xref: /sqlite-3.40.0/src/select.c (revision 7ac2ee0a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101       sqlite3WindowListDelete(db, p->pWinDefn);
102     }
103 #endif
104     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105     if( bFree ) sqlite3DbFreeNN(db, p);
106     p = pPrior;
107     bFree = 1;
108   }
109 }
110 
111 /*
112 ** Initialize a SelectDest structure.
113 */
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115   pDest->eDest = (u8)eDest;
116   pDest->iSDParm = iParm;
117   pDest->zAffSdst = 0;
118   pDest->iSdst = 0;
119   pDest->nSdst = 0;
120 }
121 
122 
123 /*
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
126 */
127 Select *sqlite3SelectNew(
128   Parse *pParse,        /* Parsing context */
129   ExprList *pEList,     /* which columns to include in the result */
130   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
131   Expr *pWhere,         /* the WHERE clause */
132   ExprList *pGroupBy,   /* the GROUP BY clause */
133   Expr *pHaving,        /* the HAVING clause */
134   ExprList *pOrderBy,   /* the ORDER BY clause */
135   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
136   Expr *pLimit          /* LIMIT value.  NULL means not used */
137 ){
138   Select *pNew;
139   Select standin;
140   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141   if( pNew==0 ){
142     assert( pParse->db->mallocFailed );
143     pNew = &standin;
144   }
145   if( pEList==0 ){
146     pEList = sqlite3ExprListAppend(pParse, 0,
147                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
148   }
149   pNew->pEList = pEList;
150   pNew->op = TK_SELECT;
151   pNew->selFlags = selFlags;
152   pNew->iLimit = 0;
153   pNew->iOffset = 0;
154   pNew->selId = ++pParse->nSelect;
155   pNew->addrOpenEphm[0] = -1;
156   pNew->addrOpenEphm[1] = -1;
157   pNew->nSelectRow = 0;
158   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
159   pNew->pSrc = pSrc;
160   pNew->pWhere = pWhere;
161   pNew->pGroupBy = pGroupBy;
162   pNew->pHaving = pHaving;
163   pNew->pOrderBy = pOrderBy;
164   pNew->pPrior = 0;
165   pNew->pNext = 0;
166   pNew->pLimit = pLimit;
167   pNew->pWith = 0;
168 #ifndef SQLITE_OMIT_WINDOWFUNC
169   pNew->pWin = 0;
170   pNew->pWinDefn = 0;
171 #endif
172   if( pParse->db->mallocFailed ) {
173     clearSelect(pParse->db, pNew, pNew!=&standin);
174     pNew = 0;
175   }else{
176     assert( pNew->pSrc!=0 || pParse->nErr>0 );
177   }
178   assert( pNew!=&standin );
179   return pNew;
180 }
181 
182 
183 /*
184 ** Delete the given Select structure and all of its substructures.
185 */
186 void sqlite3SelectDelete(sqlite3 *db, Select *p){
187   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
188 }
189 
190 /*
191 ** Return a pointer to the right-most SELECT statement in a compound.
192 */
193 static Select *findRightmost(Select *p){
194   while( p->pNext ) p = p->pNext;
195   return p;
196 }
197 
198 /*
199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
200 ** type of join.  Return an integer constant that expresses that type
201 ** in terms of the following bit values:
202 **
203 **     JT_INNER
204 **     JT_CROSS
205 **     JT_OUTER
206 **     JT_NATURAL
207 **     JT_LEFT
208 **     JT_RIGHT
209 **
210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
211 **
212 ** If an illegal or unsupported join type is seen, then still return
213 ** a join type, but put an error in the pParse structure.
214 */
215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
216   int jointype = 0;
217   Token *apAll[3];
218   Token *p;
219                              /*   0123456789 123456789 123456789 123 */
220   static const char zKeyText[] = "naturaleftouterightfullinnercross";
221   static const struct {
222     u8 i;        /* Beginning of keyword text in zKeyText[] */
223     u8 nChar;    /* Length of the keyword in characters */
224     u8 code;     /* Join type mask */
225   } aKeyword[] = {
226     /* natural */ { 0,  7, JT_NATURAL                },
227     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
228     /* outer   */ { 10, 5, JT_OUTER                  },
229     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
230     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
231     /* inner   */ { 23, 5, JT_INNER                  },
232     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
233   };
234   int i, j;
235   apAll[0] = pA;
236   apAll[1] = pB;
237   apAll[2] = pC;
238   for(i=0; i<3 && apAll[i]; i++){
239     p = apAll[i];
240     for(j=0; j<ArraySize(aKeyword); j++){
241       if( p->n==aKeyword[j].nChar
242           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
243         jointype |= aKeyword[j].code;
244         break;
245       }
246     }
247     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
248     if( j>=ArraySize(aKeyword) ){
249       jointype |= JT_ERROR;
250       break;
251     }
252   }
253   if(
254      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
255      (jointype & JT_ERROR)!=0
256   ){
257     const char *zSp = " ";
258     assert( pB!=0 );
259     if( pC==0 ){ zSp++; }
260     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
261        "%T %T%s%T", pA, pB, zSp, pC);
262     jointype = JT_INNER;
263   }else if( (jointype & JT_OUTER)!=0
264          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
265     sqlite3ErrorMsg(pParse,
266       "RIGHT and FULL OUTER JOINs are not currently supported");
267     jointype = JT_INNER;
268   }
269   return jointype;
270 }
271 
272 /*
273 ** Return the index of a column in a table.  Return -1 if the column
274 ** is not contained in the table.
275 */
276 static int columnIndex(Table *pTab, const char *zCol){
277   int i;
278   for(i=0; i<pTab->nCol; i++){
279     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
280   }
281   return -1;
282 }
283 
284 /*
285 ** Search the first N tables in pSrc, from left to right, looking for a
286 ** table that has a column named zCol.
287 **
288 ** When found, set *piTab and *piCol to the table index and column index
289 ** of the matching column and return TRUE.
290 **
291 ** If not found, return FALSE.
292 */
293 static int tableAndColumnIndex(
294   SrcList *pSrc,       /* Array of tables to search */
295   int N,               /* Number of tables in pSrc->a[] to search */
296   const char *zCol,    /* Name of the column we are looking for */
297   int *piTab,          /* Write index of pSrc->a[] here */
298   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
299 ){
300   int i;               /* For looping over tables in pSrc */
301   int iCol;            /* Index of column matching zCol */
302 
303   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
304   for(i=0; i<N; i++){
305     iCol = columnIndex(pSrc->a[i].pTab, zCol);
306     if( iCol>=0 ){
307       if( piTab ){
308         *piTab = i;
309         *piCol = iCol;
310       }
311       return 1;
312     }
313   }
314   return 0;
315 }
316 
317 /*
318 ** This function is used to add terms implied by JOIN syntax to the
319 ** WHERE clause expression of a SELECT statement. The new term, which
320 ** is ANDed with the existing WHERE clause, is of the form:
321 **
322 **    (tab1.col1 = tab2.col2)
323 **
324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
326 ** column iColRight of tab2.
327 */
328 static void addWhereTerm(
329   Parse *pParse,                  /* Parsing context */
330   SrcList *pSrc,                  /* List of tables in FROM clause */
331   int iLeft,                      /* Index of first table to join in pSrc */
332   int iColLeft,                   /* Index of column in first table */
333   int iRight,                     /* Index of second table in pSrc */
334   int iColRight,                  /* Index of column in second table */
335   int isOuterJoin,                /* True if this is an OUTER join */
336   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
337 ){
338   sqlite3 *db = pParse->db;
339   Expr *pE1;
340   Expr *pE2;
341   Expr *pEq;
342 
343   assert( iLeft<iRight );
344   assert( pSrc->nSrc>iRight );
345   assert( pSrc->a[iLeft].pTab );
346   assert( pSrc->a[iRight].pTab );
347 
348   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
349   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
350 
351   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
352   if( pEq && isOuterJoin ){
353     ExprSetProperty(pEq, EP_FromJoin);
354     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
355     ExprSetVVAProperty(pEq, EP_NoReduce);
356     pEq->iRightJoinTable = (i16)pE2->iTable;
357   }
358   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
359 }
360 
361 /*
362 ** Set the EP_FromJoin property on all terms of the given expression.
363 ** And set the Expr.iRightJoinTable to iTable for every term in the
364 ** expression.
365 **
366 ** The EP_FromJoin property is used on terms of an expression to tell
367 ** the LEFT OUTER JOIN processing logic that this term is part of the
368 ** join restriction specified in the ON or USING clause and not a part
369 ** of the more general WHERE clause.  These terms are moved over to the
370 ** WHERE clause during join processing but we need to remember that they
371 ** originated in the ON or USING clause.
372 **
373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
374 ** expression depends on table iRightJoinTable even if that table is not
375 ** explicitly mentioned in the expression.  That information is needed
376 ** for cases like this:
377 **
378 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
379 **
380 ** The where clause needs to defer the handling of the t1.x=5
381 ** term until after the t2 loop of the join.  In that way, a
382 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
383 ** defer the handling of t1.x=5, it will be processed immediately
384 ** after the t1 loop and rows with t1.x!=5 will never appear in
385 ** the output, which is incorrect.
386 */
387 static void setJoinExpr(Expr *p, int iTable){
388   while( p ){
389     ExprSetProperty(p, EP_FromJoin);
390     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
391     ExprSetVVAProperty(p, EP_NoReduce);
392     p->iRightJoinTable = (i16)iTable;
393     if( p->op==TK_FUNCTION && p->x.pList ){
394       int i;
395       for(i=0; i<p->x.pList->nExpr; i++){
396         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
397       }
398     }
399     setJoinExpr(p->pLeft, iTable);
400     p = p->pRight;
401   }
402 }
403 
404 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
406 ** an ordinary term that omits the EP_FromJoin mark.
407 **
408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
409 */
410 static void unsetJoinExpr(Expr *p, int iTable){
411   while( p ){
412     if( ExprHasProperty(p, EP_FromJoin)
413      && (iTable<0 || p->iRightJoinTable==iTable) ){
414       ExprClearProperty(p, EP_FromJoin);
415     }
416     if( p->op==TK_FUNCTION && p->x.pList ){
417       int i;
418       for(i=0; i<p->x.pList->nExpr; i++){
419         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
420       }
421     }
422     unsetJoinExpr(p->pLeft, iTable);
423     p = p->pRight;
424   }
425 }
426 
427 /*
428 ** This routine processes the join information for a SELECT statement.
429 ** ON and USING clauses are converted into extra terms of the WHERE clause.
430 ** NATURAL joins also create extra WHERE clause terms.
431 **
432 ** The terms of a FROM clause are contained in the Select.pSrc structure.
433 ** The left most table is the first entry in Select.pSrc.  The right-most
434 ** table is the last entry.  The join operator is held in the entry to
435 ** the left.  Thus entry 0 contains the join operator for the join between
436 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
437 ** also attached to the left entry.
438 **
439 ** This routine returns the number of errors encountered.
440 */
441 static int sqliteProcessJoin(Parse *pParse, Select *p){
442   SrcList *pSrc;                  /* All tables in the FROM clause */
443   int i, j;                       /* Loop counters */
444   struct SrcList_item *pLeft;     /* Left table being joined */
445   struct SrcList_item *pRight;    /* Right table being joined */
446 
447   pSrc = p->pSrc;
448   pLeft = &pSrc->a[0];
449   pRight = &pLeft[1];
450   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
451     Table *pRightTab = pRight->pTab;
452     int isOuter;
453 
454     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
455     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
456 
457     /* When the NATURAL keyword is present, add WHERE clause terms for
458     ** every column that the two tables have in common.
459     */
460     if( pRight->fg.jointype & JT_NATURAL ){
461       if( pRight->pOn || pRight->pUsing ){
462         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
463            "an ON or USING clause", 0);
464         return 1;
465       }
466       for(j=0; j<pRightTab->nCol; j++){
467         char *zName;   /* Name of column in the right table */
468         int iLeft;     /* Matching left table */
469         int iLeftCol;  /* Matching column in the left table */
470 
471         zName = pRightTab->aCol[j].zName;
472         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
473           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
474                        isOuter, &p->pWhere);
475         }
476       }
477     }
478 
479     /* Disallow both ON and USING clauses in the same join
480     */
481     if( pRight->pOn && pRight->pUsing ){
482       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
483         "clauses in the same join");
484       return 1;
485     }
486 
487     /* Add the ON clause to the end of the WHERE clause, connected by
488     ** an AND operator.
489     */
490     if( pRight->pOn ){
491       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
492       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
493       pRight->pOn = 0;
494     }
495 
496     /* Create extra terms on the WHERE clause for each column named
497     ** in the USING clause.  Example: If the two tables to be joined are
498     ** A and B and the USING clause names X, Y, and Z, then add this
499     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
500     ** Report an error if any column mentioned in the USING clause is
501     ** not contained in both tables to be joined.
502     */
503     if( pRight->pUsing ){
504       IdList *pList = pRight->pUsing;
505       for(j=0; j<pList->nId; j++){
506         char *zName;     /* Name of the term in the USING clause */
507         int iLeft;       /* Table on the left with matching column name */
508         int iLeftCol;    /* Column number of matching column on the left */
509         int iRightCol;   /* Column number of matching column on the right */
510 
511         zName = pList->a[j].zName;
512         iRightCol = columnIndex(pRightTab, zName);
513         if( iRightCol<0
514          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
515         ){
516           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
517             "not present in both tables", zName);
518           return 1;
519         }
520         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
521                      isOuter, &p->pWhere);
522       }
523     }
524   }
525   return 0;
526 }
527 
528 /*
529 ** An instance of this object holds information (beyond pParse and pSelect)
530 ** needed to load the next result row that is to be added to the sorter.
531 */
532 typedef struct RowLoadInfo RowLoadInfo;
533 struct RowLoadInfo {
534   int regResult;               /* Store results in array of registers here */
535   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
537   ExprList *pExtra;            /* Extra columns needed by sorter refs */
538   int regExtraResult;          /* Where to load the extra columns */
539 #endif
540 };
541 
542 /*
543 ** This routine does the work of loading query data into an array of
544 ** registers so that it can be added to the sorter.
545 */
546 static void innerLoopLoadRow(
547   Parse *pParse,             /* Statement under construction */
548   Select *pSelect,           /* The query being coded */
549   RowLoadInfo *pInfo         /* Info needed to complete the row load */
550 ){
551   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
552                           0, pInfo->ecelFlags);
553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
554   if( pInfo->pExtra ){
555     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
556     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
557   }
558 #endif
559 }
560 
561 /*
562 ** Code the OP_MakeRecord instruction that generates the entry to be
563 ** added into the sorter.
564 **
565 ** Return the register in which the result is stored.
566 */
567 static int makeSorterRecord(
568   Parse *pParse,
569   SortCtx *pSort,
570   Select *pSelect,
571   int regBase,
572   int nBase
573 ){
574   int nOBSat = pSort->nOBSat;
575   Vdbe *v = pParse->pVdbe;
576   int regOut = ++pParse->nMem;
577   if( pSort->pDeferredRowLoad ){
578     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
579   }
580   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
581   return regOut;
582 }
583 
584 /*
585 ** Generate code that will push the record in registers regData
586 ** through regData+nData-1 onto the sorter.
587 */
588 static void pushOntoSorter(
589   Parse *pParse,         /* Parser context */
590   SortCtx *pSort,        /* Information about the ORDER BY clause */
591   Select *pSelect,       /* The whole SELECT statement */
592   int regData,           /* First register holding data to be sorted */
593   int regOrigData,       /* First register holding data before packing */
594   int nData,             /* Number of elements in the regData data array */
595   int nPrefixReg         /* No. of reg prior to regData available for use */
596 ){
597   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
598   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
599   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
600   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
601   int regBase;                                     /* Regs for sorter record */
602   int regRecord = 0;                               /* Assembled sorter record */
603   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
604   int op;                            /* Opcode to add sorter record to sorter */
605   int iLimit;                        /* LIMIT counter */
606   int iSkip = 0;                     /* End of the sorter insert loop */
607 
608   assert( bSeq==0 || bSeq==1 );
609 
610   /* Three cases:
611   **   (1) The data to be sorted has already been packed into a Record
612   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
613   **       will be completely unrelated to regOrigData.
614   **   (2) All output columns are included in the sort record.  In that
615   **       case regData==regOrigData.
616   **   (3) Some output columns are omitted from the sort record due to
617   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
618   **       SQLITE_ECEL_OMITREF optimization, or due to the
619   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
620   **       regOrigData is 0 to prevent this routine from trying to copy
621   **       values that might not yet exist.
622   */
623   assert( nData==1 || regData==regOrigData || regOrigData==0 );
624 
625   if( nPrefixReg ){
626     assert( nPrefixReg==nExpr+bSeq );
627     regBase = regData - nPrefixReg;
628   }else{
629     regBase = pParse->nMem + 1;
630     pParse->nMem += nBase;
631   }
632   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
633   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
634   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
635   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
636                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
637   if( bSeq ){
638     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
639   }
640   if( nPrefixReg==0 && nData>0 ){
641     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
642   }
643   if( nOBSat>0 ){
644     int regPrevKey;   /* The first nOBSat columns of the previous row */
645     int addrFirst;    /* Address of the OP_IfNot opcode */
646     int addrJmp;      /* Address of the OP_Jump opcode */
647     VdbeOp *pOp;      /* Opcode that opens the sorter */
648     int nKey;         /* Number of sorting key columns, including OP_Sequence */
649     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
650 
651     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
652     regPrevKey = pParse->nMem+1;
653     pParse->nMem += pSort->nOBSat;
654     nKey = nExpr - pSort->nOBSat + bSeq;
655     if( bSeq ){
656       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
657     }else{
658       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
659     }
660     VdbeCoverage(v);
661     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
662     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
663     if( pParse->db->mallocFailed ) return;
664     pOp->p2 = nKey + nData;
665     pKI = pOp->p4.pKeyInfo;
666     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
667     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
668     testcase( pKI->nAllField > pKI->nKeyField+2 );
669     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
670                                            pKI->nAllField-pKI->nKeyField-1);
671     addrJmp = sqlite3VdbeCurrentAddr(v);
672     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
673     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
674     pSort->regReturn = ++pParse->nMem;
675     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
676     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
677     if( iLimit ){
678       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
679       VdbeCoverage(v);
680     }
681     sqlite3VdbeJumpHere(v, addrFirst);
682     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
683     sqlite3VdbeJumpHere(v, addrJmp);
684   }
685   if( iLimit ){
686     /* At this point the values for the new sorter entry are stored
687     ** in an array of registers. They need to be composed into a record
688     ** and inserted into the sorter if either (a) there are currently
689     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
690     ** the largest record currently in the sorter. If (b) is true and there
691     ** are already LIMIT+OFFSET items in the sorter, delete the largest
692     ** entry before inserting the new one. This way there are never more
693     ** than LIMIT+OFFSET items in the sorter.
694     **
695     ** If the new record does not need to be inserted into the sorter,
696     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
697     ** value is not zero, then it is a label of where to jump.  Otherwise,
698     ** just bypass the row insert logic.  See the header comment on the
699     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
700     */
701     int iCsr = pSort->iECursor;
702     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
705     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
706                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
707     VdbeCoverage(v);
708     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
709   }
710   if( regRecord==0 ){
711     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
712   }
713   if( pSort->sortFlags & SORTFLAG_UseSorter ){
714     op = OP_SorterInsert;
715   }else{
716     op = OP_IdxInsert;
717   }
718   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
719                        regBase+nOBSat, nBase-nOBSat);
720   if( iSkip ){
721     sqlite3VdbeChangeP2(v, iSkip,
722          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
723   }
724 }
725 
726 /*
727 ** Add code to implement the OFFSET
728 */
729 static void codeOffset(
730   Vdbe *v,          /* Generate code into this VM */
731   int iOffset,      /* Register holding the offset counter */
732   int iContinue     /* Jump here to skip the current record */
733 ){
734   if( iOffset>0 ){
735     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
736     VdbeComment((v, "OFFSET"));
737   }
738 }
739 
740 /*
741 ** Add code that will check to make sure the N registers starting at iMem
742 ** form a distinct entry.  iTab is a sorting index that holds previously
743 ** seen combinations of the N values.  A new entry is made in iTab
744 ** if the current N values are new.
745 **
746 ** A jump to addrRepeat is made and the N+1 values are popped from the
747 ** stack if the top N elements are not distinct.
748 */
749 static void codeDistinct(
750   Parse *pParse,     /* Parsing and code generating context */
751   int iTab,          /* A sorting index used to test for distinctness */
752   int addrRepeat,    /* Jump to here if not distinct */
753   int N,             /* Number of elements */
754   int iMem           /* First element */
755 ){
756   Vdbe *v;
757   int r1;
758 
759   v = pParse->pVdbe;
760   r1 = sqlite3GetTempReg(pParse);
761   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
762   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
763   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
764   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
765   sqlite3ReleaseTempReg(pParse, r1);
766 }
767 
768 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
769 /*
770 ** This function is called as part of inner-loop generation for a SELECT
771 ** statement with an ORDER BY that is not optimized by an index. It
772 ** determines the expressions, if any, that the sorter-reference
773 ** optimization should be used for. The sorter-reference optimization
774 ** is used for SELECT queries like:
775 **
776 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
777 **
778 ** If the optimization is used for expression "bigblob", then instead of
779 ** storing values read from that column in the sorter records, the PK of
780 ** the row from table t1 is stored instead. Then, as records are extracted from
781 ** the sorter to return to the user, the required value of bigblob is
782 ** retrieved directly from table t1. If the values are very large, this
783 ** can be more efficient than storing them directly in the sorter records.
784 **
785 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
786 ** for which the sorter-reference optimization should be enabled.
787 ** Additionally, the pSort->aDefer[] array is populated with entries
788 ** for all cursors required to evaluate all selected expressions. Finally.
789 ** output variable (*ppExtra) is set to an expression list containing
790 ** expressions for all extra PK values that should be stored in the
791 ** sorter records.
792 */
793 static void selectExprDefer(
794   Parse *pParse,                  /* Leave any error here */
795   SortCtx *pSort,                 /* Sorter context */
796   ExprList *pEList,               /* Expressions destined for sorter */
797   ExprList **ppExtra              /* Expressions to append to sorter record */
798 ){
799   int i;
800   int nDefer = 0;
801   ExprList *pExtra = 0;
802   for(i=0; i<pEList->nExpr; i++){
803     struct ExprList_item *pItem = &pEList->a[i];
804     if( pItem->u.x.iOrderByCol==0 ){
805       Expr *pExpr = pItem->pExpr;
806       Table *pTab = pExpr->y.pTab;
807       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
808        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
809       ){
810         int j;
811         for(j=0; j<nDefer; j++){
812           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
813         }
814         if( j==nDefer ){
815           if( nDefer==ArraySize(pSort->aDefer) ){
816             continue;
817           }else{
818             int nKey = 1;
819             int k;
820             Index *pPk = 0;
821             if( !HasRowid(pTab) ){
822               pPk = sqlite3PrimaryKeyIndex(pTab);
823               nKey = pPk->nKeyCol;
824             }
825             for(k=0; k<nKey; k++){
826               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
827               if( pNew ){
828                 pNew->iTable = pExpr->iTable;
829                 pNew->y.pTab = pExpr->y.pTab;
830                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
831                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
832               }
833             }
834             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
835             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
836             pSort->aDefer[nDefer].nKey = nKey;
837             nDefer++;
838           }
839         }
840         pItem->bSorterRef = 1;
841       }
842     }
843   }
844   pSort->nDefer = (u8)nDefer;
845   *ppExtra = pExtra;
846 }
847 #endif
848 
849 /*
850 ** This routine generates the code for the inside of the inner loop
851 ** of a SELECT.
852 **
853 ** If srcTab is negative, then the p->pEList expressions
854 ** are evaluated in order to get the data for this row.  If srcTab is
855 ** zero or more, then data is pulled from srcTab and p->pEList is used only
856 ** to get the number of columns and the collation sequence for each column.
857 */
858 static void selectInnerLoop(
859   Parse *pParse,          /* The parser context */
860   Select *p,              /* The complete select statement being coded */
861   int srcTab,             /* Pull data from this table if non-negative */
862   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
863   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
864   SelectDest *pDest,      /* How to dispose of the results */
865   int iContinue,          /* Jump here to continue with next row */
866   int iBreak              /* Jump here to break out of the inner loop */
867 ){
868   Vdbe *v = pParse->pVdbe;
869   int i;
870   int hasDistinct;            /* True if the DISTINCT keyword is present */
871   int eDest = pDest->eDest;   /* How to dispose of results */
872   int iParm = pDest->iSDParm; /* First argument to disposal method */
873   int nResultCol;             /* Number of result columns */
874   int nPrefixReg = 0;         /* Number of extra registers before regResult */
875   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
876 
877   /* Usually, regResult is the first cell in an array of memory cells
878   ** containing the current result row. In this case regOrig is set to the
879   ** same value. However, if the results are being sent to the sorter, the
880   ** values for any expressions that are also part of the sort-key are omitted
881   ** from this array. In this case regOrig is set to zero.  */
882   int regResult;              /* Start of memory holding current results */
883   int regOrig;                /* Start of memory holding full result (or 0) */
884 
885   assert( v );
886   assert( p->pEList!=0 );
887   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
888   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
889   if( pSort==0 && !hasDistinct ){
890     assert( iContinue!=0 );
891     codeOffset(v, p->iOffset, iContinue);
892   }
893 
894   /* Pull the requested columns.
895   */
896   nResultCol = p->pEList->nExpr;
897 
898   if( pDest->iSdst==0 ){
899     if( pSort ){
900       nPrefixReg = pSort->pOrderBy->nExpr;
901       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
902       pParse->nMem += nPrefixReg;
903     }
904     pDest->iSdst = pParse->nMem+1;
905     pParse->nMem += nResultCol;
906   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
907     /* This is an error condition that can result, for example, when a SELECT
908     ** on the right-hand side of an INSERT contains more result columns than
909     ** there are columns in the table on the left.  The error will be caught
910     ** and reported later.  But we need to make sure enough memory is allocated
911     ** to avoid other spurious errors in the meantime. */
912     pParse->nMem += nResultCol;
913   }
914   pDest->nSdst = nResultCol;
915   regOrig = regResult = pDest->iSdst;
916   if( srcTab>=0 ){
917     for(i=0; i<nResultCol; i++){
918       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
919       VdbeComment((v, "%s", p->pEList->a[i].zName));
920     }
921   }else if( eDest!=SRT_Exists ){
922 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
923     ExprList *pExtra = 0;
924 #endif
925     /* If the destination is an EXISTS(...) expression, the actual
926     ** values returned by the SELECT are not required.
