1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 int labelOBLopt; /* Jump here when sorter is full */ 72 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 #ifndef SQLITE_OMIT_WINDOWFUNC 100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 101 sqlite3WindowListDelete(db, p->pWinDefn); 102 } 103 #endif 104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 105 if( bFree ) sqlite3DbFreeNN(db, p); 106 p = pPrior; 107 bFree = 1; 108 } 109 } 110 111 /* 112 ** Initialize a SelectDest structure. 113 */ 114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 115 pDest->eDest = (u8)eDest; 116 pDest->iSDParm = iParm; 117 pDest->zAffSdst = 0; 118 pDest->iSdst = 0; 119 pDest->nSdst = 0; 120 } 121 122 123 /* 124 ** Allocate a new Select structure and return a pointer to that 125 ** structure. 126 */ 127 Select *sqlite3SelectNew( 128 Parse *pParse, /* Parsing context */ 129 ExprList *pEList, /* which columns to include in the result */ 130 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 131 Expr *pWhere, /* the WHERE clause */ 132 ExprList *pGroupBy, /* the GROUP BY clause */ 133 Expr *pHaving, /* the HAVING clause */ 134 ExprList *pOrderBy, /* the ORDER BY clause */ 135 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 136 Expr *pLimit /* LIMIT value. NULL means not used */ 137 ){ 138 Select *pNew; 139 Select standin; 140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 141 if( pNew==0 ){ 142 assert( pParse->db->mallocFailed ); 143 pNew = &standin; 144 } 145 if( pEList==0 ){ 146 pEList = sqlite3ExprListAppend(pParse, 0, 147 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 148 } 149 pNew->pEList = pEList; 150 pNew->op = TK_SELECT; 151 pNew->selFlags = selFlags; 152 pNew->iLimit = 0; 153 pNew->iOffset = 0; 154 pNew->selId = ++pParse->nSelect; 155 pNew->addrOpenEphm[0] = -1; 156 pNew->addrOpenEphm[1] = -1; 157 pNew->nSelectRow = 0; 158 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 159 pNew->pSrc = pSrc; 160 pNew->pWhere = pWhere; 161 pNew->pGroupBy = pGroupBy; 162 pNew->pHaving = pHaving; 163 pNew->pOrderBy = pOrderBy; 164 pNew->pPrior = 0; 165 pNew->pNext = 0; 166 pNew->pLimit = pLimit; 167 pNew->pWith = 0; 168 #ifndef SQLITE_OMIT_WINDOWFUNC 169 pNew->pWin = 0; 170 pNew->pWinDefn = 0; 171 #endif 172 if( pParse->db->mallocFailed ) { 173 clearSelect(pParse->db, pNew, pNew!=&standin); 174 pNew = 0; 175 }else{ 176 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 177 } 178 assert( pNew!=&standin ); 179 return pNew; 180 } 181 182 183 /* 184 ** Delete the given Select structure and all of its substructures. 185 */ 186 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 187 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 188 } 189 190 /* 191 ** Return a pointer to the right-most SELECT statement in a compound. 192 */ 193 static Select *findRightmost(Select *p){ 194 while( p->pNext ) p = p->pNext; 195 return p; 196 } 197 198 /* 199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 200 ** type of join. Return an integer constant that expresses that type 201 ** in terms of the following bit values: 202 ** 203 ** JT_INNER 204 ** JT_CROSS 205 ** JT_OUTER 206 ** JT_NATURAL 207 ** JT_LEFT 208 ** JT_RIGHT 209 ** 210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 211 ** 212 ** If an illegal or unsupported join type is seen, then still return 213 ** a join type, but put an error in the pParse structure. 214 */ 215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 216 int jointype = 0; 217 Token *apAll[3]; 218 Token *p; 219 /* 0123456789 123456789 123456789 123 */ 220 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 221 static const struct { 222 u8 i; /* Beginning of keyword text in zKeyText[] */ 223 u8 nChar; /* Length of the keyword in characters */ 224 u8 code; /* Join type mask */ 225 } aKeyword[] = { 226 /* natural */ { 0, 7, JT_NATURAL }, 227 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 228 /* outer */ { 10, 5, JT_OUTER }, 229 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 230 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 231 /* inner */ { 23, 5, JT_INNER }, 232 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 233 }; 234 int i, j; 235 apAll[0] = pA; 236 apAll[1] = pB; 237 apAll[2] = pC; 238 for(i=0; i<3 && apAll[i]; i++){ 239 p = apAll[i]; 240 for(j=0; j<ArraySize(aKeyword); j++){ 241 if( p->n==aKeyword[j].nChar 242 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 243 jointype |= aKeyword[j].code; 244 break; 245 } 246 } 247 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 248 if( j>=ArraySize(aKeyword) ){ 249 jointype |= JT_ERROR; 250 break; 251 } 252 } 253 if( 254 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 255 (jointype & JT_ERROR)!=0 256 ){ 257 const char *zSp = " "; 258 assert( pB!=0 ); 259 if( pC==0 ){ zSp++; } 260 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 261 "%T %T%s%T", pA, pB, zSp, pC); 262 jointype = JT_INNER; 263 }else if( (jointype & JT_OUTER)!=0 264 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 265 sqlite3ErrorMsg(pParse, 266 "RIGHT and FULL OUTER JOINs are not currently supported"); 267 jointype = JT_INNER; 268 } 269 return jointype; 270 } 271 272 /* 273 ** Return the index of a column in a table. Return -1 if the column 274 ** is not contained in the table. 275 */ 276 static int columnIndex(Table *pTab, const char *zCol){ 277 int i; 278 for(i=0; i<pTab->nCol; i++){ 279 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 280 } 281 return -1; 282 } 283 284 /* 285 ** Search the first N tables in pSrc, from left to right, looking for a 286 ** table that has a column named zCol. 287 ** 288 ** When found, set *piTab and *piCol to the table index and column index 289 ** of the matching column and return TRUE. 290 ** 291 ** If not found, return FALSE. 292 */ 293 static int tableAndColumnIndex( 294 SrcList *pSrc, /* Array of tables to search */ 295 int N, /* Number of tables in pSrc->a[] to search */ 296 const char *zCol, /* Name of the column we are looking for */ 297 int *piTab, /* Write index of pSrc->a[] here */ 298 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 299 ){ 300 int i; /* For looping over tables in pSrc */ 301 int iCol; /* Index of column matching zCol */ 302 303 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 304 for(i=0; i<N; i++){ 305 iCol = columnIndex(pSrc->a[i].pTab, zCol); 306 if( iCol>=0 ){ 307 if( piTab ){ 308 *piTab = i; 309 *piCol = iCol; 310 } 311 return 1; 312 } 313 } 314 return 0; 315 } 316 317 /* 318 ** This function is used to add terms implied by JOIN syntax to the 319 ** WHERE clause expression of a SELECT statement. The new term, which 320 ** is ANDed with the existing WHERE clause, is of the form: 321 ** 322 ** (tab1.col1 = tab2.col2) 323 ** 324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 326 ** column iColRight of tab2. 327 */ 328 static void addWhereTerm( 329 Parse *pParse, /* Parsing context */ 330 SrcList *pSrc, /* List of tables in FROM clause */ 331 int iLeft, /* Index of first table to join in pSrc */ 332 int iColLeft, /* Index of column in first table */ 333 int iRight, /* Index of second table in pSrc */ 334 int iColRight, /* Index of column in second table */ 335 int isOuterJoin, /* True if this is an OUTER join */ 336 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 337 ){ 338 sqlite3 *db = pParse->db; 339 Expr *pE1; 340 Expr *pE2; 341 Expr *pEq; 342 343 assert( iLeft<iRight ); 344 assert( pSrc->nSrc>iRight ); 345 assert( pSrc->a[iLeft].pTab ); 346 assert( pSrc->a[iRight].pTab ); 347 348 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 349 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 350 351 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 352 if( pEq && isOuterJoin ){ 353 ExprSetProperty(pEq, EP_FromJoin); 354 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 355 ExprSetVVAProperty(pEq, EP_NoReduce); 356 pEq->iRightJoinTable = (i16)pE2->iTable; 357 } 358 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 359 } 360 361 /* 362 ** Set the EP_FromJoin property on all terms of the given expression. 363 ** And set the Expr.iRightJoinTable to iTable for every term in the 364 ** expression. 365 ** 366 ** The EP_FromJoin property is used on terms of an expression to tell 367 ** the LEFT OUTER JOIN processing logic that this term is part of the 368 ** join restriction specified in the ON or USING clause and not a part 369 ** of the more general WHERE clause. These terms are moved over to the 370 ** WHERE clause during join processing but we need to remember that they 371 ** originated in the ON or USING clause. 372 ** 373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 374 ** expression depends on table iRightJoinTable even if that table is not 375 ** explicitly mentioned in the expression. That information is needed 376 ** for cases like this: 377 ** 378 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 379 ** 380 ** The where clause needs to defer the handling of the t1.x=5 381 ** term until after the t2 loop of the join. In that way, a 382 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 383 ** defer the handling of t1.x=5, it will be processed immediately 384 ** after the t1 loop and rows with t1.x!=5 will never appear in 385 ** the output, which is incorrect. 386 */ 387 static void setJoinExpr(Expr *p, int iTable){ 388 while( p ){ 389 ExprSetProperty(p, EP_FromJoin); 390 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 391 ExprSetVVAProperty(p, EP_NoReduce); 392 p->iRightJoinTable = (i16)iTable; 393 if( p->op==TK_FUNCTION && p->x.pList ){ 394 int i; 395 for(i=0; i<p->x.pList->nExpr; i++){ 396 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 397 } 398 } 399 setJoinExpr(p->pLeft, iTable); 400 p = p->pRight; 401 } 402 } 403 404 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 406 ** an ordinary term that omits the EP_FromJoin mark. 407 ** 408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 409 */ 410 static void unsetJoinExpr(Expr *p, int iTable){ 411 while( p ){ 412 if( ExprHasProperty(p, EP_FromJoin) 413 && (iTable<0 || p->iRightJoinTable==iTable) ){ 414 ExprClearProperty(p, EP_FromJoin); 415 } 416 if( p->op==TK_FUNCTION && p->x.pList ){ 417 int i; 418 for(i=0; i<p->x.pList->nExpr; i++){ 419 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 420 } 421 } 422 unsetJoinExpr(p->pLeft, iTable); 423 p = p->pRight; 424 } 425 } 426 427 /* 428 ** This routine processes the join information for a SELECT statement. 429 ** ON and USING clauses are converted into extra terms of the WHERE clause. 430 ** NATURAL joins also create extra WHERE clause terms. 431 ** 432 ** The terms of a FROM clause are contained in the Select.pSrc structure. 433 ** The left most table is the first entry in Select.pSrc. The right-most 434 ** table is the last entry. The join operator is held in the entry to 435 ** the left. Thus entry 0 contains the join operator for the join between 436 ** entries 0 and 1. Any ON or USING clauses associated with the join are 437 ** also attached to the left entry. 438 ** 439 ** This routine returns the number of errors encountered. 440 */ 441 static int sqliteProcessJoin(Parse *pParse, Select *p){ 442 SrcList *pSrc; /* All tables in the FROM clause */ 443 int i, j; /* Loop counters */ 444 struct SrcList_item *pLeft; /* Left table being joined */ 445 struct SrcList_item *pRight; /* Right table being joined */ 446 447 pSrc = p->pSrc; 448 pLeft = &pSrc->a[0]; 449 pRight = &pLeft[1]; 450 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 451 Table *pRightTab = pRight->pTab; 452 int isOuter; 453 454 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 455 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 456 457 /* When the NATURAL keyword is present, add WHERE clause terms for 458 ** every column that the two tables have in common. 459 */ 460 if( pRight->fg.jointype & JT_NATURAL ){ 461 if( pRight->pOn || pRight->pUsing ){ 462 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 463 "an ON or USING clause", 0); 464 return 1; 465 } 466 for(j=0; j<pRightTab->nCol; j++){ 467 char *zName; /* Name of column in the right table */ 468 int iLeft; /* Matching left table */ 469 int iLeftCol; /* Matching column in the left table */ 470 471 zName = pRightTab->aCol[j].zName; 472 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 473 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 474 isOuter, &p->pWhere); 475 } 476 } 477 } 478 479 /* Disallow both ON and USING clauses in the same join 480 */ 481 if( pRight->pOn && pRight->pUsing ){ 482 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 483 "clauses in the same join"); 484 return 1; 485 } 486 487 /* Add the ON clause to the end of the WHERE clause, connected by 488 ** an AND operator. 489 */ 490 if( pRight->pOn ){ 491 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 492 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 493 pRight->pOn = 0; 494 } 495 496 /* Create extra terms on the WHERE clause for each column named 497 ** in the USING clause. Example: If the two tables to be joined are 498 ** A and B and the USING clause names X, Y, and Z, then add this 499 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 500 ** Report an error if any column mentioned in the USING clause is 501 ** not contained in both tables to be joined. 502 */ 503 if( pRight->pUsing ){ 504 IdList *pList = pRight->pUsing; 505 for(j=0; j<pList->nId; j++){ 506 char *zName; /* Name of the term in the USING clause */ 507 int iLeft; /* Table on the left with matching column name */ 508 int iLeftCol; /* Column number of matching column on the left */ 509 int iRightCol; /* Column number of matching column on the right */ 510 511 zName = pList->a[j].zName; 512 iRightCol = columnIndex(pRightTab, zName); 513 if( iRightCol<0 514 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 515 ){ 516 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 517 "not present in both tables", zName); 518 return 1; 519 } 520 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 521 isOuter, &p->pWhere); 522 } 523 } 524 } 525 return 0; 526 } 527 528 /* 529 ** An instance of this object holds information (beyond pParse and pSelect) 530 ** needed to load the next result row that is to be added to the sorter. 531 */ 532 typedef struct RowLoadInfo RowLoadInfo; 533 struct RowLoadInfo { 534 int regResult; /* Store results in array of registers here */ 535 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 537 ExprList *pExtra; /* Extra columns needed by sorter refs */ 538 int regExtraResult; /* Where to load the extra columns */ 539 #endif 540 }; 541 542 /* 543 ** This routine does the work of loading query data into an array of 544 ** registers so that it can be added to the sorter. 545 */ 546 static void innerLoopLoadRow( 547 Parse *pParse, /* Statement under construction */ 548 Select *pSelect, /* The query being coded */ 549 RowLoadInfo *pInfo /* Info needed to complete the row load */ 550 ){ 551 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 552 0, pInfo->ecelFlags); 553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 554 if( pInfo->pExtra ){ 555 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 556 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 557 } 558 #endif 559 } 560 561 /* 562 ** Code the OP_MakeRecord instruction that generates the entry to be 563 ** added into the sorter. 564 ** 565 ** Return the register in which the result is stored. 566 */ 567 static int makeSorterRecord( 568 Parse *pParse, 569 SortCtx *pSort, 570 Select *pSelect, 571 int regBase, 572 int nBase 573 ){ 574 int nOBSat = pSort->nOBSat; 575 Vdbe *v = pParse->pVdbe; 576 int regOut = ++pParse->nMem; 577 if( pSort->pDeferredRowLoad ){ 578 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 579 } 580 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 581 return regOut; 582 } 583 584 /* 585 ** Generate code that will push the record in registers regData 586 ** through regData+nData-1 onto the sorter. 587 */ 588 static void pushOntoSorter( 589 Parse *pParse, /* Parser context */ 590 SortCtx *pSort, /* Information about the ORDER BY clause */ 591 Select *pSelect, /* The whole SELECT statement */ 592 int regData, /* First register holding data to be sorted */ 593 int regOrigData, /* First register holding data before packing */ 594 int nData, /* Number of elements in the regData data array */ 595 int nPrefixReg /* No. of reg prior to regData available for use */ 596 ){ 597 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 598 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 599 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 600 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 601 int regBase; /* Regs for sorter record */ 602 int regRecord = 0; /* Assembled sorter record */ 603 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 604 int op; /* Opcode to add sorter record to sorter */ 605 int iLimit; /* LIMIT counter */ 606 int iSkip = 0; /* End of the sorter insert loop */ 607 608 assert( bSeq==0 || bSeq==1 ); 609 610 /* Three cases: 611 ** (1) The data to be sorted has already been packed into a Record 612 ** by a prior OP_MakeRecord. In this case nData==1 and regData 613 ** will be completely unrelated to regOrigData. 614 ** (2) All output columns are included in the sort record. In that 615 ** case regData==regOrigData. 616 ** (3) Some output columns are omitted from the sort record due to 617 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 618 ** SQLITE_ECEL_OMITREF optimization, or due to the 619 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 620 ** regOrigData is 0 to prevent this routine from trying to copy 621 ** values that might not yet exist. 622 */ 623 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 624 625 if( nPrefixReg ){ 626 assert( nPrefixReg==nExpr+bSeq ); 627 regBase = regData - nPrefixReg; 628 }else{ 629 regBase = pParse->nMem + 1; 630 pParse->nMem += nBase; 631 } 632 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 633 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 634 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 635 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 636 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 637 if( bSeq ){ 638 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 639 } 640 if( nPrefixReg==0 && nData>0 ){ 641 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 642 } 643 if( nOBSat>0 ){ 644 int regPrevKey; /* The first nOBSat columns of the previous row */ 645 int addrFirst; /* Address of the OP_IfNot opcode */ 646 int addrJmp; /* Address of the OP_Jump opcode */ 647 VdbeOp *pOp; /* Opcode that opens the sorter */ 648 int nKey; /* Number of sorting key columns, including OP_Sequence */ 649 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 650 651 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 652 regPrevKey = pParse->nMem+1; 653 pParse->nMem += pSort->nOBSat; 654 nKey = nExpr - pSort->nOBSat + bSeq; 655 if( bSeq ){ 656 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 657 }else{ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 659 } 660 VdbeCoverage(v); 661 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 662 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 663 if( pParse->db->mallocFailed ) return; 664 pOp->p2 = nKey + nData; 665 pKI = pOp->p4.pKeyInfo; 666 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 667 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 668 testcase( pKI->nAllField > pKI->nKeyField+2 ); 669 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 670 pKI->nAllField-pKI->nKeyField-1); 671 addrJmp = sqlite3VdbeCurrentAddr(v); 672 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 673 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 674 pSort->regReturn = ++pParse->nMem; 675 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 676 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 677 if( iLimit ){ 678 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 679 VdbeCoverage(v); 680 } 681 sqlite3VdbeJumpHere(v, addrFirst); 682 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 683 sqlite3VdbeJumpHere(v, addrJmp); 684 } 685 if( iLimit ){ 686 /* At this point the values for the new sorter entry are stored 687 ** in an array of registers. They need to be composed into a record 688 ** and inserted into the sorter if either (a) there are currently 689 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 690 ** the largest record currently in the sorter. If (b) is true and there 691 ** are already LIMIT+OFFSET items in the sorter, delete the largest 692 ** entry before inserting the new one. This way there are never more 693 ** than LIMIT+OFFSET items in the sorter. 694 ** 695 ** If the new record does not need to be inserted into the sorter, 696 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 697 ** value is not zero, then it is a label of where to jump. Otherwise, 698 ** just bypass the row insert logic. See the header comment on the 699 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 700 */ 701 int iCsr = pSort->iECursor; 702 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 703 VdbeCoverage(v); 704 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 705 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 706 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 707 VdbeCoverage(v); 708 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 709 } 710 if( regRecord==0 ){ 711 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 712 } 713 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 714 op = OP_SorterInsert; 715 }else{ 716 op = OP_IdxInsert; 717 } 718 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 719 regBase+nOBSat, nBase-nOBSat); 720 if( iSkip ){ 721 sqlite3VdbeChangeP2(v, iSkip, 722 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 723 } 724 } 725 726 /* 727 ** Add code to implement the OFFSET 728 */ 729 static void codeOffset( 730 Vdbe *v, /* Generate code into this VM */ 731 int iOffset, /* Register holding the offset counter */ 732 int iContinue /* Jump here to skip the current record */ 733 ){ 734 if( iOffset>0 ){ 735 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 736 VdbeComment((v, "OFFSET")); 737 } 738 } 739 740 /* 741 ** Add code that will check to make sure the N registers starting at iMem 742 ** form a distinct entry. iTab is a sorting index that holds previously 743 ** seen combinations of the N values. A new entry is made in iTab 744 ** if the current N values are new. 745 ** 746 ** A jump to addrRepeat is made and the N+1 values are popped from the 747 ** stack if the top N elements are not distinct. 748 */ 749 static void codeDistinct( 750 Parse *pParse, /* Parsing and code generating context */ 751 int iTab, /* A sorting index used to test for distinctness */ 752 int addrRepeat, /* Jump to here if not distinct */ 753 int N, /* Number of elements */ 754 int iMem /* First element */ 755 ){ 756 Vdbe *v; 757 int r1; 758 759 v = pParse->pVdbe; 760 r1 = sqlite3GetTempReg(pParse); 761 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 762 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 763 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 764 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 765 sqlite3ReleaseTempReg(pParse, r1); 766 } 767 768 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 769 /* 770 ** This function is called as part of inner-loop generation for a SELECT 771 ** statement with an ORDER BY that is not optimized by an index. It 772 ** determines the expressions, if any, that the sorter-reference 773 ** optimization should be used for. The sorter-reference optimization 774 ** is used for SELECT queries like: 775 ** 776 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 777 ** 778 ** If the optimization is used for expression "bigblob", then instead of 779 ** storing values read from that column in the sorter records, the PK of 780 ** the row from table t1 is stored instead. Then, as records are extracted from 781 ** the sorter to return to the user, the required value of bigblob is 782 ** retrieved directly from table t1. If the values are very large, this 783 ** can be more efficient than storing them directly in the sorter records. 784 ** 785 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 786 ** for which the sorter-reference optimization should be enabled. 787 ** Additionally, the pSort->aDefer[] array is populated with entries 788 ** for all cursors required to evaluate all selected expressions. Finally. 789 ** output variable (*ppExtra) is set to an expression list containing 790 ** expressions for all extra PK values that should be stored in the 791 ** sorter records. 792 */ 793 static void selectExprDefer( 794 Parse *pParse, /* Leave any error here */ 795 SortCtx *pSort, /* Sorter context */ 796 ExprList *pEList, /* Expressions destined for sorter */ 797 ExprList **ppExtra /* Expressions to append to sorter record */ 798 ){ 799 int i; 800 int nDefer = 0; 801 ExprList *pExtra = 0; 802 for(i=0; i<pEList->nExpr; i++){ 803 struct ExprList_item *pItem = &pEList->a[i]; 804 if( pItem->u.x.iOrderByCol==0 ){ 805 Expr *pExpr = pItem->pExpr; 806 Table *pTab = pExpr->y.pTab; 807 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 808 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 809 ){ 810 int j; 811 for(j=0; j<nDefer; j++){ 812 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 813 } 814 if( j==nDefer ){ 815 if( nDefer==ArraySize(pSort->aDefer) ){ 816 continue; 817 }else{ 818 int nKey = 1; 819 int k; 820 Index *pPk = 0; 821 if( !HasRowid(pTab) ){ 822 pPk = sqlite3PrimaryKeyIndex(pTab); 823 nKey = pPk->nKeyCol; 824 } 825 for(k=0; k<nKey; k++){ 826 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 827 if( pNew ){ 828 pNew->iTable = pExpr->iTable; 829 pNew->y.pTab = pExpr->y.pTab; 830 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 831 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 832 } 833 } 834 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 835 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 836 pSort->aDefer[nDefer].nKey = nKey; 837 nDefer++; 838 } 839 } 840 pItem->bSorterRef = 1; 841 } 842 } 843 } 844 pSort->nDefer = (u8)nDefer; 845 *ppExtra = pExtra; 846 } 847 #endif 848 849 /* 850 ** This routine generates the code for the inside of the inner loop 851 ** of a SELECT. 852 ** 853 ** If srcTab is negative, then the p->pEList expressions 854 ** are evaluated in order to get the data for this row. If srcTab is 855 ** zero or more, then data is pulled from srcTab and p->pEList is used only 856 ** to get the number of columns and the collation sequence for each column. 857 */ 858 static void selectInnerLoop( 859 Parse *pParse, /* The parser context */ 860 Select *p, /* The complete select statement being coded */ 861 int srcTab, /* Pull data from this table if non-negative */ 862 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 863 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 864 SelectDest *pDest, /* How to dispose of the results */ 865 int iContinue, /* Jump here to continue with next row */ 866 int iBreak /* Jump here to break out of the inner loop */ 867 ){ 868 Vdbe *v = pParse->pVdbe; 869 int i; 870 int hasDistinct; /* True if the DISTINCT keyword is present */ 871 int eDest = pDest->eDest; /* How to dispose of results */ 872 int iParm = pDest->iSDParm; /* First argument to disposal method */ 873 int nResultCol; /* Number of result columns */ 874 int nPrefixReg = 0; /* Number of extra registers before regResult */ 875 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 876 877 /* Usually, regResult is the first cell in an array of memory cells 878 ** containing the current result row. In this case regOrig is set to the 879 ** same value. However, if the results are being sent to the sorter, the 880 ** values for any expressions that are also part of the sort-key are omitted 881 ** from this array. In this case regOrig is set to zero. */ 882 int regResult; /* Start of memory holding current results */ 883 int regOrig; /* Start of memory holding full result (or 0) */ 884 885 assert( v ); 886 assert( p->pEList!