pDelete); 2874 return rc; 2875 } 2876 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2877 2878 /* 2879 ** Error message for when two or more terms of a compound select have different 2880 ** size result sets. 2881 */ 2882 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2883 if( p->selFlags & SF_Values ){ 2884 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2885 }else{ 2886 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2887 " do not have the same number of result columns", selectOpName(p->op)); 2888 } 2889 } 2890 2891 /* 2892 ** Code an output subroutine for a coroutine implementation of a 2893 ** SELECT statment. 2894 ** 2895 ** The data to be output is contained in pIn->iSdst. There are 2896 ** pIn->nSdst columns to be output. pDest is where the output should 2897 ** be sent. 2898 ** 2899 ** regReturn is the number of the register holding the subroutine 2900 ** return address. 2901 ** 2902 ** If regPrev>0 then it is the first register in a vector that 2903 ** records the previous output. mem[regPrev] is a flag that is false 2904 ** if there has been no previous output. If regPrev>0 then code is 2905 ** generated to suppress duplicates. pKeyInfo is used for comparing 2906 ** keys. 2907 ** 2908 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2909 ** iBreak. 2910 */ 2911 static int generateOutputSubroutine( 2912 Parse *pParse, /* Parsing context */ 2913 Select *p, /* The SELECT statement */ 2914 SelectDest *pIn, /* Coroutine supplying data */ 2915 SelectDest *pDest, /* Where to send the data */ 2916 int regReturn, /* The return address register */ 2917 int regPrev, /* Previous result register. No uniqueness if 0 */ 2918 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2919 int iBreak /* Jump here if we hit the LIMIT */ 2920 ){ 2921 Vdbe *v = pParse->pVdbe; 2922 int iContinue; 2923 int addr; 2924 2925 addr = sqlite3VdbeCurrentAddr(v); 2926 iContinue = sqlite3VdbeMakeLabel(pParse); 2927 2928 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2929 */ 2930 if( regPrev ){ 2931 int addr1, addr2; 2932 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2933 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2934 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2935 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2936 sqlite3VdbeJumpHere(v, addr1); 2937 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2938 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2939 } 2940 if( pParse->db->mallocFailed ) return 0; 2941 2942 /* Suppress the first OFFSET entries if there is an OFFSET clause 2943 */ 2944 codeOffset(v, p->iOffset, iContinue); 2945 2946 assert( pDest->eDest!=SRT_Exists ); 2947 assert( pDest->eDest!=SRT_Table ); 2948 switch( pDest->eDest ){ 2949 /* Store the result as data using a unique key. 2950 */ 2951 case SRT_EphemTab: { 2952 int r1 = sqlite3GetTempReg(pParse); 2953 int r2 = sqlite3GetTempReg(pParse); 2954 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2955 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2956 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2957 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2958 sqlite3ReleaseTempReg(pParse, r2); 2959 sqlite3ReleaseTempReg(pParse, r1); 2960 break; 2961 } 2962 2963 #ifndef SQLITE_OMIT_SUBQUERY 2964 /* If we are creating a set for an "expr IN (SELECT ...)". 2965 */ 2966 case SRT_Set: { 2967 int r1; 2968 testcase( pIn->nSdst>1 ); 2969 r1 = sqlite3GetTempReg(pParse); 2970 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2971 r1, pDest->zAffSdst, pIn->nSdst); 2972 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2973 pIn->iSdst, pIn->nSdst); 2974 sqlite3ReleaseTempReg(pParse, r1); 2975 break; 2976 } 2977 2978 /* If this is a scalar select that is part of an expression, then 2979 ** store the results in the appropriate memory cell and break out 2980 ** of the scan loop. Note that the select might return multiple columns 2981 ** if it is the RHS of a row-value IN operator. 2982 */ 2983 case SRT_Mem: { 2984 if( pParse->nErr==0 ){ 2985 testcase( pIn->nSdst>1 ); 2986 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 2987 } 2988 /* The LIMIT clause will jump out of the loop for us */ 2989 break; 2990 } 2991 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2992 2993 /* The results are stored in a sequence of registers 2994 ** starting at pDest->iSdst. Then the co-routine yields. 2995 */ 2996 case SRT_Coroutine: { 2997 if( pDest->iSdst==0 ){ 2998 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2999 pDest->nSdst = pIn->nSdst; 3000 } 3001 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3002 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3003 break; 3004 } 3005 3006 /* If none of the above, then the result destination must be 3007 ** SRT_Output. This routine is never called with any other 3008 ** destination other than the ones handled above or SRT_Output. 3009 ** 3010 ** For SRT_Output, results are stored in a sequence of registers. 3011 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3012 ** return the next row of result. 3013 */ 3014 default: { 3015 assert( pDest->eDest==SRT_Output ); 3016 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3017 break; 3018 } 3019 } 3020 3021 /* Jump to the end of the loop if the LIMIT is reached. 3022 */ 3023 if( p->iLimit ){ 3024 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3025 } 3026 3027 /* Generate the subroutine return 3028 */ 3029 sqlite3VdbeResolveLabel(v, iContinue); 3030 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3031 3032 return addr; 3033 } 3034 3035 /* 3036 ** Alternative compound select code generator for cases when there 3037 ** is an ORDER BY clause. 3038 ** 3039 ** We assume a query of the following form: 3040 ** 3041 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3042 ** 3043 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3044 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3045 ** co-routines. Then run the co-routines in parallel and merge the results 3046 ** into the output. In addition to the two coroutines (called selectA and 3047 ** selectB) there are 7 subroutines: 3048 ** 3049 ** outA: Move the output of the selectA coroutine into the output 3050 ** of the compound query. 3051 ** 3052 ** outB: Move the output of the selectB coroutine into the output 3053 ** of the compound query. (Only generated for UNION and 3054 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3055 ** appears only in B.) 3056 ** 3057 ** AltB: Called when there is data from both coroutines and A<B. 3058 ** 3059 ** AeqB: Called when there is data from both coroutines and A==B. 3060 ** 3061 ** AgtB: Called when there is data from both coroutines and A>B. 3062 ** 3063 ** EofA: Called when data is exhausted from selectA. 3064 ** 3065 ** EofB: Called when data is exhausted from selectB. 3066 ** 3067 ** The implementation of the latter five subroutines depend on which 3068 ** <operator> is used: 3069 ** 3070 ** 3071 ** UNION ALL UNION EXCEPT INTERSECT 3072 ** ------------- ----------------- -------------- ----------------- 3073 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3074 ** 3075 ** AeqB: outA, nextA nextA nextA outA, nextA 3076 ** 3077 ** AgtB: outB, nextB outB, nextB nextB nextB 3078 ** 3079 ** EofA: outB, nextB outB, nextB halt halt 3080 ** 3081 ** EofB: outA, nextA outA, nextA outA, nextA halt 3082 ** 3083 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3084 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3085 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3086 ** following nextX causes a jump to the end of the select processing. 3087 ** 3088 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3089 ** within the output subroutine. The regPrev register set holds the previously 3090 ** output value. A comparison is made against this value and the output 3091 ** is skipped if the next results would be the same as the previous. 3092 ** 3093 ** The implementation plan is to implement the two coroutines and seven 3094 ** subroutines first, then put the control logic at the bottom. Like this: 3095 ** 3096 ** goto Init 3097 ** coA: coroutine for left query (A) 3098 ** coB: coroutine for right query (B) 3099 ** outA: output one row of A 3100 ** outB: output one row of B (UNION and UNION ALL only) 3101 ** EofA: ... 3102 ** EofB: ... 3103 ** AltB: ... 3104 ** AeqB: ... 3105 ** AgtB: ... 3106 ** Init: initialize coroutine registers 3107 ** yield coA 3108 ** if eof(A) goto EofA 3109 ** yield coB 3110 ** if eof(B) goto EofB 3111 ** Cmpr: Compare A, B 3112 ** Jump AltB, AeqB, AgtB 3113 ** End: ... 3114 ** 3115 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3116 ** actually called using Gosub and they do not Return. EofA and EofB loop 3117 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3118 ** and AgtB jump to either L2 or to one of EofA or EofB. 3119 */ 3120 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3121 static int multiSelectOrderBy( 3122 Parse *pParse, /* Parsing context */ 3123 Select *p, /* The right-most of SELECTs to be coded */ 3124 SelectDest *pDest /* What to do with query results */ 3125 ){ 3126 int i, j; /* Loop counters */ 3127 Select *pPrior; /* Another SELECT immediately to our left */ 3128 Vdbe *v; /* Generate code to this VDBE */ 3129 SelectDest destA; /* Destination for coroutine A */ 3130 SelectDest destB; /* Destination for coroutine B */ 3131 int regAddrA; /* Address register for select-A coroutine */ 3132 int regAddrB; /* Address register for select-B coroutine */ 3133 int addrSelectA; /* Address of the select-A coroutine */ 3134 int addrSelectB; /* Address of the select-B coroutine */ 3135 int regOutA; /* Address register for the output-A subroutine */ 3136 int regOutB; /* Address register for the output-B subroutine */ 3137 int addrOutA; /* Address of the output-A subroutine */ 3138 int addrOutB = 0; /* Address of the output-B subroutine */ 3139 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3140 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3141 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3142 int addrAltB; /* Address of the A<B subroutine */ 3143 int addrAeqB; /* Address of the A==B subroutine */ 3144 int addrAgtB; /* Address of the A>B subroutine */ 3145 int regLimitA; /* Limit register for select-A */ 3146 int regLimitB; /* Limit register for select-A */ 3147 int regPrev; /* A range of registers to hold previous output */ 3148 int savedLimit; /* Saved value of p->iLimit */ 3149 int savedOffset; /* Saved value of p->iOffset */ 3150 int labelCmpr; /* Label for the start of the merge algorithm */ 3151 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3152 int addr1; /* Jump instructions that get retargetted */ 3153 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3154 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3155 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3156 sqlite3 *db; /* Database connection */ 3157 ExprList *pOrderBy; /* The ORDER BY clause */ 3158 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3159 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3160 3161 assert( p->pOrderBy!=0 ); 3162 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3163 db = pParse->db; 3164 v = pParse->pVdbe; 3165 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3166 labelEnd = sqlite3VdbeMakeLabel(pParse); 3167 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3168 3169 3170 /* Patch up the ORDER BY clause 3171 */ 3172 op = p->op; 3173 pPrior = p->pPrior; 3174 assert( pPrior->pOrderBy==0 ); 3175 pOrderBy = p->pOrderBy; 3176 assert( pOrderBy ); 3177 nOrderBy = pOrderBy->nExpr; 3178 3179 /* For operators other than UNION ALL we have to make sure that 3180 ** the ORDER BY clause covers every term of the result set. Add 3181 ** terms to the ORDER BY clause as necessary. 3182 */ 3183 if( op!=TK_ALL ){ 3184 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3185 struct ExprList_item *pItem; 3186 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3187 assert( pItem->u.x.iOrderByCol>0 ); 3188 if( pItem->u.x.iOrderByCol==i ) break; 3189 } 3190 if( j==nOrderBy ){ 3191 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3192 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3193 pNew->flags |= EP_IntValue; 3194 pNew->u.iValue = i; 3195 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3196 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3197 } 3198 } 3199 } 3200 3201 /* Compute the comparison permutation and keyinfo that is used with 3202 ** the permutation used to determine if the next 3203 ** row of results comes from selectA or selectB. Also add explicit 3204 ** collations to the ORDER BY clause terms so that when the subqueries 3205 ** to the right and the left are evaluated, they use the correct 3206 ** collation. 3207 */ 3208 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3209 if( aPermute ){ 3210 struct ExprList_item *pItem; 3211 aPermute[0] = nOrderBy; 3212 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3213 assert( pItem->u.x.iOrderByCol>0 ); 3214 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3215 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3216 } 3217 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3218 }else{ 3219 pKeyMerge = 0; 3220 } 3221 3222 /* Reattach the ORDER BY clause to the query. 3223 */ 3224 p->pOrderBy = pOrderBy; 3225 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3226 3227 /* Allocate a range of temporary registers and the KeyInfo needed 3228 ** for the logic that removes duplicate result rows when the 3229 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3230 */ 3231 if( op==TK_ALL ){ 3232 regPrev = 0; 3233 }else{ 3234 int nExpr = p->pEList->nExpr; 3235 assert( nOrderBy>=nExpr || db->mallocFailed ); 3236 regPrev = pParse->nMem+1; 3237 pParse->nMem += nExpr+1; 3238 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3239 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3240 if( pKeyDup ){ 3241 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3242 for(i=0; i<nExpr; i++){ 3243 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3244 pKeyDup->aSortFlags[i] = 0; 3245 } 3246 } 3247 } 3248 3249 /* Separate the left and the right query from one another 3250 */ 3251 p->pPrior = 0; 3252 pPrior->pNext = 0; 3253 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3254 if( pPrior->pPrior==0 ){ 3255 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3256 } 3257 3258 /* Compute the limit registers */ 3259 computeLimitRegisters(pParse, p, labelEnd); 3260 if( p->iLimit && op==TK_ALL ){ 3261 regLimitA = ++pParse->nMem; 3262 regLimitB = ++pParse->nMem; 3263 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3264 regLimitA); 3265 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3266 }else{ 3267 regLimitA = regLimitB = 0; 3268 } 3269 sqlite3ExprDelete(db, p->pLimit); 3270 p->pLimit = 0; 3271 3272 regAddrA = ++pParse->nMem; 3273 regAddrB = ++pParse->nMem; 3274 regOutA = ++pParse->nMem; 3275 regOutB = ++pParse->nMem; 3276 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3277 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3278 3279 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3280 3281 /* Generate a coroutine to evaluate the SELECT statement to the 3282 ** left of the compound operator - the "A" select. 3283 */ 3284 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3285 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3286 VdbeComment((v, "left SELECT")); 3287 pPrior->iLimit = regLimitA; 3288 ExplainQueryPlan((pParse, 1, "LEFT")); 3289 sqlite3Select(pParse, pPrior, &destA); 3290 sqlite3VdbeEndCoroutine(v, regAddrA); 3291 sqlite3VdbeJumpHere(v, addr1); 3292 3293 /* Generate a coroutine to evaluate the SELECT statement on 3294 ** the right - the "B" select 3295 */ 3296 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3297 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3298 VdbeComment((v, "right SELECT")); 3299 savedLimit = p->iLimit; 3300 savedOffset = p->iOffset; 3301 p->iLimit = regLimitB; 3302 p->iOffset = 0; 3303 ExplainQueryPlan((pParse, 1, "RIGHT")); 3304 sqlite3Select(pParse, p, &destB); 3305 p->iLimit = savedLimit; 3306 p->iOffset = savedOffset; 3307 sqlite3VdbeEndCoroutine(v, regAddrB); 3308 3309 /* Generate a subroutine that outputs the current row of the A 3310 ** select as the next output row of the compound select. 3311 */ 3312 VdbeNoopComment((v, "Output routine for A")); 3313 addrOutA = generateOutputSubroutine(pParse, 3314 p, &destA, pDest, regOutA, 3315 regPrev, pKeyDup, labelEnd); 3316 3317 /* Generate a subroutine that outputs the current row of the B 3318 ** select as the next output row of the compound select. 3319 */ 3320 if( op==TK_ALL || op==TK_UNION ){ 3321 VdbeNoopComment((v, "Output routine for B")); 3322 addrOutB = generateOutputSubroutine(pParse, 3323 p, &destB, pDest, regOutB, 3324 regPrev, pKeyDup, labelEnd); 3325 } 3326 sqlite3KeyInfoUnref(pKeyDup); 3327 3328 /* Generate a subroutine to run when the results from select A 3329 ** are exhausted and only data in select B remains. 3330 */ 3331 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3332 addrEofA_noB = addrEofA = labelEnd; 3333 }else{ 3334 VdbeNoopComment((v, "eof-A subroutine")); 3335 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3336 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3337 VdbeCoverage(v); 3338 sqlite3VdbeGoto(v, addrEofA); 3339 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3340 } 3341 3342 /* Generate a subroutine to run when the results from select B 3343 ** are exhausted and only data in select A remains. 