xref: /sqlite-3.40.0/src/select.c (revision 7b852416)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88 #ifndef SQLITE_OMIT_WINDOWFUNC
89     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
90       sqlite3WindowListDelete(db, p->pWinDefn);
91     }
92 #endif
93     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94     if( bFree ) sqlite3DbFreeNN(db, p);
95     p = pPrior;
96     bFree = 1;
97   }
98 }
99 
100 /*
101 ** Initialize a SelectDest structure.
102 */
103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
104   pDest->eDest = (u8)eDest;
105   pDest->iSDParm = iParm;
106   pDest->iSDParm2 = 0;
107   pDest->zAffSdst = 0;
108   pDest->iSdst = 0;
109   pDest->nSdst = 0;
110 }
111 
112 
113 /*
114 ** Allocate a new Select structure and return a pointer to that
115 ** structure.
116 */
117 Select *sqlite3SelectNew(
118   Parse *pParse,        /* Parsing context */
119   ExprList *pEList,     /* which columns to include in the result */
120   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
121   Expr *pWhere,         /* the WHERE clause */
122   ExprList *pGroupBy,   /* the GROUP BY clause */
123   Expr *pHaving,        /* the HAVING clause */
124   ExprList *pOrderBy,   /* the ORDER BY clause */
125   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
126   Expr *pLimit          /* LIMIT value.  NULL means not used */
127 ){
128   Select *pNew, *pAllocated;
129   Select standin;
130   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
131   if( pNew==0 ){
132     assert( pParse->db->mallocFailed );
133     pNew = &standin;
134   }
135   if( pEList==0 ){
136     pEList = sqlite3ExprListAppend(pParse, 0,
137                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
138   }
139   pNew->pEList = pEList;
140   pNew->op = TK_SELECT;
141   pNew->selFlags = selFlags;
142   pNew->iLimit = 0;
143   pNew->iOffset = 0;
144   pNew->selId = ++pParse->nSelect;
145   pNew->addrOpenEphm[0] = -1;
146   pNew->addrOpenEphm[1] = -1;
147   pNew->nSelectRow = 0;
148   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
149   pNew->pSrc = pSrc;
150   pNew->pWhere = pWhere;
151   pNew->pGroupBy = pGroupBy;
152   pNew->pHaving = pHaving;
153   pNew->pOrderBy = pOrderBy;
154   pNew->pPrior = 0;
155   pNew->pNext = 0;
156   pNew->pLimit = pLimit;
157   pNew->pWith = 0;
158 #ifndef SQLITE_OMIT_WINDOWFUNC
159   pNew->pWin = 0;
160   pNew->pWinDefn = 0;
161 #endif
162   if( pParse->db->mallocFailed ) {
163     clearSelect(pParse->db, pNew, pNew!=&standin);
164     pAllocated = 0;
165   }else{
166     assert( pNew->pSrc!=0 || pParse->nErr>0 );
167   }
168   return pAllocated;
169 }
170 
171 
172 /*
173 ** Delete the given Select structure and all of its substructures.
174 */
175 void sqlite3SelectDelete(sqlite3 *db, Select *p){
176   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
177 }
178 
179 /*
180 ** Return a pointer to the right-most SELECT statement in a compound.
181 */
182 static Select *findRightmost(Select *p){
183   while( p->pNext ) p = p->pNext;
184   return p;
185 }
186 
187 /*
188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
189 ** type of join.  Return an integer constant that expresses that type
190 ** in terms of the following bit values:
191 **
192 **     JT_INNER
193 **     JT_CROSS
194 **     JT_OUTER
195 **     JT_NATURAL
196 **     JT_LEFT
197 **     JT_RIGHT
198 **
199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
200 **
201 ** If an illegal or unsupported join type is seen, then still return
202 ** a join type, but put an error in the pParse structure.
203 */
204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
205   int jointype = 0;
206   Token *apAll[3];
207   Token *p;
208                              /*   0123456789 123456789 123456789 123 */
209   static const char zKeyText[] = "naturaleftouterightfullinnercross";
210   static const struct {
211     u8 i;        /* Beginning of keyword text in zKeyText[] */
212     u8 nChar;    /* Length of the keyword in characters */
213     u8 code;     /* Join type mask */
214   } aKeyword[] = {
215     /* natural */ { 0,  7, JT_NATURAL                },
216     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
217     /* outer   */ { 10, 5, JT_OUTER                  },
218     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
219     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
220     /* inner   */ { 23, 5, JT_INNER                  },
221     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
222   };
223   int i, j;
224   apAll[0] = pA;
225   apAll[1] = pB;
226   apAll[2] = pC;
227   for(i=0; i<3 && apAll[i]; i++){
228     p = apAll[i];
229     for(j=0; j<ArraySize(aKeyword); j++){
230       if( p->n==aKeyword[j].nChar
231           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
232         jointype |= aKeyword[j].code;
233         break;
234       }
235     }
236     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
237     if( j>=ArraySize(aKeyword) ){
238       jointype |= JT_ERROR;
239       break;
240     }
241   }
242   if(
243      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
244      (jointype & JT_ERROR)!=0
245   ){
246     const char *zSp = " ";
247     assert( pB!=0 );
248     if( pC==0 ){ zSp++; }
249     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
250        "%T %T%s%T", pA, pB, zSp, pC);
251     jointype = JT_INNER;
252   }else if( (jointype & JT_OUTER)!=0
253          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
254     sqlite3ErrorMsg(pParse,
255       "RIGHT and FULL OUTER JOINs are not currently supported");
256     jointype = JT_INNER;
257   }
258   return jointype;
259 }
260 
261 /*
262 ** Return the index of a column in a table.  Return -1 if the column
263 ** is not contained in the table.
264 */
265 static int columnIndex(Table *pTab, const char *zCol){
266   int i;
267   u8 h = sqlite3StrIHash(zCol);
268   Column *pCol;
269   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
270     if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
271   }
272   return -1;
273 }
274 
275 /*
276 ** Search the first N tables in pSrc, from left to right, looking for a
277 ** table that has a column named zCol.
278 **
279 ** When found, set *piTab and *piCol to the table index and column index
280 ** of the matching column and return TRUE.
281 **
282 ** If not found, return FALSE.
283 */
284 static int tableAndColumnIndex(
285   SrcList *pSrc,       /* Array of tables to search */
286   int N,               /* Number of tables in pSrc->a[] to search */
287   const char *zCol,    /* Name of the column we are looking for */
288   int *piTab,          /* Write index of pSrc->a[] here */
289   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
290   int bIgnoreHidden    /* True to ignore hidden columns */
291 ){
292   int i;               /* For looping over tables in pSrc */
293   int iCol;            /* Index of column matching zCol */
294 
295   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
296   for(i=0; i<N; i++){
297     iCol = columnIndex(pSrc->a[i].pTab, zCol);
298     if( iCol>=0
299      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
300     ){
301       if( piTab ){
302         *piTab = i;
303         *piCol = iCol;
304       }
305       return 1;
306     }
307   }
308   return 0;
309 }
310 
311 /*
312 ** This function is used to add terms implied by JOIN syntax to the
313 ** WHERE clause expression of a SELECT statement. The new term, which
314 ** is ANDed with the existing WHERE clause, is of the form:
315 **
316 **    (tab1.col1 = tab2.col2)
317 **
318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
320 ** column iColRight of tab2.
321 */
322 static void addWhereTerm(
323   Parse *pParse,                  /* Parsing context */
324   SrcList *pSrc,                  /* List of tables in FROM clause */
325   int iLeft,                      /* Index of first table to join in pSrc */
326   int iColLeft,                   /* Index of column in first table */
327   int iRight,                     /* Index of second table in pSrc */
328   int iColRight,                  /* Index of column in second table */
329   int isOuterJoin,                /* True if this is an OUTER join */
330   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
331 ){
332   sqlite3 *db = pParse->db;
333   Expr *pE1;
334   Expr *pE2;
335   Expr *pEq;
336 
337   assert( iLeft<iRight );
338   assert( pSrc->nSrc>iRight );
339   assert( pSrc->a[iLeft].pTab );
340   assert( pSrc->a[iRight].pTab );
341 
342   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
343   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
344 
345   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
346   if( pEq && isOuterJoin ){
347     ExprSetProperty(pEq, EP_FromJoin);
348     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
349     ExprSetVVAProperty(pEq, EP_NoReduce);
350     pEq->iRightJoinTable = (i16)pE2->iTable;
351   }
352   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
353 }
354 
355 /*
356 ** Set the EP_FromJoin property on all terms of the given expression.
357 ** And set the Expr.iRightJoinTable to iTable for every term in the
358 ** expression.
359 **
360 ** The EP_FromJoin property is used on terms of an expression to tell
361 ** the LEFT OUTER JOIN processing logic that this term is part of the
362 ** join restriction specified in the ON or USING clause and not a part
363 ** of the more general WHERE clause.  These terms are moved over to the
364 ** WHERE clause during join processing but we need to remember that they
365 ** originated in the ON or USING clause.
366 **
367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
368 ** expression depends on table iRightJoinTable even if that table is not
369 ** explicitly mentioned in the expression.  That information is needed
370 ** for cases like this:
371 **
372 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
373 **
374 ** The where clause needs to defer the handling of the t1.x=5
375 ** term until after the t2 loop of the join.  In that way, a
376 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
377 ** defer the handling of t1.x=5, it will be processed immediately
378 ** after the t1 loop and rows with t1.x!=5 will never appear in
379 ** the output, which is incorrect.
380 */
381 void sqlite3SetJoinExpr(Expr *p, int iTable){
382   while( p ){
383     ExprSetProperty(p, EP_FromJoin);
384     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
385     ExprSetVVAProperty(p, EP_NoReduce);
386     p->iRightJoinTable = (i16)iTable;
387     if( p->op==TK_FUNCTION && p->x.pList ){
388       int i;
389       for(i=0; i<p->x.pList->nExpr; i++){
390         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
391       }
392     }
393     sqlite3SetJoinExpr(p->pLeft, iTable);
394     p = p->pRight;
395   }
396 }
397 
398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
400 ** an ordinary term that omits the EP_FromJoin mark.
401 **
402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
403 */
404 static void unsetJoinExpr(Expr *p, int iTable){
405   while( p ){
406     if( ExprHasProperty(p, EP_FromJoin)
407      && (iTable<0 || p->iRightJoinTable==iTable) ){
408       ExprClearProperty(p, EP_FromJoin);
409     }
410     if( p->op==TK_FUNCTION && p->x.pList ){
411       int i;
412       for(i=0; i<p->x.pList->nExpr; i++){
413         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
414       }
415     }
416     unsetJoinExpr(p->pLeft, iTable);
417     p = p->pRight;
418   }
419 }
420 
421 /*
422 ** This routine processes the join information for a SELECT statement.
423 ** ON and USING clauses are converted into extra terms of the WHERE clause.
424 ** NATURAL joins also create extra WHERE clause terms.
425 **
426 ** The terms of a FROM clause are contained in the Select.pSrc structure.
427 ** The left most table is the first entry in Select.pSrc.  The right-most
428 ** table is the last entry.  The join operator is held in the entry to
429 ** the left.  Thus entry 0 contains the join operator for the join between
430 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
431 ** also attached to the left entry.
432 **
433 ** This routine returns the number of errors encountered.
434 */
435 static int sqliteProcessJoin(Parse *pParse, Select *p){
436   SrcList *pSrc;                  /* All tables in the FROM clause */
437   int i, j;                       /* Loop counters */
438   struct SrcList_item *pLeft;     /* Left table being joined */
439   struct SrcList_item *pRight;    /* Right table being joined */
440 
441   pSrc = p->pSrc;
442   pLeft = &pSrc->a[0];
443   pRight = &pLeft[1];
444   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
445     Table *pRightTab = pRight->pTab;
446     int isOuter;
447 
448     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
449     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
450 
451     /* When the NATURAL keyword is present, add WHERE clause terms for
452     ** every column that the two tables have in common.
453     */
454     if( pRight->fg.jointype & JT_NATURAL ){
455       if( pRight->pOn || pRight->pUsing ){
456         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
457            "an ON or USING clause", 0);
458         return 1;
459       }
460       for(j=0; j<pRightTab->nCol; j++){
461         char *zName;   /* Name of column in the right table */
462         int iLeft;     /* Matching left table */
463         int iLeftCol;  /* Matching column in the left table */
464 
465         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
466         zName = pRightTab->aCol[j].zName;
467         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
468           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
469                 isOuter, &p->pWhere);
470         }
471       }
472     }
473 
474     /* Disallow both ON and USING clauses in the same join
475     */
476     if( pRight->pOn && pRight->pUsing ){
477       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
478         "clauses in the same join");
479       return 1;
480     }
481 
482     /* Add the ON clause to the end of the WHERE clause, connected by
483     ** an AND operator.
484     */
485     if( pRight->pOn ){
486       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
487       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
488       pRight->pOn = 0;
489     }
490 
491     /* Create extra terms on the WHERE clause for each column named
492     ** in the USING clause.  Example: If the two tables to be joined are
493     ** A and B and the USING clause names X, Y, and Z, then add this
494     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
495     ** Report an error if any column mentioned in the USING clause is
496     ** not contained in both tables to be joined.
497     */
498     if( pRight->pUsing ){
499       IdList *pList = pRight->pUsing;
500       for(j=0; j<pList->nId; j++){
501         char *zName;     /* Name of the term in the USING clause */
502         int iLeft;       /* Table on the left with matching column name */
503         int iLeftCol;    /* Column number of matching column on the left */
504         int iRightCol;   /* Column number of matching column on the right */
505 
506         zName = pList->a[j].zName;
507         iRightCol = columnIndex(pRightTab, zName);
508         if( iRightCol<0
509          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
510         ){
511           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
512             "not present in both tables", zName);
513           return 1;
514         }
515         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
516                      isOuter, &p->pWhere);
517       }
518     }
519   }
520   return 0;
521 }
522 
523 /*
524 ** An instance of this object holds information (beyond pParse and pSelect)
525 ** needed to load the next result row that is to be added to the sorter.
526 */
527 typedef struct RowLoadInfo RowLoadInfo;
528 struct RowLoadInfo {
529   int regResult;               /* Store results in array of registers here */
530   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
531 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
532   ExprList *pExtra;            /* Extra columns needed by sorter refs */
533   int regExtraResult;          /* Where to load the extra columns */
534 #endif
535 };
536 
537 /*
538 ** This routine does the work of loading query data into an array of
539 ** registers so that it can be added to the sorter.
540 */
541 static void innerLoopLoadRow(
542   Parse *pParse,             /* Statement under construction */
543   Select *pSelect,           /* The query being coded */
544   RowLoadInfo *pInfo         /* Info needed to complete the row load */
545 ){
546   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
547                           0, pInfo->ecelFlags);
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549   if( pInfo->pExtra ){
550     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
551     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
552   }
553 #endif
554 }
555 
556 /*
557 ** Code the OP_MakeRecord instruction that generates the entry to be
558 ** added into the sorter.
559 **
560 ** Return the register in which the result is stored.
561 */
562 static int makeSorterRecord(
563   Parse *pParse,
564   SortCtx *pSort,
565   Select *pSelect,
566   int regBase,
567   int nBase
568 ){
569   int nOBSat = pSort->nOBSat;
570   Vdbe *v = pParse->pVdbe;
571   int regOut = ++pParse->nMem;
572   if( pSort->pDeferredRowLoad ){
573     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
574   }
575   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
576   return regOut;
577 }
578 
579 /*
580 ** Generate code that will push the record in registers regData
581 ** through regData+nData-1 onto the sorter.
582 */
583 static void pushOntoSorter(
584   Parse *pParse,         /* Parser context */
585   SortCtx *pSort,        /* Information about the ORDER BY clause */
586   Select *pSelect,       /* The whole SELECT statement */
587   int regData,           /* First register holding data to be sorted */
588   int regOrigData,       /* First register holding data before packing */
589   int nData,             /* Number of elements in the regData data array */
590   int nPrefixReg         /* No. of reg prior to regData available for use */
591 ){
592   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
593   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
594   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
595   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
596   int regBase;                                     /* Regs for sorter record */
597   int regRecord = 0;                               /* Assembled sorter record */
598   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
599   int op;                            /* Opcode to add sorter record to sorter */
600   int iLimit;                        /* LIMIT counter */
601   int iSkip = 0;                     /* End of the sorter insert loop */
602 
603   assert( bSeq==0 || bSeq==1 );
604 
605   /* Three cases:
606   **   (1) The data to be sorted has already been packed into a Record
607   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
608   **       will be completely unrelated to regOrigData.
609   **   (2) All output columns are included in the sort record.  In that
610   **       case regData==regOrigData.
611   **   (3) Some output columns are omitted from the sort record due to
612   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
613   **       SQLITE_ECEL_OMITREF optimization, or due to the
614   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
615   **       regOrigData is 0 to prevent this routine from trying to copy
616   **       values that might not yet exist.
617   */
618   assert( nData==1 || regData==regOrigData || regOrigData==0 );
619 
620   if( nPrefixReg ){
621     assert( nPrefixReg==nExpr+bSeq );
622     regBase = regData - nPrefixReg;
623   }else{
624     regBase = pParse->nMem + 1;
625     pParse->nMem += nBase;
626   }
627   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
628   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
629   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
630   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
631                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
632   if( bSeq ){
633     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
634   }
635   if( nPrefixReg==0 && nData>0 ){
636     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
637   }
638   if( nOBSat>0 ){
639     int regPrevKey;   /* The first nOBSat columns of the previous row */
640     int addrFirst;    /* Address of the OP_IfNot opcode */
641     int addrJmp;      /* Address of the OP_Jump opcode */
642     VdbeOp *pOp;      /* Opcode that opens the sorter */
643     int nKey;         /* Number of sorting key columns, including OP_Sequence */
644     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
645 
646     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
647     regPrevKey = pParse->nMem+1;
648     pParse->nMem += pSort->nOBSat;
649     nKey = nExpr - pSort->nOBSat + bSeq;
650     if( bSeq ){
651       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
652     }else{
653       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
654     }
655     VdbeCoverage(v);
656     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
657     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
658     if( pParse->db->mallocFailed ) return;
659     pOp->p2 = nKey + nData;
660     pKI = pOp->p4.pKeyInfo;
661     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
662     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
663     testcase( pKI->nAllField > pKI->nKeyField+2 );
664     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
665                                            pKI->nAllField-pKI->nKeyField-1);
666     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
667     addrJmp = sqlite3VdbeCurrentAddr(v);
668     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
669     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
670     pSort->regReturn = ++pParse->nMem;
671     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
672     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
673     if( iLimit ){
674       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
675       VdbeCoverage(v);
676     }
677     sqlite3VdbeJumpHere(v, addrFirst);
678     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
679     sqlite3VdbeJumpHere(v, addrJmp);
680   }
681   if( iLimit ){
682     /* At this point the values for the new sorter entry are stored
683     ** in an array of registers. They need to be composed into a record
684     ** and inserted into the sorter if either (a) there are currently
685     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
686     ** the largest record currently in the sorter. If (b) is true and there
687     ** are already LIMIT+OFFSET items in the sorter, delete the largest
688     ** entry before inserting the new one. This way there are never more
689     ** than LIMIT+OFFSET items in the sorter.
690     **
691     ** If the new record does not need to be inserted into the sorter,
692     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
693     ** value is not zero, then it is a label of where to jump.  Otherwise,
694     ** just bypass the row insert logic.  See the header comment on the
695     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
696     */
697     int iCsr = pSort->iECursor;
698     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
699     VdbeCoverage(v);
700     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
701     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
702                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
705   }
706   if( regRecord==0 ){
707     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
708   }
709   if( pSort->sortFlags & SORTFLAG_UseSorter ){
710     op = OP_SorterInsert;
711   }else{
712     op = OP_IdxInsert;
713   }
714   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
715                        regBase+nOBSat, nBase-nOBSat);
716   if( iSkip ){
717     sqlite3VdbeChangeP2(v, iSkip,
718          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
719   }
720 }
721 
722 /*
723 ** Add code to implement the OFFSET
724 */
725 static void codeOffset(
726   Vdbe *v,          /* Generate code into this VM */
727   int iOffset,      /* Register holding the offset counter */
728   int iContinue     /* Jump here to skip the current record */
729 ){
730   if( iOffset>0 ){
731     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
732     VdbeComment((v, "OFFSET"));
733   }
734 }
735 
736 /*
737 ** Add code that will check to make sure the N registers starting at iMem
738 ** form a distinct entry.  iTab is a sorting index that holds previously
739 ** seen combinations of the N values.  A new entry is made in iTab
740 ** if the current N values are new.
741 **
742 ** A jump to addrRepeat is made and the N+1 values are popped from the
743 ** stack if the top N elements are not distinct.
744 */
745 static void codeDistinct(
746   Parse *pParse,     /* Parsing and code generating context */
747   int iTab,          /* A sorting index used to test for distinctness */
748   int addrRepeat,    /* Jump to here if not distinct */
749   int N,             /* Number of elements */
750   int iMem           /* First element */
751 ){
752   Vdbe *v;
753   int r1;
754 
755   v = pParse->pVdbe;
756   r1 = sqlite3GetTempReg(pParse);
757   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
758   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
759   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
760   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
761   sqlite3ReleaseTempReg(pParse, r1);
762 }
763 
764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
765 /*
766 ** This function is called as part of inner-loop generation for a SELECT
767 ** statement with an ORDER BY that is not optimized by an index. It
768 ** determines the expressions, if any, that the sorter-reference
769 ** optimization should be used for. The sorter-reference optimization
770 ** is used for SELECT queries like:
771 **
772 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
773 **
774 ** If the optimization is used for expression "bigblob", then instead of
775 ** storing values read from that column in the sorter records, the PK of
776 ** the row from table t1 is stored instead. Then, as records are extracted from
777 ** the sorter to return to the user, the required value of bigblob is
778 ** retrieved directly from table t1. If the values are very large, this
779 ** can be more efficient than storing them directly in the sorter records.
780 **
781 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
782 ** for which the sorter-reference optimization should be enabled.
783 ** Additionally, the pSort->aDefer[] array is populated with entries
784 ** for all cursors required to evaluate all selected expressions. Finally.
785 ** output variable (*ppExtra) is set to an expression list containing
786 ** expressions for all extra PK values that should be stored in the
787 ** sorter records.
788 */
789 static void selectExprDefer(
790   Parse *pParse,                  /* Leave any error here */
791   SortCtx *pSort,                 /* Sorter context */
792   ExprList *pEList,               /* Expressions destined for sorter */
793   ExprList **ppExtra              /* Expressions to append to sorter record */
794 ){
795   int i;
796   int nDefer = 0;
797   ExprList *pExtra = 0;
798   for(i=0; i<pEList->nExpr; i++){
799     struct ExprList_item *pItem = &pEList->a[i];
800     if( pItem->u.x.iOrderByCol==0 ){
801       Expr *pExpr = pItem->pExpr;
802       Table *pTab = pExpr->y.pTab;
803       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
804        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
805       ){
806         int j;
807         for(j=0; j<nDefer; j++){
808           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
809         }
810         if( j==nDefer ){
811           if( nDefer==ArraySize(pSort->aDefer) ){
812             continue;
813           }else{
814             int nKey = 1;
815             int k;
816             Index *pPk = 0;
817             if( !HasRowid(pTab) ){
818               pPk = sqlite3PrimaryKeyIndex(pTab);
819               nKey = pPk->nKeyCol;
820             }
821             for(k=0; k<nKey; k++){
822               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
823               if( pNew ){
824                 pNew->iTable = pExpr->iTable;
825                 pNew->y.pTab = pExpr->y.pTab;
826                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
827                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
828               }
829             }
830             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
831             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
832             pSort->aDefer[nDefer].nKey = nKey;
833             nDefer++;
834           }
835         }
836         pItem->bSorterRef = 1;
837       }
838     }
839   }
840   pSort->nDefer = (u8)nDefer;
841   *ppExtra = pExtra;
842 }
843 #endif
844 
845 /*
846 ** This routine generates the code for the inside of the inner loop
847 ** of a SELECT.
848 **
849 ** If srcTab is negative, then the p->pEList expressions
850 ** are evaluated in order to get the data for this row.  If srcTab is
851 ** zero or more, then data is pulled from srcTab and p->pEList is used only
852 ** to get the number of columns and the collation sequence for each column.
853 */
854 static void selectInnerLoop(
855   Parse *pParse,          /* The parser context */
856   Select *p,              /* The complete select statement being coded */
857   int srcTab,             /* Pull data from this table if non-negative */
858   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
859   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
860   SelectDest *pDest,      /* How to dispose of the results */
861   int iContinue,          /* Jump here to continue with next row */
862   int iBreak              /* Jump here to break out of the inner loop */
863 ){
864   Vdbe *v = pParse->pVdbe;
865   int i;
866   int hasDistinct;            /* True if the DISTINCT keyword is present */
867   int eDest = pDest->eDest;   /* How to dispose of results */
868   int iParm = pDest->iSDParm; /* First argument to disposal method */
869   int nResultCol;             /* Number of result columns */
870   int nPrefixReg = 0;         /* Number of extra registers before regResult */
871   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
872 
873   /* Usually, regResult is the first cell in an array of memory cells
874   ** containing the current result row. In this case regOrig is set to the
875   ** same value. However, if the results are being sent to the sorter, the
876   ** values for any expressions that are also part of the sort-key are omitted
877   ** from this array. In this case regOrig is set to zero.  */
878   int regResult;              /* Start of memory holding current results */
879   int regOrig;                /* Start of memory holding full result (or 0) */
880 
881   assert( v );
882   assert( p->pEList!=0 );
883   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
884   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
885   if( pSort==0 && !hasDistinct ){
886     assert( iContinue!=0 );
887     codeOffset(v, p->iOffset, iContinue);
888   }
889 
890   /* Pull the requested columns.
891   */
892   nResultCol = p->pEList->nExpr;
893 
894   if( pDest->iSdst==0 ){
895     if( pSort ){
896       nPrefixReg = pSort->pOrderBy->nExpr;
897       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
898       pParse->nMem += nPrefixReg;
899     }
900     pDest->iSdst = pParse->nMem+1;
901     pParse->nMem += nResultCol;
902   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
903     /* This is an error condition that can result, for example, when a SELECT
904     ** on the right-hand side of an INSERT contains more result columns than
905     ** there are columns in the table on the left.  The error will be caught
906     ** and reported later.  But we need to make sure enough memory is allocated
907     ** to avoid other spurious errors in the meantime. */
908     pParse->nMem += nResultCol;
909   }
910   pDest->nSdst = nResultCol;
911   regOrig = regResult = pDest->iSdst;
912   if( srcTab>=0 ){
913     for(i=0; i<nResultCol; i++){
914       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
915       VdbeComment((v, "%s", p->pEList->a[i].zEName));
916     }
917   }else if( eDest!=SRT_Exists ){
918 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
919     ExprList *pExtra = 0;
920 #endif
921     /* If the destination is an EXISTS(...) expression, the actual
922     ** values returned by the SELECT are not required.
923     */
924     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
925     ExprList *pEList;
926     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
927       ecelFlags = SQLITE_ECEL_DUP;
928     }else{
929       ecelFlags = 0;
930     }
931     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
932       /* For each expression in p->pEList that is a copy of an expression in
933       ** the ORDER BY clause (pSort->pOrderBy), set the associated
934       ** iOrderByCol value to one more than the index of the ORDER BY
935       ** expression within the sort-key that pushOntoSorter() will generate.