=0 ); 887 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 888 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 889 if( pSort==0 && !hasDistinct ){ 890 assert( iContinue!=0 ); 891 codeOffset(v, p->iOffset, iContinue); 892 } 893 894 /* Pull the requested columns. 895 */ 896 nResultCol = p->pEList->nExpr; 897 898 if( pDest->iSdst==0 ){ 899 if( pSort ){ 900 nPrefixReg = pSort->pOrderBy->nExpr; 901 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 902 pParse->nMem += nPrefixReg; 903 } 904 pDest->iSdst = pParse->nMem+1; 905 pParse->nMem += nResultCol; 906 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 907 /* This is an error condition that can result, for example, when a SELECT 908 ** on the right-hand side of an INSERT contains more result columns than 909 ** there are columns in the table on the left. The error will be caught 910 ** and reported later. But we need to make sure enough memory is allocated 911 ** to avoid other spurious errors in the meantime. */ 912 pParse->nMem += nResultCol; 913 } 914 pDest->nSdst = nResultCol; 915 regOrig = regResult = pDest->iSdst; 916 if( srcTab>=0 ){ 917 for(i=0; i<nResultCol; i++){ 918 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 919 VdbeComment((v, "%s", p->pEList->a[i].zName)); 920 } 921 }else if( eDest!=SRT_Exists ){ 922 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 923 ExprList *pExtra = 0; 924 #endif 925 /* If the destination is an EXISTS(...) expression, the actual 926 ** values returned by the SELECT are not required. 927 */ 928 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 929 ExprList *pEList; 930 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 931 ecelFlags = SQLITE_ECEL_DUP; 932 }else{ 933 ecelFlags = 0; 934 } 935 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 936 /* For each expression in p->pEList that is a copy of an expression in 937 ** the ORDER BY clause (pSort->pOrderBy), set the associated 938 ** iOrderByCol value to one more than the index of the ORDER BY 939 ** expression within the sort-key that pushOntoSorter() will generate. 940 ** This allows the p->pEList field to be omitted from the sorted record, 941 ** saving space and CPU cycles. */ 942 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 943 944 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 945 int j; 946 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 947 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 948 } 949 } 950 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 951 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 952 if( pExtra && pParse->db->mallocFailed==0 ){ 953 /* If there are any extra PK columns to add to the sorter records, 954 ** allocate extra memory cells and adjust the OpenEphemeral 955 ** instruction to account for the larger records. This is only 956 ** required if there are one or more WITHOUT ROWID tables with 957 ** composite primary keys in the SortCtx.aDefer[] array. */ 958 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 959 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 960 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 961 pParse->nMem += pExtra->nExpr; 962 } 963 #endif 964 965 /* Adjust nResultCol to account for columns that are omitted 966 ** from the sorter by the optimizations in this branch */ 967 pEList = p->pEList; 968 for(i=0; i<pEList->nExpr; i++){ 969 if( pEList->a[i].u.x.iOrderByCol>0 970 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 971 || pEList->a[i].bSorterRef 972 #endif 973 ){ 974 nResultCol--; 975 regOrig = 0; 976 } 977 } 978 979 testcase( regOrig ); 980 testcase( eDest==SRT_Set ); 981 testcase( eDest==SRT_Mem ); 982 testcase( eDest==SRT_Coroutine ); 983 testcase( eDest==SRT_Output ); 984 assert( eDest==SRT_Set || eDest==SRT_Mem 985 || eDest==SRT_Coroutine || eDest==SRT_Output ); 986 } 987 sRowLoadInfo.regResult = regResult; 988 sRowLoadInfo.ecelFlags = ecelFlags; 989 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 990 sRowLoadInfo.pExtra = pExtra; 991 sRowLoadInfo.regExtraResult = regResult + nResultCol; 992 if( pExtra ) nResultCol += pExtra->nExpr; 993 #endif 994 if( p->iLimit 995 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 996 && nPrefixReg>0 997 ){ 998 assert( pSort!=0 ); 999 assert( hasDistinct==0 ); 1000 pSort->pDeferredRowLoad = &sRowLoadInfo; 1001 regOrig = 0; 1002 }else{ 1003 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1004 } 1005 } 1006 1007 /* If the DISTINCT keyword was present on the SELECT statement 1008 ** and this row has been seen before, then do not make this row 1009 ** part of the result. 1010 */ 1011 if( hasDistinct ){ 1012 switch( pDistinct->eTnctType ){ 1013 case WHERE_DISTINCT_ORDERED: { 1014 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1015 int iJump; /* Jump destination */ 1016 int regPrev; /* Previous row content */ 1017 1018 /* Allocate space for the previous row */ 1019 regPrev = pParse->nMem+1; 1020 pParse->nMem += nResultCol; 1021 1022 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1023 ** sets the MEM_Cleared bit on the first register of the 1024 ** previous value. This will cause the OP_Ne below to always 1025 ** fail on the first iteration of the loop even if the first 1026 ** row is all NULLs. 1027 */ 1028 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1029 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1030 pOp->opcode = OP_Null; 1031 pOp->p1 = 1; 1032 pOp->p2 = regPrev; 1033 1034 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1035 for(i=0; i<nResultCol; i++){ 1036 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1037 if( i<nResultCol-1 ){ 1038 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1039 VdbeCoverage(v); 1040 }else{ 1041 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1042 VdbeCoverage(v); 1043 } 1044 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1045 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1046 } 1047 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1048 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1049 break; 1050 } 1051 1052 case WHERE_DISTINCT_UNIQUE: { 1053 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1054 break; 1055 } 1056 1057 default: { 1058 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1059 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1060 regResult); 1061 break; 1062 } 1063 } 1064 if( pSort==0 ){ 1065 codeOffset(v, p->iOffset, iContinue); 1066 } 1067 } 1068 1069 switch( eDest ){ 1070 /* In this mode, write each query result to the key of the temporary 1071 ** table iParm. 1072 */ 1073 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1074 case SRT_Union: { 1075 int r1; 1076 r1 = sqlite3GetTempReg(pParse); 1077 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1078 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1079 sqlite3ReleaseTempReg(pParse, r1); 1080 break; 1081 } 1082 1083 /* Construct a record from the query result, but instead of 1084 ** saving that record, use it as a key to delete elements from 1085 ** the temporary table iParm. 1086 */ 1087 case SRT_Except: { 1088 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1089 break; 1090 } 1091 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1092 1093 /* Store the result as data using a unique key. 1094 */ 1095 case SRT_Fifo: 1096 case SRT_DistFifo: 1097 case SRT_Table: 1098 case SRT_EphemTab: { 1099 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1100 testcase( eDest==SRT_Table ); 1101 testcase( eDest==SRT_EphemTab ); 1102 testcase( eDest==SRT_Fifo ); 1103 testcase( eDest==SRT_DistFifo ); 1104 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1105 #ifndef SQLITE_OMIT_CTE 1106 if( eDest==SRT_DistFifo ){ 1107 /* If the destination is DistFifo, then cursor (iParm+1) is open 1108 ** on an ephemeral index. If the current row is already present 1109 ** in the index, do not write it to the output. If not, add the 1110 ** current row to the index and proceed with writing it to the 1111 ** output table as well. */ 1112 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1113 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1114 VdbeCoverage(v); 1115 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1116 assert( pSort==0 ); 1117 } 1118 #endif 1119 if( pSort ){ 1120 assert( regResult==regOrig ); 1121 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1122 }else{ 1123 int r2 = sqlite3GetTempReg(pParse); 1124 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1125 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1126 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1127 sqlite3ReleaseTempReg(pParse, r2); 1128 } 1129 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1130 break; 1131 } 1132 1133 #ifndef SQLITE_OMIT_SUBQUERY 1134 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1135 ** then there should be a single item on the stack. Write this 1136 ** item into the set table with bogus data. 1137 */ 1138 case SRT_Set: { 1139 if( pSort ){ 1140 /* At first glance you would think we could optimize out the 1141 ** ORDER BY in this case since the order of entries in the set 1142 ** does not matter. But there might be a LIMIT clause, in which 1143 ** case the order does matter */ 1144 pushOntoSorter( 1145 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1146 }else{ 1147 int r1 = sqlite3GetTempReg(pParse); 1148 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1149 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1150 r1, pDest->zAffSdst, nResultCol); 1151 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1152 sqlite3ReleaseTempReg(pParse, r1); 1153 } 1154 break; 1155 } 1156 1157 /* If any row exist in the result set, record that fact and abort. 1158 */ 1159 case SRT_Exists: { 1160 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1161 /* The LIMIT clause will terminate the loop for us */ 1162 break; 1163 } 1164 1165 /* If this is a scalar select that is part of an expression, then 1166 ** store the results in the appropriate memory cell or array of 1167 ** memory cells and break out of the scan loop. 1168 */ 1169 case SRT_Mem: { 1170 if( pSort ){ 1171 assert( nResultCol<=pDest->nSdst ); 1172 pushOntoSorter( 1173 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1174 }else{ 1175 assert( nResultCol==pDest->nSdst ); 1176 assert( regResult==iParm ); 1177 /* The LIMIT clause will jump out of the loop for us */ 1178 } 1179 break; 1180 } 1181 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1182 1183 case SRT_Coroutine: /* Send data to a co-routine */ 1184 case SRT_Output: { /* Return the results */ 1185 testcase( eDest==SRT_Coroutine ); 1186 testcase( eDest==SRT_Output ); 1187 if( pSort ){ 1188 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1189 nPrefixReg); 1190 }else if( eDest==SRT_Coroutine ){ 1191 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1192 }else{ 1193 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1194 } 1195 break; 1196 } 1197 1198 #ifndef SQLITE_OMIT_CTE 1199 /* Write the results into a priority queue that is order according to 1200 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1201 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1202 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1203 ** final OP_Sequence column. The last column is the record as a blob. 1204 */ 1205 case SRT_DistQueue: 1206 case SRT_Queue: { 1207 int nKey; 1208 int r1, r2, r3; 1209 int addrTest = 0; 1210 ExprList *pSO; 1211 pSO = pDest->pOrderBy; 1212 assert( pSO ); 1213 nKey = pSO->nExpr; 1214 r1 = sqlite3GetTempReg(pParse); 1215 r2 = sqlite3GetTempRange(pParse, nKey+2); 1216 r3 = r2+nKey+1; 1217 if( eDest==SRT_DistQueue ){ 1218 /* If the destination is DistQueue, then cursor (iParm+1) is open 1219 ** on a second ephemeral index that holds all values every previously 1220 ** added to the queue. */ 1221 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1222 regResult, nResultCol); 1223 VdbeCoverage(v); 1224 } 1225 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1226 if( eDest==SRT_DistQueue ){ 1227 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1228 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1229 } 1230 for(i=0; i<nKey; i++){ 1231 sqlite3VdbeAddOp2(v, OP_SCopy, 1232 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1233 r2+i); 1234 } 1235 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1236 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1237 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1238 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1239 sqlite3ReleaseTempReg(pParse, r1); 1240 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1241 break; 1242 } 1243 #endif /* SQLITE_OMIT_CTE */ 1244 1245 1246 1247 #if !defined(SQLITE_OMIT_TRIGGER) 1248 /* Discard the results. This is used for SELECT statements inside 1249 ** the body of a TRIGGER. The purpose of such selects is to call 1250 ** user-defined functions that have side effects. We do not care 1251 ** about the actual results of the select. 1252 */ 1253 default: { 1254 assert( eDest==SRT_Discard ); 1255 break; 1256 } 1257 #endif 1258 } 1259 1260 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1261 ** there is a sorter, in which case the sorter has already limited 1262 ** the output for us. 1263 */ 1264 if( pSort==0 && p->iLimit ){ 1265 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1266 } 1267 } 1268 1269 /* 1270 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1271 ** X extra columns. 1272 */ 1273 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1274 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1275 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1276 if( p ){ 1277 p->aSortOrder = (u8*)&p->aColl[N+X]; 1278 p->nKeyField = (u16)N; 1279 p->nAllField = (u16)(N+X); 1280 p->enc = ENC(db); 1281 p->db = db; 1282 p->nRef = 1; 1283 memset(&p[1], 0, nExtra); 1284 }else{ 1285 sqlite3OomFault(db); 1286 } 1287 return p; 1288 } 1289 1290 /* 1291 ** Deallocate a KeyInfo object 1292 */ 1293 void sqlite3KeyInfoUnref(KeyInfo *p){ 1294 if( p ){ 1295 assert( p->nRef>0 ); 1296 p->nRef--; 1297 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1298 } 1299 } 1300 1301 /* 1302 ** Make a new pointer to a KeyInfo object 1303 */ 1304 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1305 if( p ){ 1306 assert( p->nRef>0 ); 1307 p->nRef++; 1308 } 1309 return p; 1310 } 1311 1312 #ifdef SQLITE_DEBUG 1313 /* 1314 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1315 ** can only be changed if this is just a single reference to the object. 1316 ** 1317 ** This routine is used only inside of assert() statements. 1318 */ 1319 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1320 #endif /* SQLITE_DEBUG */ 1321 1322 /* 1323 ** Given an expression list, generate a KeyInfo structure that records 1324 ** the collating sequence for each expression in that expression list. 1325 ** 1326 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1327 ** KeyInfo structure is appropriate for initializing a virtual index to 1328 ** implement that clause. If the ExprList is the result set of a SELECT 1329 ** then the KeyInfo structure is appropriate for initializing a virtual 1330 ** index to implement a DISTINCT test. 1331 ** 1332 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1333 ** function is responsible for seeing that this structure is eventually 1334 ** freed. 1335 */ 1336 KeyInfo *sqlite3KeyInfoFromExprList( 1337 Parse *pParse, /* Parsing context */ 1338 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1339 int iStart, /* Begin with this column of pList */ 1340 int nExtra /* Add this many extra columns to the end */ 1341 ){ 1342 int nExpr; 1343 KeyInfo *pInfo; 1344 struct ExprList_item *pItem; 1345 sqlite3 *db = pParse->db; 1346 int i; 1347 1348 nExpr = pList->nExpr; 1349 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1350 if( pInfo ){ 1351 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1352 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1353 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1354 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1355 } 1356 } 1357 return pInfo; 1358 } 1359 1360 /* 1361 ** Name of the connection operator, used for error messages. 1362 */ 1363 static const char *selectOpName(int id){ 1364 char *z; 1365 switch( id ){ 1366 case TK_ALL: z = "UNION ALL"; break; 1367 case TK_INTERSECT: z = "INTERSECT"; break; 1368 case TK_EXCEPT: z = "EXCEPT"; break; 1369 default: z = "UNION"; break; 1370 } 1371 return z; 1372 } 1373 1374 #ifndef SQLITE_OMIT_EXPLAIN 1375 /* 1376 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1377 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1378 ** where the caption is of the form: 1379 ** 1380 ** "USE TEMP B-TREE FOR xxx" 1381 ** 1382 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1383 ** is determined by the zUsage argument. 1384 */ 1385 static void explainTempTable(Parse *pParse, const char *zUsage){ 1386 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1387 } 1388 1389 /* 1390 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1391 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1392 ** in sqlite3Select() to assign values to structure member variables that 1393 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1394 ** code with #ifndef directives. 1395 */ 1396 # define explainSetInteger(a, b) a = b 1397 1398 #else 1399 /* No-op versions of the explainXXX() functions and macros. */ 1400 # define explainTempTable(y,z) 1401 # define explainSetInteger(y,z) 1402 #endif 1403 1404 1405 /* 1406 ** If the inner loop was generated using a non-null pOrderBy argument, 1407 ** then the results were placed in a sorter. After the loop is terminated 1408 ** we need to run the sorter and output the results. The following 1409 ** routine generates the code needed to do that. 1410 */ 1411 static void generateSortTail( 1412 Parse *pParse, /* Parsing context */ 1413 Select *p, /* The SELECT statement */ 1414 SortCtx *pSort, /* Information on the ORDER BY clause */ 1415 int nColumn, /* Number of columns of data */ 1416 SelectDest *pDest /* Write the sorted results here */ 1417 ){ 1418 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1419 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1420 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1421 int addr; /* Top of output loop. Jump for Next. */ 1422 int addrOnce = 0; 1423 int iTab; 1424 ExprList *pOrderBy = pSort->pOrderBy; 1425 int eDest = pDest->eDest; 1426 int iParm = pDest->iSDParm; 1427 int regRow; 1428 int regRowid; 1429 int iCol; 1430 int nKey; /* Number of key columns in sorter record */ 1431 int iSortTab; /* Sorter cursor to read from */ 1432 int i; 1433 int bSeq; /* True if sorter record includes seq. no. */ 1434 int nRefKey = 0; 1435 struct ExprList_item *aOutEx = p->pEList->a; 1436 1437 assert( addrBreak<0 ); 1438 if( pSort->labelBkOut ){ 1439 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1440 sqlite3VdbeGoto(v, addrBreak); 1441 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1442 } 1443 1444 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1445 /* Open any cursors needed for sorter-reference expressions */ 1446 for(i=0; i<pSort->nDefer; i++){ 1447 Table *pTab = pSort->aDefer[i].pTab; 1448 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1449 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1450 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1451 } 1452 #endif 1453 1454 iTab = pSort->iECursor; 1455 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1456 regRowid = 0; 1457 regRow = pDest->iSdst; 1458 }else{ 1459 regRowid = sqlite3GetTempReg(pParse); 1460 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1461 regRow = sqlite3GetTempReg(pParse); 1462 nColumn = 0; 1463 }else{ 1464 regRow = sqlite3GetTempRange(pParse, nColumn); 1465 } 1466 } 1467 nKey = pOrderBy->nExpr - pSort->nOBSat; 1468 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1469 int regSortOut = ++pParse->nMem; 1470 iSortTab = pParse->nTab++; 1471 if( pSort->labelBkOut ){ 1472 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1473 } 1474 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1475 nKey+1+nColumn+nRefKey); 1476 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1477 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1478 VdbeCoverage(v); 1479 codeOffset(v, p->iOffset, addrContinue); 1480 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1481 bSeq = 0; 1482 }else{ 1483 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1484 codeOffset(v, p->iOffset, addrContinue); 1485 iSortTab = iTab; 1486 bSeq = 1; 1487 } 1488 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1489 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1490 if( aOutEx[i].bSorterRef ) continue; 1491 #endif 1492 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1493 } 1494 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1495 if( pSort->nDefer ){ 1496 int iKey = iCol+1; 1497 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1498 1499 for(i=0; i<pSort->nDefer; i++){ 1500 int iCsr = pSort->aDefer[i].iCsr; 1501 Table *pTab = pSort->aDefer[i].pTab; 1502 int nKey = pSort->aDefer[i].nKey; 1503 1504 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1505 if( HasRowid(pTab) ){ 1506 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1507 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1508 sqlite3VdbeCurrentAddr(v)+1, regKey); 1509 }else{ 1510 int k; 1511 int iJmp; 1512 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1513 for(k=0; k<nKey; k++){ 1514 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1515 } 1516 iJmp = sqlite3VdbeCurrentAddr(v); 1517 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1518 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1519 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1520 } 1521 } 1522 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1523 } 1524 #endif 1525 for(i=nColumn-1; i>=0; i--){ 1526 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1527 if( aOutEx[i].bSorterRef ){ 1528 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1529 }else 1530 #endif 1531 { 1532 int iRead; 1533 if( aOutEx[i].u.x.iOrderByCol ){ 1534 iRead = aOutEx[i].u.x.iOrderByCol-1; 1535 }else{ 1536 iRead = iCol--; 1537 } 1538 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1539 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1540 } 1541 } 1542 switch( eDest ){ 1543 case SRT_Table: 1544 case SRT_EphemTab: { 1545 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1546 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1547 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1548 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1549 break; 1550 } 1551 #ifndef SQLITE_OMIT_SUBQUERY 1552 case SRT_Set: { 1553 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1554 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1555 pDest->zAffSdst, nColumn); 1556 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1557 break; 1558 } 1559 case SRT_Mem: { 1560 /* The LIMIT clause will terminate the loop for us */ 1561 break; 1562 } 1563 #endif 1564 default: { 1565 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1566 testcase( eDest==SRT_Output ); 1567 testcase( eDest==SRT_Coroutine ); 1568 if( eDest==SRT_Output ){ 1569 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1570 }else{ 1571 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1572 } 1573 break; 1574 } 1575 } 1576 if( regRowid ){ 1577 if( eDest==SRT_Set ){ 1578 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1579 }else{ 1580 sqlite3ReleaseTempReg(pParse, regRow); 1581 } 1582 sqlite3ReleaseTempReg(pParse, regRowid); 1583 } 1584 /* The bottom of the loop 1585 */ 1586 sqlite3VdbeResolveLabel(v, addrContinue); 1587 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1588 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1589 }else{ 1590 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1591 } 1592 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1593 sqlite3VdbeResolveLabel(v, addrBreak); 1594 } 1595 1596 /* 1597 ** Return a pointer to a string containing the 'declaration type' of the 1598 ** expression pExpr. The string may be treated as static by the caller. 1599 ** 1600 ** Also try to estimate the size of the returned value and return that 1601 ** result in *pEstWidth. 1602 ** 1603 ** The declaration type is the exact datatype definition extracted from the 1604 ** original CREATE TABLE statement if the expression is a column. The 1605 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1606 ** is considered a column can be complex in the presence of subqueries. The 1607 ** result-set expression in all of the following SELECT statements is 1608 ** considered a column by this function. 1609 ** 1610 ** SELECT col FROM tbl; 1611 ** SELECT (SELECT col FROM tbl; 1612 ** SELECT (SELECT col FROM tbl); 1613 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1614 ** 1615 ** The declaration type for any expression other than a column is NULL. 1616 ** 1617 ** This routine has either 3 or 6 parameters depending on whether or not 1618 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1619 */ 1620 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1621 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1622 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1623 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1624 #endif 1625 static const char *columnTypeImpl( 1626 NameContext *pNC, 1627 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1628 Expr *pExpr 1629 #else 1630 Expr *pExpr, 1631 const char **pzOrigDb, 1632 const char **pzOrigTab, 1633 const char **pzOrigCol 1634 #endif 1635 ){ 1636 char const *zType = 0; 1637 int j; 1638 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1639 char const *zOrigDb = 0; 1640 char const *zOrigTab = 0; 1641 char const *zOrigCol = 0; 1642 #endif 1643 1644 assert( pExpr!=0 ); 1645 assert( pNC->pSrcList!=0 ); 1646 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1647 ** are processed */ 1648 switch( pExpr->op ){ 1649 case TK_COLUMN: { 1650 /* The expression is a column. Locate the table the column is being 1651 ** extracted from in NameContext.pSrcList. This table may be real 1652 ** database table or a subquery. 1653 */ 1654 Table *pTab = 0; /* Table structure column is extracted from */ 1655 Select *pS = 0; /* Select the column is extracted from */ 1656 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1657 while( pNC && !pTab ){ 1658 SrcList *pTabList = pNC->pSrcList; 1659 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1660 if( j<pTabList->nSrc ){ 1661 pTab = pTabList->a[j].pTab; 1662 pS = pTabList->a[j].pSelect; 1663 }else{ 1664 pNC = pNC->pNext; 1665 } 1666 } 1667 1668 if( pTab==0 ){ 1669 /* At one time, code such as "SELECT new.x" within a trigger would 1670 ** cause this condition to run. Since then, we have restructured how 1671 ** trigger code is generated and so this condition is no longer 1672 ** possible. However, it can still be true for statements like 1673 ** the following: 1674 ** 1675 ** CREATE TABLE t1(col INTEGER); 1676 ** SELECT (SELECT t1.col) FROM FROM t1; 1677 ** 1678 ** when columnType() is called on the expression "t1.col" in the 1679 ** sub-select. In this case, set the column type to NULL, even 1680 ** though it should really be "INTEGER". 1681 ** 1682 ** This is not a problem, as the column type of "t1.col" is never 1683 ** used. When columnType() is called on the expression 1684 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1685 ** branch below. */ 1686 break; 1687 } 1688 1689 assert( pTab && pExpr->y.pTab==pTab ); 1690 if( pS ){ 1691 /* The "table" is actually a sub-select or a view in the FROM clause 1692 ** of the SELECT statement. Return the declaration type and origin 1693 ** data for the result-set column of the sub-select. 