3344 */ 3345 if( op==TK_INTERSECT ){ 3346 addrEofB = addrEofA; 3347 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3348 }else{ 3349 VdbeNoopComment((v, "eof-B subroutine")); 3350 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3351 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3352 sqlite3VdbeGoto(v, addrEofB); 3353 } 3354 3355 /* Generate code to handle the case of A<B 3356 */ 3357 VdbeNoopComment((v, "A-lt-B subroutine")); 3358 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3359 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3360 sqlite3VdbeGoto(v, labelCmpr); 3361 3362 /* Generate code to handle the case of A==B 3363 */ 3364 if( op==TK_ALL ){ 3365 addrAeqB = addrAltB; 3366 }else if( op==TK_INTERSECT ){ 3367 addrAeqB = addrAltB; 3368 addrAltB++; 3369 }else{ 3370 VdbeNoopComment((v, "A-eq-B subroutine")); 3371 addrAeqB = 3372 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3373 sqlite3VdbeGoto(v, labelCmpr); 3374 } 3375 3376 /* Generate code to handle the case of A>B 3377 */ 3378 VdbeNoopComment((v, "A-gt-B subroutine")); 3379 addrAgtB = sqlite3VdbeCurrentAddr(v); 3380 if( op==TK_ALL || op==TK_UNION ){ 3381 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3382 } 3383 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3384 sqlite3VdbeGoto(v, labelCmpr); 3385 3386 /* This code runs once to initialize everything. 3387 */ 3388 sqlite3VdbeJumpHere(v, addr1); 3389 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3390 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3391 3392 /* Implement the main merge loop 3393 */ 3394 sqlite3VdbeResolveLabel(v, labelCmpr); 3395 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3396 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3397 (char*)pKeyMerge, P4_KEYINFO); 3398 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3399 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3400 3401 /* Jump to the this point in order to terminate the query. 3402 */ 3403 sqlite3VdbeResolveLabel(v, labelEnd); 3404 3405 /* Reassembly the compound query so that it will be freed correctly 3406 ** by the calling function */ 3407 if( p->pPrior ){ 3408 sqlite3SelectDelete(db, p->pPrior); 3409 } 3410 p->pPrior = pPrior; 3411 pPrior->pNext = p; 3412 3413 /*** TBD: Insert subroutine calls to close cursors on incomplete 3414 **** subqueries ****/ 3415 ExplainQueryPlanPop(pParse); 3416 return pParse->nErr!=0; 3417 } 3418 #endif 3419 3420 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3421 3422 /* An instance of the SubstContext object describes an substitution edit 3423 ** to be performed on a parse tree. 3424 ** 3425 ** All references to columns in table iTable are to be replaced by corresponding 3426 ** expressions in pEList. 3427 */ 3428 typedef struct SubstContext { 3429 Parse *pParse; /* The parsing context */ 3430 int iTable; /* Replace references to this table */ 3431 int iNewTable; /* New table number */ 3432 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3433 ExprList *pEList; /* Replacement expressions */ 3434 } SubstContext; 3435 3436 /* Forward Declarations */ 3437 static void substExprList(SubstContext*, ExprList*); 3438 static void substSelect(SubstContext*, Select*, int); 3439 3440 /* 3441 ** Scan through the expression pExpr. Replace every reference to 3442 ** a column in table number iTable with a copy of the iColumn-th 3443 ** entry in pEList. (But leave references to the ROWID column 3444 ** unchanged.) 3445 ** 3446 ** This routine is part of the flattening procedure. A subquery 3447 ** whose result set is defined by pEList appears as entry in the 3448 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3449 ** FORM clause entry is iTable. This routine makes the necessary 3450 ** changes to pExpr so that it refers directly to the source table 3451 ** of the subquery rather the result set of the subquery. 3452 */ 3453 static Expr *substExpr( 3454 SubstContext *pSubst, /* Description of the substitution */ 3455 Expr *pExpr /* Expr in which substitution occurs */ 3456 ){ 3457 if( pExpr==0 ) return 0; 3458 if( ExprHasProperty(pExpr, EP_FromJoin) 3459 && pExpr->iRightJoinTable==pSubst->iTable 3460 ){ 3461 pExpr->iRightJoinTable = pSubst->iNewTable; 3462 } 3463 if( pExpr->op==TK_COLUMN 3464 && pExpr->iTable==pSubst->iTable 3465 && !ExprHasProperty(pExpr, EP_FixedCol) 3466 ){ 3467 if( pExpr->iColumn<0 ){ 3468 pExpr->op = TK_NULL; 3469 }else{ 3470 Expr *pNew; 3471 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3472 Expr ifNullRow; 3473 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3474 assert( pExpr->pRight==0 ); 3475 if( sqlite3ExprIsVector(pCopy) ){ 3476 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3477 }else{ 3478 sqlite3 *db = pSubst->pParse->db; 3479 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3480 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3481 ifNullRow.op = TK_IF_NULL_ROW; 3482 ifNullRow.pLeft = pCopy; 3483 ifNullRow.iTable = pSubst->iNewTable; 3484 ifNullRow.flags = EP_Skip; 3485 pCopy = &ifNullRow; 3486 } 3487 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3488 pNew = sqlite3ExprDup(db, pCopy, 0); 3489 if( pNew && pSubst->isLeftJoin ){ 3490 ExprSetProperty(pNew, EP_CanBeNull); 3491 } 3492 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3493 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3494 ExprSetProperty(pNew, EP_FromJoin); 3495 } 3496 sqlite3ExprDelete(db, pExpr); 3497 pExpr = pNew; 3498 3499 /* Ensure that the expression now has an implicit collation sequence, 3500 ** just as it did when it was a column of a view or sub-query. */ 3501 if( pExpr ){ 3502 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3503 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3504 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3505 (pColl ? pColl->zName : "BINARY") 3506 ); 3507 } 3508 ExprClearProperty(pExpr, EP_Collate); 3509 } 3510 } 3511 } 3512 }else{ 3513 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3514 pExpr->iTable = pSubst->iNewTable; 3515 } 3516 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3517 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3518 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3519 substSelect(pSubst, pExpr->x.pSelect, 1); 3520 }else{ 3521 substExprList(pSubst, pExpr->x.pList); 3522 } 3523 #ifndef SQLITE_OMIT_WINDOWFUNC 3524 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3525 Window *pWin = pExpr->y.pWin; 3526 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3527 substExprList(pSubst, pWin->pPartition); 3528 substExprList(pSubst, pWin->pOrderBy); 3529 } 3530 #endif 3531 } 3532 return pExpr; 3533 } 3534 static void substExprList( 3535 SubstContext *pSubst, /* Description of the substitution */ 3536 ExprList *pList /* List to scan and in which to make substitutes */ 3537 ){ 3538 int i; 3539 if( pList==0 ) return; 3540 for(i=0; i<pList->nExpr; i++){ 3541 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3542 } 3543 } 3544 static void substSelect( 3545 SubstContext *pSubst, /* Description of the substitution */ 3546 Select *p, /* SELECT statement in which to make substitutions */ 3547 int doPrior /* Do substitutes on p->pPrior too */ 3548 ){ 3549 SrcList *pSrc; 3550 struct SrcList_item *pItem; 3551 int i; 3552 if( !p ) return; 3553 do{ 3554 substExprList(pSubst, p->pEList); 3555 substExprList(pSubst, p->pGroupBy); 3556 substExprList(pSubst, p->pOrderBy); 3557 p->pHaving = substExpr(pSubst, p->pHaving); 3558 p->pWhere = substExpr(pSubst, p->pWhere); 3559 pSrc = p->pSrc; 3560 assert( pSrc!=0 ); 3561 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3562 substSelect(pSubst, pItem->pSelect, 1); 3563 if( pItem->fg.isTabFunc ){ 3564 substExprList(pSubst, pItem->u1.pFuncArg); 3565 } 3566 } 3567 }while( doPrior && (p = p->pPrior)!=0 ); 3568 } 3569 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3570 3571 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3572 /* 3573 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3574 ** clause of that SELECT. 3575 ** 3576 ** This routine scans the entire SELECT statement and recomputes the 3577 ** pSrcItem->colUsed mask. 3578 */ 3579 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3580 struct SrcList_item *pItem; 3581 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3582 pItem = pWalker->u.pSrcItem; 3583 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3584 if( pExpr->iColumn<0 ) return WRC_Continue; 3585 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3586 return WRC_Continue; 3587 } 3588 static void recomputeColumnsUsed( 3589 Select *pSelect, /* The complete SELECT statement */ 3590 struct SrcList_item *pSrcItem /* Which FROM clause item to recompute */ 3591 ){ 3592 Walker w; 3593 if( NEVER(pSrcItem->pTab==0) ) return; 3594 memset(&w, 0, sizeof(w)); 3595 w.xExprCallback = recomputeColumnsUsedExpr; 3596 w.xSelectCallback = sqlite3SelectWalkNoop; 3597 w.u.pSrcItem = pSrcItem; 3598 pSrcItem->colUsed = 0; 3599 sqlite3WalkSelect(&w, pSelect); 3600 } 3601 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3602 3603 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3604 /* 3605 ** This routine attempts to flatten subqueries as a performance optimization. 3606 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3607 ** 3608 ** To understand the concept of flattening, consider the following 3609 ** query: 3610 ** 3611 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3612 ** 3613 ** The default way of implementing this query is to execute the 3614 ** subquery first and store the results in a temporary table, then 3615 ** run the outer query on that temporary table. This requires two 3616 ** passes over the data. Furthermore, because the temporary table 3617 ** has no indices, the WHERE clause on the outer query cannot be 3618 ** optimized. 3619 ** 3620 ** This routine attempts to rewrite queries such as the above into 3621 ** a single flat select, like this: 3622 ** 3623 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3624 ** 3625 ** The code generated for this simplification gives the same result 3626 ** but only has to scan the data once. And because indices might 3627 ** exist on the table t1, a complete scan of the data might be 3628 ** avoided. 3629 ** 3630 ** Flattening is subject to the following constraints: 3631 ** 3632 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3633 ** The subquery and the outer query cannot both be aggregates. 3634 ** 3635 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3636 ** (2) If the subquery is an aggregate then 3637 ** (2a) the outer query must not be a join and 3638 ** (2b) the outer query must not use subqueries 3639 ** other than the one FROM-clause subquery that is a candidate 3640 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3641 ** from 2015-02-09.) 3642 ** 3643 ** (3) If the subquery is the right operand of a LEFT JOIN then 3644 ** (3a) the subquery may not be a join and 3645 ** (3b) the FROM clause of the subquery may not contain a virtual 3646 ** table and 3647 ** (3c) the outer query may not be an aggregate. 3648 ** (3d) the outer query may not be DISTINCT. 3649 ** 3650 ** (4) The subquery can not be DISTINCT. 3651 ** 3652 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3653 ** sub-queries that were excluded from this optimization. Restriction 3654 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3655 ** 3656 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3657 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3658 ** 3659 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3660 ** A FROM clause, consider adding a FROM clause with the special 3661 ** table sqlite_once that consists of a single row containing a 3662 ** single NULL. 3663 ** 3664 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3665 ** 3666 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3667 ** 3668 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3669 ** accidently carried the comment forward until 2014-09-15. Original 3670 ** constraint: "If the subquery is aggregate then the outer query 3671 ** may not use LIMIT." 3672 ** 3673 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3674 ** 3675 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3676 ** a separate restriction deriving from ticket #350. 3677 ** 3678 ** (13) The subquery and outer query may not both use LIMIT. 3679 ** 3680 ** (14) The subquery may not use OFFSET. 3681 ** 3682 ** (15) If the outer query is part of a compound select, then the 3683 ** subquery may not use LIMIT. 3684 ** (See ticket #2339 and ticket [02a8e81d44]). 3685 ** 3686 ** (16) If the outer query is aggregate, then the subquery may not 3687 ** use ORDER BY. (Ticket #2942) This used to not matter 3688 ** until we introduced the group_concat() function. 3689 ** 3690 ** (17) If the subquery is a compound select, then 3691 ** (17a) all compound operators must be a UNION ALL, and 3692 ** (17b) no terms within the subquery compound may be aggregate 3693 ** or DISTINCT, and 3694 ** (17c) every term within the subquery compound must have a FROM clause 3695 ** (17d) the outer query may not be 3696 ** (17d1) aggregate, or 3697 ** (17d2) DISTINCT, or 3698 ** (17d3) a join. 3699 ** (17e) the subquery may not contain window functions 3700 ** 3701 ** The parent and sub-query may contain WHERE clauses. Subject to 3702 ** rules (11), (13) and (14), they may also contain ORDER BY, 3703 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3704 ** operator other than UNION ALL because all the other compound 3705 ** operators have an implied DISTINCT which is disallowed by 3706 ** restriction (4). 3707 ** 3708 ** Also, each component of the sub-query must return the same number 3709 ** of result columns. This is actually a requirement for any compound 3710 ** SELECT statement, but all the code here does is make sure that no 3711 ** such (illegal) sub-query is flattened. The caller will detect the 3712 ** syntax error and return a detailed message. 3713 ** 3714 ** (18) If the sub-query is a compound select, then all terms of the 3715 ** ORDER BY clause of the parent must be simple references to 3716 ** columns of the sub-query. 3717 ** 3718 ** (19) If the subquery uses LIMIT then the outer query may not 3719 ** have a WHERE clause. 3720 ** 3721 ** (20) If the sub-query is a compound select, then it must not use 3722 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3723 ** somewhat by saying that the terms of the ORDER BY clause must 3724 ** appear as unmodified result columns in the outer query. But we 3725 ** have other optimizations in mind to deal with that case. 3726 ** 3727 ** (21) If the subquery uses LIMIT then the outer query may not be 3728 ** DISTINCT. (See ticket [752e1646fc]). 3729 ** 3730 ** (22) The subquery may not be a recursive CTE. 3731 ** 3732 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3733 ** a recursive CTE, then the sub-query may not be a compound query. 3734 ** This restriction is because transforming the 3735 ** parent to a compound query confuses the code that handles 3736 ** recursive queries in multiSelect(). 3737 ** 3738 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3739 ** The subquery may not be an aggregate that uses the built-in min() or 3740 ** or max() functions. (Without this restriction, a query like: 3741 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3742 ** return the value X for which Y was maximal.) 3743 ** 3744 ** (25) If either the subquery or the parent query contains a window 3745 ** function in the select list or ORDER BY clause, flattening 3746 ** is not attempted. 3747 ** 3748 ** 3749 ** In this routine, the "p" parameter is a pointer to the outer query. 3750 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3751 ** uses aggregates. 3752 ** 3753 ** If flattening is not attempted, this routine is a no-op and returns 0. 3754 ** If flattening is attempted this routine returns 1. 3755 ** 3756 ** All of the expression analysis must occur on both the outer query and 3757 ** the subquery before this routine runs. 3758 */ 3759 static int flattenSubquery( 3760 Parse *pParse, /* Parsing context */ 3761 Select *p, /* The parent or outer SELECT statement */ 3762 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3763 int isAgg /* True if outer SELECT uses aggregate functions */ 3764 ){ 3765 const char *zSavedAuthContext = pParse->zAuthContext; 3766 Select *pParent; /* Current UNION ALL term of the other query */ 3767 Select *pSub; /* The inner query or "subquery" */ 3768 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3769 SrcList *pSrc; /* The FROM clause of the outer query */ 3770 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3771 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3772 int iNewParent = -1;/* Replacement table for iParent */ 3773 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3774 int i; /* Loop counter */ 3775 Expr *pWhere; /* The WHERE clause */ 3776 struct SrcList_item *pSubitem; /* The subquery */ 3777 sqlite3 *db = pParse->db; 3778 Walker w; /* Walker to persist agginfo data */ 3779 3780 /* Check to see if flattening is permitted. Return 0 if not. 3781 */ 3782 assert( p!=0 ); 3783 assert( p->pPrior==0 ); 3784 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3785 pSrc = p->pSrc; 3786 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3787 pSubitem = &pSrc->a[iFrom]; 3788 iParent = pSubitem->iCursor; 3789 pSub = pSubitem->pSelect; 3790 assert( pSub!=0 ); 3791 3792 #ifndef SQLITE_OMIT_WINDOWFUNC 3793 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3794 #endif 3795 3796 pSubSrc = pSub->pSrc; 3797 assert( pSubSrc ); 3798 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3799 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3800 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3801 ** became arbitrary expressions, we were forced to add restrictions (13) 3802 ** and (14). */ 3803 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3804 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3805 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3806 return 0; /* Restriction (15) */ 3807 } 3808 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3809 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3810 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3811 return 0; /* Restrictions (8)(9) */ 3812 } 3813 if( p->pOrderBy && pSub->pOrderBy ){ 3814 return 0; /* Restriction (11) */ 3815 } 3816 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3817 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3818 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3819 return 0; /* Restriction (21) */ 3820 } 3821 if( pSub->selFlags & (SF_Recursive) ){ 3822 return 0; /* Restrictions (22) */ 3823 } 3824 3825 /* 3826 ** If the subquery is the right operand of a LEFT JOIN, then the 3827 ** subquery may not be a join itself (3a). Example of why this is not 3828 ** allowed: 3829 ** 3830 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3831 ** 3832 ** If we flatten the above, we would get 3833 ** 3834 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3835 ** 3836 ** which is not at all the same thing. 