936       ** This allows the p->pEList field to be omitted from the sorted record,
937       ** saving space and CPU cycles.  */
938       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
939 
940       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
941         int j;
942         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
943           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
944         }
945       }
946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
947       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
948       if( pExtra && pParse->db->mallocFailed==0 ){
949         /* If there are any extra PK columns to add to the sorter records,
950         ** allocate extra memory cells and adjust the OpenEphemeral
951         ** instruction to account for the larger records. This is only
952         ** required if there are one or more WITHOUT ROWID tables with
953         ** composite primary keys in the SortCtx.aDefer[] array.  */
954         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
955         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
956         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
957         pParse->nMem += pExtra->nExpr;
958       }
959 #endif
960 
961       /* Adjust nResultCol to account for columns that are omitted
962       ** from the sorter by the optimizations in this branch */
963       pEList = p->pEList;
964       for(i=0; i<pEList->nExpr; i++){
965         if( pEList->a[i].u.x.iOrderByCol>0
966 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
967          || pEList->a[i].bSorterRef
968 #endif
969         ){
970           nResultCol--;
971           regOrig = 0;
972         }
973       }
974 
975       testcase( regOrig );
976       testcase( eDest==SRT_Set );
977       testcase( eDest==SRT_Mem );
978       testcase( eDest==SRT_Coroutine );
979       testcase( eDest==SRT_Output );
980       assert( eDest==SRT_Set || eDest==SRT_Mem
981            || eDest==SRT_Coroutine || eDest==SRT_Output
982            || eDest==SRT_Upfrom );
983     }
984     sRowLoadInfo.regResult = regResult;
985     sRowLoadInfo.ecelFlags = ecelFlags;
986 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
987     sRowLoadInfo.pExtra = pExtra;
988     sRowLoadInfo.regExtraResult = regResult + nResultCol;
989     if( pExtra ) nResultCol += pExtra->nExpr;
990 #endif
991     if( p->iLimit
992      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
993      && nPrefixReg>0
994     ){
995       assert( pSort!=0 );
996       assert( hasDistinct==0 );
997       pSort->pDeferredRowLoad = &sRowLoadInfo;
998       regOrig = 0;
999     }else{
1000       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1001     }
1002   }
1003 
1004   /* If the DISTINCT keyword was present on the SELECT statement
1005   ** and this row has been seen before, then do not make this row
1006   ** part of the result.
1007   */
1008   if( hasDistinct ){
1009     switch( pDistinct->eTnctType ){
1010       case WHERE_DISTINCT_ORDERED: {
1011         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1012         int iJump;              /* Jump destination */
1013         int regPrev;            /* Previous row content */
1014 
1015         /* Allocate space for the previous row */
1016         regPrev = pParse->nMem+1;
1017         pParse->nMem += nResultCol;
1018 
1019         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1020         ** sets the MEM_Cleared bit on the first register of the
1021         ** previous value.  This will cause the OP_Ne below to always
1022         ** fail on the first iteration of the loop even if the first
1023         ** row is all NULLs.
1024         */
1025         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1026         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1027         pOp->opcode = OP_Null;
1028         pOp->p1 = 1;
1029         pOp->p2 = regPrev;
1030         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1031 
1032         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1033         for(i=0; i<nResultCol; i++){
1034           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1035           if( i<nResultCol-1 ){
1036             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1037             VdbeCoverage(v);
1038           }else{
1039             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1040             VdbeCoverage(v);
1041            }
1042           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1043           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1044         }
1045         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1046         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1047         break;
1048       }
1049 
1050       case WHERE_DISTINCT_UNIQUE: {
1051         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1052         break;
1053       }
1054 
1055       default: {
1056         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1057         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1058                      regResult);
1059         break;
1060       }
1061     }
1062     if( pSort==0 ){
1063       codeOffset(v, p->iOffset, iContinue);
1064     }
1065   }
1066 
1067   switch( eDest ){
1068     /* In this mode, write each query result to the key of the temporary
1069     ** table iParm.
1070     */
1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1072     case SRT_Union: {
1073       int r1;
1074       r1 = sqlite3GetTempReg(pParse);
1075       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1076       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1077       sqlite3ReleaseTempReg(pParse, r1);
1078       break;
1079     }
1080 
1081     /* Construct a record from the query result, but instead of
1082     ** saving that record, use it as a key to delete elements from
1083     ** the temporary table iParm.
1084     */
1085     case SRT_Except: {
1086       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1087       break;
1088     }
1089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1090 
1091     /* Store the result as data using a unique key.
1092     */
1093     case SRT_Fifo:
1094     case SRT_DistFifo:
1095     case SRT_Table:
1096     case SRT_EphemTab: {
1097       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1098       testcase( eDest==SRT_Table );
1099       testcase( eDest==SRT_EphemTab );
1100       testcase( eDest==SRT_Fifo );
1101       testcase( eDest==SRT_DistFifo );
1102       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1103 #ifndef SQLITE_OMIT_CTE
1104       if( eDest==SRT_DistFifo ){
1105         /* If the destination is DistFifo, then cursor (iParm+1) is open
1106         ** on an ephemeral index. If the current row is already present
1107         ** in the index, do not write it to the output. If not, add the
1108         ** current row to the index and proceed with writing it to the
1109         ** output table as well.  */
1110         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1111         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1112         VdbeCoverage(v);
1113         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1114         assert( pSort==0 );
1115       }
1116 #endif
1117       if( pSort ){
1118         assert( regResult==regOrig );
1119         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1120       }else{
1121         int r2 = sqlite3GetTempReg(pParse);
1122         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1123         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1124         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1125         sqlite3ReleaseTempReg(pParse, r2);
1126       }
1127       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1128       break;
1129     }
1130 
1131     case SRT_Upfrom: {
1132       if( pSort ){
1133         pushOntoSorter(
1134             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1135       }else{
1136         int i2 = pDest->iSDParm2;
1137         int r1 = sqlite3GetTempReg(pParse);
1138 
1139         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1140         ** might still be trying to return one row, because that is what
1141         ** aggregates do.  Don't record that empty row in the output table. */
1142         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1143 
1144         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1145                           regResult+(i2<0), nResultCol-(i2<0), r1);
1146         if( i2<0 ){
1147           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1148         }else{
1149           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1150         }
1151       }
1152       break;
1153     }
1154 
1155 #ifndef SQLITE_OMIT_SUBQUERY
1156     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1157     ** then there should be a single item on the stack.  Write this
1158     ** item into the set table with bogus data.
1159     */
1160     case SRT_Set: {
1161       if( pSort ){
1162         /* At first glance you would think we could optimize out the
1163         ** ORDER BY in this case since the order of entries in the set
1164         ** does not matter.  But there might be a LIMIT clause, in which
1165         ** case the order does matter */
1166         pushOntoSorter(
1167             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1168       }else{
1169         int r1 = sqlite3GetTempReg(pParse);
1170         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1171         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1172             r1, pDest->zAffSdst, nResultCol);
1173         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1174         sqlite3ReleaseTempReg(pParse, r1);
1175       }
1176       break;
1177     }
1178 
1179 
1180     /* If any row exist in the result set, record that fact and abort.
1181     */
1182     case SRT_Exists: {
1183       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1184       /* The LIMIT clause will terminate the loop for us */
1185       break;
1186     }
1187 
1188     /* If this is a scalar select that is part of an expression, then
1189     ** store the results in the appropriate memory cell or array of
1190     ** memory cells and break out of the scan loop.
1191     */
1192     case SRT_Mem: {
1193       if( pSort ){
1194         assert( nResultCol<=pDest->nSdst );
1195         pushOntoSorter(
1196             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1197       }else{
1198         assert( nResultCol==pDest->nSdst );
1199         assert( regResult==iParm );
1200         /* The LIMIT clause will jump out of the loop for us */
1201       }
1202       break;
1203     }
1204 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1205 
1206     case SRT_Coroutine:       /* Send data to a co-routine */
1207     case SRT_Output: {        /* Return the results */
1208       testcase( eDest==SRT_Coroutine );
1209       testcase( eDest==SRT_Output );
1210       if( pSort ){
1211         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1212                        nPrefixReg);
1213       }else if( eDest==SRT_Coroutine ){
1214         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1215       }else{
1216         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1217       }
1218       break;
1219     }
1220 
1221 #ifndef SQLITE_OMIT_CTE
1222     /* Write the results into a priority queue that is order according to
1223     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1224     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1225     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1226     ** final OP_Sequence column.  The last column is the record as a blob.
1227     */
1228     case SRT_DistQueue:
1229     case SRT_Queue: {
1230       int nKey;
1231       int r1, r2, r3;
1232       int addrTest = 0;
1233       ExprList *pSO;
1234       pSO = pDest->pOrderBy;
1235       assert( pSO );
1236       nKey = pSO->nExpr;
1237       r1 = sqlite3GetTempReg(pParse);
1238       r2 = sqlite3GetTempRange(pParse, nKey+2);
1239       r3 = r2+nKey+1;
1240       if( eDest==SRT_DistQueue ){
1241         /* If the destination is DistQueue, then cursor (iParm+1) is open
1242         ** on a second ephemeral index that holds all values every previously
1243         ** added to the queue. */
1244         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1245                                         regResult, nResultCol);
1246         VdbeCoverage(v);
1247       }
1248       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1249       if( eDest==SRT_DistQueue ){
1250         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1251         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1252       }
1253       for(i=0; i<nKey; i++){
1254         sqlite3VdbeAddOp2(v, OP_SCopy,
1255                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1256                           r2+i);
1257       }
1258       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1259       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1260       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1261       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1262       sqlite3ReleaseTempReg(pParse, r1);
1263       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1264       break;
1265     }
1266 #endif /* SQLITE_OMIT_CTE */
1267 
1268 
1269 
1270 #if !defined(SQLITE_OMIT_TRIGGER)
1271     /* Discard the results.  This is used for SELECT statements inside
1272     ** the body of a TRIGGER.  The purpose of such selects is to call
1273     ** user-defined functions that have side effects.  We do not care
1274     ** about the actual results of the select.
1275     */
1276     default: {
1277       assert( eDest==SRT_Discard );
1278       break;
1279     }
1280 #endif
1281   }
1282 
1283   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1284   ** there is a sorter, in which case the sorter has already limited
1285   ** the output for us.
1286   */
1287   if( pSort==0 && p->iLimit ){
1288     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1289   }
1290 }
1291 
1292 /*
1293 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1294 ** X extra columns.
1295 */
1296 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1297   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1298   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1299   if( p ){
1300     p->aSortFlags = (u8*)&p->aColl[N+X];
1301     p->nKeyField = (u16)N;
1302     p->nAllField = (u16)(N+X);
1303     p->enc = ENC(db);
1304     p->db = db;
1305     p->nRef = 1;
1306     memset(&p[1], 0, nExtra);
1307   }else{
1308     sqlite3OomFault(db);
1309   }
1310   return p;
1311 }
1312 
1313 /*
1314 ** Deallocate a KeyInfo object
1315 */
1316 void sqlite3KeyInfoUnref(KeyInfo *p){
1317   if( p ){
1318     assert( p->nRef>0 );
1319     p->nRef--;
1320     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1321   }
1322 }
1323 
1324 /*
1325 ** Make a new pointer to a KeyInfo object
1326 */
1327 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1328   if( p ){
1329     assert( p->nRef>0 );
1330     p->nRef++;
1331   }
1332   return p;
1333 }
1334 
1335 #ifdef SQLITE_DEBUG
1336 /*
1337 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1338 ** can only be changed if this is just a single reference to the object.
1339 **
1340 ** This routine is used only inside of assert() statements.
1341 */
1342 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1343 #endif /* SQLITE_DEBUG */
1344 
1345 /*
1346 ** Given an expression list, generate a KeyInfo structure that records
1347 ** the collating sequence for each expression in that expression list.
1348 **
1349 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1350 ** KeyInfo structure is appropriate for initializing a virtual index to
1351 ** implement that clause.  If the ExprList is the result set of a SELECT
1352 ** then the KeyInfo structure is appropriate for initializing a virtual
1353 ** index to implement a DISTINCT test.
1354 **
1355 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1356 ** function is responsible for seeing that this structure is eventually
1357 ** freed.
1358 */
1359 KeyInfo *sqlite3KeyInfoFromExprList(
1360   Parse *pParse,       /* Parsing context */
1361   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1362   int iStart,          /* Begin with this column of pList */
1363   int nExtra           /* Add this many extra columns to the end */
1364 ){
1365   int nExpr;
1366   KeyInfo *pInfo;
1367   struct ExprList_item *pItem;
1368   sqlite3 *db = pParse->db;
1369   int i;
1370 
1371   nExpr = pList->nExpr;
1372   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1373   if( pInfo ){
1374     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1375     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1376       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1377       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1378     }
1379   }
1380   return pInfo;
1381 }
1382 
1383 /*
1384 ** Name of the connection operator, used for error messages.
1385 */
1386 static const char *selectOpName(int id){
1387   char *z;
1388   switch( id ){
1389     case TK_ALL:       z = "UNION ALL";   break;
1390     case TK_INTERSECT: z = "INTERSECT";   break;
1391     case TK_EXCEPT:    z = "EXCEPT";      break;
1392     default:           z = "UNION";       break;
1393   }
1394   return z;
1395 }
1396 
1397 #ifndef SQLITE_OMIT_EXPLAIN
1398 /*
1399 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1400 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1401 ** where the caption is of the form:
1402 **
1403 **   "USE TEMP B-TREE FOR xxx"
1404 **
1405 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1406 ** is determined by the zUsage argument.
1407 */
1408 static void explainTempTable(Parse *pParse, const char *zUsage){
1409   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1410 }
1411 
1412 /*
1413 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1414 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1415 ** in sqlite3Select() to assign values to structure member variables that
1416 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1417 ** code with #ifndef directives.
1418 */
1419 # define explainSetInteger(a, b) a = b
1420 
1421 #else
1422 /* No-op versions of the explainXXX() functions and macros. */
1423 # define explainTempTable(y,z)
1424 # define explainSetInteger(y,z)
1425 #endif
1426 
1427 
1428 /*
1429 ** If the inner loop was generated using a non-null pOrderBy argument,
1430 ** then the results were placed in a sorter.  After the loop is terminated
1431 ** we need to run the sorter and output the results.  The following
1432 ** routine generates the code needed to do that.
1433 */
1434 static void generateSortTail(
1435   Parse *pParse,    /* Parsing context */
1436   Select *p,        /* The SELECT statement */
1437   SortCtx *pSort,   /* Information on the ORDER BY clause */
1438   int nColumn,      /* Number of columns of data */
1439   SelectDest *pDest /* Write the sorted results here */
1440 ){
1441   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1442   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1443   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1444   int addr;                       /* Top of output loop. Jump for Next. */
1445   int addrOnce = 0;
1446   int iTab;
1447   ExprList *pOrderBy = pSort->pOrderBy;
1448   int eDest = pDest->eDest;
1449   int iParm = pDest->iSDParm;
1450   int regRow;
1451   int regRowid;
1452   int iCol;
1453   int nKey;                       /* Number of key columns in sorter record */
1454   int iSortTab;                   /* Sorter cursor to read from */
1455   int i;
1456   int bSeq;                       /* True if sorter record includes seq. no. */
1457   int nRefKey = 0;
1458   struct ExprList_item *aOutEx = p->pEList->a;
1459 
1460   assert( addrBreak<0 );
1461   if( pSort->labelBkOut ){
1462     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1463     sqlite3VdbeGoto(v, addrBreak);
1464     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1465   }
1466 
1467 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1468   /* Open any cursors needed for sorter-reference expressions */
1469   for(i=0; i<pSort->nDefer; i++){
1470     Table *pTab = pSort->aDefer[i].pTab;
1471     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1472     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1473     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1474   }
1475 #endif
1476 
1477   iTab = pSort->iECursor;
1478   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1479     regRowid = 0;
1480     regRow = pDest->iSdst;
1481   }else{
1482     regRowid = sqlite3GetTempReg(pParse);
1483     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1484       regRow = sqlite3GetTempReg(pParse);
1485       nColumn = 0;
1486     }else{
1487       regRow = sqlite3GetTempRange(pParse, nColumn);
1488     }
1489   }
1490   nKey = pOrderBy->nExpr - pSort->nOBSat;
1491   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1492     int regSortOut = ++pParse->nMem;
1493     iSortTab = pParse->nTab++;
1494     if( pSort->labelBkOut ){
1495       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1496     }
1497     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1498         nKey+1+nColumn+nRefKey);
1499     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1500     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1501     VdbeCoverage(v);
1502     codeOffset(v, p->iOffset, addrContinue);
1503     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1504     bSeq = 0;
1505   }else{
1506     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1507     codeOffset(v, p->iOffset, addrContinue);
1508     iSortTab = iTab;
1509     bSeq = 1;
1510   }
1511   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1512 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1513     if( aOutEx[i].bSorterRef ) continue;
1514 #endif
1515     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1516   }
1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1518   if( pSort->nDefer ){
1519     int iKey = iCol+1;
1520     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1521 
1522     for(i=0; i<pSort->nDefer; i++){
1523       int iCsr = pSort->aDefer[i].iCsr;
1524       Table *pTab = pSort->aDefer[i].pTab;
1525       int nKey = pSort->aDefer[i].nKey;
1526 
1527       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1528       if( HasRowid(pTab) ){
1529         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1530         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1531             sqlite3VdbeCurrentAddr(v)+1, regKey);
1532       }else{
1533         int k;
1534         int iJmp;
1535         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1536         for(k=0; k<nKey; k++){
1537           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1538         }
1539         iJmp = sqlite3VdbeCurrentAddr(v);
1540         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1541         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1542         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1543       }
1544     }
1545     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1546   }
1547 #endif
1548   for(i=nColumn-1; i>=0; i--){
1549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1550     if( aOutEx[i].bSorterRef ){
1551       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1552     }else
1553 #endif
1554     {
1555       int iRead;
1556       if( aOutEx[i].u.x.iOrderByCol ){
1557         iRead = aOutEx[i].u.x.iOrderByCol-1;
1558       }else{
1559         iRead = iCol--;
1560       }
1561       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1562       VdbeComment((v, "%s", aOutEx[i].zEName));
1563     }
1564   }
1565   switch( eDest ){
1566     case SRT_Table:
1567     case SRT_EphemTab: {
1568       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1569       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1570       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1571       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1572       break;
1573     }
1574 #ifndef SQLITE_OMIT_SUBQUERY
1575     case SRT_Set: {
1576       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1577       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1578                         pDest->zAffSdst, nColumn);
1579       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1580       break;
1581     }
1582     case SRT_Mem: {
1583       /* The LIMIT clause will terminate the loop for us */
1584       break;
1585     }
1586 #endif
1587     case SRT_Upfrom: {
1588       int i2 = pDest->iSDParm2;
1589       int r1 = sqlite3GetTempReg(pParse);
1590       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1591       if( i2<0 ){
1592         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1593       }else{
1594         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1595       }
1596       break;
1597     }
1598     default: {
1599       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1600       testcase( eDest==SRT_Output );
1601       testcase( eDest==SRT_Coroutine );
1602       if( eDest==SRT_Output ){
1603         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1604       }else{
1605         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1606       }
1607       break;
1608     }
1609   }
1610   if( regRowid ){
1611     if( eDest==SRT_Set ){
1612       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1613     }else{
1614       sqlite3ReleaseTempReg(pParse, regRow);
1615     }
1616     sqlite3ReleaseTempReg(pParse, regRowid);
1617   }
1618   /* The bottom of the loop
1619   */
1620   sqlite3VdbeResolveLabel(v, addrContinue);
1621   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1622     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1623   }else{
1624     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1625   }
1626   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1627   sqlite3VdbeResolveLabel(v, addrBreak);
1628 }
1629 
1630 /*
1631 ** Return a pointer to a string containing the 'declaration type' of the
1632 ** expression pExpr. The string may be treated as static by the caller.
1633 **
1634 ** Also try to estimate the size of the returned value and return that
1635 ** result in *pEstWidth.
1636 **
1637 ** The declaration type is the exact datatype definition extracted from the
1638 ** original CREATE TABLE statement if the expression is a column. The
1639 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1640 ** is considered a column can be complex in the presence of subqueries. The
1641 ** result-set expression in all of the following SELECT statements is
1642 ** considered a column by this function.
1643 **
1644 **   SELECT col FROM tbl;
1645 **   SELECT (SELECT col FROM tbl;
1646 **   SELECT (SELECT col FROM tbl);
1647 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1648 **
1649 ** The declaration type for any expression other than a column is NULL.
1650 **
1651 ** This routine has either 3 or 6 parameters depending on whether or not
1652 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1653 */
1654 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1655 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1656 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1657 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1658 #endif
1659 static const char *columnTypeImpl(
1660   NameContext *pNC,
1661 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1662   Expr *pExpr
1663 #else
1664   Expr *pExpr,
1665   const char **pzOrigDb,
1666   const char **pzOrigTab,
1667   const char **pzOrigCol
1668 #endif
1669 ){
1670   char const *zType = 0;
1671   int j;
1672 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1673   char const *zOrigDb = 0;
1674   char const *zOrigTab = 0;
1675   char const *zOrigCol = 0;
1676 #endif
1677 
1678   assert( pExpr!=0 );
1679   assert( pNC->pSrcList!=0 );
1680   switch( pExpr->op ){
1681     case TK_COLUMN: {
1682       /* The expression is a column. Locate the table the column is being
1683       ** extracted from in NameContext.pSrcList. This table may be real
1684       ** database table or a subquery.
1685       */
1686       Table *pTab = 0;            /* Table structure column is extracted from */
1687       Select *pS = 0;             /* Select the column is extracted from */
1688       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1689       while( pNC && !pTab ){
1690         SrcList *pTabList = pNC->pSrcList;
1691         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1692         if( j<pTabList->nSrc ){
1693           pTab = pTabList->a[j].pTab;
1694           pS = pTabList->a[j].pSelect;
1695         }else{
1696           pNC = pNC->pNext;
1697         }
1698       }
1699 
1700       if( pTab==0 ){
1701         /* At one time, code such as "SELECT new.x" within a trigger would
1702         ** cause this condition to run.  Since then, we have restructured how
1703         ** trigger code is generated and so this condition is no longer
1704         ** possible. However, it can still be true for statements like
1705         ** the following:
1706         **
1707         **   CREATE TABLE t1(col INTEGER);
1708         **   SELECT (SELECT t1.col) FROM FROM t1;
1709         **
1710         ** when columnType() is called on the expression "t1.col" in the
1711         ** sub-select. In this case, set the column type to NULL, even
1712         ** though it should really be "INTEGER".
1713         **
1714         ** This is not a problem, as the column type of "t1.col" is never
1715         ** used. When columnType() is called on the expression
1716         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1717         ** branch below.  */
1718         break;
1719       }
1720 
1721       assert( pTab && pExpr->y.pTab==pTab );
1722       if( pS ){
1723         /* The "table" is actually a sub-select or a view in the FROM clause
1724         ** of the SELECT statement. Return the declaration type and origin
1725         ** data for the result-set column of the sub-select.
1726         */
1727         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1728           /* If iCol is less than zero, then the expression requests the
1729           ** rowid of the sub-select or view. This expression is legal (see
1730           ** test case misc2.2.2) - it always evaluates to NULL.
1731           */
1732           NameContext sNC;
1733           Expr *p = pS->pEList->a[iCol].pExpr;
1734           sNC.pSrcList = pS->pSrc;
1735           sNC.pNext = pNC;
1736           sNC.pParse = pNC->pParse;
1737           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1738         }
1739       }else{
1740         /* A real table or a CTE table */
1741         assert( !pS );
1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1743         if( iCol<0 ) iCol = pTab->iPKey;
1744         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1745         if( iCol<0 ){
1746           zType = "INTEGER";
1747           zOrigCol = "rowid";
1748         }else{
1749           zOrigCol = pTab->aCol[iCol].zName;
1750           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1751         }
1752         zOrigTab = pTab->zName;
1753         if( pNC->pParse && pTab->pSchema ){
1754           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1755           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1756         }
1757 #else
1758         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1759         if( iCol<0 ){
1760           zType = "INTEGER";
1761         }else{
1762           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1763         }
1764 #endif
1765       }
1766       break;
1767     }
1768 #ifndef SQLITE_OMIT_SUBQUERY
1769     case TK_SELECT: {
1770       /* The expression is a sub-select. Return the declaration type and
1771       ** origin info for the single column in the result set of the SELECT
1772       ** statement.
1773       */
1774       NameContext sNC;
1775       Select *pS = pExpr->x.pSelect;
1776       Expr *p = pS->pEList->a[0].pExpr;
1777       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1778       sNC.pSrcList = pS->pSrc;
1779       sNC.pNext = pNC;
1780       sNC.pParse = pNC->pParse;
1781       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1782       break;
1783     }
1784 #endif
1785   }
1786 
1787 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1788   if( pzOrigDb ){
1789     assert( pzOrigTab && pzOrigCol );
1790     *pzOrigDb = zOrigDb;
1791     *pzOrigTab = zOrigTab;
1792     *pzOrigCol = zOrigCol;
1793   }
1794 #endif
1795   return zType;
1796 }
1797 
1798 /*
1799 ** Generate code that will tell the VDBE the declaration types of columns
1800 ** in the result set.
1801 */
1802 static void generateColumnTypes(
1803   Parse *pParse,      /* Parser context */
1804   SrcList *pTabList,  /* List of tables */
1805   ExprList *pEList    /* Expressions defining the result set */
1806 ){
1807 #ifndef SQLITE_OMIT_DECLTYPE
1808   Vdbe *v = pParse->pVdbe;
1809   int i;
1810   NameContext sNC;
1811   sNC.pSrcList = pTabList;
1812   sNC.pParse = pParse;
1813   sNC.pNext = 0;
1814   for(i=0; i<pEList->nExpr; i++){
1815     Expr *p = pEList->a[i].pExpr;
1816     const char *zType;
1817 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1818     const char *zOrigDb = 0;
1819     const char *zOrigTab = 0;
1820     const char *zOrigCol = 0;
1821     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1822 
1823     /* The vdbe must make its own copy of the column-type and other
1824     ** column specific strings, in case the schema is reset before this
1825     ** virtual machine is deleted.
1826     */
1827     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1828     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1829     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1830 #else
1831     zType = columnType(&sNC, p, 0, 0, 0);
1832 #endif
1833     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1834   }
1835 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1836 }
1837 
1838 
1839 /*
1840 ** Compute the column names for a SELECT statement.
1841 **
1842 ** The only guarantee that SQLite makes about column names is that if the
1843 ** column has an AS clause assigning it a name, that will be the name used.
1844 ** That is the only documented guarantee.  However, countless applications
1845 ** developed over the years have made baseless assumptions about column names
1846 ** and will break if those assumptions changes.  Hence, use extreme caution
1847 ** when modifying this routine to avoid breaking legacy.
1848 **
1849 ** See Also: sqlite3ColumnsFromExprList()
1850 **
1851 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1852 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1853 ** applications should operate this way.  Nevertheless, we need to support the
1854 ** other modes for legacy:
1855 **
1856 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1857 **                              originally appears in the SELECT statement.  In
1858 **                              other words, the zSpan of the result expression.
1859 **
1860 **    short=ON, full=OFF:       (This is the default setting).  If the result
1861 **                              refers directly to a table column, then the
1862 **                              result column name is just the table column
1863 **                              name: COLUMN.  Otherwise use zSpan.