1694 */ 1695 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1696 /* If iCol is less than zero, then the expression requests the 1697 ** rowid of the sub-select or view. This expression is legal (see 1698 ** test case misc2.2.2) - it always evaluates to NULL. 1699 */ 1700 NameContext sNC; 1701 Expr *p = pS->pEList->a[iCol].pExpr; 1702 sNC.pSrcList = pS->pSrc; 1703 sNC.pNext = pNC; 1704 sNC.pParse = pNC->pParse; 1705 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1706 } 1707 }else{ 1708 /* A real table or a CTE table */ 1709 assert( !pS ); 1710 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1711 if( iCol<0 ) iCol = pTab->iPKey; 1712 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1713 if( iCol<0 ){ 1714 zType = "INTEGER"; 1715 zOrigCol = "rowid"; 1716 }else{ 1717 zOrigCol = pTab->aCol[iCol].zName; 1718 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1719 } 1720 zOrigTab = pTab->zName; 1721 if( pNC->pParse && pTab->pSchema ){ 1722 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1723 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1724 } 1725 #else 1726 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1727 if( iCol<0 ){ 1728 zType = "INTEGER"; 1729 }else{ 1730 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1731 } 1732 #endif 1733 } 1734 break; 1735 } 1736 #ifndef SQLITE_OMIT_SUBQUERY 1737 case TK_SELECT: { 1738 /* The expression is a sub-select. Return the declaration type and 1739 ** origin info for the single column in the result set of the SELECT 1740 ** statement. 1741 */ 1742 NameContext sNC; 1743 Select *pS = pExpr->x.pSelect; 1744 Expr *p = pS->pEList->a[0].pExpr; 1745 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1746 sNC.pSrcList = pS->pSrc; 1747 sNC.pNext = pNC; 1748 sNC.pParse = pNC->pParse; 1749 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1750 break; 1751 } 1752 #endif 1753 } 1754 1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1756 if( pzOrigDb ){ 1757 assert( pzOrigTab && pzOrigCol ); 1758 *pzOrigDb = zOrigDb; 1759 *pzOrigTab = zOrigTab; 1760 *pzOrigCol = zOrigCol; 1761 } 1762 #endif 1763 return zType; 1764 } 1765 1766 /* 1767 ** Generate code that will tell the VDBE the declaration types of columns 1768 ** in the result set. 1769 */ 1770 static void generateColumnTypes( 1771 Parse *pParse, /* Parser context */ 1772 SrcList *pTabList, /* List of tables */ 1773 ExprList *pEList /* Expressions defining the result set */ 1774 ){ 1775 #ifndef SQLITE_OMIT_DECLTYPE 1776 Vdbe *v = pParse->pVdbe; 1777 int i; 1778 NameContext sNC; 1779 sNC.pSrcList = pTabList; 1780 sNC.pParse = pParse; 1781 sNC.pNext = 0; 1782 for(i=0; i<pEList->nExpr; i++){ 1783 Expr *p = pEList->a[i].pExpr; 1784 const char *zType; 1785 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1786 const char *zOrigDb = 0; 1787 const char *zOrigTab = 0; 1788 const char *zOrigCol = 0; 1789 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1790 1791 /* The vdbe must make its own copy of the column-type and other 1792 ** column specific strings, in case the schema is reset before this 1793 ** virtual machine is deleted. 1794 */ 1795 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1796 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1797 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1798 #else 1799 zType = columnType(&sNC, p, 0, 0, 0); 1800 #endif 1801 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1802 } 1803 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1804 } 1805 1806 1807 /* 1808 ** Compute the column names for a SELECT statement. 1809 ** 1810 ** The only guarantee that SQLite makes about column names is that if the 1811 ** column has an AS clause assigning it a name, that will be the name used. 1812 ** That is the only documented guarantee. However, countless applications 1813 ** developed over the years have made baseless assumptions about column names 1814 ** and will break if those assumptions changes. Hence, use extreme caution 1815 ** when modifying this routine to avoid breaking legacy. 1816 ** 1817 ** See Also: sqlite3ColumnsFromExprList() 1818 ** 1819 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1820 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1821 ** applications should operate this way. Nevertheless, we need to support the 1822 ** other modes for legacy: 1823 ** 1824 ** short=OFF, full=OFF: Column name is the text of the expression has it 1825 ** originally appears in the SELECT statement. In 1826 ** other words, the zSpan of the result expression. 1827 ** 1828 ** short=ON, full=OFF: (This is the default setting). If the result 1829 ** refers directly to a table column, then the 1830 ** result column name is just the table column 1831 ** name: COLUMN. Otherwise use zSpan. 1832 ** 1833 ** full=ON, short=ANY: If the result refers directly to a table column, 1834 ** then the result column name with the table name 1835 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1836 */ 1837 static void generateColumnNames( 1838 Parse *pParse, /* Parser context */ 1839 Select *pSelect /* Generate column names for this SELECT statement */ 1840 ){ 1841 Vdbe *v = pParse->pVdbe; 1842 int i; 1843 Table *pTab; 1844 SrcList *pTabList; 1845 ExprList *pEList; 1846 sqlite3 *db = pParse->db; 1847 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1848 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1849 1850 #ifndef SQLITE_OMIT_EXPLAIN 1851 /* If this is an EXPLAIN, skip this step */ 1852 if( pParse->explain ){ 1853 return; 1854 } 1855 #endif 1856 1857 if( pParse->colNamesSet ) return; 1858 /* Column names are determined by the left-most term of a compound select */ 1859 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1860 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1861 pTabList = pSelect->pSrc; 1862 pEList = pSelect->pEList; 1863 assert( v!=0 ); 1864 assert( pTabList!=0 ); 1865 pParse->colNamesSet = 1; 1866 fullName = (db->flags & SQLITE_FullColNames)!=0; 1867 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1868 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1869 for(i=0; i<pEList->nExpr; i++){ 1870 Expr *p = pEList->a[i].pExpr; 1871 1872 assert( p!=0 ); 1873 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1874 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1875 if( pEList->a[i].zName ){ 1876 /* An AS clause always takes first priority */ 1877 char *zName = pEList->a[i].zName; 1878 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1879 }else if( srcName && p->op==TK_COLUMN ){ 1880 char *zCol; 1881 int iCol = p->iColumn; 1882 pTab = p->y.pTab; 1883 assert( pTab!=0 ); 1884 if( iCol<0 ) iCol = pTab->iPKey; 1885 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1886 if( iCol<0 ){ 1887 zCol = "rowid"; 1888 }else{ 1889 zCol = pTab->aCol[iCol].zName; 1890 } 1891 if( fullName ){ 1892 char *zName = 0; 1893 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1894 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1895 }else{ 1896 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1897 } 1898 }else{ 1899 const char *z = pEList->a[i].zSpan; 1900 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1901 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1902 } 1903 } 1904 generateColumnTypes(pParse, pTabList, pEList); 1905 } 1906 1907 /* 1908 ** Given an expression list (which is really the list of expressions 1909 ** that form the result set of a SELECT statement) compute appropriate 1910 ** column names for a table that would hold the expression list. 1911 ** 1912 ** All column names will be unique. 1913 ** 1914 ** Only the column names are computed. Column.zType, Column.zColl, 1915 ** and other fields of Column are zeroed. 1916 ** 1917 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1918 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1919 ** 1920 ** The only guarantee that SQLite makes about column names is that if the 1921 ** column has an AS clause assigning it a name, that will be the name used. 1922 ** That is the only documented guarantee. However, countless applications 1923 ** developed over the years have made baseless assumptions about column names 1924 ** and will break if those assumptions changes. Hence, use extreme caution 1925 ** when modifying this routine to avoid breaking legacy. 1926 ** 1927 ** See Also: generateColumnNames() 1928 */ 1929 int sqlite3ColumnsFromExprList( 1930 Parse *pParse, /* Parsing context */ 1931 ExprList *pEList, /* Expr list from which to derive column names */ 1932 i16 *pnCol, /* Write the number of columns here */ 1933 Column **paCol /* Write the new column list here */ 1934 ){ 1935 sqlite3 *db = pParse->db; /* Database connection */ 1936 int i, j; /* Loop counters */ 1937 u32 cnt; /* Index added to make the name unique */ 1938 Column *aCol, *pCol; /* For looping over result columns */ 1939 int nCol; /* Number of columns in the result set */ 1940 char *zName; /* Column name */ 1941 int nName; /* Size of name in zName[] */ 1942 Hash ht; /* Hash table of column names */ 1943 1944 sqlite3HashInit(&ht); 1945 if( pEList ){ 1946 nCol = pEList->nExpr; 1947 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1948 testcase( aCol==0 ); 1949 if( nCol>32767 ) nCol = 32767; 1950 }else{ 1951 nCol = 0; 1952 aCol = 0; 1953 } 1954 assert( nCol==(i16)nCol ); 1955 *pnCol = nCol; 1956 *paCol = aCol; 1957 1958 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1959 /* Get an appropriate name for the column 1960 */ 1961 if( (zName = pEList->a[i].zName)!=0 ){ 1962 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1963 }else{ 1964 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1965 while( pColExpr->op==TK_DOT ){ 1966 pColExpr = pColExpr->pRight; 1967 assert( pColExpr!=0 ); 1968 } 1969 assert( pColExpr->op!=TK_AGG_COLUMN ); 1970 if( pColExpr->op==TK_COLUMN ){ 1971 /* For columns use the column name name */ 1972 int iCol = pColExpr->iColumn; 1973 Table *pTab = pColExpr->y.pTab; 1974 assert( pTab!=0 ); 1975 if( iCol<0 ) iCol = pTab->iPKey; 1976 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1977 }else if( pColExpr->op==TK_ID ){ 1978 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1979 zName = pColExpr->u.zToken; 1980 }else{ 1981 /* Use the original text of the column expression as its name */ 1982 zName = pEList->a[i].zSpan; 1983 } 1984 } 1985 if( zName ){ 1986 zName = sqlite3DbStrDup(db, zName); 1987 }else{ 1988 zName = sqlite3MPrintf(db,"column%d",i+1); 1989 } 1990 1991 /* Make sure the column name is unique. If the name is not unique, 1992 ** append an integer to the name so that it becomes unique. 1993 */ 1994 cnt = 0; 1995 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1996 nName = sqlite3Strlen30(zName); 1997 if( nName>0 ){ 1998 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1999 if( zName[j]==':' ) nName = j; 2000 } 2001 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2002 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2003 } 2004 pCol->zName = zName; 2005 sqlite3ColumnPropertiesFromName(0, pCol); 2006 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2007 sqlite3OomFault(db); 2008 } 2009 } 2010 sqlite3HashClear(&ht); 2011 if( db->mallocFailed ){ 2012 for(j=0; j<i; j++){ 2013 sqlite3DbFree(db, aCol[j].zName); 2014 } 2015 sqlite3DbFree(db, aCol); 2016 *paCol = 0; 2017 *pnCol = 0; 2018 return SQLITE_NOMEM_BKPT; 2019 } 2020 return SQLITE_OK; 2021 } 2022 2023 /* 2024 ** Add type and collation information to a column list based on 2025 ** a SELECT statement. 2026 ** 2027 ** The column list presumably came from selectColumnNamesFromExprList(). 2028 ** The column list has only names, not types or collations. This 2029 ** routine goes through and adds the types and collations. 2030 ** 2031 ** This routine requires that all identifiers in the SELECT 2032 ** statement be resolved. 2033 */ 2034 void sqlite3SelectAddColumnTypeAndCollation( 2035 Parse *pParse, /* Parsing contexts */ 2036 Table *pTab, /* Add column type information to this table */ 2037 Select *pSelect /* SELECT used to determine types and collations */ 2038 ){ 2039 sqlite3 *db = pParse->db; 2040 NameContext sNC; 2041 Column *pCol; 2042 CollSeq *pColl; 2043 int i; 2044 Expr *p; 2045 struct ExprList_item *a; 2046 2047 assert( pSelect!=0 ); 2048 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2049 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2050 if( db->mallocFailed ) return; 2051 memset(&sNC, 0, sizeof(sNC)); 2052 sNC.pSrcList = pSelect->pSrc; 2053 a = pSelect->pEList->a; 2054 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2055 const char *zType; 2056 int n, m; 2057 p = a[i].pExpr; 2058 zType = columnType(&sNC, p, 0, 0, 0); 2059 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2060 pCol->affinity = sqlite3ExprAffinity(p); 2061 if( zType ){ 2062 m = sqlite3Strlen30(zType); 2063 n = sqlite3Strlen30(pCol->zName); 2064 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2065 if( pCol->zName ){ 2066 memcpy(&pCol->zName[n+1], zType, m+1); 2067 pCol->colFlags |= COLFLAG_HASTYPE; 2068 } 2069 } 2070 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2071 pColl = sqlite3ExprCollSeq(pParse, p); 2072 if( pColl && pCol->zColl==0 ){ 2073 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2074 } 2075 } 2076 pTab->szTabRow = 1; /* Any non-zero value works */ 2077 } 2078 2079 /* 2080 ** Given a SELECT statement, generate a Table structure that describes 2081 ** the result set of that SELECT. 2082 */ 2083 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2084 Table *pTab; 2085 sqlite3 *db = pParse->db; 2086 u64 savedFlags; 2087 2088 savedFlags = db->flags; 2089 db->flags &= ~(u64)SQLITE_FullColNames; 2090 db->flags |= SQLITE_ShortColNames; 2091 sqlite3SelectPrep(pParse, pSelect, 0); 2092 db->flags = savedFlags; 2093 if( pParse->nErr ) return 0; 2094 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2095 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2096 if( pTab==0 ){ 2097 return 0; 2098 } 2099 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2100 ** is disabled */ 2101 assert( db->lookaside.bDisable ); 2102 pTab->nTabRef = 1; 2103 pTab->zName = 0; 2104 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2105 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2106 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2107 pTab->iPKey = -1; 2108 if( db->mallocFailed ){ 2109 sqlite3DeleteTable(db, pTab); 2110 return 0; 2111 } 2112 return pTab; 2113 } 2114 2115 /* 2116 ** Get a VDBE for the given parser context. Create a new one if necessary. 2117 ** If an error occurs, return NULL and leave a message in pParse. 2118 */ 2119 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2120 if( pParse->pVdbe ){ 2121 return pParse->pVdbe; 2122 } 2123 if( pParse->pToplevel==0 2124 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2125 ){ 2126 pParse->okConstFactor = 1; 2127 } 2128 return sqlite3VdbeCreate(pParse); 2129 } 2130 2131 2132 /* 2133 ** Compute the iLimit and iOffset fields of the SELECT based on the 2134 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2135 ** that appear in the original SQL statement after the LIMIT and OFFSET 2136 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2137 ** are the integer memory register numbers for counters used to compute 2138 ** the limit and offset. If there is no limit and/or offset, then 2139 ** iLimit and iOffset are negative. 2140 ** 2141 ** This routine changes the values of iLimit and iOffset only if 2142 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2143 ** and iOffset should have been preset to appropriate default values (zero) 2144 ** prior to calling this routine. 2145 ** 2146 ** The iOffset register (if it exists) is initialized to the value 2147 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2148 ** iOffset+1 is initialized to LIMIT+OFFSET. 2149 ** 2150 ** Only if pLimit->pLeft!=0 do the limit registers get 2151 ** redefined. The UNION ALL operator uses this property to force 2152 ** the reuse of the same limit and offset registers across multiple 2153 ** SELECT statements. 2154 */ 2155 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2156 Vdbe *v = 0; 2157 int iLimit = 0; 2158 int iOffset; 2159 int n; 2160 Expr *pLimit = p->pLimit; 2161 2162 if( p->iLimit ) return; 2163 2164 /* 2165 ** "LIMIT -1" always shows all rows. There is some 2166 ** controversy about what the correct behavior should be. 2167 ** The current implementation interprets "LIMIT 0" to mean 2168 ** no rows. 2169 */ 2170 if( pLimit ){ 2171 assert( pLimit->op==TK_LIMIT ); 2172 assert( pLimit->pLeft!=0 ); 2173 p->iLimit = iLimit = ++pParse->nMem; 2174 v = sqlite3GetVdbe(pParse); 2175 assert( v!=0 ); 2176 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2177 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2178 VdbeComment((v, "LIMIT counter")); 2179 if( n==0 ){ 2180 sqlite3VdbeGoto(v, iBreak); 2181 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2182 p->nSelectRow = sqlite3LogEst((u64)n); 2183 p->selFlags |= SF_FixedLimit; 2184 } 2185 }else{ 2186 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2187 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2188 VdbeComment((v, "LIMIT counter")); 2189 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2190 } 2191 if( pLimit->pRight ){ 2192 p->iOffset = iOffset = ++pParse->nMem; 2193 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2194 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2195 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2196 VdbeComment((v, "OFFSET counter")); 2197 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2198 VdbeComment((v, "LIMIT+OFFSET")); 2199 } 2200 } 2201 } 2202 2203 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2204 /* 2205 ** Return the appropriate collating sequence for the iCol-th column of 2206 ** the result set for the compound-select statement "p". Return NULL if 2207 ** the column has no default collating sequence. 2208 ** 2209 ** The collating sequence for the compound select is taken from the 2210 ** left-most term of the select that has a collating sequence. 2211 */ 2212 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2213 CollSeq *pRet; 2214 if( p->pPrior ){ 2215 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2216 }else{ 2217 pRet = 0; 2218 } 2219 assert( iCol>=0 ); 2220 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2221 ** have been thrown during name resolution and we would not have gotten 2222 ** this far */ 2223 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2224 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2225 } 2226 return pRet; 2227 } 2228 2229 /* 2230 ** The select statement passed as the second parameter is a compound SELECT 2231 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2232 ** structure suitable for implementing the ORDER BY. 2233 ** 2234 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2235 ** function is responsible for ensuring that this structure is eventually 2236 ** freed. 2237 */ 2238 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2239 ExprList *pOrderBy = p->pOrderBy; 2240 int nOrderBy = p->pOrderBy->nExpr; 2241 sqlite3 *db = pParse->db; 2242 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2243 if( pRet ){ 2244 int i; 2245 for(i=0; i<nOrderBy; i++){ 2246 struct ExprList_item *pItem = &pOrderBy->a[i]; 2247 Expr *pTerm = pItem->pExpr; 2248 CollSeq *pColl; 2249 2250 if( pTerm->flags & EP_Collate ){ 2251 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2252 }else{ 2253 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2254 if( pColl==0 ) pColl = db->pDfltColl; 2255 pOrderBy->a[i].pExpr = 2256 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2257 } 2258 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2259 pRet->aColl[i] = pColl; 2260 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2261 } 2262 } 2263 2264 return pRet; 2265 } 2266 2267 #ifndef SQLITE_OMIT_CTE 2268 /* 2269 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2270 ** query of the form: 2271 ** 2272 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2273 ** \___________/ \_______________/ 2274 ** p->pPrior p 2275 ** 2276 ** 2277 ** There is exactly one reference to the recursive-table in the FROM clause 2278 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2279 ** 2280 ** The setup-query runs once to generate an initial set of rows that go 2281 ** into a Queue table. Rows are extracted from the Queue table one by 2282 ** one. Each row extracted from Queue is output to pDest. Then the single 2283 ** extracted row (now in the iCurrent table) becomes the content of the 2284 ** recursive-table for a recursive-query run. The output of the recursive-query 2285 ** is added back into the Queue table. Then another row is extracted from Queue 2286 ** and the iteration continues until the Queue table is empty. 2287 ** 2288 ** If the compound query operator is UNION then no duplicate rows are ever 2289 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2290 ** that have ever been inserted into Queue and causes duplicates to be 2291 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2292 ** 2293 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2294 ** ORDER BY order and the first entry is extracted for each cycle. Without 2295 ** an ORDER BY, the Queue table is just a FIFO. 2296 ** 2297 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2298 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2299 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2300 ** with a positive value, then the first OFFSET outputs are discarded rather 2301 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2302 ** rows have been skipped. 2303 */ 2304 static void generateWithRecursiveQuery( 2305 Parse *pParse, /* Parsing context */ 2306 Select *p, /* The recursive SELECT to be coded */ 2307 SelectDest *pDest /* What to do with query results */ 2308 ){ 2309 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2310 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2311 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2312 Select *pSetup = p->pPrior; /* The setup query */ 2313 int addrTop; /* Top of the loop */ 2314 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2315 int iCurrent = 0; /* The Current table */ 2316 int regCurrent; /* Register holding Current table */ 2317 int iQueue; /* The Queue table */ 2318 int iDistinct = 0; /* To ensure unique results if UNION */ 2319 int eDest = SRT_Fifo; /* How to write to Queue */ 2320 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2321 int i; /* Loop counter */ 2322 int rc; /* Result code */ 2323 ExprList *pOrderBy; /* The ORDER BY clause */ 2324 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2325 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2326 2327 #ifndef SQLITE_OMIT_WINDOWFUNC 2328 if( p->pWin ){ 2329 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2330 return; 2331 } 2332 #endif 2333 2334 /* Obtain authorization to do a recursive query */ 2335 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2336 2337 /* Process the LIMIT and OFFSET clauses, if they exist */ 2338 addrBreak = sqlite3VdbeMakeLabel(pParse); 2339 p->nSelectRow = 320; /* 4 billion rows */ 2340 computeLimitRegisters(pParse, p, addrBreak); 2341 pLimit = p->pLimit; 2342 regLimit = p->iLimit; 2343 regOffset = p->iOffset; 2344 p->pLimit = 0; 2345 p->iLimit = p->iOffset = 0; 2346 pOrderBy = p->pOrderBy; 2347 2348 /* Locate the cursor number of the Current table */ 2349 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2350 if( pSrc->a[i].fg.isRecursive ){ 2351 iCurrent = pSrc->a[i].iCursor; 2352 break; 2353 } 2354 } 2355 2356 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2357 ** the Distinct table must be exactly one greater than Queue in order 2358 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2359 iQueue = pParse->nTab++; 2360 if( p->op==TK_UNION ){ 2361 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2362 iDistinct = pParse->nTab++; 2363 }else{ 2364 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2365 } 2366 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2367 2368 /* Allocate cursors for Current, Queue, and Distinct. */ 2369 regCurrent = ++pParse->nMem; 2370 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2371 if( pOrderBy ){ 2372 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2373 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2374 (char*)pKeyInfo, P4_KEYINFO); 2375 destQueue.pOrderBy = pOrderBy; 2376 }else{ 2377 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2378 } 2379 VdbeComment((v, "Queue table")); 2380 if( iDistinct ){ 2381 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2382 p->selFlags |= SF_UsesEphemeral; 2383 } 2384 2385 /* Detach the ORDER BY clause from the compound SELECT */ 2386 p->pOrderBy = 0; 2387 2388 /* Store the results of the setup-query in Queue. */ 2389 pSetup->pNext = 0; 2390 ExplainQueryPlan((pParse, 1, "SETUP")); 2391 rc = sqlite3Select(pParse, pSetup, &destQueue); 2392 pSetup->pNext = p; 2393 if( rc ) goto end_of_recursive_query; 2394 2395 /* Find the next row in the Queue and output that row */ 2396 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2397 2398 /* Transfer the next row in Queue over to Current */ 2399 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2400 if( pOrderBy ){ 2401 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2402 }else{ 2403 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2404 } 2405 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2406 2407 /* Output the single row in Current */ 2408 addrCont = sqlite3VdbeMakeLabel(pParse); 2409 codeOffset(v, regOffset, addrCont); 2410 selectInnerLoop(pParse, p, iCurrent, 2411 0, 0, pDest, addrCont, addrBreak); 2412 if( regLimit ){ 2413 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2414 VdbeCoverage(v); 2415 } 2416 sqlite3VdbeResolveLabel(v, addrCont); 2417 2418 /* Execute the recursive SELECT taking the single row in Current as 2419 ** the value for the recursive-table. Store the results in the Queue. 2420 */ 2421 if( p->selFlags & SF_Aggregate ){ 2422 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2423 }else{ 2424 p->pPrior = 0; 2425 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2426 sqlite3Select(pParse, p, &destQueue); 2427 assert( p->pPrior==0 ); 2428 p->pPrior = pSetup; 2429 } 2430 2431 /* Keep running the loop until the Queue is empty */ 2432 sqlite3VdbeGoto(v, addrTop); 2433 sqlite3VdbeResolveLabel(v, addrBreak); 2434 2435 end_of_recursive_query: 2436 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2437 p->pOrderBy = pOrderBy; 2438 p->pLimit = pLimit; 2439 return; 2440 } 2441 #endif /* SQLITE_OMIT_CTE */ 2442 2443 /* Forward references */ 2444 static int multiSelectOrderBy( 2445 Parse *pParse, /* Parsing context */ 2446 Select *p, /* The right-most of SELECTs to be coded */ 2447 SelectDest *pDest /* What to do with query results */ 2448 ); 2449 2450 /* 2451 ** Handle the special case of a compound-select that originates from a 2452 ** VALUES clause. By handling this as a special case, we avoid deep 2453 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2454 ** on a VALUES clause. 2455 ** 2456 ** Because the Select object originates from a VALUES clause: 2457 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2458 ** (2) All terms are UNION ALL 2459 ** (3) There is no ORDER BY clause 2460 ** 2461 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2462 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2463 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2464 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2465 */ 2466 static int multiSelectValues( 2467 Parse *pParse, /* Parsing context */ 2468 Select *p, /* The right-most of SELECTs to be coded */ 2469 SelectDest *pDest /* What to do with query results */ 2470 ){ 2471 int nRow = 1; 2472 int rc = 0; 2473 int bShowAll = p->pLimit==0; 2474 assert( p->selFlags & SF_MultiValue ); 2475 do{ 2476 assert( p->selFlags & SF_Values ); 2477 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2478 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2479 if( p->pPrior==0 ) break; 2480 assert( p->pPrior->pNext==p ); 2481 p = p->pPrior; 2482 nRow += bShowAll; 2483 }while(1); 2484 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2485 nRow==1 ? "" : "S")); 2486 while( p ){ 2487 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2488 if( !bShowAll ) break; 2489 p->nSelectRow = nRow; 2490 p = p->pNext; 2491 } 2492 return rc; 2493 } 2494 2495 /* 2496 ** This routine is called to process a compound query form from 2497 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2498 ** INTERSECT 2499 ** 2500 ** "p" points to the right-most of the two queries. the query on the 2501 ** left is p->pPrior. The left query could also be a compound query 2502 ** in which case this routine will be called recursively. 