3837 ** 3838 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3839 ** query cannot be an aggregate. (3c) This is an artifact of the way 3840 ** aggregates are processed - there is no mechanism to determine if 3841 ** the LEFT JOIN table should be all-NULL. 3842 ** 3843 ** See also tickets #306, #350, and #3300. 3844 */ 3845 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3846 isLeftJoin = 1; 3847 if( pSubSrc->nSrc>1 /* (3a) */ 3848 || isAgg /* (3b) */ 3849 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 3850 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 3851 ){ 3852 return 0; 3853 } 3854 } 3855 #ifdef SQLITE_EXTRA_IFNULLROW 3856 else if( iFrom>0 && !isAgg ){ 3857 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3858 ** every reference to any result column from subquery in a join, even 3859 ** though they are not necessary. This will stress-test the OP_IfNullRow 3860 ** opcode. */ 3861 isLeftJoin = -1; 3862 } 3863 #endif 3864 3865 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3866 ** use only the UNION ALL operator. And none of the simple select queries 3867 ** that make up the compound SELECT are allowed to be aggregate or distinct 3868 ** queries. 3869 */ 3870 if( pSub->pPrior ){ 3871 if( pSub->pOrderBy ){ 3872 return 0; /* Restriction (20) */ 3873 } 3874 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3875 return 0; /* (17d1), (17d2), or (17d3) */ 3876 } 3877 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3878 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3879 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3880 assert( pSub->pSrc!=0 ); 3881 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3882 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3883 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3884 || pSub1->pSrc->nSrc<1 /* (17c) */ 3885 #ifndef SQLITE_OMIT_WINDOWFUNC 3886 || pSub1->pWin /* (17e) */ 3887 #endif 3888 ){ 3889 return 0; 3890 } 3891 testcase( pSub1->pSrc->nSrc>1 ); 3892 } 3893 3894 /* Restriction (18). */ 3895 if( p->pOrderBy ){ 3896 int ii; 3897 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3898 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3899 } 3900 } 3901 } 3902 3903 /* Ex-restriction (23): 3904 ** The only way that the recursive part of a CTE can contain a compound 3905 ** subquery is for the subquery to be one term of a join. But if the 3906 ** subquery is a join, then the flattening has already been stopped by 3907 ** restriction (17d3) 3908 */ 3909 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3910 3911 /***** If we reach this point, flattening is permitted. *****/ 3912 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3913 pSub->selId, pSub, iFrom)); 3914 3915 /* Authorize the subquery */ 3916 pParse->zAuthContext = pSubitem->zName; 3917 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3918 testcase( i==SQLITE_DENY ); 3919 pParse->zAuthContext = zSavedAuthContext; 3920 3921 /* If the sub-query is a compound SELECT statement, then (by restrictions 3922 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3923 ** be of the form: 3924 ** 3925 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3926 ** 3927 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3928 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3929 ** OFFSET clauses and joins them to the left-hand-side of the original 3930 ** using UNION ALL operators. In this case N is the number of simple 3931 ** select statements in the compound sub-query. 3932 ** 3933 ** Example: 3934 ** 3935 ** SELECT a+1 FROM ( 3936 ** SELECT x FROM tab 3937 ** UNION ALL 3938 ** SELECT y FROM tab 3939 ** UNION ALL 3940 ** SELECT abs(z*2) FROM tab2 3941 ** ) WHERE a!=5 ORDER BY 1 3942 ** 3943 ** Transformed into: 3944 ** 3945 ** SELECT x+1 FROM tab WHERE x+1!=5 3946 ** UNION ALL 3947 ** SELECT y+1 FROM tab WHERE y+1!=5 3948 ** UNION ALL 3949 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3950 ** ORDER BY 1 3951 ** 3952 ** We call this the "compound-subquery flattening". 3953 */ 3954 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3955 Select *pNew; 3956 ExprList *pOrderBy = p->pOrderBy; 3957 Expr *pLimit = p->pLimit; 3958 Select *pPrior = p->pPrior; 3959 p->pOrderBy = 0; 3960 p->pSrc = 0; 3961 p->pPrior = 0; 3962 p->pLimit = 0; 3963 pNew = sqlite3SelectDup(db, p, 0); 3964 p->pLimit = pLimit; 3965 p->pOrderBy = pOrderBy; 3966 p->pSrc = pSrc; 3967 p->op = TK_ALL; 3968 if( pNew==0 ){ 3969 p->pPrior = pPrior; 3970 }else{ 3971 pNew->pPrior = pPrior; 3972 if( pPrior ) pPrior->pNext = pNew; 3973 pNew->pNext = p; 3974 p->pPrior = pNew; 3975 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3976 " creates %u as peer\n",pNew->selId)); 3977 } 3978 if( db->mallocFailed ) return 1; 3979 } 3980 3981 /* Begin flattening the iFrom-th entry of the FROM clause 3982 ** in the outer query. 3983 */ 3984 pSub = pSub1 = pSubitem->pSelect; 3985 3986 /* Delete the transient table structure associated with the 3987 ** subquery 3988 */ 3989 sqlite3DbFree(db, pSubitem->zDatabase); 3990 sqlite3DbFree(db, pSubitem->zName); 3991 sqlite3DbFree(db, pSubitem->zAlias); 3992 pSubitem->zDatabase = 0; 3993 pSubitem->zName = 0; 3994 pSubitem->zAlias = 0; 3995 pSubitem->pSelect = 0; 3996 3997 /* Defer deleting the Table object associated with the 3998 ** subquery until code generation is 3999 ** complete, since there may still exist Expr.pTab entries that 4000 ** refer to the subquery even after flattening. Ticket #3346. 4001 ** 4002 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4003 */ 4004 if( ALWAYS(pSubitem->pTab!=0) ){ 4005 Table *pTabToDel = pSubitem->pTab; 4006 if( pTabToDel->nTabRef==1 ){ 4007 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4008 pTabToDel->pNextZombie = pToplevel->pZombieTab; 4009 pToplevel->pZombieTab = pTabToDel; 4010 }else{ 4011 pTabToDel->nTabRef--; 4012 } 4013 pSubitem->pTab = 0; 4014 } 4015 4016 /* The following loop runs once for each term in a compound-subquery 4017 ** flattening (as described above). If we are doing a different kind 4018 ** of flattening - a flattening other than a compound-subquery flattening - 4019 ** then this loop only runs once. 4020 ** 4021 ** This loop moves all of the FROM elements of the subquery into the 4022 ** the FROM clause of the outer query. Before doing this, remember 4023 ** the cursor number for the original outer query FROM element in 4024 ** iParent. The iParent cursor will never be used. Subsequent code 4025 ** will scan expressions looking for iParent references and replace 4026 ** those references with expressions that resolve to the subquery FROM 4027 ** elements we are now copying in. 4028 */ 4029 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4030 int nSubSrc; 4031 u8 jointype = 0; 4032 assert( pSub!=0 ); 4033 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4034 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4035 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4036 4037 if( pSrc ){ 4038 assert( pParent==p ); /* First time through the loop */ 4039 jointype = pSubitem->fg.jointype; 4040 }else{ 4041 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 4042 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 4043 if( pSrc==0 ) break; 4044 pParent->pSrc = pSrc; 4045 } 4046 4047 /* The subquery uses a single slot of the FROM clause of the outer 4048 ** query. If the subquery has more than one element in its FROM clause, 4049 ** then expand the outer query to make space for it to hold all elements 4050 ** of the subquery. 4051 ** 4052 ** Example: 4053 ** 4054 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4055 ** 4056 ** The outer query has 3 slots in its FROM clause. One slot of the 4057 ** outer query (the middle slot) is used by the subquery. The next 4058 ** block of code will expand the outer query FROM clause to 4 slots. 4059 ** The middle slot is expanded to two slots in order to make space 4060 ** for the two elements in the FROM clause of the subquery. 4061 */ 4062 if( nSubSrc>1 ){ 4063 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4064 if( pSrc==0 ) break; 4065 pParent->pSrc = pSrc; 4066 } 4067 4068 /* Transfer the FROM clause terms from the subquery into the 4069 ** outer query. 4070 */ 4071 for(i=0; i<nSubSrc; i++){ 4072 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4073 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4074 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4075 iNewParent = pSubSrc->a[i].iCursor; 4076 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4077 } 4078 pSrc->a[iFrom].fg.jointype = jointype; 4079 4080 /* Now begin substituting subquery result set expressions for 4081 ** references to the iParent in the outer query. 4082 ** 4083 ** Example: 4084 ** 4085 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4086 ** \ \_____________ subquery __________/ / 4087 ** \_____________________ outer query ______________________________/ 4088 ** 4089 ** We look at every expression in the outer query and every place we see 4090 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4091 */ 4092 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4093 /* At this point, any non-zero iOrderByCol values indicate that the 4094 ** ORDER BY column expression is identical to the iOrderByCol'th 4095 ** expression returned by SELECT statement pSub. Since these values 4096 ** do not necessarily correspond to columns in SELECT statement pParent, 4097 ** zero them before transfering the ORDER BY clause. 4098 ** 4099 ** Not doing this may cause an error if a subsequent call to this 4100 ** function attempts to flatten a compound sub-query into pParent 4101 ** (the only way this can happen is if the compound sub-query is 4102 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4103 ExprList *pOrderBy = pSub->pOrderBy; 4104 for(i=0; i<pOrderBy->nExpr; i++){ 4105 pOrderBy->a[i].u.x.iOrderByCol = 0; 4106 } 4107 assert( pParent->pOrderBy==0 ); 4108 pParent->pOrderBy = pOrderBy; 4109 pSub->pOrderBy = 0; 4110 } 4111 pWhere = pSub->pWhere; 4112 pSub->pWhere = 0; 4113 if( isLeftJoin>0 ){ 4114 sqlite3SetJoinExpr(pWhere, iNewParent); 4115 } 4116 if( pWhere ){ 4117 if( pParent->pWhere ){ 4118 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4119 }else{ 4120 pParent->pWhere = pWhere; 4121 } 4122 } 4123 if( db->mallocFailed==0 ){ 4124 SubstContext x; 4125 x.pParse = pParse; 4126 x.iTable = iParent; 4127 x.iNewTable = iNewParent; 4128 x.isLeftJoin = isLeftJoin; 4129 x.pEList = pSub->pEList; 4130 substSelect(&x, pParent, 0); 4131 } 4132 4133 /* The flattened query is a compound if either the inner or the 4134 ** outer query is a compound. */ 4135 pParent->selFlags |= pSub->selFlags & SF_Compound; 4136 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4137 4138 /* 4139 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4140 ** 4141 ** One is tempted to try to add a and b to combine the limits. But this 4142 ** does not work if either limit is negative. 4143 */ 4144 if( pSub->pLimit ){ 4145 pParent->pLimit = pSub->pLimit; 4146 pSub->pLimit = 0; 4147 } 4148 4149 /* Recompute the SrcList_item.colUsed masks for the flattened 4150 ** tables. */ 4151 for(i=0; i<nSubSrc; i++){ 4152 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4153 } 4154 } 4155 4156 /* Finially, delete what is left of the subquery and return 4157 ** success. 4158 */ 4159 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4160 sqlite3WalkSelect(&w,pSub1); 4161 sqlite3SelectDelete(db, pSub1); 4162 4163 #if SELECTTRACE_ENABLED 4164 if( sqlite3SelectTrace & 0x100 ){ 4165 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4166 sqlite3TreeViewSelect(0, p, 0); 4167 } 4168 #endif 4169 4170 return 1; 4171 } 4172 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4173 4174 /* 4175 ** A structure to keep track of all of the column values that are fixed to 4176 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4177 */ 4178 typedef struct WhereConst WhereConst; 4179 struct WhereConst { 4180 Parse *pParse; /* Parsing context */ 4181 int nConst; /* Number for COLUMN=CONSTANT terms */ 4182 int nChng; /* Number of times a constant is propagated */ 4183 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4184 }; 4185 4186 /* 4187 ** Add a new entry to the pConst object. Except, do not add duplicate 4188 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4189 ** 4190 ** The caller guarantees the pColumn is a column and pValue is a constant. 4191 ** This routine has to do some additional checks before completing the 4192 ** insert. 4193 */ 4194 static void constInsert( 4195 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4196 Expr *pColumn, /* The COLUMN part of the constraint */ 4197 Expr *pValue, /* The VALUE part of the constraint */ 4198 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4199 ){ 4200 int i; 4201 assert( pColumn->op==TK_COLUMN ); 4202 assert( sqlite3ExprIsConstant(pValue) ); 4203 4204 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4205 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4206 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4207 return; 4208 } 4209 4210 /* 2018-10-25 ticket [cf5ed20f] 4211 ** Make sure the same pColumn is not inserted more than once */ 4212 for(i=0; i<pConst->nConst; i++){ 4213 const Expr *pE2 = pConst->apExpr[i*2]; 4214 assert( pE2->op==TK_COLUMN ); 4215 if( pE2->iTable==pColumn->iTable 4216 && pE2->iColumn==pColumn->iColumn 4217 ){ 4218 return; /* Already present. Return without doing anything. */ 4219 } 4220 } 4221 4222 pConst->nConst++; 4223 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4224 pConst->nConst*2*sizeof(Expr*)); 4225 if( pConst->apExpr==0 ){ 4226 pConst->nConst = 0; 4227 }else{ 4228 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4229 pConst->apExpr[pConst->nConst*2-1] = pValue; 4230 } 4231 } 4232 4233 /* 4234 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4235 ** is a constant expression and where the term must be true because it 4236 ** is part of the AND-connected terms of the expression. For each term 4237 ** found, add it to the pConst structure. 4238 */ 4239 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4240 Expr *pRight, *pLeft; 4241 if( pExpr==0 ) return; 4242 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4243 if( pExpr->op==TK_AND ){ 4244 findConstInWhere(pConst, pExpr->pRight); 4245 findConstInWhere(pConst, pExpr->pLeft); 4246 return; 4247 } 4248 if( pExpr->op!=TK_EQ ) return; 4249 pRight = pExpr->pRight; 4250 pLeft = pExpr->pLeft; 4251 assert( pRight!=0 ); 4252 assert( pLeft!=0 ); 4253 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4254 constInsert(pConst,pRight,pLeft,pExpr); 4255 } 4256 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4257 constInsert(pConst,pLeft,pRight,pExpr); 4258 } 4259 } 4260 4261 /* 4262 ** This is a Walker expression callback. pExpr is a candidate expression 4263 ** to be replaced by a value. If pExpr is equivalent to one of the 4264 ** columns named in pWalker->u.pConst, then overwrite it with its 4265 ** corresponding value. 4266 */ 4267 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4268 int i; 4269 WhereConst *pConst; 4270 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4271 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4272 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4273 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4274 return WRC_Continue; 4275 } 4276 pConst = pWalker->u.pConst; 4277 for(i=0; i<pConst->nConst; i++){ 4278 Expr *pColumn = pConst->apExpr[i*2]; 4279 if( pColumn==pExpr ) continue; 4280 if( pColumn->iTable!=pExpr->iTable ) continue; 4281 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4282 /* A match is found. Add the EP_FixedCol property */ 4283 pConst->nChng++; 4284 ExprClearProperty(pExpr, EP_Leaf); 4285 ExprSetProperty(pExpr, EP_FixedCol); 4286 assert( pExpr->pLeft==0 ); 4287 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4288 break; 4289 } 4290 return WRC_Prune; 4291 } 4292 4293 /* 4294 ** The WHERE-clause constant propagation optimization. 4295 ** 4296 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4297 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4298 ** part of a ON clause from a LEFT JOIN, then throughout the query 4299 ** replace all other occurrences of COLUMN with CONSTANT. 4300 ** 4301 ** For example, the query: 4302 ** 4303 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4304 ** 4305 ** Is transformed into 4306 ** 4307 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4308 ** 4309 ** Return true if any transformations where made and false if not. 4310 ** 4311 ** Implementation note: Constant propagation is tricky due to affinity 4312 ** and collating sequence interactions. Consider this example: 4313 ** 4314 ** CREATE TABLE t1(a INT,b TEXT); 4315 ** INSERT INTO t1 VALUES(123,'0123'); 4316 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4317 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4318 ** 4319 ** The two SELECT statements above should return different answers. b=a 4320 ** is alway true because the comparison uses numeric affinity, but b=123 4321 ** is false because it uses text affinity and '0123' is not the same as '123'. 4322 ** To work around this, the expression tree is not actually changed from 4323 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4324 ** and the "123" value is hung off of the pLeft pointer. Code generator 4325 ** routines know to generate the constant "123" instead of looking up the 4326 ** column value. Also, to avoid collation problems, this optimization is 4327 ** only attempted if the "a=123" term uses the default BINARY collation. 