1864 **
1865 **    full=ON, short=ANY:       If the result refers directly to a table column,
1866 **                              then the result column name with the table name
1867 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1868 */
1869 static void generateColumnNames(
1870   Parse *pParse,      /* Parser context */
1871   Select *pSelect     /* Generate column names for this SELECT statement */
1872 ){
1873   Vdbe *v = pParse->pVdbe;
1874   int i;
1875   Table *pTab;
1876   SrcList *pTabList;
1877   ExprList *pEList;
1878   sqlite3 *db = pParse->db;
1879   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1880   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1881 
1882 #ifndef SQLITE_OMIT_EXPLAIN
1883   /* If this is an EXPLAIN, skip this step */
1884   if( pParse->explain ){
1885     return;
1886   }
1887 #endif
1888 
1889   if( pParse->colNamesSet ) return;
1890   /* Column names are determined by the left-most term of a compound select */
1891   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1892   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1893   pTabList = pSelect->pSrc;
1894   pEList = pSelect->pEList;
1895   assert( v!=0 );
1896   assert( pTabList!=0 );
1897   pParse->colNamesSet = 1;
1898   fullName = (db->flags & SQLITE_FullColNames)!=0;
1899   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1900   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1901   for(i=0; i<pEList->nExpr; i++){
1902     Expr *p = pEList->a[i].pExpr;
1903 
1904     assert( p!=0 );
1905     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1906     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1907     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1908       /* An AS clause always takes first priority */
1909       char *zName = pEList->a[i].zEName;
1910       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1911     }else if( srcName && p->op==TK_COLUMN ){
1912       char *zCol;
1913       int iCol = p->iColumn;
1914       pTab = p->y.pTab;
1915       assert( pTab!=0 );
1916       if( iCol<0 ) iCol = pTab->iPKey;
1917       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1918       if( iCol<0 ){
1919         zCol = "rowid";
1920       }else{
1921         zCol = pTab->aCol[iCol].zName;
1922       }
1923       if( fullName ){
1924         char *zName = 0;
1925         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1926         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1927       }else{
1928         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1929       }
1930     }else{
1931       const char *z = pEList->a[i].zEName;
1932       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1933       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1934     }
1935   }
1936   generateColumnTypes(pParse, pTabList, pEList);
1937 }
1938 
1939 /*
1940 ** Given an expression list (which is really the list of expressions
1941 ** that form the result set of a SELECT statement) compute appropriate
1942 ** column names for a table that would hold the expression list.
1943 **
1944 ** All column names will be unique.
1945 **
1946 ** Only the column names are computed.  Column.zType, Column.zColl,
1947 ** and other fields of Column are zeroed.
1948 **
1949 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1950 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1951 **
1952 ** The only guarantee that SQLite makes about column names is that if the
1953 ** column has an AS clause assigning it a name, that will be the name used.
1954 ** That is the only documented guarantee.  However, countless applications
1955 ** developed over the years have made baseless assumptions about column names
1956 ** and will break if those assumptions changes.  Hence, use extreme caution
1957 ** when modifying this routine to avoid breaking legacy.
1958 **
1959 ** See Also: generateColumnNames()
1960 */
1961 int sqlite3ColumnsFromExprList(
1962   Parse *pParse,          /* Parsing context */
1963   ExprList *pEList,       /* Expr list from which to derive column names */
1964   i16 *pnCol,             /* Write the number of columns here */
1965   Column **paCol          /* Write the new column list here */
1966 ){
1967   sqlite3 *db = pParse->db;   /* Database connection */
1968   int i, j;                   /* Loop counters */
1969   u32 cnt;                    /* Index added to make the name unique */
1970   Column *aCol, *pCol;        /* For looping over result columns */
1971   int nCol;                   /* Number of columns in the result set */
1972   char *zName;                /* Column name */
1973   int nName;                  /* Size of name in zName[] */
1974   Hash ht;                    /* Hash table of column names */
1975 
1976   sqlite3HashInit(&ht);
1977   if( pEList ){
1978     nCol = pEList->nExpr;
1979     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1980     testcase( aCol==0 );
1981     if( nCol>32767 ) nCol = 32767;
1982   }else{
1983     nCol = 0;
1984     aCol = 0;
1985   }
1986   assert( nCol==(i16)nCol );
1987   *pnCol = nCol;
1988   *paCol = aCol;
1989 
1990   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1991     /* Get an appropriate name for the column
1992     */
1993     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1994       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1995     }else{
1996       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1997       while( pColExpr->op==TK_DOT ){
1998         pColExpr = pColExpr->pRight;
1999         assert( pColExpr!=0 );
2000       }
2001       if( pColExpr->op==TK_COLUMN ){
2002         /* For columns use the column name name */
2003         int iCol = pColExpr->iColumn;
2004         Table *pTab = pColExpr->y.pTab;
2005         assert( pTab!=0 );
2006         if( iCol<0 ) iCol = pTab->iPKey;
2007         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2008       }else if( pColExpr->op==TK_ID ){
2009         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2010         zName = pColExpr->u.zToken;
2011       }else{
2012         /* Use the original text of the column expression as its name */
2013         zName = pEList->a[i].zEName;
2014       }
2015     }
2016     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2017       zName = sqlite3DbStrDup(db, zName);
2018     }else{
2019       zName = sqlite3MPrintf(db,"column%d",i+1);
2020     }
2021 
2022     /* Make sure the column name is unique.  If the name is not unique,
2023     ** append an integer to the name so that it becomes unique.
2024     */
2025     cnt = 0;
2026     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2027       nName = sqlite3Strlen30(zName);
2028       if( nName>0 ){
2029         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2030         if( zName[j]==':' ) nName = j;
2031       }
2032       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2033       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2034     }
2035     pCol->zName = zName;
2036     pCol->hName = sqlite3StrIHash(zName);
2037     sqlite3ColumnPropertiesFromName(0, pCol);
2038     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2039       sqlite3OomFault(db);
2040     }
2041   }
2042   sqlite3HashClear(&ht);
2043   if( db->mallocFailed ){
2044     for(j=0; j<i; j++){
2045       sqlite3DbFree(db, aCol[j].zName);
2046     }
2047     sqlite3DbFree(db, aCol);
2048     *paCol = 0;
2049     *pnCol = 0;
2050     return SQLITE_NOMEM_BKPT;
2051   }
2052   return SQLITE_OK;
2053 }
2054 
2055 /*
2056 ** Add type and collation information to a column list based on
2057 ** a SELECT statement.
2058 **
2059 ** The column list presumably came from selectColumnNamesFromExprList().
2060 ** The column list has only names, not types or collations.  This
2061 ** routine goes through and adds the types and collations.
2062 **
2063 ** This routine requires that all identifiers in the SELECT
2064 ** statement be resolved.
2065 */
2066 void sqlite3SelectAddColumnTypeAndCollation(
2067   Parse *pParse,        /* Parsing contexts */
2068   Table *pTab,          /* Add column type information to this table */
2069   Select *pSelect,      /* SELECT used to determine types and collations */
2070   char aff              /* Default affinity for columns */
2071 ){
2072   sqlite3 *db = pParse->db;
2073   NameContext sNC;
2074   Column *pCol;
2075   CollSeq *pColl;
2076   int i;
2077   Expr *p;
2078   struct ExprList_item *a;
2079 
2080   assert( pSelect!=0 );
2081   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2082   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2083   if( db->mallocFailed ) return;
2084   memset(&sNC, 0, sizeof(sNC));
2085   sNC.pSrcList = pSelect->pSrc;
2086   a = pSelect->pEList->a;
2087   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2088     const char *zType;
2089     int n, m;
2090     p = a[i].pExpr;
2091     zType = columnType(&sNC, p, 0, 0, 0);
2092     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2093     pCol->affinity = sqlite3ExprAffinity(p);
2094     if( zType ){
2095       m = sqlite3Strlen30(zType);
2096       n = sqlite3Strlen30(pCol->zName);
2097       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2098       if( pCol->zName ){
2099         memcpy(&pCol->zName[n+1], zType, m+1);
2100         pCol->colFlags |= COLFLAG_HASTYPE;
2101       }
2102     }
2103     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2104     pColl = sqlite3ExprCollSeq(pParse, p);
2105     if( pColl && pCol->zColl==0 ){
2106       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2107     }
2108   }
2109   pTab->szTabRow = 1; /* Any non-zero value works */
2110 }
2111 
2112 /*
2113 ** Given a SELECT statement, generate a Table structure that describes
2114 ** the result set of that SELECT.
2115 */
2116 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2117   Table *pTab;
2118   sqlite3 *db = pParse->db;
2119   u64 savedFlags;
2120 
2121   savedFlags = db->flags;
2122   db->flags &= ~(u64)SQLITE_FullColNames;
2123   db->flags |= SQLITE_ShortColNames;
2124   sqlite3SelectPrep(pParse, pSelect, 0);
2125   db->flags = savedFlags;
2126   if( pParse->nErr ) return 0;
2127   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2128   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2129   if( pTab==0 ){
2130     return 0;
2131   }
2132   pTab->nTabRef = 1;
2133   pTab->zName = 0;
2134   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2135   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2136   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2137   pTab->iPKey = -1;
2138   if( db->mallocFailed ){
2139     sqlite3DeleteTable(db, pTab);
2140     return 0;
2141   }
2142   return pTab;
2143 }
2144 
2145 /*
2146 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2147 ** If an error occurs, return NULL and leave a message in pParse.
2148 */
2149 Vdbe *sqlite3GetVdbe(Parse *pParse){
2150   if( pParse->pVdbe ){
2151     return pParse->pVdbe;
2152   }
2153   if( pParse->pToplevel==0
2154    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2155   ){
2156     pParse->okConstFactor = 1;
2157   }
2158   return sqlite3VdbeCreate(pParse);
2159 }
2160 
2161 
2162 /*
2163 ** Compute the iLimit and iOffset fields of the SELECT based on the
2164 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2165 ** that appear in the original SQL statement after the LIMIT and OFFSET
2166 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2167 ** are the integer memory register numbers for counters used to compute
2168 ** the limit and offset.  If there is no limit and/or offset, then
2169 ** iLimit and iOffset are negative.
2170 **
2171 ** This routine changes the values of iLimit and iOffset only if
2172 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2173 ** and iOffset should have been preset to appropriate default values (zero)
2174 ** prior to calling this routine.
2175 **
2176 ** The iOffset register (if it exists) is initialized to the value
2177 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2178 ** iOffset+1 is initialized to LIMIT+OFFSET.
2179 **
2180 ** Only if pLimit->pLeft!=0 do the limit registers get
2181 ** redefined.  The UNION ALL operator uses this property to force
2182 ** the reuse of the same limit and offset registers across multiple
2183 ** SELECT statements.
2184 */
2185 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2186   Vdbe *v = 0;
2187   int iLimit = 0;
2188   int iOffset;
2189   int n;
2190   Expr *pLimit = p->pLimit;
2191 
2192   if( p->iLimit ) return;
2193 
2194   /*
2195   ** "LIMIT -1" always shows all rows.  There is some
2196   ** controversy about what the correct behavior should be.
2197   ** The current implementation interprets "LIMIT 0" to mean
2198   ** no rows.
2199   */
2200   if( pLimit ){
2201     assert( pLimit->op==TK_LIMIT );
2202     assert( pLimit->pLeft!=0 );
2203     p->iLimit = iLimit = ++pParse->nMem;
2204     v = sqlite3GetVdbe(pParse);
2205     assert( v!=0 );
2206     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2207       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2208       VdbeComment((v, "LIMIT counter"));
2209       if( n==0 ){
2210         sqlite3VdbeGoto(v, iBreak);
2211       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2212         p->nSelectRow = sqlite3LogEst((u64)n);
2213         p->selFlags |= SF_FixedLimit;
2214       }
2215     }else{
2216       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2217       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2218       VdbeComment((v, "LIMIT counter"));
2219       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2220     }
2221     if( pLimit->pRight ){
2222       p->iOffset = iOffset = ++pParse->nMem;
2223       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2224       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2225       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2226       VdbeComment((v, "OFFSET counter"));
2227       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2228       VdbeComment((v, "LIMIT+OFFSET"));
2229     }
2230   }
2231 }
2232 
2233 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2234 /*
2235 ** Return the appropriate collating sequence for the iCol-th column of
2236 ** the result set for the compound-select statement "p".  Return NULL if
2237 ** the column has no default collating sequence.
2238 **
2239 ** The collating sequence for the compound select is taken from the
2240 ** left-most term of the select that has a collating sequence.
2241 */
2242 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2243   CollSeq *pRet;
2244   if( p->pPrior ){
2245     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2246   }else{
2247     pRet = 0;
2248   }
2249   assert( iCol>=0 );
2250   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2251   ** have been thrown during name resolution and we would not have gotten
2252   ** this far */
2253   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2254     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2255   }
2256   return pRet;
2257 }
2258 
2259 /*
2260 ** The select statement passed as the second parameter is a compound SELECT
2261 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2262 ** structure suitable for implementing the ORDER BY.
2263 **
2264 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2265 ** function is responsible for ensuring that this structure is eventually
2266 ** freed.
2267 */
2268 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2269   ExprList *pOrderBy = p->pOrderBy;
2270   int nOrderBy = p->pOrderBy->nExpr;
2271   sqlite3 *db = pParse->db;
2272   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2273   if( pRet ){
2274     int i;
2275     for(i=0; i<nOrderBy; i++){
2276       struct ExprList_item *pItem = &pOrderBy->a[i];
2277       Expr *pTerm = pItem->pExpr;
2278       CollSeq *pColl;
2279 
2280       if( pTerm->flags & EP_Collate ){
2281         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2282       }else{
2283         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2284         if( pColl==0 ) pColl = db->pDfltColl;
2285         pOrderBy->a[i].pExpr =
2286           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2287       }
2288       assert( sqlite3KeyInfoIsWriteable(pRet) );
2289       pRet->aColl[i] = pColl;
2290       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2291     }
2292   }
2293 
2294   return pRet;
2295 }
2296 
2297 #ifndef SQLITE_OMIT_CTE
2298 /*
2299 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2300 ** query of the form:
2301 **
2302 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2303 **                         \___________/             \_______________/
2304 **                           p->pPrior                      p
2305 **
2306 **
2307 ** There is exactly one reference to the recursive-table in the FROM clause
2308 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2309 **
2310 ** The setup-query runs once to generate an initial set of rows that go
2311 ** into a Queue table.  Rows are extracted from the Queue table one by
2312 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2313 ** extracted row (now in the iCurrent table) becomes the content of the
2314 ** recursive-table for a recursive-query run.  The output of the recursive-query
2315 ** is added back into the Queue table.  Then another row is extracted from Queue
2316 ** and the iteration continues until the Queue table is empty.
2317 **
2318 ** If the compound query operator is UNION then no duplicate rows are ever
2319 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2320 ** that have ever been inserted into Queue and causes duplicates to be
2321 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2322 **
2323 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2324 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2325 ** an ORDER BY, the Queue table is just a FIFO.
2326 **
2327 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2328 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2329 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2330 ** with a positive value, then the first OFFSET outputs are discarded rather
2331 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2332 ** rows have been skipped.
2333 */
2334 static void generateWithRecursiveQuery(
2335   Parse *pParse,        /* Parsing context */
2336   Select *p,            /* The recursive SELECT to be coded */
2337   SelectDest *pDest     /* What to do with query results */
2338 ){
2339   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2340   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2341   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2342   Select *pSetup = p->pPrior;   /* The setup query */
2343   int addrTop;                  /* Top of the loop */
2344   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2345   int iCurrent = 0;             /* The Current table */
2346   int regCurrent;               /* Register holding Current table */
2347   int iQueue;                   /* The Queue table */
2348   int iDistinct = 0;            /* To ensure unique results if UNION */
2349   int eDest = SRT_Fifo;         /* How to write to Queue */
2350   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2351   int i;                        /* Loop counter */
2352   int rc;                       /* Result code */
2353   ExprList *pOrderBy;           /* The ORDER BY clause */
2354   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2355   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2356 
2357 #ifndef SQLITE_OMIT_WINDOWFUNC
2358   if( p->pWin ){
2359     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2360     return;
2361   }
2362 #endif
2363 
2364   /* Obtain authorization to do a recursive query */
2365   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2366 
2367   /* Process the LIMIT and OFFSET clauses, if they exist */
2368   addrBreak = sqlite3VdbeMakeLabel(pParse);
2369   p->nSelectRow = 320;  /* 4 billion rows */
2370   computeLimitRegisters(pParse, p, addrBreak);
2371   pLimit = p->pLimit;
2372   regLimit = p->iLimit;
2373   regOffset = p->iOffset;
2374   p->pLimit = 0;
2375   p->iLimit = p->iOffset = 0;
2376   pOrderBy = p->pOrderBy;
2377 
2378   /* Locate the cursor number of the Current table */
2379   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2380     if( pSrc->a[i].fg.isRecursive ){
2381       iCurrent = pSrc->a[i].iCursor;
2382       break;
2383     }
2384   }
2385 
2386   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2387   ** the Distinct table must be exactly one greater than Queue in order
2388   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2389   iQueue = pParse->nTab++;
2390   if( p->op==TK_UNION ){
2391     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2392     iDistinct = pParse->nTab++;
2393   }else{
2394     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2395   }
2396   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2397 
2398   /* Allocate cursors for Current, Queue, and Distinct. */
2399   regCurrent = ++pParse->nMem;
2400   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2401   if( pOrderBy ){
2402     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2403     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2404                       (char*)pKeyInfo, P4_KEYINFO);
2405     destQueue.pOrderBy = pOrderBy;
2406   }else{
2407     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2408   }
2409   VdbeComment((v, "Queue table"));
2410   if( iDistinct ){
2411     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2412     p->selFlags |= SF_UsesEphemeral;
2413   }
2414 
2415   /* Detach the ORDER BY clause from the compound SELECT */
2416   p->pOrderBy = 0;
2417 
2418   /* Store the results of the setup-query in Queue. */
2419   pSetup->pNext = 0;
2420   ExplainQueryPlan((pParse, 1, "SETUP"));
2421   rc = sqlite3Select(pParse, pSetup, &destQueue);
2422   pSetup->pNext = p;
2423   if( rc ) goto end_of_recursive_query;
2424 
2425   /* Find the next row in the Queue and output that row */
2426   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2427 
2428   /* Transfer the next row in Queue over to Current */
2429   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2430   if( pOrderBy ){
2431     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2432   }else{
2433     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2434   }
2435   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2436 
2437   /* Output the single row in Current */
2438   addrCont = sqlite3VdbeMakeLabel(pParse);
2439   codeOffset(v, regOffset, addrCont);
2440   selectInnerLoop(pParse, p, iCurrent,
2441       0, 0, pDest, addrCont, addrBreak);
2442   if( regLimit ){
2443     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2444     VdbeCoverage(v);
2445   }
2446   sqlite3VdbeResolveLabel(v, addrCont);
2447 
2448   /* Execute the recursive SELECT taking the single row in Current as
2449   ** the value for the recursive-table. Store the results in the Queue.
2450   */
2451   if( p->selFlags & SF_Aggregate ){
2452     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2453   }else{
2454     p->pPrior = 0;
2455     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2456     sqlite3Select(pParse, p, &destQueue);
2457     assert( p->pPrior==0 );
2458     p->pPrior = pSetup;
2459   }
2460 
2461   /* Keep running the loop until the Queue is empty */
2462   sqlite3VdbeGoto(v, addrTop);
2463   sqlite3VdbeResolveLabel(v, addrBreak);
2464 
2465 end_of_recursive_query:
2466   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2467   p->pOrderBy = pOrderBy;
2468   p->pLimit = pLimit;
2469   return;
2470 }
2471 #endif /* SQLITE_OMIT_CTE */
2472 
2473 /* Forward references */
2474 static int multiSelectOrderBy(
2475   Parse *pParse,        /* Parsing context */
2476   Select *p,            /* The right-most of SELECTs to be coded */
2477   SelectDest *pDest     /* What to do with query results */
2478 );
2479 
2480 /*
2481 ** Handle the special case of a compound-select that originates from a
2482 ** VALUES clause.  By handling this as a special case, we avoid deep
2483 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2484 ** on a VALUES clause.
2485 **
2486 ** Because the Select object originates from a VALUES clause:
2487 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2488 **   (2) All terms are UNION ALL
2489 **   (3) There is no ORDER BY clause
2490 **
2491 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2492 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2493 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2494 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2495 */
2496 static int multiSelectValues(
2497   Parse *pParse,        /* Parsing context */
2498   Select *p,            /* The right-most of SELECTs to be coded */
2499   SelectDest *pDest     /* What to do with query results */
2500 ){
2501   int nRow = 1;
2502   int rc = 0;
2503   int bShowAll = p->pLimit==0;
2504   assert( p->selFlags & SF_MultiValue );
2505   do{
2506     assert( p->selFlags & SF_Values );
2507     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2508     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2509 #ifndef SQLITE_OMIT_WINDOWFUNC
2510     if( p->pWin ) return -1;
2511 #endif
2512     if( p->pPrior==0 ) break;
2513     assert( p->pPrior->pNext==p );
2514     p = p->pPrior;
2515     nRow += bShowAll;
2516   }while(1);
2517   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2518                     nRow==1 ? "" : "S"));
2519   while( p ){
2520     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2521     if( !bShowAll ) break;
2522     p->nSelectRow = nRow;
2523     p = p->pNext;
2524   }
2525   return rc;
2526 }
2527 
2528 /*
2529 ** This routine is called to process a compound query form from
2530 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2531 ** INTERSECT
2532 **
2533 ** "p" points to the right-most of the two queries.  the query on the
2534 ** left is p->pPrior.  The left query could also be a compound query
2535 ** in which case this routine will be called recursively.
2536 **
2537 ** The results of the total query are to be written into a destination
2538 ** of type eDest with parameter iParm.
2539 **
2540 ** Example 1:  Consider a three-way compound SQL statement.
2541 **
2542 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2543 **
2544 ** This statement is parsed up as follows:
2545 **
2546 **     SELECT c FROM t3
2547 **      |
2548 **      `----->  SELECT b FROM t2
2549 **                |
2550 **                `------>  SELECT a FROM t1
2551 **
2552 ** The arrows in the diagram above represent the Select.pPrior pointer.
2553 ** So if this routine is called with p equal to the t3 query, then
2554 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2555 **
2556 ** Notice that because of the way SQLite parses compound SELECTs, the
2557 ** individual selects always group from left to right.
2558 */
2559 static int multiSelect(
2560   Parse *pParse,        /* Parsing context */
2561   Select *p,            /* The right-most of SELECTs to be coded */
2562   SelectDest *pDest     /* What to do with query results */
2563 ){
2564   int rc = SQLITE_OK;   /* Success code from a subroutine */
2565   Select *pPrior;       /* Another SELECT immediately to our left */
2566   Vdbe *v;              /* Generate code to this VDBE */
2567   SelectDest dest;      /* Alternative data destination */
2568   Select *pDelete = 0;  /* Chain of simple selects to delete */
2569   sqlite3 *db;          /* Database connection */
2570 
2571   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2572   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2573   */
2574   assert( p && p->pPrior );  /* Calling function guarantees this much */
2575   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2576   assert( p->selFlags & SF_Compound );
2577   db = pParse->db;
2578   pPrior = p->pPrior;
2579   dest = *pDest;
2580   if( pPrior->pOrderBy || pPrior->pLimit ){
2581     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2582       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2583     rc = 1;
2584     goto multi_select_end;
2585   }
2586 
2587   v = sqlite3GetVdbe(pParse);
2588   assert( v!=0 );  /* The VDBE already created by calling function */
2589 
2590   /* Create the destination temporary table if necessary
2591   */
2592   if( dest.eDest==SRT_EphemTab ){
2593     assert( p->pEList );
2594     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2595     dest.eDest = SRT_Table;
2596   }
2597 
2598   /* Special handling for a compound-select that originates as a VALUES clause.
2599   */
2600   if( p->selFlags & SF_MultiValue ){
2601     rc = multiSelectValues(pParse, p, &dest);
2602     if( rc>=0 ) goto multi_select_end;
2603     rc = SQLITE_OK;
2604   }
2605 
2606   /* Make sure all SELECTs in the statement have the same number of elements
2607   ** in their result sets.
2608   */
2609   assert( p->pEList && pPrior->pEList );
2610   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2611 
2612 #ifndef SQLITE_OMIT_CTE
2613   if( p->selFlags & SF_Recursive ){
2614     generateWithRecursiveQuery(pParse, p, &dest);
2615   }else
2616 #endif
2617 
2618   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2619   */
2620   if( p->pOrderBy ){
2621     return multiSelectOrderBy(pParse, p, pDest);
2622   }else{
2623 
2624 #ifndef SQLITE_OMIT_EXPLAIN
2625     if( pPrior->pPrior==0 ){
2626       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2627       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2628     }
2629 #endif
2630 
2631     /* Generate code for the left and right SELECT statements.
2632     */
2633     switch( p->op ){
2634       case TK_ALL: {
2635         int addr = 0;
2636         int nLimit;
2637         assert( !pPrior->pLimit );
2638         pPrior->iLimit = p->iLimit;
2639         pPrior->iOffset = p->iOffset;
2640         pPrior->pLimit = p->pLimit;
2641         rc = sqlite3Select(pParse, pPrior, &dest);
2642         p->pLimit = 0;
2643         if( rc ){
2644           goto multi_select_end;
2645         }
2646         p->pPrior = 0;
2647         p->iLimit = pPrior->iLimit;
2648         p->iOffset = pPrior->iOffset;
2649         if( p->iLimit ){
2650           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2651           VdbeComment((v, "Jump ahead if LIMIT reached"));
2652           if( p->iOffset ){
2653             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2654                               p->iLimit, p->iOffset+1, p->iOffset);
2655           }
2656         }
2657         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2658         rc = sqlite3Select(pParse, p, &dest);
2659         testcase( rc!=SQLITE_OK );
2660         pDelete = p->pPrior;
2661         p->pPrior = pPrior;
2662         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2663         if( pPrior->pLimit
2664          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2665          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2666         ){
2667           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2668         }
2669         if( addr ){
2670           sqlite3VdbeJumpHere(v, addr);
2671         }
2672         break;
2673       }
2674       case TK_EXCEPT:
2675       case TK_UNION: {
2676         int unionTab;    /* Cursor number of the temp table holding result */
2677         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2678         int priorOp;     /* The SRT_ operation to apply to prior selects */
2679         Expr *pLimit;    /* Saved values of p->nLimit  */
2680         int addr;
2681         SelectDest uniondest;
2682 
2683         testcase( p->op==TK_EXCEPT );
2684         testcase( p->op==TK_UNION );
2685         priorOp = SRT_Union;
2686         if( dest.eDest==priorOp ){
2687           /* We can reuse a temporary table generated by a SELECT to our
2688           ** right.
2689           */
2690           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2691           unionTab = dest.iSDParm;
2692         }else{
2693           /* We will need to create our own temporary table to hold the
2694           ** intermediate results.