2503 ** 2504 ** The results of the total query are to be written into a destination 2505 ** of type eDest with parameter iParm. 2506 ** 2507 ** Example 1: Consider a three-way compound SQL statement. 2508 ** 2509 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2510 ** 2511 ** This statement is parsed up as follows: 2512 ** 2513 ** SELECT c FROM t3 2514 ** | 2515 ** `-----> SELECT b FROM t2 2516 ** | 2517 ** `------> SELECT a FROM t1 2518 ** 2519 ** The arrows in the diagram above represent the Select.pPrior pointer. 2520 ** So if this routine is called with p equal to the t3 query, then 2521 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2522 ** 2523 ** Notice that because of the way SQLite parses compound SELECTs, the 2524 ** individual selects always group from left to right. 2525 */ 2526 static int multiSelect( 2527 Parse *pParse, /* Parsing context */ 2528 Select *p, /* The right-most of SELECTs to be coded */ 2529 SelectDest *pDest /* What to do with query results */ 2530 ){ 2531 int rc = SQLITE_OK; /* Success code from a subroutine */ 2532 Select *pPrior; /* Another SELECT immediately to our left */ 2533 Vdbe *v; /* Generate code to this VDBE */ 2534 SelectDest dest; /* Alternative data destination */ 2535 Select *pDelete = 0; /* Chain of simple selects to delete */ 2536 sqlite3 *db; /* Database connection */ 2537 2538 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2539 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2540 */ 2541 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2542 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2543 db = pParse->db; 2544 pPrior = p->pPrior; 2545 dest = *pDest; 2546 if( pPrior->pOrderBy || pPrior->pLimit ){ 2547 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2548 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2549 rc = 1; 2550 goto multi_select_end; 2551 } 2552 2553 v = sqlite3GetVdbe(pParse); 2554 assert( v!=0 ); /* The VDBE already created by calling function */ 2555 2556 /* Create the destination temporary table if necessary 2557 */ 2558 if( dest.eDest==SRT_EphemTab ){ 2559 assert( p->pEList ); 2560 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2561 dest.eDest = SRT_Table; 2562 } 2563 2564 /* Special handling for a compound-select that originates as a VALUES clause. 2565 */ 2566 if( p->selFlags & SF_MultiValue ){ 2567 rc = multiSelectValues(pParse, p, &dest); 2568 goto multi_select_end; 2569 } 2570 2571 /* Make sure all SELECTs in the statement have the same number of elements 2572 ** in their result sets. 2573 */ 2574 assert( p->pEList && pPrior->pEList ); 2575 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2576 2577 #ifndef SQLITE_OMIT_CTE 2578 if( p->selFlags & SF_Recursive ){ 2579 generateWithRecursiveQuery(pParse, p, &dest); 2580 }else 2581 #endif 2582 2583 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2584 */ 2585 if( p->pOrderBy ){ 2586 return multiSelectOrderBy(pParse, p, pDest); 2587 }else{ 2588 2589 #ifndef SQLITE_OMIT_EXPLAIN 2590 if( pPrior->pPrior==0 ){ 2591 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2592 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2593 } 2594 #endif 2595 2596 /* Generate code for the left and right SELECT statements. 2597 */ 2598 switch( p->op ){ 2599 case TK_ALL: { 2600 int addr = 0; 2601 int nLimit; 2602 assert( !pPrior->pLimit ); 2603 pPrior->iLimit = p->iLimit; 2604 pPrior->iOffset = p->iOffset; 2605 pPrior->pLimit = p->pLimit; 2606 rc = sqlite3Select(pParse, pPrior, &dest); 2607 p->pLimit = 0; 2608 if( rc ){ 2609 goto multi_select_end; 2610 } 2611 p->pPrior = 0; 2612 p->iLimit = pPrior->iLimit; 2613 p->iOffset = pPrior->iOffset; 2614 if( p->iLimit ){ 2615 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2616 VdbeComment((v, "Jump ahead if LIMIT reached")); 2617 if( p->iOffset ){ 2618 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2619 p->iLimit, p->iOffset+1, p->iOffset); 2620 } 2621 } 2622 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2623 rc = sqlite3Select(pParse, p, &dest); 2624 testcase( rc!=SQLITE_OK ); 2625 pDelete = p->pPrior; 2626 p->pPrior = pPrior; 2627 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2628 if( pPrior->pLimit 2629 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2630 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2631 ){ 2632 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2633 } 2634 if( addr ){ 2635 sqlite3VdbeJumpHere(v, addr); 2636 } 2637 break; 2638 } 2639 case TK_EXCEPT: 2640 case TK_UNION: { 2641 int unionTab; /* Cursor number of the temp table holding result */ 2642 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2643 int priorOp; /* The SRT_ operation to apply to prior selects */ 2644 Expr *pLimit; /* Saved values of p->nLimit */ 2645 int addr; 2646 SelectDest uniondest; 2647 2648 testcase( p->op==TK_EXCEPT ); 2649 testcase( p->op==TK_UNION ); 2650 priorOp = SRT_Union; 2651 if( dest.eDest==priorOp ){ 2652 /* We can reuse a temporary table generated by a SELECT to our 2653 ** right. 2654 */ 2655 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2656 unionTab = dest.iSDParm; 2657 }else{ 2658 /* We will need to create our own temporary table to hold the 2659 ** intermediate results. 2660 */ 2661 unionTab = pParse->nTab++; 2662 assert( p->pOrderBy==0 ); 2663 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2664 assert( p->addrOpenEphm[0] == -1 ); 2665 p->addrOpenEphm[0] = addr; 2666 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2667 assert( p->pEList ); 2668 } 2669 2670 /* Code the SELECT statements to our left 2671 */ 2672 assert( !pPrior->pOrderBy ); 2673 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2674 rc = sqlite3Select(pParse, pPrior, &uniondest); 2675 if( rc ){ 2676 goto multi_select_end; 2677 } 2678 2679 /* Code the current SELECT statement 2680 */ 2681 if( p->op==TK_EXCEPT ){ 2682 op = SRT_Except; 2683 }else{ 2684 assert( p->op==TK_UNION ); 2685 op = SRT_Union; 2686 } 2687 p->pPrior = 0; 2688 pLimit = p->pLimit; 2689 p->pLimit = 0; 2690 uniondest.eDest = op; 2691 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2692 selectOpName(p->op))); 2693 rc = sqlite3Select(pParse, p, &uniondest); 2694 testcase( rc!=SQLITE_OK ); 2695 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2696 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2697 sqlite3ExprListDelete(db, p->pOrderBy); 2698 pDelete = p->pPrior; 2699 p->pPrior = pPrior; 2700 p->pOrderBy = 0; 2701 if( p->op==TK_UNION ){ 2702 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2703 } 2704 sqlite3ExprDelete(db, p->pLimit); 2705 p->pLimit = pLimit; 2706 p->iLimit = 0; 2707 p->iOffset = 0; 2708 2709 /* Convert the data in the temporary table into whatever form 2710 ** it is that we currently need. 2711 */ 2712 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2713 if( dest.eDest!=priorOp ){ 2714 int iCont, iBreak, iStart; 2715 assert( p->pEList ); 2716 iBreak = sqlite3VdbeMakeLabel(pParse); 2717 iCont = sqlite3VdbeMakeLabel(pParse); 2718 computeLimitRegisters(pParse, p, iBreak); 2719 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2720 iStart = sqlite3VdbeCurrentAddr(v); 2721 selectInnerLoop(pParse, p, unionTab, 2722 0, 0, &dest, iCont, iBreak); 2723 sqlite3VdbeResolveLabel(v, iCont); 2724 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2725 sqlite3VdbeResolveLabel(v, iBreak); 2726 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2727 } 2728 break; 2729 } 2730 default: assert( p->op==TK_INTERSECT ); { 2731 int tab1, tab2; 2732 int iCont, iBreak, iStart; 2733 Expr *pLimit; 2734 int addr; 2735 SelectDest intersectdest; 2736 int r1; 2737 2738 /* INTERSECT is different from the others since it requires 2739 ** two temporary tables. Hence it has its own case. Begin 2740 ** by allocating the tables we will need. 2741 */ 2742 tab1 = pParse->nTab++; 2743 tab2 = pParse->nTab++; 2744 assert( p->pOrderBy==0 ); 2745 2746 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2747 assert( p->addrOpenEphm[0] == -1 ); 2748 p->addrOpenEphm[0] = addr; 2749 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2750 assert( p->pEList ); 2751 2752 /* Code the SELECTs to our left into temporary table "tab1". 2753 */ 2754 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2755 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2756 if( rc ){ 2757 goto multi_select_end; 2758 } 2759 2760 /* Code the current SELECT into temporary table "tab2" 2761 */ 2762 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2763 assert( p->addrOpenEphm[1] == -1 ); 2764 p->addrOpenEphm[1] = addr; 2765 p->pPrior = 0; 2766 pLimit = p->pLimit; 2767 p->pLimit = 0; 2768 intersectdest.iSDParm = tab2; 2769 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2770 selectOpName(p->op))); 2771 rc = sqlite3Select(pParse, p, &intersectdest); 2772 testcase( rc!=SQLITE_OK ); 2773 pDelete = p->pPrior; 2774 p->pPrior = pPrior; 2775 if( p->nSelectRow>pPrior->nSelectRow ){ 2776 p->nSelectRow = pPrior->nSelectRow; 2777 } 2778 sqlite3ExprDelete(db, p->pLimit); 2779 p->pLimit = pLimit; 2780 2781 /* Generate code to take the intersection of the two temporary 2782 ** tables. 2783 */ 2784 assert( p->pEList ); 2785 iBreak = sqlite3VdbeMakeLabel(pParse); 2786 iCont = sqlite3VdbeMakeLabel(pParse); 2787 computeLimitRegisters(pParse, p, iBreak); 2788 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2789 r1 = sqlite3GetTempReg(pParse); 2790 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2791 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2792 VdbeCoverage(v); 2793 sqlite3ReleaseTempReg(pParse, r1); 2794 selectInnerLoop(pParse, p, tab1, 2795 0, 0, &dest, iCont, iBreak); 2796 sqlite3VdbeResolveLabel(v, iCont); 2797 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2798 sqlite3VdbeResolveLabel(v, iBreak); 2799 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2800 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2801 break; 2802 } 2803 } 2804 2805 #ifndef SQLITE_OMIT_EXPLAIN 2806 if( p->pNext==0 ){ 2807 ExplainQueryPlanPop(pParse); 2808 } 2809 #endif 2810 } 2811 2812 /* Compute collating sequences used by 2813 ** temporary tables needed to implement the compound select. 2814 ** Attach the KeyInfo structure to all temporary tables. 2815 ** 2816 ** This section is run by the right-most SELECT statement only. 2817 ** SELECT statements to the left always skip this part. The right-most 2818 ** SELECT might also skip this part if it has no ORDER BY clause and 2819 ** no temp tables are required. 2820 */ 2821 if( p->selFlags & SF_UsesEphemeral ){ 2822 int i; /* Loop counter */ 2823 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2824 Select *pLoop; /* For looping through SELECT statements */ 2825 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2826 int nCol; /* Number of columns in result set */ 2827 2828 assert( p->pNext==0 ); 2829 nCol = p->pEList->nExpr; 2830 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2831 if( !pKeyInfo ){ 2832 rc = SQLITE_NOMEM_BKPT; 2833 goto multi_select_end; 2834 } 2835 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2836 *apColl = multiSelectCollSeq(pParse, p, i); 2837 if( 0==*apColl ){ 2838 *apColl = db->pDfltColl; 2839 } 2840 } 2841 2842 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2843 for(i=0; i<2; i++){ 2844 int addr = pLoop->addrOpenEphm[i]; 2845 if( addr<0 ){ 2846 /* If [0] is unused then [1] is also unused. So we can 2847 ** always safely abort as soon as the first unused slot is found */ 2848 assert( pLoop->addrOpenEphm[1]<0 ); 2849 break; 2850 } 2851 sqlite3VdbeChangeP2(v, addr, nCol); 2852 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2853 P4_KEYINFO); 2854 pLoop->addrOpenEphm[i] = -1; 2855 } 2856 } 2857 sqlite3KeyInfoUnref(pKeyInfo); 2858 } 2859 2860 multi_select_end: 2861 pDest->iSdst = dest.iSdst; 2862 pDest->nSdst = dest.nSdst; 2863 sqlite3SelectDelete(db, pDelete); 2864 return rc; 2865 } 2866 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2867 2868 /* 2869 ** Error message for when two or more terms of a compound select have different 2870 ** size result sets. 2871 */ 2872 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2873 if( p->selFlags & SF_Values ){ 2874 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2875 }else{ 2876 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2877 " do not have the same number of result columns", selectOpName(p->op)); 2878 } 2879 } 2880 2881 /* 2882 ** Code an output subroutine for a coroutine implementation of a 2883 ** SELECT statment. 2884 ** 2885 ** The data to be output is contained in pIn->iSdst. There are 2886 ** pIn->nSdst columns to be output. pDest is where the output should 2887 ** be sent. 2888 ** 2889 ** regReturn is the number of the register holding the subroutine 2890 ** return address. 2891 ** 2892 ** If regPrev>0 then it is the first register in a vector that 2893 ** records the previous output. mem[regPrev] is a flag that is false 2894 ** if there has been no previous output. If regPrev>0 then code is 2895 ** generated to suppress duplicates. pKeyInfo is used for comparing 2896 ** keys. 2897 ** 2898 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2899 ** iBreak. 2900 */ 2901 static int generateOutputSubroutine( 2902 Parse *pParse, /* Parsing context */ 2903 Select *p, /* The SELECT statement */ 2904 SelectDest *pIn, /* Coroutine supplying data */ 2905 SelectDest *pDest, /* Where to send the data */ 2906 int regReturn, /* The return address register */ 2907 int regPrev, /* Previous result register. No uniqueness if 0 */ 2908 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2909 int iBreak /* Jump here if we hit the LIMIT */ 2910 ){ 2911 Vdbe *v = pParse->pVdbe; 2912 int iContinue; 2913 int addr; 2914 2915 addr = sqlite3VdbeCurrentAddr(v); 2916 iContinue = sqlite3VdbeMakeLabel(pParse); 2917 2918 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2919 */ 2920 if( regPrev ){ 2921 int addr1, addr2; 2922 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2923 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2924 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2925 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2926 sqlite3VdbeJumpHere(v, addr1); 2927 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2928 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2929 } 2930 if( pParse->db->mallocFailed ) return 0; 2931 2932 /* Suppress the first OFFSET entries if there is an OFFSET clause 2933 */ 2934 codeOffset(v, p->iOffset, iContinue); 2935 2936 assert( pDest->eDest!=SRT_Exists ); 2937 assert( pDest->eDest!=SRT_Table ); 2938 switch( pDest->eDest ){ 2939 /* Store the result as data using a unique key. 2940 */ 2941 case SRT_EphemTab: { 2942 int r1 = sqlite3GetTempReg(pParse); 2943 int r2 = sqlite3GetTempReg(pParse); 2944 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2945 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2946 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2947 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2948 sqlite3ReleaseTempReg(pParse, r2); 2949 sqlite3ReleaseTempReg(pParse, r1); 2950 break; 2951 } 2952 2953 #ifndef SQLITE_OMIT_SUBQUERY 2954 /* If we are creating a set for an "expr IN (SELECT ...)". 2955 */ 2956 case SRT_Set: { 2957 int r1; 2958 testcase( pIn->nSdst>1 ); 2959 r1 = sqlite3GetTempReg(pParse); 2960 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2961 r1, pDest->zAffSdst, pIn->nSdst); 2962 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2963 pIn->iSdst, pIn->nSdst); 2964 sqlite3ReleaseTempReg(pParse, r1); 2965 break; 2966 } 2967 2968 /* If this is a scalar select that is part of an expression, then 2969 ** store the results in the appropriate memory cell and break out 2970 ** of the scan loop. 2971 */ 2972 case SRT_Mem: { 2973 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2974 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2975 /* The LIMIT clause will jump out of the loop for us */ 2976 break; 2977 } 2978 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2979 2980 /* The results are stored in a sequence of registers 2981 ** starting at pDest->iSdst. Then the co-routine yields. 2982 */ 2983 case SRT_Coroutine: { 2984 if( pDest->iSdst==0 ){ 2985 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2986 pDest->nSdst = pIn->nSdst; 2987 } 2988 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2989 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2990 break; 2991 } 2992 2993 /* If none of the above, then the result destination must be 2994 ** SRT_Output. This routine is never called with any other 2995 ** destination other than the ones handled above or SRT_Output. 2996 ** 2997 ** For SRT_Output, results are stored in a sequence of registers. 2998 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2999 ** return the next row of result. 3000 */ 3001 default: { 3002 assert( pDest->eDest==SRT_Output ); 3003 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3004 break; 3005 } 3006 } 3007 3008 /* Jump to the end of the loop if the LIMIT is reached. 3009 */ 3010 if( p->iLimit ){ 3011 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3012 } 3013 3014 /* Generate the subroutine return 3015 */ 3016 sqlite3VdbeResolveLabel(v, iContinue); 3017 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3018 3019 return addr; 3020 } 3021 3022 /* 3023 ** Alternative compound select code generator for cases when there 3024 ** is an ORDER BY clause. 3025 ** 3026 ** We assume a query of the following form: 3027 ** 3028 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3029 ** 3030 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3031 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3032 ** co-routines. Then run the co-routines in parallel and merge the results 3033 ** into the output. In addition to the two coroutines (called selectA and 3034 ** selectB) there are 7 subroutines: 3035 ** 3036 ** outA: Move the output of the selectA coroutine into the output 3037 ** of the compound query. 3038 ** 3039 ** outB: Move the output of the selectB coroutine into the output 3040 ** of the compound query. (Only generated for UNION and 3041 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3042 ** appears only in B.) 3043 ** 3044 ** AltB: Called when there is data from both coroutines and A<B. 3045 ** 3046 ** AeqB: Called when there is data from both coroutines and A==B. 3047 ** 3048 ** AgtB: Called when there is data from both coroutines and A>B. 3049 ** 3050 ** EofA: Called when data is exhausted from selectA. 3051 ** 3052 ** EofB: Called when data is exhausted from selectB. 3053 ** 3054 ** The implementation of the latter five subroutines depend on which 3055 ** <operator> is used: 3056 ** 3057 ** 3058 ** UNION ALL UNION EXCEPT INTERSECT 3059 ** ------------- ----------------- -------------- ----------------- 3060 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3061 ** 3062 ** AeqB: outA, nextA nextA nextA outA, nextA 3063 ** 3064 ** AgtB: outB, nextB outB, nextB nextB nextB 3065 ** 3066 ** EofA: outB, nextB outB, nextB halt halt 3067 ** 3068 ** EofB: outA, nextA outA, nextA outA, nextA halt 3069 ** 3070 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3071 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3072 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3073 ** following nextX causes a jump to the end of the select processing. 3074 ** 3075 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3076 ** within the output subroutine. The regPrev register set holds the previously 3077 ** output value. A comparison is made against this value and the output 3078 ** is skipped if the next results would be the same as the previous. 3079 ** 3080 ** The implementation plan is to implement the two coroutines and seven 3081 ** subroutines first, then put the control logic at the bottom. Like this: 3082 ** 3083 ** goto Init 3084 ** coA: coroutine for left query (A) 3085 ** coB: coroutine for right query (B) 3086 ** outA: output one row of A 3087 ** outB: output one row of B (UNION and UNION ALL only) 3088 ** EofA: ... 3089 ** EofB: ... 3090 ** AltB: ... 3091 ** AeqB: ... 3092 ** AgtB: ... 3093 ** Init: initialize coroutine registers 3094 ** yield coA 3095 ** if eof(A) goto EofA 3096 ** yield coB 3097 ** if eof(B) goto EofB 3098 ** Cmpr: Compare A, B 3099 ** Jump AltB, AeqB, AgtB 3100 ** End: ... 3101 ** 3102 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3103 ** actually called using Gosub and they do not Return. EofA and EofB loop 3104 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3105 ** and AgtB jump to either L2 or to one of EofA or EofB. 3106 */ 3107 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3108 static int multiSelectOrderBy( 3109 Parse *pParse, /* Parsing context */ 3110 Select *p, /* The right-most of SELECTs to be coded */ 3111 SelectDest *pDest /* What to do with query results */ 3112 ){ 3113 int i, j; /* Loop counters */ 3114 Select *pPrior; /* Another SELECT immediately to our left */ 3115 Vdbe *v; /* Generate code to this VDBE */ 3116 SelectDest destA; /* Destination for coroutine A */ 3117 SelectDest destB; /* Destination for coroutine B */ 3118 int regAddrA; /* Address register for select-A coroutine */ 3119 int regAddrB; /* Address register for select-B coroutine */ 3120 int addrSelectA; /* Address of the select-A coroutine */ 3121 int addrSelectB; /* Address of the select-B coroutine */ 3122 int regOutA; /* Address register for the output-A subroutine */ 3123 int regOutB; /* Address register for the output-B subroutine */ 3124 int addrOutA; /* Address of the output-A subroutine */ 3125 int addrOutB = 0; /* Address of the output-B subroutine */ 3126 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3127 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3128 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3129 int addrAltB; /* Address of the A<B subroutine */ 3130 int addrAeqB; /* Address of the A==B subroutine */ 3131 int addrAgtB; /* Address of the A>B subroutine */ 3132 int regLimitA; /* Limit register for select-A */ 3133 int regLimitB; /* Limit register for select-A */ 3134 int regPrev; /* A range of registers to hold previous output */ 3135 int savedLimit; /* Saved value of p->iLimit */ 3136 int savedOffset; /* Saved value of p->iOffset */ 3137 int labelCmpr; /* Label for the start of the merge algorithm */ 3138 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3139 int addr1; /* Jump instructions that get retargetted */ 3140 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3141 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3142 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3143 sqlite3 *db; /* Database connection */ 3144 ExprList *pOrderBy; /* The ORDER BY clause */ 3145 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3146 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3147 3148 assert( p->pOrderBy!=0 ); 3149 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3150 db = pParse->db; 3151 v = pParse->pVdbe; 3152 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3153 labelEnd = sqlite3VdbeMakeLabel(pParse); 3154 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3155 3156 3157 /* Patch up the ORDER BY clause 3158 */ 3159 op = p->op; 3160 pPrior = p->pPrior; 3161 assert( pPrior->pOrderBy==0 ); 3162 pOrderBy = p->pOrderBy; 3163 assert( pOrderBy ); 3164 nOrderBy = pOrderBy->nExpr; 3165 3166 /* For operators other than UNION ALL we have to make sure that 3167 ** the ORDER BY clause covers every term of the result set. Add 3168 ** terms to the ORDER BY clause as necessary. 3169 */ 3170 if( op!=TK_ALL ){ 3171 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3172 struct ExprList_item *pItem; 3173 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3174 assert( pItem->u.x.iOrderByCol>0 ); 3175 if( pItem->u.x.iOrderByCol==i ) break; 3176 } 3177 if( j==nOrderBy ){ 3178 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3179 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3180 pNew->flags |= EP_IntValue; 3181 pNew->u.iValue = i; 3182 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3183 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3184 } 3185 } 3186 } 3187 3188 /* Compute the comparison permutation and keyinfo that is used with 3189 ** the permutation used to determine if the next 3190 ** row of results comes from selectA or selectB. Also add explicit 3191 ** collations to the ORDER BY clause terms so that when the subqueries 3192 ** to the right and the left are evaluated, they use the correct 3193 ** collation. 3194 */ 3195 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3196 if( aPermute ){ 3197 struct ExprList_item *pItem; 3198 aPermute[0] = nOrderBy; 3199 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3200 assert( pItem->u.x.iOrderByCol>0 ); 3201 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3202 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3203 } 3204 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3205 }else{ 3206 pKeyMerge = 0; 3207 } 3208 3209 /* Reattach the ORDER BY clause to the query. 3210 */ 3211 p->pOrderBy = pOrderBy; 3212 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3213 3214 /* Allocate a range of temporary registers and the KeyInfo needed 3215 ** for the logic that removes duplicate result rows when the 3216 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3217 */ 3218 if( op==TK_ALL ){ 3219 regPrev = 0; 3220 }else{ 3221 int nExpr = p->pEList->nExpr; 3222 assert( nOrderBy>=nExpr || db->mallocFailed ); 3223 regPrev = pParse->nMem+1; 3224 pParse->nMem += nExpr+1; 3225 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3226 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3227 if( pKeyDup ){ 3228 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3229 for(i=0; i<nExpr; i++){ 3230 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3231 pKeyDup->aSortOrder[i] = 0; 3232 } 3233 } 3234 } 3235 3236 /* Separate the left and the right query from one another 3237 */ 3238 p->pPrior = 0; 3239 pPrior->pNext = 0; 3240 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3241 if( pPrior->pPrior==0 ){ 3242 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3243 } 3244 3245 /* Compute the limit registers */ 3246 computeLimitRegisters(pParse, p, labelEnd); 3247 if( p->iLimit && op==TK_ALL ){ 3248 regLimitA = ++pParse->nMem; 3249 regLimitB = ++pParse->nMem; 3250 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3251 regLimitA); 3252 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3253 }else{ 3254 regLimitA = regLimitB = 0; 3255 } 3256 sqlite3ExprDelete(db, p->pLimit); 3257 p->pLimit = 0; 3258 3259 regAddrA = ++pParse->nMem; 3260 regAddrB = ++pParse->nMem; 3261 regOutA = ++pParse->nMem; 3262 regOutB = ++pParse->nMem; 3263 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3264 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3265 3266 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3267 3268 /* Generate a coroutine to evaluate the SELECT statement to the 3269 ** left of the compound operator - the "A" select. 