4328 */ 4329 static int propagateConstants( 4330 Parse *pParse, /* The parsing context */ 4331 Select *p /* The query in which to propagate constants */ 4332 ){ 4333 WhereConst x; 4334 Walker w; 4335 int nChng = 0; 4336 x.pParse = pParse; 4337 do{ 4338 x.nConst = 0; 4339 x.nChng = 0; 4340 x.apExpr = 0; 4341 findConstInWhere(&x, p->pWhere); 4342 if( x.nConst ){ 4343 memset(&w, 0, sizeof(w)); 4344 w.pParse = pParse; 4345 w.xExprCallback = propagateConstantExprRewrite; 4346 w.xSelectCallback = sqlite3SelectWalkNoop; 4347 w.xSelectCallback2 = 0; 4348 w.walkerDepth = 0; 4349 w.u.pConst = &x; 4350 sqlite3WalkExpr(&w, p->pWhere); 4351 sqlite3DbFree(x.pParse->db, x.apExpr); 4352 nChng += x.nChng; 4353 } 4354 }while( x.nChng ); 4355 return nChng; 4356 } 4357 4358 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4359 /* 4360 ** Make copies of relevant WHERE clause terms of the outer query into 4361 ** the WHERE clause of subquery. Example: 4362 ** 4363 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4364 ** 4365 ** Transformed into: 4366 ** 4367 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4368 ** WHERE x=5 AND y=10; 4369 ** 4370 ** The hope is that the terms added to the inner query will make it more 4371 ** efficient. 4372 ** 4373 ** Do not attempt this optimization if: 4374 ** 4375 ** (1) (** This restriction was removed on 2017-09-29. We used to 4376 ** disallow this optimization for aggregate subqueries, but now 4377 ** it is allowed by putting the extra terms on the HAVING clause. 4378 ** The added HAVING clause is pointless if the subquery lacks 4379 ** a GROUP BY clause. But such a HAVING clause is also harmless 4380 ** so there does not appear to be any reason to add extra logic 4381 ** to suppress it. **) 4382 ** 4383 ** (2) The inner query is the recursive part of a common table expression. 4384 ** 4385 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4386 ** clause would change the meaning of the LIMIT). 4387 ** 4388 ** (4) The inner query is the right operand of a LEFT JOIN and the 4389 ** expression to be pushed down does not come from the ON clause 4390 ** on that LEFT JOIN. 4391 ** 4392 ** (5) The WHERE clause expression originates in the ON or USING clause 4393 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4394 ** left join. An example: 4395 ** 4396 ** SELECT * 4397 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4398 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4399 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4400 ** 4401 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4402 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4403 ** then the (1,1,NULL) row would be suppressed. 4404 ** 4405 ** (6) The inner query features one or more window-functions (since 4406 ** changes to the WHERE clause of the inner query could change the 4407 ** window over which window functions are calculated). 4408 ** 4409 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4410 ** terms are duplicated into the subquery. 4411 */ 4412 static int pushDownWhereTerms( 4413 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4414 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4415 Expr *pWhere, /* The WHERE clause of the outer query */ 4416 int iCursor, /* Cursor number of the subquery */ 4417 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4418 ){ 4419 Expr *pNew; 4420 int nChng = 0; 4421 Select *pSel; 4422 if( pWhere==0 ) return 0; 4423 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4424 4425 #ifndef SQLITE_OMIT_WINDOWFUNC 4426 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4427 if( pSel->pWin ) return 0; /* restriction (6) */ 4428 } 4429 #endif 4430 4431 #ifdef SQLITE_DEBUG 4432 /* Only the first term of a compound can have a WITH clause. But make 4433 ** sure no other terms are marked SF_Recursive in case something changes 4434 ** in the future. 4435 */ 4436 { 4437 Select *pX; 4438 for(pX=pSubq; pX; pX=pX->pPrior){ 4439 assert( (pX->selFlags & (SF_Recursive))==0 ); 4440 } 4441 } 4442 #endif 4443 4444 if( pSubq->pLimit!=0 ){ 4445 return 0; /* restriction (3) */ 4446 } 4447 while( pWhere->op==TK_AND ){ 4448 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4449 iCursor, isLeftJoin); 4450 pWhere = pWhere->pLeft; 4451 } 4452 if( isLeftJoin 4453 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4454 || pWhere->iRightJoinTable!=iCursor) 4455 ){ 4456 return 0; /* restriction (4) */ 4457 } 4458 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4459 return 0; /* restriction (5) */ 4460 } 4461 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4462 nChng++; 4463 while( pSubq ){ 4464 SubstContext x; 4465 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4466 unsetJoinExpr(pNew, -1); 4467 x.pParse = pParse; 4468 x.iTable = iCursor; 4469 x.iNewTable = iCursor; 4470 x.isLeftJoin = 0; 4471 x.pEList = pSubq->pEList; 4472 pNew = substExpr(&x, pNew); 4473 if( pSubq->selFlags & SF_Aggregate ){ 4474 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4475 }else{ 4476 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4477 } 4478 pSubq = pSubq->pPrior; 4479 } 4480 } 4481 return nChng; 4482 } 4483 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4484 4485 /* 4486 ** The pFunc is the only aggregate function in the query. Check to see 4487 ** if the query is a candidate for the min/max optimization. 4488 ** 4489 ** If the query is a candidate for the min/max optimization, then set 4490 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4491 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4492 ** whether pFunc is a min() or max() function. 4493 ** 4494 ** If the query is not a candidate for the min/max optimization, return 4495 ** WHERE_ORDERBY_NORMAL (which must be zero). 4496 ** 4497 ** This routine must be called after aggregate functions have been 4498 ** located but before their arguments have been subjected to aggregate 4499 ** analysis. 4500 */ 4501 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4502 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4503 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4504 const char *zFunc; /* Name of aggregate function pFunc */ 4505 ExprList *pOrderBy; 4506 u8 sortFlags = 0; 4507 4508 assert( *ppMinMax==0 ); 4509 assert( pFunc->op==TK_AGG_FUNCTION ); 4510 assert( !IsWindowFunc(pFunc) ); 4511 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){ 4512 return eRet; 4513 } 4514 zFunc = pFunc->u.zToken; 4515 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4516 eRet = WHERE_ORDERBY_MIN; 4517 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4518 sortFlags = KEYINFO_ORDER_BIGNULL; 4519 } 4520 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4521 eRet = WHERE_ORDERBY_MAX; 4522 sortFlags = KEYINFO_ORDER_DESC; 4523 }else{ 4524 return eRet; 4525 } 4526 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4527 assert( pOrderBy!=0 || db->mallocFailed ); 4528 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4529 return eRet; 4530 } 4531 4532 /* 4533 ** The select statement passed as the first argument is an aggregate query. 4534 ** The second argument is the associated aggregate-info object. This 4535 ** function tests if the SELECT is of the form: 4536 ** 4537 ** SELECT count(*) FROM <tbl> 4538 ** 4539 ** where table is a database table, not a sub-select or view. If the query 4540 ** does match this pattern, then a pointer to the Table object representing 4541 ** <tbl> is returned. Otherwise, 0 is returned. 4542 */ 4543 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4544 Table *pTab; 4545 Expr *pExpr; 4546 4547 assert( !p->pGroupBy ); 4548 4549 if( p->pWhere || p->pEList->nExpr!=1 4550 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4551 ){ 4552 return 0; 4553 } 4554 pTab = p->pSrc->a[0].pTab; 4555 pExpr = p->pEList->a[0].pExpr; 4556 assert( pTab && !pTab->pSelect && pExpr ); 4557 4558 if( IsVirtual(pTab) ) return 0; 4559 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4560 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4561 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4562 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4563 4564 return pTab; 4565 } 4566 4567 /* 4568 ** If the source-list item passed as an argument was augmented with an 4569 ** INDEXED BY clause, then try to locate the specified index. If there 4570 ** was such a clause and the named index cannot be found, return 4571 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4572 ** pFrom->pIndex and return SQLITE_OK. 4573 */ 4574 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4575 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4576 Table *pTab = pFrom->pTab; 4577 char *zIndexedBy = pFrom->u1.zIndexedBy; 4578 Index *pIdx; 4579 for(pIdx=pTab->pIndex; 4580 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4581 pIdx=pIdx->pNext 4582 ); 4583 if( !pIdx ){ 4584 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4585 pParse->checkSchema = 1; 4586 return SQLITE_ERROR; 4587 } 4588 pFrom->pIBIndex = pIdx; 4589 } 4590 return SQLITE_OK; 4591 } 4592 /* 4593 ** Detect compound SELECT statements that use an ORDER BY clause with 4594 ** an alternative collating sequence. 4595 ** 4596 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4597 ** 4598 ** These are rewritten as a subquery: 4599 ** 4600 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4601 ** ORDER BY ... COLLATE ... 4602 ** 4603 ** This transformation is necessary because the multiSelectOrderBy() routine 4604 ** above that generates the code for a compound SELECT with an ORDER BY clause 4605 ** uses a merge algorithm that requires the same collating sequence on the 4606 ** result columns as on the ORDER BY clause. See ticket 4607 ** http://www.sqlite.org/src/info/6709574d2a 4608 ** 4609 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4610 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4611 ** there are COLLATE terms in the ORDER BY. 4612 */ 4613 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4614 int i; 4615 Select *pNew; 4616 Select *pX; 4617 sqlite3 *db; 4618 struct ExprList_item *a; 4619 SrcList *pNewSrc; 4620 Parse *pParse; 4621 Token dummy; 4622 4623 if( p->pPrior==0 ) return WRC_Continue; 4624 if( p->pOrderBy==0 ) return WRC_Continue; 4625 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4626 if( pX==0 ) return WRC_Continue; 4627 a = p->pOrderBy->a; 4628 #ifndef SQLITE_OMIT_WINDOWFUNC 4629 /* If iOrderByCol is already non-zero, then it has already been matched 4630 ** to a result column of the SELECT statement. This occurs when the 4631 ** SELECT is rewritten for window-functions processing and then passed 4632 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 4633 ** by this function is not required in this case. */ 4634 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 4635 #endif 4636 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4637 if( a[i].pExpr->flags & EP_Collate ) break; 4638 } 4639 if( i<0 ) return WRC_Continue; 4640 4641 /* If we reach this point, that means the transformation is required. */ 4642 4643 pParse = pWalker->pParse; 4644 db = pParse->db; 4645 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4646 if( pNew==0 ) return WRC_Abort; 4647 memset(&dummy, 0, sizeof(dummy)); 4648 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4649 if( pNewSrc==0 ) return WRC_Abort; 4650 *pNew = *p; 4651 p->pSrc = pNewSrc; 4652 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4653 p->op = TK_SELECT; 4654 p->pWhere = 0; 4655 pNew->pGroupBy = 0; 4656 pNew->pHaving = 0; 4657 pNew->pOrderBy = 0; 4658 p->pPrior = 0; 4659 p->pNext = 0; 4660 p->pWith = 0; 4661 #ifndef SQLITE_OMIT_WINDOWFUNC 4662 p->pWinDefn = 0; 4663 #endif 4664 p->selFlags &= ~SF_Compound; 4665 assert( (p->selFlags & SF_Converted)==0 ); 4666 p->selFlags |= SF_Converted; 4667 assert( pNew->pPrior!=0 ); 4668 pNew->pPrior->pNext = pNew; 4669 pNew->pLimit = 0; 4670 return WRC_Continue; 4671 } 4672 4673 /* 4674 ** Check to see if the FROM clause term pFrom has table-valued function 4675 ** arguments. If it does, leave an error message in pParse and return 4676 ** non-zero, since pFrom is not allowed to be a table-valued function. 4677 */ 4678 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4679 if( pFrom->fg.isTabFunc ){ 4680 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4681 return 1; 4682 } 4683 return 0; 4684 } 4685 4686 #ifndef SQLITE_OMIT_CTE 4687 /* 4688 ** Argument pWith (which may be NULL) points to a linked list of nested 4689 ** WITH contexts, from inner to outermost. If the table identified by 4690 ** FROM clause element pItem is really a common-table-expression (CTE) 4691 ** then return a pointer to the CTE definition for that table. Otherwise 4692 ** return NULL. 4693 ** 4694 ** If a non-NULL value is returned, set *ppContext to point to the With 4695 ** object that the returned CTE belongs to. 4696 */ 4697 static struct Cte *searchWith( 4698 With *pWith, /* Current innermost WITH clause */ 4699 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4700 With **ppContext /* OUT: WITH clause return value belongs to */ 4701 ){ 4702 const char *zName; 4703 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4704 With *p; 4705 for(p=pWith; p; p=p->pOuter){ 4706 int i; 4707 for(i=0; i<p->nCte; i++){ 4708 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4709 *ppContext = p; 4710 return &p->a[i]; 4711 } 4712 } 4713 } 4714 } 4715 return 0; 4716 } 4717 4718 /* The code generator maintains a stack of active WITH clauses 4719 ** with the inner-most WITH clause being at the top of the stack. 4720 ** 4721 ** This routine pushes the WITH clause passed as the second argument 4722 ** onto the top of the stack. If argument bFree is true, then this 4723 ** WITH clause will never be popped from the stack. In this case it 4724 ** should be freed along with the Parse object. In other cases, when 4725 ** bFree==0, the With object will be freed along with the SELECT 4726 ** statement with which it is associated. 4727 */ 4728 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4729 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4730 if( pWith ){ 4731 assert( pParse->pWith!=pWith ); 4732 pWith->pOuter = pParse->pWith; 4733 pParse->pWith = pWith; 4734 if( bFree ) pParse->pWithToFree = pWith; 4735 } 4736 } 4737 4738 /* 4739 ** This function checks if argument pFrom refers to a CTE declared by 4740 ** a WITH clause on the stack currently maintained by the parser. And, 4741 ** if currently processing a CTE expression, if it is a recursive 4742 ** reference to the current CTE. 4743 ** 4744 ** If pFrom falls into either of the two categories above, pFrom->pTab 4745 ** and other fields are populated accordingly. The caller should check 4746 ** (pFrom->pTab!=0) to determine whether or not a successful match 4747 ** was found. 4748 ** 4749 ** Whether or not a match is found, SQLITE_OK is returned if no error 4750 ** occurs. If an error does occur, an error message is stored in the 4751 ** parser and some error code other than SQLITE_OK returned. 4752 */ 4753 static int withExpand( 4754 Walker *pWalker, 4755 struct SrcList_item *pFrom 4756 ){ 4757 Parse *pParse = pWalker->pParse; 4758 sqlite3 *db = pParse->db; 4759 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4760 With *pWith; /* WITH clause that pCte belongs to */ 4761 4762 assert( pFrom->pTab==0 ); 4763 if( pParse->nErr ){ 4764 return SQLITE_ERROR; 4765 } 4766 4767 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4768 if( pCte ){ 4769 Table *pTab; 4770 ExprList *pEList; 4771 Select *pSel; 4772 Select *pLeft; /* Left-most SELECT statement */ 4773 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4774 With *pSavedWith; /* Initial value of pParse->pWith */ 4775 4776 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4777 ** recursive reference to CTE pCte. Leave an error in pParse and return 4778 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4779 ** In this case, proceed. */ 4780 if( pCte->zCteErr ){ 4781 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4782 return SQLITE_ERROR; 4783 } 4784 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4785 4786 assert( pFrom->pTab==0 ); 4787 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4788 if( pTab==0 ) return WRC_Abort; 4789 pTab->nTabRef = 1; 4790 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4791 pTab->iPKey = -1; 4792 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4793 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4794 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4795 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4796 assert( pFrom->pSelect ); 4797 4798 /* Check if this is a recursive CTE. */ 4799 pSel = pFrom->pSelect; 4800 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4801 if( bMayRecursive ){ 4802 int i; 4803 SrcList *pSrc = pFrom->pSelect->pSrc; 4804 for(i=0; i<pSrc->nSrc; i++){ 4805 struct SrcList_item *pItem = &pSrc->a[i]; 4806 if( pItem->zDatabase==0 4807 && pItem->zName!=0 4808 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4809 ){ 4810 pItem->pTab = pTab; 4811 pItem->fg.isRecursive = 1; 4812 pTab->nTabRef++; 4813 pSel->selFlags |= SF_Recursive; 4814 } 4815 } 4816 } 4817 4818 /* Only one recursive reference is permitted. */ 4819 if( pTab->nTabRef>2 ){ 4820 sqlite3ErrorMsg( 4821 pParse, "multiple references to recursive table: %s", pCte->zName 4822 ); 4823 return SQLITE_ERROR; 4824 } 4825 assert( pTab->nTabRef==1 || 4826 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4827 4828 pCte->zCteErr = "circular reference: %s"; 4829 pSavedWith = pParse->pWith; 4830 pParse->pWith = pWith; 4831 if( bMayRecursive ){ 4832 Select *pPrior = pSel->pPrior; 4833 assert( pPrior->pWith==0 ); 4834 pPrior->pWith = pSel->pWith; 4835 sqlite3WalkSelect(pWalker, pPrior); 4836 pPrior->pWith = 0; 4837 }else{ 4838 sqlite3WalkSelect(pWalker, pSel); 4839 } 4840 pParse->pWith = pWith; 4841 4842 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4843 pEList = pLeft->pEList; 4844 if( pCte->pCols ){ 4845 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4846 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4847 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4848 ); 4849 pParse->pWith = pSavedWith; 4850 return SQLITE_ERROR; 4851 } 4852 pEList = pCte->pCols; 4853 } 4854 4855 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4856 if( bMayRecursive ){ 4857 if( pSel->selFlags & SF_Recursive ){ 4858 pCte->zCteErr = "multiple recursive references: %s"; 4859 }else{ 4860 pCte->zCteErr = "recursive reference in a subquery: %s"; 4861 } 4862 sqlite3WalkSelect(pWalker, pSel); 4863 } 4864 pCte->zCteErr = 0; 4865 pParse->pWith = pSavedWith; 4866 } 4867 4868 return SQLITE_OK; 4869 } 4870 #endif 4871 4872 #ifndef SQLITE_OMIT_CTE 4873 /* 4874 ** If the SELECT passed as the second argument has an associated WITH 4875 ** clause, pop it from the stack stored as part of the Parse object. 