927     */
928     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
929     ExprList *pEList;
930     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
931       ecelFlags = SQLITE_ECEL_DUP;
932     }else{
933       ecelFlags = 0;
934     }
935     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
936       /* For each expression in p->pEList that is a copy of an expression in
937       ** the ORDER BY clause (pSort->pOrderBy), set the associated
938       ** iOrderByCol value to one more than the index of the ORDER BY
939       ** expression within the sort-key that pushOntoSorter() will generate.
940       ** This allows the p->pEList field to be omitted from the sorted record,
941       ** saving space and CPU cycles.  */
942       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
943 
944       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
945         int j;
946         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
947           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
948         }
949       }
950 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
951       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
952       if( pExtra && pParse->db->mallocFailed==0 ){
953         /* If there are any extra PK columns to add to the sorter records,
954         ** allocate extra memory cells and adjust the OpenEphemeral
955         ** instruction to account for the larger records. This is only
956         ** required if there are one or more WITHOUT ROWID tables with
957         ** composite primary keys in the SortCtx.aDefer[] array.  */
958         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
959         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
960         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
961         pParse->nMem += pExtra->nExpr;
962       }
963 #endif
964 
965       /* Adjust nResultCol to account for columns that are omitted
966       ** from the sorter by the optimizations in this branch */
967       pEList = p->pEList;
968       for(i=0; i<pEList->nExpr; i++){
969         if( pEList->a[i].u.x.iOrderByCol>0
970 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
971          || pEList->a[i].bSorterRef
972 #endif
973         ){
974           nResultCol--;
975           regOrig = 0;
976         }
977       }
978 
979       testcase( regOrig );
980       testcase( eDest==SRT_Set );
981       testcase( eDest==SRT_Mem );
982       testcase( eDest==SRT_Coroutine );
983       testcase( eDest==SRT_Output );
984       assert( eDest==SRT_Set || eDest==SRT_Mem
985            || eDest==SRT_Coroutine || eDest==SRT_Output );
986     }
987     sRowLoadInfo.regResult = regResult;
988     sRowLoadInfo.ecelFlags = ecelFlags;
989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
990     sRowLoadInfo.pExtra = pExtra;
991     sRowLoadInfo.regExtraResult = regResult + nResultCol;
992     if( pExtra ) nResultCol += pExtra->nExpr;
993 #endif
994     if( p->iLimit
995      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
996      && nPrefixReg>0
997     ){
998       assert( pSort!=0 );
999       assert( hasDistinct==0 );
1000       pSort->pDeferredRowLoad = &sRowLoadInfo;
1001       regOrig = 0;
1002     }else{
1003       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1004     }
1005   }
1006 
1007   /* If the DISTINCT keyword was present on the SELECT statement
1008   ** and this row has been seen before, then do not make this row
1009   ** part of the result.
1010   */
1011   if( hasDistinct ){
1012     switch( pDistinct->eTnctType ){
1013       case WHERE_DISTINCT_ORDERED: {
1014         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1015         int iJump;              /* Jump destination */
1016         int regPrev;            /* Previous row content */
1017 
1018         /* Allocate space for the previous row */
1019         regPrev = pParse->nMem+1;
1020         pParse->nMem += nResultCol;
1021 
1022         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1023         ** sets the MEM_Cleared bit on the first register of the
1024         ** previous value.  This will cause the OP_Ne below to always
1025         ** fail on the first iteration of the loop even if the first
1026         ** row is all NULLs.
1027         */
1028         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1029         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1030         pOp->opcode = OP_Null;
1031         pOp->p1 = 1;
1032         pOp->p2 = regPrev;
1033 
1034         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1035         for(i=0; i<nResultCol; i++){
1036           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1037           if( i<nResultCol-1 ){
1038             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1039             VdbeCoverage(v);
1040           }else{
1041             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1042             VdbeCoverage(v);
1043            }
1044           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1045           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1046         }
1047         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1048         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1049         break;
1050       }
1051 
1052       case WHERE_DISTINCT_UNIQUE: {
1053         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1054         break;
1055       }
1056 
1057       default: {
1058         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1059         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1060                      regResult);
1061         break;
1062       }
1063     }
1064     if( pSort==0 ){
1065       codeOffset(v, p->iOffset, iContinue);
1066     }
1067   }
1068 
1069   switch( eDest ){
1070     /* In this mode, write each query result to the key of the temporary
1071     ** table iParm.
1072     */
1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1074     case SRT_Union: {
1075       int r1;
1076       r1 = sqlite3GetTempReg(pParse);
1077       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1078       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1079       sqlite3ReleaseTempReg(pParse, r1);
1080       break;
1081     }
1082 
1083     /* Construct a record from the query result, but instead of
1084     ** saving that record, use it as a key to delete elements from
1085     ** the temporary table iParm.
1086     */
1087     case SRT_Except: {
1088       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1089       break;
1090     }
1091 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1092 
1093     /* Store the result as data using a unique key.
1094     */
1095     case SRT_Fifo:
1096     case SRT_DistFifo:
1097     case SRT_Table:
1098     case SRT_EphemTab: {
1099       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1100       testcase( eDest==SRT_Table );
1101       testcase( eDest==SRT_EphemTab );
1102       testcase( eDest==SRT_Fifo );
1103       testcase( eDest==SRT_DistFifo );
1104       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1105 #ifndef SQLITE_OMIT_CTE
1106       if( eDest==SRT_DistFifo ){
1107         /* If the destination is DistFifo, then cursor (iParm+1) is open
1108         ** on an ephemeral index. If the current row is already present
1109         ** in the index, do not write it to the output. If not, add the
1110         ** current row to the index and proceed with writing it to the
1111         ** output table as well.  */
1112         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1113         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1114         VdbeCoverage(v);
1115         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1116         assert( pSort==0 );
1117       }
1118 #endif
1119       if( pSort ){
1120         assert( regResult==regOrig );
1121         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1122       }else{
1123         int r2 = sqlite3GetTempReg(pParse);
1124         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1125         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1126         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1127         sqlite3ReleaseTempReg(pParse, r2);
1128       }
1129       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1130       break;
1131     }
1132 
1133 #ifndef SQLITE_OMIT_SUBQUERY
1134     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1135     ** then there should be a single item on the stack.  Write this
1136     ** item into the set table with bogus data.
1137     */
1138     case SRT_Set: {
1139       if( pSort ){
1140         /* At first glance you would think we could optimize out the
1141         ** ORDER BY in this case since the order of entries in the set
1142         ** does not matter.  But there might be a LIMIT clause, in which
1143         ** case the order does matter */
1144         pushOntoSorter(
1145             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1146       }else{
1147         int r1 = sqlite3GetTempReg(pParse);
1148         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1149         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1150             r1, pDest->zAffSdst, nResultCol);
1151         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1152         sqlite3ReleaseTempReg(pParse, r1);
1153       }
1154       break;
1155     }
1156 
1157     /* If any row exist in the result set, record that fact and abort.
1158     */
1159     case SRT_Exists: {
1160       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1161       /* The LIMIT clause will terminate the loop for us */
1162       break;
1163     }
1164 
1165     /* If this is a scalar select that is part of an expression, then
1166     ** store the results in the appropriate memory cell or array of
1167     ** memory cells and break out of the scan loop.
1168     */
1169     case SRT_Mem: {
1170       if( pSort ){
1171         assert( nResultCol<=pDest->nSdst );
1172         pushOntoSorter(
1173             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1174       }else{
1175         assert( nResultCol==pDest->nSdst );
1176         assert( regResult==iParm );
1177         /* The LIMIT clause will jump out of the loop for us */
1178       }
1179       break;
1180     }
1181 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1182 
1183     case SRT_Coroutine:       /* Send data to a co-routine */
1184     case SRT_Output: {        /* Return the results */
1185       testcase( eDest==SRT_Coroutine );
1186       testcase( eDest==SRT_Output );
1187       if( pSort ){
1188         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1189                        nPrefixReg);
1190       }else if( eDest==SRT_Coroutine ){
1191         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1192       }else{
1193         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1194       }
1195       break;
1196     }
1197 
1198 #ifndef SQLITE_OMIT_CTE
1199     /* Write the results into a priority queue that is order according to
1200     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1201     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1202     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1203     ** final OP_Sequence column.  The last column is the record as a blob.
1204     */
1205     case SRT_DistQueue:
1206     case SRT_Queue: {
1207       int nKey;
1208       int r1, r2, r3;
1209       int addrTest = 0;
1210       ExprList *pSO;
1211       pSO = pDest->pOrderBy;
1212       assert( pSO );
1213       nKey = pSO->nExpr;
1214       r1 = sqlite3GetTempReg(pParse);
1215       r2 = sqlite3GetTempRange(pParse, nKey+2);
1216       r3 = r2+nKey+1;
1217       if( eDest==SRT_DistQueue ){
1218         /* If the destination is DistQueue, then cursor (iParm+1) is open
1219         ** on a second ephemeral index that holds all values every previously
1220         ** added to the queue. */
1221         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1222                                         regResult, nResultCol);
1223         VdbeCoverage(v);
1224       }
1225       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1226       if( eDest==SRT_DistQueue ){
1227         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1228         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1229       }
1230       for(i=0; i<nKey; i++){
1231         sqlite3VdbeAddOp2(v, OP_SCopy,
1232                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1233                           r2+i);
1234       }
1235       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1236       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1237       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1238       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1239       sqlite3ReleaseTempReg(pParse, r1);
1240       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1241       break;
1242     }
1243 #endif /* SQLITE_OMIT_CTE */
1244 
1245 
1246 
1247 #if !defined(SQLITE_OMIT_TRIGGER)
1248     /* Discard the results.  This is used for SELECT statements inside
1249     ** the body of a TRIGGER.  The purpose of such selects is to call
1250     ** user-defined functions that have side effects.  We do not care
1251     ** about the actual results of the select.
1252     */
1253     default: {
1254       assert( eDest==SRT_Discard );
1255       break;
1256     }
1257 #endif
1258   }
1259 
1260   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1261   ** there is a sorter, in which case the sorter has already limited
1262   ** the output for us.
1263   */
1264   if( pSort==0 && p->iLimit ){
1265     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1266   }
1267 }
1268 
1269 /*
1270 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1271 ** X extra columns.
1272 */
1273 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1274   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1275   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1276   if( p ){
1277     p->aSortOrder = (u8*)&p->aColl[N+X];
1278     p->nKeyField = (u16)N;
1279     p->nAllField = (u16)(N+X);
1280     p->enc = ENC(db);
1281     p->db = db;
1282     p->nRef = 1;
1283     memset(&p[1], 0, nExtra);
1284   }else{
1285     sqlite3OomFault(db);
1286   }
1287   return p;
1288 }
1289 
1290 /*
1291 ** Deallocate a KeyInfo object
1292 */
1293 void sqlite3KeyInfoUnref(KeyInfo *p){
1294   if( p ){
1295     assert( p->nRef>0 );
1296     p->nRef--;
1297     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1298   }
1299 }
1300 
1301 /*
1302 ** Make a new pointer to a KeyInfo object
1303 */
1304 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1305   if( p ){
1306     assert( p->nRef>0 );
1307     p->nRef++;
1308   }
1309   return p;
1310 }
1311 
1312 #ifdef SQLITE_DEBUG
1313 /*
1314 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1315 ** can only be changed if this is just a single reference to the object.
1316 **
1317 ** This routine is used only inside of assert() statements.
1318 */
1319 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1320 #endif /* SQLITE_DEBUG */
1321 
1322 /*
1323 ** Given an expression list, generate a KeyInfo structure that records
1324 ** the collating sequence for each expression in that expression list.
1325 **
1326 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1327 ** KeyInfo structure is appropriate for initializing a virtual index to
1328 ** implement that clause.  If the ExprList is the result set of a SELECT
1329 ** then the KeyInfo structure is appropriate for initializing a virtual
1330 ** index to implement a DISTINCT test.
1331 **
1332 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1333 ** function is responsible for seeing that this structure is eventually
1334 ** freed.
1335 */
1336 KeyInfo *sqlite3KeyInfoFromExprList(
1337   Parse *pParse,       /* Parsing context */
1338   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1339   int iStart,          /* Begin with this column of pList */
1340   int nExtra           /* Add this many extra columns to the end */
1341 ){
1342   int nExpr;
1343   KeyInfo *pInfo;
1344   struct ExprList_item *pItem;
1345   sqlite3 *db = pParse->db;
1346   int i;
1347 
1348   nExpr = pList->nExpr;
1349   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1350   if( pInfo ){
1351     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1352     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1353       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1354       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1355     }
1356   }
1357   return pInfo;
1358 }
1359 
1360 /*
1361 ** Name of the connection operator, used for error messages.
1362 */
1363 static const char *selectOpName(int id){
1364   char *z;
1365   switch( id ){
1366     case TK_ALL:       z = "UNION ALL";   break;
1367     case TK_INTERSECT: z = "INTERSECT";   break;
1368     case TK_EXCEPT:    z = "EXCEPT";      break;
1369     default:           z = "UNION";       break;
1370   }
1371   return z;
1372 }
1373 
1374 #ifndef SQLITE_OMIT_EXPLAIN
1375 /*
1376 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1377 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1378 ** where the caption is of the form:
1379 **
1380 **   "USE TEMP B-TREE FOR xxx"
1381 **
1382 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1383 ** is determined by the zUsage argument.
1384 */
1385 static void explainTempTable(Parse *pParse, const char *zUsage){
1386   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1387 }
1388 
1389 /*
1390 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1391 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1392 ** in sqlite3Select() to assign values to structure member variables that
1393 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1394 ** code with #ifndef directives.
1395 */
1396 # define explainSetInteger(a, b) a = b
1397 
1398 #else
1399 /* No-op versions of the explainXXX() functions and macros. */
1400 # define explainTempTable(y,z)
1401 # define explainSetInteger(y,z)
1402 #endif
1403 
1404 
1405 /*
1406 ** If the inner loop was generated using a non-null pOrderBy argument,
1407 ** then the results were placed in a sorter.  After the loop is terminated
1408 ** we need to run the sorter and output the results.  The following
1409 ** routine generates the code needed to do that.
1410 */
1411 static void generateSortTail(
1412   Parse *pParse,    /* Parsing context */
1413   Select *p,        /* The SELECT statement */
1414   SortCtx *pSort,   /* Information on the ORDER BY clause */
1415   int nColumn,      /* Number of columns of data */
1416   SelectDest *pDest /* Write the sorted results here */
1417 ){
1418   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1419   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1420   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1421   int addr;                       /* Top of output loop. Jump for Next. */
1422   int addrOnce = 0;
1423   int iTab;
1424   ExprList *pOrderBy = pSort->pOrderBy;
1425   int eDest = pDest->eDest;
1426   int iParm = pDest->iSDParm;
1427   int regRow;
1428   int regRowid;
1429   int iCol;
1430   int nKey;                       /* Number of key columns in sorter record */
1431   int iSortTab;                   /* Sorter cursor to read from */
1432   int i;
1433   int bSeq;                       /* True if sorter record includes seq. no. */
1434   int nRefKey = 0;
1435   struct ExprList_item *aOutEx = p->pEList->a;
1436 
1437   assert( addrBreak<0 );
1438   if( pSort->labelBkOut ){
1439     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1440     sqlite3VdbeGoto(v, addrBreak);
1441     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1442   }
1443 
1444 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1445   /* Open any cursors needed for sorter-reference expressions */
1446   for(i=0; i<pSort->nDefer; i++){
1447     Table *pTab = pSort->aDefer[i].pTab;
1448     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1449     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1450     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1451   }
1452 #endif
1453 
1454   iTab = pSort->iECursor;
1455   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1456     regRowid = 0;
1457     regRow = pDest->iSdst;
1458   }else{
1459     regRowid = sqlite3GetTempReg(pParse);
1460     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1461       regRow = sqlite3GetTempReg(pParse);
1462       nColumn = 0;
1463     }else{
1464       regRow = sqlite3GetTempRange(pParse, nColumn);
1465     }
1466   }
1467   nKey = pOrderBy->nExpr - pSort->nOBSat;
1468   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1469     int regSortOut = ++pParse->nMem;
1470     iSortTab = pParse->nTab++;
1471     if( pSort->labelBkOut ){
1472       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1473     }
1474     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1475         nKey+1+nColumn+nRefKey);
1476     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1477     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1478     VdbeCoverage(v);
1479     codeOffset(v, p->iOffset, addrContinue);
1480     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1481     bSeq = 0;
1482   }else{
1483     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1484     codeOffset(v, p->iOffset, addrContinue);
1485     iSortTab = iTab;
1486     bSeq = 1;
1487   }
1488   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1489 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1490     if( aOutEx[i].bSorterRef ) continue;
1491 #endif
1492     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1493   }
1494 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1495   if( pSort->nDefer ){
1496     int iKey = iCol+1;
1497     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1498 
1499     for(i=0; i<pSort->nDefer; i++){
1500       int iCsr = pSort->aDefer[i].iCsr;
1501       Table *pTab = pSort->aDefer[i].pTab;
1502       int nKey = pSort->aDefer[i].nKey;
1503 
1504       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1505       if( HasRowid(pTab) ){
1506         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1507         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1508             sqlite3VdbeCurrentAddr(v)+1, regKey);
1509       }else{
1510         int k;
1511         int iJmp;
1512         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1513         for(k=0; k<nKey; k++){
1514           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1515         }
1516         iJmp = sqlite3VdbeCurrentAddr(v);
1517         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1518         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1519         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1520       }
1521     }
1522     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1523   }
1524 #endif
1525   for(i=nColumn-1; i>=0; i--){
1526 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1527     if( aOutEx[i].bSorterRef ){
1528       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1529     }else
1530 #endif
1531     {
1532       int iRead;
1533       if( aOutEx[i].u.x.iOrderByCol ){
1534         iRead = aOutEx[i].u.x.iOrderByCol-1;
1535       }else{
1536         iRead = iCol--;
1537       }
1538       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1539       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1540     }
1541   }
1542   switch( eDest ){
1543     case SRT_Table:
1544     case SRT_EphemTab: {
1545       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1546       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1547       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1548       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1549       break;
1550     }
1551 #ifndef SQLITE_OMIT_SUBQUERY
1552     case SRT_Set: {
1553       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1554       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1555                         pDest->zAffSdst, nColumn);
1556       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1557       break;
1558     }
1559     case SRT_Mem: {
1560       /* The LIMIT clause will terminate the loop for us */
1561       break;
1562     }
1563 #endif
1564     default: {
1565       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1566       testcase( eDest==SRT_Output );
1567       testcase( eDest==SRT_Coroutine );
1568       if( eDest==SRT_Output ){
1569         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1570       }else{
1571         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1572       }
1573       break;
1574     }
1575   }
1576   if( regRowid ){
1577     if( eDest==SRT_Set ){
1578       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1579     }else{
1580       sqlite3ReleaseTempReg(pParse, regRow);
1581     }
1582     sqlite3ReleaseTempReg(pParse, regRowid);
1583   }
1584   /* The bottom of the loop
1585   */
1586   sqlite3VdbeResolveLabel(v, addrContinue);
1587   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1588     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1589   }else{
1590     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1591   }
1592   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1593   sqlite3VdbeResolveLabel(v, addrBreak);
1594 }
1595 
1596 /*
1597 ** Return a pointer to a string containing the 'declaration type' of the
1598 ** expression pExpr. The string may be treated as static by the caller.
1599 **
1600 ** Also try to estimate the size of the returned value and return that
1601 ** result in *pEstWidth.
1602 **
1603 ** The declaration type is the exact datatype definition extracted from the
1604 ** original CREATE TABLE statement if the expression is a column. The
1605 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1606 ** is considered a column can be complex in the presence of subqueries. The
1607 ** result-set expression in all of the following SELECT statements is
1608 ** considered a column by this function.
1609 **
1610 **   SELECT col FROM tbl;
1611 **   SELECT (SELECT col FROM tbl;
1612 **   SELECT (SELECT col FROM tbl);
1613 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1614 **
1615 ** The declaration type for any expression other than a column is NULL.
1616 **
1617 ** This routine has either 3 or 6 parameters depending on whether or not
1618 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1619 */
1620 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1621 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1622 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1623 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1624 #endif
1625 static const char *columnTypeImpl(
1626   NameContext *pNC,
1627 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1628   Expr *pExpr
1629 #else
1630   Expr *pExpr,
1631   const char **pzOrigDb,
1632   const char **pzOrigTab,
1633   const char **pzOrigCol
1634 #endif
1635 ){
1636   char const *zType = 0;
1637   int j;
1638 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1639   char const *zOrigDb = 0;
1640   char const *zOrigTab = 0;
1641   char const *zOrigCol = 0;
1642 #endif
1643 
1644   assert( pExpr!=0 );
1645   assert( pNC->pSrcList!=0 );
1646   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1647                                        ** are processed */
1648   switch( pExpr->op ){
1649     case TK_COLUMN: {
1650       /* The expression is a column. Locate the table the column is being
1651       ** extracted from in NameContext.pSrcList. This table may be real
1652       ** database table or a subquery.
1653       */
1654       Table *pTab = 0;            /* Table structure column is extracted from */
1655       Select *pS = 0;             /* Select the column is extracted from */
1656       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1657       while( pNC && !pTab ){
1658         SrcList *pTabList = pNC->pSrcList;
1659         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1660         if( j<pTabList->nSrc ){
1661           pTab = pTabList->a[j].pTab;
1662           pS = pTabList->a[j].pSelect;
1663         }else{
1664           pNC = pNC->pNext;
1665         }
1666       }
1667 
1668       if( pTab==0 ){
1669         /* At one time, code such as "SELECT new.x" within a trigger would
1670         ** cause this condition to run.  Since then, we have restructured how
1671         ** trigger code is generated and so this condition is no longer
1672         ** possible. However, it can still be true for statements like
1673         ** the following:
1674         **
1675         **   CREATE TABLE t1(col INTEGER);
1676         **   SELECT (SELECT t1.col) FROM FROM t1;
1677         **
1678         ** when columnType() is called on the expression "t1.col" in the
1679         ** sub-select. In this case, set the column type to NULL, even
1680         ** though it should really be "INTEGER".
1681         **
1682         ** This is not a problem, as the column type of "t1.col" is never
1683         ** used. When columnType() is called on the expression
1684         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1685         ** branch below.  */
1686         break;
1687       }
1688 
1689       assert( pTab && pExpr->y.pTab==pTab );
1690       if( pS ){
1691         /* The "table" is actually a sub-select or a view in the FROM clause
1692         ** of the SELECT statement. Return the declaration type and origin
1693         ** data for the result-set column of the sub-select.
1694         */
1695         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1696           /* If iCol is less than zero, then the expression requests the
1697           ** rowid of the sub-select or view. This expression is legal (see
1698           ** test case misc2.2.2) - it always evaluates to NULL.
1699           */
1700           NameContext sNC;
1701           Expr *p = pS->pEList->a[iCol].pExpr;
1702           sNC.pSrcList = pS->pSrc;
1703           sNC.pNext = pNC;
1704           sNC.pParse = pNC->pParse;
1705           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1706         }
1707       }else{
1708         /* A real table or a CTE table */
1709         assert( !pS );
1710 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1711         if( iCol<0 ) iCol = pTab->iPKey;
1712         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1713         if( iCol<0 ){
1714           zType = "INTEGER";
1715           zOrigCol = "rowid";
1716         }else{
1717           zOrigCol = pTab->aCol[iCol].zName;
1718           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1719         }
1720         zOrigTab = pTab->zName;
1721         if( pNC->pParse && pTab->pSchema ){
1722           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1723           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1724         }
1725 #else
1726         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1727         if( iCol<0 ){
1728           zType = "INTEGER";
1729         }else{
1730           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1731         }
1732 #endif
1733       }
1734       break;
1735     }
1736 #ifndef SQLITE_OMIT_SUBQUERY
1737     case TK_SELECT: {
1738       /* The expression is a sub-select. Return the declaration type and
1739       ** origin info for the single column in the result set of the SELECT
1740       ** statement.
1741       */
1742       NameContext sNC;
1743       Select *pS = pExpr->x.pSelect;
1744       Expr *p = pS->pEList->a[0].pExpr;
1745       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1746       sNC.pSrcList = pS->pSrc;
1747       sNC.pNext = pNC;
1748       sNC.pParse = pNC->pParse;
1749       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1750       break;
1751     }
1752 #endif
1753   }
1754 
1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1756   if( pzOrigDb ){
1757     assert( pzOrigTab && pzOrigCol );
1758     *pzOrigDb = zOrigDb;
1759     *pzOrigTab = zOrigTab;
1760     *pzOrigCol = zOrigCol;
1761   }
1762 #endif
1763   return zType;
1764 }
1765 
1766 /*
1767 ** Generate code that will tell the VDBE the declaration types of columns
1768 ** in the result set.
1769 */
1770 static void generateColumnTypes(
1771   Parse *pParse,      /* Parser context */
1772   SrcList *pTabList,  /* List of tables */
1773   ExprList *pEList    /* Expressions defining the result set */
1774 ){
1775 #ifndef SQLITE_OMIT_DECLTYPE
1776   Vdbe *v = pParse->pVdbe;
1777   int i;
1778   NameContext sNC;
1779   sNC.pSrcList = pTabList;
1780   sNC.pParse = pParse;
1781   sNC.pNext = 0;
1782   for(i=0; i<pEList->nExpr; i++){
1783     Expr *p = pEList->a[i].pExpr;
1784     const char *zType;
1785 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1786     const char *zOrigDb = 0;
1787     const char *zOrigTab = 0;
1788     const char *zOrigCol = 0;
1789     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1790 
1791     /* The vdbe must make its own copy of the column-type and other
1792     ** column specific strings, in case the schema is reset before this
1793     ** virtual machine is deleted.
1794     */
1795     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1796     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1797     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1798 #else
1799     zType = columnType(&sNC, p, 0, 0, 0);
1800 #endif
1801     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1802   }
1803 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1804 }
1805 
1806 
1807 /*
1808 ** Compute the column names for a SELECT statement.