3270 */ 3271 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3272 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3273 VdbeComment((v, "left SELECT")); 3274 pPrior->iLimit = regLimitA; 3275 ExplainQueryPlan((pParse, 1, "LEFT")); 3276 sqlite3Select(pParse, pPrior, &destA); 3277 sqlite3VdbeEndCoroutine(v, regAddrA); 3278 sqlite3VdbeJumpHere(v, addr1); 3279 3280 /* Generate a coroutine to evaluate the SELECT statement on 3281 ** the right - the "B" select 3282 */ 3283 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3284 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3285 VdbeComment((v, "right SELECT")); 3286 savedLimit = p->iLimit; 3287 savedOffset = p->iOffset; 3288 p->iLimit = regLimitB; 3289 p->iOffset = 0; 3290 ExplainQueryPlan((pParse, 1, "RIGHT")); 3291 sqlite3Select(pParse, p, &destB); 3292 p->iLimit = savedLimit; 3293 p->iOffset = savedOffset; 3294 sqlite3VdbeEndCoroutine(v, regAddrB); 3295 3296 /* Generate a subroutine that outputs the current row of the A 3297 ** select as the next output row of the compound select. 3298 */ 3299 VdbeNoopComment((v, "Output routine for A")); 3300 addrOutA = generateOutputSubroutine(pParse, 3301 p, &destA, pDest, regOutA, 3302 regPrev, pKeyDup, labelEnd); 3303 3304 /* Generate a subroutine that outputs the current row of the B 3305 ** select as the next output row of the compound select. 3306 */ 3307 if( op==TK_ALL || op==TK_UNION ){ 3308 VdbeNoopComment((v, "Output routine for B")); 3309 addrOutB = generateOutputSubroutine(pParse, 3310 p, &destB, pDest, regOutB, 3311 regPrev, pKeyDup, labelEnd); 3312 } 3313 sqlite3KeyInfoUnref(pKeyDup); 3314 3315 /* Generate a subroutine to run when the results from select A 3316 ** are exhausted and only data in select B remains. 3317 */ 3318 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3319 addrEofA_noB = addrEofA = labelEnd; 3320 }else{ 3321 VdbeNoopComment((v, "eof-A subroutine")); 3322 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3323 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3324 VdbeCoverage(v); 3325 sqlite3VdbeGoto(v, addrEofA); 3326 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3327 } 3328 3329 /* Generate a subroutine to run when the results from select B 3330 ** are exhausted and only data in select A remains. 3331 */ 3332 if( op==TK_INTERSECT ){ 3333 addrEofB = addrEofA; 3334 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3335 }else{ 3336 VdbeNoopComment((v, "eof-B subroutine")); 3337 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3338 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3339 sqlite3VdbeGoto(v, addrEofB); 3340 } 3341 3342 /* Generate code to handle the case of A<B 3343 */ 3344 VdbeNoopComment((v, "A-lt-B subroutine")); 3345 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3346 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3347 sqlite3VdbeGoto(v, labelCmpr); 3348 3349 /* Generate code to handle the case of A==B 3350 */ 3351 if( op==TK_ALL ){ 3352 addrAeqB = addrAltB; 3353 }else if( op==TK_INTERSECT ){ 3354 addrAeqB = addrAltB; 3355 addrAltB++; 3356 }else{ 3357 VdbeNoopComment((v, "A-eq-B subroutine")); 3358 addrAeqB = 3359 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3360 sqlite3VdbeGoto(v, labelCmpr); 3361 } 3362 3363 /* Generate code to handle the case of A>B 3364 */ 3365 VdbeNoopComment((v, "A-gt-B subroutine")); 3366 addrAgtB = sqlite3VdbeCurrentAddr(v); 3367 if( op==TK_ALL || op==TK_UNION ){ 3368 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3369 } 3370 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3371 sqlite3VdbeGoto(v, labelCmpr); 3372 3373 /* This code runs once to initialize everything. 3374 */ 3375 sqlite3VdbeJumpHere(v, addr1); 3376 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3377 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3378 3379 /* Implement the main merge loop 3380 */ 3381 sqlite3VdbeResolveLabel(v, labelCmpr); 3382 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3383 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3384 (char*)pKeyMerge, P4_KEYINFO); 3385 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3386 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3387 3388 /* Jump to the this point in order to terminate the query. 3389 */ 3390 sqlite3VdbeResolveLabel(v, labelEnd); 3391 3392 /* Reassembly the compound query so that it will be freed correctly 3393 ** by the calling function */ 3394 if( p->pPrior ){ 3395 sqlite3SelectDelete(db, p->pPrior); 3396 } 3397 p->pPrior = pPrior; 3398 pPrior->pNext = p; 3399 3400 /*** TBD: Insert subroutine calls to close cursors on incomplete 3401 **** subqueries ****/ 3402 ExplainQueryPlanPop(pParse); 3403 return pParse->nErr!=0; 3404 } 3405 #endif 3406 3407 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3408 3409 /* An instance of the SubstContext object describes an substitution edit 3410 ** to be performed on a parse tree. 3411 ** 3412 ** All references to columns in table iTable are to be replaced by corresponding 3413 ** expressions in pEList. 3414 */ 3415 typedef struct SubstContext { 3416 Parse *pParse; /* The parsing context */ 3417 int iTable; /* Replace references to this table */ 3418 int iNewTable; /* New table number */ 3419 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3420 ExprList *pEList; /* Replacement expressions */ 3421 } SubstContext; 3422 3423 /* Forward Declarations */ 3424 static void substExprList(SubstContext*, ExprList*); 3425 static void substSelect(SubstContext*, Select*, int); 3426 3427 /* 3428 ** Scan through the expression pExpr. Replace every reference to 3429 ** a column in table number iTable with a copy of the iColumn-th 3430 ** entry in pEList. (But leave references to the ROWID column 3431 ** unchanged.) 3432 ** 3433 ** This routine is part of the flattening procedure. A subquery 3434 ** whose result set is defined by pEList appears as entry in the 3435 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3436 ** FORM clause entry is iTable. This routine makes the necessary 3437 ** changes to pExpr so that it refers directly to the source table 3438 ** of the subquery rather the result set of the subquery. 3439 */ 3440 static Expr *substExpr( 3441 SubstContext *pSubst, /* Description of the substitution */ 3442 Expr *pExpr /* Expr in which substitution occurs */ 3443 ){ 3444 if( pExpr==0 ) return 0; 3445 if( ExprHasProperty(pExpr, EP_FromJoin) 3446 && pExpr->iRightJoinTable==pSubst->iTable 3447 ){ 3448 pExpr->iRightJoinTable = pSubst->iNewTable; 3449 } 3450 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3451 if( pExpr->iColumn<0 ){ 3452 pExpr->op = TK_NULL; 3453 }else{ 3454 Expr *pNew; 3455 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3456 Expr ifNullRow; 3457 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3458 assert( pExpr->pRight==0 ); 3459 if( sqlite3ExprIsVector(pCopy) ){ 3460 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3461 }else{ 3462 sqlite3 *db = pSubst->pParse->db; 3463 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3464 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3465 ifNullRow.op = TK_IF_NULL_ROW; 3466 ifNullRow.pLeft = pCopy; 3467 ifNullRow.iTable = pSubst->iNewTable; 3468 pCopy = &ifNullRow; 3469 } 3470 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3471 pNew = sqlite3ExprDup(db, pCopy, 0); 3472 if( pNew && pSubst->isLeftJoin ){ 3473 ExprSetProperty(pNew, EP_CanBeNull); 3474 } 3475 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3476 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3477 ExprSetProperty(pNew, EP_FromJoin); 3478 } 3479 sqlite3ExprDelete(db, pExpr); 3480 pExpr = pNew; 3481 } 3482 } 3483 }else{ 3484 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3485 pExpr->iTable = pSubst->iNewTable; 3486 } 3487 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3488 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3489 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3490 substSelect(pSubst, pExpr->x.pSelect, 1); 3491 }else{ 3492 substExprList(pSubst, pExpr->x.pList); 3493 } 3494 } 3495 return pExpr; 3496 } 3497 static void substExprList( 3498 SubstContext *pSubst, /* Description of the substitution */ 3499 ExprList *pList /* List to scan and in which to make substitutes */ 3500 ){ 3501 int i; 3502 if( pList==0 ) return; 3503 for(i=0; i<pList->nExpr; i++){ 3504 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3505 } 3506 } 3507 static void substSelect( 3508 SubstContext *pSubst, /* Description of the substitution */ 3509 Select *p, /* SELECT statement in which to make substitutions */ 3510 int doPrior /* Do substitutes on p->pPrior too */ 3511 ){ 3512 SrcList *pSrc; 3513 struct SrcList_item *pItem; 3514 int i; 3515 if( !p ) return; 3516 do{ 3517 substExprList(pSubst, p->pEList); 3518 substExprList(pSubst, p->pGroupBy); 3519 substExprList(pSubst, p->pOrderBy); 3520 p->pHaving = substExpr(pSubst, p->pHaving); 3521 p->pWhere = substExpr(pSubst, p->pWhere); 3522 pSrc = p->pSrc; 3523 assert( pSrc!=0 ); 3524 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3525 substSelect(pSubst, pItem->pSelect, 1); 3526 if( pItem->fg.isTabFunc ){ 3527 substExprList(pSubst, pItem->u1.pFuncArg); 3528 } 3529 } 3530 }while( doPrior && (p = p->pPrior)!=0 ); 3531 } 3532 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3533 3534 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3535 /* 3536 ** This routine attempts to flatten subqueries as a performance optimization. 3537 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3538 ** 3539 ** To understand the concept of flattening, consider the following 3540 ** query: 3541 ** 3542 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3543 ** 3544 ** The default way of implementing this query is to execute the 3545 ** subquery first and store the results in a temporary table, then 3546 ** run the outer query on that temporary table. This requires two 3547 ** passes over the data. Furthermore, because the temporary table 3548 ** has no indices, the WHERE clause on the outer query cannot be 3549 ** optimized. 3550 ** 3551 ** This routine attempts to rewrite queries such as the above into 3552 ** a single flat select, like this: 3553 ** 3554 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3555 ** 3556 ** The code generated for this simplification gives the same result 3557 ** but only has to scan the data once. And because indices might 3558 ** exist on the table t1, a complete scan of the data might be 3559 ** avoided. 3560 ** 3561 ** Flattening is subject to the following constraints: 3562 ** 3563 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3564 ** The subquery and the outer query cannot both be aggregates. 3565 ** 3566 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3567 ** (2) If the subquery is an aggregate then 3568 ** (2a) the outer query must not be a join and 3569 ** (2b) the outer query must not use subqueries 3570 ** other than the one FROM-clause subquery that is a candidate 3571 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3572 ** from 2015-02-09.) 3573 ** 3574 ** (3) If the subquery is the right operand of a LEFT JOIN then 3575 ** (3a) the subquery may not be a join and 3576 ** (3b) the FROM clause of the subquery may not contain a virtual 3577 ** table and 3578 ** (3c) the outer query may not be an aggregate. 3579 ** 3580 ** (4) The subquery can not be DISTINCT. 3581 ** 3582 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3583 ** sub-queries that were excluded from this optimization. Restriction 3584 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3585 ** 3586 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3587 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3588 ** 3589 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3590 ** A FROM clause, consider adding a FROM clause with the special 3591 ** table sqlite_once that consists of a single row containing a 3592 ** single NULL. 3593 ** 3594 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3595 ** 3596 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3597 ** 3598 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3599 ** accidently carried the comment forward until 2014-09-15. Original 3600 ** constraint: "If the subquery is aggregate then the outer query 3601 ** may not use LIMIT." 3602 ** 3603 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3604 ** 3605 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3606 ** a separate restriction deriving from ticket #350. 3607 ** 3608 ** (13) The subquery and outer query may not both use LIMIT. 3609 ** 3610 ** (14) The subquery may not use OFFSET. 3611 ** 3612 ** (15) If the outer query is part of a compound select, then the 3613 ** subquery may not use LIMIT. 3614 ** (See ticket #2339 and ticket [02a8e81d44]). 3615 ** 3616 ** (16) If the outer query is aggregate, then the subquery may not 3617 ** use ORDER BY. (Ticket #2942) This used to not matter 3618 ** until we introduced the group_concat() function. 3619 ** 3620 ** (17) If the subquery is a compound select, then 3621 ** (17a) all compound operators must be a UNION ALL, and 3622 ** (17b) no terms within the subquery compound may be aggregate 3623 ** or DISTINCT, and 3624 ** (17c) every term within the subquery compound must have a FROM clause 3625 ** (17d) the outer query may not be 3626 ** (17d1) aggregate, or 3627 ** (17d2) DISTINCT, or 3628 ** (17d3) a join. 3629 ** 3630 ** The parent and sub-query may contain WHERE clauses. Subject to 3631 ** rules (11), (13) and (14), they may also contain ORDER BY, 3632 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3633 ** operator other than UNION ALL because all the other compound 3634 ** operators have an implied DISTINCT which is disallowed by 3635 ** restriction (4). 3636 ** 3637 ** Also, each component of the sub-query must return the same number 3638 ** of result columns. This is actually a requirement for any compound 3639 ** SELECT statement, but all the code here does is make sure that no 3640 ** such (illegal) sub-query is flattened. The caller will detect the 3641 ** syntax error and return a detailed message. 3642 ** 3643 ** (18) If the sub-query is a compound select, then all terms of the 3644 ** ORDER BY clause of the parent must be simple references to 3645 ** columns of the sub-query. 3646 ** 3647 ** (19) If the subquery uses LIMIT then the outer query may not 3648 ** have a WHERE clause. 3649 ** 3650 ** (20) If the sub-query is a compound select, then it must not use 3651 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3652 ** somewhat by saying that the terms of the ORDER BY clause must 3653 ** appear as unmodified result columns in the outer query. But we 3654 ** have other optimizations in mind to deal with that case. 3655 ** 3656 ** (21) If the subquery uses LIMIT then the outer query may not be 3657 ** DISTINCT. (See ticket [752e1646fc]). 3658 ** 3659 ** (22) The subquery may not be a recursive CTE. 3660 ** 3661 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3662 ** a recursive CTE, then the sub-query may not be a compound query. 3663 ** This restriction is because transforming the 3664 ** parent to a compound query confuses the code that handles 3665 ** recursive queries in multiSelect(). 3666 ** 3667 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3668 ** The subquery may not be an aggregate that uses the built-in min() or 3669 ** or max() functions. (Without this restriction, a query like: 3670 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3671 ** return the value X for which Y was maximal.) 3672 ** 3673 ** (25) If either the subquery or the parent query contains a window 3674 ** function in the select list or ORDER BY clause, flattening 3675 ** is not attempted. 3676 ** 3677 ** 3678 ** In this routine, the "p" parameter is a pointer to the outer query. 3679 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3680 ** uses aggregates. 3681 ** 3682 ** If flattening is not attempted, this routine is a no-op and returns 0. 3683 ** If flattening is attempted this routine returns 1. 3684 ** 3685 ** All of the expression analysis must occur on both the outer query and 3686 ** the subquery before this routine runs. 3687 */ 3688 static int flattenSubquery( 3689 Parse *pParse, /* Parsing context */ 3690 Select *p, /* The parent or outer SELECT statement */ 3691 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3692 int isAgg /* True if outer SELECT uses aggregate functions */ 3693 ){ 3694 const char *zSavedAuthContext = pParse->zAuthContext; 3695 Select *pParent; /* Current UNION ALL term of the other query */ 3696 Select *pSub; /* The inner query or "subquery" */ 3697 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3698 SrcList *pSrc; /* The FROM clause of the outer query */ 3699 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3700 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3701 int iNewParent = -1;/* Replacement table for iParent */ 3702 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3703 int i; /* Loop counter */ 3704 Expr *pWhere; /* The WHERE clause */ 3705 struct SrcList_item *pSubitem; /* The subquery */ 3706 sqlite3 *db = pParse->db; 3707 3708 /* Check to see if flattening is permitted. Return 0 if not. 3709 */ 3710 assert( p!=0 ); 3711 assert( p->pPrior==0 ); 3712 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3713 pSrc = p->pSrc; 3714 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3715 pSubitem = &pSrc->a[iFrom]; 3716 iParent = pSubitem->iCursor; 3717 pSub = pSubitem->pSelect; 3718 assert( pSub!=0 ); 3719 3720 #ifndef SQLITE_OMIT_WINDOWFUNC 3721 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3722 #endif 3723 3724 pSubSrc = pSub->pSrc; 3725 assert( pSubSrc ); 3726 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3727 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3728 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3729 ** became arbitrary expressions, we were forced to add restrictions (13) 3730 ** and (14). */ 3731 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3732 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3733 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3734 return 0; /* Restriction (15) */ 3735 } 3736 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3737 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3738 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3739 return 0; /* Restrictions (8)(9) */ 3740 } 3741 if( p->pOrderBy && pSub->pOrderBy ){ 3742 return 0; /* Restriction (11) */ 3743 } 3744 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3745 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3746 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3747 return 0; /* Restriction (21) */ 3748 } 3749 if( pSub->selFlags & (SF_Recursive) ){ 3750 return 0; /* Restrictions (22) */ 3751 } 3752 3753 /* 3754 ** If the subquery is the right operand of a LEFT JOIN, then the 3755 ** subquery may not be a join itself (3a). Example of why this is not 3756 ** allowed: 3757 ** 3758 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3759 ** 3760 ** If we flatten the above, we would get 3761 ** 3762 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3763 ** 3764 ** which is not at all the same thing. 3765 ** 3766 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3767 ** query cannot be an aggregate. (3c) This is an artifact of the way 3768 ** aggregates are processed - there is no mechanism to determine if 3769 ** the LEFT JOIN table should be all-NULL. 3770 ** 3771 ** See also tickets #306, #350, and #3300. 3772 */ 3773 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3774 isLeftJoin = 1; 3775 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3776 /* (3a) (3c) (3b) */ 3777 return 0; 3778 } 3779 } 3780 #ifdef SQLITE_EXTRA_IFNULLROW 3781 else if( iFrom>0 && !isAgg ){ 3782 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3783 ** every reference to any result column from subquery in a join, even 3784 ** though they are not necessary. This will stress-test the OP_IfNullRow 3785 ** opcode. */ 3786 isLeftJoin = -1; 3787 } 3788 #endif 3789 3790 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3791 ** use only the UNION ALL operator. And none of the simple select queries 3792 ** that make up the compound SELECT are allowed to be aggregate or distinct 3793 ** queries. 3794 */ 3795 if( pSub->pPrior ){ 3796 if( pSub->pOrderBy ){ 3797 return 0; /* Restriction (20) */ 3798 } 3799 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3800 return 0; /* (17d1), (17d2), or (17d3) */ 3801 } 3802 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3803 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3804 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3805 assert( pSub->pSrc!=0 ); 3806 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3807 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3808 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3809 || pSub1->pSrc->nSrc<1 /* (17c) */ 3810 ){ 3811 return 0; 3812 } 3813 testcase( pSub1->pSrc->nSrc>1 ); 3814 } 3815 3816 /* Restriction (18). */ 3817 if( p->pOrderBy ){ 3818 int ii; 3819 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3820 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3821 } 3822 } 3823 } 3824 3825 /* Ex-restriction (23): 3826 ** The only way that the recursive part of a CTE can contain a compound 3827 ** subquery is for the subquery to be one term of a join. But if the 3828 ** subquery is a join, then the flattening has already been stopped by 3829 ** restriction (17d3) 3830 */ 3831 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3832 3833 /***** If we reach this point, flattening is permitted. *****/ 3834 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3835 pSub->selId, pSub, iFrom)); 3836 3837 /* Authorize the subquery */ 3838 pParse->zAuthContext = pSubitem->zName; 3839 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3840 testcase( i==SQLITE_DENY ); 3841 pParse->zAuthContext = zSavedAuthContext; 3842 3843 /* If the sub-query is a compound SELECT statement, then (by restrictions 3844 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3845 ** be of the form: 3846 ** 3847 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3848 ** 3849 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3850 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3851 ** OFFSET clauses and joins them to the left-hand-side of the original 3852 ** using UNION ALL operators. In this case N is the number of simple 3853 ** select statements in the compound sub-query. 3854 ** 3855 ** Example: 3856 ** 3857 ** SELECT a+1 FROM ( 3858 ** SELECT x FROM tab 3859 ** UNION ALL 3860 ** SELECT y FROM tab 3861 ** UNION ALL 3862 ** SELECT abs(z*2) FROM tab2 3863 ** ) WHERE a!=5 ORDER BY 1 3864 ** 3865 ** Transformed into: 3866 ** 3867 ** SELECT x+1 FROM tab WHERE x+1!=5 3868 ** UNION ALL 3869 ** SELECT y+1 FROM tab WHERE y+1!=5 3870 ** UNION ALL 3871 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3872 ** ORDER BY 1 3873 ** 3874 ** We call this the "compound-subquery flattening". 3875 */ 3876 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3877 Select *pNew; 3878 ExprList *pOrderBy = p->pOrderBy; 3879 Expr *pLimit = p->pLimit; 3880 Select *pPrior = p->pPrior; 3881 p->pOrderBy = 0; 3882 p->pSrc = 0; 3883 p->pPrior = 0; 3884 p->pLimit = 0; 3885 pNew = sqlite3SelectDup(db, p, 0); 3886 p->pLimit = pLimit; 3887 p->pOrderBy = pOrderBy; 3888 p->pSrc = pSrc; 3889 p->op = TK_ALL; 3890 if( pNew==0 ){ 3891 p->pPrior = pPrior; 3892 }else{ 3893 pNew->pPrior = pPrior; 3894 if( pPrior ) pPrior->pNext = pNew; 3895 pNew->pNext = p; 3896 p->pPrior = pNew; 3897 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3898 " creates %u as peer\n",pNew->selId)); 3899 } 3900 if( db->mallocFailed ) return 1; 3901 } 3902 3903 /* Begin flattening the iFrom-th entry of the FROM clause 3904 ** in the outer query. 3905 */ 3906 pSub = pSub1 = pSubitem->pSelect; 3907 3908 /* Delete the transient table structure associated with the 3909 ** subquery 3910 */ 3911 sqlite3DbFree(db, pSubitem->zDatabase); 3912 sqlite3DbFree(db, pSubitem->zName); 3913 sqlite3DbFree(db, pSubitem->zAlias); 3914 pSubitem->zDatabase = 0; 3915 pSubitem->zName = 0; 3916 pSubitem->zAlias = 0; 3917 pSubitem->pSelect = 0; 3918 3919 /* Defer deleting the Table object associated with the 3920 ** subquery until code generation is 3921 ** complete, since there may still exist Expr.pTab entries that 3922 ** refer to the subquery even after flattening. Ticket #3346. 3923 ** 3924 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3925 */ 3926 if( ALWAYS(pSubitem->pTab!=0) ){ 3927 Table *pTabToDel = pSubitem->pTab; 3928 if( pTabToDel->nTabRef==1 ){ 3929 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3930 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3931 pToplevel->pZombieTab = pTabToDel; 3932 }else{ 3933 pTabToDel->nTabRef--; 3934 } 3935 pSubitem->pTab = 0; 3936 } 3937 3938 /* The following loop runs once for each term in a compound-subquery 3939 ** flattening (as described above). If we are doing a different kind 3940 ** of flattening - a flattening other than a compound-subquery flattening - 3941 ** then this loop only runs once. 3942 ** 3943 ** This loop moves all of the FROM elements of the subquery into the 3944 ** the FROM clause of the outer query. Before doing this, remember 3945 ** the cursor number for the original outer query FROM element in 3946 ** iParent. The iParent cursor will never be used. Subsequent code 3947 ** will scan expressions looking for iParent references and replace 3948 ** those references with expressions that resolve to the subquery FROM 3949 ** elements we are now copying in. 3950 */ 3951 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3952 int nSubSrc; 3953 u8 jointype = 0; 3954 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3955 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3956 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3957 3958 if( pSrc ){ 3959 assert( pParent==p ); /* First time through the loop */ 3960 jointype = pSubitem->fg.jointype; 3961 }else{ 3962 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3963 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 3964 if( pSrc==0 ) break; 3965 pParent->pSrc = pSrc; 3966 } 3967 3968 /* The subquery uses a single slot of the FROM clause of the outer 3969 ** query. If the subquery has more than one element in its FROM clause, 3970 ** then expand the outer query to make space for it to hold all elements 3971 ** of the subquery. 3972 ** 3973 ** Example: 3974 ** 3975 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3976 ** 3977 ** The outer query has 3 slots in its FROM clause. One slot of the 3978 ** outer query (the middle slot) is used by the subquery. The next 3979 ** block of code will expand the outer query FROM clause to 4 slots. 3980 ** The middle slot is expanded to two slots in order to make space 3981 ** for the two elements in the FROM clause of the subquery. 3982 */ 3983 if( nSubSrc>1 ){ 3984 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 3985 if( pSrc==0 ) break; 3986 pParent->pSrc = pSrc; 3987 } 3988 3989 /* Transfer the FROM clause terms from the subquery into the 3990 ** outer query. 3991 */ 3992 for(i=0; i<nSubSrc; i++){ 3993 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3994 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3995 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3996 iNewParent = pSubSrc->a[i].iCursor; 3997 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3998 } 3999 pSrc->a[iFrom].fg.jointype = jointype; 4000 4001 /* Now begin substituting subquery result set expressions for 4002 ** references to the iParent in the outer query. 4003 ** 4004 ** Example: 4005 ** 4006 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4007 ** \ \_____________ subquery __________/ / 4008 ** \_____________________ outer query ______________________________/ 4009 ** 4010 ** We look at every expression in the outer query and every place we see 4011 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4012 */ 4013 if( pSub->pOrderBy ){ 4014 /* At this point, any non-zero iOrderByCol values indicate that the 4015 ** ORDER BY column expression is identical to the iOrderByCol'th 4016 ** expression returned by SELECT statement pSub. Since these values 4017 ** do not necessarily correspond to columns in SELECT statement pParent, 4018 ** zero them before transfering the ORDER BY clause. 