4876 ** 4877 ** This function is used as the xSelectCallback2() callback by 4878 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4879 ** names and other FROM clause elements. 4880 */ 4881 static void selectPopWith(Walker *pWalker, Select *p){ 4882 Parse *pParse = pWalker->pParse; 4883 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4884 With *pWith = findRightmost(p)->pWith; 4885 if( pWith!=0 ){ 4886 assert( pParse->pWith==pWith || pParse->nErr ); 4887 pParse->pWith = pWith->pOuter; 4888 } 4889 } 4890 } 4891 #else 4892 #define selectPopWith 0 4893 #endif 4894 4895 /* 4896 ** The SrcList_item structure passed as the second argument represents a 4897 ** sub-query in the FROM clause of a SELECT statement. This function 4898 ** allocates and populates the SrcList_item.pTab object. If successful, 4899 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4900 ** SQLITE_NOMEM. 4901 */ 4902 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4903 Select *pSel = pFrom->pSelect; 4904 Table *pTab; 4905 4906 assert( pSel ); 4907 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4908 if( pTab==0 ) return SQLITE_NOMEM; 4909 pTab->nTabRef = 1; 4910 if( pFrom->zAlias ){ 4911 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4912 }else{ 4913 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4914 } 4915 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4916 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4917 pTab->iPKey = -1; 4918 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4919 pTab->tabFlags |= TF_Ephemeral; 4920 4921 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 4922 } 4923 4924 /* 4925 ** This routine is a Walker callback for "expanding" a SELECT statement. 4926 ** "Expanding" means to do the following: 4927 ** 4928 ** (1) Make sure VDBE cursor numbers have been assigned to every 4929 ** element of the FROM clause. 4930 ** 4931 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4932 ** defines FROM clause. When views appear in the FROM clause, 4933 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4934 ** that implements the view. A copy is made of the view's SELECT 4935 ** statement so that we can freely modify or delete that statement 4936 ** without worrying about messing up the persistent representation 4937 ** of the view. 4938 ** 4939 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4940 ** on joins and the ON and USING clause of joins. 4941 ** 4942 ** (4) Scan the list of columns in the result set (pEList) looking 4943 ** for instances of the "*" operator or the TABLE.* operator. 4944 ** If found, expand each "*" to be every column in every table 4945 ** and TABLE.* to be every column in TABLE. 4946 ** 4947 */ 4948 static int selectExpander(Walker *pWalker, Select *p){ 4949 Parse *pParse = pWalker->pParse; 4950 int i, j, k; 4951 SrcList *pTabList; 4952 ExprList *pEList; 4953 struct SrcList_item *pFrom; 4954 sqlite3 *db = pParse->db; 4955 Expr *pE, *pRight, *pExpr; 4956 u16 selFlags = p->selFlags; 4957 u32 elistFlags = 0; 4958 4959 p->selFlags |= SF_Expanded; 4960 if( db->mallocFailed ){ 4961 return WRC_Abort; 4962 } 4963 assert( p->pSrc!=0 ); 4964 if( (selFlags & SF_Expanded)!=0 ){ 4965 return WRC_Prune; 4966 } 4967 if( pWalker->eCode ){ 4968 /* Renumber selId because it has been copied from a view */ 4969 p->selId = ++pParse->nSelect; 4970 } 4971 pTabList = p->pSrc; 4972 pEList = p->pEList; 4973 sqlite3WithPush(pParse, p->pWith, 0); 4974 4975 /* Make sure cursor numbers have been assigned to all entries in 4976 ** the FROM clause of the SELECT statement. 4977 */ 4978 sqlite3SrcListAssignCursors(pParse, pTabList); 4979 4980 /* Look up every table named in the FROM clause of the select. If 4981 ** an entry of the FROM clause is a subquery instead of a table or view, 4982 ** then create a transient table structure to describe the subquery. 4983 */ 4984 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4985 Table *pTab; 4986 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4987 if( pFrom->fg.isRecursive ) continue; 4988 assert( pFrom->pTab==0 ); 4989 #ifndef SQLITE_OMIT_CTE 4990 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4991 if( pFrom->pTab ) {} else 4992 #endif 4993 if( pFrom->zName==0 ){ 4994 #ifndef SQLITE_OMIT_SUBQUERY 4995 Select *pSel = pFrom->pSelect; 4996 /* A sub-query in the FROM clause of a SELECT */ 4997 assert( pSel!=0 ); 4998 assert( pFrom->pTab==0 ); 4999 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5000 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5001 #endif 5002 }else{ 5003 /* An ordinary table or view name in the FROM clause */ 5004 assert( pFrom->pTab==0 ); 5005 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5006 if( pTab==0 ) return WRC_Abort; 5007 if( pTab->nTabRef>=0xffff ){ 5008 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5009 pTab->zName); 5010 pFrom->pTab = 0; 5011 return WRC_Abort; 5012 } 5013 pTab->nTabRef++; 5014 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5015 return WRC_Abort; 5016 } 5017 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5018 if( IsVirtual(pTab) || pTab->pSelect ){ 5019 i16 nCol; 5020 u8 eCodeOrig = pWalker->eCode; 5021 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5022 assert( pFrom->pSelect==0 ); 5023 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){ 5024 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5025 pTab->zName); 5026 } 5027 #ifndef SQLITE_OMIT_VIRTUALTABLE 5028 if( IsVirtual(pTab) 5029 && pFrom->fg.fromDDL 5030 && ALWAYS(pTab->pVTable!=0) 5031 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5032 ){ 5033 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5034 pTab->zName); 5035 } 5036 #endif 5037 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5038 nCol = pTab->nCol; 5039 pTab->nCol = -1; 5040 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5041 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5042 pWalker->eCode = eCodeOrig; 5043 pTab->nCol = nCol; 5044 } 5045 #endif 5046 } 5047 5048 /* Locate the index named by the INDEXED BY clause, if any. */ 5049 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 5050 return WRC_Abort; 5051 } 5052 } 5053 5054 /* Process NATURAL keywords, and ON and USING clauses of joins. 5055 */ 5056 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5057 return WRC_Abort; 5058 } 5059 5060 /* For every "*" that occurs in the column list, insert the names of 5061 ** all columns in all tables. And for every TABLE.* insert the names 5062 ** of all columns in TABLE. The parser inserted a special expression 5063 ** with the TK_ASTERISK operator for each "*" that it found in the column 5064 ** list. The following code just has to locate the TK_ASTERISK 5065 ** expressions and expand each one to the list of all columns in 5066 ** all tables. 5067 ** 5068 ** The first loop just checks to see if there are any "*" operators 5069 ** that need expanding. 5070 */ 5071 for(k=0; k<pEList->nExpr; k++){ 5072 pE = pEList->a[k].pExpr; 5073 if( pE->op==TK_ASTERISK ) break; 5074 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5075 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5076 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5077 elistFlags |= pE->flags; 5078 } 5079 if( k<pEList->nExpr ){ 5080 /* 5081 ** If we get here it means the result set contains one or more "*" 5082 ** operators that need to be expanded. Loop through each expression 5083 ** in the result set and expand them one by one. 5084 */ 5085 struct ExprList_item *a = pEList->a; 5086 ExprList *pNew = 0; 5087 int flags = pParse->db->flags; 5088 int longNames = (flags & SQLITE_FullColNames)!=0 5089 && (flags & SQLITE_ShortColNames)==0; 5090 5091 for(k=0; k<pEList->nExpr; k++){ 5092 pE = a[k].pExpr; 5093 elistFlags |= pE->flags; 5094 pRight = pE->pRight; 5095 assert( pE->op!=TK_DOT || pRight!=0 ); 5096 if( pE->op!=TK_ASTERISK 5097 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5098 ){ 5099 /* This particular expression does not need to be expanded. 5100 */ 5101 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5102 if( pNew ){ 5103 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5104 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5105 a[k].zEName = 0; 5106 } 5107 a[k].pExpr = 0; 5108 }else{ 5109 /* This expression is a "*" or a "TABLE.*" and needs to be 5110 ** expanded. */ 5111 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5112 char *zTName = 0; /* text of name of TABLE */ 5113 if( pE->op==TK_DOT ){ 5114 assert( pE->pLeft!=0 ); 5115 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5116 zTName = pE->pLeft->u.zToken; 5117 } 5118 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5119 Table *pTab = pFrom->pTab; 5120 Select *pSub = pFrom->pSelect; 5121 char *zTabName = pFrom->zAlias; 5122 const char *zSchemaName = 0; 5123 int iDb; 5124 if( zTabName==0 ){ 5125 zTabName = pTab->zName; 5126 } 5127 if( db->mallocFailed ) break; 5128 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5129 pSub = 0; 5130 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5131 continue; 5132 } 5133 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5134 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5135 } 5136 for(j=0; j<pTab->nCol; j++){ 5137 char *zName = pTab->aCol[j].zName; 5138 char *zColname; /* The computed column name */ 5139 char *zToFree; /* Malloced string that needs to be freed */ 5140 Token sColname; /* Computed column name as a token */ 5141 5142 assert( zName ); 5143 if( zTName && pSub 5144 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5145 ){ 5146 continue; 5147 } 5148 5149 /* If a column is marked as 'hidden', omit it from the expanded 5150 ** result-set list unless the SELECT has the SF_IncludeHidden 5151 ** bit set. 5152 */ 5153 if( (p->selFlags & SF_IncludeHidden)==0 5154 && IsHiddenColumn(&pTab->aCol[j]) 5155 ){ 5156 continue; 5157 } 5158 tableSeen = 1; 5159 5160 if( i>0 && zTName==0 ){ 5161 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5162 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5163 ){ 5164 /* In a NATURAL join, omit the join columns from the 5165 ** table to the right of the join */ 5166 continue; 5167 } 5168 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5169 /* In a join with a USING clause, omit columns in the 5170 ** using clause from the table on the right. */ 5171 continue; 5172 } 5173 } 5174 pRight = sqlite3Expr(db, TK_ID, zName); 5175 zColname = zName; 5176 zToFree = 0; 5177 if( longNames || pTabList->nSrc>1 ){ 5178 Expr *pLeft; 5179 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5180 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5181 if( zSchemaName ){ 5182 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5183 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5184 } 5185 if( longNames ){ 5186 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5187 zToFree = zColname; 5188 } 5189 }else{ 5190 pExpr = pRight; 5191 } 5192 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5193 sqlite3TokenInit(&sColname, zColname); 5194 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5195 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5196 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5197 sqlite3DbFree(db, pX->zEName); 5198 if( pSub ){ 5199 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5200 testcase( pX->zEName==0 ); 5201 }else{ 5202 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5203 zSchemaName, zTabName, zColname); 5204 testcase( pX->zEName==0 ); 5205 } 5206 pX->eEName = ENAME_TAB; 5207 } 5208 sqlite3DbFree(db, zToFree); 5209 } 5210 } 5211 if( !tableSeen ){ 5212 if( zTName ){ 5213 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5214 }else{ 5215 sqlite3ErrorMsg(pParse, "no tables specified"); 5216 } 5217 } 5218 } 5219 } 5220 sqlite3ExprListDelete(db, pEList); 5221 p->pEList = pNew; 5222 } 5223 if( p->pEList ){ 5224 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5225 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5226 return WRC_Abort; 5227 } 5228 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5229 p->selFlags |= SF_ComplexResult; 5230 } 5231 } 5232 return WRC_Continue; 5233 } 5234 5235 #if SQLITE_DEBUG 5236 /* 5237 ** Always assert. This xSelectCallback2 implementation proves that the 5238 ** xSelectCallback2 is never invoked. 5239 */ 5240 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5241 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5242 assert( 0 ); 5243 } 5244 #endif 5245 /* 5246 ** This routine "expands" a SELECT statement and all of its subqueries. 5247 ** For additional information on what it means to "expand" a SELECT 5248 ** statement, see the comment on the selectExpand worker callback above. 5249 ** 5250 ** Expanding a SELECT statement is the first step in processing a 5251 ** SELECT statement. The SELECT statement must be expanded before 5252 ** name resolution is performed. 5253 ** 5254 ** If anything goes wrong, an error message is written into pParse. 5255 ** The calling function can detect the problem by looking at pParse->nErr 5256 ** and/or pParse->db->mallocFailed. 5257 */ 5258 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5259 Walker w; 5260 w.xExprCallback = sqlite3ExprWalkNoop; 5261 w.pParse = pParse; 5262 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5263 w.xSelectCallback = convertCompoundSelectToSubquery; 5264 w.xSelectCallback2 = 0; 5265 sqlite3WalkSelect(&w, pSelect); 5266 } 5267 w.xSelectCallback = selectExpander; 5268 w.xSelectCallback2 = selectPopWith; 5269 w.eCode = 0; 5270 sqlite3WalkSelect(&w, pSelect); 5271 } 5272 5273 5274 #ifndef SQLITE_OMIT_SUBQUERY 5275 /* 5276 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5277 ** interface. 5278 ** 5279 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5280 ** information to the Table structure that represents the result set 5281 ** of that subquery. 5282 ** 5283 ** The Table structure that represents the result set was constructed 5284 ** by selectExpander() but the type and collation information was omitted 5285 ** at that point because identifiers had not yet been resolved. This 5286 ** routine is called after identifier resolution. 5287 */ 5288 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5289 Parse *pParse; 5290 int i; 5291 SrcList *pTabList; 5292 struct SrcList_item *pFrom; 5293 5294 assert( p->selFlags & SF_Resolved ); 5295 if( p->selFlags & SF_HasTypeInfo ) return; 5296 p->selFlags |= SF_HasTypeInfo; 5297 pParse = pWalker->pParse; 5298 pTabList = p->pSrc; 5299 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5300 Table *pTab = pFrom->pTab; 5301 assert( pTab!=0 ); 5302 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5303 /* A sub-query in the FROM clause of a SELECT */ 5304 Select *pSel = pFrom->pSelect; 5305 if( pSel ){ 5306 while( pSel->pPrior ) pSel = pSel->pPrior; 5307 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5308 SQLITE_AFF_NONE); 5309 } 5310 } 5311 } 5312 } 5313 #endif 5314 5315 5316 /* 5317 ** This routine adds datatype and collating sequence information to 5318 ** the Table structures of all FROM-clause subqueries in a 5319 ** SELECT statement. 5320 ** 5321 ** Use this routine after name resolution. 5322 */ 5323 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5324 #ifndef SQLITE_OMIT_SUBQUERY 5325 Walker w; 5326 w.xSelectCallback = sqlite3SelectWalkNoop; 5327 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5328 w.xExprCallback = sqlite3ExprWalkNoop; 5329 w.pParse = pParse; 5330 sqlite3WalkSelect(&w, pSelect); 5331 #endif 5332 } 5333 5334 5335 /* 5336 ** This routine sets up a SELECT statement for processing. The 5337 ** following is accomplished: 5338 ** 5339 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5340 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5341 ** * ON and USING clauses are shifted into WHERE statements 5342 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5343 ** * Identifiers in expression are matched to tables. 5344 ** 5345 ** This routine acts recursively on all subqueries within the SELECT. 5346 */ 5347 void sqlite3SelectPrep( 5348 Parse *pParse, /* The parser context */ 5349 Select *p, /* The SELECT statement being coded. */ 5350 NameContext *pOuterNC /* Name context for container */ 5351 ){ 5352 assert( p!=0 || pParse->db->mallocFailed ); 5353 if( pParse->db->mallocFailed ) return; 5354 if( p->selFlags & SF_HasTypeInfo ) return; 5355 sqlite3SelectExpand(pParse, p); 5356 if( pParse->nErr || pParse->db->mallocFailed ) return; 5357 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5358 if( pParse->nErr || pParse->db->mallocFailed ) return; 5359 sqlite3SelectAddTypeInfo(pParse, p); 5360 } 5361 5362 /* 5363 ** Reset the aggregate accumulator. 5364 ** 5365 ** The aggregate accumulator is a set of memory cells that hold 5366 ** intermediate results while calculating an aggregate. This 5367 ** routine generates code that stores NULLs in all of those memory 5368 ** cells. 