1809 **
1810 ** The only guarantee that SQLite makes about column names is that if the
1811 ** column has an AS clause assigning it a name, that will be the name used.
1812 ** That is the only documented guarantee.  However, countless applications
1813 ** developed over the years have made baseless assumptions about column names
1814 ** and will break if those assumptions changes.  Hence, use extreme caution
1815 ** when modifying this routine to avoid breaking legacy.
1816 **
1817 ** See Also: sqlite3ColumnsFromExprList()
1818 **
1819 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1820 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1821 ** applications should operate this way.  Nevertheless, we need to support the
1822 ** other modes for legacy:
1823 **
1824 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1825 **                              originally appears in the SELECT statement.  In
1826 **                              other words, the zSpan of the result expression.
1827 **
1828 **    short=ON, full=OFF:       (This is the default setting).  If the result
1829 **                              refers directly to a table column, then the
1830 **                              result column name is just the table column
1831 **                              name: COLUMN.  Otherwise use zSpan.
1832 **
1833 **    full=ON, short=ANY:       If the result refers directly to a table column,
1834 **                              then the result column name with the table name
1835 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1836 */
1837 static void generateColumnNames(
1838   Parse *pParse,      /* Parser context */
1839   Select *pSelect     /* Generate column names for this SELECT statement */
1840 ){
1841   Vdbe *v = pParse->pVdbe;
1842   int i;
1843   Table *pTab;
1844   SrcList *pTabList;
1845   ExprList *pEList;
1846   sqlite3 *db = pParse->db;
1847   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1848   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1849 
1850 #ifndef SQLITE_OMIT_EXPLAIN
1851   /* If this is an EXPLAIN, skip this step */
1852   if( pParse->explain ){
1853     return;
1854   }
1855 #endif
1856 
1857   if( pParse->colNamesSet ) return;
1858   /* Column names are determined by the left-most term of a compound select */
1859   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1860   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1861   pTabList = pSelect->pSrc;
1862   pEList = pSelect->pEList;
1863   assert( v!=0 );
1864   assert( pTabList!=0 );
1865   pParse->colNamesSet = 1;
1866   fullName = (db->flags & SQLITE_FullColNames)!=0;
1867   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1868   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1869   for(i=0; i<pEList->nExpr; i++){
1870     Expr *p = pEList->a[i].pExpr;
1871 
1872     assert( p!=0 );
1873     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1874     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1875     if( pEList->a[i].zName ){
1876       /* An AS clause always takes first priority */
1877       char *zName = pEList->a[i].zName;
1878       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1879     }else if( srcName && p->op==TK_COLUMN ){
1880       char *zCol;
1881       int iCol = p->iColumn;
1882       pTab = p->y.pTab;
1883       assert( pTab!=0 );
1884       if( iCol<0 ) iCol = pTab->iPKey;
1885       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1886       if( iCol<0 ){
1887         zCol = "rowid";
1888       }else{
1889         zCol = pTab->aCol[iCol].zName;
1890       }
1891       if( fullName ){
1892         char *zName = 0;
1893         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1894         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1895       }else{
1896         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1897       }
1898     }else{
1899       const char *z = pEList->a[i].zSpan;
1900       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1901       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1902     }
1903   }
1904   generateColumnTypes(pParse, pTabList, pEList);
1905 }
1906 
1907 /*
1908 ** Given an expression list (which is really the list of expressions
1909 ** that form the result set of a SELECT statement) compute appropriate
1910 ** column names for a table that would hold the expression list.
1911 **
1912 ** All column names will be unique.
1913 **
1914 ** Only the column names are computed.  Column.zType, Column.zColl,
1915 ** and other fields of Column are zeroed.
1916 **
1917 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1918 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1919 **
1920 ** The only guarantee that SQLite makes about column names is that if the
1921 ** column has an AS clause assigning it a name, that will be the name used.
1922 ** That is the only documented guarantee.  However, countless applications
1923 ** developed over the years have made baseless assumptions about column names
1924 ** and will break if those assumptions changes.  Hence, use extreme caution
1925 ** when modifying this routine to avoid breaking legacy.
1926 **
1927 ** See Also: generateColumnNames()
1928 */
1929 int sqlite3ColumnsFromExprList(
1930   Parse *pParse,          /* Parsing context */
1931   ExprList *pEList,       /* Expr list from which to derive column names */
1932   i16 *pnCol,             /* Write the number of columns here */
1933   Column **paCol          /* Write the new column list here */
1934 ){
1935   sqlite3 *db = pParse->db;   /* Database connection */
1936   int i, j;                   /* Loop counters */
1937   u32 cnt;                    /* Index added to make the name unique */
1938   Column *aCol, *pCol;        /* For looping over result columns */
1939   int nCol;                   /* Number of columns in the result set */
1940   char *zName;                /* Column name */
1941   int nName;                  /* Size of name in zName[] */
1942   Hash ht;                    /* Hash table of column names */
1943 
1944   sqlite3HashInit(&ht);
1945   if( pEList ){
1946     nCol = pEList->nExpr;
1947     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1948     testcase( aCol==0 );
1949     if( nCol>32767 ) nCol = 32767;
1950   }else{
1951     nCol = 0;
1952     aCol = 0;
1953   }
1954   assert( nCol==(i16)nCol );
1955   *pnCol = nCol;
1956   *paCol = aCol;
1957 
1958   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1959     /* Get an appropriate name for the column
1960     */
1961     if( (zName = pEList->a[i].zName)!=0 ){
1962       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1963     }else{
1964       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1965       while( pColExpr->op==TK_DOT ){
1966         pColExpr = pColExpr->pRight;
1967         assert( pColExpr!=0 );
1968       }
1969       assert( pColExpr->op!=TK_AGG_COLUMN );
1970       if( pColExpr->op==TK_COLUMN ){
1971         /* For columns use the column name name */
1972         int iCol = pColExpr->iColumn;
1973         Table *pTab = pColExpr->y.pTab;
1974         assert( pTab!=0 );
1975         if( iCol<0 ) iCol = pTab->iPKey;
1976         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1977       }else if( pColExpr->op==TK_ID ){
1978         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1979         zName = pColExpr->u.zToken;
1980       }else{
1981         /* Use the original text of the column expression as its name */
1982         zName = pEList->a[i].zSpan;
1983       }
1984     }
1985     if( zName ){
1986       zName = sqlite3DbStrDup(db, zName);
1987     }else{
1988       zName = sqlite3MPrintf(db,"column%d",i+1);
1989     }
1990 
1991     /* Make sure the column name is unique.  If the name is not unique,
1992     ** append an integer to the name so that it becomes unique.
1993     */
1994     cnt = 0;
1995     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1996       nName = sqlite3Strlen30(zName);
1997       if( nName>0 ){
1998         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1999         if( zName[j]==':' ) nName = j;
2000       }
2001       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2002       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2003     }
2004     pCol->zName = zName;
2005     sqlite3ColumnPropertiesFromName(0, pCol);
2006     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2007       sqlite3OomFault(db);
2008     }
2009   }
2010   sqlite3HashClear(&ht);
2011   if( db->mallocFailed ){
2012     for(j=0; j<i; j++){
2013       sqlite3DbFree(db, aCol[j].zName);
2014     }
2015     sqlite3DbFree(db, aCol);
2016     *paCol = 0;
2017     *pnCol = 0;
2018     return SQLITE_NOMEM_BKPT;
2019   }
2020   return SQLITE_OK;
2021 }
2022 
2023 /*
2024 ** Add type and collation information to a column list based on
2025 ** a SELECT statement.
2026 **
2027 ** The column list presumably came from selectColumnNamesFromExprList().
2028 ** The column list has only names, not types or collations.  This
2029 ** routine goes through and adds the types and collations.
2030 **
2031 ** This routine requires that all identifiers in the SELECT
2032 ** statement be resolved.
2033 */
2034 void sqlite3SelectAddColumnTypeAndCollation(
2035   Parse *pParse,        /* Parsing contexts */
2036   Table *pTab,          /* Add column type information to this table */
2037   Select *pSelect       /* SELECT used to determine types and collations */
2038 ){
2039   sqlite3 *db = pParse->db;
2040   NameContext sNC;
2041   Column *pCol;
2042   CollSeq *pColl;
2043   int i;
2044   Expr *p;
2045   struct ExprList_item *a;
2046 
2047   assert( pSelect!=0 );
2048   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2049   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2050   if( db->mallocFailed ) return;
2051   memset(&sNC, 0, sizeof(sNC));
2052   sNC.pSrcList = pSelect->pSrc;
2053   a = pSelect->pEList->a;
2054   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2055     const char *zType;
2056     int n, m;
2057     p = a[i].pExpr;
2058     zType = columnType(&sNC, p, 0, 0, 0);
2059     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2060     pCol->affinity = sqlite3ExprAffinity(p);
2061     if( zType ){
2062       m = sqlite3Strlen30(zType);
2063       n = sqlite3Strlen30(pCol->zName);
2064       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2065       if( pCol->zName ){
2066         memcpy(&pCol->zName[n+1], zType, m+1);
2067         pCol->colFlags |= COLFLAG_HASTYPE;
2068       }
2069     }
2070     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2071     pColl = sqlite3ExprCollSeq(pParse, p);
2072     if( pColl && pCol->zColl==0 ){
2073       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2074     }
2075   }
2076   pTab->szTabRow = 1; /* Any non-zero value works */
2077 }
2078 
2079 /*
2080 ** Given a SELECT statement, generate a Table structure that describes
2081 ** the result set of that SELECT.
2082 */
2083 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2084   Table *pTab;
2085   sqlite3 *db = pParse->db;
2086   u64 savedFlags;
2087 
2088   savedFlags = db->flags;
2089   db->flags &= ~(u64)SQLITE_FullColNames;
2090   db->flags |= SQLITE_ShortColNames;
2091   sqlite3SelectPrep(pParse, pSelect, 0);
2092   db->flags = savedFlags;
2093   if( pParse->nErr ) return 0;
2094   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2095   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2096   if( pTab==0 ){
2097     return 0;
2098   }
2099   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2100   ** is disabled */
2101   assert( db->lookaside.bDisable );
2102   pTab->nTabRef = 1;
2103   pTab->zName = 0;
2104   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2105   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2106   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2107   pTab->iPKey = -1;
2108   if( db->mallocFailed ){
2109     sqlite3DeleteTable(db, pTab);
2110     return 0;
2111   }
2112   return pTab;
2113 }
2114 
2115 /*
2116 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2117 ** If an error occurs, return NULL and leave a message in pParse.
2118 */
2119 Vdbe *sqlite3GetVdbe(Parse *pParse){
2120   if( pParse->pVdbe ){
2121     return pParse->pVdbe;
2122   }
2123   if( pParse->pToplevel==0
2124    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2125   ){
2126     pParse->okConstFactor = 1;
2127   }
2128   return sqlite3VdbeCreate(pParse);
2129 }
2130 
2131 
2132 /*
2133 ** Compute the iLimit and iOffset fields of the SELECT based on the
2134 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2135 ** that appear in the original SQL statement after the LIMIT and OFFSET
2136 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2137 ** are the integer memory register numbers for counters used to compute
2138 ** the limit and offset.  If there is no limit and/or offset, then
2139 ** iLimit and iOffset are negative.
2140 **
2141 ** This routine changes the values of iLimit and iOffset only if
2142 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2143 ** and iOffset should have been preset to appropriate default values (zero)
2144 ** prior to calling this routine.
2145 **
2146 ** The iOffset register (if it exists) is initialized to the value
2147 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2148 ** iOffset+1 is initialized to LIMIT+OFFSET.
2149 **
2150 ** Only if pLimit->pLeft!=0 do the limit registers get
2151 ** redefined.  The UNION ALL operator uses this property to force
2152 ** the reuse of the same limit and offset registers across multiple
2153 ** SELECT statements.
2154 */
2155 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2156   Vdbe *v = 0;
2157   int iLimit = 0;
2158   int iOffset;
2159   int n;
2160   Expr *pLimit = p->pLimit;
2161 
2162   if( p->iLimit ) return;
2163 
2164   /*
2165   ** "LIMIT -1" always shows all rows.  There is some
2166   ** controversy about what the correct behavior should be.
2167   ** The current implementation interprets "LIMIT 0" to mean
2168   ** no rows.
2169   */
2170   if( pLimit ){
2171     assert( pLimit->op==TK_LIMIT );
2172     assert( pLimit->pLeft!=0 );
2173     p->iLimit = iLimit = ++pParse->nMem;
2174     v = sqlite3GetVdbe(pParse);
2175     assert( v!=0 );
2176     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2177       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2178       VdbeComment((v, "LIMIT counter"));
2179       if( n==0 ){
2180         sqlite3VdbeGoto(v, iBreak);
2181       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2182         p->nSelectRow = sqlite3LogEst((u64)n);
2183         p->selFlags |= SF_FixedLimit;
2184       }
2185     }else{
2186       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2187       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2188       VdbeComment((v, "LIMIT counter"));
2189       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2190     }
2191     if( pLimit->pRight ){
2192       p->iOffset = iOffset = ++pParse->nMem;
2193       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2194       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2195       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2196       VdbeComment((v, "OFFSET counter"));
2197       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2198       VdbeComment((v, "LIMIT+OFFSET"));
2199     }
2200   }
2201 }
2202 
2203 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2204 /*
2205 ** Return the appropriate collating sequence for the iCol-th column of
2206 ** the result set for the compound-select statement "p".  Return NULL if
2207 ** the column has no default collating sequence.
2208 **
2209 ** The collating sequence for the compound select is taken from the
2210 ** left-most term of the select that has a collating sequence.
2211 */
2212 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2213   CollSeq *pRet;
2214   if( p->pPrior ){
2215     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2216   }else{
2217     pRet = 0;
2218   }
2219   assert( iCol>=0 );
2220   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2221   ** have been thrown during name resolution and we would not have gotten
2222   ** this far */
2223   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2224     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2225   }
2226   return pRet;
2227 }
2228 
2229 /*
2230 ** The select statement passed as the second parameter is a compound SELECT
2231 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2232 ** structure suitable for implementing the ORDER BY.
2233 **
2234 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2235 ** function is responsible for ensuring that this structure is eventually
2236 ** freed.
2237 */
2238 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2239   ExprList *pOrderBy = p->pOrderBy;
2240   int nOrderBy = p->pOrderBy->nExpr;
2241   sqlite3 *db = pParse->db;
2242   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2243   if( pRet ){
2244     int i;
2245     for(i=0; i<nOrderBy; i++){
2246       struct ExprList_item *pItem = &pOrderBy->a[i];
2247       Expr *pTerm = pItem->pExpr;
2248       CollSeq *pColl;
2249 
2250       if( pTerm->flags & EP_Collate ){
2251         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2252       }else{
2253         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2254         if( pColl==0 ) pColl = db->pDfltColl;
2255         pOrderBy->a[i].pExpr =
2256           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2257       }
2258       assert( sqlite3KeyInfoIsWriteable(pRet) );
2259       pRet->aColl[i] = pColl;
2260       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2261     }
2262   }
2263 
2264   return pRet;
2265 }
2266 
2267 #ifndef SQLITE_OMIT_CTE
2268 /*
2269 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2270 ** query of the form:
2271 **
2272 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2273 **                         \___________/             \_______________/
2274 **                           p->pPrior                      p
2275 **
2276 **
2277 ** There is exactly one reference to the recursive-table in the FROM clause
2278 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2279 **
2280 ** The setup-query runs once to generate an initial set of rows that go
2281 ** into a Queue table.  Rows are extracted from the Queue table one by
2282 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2283 ** extracted row (now in the iCurrent table) becomes the content of the
2284 ** recursive-table for a recursive-query run.  The output of the recursive-query
2285 ** is added back into the Queue table.  Then another row is extracted from Queue
2286 ** and the iteration continues until the Queue table is empty.
2287 **
2288 ** If the compound query operator is UNION then no duplicate rows are ever
2289 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2290 ** that have ever been inserted into Queue and causes duplicates to be
2291 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2292 **
2293 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2294 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2295 ** an ORDER BY, the Queue table is just a FIFO.
2296 **
2297 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2298 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2299 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2300 ** with a positive value, then the first OFFSET outputs are discarded rather
2301 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2302 ** rows have been skipped.
2303 */
2304 static void generateWithRecursiveQuery(
2305   Parse *pParse,        /* Parsing context */
2306   Select *p,            /* The recursive SELECT to be coded */
2307   SelectDest *pDest     /* What to do with query results */
2308 ){
2309   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2310   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2311   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2312   Select *pSetup = p->pPrior;   /* The setup query */
2313   int addrTop;                  /* Top of the loop */
2314   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2315   int iCurrent = 0;             /* The Current table */
2316   int regCurrent;               /* Register holding Current table */
2317   int iQueue;                   /* The Queue table */
2318   int iDistinct = 0;            /* To ensure unique results if UNION */
2319   int eDest = SRT_Fifo;         /* How to write to Queue */
2320   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2321   int i;                        /* Loop counter */
2322   int rc;                       /* Result code */
2323   ExprList *pOrderBy;           /* The ORDER BY clause */
2324   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2325   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2326 
2327 #ifndef SQLITE_OMIT_WINDOWFUNC
2328   if( p->pWin ){
2329     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2330     return;
2331   }
2332 #endif
2333 
2334   /* Obtain authorization to do a recursive query */
2335   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2336 
2337   /* Process the LIMIT and OFFSET clauses, if they exist */
2338   addrBreak = sqlite3VdbeMakeLabel(pParse);
2339   p->nSelectRow = 320;  /* 4 billion rows */
2340   computeLimitRegisters(pParse, p, addrBreak);
2341   pLimit = p->pLimit;
2342   regLimit = p->iLimit;
2343   regOffset = p->iOffset;
2344   p->pLimit = 0;
2345   p->iLimit = p->iOffset = 0;
2346   pOrderBy = p->pOrderBy;
2347 
2348   /* Locate the cursor number of the Current table */
2349   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2350     if( pSrc->a[i].fg.isRecursive ){
2351       iCurrent = pSrc->a[i].iCursor;
2352       break;
2353     }
2354   }
2355 
2356   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2357   ** the Distinct table must be exactly one greater than Queue in order
2358   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2359   iQueue = pParse->nTab++;
2360   if( p->op==TK_UNION ){
2361     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2362     iDistinct = pParse->nTab++;
2363   }else{
2364     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2365   }
2366   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2367 
2368   /* Allocate cursors for Current, Queue, and Distinct. */
2369   regCurrent = ++pParse->nMem;
2370   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2371   if( pOrderBy ){
2372     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2373     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2374                       (char*)pKeyInfo, P4_KEYINFO);
2375     destQueue.pOrderBy = pOrderBy;
2376   }else{
2377     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2378   }
2379   VdbeComment((v, "Queue table"));
2380   if( iDistinct ){
2381     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2382     p->selFlags |= SF_UsesEphemeral;
2383   }
2384 
2385   /* Detach the ORDER BY clause from the compound SELECT */
2386   p->pOrderBy = 0;
2387 
2388   /* Store the results of the setup-query in Queue. */
2389   pSetup->pNext = 0;
2390   ExplainQueryPlan((pParse, 1, "SETUP"));
2391   rc = sqlite3Select(pParse, pSetup, &destQueue);
2392   pSetup->pNext = p;
2393   if( rc ) goto end_of_recursive_query;
2394 
2395   /* Find the next row in the Queue and output that row */
2396   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2397 
2398   /* Transfer the next row in Queue over to Current */
2399   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2400   if( pOrderBy ){
2401     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2402   }else{
2403     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2404   }
2405   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2406 
2407   /* Output the single row in Current */
2408   addrCont = sqlite3VdbeMakeLabel(pParse);
2409   codeOffset(v, regOffset, addrCont);
2410   selectInnerLoop(pParse, p, iCurrent,
2411       0, 0, pDest, addrCont, addrBreak);
2412   if( regLimit ){
2413     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2414     VdbeCoverage(v);
2415   }
2416   sqlite3VdbeResolveLabel(v, addrCont);
2417 
2418   /* Execute the recursive SELECT taking the single row in Current as
2419   ** the value for the recursive-table. Store the results in the Queue.
2420   */
2421   if( p->selFlags & SF_Aggregate ){
2422     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2423   }else{
2424     p->pPrior = 0;
2425     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2426     sqlite3Select(pParse, p, &destQueue);
2427     assert( p->pPrior==0 );
2428     p->pPrior = pSetup;
2429   }
2430 
2431   /* Keep running the loop until the Queue is empty */
2432   sqlite3VdbeGoto(v, addrTop);
2433   sqlite3VdbeResolveLabel(v, addrBreak);
2434 
2435 end_of_recursive_query:
2436   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2437   p->pOrderBy = pOrderBy;
2438   p->pLimit = pLimit;
2439   return;
2440 }
2441 #endif /* SQLITE_OMIT_CTE */
2442 
2443 /* Forward references */
2444 static int multiSelectOrderBy(
2445   Parse *pParse,        /* Parsing context */
2446   Select *p,            /* The right-most of SELECTs to be coded */
2447   SelectDest *pDest     /* What to do with query results */
2448 );
2449 
2450 /*
2451 ** Handle the special case of a compound-select that originates from a
2452 ** VALUES clause.  By handling this as a special case, we avoid deep
2453 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2454 ** on a VALUES clause.
2455 **
2456 ** Because the Select object originates from a VALUES clause:
2457 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2458 **   (2) All terms are UNION ALL
2459 **   (3) There is no ORDER BY clause
2460 **
2461 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2462 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2463 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2464 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2465 */
2466 static int multiSelectValues(
2467   Parse *pParse,        /* Parsing context */
2468   Select *p,            /* The right-most of SELECTs to be coded */
2469   SelectDest *pDest     /* What to do with query results */
2470 ){
2471   int nRow = 1;
2472   int rc = 0;
2473   int bShowAll = p->pLimit==0;
2474   assert( p->selFlags & SF_MultiValue );
2475   do{
2476     assert( p->selFlags & SF_Values );
2477     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2478     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2479     if( p->pPrior==0 ) break;
2480     assert( p->pPrior->pNext==p );
2481     p = p->pPrior;
2482     nRow += bShowAll;
2483   }while(1);
2484   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2485                     nRow==1 ? "" : "S"));
2486   while( p ){
2487     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2488     if( !bShowAll ) break;
2489     p->nSelectRow = nRow;
2490     p = p->pNext;
2491   }
2492   return rc;
2493 }
2494 
2495 /*
2496 ** This routine is called to process a compound query form from
2497 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2498 ** INTERSECT
2499 **
2500 ** "p" points to the right-most of the two queries.  the query on the
2501 ** left is p->pPrior.  The left query could also be a compound query
2502 ** in which case this routine will be called recursively.
2503 **
2504 ** The results of the total query are to be written into a destination
2505 ** of type eDest with parameter iParm.
2506 **
2507 ** Example 1:  Consider a three-way compound SQL statement.
2508 **
2509 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2510 **
2511 ** This statement is parsed up as follows:
2512 **
2513 **     SELECT c FROM t3
2514 **      |
2515 **      `----->  SELECT b FROM t2
2516 **                |
2517 **                `------>  SELECT a FROM t1
2518 **
2519 ** The arrows in the diagram above represent the Select.pPrior pointer.
2520 ** So if this routine is called with p equal to the t3 query, then
2521 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2522 **
2523 ** Notice that because of the way SQLite parses compound SELECTs, the
2524 ** individual selects always group from left to right.
2525 */
2526 static int multiSelect(
2527   Parse *pParse,        /* Parsing context */
2528   Select *p,            /* The right-most of SELECTs to be coded */
2529   SelectDest *pDest     /* What to do with query results */
2530 ){
2531   int rc = SQLITE_OK;   /* Success code from a subroutine */
2532   Select *pPrior;       /* Another SELECT immediately to our left */
2533   Vdbe *v;              /* Generate code to this VDBE */
2534   SelectDest dest;      /* Alternative data destination */
2535   Select *pDelete = 0;  /* Chain of simple selects to delete */
2536   sqlite3 *db;          /* Database connection */
2537 
2538   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2539   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2540   */
2541   assert( p && p->pPrior );  /* Calling function guarantees this much */
2542   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2543   db = pParse->db;
2544   pPrior = p->pPrior;
2545   dest = *pDest;
2546   if( pPrior->pOrderBy || pPrior->pLimit ){
2547     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2548       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2549     rc = 1;
2550     goto multi_select_end;
2551   }
2552 
2553   v = sqlite3GetVdbe(pParse);
2554   assert( v!=0 );  /* The VDBE already created by calling function */
2555 
2556   /* Create the destination temporary table if necessary
2557   */
2558   if( dest.eDest==SRT_EphemTab ){
2559     assert( p->pEList );
2560     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2561     dest.eDest = SRT_Table;
2562   }
2563 
2564   /* Special handling for a compound-select that originates as a VALUES clause.
2565   */
2566   if( p->selFlags & SF_MultiValue ){
2567     rc = multiSelectValues(pParse, p, &dest);
2568     goto multi_select_end;
2569   }
2570 
2571   /* Make sure all SELECTs in the statement have the same number of elements
2572   ** in their result sets.
2573   */
2574   assert( p->pEList && pPrior->pEList );
2575   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2576 
2577 #ifndef SQLITE_OMIT_CTE
2578   if( p->selFlags & SF_Recursive ){
2579     generateWithRecursiveQuery(pParse, p, &dest);
2580   }else
2581 #endif
2582 
2583   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2584   */
2585   if( p->pOrderBy ){
2586     return multiSelectOrderBy(pParse, p, pDest);
2587   }else{
2588 
2589 #ifndef SQLITE_OMIT_EXPLAIN
2590     if( pPrior->pPrior==0 ){
2591       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2592       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2593     }
2594 #endif
2595 
2596     /* Generate code for the left and right SELECT statements.