2695           */
2696           unionTab = pParse->nTab++;
2697           assert( p->pOrderBy==0 );
2698           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2699           assert( p->addrOpenEphm[0] == -1 );
2700           p->addrOpenEphm[0] = addr;
2701           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2702           assert( p->pEList );
2703         }
2704 
2705         /* Code the SELECT statements to our left
2706         */
2707         assert( !pPrior->pOrderBy );
2708         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2709         rc = sqlite3Select(pParse, pPrior, &uniondest);
2710         if( rc ){
2711           goto multi_select_end;
2712         }
2713 
2714         /* Code the current SELECT statement
2715         */
2716         if( p->op==TK_EXCEPT ){
2717           op = SRT_Except;
2718         }else{
2719           assert( p->op==TK_UNION );
2720           op = SRT_Union;
2721         }
2722         p->pPrior = 0;
2723         pLimit = p->pLimit;
2724         p->pLimit = 0;
2725         uniondest.eDest = op;
2726         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2727                           selectOpName(p->op)));
2728         rc = sqlite3Select(pParse, p, &uniondest);
2729         testcase( rc!=SQLITE_OK );
2730         assert( p->pOrderBy==0 );
2731         pDelete = p->pPrior;
2732         p->pPrior = pPrior;
2733         p->pOrderBy = 0;
2734         if( p->op==TK_UNION ){
2735           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2736         }
2737         sqlite3ExprDelete(db, p->pLimit);
2738         p->pLimit = pLimit;
2739         p->iLimit = 0;
2740         p->iOffset = 0;
2741 
2742         /* Convert the data in the temporary table into whatever form
2743         ** it is that we currently need.
2744         */
2745         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2746         assert( p->pEList || db->mallocFailed );
2747         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2748           int iCont, iBreak, iStart;
2749           iBreak = sqlite3VdbeMakeLabel(pParse);
2750           iCont = sqlite3VdbeMakeLabel(pParse);
2751           computeLimitRegisters(pParse, p, iBreak);
2752           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2753           iStart = sqlite3VdbeCurrentAddr(v);
2754           selectInnerLoop(pParse, p, unionTab,
2755                           0, 0, &dest, iCont, iBreak);
2756           sqlite3VdbeResolveLabel(v, iCont);
2757           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2758           sqlite3VdbeResolveLabel(v, iBreak);
2759           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2760         }
2761         break;
2762       }
2763       default: assert( p->op==TK_INTERSECT ); {
2764         int tab1, tab2;
2765         int iCont, iBreak, iStart;
2766         Expr *pLimit;
2767         int addr;
2768         SelectDest intersectdest;
2769         int r1;
2770 
2771         /* INTERSECT is different from the others since it requires
2772         ** two temporary tables.  Hence it has its own case.  Begin
2773         ** by allocating the tables we will need.
2774         */
2775         tab1 = pParse->nTab++;
2776         tab2 = pParse->nTab++;
2777         assert( p->pOrderBy==0 );
2778 
2779         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2780         assert( p->addrOpenEphm[0] == -1 );
2781         p->addrOpenEphm[0] = addr;
2782         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2783         assert( p->pEList );
2784 
2785         /* Code the SELECTs to our left into temporary table "tab1".
2786         */
2787         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2788         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2789         if( rc ){
2790           goto multi_select_end;
2791         }
2792 
2793         /* Code the current SELECT into temporary table "tab2"
2794         */
2795         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2796         assert( p->addrOpenEphm[1] == -1 );
2797         p->addrOpenEphm[1] = addr;
2798         p->pPrior = 0;
2799         pLimit = p->pLimit;
2800         p->pLimit = 0;
2801         intersectdest.iSDParm = tab2;
2802         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2803                           selectOpName(p->op)));
2804         rc = sqlite3Select(pParse, p, &intersectdest);
2805         testcase( rc!=SQLITE_OK );
2806         pDelete = p->pPrior;
2807         p->pPrior = pPrior;
2808         if( p->nSelectRow>pPrior->nSelectRow ){
2809           p->nSelectRow = pPrior->nSelectRow;
2810         }
2811         sqlite3ExprDelete(db, p->pLimit);
2812         p->pLimit = pLimit;
2813 
2814         /* Generate code to take the intersection of the two temporary
2815         ** tables.
2816         */
2817         if( rc ) break;
2818         assert( p->pEList );
2819         iBreak = sqlite3VdbeMakeLabel(pParse);
2820         iCont = sqlite3VdbeMakeLabel(pParse);
2821         computeLimitRegisters(pParse, p, iBreak);
2822         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2823         r1 = sqlite3GetTempReg(pParse);
2824         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2825         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2826         VdbeCoverage(v);
2827         sqlite3ReleaseTempReg(pParse, r1);
2828         selectInnerLoop(pParse, p, tab1,
2829                         0, 0, &dest, iCont, iBreak);
2830         sqlite3VdbeResolveLabel(v, iCont);
2831         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2832         sqlite3VdbeResolveLabel(v, iBreak);
2833         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2834         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2835         break;
2836       }
2837     }
2838 
2839   #ifndef SQLITE_OMIT_EXPLAIN
2840     if( p->pNext==0 ){
2841       ExplainQueryPlanPop(pParse);
2842     }
2843   #endif
2844   }
2845   if( pParse->nErr ) goto multi_select_end;
2846 
2847   /* Compute collating sequences used by
2848   ** temporary tables needed to implement the compound select.
2849   ** Attach the KeyInfo structure to all temporary tables.
2850   **
2851   ** This section is run by the right-most SELECT statement only.
2852   ** SELECT statements to the left always skip this part.  The right-most
2853   ** SELECT might also skip this part if it has no ORDER BY clause and
2854   ** no temp tables are required.
2855   */
2856   if( p->selFlags & SF_UsesEphemeral ){
2857     int i;                        /* Loop counter */
2858     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2859     Select *pLoop;                /* For looping through SELECT statements */
2860     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2861     int nCol;                     /* Number of columns in result set */
2862 
2863     assert( p->pNext==0 );
2864     nCol = p->pEList->nExpr;
2865     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2866     if( !pKeyInfo ){
2867       rc = SQLITE_NOMEM_BKPT;
2868       goto multi_select_end;
2869     }
2870     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2871       *apColl = multiSelectCollSeq(pParse, p, i);
2872       if( 0==*apColl ){
2873         *apColl = db->pDfltColl;
2874       }
2875     }
2876 
2877     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2878       for(i=0; i<2; i++){
2879         int addr = pLoop->addrOpenEphm[i];
2880         if( addr<0 ){
2881           /* If [0] is unused then [1] is also unused.  So we can
2882           ** always safely abort as soon as the first unused slot is found */
2883           assert( pLoop->addrOpenEphm[1]<0 );
2884           break;
2885         }
2886         sqlite3VdbeChangeP2(v, addr, nCol);
2887         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2888                             P4_KEYINFO);
2889         pLoop->addrOpenEphm[i] = -1;
2890       }
2891     }
2892     sqlite3KeyInfoUnref(pKeyInfo);
2893   }
2894 
2895 multi_select_end:
2896   pDest->iSdst = dest.iSdst;
2897   pDest->nSdst = dest.nSdst;
2898   sqlite3SelectDelete(db, pDelete);
2899   return rc;
2900 }
2901 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2902 
2903 /*
2904 ** Error message for when two or more terms of a compound select have different
2905 ** size result sets.
2906 */
2907 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2908   if( p->selFlags & SF_Values ){
2909     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2910   }else{
2911     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2912       " do not have the same number of result columns", selectOpName(p->op));
2913   }
2914 }
2915 
2916 /*
2917 ** Code an output subroutine for a coroutine implementation of a
2918 ** SELECT statment.
2919 **
2920 ** The data to be output is contained in pIn->iSdst.  There are
2921 ** pIn->nSdst columns to be output.  pDest is where the output should
2922 ** be sent.
2923 **
2924 ** regReturn is the number of the register holding the subroutine
2925 ** return address.
2926 **
2927 ** If regPrev>0 then it is the first register in a vector that
2928 ** records the previous output.  mem[regPrev] is a flag that is false
2929 ** if there has been no previous output.  If regPrev>0 then code is
2930 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2931 ** keys.
2932 **
2933 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2934 ** iBreak.
2935 */
2936 static int generateOutputSubroutine(
2937   Parse *pParse,          /* Parsing context */
2938   Select *p,              /* The SELECT statement */
2939   SelectDest *pIn,        /* Coroutine supplying data */
2940   SelectDest *pDest,      /* Where to send the data */
2941   int regReturn,          /* The return address register */
2942   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2943   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2944   int iBreak              /* Jump here if we hit the LIMIT */
2945 ){
2946   Vdbe *v = pParse->pVdbe;
2947   int iContinue;
2948   int addr;
2949 
2950   addr = sqlite3VdbeCurrentAddr(v);
2951   iContinue = sqlite3VdbeMakeLabel(pParse);
2952 
2953   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2954   */
2955   if( regPrev ){
2956     int addr1, addr2;
2957     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2958     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2959                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2960     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2961     sqlite3VdbeJumpHere(v, addr1);
2962     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2963     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2964   }
2965   if( pParse->db->mallocFailed ) return 0;
2966 
2967   /* Suppress the first OFFSET entries if there is an OFFSET clause
2968   */
2969   codeOffset(v, p->iOffset, iContinue);
2970 
2971   assert( pDest->eDest!=SRT_Exists );
2972   assert( pDest->eDest!=SRT_Table );
2973   switch( pDest->eDest ){
2974     /* Store the result as data using a unique key.
2975     */
2976     case SRT_EphemTab: {
2977       int r1 = sqlite3GetTempReg(pParse);
2978       int r2 = sqlite3GetTempReg(pParse);
2979       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2980       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2981       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2982       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2983       sqlite3ReleaseTempReg(pParse, r2);
2984       sqlite3ReleaseTempReg(pParse, r1);
2985       break;
2986     }
2987 
2988 #ifndef SQLITE_OMIT_SUBQUERY
2989     /* If we are creating a set for an "expr IN (SELECT ...)".
2990     */
2991     case SRT_Set: {
2992       int r1;
2993       testcase( pIn->nSdst>1 );
2994       r1 = sqlite3GetTempReg(pParse);
2995       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2996           r1, pDest->zAffSdst, pIn->nSdst);
2997       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2998                            pIn->iSdst, pIn->nSdst);
2999       sqlite3ReleaseTempReg(pParse, r1);
3000       break;
3001     }
3002 
3003     /* If this is a scalar select that is part of an expression, then
3004     ** store the results in the appropriate memory cell and break out
3005     ** of the scan loop.  Note that the select might return multiple columns
3006     ** if it is the RHS of a row-value IN operator.
3007     */
3008     case SRT_Mem: {
3009       if( pParse->nErr==0 ){
3010         testcase( pIn->nSdst>1 );
3011         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3012       }
3013       /* The LIMIT clause will jump out of the loop for us */
3014       break;
3015     }
3016 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3017 
3018     /* The results are stored in a sequence of registers
3019     ** starting at pDest->iSdst.  Then the co-routine yields.
3020     */
3021     case SRT_Coroutine: {
3022       if( pDest->iSdst==0 ){
3023         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3024         pDest->nSdst = pIn->nSdst;
3025       }
3026       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3027       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3028       break;
3029     }
3030 
3031     /* If none of the above, then the result destination must be
3032     ** SRT_Output.  This routine is never called with any other
3033     ** destination other than the ones handled above or SRT_Output.
3034     **
3035     ** For SRT_Output, results are stored in a sequence of registers.
3036     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3037     ** return the next row of result.
3038     */
3039     default: {
3040       assert( pDest->eDest==SRT_Output );
3041       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3042       break;
3043     }
3044   }
3045 
3046   /* Jump to the end of the loop if the LIMIT is reached.
3047   */
3048   if( p->iLimit ){
3049     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3050   }
3051 
3052   /* Generate the subroutine return
3053   */
3054   sqlite3VdbeResolveLabel(v, iContinue);
3055   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3056 
3057   return addr;
3058 }
3059 
3060 /*
3061 ** Alternative compound select code generator for cases when there
3062 ** is an ORDER BY clause.
3063 **
3064 ** We assume a query of the following form:
3065 **
3066 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3067 **
3068 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3069 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3070 ** co-routines.  Then run the co-routines in parallel and merge the results
3071 ** into the output.  In addition to the two coroutines (called selectA and
3072 ** selectB) there are 7 subroutines:
3073 **
3074 **    outA:    Move the output of the selectA coroutine into the output
3075 **             of the compound query.
3076 **
3077 **    outB:    Move the output of the selectB coroutine into the output
3078 **             of the compound query.  (Only generated for UNION and
3079 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3080 **             appears only in B.)
3081 **
3082 **    AltB:    Called when there is data from both coroutines and A<B.
3083 **
3084 **    AeqB:    Called when there is data from both coroutines and A==B.
3085 **
3086 **    AgtB:    Called when there is data from both coroutines and A>B.
3087 **
3088 **    EofA:    Called when data is exhausted from selectA.
3089 **
3090 **    EofB:    Called when data is exhausted from selectB.
3091 **
3092 ** The implementation of the latter five subroutines depend on which
3093 ** <operator> is used:
3094 **
3095 **
3096 **             UNION ALL         UNION            EXCEPT          INTERSECT
3097 **          -------------  -----------------  --------------  -----------------
3098 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3099 **
3100 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3101 **
3102 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3103 **
3104 **   EofA:   outB, nextB      outB, nextB          halt             halt
3105 **
3106 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3107 **
3108 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3109 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3110 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3111 ** following nextX causes a jump to the end of the select processing.
3112 **
3113 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3114 ** within the output subroutine.  The regPrev register set holds the previously
3115 ** output value.  A comparison is made against this value and the output
3116 ** is skipped if the next results would be the same as the previous.
3117 **
3118 ** The implementation plan is to implement the two coroutines and seven
3119 ** subroutines first, then put the control logic at the bottom.  Like this:
3120 **
3121 **          goto Init
3122 **     coA: coroutine for left query (A)
3123 **     coB: coroutine for right query (B)
3124 **    outA: output one row of A
3125 **    outB: output one row of B (UNION and UNION ALL only)
3126 **    EofA: ...
3127 **    EofB: ...
3128 **    AltB: ...
3129 **    AeqB: ...
3130 **    AgtB: ...
3131 **    Init: initialize coroutine registers
3132 **          yield coA
3133 **          if eof(A) goto EofA
3134 **          yield coB
3135 **          if eof(B) goto EofB
3136 **    Cmpr: Compare A, B
3137 **          Jump AltB, AeqB, AgtB
3138 **     End: ...
3139 **
3140 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3141 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3142 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3143 ** and AgtB jump to either L2 or to one of EofA or EofB.
3144 */
3145 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3146 static int multiSelectOrderBy(
3147   Parse *pParse,        /* Parsing context */
3148   Select *p,            /* The right-most of SELECTs to be coded */
3149   SelectDest *pDest     /* What to do with query results */
3150 ){
3151   int i, j;             /* Loop counters */
3152   Select *pPrior;       /* Another SELECT immediately to our left */
3153   Vdbe *v;              /* Generate code to this VDBE */
3154   SelectDest destA;     /* Destination for coroutine A */
3155   SelectDest destB;     /* Destination for coroutine B */
3156   int regAddrA;         /* Address register for select-A coroutine */
3157   int regAddrB;         /* Address register for select-B coroutine */
3158   int addrSelectA;      /* Address of the select-A coroutine */
3159   int addrSelectB;      /* Address of the select-B coroutine */
3160   int regOutA;          /* Address register for the output-A subroutine */
3161   int regOutB;          /* Address register for the output-B subroutine */
3162   int addrOutA;         /* Address of the output-A subroutine */
3163   int addrOutB = 0;     /* Address of the output-B subroutine */
3164   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3165   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3166   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3167   int addrAltB;         /* Address of the A<B subroutine */
3168   int addrAeqB;         /* Address of the A==B subroutine */
3169   int addrAgtB;         /* Address of the A>B subroutine */
3170   int regLimitA;        /* Limit register for select-A */
3171   int regLimitB;        /* Limit register for select-A */
3172   int regPrev;          /* A range of registers to hold previous output */
3173   int savedLimit;       /* Saved value of p->iLimit */
3174   int savedOffset;      /* Saved value of p->iOffset */
3175   int labelCmpr;        /* Label for the start of the merge algorithm */
3176   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3177   int addr1;            /* Jump instructions that get retargetted */
3178   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3179   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3180   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3181   sqlite3 *db;          /* Database connection */
3182   ExprList *pOrderBy;   /* The ORDER BY clause */
3183   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3184   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3185 
3186   assert( p->pOrderBy!=0 );
3187   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3188   db = pParse->db;
3189   v = pParse->pVdbe;
3190   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3191   labelEnd = sqlite3VdbeMakeLabel(pParse);
3192   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3193 
3194 
3195   /* Patch up the ORDER BY clause
3196   */
3197   op = p->op;
3198   pPrior = p->pPrior;
3199   assert( pPrior->pOrderBy==0 );
3200   pOrderBy = p->pOrderBy;
3201   assert( pOrderBy );
3202   nOrderBy = pOrderBy->nExpr;
3203 
3204   /* For operators other than UNION ALL we have to make sure that
3205   ** the ORDER BY clause covers every term of the result set.  Add
3206   ** terms to the ORDER BY clause as necessary.
3207   */
3208   if( op!=TK_ALL ){
3209     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3210       struct ExprList_item *pItem;
3211       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3212         assert( pItem->u.x.iOrderByCol>0 );
3213         if( pItem->u.x.iOrderByCol==i ) break;
3214       }
3215       if( j==nOrderBy ){
3216         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3217         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3218         pNew->flags |= EP_IntValue;
3219         pNew->u.iValue = i;
3220         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3221         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3222       }
3223     }
3224   }
3225 
3226   /* Compute the comparison permutation and keyinfo that is used with
3227   ** the permutation used to determine if the next
3228   ** row of results comes from selectA or selectB.  Also add explicit
3229   ** collations to the ORDER BY clause terms so that when the subqueries
3230   ** to the right and the left are evaluated, they use the correct
3231   ** collation.
3232   */
3233   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3234   if( aPermute ){
3235     struct ExprList_item *pItem;
3236     aPermute[0] = nOrderBy;
3237     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3238       assert( pItem->u.x.iOrderByCol>0 );
3239       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3240       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3241     }
3242     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3243   }else{
3244     pKeyMerge = 0;
3245   }
3246 
3247   /* Reattach the ORDER BY clause to the query.
3248   */
3249   p->pOrderBy = pOrderBy;
3250   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3251 
3252   /* Allocate a range of temporary registers and the KeyInfo needed
3253   ** for the logic that removes duplicate result rows when the
3254   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3255   */
3256   if( op==TK_ALL ){
3257     regPrev = 0;
3258   }else{
3259     int nExpr = p->pEList->nExpr;
3260     assert( nOrderBy>=nExpr || db->mallocFailed );
3261     regPrev = pParse->nMem+1;
3262     pParse->nMem += nExpr+1;
3263     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3264     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3265     if( pKeyDup ){
3266       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3267       for(i=0; i<nExpr; i++){
3268         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3269         pKeyDup->aSortFlags[i] = 0;
3270       }
3271     }
3272   }
3273 
3274   /* Separate the left and the right query from one another
3275   */
3276   p->pPrior = 0;
3277   pPrior->pNext = 0;
3278   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3279   if( pPrior->pPrior==0 ){
3280     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3281   }
3282 
3283   /* Compute the limit registers */
3284   computeLimitRegisters(pParse, p, labelEnd);
3285   if( p->iLimit && op==TK_ALL ){
3286     regLimitA = ++pParse->nMem;
3287     regLimitB = ++pParse->nMem;
3288     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3289                                   regLimitA);
3290     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3291   }else{
3292     regLimitA = regLimitB = 0;
3293   }
3294   sqlite3ExprDelete(db, p->pLimit);
3295   p->pLimit = 0;
3296 
3297   regAddrA = ++pParse->nMem;
3298   regAddrB = ++pParse->nMem;
3299   regOutA = ++pParse->nMem;
3300   regOutB = ++pParse->nMem;
3301   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3302   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3303 
3304   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3305 
3306   /* Generate a coroutine to evaluate the SELECT statement to the
3307   ** left of the compound operator - the "A" select.
3308   */
3309   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3310   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3311   VdbeComment((v, "left SELECT"));
3312   pPrior->iLimit = regLimitA;
3313   ExplainQueryPlan((pParse, 1, "LEFT"));
3314   sqlite3Select(pParse, pPrior, &destA);
3315   sqlite3VdbeEndCoroutine(v, regAddrA);
3316   sqlite3VdbeJumpHere(v, addr1);
3317 
3318   /* Generate a coroutine to evaluate the SELECT statement on
3319   ** the right - the "B" select
3320   */
3321   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3322   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3323   VdbeComment((v, "right SELECT"));
3324   savedLimit = p->iLimit;
3325   savedOffset = p->iOffset;
3326   p->iLimit = regLimitB;
3327   p->iOffset = 0;
3328   ExplainQueryPlan((pParse, 1, "RIGHT"));
3329   sqlite3Select(pParse, p, &destB);
3330   p->iLimit = savedLimit;
3331   p->iOffset = savedOffset;
3332   sqlite3VdbeEndCoroutine(v, regAddrB);
3333 
3334   /* Generate a subroutine that outputs the current row of the A
3335   ** select as the next output row of the compound select.
3336   */
3337   VdbeNoopComment((v, "Output routine for A"));
3338   addrOutA = generateOutputSubroutine(pParse,
3339                  p, &destA, pDest, regOutA,
3340                  regPrev, pKeyDup, labelEnd);
3341 
3342   /* Generate a subroutine that outputs the current row of the B
3343   ** select as the next output row of the compound select.
3344   */
3345   if( op==TK_ALL || op==TK_UNION ){
3346     VdbeNoopComment((v, "Output routine for B"));
3347     addrOutB = generateOutputSubroutine(pParse,
3348                  p, &destB, pDest, regOutB,
3349                  regPrev, pKeyDup, labelEnd);
3350   }
3351   sqlite3KeyInfoUnref(pKeyDup);
3352 
3353   /* Generate a subroutine to run when the results from select A
3354   ** are exhausted and only data in select B remains.
3355   */
3356   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3357     addrEofA_noB = addrEofA = labelEnd;
3358   }else{
3359     VdbeNoopComment((v, "eof-A subroutine"));
3360     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3361     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3362                                      VdbeCoverage(v);
3363     sqlite3VdbeGoto(v, addrEofA);
3364     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3365   }
3366 
3367   /* Generate a subroutine to run when the results from select B
3368   ** are exhausted and only data in select A remains.
3369   */
3370   if( op==TK_INTERSECT ){
3371     addrEofB = addrEofA;
3372     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3373   }else{
3374     VdbeNoopComment((v, "eof-B subroutine"));
3375     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3376     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3377     sqlite3VdbeGoto(v, addrEofB);
3378   }
3379 
3380   /* Generate code to handle the case of A<B
3381   */
3382   VdbeNoopComment((v, "A-lt-B subroutine"));
3383   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3384   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3385   sqlite3VdbeGoto(v, labelCmpr);
3386 
3387   /* Generate code to handle the case of A==B
3388   */
3389   if( op==TK_ALL ){
3390     addrAeqB = addrAltB;
3391   }else if( op==TK_INTERSECT ){
3392     addrAeqB = addrAltB;
3393     addrAltB++;
3394   }else{
3395     VdbeNoopComment((v, "A-eq-B subroutine"));
3396     addrAeqB =
3397     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3398     sqlite3VdbeGoto(v, labelCmpr);
3399   }
3400 
3401   /* Generate code to handle the case of A>B
3402   */
3403   VdbeNoopComment((v, "A-gt-B subroutine"));
3404   addrAgtB = sqlite3VdbeCurrentAddr(v);
3405   if( op==TK_ALL || op==TK_UNION ){
3406     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3407   }
3408   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3409   sqlite3VdbeGoto(v, labelCmpr);
3410 
3411   /* This code runs once to initialize everything.
3412   */
3413   sqlite3VdbeJumpHere(v, addr1);
3414   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3415   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3416 
3417   /* Implement the main merge loop
3418   */
3419   sqlite3VdbeResolveLabel(v, labelCmpr);
3420   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3421   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3422                          (char*)pKeyMerge, P4_KEYINFO);
3423   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3424   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3425 
3426   /* Jump to the this point in order to terminate the query.
3427   */
3428   sqlite3VdbeResolveLabel(v, labelEnd);
3429 
3430   /* Reassembly the compound query so that it will be freed correctly
3431   ** by the calling function */
3432   if( p->pPrior ){
3433     sqlite3SelectDelete(db, p->pPrior);
3434   }
3435   p->pPrior = pPrior;
3436   pPrior->pNext = p;
3437 
3438   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3439   **** subqueries ****/
3440   ExplainQueryPlanPop(pParse);
3441   return pParse->nErr!=0;
3442 }
3443 #endif
3444 
3445 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3446 
3447 /* An instance of the SubstContext object describes an substitution edit
3448 ** to be performed on a parse tree.
3449 **
3450 ** All references to columns in table iTable are to be replaced by corresponding
3451 ** expressions in pEList.
3452 */
3453 typedef struct SubstContext {
3454   Parse *pParse;            /* The parsing context */
3455   int iTable;               /* Replace references to this table */
3456   int iNewTable;            /* New table number */
3457   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3458   ExprList *pEList;         /* Replacement expressions */
3459 } SubstContext;
3460 
3461 /* Forward Declarations */
3462 static void substExprList(SubstContext*, ExprList*);
3463 static void substSelect(SubstContext*, Select*, int);
3464 
3465 /*
3466 ** Scan through the expression pExpr.  Replace every reference to
3467 ** a column in table number iTable with a copy of the iColumn-th
3468 ** entry in pEList.  (But leave references to the ROWID column
3469 ** unchanged.)
3470 **
3471 ** This routine is part of the flattening procedure.  A subquery
3472 ** whose result set is defined by pEList appears as entry in the
3473 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3474 ** FORM clause entry is iTable.  This routine makes the necessary
3475 ** changes to pExpr so that it refers directly to the source table
3476 ** of the subquery rather the result set of the subquery.