5369 */ 5370 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5371 Vdbe *v = pParse->pVdbe; 5372 int i; 5373 struct AggInfo_func *pFunc; 5374 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5375 if( nReg==0 ) return; 5376 if( pParse->nErr ) return; 5377 #ifdef SQLITE_DEBUG 5378 /* Verify that all AggInfo registers are within the range specified by 5379 ** AggInfo.mnReg..AggInfo.mxReg */ 5380 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5381 for(i=0; i<pAggInfo->nColumn; i++){ 5382 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5383 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5384 } 5385 for(i=0; i<pAggInfo->nFunc; i++){ 5386 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5387 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5388 } 5389 #endif 5390 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5391 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5392 if( pFunc->iDistinct>=0 ){ 5393 Expr *pE = pFunc->pFExpr; 5394 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5395 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5396 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5397 "argument"); 5398 pFunc->iDistinct = -1; 5399 }else{ 5400 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5401 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5402 (char*)pKeyInfo, P4_KEYINFO); 5403 } 5404 } 5405 } 5406 } 5407 5408 /* 5409 ** Invoke the OP_AggFinalize opcode for every aggregate function 5410 ** in the AggInfo structure. 5411 */ 5412 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5413 Vdbe *v = pParse->pVdbe; 5414 int i; 5415 struct AggInfo_func *pF; 5416 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5417 ExprList *pList = pF->pFExpr->x.pList; 5418 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5419 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5420 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5421 } 5422 } 5423 5424 5425 /* 5426 ** Update the accumulator memory cells for an aggregate based on 5427 ** the current cursor position. 5428 ** 5429 ** If regAcc is non-zero and there are no min() or max() aggregates 5430 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5431 ** registers if register regAcc contains 0. The caller will take care 5432 ** of setting and clearing regAcc. 5433 */ 5434 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5435 Vdbe *v = pParse->pVdbe; 5436 int i; 5437 int regHit = 0; 5438 int addrHitTest = 0; 5439 struct AggInfo_func *pF; 5440 struct AggInfo_col *pC; 5441 5442 pAggInfo->directMode = 1; 5443 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5444 int nArg; 5445 int addrNext = 0; 5446 int regAgg; 5447 ExprList *pList = pF->pFExpr->x.pList; 5448 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5449 assert( !IsWindowFunc(pF->pFExpr) ); 5450 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5451 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5452 if( pAggInfo->nAccumulator 5453 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5454 ){ 5455 if( regHit==0 ) regHit = ++pParse->nMem; 5456 /* If this is the first row of the group (regAcc==0), clear the 5457 ** "magnet" register regHit so that the accumulator registers 5458 ** are populated if the FILTER clause jumps over the the 5459 ** invocation of min() or max() altogether. Or, if this is not 5460 ** the first row (regAcc==1), set the magnet register so that the 5461 ** accumulators are not populated unless the min()/max() is invoked and 5462 ** indicates that they should be. */ 5463 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5464 } 5465 addrNext = sqlite3VdbeMakeLabel(pParse); 5466 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5467 } 5468 if( pList ){ 5469 nArg = pList->nExpr; 5470 regAgg = sqlite3GetTempRange(pParse, nArg); 5471 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5472 }else{ 5473 nArg = 0; 5474 regAgg = 0; 5475 } 5476 if( pF->iDistinct>=0 ){ 5477 if( addrNext==0 ){ 5478 addrNext = sqlite3VdbeMakeLabel(pParse); 5479 } 5480 testcase( nArg==0 ); /* Error condition */ 5481 testcase( nArg>1 ); /* Also an error */ 5482 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5483 } 5484 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5485 CollSeq *pColl = 0; 5486 struct ExprList_item *pItem; 5487 int j; 5488 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5489 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5490 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5491 } 5492 if( !pColl ){ 5493 pColl = pParse->db->pDfltColl; 5494 } 5495 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5496 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5497 } 5498 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5499 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5500 sqlite3VdbeChangeP5(v, (u8)nArg); 5501 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5502 if( addrNext ){ 5503 sqlite3VdbeResolveLabel(v, addrNext); 5504 } 5505 } 5506 if( regHit==0 && pAggInfo->nAccumulator ){ 5507 regHit = regAcc; 5508 } 5509 if( regHit ){ 5510 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5511 } 5512 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5513 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5514 } 5515 5516 pAggInfo->directMode = 0; 5517 if( addrHitTest ){ 5518 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5519 } 5520 } 5521 5522 /* 5523 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5524 ** count(*) query ("SELECT count(*) FROM pTab"). 5525 */ 5526 #ifndef SQLITE_OMIT_EXPLAIN 5527 static void explainSimpleCount( 5528 Parse *pParse, /* Parse context */ 5529 Table *pTab, /* Table being queried */ 5530 Index *pIdx /* Index used to optimize scan, or NULL */ 5531 ){ 5532 if( pParse->explain==2 ){ 5533 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5534 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5535 pTab->zName, 5536 bCover ? " USING COVERING INDEX " : "", 5537 bCover ? pIdx->zName : "" 5538 ); 5539 } 5540 } 5541 #else 5542 # define explainSimpleCount(a,b,c) 5543 #endif 5544 5545 /* 5546 ** sqlite3WalkExpr() callback used by havingToWhere(). 5547 ** 5548 ** If the node passed to the callback is a TK_AND node, return 5549 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5550 ** 5551 ** Otherwise, return WRC_Prune. In this case, also check if the 5552 ** sub-expression matches the criteria for being moved to the WHERE 5553 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5554 ** within the HAVING expression with a constant "1". 5555 */ 5556 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5557 if( pExpr->op!=TK_AND ){ 5558 Select *pS = pWalker->u.pSelect; 5559 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5560 sqlite3 *db = pWalker->pParse->db; 5561 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5562 if( pNew ){ 5563 Expr *pWhere = pS->pWhere; 5564 SWAP(Expr, *pNew, *pExpr); 5565 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5566 pS->pWhere = pNew; 5567 pWalker->eCode = 1; 5568 } 5569 } 5570 return WRC_Prune; 5571 } 5572 return WRC_Continue; 5573 } 5574 5575 /* 5576 ** Transfer eligible terms from the HAVING clause of a query, which is 5577 ** processed after grouping, to the WHERE clause, which is processed before 5578 ** grouping. For example, the query: 5579 ** 5580 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5581 ** 5582 ** can be rewritten as: 5583 ** 5584 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5585 ** 5586 ** A term of the HAVING expression is eligible for transfer if it consists 5587 ** entirely of constants and expressions that are also GROUP BY terms that 5588 ** use the "BINARY" collation sequence. 5589 */ 5590 static void havingToWhere(Parse *pParse, Select *p){ 5591 Walker sWalker; 5592 memset(&sWalker, 0, sizeof(sWalker)); 5593 sWalker.pParse = pParse; 5594 sWalker.xExprCallback = havingToWhereExprCb; 5595 sWalker.u.pSelect = p; 5596 sqlite3WalkExpr(&sWalker, p->pHaving); 5597 #if SELECTTRACE_ENABLED 5598 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5599 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5600 sqlite3TreeViewSelect(0, p, 0); 5601 } 5602 #endif 5603 } 5604 5605 /* 5606 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5607 ** If it is, then return the SrcList_item for the prior view. If it is not, 5608 ** then return 0. 5609 */ 5610 static struct SrcList_item *isSelfJoinView( 5611 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5612 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5613 ){ 5614 struct SrcList_item *pItem; 5615 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5616 Select *pS1; 5617 if( pItem->pSelect==0 ) continue; 5618 if( pItem->fg.viaCoroutine ) continue; 5619 if( pItem->zName==0 ) continue; 5620 assert( pItem->pTab!=0 ); 5621 assert( pThis->pTab!=0 ); 5622 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5623 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5624 pS1 = pItem->pSelect; 5625 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5626 /* The query flattener left two different CTE tables with identical 5627 ** names in the same FROM clause. */ 5628 continue; 5629 } 5630 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) 5631 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1) 5632 ){ 5633 /* The view was modified by some other optimization such as 5634 ** pushDownWhereTerms() */ 5635 continue; 5636 } 5637 return pItem; 5638 } 5639 return 0; 5640 } 5641 5642 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5643 /* 5644 ** Attempt to transform a query of the form 5645 ** 5646 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5647 ** 5648 ** Into this: 5649 ** 5650 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5651 ** 5652 ** The transformation only works if all of the following are true: 5653 ** 5654 ** * The subquery is a UNION ALL of two or more terms 5655 ** * The subquery does not have a LIMIT clause 5656 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5657 ** * The outer query is a simple count(*) with no WHERE clause or other 5658 ** extraneous syntax. 5659 ** 5660 ** Return TRUE if the optimization is undertaken. 5661 */ 5662 static int countOfViewOptimization(Parse *pParse, Select *p){ 5663 Select *pSub, *pPrior; 5664 Expr *pExpr; 5665 Expr *pCount; 5666 sqlite3 *db; 5667 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5668 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5669 if( p->pWhere ) return 0; 5670 if( p->pGroupBy ) return 0; 5671 pExpr = p->pEList->a[0].pExpr; 5672 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5673 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5674 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5675 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5676 pSub = p->pSrc->a[0].pSelect; 5677 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5678 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5679 do{ 5680 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5681 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5682 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5683 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5684 pSub = pSub->pPrior; /* Repeat over compound */ 5685 }while( pSub ); 5686 5687 /* If we reach this point then it is OK to perform the transformation */ 5688 5689 db = pParse->db; 5690 pCount = pExpr; 5691 pExpr = 0; 5692 pSub = p->pSrc->a[0].pSelect; 5693 p->pSrc->a[0].pSelect = 0; 5694 sqlite3SrcListDelete(db, p->pSrc); 5695 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5696 while( pSub ){ 5697 Expr *pTerm; 5698 pPrior = pSub->pPrior; 5699 pSub->pPrior = 0; 5700 pSub->pNext = 0; 5701 pSub->selFlags |= SF_Aggregate; 5702 pSub->selFlags &= ~SF_Compound; 5703 pSub->nSelectRow = 0; 5704 sqlite3ExprListDelete(db, pSub->pEList); 5705 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5706 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5707 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5708 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5709 if( pExpr==0 ){ 5710 pExpr = pTerm; 5711 }else{ 5712 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5713 } 5714 pSub = pPrior; 5715 } 5716 p->pEList->a[0].pExpr = pExpr; 5717 p->selFlags &= ~SF_Aggregate; 5718 5719 #if SELECTTRACE_ENABLED 5720 if( sqlite3SelectTrace & 0x400 ){ 5721 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5722 sqlite3TreeViewSelect(0, p, 0); 5723 } 5724 #endif 5725 return 1; 5726 } 5727 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5728 5729 /* 5730 ** Generate code for the SELECT statement given in the p argument. 5731 ** 5732 ** The results are returned according to the SelectDest structure. 5733 ** See comments in sqliteInt.h for further information. 5734 ** 5735 ** This routine returns the number of errors. If any errors are 5736 ** encountered, then an appropriate error message is left in 5737 ** pParse->zErrMsg. 5738 ** 5739 ** This routine does NOT free the Select structure passed in. The 5740 ** calling function needs to do that. 5741 */ 5742 int sqlite3Select( 5743 Parse *pParse, /* The parser context */ 5744 Select *p, /* The SELECT statement being coded. */ 5745 SelectDest *pDest /* What to do with the query results */ 5746 ){ 5747 int i, j; /* Loop counters */ 5748 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5749 Vdbe *v; /* The virtual machine under construction */ 5750 int isAgg; /* True for select lists like "count(*)" */ 5751 ExprList *pEList = 0; /* List of columns to extract. */ 5752 SrcList *pTabList; /* List of tables to select from */ 5753 Expr *pWhere; /* The WHERE clause. May be NULL */ 5754 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5755 Expr *pHaving; /* The HAVING clause. May be NULL */ 5756 AggInfo *pAggInfo = 0; /* Aggregate information */ 5757 int rc = 1; /* Value to return from this function */ 5758 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5759 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5760 int iEnd; /* Address of the end of the query */ 5761 sqlite3 *db; /* The database connection */ 5762 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5763 u8 minMaxFlag; /* Flag for min/max queries */ 5764 5765 db = pParse->db; 5766 v = sqlite3GetVdbe(pParse); 5767 if( p==0 || db->mallocFailed || pParse->nErr ){ 5768 return 1; 5769 } 5770 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5771 #if SELECTTRACE_ENABLED 5772 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5773 if( sqlite3SelectTrace & 0x100 ){ 5774 sqlite3TreeViewSelect(0, p, 0); 5775 } 5776 #endif 5777 5778 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5779 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5780 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5781 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5782 if( IgnorableOrderby(pDest) ){ 5783 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5784 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5785 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5786 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5787 /* If ORDER BY makes no difference in the output then neither does 5788 ** DISTINCT so it can be removed too. */ 5789 sqlite3ExprListDelete(db, p->pOrderBy); 5790 p->pOrderBy = 0; 5791 p->selFlags &= ~SF_Distinct; 5792 p->selFlags |= SF_NoopOrderBy; 5793 } 5794 sqlite3SelectPrep(pParse, p, 0); 5795 if( pParse->nErr || db->mallocFailed ){ 5796 goto select_end; 5797 } 5798 assert( p->pEList!=0 ); 5799 #if SELECTTRACE_ENABLED 5800 if( sqlite3SelectTrace & 0x104 ){ 5801 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5802 sqlite3TreeViewSelect(0, p, 0); 5803 } 5804 #endif 5805 5806 if( pDest->eDest==SRT_Output ){ 5807 generateColumnNames(pParse, p); 5808 } 5809 5810 #ifndef SQLITE_OMIT_WINDOWFUNC 5811 rc = sqlite3WindowRewrite(pParse, p); 5812 if( rc ){ 5813 assert( db->mallocFailed || pParse->nErr>0 ); 5814 goto select_end; 5815 } 5816 #if SELECTTRACE_ENABLED 5817 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 5818 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5819 sqlite3TreeViewSelect(0, p, 0); 5820 } 5821 #endif 5822 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5823 pTabList = p->pSrc; 5824 isAgg = (p->selFlags & SF_Aggregate)!=0; 5825 memset(&sSort, 0, sizeof(sSort)); 5826 sSort.pOrderBy = p->pOrderBy; 5827 5828 /* Try to do various optimizations (flattening subqueries, and strength 5829 ** reduction of join operators) in the FROM clause up into the main query 5830 */ 5831 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5832 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5833 struct SrcList_item *pItem = &pTabList->a[i]; 5834 Select *pSub = pItem->pSelect; 5835 Table *pTab = pItem->pTab; 5836 5837 /* The expander should have already created transient Table objects 5838 ** even for FROM clause elements such as subqueries that do not correspond 5839 ** to a real table */ 5840 assert( pTab!=0 ); 5841 5842 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5843 ** of the LEFT JOIN used in the WHERE clause. 5844 */ 5845 if( (pItem->fg.jointype & JT_LEFT)!=0 5846 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5847 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5848 ){ 5849 SELECTTRACE(0x100,pParse,p, 5850 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5851 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5852 unsetJoinExpr(p->pWhere, pItem->iCursor); 5853 } 5854 5855 /* No futher action if this term of the FROM clause is no a subquery */ 5856 if( pSub==0 ) continue; 5857 5858 /* Catch mismatch in the declared columns of a view and the number of 5859 ** columns in the SELECT on the RHS */ 5860 if( pTab->nCol!=pSub->pEList->nExpr ){ 5861 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5862 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5863 goto select_end; 5864 } 5865 5866 /* Do not try to flatten an aggregate subquery. 5867 ** 5868 ** Flattening an aggregate subquery is only possible if the outer query 5869 ** is not a join. But if the outer query is not a join, then the subquery 5870 ** will be implemented as a co-routine and there is no advantage to 5871 ** flattening in that case. 5872 */ 5873 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5874 assert( pSub->pGroupBy==0 ); 5875 5876 /* If the outer query contains a "complex" result set (that is, 5877 ** if the result set of the outer query uses functions or subqueries) 5878 ** and if the subquery contains an ORDER BY clause and if 5879 ** it will be implemented as a co-routine, then do not flatten. This 5880 ** restriction allows SQL constructs like this: 5881 ** 5882 ** SELECT expensive_function(x) 5883 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5884 ** 5885 ** The expensive_function() is only computed on the 10 rows that 5886 ** are output, rather than every row of the table. 