2597     */
2598     switch( p->op ){
2599       case TK_ALL: {
2600         int addr = 0;
2601         int nLimit;
2602         assert( !pPrior->pLimit );
2603         pPrior->iLimit = p->iLimit;
2604         pPrior->iOffset = p->iOffset;
2605         pPrior->pLimit = p->pLimit;
2606         rc = sqlite3Select(pParse, pPrior, &dest);
2607         p->pLimit = 0;
2608         if( rc ){
2609           goto multi_select_end;
2610         }
2611         p->pPrior = 0;
2612         p->iLimit = pPrior->iLimit;
2613         p->iOffset = pPrior->iOffset;
2614         if( p->iLimit ){
2615           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2616           VdbeComment((v, "Jump ahead if LIMIT reached"));
2617           if( p->iOffset ){
2618             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2619                               p->iLimit, p->iOffset+1, p->iOffset);
2620           }
2621         }
2622         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2623         rc = sqlite3Select(pParse, p, &dest);
2624         testcase( rc!=SQLITE_OK );
2625         pDelete = p->pPrior;
2626         p->pPrior = pPrior;
2627         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2628         if( pPrior->pLimit
2629          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2630          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2631         ){
2632           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2633         }
2634         if( addr ){
2635           sqlite3VdbeJumpHere(v, addr);
2636         }
2637         break;
2638       }
2639       case TK_EXCEPT:
2640       case TK_UNION: {
2641         int unionTab;    /* Cursor number of the temp table holding result */
2642         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2643         int priorOp;     /* The SRT_ operation to apply to prior selects */
2644         Expr *pLimit;    /* Saved values of p->nLimit  */
2645         int addr;
2646         SelectDest uniondest;
2647 
2648         testcase( p->op==TK_EXCEPT );
2649         testcase( p->op==TK_UNION );
2650         priorOp = SRT_Union;
2651         if( dest.eDest==priorOp ){
2652           /* We can reuse a temporary table generated by a SELECT to our
2653           ** right.
2654           */
2655           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2656           unionTab = dest.iSDParm;
2657         }else{
2658           /* We will need to create our own temporary table to hold the
2659           ** intermediate results.
2660           */
2661           unionTab = pParse->nTab++;
2662           assert( p->pOrderBy==0 );
2663           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2664           assert( p->addrOpenEphm[0] == -1 );
2665           p->addrOpenEphm[0] = addr;
2666           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2667           assert( p->pEList );
2668         }
2669 
2670         /* Code the SELECT statements to our left
2671         */
2672         assert( !pPrior->pOrderBy );
2673         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2674         rc = sqlite3Select(pParse, pPrior, &uniondest);
2675         if( rc ){
2676           goto multi_select_end;
2677         }
2678 
2679         /* Code the current SELECT statement
2680         */
2681         if( p->op==TK_EXCEPT ){
2682           op = SRT_Except;
2683         }else{
2684           assert( p->op==TK_UNION );
2685           op = SRT_Union;
2686         }
2687         p->pPrior = 0;
2688         pLimit = p->pLimit;
2689         p->pLimit = 0;
2690         uniondest.eDest = op;
2691         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2692                           selectOpName(p->op)));
2693         rc = sqlite3Select(pParse, p, &uniondest);
2694         testcase( rc!=SQLITE_OK );
2695         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2696         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2697         sqlite3ExprListDelete(db, p->pOrderBy);
2698         pDelete = p->pPrior;
2699         p->pPrior = pPrior;
2700         p->pOrderBy = 0;
2701         if( p->op==TK_UNION ){
2702           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2703         }
2704         sqlite3ExprDelete(db, p->pLimit);
2705         p->pLimit = pLimit;
2706         p->iLimit = 0;
2707         p->iOffset = 0;
2708 
2709         /* Convert the data in the temporary table into whatever form
2710         ** it is that we currently need.
2711         */
2712         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2713         if( dest.eDest!=priorOp ){
2714           int iCont, iBreak, iStart;
2715           assert( p->pEList );
2716           iBreak = sqlite3VdbeMakeLabel(pParse);
2717           iCont = sqlite3VdbeMakeLabel(pParse);
2718           computeLimitRegisters(pParse, p, iBreak);
2719           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2720           iStart = sqlite3VdbeCurrentAddr(v);
2721           selectInnerLoop(pParse, p, unionTab,
2722                           0, 0, &dest, iCont, iBreak);
2723           sqlite3VdbeResolveLabel(v, iCont);
2724           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2725           sqlite3VdbeResolveLabel(v, iBreak);
2726           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2727         }
2728         break;
2729       }
2730       default: assert( p->op==TK_INTERSECT ); {
2731         int tab1, tab2;
2732         int iCont, iBreak, iStart;
2733         Expr *pLimit;
2734         int addr;
2735         SelectDest intersectdest;
2736         int r1;
2737 
2738         /* INTERSECT is different from the others since it requires
2739         ** two temporary tables.  Hence it has its own case.  Begin
2740         ** by allocating the tables we will need.
2741         */
2742         tab1 = pParse->nTab++;
2743         tab2 = pParse->nTab++;
2744         assert( p->pOrderBy==0 );
2745 
2746         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2747         assert( p->addrOpenEphm[0] == -1 );
2748         p->addrOpenEphm[0] = addr;
2749         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2750         assert( p->pEList );
2751 
2752         /* Code the SELECTs to our left into temporary table "tab1".
2753         */
2754         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2755         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2756         if( rc ){
2757           goto multi_select_end;
2758         }
2759 
2760         /* Code the current SELECT into temporary table "tab2"
2761         */
2762         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2763         assert( p->addrOpenEphm[1] == -1 );
2764         p->addrOpenEphm[1] = addr;
2765         p->pPrior = 0;
2766         pLimit = p->pLimit;
2767         p->pLimit = 0;
2768         intersectdest.iSDParm = tab2;
2769         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2770                           selectOpName(p->op)));
2771         rc = sqlite3Select(pParse, p, &intersectdest);
2772         testcase( rc!=SQLITE_OK );
2773         pDelete = p->pPrior;
2774         p->pPrior = pPrior;
2775         if( p->nSelectRow>pPrior->nSelectRow ){
2776           p->nSelectRow = pPrior->nSelectRow;
2777         }
2778         sqlite3ExprDelete(db, p->pLimit);
2779         p->pLimit = pLimit;
2780 
2781         /* Generate code to take the intersection of the two temporary
2782         ** tables.
2783         */
2784         assert( p->pEList );
2785         iBreak = sqlite3VdbeMakeLabel(pParse);
2786         iCont = sqlite3VdbeMakeLabel(pParse);
2787         computeLimitRegisters(pParse, p, iBreak);
2788         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2789         r1 = sqlite3GetTempReg(pParse);
2790         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2791         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2792         VdbeCoverage(v);
2793         sqlite3ReleaseTempReg(pParse, r1);
2794         selectInnerLoop(pParse, p, tab1,
2795                         0, 0, &dest, iCont, iBreak);
2796         sqlite3VdbeResolveLabel(v, iCont);
2797         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2798         sqlite3VdbeResolveLabel(v, iBreak);
2799         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2800         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2801         break;
2802       }
2803     }
2804 
2805   #ifndef SQLITE_OMIT_EXPLAIN
2806     if( p->pNext==0 ){
2807       ExplainQueryPlanPop(pParse);
2808     }
2809   #endif
2810   }
2811 
2812   /* Compute collating sequences used by
2813   ** temporary tables needed to implement the compound select.
2814   ** Attach the KeyInfo structure to all temporary tables.
2815   **
2816   ** This section is run by the right-most SELECT statement only.
2817   ** SELECT statements to the left always skip this part.  The right-most
2818   ** SELECT might also skip this part if it has no ORDER BY clause and
2819   ** no temp tables are required.
2820   */
2821   if( p->selFlags & SF_UsesEphemeral ){
2822     int i;                        /* Loop counter */
2823     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2824     Select *pLoop;                /* For looping through SELECT statements */
2825     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2826     int nCol;                     /* Number of columns in result set */
2827 
2828     assert( p->pNext==0 );
2829     nCol = p->pEList->nExpr;
2830     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2831     if( !pKeyInfo ){
2832       rc = SQLITE_NOMEM_BKPT;
2833       goto multi_select_end;
2834     }
2835     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2836       *apColl = multiSelectCollSeq(pParse, p, i);
2837       if( 0==*apColl ){
2838         *apColl = db->pDfltColl;
2839       }
2840     }
2841 
2842     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2843       for(i=0; i<2; i++){
2844         int addr = pLoop->addrOpenEphm[i];
2845         if( addr<0 ){
2846           /* If [0] is unused then [1] is also unused.  So we can
2847           ** always safely abort as soon as the first unused slot is found */
2848           assert( pLoop->addrOpenEphm[1]<0 );
2849           break;
2850         }
2851         sqlite3VdbeChangeP2(v, addr, nCol);
2852         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2853                             P4_KEYINFO);
2854         pLoop->addrOpenEphm[i] = -1;
2855       }
2856     }
2857     sqlite3KeyInfoUnref(pKeyInfo);
2858   }
2859 
2860 multi_select_end:
2861   pDest->iSdst = dest.iSdst;
2862   pDest->nSdst = dest.nSdst;
2863   sqlite3SelectDelete(db, pDelete);
2864   return rc;
2865 }
2866 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2867 
2868 /*
2869 ** Error message for when two or more terms of a compound select have different
2870 ** size result sets.
2871 */
2872 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2873   if( p->selFlags & SF_Values ){
2874     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2875   }else{
2876     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2877       " do not have the same number of result columns", selectOpName(p->op));
2878   }
2879 }
2880 
2881 /*
2882 ** Code an output subroutine for a coroutine implementation of a
2883 ** SELECT statment.
2884 **
2885 ** The data to be output is contained in pIn->iSdst.  There are
2886 ** pIn->nSdst columns to be output.  pDest is where the output should
2887 ** be sent.
2888 **
2889 ** regReturn is the number of the register holding the subroutine
2890 ** return address.
2891 **
2892 ** If regPrev>0 then it is the first register in a vector that
2893 ** records the previous output.  mem[regPrev] is a flag that is false
2894 ** if there has been no previous output.  If regPrev>0 then code is
2895 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2896 ** keys.
2897 **
2898 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2899 ** iBreak.
2900 */
2901 static int generateOutputSubroutine(
2902   Parse *pParse,          /* Parsing context */
2903   Select *p,              /* The SELECT statement */
2904   SelectDest *pIn,        /* Coroutine supplying data */
2905   SelectDest *pDest,      /* Where to send the data */
2906   int regReturn,          /* The return address register */
2907   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2908   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2909   int iBreak              /* Jump here if we hit the LIMIT */
2910 ){
2911   Vdbe *v = pParse->pVdbe;
2912   int iContinue;
2913   int addr;
2914 
2915   addr = sqlite3VdbeCurrentAddr(v);
2916   iContinue = sqlite3VdbeMakeLabel(pParse);
2917 
2918   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2919   */
2920   if( regPrev ){
2921     int addr1, addr2;
2922     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2923     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2924                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2925     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2926     sqlite3VdbeJumpHere(v, addr1);
2927     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2928     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2929   }
2930   if( pParse->db->mallocFailed ) return 0;
2931 
2932   /* Suppress the first OFFSET entries if there is an OFFSET clause
2933   */
2934   codeOffset(v, p->iOffset, iContinue);
2935 
2936   assert( pDest->eDest!=SRT_Exists );
2937   assert( pDest->eDest!=SRT_Table );
2938   switch( pDest->eDest ){
2939     /* Store the result as data using a unique key.
2940     */
2941     case SRT_EphemTab: {
2942       int r1 = sqlite3GetTempReg(pParse);
2943       int r2 = sqlite3GetTempReg(pParse);
2944       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2945       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2946       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2947       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2948       sqlite3ReleaseTempReg(pParse, r2);
2949       sqlite3ReleaseTempReg(pParse, r1);
2950       break;
2951     }
2952 
2953 #ifndef SQLITE_OMIT_SUBQUERY
2954     /* If we are creating a set for an "expr IN (SELECT ...)".
2955     */
2956     case SRT_Set: {
2957       int r1;
2958       testcase( pIn->nSdst>1 );
2959       r1 = sqlite3GetTempReg(pParse);
2960       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2961           r1, pDest->zAffSdst, pIn->nSdst);
2962       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2963                            pIn->iSdst, pIn->nSdst);
2964       sqlite3ReleaseTempReg(pParse, r1);
2965       break;
2966     }
2967 
2968     /* If this is a scalar select that is part of an expression, then
2969     ** store the results in the appropriate memory cell and break out
2970     ** of the scan loop.
2971     */
2972     case SRT_Mem: {
2973       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2974       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2975       /* The LIMIT clause will jump out of the loop for us */
2976       break;
2977     }
2978 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2979 
2980     /* The results are stored in a sequence of registers
2981     ** starting at pDest->iSdst.  Then the co-routine yields.
2982     */
2983     case SRT_Coroutine: {
2984       if( pDest->iSdst==0 ){
2985         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2986         pDest->nSdst = pIn->nSdst;
2987       }
2988       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2989       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2990       break;
2991     }
2992 
2993     /* If none of the above, then the result destination must be
2994     ** SRT_Output.  This routine is never called with any other
2995     ** destination other than the ones handled above or SRT_Output.
2996     **
2997     ** For SRT_Output, results are stored in a sequence of registers.
2998     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2999     ** return the next row of result.
3000     */
3001     default: {
3002       assert( pDest->eDest==SRT_Output );
3003       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3004       break;
3005     }
3006   }
3007 
3008   /* Jump to the end of the loop if the LIMIT is reached.
3009   */
3010   if( p->iLimit ){
3011     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3012   }
3013 
3014   /* Generate the subroutine return
3015   */
3016   sqlite3VdbeResolveLabel(v, iContinue);
3017   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3018 
3019   return addr;
3020 }
3021 
3022 /*
3023 ** Alternative compound select code generator for cases when there
3024 ** is an ORDER BY clause.
3025 **
3026 ** We assume a query of the following form:
3027 **
3028 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3029 **
3030 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3031 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3032 ** co-routines.  Then run the co-routines in parallel and merge the results
3033 ** into the output.  In addition to the two coroutines (called selectA and
3034 ** selectB) there are 7 subroutines:
3035 **
3036 **    outA:    Move the output of the selectA coroutine into the output
3037 **             of the compound query.
3038 **
3039 **    outB:    Move the output of the selectB coroutine into the output
3040 **             of the compound query.  (Only generated for UNION and
3041 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3042 **             appears only in B.)
3043 **
3044 **    AltB:    Called when there is data from both coroutines and A<B.
3045 **
3046 **    AeqB:    Called when there is data from both coroutines and A==B.
3047 **
3048 **    AgtB:    Called when there is data from both coroutines and A>B.
3049 **
3050 **    EofA:    Called when data is exhausted from selectA.
3051 **
3052 **    EofB:    Called when data is exhausted from selectB.
3053 **
3054 ** The implementation of the latter five subroutines depend on which
3055 ** <operator> is used:
3056 **
3057 **
3058 **             UNION ALL         UNION            EXCEPT          INTERSECT
3059 **          -------------  -----------------  --------------  -----------------
3060 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3061 **
3062 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3063 **
3064 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3065 **
3066 **   EofA:   outB, nextB      outB, nextB          halt             halt
3067 **
3068 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3069 **
3070 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3071 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3072 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3073 ** following nextX causes a jump to the end of the select processing.
3074 **
3075 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3076 ** within the output subroutine.  The regPrev register set holds the previously
3077 ** output value.  A comparison is made against this value and the output
3078 ** is skipped if the next results would be the same as the previous.
3079 **
3080 ** The implementation plan is to implement the two coroutines and seven
3081 ** subroutines first, then put the control logic at the bottom.  Like this:
3082 **
3083 **          goto Init
3084 **     coA: coroutine for left query (A)
3085 **     coB: coroutine for right query (B)
3086 **    outA: output one row of A
3087 **    outB: output one row of B (UNION and UNION ALL only)
3088 **    EofA: ...
3089 **    EofB: ...
3090 **    AltB: ...
3091 **    AeqB: ...
3092 **    AgtB: ...
3093 **    Init: initialize coroutine registers
3094 **          yield coA
3095 **          if eof(A) goto EofA
3096 **          yield coB
3097 **          if eof(B) goto EofB
3098 **    Cmpr: Compare A, B
3099 **          Jump AltB, AeqB, AgtB
3100 **     End: ...
3101 **
3102 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3103 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3104 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3105 ** and AgtB jump to either L2 or to one of EofA or EofB.
3106 */
3107 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3108 static int multiSelectOrderBy(
3109   Parse *pParse,        /* Parsing context */
3110   Select *p,            /* The right-most of SELECTs to be coded */
3111   SelectDest *pDest     /* What to do with query results */
3112 ){
3113   int i, j;             /* Loop counters */
3114   Select *pPrior;       /* Another SELECT immediately to our left */
3115   Vdbe *v;              /* Generate code to this VDBE */
3116   SelectDest destA;     /* Destination for coroutine A */
3117   SelectDest destB;     /* Destination for coroutine B */
3118   int regAddrA;         /* Address register for select-A coroutine */
3119   int regAddrB;         /* Address register for select-B coroutine */
3120   int addrSelectA;      /* Address of the select-A coroutine */
3121   int addrSelectB;      /* Address of the select-B coroutine */
3122   int regOutA;          /* Address register for the output-A subroutine */
3123   int regOutB;          /* Address register for the output-B subroutine */
3124   int addrOutA;         /* Address of the output-A subroutine */
3125   int addrOutB = 0;     /* Address of the output-B subroutine */
3126   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3127   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3128   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3129   int addrAltB;         /* Address of the A<B subroutine */
3130   int addrAeqB;         /* Address of the A==B subroutine */
3131   int addrAgtB;         /* Address of the A>B subroutine */
3132   int regLimitA;        /* Limit register for select-A */
3133   int regLimitB;        /* Limit register for select-A */
3134   int regPrev;          /* A range of registers to hold previous output */
3135   int savedLimit;       /* Saved value of p->iLimit */
3136   int savedOffset;      /* Saved value of p->iOffset */
3137   int labelCmpr;        /* Label for the start of the merge algorithm */
3138   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3139   int addr1;            /* Jump instructions that get retargetted */
3140   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3141   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3142   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3143   sqlite3 *db;          /* Database connection */
3144   ExprList *pOrderBy;   /* The ORDER BY clause */
3145   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3146   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3147 
3148   assert( p->pOrderBy!=0 );
3149   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3150   db = pParse->db;
3151   v = pParse->pVdbe;
3152   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3153   labelEnd = sqlite3VdbeMakeLabel(pParse);
3154   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3155 
3156 
3157   /* Patch up the ORDER BY clause
3158   */
3159   op = p->op;
3160   pPrior = p->pPrior;
3161   assert( pPrior->pOrderBy==0 );
3162   pOrderBy = p->pOrderBy;
3163   assert( pOrderBy );
3164   nOrderBy = pOrderBy->nExpr;
3165 
3166   /* For operators other than UNION ALL we have to make sure that
3167   ** the ORDER BY clause covers every term of the result set.  Add
3168   ** terms to the ORDER BY clause as necessary.
3169   */
3170   if( op!=TK_ALL ){
3171     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3172       struct ExprList_item *pItem;
3173       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3174         assert( pItem->u.x.iOrderByCol>0 );
3175         if( pItem->u.x.iOrderByCol==i ) break;
3176       }
3177       if( j==nOrderBy ){
3178         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3179         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3180         pNew->flags |= EP_IntValue;
3181         pNew->u.iValue = i;
3182         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3183         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3184       }
3185     }
3186   }
3187 
3188   /* Compute the comparison permutation and keyinfo that is used with
3189   ** the permutation used to determine if the next
3190   ** row of results comes from selectA or selectB.  Also add explicit
3191   ** collations to the ORDER BY clause terms so that when the subqueries
3192   ** to the right and the left are evaluated, they use the correct
3193   ** collation.
3194   */
3195   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3196   if( aPermute ){
3197     struct ExprList_item *pItem;
3198     aPermute[0] = nOrderBy;
3199     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3200       assert( pItem->u.x.iOrderByCol>0 );
3201       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3202       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3203     }
3204     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3205   }else{
3206     pKeyMerge = 0;
3207   }
3208 
3209   /* Reattach the ORDER BY clause to the query.
3210   */
3211   p->pOrderBy = pOrderBy;
3212   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3213 
3214   /* Allocate a range of temporary registers and the KeyInfo needed
3215   ** for the logic that removes duplicate result rows when the
3216   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3217   */
3218   if( op==TK_ALL ){
3219     regPrev = 0;
3220   }else{
3221     int nExpr = p->pEList->nExpr;
3222     assert( nOrderBy>=nExpr || db->mallocFailed );
3223     regPrev = pParse->nMem+1;
3224     pParse->nMem += nExpr+1;
3225     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3226     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3227     if( pKeyDup ){
3228       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3229       for(i=0; i<nExpr; i++){
3230         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3231         pKeyDup->aSortOrder[i] = 0;
3232       }
3233     }
3234   }
3235 
3236   /* Separate the left and the right query from one another
3237   */
3238   p->pPrior = 0;
3239   pPrior->pNext = 0;
3240   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3241   if( pPrior->pPrior==0 ){
3242     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3243   }
3244 
3245   /* Compute the limit registers */
3246   computeLimitRegisters(pParse, p, labelEnd);
3247   if( p->iLimit && op==TK_ALL ){
3248     regLimitA = ++pParse->nMem;
3249     regLimitB = ++pParse->nMem;
3250     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3251                                   regLimitA);
3252     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3253   }else{
3254     regLimitA = regLimitB = 0;
3255   }
3256   sqlite3ExprDelete(db, p->pLimit);
3257   p->pLimit = 0;
3258 
3259   regAddrA = ++pParse->nMem;
3260   regAddrB = ++pParse->nMem;
3261   regOutA = ++pParse->nMem;
3262   regOutB = ++pParse->nMem;
3263   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3264   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3265 
3266   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3267 
3268   /* Generate a coroutine to evaluate the SELECT statement to the
3269   ** left of the compound operator - the "A" select.
3270   */
3271   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3272   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3273   VdbeComment((v, "left SELECT"));
3274   pPrior->iLimit = regLimitA;
3275   ExplainQueryPlan((pParse, 1, "LEFT"));
3276   sqlite3Select(pParse, pPrior, &destA);
3277   sqlite3VdbeEndCoroutine(v, regAddrA);
3278   sqlite3VdbeJumpHere(v, addr1);
3279 
3280   /* Generate a coroutine to evaluate the SELECT statement on
3281   ** the right - the "B" select
3282   */
3283   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3284   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3285   VdbeComment((v, "right SELECT"));
3286   savedLimit = p->iLimit;
3287   savedOffset = p->iOffset;
3288   p->iLimit = regLimitB;
3289   p->iOffset = 0;
3290   ExplainQueryPlan((pParse, 1, "RIGHT"));
3291   sqlite3Select(pParse, p, &destB);
3292   p->iLimit = savedLimit;
3293   p->iOffset = savedOffset;
3294   sqlite3VdbeEndCoroutine(v, regAddrB);
3295 
3296   /* Generate a subroutine that outputs the current row of the A
3297   ** select as the next output row of the compound select.
3298   */
3299   VdbeNoopComment((v, "Output routine for A"));
3300   addrOutA = generateOutputSubroutine(pParse,
3301                  p, &destA, pDest, regOutA,
3302                  regPrev, pKeyDup, labelEnd);
3303 
3304   /* Generate a subroutine that outputs the current row of the B
3305   ** select as the next output row of the compound select.
3306   */
3307   if( op==TK_ALL || op==TK_UNION ){
3308     VdbeNoopComment((v, "Output routine for B"));
3309     addrOutB = generateOutputSubroutine(pParse,
3310                  p, &destB, pDest, regOutB,
3311                  regPrev, pKeyDup, labelEnd);
3312   }
3313   sqlite3KeyInfoUnref(pKeyDup);
3314 
3315   /* Generate a subroutine to run when the results from select A
3316   ** are exhausted and only data in select B remains.
3317   */
3318   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3319     addrEofA_noB = addrEofA = labelEnd;
3320   }else{
3321     VdbeNoopComment((v, "eof-A subroutine"));
3322     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3323     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3324                                      VdbeCoverage(v);
3325     sqlite3VdbeGoto(v, addrEofA);
3326     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3327   }
3328 
3329   /* Generate a subroutine to run when the results from select B
3330   ** are exhausted and only data in select A remains.
3331   */
3332   if( op==TK_INTERSECT ){
3333     addrEofB = addrEofA;
3334     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3335   }else{
3336     VdbeNoopComment((v, "eof-B subroutine"));
3337     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3338     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3339     sqlite3VdbeGoto(v, addrEofB);
3340   }
3341 
3342   /* Generate code to handle the case of A<B
3343   */
3344   VdbeNoopComment((v, "A-lt-B subroutine"));
3345   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3346   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3347   sqlite3VdbeGoto(v, labelCmpr);
3348 
3349   /* Generate code to handle the case of A==B
3350   */
3351   if( op==TK_ALL ){
3352     addrAeqB = addrAltB;
3353   }else if( op==TK_INTERSECT ){
3354     addrAeqB = addrAltB;
3355     addrAltB++;
3356   }else{
3357     VdbeNoopComment((v, "A-eq-B subroutine"));
3358     addrAeqB =
3359     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3360     sqlite3VdbeGoto(v, labelCmpr);
3361   }
3362 
3363   /* Generate code to handle the case of A>B
3364   */
3365   VdbeNoopComment((v, "A-gt-B subroutine"));
3366   addrAgtB = sqlite3VdbeCurrentAddr(v);
3367   if( op==TK_ALL || op==TK_UNION ){
3368     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3369   }
3370   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3371   sqlite3VdbeGoto(v, labelCmpr);
3372 
3373   /* This code runs once to initialize everything.
3374   */
3375   sqlite3VdbeJumpHere(v, addr1);
3376   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3377   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3378 
3379   /* Implement the main merge loop
3380   */
3381   sqlite3VdbeResolveLabel(v, labelCmpr);
3382   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3383   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3384                          (char*)pKeyMerge, P4_KEYINFO);
3385   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3386   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3387 
3388   /* Jump to the this point in order to terminate the query.
3389   */
3390   sqlite3VdbeResolveLabel(v, labelEnd);
3391 
3392   /* Reassembly the compound query so that it will be freed correctly
3393   ** by the calling function */
3394   if( p->pPrior ){
3395     sqlite3SelectDelete(db, p->pPrior);
3396   }
3397   p->pPrior = pPrior;
3398   pPrior->pNext = p;
3399 
3400   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3401   **** subqueries ****/
3402   ExplainQueryPlanPop(pParse);
3403   return pParse->nErr!=0;
3404 }
3405 #endif
3406 
3407 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3408 
3409 /* An instance of the SubstContext object describes an substitution edit
3410 ** to be performed on a parse tree.