3477 */
3478 static Expr *substExpr(
3479   SubstContext *pSubst,  /* Description of the substitution */
3480   Expr *pExpr            /* Expr in which substitution occurs */
3481 ){
3482   if( pExpr==0 ) return 0;
3483   if( ExprHasProperty(pExpr, EP_FromJoin)
3484    && pExpr->iRightJoinTable==pSubst->iTable
3485   ){
3486     pExpr->iRightJoinTable = pSubst->iNewTable;
3487   }
3488   if( pExpr->op==TK_COLUMN
3489    && pExpr->iTable==pSubst->iTable
3490    && !ExprHasProperty(pExpr, EP_FixedCol)
3491   ){
3492     if( pExpr->iColumn<0 ){
3493       pExpr->op = TK_NULL;
3494     }else{
3495       Expr *pNew;
3496       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3497       Expr ifNullRow;
3498       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3499       assert( pExpr->pRight==0 );
3500       if( sqlite3ExprIsVector(pCopy) ){
3501         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3502       }else{
3503         sqlite3 *db = pSubst->pParse->db;
3504         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3505           memset(&ifNullRow, 0, sizeof(ifNullRow));
3506           ifNullRow.op = TK_IF_NULL_ROW;
3507           ifNullRow.pLeft = pCopy;
3508           ifNullRow.iTable = pSubst->iNewTable;
3509           ifNullRow.flags = EP_IfNullRow;
3510           pCopy = &ifNullRow;
3511         }
3512         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3513         pNew = sqlite3ExprDup(db, pCopy, 0);
3514         if( pNew && pSubst->isLeftJoin ){
3515           ExprSetProperty(pNew, EP_CanBeNull);
3516         }
3517         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3518           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3519           ExprSetProperty(pNew, EP_FromJoin);
3520         }
3521         sqlite3ExprDelete(db, pExpr);
3522         pExpr = pNew;
3523 
3524         /* Ensure that the expression now has an implicit collation sequence,
3525         ** just as it did when it was a column of a view or sub-query. */
3526         if( pExpr ){
3527           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3528             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3529             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3530                 (pColl ? pColl->zName : "BINARY")
3531             );
3532           }
3533           ExprClearProperty(pExpr, EP_Collate);
3534         }
3535       }
3536     }
3537   }else{
3538     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3539       pExpr->iTable = pSubst->iNewTable;
3540     }
3541     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3542     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3543     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3544       substSelect(pSubst, pExpr->x.pSelect, 1);
3545     }else{
3546       substExprList(pSubst, pExpr->x.pList);
3547     }
3548 #ifndef SQLITE_OMIT_WINDOWFUNC
3549     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3550       Window *pWin = pExpr->y.pWin;
3551       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3552       substExprList(pSubst, pWin->pPartition);
3553       substExprList(pSubst, pWin->pOrderBy);
3554     }
3555 #endif
3556   }
3557   return pExpr;
3558 }
3559 static void substExprList(
3560   SubstContext *pSubst, /* Description of the substitution */
3561   ExprList *pList       /* List to scan and in which to make substitutes */
3562 ){
3563   int i;
3564   if( pList==0 ) return;
3565   for(i=0; i<pList->nExpr; i++){
3566     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3567   }
3568 }
3569 static void substSelect(
3570   SubstContext *pSubst, /* Description of the substitution */
3571   Select *p,            /* SELECT statement in which to make substitutions */
3572   int doPrior           /* Do substitutes on p->pPrior too */
3573 ){
3574   SrcList *pSrc;
3575   struct SrcList_item *pItem;
3576   int i;
3577   if( !p ) return;
3578   do{
3579     substExprList(pSubst, p->pEList);
3580     substExprList(pSubst, p->pGroupBy);
3581     substExprList(pSubst, p->pOrderBy);
3582     p->pHaving = substExpr(pSubst, p->pHaving);
3583     p->pWhere = substExpr(pSubst, p->pWhere);
3584     pSrc = p->pSrc;
3585     assert( pSrc!=0 );
3586     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3587       substSelect(pSubst, pItem->pSelect, 1);
3588       if( pItem->fg.isTabFunc ){
3589         substExprList(pSubst, pItem->u1.pFuncArg);
3590       }
3591     }
3592   }while( doPrior && (p = p->pPrior)!=0 );
3593 }
3594 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3595 
3596 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3597 /*
3598 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3599 ** clause of that SELECT.
3600 **
3601 ** This routine scans the entire SELECT statement and recomputes the
3602 ** pSrcItem->colUsed mask.
3603 */
3604 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3605   struct SrcList_item *pItem;
3606   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3607   pItem = pWalker->u.pSrcItem;
3608   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3609   if( pExpr->iColumn<0 ) return WRC_Continue;
3610   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3611   return WRC_Continue;
3612 }
3613 static void recomputeColumnsUsed(
3614   Select *pSelect,                 /* The complete SELECT statement */
3615   struct SrcList_item *pSrcItem    /* Which FROM clause item to recompute */
3616 ){
3617   Walker w;
3618   if( NEVER(pSrcItem->pTab==0) ) return;
3619   memset(&w, 0, sizeof(w));
3620   w.xExprCallback = recomputeColumnsUsedExpr;
3621   w.xSelectCallback = sqlite3SelectWalkNoop;
3622   w.u.pSrcItem = pSrcItem;
3623   pSrcItem->colUsed = 0;
3624   sqlite3WalkSelect(&w, pSelect);
3625 }
3626 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3627 
3628 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3629 /*
3630 ** This routine attempts to flatten subqueries as a performance optimization.
3631 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3632 **
3633 ** To understand the concept of flattening, consider the following
3634 ** query:
3635 **
3636 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3637 **
3638 ** The default way of implementing this query is to execute the
3639 ** subquery first and store the results in a temporary table, then
3640 ** run the outer query on that temporary table.  This requires two
3641 ** passes over the data.  Furthermore, because the temporary table
3642 ** has no indices, the WHERE clause on the outer query cannot be
3643 ** optimized.
3644 **
3645 ** This routine attempts to rewrite queries such as the above into
3646 ** a single flat select, like this:
3647 **
3648 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3649 **
3650 ** The code generated for this simplification gives the same result
3651 ** but only has to scan the data once.  And because indices might
3652 ** exist on the table t1, a complete scan of the data might be
3653 ** avoided.
3654 **
3655 ** Flattening is subject to the following constraints:
3656 **
3657 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3658 **        The subquery and the outer query cannot both be aggregates.
3659 **
3660 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3661 **        (2) If the subquery is an aggregate then
3662 **        (2a) the outer query must not be a join and
3663 **        (2b) the outer query must not use subqueries
3664 **             other than the one FROM-clause subquery that is a candidate
3665 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3666 **             from 2015-02-09.)
3667 **
3668 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3669 **        (3a) the subquery may not be a join and
3670 **        (3b) the FROM clause of the subquery may not contain a virtual
3671 **             table and
3672 **        (3c) the outer query may not be an aggregate.
3673 **        (3d) the outer query may not be DISTINCT.
3674 **
3675 **   (4)  The subquery can not be DISTINCT.
3676 **
3677 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3678 **        sub-queries that were excluded from this optimization. Restriction
3679 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3680 **
3681 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3682 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3683 **
3684 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3685 **        A FROM clause, consider adding a FROM clause with the special
3686 **        table sqlite_once that consists of a single row containing a
3687 **        single NULL.
3688 **
3689 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3690 **
3691 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3692 **
3693 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3694 **        accidently carried the comment forward until 2014-09-15.  Original
3695 **        constraint: "If the subquery is aggregate then the outer query
3696 **        may not use LIMIT."
3697 **
3698 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3699 **
3700 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3701 **        a separate restriction deriving from ticket #350.
3702 **
3703 **  (13)  The subquery and outer query may not both use LIMIT.
3704 **
3705 **  (14)  The subquery may not use OFFSET.
3706 **
3707 **  (15)  If the outer query is part of a compound select, then the
3708 **        subquery may not use LIMIT.
3709 **        (See ticket #2339 and ticket [02a8e81d44]).
3710 **
3711 **  (16)  If the outer query is aggregate, then the subquery may not
3712 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3713 **        until we introduced the group_concat() function.
3714 **
3715 **  (17)  If the subquery is a compound select, then
3716 **        (17a) all compound operators must be a UNION ALL, and
3717 **        (17b) no terms within the subquery compound may be aggregate
3718 **              or DISTINCT, and
3719 **        (17c) every term within the subquery compound must have a FROM clause
3720 **        (17d) the outer query may not be
3721 **              (17d1) aggregate, or
3722 **              (17d2) DISTINCT, or
3723 **              (17d3) a join.
3724 **        (17e) the subquery may not contain window functions
3725 **
3726 **        The parent and sub-query may contain WHERE clauses. Subject to
3727 **        rules (11), (13) and (14), they may also contain ORDER BY,
3728 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3729 **        operator other than UNION ALL because all the other compound
3730 **        operators have an implied DISTINCT which is disallowed by
3731 **        restriction (4).
3732 **
3733 **        Also, each component of the sub-query must return the same number
3734 **        of result columns. This is actually a requirement for any compound
3735 **        SELECT statement, but all the code here does is make sure that no
3736 **        such (illegal) sub-query is flattened. The caller will detect the
3737 **        syntax error and return a detailed message.
3738 **
3739 **  (18)  If the sub-query is a compound select, then all terms of the
3740 **        ORDER BY clause of the parent must be simple references to
3741 **        columns of the sub-query.
3742 **
3743 **  (19)  If the subquery uses LIMIT then the outer query may not
3744 **        have a WHERE clause.
3745 **
3746 **  (20)  If the sub-query is a compound select, then it must not use
3747 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3748 **        somewhat by saying that the terms of the ORDER BY clause must
3749 **        appear as unmodified result columns in the outer query.  But we
3750 **        have other optimizations in mind to deal with that case.
3751 **
3752 **  (21)  If the subquery uses LIMIT then the outer query may not be
3753 **        DISTINCT.  (See ticket [752e1646fc]).
3754 **
3755 **  (22)  The subquery may not be a recursive CTE.
3756 **
3757 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3758 **        a recursive CTE, then the sub-query may not be a compound query.
3759 **        This restriction is because transforming the
3760 **        parent to a compound query confuses the code that handles
3761 **        recursive queries in multiSelect().
3762 **
3763 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3764 **        The subquery may not be an aggregate that uses the built-in min() or
3765 **        or max() functions.  (Without this restriction, a query like:
3766 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3767 **        return the value X for which Y was maximal.)
3768 **
3769 **  (25)  If either the subquery or the parent query contains a window
3770 **        function in the select list or ORDER BY clause, flattening
3771 **        is not attempted.
3772 **
3773 **
3774 ** In this routine, the "p" parameter is a pointer to the outer query.
3775 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3776 ** uses aggregates.
3777 **
3778 ** If flattening is not attempted, this routine is a no-op and returns 0.
3779 ** If flattening is attempted this routine returns 1.
3780 **
3781 ** All of the expression analysis must occur on both the outer query and
3782 ** the subquery before this routine runs.
3783 */
3784 static int flattenSubquery(
3785   Parse *pParse,       /* Parsing context */
3786   Select *p,           /* The parent or outer SELECT statement */
3787   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3788   int isAgg            /* True if outer SELECT uses aggregate functions */
3789 ){
3790   const char *zSavedAuthContext = pParse->zAuthContext;
3791   Select *pParent;    /* Current UNION ALL term of the other query */
3792   Select *pSub;       /* The inner query or "subquery" */
3793   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3794   SrcList *pSrc;      /* The FROM clause of the outer query */
3795   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3796   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3797   int iNewParent = -1;/* Replacement table for iParent */
3798   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3799   int i;              /* Loop counter */
3800   Expr *pWhere;                    /* The WHERE clause */
3801   struct SrcList_item *pSubitem;   /* The subquery */
3802   sqlite3 *db = pParse->db;
3803   Walker w;                        /* Walker to persist agginfo data */
3804 
3805   /* Check to see if flattening is permitted.  Return 0 if not.
3806   */
3807   assert( p!=0 );
3808   assert( p->pPrior==0 );
3809   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3810   pSrc = p->pSrc;
3811   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3812   pSubitem = &pSrc->a[iFrom];
3813   iParent = pSubitem->iCursor;
3814   pSub = pSubitem->pSelect;
3815   assert( pSub!=0 );
3816 
3817 #ifndef SQLITE_OMIT_WINDOWFUNC
3818   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3819 #endif
3820 
3821   pSubSrc = pSub->pSrc;
3822   assert( pSubSrc );
3823   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3824   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3825   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3826   ** became arbitrary expressions, we were forced to add restrictions (13)
3827   ** and (14). */
3828   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3829   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3830   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3831     return 0;                                            /* Restriction (15) */
3832   }
3833   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3834   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3835   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3836      return 0;         /* Restrictions (8)(9) */
3837   }
3838   if( p->pOrderBy && pSub->pOrderBy ){
3839      return 0;                                           /* Restriction (11) */
3840   }
3841   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3842   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3843   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3844      return 0;         /* Restriction (21) */
3845   }
3846   if( pSub->selFlags & (SF_Recursive) ){
3847     return 0; /* Restrictions (22) */
3848   }
3849 
3850   /*
3851   ** If the subquery is the right operand of a LEFT JOIN, then the
3852   ** subquery may not be a join itself (3a). Example of why this is not
3853   ** allowed:
3854   **
3855   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3856   **
3857   ** If we flatten the above, we would get
3858   **
3859   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3860   **
3861   ** which is not at all the same thing.
3862   **
3863   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3864   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3865   ** aggregates are processed - there is no mechanism to determine if
3866   ** the LEFT JOIN table should be all-NULL.
3867   **
3868   ** See also tickets #306, #350, and #3300.
3869   */
3870   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3871     isLeftJoin = 1;
3872     if( pSubSrc->nSrc>1                   /* (3a) */
3873      || isAgg                             /* (3b) */
3874      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3875      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3876     ){
3877       return 0;
3878     }
3879   }
3880 #ifdef SQLITE_EXTRA_IFNULLROW
3881   else if( iFrom>0 && !isAgg ){
3882     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3883     ** every reference to any result column from subquery in a join, even
3884     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3885     ** opcode. */
3886     isLeftJoin = -1;
3887   }
3888 #endif
3889 
3890   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3891   ** use only the UNION ALL operator. And none of the simple select queries
3892   ** that make up the compound SELECT are allowed to be aggregate or distinct
3893   ** queries.
3894   */
3895   if( pSub->pPrior ){
3896     if( pSub->pOrderBy ){
3897       return 0;  /* Restriction (20) */
3898     }
3899     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3900       return 0; /* (17d1), (17d2), or (17d3) */
3901     }
3902     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3903       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3904       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3905       assert( pSub->pSrc!=0 );
3906       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3907       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3908        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3909        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3910 #ifndef SQLITE_OMIT_WINDOWFUNC
3911        || pSub1->pWin                                          /* (17e) */
3912 #endif
3913       ){
3914         return 0;
3915       }
3916       testcase( pSub1->pSrc->nSrc>1 );
3917     }
3918 
3919     /* Restriction (18). */
3920     if( p->pOrderBy ){
3921       int ii;
3922       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3923         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3924       }
3925     }
3926   }
3927 
3928   /* Ex-restriction (23):
3929   ** The only way that the recursive part of a CTE can contain a compound
3930   ** subquery is for the subquery to be one term of a join.  But if the
3931   ** subquery is a join, then the flattening has already been stopped by
3932   ** restriction (17d3)
3933   */
3934   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3935 
3936   /***** If we reach this point, flattening is permitted. *****/
3937   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3938                    pSub->selId, pSub, iFrom));
3939 
3940   /* Authorize the subquery */
3941   pParse->zAuthContext = pSubitem->zName;
3942   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3943   testcase( i==SQLITE_DENY );
3944   pParse->zAuthContext = zSavedAuthContext;
3945 
3946   /* If the sub-query is a compound SELECT statement, then (by restrictions
3947   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3948   ** be of the form:
3949   **
3950   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3951   **
3952   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3953   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3954   ** OFFSET clauses and joins them to the left-hand-side of the original
3955   ** using UNION ALL operators. In this case N is the number of simple
3956   ** select statements in the compound sub-query.
3957   **
3958   ** Example:
3959   **
3960   **     SELECT a+1 FROM (
3961   **        SELECT x FROM tab
3962   **        UNION ALL
3963   **        SELECT y FROM tab
3964   **        UNION ALL
3965   **        SELECT abs(z*2) FROM tab2
3966   **     ) WHERE a!=5 ORDER BY 1
3967   **
3968   ** Transformed into:
3969   **
3970   **     SELECT x+1 FROM tab WHERE x+1!=5
3971   **     UNION ALL
3972   **     SELECT y+1 FROM tab WHERE y+1!=5
3973   **     UNION ALL
3974   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3975   **     ORDER BY 1
3976   **
3977   ** We call this the "compound-subquery flattening".
3978   */
3979   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3980     Select *pNew;
3981     ExprList *pOrderBy = p->pOrderBy;
3982     Expr *pLimit = p->pLimit;
3983     Select *pPrior = p->pPrior;
3984     p->pOrderBy = 0;
3985     p->pSrc = 0;
3986     p->pPrior = 0;
3987     p->pLimit = 0;
3988     pNew = sqlite3SelectDup(db, p, 0);
3989     p->pLimit = pLimit;
3990     p->pOrderBy = pOrderBy;
3991     p->pSrc = pSrc;
3992     p->op = TK_ALL;
3993     if( pNew==0 ){
3994       p->pPrior = pPrior;
3995     }else{
3996       pNew->pPrior = pPrior;
3997       if( pPrior ) pPrior->pNext = pNew;
3998       pNew->pNext = p;
3999       p->pPrior = pNew;
4000       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4001                               " creates %u as peer\n",pNew->selId));
4002     }
4003     if( db->mallocFailed ) return 1;
4004   }
4005 
4006   /* Begin flattening the iFrom-th entry of the FROM clause
4007   ** in the outer query.
4008   */
4009   pSub = pSub1 = pSubitem->pSelect;
4010 
4011   /* Delete the transient table structure associated with the
4012   ** subquery
4013   */
4014   sqlite3DbFree(db, pSubitem->zDatabase);
4015   sqlite3DbFree(db, pSubitem->zName);
4016   sqlite3DbFree(db, pSubitem->zAlias);
4017   pSubitem->zDatabase = 0;
4018   pSubitem->zName = 0;
4019   pSubitem->zAlias = 0;
4020   pSubitem->pSelect = 0;
4021 
4022   /* Defer deleting the Table object associated with the
4023   ** subquery until code generation is
4024   ** complete, since there may still exist Expr.pTab entries that
4025   ** refer to the subquery even after flattening.  Ticket #3346.
4026   **
4027   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4028   */
4029   if( ALWAYS(pSubitem->pTab!=0) ){
4030     Table *pTabToDel = pSubitem->pTab;
4031     if( pTabToDel->nTabRef==1 ){
4032       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4033       pTabToDel->pNextZombie = pToplevel->pZombieTab;
4034       pToplevel->pZombieTab = pTabToDel;
4035     }else{
4036       pTabToDel->nTabRef--;
4037     }
4038     pSubitem->pTab = 0;
4039   }
4040 
4041   /* The following loop runs once for each term in a compound-subquery
4042   ** flattening (as described above).  If we are doing a different kind
4043   ** of flattening - a flattening other than a compound-subquery flattening -
4044   ** then this loop only runs once.
4045   **
4046   ** This loop moves all of the FROM elements of the subquery into the
4047   ** the FROM clause of the outer query.  Before doing this, remember
4048   ** the cursor number for the original outer query FROM element in
4049   ** iParent.  The iParent cursor will never be used.  Subsequent code
4050   ** will scan expressions looking for iParent references and replace
4051   ** those references with expressions that resolve to the subquery FROM
4052   ** elements we are now copying in.
4053   */
4054   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4055     int nSubSrc;
4056     u8 jointype = 0;
4057     assert( pSub!=0 );
4058     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4059     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4060     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4061 
4062     if( pSrc ){
4063       assert( pParent==p );  /* First time through the loop */
4064       jointype = pSubitem->fg.jointype;
4065     }else{
4066       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
4067       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
4068       if( pSrc==0 ) break;
4069       pParent->pSrc = pSrc;
4070     }
4071 
4072     /* The subquery uses a single slot of the FROM clause of the outer
4073     ** query.  If the subquery has more than one element in its FROM clause,
4074     ** then expand the outer query to make space for it to hold all elements
4075     ** of the subquery.
4076     **
4077     ** Example:
4078     **
4079     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4080     **
4081     ** The outer query has 3 slots in its FROM clause.  One slot of the
4082     ** outer query (the middle slot) is used by the subquery.  The next
4083     ** block of code will expand the outer query FROM clause to 4 slots.
4084     ** The middle slot is expanded to two slots in order to make space
4085     ** for the two elements in the FROM clause of the subquery.
4086     */
4087     if( nSubSrc>1 ){
4088       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4089       if( pSrc==0 ) break;
4090       pParent->pSrc = pSrc;
4091     }
4092 
4093     /* Transfer the FROM clause terms from the subquery into the
4094     ** outer query.
4095     */
4096     for(i=0; i<nSubSrc; i++){
4097       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4098       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4099       pSrc->a[i+iFrom] = pSubSrc->a[i];
4100       iNewParent = pSubSrc->a[i].iCursor;
4101       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4102     }
4103     pSrc->a[iFrom].fg.jointype = jointype;
4104 
4105     /* Now begin substituting subquery result set expressions for
4106     ** references to the iParent in the outer query.
4107     **
4108     ** Example:
4109     **
4110     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4111     **   \                     \_____________ subquery __________/          /
4112     **    \_____________________ outer query ______________________________/
4113     **
4114     ** We look at every expression in the outer query and every place we see
4115     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4116     */
4117     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4118       /* At this point, any non-zero iOrderByCol values indicate that the
4119       ** ORDER BY column expression is identical to the iOrderByCol'th
4120       ** expression returned by SELECT statement pSub. Since these values
4121       ** do not necessarily correspond to columns in SELECT statement pParent,
4122       ** zero them before transfering the ORDER BY clause.
4123       **
4124       ** Not doing this may cause an error if a subsequent call to this
4125       ** function attempts to flatten a compound sub-query into pParent
4126       ** (the only way this can happen is if the compound sub-query is
4127       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4128       ExprList *pOrderBy = pSub->pOrderBy;
4129       for(i=0; i<pOrderBy->nExpr; i++){
4130         pOrderBy->a[i].u.x.iOrderByCol = 0;
4131       }
4132       assert( pParent->pOrderBy==0 );
4133       pParent->pOrderBy = pOrderBy;
4134       pSub->pOrderBy = 0;
4135     }
4136     pWhere = pSub->pWhere;
4137     pSub->pWhere = 0;
4138     if( isLeftJoin>0 ){
4139       sqlite3SetJoinExpr(pWhere, iNewParent);
4140     }
4141     if( pWhere ){
4142       if( pParent->pWhere ){
4143         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4144       }else{
4145         pParent->pWhere = pWhere;
4146       }
4147     }
4148     if( db->mallocFailed==0 ){
4149       SubstContext x;
4150       x.pParse = pParse;
4151       x.iTable = iParent;
4152       x.iNewTable = iNewParent;
4153       x.isLeftJoin = isLeftJoin;
4154       x.pEList = pSub->pEList;
4155       substSelect(&x, pParent, 0);
4156     }
4157 
4158     /* The flattened query is a compound if either the inner or the
4159     ** outer query is a compound. */
4160     pParent->selFlags |= pSub->selFlags & SF_Compound;
4161     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4162 
4163     /*
4164     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4165     **
4166     ** One is tempted to try to add a and b to combine the limits.  But this
4167     ** does not work if either limit is negative.
4168     */
4169     if( pSub->pLimit ){
4170       pParent->pLimit = pSub->pLimit;
4171       pSub->pLimit = 0;
4172     }
4173 
4174     /* Recompute the SrcList_item.colUsed masks for the flattened
4175     ** tables. */
4176     for(i=0; i<nSubSrc; i++){
4177       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4178     }
4179   }
4180 
4181   /* Finially, delete what is left of the subquery and return
4182   ** success.
4183   */
4184   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4185   sqlite3WalkSelect(&w,pSub1);
4186   sqlite3SelectDelete(db, pSub1);
4187 
4188 #if SELECTTRACE_ENABLED
4189   if( sqlite3_unsupported_selecttrace & 0x100 ){
4190     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4191     sqlite3TreeViewSelect(0, p, 0);
4192   }
4193 #endif
4194 
4195   return 1;
4196 }
4197 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4198 
4199 /*
4200 ** A structure to keep track of all of the column values that are fixed to
4201 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4202 */
4203 typedef struct WhereConst WhereConst;
4204 struct WhereConst {
4205   Parse *pParse;   /* Parsing context */
4206   int nConst;      /* Number for COLUMN=CONSTANT terms */
4207   int nChng;       /* Number of times a constant is propagated */
4208   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4209 };
4210 
4211 /*
4212 ** Add a new entry to the pConst object.  Except, do not add duplicate
4213 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4214 **
4215 ** The caller guarantees the pColumn is a column and pValue is a constant.
4216 ** This routine has to do some additional checks before completing the
4217 ** insert.
4218 */
4219 static void constInsert(
4220   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4221   Expr *pColumn,       /* The COLUMN part of the constraint */
4222   Expr *pValue,        /* The VALUE part of the constraint */
4223   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4224 ){
4225   int i;
4226   assert( pColumn->op==TK_COLUMN );
4227   assert( sqlite3ExprIsConstant(pValue) );
4228 
4229   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4230   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4231   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4232     return;
4233   }
4234 
4235   /* 2018-10-25 ticket [cf5ed20f]
4236   ** Make sure the same pColumn is not inserted more than once */
4237   for(i=0; i<pConst->nConst; i++){
4238     const Expr *pE2 = pConst->apExpr[i*2];
4239     assert( pE2->op==TK_COLUMN );
4240     if( pE2->iTable==pColumn->iTable
4241      && pE2->iColumn==pColumn->iColumn
4242     ){
4243       return;  /* Already present.  Return without doing anything. */
4244     }
4245   }
4246 
4247   pConst->nConst++;
4248   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4249                          pConst->nConst*2*sizeof(Expr*));
4250   if( pConst->apExpr==0 ){
4251     pConst->nConst = 0;
4252   }else{
4253     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4254     pConst->apExpr[pConst->nConst*2-1] = pValue;
4255   }
4256 }
4257 
4258 /*
4259 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4260 ** is a constant expression and where the term must be true because it
4261 ** is part of the AND-connected terms of the expression.  For each term
4262 ** found, add it to the pConst structure.
4263 */
4264 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4265   Expr *pRight, *pLeft;
4266   if( pExpr==0 ) return;
4267   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4268   if( pExpr->op==TK_AND ){
4269     findConstInWhere(pConst, pExpr->pRight);
4270     findConstInWhere(pConst, pExpr->pLeft);
4271     return;
4272   }
4273   if( pExpr->op!=TK_EQ ) return;
4274   pRight = pExpr->pRight;
4275   pLeft = pExpr->pLeft;
4276   assert( pRight!=0 );
4277   assert( pLeft!=0 );
4278   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4279     constInsert(pConst,pRight,pLeft,pExpr);
4280   }
4281   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4282     constInsert(pConst,pLeft,pRight,pExpr);
4283   }
4284 }
4285 
4286 /*
4287 ** This is a Walker expression callback.  pExpr is a candidate expression
4288 ** to be replaced by a value.  If pExpr is equivalent to one of the
4289 ** columns named in pWalker->u.pConst, then overwrite it with its
4290 ** corresponding value.
4291 */
4292 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4293   int i;
4294   WhereConst *pConst;
4295   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4296   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4297     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4298     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4299     return WRC_Continue;
4300   }
4301   pConst = pWalker->u.pConst;
4302   for(i=0; i<pConst->nConst; i++){
4303     Expr *pColumn = pConst->apExpr[i*2];
4304     if( pColumn==pExpr ) continue;
4305     if( pColumn->iTable!=pExpr->iTable ) continue;
4306     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4307     /* A match is found.  Add the EP_FixedCol property */
4308     pConst->nChng++;
4309     ExprClearProperty(pExpr, EP_Leaf);
4310     ExprSetProperty(pExpr, EP_FixedCol);
4311     assert( pExpr->pLeft==0 );
4312     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4313     break;
4314   }
4315   return WRC_Prune;
4316 }
4317 
4318 /*
4319 ** The WHERE-clause constant propagation optimization.
4320 **
4321 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4322 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4323 ** part of a ON clause from a LEFT JOIN, then throughout the query
4324 ** replace all other occurrences of COLUMN with CONSTANT.
4325 **
4326 ** For example, the query:
4327 **
4328 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4329 **
4330 ** Is transformed into
4331 **
4332 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4333 **
4334 ** Return true if any transformations where made and false if not.
4335 **
4336 ** Implementation note:  Constant propagation is tricky due to affinity
4337 ** and collating sequence interactions.  Consider this example:
4338 **
4339 **    CREATE TABLE t1(a INT,b TEXT);
4340 **    INSERT INTO t1 VALUES(123,'0123');
4341 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4342 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4343 **
4344 ** The two SELECT statements above should return different answers.  b=a
4345 ** is alway true because the comparison uses numeric affinity, but b=123
4346 ** is false because it uses text affinity and '0123' is not the same as '123'.
4347 ** To work around this, the expression tree is not actually changed from
4348 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4349 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4350 ** routines know to generate the constant "123" instead of looking up the
4351 ** column value.  Also, to avoid collation problems, this optimization is
4352 ** only attempted if the "a=123" term uses the default BINARY collation.