4019 ** 4020 ** Not doing this may cause an error if a subsequent call to this 4021 ** function attempts to flatten a compound sub-query into pParent 4022 ** (the only way this can happen is if the compound sub-query is 4023 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4024 ExprList *pOrderBy = pSub->pOrderBy; 4025 for(i=0; i<pOrderBy->nExpr; i++){ 4026 pOrderBy->a[i].u.x.iOrderByCol = 0; 4027 } 4028 assert( pParent->pOrderBy==0 ); 4029 pParent->pOrderBy = pOrderBy; 4030 pSub->pOrderBy = 0; 4031 } 4032 pWhere = pSub->pWhere; 4033 pSub->pWhere = 0; 4034 if( isLeftJoin>0 ){ 4035 setJoinExpr(pWhere, iNewParent); 4036 } 4037 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 4038 if( db->mallocFailed==0 ){ 4039 SubstContext x; 4040 x.pParse = pParse; 4041 x.iTable = iParent; 4042 x.iNewTable = iNewParent; 4043 x.isLeftJoin = isLeftJoin; 4044 x.pEList = pSub->pEList; 4045 substSelect(&x, pParent, 0); 4046 } 4047 4048 /* The flattened query is distinct if either the inner or the 4049 ** outer query is distinct. 4050 */ 4051 pParent->selFlags |= pSub->selFlags & SF_Distinct; 4052 4053 /* 4054 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4055 ** 4056 ** One is tempted to try to add a and b to combine the limits. But this 4057 ** does not work if either limit is negative. 4058 */ 4059 if( pSub->pLimit ){ 4060 pParent->pLimit = pSub->pLimit; 4061 pSub->pLimit = 0; 4062 } 4063 } 4064 4065 /* Finially, delete what is left of the subquery and return 4066 ** success. 4067 */ 4068 sqlite3SelectDelete(db, pSub1); 4069 4070 #if SELECTTRACE_ENABLED 4071 if( sqlite3SelectTrace & 0x100 ){ 4072 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4073 sqlite3TreeViewSelect(0, p, 0); 4074 } 4075 #endif 4076 4077 return 1; 4078 } 4079 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4080 4081 /* 4082 ** A structure to keep track of all of the column values that are fixed to 4083 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4084 */ 4085 typedef struct WhereConst WhereConst; 4086 struct WhereConst { 4087 Parse *pParse; /* Parsing context */ 4088 int nConst; /* Number for COLUMN=CONSTANT terms */ 4089 int nChng; /* Number of times a constant is propagated */ 4090 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4091 }; 4092 4093 /* 4094 ** Add a new entry to the pConst object. Except, do not add duplicate 4095 ** pColumn entires. 4096 */ 4097 static void constInsert( 4098 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4099 Expr *pColumn, /* The COLUMN part of the constraint */ 4100 Expr *pValue /* The VALUE part of the constraint */ 4101 ){ 4102 int i; 4103 assert( pColumn->op==TK_COLUMN ); 4104 4105 /* 2018-10-25 ticket [cf5ed20f] 4106 ** Make sure the same pColumn is not inserted more than once */ 4107 for(i=0; i<pConst->nConst; i++){ 4108 const Expr *pExpr = pConst->apExpr[i*2]; 4109 assert( pExpr->op==TK_COLUMN ); 4110 if( pExpr->iTable==pColumn->iTable 4111 && pExpr->iColumn==pColumn->iColumn 4112 ){ 4113 return; /* Already present. Return without doing anything. */ 4114 } 4115 } 4116 4117 pConst->nConst++; 4118 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4119 pConst->nConst*2*sizeof(Expr*)); 4120 if( pConst->apExpr==0 ){ 4121 pConst->nConst = 0; 4122 }else{ 4123 if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft; 4124 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4125 pConst->apExpr[pConst->nConst*2-1] = pValue; 4126 } 4127 } 4128 4129 /* 4130 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4131 ** is a constant expression and where the term must be true because it 4132 ** is part of the AND-connected terms of the expression. For each term 4133 ** found, add it to the pConst structure. 4134 */ 4135 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4136 Expr *pRight, *pLeft; 4137 if( pExpr==0 ) return; 4138 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4139 if( pExpr->op==TK_AND ){ 4140 findConstInWhere(pConst, pExpr->pRight); 4141 findConstInWhere(pConst, pExpr->pLeft); 4142 return; 4143 } 4144 if( pExpr->op!=TK_EQ ) return; 4145 pRight = pExpr->pRight; 4146 pLeft = pExpr->pLeft; 4147 assert( pRight!=0 ); 4148 assert( pLeft!=0 ); 4149 if( pRight->op==TK_COLUMN 4150 && !ExprHasProperty(pRight, EP_FixedCol) 4151 && sqlite3ExprIsConstant(pLeft) 4152 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4153 ){ 4154 constInsert(pConst, pRight, pLeft); 4155 }else 4156 if( pLeft->op==TK_COLUMN 4157 && !ExprHasProperty(pLeft, EP_FixedCol) 4158 && sqlite3ExprIsConstant(pRight) 4159 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4160 ){ 4161 constInsert(pConst, pLeft, pRight); 4162 } 4163 } 4164 4165 /* 4166 ** This is a Walker expression callback. pExpr is a candidate expression 4167 ** to be replaced by a value. If pExpr is equivalent to one of the 4168 ** columns named in pWalker->u.pConst, then overwrite it with its 4169 ** corresponding value. 4170 */ 4171 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4172 int i; 4173 WhereConst *pConst; 4174 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4175 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue; 4176 pConst = pWalker->u.pConst; 4177 for(i=0; i<pConst->nConst; i++){ 4178 Expr *pColumn = pConst->apExpr[i*2]; 4179 if( pColumn==pExpr ) continue; 4180 if( pColumn->iTable!=pExpr->iTable ) continue; 4181 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4182 /* A match is found. Add the EP_FixedCol property */ 4183 pConst->nChng++; 4184 ExprClearProperty(pExpr, EP_Leaf); 4185 ExprSetProperty(pExpr, EP_FixedCol); 4186 assert( pExpr->pLeft==0 ); 4187 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4188 break; 4189 } 4190 return WRC_Prune; 4191 } 4192 4193 /* 4194 ** The WHERE-clause constant propagation optimization. 4195 ** 4196 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4197 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level 4198 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN) 4199 ** then throughout the query replace all other occurrences of COLUMN 4200 ** with CONSTANT within the WHERE clause. 4201 ** 4202 ** For example, the query: 4203 ** 4204 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4205 ** 4206 ** Is transformed into 4207 ** 4208 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4209 ** 4210 ** Return true if any transformations where made and false if not. 4211 ** 4212 ** Implementation note: Constant propagation is tricky due to affinity 4213 ** and collating sequence interactions. Consider this example: 4214 ** 4215 ** CREATE TABLE t1(a INT,b TEXT); 4216 ** INSERT INTO t1 VALUES(123,'0123'); 4217 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4218 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4219 ** 4220 ** The two SELECT statements above should return different answers. b=a 4221 ** is alway true because the comparison uses numeric affinity, but b=123 4222 ** is false because it uses text affinity and '0123' is not the same as '123'. 4223 ** To work around this, the expression tree is not actually changed from 4224 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4225 ** and the "123" value is hung off of the pLeft pointer. Code generator 4226 ** routines know to generate the constant "123" instead of looking up the 4227 ** column value. Also, to avoid collation problems, this optimization is 4228 ** only attempted if the "a=123" term uses the default BINARY collation. 4229 */ 4230 static int propagateConstants( 4231 Parse *pParse, /* The parsing context */ 4232 Select *p /* The query in which to propagate constants */ 4233 ){ 4234 WhereConst x; 4235 Walker w; 4236 int nChng = 0; 4237 x.pParse = pParse; 4238 do{ 4239 x.nConst = 0; 4240 x.nChng = 0; 4241 x.apExpr = 0; 4242 findConstInWhere(&x, p->pWhere); 4243 if( x.nConst ){ 4244 memset(&w, 0, sizeof(w)); 4245 w.pParse = pParse; 4246 w.xExprCallback = propagateConstantExprRewrite; 4247 w.xSelectCallback = sqlite3SelectWalkNoop; 4248 w.xSelectCallback2 = 0; 4249 w.walkerDepth = 0; 4250 w.u.pConst = &x; 4251 sqlite3WalkExpr(&w, p->pWhere); 4252 sqlite3DbFree(x.pParse->db, x.apExpr); 4253 nChng += x.nChng; 4254 } 4255 }while( x.nChng ); 4256 return nChng; 4257 } 4258 4259 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4260 /* 4261 ** Make copies of relevant WHERE clause terms of the outer query into 4262 ** the WHERE clause of subquery. Example: 4263 ** 4264 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4265 ** 4266 ** Transformed into: 4267 ** 4268 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4269 ** WHERE x=5 AND y=10; 4270 ** 4271 ** The hope is that the terms added to the inner query will make it more 4272 ** efficient. 4273 ** 4274 ** Do not attempt this optimization if: 4275 ** 4276 ** (1) (** This restriction was removed on 2017-09-29. We used to 4277 ** disallow this optimization for aggregate subqueries, but now 4278 ** it is allowed by putting the extra terms on the HAVING clause. 4279 ** The added HAVING clause is pointless if the subquery lacks 4280 ** a GROUP BY clause. But such a HAVING clause is also harmless 4281 ** so there does not appear to be any reason to add extra logic 4282 ** to suppress it. **) 4283 ** 4284 ** (2) The inner query is the recursive part of a common table expression. 4285 ** 4286 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4287 ** clause would change the meaning of the LIMIT). 4288 ** 4289 ** (4) The inner query is the right operand of a LEFT JOIN and the 4290 ** expression to be pushed down does not come from the ON clause 4291 ** on that LEFT JOIN. 4292 ** 4293 ** (5) The WHERE clause expression originates in the ON or USING clause 4294 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4295 ** left join. An example: 4296 ** 4297 ** SELECT * 4298 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4299 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4300 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4301 ** 4302 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4303 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4304 ** then the (1,1,NULL) row would be suppressed. 4305 ** 4306 ** (6) The inner query features one or more window-functions (since 4307 ** changes to the WHERE clause of the inner query could change the 4308 ** window over which window functions are calculated). 4309 ** 4310 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4311 ** terms are duplicated into the subquery. 4312 */ 4313 static int pushDownWhereTerms( 4314 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4315 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4316 Expr *pWhere, /* The WHERE clause of the outer query */ 4317 int iCursor, /* Cursor number of the subquery */ 4318 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4319 ){ 4320 Expr *pNew; 4321 int nChng = 0; 4322 if( pWhere==0 ) return 0; 4323 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4324 4325 #ifndef SQLITE_OMIT_WINDOWFUNC 4326 if( pSubq->pWin ) return 0; /* restriction (6) */ 4327 #endif 4328 4329 #ifdef SQLITE_DEBUG 4330 /* Only the first term of a compound can have a WITH clause. But make 4331 ** sure no other terms are marked SF_Recursive in case something changes 4332 ** in the future. 4333 */ 4334 { 4335 Select *pX; 4336 for(pX=pSubq; pX; pX=pX->pPrior){ 4337 assert( (pX->selFlags & (SF_Recursive))==0 ); 4338 } 4339 } 4340 #endif 4341 4342 if( pSubq->pLimit!=0 ){ 4343 return 0; /* restriction (3) */ 4344 } 4345 while( pWhere->op==TK_AND ){ 4346 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4347 iCursor, isLeftJoin); 4348 pWhere = pWhere->pLeft; 4349 } 4350 if( isLeftJoin 4351 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4352 || pWhere->iRightJoinTable!=iCursor) 4353 ){ 4354 return 0; /* restriction (4) */ 4355 } 4356 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4357 return 0; /* restriction (5) */ 4358 } 4359 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4360 nChng++; 4361 while( pSubq ){ 4362 SubstContext x; 4363 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4364 unsetJoinExpr(pNew, -1); 4365 x.pParse = pParse; 4366 x.iTable = iCursor; 4367 x.iNewTable = iCursor; 4368 x.isLeftJoin = 0; 4369 x.pEList = pSubq->pEList; 4370 pNew = substExpr(&x, pNew); 4371 if( pSubq->selFlags & SF_Aggregate ){ 4372 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4373 }else{ 4374 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4375 } 4376 pSubq = pSubq->pPrior; 4377 } 4378 } 4379 return nChng; 4380 } 4381 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4382 4383 /* 4384 ** The pFunc is the only aggregate function in the query. Check to see 4385 ** if the query is a candidate for the min/max optimization. 4386 ** 4387 ** If the query is a candidate for the min/max optimization, then set 4388 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4389 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4390 ** whether pFunc is a min() or max() function. 4391 ** 4392 ** If the query is not a candidate for the min/max optimization, return 4393 ** WHERE_ORDERBY_NORMAL (which must be zero). 4394 ** 4395 ** This routine must be called after aggregate functions have been 4396 ** located but before their arguments have been subjected to aggregate 4397 ** analysis. 4398 */ 4399 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4400 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4401 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4402 const char *zFunc; /* Name of aggregate function pFunc */ 4403 ExprList *pOrderBy; 4404 u8 sortOrder; 4405 4406 assert( *ppMinMax==0 ); 4407 assert( pFunc->op==TK_AGG_FUNCTION ); 4408 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4409 zFunc = pFunc->u.zToken; 4410 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4411 eRet = WHERE_ORDERBY_MIN; 4412 sortOrder = SQLITE_SO_ASC; 4413 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4414 eRet = WHERE_ORDERBY_MAX; 4415 sortOrder = SQLITE_SO_DESC; 4416 }else{ 4417 return eRet; 4418 } 4419 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4420 assert( pOrderBy!=0 || db->mallocFailed ); 4421 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4422 return eRet; 4423 } 4424 4425 /* 4426 ** The select statement passed as the first argument is an aggregate query. 4427 ** The second argument is the associated aggregate-info object. This 4428 ** function tests if the SELECT is of the form: 4429 ** 4430 ** SELECT count(*) FROM <tbl> 4431 ** 4432 ** where table is a database table, not a sub-select or view. If the query 4433 ** does match this pattern, then a pointer to the Table object representing 4434 ** <tbl> is returned. Otherwise, 0 is returned. 4435 */ 4436 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4437 Table *pTab; 4438 Expr *pExpr; 4439 4440 assert( !p->pGroupBy ); 4441 4442 if( p->pWhere || p->pEList->nExpr!=1 4443 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4444 ){ 4445 return 0; 4446 } 4447 pTab = p->pSrc->a[0].pTab; 4448 pExpr = p->pEList->a[0].pExpr; 4449 assert( pTab && !pTab->pSelect && pExpr ); 4450 4451 if( IsVirtual(pTab) ) return 0; 4452 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4453 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4454 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4455 if( pExpr->flags&EP_Distinct ) return 0; 4456 4457 return pTab; 4458 } 4459 4460 /* 4461 ** If the source-list item passed as an argument was augmented with an 4462 ** INDEXED BY clause, then try to locate the specified index. If there 4463 ** was such a clause and the named index cannot be found, return 4464 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4465 ** pFrom->pIndex and return SQLITE_OK. 4466 */ 4467 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4468 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4469 Table *pTab = pFrom->pTab; 4470 char *zIndexedBy = pFrom->u1.zIndexedBy; 4471 Index *pIdx; 4472 for(pIdx=pTab->pIndex; 4473 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4474 pIdx=pIdx->pNext 4475 ); 4476 if( !pIdx ){ 4477 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4478 pParse->checkSchema = 1; 4479 return SQLITE_ERROR; 4480 } 4481 pFrom->pIBIndex = pIdx; 4482 } 4483 return SQLITE_OK; 4484 } 4485 /* 4486 ** Detect compound SELECT statements that use an ORDER BY clause with 4487 ** an alternative collating sequence. 4488 ** 4489 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4490 ** 4491 ** These are rewritten as a subquery: 4492 ** 4493 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4494 ** ORDER BY ... COLLATE ... 4495 ** 4496 ** This transformation is necessary because the multiSelectOrderBy() routine 4497 ** above that generates the code for a compound SELECT with an ORDER BY clause 4498 ** uses a merge algorithm that requires the same collating sequence on the 4499 ** result columns as on the ORDER BY clause. See ticket 4500 ** http://www.sqlite.org/src/info/6709574d2a 4501 ** 4502 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4503 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4504 ** there are COLLATE terms in the ORDER BY. 4505 */ 4506 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4507 int i; 4508 Select *pNew; 4509 Select *pX; 4510 sqlite3 *db; 4511 struct ExprList_item *a; 4512 SrcList *pNewSrc; 4513 Parse *pParse; 4514 Token dummy; 4515 4516 if( p->pPrior==0 ) return WRC_Continue; 4517 if( p->pOrderBy==0 ) return WRC_Continue; 4518 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4519 if( pX==0 ) return WRC_Continue; 4520 a = p->pOrderBy->a; 4521 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4522 if( a[i].pExpr->flags & EP_Collate ) break; 4523 } 4524 if( i<0 ) return WRC_Continue; 4525 4526 /* If we reach this point, that means the transformation is required. */ 4527 4528 pParse = pWalker->pParse; 4529 db = pParse->db; 4530 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4531 if( pNew==0 ) return WRC_Abort; 4532 memset(&dummy, 0, sizeof(dummy)); 4533 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4534 if( pNewSrc==0 ) return WRC_Abort; 4535 *pNew = *p; 4536 p->pSrc = pNewSrc; 4537 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4538 p->op = TK_SELECT; 4539 p->pWhere = 0; 4540 pNew->pGroupBy = 0; 4541 pNew->pHaving = 0; 4542 pNew->pOrderBy = 0; 4543 p->pPrior = 0; 4544 p->pNext = 0; 4545 p->pWith = 0; 4546 p->selFlags &= ~SF_Compound; 4547 assert( (p->selFlags & SF_Converted)==0 ); 4548 p->selFlags |= SF_Converted; 4549 assert( pNew->pPrior!=0 ); 4550 pNew->pPrior->pNext = pNew; 4551 pNew->pLimit = 0; 4552 return WRC_Continue; 4553 } 4554 4555 /* 4556 ** Check to see if the FROM clause term pFrom has table-valued function 4557 ** arguments. If it does, leave an error message in pParse and return 4558 ** non-zero, since pFrom is not allowed to be a table-valued function. 4559 */ 4560 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4561 if( pFrom->fg.isTabFunc ){ 4562 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4563 return 1; 4564 } 4565 return 0; 4566 } 4567 4568 #ifndef SQLITE_OMIT_CTE 4569 /* 4570 ** Argument pWith (which may be NULL) points to a linked list of nested 4571 ** WITH contexts, from inner to outermost. If the table identified by 4572 ** FROM clause element pItem is really a common-table-expression (CTE) 4573 ** then return a pointer to the CTE definition for that table. Otherwise 4574 ** return NULL. 4575 ** 4576 ** If a non-NULL value is returned, set *ppContext to point to the With 4577 ** object that the returned CTE belongs to. 4578 */ 4579 static struct Cte *searchWith( 4580 With *pWith, /* Current innermost WITH clause */ 4581 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4582 With **ppContext /* OUT: WITH clause return value belongs to */ 4583 ){ 4584 const char *zName; 4585 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4586 With *p; 4587 for(p=pWith; p; p=p->pOuter){ 4588 int i; 4589 for(i=0; i<p->nCte; i++){ 4590 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4591 *ppContext = p; 4592 return &p->a[i]; 4593 } 4594 } 4595 } 4596 } 4597 return 0; 4598 } 4599 4600 /* The code generator maintains a stack of active WITH clauses 4601 ** with the inner-most WITH clause being at the top of the stack. 4602 ** 4603 ** This routine pushes the WITH clause passed as the second argument 4604 ** onto the top of the stack. If argument bFree is true, then this 4605 ** WITH clause will never be popped from the stack. In this case it 4606 ** should be freed along with the Parse object. In other cases, when 4607 ** bFree==0, the With object will be freed along with the SELECT 4608 ** statement with which it is associated. 4609 */ 4610 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4611 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4612 if( pWith ){ 4613 assert( pParse->pWith!=pWith ); 4614 pWith->pOuter = pParse->pWith; 4615 pParse->pWith = pWith; 4616 if( bFree ) pParse->pWithToFree = pWith; 4617 } 4618 } 4619 4620 /* 4621 ** This function checks if argument pFrom refers to a CTE declared by 4622 ** a WITH clause on the stack currently maintained by the parser. And, 4623 ** if currently processing a CTE expression, if it is a recursive 4624 ** reference to the current CTE. 4625 ** 4626 ** If pFrom falls into either of the two categories above, pFrom->pTab 4627 ** and other fields are populated accordingly. The caller should check 4628 ** (pFrom->pTab!=0) to determine whether or not a successful match 4629 ** was found. 4630 ** 4631 ** Whether or not a match is found, SQLITE_OK is returned if no error 4632 ** occurs. If an error does occur, an error message is stored in the 4633 ** parser and some error code other than SQLITE_OK returned. 4634 */ 4635 static int withExpand( 4636 Walker *pWalker, 4637 struct SrcList_item *pFrom 4638 ){ 4639 Parse *pParse = pWalker->pParse; 4640 sqlite3 *db = pParse->db; 4641 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4642 With *pWith; /* WITH clause that pCte belongs to */ 4643 4644 assert( pFrom->pTab==0 ); 4645 4646 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4647 if( pCte ){ 4648 Table *pTab; 4649 ExprList *pEList; 4650 Select *pSel; 4651 Select *pLeft; /* Left-most SELECT statement */ 4652 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4653 With *pSavedWith; /* Initial value of pParse->pWith */ 4654 4655 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4656 ** recursive reference to CTE pCte. Leave an error in pParse and return 4657 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4658 ** In this case, proceed. */ 4659 if( pCte->zCteErr ){ 4660 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4661 return SQLITE_ERROR; 4662 } 4663 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4664 4665 assert( pFrom->pTab==0 ); 4666 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4667 if( pTab==0 ) return WRC_Abort; 4668 pTab->nTabRef = 1; 4669 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4670 pTab->iPKey = -1; 4671 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4672 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4673 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4674 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4675 assert( pFrom->pSelect ); 4676 4677 /* Check if this is a recursive CTE. */ 4678 pSel = pFrom->pSelect; 4679 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4680 if( bMayRecursive ){ 4681 int i; 4682 SrcList *pSrc = pFrom->pSelect->pSrc; 4683 for(i=0; i<pSrc->nSrc; i++){ 4684 struct SrcList_item *pItem = &pSrc->a[i]; 4685 if( pItem->zDatabase==0 4686 && pItem->zName!=0 4687 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4688 ){ 4689 pItem->pTab = pTab; 4690 pItem->fg.isRecursive = 1; 4691 pTab->nTabRef++; 4692 pSel->selFlags |= SF_Recursive; 4693 } 4694 } 4695 } 4696 4697 /* Only one recursive reference is permitted. */ 4698 if( pTab->nTabRef>2 ){ 4699 sqlite3ErrorMsg( 4700 pParse, "multiple references to recursive table: %s", pCte->zName 4701 ); 4702 return SQLITE_ERROR; 4703 } 4704 assert( pTab->nTabRef==1 || 4705 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4706 4707 pCte->zCteErr = "circular reference: %s"; 4708 pSavedWith = pParse->pWith; 4709 pParse->pWith = pWith; 4710 if( bMayRecursive ){ 4711 Select *pPrior = pSel->pPrior; 4712 assert( pPrior->pWith==0 ); 4713 pPrior->pWith = pSel->pWith; 4714 sqlite3WalkSelect(pWalker, pPrior); 4715 pPrior->pWith = 0; 4716 }else{ 4717 sqlite3WalkSelect(pWalker, pSel); 4718 } 4719 pParse->pWith = pWith; 4720 4721 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4722 pEList = pLeft->pEList; 4723 if( pCte->pCols ){ 4724 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4725 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4726 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4727 ); 4728 pParse->pWith = pSavedWith; 4729 return SQLITE_ERROR; 4730 } 4731 pEList = pCte->pCols; 4732 } 4733 4734 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4735 if( bMayRecursive ){ 4736 if( pSel->selFlags & SF_Recursive ){ 4737 pCte->zCteErr = "multiple recursive references: %s"; 4738 }else{ 4739 pCte->zCteErr = "recursive reference in a subquery: %s"; 4740 } 4741 sqlite3WalkSelect(pWalker, pSel); 4742 } 4743 pCte->zCteErr = 0; 4744 pParse->pWith = pSavedWith; 4745 } 4746 4747 return SQLITE_OK; 4748 } 4749 #endif 4750 4751 #ifndef SQLITE_OMIT_CTE 4752 /* 4753 ** If the SELECT passed as the second argument has an associated WITH 4754 ** clause, pop it from the stack stored as part of the Parse object. 4755 ** 4756 ** This function is used as the xSelectCallback2() callback by 4757 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4758 ** names and other FROM clause elements. 4759 */ 4760 static void selectPopWith(Walker *pWalker, Select *p){ 4761 Parse *pParse = pWalker->pParse; 4762 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4763 With *pWith = findRightmost(p)->pWith; 4764 if( pWith!=0 ){ 4765 assert( pParse->pWith==pWith ); 4766 pParse->pWith = pWith->pOuter; 4767 } 4768 } 4769 } 4770 #else 4771 #define selectPopWith 0 4772 #endif 4773 4774 /* 4775 ** The SrcList_item structure passed as the second argument represents a 4776 ** sub-query in the FROM clause of a SELECT statement. This function 4777 ** allocates and populates the SrcList_item.pTab object. If successful, 4778 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4779 ** SQLITE_NOMEM. 4780 */ 4781 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4782 Select *pSel = pFrom->pSelect; 4783 Table *pTab; 4784 4785 assert( pSel ); 4786 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4787 if( pTab==0 ) return SQLITE_NOMEM; 4788 pTab->nTabRef = 1; 4789 if( pFrom->zAlias ){ 4790 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4791 }else{ 4792 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4793 } 4794 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4795 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4796 pTab->iPKey = -1; 4797 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4798 pTab->tabFlags |= TF_Ephemeral; 4799 4800 return SQLITE_OK; 4801 } 4802 4803 /* 4804 ** This routine is a Walker callback for "expanding" a SELECT statement. 4805 ** "Expanding" means to do the following: 4806 ** 4807 ** (1) Make sure VDBE cursor numbers have been assigned to every 4808 ** element of the FROM clause. 4809 ** 4810 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4811 ** defines FROM clause. When views appear in the FROM clause, 4812 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4813 ** that implements the view. A copy is made of the view's SELECT 4814 ** statement so that we can freely modify or delete that statement 4815 ** without worrying about messing up the persistent representation 4816 ** of the view. 4817 ** 4818 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4819 ** on joins and the ON and USING clause of joins. 4820 ** 4821 ** (4) Scan the list of columns in the result set (pEList) looking 4822 ** for instances of the "*" operator or the TABLE.* operator. 4823 ** If found, expand each "*" to be every column in every table 4824 ** and TABLE.