3411 **
3412 ** All references to columns in table iTable are to be replaced by corresponding
3413 ** expressions in pEList.
3414 */
3415 typedef struct SubstContext {
3416   Parse *pParse;            /* The parsing context */
3417   int iTable;               /* Replace references to this table */
3418   int iNewTable;            /* New table number */
3419   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3420   ExprList *pEList;         /* Replacement expressions */
3421 } SubstContext;
3422 
3423 /* Forward Declarations */
3424 static void substExprList(SubstContext*, ExprList*);
3425 static void substSelect(SubstContext*, Select*, int);
3426 
3427 /*
3428 ** Scan through the expression pExpr.  Replace every reference to
3429 ** a column in table number iTable with a copy of the iColumn-th
3430 ** entry in pEList.  (But leave references to the ROWID column
3431 ** unchanged.)
3432 **
3433 ** This routine is part of the flattening procedure.  A subquery
3434 ** whose result set is defined by pEList appears as entry in the
3435 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3436 ** FORM clause entry is iTable.  This routine makes the necessary
3437 ** changes to pExpr so that it refers directly to the source table
3438 ** of the subquery rather the result set of the subquery.
3439 */
3440 static Expr *substExpr(
3441   SubstContext *pSubst,  /* Description of the substitution */
3442   Expr *pExpr            /* Expr in which substitution occurs */
3443 ){
3444   if( pExpr==0 ) return 0;
3445   if( ExprHasProperty(pExpr, EP_FromJoin)
3446    && pExpr->iRightJoinTable==pSubst->iTable
3447   ){
3448     pExpr->iRightJoinTable = pSubst->iNewTable;
3449   }
3450   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3451     if( pExpr->iColumn<0 ){
3452       pExpr->op = TK_NULL;
3453     }else{
3454       Expr *pNew;
3455       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3456       Expr ifNullRow;
3457       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3458       assert( pExpr->pRight==0 );
3459       if( sqlite3ExprIsVector(pCopy) ){
3460         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3461       }else{
3462         sqlite3 *db = pSubst->pParse->db;
3463         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3464           memset(&ifNullRow, 0, sizeof(ifNullRow));
3465           ifNullRow.op = TK_IF_NULL_ROW;
3466           ifNullRow.pLeft = pCopy;
3467           ifNullRow.iTable = pSubst->iNewTable;
3468           pCopy = &ifNullRow;
3469         }
3470         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3471         pNew = sqlite3ExprDup(db, pCopy, 0);
3472         if( pNew && pSubst->isLeftJoin ){
3473           ExprSetProperty(pNew, EP_CanBeNull);
3474         }
3475         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3476           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3477           ExprSetProperty(pNew, EP_FromJoin);
3478         }
3479         sqlite3ExprDelete(db, pExpr);
3480         pExpr = pNew;
3481       }
3482     }
3483   }else{
3484     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3485       pExpr->iTable = pSubst->iNewTable;
3486     }
3487     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3488     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3489     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3490       substSelect(pSubst, pExpr->x.pSelect, 1);
3491     }else{
3492       substExprList(pSubst, pExpr->x.pList);
3493     }
3494   }
3495   return pExpr;
3496 }
3497 static void substExprList(
3498   SubstContext *pSubst, /* Description of the substitution */
3499   ExprList *pList       /* List to scan and in which to make substitutes */
3500 ){
3501   int i;
3502   if( pList==0 ) return;
3503   for(i=0; i<pList->nExpr; i++){
3504     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3505   }
3506 }
3507 static void substSelect(
3508   SubstContext *pSubst, /* Description of the substitution */
3509   Select *p,            /* SELECT statement in which to make substitutions */
3510   int doPrior           /* Do substitutes on p->pPrior too */
3511 ){
3512   SrcList *pSrc;
3513   struct SrcList_item *pItem;
3514   int i;
3515   if( !p ) return;
3516   do{
3517     substExprList(pSubst, p->pEList);
3518     substExprList(pSubst, p->pGroupBy);
3519     substExprList(pSubst, p->pOrderBy);
3520     p->pHaving = substExpr(pSubst, p->pHaving);
3521     p->pWhere = substExpr(pSubst, p->pWhere);
3522     pSrc = p->pSrc;
3523     assert( pSrc!=0 );
3524     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3525       substSelect(pSubst, pItem->pSelect, 1);
3526       if( pItem->fg.isTabFunc ){
3527         substExprList(pSubst, pItem->u1.pFuncArg);
3528       }
3529     }
3530   }while( doPrior && (p = p->pPrior)!=0 );
3531 }
3532 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3533 
3534 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3535 /*
3536 ** This routine attempts to flatten subqueries as a performance optimization.
3537 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3538 **
3539 ** To understand the concept of flattening, consider the following
3540 ** query:
3541 **
3542 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3543 **
3544 ** The default way of implementing this query is to execute the
3545 ** subquery first and store the results in a temporary table, then
3546 ** run the outer query on that temporary table.  This requires two
3547 ** passes over the data.  Furthermore, because the temporary table
3548 ** has no indices, the WHERE clause on the outer query cannot be
3549 ** optimized.
3550 **
3551 ** This routine attempts to rewrite queries such as the above into
3552 ** a single flat select, like this:
3553 **
3554 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3555 **
3556 ** The code generated for this simplification gives the same result
3557 ** but only has to scan the data once.  And because indices might
3558 ** exist on the table t1, a complete scan of the data might be
3559 ** avoided.
3560 **
3561 ** Flattening is subject to the following constraints:
3562 **
3563 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3564 **        The subquery and the outer query cannot both be aggregates.
3565 **
3566 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3567 **        (2) If the subquery is an aggregate then
3568 **        (2a) the outer query must not be a join and
3569 **        (2b) the outer query must not use subqueries
3570 **             other than the one FROM-clause subquery that is a candidate
3571 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3572 **             from 2015-02-09.)
3573 **
3574 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3575 **        (3a) the subquery may not be a join and
3576 **        (3b) the FROM clause of the subquery may not contain a virtual
3577 **             table and
3578 **        (3c) the outer query may not be an aggregate.
3579 **
3580 **   (4)  The subquery can not be DISTINCT.
3581 **
3582 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3583 **        sub-queries that were excluded from this optimization. Restriction
3584 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3585 **
3586 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3587 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3588 **
3589 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3590 **        A FROM clause, consider adding a FROM clause with the special
3591 **        table sqlite_once that consists of a single row containing a
3592 **        single NULL.
3593 **
3594 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3595 **
3596 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3597 **
3598 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3599 **        accidently carried the comment forward until 2014-09-15.  Original
3600 **        constraint: "If the subquery is aggregate then the outer query
3601 **        may not use LIMIT."
3602 **
3603 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3604 **
3605 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3606 **        a separate restriction deriving from ticket #350.
3607 **
3608 **  (13)  The subquery and outer query may not both use LIMIT.
3609 **
3610 **  (14)  The subquery may not use OFFSET.
3611 **
3612 **  (15)  If the outer query is part of a compound select, then the
3613 **        subquery may not use LIMIT.
3614 **        (See ticket #2339 and ticket [02a8e81d44]).
3615 **
3616 **  (16)  If the outer query is aggregate, then the subquery may not
3617 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3618 **        until we introduced the group_concat() function.
3619 **
3620 **  (17)  If the subquery is a compound select, then
3621 **        (17a) all compound operators must be a UNION ALL, and
3622 **        (17b) no terms within the subquery compound may be aggregate
3623 **              or DISTINCT, and
3624 **        (17c) every term within the subquery compound must have a FROM clause
3625 **        (17d) the outer query may not be
3626 **              (17d1) aggregate, or
3627 **              (17d2) DISTINCT, or
3628 **              (17d3) a join.
3629 **
3630 **        The parent and sub-query may contain WHERE clauses. Subject to
3631 **        rules (11), (13) and (14), they may also contain ORDER BY,
3632 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3633 **        operator other than UNION ALL because all the other compound
3634 **        operators have an implied DISTINCT which is disallowed by
3635 **        restriction (4).
3636 **
3637 **        Also, each component of the sub-query must return the same number
3638 **        of result columns. This is actually a requirement for any compound
3639 **        SELECT statement, but all the code here does is make sure that no
3640 **        such (illegal) sub-query is flattened. The caller will detect the
3641 **        syntax error and return a detailed message.
3642 **
3643 **  (18)  If the sub-query is a compound select, then all terms of the
3644 **        ORDER BY clause of the parent must be simple references to
3645 **        columns of the sub-query.
3646 **
3647 **  (19)  If the subquery uses LIMIT then the outer query may not
3648 **        have a WHERE clause.
3649 **
3650 **  (20)  If the sub-query is a compound select, then it must not use
3651 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3652 **        somewhat by saying that the terms of the ORDER BY clause must
3653 **        appear as unmodified result columns in the outer query.  But we
3654 **        have other optimizations in mind to deal with that case.
3655 **
3656 **  (21)  If the subquery uses LIMIT then the outer query may not be
3657 **        DISTINCT.  (See ticket [752e1646fc]).
3658 **
3659 **  (22)  The subquery may not be a recursive CTE.
3660 **
3661 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3662 **        a recursive CTE, then the sub-query may not be a compound query.
3663 **        This restriction is because transforming the
3664 **        parent to a compound query confuses the code that handles
3665 **        recursive queries in multiSelect().
3666 **
3667 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3668 **        The subquery may not be an aggregate that uses the built-in min() or
3669 **        or max() functions.  (Without this restriction, a query like:
3670 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3671 **        return the value X for which Y was maximal.)
3672 **
3673 **  (25)  If either the subquery or the parent query contains a window
3674 **        function in the select list or ORDER BY clause, flattening
3675 **        is not attempted.
3676 **
3677 **
3678 ** In this routine, the "p" parameter is a pointer to the outer query.
3679 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3680 ** uses aggregates.
3681 **
3682 ** If flattening is not attempted, this routine is a no-op and returns 0.
3683 ** If flattening is attempted this routine returns 1.
3684 **
3685 ** All of the expression analysis must occur on both the outer query and
3686 ** the subquery before this routine runs.
3687 */
3688 static int flattenSubquery(
3689   Parse *pParse,       /* Parsing context */
3690   Select *p,           /* The parent or outer SELECT statement */
3691   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3692   int isAgg            /* True if outer SELECT uses aggregate functions */
3693 ){
3694   const char *zSavedAuthContext = pParse->zAuthContext;
3695   Select *pParent;    /* Current UNION ALL term of the other query */
3696   Select *pSub;       /* The inner query or "subquery" */
3697   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3698   SrcList *pSrc;      /* The FROM clause of the outer query */
3699   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3700   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3701   int iNewParent = -1;/* Replacement table for iParent */
3702   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3703   int i;              /* Loop counter */
3704   Expr *pWhere;                    /* The WHERE clause */
3705   struct SrcList_item *pSubitem;   /* The subquery */
3706   sqlite3 *db = pParse->db;
3707 
3708   /* Check to see if flattening is permitted.  Return 0 if not.
3709   */
3710   assert( p!=0 );
3711   assert( p->pPrior==0 );
3712   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3713   pSrc = p->pSrc;
3714   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3715   pSubitem = &pSrc->a[iFrom];
3716   iParent = pSubitem->iCursor;
3717   pSub = pSubitem->pSelect;
3718   assert( pSub!=0 );
3719 
3720 #ifndef SQLITE_OMIT_WINDOWFUNC
3721   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3722 #endif
3723 
3724   pSubSrc = pSub->pSrc;
3725   assert( pSubSrc );
3726   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3727   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3728   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3729   ** became arbitrary expressions, we were forced to add restrictions (13)
3730   ** and (14). */
3731   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3732   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3733   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3734     return 0;                                            /* Restriction (15) */
3735   }
3736   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3737   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3738   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3739      return 0;         /* Restrictions (8)(9) */
3740   }
3741   if( p->pOrderBy && pSub->pOrderBy ){
3742      return 0;                                           /* Restriction (11) */
3743   }
3744   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3745   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3746   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3747      return 0;         /* Restriction (21) */
3748   }
3749   if( pSub->selFlags & (SF_Recursive) ){
3750     return 0; /* Restrictions (22) */
3751   }
3752 
3753   /*
3754   ** If the subquery is the right operand of a LEFT JOIN, then the
3755   ** subquery may not be a join itself (3a). Example of why this is not
3756   ** allowed:
3757   **
3758   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3759   **
3760   ** If we flatten the above, we would get
3761   **
3762   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3763   **
3764   ** which is not at all the same thing.
3765   **
3766   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3767   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3768   ** aggregates are processed - there is no mechanism to determine if
3769   ** the LEFT JOIN table should be all-NULL.
3770   **
3771   ** See also tickets #306, #350, and #3300.
3772   */
3773   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3774     isLeftJoin = 1;
3775     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3776       /*  (3a)             (3c)     (3b) */
3777       return 0;
3778     }
3779   }
3780 #ifdef SQLITE_EXTRA_IFNULLROW
3781   else if( iFrom>0 && !isAgg ){
3782     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3783     ** every reference to any result column from subquery in a join, even
3784     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3785     ** opcode. */
3786     isLeftJoin = -1;
3787   }
3788 #endif
3789 
3790   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3791   ** use only the UNION ALL operator. And none of the simple select queries
3792   ** that make up the compound SELECT are allowed to be aggregate or distinct
3793   ** queries.
3794   */
3795   if( pSub->pPrior ){
3796     if( pSub->pOrderBy ){
3797       return 0;  /* Restriction (20) */
3798     }
3799     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3800       return 0; /* (17d1), (17d2), or (17d3) */
3801     }
3802     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3803       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3804       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3805       assert( pSub->pSrc!=0 );
3806       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3807       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3808        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3809        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3810       ){
3811         return 0;
3812       }
3813       testcase( pSub1->pSrc->nSrc>1 );
3814     }
3815 
3816     /* Restriction (18). */
3817     if( p->pOrderBy ){
3818       int ii;
3819       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3820         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3821       }
3822     }
3823   }
3824 
3825   /* Ex-restriction (23):
3826   ** The only way that the recursive part of a CTE can contain a compound
3827   ** subquery is for the subquery to be one term of a join.  But if the
3828   ** subquery is a join, then the flattening has already been stopped by
3829   ** restriction (17d3)
3830   */
3831   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3832 
3833   /***** If we reach this point, flattening is permitted. *****/
3834   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3835                    pSub->selId, pSub, iFrom));
3836 
3837   /* Authorize the subquery */
3838   pParse->zAuthContext = pSubitem->zName;
3839   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3840   testcase( i==SQLITE_DENY );
3841   pParse->zAuthContext = zSavedAuthContext;
3842 
3843   /* If the sub-query is a compound SELECT statement, then (by restrictions
3844   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3845   ** be of the form:
3846   **
3847   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3848   **
3849   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3850   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3851   ** OFFSET clauses and joins them to the left-hand-side of the original
3852   ** using UNION ALL operators. In this case N is the number of simple
3853   ** select statements in the compound sub-query.
3854   **
3855   ** Example:
3856   **
3857   **     SELECT a+1 FROM (
3858   **        SELECT x FROM tab
3859   **        UNION ALL
3860   **        SELECT y FROM tab
3861   **        UNION ALL
3862   **        SELECT abs(z*2) FROM tab2
3863   **     ) WHERE a!=5 ORDER BY 1
3864   **
3865   ** Transformed into:
3866   **
3867   **     SELECT x+1 FROM tab WHERE x+1!=5
3868   **     UNION ALL
3869   **     SELECT y+1 FROM tab WHERE y+1!=5
3870   **     UNION ALL
3871   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3872   **     ORDER BY 1
3873   **
3874   ** We call this the "compound-subquery flattening".
3875   */
3876   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3877     Select *pNew;
3878     ExprList *pOrderBy = p->pOrderBy;
3879     Expr *pLimit = p->pLimit;
3880     Select *pPrior = p->pPrior;
3881     p->pOrderBy = 0;
3882     p->pSrc = 0;
3883     p->pPrior = 0;
3884     p->pLimit = 0;
3885     pNew = sqlite3SelectDup(db, p, 0);
3886     p->pLimit = pLimit;
3887     p->pOrderBy = pOrderBy;
3888     p->pSrc = pSrc;
3889     p->op = TK_ALL;
3890     if( pNew==0 ){
3891       p->pPrior = pPrior;
3892     }else{
3893       pNew->pPrior = pPrior;
3894       if( pPrior ) pPrior->pNext = pNew;
3895       pNew->pNext = p;
3896       p->pPrior = pNew;
3897       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3898                               " creates %u as peer\n",pNew->selId));
3899     }
3900     if( db->mallocFailed ) return 1;
3901   }
3902 
3903   /* Begin flattening the iFrom-th entry of the FROM clause
3904   ** in the outer query.
3905   */
3906   pSub = pSub1 = pSubitem->pSelect;
3907 
3908   /* Delete the transient table structure associated with the
3909   ** subquery
3910   */
3911   sqlite3DbFree(db, pSubitem->zDatabase);
3912   sqlite3DbFree(db, pSubitem->zName);
3913   sqlite3DbFree(db, pSubitem->zAlias);
3914   pSubitem->zDatabase = 0;
3915   pSubitem->zName = 0;
3916   pSubitem->zAlias = 0;
3917   pSubitem->pSelect = 0;
3918 
3919   /* Defer deleting the Table object associated with the
3920   ** subquery until code generation is
3921   ** complete, since there may still exist Expr.pTab entries that
3922   ** refer to the subquery even after flattening.  Ticket #3346.
3923   **
3924   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3925   */
3926   if( ALWAYS(pSubitem->pTab!=0) ){
3927     Table *pTabToDel = pSubitem->pTab;
3928     if( pTabToDel->nTabRef==1 ){
3929       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3930       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3931       pToplevel->pZombieTab = pTabToDel;
3932     }else{
3933       pTabToDel->nTabRef--;
3934     }
3935     pSubitem->pTab = 0;
3936   }
3937 
3938   /* The following loop runs once for each term in a compound-subquery
3939   ** flattening (as described above).  If we are doing a different kind
3940   ** of flattening - a flattening other than a compound-subquery flattening -
3941   ** then this loop only runs once.
3942   **
3943   ** This loop moves all of the FROM elements of the subquery into the
3944   ** the FROM clause of the outer query.  Before doing this, remember
3945   ** the cursor number for the original outer query FROM element in
3946   ** iParent.  The iParent cursor will never be used.  Subsequent code
3947   ** will scan expressions looking for iParent references and replace
3948   ** those references with expressions that resolve to the subquery FROM
3949   ** elements we are now copying in.
3950   */
3951   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3952     int nSubSrc;
3953     u8 jointype = 0;
3954     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3955     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3956     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3957 
3958     if( pSrc ){
3959       assert( pParent==p );  /* First time through the loop */
3960       jointype = pSubitem->fg.jointype;
3961     }else{
3962       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3963       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
3964       if( pSrc==0 ) break;
3965       pParent->pSrc = pSrc;
3966     }
3967 
3968     /* The subquery uses a single slot of the FROM clause of the outer
3969     ** query.  If the subquery has more than one element in its FROM clause,
3970     ** then expand the outer query to make space for it to hold all elements
3971     ** of the subquery.
3972     **
3973     ** Example:
3974     **
3975     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3976     **
3977     ** The outer query has 3 slots in its FROM clause.  One slot of the
3978     ** outer query (the middle slot) is used by the subquery.  The next
3979     ** block of code will expand the outer query FROM clause to 4 slots.
3980     ** The middle slot is expanded to two slots in order to make space
3981     ** for the two elements in the FROM clause of the subquery.
3982     */
3983     if( nSubSrc>1 ){
3984       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
3985       if( pSrc==0 ) break;
3986       pParent->pSrc = pSrc;
3987     }
3988 
3989     /* Transfer the FROM clause terms from the subquery into the
3990     ** outer query.
3991     */
3992     for(i=0; i<nSubSrc; i++){
3993       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3994       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3995       pSrc->a[i+iFrom] = pSubSrc->a[i];
3996       iNewParent = pSubSrc->a[i].iCursor;
3997       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3998     }
3999     pSrc->a[iFrom].fg.jointype = jointype;
4000 
4001     /* Now begin substituting subquery result set expressions for
4002     ** references to the iParent in the outer query.
4003     **
4004     ** Example:
4005     **
4006     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4007     **   \                     \_____________ subquery __________/          /
4008     **    \_____________________ outer query ______________________________/
4009     **
4010     ** We look at every expression in the outer query and every place we see
4011     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4012     */
4013     if( pSub->pOrderBy ){
4014       /* At this point, any non-zero iOrderByCol values indicate that the
4015       ** ORDER BY column expression is identical to the iOrderByCol'th
4016       ** expression returned by SELECT statement pSub. Since these values
4017       ** do not necessarily correspond to columns in SELECT statement pParent,
4018       ** zero them before transfering the ORDER BY clause.
4019       **
4020       ** Not doing this may cause an error if a subsequent call to this
4021       ** function attempts to flatten a compound sub-query into pParent
4022       ** (the only way this can happen is if the compound sub-query is
4023       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4024       ExprList *pOrderBy = pSub->pOrderBy;
4025       for(i=0; i<pOrderBy->nExpr; i++){
4026         pOrderBy->a[i].u.x.iOrderByCol = 0;
4027       }
4028       assert( pParent->pOrderBy==0 );
4029       pParent->pOrderBy = pOrderBy;
4030       pSub->pOrderBy = 0;
4031     }
4032     pWhere = pSub->pWhere;
4033     pSub->pWhere = 0;
4034     if( isLeftJoin>0 ){
4035       setJoinExpr(pWhere, iNewParent);
4036     }
4037     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4038     if( db->mallocFailed==0 ){
4039       SubstContext x;
4040       x.pParse = pParse;
4041       x.iTable = iParent;
4042       x.iNewTable = iNewParent;
4043       x.isLeftJoin = isLeftJoin;
4044       x.pEList = pSub->pEList;
4045       substSelect(&x, pParent, 0);
4046     }
4047 
4048     /* The flattened query is distinct if either the inner or the
4049     ** outer query is distinct.
4050     */
4051     pParent->selFlags |= pSub->selFlags & SF_Distinct;
4052 
4053     /*
4054     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4055     **
4056     ** One is tempted to try to add a and b to combine the limits.  But this
4057     ** does not work if either limit is negative.
4058     */
4059     if( pSub->pLimit ){
4060       pParent->pLimit = pSub->pLimit;
4061       pSub->pLimit = 0;
4062     }
4063   }
4064 
4065   /* Finially, delete what is left of the subquery and return
4066   ** success.
4067   */
4068   sqlite3SelectDelete(db, pSub1);
4069 
4070 #if SELECTTRACE_ENABLED
4071   if( sqlite3SelectTrace & 0x100 ){
4072     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4073     sqlite3TreeViewSelect(0, p, 0);
4074   }
4075 #endif
4076 
4077   return 1;
4078 }
4079 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4080 
4081 /*
4082 ** A structure to keep track of all of the column values that are fixed to
4083 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4084 */
4085 typedef struct WhereConst WhereConst;
4086 struct WhereConst {
4087   Parse *pParse;   /* Parsing context */
4088   int nConst;      /* Number for COLUMN=CONSTANT terms */
4089   int nChng;       /* Number of times a constant is propagated */
4090   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4091 };
4092 
4093 /*
4094 ** Add a new entry to the pConst object.  Except, do not add duplicate
4095 ** pColumn entires.
4096 */
4097 static void constInsert(
4098   WhereConst *pConst,      /* The WhereConst into which we are inserting */
4099   Expr *pColumn,           /* The COLUMN part of the constraint */
4100   Expr *pValue             /* The VALUE part of the constraint */
4101 ){
4102   int i;
4103   assert( pColumn->op==TK_COLUMN );
4104 
4105   /* 2018-10-25 ticket [cf5ed20f]
4106   ** Make sure the same pColumn is not inserted more than once */
4107   for(i=0; i<pConst->nConst; i++){
4108     const Expr *pExpr = pConst->apExpr[i*2];
4109     assert( pExpr->op==TK_COLUMN );
4110     if( pExpr->iTable==pColumn->iTable
4111      && pExpr->iColumn==pColumn->iColumn
4112     ){
4113       return;  /* Already present.  Return without doing anything. */
4114     }
4115   }
4116 
4117   pConst->nConst++;
4118   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4119                          pConst->nConst*2*sizeof(Expr*));
4120   if( pConst->apExpr==0 ){
4121     pConst->nConst = 0;
4122   }else{
4123     if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4124     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4125     pConst->apExpr[pConst->nConst*2-1] = pValue;
4126   }
4127 }
4128 
4129 /*
4130 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4131 ** is a constant expression and where the term must be true because it
4132 ** is part of the AND-connected terms of the expression.  For each term
4133 ** found, add it to the pConst structure.
4134 */
4135 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4136   Expr *pRight, *pLeft;
4137   if( pExpr==0 ) return;
4138   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4139   if( pExpr->op==TK_AND ){
4140     findConstInWhere(pConst, pExpr->pRight);
4141     findConstInWhere(pConst, pExpr->pLeft);
4142     return;
4143   }
4144   if( pExpr->op!=TK_EQ ) return;
4145   pRight = pExpr->pRight;
4146   pLeft = pExpr->pLeft;
4147   assert( pRight!=0 );
4148   assert( pLeft!=0 );
4149   if( pRight->op==TK_COLUMN
4150    && !ExprHasProperty(pRight, EP_FixedCol)
4151    && sqlite3ExprIsConstant(pLeft)
4152    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4153   ){
4154     constInsert(pConst, pRight, pLeft);
4155   }else
4156   if( pLeft->op==TK_COLUMN
4157    && !ExprHasProperty(pLeft, EP_FixedCol)
4158    && sqlite3ExprIsConstant(pRight)
4159    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4160   ){
4161     constInsert(pConst, pLeft, pRight);
4162   }
4163 }
4164 
4165 /*
4166 ** This is a Walker expression callback.  pExpr is a candidate expression
4167 ** to be replaced by a value.  If pExpr is equivalent to one of the
4168 ** columns named in pWalker->u.pConst, then overwrite it with its
4169 ** corresponding value.