5887 ** 5888 ** The requirement that the outer query have a complex result set 5889 ** means that flattening does occur on simpler SQL constraints without 5890 ** the expensive_function() like: 5891 ** 5892 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5893 */ 5894 if( pSub->pOrderBy!=0 5895 && i==0 5896 && (p->selFlags & SF_ComplexResult)!=0 5897 && (pTabList->nSrc==1 5898 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5899 ){ 5900 continue; 5901 } 5902 5903 if( flattenSubquery(pParse, p, i, isAgg) ){ 5904 if( pParse->nErr ) goto select_end; 5905 /* This subquery can be absorbed into its parent. */ 5906 i = -1; 5907 } 5908 pTabList = p->pSrc; 5909 if( db->mallocFailed ) goto select_end; 5910 if( !IgnorableOrderby(pDest) ){ 5911 sSort.pOrderBy = p->pOrderBy; 5912 } 5913 } 5914 #endif 5915 5916 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5917 /* Handle compound SELECT statements using the separate multiSelect() 5918 ** procedure. 5919 */ 5920 if( p->pPrior ){ 5921 rc = multiSelect(pParse, p, pDest); 5922 #if SELECTTRACE_ENABLED 5923 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5924 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5925 sqlite3TreeViewSelect(0, p, 0); 5926 } 5927 #endif 5928 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5929 return rc; 5930 } 5931 #endif 5932 5933 /* Do the WHERE-clause constant propagation optimization if this is 5934 ** a join. No need to speed time on this operation for non-join queries 5935 ** as the equivalent optimization will be handled by query planner in 5936 ** sqlite3WhereBegin(). 5937 */ 5938 if( pTabList->nSrc>1 5939 && OptimizationEnabled(db, SQLITE_PropagateConst) 5940 && propagateConstants(pParse, p) 5941 ){ 5942 #if SELECTTRACE_ENABLED 5943 if( sqlite3SelectTrace & 0x100 ){ 5944 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5945 sqlite3TreeViewSelect(0, p, 0); 5946 } 5947 #endif 5948 }else{ 5949 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5950 } 5951 5952 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5953 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5954 && countOfViewOptimization(pParse, p) 5955 ){ 5956 if( db->mallocFailed ) goto select_end; 5957 pEList = p->pEList; 5958 pTabList = p->pSrc; 5959 } 5960 #endif 5961 5962 /* For each term in the FROM clause, do two things: 5963 ** (1) Authorized unreferenced tables 5964 ** (2) Generate code for all sub-queries 5965 */ 5966 for(i=0; i<pTabList->nSrc; i++){ 5967 struct SrcList_item *pItem = &pTabList->a[i]; 5968 SelectDest dest; 5969 Select *pSub; 5970 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5971 const char *zSavedAuthContext; 5972 #endif 5973 5974 /* Issue SQLITE_READ authorizations with a fake column name for any 5975 ** tables that are referenced but from which no values are extracted. 5976 ** Examples of where these kinds of null SQLITE_READ authorizations 5977 ** would occur: 5978 ** 5979 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5980 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5981 ** 5982 ** The fake column name is an empty string. It is possible for a table to 5983 ** have a column named by the empty string, in which case there is no way to 5984 ** distinguish between an unreferenced table and an actual reference to the 5985 ** "" column. The original design was for the fake column name to be a NULL, 5986 ** which would be unambiguous. But legacy authorization callbacks might 5987 ** assume the column name is non-NULL and segfault. The use of an empty 5988 ** string for the fake column name seems safer. 5989 */ 5990 if( pItem->colUsed==0 && pItem->zName!=0 ){ 5991 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5992 } 5993 5994 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5995 /* Generate code for all sub-queries in the FROM clause 5996 */ 5997 pSub = pItem->pSelect; 5998 if( pSub==0 ) continue; 5999 6000 /* The code for a subquery should only be generated once, though it is 6001 ** technically harmless for it to be generated multiple times. The 6002 ** following assert() will detect if something changes to cause 6003 ** the same subquery to be coded multiple times, as a signal to the 6004 ** developers to try to optimize the situation. 6005 ** 6006 ** Update 2019-07-24: 6007 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6008 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6009 ** coded twice. So this assert() now becomes a testcase(). It should 6010 ** be very rare, though. 6011 */ 6012 testcase( pItem->addrFillSub!=0 ); 6013 6014 /* Increment Parse.nHeight by the height of the largest expression 6015 ** tree referred to by this, the parent select. The child select 6016 ** may contain expression trees of at most 6017 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6018 ** more conservative than necessary, but much easier than enforcing 6019 ** an exact limit. 6020 */ 6021 pParse->nHeight += sqlite3SelectExprHeight(p); 6022 6023 /* Make copies of constant WHERE-clause terms in the outer query down 6024 ** inside the subquery. This can help the subquery to run more efficiently. 6025 */ 6026 if( OptimizationEnabled(db, SQLITE_PushDown) 6027 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6028 (pItem->fg.jointype & JT_OUTER)!=0) 6029 ){ 6030 #if SELECTTRACE_ENABLED 6031 if( sqlite3SelectTrace & 0x100 ){ 6032 SELECTTRACE(0x100,pParse,p, 6033 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6034 sqlite3TreeViewSelect(0, p, 0); 6035 } 6036 #endif 6037 }else{ 6038 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6039 } 6040 6041 zSavedAuthContext = pParse->zAuthContext; 6042 pParse->zAuthContext = pItem->zName; 6043 6044 /* Generate code to implement the subquery 6045 ** 6046 ** The subquery is implemented as a co-routine if the subquery is 6047 ** guaranteed to be the outer loop (so that it does not need to be 6048 ** computed more than once) 6049 ** 6050 ** TODO: Are there other reasons beside (1) to use a co-routine 6051 ** implementation? 6052 */ 6053 if( i==0 6054 && (pTabList->nSrc==1 6055 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6056 ){ 6057 /* Implement a co-routine that will return a single row of the result 6058 ** set on each invocation. 6059 */ 6060 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6061 6062 pItem->regReturn = ++pParse->nMem; 6063 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6064 VdbeComment((v, "%s", pItem->pTab->zName)); 6065 pItem->addrFillSub = addrTop; 6066 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6067 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 6068 sqlite3Select(pParse, pSub, &dest); 6069 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6070 pItem->fg.viaCoroutine = 1; 6071 pItem->regResult = dest.iSdst; 6072 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6073 sqlite3VdbeJumpHere(v, addrTop-1); 6074 sqlite3ClearTempRegCache(pParse); 6075 }else{ 6076 /* Generate a subroutine that will fill an ephemeral table with 6077 ** the content of this subquery. pItem->addrFillSub will point 6078 ** to the address of the generated subroutine. pItem->regReturn 6079 ** is a register allocated to hold the subroutine return address 6080 */ 6081 int topAddr; 6082 int onceAddr = 0; 6083 int retAddr; 6084 struct SrcList_item *pPrior; 6085 6086 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6087 pItem->regReturn = ++pParse->nMem; 6088 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6089 pItem->addrFillSub = topAddr+1; 6090 if( pItem->fg.isCorrelated==0 ){ 6091 /* If the subquery is not correlated and if we are not inside of 6092 ** a trigger, then we only need to compute the value of the subquery 6093 ** once. */ 6094 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6095 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6096 }else{ 6097 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 6098 } 6099 pPrior = isSelfJoinView(pTabList, pItem); 6100 if( pPrior ){ 6101 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6102 assert( pPrior->pSelect!=0 ); 6103 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6104 }else{ 6105 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6106 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 6107 sqlite3Select(pParse, pSub, &dest); 6108 } 6109 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6110 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6111 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6112 VdbeComment((v, "end %s", pItem->pTab->zName)); 6113 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6114 sqlite3ClearTempRegCache(pParse); 6115 } 6116 if( db->mallocFailed ) goto select_end; 6117 pParse->nHeight -= sqlite3SelectExprHeight(p); 6118 pParse->zAuthContext = zSavedAuthContext; 6119 #endif 6120 } 6121 6122 /* Various elements of the SELECT copied into local variables for 6123 ** convenience */ 6124 pEList = p->pEList; 6125 pWhere = p->pWhere; 6126 pGroupBy = p->pGroupBy; 6127 pHaving = p->pHaving; 6128 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6129 6130 #if SELECTTRACE_ENABLED 6131 if( sqlite3SelectTrace & 0x400 ){ 6132 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6133 sqlite3TreeViewSelect(0, p, 0); 6134 } 6135 #endif 6136 6137 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6138 ** if the select-list is the same as the ORDER BY list, then this query 6139 ** can be rewritten as a GROUP BY. In other words, this: 6140 ** 6141 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6142 ** 6143 ** is transformed to: 6144 ** 6145 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6146 ** 6147 ** The second form is preferred as a single index (or temp-table) may be 6148 ** used for both the ORDER BY and DISTINCT processing. As originally 6149 ** written the query must use a temp-table for at least one of the ORDER 6150 ** BY and DISTINCT, and an index or separate temp-table for the other. 6151 */ 6152 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6153 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6154 #ifndef SQLITE_OMIT_WINDOWFUNC 6155 && p->pWin==0 6156 #endif 6157 ){ 6158 p->selFlags &= ~SF_Distinct; 6159 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6160 p->selFlags |= SF_Aggregate; 6161 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6162 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6163 ** original setting of the SF_Distinct flag, not the current setting */ 6164 assert( sDistinct.isTnct ); 6165 6166 #if SELECTTRACE_ENABLED 6167 if( sqlite3SelectTrace & 0x400 ){ 6168 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6169 sqlite3TreeViewSelect(0, p, 0); 6170 } 6171 #endif 6172 } 6173 6174 /* If there is an ORDER BY clause, then create an ephemeral index to 6175 ** do the sorting. But this sorting ephemeral index might end up 6176 ** being unused if the data can be extracted in pre-sorted order. 6177 ** If that is the case, then the OP_OpenEphemeral instruction will be 6178 ** changed to an OP_Noop once we figure out that the sorting index is 6179 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6180 ** that change. 6181 */ 6182 if( sSort.pOrderBy ){ 6183 KeyInfo *pKeyInfo; 6184 pKeyInfo = sqlite3KeyInfoFromExprList( 6185 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6186 sSort.iECursor = pParse->nTab++; 6187 sSort.addrSortIndex = 6188 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6189 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6190 (char*)pKeyInfo, P4_KEYINFO 6191 ); 6192 }else{ 6193 sSort.addrSortIndex = -1; 6194 } 6195 6196 /* If the output is destined for a temporary table, open that table. 6197 */ 6198 if( pDest->eDest==SRT_EphemTab ){ 6199 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6200 } 6201 6202 /* Set the limiter. 6203 */ 6204 iEnd = sqlite3VdbeMakeLabel(pParse); 6205 if( (p->selFlags & SF_FixedLimit)==0 ){ 6206 p->nSelectRow = 320; /* 4 billion rows */ 6207 } 6208 computeLimitRegisters(pParse, p, iEnd); 6209 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6210 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6211 sSort.sortFlags |= SORTFLAG_UseSorter; 6212 } 6213 6214 /* Open an ephemeral index to use for the distinct set. 6215 */ 6216 if( p->selFlags & SF_Distinct ){ 6217 sDistinct.tabTnct = pParse->nTab++; 6218 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6219 sDistinct.tabTnct, 0, 0, 6220 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6221 P4_KEYINFO); 6222 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6223 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6224 }else{ 6225 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6226 } 6227 6228 if( !isAgg && pGroupBy==0 ){ 6229 /* No aggregate functions and no GROUP BY clause */ 6230 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6231 | (p->selFlags & SF_FixedLimit); 6232 #ifndef SQLITE_OMIT_WINDOWFUNC 6233 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6234 if( pWin ){ 6235 sqlite3WindowCodeInit(pParse, p); 6236 } 6237 #endif 6238 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6239 6240 6241 /* Begin the database scan. */ 6242 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6243 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6244 p->pEList, wctrlFlags, p->nSelectRow); 6245 if( pWInfo==0 ) goto select_end; 6246 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6247 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6248 } 6249 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6250 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6251 } 6252 if( sSort.pOrderBy ){ 6253 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6254 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6255 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6256 sSort.pOrderBy = 0; 6257 } 6258 } 6259 6260 /* If sorting index that was created by a prior OP_OpenEphemeral 6261 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6262 ** into an OP_Noop. 6263 */ 6264 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6265 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6266 } 6267 6268 assert( p->pEList==pEList ); 6269 #ifndef SQLITE_OMIT_WINDOWFUNC 6270 if( pWin ){ 6271 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6272 int iCont = sqlite3VdbeMakeLabel(pParse); 6273 int iBreak = sqlite3VdbeMakeLabel(pParse); 6274 int regGosub = ++pParse->nMem; 6275 6276 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6277 6278 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6279 sqlite3VdbeResolveLabel(v, addrGosub); 6280 VdbeNoopComment((v, "inner-loop subroutine")); 6281 sSort.labelOBLopt = 0; 6282 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6283 sqlite3VdbeResolveLabel(v, iCont); 6284 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6285 VdbeComment((v, "end inner-loop subroutine")); 6286 sqlite3VdbeResolveLabel(v, iBreak); 6287 }else 6288 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6289 { 6290 /* Use the standard inner loop. */ 6291 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6292 sqlite3WhereContinueLabel(pWInfo), 6293 sqlite3WhereBreakLabel(pWInfo)); 6294 6295 /* End the database scan loop. 6296 */ 6297 sqlite3WhereEnd(pWInfo); 6298 } 6299 }else{ 6300 /* This case when there exist aggregate functions or a GROUP BY clause 6301 ** or both */ 6302 NameContext sNC; /* Name context for processing aggregate information */ 6303 int iAMem; /* First Mem address for storing current GROUP BY */ 6304 int iBMem; /* First Mem address for previous GROUP BY */ 6305 int iUseFlag; /* Mem address holding flag indicating that at least 6306 ** one row of the input to the aggregator has been 6307 ** processed */ 6308 int iAbortFlag; /* Mem address which causes query abort if positive */ 6309 int groupBySort; /* Rows come from source in GROUP BY order */ 6310 int addrEnd; /* End of processing for this SELECT */ 6311 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6312 int sortOut = 0; /* Output register from the sorter */ 6313 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6314 6315 /* Remove any and all aliases between the result set and the 6316 ** GROUP BY clause. 6317 */ 6318 if( pGroupBy ){ 6319 int k; /* Loop counter */ 6320 struct ExprList_item *pItem; /* For looping over expression in a list */ 6321 6322 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6323 pItem->u.x.iAlias = 0; 6324 } 6325 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6326 pItem->u.x.iAlias = 0; 6327 } 6328 assert( 66==sqlite3LogEst(100) ); 6329 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6330 6331 /* If there is both a GROUP BY and an ORDER BY clause and they are 6332 ** identical, then it may be possible to disable the ORDER BY clause 6333 ** on the grounds that the GROUP BY will cause elements to come out 6334 ** in the correct order. It also may not - the GROUP BY might use a 6335 ** database index that causes rows to be grouped together as required 6336 ** but not actually sorted. Either way, record the fact that the 6337 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6338 ** variable. */ 6339 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6340 int ii; 6341 /* The GROUP BY processing doesn't care whether rows are delivered in 6342 ** ASC or DESC order - only that each group is returned contiguously. 6343 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6344 ** ORDER BY to maximize the chances of rows being delivered in an 6345 ** order that makes the ORDER BY redundant. */ 6346 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6347 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6348 pGroupBy->a[ii].sortFlags = sortFlags; 6349 } 6350 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6351 orderByGrp = 1; 6352 } 6353 } 6354 }else{ 6355 assert( 0==sqlite3LogEst(1) ); 6356 p->nSelectRow = 0; 6357 } 6358 6359 /* Create a label to jump to when we want to abort the query */ 6360 addrEnd = sqlite3VdbeMakeLabel(pParse); 6361 6362 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6363 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6364 ** SELECT statement. 