4353 */
4354 static int propagateConstants(
4355   Parse *pParse,   /* The parsing context */
4356   Select *p        /* The query in which to propagate constants */
4357 ){
4358   WhereConst x;
4359   Walker w;
4360   int nChng = 0;
4361   x.pParse = pParse;
4362   do{
4363     x.nConst = 0;
4364     x.nChng = 0;
4365     x.apExpr = 0;
4366     findConstInWhere(&x, p->pWhere);
4367     if( x.nConst ){
4368       memset(&w, 0, sizeof(w));
4369       w.pParse = pParse;
4370       w.xExprCallback = propagateConstantExprRewrite;
4371       w.xSelectCallback = sqlite3SelectWalkNoop;
4372       w.xSelectCallback2 = 0;
4373       w.walkerDepth = 0;
4374       w.u.pConst = &x;
4375       sqlite3WalkExpr(&w, p->pWhere);
4376       sqlite3DbFree(x.pParse->db, x.apExpr);
4377       nChng += x.nChng;
4378     }
4379   }while( x.nChng );
4380   return nChng;
4381 }
4382 
4383 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4384 /*
4385 ** Make copies of relevant WHERE clause terms of the outer query into
4386 ** the WHERE clause of subquery.  Example:
4387 **
4388 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4389 **
4390 ** Transformed into:
4391 **
4392 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4393 **     WHERE x=5 AND y=10;
4394 **
4395 ** The hope is that the terms added to the inner query will make it more
4396 ** efficient.
4397 **
4398 ** Do not attempt this optimization if:
4399 **
4400 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4401 **           disallow this optimization for aggregate subqueries, but now
4402 **           it is allowed by putting the extra terms on the HAVING clause.
4403 **           The added HAVING clause is pointless if the subquery lacks
4404 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4405 **           so there does not appear to be any reason to add extra logic
4406 **           to suppress it. **)
4407 **
4408 **   (2) The inner query is the recursive part of a common table expression.
4409 **
4410 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4411 **       clause would change the meaning of the LIMIT).
4412 **
4413 **   (4) The inner query is the right operand of a LEFT JOIN and the
4414 **       expression to be pushed down does not come from the ON clause
4415 **       on that LEFT JOIN.
4416 **
4417 **   (5) The WHERE clause expression originates in the ON or USING clause
4418 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4419 **       left join.  An example:
4420 **
4421 **           SELECT *
4422 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4423 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4424 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4425 **
4426 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4427 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4428 **       then the (1,1,NULL) row would be suppressed.
4429 **
4430 **   (6) The inner query features one or more window-functions (since
4431 **       changes to the WHERE clause of the inner query could change the
4432 **       window over which window functions are calculated).
4433 **
4434 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4435 ** terms are duplicated into the subquery.
4436 */
4437 static int pushDownWhereTerms(
4438   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4439   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4440   Expr *pWhere,         /* The WHERE clause of the outer query */
4441   int iCursor,          /* Cursor number of the subquery */
4442   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4443 ){
4444   Expr *pNew;
4445   int nChng = 0;
4446   Select *pSel;
4447   if( pWhere==0 ) return 0;
4448   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4449 
4450 #ifndef SQLITE_OMIT_WINDOWFUNC
4451   for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4452     if( pSel->pWin ) return 0;    /* restriction (6) */
4453   }
4454 #endif
4455 
4456 #ifdef SQLITE_DEBUG
4457   /* Only the first term of a compound can have a WITH clause.  But make
4458   ** sure no other terms are marked SF_Recursive in case something changes
4459   ** in the future.
4460   */
4461   {
4462     Select *pX;
4463     for(pX=pSubq; pX; pX=pX->pPrior){
4464       assert( (pX->selFlags & (SF_Recursive))==0 );
4465     }
4466   }
4467 #endif
4468 
4469   if( pSubq->pLimit!=0 ){
4470     return 0; /* restriction (3) */
4471   }
4472   while( pWhere->op==TK_AND ){
4473     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4474                                 iCursor, isLeftJoin);
4475     pWhere = pWhere->pLeft;
4476   }
4477   if( isLeftJoin
4478    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4479          || pWhere->iRightJoinTable!=iCursor)
4480   ){
4481     return 0; /* restriction (4) */
4482   }
4483   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4484     return 0; /* restriction (5) */
4485   }
4486   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4487     nChng++;
4488     while( pSubq ){
4489       SubstContext x;
4490       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4491       unsetJoinExpr(pNew, -1);
4492       x.pParse = pParse;
4493       x.iTable = iCursor;
4494       x.iNewTable = iCursor;
4495       x.isLeftJoin = 0;
4496       x.pEList = pSubq->pEList;
4497       pNew = substExpr(&x, pNew);
4498       if( pSubq->selFlags & SF_Aggregate ){
4499         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4500       }else{
4501         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4502       }
4503       pSubq = pSubq->pPrior;
4504     }
4505   }
4506   return nChng;
4507 }
4508 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4509 
4510 /*
4511 ** The pFunc is the only aggregate function in the query.  Check to see
4512 ** if the query is a candidate for the min/max optimization.
4513 **
4514 ** If the query is a candidate for the min/max optimization, then set
4515 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4516 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4517 ** whether pFunc is a min() or max() function.
4518 **
4519 ** If the query is not a candidate for the min/max optimization, return
4520 ** WHERE_ORDERBY_NORMAL (which must be zero).
4521 **
4522 ** This routine must be called after aggregate functions have been
4523 ** located but before their arguments have been subjected to aggregate
4524 ** analysis.
4525 */
4526 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4527   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4528   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4529   const char *zFunc;                    /* Name of aggregate function pFunc */
4530   ExprList *pOrderBy;
4531   u8 sortFlags = 0;
4532 
4533   assert( *ppMinMax==0 );
4534   assert( pFunc->op==TK_AGG_FUNCTION );
4535   assert( !IsWindowFunc(pFunc) );
4536   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4537     return eRet;
4538   }
4539   zFunc = pFunc->u.zToken;
4540   if( sqlite3StrICmp(zFunc, "min")==0 ){
4541     eRet = WHERE_ORDERBY_MIN;
4542     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4543       sortFlags = KEYINFO_ORDER_BIGNULL;
4544     }
4545   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4546     eRet = WHERE_ORDERBY_MAX;
4547     sortFlags = KEYINFO_ORDER_DESC;
4548   }else{
4549     return eRet;
4550   }
4551   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4552   assert( pOrderBy!=0 || db->mallocFailed );
4553   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4554   return eRet;
4555 }
4556 
4557 /*
4558 ** The select statement passed as the first argument is an aggregate query.
4559 ** The second argument is the associated aggregate-info object. This
4560 ** function tests if the SELECT is of the form:
4561 **
4562 **   SELECT count(*) FROM <tbl>
4563 **
4564 ** where table is a database table, not a sub-select or view. If the query
4565 ** does match this pattern, then a pointer to the Table object representing
4566 ** <tbl> is returned. Otherwise, 0 is returned.
4567 */
4568 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4569   Table *pTab;
4570   Expr *pExpr;
4571 
4572   assert( !p->pGroupBy );
4573 
4574   if( p->pWhere || p->pEList->nExpr!=1
4575    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4576   ){
4577     return 0;
4578   }
4579   pTab = p->pSrc->a[0].pTab;
4580   pExpr = p->pEList->a[0].pExpr;
4581   assert( pTab && !pTab->pSelect && pExpr );
4582 
4583   if( IsVirtual(pTab) ) return 0;
4584   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4585   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4586   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4587   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4588 
4589   return pTab;
4590 }
4591 
4592 /*
4593 ** If the source-list item passed as an argument was augmented with an
4594 ** INDEXED BY clause, then try to locate the specified index. If there
4595 ** was such a clause and the named index cannot be found, return
4596 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4597 ** pFrom->pIndex and return SQLITE_OK.
4598 */
4599 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4600   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4601     Table *pTab = pFrom->pTab;
4602     char *zIndexedBy = pFrom->u1.zIndexedBy;
4603     Index *pIdx;
4604     for(pIdx=pTab->pIndex;
4605         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4606         pIdx=pIdx->pNext
4607     );
4608     if( !pIdx ){
4609       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4610       pParse->checkSchema = 1;
4611       return SQLITE_ERROR;
4612     }
4613     pFrom->pIBIndex = pIdx;
4614   }
4615   return SQLITE_OK;
4616 }
4617 /*
4618 ** Detect compound SELECT statements that use an ORDER BY clause with
4619 ** an alternative collating sequence.
4620 **
4621 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4622 **
4623 ** These are rewritten as a subquery:
4624 **
4625 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4626 **     ORDER BY ... COLLATE ...
4627 **
4628 ** This transformation is necessary because the multiSelectOrderBy() routine
4629 ** above that generates the code for a compound SELECT with an ORDER BY clause
4630 ** uses a merge algorithm that requires the same collating sequence on the
4631 ** result columns as on the ORDER BY clause.  See ticket
4632 ** http://www.sqlite.org/src/info/6709574d2a
4633 **
4634 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4635 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4636 ** there are COLLATE terms in the ORDER BY.
4637 */
4638 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4639   int i;
4640   Select *pNew;
4641   Select *pX;
4642   sqlite3 *db;
4643   struct ExprList_item *a;
4644   SrcList *pNewSrc;
4645   Parse *pParse;
4646   Token dummy;
4647 
4648   if( p->pPrior==0 ) return WRC_Continue;
4649   if( p->pOrderBy==0 ) return WRC_Continue;
4650   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4651   if( pX==0 ) return WRC_Continue;
4652   a = p->pOrderBy->a;
4653 #ifndef SQLITE_OMIT_WINDOWFUNC
4654   /* If iOrderByCol is already non-zero, then it has already been matched
4655   ** to a result column of the SELECT statement. This occurs when the
4656   ** SELECT is rewritten for window-functions processing and then passed
4657   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4658   ** by this function is not required in this case. */
4659   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
4660 #endif
4661   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4662     if( a[i].pExpr->flags & EP_Collate ) break;
4663   }
4664   if( i<0 ) return WRC_Continue;
4665 
4666   /* If we reach this point, that means the transformation is required. */
4667 
4668   pParse = pWalker->pParse;
4669   db = pParse->db;
4670   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4671   if( pNew==0 ) return WRC_Abort;
4672   memset(&dummy, 0, sizeof(dummy));
4673   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4674   if( pNewSrc==0 ) return WRC_Abort;
4675   *pNew = *p;
4676   p->pSrc = pNewSrc;
4677   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4678   p->op = TK_SELECT;
4679   p->pWhere = 0;
4680   pNew->pGroupBy = 0;
4681   pNew->pHaving = 0;
4682   pNew->pOrderBy = 0;
4683   p->pPrior = 0;
4684   p->pNext = 0;
4685   p->pWith = 0;
4686 #ifndef SQLITE_OMIT_WINDOWFUNC
4687   p->pWinDefn = 0;
4688 #endif
4689   p->selFlags &= ~SF_Compound;
4690   assert( (p->selFlags & SF_Converted)==0 );
4691   p->selFlags |= SF_Converted;
4692   assert( pNew->pPrior!=0 );
4693   pNew->pPrior->pNext = pNew;
4694   pNew->pLimit = 0;
4695   return WRC_Continue;
4696 }
4697 
4698 /*
4699 ** Check to see if the FROM clause term pFrom has table-valued function
4700 ** arguments.  If it does, leave an error message in pParse and return
4701 ** non-zero, since pFrom is not allowed to be a table-valued function.
4702 */
4703 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4704   if( pFrom->fg.isTabFunc ){
4705     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4706     return 1;
4707   }
4708   return 0;
4709 }
4710 
4711 #ifndef SQLITE_OMIT_CTE
4712 /*
4713 ** Argument pWith (which may be NULL) points to a linked list of nested
4714 ** WITH contexts, from inner to outermost. If the table identified by
4715 ** FROM clause element pItem is really a common-table-expression (CTE)
4716 ** then return a pointer to the CTE definition for that table. Otherwise
4717 ** return NULL.
4718 **
4719 ** If a non-NULL value is returned, set *ppContext to point to the With
4720 ** object that the returned CTE belongs to.
4721 */
4722 static struct Cte *searchWith(
4723   With *pWith,                    /* Current innermost WITH clause */
4724   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4725   With **ppContext                /* OUT: WITH clause return value belongs to */
4726 ){
4727   const char *zName;
4728   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4729     With *p;
4730     for(p=pWith; p; p=p->pOuter){
4731       int i;
4732       for(i=0; i<p->nCte; i++){
4733         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4734           *ppContext = p;
4735           return &p->a[i];
4736         }
4737       }
4738     }
4739   }
4740   return 0;
4741 }
4742 
4743 /* The code generator maintains a stack of active WITH clauses
4744 ** with the inner-most WITH clause being at the top of the stack.
4745 **
4746 ** This routine pushes the WITH clause passed as the second argument
4747 ** onto the top of the stack. If argument bFree is true, then this
4748 ** WITH clause will never be popped from the stack. In this case it
4749 ** should be freed along with the Parse object. In other cases, when
4750 ** bFree==0, the With object will be freed along with the SELECT
4751 ** statement with which it is associated.
4752 */
4753 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4754   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4755   if( pWith ){
4756     assert( pParse->pWith!=pWith );
4757     pWith->pOuter = pParse->pWith;
4758     pParse->pWith = pWith;
4759     if( bFree ) pParse->pWithToFree = pWith;
4760   }
4761 }
4762 
4763 /*
4764 ** This function checks if argument pFrom refers to a CTE declared by
4765 ** a WITH clause on the stack currently maintained by the parser. And,
4766 ** if currently processing a CTE expression, if it is a recursive
4767 ** reference to the current CTE.
4768 **
4769 ** If pFrom falls into either of the two categories above, pFrom->pTab
4770 ** and other fields are populated accordingly. The caller should check
4771 ** (pFrom->pTab!=0) to determine whether or not a successful match
4772 ** was found.
4773 **
4774 ** Whether or not a match is found, SQLITE_OK is returned if no error
4775 ** occurs. If an error does occur, an error message is stored in the
4776 ** parser and some error code other than SQLITE_OK returned.
4777 */
4778 static int withExpand(
4779   Walker *pWalker,
4780   struct SrcList_item *pFrom
4781 ){
4782   Parse *pParse = pWalker->pParse;
4783   sqlite3 *db = pParse->db;
4784   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4785   With *pWith;                    /* WITH clause that pCte belongs to */
4786 
4787   assert( pFrom->pTab==0 );
4788   if( pParse->nErr ){
4789     return SQLITE_ERROR;
4790   }
4791 
4792   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4793   if( pCte ){
4794     Table *pTab;
4795     ExprList *pEList;
4796     Select *pSel;
4797     Select *pLeft;                /* Left-most SELECT statement */
4798     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4799     With *pSavedWith;             /* Initial value of pParse->pWith */
4800 
4801     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4802     ** recursive reference to CTE pCte. Leave an error in pParse and return
4803     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4804     ** In this case, proceed.  */
4805     if( pCte->zCteErr ){
4806       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4807       return SQLITE_ERROR;
4808     }
4809     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4810 
4811     assert( pFrom->pTab==0 );
4812     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4813     if( pTab==0 ) return WRC_Abort;
4814     pTab->nTabRef = 1;
4815     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4816     pTab->iPKey = -1;
4817     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4818     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4819     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4820     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4821     assert( pFrom->pSelect );
4822 
4823     /* Check if this is a recursive CTE. */
4824     pSel = pFrom->pSelect;
4825     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4826     if( bMayRecursive ){
4827       int i;
4828       SrcList *pSrc = pFrom->pSelect->pSrc;
4829       for(i=0; i<pSrc->nSrc; i++){
4830         struct SrcList_item *pItem = &pSrc->a[i];
4831         if( pItem->zDatabase==0
4832          && pItem->zName!=0
4833          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4834           ){
4835           pItem->pTab = pTab;
4836           pItem->fg.isRecursive = 1;
4837           pTab->nTabRef++;
4838           pSel->selFlags |= SF_Recursive;
4839         }
4840       }
4841     }
4842 
4843     /* Only one recursive reference is permitted. */
4844     if( pTab->nTabRef>2 ){
4845       sqlite3ErrorMsg(
4846           pParse, "multiple references to recursive table: %s", pCte->zName
4847       );
4848       return SQLITE_ERROR;
4849     }
4850     assert( pTab->nTabRef==1 ||
4851             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4852 
4853     pCte->zCteErr = "circular reference: %s";
4854     pSavedWith = pParse->pWith;
4855     pParse->pWith = pWith;
4856     if( bMayRecursive ){
4857       Select *pPrior = pSel->pPrior;
4858       assert( pPrior->pWith==0 );
4859       pPrior->pWith = pSel->pWith;
4860       sqlite3WalkSelect(pWalker, pPrior);
4861       pPrior->pWith = 0;
4862     }else{
4863       sqlite3WalkSelect(pWalker, pSel);
4864     }
4865     pParse->pWith = pWith;
4866 
4867     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4868     pEList = pLeft->pEList;
4869     if( pCte->pCols ){
4870       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4871         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4872             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4873         );
4874         pParse->pWith = pSavedWith;
4875         return SQLITE_ERROR;
4876       }
4877       pEList = pCte->pCols;
4878     }
4879 
4880     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4881     if( bMayRecursive ){
4882       if( pSel->selFlags & SF_Recursive ){
4883         pCte->zCteErr = "multiple recursive references: %s";
4884       }else{
4885         pCte->zCteErr = "recursive reference in a subquery: %s";
4886       }
4887       sqlite3WalkSelect(pWalker, pSel);
4888     }
4889     pCte->zCteErr = 0;
4890     pParse->pWith = pSavedWith;
4891   }
4892 
4893   return SQLITE_OK;
4894 }
4895 #endif
4896 
4897 #ifndef SQLITE_OMIT_CTE
4898 /*
4899 ** If the SELECT passed as the second argument has an associated WITH
4900 ** clause, pop it from the stack stored as part of the Parse object.
4901 **
4902 ** This function is used as the xSelectCallback2() callback by
4903 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4904 ** names and other FROM clause elements.
4905 */
4906 static void selectPopWith(Walker *pWalker, Select *p){
4907   Parse *pParse = pWalker->pParse;
4908   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4909     With *pWith = findRightmost(p)->pWith;
4910     if( pWith!=0 ){
4911       assert( pParse->pWith==pWith || pParse->nErr );
4912       pParse->pWith = pWith->pOuter;
4913     }
4914   }
4915 }
4916 #else
4917 #define selectPopWith 0
4918 #endif
4919 
4920 /*
4921 ** The SrcList_item structure passed as the second argument represents a
4922 ** sub-query in the FROM clause of a SELECT statement. This function
4923 ** allocates and populates the SrcList_item.pTab object. If successful,
4924 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4925 ** SQLITE_NOMEM.
4926 */
4927 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4928   Select *pSel = pFrom->pSelect;
4929   Table *pTab;
4930 
4931   assert( pSel );
4932   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4933   if( pTab==0 ) return SQLITE_NOMEM;
4934   pTab->nTabRef = 1;
4935   if( pFrom->zAlias ){
4936     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4937   }else{
4938     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4939   }
4940   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4941   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4942   pTab->iPKey = -1;
4943   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4944   pTab->tabFlags |= TF_Ephemeral;
4945 
4946   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4947 }
4948 
4949 /*
4950 ** This routine is a Walker callback for "expanding" a SELECT statement.
4951 ** "Expanding" means to do the following:
4952 **
4953 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4954 **         element of the FROM clause.
4955 **
4956 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4957 **         defines FROM clause.  When views appear in the FROM clause,
4958 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4959 **         that implements the view.  A copy is made of the view's SELECT
4960 **         statement so that we can freely modify or delete that statement
4961 **         without worrying about messing up the persistent representation
4962 **         of the view.
4963 **
4964 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4965 **         on joins and the ON and USING clause of joins.
4966 **
4967 **    (4)  Scan the list of columns in the result set (pEList) looking
4968 **         for instances of the "*" operator or the TABLE.* operator.
4969 **         If found, expand each "*" to be every column in every table
4970 **         and TABLE.* to be every column in TABLE.
4971 **
4972 */
4973 static int selectExpander(Walker *pWalker, Select *p){
4974   Parse *pParse = pWalker->pParse;
4975   int i, j, k;
4976   SrcList *pTabList;
4977   ExprList *pEList;
4978   struct SrcList_item *pFrom;
4979   sqlite3 *db = pParse->db;
4980   Expr *pE, *pRight, *pExpr;
4981   u16 selFlags = p->selFlags;
4982   u32 elistFlags = 0;
4983 
4984   p->selFlags |= SF_Expanded;
4985   if( db->mallocFailed  ){
4986     return WRC_Abort;
4987   }
4988   assert( p->pSrc!=0 );
4989   if( (selFlags & SF_Expanded)!=0 ){
4990     return WRC_Prune;
4991   }
4992   if( pWalker->eCode ){
4993     /* Renumber selId because it has been copied from a view */
4994     p->selId = ++pParse->nSelect;
4995   }
4996   pTabList = p->pSrc;
4997   pEList = p->pEList;
4998   sqlite3WithPush(pParse, p->pWith, 0);
4999 
5000   /* Make sure cursor numbers have been assigned to all entries in
5001   ** the FROM clause of the SELECT statement.
5002   */
5003   sqlite3SrcListAssignCursors(pParse, pTabList);
5004 
5005   /* Look up every table named in the FROM clause of the select.  If
5006   ** an entry of the FROM clause is a subquery instead of a table or view,
5007   ** then create a transient table structure to describe the subquery.
5008   */
5009   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5010     Table *pTab;
5011     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5012     if( pFrom->pTab ) continue;
5013     assert( pFrom->fg.isRecursive==0 );
5014 #ifndef SQLITE_OMIT_CTE
5015     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
5016     if( pFrom->pTab ) {} else
5017 #endif
5018     if( pFrom->zName==0 ){
5019 #ifndef SQLITE_OMIT_SUBQUERY
5020       Select *pSel = pFrom->pSelect;
5021       /* A sub-query in the FROM clause of a SELECT */
5022       assert( pSel!=0 );
5023       assert( pFrom->pTab==0 );
5024       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5025       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5026 #endif
5027     }else{
5028       /* An ordinary table or view name in the FROM clause */
5029       assert( pFrom->pTab==0 );
5030       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5031       if( pTab==0 ) return WRC_Abort;
5032       if( pTab->nTabRef>=0xffff ){
5033         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5034            pTab->zName);
5035         pFrom->pTab = 0;
5036         return WRC_Abort;
5037       }
5038       pTab->nTabRef++;
5039       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5040         return WRC_Abort;
5041       }
5042 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5043       if( IsVirtual(pTab) || pTab->pSelect ){
5044         i16 nCol;
5045         u8 eCodeOrig = pWalker->eCode;
5046         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5047         assert( pFrom->pSelect==0 );
5048         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
5049           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5050             pTab->zName);
5051         }
5052 #ifndef SQLITE_OMIT_VIRTUALTABLE
5053         if( IsVirtual(pTab)
5054          && pFrom->fg.fromDDL
5055          && ALWAYS(pTab->pVTable!=0)
5056          && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5057         ){
5058           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5059                                   pTab->zName);
5060         }
5061 #endif
5062         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5063         nCol = pTab->nCol;
5064         pTab->nCol = -1;
5065         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5066         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5067         pWalker->eCode = eCodeOrig;
5068         pTab->nCol = nCol;
5069       }
5070 #endif
5071     }
5072 
5073     /* Locate the index named by the INDEXED BY clause, if any. */
5074     if( sqlite3IndexedByLookup(pParse, pFrom) ){
5075       return WRC_Abort;
5076     }
5077   }
5078 
5079   /* Process NATURAL keywords, and ON and USING clauses of joins.
5080   */
5081   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5082     return WRC_Abort;
5083   }
5084 
5085   /* For every "*" that occurs in the column list, insert the names of
5086   ** all columns in all tables.  And for every TABLE.* insert the names
5087   ** of all columns in TABLE.  The parser inserted a special expression
5088   ** with the TK_ASTERISK operator for each "*" that it found in the column
5089   ** list.  The following code just has to locate the TK_ASTERISK
5090   ** expressions and expand each one to the list of all columns in
5091   ** all tables.
5092   **
5093   ** The first loop just checks to see if there are any "*" operators
5094   ** that need expanding.
5095   */
5096   for(k=0; k<pEList->nExpr; k++){
5097     pE = pEList->a[k].pExpr;
5098     if( pE->op==TK_ASTERISK ) break;
5099     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5100     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5101     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5102     elistFlags |= pE->flags;
5103   }
5104   if( k<pEList->nExpr ){
5105     /*
5106     ** If we get here it means the result set contains one or more "*"
5107     ** operators that need to be expanded.  Loop through each expression
5108     ** in the result set and expand them one by one.
5109     */
5110     struct ExprList_item *a = pEList->a;
5111     ExprList *pNew = 0;
5112     int flags = pParse->db->flags;
5113     int longNames = (flags & SQLITE_FullColNames)!=0
5114                       && (flags & SQLITE_ShortColNames)==0;
5115 
5116     for(k=0; k<pEList->nExpr; k++){
5117       pE = a[k].pExpr;
5118       elistFlags |= pE->flags;
5119       pRight = pE->pRight;
5120       assert( pE->op!=TK_DOT || pRight!=0 );
5121       if( pE->op!=TK_ASTERISK
5122        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5123       ){
5124         /* This particular expression does not need to be expanded.
5125         */
5126         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5127         if( pNew ){
5128           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5129           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5130           a[k].zEName = 0;
5131         }
5132         a[k].pExpr = 0;
5133       }else{
5134         /* This expression is a "*" or a "TABLE.*" and needs to be
5135         ** expanded. */
5136         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5137         char *zTName = 0;       /* text of name of TABLE */
5138         if( pE->op==TK_DOT ){
5139           assert( pE->pLeft!=0 );
5140           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5141           zTName = pE->pLeft->u.zToken;
5142         }
5143         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5144           Table *pTab = pFrom->pTab;
5145           Select *pSub = pFrom->pSelect;
5146           char *zTabName = pFrom->zAlias;
5147           const char *zSchemaName = 0;
5148           int iDb;
5149           if( zTabName==0 ){
5150             zTabName = pTab->zName;
5151           }
5152           if( db->mallocFailed ) break;
5153           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5154             pSub = 0;
5155             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5156               continue;
5157             }
5158             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5159             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5160           }
5161           for(j=0; j<pTab->nCol; j++){
5162             char *zName = pTab->aCol[j].zName;
5163             char *zColname;  /* The computed column name */
5164             char *zToFree;   /* Malloced string that needs to be freed */
5165             Token sColname;  /* Computed column name as a token */
5166 
5167             assert( zName );
5168             if( zTName && pSub
5169              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5170             ){
5171               continue;
5172             }
5173 
5174             /* If a column is marked as 'hidden', omit it from the expanded
5175             ** result-set list unless the SELECT has the SF_IncludeHidden
5176             ** bit set.