4170 */
4171 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4172   int i;
4173   WhereConst *pConst;
4174   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4175   if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4176   pConst = pWalker->u.pConst;
4177   for(i=0; i<pConst->nConst; i++){
4178     Expr *pColumn = pConst->apExpr[i*2];
4179     if( pColumn==pExpr ) continue;
4180     if( pColumn->iTable!=pExpr->iTable ) continue;
4181     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4182     /* A match is found.  Add the EP_FixedCol property */
4183     pConst->nChng++;
4184     ExprClearProperty(pExpr, EP_Leaf);
4185     ExprSetProperty(pExpr, EP_FixedCol);
4186     assert( pExpr->pLeft==0 );
4187     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4188     break;
4189   }
4190   return WRC_Prune;
4191 }
4192 
4193 /*
4194 ** The WHERE-clause constant propagation optimization.
4195 **
4196 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4197 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4198 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4199 ** then throughout the query replace all other occurrences of COLUMN
4200 ** with CONSTANT within the WHERE clause.
4201 **
4202 ** For example, the query:
4203 **
4204 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4205 **
4206 ** Is transformed into
4207 **
4208 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4209 **
4210 ** Return true if any transformations where made and false if not.
4211 **
4212 ** Implementation note:  Constant propagation is tricky due to affinity
4213 ** and collating sequence interactions.  Consider this example:
4214 **
4215 **    CREATE TABLE t1(a INT,b TEXT);
4216 **    INSERT INTO t1 VALUES(123,'0123');
4217 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4218 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4219 **
4220 ** The two SELECT statements above should return different answers.  b=a
4221 ** is alway true because the comparison uses numeric affinity, but b=123
4222 ** is false because it uses text affinity and '0123' is not the same as '123'.
4223 ** To work around this, the expression tree is not actually changed from
4224 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4225 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4226 ** routines know to generate the constant "123" instead of looking up the
4227 ** column value.  Also, to avoid collation problems, this optimization is
4228 ** only attempted if the "a=123" term uses the default BINARY collation.
4229 */
4230 static int propagateConstants(
4231   Parse *pParse,   /* The parsing context */
4232   Select *p        /* The query in which to propagate constants */
4233 ){
4234   WhereConst x;
4235   Walker w;
4236   int nChng = 0;
4237   x.pParse = pParse;
4238   do{
4239     x.nConst = 0;
4240     x.nChng = 0;
4241     x.apExpr = 0;
4242     findConstInWhere(&x, p->pWhere);
4243     if( x.nConst ){
4244       memset(&w, 0, sizeof(w));
4245       w.pParse = pParse;
4246       w.xExprCallback = propagateConstantExprRewrite;
4247       w.xSelectCallback = sqlite3SelectWalkNoop;
4248       w.xSelectCallback2 = 0;
4249       w.walkerDepth = 0;
4250       w.u.pConst = &x;
4251       sqlite3WalkExpr(&w, p->pWhere);
4252       sqlite3DbFree(x.pParse->db, x.apExpr);
4253       nChng += x.nChng;
4254     }
4255   }while( x.nChng );
4256   return nChng;
4257 }
4258 
4259 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4260 /*
4261 ** Make copies of relevant WHERE clause terms of the outer query into
4262 ** the WHERE clause of subquery.  Example:
4263 **
4264 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4265 **
4266 ** Transformed into:
4267 **
4268 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4269 **     WHERE x=5 AND y=10;
4270 **
4271 ** The hope is that the terms added to the inner query will make it more
4272 ** efficient.
4273 **
4274 ** Do not attempt this optimization if:
4275 **
4276 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4277 **           disallow this optimization for aggregate subqueries, but now
4278 **           it is allowed by putting the extra terms on the HAVING clause.
4279 **           The added HAVING clause is pointless if the subquery lacks
4280 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4281 **           so there does not appear to be any reason to add extra logic
4282 **           to suppress it. **)
4283 **
4284 **   (2) The inner query is the recursive part of a common table expression.
4285 **
4286 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4287 **       clause would change the meaning of the LIMIT).
4288 **
4289 **   (4) The inner query is the right operand of a LEFT JOIN and the
4290 **       expression to be pushed down does not come from the ON clause
4291 **       on that LEFT JOIN.
4292 **
4293 **   (5) The WHERE clause expression originates in the ON or USING clause
4294 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4295 **       left join.  An example:
4296 **
4297 **           SELECT *
4298 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4299 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4300 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4301 **
4302 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4303 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4304 **       then the (1,1,NULL) row would be suppressed.
4305 **
4306 **   (6) The inner query features one or more window-functions (since
4307 **       changes to the WHERE clause of the inner query could change the
4308 **       window over which window functions are calculated).
4309 **
4310 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4311 ** terms are duplicated into the subquery.
4312 */
4313 static int pushDownWhereTerms(
4314   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4315   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4316   Expr *pWhere,         /* The WHERE clause of the outer query */
4317   int iCursor,          /* Cursor number of the subquery */
4318   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4319 ){
4320   Expr *pNew;
4321   int nChng = 0;
4322   if( pWhere==0 ) return 0;
4323   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4324 
4325 #ifndef SQLITE_OMIT_WINDOWFUNC
4326   if( pSubq->pWin ) return 0;    /* restriction (6) */
4327 #endif
4328 
4329 #ifdef SQLITE_DEBUG
4330   /* Only the first term of a compound can have a WITH clause.  But make
4331   ** sure no other terms are marked SF_Recursive in case something changes
4332   ** in the future.
4333   */
4334   {
4335     Select *pX;
4336     for(pX=pSubq; pX; pX=pX->pPrior){
4337       assert( (pX->selFlags & (SF_Recursive))==0 );
4338     }
4339   }
4340 #endif
4341 
4342   if( pSubq->pLimit!=0 ){
4343     return 0; /* restriction (3) */
4344   }
4345   while( pWhere->op==TK_AND ){
4346     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4347                                 iCursor, isLeftJoin);
4348     pWhere = pWhere->pLeft;
4349   }
4350   if( isLeftJoin
4351    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4352          || pWhere->iRightJoinTable!=iCursor)
4353   ){
4354     return 0; /* restriction (4) */
4355   }
4356   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4357     return 0; /* restriction (5) */
4358   }
4359   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4360     nChng++;
4361     while( pSubq ){
4362       SubstContext x;
4363       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4364       unsetJoinExpr(pNew, -1);
4365       x.pParse = pParse;
4366       x.iTable = iCursor;
4367       x.iNewTable = iCursor;
4368       x.isLeftJoin = 0;
4369       x.pEList = pSubq->pEList;
4370       pNew = substExpr(&x, pNew);
4371       if( pSubq->selFlags & SF_Aggregate ){
4372         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4373       }else{
4374         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4375       }
4376       pSubq = pSubq->pPrior;
4377     }
4378   }
4379   return nChng;
4380 }
4381 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4382 
4383 /*
4384 ** The pFunc is the only aggregate function in the query.  Check to see
4385 ** if the query is a candidate for the min/max optimization.
4386 **
4387 ** If the query is a candidate for the min/max optimization, then set
4388 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4389 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4390 ** whether pFunc is a min() or max() function.
4391 **
4392 ** If the query is not a candidate for the min/max optimization, return
4393 ** WHERE_ORDERBY_NORMAL (which must be zero).
4394 **
4395 ** This routine must be called after aggregate functions have been
4396 ** located but before their arguments have been subjected to aggregate
4397 ** analysis.
4398 */
4399 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4400   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4401   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4402   const char *zFunc;                    /* Name of aggregate function pFunc */
4403   ExprList *pOrderBy;
4404   u8 sortOrder;
4405 
4406   assert( *ppMinMax==0 );
4407   assert( pFunc->op==TK_AGG_FUNCTION );
4408   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4409   zFunc = pFunc->u.zToken;
4410   if( sqlite3StrICmp(zFunc, "min")==0 ){
4411     eRet = WHERE_ORDERBY_MIN;
4412     sortOrder = SQLITE_SO_ASC;
4413   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4414     eRet = WHERE_ORDERBY_MAX;
4415     sortOrder = SQLITE_SO_DESC;
4416   }else{
4417     return eRet;
4418   }
4419   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4420   assert( pOrderBy!=0 || db->mallocFailed );
4421   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4422   return eRet;
4423 }
4424 
4425 /*
4426 ** The select statement passed as the first argument is an aggregate query.
4427 ** The second argument is the associated aggregate-info object. This
4428 ** function tests if the SELECT is of the form:
4429 **
4430 **   SELECT count(*) FROM <tbl>
4431 **
4432 ** where table is a database table, not a sub-select or view. If the query
4433 ** does match this pattern, then a pointer to the Table object representing
4434 ** <tbl> is returned. Otherwise, 0 is returned.
4435 */
4436 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4437   Table *pTab;
4438   Expr *pExpr;
4439 
4440   assert( !p->pGroupBy );
4441 
4442   if( p->pWhere || p->pEList->nExpr!=1
4443    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4444   ){
4445     return 0;
4446   }
4447   pTab = p->pSrc->a[0].pTab;
4448   pExpr = p->pEList->a[0].pExpr;
4449   assert( pTab && !pTab->pSelect && pExpr );
4450 
4451   if( IsVirtual(pTab) ) return 0;
4452   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4453   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4454   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4455   if( pExpr->flags&EP_Distinct ) return 0;
4456 
4457   return pTab;
4458 }
4459 
4460 /*
4461 ** If the source-list item passed as an argument was augmented with an
4462 ** INDEXED BY clause, then try to locate the specified index. If there
4463 ** was such a clause and the named index cannot be found, return
4464 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4465 ** pFrom->pIndex and return SQLITE_OK.
4466 */
4467 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4468   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4469     Table *pTab = pFrom->pTab;
4470     char *zIndexedBy = pFrom->u1.zIndexedBy;
4471     Index *pIdx;
4472     for(pIdx=pTab->pIndex;
4473         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4474         pIdx=pIdx->pNext
4475     );
4476     if( !pIdx ){
4477       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4478       pParse->checkSchema = 1;
4479       return SQLITE_ERROR;
4480     }
4481     pFrom->pIBIndex = pIdx;
4482   }
4483   return SQLITE_OK;
4484 }
4485 /*
4486 ** Detect compound SELECT statements that use an ORDER BY clause with
4487 ** an alternative collating sequence.
4488 **
4489 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4490 **
4491 ** These are rewritten as a subquery:
4492 **
4493 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4494 **     ORDER BY ... COLLATE ...
4495 **
4496 ** This transformation is necessary because the multiSelectOrderBy() routine
4497 ** above that generates the code for a compound SELECT with an ORDER BY clause
4498 ** uses a merge algorithm that requires the same collating sequence on the
4499 ** result columns as on the ORDER BY clause.  See ticket
4500 ** http://www.sqlite.org/src/info/6709574d2a
4501 **
4502 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4503 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4504 ** there are COLLATE terms in the ORDER BY.
4505 */
4506 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4507   int i;
4508   Select *pNew;
4509   Select *pX;
4510   sqlite3 *db;
4511   struct ExprList_item *a;
4512   SrcList *pNewSrc;
4513   Parse *pParse;
4514   Token dummy;
4515 
4516   if( p->pPrior==0 ) return WRC_Continue;
4517   if( p->pOrderBy==0 ) return WRC_Continue;
4518   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4519   if( pX==0 ) return WRC_Continue;
4520   a = p->pOrderBy->a;
4521   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4522     if( a[i].pExpr->flags & EP_Collate ) break;
4523   }
4524   if( i<0 ) return WRC_Continue;
4525 
4526   /* If we reach this point, that means the transformation is required. */
4527 
4528   pParse = pWalker->pParse;
4529   db = pParse->db;
4530   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4531   if( pNew==0 ) return WRC_Abort;
4532   memset(&dummy, 0, sizeof(dummy));
4533   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4534   if( pNewSrc==0 ) return WRC_Abort;
4535   *pNew = *p;
4536   p->pSrc = pNewSrc;
4537   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4538   p->op = TK_SELECT;
4539   p->pWhere = 0;
4540   pNew->pGroupBy = 0;
4541   pNew->pHaving = 0;
4542   pNew->pOrderBy = 0;
4543   p->pPrior = 0;
4544   p->pNext = 0;
4545   p->pWith = 0;
4546   p->selFlags &= ~SF_Compound;
4547   assert( (p->selFlags & SF_Converted)==0 );
4548   p->selFlags |= SF_Converted;
4549   assert( pNew->pPrior!=0 );
4550   pNew->pPrior->pNext = pNew;
4551   pNew->pLimit = 0;
4552   return WRC_Continue;
4553 }
4554 
4555 /*
4556 ** Check to see if the FROM clause term pFrom has table-valued function
4557 ** arguments.  If it does, leave an error message in pParse and return
4558 ** non-zero, since pFrom is not allowed to be a table-valued function.
4559 */
4560 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4561   if( pFrom->fg.isTabFunc ){
4562     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4563     return 1;
4564   }
4565   return 0;
4566 }
4567 
4568 #ifndef SQLITE_OMIT_CTE
4569 /*
4570 ** Argument pWith (which may be NULL) points to a linked list of nested
4571 ** WITH contexts, from inner to outermost. If the table identified by
4572 ** FROM clause element pItem is really a common-table-expression (CTE)
4573 ** then return a pointer to the CTE definition for that table. Otherwise
4574 ** return NULL.
4575 **
4576 ** If a non-NULL value is returned, set *ppContext to point to the With
4577 ** object that the returned CTE belongs to.
4578 */
4579 static struct Cte *searchWith(
4580   With *pWith,                    /* Current innermost WITH clause */
4581   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4582   With **ppContext                /* OUT: WITH clause return value belongs to */
4583 ){
4584   const char *zName;
4585   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4586     With *p;
4587     for(p=pWith; p; p=p->pOuter){
4588       int i;
4589       for(i=0; i<p->nCte; i++){
4590         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4591           *ppContext = p;
4592           return &p->a[i];
4593         }
4594       }
4595     }
4596   }
4597   return 0;
4598 }
4599 
4600 /* The code generator maintains a stack of active WITH clauses
4601 ** with the inner-most WITH clause being at the top of the stack.
4602 **
4603 ** This routine pushes the WITH clause passed as the second argument
4604 ** onto the top of the stack. If argument bFree is true, then this
4605 ** WITH clause will never be popped from the stack. In this case it
4606 ** should be freed along with the Parse object. In other cases, when
4607 ** bFree==0, the With object will be freed along with the SELECT
4608 ** statement with which it is associated.
4609 */
4610 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4611   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4612   if( pWith ){
4613     assert( pParse->pWith!=pWith );
4614     pWith->pOuter = pParse->pWith;
4615     pParse->pWith = pWith;
4616     if( bFree ) pParse->pWithToFree = pWith;
4617   }
4618 }
4619 
4620 /*
4621 ** This function checks if argument pFrom refers to a CTE declared by
4622 ** a WITH clause on the stack currently maintained by the parser. And,
4623 ** if currently processing a CTE expression, if it is a recursive
4624 ** reference to the current CTE.
4625 **
4626 ** If pFrom falls into either of the two categories above, pFrom->pTab
4627 ** and other fields are populated accordingly. The caller should check
4628 ** (pFrom->pTab!=0) to determine whether or not a successful match
4629 ** was found.
4630 **
4631 ** Whether or not a match is found, SQLITE_OK is returned if no error
4632 ** occurs. If an error does occur, an error message is stored in the
4633 ** parser and some error code other than SQLITE_OK returned.
4634 */
4635 static int withExpand(
4636   Walker *pWalker,
4637   struct SrcList_item *pFrom
4638 ){
4639   Parse *pParse = pWalker->pParse;
4640   sqlite3 *db = pParse->db;
4641   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4642   With *pWith;                    /* WITH clause that pCte belongs to */
4643 
4644   assert( pFrom->pTab==0 );
4645 
4646   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4647   if( pCte ){
4648     Table *pTab;
4649     ExprList *pEList;
4650     Select *pSel;
4651     Select *pLeft;                /* Left-most SELECT statement */
4652     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4653     With *pSavedWith;             /* Initial value of pParse->pWith */
4654 
4655     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4656     ** recursive reference to CTE pCte. Leave an error in pParse and return
4657     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4658     ** In this case, proceed.  */
4659     if( pCte->zCteErr ){
4660       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4661       return SQLITE_ERROR;
4662     }
4663     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4664 
4665     assert( pFrom->pTab==0 );
4666     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4667     if( pTab==0 ) return WRC_Abort;
4668     pTab->nTabRef = 1;
4669     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4670     pTab->iPKey = -1;
4671     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4672     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4673     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4674     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4675     assert( pFrom->pSelect );
4676 
4677     /* Check if this is a recursive CTE. */
4678     pSel = pFrom->pSelect;
4679     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4680     if( bMayRecursive ){
4681       int i;
4682       SrcList *pSrc = pFrom->pSelect->pSrc;
4683       for(i=0; i<pSrc->nSrc; i++){
4684         struct SrcList_item *pItem = &pSrc->a[i];
4685         if( pItem->zDatabase==0
4686          && pItem->zName!=0
4687          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4688           ){
4689           pItem->pTab = pTab;
4690           pItem->fg.isRecursive = 1;
4691           pTab->nTabRef++;
4692           pSel->selFlags |= SF_Recursive;
4693         }
4694       }
4695     }
4696 
4697     /* Only one recursive reference is permitted. */
4698     if( pTab->nTabRef>2 ){
4699       sqlite3ErrorMsg(
4700           pParse, "multiple references to recursive table: %s", pCte->zName
4701       );
4702       return SQLITE_ERROR;
4703     }
4704     assert( pTab->nTabRef==1 ||
4705             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4706 
4707     pCte->zCteErr = "circular reference: %s";
4708     pSavedWith = pParse->pWith;
4709     pParse->pWith = pWith;
4710     if( bMayRecursive ){
4711       Select *pPrior = pSel->pPrior;
4712       assert( pPrior->pWith==0 );
4713       pPrior->pWith = pSel->pWith;
4714       sqlite3WalkSelect(pWalker, pPrior);
4715       pPrior->pWith = 0;
4716     }else{
4717       sqlite3WalkSelect(pWalker, pSel);
4718     }
4719     pParse->pWith = pWith;
4720 
4721     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4722     pEList = pLeft->pEList;
4723     if( pCte->pCols ){
4724       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4725         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4726             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4727         );
4728         pParse->pWith = pSavedWith;
4729         return SQLITE_ERROR;
4730       }
4731       pEList = pCte->pCols;
4732     }
4733 
4734     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4735     if( bMayRecursive ){
4736       if( pSel->selFlags & SF_Recursive ){
4737         pCte->zCteErr = "multiple recursive references: %s";
4738       }else{
4739         pCte->zCteErr = "recursive reference in a subquery: %s";
4740       }
4741       sqlite3WalkSelect(pWalker, pSel);
4742     }
4743     pCte->zCteErr = 0;
4744     pParse->pWith = pSavedWith;
4745   }
4746 
4747   return SQLITE_OK;
4748 }
4749 #endif
4750 
4751 #ifndef SQLITE_OMIT_CTE
4752 /*
4753 ** If the SELECT passed as the second argument has an associated WITH
4754 ** clause, pop it from the stack stored as part of the Parse object.
4755 **
4756 ** This function is used as the xSelectCallback2() callback by
4757 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4758 ** names and other FROM clause elements.
4759 */
4760 static void selectPopWith(Walker *pWalker, Select *p){
4761   Parse *pParse = pWalker->pParse;
4762   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4763     With *pWith = findRightmost(p)->pWith;
4764     if( pWith!=0 ){
4765       assert( pParse->pWith==pWith );
4766       pParse->pWith = pWith->pOuter;
4767     }
4768   }
4769 }
4770 #else
4771 #define selectPopWith 0
4772 #endif
4773 
4774 /*
4775 ** The SrcList_item structure passed as the second argument represents a
4776 ** sub-query in the FROM clause of a SELECT statement. This function
4777 ** allocates and populates the SrcList_item.pTab object. If successful,
4778 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4779 ** SQLITE_NOMEM.
4780 */
4781 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4782   Select *pSel = pFrom->pSelect;
4783   Table *pTab;
4784 
4785   assert( pSel );
4786   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4787   if( pTab==0 ) return SQLITE_NOMEM;
4788   pTab->nTabRef = 1;
4789   if( pFrom->zAlias ){
4790     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4791   }else{
4792     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4793   }
4794   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4795   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4796   pTab->iPKey = -1;
4797   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4798   pTab->tabFlags |= TF_Ephemeral;
4799 
4800   return SQLITE_OK;
4801 }
4802 
4803 /*
4804 ** This routine is a Walker callback for "expanding" a SELECT statement.
4805 ** "Expanding" means to do the following:
4806 **
4807 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4808 **         element of the FROM clause.
4809 **
4810 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4811 **         defines FROM clause.  When views appear in the FROM clause,
4812 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4813 **         that implements the view.  A copy is made of the view's SELECT
4814 **         statement so that we can freely modify or delete that statement
4815 **         without worrying about messing up the persistent representation
4816 **         of the view.
4817 **
4818 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4819 **         on joins and the ON and USING clause of joins.
4820 **
4821 **    (4)  Scan the list of columns in the result set (pEList) looking
4822 **         for instances of the "*" operator or the TABLE.* operator.
4823 **         If found, expand each "*" to be every column in every table
4824 **         and TABLE.* to be every column in TABLE.
4825 **
4826 */
4827 static int selectExpander(Walker *pWalker, Select *p){
4828   Parse *pParse = pWalker->pParse;
4829   int i, j, k;
4830   SrcList *pTabList;
4831   ExprList *pEList;
4832   struct SrcList_item *pFrom;
4833   sqlite3 *db = pParse->db;
4834   Expr *pE, *pRight, *pExpr;
4835   u16 selFlags = p->selFlags;
4836   u32 elistFlags = 0;
4837 
4838   p->selFlags |= SF_Expanded;
4839   if( db->mallocFailed  ){
4840     return WRC_Abort;
4841   }
4842   assert( p->pSrc!=0 );
4843   if( (selFlags & SF_Expanded)!=0 ){
4844     return WRC_Prune;
4845   }
4846   pTabList = p->pSrc;
4847   pEList = p->pEList;
4848   sqlite3WithPush(pParse, p->pWith, 0);
4849 
4850   /* Make sure cursor numbers have been assigned to all entries in
4851   ** the FROM clause of the SELECT statement.
4852   */
4853   sqlite3SrcListAssignCursors(pParse, pTabList);
4854 
4855   /* Look up every table named in the FROM clause of the select.  If
4856   ** an entry of the FROM clause is a subquery instead of a table or view,
4857   ** then create a transient table structure to describe the subquery.
4858   */
4859   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4860     Table *pTab;
4861     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4862     if( pFrom->fg.isRecursive ) continue;
4863     assert( pFrom->pTab==0 );
4864 #ifndef SQLITE_OMIT_CTE
4865     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4866     if( pFrom->pTab ) {} else
4867 #endif
4868     if( pFrom->zName==0 ){
4869 #ifndef SQLITE_OMIT_SUBQUERY
4870       Select *pSel = pFrom->pSelect;
4871       /* A sub-query in the FROM clause of a SELECT */
4872       assert( pSel!=0 );
4873       assert( pFrom->pTab==0 );
4874       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4875       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4876 #endif
4877     }else{
4878       /* An ordinary table or view name in the FROM clause */
4879       assert( pFrom->pTab==0 );
4880       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4881       if( pTab==0 ) return WRC_Abort;
4882       if( pTab->nTabRef>=0xffff ){
4883         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4884            pTab->zName);
4885         pFrom->pTab = 0;
4886         return WRC_Abort;
4887       }
4888       pTab->nTabRef++;
4889       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4890         return WRC_Abort;
4891       }
4892 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4893       if( IsVirtual(pTab) || pTab->pSelect ){
4894         i16 nCol;
4895         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4896         assert( pFrom->pSelect==0 );
4897         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4898         nCol = pTab->nCol;
4899         pTab->nCol = -1;
4900         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4901         pTab->nCol = nCol;
4902       }
4903 #endif
4904     }
4905 
4906     /* Locate the index named by the INDEXED BY clause, if any. */
4907     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4908       return WRC_Abort;
4909     }
4910   }
4911 
4912   /* Process NATURAL keywords, and ON and USING clauses of joins.
4913   */
4914   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4915     return WRC_Abort;
4916   }
4917 
4918   /* For every "*" that occurs in the column list, insert the names of
4919   ** all columns in all tables.  And for every TABLE.* insert the names
4920   ** of all columns in TABLE.  The parser inserted a special expression
4921   ** with the TK_ASTERISK operator for each "*" that it found in the column
4922   ** list.  The following code just has to locate the TK_ASTERISK
4923   ** expressions and expand each one to the list of all columns in
4924   ** all tables.
4925   **
4926   ** The first loop just checks to see if there are any "*" operators
4927   ** that need expanding.
4928   */
4929   for(k=0; k<pEList->nExpr; k++){
4930     pE = pEList->a[k].pExpr;
4931     if( pE->op==TK_ASTERISK ) break;
4932     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4933     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4934     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4935     elistFlags |= pE->flags;
4936   }
4937   if( k<pEList->nExpr ){
4938     /*
4939     ** If we get here it means the result set contains one or more "*"
4940     ** operators that need to be expanded.  Loop through each expression
4941     ** in the result set and expand them one by one.
4942     */
4943     struct ExprList_item *a = pEList->a;
4944     ExprList *pNew = 0;
4945     int flags = pParse->db->flags;
4946     int longNames = (flags & SQLITE_FullColNames)!=0
4947                       && (flags & SQLITE_ShortColNames)==0;
4948 
4949     for(k=0; k<pEList->nExpr; k++){
4950       pE = a[k].pExpr;
4951       elistFlags |= pE->flags;
4952       pRight = pE->pRight;
4953       assert( pE->op!=TK_DOT || pRight!=0 );
4954       if( pE->op!=TK_ASTERISK
4955        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4956       ){
4957         /* This particular expression does not need to be expanded.