* to be every column in TABLE. 4825 ** 4826 */ 4827 static int selectExpander(Walker *pWalker, Select *p){ 4828 Parse *pParse = pWalker->pParse; 4829 int i, j, k; 4830 SrcList *pTabList; 4831 ExprList *pEList; 4832 struct SrcList_item *pFrom; 4833 sqlite3 *db = pParse->db; 4834 Expr *pE, *pRight, *pExpr; 4835 u16 selFlags = p->selFlags; 4836 u32 elistFlags = 0; 4837 4838 p->selFlags |= SF_Expanded; 4839 if( db->mallocFailed ){ 4840 return WRC_Abort; 4841 } 4842 assert( p->pSrc!=0 ); 4843 if( (selFlags & SF_Expanded)!=0 ){ 4844 return WRC_Prune; 4845 } 4846 pTabList = p->pSrc; 4847 pEList = p->pEList; 4848 sqlite3WithPush(pParse, p->pWith, 0); 4849 4850 /* Make sure cursor numbers have been assigned to all entries in 4851 ** the FROM clause of the SELECT statement. 4852 */ 4853 sqlite3SrcListAssignCursors(pParse, pTabList); 4854 4855 /* Look up every table named in the FROM clause of the select. If 4856 ** an entry of the FROM clause is a subquery instead of a table or view, 4857 ** then create a transient table structure to describe the subquery. 4858 */ 4859 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4860 Table *pTab; 4861 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4862 if( pFrom->fg.isRecursive ) continue; 4863 assert( pFrom->pTab==0 ); 4864 #ifndef SQLITE_OMIT_CTE 4865 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4866 if( pFrom->pTab ) {} else 4867 #endif 4868 if( pFrom->zName==0 ){ 4869 #ifndef SQLITE_OMIT_SUBQUERY 4870 Select *pSel = pFrom->pSelect; 4871 /* A sub-query in the FROM clause of a SELECT */ 4872 assert( pSel!=0 ); 4873 assert( pFrom->pTab==0 ); 4874 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4875 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4876 #endif 4877 }else{ 4878 /* An ordinary table or view name in the FROM clause */ 4879 assert( pFrom->pTab==0 ); 4880 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4881 if( pTab==0 ) return WRC_Abort; 4882 if( pTab->nTabRef>=0xffff ){ 4883 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4884 pTab->zName); 4885 pFrom->pTab = 0; 4886 return WRC_Abort; 4887 } 4888 pTab->nTabRef++; 4889 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4890 return WRC_Abort; 4891 } 4892 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4893 if( IsVirtual(pTab) || pTab->pSelect ){ 4894 i16 nCol; 4895 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4896 assert( pFrom->pSelect==0 ); 4897 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4898 nCol = pTab->nCol; 4899 pTab->nCol = -1; 4900 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4901 pTab->nCol = nCol; 4902 } 4903 #endif 4904 } 4905 4906 /* Locate the index named by the INDEXED BY clause, if any. */ 4907 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4908 return WRC_Abort; 4909 } 4910 } 4911 4912 /* Process NATURAL keywords, and ON and USING clauses of joins. 4913 */ 4914 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4915 return WRC_Abort; 4916 } 4917 4918 /* For every "*" that occurs in the column list, insert the names of 4919 ** all columns in all tables. And for every TABLE.* insert the names 4920 ** of all columns in TABLE. The parser inserted a special expression 4921 ** with the TK_ASTERISK operator for each "*" that it found in the column 4922 ** list. The following code just has to locate the TK_ASTERISK 4923 ** expressions and expand each one to the list of all columns in 4924 ** all tables. 4925 ** 4926 ** The first loop just checks to see if there are any "*" operators 4927 ** that need expanding. 4928 */ 4929 for(k=0; k<pEList->nExpr; k++){ 4930 pE = pEList->a[k].pExpr; 4931 if( pE->op==TK_ASTERISK ) break; 4932 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4933 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4934 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4935 elistFlags |= pE->flags; 4936 } 4937 if( k<pEList->nExpr ){ 4938 /* 4939 ** If we get here it means the result set contains one or more "*" 4940 ** operators that need to be expanded. Loop through each expression 4941 ** in the result set and expand them one by one. 4942 */ 4943 struct ExprList_item *a = pEList->a; 4944 ExprList *pNew = 0; 4945 int flags = pParse->db->flags; 4946 int longNames = (flags & SQLITE_FullColNames)!=0 4947 && (flags & SQLITE_ShortColNames)==0; 4948 4949 for(k=0; k<pEList->nExpr; k++){ 4950 pE = a[k].pExpr; 4951 elistFlags |= pE->flags; 4952 pRight = pE->pRight; 4953 assert( pE->op!=TK_DOT || pRight!=0 ); 4954 if( pE->op!=TK_ASTERISK 4955 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4956 ){ 4957 /* This particular expression does not need to be expanded. 4958 */ 4959 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4960 if( pNew ){ 4961 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4962 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4963 a[k].zName = 0; 4964 a[k].zSpan = 0; 4965 } 4966 a[k].pExpr = 0; 4967 }else{ 4968 /* This expression is a "*" or a "TABLE.*" and needs to be 4969 ** expanded. */ 4970 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4971 char *zTName = 0; /* text of name of TABLE */ 4972 if( pE->op==TK_DOT ){ 4973 assert( pE->pLeft!=0 ); 4974 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4975 zTName = pE->pLeft->u.zToken; 4976 } 4977 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4978 Table *pTab = pFrom->pTab; 4979 Select *pSub = pFrom->pSelect; 4980 char *zTabName = pFrom->zAlias; 4981 const char *zSchemaName = 0; 4982 int iDb; 4983 if( zTabName==0 ){ 4984 zTabName = pTab->zName; 4985 } 4986 if( db->mallocFailed ) break; 4987 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4988 pSub = 0; 4989 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4990 continue; 4991 } 4992 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4993 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4994 } 4995 for(j=0; j<pTab->nCol; j++){ 4996 char *zName = pTab->aCol[j].zName; 4997 char *zColname; /* The computed column name */ 4998 char *zToFree; /* Malloced string that needs to be freed */ 4999 Token sColname; /* Computed column name as a token */ 5000 5001 assert( zName ); 5002 if( zTName && pSub 5003 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 5004 ){ 5005 continue; 5006 } 5007 5008 /* If a column is marked as 'hidden', omit it from the expanded 5009 ** result-set list unless the SELECT has the SF_IncludeHidden 5010 ** bit set. 5011 */ 5012 if( (p->selFlags & SF_IncludeHidden)==0 5013 && IsHiddenColumn(&pTab->aCol[j]) 5014 ){ 5015 continue; 5016 } 5017 tableSeen = 1; 5018 5019 if( i>0 && zTName==0 ){ 5020 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5021 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 5022 ){ 5023 /* In a NATURAL join, omit the join columns from the 5024 ** table to the right of the join */ 5025 continue; 5026 } 5027 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5028 /* In a join with a USING clause, omit columns in the 5029 ** using clause from the table on the right. */ 5030 continue; 5031 } 5032 } 5033 pRight = sqlite3Expr(db, TK_ID, zName); 5034 zColname = zName; 5035 zToFree = 0; 5036 if( longNames || pTabList->nSrc>1 ){ 5037 Expr *pLeft; 5038 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5039 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5040 if( zSchemaName ){ 5041 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5042 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5043 } 5044 if( longNames ){ 5045 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5046 zToFree = zColname; 5047 } 5048 }else{ 5049 pExpr = pRight; 5050 } 5051 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5052 sqlite3TokenInit(&sColname, zColname); 5053 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5054 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 5055 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5056 if( pSub ){ 5057 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 5058 testcase( pX->zSpan==0 ); 5059 }else{ 5060 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 5061 zSchemaName, zTabName, zColname); 5062 testcase( pX->zSpan==0 ); 5063 } 5064 pX->bSpanIsTab = 1; 5065 } 5066 sqlite3DbFree(db, zToFree); 5067 } 5068 } 5069 if( !tableSeen ){ 5070 if( zTName ){ 5071 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5072 }else{ 5073 sqlite3ErrorMsg(pParse, "no tables specified"); 5074 } 5075 } 5076 } 5077 } 5078 sqlite3ExprListDelete(db, pEList); 5079 p->pEList = pNew; 5080 } 5081 if( p->pEList ){ 5082 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5083 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5084 return WRC_Abort; 5085 } 5086 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5087 p->selFlags |= SF_ComplexResult; 5088 } 5089 } 5090 return WRC_Continue; 5091 } 5092 5093 /* 5094 ** No-op routine for the parse-tree walker. 5095 ** 5096 ** When this routine is the Walker.xExprCallback then expression trees 5097 ** are walked without any actions being taken at each node. Presumably, 5098 ** when this routine is used for Walker.xExprCallback then 5099 ** Walker.xSelectCallback is set to do something useful for every 5100 ** subquery in the parser tree. 5101 */ 5102 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5103 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5104 return WRC_Continue; 5105 } 5106 5107 /* 5108 ** No-op routine for the parse-tree walker for SELECT statements. 5109 ** subquery in the parser tree. 5110 */ 5111 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5112 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5113 return WRC_Continue; 5114 } 5115 5116 #if SQLITE_DEBUG 5117 /* 5118 ** Always assert. This xSelectCallback2 implementation proves that the 5119 ** xSelectCallback2 is never invoked. 5120 */ 5121 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5122 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5123 assert( 0 ); 5124 } 5125 #endif 5126 /* 5127 ** This routine "expands" a SELECT statement and all of its subqueries. 5128 ** For additional information on what it means to "expand" a SELECT 5129 ** statement, see the comment on the selectExpand worker callback above. 5130 ** 5131 ** Expanding a SELECT statement is the first step in processing a 5132 ** SELECT statement. The SELECT statement must be expanded before 5133 ** name resolution is performed. 5134 ** 5135 ** If anything goes wrong, an error message is written into pParse. 5136 ** The calling function can detect the problem by looking at pParse->nErr 5137 ** and/or pParse->db->mallocFailed. 5138 */ 5139 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5140 Walker w; 5141 w.xExprCallback = sqlite3ExprWalkNoop; 5142 w.pParse = pParse; 5143 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5144 w.xSelectCallback = convertCompoundSelectToSubquery; 5145 w.xSelectCallback2 = 0; 5146 sqlite3WalkSelect(&w, pSelect); 5147 } 5148 w.xSelectCallback = selectExpander; 5149 w.xSelectCallback2 = selectPopWith; 5150 sqlite3WalkSelect(&w, pSelect); 5151 } 5152 5153 5154 #ifndef SQLITE_OMIT_SUBQUERY 5155 /* 5156 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5157 ** interface. 5158 ** 5159 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5160 ** information to the Table structure that represents the result set 5161 ** of that subquery. 5162 ** 5163 ** The Table structure that represents the result set was constructed 5164 ** by selectExpander() but the type and collation information was omitted 5165 ** at that point because identifiers had not yet been resolved. This 5166 ** routine is called after identifier resolution. 5167 */ 5168 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5169 Parse *pParse; 5170 int i; 5171 SrcList *pTabList; 5172 struct SrcList_item *pFrom; 5173 5174 assert( p->selFlags & SF_Resolved ); 5175 if( p->selFlags & SF_HasTypeInfo ) return; 5176 p->selFlags |= SF_HasTypeInfo; 5177 pParse = pWalker->pParse; 5178 pTabList = p->pSrc; 5179 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5180 Table *pTab = pFrom->pTab; 5181 assert( pTab!=0 ); 5182 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5183 /* A sub-query in the FROM clause of a SELECT */ 5184 Select *pSel = pFrom->pSelect; 5185 if( pSel ){ 5186 while( pSel->pPrior ) pSel = pSel->pPrior; 5187 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 5188 } 5189 } 5190 } 5191 } 5192 #endif 5193 5194 5195 /* 5196 ** This routine adds datatype and collating sequence information to 5197 ** the Table structures of all FROM-clause subqueries in a 5198 ** SELECT statement. 5199 ** 5200 ** Use this routine after name resolution. 5201 */ 5202 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5203 #ifndef SQLITE_OMIT_SUBQUERY 5204 Walker w; 5205 w.xSelectCallback = sqlite3SelectWalkNoop; 5206 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5207 w.xExprCallback = sqlite3ExprWalkNoop; 5208 w.pParse = pParse; 5209 sqlite3WalkSelect(&w, pSelect); 5210 #endif 5211 } 5212 5213 5214 /* 5215 ** This routine sets up a SELECT statement for processing. The 5216 ** following is accomplished: 5217 ** 5218 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5219 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5220 ** * ON and USING clauses are shifted into WHERE statements 5221 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5222 ** * Identifiers in expression are matched to tables. 5223 ** 5224 ** This routine acts recursively on all subqueries within the SELECT. 5225 */ 5226 void sqlite3SelectPrep( 5227 Parse *pParse, /* The parser context */ 5228 Select *p, /* The SELECT statement being coded. */ 5229 NameContext *pOuterNC /* Name context for container */ 5230 ){ 5231 assert( p!=0 || pParse->db->mallocFailed ); 5232 if( pParse->db->mallocFailed ) return; 5233 if( p->selFlags & SF_HasTypeInfo ) return; 5234 sqlite3SelectExpand(pParse, p); 5235 if( pParse->nErr || pParse->db->mallocFailed ) return; 5236 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5237 if( pParse->nErr || pParse->db->mallocFailed ) return; 5238 sqlite3SelectAddTypeInfo(pParse, p); 5239 } 5240 5241 /* 5242 ** Reset the aggregate accumulator. 5243 ** 5244 ** The aggregate accumulator is a set of memory cells that hold 5245 ** intermediate results while calculating an aggregate. This 5246 ** routine generates code that stores NULLs in all of those memory 5247 ** cells. 5248 */ 5249 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5250 Vdbe *v = pParse->pVdbe; 5251 int i; 5252 struct AggInfo_func *pFunc; 5253 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5254 if( nReg==0 ) return; 5255 #ifdef SQLITE_DEBUG 5256 /* Verify that all AggInfo registers are within the range specified by 5257 ** AggInfo.mnReg..AggInfo.mxReg */ 5258 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5259 for(i=0; i<pAggInfo->nColumn; i++){ 5260 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5261 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5262 } 5263 for(i=0; i<pAggInfo->nFunc; i++){ 5264 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5265 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5266 } 5267 #endif 5268 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5269 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5270 if( pFunc->iDistinct>=0 ){ 5271 Expr *pE = pFunc->pExpr; 5272 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5273 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5274 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5275 "argument"); 5276 pFunc->iDistinct = -1; 5277 }else{ 5278 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5279 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5280 (char*)pKeyInfo, P4_KEYINFO); 5281 } 5282 } 5283 } 5284 } 5285 5286 /* 5287 ** Invoke the OP_AggFinalize opcode for every aggregate function 5288 ** in the AggInfo structure. 5289 */ 5290 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5291 Vdbe *v = pParse->pVdbe; 5292 int i; 5293 struct AggInfo_func *pF; 5294 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5295 ExprList *pList = pF->pExpr->x.pList; 5296 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5297 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5298 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5299 } 5300 } 5301 5302 5303 /* 5304 ** Update the accumulator memory cells for an aggregate based on 5305 ** the current cursor position. 5306 ** 5307 ** If regAcc is non-zero and there are no min() or max() aggregates 5308 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5309 ** registers if register regAcc contains 0. The caller will take care 5310 ** of setting and clearing regAcc. 5311 */ 5312 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5313 Vdbe *v = pParse->pVdbe; 5314 int i; 5315 int regHit = 0; 5316 int addrHitTest = 0; 5317 struct AggInfo_func *pF; 5318 struct AggInfo_col *pC; 5319 5320 pAggInfo->directMode = 1; 5321 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5322 int nArg; 5323 int addrNext = 0; 5324 int regAgg; 5325 ExprList *pList = pF->pExpr->x.pList; 5326 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5327 if( pList ){ 5328 nArg = pList->nExpr; 5329 regAgg = sqlite3GetTempRange(pParse, nArg); 5330 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5331 }else{ 5332 nArg = 0; 5333 regAgg = 0; 5334 } 5335 if( pF->iDistinct>=0 ){ 5336 addrNext = sqlite3VdbeMakeLabel(pParse); 5337 testcase( nArg==0 ); /* Error condition */ 5338 testcase( nArg>1 ); /* Also an error */ 5339 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5340 } 5341 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5342 CollSeq *pColl = 0; 5343 struct ExprList_item *pItem; 5344 int j; 5345 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5346 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5347 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5348 } 5349 if( !pColl ){ 5350 pColl = pParse->db->pDfltColl; 5351 } 5352 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5353 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5354 } 5355 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5356 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5357 sqlite3VdbeChangeP5(v, (u8)nArg); 5358 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5359 if( addrNext ){ 5360 sqlite3VdbeResolveLabel(v, addrNext); 5361 } 5362 } 5363 if( regHit==0 && pAggInfo->nAccumulator ){ 5364 regHit = regAcc; 5365 } 5366 if( regHit ){ 5367 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5368 } 5369 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5370 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5371 } 5372 pAggInfo->directMode = 0; 5373 if( addrHitTest ){ 5374 sqlite3VdbeJumpHere(v, addrHitTest); 5375 } 5376 } 5377 5378 /* 5379 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5380 ** count(*) query ("SELECT count(*) FROM pTab"). 5381 */ 5382 #ifndef SQLITE_OMIT_EXPLAIN 5383 static void explainSimpleCount( 5384 Parse *pParse, /* Parse context */ 5385 Table *pTab, /* Table being queried */ 5386 Index *pIdx /* Index used to optimize scan, or NULL */ 5387 ){ 5388 if( pParse->explain==2 ){ 5389 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5390 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5391 pTab->zName, 5392 bCover ? " USING COVERING INDEX " : "", 5393 bCover ? pIdx->zName : "" 5394 ); 5395 } 5396 } 5397 #else 5398 # define explainSimpleCount(a,b,c) 5399 #endif 5400 5401 /* 5402 ** sqlite3WalkExpr() callback used by havingToWhere(). 5403 ** 5404 ** If the node passed to the callback is a TK_AND node, return 5405 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5406 ** 5407 ** Otherwise, return WRC_Prune. In this case, also check if the 5408 ** sub-expression matches the criteria for being moved to the WHERE 5409 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5410 ** within the HAVING expression with a constant "1". 5411 */ 5412 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5413 if( pExpr->op!=TK_AND ){ 5414 Select *pS = pWalker->u.pSelect; 5415 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5416 sqlite3 *db = pWalker->pParse->db; 5417 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5418 if( pNew ){ 5419 Expr *pWhere = pS->pWhere; 5420 SWAP(Expr, *pNew, *pExpr); 5421 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5422 pS->pWhere = pNew; 5423 pWalker->eCode = 1; 5424 } 5425 } 5426 return WRC_Prune; 5427 } 5428 return WRC_Continue; 5429 } 5430 5431 /* 5432 ** Transfer eligible terms from the HAVING clause of a query, which is 5433 ** processed after grouping, to the WHERE clause, which is processed before 5434 ** grouping. For example, the query: 5435 ** 5436 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5437 ** 5438 ** can be rewritten as: 5439 ** 5440 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5441 ** 5442 ** A term of the HAVING expression is eligible for transfer if it consists 5443 ** entirely of constants and expressions that are also GROUP BY terms that 5444 ** use the "BINARY" collation sequence. 5445 */ 5446 static void havingToWhere(Parse *pParse, Select *p){ 5447 Walker sWalker; 5448 memset(&sWalker, 0, sizeof(sWalker)); 5449 sWalker.pParse = pParse; 5450 sWalker.xExprCallback = havingToWhereExprCb; 5451 sWalker.u.pSelect = p; 5452 sqlite3WalkExpr(&sWalker, p->pHaving); 5453 #if SELECTTRACE_ENABLED 5454 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5455 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5456 sqlite3TreeViewSelect(0, p, 0); 5457 } 5458 #endif 5459 } 5460 5461 /* 5462 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5463 ** If it is, then return the SrcList_item for the prior view. If it is not, 5464 ** then return 0. 5465 */ 5466 static struct SrcList_item *isSelfJoinView( 5467 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5468 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5469 ){ 5470 struct SrcList_item *pItem; 5471 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5472 Select *pS1; 5473 if( pItem->pSelect==0 ) continue; 5474 if( pItem->fg.viaCoroutine ) continue; 5475 if( pItem->zName==0 ) continue; 5476 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5477 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5478 pS1 = pItem->pSelect; 5479 if( pThis->pSelect->selId!=pS1->selId ){ 5480 /* The query flattener left two different CTE tables with identical 5481 ** names in the same FROM clause. */ 5482 continue; 5483 } 5484 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1) ){ 5485 /* The view was modified by some other optimization such as 5486 ** pushDownWhereTerms() */ 5487 continue; 5488 } 5489 return pItem; 5490 } 5491 return 0; 5492 } 5493 5494 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5495 /* 5496 ** Attempt to transform a query of the form 5497 ** 5498 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5499 ** 5500 ** Into this: 5501 ** 5502 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5503 ** 5504 ** The transformation only works if all of the following are true: 5505 ** 5506 ** * The subquery is a UNION ALL of two or more terms 5507 ** * The subquery does not have a LIMIT clause 5508 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5509 ** * The outer query is a simple count(*) 5510 ** 5511 ** Return TRUE if the optimization is undertaken. 5512 */ 5513 static int countOfViewOptimization(Parse *pParse, Select *p){ 5514 Select *pSub, *pPrior; 5515 Expr *pExpr; 5516 Expr *pCount; 5517 sqlite3 *db; 5518 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5519 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5520 pExpr = p->pEList->a[0].pExpr; 5521 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5522 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5523 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5524 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5525 pSub = p->pSrc->a[0].pSelect; 5526 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5527 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5528 do{ 5529 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5530 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5531 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5532 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5533 pSub = pSub->pPrior; /* Repeat over compound */ 5534 }while( pSub ); 5535 5536 /* If we reach this point then it is OK to perform the transformation */ 5537 5538 db = pParse->db; 5539 pCount = pExpr; 5540 pExpr = 0; 5541 pSub = p->pSrc->a[0].pSelect; 5542 p->pSrc->a[0].pSelect = 0; 5543 sqlite3SrcListDelete(db, p->pSrc); 5544 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5545 while( pSub ){ 5546 Expr *pTerm; 5547 pPrior = pSub->pPrior; 5548 pSub->pPrior = 0; 5549 pSub->pNext = 0; 5550 pSub->selFlags |= SF_Aggregate; 5551 pSub->selFlags &= ~SF_Compound; 5552 pSub->nSelectRow = 0; 5553 sqlite3ExprListDelete(db, pSub->pEList); 5554 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5555 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5556 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5557 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5558 if( pExpr==0 ){ 5559 pExpr = pTerm; 5560 }else{ 5561 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5562 } 5563 pSub = pPrior; 5564 } 5565 p->pEList->a[0].pExpr = pExpr; 5566 p->selFlags &= ~SF_Aggregate; 5567 5568 #if SELECTTRACE_ENABLED 5569 if( sqlite3SelectTrace & 0x400 ){ 5570 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5571 sqlite3TreeViewSelect(0, p, 0); 5572 } 5573 #endif 5574 return 1; 5575 } 5576 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5577 5578 /* 5579 ** Generate code for the SELECT statement given in the p argument. 5580 ** 5581 ** The results are returned according to the SelectDest structure. 5582 ** See comments in sqliteInt.h for further information. 5583 ** 5584 ** This routine returns the number of errors. If any errors are 5585 ** encountered, then an appropriate error message is left in 5586 ** pParse->zErrMsg. 5587 ** 5588 ** This routine does NOT free the Select structure passed in. The 5589 ** calling function needs to do that. 5590 */ 5591 int sqlite3Select( 5592 Parse *pParse, /* The parser context */ 5593 Select *p, /* The SELECT statement being coded. */ 5594 SelectDest *pDest /* What to do with the query results */ 5595 ){ 5596 int i, j; /* Loop counters */ 5597 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5598 Vdbe *v; /* The virtual machine under construction */ 5599 int isAgg; /* True for select lists like "count(*)" */ 5600 ExprList *pEList = 0; /* List of columns to extract. */ 5601 SrcList *pTabList; /* List of tables to select from */ 5602 Expr *pWhere; /* The WHERE clause. May be NULL */ 5603 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5604 Expr *pHaving; /* The HAVING clause. May be NULL */ 5605 int rc = 1; /* Value to return from this function */ 5606 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5607 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5608 AggInfo sAggInfo; /* Information used by aggregate queries */ 5609 int iEnd; /* Address of the end of the query */ 5610 sqlite3 *db; /* The database connection */ 5611 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5612 u8 minMaxFlag; /* Flag for min/max queries */ 5613 5614 db = pParse->db; 5615 v = sqlite3GetVdbe(pParse); 5616 if( p==0 || db->mallocFailed || pParse->nErr ){ 5617 return 1; 5618 } 5619 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5620 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5621 #if SELECTTRACE_ENABLED 5622 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5623 if( sqlite3SelectTrace & 0x100 ){ 5624 sqlite3TreeViewSelect(0, p, 0); 5625 } 5626 #endif 5627 5628 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5629 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5630 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5631 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5632 if( IgnorableOrderby(pDest) ){ 5633 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5634 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5635 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5636 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5637 /* If ORDER BY makes no difference in the output then neither does 5638 ** DISTINCT so it can be removed too. */ 5639 sqlite3ExprListDelete(db, p->pOrderBy); 5640 p->pOrderBy = 0; 5641 p->selFlags &= ~SF_Distinct; 5642 } 5643 sqlite3SelectPrep(pParse, p, 0); 5644 if( pParse->nErr || db->mallocFailed ){ 5645 goto select_end; 5646 } 5647 assert( p->pEList!