5177             */
5178             if( (p->selFlags & SF_IncludeHidden)==0
5179              && IsHiddenColumn(&pTab->aCol[j])
5180             ){
5181               continue;
5182             }
5183             tableSeen = 1;
5184 
5185             if( i>0 && zTName==0 ){
5186               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5187                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5188               ){
5189                 /* In a NATURAL join, omit the join columns from the
5190                 ** table to the right of the join */
5191                 continue;
5192               }
5193               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5194                 /* In a join with a USING clause, omit columns in the
5195                 ** using clause from the table on the right. */
5196                 continue;
5197               }
5198             }
5199             pRight = sqlite3Expr(db, TK_ID, zName);
5200             zColname = zName;
5201             zToFree = 0;
5202             if( longNames || pTabList->nSrc>1 ){
5203               Expr *pLeft;
5204               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5205               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5206               if( zSchemaName ){
5207                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5208                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5209               }
5210               if( longNames ){
5211                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5212                 zToFree = zColname;
5213               }
5214             }else{
5215               pExpr = pRight;
5216             }
5217             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5218             sqlite3TokenInit(&sColname, zColname);
5219             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5220             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5221               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5222               sqlite3DbFree(db, pX->zEName);
5223               if( pSub ){
5224                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5225                 testcase( pX->zEName==0 );
5226               }else{
5227                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5228                                            zSchemaName, zTabName, zColname);
5229                 testcase( pX->zEName==0 );
5230               }
5231               pX->eEName = ENAME_TAB;
5232             }
5233             sqlite3DbFree(db, zToFree);
5234           }
5235         }
5236         if( !tableSeen ){
5237           if( zTName ){
5238             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5239           }else{
5240             sqlite3ErrorMsg(pParse, "no tables specified");
5241           }
5242         }
5243       }
5244     }
5245     sqlite3ExprListDelete(db, pEList);
5246     p->pEList = pNew;
5247   }
5248   if( p->pEList ){
5249     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5250       sqlite3ErrorMsg(pParse, "too many columns in result set");
5251       return WRC_Abort;
5252     }
5253     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5254       p->selFlags |= SF_ComplexResult;
5255     }
5256   }
5257   return WRC_Continue;
5258 }
5259 
5260 #if SQLITE_DEBUG
5261 /*
5262 ** Always assert.  This xSelectCallback2 implementation proves that the
5263 ** xSelectCallback2 is never invoked.
5264 */
5265 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5266   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5267   assert( 0 );
5268 }
5269 #endif
5270 /*
5271 ** This routine "expands" a SELECT statement and all of its subqueries.
5272 ** For additional information on what it means to "expand" a SELECT
5273 ** statement, see the comment on the selectExpand worker callback above.
5274 **
5275 ** Expanding a SELECT statement is the first step in processing a
5276 ** SELECT statement.  The SELECT statement must be expanded before
5277 ** name resolution is performed.
5278 **
5279 ** If anything goes wrong, an error message is written into pParse.
5280 ** The calling function can detect the problem by looking at pParse->nErr
5281 ** and/or pParse->db->mallocFailed.
5282 */
5283 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5284   Walker w;
5285   w.xExprCallback = sqlite3ExprWalkNoop;
5286   w.pParse = pParse;
5287   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5288     w.xSelectCallback = convertCompoundSelectToSubquery;
5289     w.xSelectCallback2 = 0;
5290     sqlite3WalkSelect(&w, pSelect);
5291   }
5292   w.xSelectCallback = selectExpander;
5293   w.xSelectCallback2 = selectPopWith;
5294   w.eCode = 0;
5295   sqlite3WalkSelect(&w, pSelect);
5296 }
5297 
5298 
5299 #ifndef SQLITE_OMIT_SUBQUERY
5300 /*
5301 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5302 ** interface.
5303 **
5304 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5305 ** information to the Table structure that represents the result set
5306 ** of that subquery.
5307 **
5308 ** The Table structure that represents the result set was constructed
5309 ** by selectExpander() but the type and collation information was omitted
5310 ** at that point because identifiers had not yet been resolved.  This
5311 ** routine is called after identifier resolution.
5312 */
5313 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5314   Parse *pParse;
5315   int i;
5316   SrcList *pTabList;
5317   struct SrcList_item *pFrom;
5318 
5319   assert( p->selFlags & SF_Resolved );
5320   if( p->selFlags & SF_HasTypeInfo ) return;
5321   p->selFlags |= SF_HasTypeInfo;
5322   pParse = pWalker->pParse;
5323   pTabList = p->pSrc;
5324   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5325     Table *pTab = pFrom->pTab;
5326     assert( pTab!=0 );
5327     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5328       /* A sub-query in the FROM clause of a SELECT */
5329       Select *pSel = pFrom->pSelect;
5330       if( pSel ){
5331         while( pSel->pPrior ) pSel = pSel->pPrior;
5332         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5333                                                SQLITE_AFF_NONE);
5334       }
5335     }
5336   }
5337 }
5338 #endif
5339 
5340 
5341 /*
5342 ** This routine adds datatype and collating sequence information to
5343 ** the Table structures of all FROM-clause subqueries in a
5344 ** SELECT statement.
5345 **
5346 ** Use this routine after name resolution.
5347 */
5348 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5349 #ifndef SQLITE_OMIT_SUBQUERY
5350   Walker w;
5351   w.xSelectCallback = sqlite3SelectWalkNoop;
5352   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5353   w.xExprCallback = sqlite3ExprWalkNoop;
5354   w.pParse = pParse;
5355   sqlite3WalkSelect(&w, pSelect);
5356 #endif
5357 }
5358 
5359 
5360 /*
5361 ** This routine sets up a SELECT statement for processing.  The
5362 ** following is accomplished:
5363 **
5364 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5365 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5366 **     *  ON and USING clauses are shifted into WHERE statements
5367 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5368 **     *  Identifiers in expression are matched to tables.
5369 **
5370 ** This routine acts recursively on all subqueries within the SELECT.
5371 */
5372 void sqlite3SelectPrep(
5373   Parse *pParse,         /* The parser context */
5374   Select *p,             /* The SELECT statement being coded. */
5375   NameContext *pOuterNC  /* Name context for container */
5376 ){
5377   assert( p!=0 || pParse->db->mallocFailed );
5378   if( pParse->db->mallocFailed ) return;
5379   if( p->selFlags & SF_HasTypeInfo ) return;
5380   sqlite3SelectExpand(pParse, p);
5381   if( pParse->nErr || pParse->db->mallocFailed ) return;
5382   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5383   if( pParse->nErr || pParse->db->mallocFailed ) return;
5384   sqlite3SelectAddTypeInfo(pParse, p);
5385 }
5386 
5387 /*
5388 ** Reset the aggregate accumulator.
5389 **
5390 ** The aggregate accumulator is a set of memory cells that hold
5391 ** intermediate results while calculating an aggregate.  This
5392 ** routine generates code that stores NULLs in all of those memory
5393 ** cells.
5394 */
5395 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5396   Vdbe *v = pParse->pVdbe;
5397   int i;
5398   struct AggInfo_func *pFunc;
5399   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5400   if( nReg==0 ) return;
5401   if( pParse->nErr || pParse->db->mallocFailed ) return;
5402 #ifdef SQLITE_DEBUG
5403   /* Verify that all AggInfo registers are within the range specified by
5404   ** AggInfo.mnReg..AggInfo.mxReg */
5405   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5406   for(i=0; i<pAggInfo->nColumn; i++){
5407     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5408          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5409   }
5410   for(i=0; i<pAggInfo->nFunc; i++){
5411     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5412          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5413   }
5414 #endif
5415   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5416   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5417     if( pFunc->iDistinct>=0 ){
5418       Expr *pE = pFunc->pFExpr;
5419       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5420       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5421         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5422            "argument");
5423         pFunc->iDistinct = -1;
5424       }else{
5425         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5426         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5427                           (char*)pKeyInfo, P4_KEYINFO);
5428       }
5429     }
5430   }
5431 }
5432 
5433 /*
5434 ** Invoke the OP_AggFinalize opcode for every aggregate function
5435 ** in the AggInfo structure.
5436 */
5437 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5438   Vdbe *v = pParse->pVdbe;
5439   int i;
5440   struct AggInfo_func *pF;
5441   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5442     ExprList *pList = pF->pFExpr->x.pList;
5443     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5444     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5445     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5446   }
5447 }
5448 
5449 
5450 /*
5451 ** Update the accumulator memory cells for an aggregate based on
5452 ** the current cursor position.
5453 **
5454 ** If regAcc is non-zero and there are no min() or max() aggregates
5455 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5456 ** registers if register regAcc contains 0. The caller will take care
5457 ** of setting and clearing regAcc.
5458 */
5459 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5460   Vdbe *v = pParse->pVdbe;
5461   int i;
5462   int regHit = 0;
5463   int addrHitTest = 0;
5464   struct AggInfo_func *pF;
5465   struct AggInfo_col *pC;
5466 
5467   pAggInfo->directMode = 1;
5468   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5469     int nArg;
5470     int addrNext = 0;
5471     int regAgg;
5472     ExprList *pList = pF->pFExpr->x.pList;
5473     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5474     assert( !IsWindowFunc(pF->pFExpr) );
5475     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5476       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5477       if( pAggInfo->nAccumulator
5478        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5479        && regAcc
5480       ){
5481         /* If regAcc==0, there there exists some min() or max() function
5482         ** without a FILTER clause that will ensure the magnet registers
5483         ** are populated. */
5484         if( regHit==0 ) regHit = ++pParse->nMem;
5485         /* If this is the first row of the group (regAcc contains 0), clear the
5486         ** "magnet" register regHit so that the accumulator registers
5487         ** are populated if the FILTER clause jumps over the the
5488         ** invocation of min() or max() altogether. Or, if this is not
5489         ** the first row (regAcc contains 1), set the magnet register so that
5490         ** the accumulators are not populated unless the min()/max() is invoked
5491         ** and indicates that they should be.  */
5492         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5493       }
5494       addrNext = sqlite3VdbeMakeLabel(pParse);
5495       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5496     }
5497     if( pList ){
5498       nArg = pList->nExpr;
5499       regAgg = sqlite3GetTempRange(pParse, nArg);
5500       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5501     }else{
5502       nArg = 0;
5503       regAgg = 0;
5504     }
5505     if( pF->iDistinct>=0 ){
5506       if( addrNext==0 ){
5507         addrNext = sqlite3VdbeMakeLabel(pParse);
5508       }
5509       testcase( nArg==0 );  /* Error condition */
5510       testcase( nArg>1 );   /* Also an error */
5511       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5512     }
5513     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5514       CollSeq *pColl = 0;
5515       struct ExprList_item *pItem;
5516       int j;
5517       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5518       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5519         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5520       }
5521       if( !pColl ){
5522         pColl = pParse->db->pDfltColl;
5523       }
5524       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5525       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5526     }
5527     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5528     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5529     sqlite3VdbeChangeP5(v, (u8)nArg);
5530     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5531     if( addrNext ){
5532       sqlite3VdbeResolveLabel(v, addrNext);
5533     }
5534   }
5535   if( regHit==0 && pAggInfo->nAccumulator ){
5536     regHit = regAcc;
5537   }
5538   if( regHit ){
5539     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5540   }
5541   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5542     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5543   }
5544 
5545   pAggInfo->directMode = 0;
5546   if( addrHitTest ){
5547     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5548   }
5549 }
5550 
5551 /*
5552 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5553 ** count(*) query ("SELECT count(*) FROM pTab").
5554 */
5555 #ifndef SQLITE_OMIT_EXPLAIN
5556 static void explainSimpleCount(
5557   Parse *pParse,                  /* Parse context */
5558   Table *pTab,                    /* Table being queried */
5559   Index *pIdx                     /* Index used to optimize scan, or NULL */
5560 ){
5561   if( pParse->explain==2 ){
5562     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5563     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5564         pTab->zName,
5565         bCover ? " USING COVERING INDEX " : "",
5566         bCover ? pIdx->zName : ""
5567     );
5568   }
5569 }
5570 #else
5571 # define explainSimpleCount(a,b,c)
5572 #endif
5573 
5574 /*
5575 ** sqlite3WalkExpr() callback used by havingToWhere().
5576 **
5577 ** If the node passed to the callback is a TK_AND node, return
5578 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5579 **
5580 ** Otherwise, return WRC_Prune. In this case, also check if the
5581 ** sub-expression matches the criteria for being moved to the WHERE
5582 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5583 ** within the HAVING expression with a constant "1".
5584 */
5585 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5586   if( pExpr->op!=TK_AND ){
5587     Select *pS = pWalker->u.pSelect;
5588     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5589       sqlite3 *db = pWalker->pParse->db;
5590       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5591       if( pNew ){
5592         Expr *pWhere = pS->pWhere;
5593         SWAP(Expr, *pNew, *pExpr);
5594         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5595         pS->pWhere = pNew;
5596         pWalker->eCode = 1;
5597       }
5598     }
5599     return WRC_Prune;
5600   }
5601   return WRC_Continue;
5602 }
5603 
5604 /*
5605 ** Transfer eligible terms from the HAVING clause of a query, which is
5606 ** processed after grouping, to the WHERE clause, which is processed before
5607 ** grouping. For example, the query:
5608 **
5609 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5610 **
5611 ** can be rewritten as:
5612 **
5613 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5614 **
5615 ** A term of the HAVING expression is eligible for transfer if it consists
5616 ** entirely of constants and expressions that are also GROUP BY terms that
5617 ** use the "BINARY" collation sequence.
5618 */
5619 static void havingToWhere(Parse *pParse, Select *p){
5620   Walker sWalker;
5621   memset(&sWalker, 0, sizeof(sWalker));
5622   sWalker.pParse = pParse;
5623   sWalker.xExprCallback = havingToWhereExprCb;
5624   sWalker.u.pSelect = p;
5625   sqlite3WalkExpr(&sWalker, p->pHaving);
5626 #if SELECTTRACE_ENABLED
5627   if( sWalker.eCode && (sqlite3_unsupported_selecttrace & 0x100)!=0 ){
5628     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5629     sqlite3TreeViewSelect(0, p, 0);
5630   }
5631 #endif
5632 }
5633 
5634 /*
5635 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5636 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5637 ** then return 0.
5638 */
5639 static struct SrcList_item *isSelfJoinView(
5640   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5641   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5642 ){
5643   struct SrcList_item *pItem;
5644   for(pItem = pTabList->a; pItem<pThis; pItem++){
5645     Select *pS1;
5646     if( pItem->pSelect==0 ) continue;
5647     if( pItem->fg.viaCoroutine ) continue;
5648     if( pItem->zName==0 ) continue;
5649     assert( pItem->pTab!=0 );
5650     assert( pThis->pTab!=0 );
5651     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5652     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5653     pS1 = pItem->pSelect;
5654     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5655       /* The query flattener left two different CTE tables with identical
5656       ** names in the same FROM clause. */
5657       continue;
5658     }
5659     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5660      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5661     ){
5662       /* The view was modified by some other optimization such as
5663       ** pushDownWhereTerms() */
5664       continue;
5665     }
5666     return pItem;
5667   }
5668   return 0;
5669 }
5670 
5671 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5672 /*
5673 ** Attempt to transform a query of the form
5674 **
5675 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5676 **
5677 ** Into this:
5678 **
5679 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5680 **
5681 ** The transformation only works if all of the following are true:
5682 **
5683 **   *  The subquery is a UNION ALL of two or more terms
5684 **   *  The subquery does not have a LIMIT clause
5685 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5686 **   *  The outer query is a simple count(*) with no WHERE clause or other
5687 **      extraneous syntax.
5688 **
5689 ** Return TRUE if the optimization is undertaken.
5690 */
5691 static int countOfViewOptimization(Parse *pParse, Select *p){
5692   Select *pSub, *pPrior;
5693   Expr *pExpr;
5694   Expr *pCount;
5695   sqlite3 *db;
5696   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5697   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5698   if( p->pWhere ) return 0;
5699   if( p->pGroupBy ) return 0;
5700   pExpr = p->pEList->a[0].pExpr;
5701   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5702   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5703   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5704   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5705   pSub = p->pSrc->a[0].pSelect;
5706   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5707   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5708   do{
5709     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5710     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5711     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5712     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5713     pSub = pSub->pPrior;                              /* Repeat over compound */
5714   }while( pSub );
5715 
5716   /* If we reach this point then it is OK to perform the transformation */
5717 
5718   db = pParse->db;
5719   pCount = pExpr;
5720   pExpr = 0;
5721   pSub = p->pSrc->a[0].pSelect;
5722   p->pSrc->a[0].pSelect = 0;
5723   sqlite3SrcListDelete(db, p->pSrc);
5724   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5725   while( pSub ){
5726     Expr *pTerm;
5727     pPrior = pSub->pPrior;
5728     pSub->pPrior = 0;
5729     pSub->pNext = 0;
5730     pSub->selFlags |= SF_Aggregate;
5731     pSub->selFlags &= ~SF_Compound;
5732     pSub->nSelectRow = 0;
5733     sqlite3ExprListDelete(db, pSub->pEList);
5734     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5735     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5736     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5737     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5738     if( pExpr==0 ){
5739       pExpr = pTerm;
5740     }else{
5741       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5742     }
5743     pSub = pPrior;
5744   }
5745   p->pEList->a[0].pExpr = pExpr;
5746   p->selFlags &= ~SF_Aggregate;
5747 
5748 #if SELECTTRACE_ENABLED
5749   if( sqlite3_unsupported_selecttrace & 0x400 ){
5750     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5751     sqlite3TreeViewSelect(0, p, 0);
5752   }
5753 #endif
5754   return 1;
5755 }
5756 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5757 
5758 /*
5759 ** Generate code for the SELECT statement given in the p argument.
5760 **
5761 ** The results are returned according to the SelectDest structure.
5762 ** See comments in sqliteInt.h for further information.
5763 **
5764 ** This routine returns the number of errors.  If any errors are
5765 ** encountered, then an appropriate error message is left in
5766 ** pParse->zErrMsg.
5767 **
5768 ** This routine does NOT free the Select structure passed in.  The
5769 ** calling function needs to do that.
5770 */
5771 int sqlite3Select(
5772   Parse *pParse,         /* The parser context */
5773   Select *p,             /* The SELECT statement being coded. */
5774   SelectDest *pDest      /* What to do with the query results */
5775 ){
5776   int i, j;              /* Loop counters */
5777   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5778   Vdbe *v;               /* The virtual machine under construction */
5779   int isAgg;             /* True for select lists like "count(*)" */
5780   ExprList *pEList = 0;  /* List of columns to extract. */
5781   SrcList *pTabList;     /* List of tables to select from */
5782   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5783   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5784   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5785   AggInfo *pAggInfo = 0; /* Aggregate information */
5786   int rc = 1;            /* Value to return from this function */
5787   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5788   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5789   int iEnd;              /* Address of the end of the query */
5790   sqlite3 *db;           /* The database connection */
5791   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5792   u8 minMaxFlag;                 /* Flag for min/max queries */
5793 
5794   db = pParse->db;
5795   v = sqlite3GetVdbe(pParse);
5796   if( p==0 || db->mallocFailed || pParse->nErr ){
5797     return 1;
5798   }
5799   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5800 #if SELECTTRACE_ENABLED
5801   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5802   if( sqlite3_unsupported_selecttrace & 0x100 ){
5803     sqlite3TreeViewSelect(0, p, 0);
5804   }
5805 #endif
5806 
5807   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5808   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5809   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5810   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5811   if( IgnorableOrderby(pDest) ){
5812     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5813            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5814            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5815            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5816     /* If ORDER BY makes no difference in the output then neither does
5817     ** DISTINCT so it can be removed too. */
5818     sqlite3ExprListDelete(db, p->pOrderBy);
5819     p->pOrderBy = 0;
5820     p->selFlags &= ~SF_Distinct;
5821     p->selFlags |= SF_NoopOrderBy;
5822   }
5823   sqlite3SelectPrep(pParse, p, 0);
5824   if( pParse->nErr || db->mallocFailed ){
5825     goto select_end;
5826   }
5827   assert( p->pEList!=0 );
5828 #if SELECTTRACE_ENABLED
5829   if( sqlite3_unsupported_selecttrace & 0x104 ){
5830     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5831     sqlite3TreeViewSelect(0, p, 0);
5832   }
5833 #endif
5834 
5835   /* If the SF_UpdateFrom flag is set, then this function is being called
5836   ** as part of populating the temp table for an UPDATE...FROM statement.
5837   ** In this case, it is an error if the target object (pSrc->a[0]) name
5838   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).  */
5839   if( p->selFlags & SF_UpdateFrom ){
5840     struct SrcList_item *p0 = &p->pSrc->a[0];
5841     for(i=1; i<p->pSrc->nSrc; i++){
5842       struct SrcList_item *p1 = &p->pSrc->a[i];
5843       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
5844         sqlite3ErrorMsg(pParse,
5845             "target object/alias may not appear in FROM clause: %s",
5846             p0->zAlias ? p0->zAlias : p0->pTab->zName
5847         );
5848         goto select_end;
5849       }
5850     }
5851   }
5852 
5853   if( pDest->eDest==SRT_Output ){
5854     generateColumnNames(pParse, p);
5855   }
5856 
5857 #ifndef SQLITE_OMIT_WINDOWFUNC
5858   rc = sqlite3WindowRewrite(pParse, p);
5859   if( rc ){
5860     assert( db->mallocFailed || pParse->nErr>0 );
5861     goto select_end;
5862   }
5863 #if SELECTTRACE_ENABLED
5864   if( p->pWin && (sqlite3_unsupported_selecttrace & 0x108)!=0 ){
5865     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5866     sqlite3TreeViewSelect(0, p, 0);
5867   }
5868 #endif
5869 #endif /* SQLITE_OMIT_WINDOWFUNC */
5870   pTabList = p->pSrc;
5871   isAgg = (p->selFlags & SF_Aggregate)!=0;
5872   memset(&sSort, 0, sizeof(sSort));
5873   sSort.pOrderBy = p->pOrderBy;
5874 
5875   /* Try to do various optimizations (flattening subqueries, and strength
5876   ** reduction of join operators) in the FROM clause up into the main query
5877   */
5878 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5879   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5880     struct SrcList_item *pItem = &pTabList->a[i];
5881     Select *pSub = pItem->pSelect;
5882     Table *pTab = pItem->pTab;
5883 
5884     /* The expander should have already created transient Table objects
5885     ** even for FROM clause elements such as subqueries that do not correspond
5886     ** to a real table */
5887     assert( pTab!=0 );
5888 
5889     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5890     ** of the LEFT JOIN used in the WHERE clause.
5891     */
5892     if( (pItem->fg.jointype & JT_LEFT)!=0
5893      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5894      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5895     ){
5896       SELECTTRACE(0x100,pParse,p,
5897                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5898       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5899       unsetJoinExpr(p->pWhere, pItem->iCursor);
5900     }
5901 
5902     /* No futher action if this term of the FROM clause is no a subquery */
5903     if( pSub==0 ) continue;
5904 
5905     /* Catch mismatch in the declared columns of a view and the number of
5906     ** columns in the SELECT on the RHS */
5907     if( pTab->nCol!=pSub->pEList->nExpr ){
5908       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5909                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5910       goto select_end;
5911     }
5912 
5913     /* Do not try to flatten an aggregate subquery.
5914     **
5915     ** Flattening an aggregate subquery is only possible if the outer query
5916     ** is not a join.  But if the outer query is not a join, then the subquery
5917     ** will be implemented as a co-routine and there is no advantage to
5918     ** flattening in that case.
5919     */
5920     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5921     assert( pSub->pGroupBy==0 );
5922 
5923     /* If the outer query contains a "complex" result set (that is,
5924     ** if the result set of the outer query uses functions or subqueries)
5925     ** and if the subquery contains an ORDER BY clause and if
5926     ** it will be implemented as a co-routine, then do not flatten.  This
5927     ** restriction allows SQL constructs like this:
5928     **
5929     **  SELECT expensive_function(x)
5930     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5931     **
5932     ** The expensive_function() is only computed on the 10 rows that
5933     ** are output, rather than every row of the table.
5934     **
5935     ** The requirement that the outer query have a complex result set
5936     ** means that flattening does occur on simpler SQL constraints without
5937     ** the expensive_function() like:
5938     **
5939     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5940     */
5941     if( pSub->pOrderBy!=0
5942      && i==0
5943      && (p->selFlags & SF_ComplexResult)!=0
5944      && (pTabList->nSrc==1
5945          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5946     ){
5947       continue;
5948     }
5949 
5950     if( flattenSubquery(pParse, p, i, isAgg) ){
5951       if( pParse->nErr ) goto select_end;
5952       /* This subquery can be absorbed into its parent. */
5953       i = -1;
5954     }
5955     pTabList = p->pSrc;
5956     if( db->mallocFailed ) goto select_end;
5957     if( !IgnorableOrderby(pDest) ){
5958       sSort.pOrderBy = p->pOrderBy;
5959     }
5960   }
5961 #endif
5962 
5963 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5964   /* Handle compound SELECT statements using the separate multiSelect()
5965   ** procedure.
5966   */
5967   if( p->pPrior ){
5968     rc = multiSelect(pParse, p, pDest);
5969 #if SELECTTRACE_ENABLED
5970     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5971     if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5972       sqlite3TreeViewSelect(0, p, 0);
5973     }
5974 #endif
5975     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5976     return rc;
5977   }
5978 #endif
5979 
5980   /* Do the WHERE-clause constant propagation optimization if this is
5981   ** a join.  No need to speed time on this operation for non-join queries
5982   ** as the equivalent optimization will be handled by query planner in
5983   ** sqlite3WhereBegin().
5984   */
5985   if( pTabList->nSrc>1
5986    && OptimizationEnabled(db, SQLITE_PropagateConst)
5987    && propagateConstants(pParse, p)
5988   ){
5989 #if SELECTTRACE_ENABLED
5990     if( sqlite3_unsupported_selecttrace & 0x100 ){
5991       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5992       sqlite3TreeViewSelect(0, p, 0);
5993     }
5994 #endif
5995   }else{
5996     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5997   }
5998 
5999 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6000   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6001    && countOfViewOptimization(pParse, p)
6002   ){
6003     if( db->mallocFailed ) goto select_end;
6004     pEList = p->pEList;
6005     pTabList = p->pSrc;
6006   }
6007 #endif
6008 
6009   /* For each term in the FROM clause, do two things:
6010   ** (1) Authorized unreferenced tables
6011   ** (2) Generate code for all sub-queries
6012   */
6013   for(i=0; i<pTabList->nSrc; i++){
6014     struct SrcList_item *pItem = &pTabList->a[i];
6015     SelectDest dest;
6016     Select *pSub;
6017 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6018     const char *zSavedAuthContext;
6019 #endif
6020 
6021     /* Issue SQLITE_READ authorizations with a fake column name for any
6022     ** tables that are referenced but from which no values are extracted.
6023     ** Examples of where these kinds of null SQLITE_READ authorizations
6024     ** would occur:
6025     **
6026     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6027     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6028     **
6029     ** The fake column name is an empty string.  It is possible for a table to
6030     ** have a column named by the empty string, in which case there is no way to
6031     ** distinguish between an unreferenced table and an actual reference to the
6032     ** "" column. The original design was for the fake column name to be a NULL,
6033     ** which would be unambiguous.  But legacy authorization callbacks might
6034     ** assume the column name is non-NULL and segfault.  The use of an empty
6035     ** string for the fake column name seems safer.
6036     */
6037     if( pItem->colUsed==0 && pItem->zName!=0 ){
6038       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6039     }
6040 
6041 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6042     /* Generate code for all sub-queries in the FROM clause
6043     */
6044     pSub = pItem->pSelect;
6045     if( pSub==0 ) continue;
6046 
6047     /* The code for a subquery should only be generated once, though it is
6048     ** technically harmless for it to be generated multiple times. The
6049     ** following assert() will detect if something changes to cause
6050     ** the same subquery to be coded multiple times, as a signal to the
6051     ** developers to try to optimize the situation.
6052     **
6053     ** Update 2019-07-24:
6054     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6055     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6056     ** coded twice.  So this assert() now becomes a testcase().  It should
6057     ** be very rare, though.