4958         */
4959         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4960         if( pNew ){
4961           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4962           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4963           a[k].zName = 0;
4964           a[k].zSpan = 0;
4965         }
4966         a[k].pExpr = 0;
4967       }else{
4968         /* This expression is a "*" or a "TABLE.*" and needs to be
4969         ** expanded. */
4970         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4971         char *zTName = 0;       /* text of name of TABLE */
4972         if( pE->op==TK_DOT ){
4973           assert( pE->pLeft!=0 );
4974           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4975           zTName = pE->pLeft->u.zToken;
4976         }
4977         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4978           Table *pTab = pFrom->pTab;
4979           Select *pSub = pFrom->pSelect;
4980           char *zTabName = pFrom->zAlias;
4981           const char *zSchemaName = 0;
4982           int iDb;
4983           if( zTabName==0 ){
4984             zTabName = pTab->zName;
4985           }
4986           if( db->mallocFailed ) break;
4987           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4988             pSub = 0;
4989             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4990               continue;
4991             }
4992             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4993             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4994           }
4995           for(j=0; j<pTab->nCol; j++){
4996             char *zName = pTab->aCol[j].zName;
4997             char *zColname;  /* The computed column name */
4998             char *zToFree;   /* Malloced string that needs to be freed */
4999             Token sColname;  /* Computed column name as a token */
5000 
5001             assert( zName );
5002             if( zTName && pSub
5003              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
5004             ){
5005               continue;
5006             }
5007 
5008             /* If a column is marked as 'hidden', omit it from the expanded
5009             ** result-set list unless the SELECT has the SF_IncludeHidden
5010             ** bit set.
5011             */
5012             if( (p->selFlags & SF_IncludeHidden)==0
5013              && IsHiddenColumn(&pTab->aCol[j])
5014             ){
5015               continue;
5016             }
5017             tableSeen = 1;
5018 
5019             if( i>0 && zTName==0 ){
5020               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5021                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
5022               ){
5023                 /* In a NATURAL join, omit the join columns from the
5024                 ** table to the right of the join */
5025                 continue;
5026               }
5027               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5028                 /* In a join with a USING clause, omit columns in the
5029                 ** using clause from the table on the right. */
5030                 continue;
5031               }
5032             }
5033             pRight = sqlite3Expr(db, TK_ID, zName);
5034             zColname = zName;
5035             zToFree = 0;
5036             if( longNames || pTabList->nSrc>1 ){
5037               Expr *pLeft;
5038               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5039               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5040               if( zSchemaName ){
5041                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5042                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5043               }
5044               if( longNames ){
5045                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5046                 zToFree = zColname;
5047               }
5048             }else{
5049               pExpr = pRight;
5050             }
5051             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5052             sqlite3TokenInit(&sColname, zColname);
5053             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5054             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5055               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5056               if( pSub ){
5057                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
5058                 testcase( pX->zSpan==0 );
5059               }else{
5060                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
5061                                            zSchemaName, zTabName, zColname);
5062                 testcase( pX->zSpan==0 );
5063               }
5064               pX->bSpanIsTab = 1;
5065             }
5066             sqlite3DbFree(db, zToFree);
5067           }
5068         }
5069         if( !tableSeen ){
5070           if( zTName ){
5071             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5072           }else{
5073             sqlite3ErrorMsg(pParse, "no tables specified");
5074           }
5075         }
5076       }
5077     }
5078     sqlite3ExprListDelete(db, pEList);
5079     p->pEList = pNew;
5080   }
5081   if( p->pEList ){
5082     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5083       sqlite3ErrorMsg(pParse, "too many columns in result set");
5084       return WRC_Abort;
5085     }
5086     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5087       p->selFlags |= SF_ComplexResult;
5088     }
5089   }
5090   return WRC_Continue;
5091 }
5092 
5093 /*
5094 ** No-op routine for the parse-tree walker.
5095 **
5096 ** When this routine is the Walker.xExprCallback then expression trees
5097 ** are walked without any actions being taken at each node.  Presumably,
5098 ** when this routine is used for Walker.xExprCallback then
5099 ** Walker.xSelectCallback is set to do something useful for every
5100 ** subquery in the parser tree.
5101 */
5102 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5103   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5104   return WRC_Continue;
5105 }
5106 
5107 /*
5108 ** No-op routine for the parse-tree walker for SELECT statements.
5109 ** subquery in the parser tree.
5110 */
5111 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5112   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5113   return WRC_Continue;
5114 }
5115 
5116 #if SQLITE_DEBUG
5117 /*
5118 ** Always assert.  This xSelectCallback2 implementation proves that the
5119 ** xSelectCallback2 is never invoked.
5120 */
5121 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5122   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5123   assert( 0 );
5124 }
5125 #endif
5126 /*
5127 ** This routine "expands" a SELECT statement and all of its subqueries.
5128 ** For additional information on what it means to "expand" a SELECT
5129 ** statement, see the comment on the selectExpand worker callback above.
5130 **
5131 ** Expanding a SELECT statement is the first step in processing a
5132 ** SELECT statement.  The SELECT statement must be expanded before
5133 ** name resolution is performed.
5134 **
5135 ** If anything goes wrong, an error message is written into pParse.
5136 ** The calling function can detect the problem by looking at pParse->nErr
5137 ** and/or pParse->db->mallocFailed.
5138 */
5139 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5140   Walker w;
5141   w.xExprCallback = sqlite3ExprWalkNoop;
5142   w.pParse = pParse;
5143   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5144     w.xSelectCallback = convertCompoundSelectToSubquery;
5145     w.xSelectCallback2 = 0;
5146     sqlite3WalkSelect(&w, pSelect);
5147   }
5148   w.xSelectCallback = selectExpander;
5149   w.xSelectCallback2 = selectPopWith;
5150   sqlite3WalkSelect(&w, pSelect);
5151 }
5152 
5153 
5154 #ifndef SQLITE_OMIT_SUBQUERY
5155 /*
5156 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5157 ** interface.
5158 **
5159 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5160 ** information to the Table structure that represents the result set
5161 ** of that subquery.
5162 **
5163 ** The Table structure that represents the result set was constructed
5164 ** by selectExpander() but the type and collation information was omitted
5165 ** at that point because identifiers had not yet been resolved.  This
5166 ** routine is called after identifier resolution.
5167 */
5168 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5169   Parse *pParse;
5170   int i;
5171   SrcList *pTabList;
5172   struct SrcList_item *pFrom;
5173 
5174   assert( p->selFlags & SF_Resolved );
5175   if( p->selFlags & SF_HasTypeInfo ) return;
5176   p->selFlags |= SF_HasTypeInfo;
5177   pParse = pWalker->pParse;
5178   pTabList = p->pSrc;
5179   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5180     Table *pTab = pFrom->pTab;
5181     assert( pTab!=0 );
5182     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5183       /* A sub-query in the FROM clause of a SELECT */
5184       Select *pSel = pFrom->pSelect;
5185       if( pSel ){
5186         while( pSel->pPrior ) pSel = pSel->pPrior;
5187         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5188       }
5189     }
5190   }
5191 }
5192 #endif
5193 
5194 
5195 /*
5196 ** This routine adds datatype and collating sequence information to
5197 ** the Table structures of all FROM-clause subqueries in a
5198 ** SELECT statement.
5199 **
5200 ** Use this routine after name resolution.
5201 */
5202 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5203 #ifndef SQLITE_OMIT_SUBQUERY
5204   Walker w;
5205   w.xSelectCallback = sqlite3SelectWalkNoop;
5206   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5207   w.xExprCallback = sqlite3ExprWalkNoop;
5208   w.pParse = pParse;
5209   sqlite3WalkSelect(&w, pSelect);
5210 #endif
5211 }
5212 
5213 
5214 /*
5215 ** This routine sets up a SELECT statement for processing.  The
5216 ** following is accomplished:
5217 **
5218 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5219 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5220 **     *  ON and USING clauses are shifted into WHERE statements
5221 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5222 **     *  Identifiers in expression are matched to tables.
5223 **
5224 ** This routine acts recursively on all subqueries within the SELECT.
5225 */
5226 void sqlite3SelectPrep(
5227   Parse *pParse,         /* The parser context */
5228   Select *p,             /* The SELECT statement being coded. */
5229   NameContext *pOuterNC  /* Name context for container */
5230 ){
5231   assert( p!=0 || pParse->db->mallocFailed );
5232   if( pParse->db->mallocFailed ) return;
5233   if( p->selFlags & SF_HasTypeInfo ) return;
5234   sqlite3SelectExpand(pParse, p);
5235   if( pParse->nErr || pParse->db->mallocFailed ) return;
5236   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5237   if( pParse->nErr || pParse->db->mallocFailed ) return;
5238   sqlite3SelectAddTypeInfo(pParse, p);
5239 }
5240 
5241 /*
5242 ** Reset the aggregate accumulator.
5243 **
5244 ** The aggregate accumulator is a set of memory cells that hold
5245 ** intermediate results while calculating an aggregate.  This
5246 ** routine generates code that stores NULLs in all of those memory
5247 ** cells.
5248 */
5249 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5250   Vdbe *v = pParse->pVdbe;
5251   int i;
5252   struct AggInfo_func *pFunc;
5253   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5254   if( nReg==0 ) return;
5255 #ifdef SQLITE_DEBUG
5256   /* Verify that all AggInfo registers are within the range specified by
5257   ** AggInfo.mnReg..AggInfo.mxReg */
5258   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5259   for(i=0; i<pAggInfo->nColumn; i++){
5260     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5261          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5262   }
5263   for(i=0; i<pAggInfo->nFunc; i++){
5264     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5265          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5266   }
5267 #endif
5268   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5269   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5270     if( pFunc->iDistinct>=0 ){
5271       Expr *pE = pFunc->pExpr;
5272       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5273       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5274         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5275            "argument");
5276         pFunc->iDistinct = -1;
5277       }else{
5278         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5279         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5280                           (char*)pKeyInfo, P4_KEYINFO);
5281       }
5282     }
5283   }
5284 }
5285 
5286 /*
5287 ** Invoke the OP_AggFinalize opcode for every aggregate function
5288 ** in the AggInfo structure.
5289 */
5290 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5291   Vdbe *v = pParse->pVdbe;
5292   int i;
5293   struct AggInfo_func *pF;
5294   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5295     ExprList *pList = pF->pExpr->x.pList;
5296     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5297     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5298     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5299   }
5300 }
5301 
5302 
5303 /*
5304 ** Update the accumulator memory cells for an aggregate based on
5305 ** the current cursor position.
5306 **
5307 ** If regAcc is non-zero and there are no min() or max() aggregates
5308 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5309 ** registers if register regAcc contains 0. The caller will take care
5310 ** of setting and clearing regAcc.
5311 */
5312 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5313   Vdbe *v = pParse->pVdbe;
5314   int i;
5315   int regHit = 0;
5316   int addrHitTest = 0;
5317   struct AggInfo_func *pF;
5318   struct AggInfo_col *pC;
5319 
5320   pAggInfo->directMode = 1;
5321   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5322     int nArg;
5323     int addrNext = 0;
5324     int regAgg;
5325     ExprList *pList = pF->pExpr->x.pList;
5326     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5327     if( pList ){
5328       nArg = pList->nExpr;
5329       regAgg = sqlite3GetTempRange(pParse, nArg);
5330       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5331     }else{
5332       nArg = 0;
5333       regAgg = 0;
5334     }
5335     if( pF->iDistinct>=0 ){
5336       addrNext = sqlite3VdbeMakeLabel(pParse);
5337       testcase( nArg==0 );  /* Error condition */
5338       testcase( nArg>1 );   /* Also an error */
5339       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5340     }
5341     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5342       CollSeq *pColl = 0;
5343       struct ExprList_item *pItem;
5344       int j;
5345       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5346       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5347         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5348       }
5349       if( !pColl ){
5350         pColl = pParse->db->pDfltColl;
5351       }
5352       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5353       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5354     }
5355     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5356     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5357     sqlite3VdbeChangeP5(v, (u8)nArg);
5358     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5359     if( addrNext ){
5360       sqlite3VdbeResolveLabel(v, addrNext);
5361     }
5362   }
5363   if( regHit==0 && pAggInfo->nAccumulator ){
5364     regHit = regAcc;
5365   }
5366   if( regHit ){
5367     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5368   }
5369   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5370     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5371   }
5372   pAggInfo->directMode = 0;
5373   if( addrHitTest ){
5374     sqlite3VdbeJumpHere(v, addrHitTest);
5375   }
5376 }
5377 
5378 /*
5379 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5380 ** count(*) query ("SELECT count(*) FROM pTab").
5381 */
5382 #ifndef SQLITE_OMIT_EXPLAIN
5383 static void explainSimpleCount(
5384   Parse *pParse,                  /* Parse context */
5385   Table *pTab,                    /* Table being queried */
5386   Index *pIdx                     /* Index used to optimize scan, or NULL */
5387 ){
5388   if( pParse->explain==2 ){
5389     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5390     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5391         pTab->zName,
5392         bCover ? " USING COVERING INDEX " : "",
5393         bCover ? pIdx->zName : ""
5394     );
5395   }
5396 }
5397 #else
5398 # define explainSimpleCount(a,b,c)
5399 #endif
5400 
5401 /*
5402 ** sqlite3WalkExpr() callback used by havingToWhere().
5403 **
5404 ** If the node passed to the callback is a TK_AND node, return
5405 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5406 **
5407 ** Otherwise, return WRC_Prune. In this case, also check if the
5408 ** sub-expression matches the criteria for being moved to the WHERE
5409 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5410 ** within the HAVING expression with a constant "1".
5411 */
5412 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5413   if( pExpr->op!=TK_AND ){
5414     Select *pS = pWalker->u.pSelect;
5415     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5416       sqlite3 *db = pWalker->pParse->db;
5417       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5418       if( pNew ){
5419         Expr *pWhere = pS->pWhere;
5420         SWAP(Expr, *pNew, *pExpr);
5421         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5422         pS->pWhere = pNew;
5423         pWalker->eCode = 1;
5424       }
5425     }
5426     return WRC_Prune;
5427   }
5428   return WRC_Continue;
5429 }
5430 
5431 /*
5432 ** Transfer eligible terms from the HAVING clause of a query, which is
5433 ** processed after grouping, to the WHERE clause, which is processed before
5434 ** grouping. For example, the query:
5435 **
5436 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5437 **
5438 ** can be rewritten as:
5439 **
5440 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5441 **
5442 ** A term of the HAVING expression is eligible for transfer if it consists
5443 ** entirely of constants and expressions that are also GROUP BY terms that
5444 ** use the "BINARY" collation sequence.
5445 */
5446 static void havingToWhere(Parse *pParse, Select *p){
5447   Walker sWalker;
5448   memset(&sWalker, 0, sizeof(sWalker));
5449   sWalker.pParse = pParse;
5450   sWalker.xExprCallback = havingToWhereExprCb;
5451   sWalker.u.pSelect = p;
5452   sqlite3WalkExpr(&sWalker, p->pHaving);
5453 #if SELECTTRACE_ENABLED
5454   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5455     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5456     sqlite3TreeViewSelect(0, p, 0);
5457   }
5458 #endif
5459 }
5460 
5461 /*
5462 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5463 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5464 ** then return 0.
5465 */
5466 static struct SrcList_item *isSelfJoinView(
5467   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5468   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5469 ){
5470   struct SrcList_item *pItem;
5471   for(pItem = pTabList->a; pItem<pThis; pItem++){
5472     Select *pS1;
5473     if( pItem->pSelect==0 ) continue;
5474     if( pItem->fg.viaCoroutine ) continue;
5475     if( pItem->zName==0 ) continue;
5476     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5477     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5478     pS1 = pItem->pSelect;
5479     if( pThis->pSelect->selId!=pS1->selId ){
5480       /* The query flattener left two different CTE tables with identical
5481       ** names in the same FROM clause. */
5482       continue;
5483     }
5484     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) ){
5485       /* The view was modified by some other optimization such as
5486       ** pushDownWhereTerms() */
5487       continue;
5488     }
5489     return pItem;
5490   }
5491   return 0;
5492 }
5493 
5494 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5495 /*
5496 ** Attempt to transform a query of the form
5497 **
5498 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5499 **
5500 ** Into this:
5501 **
5502 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5503 **
5504 ** The transformation only works if all of the following are true:
5505 **
5506 **   *  The subquery is a UNION ALL of two or more terms
5507 **   *  The subquery does not have a LIMIT clause
5508 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5509 **   *  The outer query is a simple count(*)
5510 **
5511 ** Return TRUE if the optimization is undertaken.
5512 */
5513 static int countOfViewOptimization(Parse *pParse, Select *p){
5514   Select *pSub, *pPrior;
5515   Expr *pExpr;
5516   Expr *pCount;
5517   sqlite3 *db;
5518   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5519   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5520   pExpr = p->pEList->a[0].pExpr;
5521   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5522   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5523   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5524   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5525   pSub = p->pSrc->a[0].pSelect;
5526   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5527   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5528   do{
5529     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5530     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5531     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5532     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5533     pSub = pSub->pPrior;                              /* Repeat over compound */
5534   }while( pSub );
5535 
5536   /* If we reach this point then it is OK to perform the transformation */
5537 
5538   db = pParse->db;
5539   pCount = pExpr;
5540   pExpr = 0;
5541   pSub = p->pSrc->a[0].pSelect;
5542   p->pSrc->a[0].pSelect = 0;
5543   sqlite3SrcListDelete(db, p->pSrc);
5544   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5545   while( pSub ){
5546     Expr *pTerm;
5547     pPrior = pSub->pPrior;
5548     pSub->pPrior = 0;
5549     pSub->pNext = 0;
5550     pSub->selFlags |= SF_Aggregate;
5551     pSub->selFlags &= ~SF_Compound;
5552     pSub->nSelectRow = 0;
5553     sqlite3ExprListDelete(db, pSub->pEList);
5554     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5555     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5556     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5557     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5558     if( pExpr==0 ){
5559       pExpr = pTerm;
5560     }else{
5561       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5562     }
5563     pSub = pPrior;
5564   }
5565   p->pEList->a[0].pExpr = pExpr;
5566   p->selFlags &= ~SF_Aggregate;
5567 
5568 #if SELECTTRACE_ENABLED
5569   if( sqlite3SelectTrace & 0x400 ){
5570     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5571     sqlite3TreeViewSelect(0, p, 0);
5572   }
5573 #endif
5574   return 1;
5575 }
5576 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5577 
5578 /*
5579 ** Generate code for the SELECT statement given in the p argument.
5580 **
5581 ** The results are returned according to the SelectDest structure.
5582 ** See comments in sqliteInt.h for further information.
5583 **
5584 ** This routine returns the number of errors.  If any errors are
5585 ** encountered, then an appropriate error message is left in
5586 ** pParse->zErrMsg.
5587 **
5588 ** This routine does NOT free the Select structure passed in.  The
5589 ** calling function needs to do that.
5590 */
5591 int sqlite3Select(
5592   Parse *pParse,         /* The parser context */
5593   Select *p,             /* The SELECT statement being coded. */
5594   SelectDest *pDest      /* What to do with the query results */
5595 ){
5596   int i, j;              /* Loop counters */
5597   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5598   Vdbe *v;               /* The virtual machine under construction */
5599   int isAgg;             /* True for select lists like "count(*)" */
5600   ExprList *pEList = 0;  /* List of columns to extract. */
5601   SrcList *pTabList;     /* List of tables to select from */
5602   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5603   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5604   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5605   int rc = 1;            /* Value to return from this function */
5606   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5607   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5608   AggInfo sAggInfo;      /* Information used by aggregate queries */
5609   int iEnd;              /* Address of the end of the query */
5610   sqlite3 *db;           /* The database connection */
5611   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5612   u8 minMaxFlag;                 /* Flag for min/max queries */
5613 
5614   db = pParse->db;
5615   v = sqlite3GetVdbe(pParse);
5616   if( p==0 || db->mallocFailed || pParse->nErr ){
5617     return 1;
5618   }
5619   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5620   memset(&sAggInfo, 0, sizeof(sAggInfo));
5621 #if SELECTTRACE_ENABLED
5622   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5623   if( sqlite3SelectTrace & 0x100 ){
5624     sqlite3TreeViewSelect(0, p, 0);
5625   }
5626 #endif
5627 
5628   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5629   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5630   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5631   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5632   if( IgnorableOrderby(pDest) ){
5633     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5634            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5635            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5636            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5637     /* If ORDER BY makes no difference in the output then neither does
5638     ** DISTINCT so it can be removed too. */
5639     sqlite3ExprListDelete(db, p->pOrderBy);
5640     p->pOrderBy = 0;
5641     p->selFlags &= ~SF_Distinct;
5642   }
5643   sqlite3SelectPrep(pParse, p, 0);
5644   if( pParse->nErr || db->mallocFailed ){
5645     goto select_end;
5646   }
5647   assert( p->pEList!=0 );
5648 #if SELECTTRACE_ENABLED
5649   if( sqlite3SelectTrace & 0x104 ){
5650     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5651     sqlite3TreeViewSelect(0, p, 0);
5652   }
5653 #endif
5654 
5655   if( pDest->eDest==SRT_Output ){
5656     generateColumnNames(pParse, p);
5657   }
5658 
5659 #ifndef SQLITE_OMIT_WINDOWFUNC
5660   if( sqlite3WindowRewrite(pParse, p) ){
5661     goto select_end;
5662   }
5663 #if SELECTTRACE_ENABLED
5664   if( sqlite3SelectTrace & 0x108 ){
5665     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5666     sqlite3TreeViewSelect(0, p, 0);
5667   }
5668 #endif
5669 #endif /* SQLITE_OMIT_WINDOWFUNC */
5670   pTabList = p->pSrc;
5671   isAgg = (p->selFlags & SF_Aggregate)!=0;
5672   memset(&sSort, 0, sizeof(sSort));
5673   sSort.pOrderBy = p->pOrderBy;
5674 
5675   /* Try to various optimizations (flattening subqueries, and strength
5676   ** reduction of join operators) in the FROM clause up into the main query
5677   */
5678 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5679   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5680     struct SrcList_item *pItem = &pTabList->a[i];
5681     Select *pSub = pItem->pSelect;
5682     Table *pTab = pItem->pTab;
5683 
5684     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5685     ** of the LEFT JOIN used in the WHERE clause.
5686     */
5687     if( (pItem->fg.jointype & JT_LEFT)!=0
5688      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5689      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5690     ){
5691       SELECTTRACE(0x100,pParse,p,
5692                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5693       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5694       unsetJoinExpr(p->pWhere, pItem->iCursor);
5695     }
5696 
5697     /* No futher action if this term of the FROM clause is no a subquery */
5698     if( pSub==0 ) continue;
5699 
5700     /* Catch mismatch in the declared columns of a view and the number of
5701     ** columns in the SELECT on the RHS */
5702     if( pTab->nCol!=pSub->pEList->nExpr ){
5703       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5704                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5705       goto select_end;
5706     }
5707 
5708     /* Do not try to flatten an aggregate subquery.
5709     **
5710     ** Flattening an aggregate subquery is only possible if the outer query
5711     ** is not a join.  But if the outer query is not a join, then the subquery
5712     ** will be implemented as a co-routine and there is no advantage to
5713     ** flattening in that case.
5714     */
5715     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5716     assert( pSub->pGroupBy==0 );
5717 
5718     /* If the outer query contains a "complex" result set (that is,
5719     ** if the result set of the outer query uses functions or subqueries)
5720     ** and if the subquery contains an ORDER BY clause and if
5721     ** it will be implemented as a co-routine, then do not flatten.  This
5722     ** restriction allows SQL constructs like this:
5723     **
5724     **  SELECT expensive_function(x)
5725     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5726     **
5727     ** The expensive_function() is only computed on the 10 rows that
5728     ** are output, rather than every row of the table.
5729     **
5730     ** The requirement that the outer query have a complex result set
5731     ** means that flattening does occur on simpler SQL constraints without
5732     ** the expensive_function() like:
5733     **
5734     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5735     */
5736     if( pSub->pOrderBy!=0
5737      && i==0
5738      && (p->selFlags & SF_ComplexResult)!=0
5739      && (pTabList->nSrc==1
5740          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5741     ){
5742       continue;
5743     }
5744 
5745     if( flattenSubquery(pParse, p, i, isAgg) ){
5746       if( pParse->nErr ) goto select_end;
5747       /* This subquery can be absorbed into its parent. */
5748       i = -1;
5749     }
5750     pTabList = p->pSrc;
5751     if( db->mallocFailed ) goto select_end;
5752     if( !IgnorableOrderby(pDest) ){
5753       sSort.pOrderBy = p->pOrderBy;
5754     }
5755   }
5756 #endif
5757 
5758 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5759   /* Handle compound SELECT statements using the separate multiSelect()
5760   ** procedure.
5761   */
5762   if( p->pPrior ){
5763     rc = multiSelect(pParse, p, pDest);
5764 #if SELECTTRACE_ENABLED
5765     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5766     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5767       sqlite3TreeViewSelect(0, p, 0);
5768     }
5769 #endif
5770     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5771     return rc;
5772   }
5773 #endif
5774 
5775   /* Do the WHERE-clause constant propagation optimization if this is
5776   ** a join.  No need to speed time on this operation for non-join queries
5777   ** as the equivalent optimization will be handled by query planner in
5778   ** sqlite3WhereBegin().
5779   */
5780   if( pTabList->nSrc>1
5781    && OptimizationEnabled(db, SQLITE_PropagateConst)
5782    && propagateConstants(pParse, p)
5783   ){
5784 #if SELECTTRACE_ENABLED
5785     if( sqlite3SelectTrace & 0x100 ){
5786       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5787       sqlite3TreeViewSelect(0, p, 0);
5788     }
5789 #endif
5790   }else{
5791     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5792   }
5793 
5794 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5795   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5796    && countOfViewOptimization(pParse, p)
5797   ){
5798     if( db->mallocFailed ) goto select_end;
5799     pEList = p->pEList;
5800     pTabList = p->pSrc;
5801   }
5802 #endif
5803 
5804   /* For each term in the FROM clause, do two things:
5805   ** (1) Authorized unreferenced tables
5806   ** (2) Generate code for all sub-queries
5807   */
5808   for(i=0; i<pTabList->nSrc; i++){
5809     struct SrcList_item *pItem = &pTabList->a[i];
5810     SelectDest dest;
5811     Select *pSub;
5812 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5813     const char *zSavedAuthContext;
5814 #endif
5815 
5816     /* Issue SQLITE_READ authorizations with a fake column name for any
5817     ** tables that are referenced but from which no values are extracted.