6365 */ 6366 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6367 if( pAggInfo==0 ){ 6368 goto select_end; 6369 } 6370 pAggInfo->pNext = pParse->pAggList; 6371 pParse->pAggList = pAggInfo; 6372 pAggInfo->selId = p->selId; 6373 memset(&sNC, 0, sizeof(sNC)); 6374 sNC.pParse = pParse; 6375 sNC.pSrcList = pTabList; 6376 sNC.uNC.pAggInfo = pAggInfo; 6377 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6378 pAggInfo->mnReg = pParse->nMem+1; 6379 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6380 pAggInfo->pGroupBy = pGroupBy; 6381 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6382 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6383 if( pHaving ){ 6384 if( pGroupBy ){ 6385 assert( pWhere==p->pWhere ); 6386 assert( pHaving==p->pHaving ); 6387 assert( pGroupBy==p->pGroupBy ); 6388 havingToWhere(pParse, p); 6389 pWhere = p->pWhere; 6390 } 6391 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6392 } 6393 pAggInfo->nAccumulator = pAggInfo->nColumn; 6394 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6395 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6396 }else{ 6397 minMaxFlag = WHERE_ORDERBY_NORMAL; 6398 } 6399 for(i=0; i<pAggInfo->nFunc; i++){ 6400 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6401 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6402 sNC.ncFlags |= NC_InAggFunc; 6403 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6404 #ifndef SQLITE_OMIT_WINDOWFUNC 6405 assert( !IsWindowFunc(pExpr) ); 6406 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6407 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6408 } 6409 #endif 6410 sNC.ncFlags &= ~NC_InAggFunc; 6411 } 6412 pAggInfo->mxReg = pParse->nMem; 6413 if( db->mallocFailed ) goto select_end; 6414 #if SELECTTRACE_ENABLED 6415 if( sqlite3SelectTrace & 0x400 ){ 6416 int ii; 6417 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 6418 sqlite3TreeViewSelect(0, p, 0); 6419 for(ii=0; ii<pAggInfo->nColumn; ii++){ 6420 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6421 ii, pAggInfo->aCol[ii].iMem); 6422 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 6423 } 6424 for(ii=0; ii<pAggInfo->nFunc; ii++){ 6425 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6426 ii, pAggInfo->aFunc[ii].iMem); 6427 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 6428 } 6429 } 6430 #endif 6431 6432 6433 /* Processing for aggregates with GROUP BY is very different and 6434 ** much more complex than aggregates without a GROUP BY. 6435 */ 6436 if( pGroupBy ){ 6437 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6438 int addr1; /* A-vs-B comparision jump */ 6439 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6440 int regOutputRow; /* Return address register for output subroutine */ 6441 int addrSetAbort; /* Set the abort flag and return */ 6442 int addrTopOfLoop; /* Top of the input loop */ 6443 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6444 int addrReset; /* Subroutine for resetting the accumulator */ 6445 int regReset; /* Return address register for reset subroutine */ 6446 6447 /* If there is a GROUP BY clause we might need a sorting index to 6448 ** implement it. Allocate that sorting index now. If it turns out 6449 ** that we do not need it after all, the OP_SorterOpen instruction 6450 ** will be converted into a Noop. 6451 */ 6452 pAggInfo->sortingIdx = pParse->nTab++; 6453 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 6454 0, pAggInfo->nColumn); 6455 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6456 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 6457 0, (char*)pKeyInfo, P4_KEYINFO); 6458 6459 /* Initialize memory locations used by GROUP BY aggregate processing 6460 */ 6461 iUseFlag = ++pParse->nMem; 6462 iAbortFlag = ++pParse->nMem; 6463 regOutputRow = ++pParse->nMem; 6464 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6465 regReset = ++pParse->nMem; 6466 addrReset = sqlite3VdbeMakeLabel(pParse); 6467 iAMem = pParse->nMem + 1; 6468 pParse->nMem += pGroupBy->nExpr; 6469 iBMem = pParse->nMem + 1; 6470 pParse->nMem += pGroupBy->nExpr; 6471 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6472 VdbeComment((v, "clear abort flag")); 6473 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6474 6475 /* Begin a loop that will extract all source rows in GROUP BY order. 6476 ** This might involve two separate loops with an OP_Sort in between, or 6477 ** it might be a single loop that uses an index to extract information 6478 ** in the right order to begin with. 6479 */ 6480 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6481 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6482 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6483 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6484 ); 6485 if( pWInfo==0 ) goto select_end; 6486 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6487 /* The optimizer is able to deliver rows in group by order so 6488 ** we do not have to sort. The OP_OpenEphemeral table will be 6489 ** cancelled later because we still need to use the pKeyInfo 6490 */ 6491 groupBySort = 0; 6492 }else{ 6493 /* Rows are coming out in undetermined order. We have to push 6494 ** each row into a sorting index, terminate the first loop, 6495 ** then loop over the sorting index in order to get the output 6496 ** in sorted order 6497 */ 6498 int regBase; 6499 int regRecord; 6500 int nCol; 6501 int nGroupBy; 6502 6503 explainTempTable(pParse, 6504 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6505 "DISTINCT" : "GROUP BY"); 6506 6507 groupBySort = 1; 6508 nGroupBy = pGroupBy->nExpr; 6509 nCol = nGroupBy; 6510 j = nGroupBy; 6511 for(i=0; i<pAggInfo->nColumn; i++){ 6512 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 6513 nCol++; 6514 j++; 6515 } 6516 } 6517 regBase = sqlite3GetTempRange(pParse, nCol); 6518 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6519 j = nGroupBy; 6520 for(i=0; i<pAggInfo->nColumn; i++){ 6521 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 6522 if( pCol->iSorterColumn>=j ){ 6523 int r1 = j + regBase; 6524 sqlite3ExprCodeGetColumnOfTable(v, 6525 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6526 j++; 6527 } 6528 } 6529 regRecord = sqlite3GetTempReg(pParse); 6530 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6531 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 6532 sqlite3ReleaseTempReg(pParse, regRecord); 6533 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6534 sqlite3WhereEnd(pWInfo); 6535 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 6536 sortOut = sqlite3GetTempReg(pParse); 6537 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6538 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 6539 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6540 pAggInfo->useSortingIdx = 1; 6541 } 6542 6543 /* If the index or temporary table used by the GROUP BY sort 6544 ** will naturally deliver rows in the order required by the ORDER BY 6545 ** clause, cancel the ephemeral table open coded earlier. 6546 ** 6547 ** This is an optimization - the correct answer should result regardless. 6548 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6549 ** disable this optimization for testing purposes. */ 6550 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6551 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6552 ){ 6553 sSort.pOrderBy = 0; 6554 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6555 } 6556 6557 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6558 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6559 ** Then compare the current GROUP BY terms against the GROUP BY terms 6560 ** from the previous row currently stored in a0, a1, a2... 6561 */ 6562 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6563 if( groupBySort ){ 6564 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 6565 sortOut, sortPTab); 6566 } 6567 for(j=0; j<pGroupBy->nExpr; j++){ 6568 if( groupBySort ){ 6569 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6570 }else{ 6571 pAggInfo->directMode = 1; 6572 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6573 } 6574 } 6575 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6576 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6577 addr1 = sqlite3VdbeCurrentAddr(v); 6578 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6579 6580 /* Generate code that runs whenever the GROUP BY changes. 6581 ** Changes in the GROUP BY are detected by the previous code 6582 ** block. If there were no changes, this block is skipped. 6583 ** 6584 ** This code copies current group by terms in b0,b1,b2,... 6585 ** over to a0,a1,a2. It then calls the output subroutine 6586 ** and resets the aggregate accumulator registers in preparation 6587 ** for the next GROUP BY batch. 6588 */ 6589 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6590 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6591 VdbeComment((v, "output one row")); 6592 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6593 VdbeComment((v, "check abort flag")); 6594 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6595 VdbeComment((v, "reset accumulator")); 6596 6597 /* Update the aggregate accumulators based on the content of 6598 ** the current row 6599 */ 6600 sqlite3VdbeJumpHere(v, addr1); 6601 updateAccumulator(pParse, iUseFlag, pAggInfo); 6602 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6603 VdbeComment((v, "indicate data in accumulator")); 6604 6605 /* End of the loop 6606 */ 6607 if( groupBySort ){ 6608 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx, addrTopOfLoop); 6609 VdbeCoverage(v); 6610 }else{ 6611 sqlite3WhereEnd(pWInfo); 6612 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6613 } 6614 6615 /* Output the final row of result 6616 */ 6617 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6618 VdbeComment((v, "output final row")); 6619 6620 /* Jump over the subroutines 6621 */ 6622 sqlite3VdbeGoto(v, addrEnd); 6623 6624 /* Generate a subroutine that outputs a single row of the result 6625 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6626 ** is less than or equal to zero, the subroutine is a no-op. If 6627 ** the processing calls for the query to abort, this subroutine 6628 ** increments the iAbortFlag memory location before returning in 6629 ** order to signal the caller to abort. 6630 */ 6631 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6632 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6633 VdbeComment((v, "set abort flag")); 6634 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6635 sqlite3VdbeResolveLabel(v, addrOutputRow); 6636 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6637 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6638 VdbeCoverage(v); 6639 VdbeComment((v, "Groupby result generator entry point")); 6640 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6641 finalizeAggFunctions(pParse, pAggInfo); 6642 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6643 selectInnerLoop(pParse, p, -1, &sSort, 6644 &sDistinct, pDest, 6645 addrOutputRow+1, addrSetAbort); 6646 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6647 VdbeComment((v, "end groupby result generator")); 6648 6649 /* Generate a subroutine that will reset the group-by accumulator 6650 */ 6651 sqlite3VdbeResolveLabel(v, addrReset); 6652 resetAccumulator(pParse, pAggInfo); 6653 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6654 VdbeComment((v, "indicate accumulator empty")); 6655 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6656 6657 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6658 else { 6659 Table *pTab; 6660 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 6661 /* If isSimpleCount() returns a pointer to a Table structure, then 6662 ** the SQL statement is of the form: 6663 ** 6664 ** SELECT count(*) FROM <tbl> 6665 ** 6666 ** where the Table structure returned represents table <tbl>. 6667 ** 6668 ** This statement is so common that it is optimized specially. The 6669 ** OP_Count instruction is executed either on the intkey table that 6670 ** contains the data for table <tbl> or on one of its indexes. It 6671 ** is better to execute the op on an index, as indexes are almost 6672 ** always spread across less pages than their corresponding tables. 6673 */ 6674 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6675 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6676 Index *pIdx; /* Iterator variable */ 6677 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6678 Index *pBest = 0; /* Best index found so far */ 6679 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6680 6681 sqlite3CodeVerifySchema(pParse, iDb); 6682 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6683 6684 /* Search for the index that has the lowest scan cost. 6685 ** 6686 ** (2011-04-15) Do not do a full scan of an unordered index. 6687 ** 6688 ** (2013-10-03) Do not count the entries in a partial index. 6689 ** 6690 ** In practice the KeyInfo structure will not be used. It is only 6691 ** passed to keep OP_OpenRead happy. 6692 */ 6693 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6694 if( !p->pSrc->a[0].fg.notIndexed ){ 6695 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6696 if( pIdx->bUnordered==0 6697 && pIdx->szIdxRow<pTab->szTabRow 6698 && pIdx->pPartIdxWhere==0 6699 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6700 ){ 6701 pBest = pIdx; 6702 } 6703 } 6704 } 6705 if( pBest ){ 6706 iRoot = pBest->tnum; 6707 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6708 } 6709 6710 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6711 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6712 if( pKeyInfo ){ 6713 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6714 } 6715 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 6716 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6717 explainSimpleCount(pParse, pTab, pBest); 6718 }else{ 6719 int regAcc = 0; /* "populate accumulators" flag */ 6720 6721 /* If there are accumulator registers but no min() or max() functions 6722 ** without FILTER clauses, allocate register regAcc. Register regAcc 6723 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 6724 ** The code generated by updateAccumulator() uses this to ensure 6725 ** that the accumulator registers are (a) updated only once if 6726 ** there are no min() or max functions or (b) always updated for the 6727 ** first row visited by the aggregate, so that they are updated at 6728 ** least once even if the FILTER clause means the min() or max() 6729 ** function visits zero rows. */ 6730 if( pAggInfo->nAccumulator ){ 6731 for(i=0; i<pAggInfo->nFunc; i++){ 6732 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 6733 continue; 6734 } 6735 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 6736 break; 6737 } 6738 } 6739 if( i==pAggInfo->nFunc ){ 6740 regAcc = ++pParse->nMem; 6741 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6742 } 6743 } 6744 6745 /* This case runs if the aggregate has no GROUP BY clause. The 6746 ** processing is much simpler since there is only a single row 6747 ** of output. 6748 */ 6749 assert( p->pGroupBy==0 ); 6750 resetAccumulator(pParse, pAggInfo); 6751 6752 /* If this query is a candidate for the min/max optimization, then 6753 ** minMaxFlag will have been previously set to either 6754 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6755 ** be an appropriate ORDER BY expression for the optimization. 6756 */ 6757 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6758 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6759 6760 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6761 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6762 0, minMaxFlag, 0); 6763 if( pWInfo==0 ){ 6764 goto select_end; 6765 } 6766 updateAccumulator(pParse, regAcc, pAggInfo); 6767 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6768 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6769 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6770 VdbeComment((v, "%s() by index", 6771 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6772 } 6773 sqlite3WhereEnd(pWInfo); 6774 finalizeAggFunctions(pParse, pAggInfo); 6775 } 6776 6777 sSort.pOrderBy = 0; 6778 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6779 selectInnerLoop(pParse, p, -1, 0, 0, 6780 pDest, addrEnd, addrEnd); 6781 } 6782 sqlite3VdbeResolveLabel(v, addrEnd); 6783 6784 } /* endif aggregate query */ 6785 6786 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6787 explainTempTable(pParse, "DISTINCT"); 6788 } 6789 6790 /* If there is an ORDER BY clause, then we need to sort the results 6791 ** and send them to the callback one by one. 6792 */ 6793 if( sSort.pOrderBy ){ 6794 explainTempTable(pParse, 6795 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6796 assert( p->pEList==pEList ); 6797 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6798 } 6799 6800 /* Jump here to skip this query 6801 */ 6802 sqlite3VdbeResolveLabel(v, iEnd); 6803 6804 /* The SELECT has been coded. If there is an error in the Parse structure, 6805 ** set the return code to 1. Otherwise 0. */ 6806 rc = (pParse->nErr>0); 6807 6808 /* Control jumps to here if an error is encountered above, or upon 6809 ** successful coding of the SELECT. 6810 */ 6811 select_end: 6812 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6813 #ifdef SQLITE_DEBUG 6814 if( pAggInfo && !db->mallocFailed ){ 6815 for(i=0; i<pAggInfo->nColumn; i++){ 6816 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 6817 assert( pExpr!=0 || db->mallocFailed ); 6818 if( pExpr==0 ) continue; 6819 assert( pExpr->pAggInfo==pAggInfo ); 6820 assert( pExpr->iAgg==i ); 6821 } 6822 for(i=0; i<pAggInfo->nFunc; i++){ 6823 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6824 assert( pExpr!=0 || db->mallocFailed ); 6825 if( pExpr==0 ) continue; 6826 assert( pExpr->pAggInfo==pAggInfo ); 6827 assert( pExpr->iAgg==i ); 6828 } 6829 } 6830 #endif 6831 6832 #if SELECTTRACE_ENABLED 6833 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6834 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6835 sqlite3TreeViewSelect(0, p, 0); 6836 } 6837 #endif 6838 ExplainQueryPlanPop(pParse); 6839 return rc; 6840 } 6841