6058     */
6059     testcase( pItem->addrFillSub!=0 );
6060 
6061     /* Increment Parse.nHeight by the height of the largest expression
6062     ** tree referred to by this, the parent select. The child select
6063     ** may contain expression trees of at most
6064     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6065     ** more conservative than necessary, but much easier than enforcing
6066     ** an exact limit.
6067     */
6068     pParse->nHeight += sqlite3SelectExprHeight(p);
6069 
6070     /* Make copies of constant WHERE-clause terms in the outer query down
6071     ** inside the subquery.  This can help the subquery to run more efficiently.
6072     */
6073     if( OptimizationEnabled(db, SQLITE_PushDown)
6074      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6075                            (pItem->fg.jointype & JT_OUTER)!=0)
6076     ){
6077 #if SELECTTRACE_ENABLED
6078       if( sqlite3_unsupported_selecttrace & 0x100 ){
6079         SELECTTRACE(0x100,pParse,p,
6080             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6081         sqlite3TreeViewSelect(0, p, 0);
6082       }
6083 #endif
6084     }else{
6085       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6086     }
6087 
6088     zSavedAuthContext = pParse->zAuthContext;
6089     pParse->zAuthContext = pItem->zName;
6090 
6091     /* Generate code to implement the subquery
6092     **
6093     ** The subquery is implemented as a co-routine if the subquery is
6094     ** guaranteed to be the outer loop (so that it does not need to be
6095     ** computed more than once)
6096     **
6097     ** TODO: Are there other reasons beside (1) to use a co-routine
6098     ** implementation?
6099     */
6100     if( i==0
6101      && (pTabList->nSrc==1
6102             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6103     ){
6104       /* Implement a co-routine that will return a single row of the result
6105       ** set on each invocation.
6106       */
6107       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6108 
6109       pItem->regReturn = ++pParse->nMem;
6110       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6111       VdbeComment((v, "%s", pItem->pTab->zName));
6112       pItem->addrFillSub = addrTop;
6113       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6114       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6115       sqlite3Select(pParse, pSub, &dest);
6116       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6117       pItem->fg.viaCoroutine = 1;
6118       pItem->regResult = dest.iSdst;
6119       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6120       sqlite3VdbeJumpHere(v, addrTop-1);
6121       sqlite3ClearTempRegCache(pParse);
6122     }else{
6123       /* Generate a subroutine that will fill an ephemeral table with
6124       ** the content of this subquery.  pItem->addrFillSub will point
6125       ** to the address of the generated subroutine.  pItem->regReturn
6126       ** is a register allocated to hold the subroutine return address
6127       */
6128       int topAddr;
6129       int onceAddr = 0;
6130       int retAddr;
6131       struct SrcList_item *pPrior;
6132 
6133       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6134       pItem->regReturn = ++pParse->nMem;
6135       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6136       pItem->addrFillSub = topAddr+1;
6137       if( pItem->fg.isCorrelated==0 ){
6138         /* If the subquery is not correlated and if we are not inside of
6139         ** a trigger, then we only need to compute the value of the subquery
6140         ** once. */
6141         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6142         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6143       }else{
6144         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6145       }
6146       pPrior = isSelfJoinView(pTabList, pItem);
6147       if( pPrior ){
6148         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6149         assert( pPrior->pSelect!=0 );
6150         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6151       }else{
6152         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6153         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6154         sqlite3Select(pParse, pSub, &dest);
6155       }
6156       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6157       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6158       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6159       VdbeComment((v, "end %s", pItem->pTab->zName));
6160       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6161       sqlite3ClearTempRegCache(pParse);
6162     }
6163     if( db->mallocFailed ) goto select_end;
6164     pParse->nHeight -= sqlite3SelectExprHeight(p);
6165     pParse->zAuthContext = zSavedAuthContext;
6166 #endif
6167   }
6168 
6169   /* Various elements of the SELECT copied into local variables for
6170   ** convenience */
6171   pEList = p->pEList;
6172   pWhere = p->pWhere;
6173   pGroupBy = p->pGroupBy;
6174   pHaving = p->pHaving;
6175   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6176 
6177 #if SELECTTRACE_ENABLED
6178   if( sqlite3_unsupported_selecttrace & 0x400 ){
6179     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6180     sqlite3TreeViewSelect(0, p, 0);
6181   }
6182 #endif
6183 
6184   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6185   ** if the select-list is the same as the ORDER BY list, then this query
6186   ** can be rewritten as a GROUP BY. In other words, this:
6187   **
6188   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6189   **
6190   ** is transformed to:
6191   **
6192   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6193   **
6194   ** The second form is preferred as a single index (or temp-table) may be
6195   ** used for both the ORDER BY and DISTINCT processing. As originally
6196   ** written the query must use a temp-table for at least one of the ORDER
6197   ** BY and DISTINCT, and an index or separate temp-table for the other.
6198   */
6199   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6200    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6201 #ifndef SQLITE_OMIT_WINDOWFUNC
6202    && p->pWin==0
6203 #endif
6204   ){
6205     p->selFlags &= ~SF_Distinct;
6206     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6207     p->selFlags |= SF_Aggregate;
6208     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6209     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6210     ** original setting of the SF_Distinct flag, not the current setting */
6211     assert( sDistinct.isTnct );
6212 
6213 #if SELECTTRACE_ENABLED
6214     if( sqlite3_unsupported_selecttrace & 0x400 ){
6215       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6216       sqlite3TreeViewSelect(0, p, 0);
6217     }
6218 #endif
6219   }
6220 
6221   /* If there is an ORDER BY clause, then create an ephemeral index to
6222   ** do the sorting.  But this sorting ephemeral index might end up
6223   ** being unused if the data can be extracted in pre-sorted order.
6224   ** If that is the case, then the OP_OpenEphemeral instruction will be
6225   ** changed to an OP_Noop once we figure out that the sorting index is
6226   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6227   ** that change.
6228   */
6229   if( sSort.pOrderBy ){
6230     KeyInfo *pKeyInfo;
6231     pKeyInfo = sqlite3KeyInfoFromExprList(
6232         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6233     sSort.iECursor = pParse->nTab++;
6234     sSort.addrSortIndex =
6235       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6236           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6237           (char*)pKeyInfo, P4_KEYINFO
6238       );
6239   }else{
6240     sSort.addrSortIndex = -1;
6241   }
6242 
6243   /* If the output is destined for a temporary table, open that table.
6244   */
6245   if( pDest->eDest==SRT_EphemTab ){
6246     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6247   }
6248 
6249   /* Set the limiter.
6250   */
6251   iEnd = sqlite3VdbeMakeLabel(pParse);
6252   if( (p->selFlags & SF_FixedLimit)==0 ){
6253     p->nSelectRow = 320;  /* 4 billion rows */
6254   }
6255   computeLimitRegisters(pParse, p, iEnd);
6256   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6257     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6258     sSort.sortFlags |= SORTFLAG_UseSorter;
6259   }
6260 
6261   /* Open an ephemeral index to use for the distinct set.
6262   */
6263   if( p->selFlags & SF_Distinct ){
6264     sDistinct.tabTnct = pParse->nTab++;
6265     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6266                        sDistinct.tabTnct, 0, 0,
6267                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6268                        P4_KEYINFO);
6269     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6270     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6271   }else{
6272     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6273   }
6274 
6275   if( !isAgg && pGroupBy==0 ){
6276     /* No aggregate functions and no GROUP BY clause */
6277     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6278                    | (p->selFlags & SF_FixedLimit);
6279 #ifndef SQLITE_OMIT_WINDOWFUNC
6280     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6281     if( pWin ){
6282       sqlite3WindowCodeInit(pParse, p);
6283     }
6284 #endif
6285     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6286 
6287 
6288     /* Begin the database scan. */
6289     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6290     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6291                                p->pEList, wctrlFlags, p->nSelectRow);
6292     if( pWInfo==0 ) goto select_end;
6293     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6294       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6295     }
6296     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6297       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6298     }
6299     if( sSort.pOrderBy ){
6300       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6301       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6302       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6303         sSort.pOrderBy = 0;
6304       }
6305     }
6306 
6307     /* If sorting index that was created by a prior OP_OpenEphemeral
6308     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6309     ** into an OP_Noop.
6310     */
6311     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6312       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6313     }
6314 
6315     assert( p->pEList==pEList );
6316 #ifndef SQLITE_OMIT_WINDOWFUNC
6317     if( pWin ){
6318       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6319       int iCont = sqlite3VdbeMakeLabel(pParse);
6320       int iBreak = sqlite3VdbeMakeLabel(pParse);
6321       int regGosub = ++pParse->nMem;
6322 
6323       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6324 
6325       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6326       sqlite3VdbeResolveLabel(v, addrGosub);
6327       VdbeNoopComment((v, "inner-loop subroutine"));
6328       sSort.labelOBLopt = 0;
6329       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6330       sqlite3VdbeResolveLabel(v, iCont);
6331       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6332       VdbeComment((v, "end inner-loop subroutine"));
6333       sqlite3VdbeResolveLabel(v, iBreak);
6334     }else
6335 #endif /* SQLITE_OMIT_WINDOWFUNC */
6336     {
6337       /* Use the standard inner loop. */
6338       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6339           sqlite3WhereContinueLabel(pWInfo),
6340           sqlite3WhereBreakLabel(pWInfo));
6341 
6342       /* End the database scan loop.
6343       */
6344       sqlite3WhereEnd(pWInfo);
6345     }
6346   }else{
6347     /* This case when there exist aggregate functions or a GROUP BY clause
6348     ** or both */
6349     NameContext sNC;    /* Name context for processing aggregate information */
6350     int iAMem;          /* First Mem address for storing current GROUP BY */
6351     int iBMem;          /* First Mem address for previous GROUP BY */
6352     int iUseFlag;       /* Mem address holding flag indicating that at least
6353                         ** one row of the input to the aggregator has been
6354                         ** processed */
6355     int iAbortFlag;     /* Mem address which causes query abort if positive */
6356     int groupBySort;    /* Rows come from source in GROUP BY order */
6357     int addrEnd;        /* End of processing for this SELECT */
6358     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6359     int sortOut = 0;    /* Output register from the sorter */
6360     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6361 
6362     /* Remove any and all aliases between the result set and the
6363     ** GROUP BY clause.
6364     */
6365     if( pGroupBy ){
6366       int k;                        /* Loop counter */
6367       struct ExprList_item *pItem;  /* For looping over expression in a list */
6368 
6369       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6370         pItem->u.x.iAlias = 0;
6371       }
6372       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6373         pItem->u.x.iAlias = 0;
6374       }
6375       assert( 66==sqlite3LogEst(100) );
6376       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6377 
6378       /* If there is both a GROUP BY and an ORDER BY clause and they are
6379       ** identical, then it may be possible to disable the ORDER BY clause
6380       ** on the grounds that the GROUP BY will cause elements to come out
6381       ** in the correct order. It also may not - the GROUP BY might use a
6382       ** database index that causes rows to be grouped together as required
6383       ** but not actually sorted. Either way, record the fact that the
6384       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6385       ** variable.  */
6386       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6387         int ii;
6388         /* The GROUP BY processing doesn't care whether rows are delivered in
6389         ** ASC or DESC order - only that each group is returned contiguously.
6390         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6391         ** ORDER BY to maximize the chances of rows being delivered in an
6392         ** order that makes the ORDER BY redundant.  */
6393         for(ii=0; ii<pGroupBy->nExpr; ii++){
6394           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6395           pGroupBy->a[ii].sortFlags = sortFlags;
6396         }
6397         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6398           orderByGrp = 1;
6399         }
6400       }
6401     }else{
6402       assert( 0==sqlite3LogEst(1) );
6403       p->nSelectRow = 0;
6404     }
6405 
6406     /* Create a label to jump to when we want to abort the query */
6407     addrEnd = sqlite3VdbeMakeLabel(pParse);
6408 
6409     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6410     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6411     ** SELECT statement.
6412     */
6413     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6414     if( pAggInfo==0 ){
6415       goto select_end;
6416     }
6417     pAggInfo->pNext = pParse->pAggList;
6418     pParse->pAggList = pAggInfo;
6419     pAggInfo->selId = p->selId;
6420     memset(&sNC, 0, sizeof(sNC));
6421     sNC.pParse = pParse;
6422     sNC.pSrcList = pTabList;
6423     sNC.uNC.pAggInfo = pAggInfo;
6424     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6425     pAggInfo->mnReg = pParse->nMem+1;
6426     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6427     pAggInfo->pGroupBy = pGroupBy;
6428     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6429     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6430     if( pHaving ){
6431       if( pGroupBy ){
6432         assert( pWhere==p->pWhere );
6433         assert( pHaving==p->pHaving );
6434         assert( pGroupBy==p->pGroupBy );
6435         havingToWhere(pParse, p);
6436         pWhere = p->pWhere;
6437       }
6438       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6439     }
6440     pAggInfo->nAccumulator = pAggInfo->nColumn;
6441     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6442       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6443     }else{
6444       minMaxFlag = WHERE_ORDERBY_NORMAL;
6445     }
6446     for(i=0; i<pAggInfo->nFunc; i++){
6447       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6448       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6449       sNC.ncFlags |= NC_InAggFunc;
6450       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6451 #ifndef SQLITE_OMIT_WINDOWFUNC
6452       assert( !IsWindowFunc(pExpr) );
6453       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6454         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6455       }
6456 #endif
6457       sNC.ncFlags &= ~NC_InAggFunc;
6458     }
6459     pAggInfo->mxReg = pParse->nMem;
6460     if( db->mallocFailed ) goto select_end;
6461 #if SELECTTRACE_ENABLED
6462     if( sqlite3_unsupported_selecttrace & 0x400 ){
6463       int ii;
6464       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6465       sqlite3TreeViewSelect(0, p, 0);
6466       for(ii=0; ii<pAggInfo->nColumn; ii++){
6467         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6468             ii, pAggInfo->aCol[ii].iMem);
6469         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6470       }
6471       for(ii=0; ii<pAggInfo->nFunc; ii++){
6472         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6473             ii, pAggInfo->aFunc[ii].iMem);
6474         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6475       }
6476     }
6477 #endif
6478 
6479 
6480     /* Processing for aggregates with GROUP BY is very different and
6481     ** much more complex than aggregates without a GROUP BY.
6482     */
6483     if( pGroupBy ){
6484       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6485       int addr1;          /* A-vs-B comparision jump */
6486       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6487       int regOutputRow;   /* Return address register for output subroutine */
6488       int addrSetAbort;   /* Set the abort flag and return */
6489       int addrTopOfLoop;  /* Top of the input loop */
6490       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6491       int addrReset;      /* Subroutine for resetting the accumulator */
6492       int regReset;       /* Return address register for reset subroutine */
6493 
6494       /* If there is a GROUP BY clause we might need a sorting index to
6495       ** implement it.  Allocate that sorting index now.  If it turns out
6496       ** that we do not need it after all, the OP_SorterOpen instruction
6497       ** will be converted into a Noop.
6498       */
6499       pAggInfo->sortingIdx = pParse->nTab++;
6500       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6501                                             0, pAggInfo->nColumn);
6502       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6503           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6504           0, (char*)pKeyInfo, P4_KEYINFO);
6505 
6506       /* Initialize memory locations used by GROUP BY aggregate processing
6507       */
6508       iUseFlag = ++pParse->nMem;
6509       iAbortFlag = ++pParse->nMem;
6510       regOutputRow = ++pParse->nMem;
6511       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6512       regReset = ++pParse->nMem;
6513       addrReset = sqlite3VdbeMakeLabel(pParse);
6514       iAMem = pParse->nMem + 1;
6515       pParse->nMem += pGroupBy->nExpr;
6516       iBMem = pParse->nMem + 1;
6517       pParse->nMem += pGroupBy->nExpr;
6518       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6519       VdbeComment((v, "clear abort flag"));
6520       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6521 
6522       /* Begin a loop that will extract all source rows in GROUP BY order.
6523       ** This might involve two separate loops with an OP_Sort in between, or
6524       ** it might be a single loop that uses an index to extract information
6525       ** in the right order to begin with.
6526       */
6527       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6528       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6529       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6530           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6531       );
6532       if( pWInfo==0 ) goto select_end;
6533       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6534         /* The optimizer is able to deliver rows in group by order so
6535         ** we do not have to sort.  The OP_OpenEphemeral table will be
6536         ** cancelled later because we still need to use the pKeyInfo
6537         */
6538         groupBySort = 0;
6539       }else{
6540         /* Rows are coming out in undetermined order.  We have to push
6541         ** each row into a sorting index, terminate the first loop,
6542         ** then loop over the sorting index in order to get the output
6543         ** in sorted order
6544         */
6545         int regBase;
6546         int regRecord;
6547         int nCol;
6548         int nGroupBy;
6549 
6550         explainTempTable(pParse,
6551             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6552                     "DISTINCT" : "GROUP BY");
6553 
6554         groupBySort = 1;
6555         nGroupBy = pGroupBy->nExpr;
6556         nCol = nGroupBy;
6557         j = nGroupBy;
6558         for(i=0; i<pAggInfo->nColumn; i++){
6559           if( pAggInfo->aCol[i].iSorterColumn>=j ){
6560             nCol++;
6561             j++;
6562           }
6563         }
6564         regBase = sqlite3GetTempRange(pParse, nCol);
6565         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6566         j = nGroupBy;
6567         for(i=0; i<pAggInfo->nColumn; i++){
6568           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
6569           if( pCol->iSorterColumn>=j ){
6570             int r1 = j + regBase;
6571             sqlite3ExprCodeGetColumnOfTable(v,
6572                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6573             j++;
6574           }
6575         }
6576         regRecord = sqlite3GetTempReg(pParse);
6577         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6578         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
6579         sqlite3ReleaseTempReg(pParse, regRecord);
6580         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6581         sqlite3WhereEnd(pWInfo);
6582         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
6583         sortOut = sqlite3GetTempReg(pParse);
6584         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6585         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
6586         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6587         pAggInfo->useSortingIdx = 1;
6588       }
6589 
6590       /* If the index or temporary table used by the GROUP BY sort
6591       ** will naturally deliver rows in the order required by the ORDER BY
6592       ** clause, cancel the ephemeral table open coded earlier.
6593       **
6594       ** This is an optimization - the correct answer should result regardless.
6595       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6596       ** disable this optimization for testing purposes.  */
6597       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6598        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6599       ){
6600         sSort.pOrderBy = 0;
6601         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6602       }
6603 
6604       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6605       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6606       ** Then compare the current GROUP BY terms against the GROUP BY terms
6607       ** from the previous row currently stored in a0, a1, a2...
6608       */
6609       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6610       if( groupBySort ){
6611         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
6612                           sortOut, sortPTab);
6613       }
6614       for(j=0; j<pGroupBy->nExpr; j++){
6615         if( groupBySort ){
6616           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6617         }else{
6618           pAggInfo->directMode = 1;
6619           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6620         }
6621       }
6622       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6623                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6624       addr1 = sqlite3VdbeCurrentAddr(v);
6625       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6626 
6627       /* Generate code that runs whenever the GROUP BY changes.
6628       ** Changes in the GROUP BY are detected by the previous code
6629       ** block.  If there were no changes, this block is skipped.
6630       **
6631       ** This code copies current group by terms in b0,b1,b2,...
6632       ** over to a0,a1,a2.  It then calls the output subroutine
6633       ** and resets the aggregate accumulator registers in preparation
6634       ** for the next GROUP BY batch.
6635       */
6636       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6637       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6638       VdbeComment((v, "output one row"));
6639       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6640       VdbeComment((v, "check abort flag"));
6641       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6642       VdbeComment((v, "reset accumulator"));
6643 
6644       /* Update the aggregate accumulators based on the content of
6645       ** the current row
6646       */
6647       sqlite3VdbeJumpHere(v, addr1);
6648       updateAccumulator(pParse, iUseFlag, pAggInfo);
6649       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6650       VdbeComment((v, "indicate data in accumulator"));
6651 
6652       /* End of the loop
6653       */
6654       if( groupBySort ){
6655         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx, addrTopOfLoop);
6656         VdbeCoverage(v);
6657       }else{
6658         sqlite3WhereEnd(pWInfo);
6659         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6660       }
6661 
6662       /* Output the final row of result
6663       */
6664       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6665       VdbeComment((v, "output final row"));
6666 
6667       /* Jump over the subroutines
6668       */
6669       sqlite3VdbeGoto(v, addrEnd);
6670 
6671       /* Generate a subroutine that outputs a single row of the result
6672       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6673       ** is less than or equal to zero, the subroutine is a no-op.  If
6674       ** the processing calls for the query to abort, this subroutine
6675       ** increments the iAbortFlag memory location before returning in
6676       ** order to signal the caller to abort.
6677       */
6678       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6679       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6680       VdbeComment((v, "set abort flag"));
6681       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6682       sqlite3VdbeResolveLabel(v, addrOutputRow);
6683       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6684       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6685       VdbeCoverage(v);
6686       VdbeComment((v, "Groupby result generator entry point"));
6687       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6688       finalizeAggFunctions(pParse, pAggInfo);
6689       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6690       selectInnerLoop(pParse, p, -1, &sSort,
6691                       &sDistinct, pDest,
6692                       addrOutputRow+1, addrSetAbort);
6693       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6694       VdbeComment((v, "end groupby result generator"));
6695 
6696       /* Generate a subroutine that will reset the group-by accumulator
6697       */
6698       sqlite3VdbeResolveLabel(v, addrReset);
6699       resetAccumulator(pParse, pAggInfo);
6700       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6701       VdbeComment((v, "indicate accumulator empty"));
6702       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6703 
6704     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6705     else {
6706       Table *pTab;
6707       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
6708         /* If isSimpleCount() returns a pointer to a Table structure, then
6709         ** the SQL statement is of the form:
6710         **
6711         **   SELECT count(*) FROM <tbl>
6712         **
6713         ** where the Table structure returned represents table <tbl>.
6714         **
6715         ** This statement is so common that it is optimized specially. The
6716         ** OP_Count instruction is executed either on the intkey table that
6717         ** contains the data for table <tbl> or on one of its indexes. It
6718         ** is better to execute the op on an index, as indexes are almost
6719         ** always spread across less pages than their corresponding tables.
6720         */
6721         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6722         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6723         Index *pIdx;                         /* Iterator variable */
6724         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6725         Index *pBest = 0;                    /* Best index found so far */
6726         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
6727 
6728         sqlite3CodeVerifySchema(pParse, iDb);
6729         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6730 
6731         /* Search for the index that has the lowest scan cost.
6732         **
6733         ** (2011-04-15) Do not do a full scan of an unordered index.
6734         **
6735         ** (2013-10-03) Do not count the entries in a partial index.
6736         **
6737         ** In practice the KeyInfo structure will not be used. It is only
6738         ** passed to keep OP_OpenRead happy.
6739         */
6740         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6741         if( !p->pSrc->a[0].fg.notIndexed ){
6742           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6743             if( pIdx->bUnordered==0
6744              && pIdx->szIdxRow<pTab->szTabRow
6745              && pIdx->pPartIdxWhere==0
6746              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6747             ){
6748               pBest = pIdx;
6749             }
6750           }
6751         }
6752         if( pBest ){
6753           iRoot = pBest->tnum;
6754           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6755         }
6756 
6757         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6758         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
6759         if( pKeyInfo ){
6760           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6761         }
6762         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
6763         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6764         explainSimpleCount(pParse, pTab, pBest);
6765       }else{
6766         int regAcc = 0;           /* "populate accumulators" flag */
6767         int addrSkip;
6768 
6769         /* If there are accumulator registers but no min() or max() functions
6770         ** without FILTER clauses, allocate register regAcc. Register regAcc
6771         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6772         ** The code generated by updateAccumulator() uses this to ensure
6773         ** that the accumulator registers are (a) updated only once if
6774         ** there are no min() or max functions or (b) always updated for the
6775         ** first row visited by the aggregate, so that they are updated at
6776         ** least once even if the FILTER clause means the min() or max()
6777         ** function visits zero rows.  */
6778         if( pAggInfo->nAccumulator ){
6779           for(i=0; i<pAggInfo->nFunc; i++){
6780             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
6781               continue;
6782             }
6783             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
6784               break;
6785             }
6786           }
6787           if( i==pAggInfo->nFunc ){
6788             regAcc = ++pParse->nMem;
6789             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6790           }
6791         }
6792 
6793         /* This case runs if the aggregate has no GROUP BY clause.  The
6794         ** processing is much simpler since there is only a single row
6795         ** of output.
6796         */
6797         assert( p->pGroupBy==0 );
6798         resetAccumulator(pParse, pAggInfo);
6799 
6800         /* If this query is a candidate for the min/max optimization, then
6801         ** minMaxFlag will have been previously set to either
6802         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6803         ** be an appropriate ORDER BY expression for the optimization.
6804         */
6805         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6806         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6807 
6808         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6809         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6810                                    0, minMaxFlag, 0);
6811         if( pWInfo==0 ){
6812           goto select_end;
6813         }
6814         updateAccumulator(pParse, regAcc, pAggInfo);
6815         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6816         addrSkip = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6817         if( addrSkip!=sqlite3WhereContinueLabel(pWInfo) ){
6818           sqlite3VdbeGoto(v, addrSkip);
6819         }
6820         sqlite3WhereEnd(pWInfo);
6821         finalizeAggFunctions(pParse, pAggInfo);
6822       }
6823 
6824       sSort.pOrderBy = 0;
6825       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6826       selectInnerLoop(pParse, p, -1, 0, 0,
6827                       pDest, addrEnd, addrEnd);
6828     }
6829     sqlite3VdbeResolveLabel(v, addrEnd);
6830 
6831   } /* endif aggregate query */
6832 
6833   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6834     explainTempTable(pParse, "DISTINCT");
6835   }
6836 
6837   /* If there is an ORDER BY clause, then we need to sort the results
6838   ** and send them to the callback one by one.
6839   */
6840   if( sSort.pOrderBy ){
6841     explainTempTable(pParse,
6842                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6843     assert( p->pEList==pEList );
6844     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6845   }
6846 
6847   /* Jump here to skip this query
6848   */
6849   sqlite3VdbeResolveLabel(v, iEnd);
6850 
6851   /* The SELECT has been coded. If there is an error in the Parse structure,
6852   ** set the return code to 1. Otherwise 0. */
6853   rc = (pParse->nErr>0);
6854 
6855   /* Control jumps to here if an error is encountered above, or upon
6856   ** successful coding of the SELECT.
6857   */
6858 select_end:
6859   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6860 #ifdef SQLITE_DEBUG
6861   if( pAggInfo && !db->mallocFailed ){
6862     for(i=0; i<pAggInfo->nColumn; i++){
6863       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
6864       assert( pExpr!=0 || db->mallocFailed );
6865       if( pExpr==0 ) continue;
6866       assert( pExpr->pAggInfo==pAggInfo );
6867       assert( pExpr->iAgg==i );
6868     }
6869     for(i=0; i<pAggInfo->nFunc; i++){
6870       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6871       assert( pExpr!=0 || db->mallocFailed );
6872       if( pExpr==0 ) continue;
6873       assert( pExpr->pAggInfo==pAggInfo );
6874       assert( pExpr->iAgg==i );
6875     }
6876   }
6877 #endif
6878 
6879 #if SELECTTRACE_ENABLED
6880   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6881   if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6882     sqlite3TreeViewSelect(0, p, 0);
6883   }
6884 #endif
6885   ExplainQueryPlanPop(pParse);
6886   return rc;
6887 }
6888