5818     ** Examples of where these kinds of null SQLITE_READ authorizations
5819     ** would occur:
5820     **
5821     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5822     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5823     **
5824     ** The fake column name is an empty string.  It is possible for a table to
5825     ** have a column named by the empty string, in which case there is no way to
5826     ** distinguish between an unreferenced table and an actual reference to the
5827     ** "" column. The original design was for the fake column name to be a NULL,
5828     ** which would be unambiguous.  But legacy authorization callbacks might
5829     ** assume the column name is non-NULL and segfault.  The use of an empty
5830     ** string for the fake column name seems safer.
5831     */
5832     if( pItem->colUsed==0 ){
5833       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5834     }
5835 
5836 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5837     /* Generate code for all sub-queries in the FROM clause
5838     */
5839     pSub = pItem->pSelect;
5840     if( pSub==0 ) continue;
5841 
5842     /* The code for a subquery should only be generated once, though it is
5843     ** technically harmless for it to be generated multiple times. The
5844     ** following assert() will detect if something changes to cause
5845     ** the same subquery to be coded multiple times, as a signal to the
5846     ** developers to try to optimize the situation. */
5847     assert( pItem->addrFillSub==0 );
5848 
5849     /* Increment Parse.nHeight by the height of the largest expression
5850     ** tree referred to by this, the parent select. The child select
5851     ** may contain expression trees of at most
5852     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5853     ** more conservative than necessary, but much easier than enforcing
5854     ** an exact limit.
5855     */
5856     pParse->nHeight += sqlite3SelectExprHeight(p);
5857 
5858     /* Make copies of constant WHERE-clause terms in the outer query down
5859     ** inside the subquery.  This can help the subquery to run more efficiently.
5860     */
5861     if( OptimizationEnabled(db, SQLITE_PushDown)
5862      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5863                            (pItem->fg.jointype & JT_OUTER)!=0)
5864     ){
5865 #if SELECTTRACE_ENABLED
5866       if( sqlite3SelectTrace & 0x100 ){
5867         SELECTTRACE(0x100,pParse,p,
5868             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5869         sqlite3TreeViewSelect(0, p, 0);
5870       }
5871 #endif
5872     }else{
5873       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5874     }
5875 
5876     zSavedAuthContext = pParse->zAuthContext;
5877     pParse->zAuthContext = pItem->zName;
5878 
5879     /* Generate code to implement the subquery
5880     **
5881     ** The subquery is implemented as a co-routine if the subquery is
5882     ** guaranteed to be the outer loop (so that it does not need to be
5883     ** computed more than once)
5884     **
5885     ** TODO: Are there other reasons beside (1) to use a co-routine
5886     ** implementation?
5887     */
5888     if( i==0
5889      && (pTabList->nSrc==1
5890             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5891     ){
5892       /* Implement a co-routine that will return a single row of the result
5893       ** set on each invocation.
5894       */
5895       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5896 
5897       pItem->regReturn = ++pParse->nMem;
5898       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5899       VdbeComment((v, "%s", pItem->pTab->zName));
5900       pItem->addrFillSub = addrTop;
5901       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5902       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5903       sqlite3Select(pParse, pSub, &dest);
5904       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5905       pItem->fg.viaCoroutine = 1;
5906       pItem->regResult = dest.iSdst;
5907       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5908       sqlite3VdbeJumpHere(v, addrTop-1);
5909       sqlite3ClearTempRegCache(pParse);
5910     }else{
5911       /* Generate a subroutine that will fill an ephemeral table with
5912       ** the content of this subquery.  pItem->addrFillSub will point
5913       ** to the address of the generated subroutine.  pItem->regReturn
5914       ** is a register allocated to hold the subroutine return address
5915       */
5916       int topAddr;
5917       int onceAddr = 0;
5918       int retAddr;
5919       struct SrcList_item *pPrior;
5920 
5921       assert( pItem->addrFillSub==0 );
5922       pItem->regReturn = ++pParse->nMem;
5923       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5924       pItem->addrFillSub = topAddr+1;
5925       if( pItem->fg.isCorrelated==0 ){
5926         /* If the subquery is not correlated and if we are not inside of
5927         ** a trigger, then we only need to compute the value of the subquery
5928         ** once. */
5929         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5930         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5931       }else{
5932         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5933       }
5934       pPrior = isSelfJoinView(pTabList, pItem);
5935       if( pPrior ){
5936         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5937         assert( pPrior->pSelect!=0 );
5938         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5939       }else{
5940         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5941         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
5942         sqlite3Select(pParse, pSub, &dest);
5943       }
5944       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5945       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5946       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5947       VdbeComment((v, "end %s", pItem->pTab->zName));
5948       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5949       sqlite3ClearTempRegCache(pParse);
5950     }
5951     if( db->mallocFailed ) goto select_end;
5952     pParse->nHeight -= sqlite3SelectExprHeight(p);
5953     pParse->zAuthContext = zSavedAuthContext;
5954 #endif
5955   }
5956 
5957   /* Various elements of the SELECT copied into local variables for
5958   ** convenience */
5959   pEList = p->pEList;
5960   pWhere = p->pWhere;
5961   pGroupBy = p->pGroupBy;
5962   pHaving = p->pHaving;
5963   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5964 
5965 #if SELECTTRACE_ENABLED
5966   if( sqlite3SelectTrace & 0x400 ){
5967     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5968     sqlite3TreeViewSelect(0, p, 0);
5969   }
5970 #endif
5971 
5972   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5973   ** if the select-list is the same as the ORDER BY list, then this query
5974   ** can be rewritten as a GROUP BY. In other words, this:
5975   **
5976   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5977   **
5978   ** is transformed to:
5979   **
5980   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5981   **
5982   ** The second form is preferred as a single index (or temp-table) may be
5983   ** used for both the ORDER BY and DISTINCT processing. As originally
5984   ** written the query must use a temp-table for at least one of the ORDER
5985   ** BY and DISTINCT, and an index or separate temp-table for the other.
5986   */
5987   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5988    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5989   ){
5990     p->selFlags &= ~SF_Distinct;
5991     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5992     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5993     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5994     ** original setting of the SF_Distinct flag, not the current setting */
5995     assert( sDistinct.isTnct );
5996 
5997 #if SELECTTRACE_ENABLED
5998     if( sqlite3SelectTrace & 0x400 ){
5999       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6000       sqlite3TreeViewSelect(0, p, 0);
6001     }
6002 #endif
6003   }
6004 
6005   /* If there is an ORDER BY clause, then create an ephemeral index to
6006   ** do the sorting.  But this sorting ephemeral index might end up
6007   ** being unused if the data can be extracted in pre-sorted order.
6008   ** If that is the case, then the OP_OpenEphemeral instruction will be
6009   ** changed to an OP_Noop once we figure out that the sorting index is
6010   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6011   ** that change.
6012   */
6013   if( sSort.pOrderBy ){
6014     KeyInfo *pKeyInfo;
6015     pKeyInfo = sqlite3KeyInfoFromExprList(
6016         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6017     sSort.iECursor = pParse->nTab++;
6018     sSort.addrSortIndex =
6019       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6020           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6021           (char*)pKeyInfo, P4_KEYINFO
6022       );
6023   }else{
6024     sSort.addrSortIndex = -1;
6025   }
6026 
6027   /* If the output is destined for a temporary table, open that table.
6028   */
6029   if( pDest->eDest==SRT_EphemTab ){
6030     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6031   }
6032 
6033   /* Set the limiter.
6034   */
6035   iEnd = sqlite3VdbeMakeLabel(pParse);
6036   if( (p->selFlags & SF_FixedLimit)==0 ){
6037     p->nSelectRow = 320;  /* 4 billion rows */
6038   }
6039   computeLimitRegisters(pParse, p, iEnd);
6040   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6041     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6042     sSort.sortFlags |= SORTFLAG_UseSorter;
6043   }
6044 
6045   /* Open an ephemeral index to use for the distinct set.
6046   */
6047   if( p->selFlags & SF_Distinct ){
6048     sDistinct.tabTnct = pParse->nTab++;
6049     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6050                        sDistinct.tabTnct, 0, 0,
6051                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6052                        P4_KEYINFO);
6053     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6054     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6055   }else{
6056     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6057   }
6058 
6059   if( !isAgg && pGroupBy==0 ){
6060     /* No aggregate functions and no GROUP BY clause */
6061     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6062                    | (p->selFlags & SF_FixedLimit);
6063 #ifndef SQLITE_OMIT_WINDOWFUNC
6064     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6065     if( pWin ){
6066       sqlite3WindowCodeInit(pParse, pWin);
6067     }
6068 #endif
6069     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6070 
6071 
6072     /* Begin the database scan. */
6073     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6074     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6075                                p->pEList, wctrlFlags, p->nSelectRow);
6076     if( pWInfo==0 ) goto select_end;
6077     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6078       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6079     }
6080     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6081       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6082     }
6083     if( sSort.pOrderBy ){
6084       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6085       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6086       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6087         sSort.pOrderBy = 0;
6088       }
6089     }
6090 
6091     /* If sorting index that was created by a prior OP_OpenEphemeral
6092     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6093     ** into an OP_Noop.
6094     */
6095     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6096       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6097     }
6098 
6099     assert( p->pEList==pEList );
6100 #ifndef SQLITE_OMIT_WINDOWFUNC
6101     if( pWin ){
6102       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6103       int iCont = sqlite3VdbeMakeLabel(pParse);
6104       int iBreak = sqlite3VdbeMakeLabel(pParse);
6105       int regGosub = ++pParse->nMem;
6106 
6107       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6108 
6109       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6110       sqlite3VdbeResolveLabel(v, addrGosub);
6111       VdbeNoopComment((v, "inner-loop subroutine"));
6112       sSort.labelOBLopt = 0;
6113       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6114       sqlite3VdbeResolveLabel(v, iCont);
6115       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6116       VdbeComment((v, "end inner-loop subroutine"));
6117       sqlite3VdbeResolveLabel(v, iBreak);
6118     }else
6119 #endif /* SQLITE_OMIT_WINDOWFUNC */
6120     {
6121       /* Use the standard inner loop. */
6122       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6123           sqlite3WhereContinueLabel(pWInfo),
6124           sqlite3WhereBreakLabel(pWInfo));
6125 
6126       /* End the database scan loop.
6127       */
6128       sqlite3WhereEnd(pWInfo);
6129     }
6130   }else{
6131     /* This case when there exist aggregate functions or a GROUP BY clause
6132     ** or both */
6133     NameContext sNC;    /* Name context for processing aggregate information */
6134     int iAMem;          /* First Mem address for storing current GROUP BY */
6135     int iBMem;          /* First Mem address for previous GROUP BY */
6136     int iUseFlag;       /* Mem address holding flag indicating that at least
6137                         ** one row of the input to the aggregator has been
6138                         ** processed */
6139     int iAbortFlag;     /* Mem address which causes query abort if positive */
6140     int groupBySort;    /* Rows come from source in GROUP BY order */
6141     int addrEnd;        /* End of processing for this SELECT */
6142     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6143     int sortOut = 0;    /* Output register from the sorter */
6144     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6145 
6146     /* Remove any and all aliases between the result set and the
6147     ** GROUP BY clause.
6148     */
6149     if( pGroupBy ){
6150       int k;                        /* Loop counter */
6151       struct ExprList_item *pItem;  /* For looping over expression in a list */
6152 
6153       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6154         pItem->u.x.iAlias = 0;
6155       }
6156       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6157         pItem->u.x.iAlias = 0;
6158       }
6159       assert( 66==sqlite3LogEst(100) );
6160       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6161     }else{
6162       assert( 0==sqlite3LogEst(1) );
6163       p->nSelectRow = 0;
6164     }
6165 
6166     /* If there is both a GROUP BY and an ORDER BY clause and they are
6167     ** identical, then it may be possible to disable the ORDER BY clause
6168     ** on the grounds that the GROUP BY will cause elements to come out
6169     ** in the correct order. It also may not - the GROUP BY might use a
6170     ** database index that causes rows to be grouped together as required
6171     ** but not actually sorted. Either way, record the fact that the
6172     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6173     ** variable.  */
6174     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6175       orderByGrp = 1;
6176     }
6177 
6178     /* Create a label to jump to when we want to abort the query */
6179     addrEnd = sqlite3VdbeMakeLabel(pParse);
6180 
6181     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6182     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6183     ** SELECT statement.
6184     */
6185     memset(&sNC, 0, sizeof(sNC));
6186     sNC.pParse = pParse;
6187     sNC.pSrcList = pTabList;
6188     sNC.uNC.pAggInfo = &sAggInfo;
6189     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6190     sAggInfo.mnReg = pParse->nMem+1;
6191     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6192     sAggInfo.pGroupBy = pGroupBy;
6193     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6194     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6195     if( pHaving ){
6196       if( pGroupBy ){
6197         assert( pWhere==p->pWhere );
6198         assert( pHaving==p->pHaving );
6199         assert( pGroupBy==p->pGroupBy );
6200         havingToWhere(pParse, p);
6201         pWhere = p->pWhere;
6202       }
6203       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6204     }
6205     sAggInfo.nAccumulator = sAggInfo.nColumn;
6206     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6207       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6208     }else{
6209       minMaxFlag = WHERE_ORDERBY_NORMAL;
6210     }
6211     for(i=0; i<sAggInfo.nFunc; i++){
6212       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6213       sNC.ncFlags |= NC_InAggFunc;
6214       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6215       sNC.ncFlags &= ~NC_InAggFunc;
6216     }
6217     sAggInfo.mxReg = pParse->nMem;
6218     if( db->mallocFailed ) goto select_end;
6219 #if SELECTTRACE_ENABLED
6220     if( sqlite3SelectTrace & 0x400 ){
6221       int ii;
6222       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6223       sqlite3TreeViewSelect(0, p, 0);
6224       for(ii=0; ii<sAggInfo.nColumn; ii++){
6225         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6226             ii, sAggInfo.aCol[ii].iMem);
6227         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6228       }
6229       for(ii=0; ii<sAggInfo.nFunc; ii++){
6230         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6231             ii, sAggInfo.aFunc[ii].iMem);
6232         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6233       }
6234     }
6235 #endif
6236 
6237 
6238     /* Processing for aggregates with GROUP BY is very different and
6239     ** much more complex than aggregates without a GROUP BY.
6240     */
6241     if( pGroupBy ){
6242       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6243       int addr1;          /* A-vs-B comparision jump */
6244       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6245       int regOutputRow;   /* Return address register for output subroutine */
6246       int addrSetAbort;   /* Set the abort flag and return */
6247       int addrTopOfLoop;  /* Top of the input loop */
6248       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6249       int addrReset;      /* Subroutine for resetting the accumulator */
6250       int regReset;       /* Return address register for reset subroutine */
6251 
6252       /* If there is a GROUP BY clause we might need a sorting index to
6253       ** implement it.  Allocate that sorting index now.  If it turns out
6254       ** that we do not need it after all, the OP_SorterOpen instruction
6255       ** will be converted into a Noop.
6256       */
6257       sAggInfo.sortingIdx = pParse->nTab++;
6258       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6259       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6260           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6261           0, (char*)pKeyInfo, P4_KEYINFO);
6262 
6263       /* Initialize memory locations used by GROUP BY aggregate processing
6264       */
6265       iUseFlag = ++pParse->nMem;
6266       iAbortFlag = ++pParse->nMem;
6267       regOutputRow = ++pParse->nMem;
6268       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6269       regReset = ++pParse->nMem;
6270       addrReset = sqlite3VdbeMakeLabel(pParse);
6271       iAMem = pParse->nMem + 1;
6272       pParse->nMem += pGroupBy->nExpr;
6273       iBMem = pParse->nMem + 1;
6274       pParse->nMem += pGroupBy->nExpr;
6275       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6276       VdbeComment((v, "clear abort flag"));
6277       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6278 
6279       /* Begin a loop that will extract all source rows in GROUP BY order.
6280       ** This might involve two separate loops with an OP_Sort in between, or
6281       ** it might be a single loop that uses an index to extract information
6282       ** in the right order to begin with.
6283       */
6284       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6285       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6286       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6287           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6288       );
6289       if( pWInfo==0 ) goto select_end;
6290       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6291         /* The optimizer is able to deliver rows in group by order so
6292         ** we do not have to sort.  The OP_OpenEphemeral table will be
6293         ** cancelled later because we still need to use the pKeyInfo
6294         */
6295         groupBySort = 0;
6296       }else{
6297         /* Rows are coming out in undetermined order.  We have to push
6298         ** each row into a sorting index, terminate the first loop,
6299         ** then loop over the sorting index in order to get the output
6300         ** in sorted order
6301         */
6302         int regBase;
6303         int regRecord;
6304         int nCol;
6305         int nGroupBy;
6306 
6307         explainTempTable(pParse,
6308             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6309                     "DISTINCT" : "GROUP BY");
6310 
6311         groupBySort = 1;
6312         nGroupBy = pGroupBy->nExpr;
6313         nCol = nGroupBy;
6314         j = nGroupBy;
6315         for(i=0; i<sAggInfo.nColumn; i++){
6316           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6317             nCol++;
6318             j++;
6319           }
6320         }
6321         regBase = sqlite3GetTempRange(pParse, nCol);
6322         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6323         j = nGroupBy;
6324         for(i=0; i<sAggInfo.nColumn; i++){
6325           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6326           if( pCol->iSorterColumn>=j ){
6327             int r1 = j + regBase;
6328             sqlite3ExprCodeGetColumnOfTable(v,
6329                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6330             j++;
6331           }
6332         }
6333         regRecord = sqlite3GetTempReg(pParse);
6334         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6335         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6336         sqlite3ReleaseTempReg(pParse, regRecord);
6337         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6338         sqlite3WhereEnd(pWInfo);
6339         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6340         sortOut = sqlite3GetTempReg(pParse);
6341         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6342         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6343         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6344         sAggInfo.useSortingIdx = 1;
6345       }
6346 
6347       /* If the index or temporary table used by the GROUP BY sort
6348       ** will naturally deliver rows in the order required by the ORDER BY
6349       ** clause, cancel the ephemeral table open coded earlier.
6350       **
6351       ** This is an optimization - the correct answer should result regardless.
6352       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6353       ** disable this optimization for testing purposes.  */
6354       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6355        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6356       ){
6357         sSort.pOrderBy = 0;
6358         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6359       }
6360 
6361       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6362       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6363       ** Then compare the current GROUP BY terms against the GROUP BY terms
6364       ** from the previous row currently stored in a0, a1, a2...
6365       */
6366       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6367       if( groupBySort ){
6368         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6369                           sortOut, sortPTab);
6370       }
6371       for(j=0; j<pGroupBy->nExpr; j++){
6372         if( groupBySort ){
6373           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6374         }else{
6375           sAggInfo.directMode = 1;
6376           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6377         }
6378       }
6379       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6380                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6381       addr1 = sqlite3VdbeCurrentAddr(v);
6382       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6383 
6384       /* Generate code that runs whenever the GROUP BY changes.
6385       ** Changes in the GROUP BY are detected by the previous code
6386       ** block.  If there were no changes, this block is skipped.
6387       **
6388       ** This code copies current group by terms in b0,b1,b2,...
6389       ** over to a0,a1,a2.  It then calls the output subroutine
6390       ** and resets the aggregate accumulator registers in preparation
6391       ** for the next GROUP BY batch.
6392       */
6393       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6394       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6395       VdbeComment((v, "output one row"));
6396       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6397       VdbeComment((v, "check abort flag"));
6398       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6399       VdbeComment((v, "reset accumulator"));
6400 
6401       /* Update the aggregate accumulators based on the content of
6402       ** the current row
6403       */
6404       sqlite3VdbeJumpHere(v, addr1);
6405       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6406       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6407       VdbeComment((v, "indicate data in accumulator"));
6408 
6409       /* End of the loop
6410       */
6411       if( groupBySort ){
6412         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6413         VdbeCoverage(v);
6414       }else{
6415         sqlite3WhereEnd(pWInfo);
6416         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6417       }
6418 
6419       /* Output the final row of result
6420       */
6421       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6422       VdbeComment((v, "output final row"));
6423 
6424       /* Jump over the subroutines
6425       */
6426       sqlite3VdbeGoto(v, addrEnd);
6427 
6428       /* Generate a subroutine that outputs a single row of the result
6429       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6430       ** is less than or equal to zero, the subroutine is a no-op.  If
6431       ** the processing calls for the query to abort, this subroutine
6432       ** increments the iAbortFlag memory location before returning in
6433       ** order to signal the caller to abort.
6434       */
6435       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6436       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6437       VdbeComment((v, "set abort flag"));
6438       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6439       sqlite3VdbeResolveLabel(v, addrOutputRow);
6440       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6441       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6442       VdbeCoverage(v);
6443       VdbeComment((v, "Groupby result generator entry point"));
6444       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6445       finalizeAggFunctions(pParse, &sAggInfo);
6446       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6447       selectInnerLoop(pParse, p, -1, &sSort,
6448                       &sDistinct, pDest,
6449                       addrOutputRow+1, addrSetAbort);
6450       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6451       VdbeComment((v, "end groupby result generator"));
6452 
6453       /* Generate a subroutine that will reset the group-by accumulator
6454       */
6455       sqlite3VdbeResolveLabel(v, addrReset);
6456       resetAccumulator(pParse, &sAggInfo);
6457       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6458       VdbeComment((v, "indicate accumulator empty"));
6459       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6460 
6461     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6462     else {
6463 #ifndef SQLITE_OMIT_BTREECOUNT
6464       Table *pTab;
6465       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6466         /* If isSimpleCount() returns a pointer to a Table structure, then
6467         ** the SQL statement is of the form:
6468         **
6469         **   SELECT count(*) FROM <tbl>
6470         **
6471         ** where the Table structure returned represents table <tbl>.
6472         **
6473         ** This statement is so common that it is optimized specially. The
6474         ** OP_Count instruction is executed either on the intkey table that
6475         ** contains the data for table <tbl> or on one of its indexes. It
6476         ** is better to execute the op on an index, as indexes are almost
6477         ** always spread across less pages than their corresponding tables.
6478         */
6479         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6480         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6481         Index *pIdx;                         /* Iterator variable */
6482         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6483         Index *pBest = 0;                    /* Best index found so far */
6484         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6485 
6486         sqlite3CodeVerifySchema(pParse, iDb);
6487         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6488 
6489         /* Search for the index that has the lowest scan cost.
6490         **
6491         ** (2011-04-15) Do not do a full scan of an unordered index.
6492         **
6493         ** (2013-10-03) Do not count the entries in a partial index.
6494         **
6495         ** In practice the KeyInfo structure will not be used. It is only
6496         ** passed to keep OP_OpenRead happy.
6497         */
6498         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6499         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6500           if( pIdx->bUnordered==0
6501            && pIdx->szIdxRow<pTab->szTabRow
6502            && pIdx->pPartIdxWhere==0
6503            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6504           ){
6505             pBest = pIdx;
6506           }
6507         }
6508         if( pBest ){
6509           iRoot = pBest->tnum;
6510           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6511         }
6512 
6513         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6514         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6515         if( pKeyInfo ){
6516           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6517         }
6518         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6519         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6520         explainSimpleCount(pParse, pTab, pBest);
6521       }else
6522 #endif /* SQLITE_OMIT_BTREECOUNT */
6523       {
6524         int regAcc = 0;           /* "populate accumulators" flag */
6525 
6526         /* If there are accumulator registers but no min() or max() functions,
6527         ** allocate register regAcc. Register regAcc will contain 0 the first
6528         ** time the inner loop runs, and 1 thereafter. The code generated
6529         ** by updateAccumulator() only updates the accumulator registers if
6530         ** regAcc contains 0.  */
6531         if( sAggInfo.nAccumulator ){
6532           for(i=0; i<sAggInfo.nFunc; i++){
6533             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6534           }
6535           if( i==sAggInfo.nFunc ){
6536             regAcc = ++pParse->nMem;
6537             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6538           }
6539         }
6540 
6541         /* This case runs if the aggregate has no GROUP BY clause.  The
6542         ** processing is much simpler since there is only a single row
6543         ** of output.
6544         */
6545         assert( p->pGroupBy==0 );
6546         resetAccumulator(pParse, &sAggInfo);
6547 
6548         /* If this query is a candidate for the min/max optimization, then
6549         ** minMaxFlag will have been previously set to either
6550         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6551         ** be an appropriate ORDER BY expression for the optimization.
6552         */
6553         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6554         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6555 
6556         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6557         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6558                                    0, minMaxFlag, 0);
6559         if( pWInfo==0 ){
6560           goto select_end;
6561         }
6562         updateAccumulator(pParse, regAcc, &sAggInfo);
6563         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6564         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6565           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6566           VdbeComment((v, "%s() by index",
6567                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6568         }
6569         sqlite3WhereEnd(pWInfo);
6570         finalizeAggFunctions(pParse, &sAggInfo);
6571       }
6572 
6573       sSort.pOrderBy = 0;
6574       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6575       selectInnerLoop(pParse, p, -1, 0, 0,
6576                       pDest, addrEnd, addrEnd);
6577     }
6578     sqlite3VdbeResolveLabel(v, addrEnd);
6579 
6580   } /* endif aggregate query */
6581 
6582   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6583     explainTempTable(pParse, "DISTINCT");
6584   }
6585 
6586   /* If there is an ORDER BY clause, then we need to sort the results
6587   ** and send them to the callback one by one.
6588   */
6589   if( sSort.pOrderBy ){
6590     explainTempTable(pParse,
6591                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6592     assert( p->pEList==pEList );
6593     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6594   }
6595 
6596   /* Jump here to skip this query
6597   */
6598   sqlite3VdbeResolveLabel(v, iEnd);
6599 
6600   /* The SELECT has been coded. If there is an error in the Parse structure,
6601   ** set the return code to 1. Otherwise 0. */
6602   rc = (pParse->nErr>0);
6603 
6604   /* Control jumps to here if an error is encountered above, or upon
6605   ** successful coding of the SELECT.
6606   */
6607 select_end:
6608   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6609   sqlite3DbFree(db, sAggInfo.aCol);
6610   sqlite3DbFree(db, sAggInfo.aFunc);
6611 #if SELECTTRACE_ENABLED
6612   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6613   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6614     sqlite3TreeViewSelect(0, p, 0);
6615   }
6616 #endif
6617   ExplainQueryPlanPop(pParse);
6618   return rc;
6619 }
6620