=0 ); 5648 #if SELECTTRACE_ENABLED 5649 if( sqlite3SelectTrace & 0x104 ){ 5650 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5651 sqlite3TreeViewSelect(0, p, 0); 5652 } 5653 #endif 5654 5655 if( pDest->eDest==SRT_Output ){ 5656 generateColumnNames(pParse, p); 5657 } 5658 5659 #ifndef SQLITE_OMIT_WINDOWFUNC 5660 if( sqlite3WindowRewrite(pParse, p) ){ 5661 goto select_end; 5662 } 5663 #if SELECTTRACE_ENABLED 5664 if( sqlite3SelectTrace & 0x108 ){ 5665 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5666 sqlite3TreeViewSelect(0, p, 0); 5667 } 5668 #endif 5669 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5670 pTabList = p->pSrc; 5671 isAgg = (p->selFlags & SF_Aggregate)!=0; 5672 memset(&sSort, 0, sizeof(sSort)); 5673 sSort.pOrderBy = p->pOrderBy; 5674 5675 /* Try to various optimizations (flattening subqueries, and strength 5676 ** reduction of join operators) in the FROM clause up into the main query 5677 */ 5678 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5679 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5680 struct SrcList_item *pItem = &pTabList->a[i]; 5681 Select *pSub = pItem->pSelect; 5682 Table *pTab = pItem->pTab; 5683 5684 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5685 ** of the LEFT JOIN used in the WHERE clause. 5686 */ 5687 if( (pItem->fg.jointype & JT_LEFT)!=0 5688 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5689 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5690 ){ 5691 SELECTTRACE(0x100,pParse,p, 5692 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5693 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5694 unsetJoinExpr(p->pWhere, pItem->iCursor); 5695 } 5696 5697 /* No futher action if this term of the FROM clause is no a subquery */ 5698 if( pSub==0 ) continue; 5699 5700 /* Catch mismatch in the declared columns of a view and the number of 5701 ** columns in the SELECT on the RHS */ 5702 if( pTab->nCol!=pSub->pEList->nExpr ){ 5703 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5704 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5705 goto select_end; 5706 } 5707 5708 /* Do not try to flatten an aggregate subquery. 5709 ** 5710 ** Flattening an aggregate subquery is only possible if the outer query 5711 ** is not a join. But if the outer query is not a join, then the subquery 5712 ** will be implemented as a co-routine and there is no advantage to 5713 ** flattening in that case. 5714 */ 5715 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5716 assert( pSub->pGroupBy==0 ); 5717 5718 /* If the outer query contains a "complex" result set (that is, 5719 ** if the result set of the outer query uses functions or subqueries) 5720 ** and if the subquery contains an ORDER BY clause and if 5721 ** it will be implemented as a co-routine, then do not flatten. This 5722 ** restriction allows SQL constructs like this: 5723 ** 5724 ** SELECT expensive_function(x) 5725 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5726 ** 5727 ** The expensive_function() is only computed on the 10 rows that 5728 ** are output, rather than every row of the table. 5729 ** 5730 ** The requirement that the outer query have a complex result set 5731 ** means that flattening does occur on simpler SQL constraints without 5732 ** the expensive_function() like: 5733 ** 5734 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5735 */ 5736 if( pSub->pOrderBy!=0 5737 && i==0 5738 && (p->selFlags & SF_ComplexResult)!=0 5739 && (pTabList->nSrc==1 5740 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5741 ){ 5742 continue; 5743 } 5744 5745 if( flattenSubquery(pParse, p, i, isAgg) ){ 5746 if( pParse->nErr ) goto select_end; 5747 /* This subquery can be absorbed into its parent. */ 5748 i = -1; 5749 } 5750 pTabList = p->pSrc; 5751 if( db->mallocFailed ) goto select_end; 5752 if( !IgnorableOrderby(pDest) ){ 5753 sSort.pOrderBy = p->pOrderBy; 5754 } 5755 } 5756 #endif 5757 5758 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5759 /* Handle compound SELECT statements using the separate multiSelect() 5760 ** procedure. 5761 */ 5762 if( p->pPrior ){ 5763 rc = multiSelect(pParse, p, pDest); 5764 #if SELECTTRACE_ENABLED 5765 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5766 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5767 sqlite3TreeViewSelect(0, p, 0); 5768 } 5769 #endif 5770 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5771 return rc; 5772 } 5773 #endif 5774 5775 /* Do the WHERE-clause constant propagation optimization if this is 5776 ** a join. No need to speed time on this operation for non-join queries 5777 ** as the equivalent optimization will be handled by query planner in 5778 ** sqlite3WhereBegin(). 5779 */ 5780 if( pTabList->nSrc>1 5781 && OptimizationEnabled(db, SQLITE_PropagateConst) 5782 && propagateConstants(pParse, p) 5783 ){ 5784 #if SELECTTRACE_ENABLED 5785 if( sqlite3SelectTrace & 0x100 ){ 5786 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5787 sqlite3TreeViewSelect(0, p, 0); 5788 } 5789 #endif 5790 }else{ 5791 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5792 } 5793 5794 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5795 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5796 && countOfViewOptimization(pParse, p) 5797 ){ 5798 if( db->mallocFailed ) goto select_end; 5799 pEList = p->pEList; 5800 pTabList = p->pSrc; 5801 } 5802 #endif 5803 5804 /* For each term in the FROM clause, do two things: 5805 ** (1) Authorized unreferenced tables 5806 ** (2) Generate code for all sub-queries 5807 */ 5808 for(i=0; i<pTabList->nSrc; i++){ 5809 struct SrcList_item *pItem = &pTabList->a[i]; 5810 SelectDest dest; 5811 Select *pSub; 5812 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5813 const char *zSavedAuthContext; 5814 #endif 5815 5816 /* Issue SQLITE_READ authorizations with a fake column name for any 5817 ** tables that are referenced but from which no values are extracted. 5818 ** Examples of where these kinds of null SQLITE_READ authorizations 5819 ** would occur: 5820 ** 5821 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5822 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5823 ** 5824 ** The fake column name is an empty string. It is possible for a table to 5825 ** have a column named by the empty string, in which case there is no way to 5826 ** distinguish between an unreferenced table and an actual reference to the 5827 ** "" column. The original design was for the fake column name to be a NULL, 5828 ** which would be unambiguous. But legacy authorization callbacks might 5829 ** assume the column name is non-NULL and segfault. The use of an empty 5830 ** string for the fake column name seems safer. 5831 */ 5832 if( pItem->colUsed==0 ){ 5833 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5834 } 5835 5836 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5837 /* Generate code for all sub-queries in the FROM clause 5838 */ 5839 pSub = pItem->pSelect; 5840 if( pSub==0 ) continue; 5841 5842 /* The code for a subquery should only be generated once, though it is 5843 ** technically harmless for it to be generated multiple times. The 5844 ** following assert() will detect if something changes to cause 5845 ** the same subquery to be coded multiple times, as a signal to the 5846 ** developers to try to optimize the situation. */ 5847 assert( pItem->addrFillSub==0 ); 5848 5849 /* Increment Parse.nHeight by the height of the largest expression 5850 ** tree referred to by this, the parent select. The child select 5851 ** may contain expression trees of at most 5852 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5853 ** more conservative than necessary, but much easier than enforcing 5854 ** an exact limit. 5855 */ 5856 pParse->nHeight += sqlite3SelectExprHeight(p); 5857 5858 /* Make copies of constant WHERE-clause terms in the outer query down 5859 ** inside the subquery. This can help the subquery to run more efficiently. 5860 */ 5861 if( OptimizationEnabled(db, SQLITE_PushDown) 5862 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5863 (pItem->fg.jointype & JT_OUTER)!=0) 5864 ){ 5865 #if SELECTTRACE_ENABLED 5866 if( sqlite3SelectTrace & 0x100 ){ 5867 SELECTTRACE(0x100,pParse,p, 5868 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 5869 sqlite3TreeViewSelect(0, p, 0); 5870 } 5871 #endif 5872 }else{ 5873 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5874 } 5875 5876 zSavedAuthContext = pParse->zAuthContext; 5877 pParse->zAuthContext = pItem->zName; 5878 5879 /* Generate code to implement the subquery 5880 ** 5881 ** The subquery is implemented as a co-routine if the subquery is 5882 ** guaranteed to be the outer loop (so that it does not need to be 5883 ** computed more than once) 5884 ** 5885 ** TODO: Are there other reasons beside (1) to use a co-routine 5886 ** implementation? 5887 */ 5888 if( i==0 5889 && (pTabList->nSrc==1 5890 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5891 ){ 5892 /* Implement a co-routine that will return a single row of the result 5893 ** set on each invocation. 5894 */ 5895 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5896 5897 pItem->regReturn = ++pParse->nMem; 5898 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5899 VdbeComment((v, "%s", pItem->pTab->zName)); 5900 pItem->addrFillSub = addrTop; 5901 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5902 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 5903 sqlite3Select(pParse, pSub, &dest); 5904 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5905 pItem->fg.viaCoroutine = 1; 5906 pItem->regResult = dest.iSdst; 5907 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5908 sqlite3VdbeJumpHere(v, addrTop-1); 5909 sqlite3ClearTempRegCache(pParse); 5910 }else{ 5911 /* Generate a subroutine that will fill an ephemeral table with 5912 ** the content of this subquery. pItem->addrFillSub will point 5913 ** to the address of the generated subroutine. pItem->regReturn 5914 ** is a register allocated to hold the subroutine return address 5915 */ 5916 int topAddr; 5917 int onceAddr = 0; 5918 int retAddr; 5919 struct SrcList_item *pPrior; 5920 5921 assert( pItem->addrFillSub==0 ); 5922 pItem->regReturn = ++pParse->nMem; 5923 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5924 pItem->addrFillSub = topAddr+1; 5925 if( pItem->fg.isCorrelated==0 ){ 5926 /* If the subquery is not correlated and if we are not inside of 5927 ** a trigger, then we only need to compute the value of the subquery 5928 ** once. */ 5929 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5930 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5931 }else{ 5932 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5933 } 5934 pPrior = isSelfJoinView(pTabList, pItem); 5935 if( pPrior ){ 5936 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5937 assert( pPrior->pSelect!=0 ); 5938 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5939 }else{ 5940 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5941 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 5942 sqlite3Select(pParse, pSub, &dest); 5943 } 5944 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5945 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5946 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5947 VdbeComment((v, "end %s", pItem->pTab->zName)); 5948 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5949 sqlite3ClearTempRegCache(pParse); 5950 } 5951 if( db->mallocFailed ) goto select_end; 5952 pParse->nHeight -= sqlite3SelectExprHeight(p); 5953 pParse->zAuthContext = zSavedAuthContext; 5954 #endif 5955 } 5956 5957 /* Various elements of the SELECT copied into local variables for 5958 ** convenience */ 5959 pEList = p->pEList; 5960 pWhere = p->pWhere; 5961 pGroupBy = p->pGroupBy; 5962 pHaving = p->pHaving; 5963 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5964 5965 #if SELECTTRACE_ENABLED 5966 if( sqlite3SelectTrace & 0x400 ){ 5967 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5968 sqlite3TreeViewSelect(0, p, 0); 5969 } 5970 #endif 5971 5972 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5973 ** if the select-list is the same as the ORDER BY list, then this query 5974 ** can be rewritten as a GROUP BY. In other words, this: 5975 ** 5976 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5977 ** 5978 ** is transformed to: 5979 ** 5980 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5981 ** 5982 ** The second form is preferred as a single index (or temp-table) may be 5983 ** used for both the ORDER BY and DISTINCT processing. As originally 5984 ** written the query must use a temp-table for at least one of the ORDER 5985 ** BY and DISTINCT, and an index or separate temp-table for the other. 5986 */ 5987 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5988 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5989 ){ 5990 p->selFlags &= ~SF_Distinct; 5991 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5992 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5993 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5994 ** original setting of the SF_Distinct flag, not the current setting */ 5995 assert( sDistinct.isTnct ); 5996 5997 #if SELECTTRACE_ENABLED 5998 if( sqlite3SelectTrace & 0x400 ){ 5999 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6000 sqlite3TreeViewSelect(0, p, 0); 6001 } 6002 #endif 6003 } 6004 6005 /* If there is an ORDER BY clause, then create an ephemeral index to 6006 ** do the sorting. But this sorting ephemeral index might end up 6007 ** being unused if the data can be extracted in pre-sorted order. 6008 ** If that is the case, then the OP_OpenEphemeral instruction will be 6009 ** changed to an OP_Noop once we figure out that the sorting index is 6010 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6011 ** that change. 6012 */ 6013 if( sSort.pOrderBy ){ 6014 KeyInfo *pKeyInfo; 6015 pKeyInfo = sqlite3KeyInfoFromExprList( 6016 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6017 sSort.iECursor = pParse->nTab++; 6018 sSort.addrSortIndex = 6019 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6020 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6021 (char*)pKeyInfo, P4_KEYINFO 6022 ); 6023 }else{ 6024 sSort.addrSortIndex = -1; 6025 } 6026 6027 /* If the output is destined for a temporary table, open that table. 6028 */ 6029 if( pDest->eDest==SRT_EphemTab ){ 6030 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6031 } 6032 6033 /* Set the limiter. 6034 */ 6035 iEnd = sqlite3VdbeMakeLabel(pParse); 6036 if( (p->selFlags & SF_FixedLimit)==0 ){ 6037 p->nSelectRow = 320; /* 4 billion rows */ 6038 } 6039 computeLimitRegisters(pParse, p, iEnd); 6040 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6041 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6042 sSort.sortFlags |= SORTFLAG_UseSorter; 6043 } 6044 6045 /* Open an ephemeral index to use for the distinct set. 6046 */ 6047 if( p->selFlags & SF_Distinct ){ 6048 sDistinct.tabTnct = pParse->nTab++; 6049 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6050 sDistinct.tabTnct, 0, 0, 6051 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6052 P4_KEYINFO); 6053 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6054 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6055 }else{ 6056 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6057 } 6058 6059 if( !isAgg && pGroupBy==0 ){ 6060 /* No aggregate functions and no GROUP BY clause */ 6061 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6062 | (p->selFlags & SF_FixedLimit); 6063 #ifndef SQLITE_OMIT_WINDOWFUNC 6064 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6065 if( pWin ){ 6066 sqlite3WindowCodeInit(pParse, pWin); 6067 } 6068 #endif 6069 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6070 6071 6072 /* Begin the database scan. */ 6073 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6074 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6075 p->pEList, wctrlFlags, p->nSelectRow); 6076 if( pWInfo==0 ) goto select_end; 6077 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6078 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6079 } 6080 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6081 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6082 } 6083 if( sSort.pOrderBy ){ 6084 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6085 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6086 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6087 sSort.pOrderBy = 0; 6088 } 6089 } 6090 6091 /* If sorting index that was created by a prior OP_OpenEphemeral 6092 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6093 ** into an OP_Noop. 6094 */ 6095 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6096 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6097 } 6098 6099 assert( p->pEList==pEList ); 6100 #ifndef SQLITE_OMIT_WINDOWFUNC 6101 if( pWin ){ 6102 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6103 int iCont = sqlite3VdbeMakeLabel(pParse); 6104 int iBreak = sqlite3VdbeMakeLabel(pParse); 6105 int regGosub = ++pParse->nMem; 6106 6107 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6108 6109 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6110 sqlite3VdbeResolveLabel(v, addrGosub); 6111 VdbeNoopComment((v, "inner-loop subroutine")); 6112 sSort.labelOBLopt = 0; 6113 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6114 sqlite3VdbeResolveLabel(v, iCont); 6115 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6116 VdbeComment((v, "end inner-loop subroutine")); 6117 sqlite3VdbeResolveLabel(v, iBreak); 6118 }else 6119 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6120 { 6121 /* Use the standard inner loop. */ 6122 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6123 sqlite3WhereContinueLabel(pWInfo), 6124 sqlite3WhereBreakLabel(pWInfo)); 6125 6126 /* End the database scan loop. 6127 */ 6128 sqlite3WhereEnd(pWInfo); 6129 } 6130 }else{ 6131 /* This case when there exist aggregate functions or a GROUP BY clause 6132 ** or both */ 6133 NameContext sNC; /* Name context for processing aggregate information */ 6134 int iAMem; /* First Mem address for storing current GROUP BY */ 6135 int iBMem; /* First Mem address for previous GROUP BY */ 6136 int iUseFlag; /* Mem address holding flag indicating that at least 6137 ** one row of the input to the aggregator has been 6138 ** processed */ 6139 int iAbortFlag; /* Mem address which causes query abort if positive */ 6140 int groupBySort; /* Rows come from source in GROUP BY order */ 6141 int addrEnd; /* End of processing for this SELECT */ 6142 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6143 int sortOut = 0; /* Output register from the sorter */ 6144 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6145 6146 /* Remove any and all aliases between the result set and the 6147 ** GROUP BY clause. 6148 */ 6149 if( pGroupBy ){ 6150 int k; /* Loop counter */ 6151 struct ExprList_item *pItem; /* For looping over expression in a list */ 6152 6153 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6154 pItem->u.x.iAlias = 0; 6155 } 6156 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6157 pItem->u.x.iAlias = 0; 6158 } 6159 assert( 66==sqlite3LogEst(100) ); 6160 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6161 }else{ 6162 assert( 0==sqlite3LogEst(1) ); 6163 p->nSelectRow = 0; 6164 } 6165 6166 /* If there is both a GROUP BY and an ORDER BY clause and they are 6167 ** identical, then it may be possible to disable the ORDER BY clause 6168 ** on the grounds that the GROUP BY will cause elements to come out 6169 ** in the correct order. It also may not - the GROUP BY might use a 6170 ** database index that causes rows to be grouped together as required 6171 ** but not actually sorted. Either way, record the fact that the 6172 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6173 ** variable. */ 6174 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6175 orderByGrp = 1; 6176 } 6177 6178 /* Create a label to jump to when we want to abort the query */ 6179 addrEnd = sqlite3VdbeMakeLabel(pParse); 6180 6181 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6182 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6183 ** SELECT statement. 6184 */ 6185 memset(&sNC, 0, sizeof(sNC)); 6186 sNC.pParse = pParse; 6187 sNC.pSrcList = pTabList; 6188 sNC.uNC.pAggInfo = &sAggInfo; 6189 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6190 sAggInfo.mnReg = pParse->nMem+1; 6191 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6192 sAggInfo.pGroupBy = pGroupBy; 6193 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6194 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6195 if( pHaving ){ 6196 if( pGroupBy ){ 6197 assert( pWhere==p->pWhere ); 6198 assert( pHaving==p->pHaving ); 6199 assert( pGroupBy==p->pGroupBy ); 6200 havingToWhere(pParse, p); 6201 pWhere = p->pWhere; 6202 } 6203 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6204 } 6205 sAggInfo.nAccumulator = sAggInfo.nColumn; 6206 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6207 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6208 }else{ 6209 minMaxFlag = WHERE_ORDERBY_NORMAL; 6210 } 6211 for(i=0; i<sAggInfo.nFunc; i++){ 6212 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 6213 sNC.ncFlags |= NC_InAggFunc; 6214 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 6215 sNC.ncFlags &= ~NC_InAggFunc; 6216 } 6217 sAggInfo.mxReg = pParse->nMem; 6218 if( db->mallocFailed ) goto select_end; 6219 #if SELECTTRACE_ENABLED 6220 if( sqlite3SelectTrace & 0x400 ){ 6221 int ii; 6222 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6223 sqlite3TreeViewSelect(0, p, 0); 6224 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6225 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6226 ii, sAggInfo.aCol[ii].iMem); 6227 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6228 } 6229 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6230 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6231 ii, sAggInfo.aFunc[ii].iMem); 6232 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6233 } 6234 } 6235 #endif 6236 6237 6238 /* Processing for aggregates with GROUP BY is very different and 6239 ** much more complex than aggregates without a GROUP BY. 6240 */ 6241 if( pGroupBy ){ 6242 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6243 int addr1; /* A-vs-B comparision jump */ 6244 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6245 int regOutputRow; /* Return address register for output subroutine */ 6246 int addrSetAbort; /* Set the abort flag and return */ 6247 int addrTopOfLoop; /* Top of the input loop */ 6248 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6249 int addrReset; /* Subroutine for resetting the accumulator */ 6250 int regReset; /* Return address register for reset subroutine */ 6251 6252 /* If there is a GROUP BY clause we might need a sorting index to 6253 ** implement it. Allocate that sorting index now. If it turns out 6254 ** that we do not need it after all, the OP_SorterOpen instruction 6255 ** will be converted into a Noop. 6256 */ 6257 sAggInfo.sortingIdx = pParse->nTab++; 6258 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6259 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6260 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6261 0, (char*)pKeyInfo, P4_KEYINFO); 6262 6263 /* Initialize memory locations used by GROUP BY aggregate processing 6264 */ 6265 iUseFlag = ++pParse->nMem; 6266 iAbortFlag = ++pParse->nMem; 6267 regOutputRow = ++pParse->nMem; 6268 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6269 regReset = ++pParse->nMem; 6270 addrReset = sqlite3VdbeMakeLabel(pParse); 6271 iAMem = pParse->nMem + 1; 6272 pParse->nMem += pGroupBy->nExpr; 6273 iBMem = pParse->nMem + 1; 6274 pParse->nMem += pGroupBy->nExpr; 6275 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6276 VdbeComment((v, "clear abort flag")); 6277 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6278 6279 /* Begin a loop that will extract all source rows in GROUP BY order. 6280 ** This might involve two separate loops with an OP_Sort in between, or 6281 ** it might be a single loop that uses an index to extract information 6282 ** in the right order to begin with. 6283 */ 6284 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6285 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6286 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6287 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6288 ); 6289 if( pWInfo==0 ) goto select_end; 6290 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6291 /* The optimizer is able to deliver rows in group by order so 6292 ** we do not have to sort. The OP_OpenEphemeral table will be 6293 ** cancelled later because we still need to use the pKeyInfo 6294 */ 6295 groupBySort = 0; 6296 }else{ 6297 /* Rows are coming out in undetermined order. We have to push 6298 ** each row into a sorting index, terminate the first loop, 6299 ** then loop over the sorting index in order to get the output 6300 ** in sorted order 6301 */ 6302 int regBase; 6303 int regRecord; 6304 int nCol; 6305 int nGroupBy; 6306 6307 explainTempTable(pParse, 6308 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6309 "DISTINCT" : "GROUP BY"); 6310 6311 groupBySort = 1; 6312 nGroupBy = pGroupBy->nExpr; 6313 nCol = nGroupBy; 6314 j = nGroupBy; 6315 for(i=0; i<sAggInfo.nColumn; i++){ 6316 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6317 nCol++; 6318 j++; 6319 } 6320 } 6321 regBase = sqlite3GetTempRange(pParse, nCol); 6322 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6323 j = nGroupBy; 6324 for(i=0; i<sAggInfo.nColumn; i++){ 6325 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6326 if( pCol->iSorterColumn>=j ){ 6327 int r1 = j + regBase; 6328 sqlite3ExprCodeGetColumnOfTable(v, 6329 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6330 j++; 6331 } 6332 } 6333 regRecord = sqlite3GetTempReg(pParse); 6334 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6335 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6336 sqlite3ReleaseTempReg(pParse, regRecord); 6337 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6338 sqlite3WhereEnd(pWInfo); 6339 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6340 sortOut = sqlite3GetTempReg(pParse); 6341 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6342 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6343 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6344 sAggInfo.useSortingIdx = 1; 6345 } 6346 6347 /* If the index or temporary table used by the GROUP BY sort 6348 ** will naturally deliver rows in the order required by the ORDER BY 6349 ** clause, cancel the ephemeral table open coded earlier. 6350 ** 6351 ** This is an optimization - the correct answer should result regardless. 6352 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6353 ** disable this optimization for testing purposes. */ 6354 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6355 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6356 ){ 6357 sSort.pOrderBy = 0; 6358 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6359 } 6360 6361 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6362 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6363 ** Then compare the current GROUP BY terms against the GROUP BY terms 6364 ** from the previous row currently stored in a0, a1, a2... 6365 */ 6366 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6367 if( groupBySort ){ 6368 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6369 sortOut, sortPTab); 6370 } 6371 for(j=0; j<pGroupBy->nExpr; j++){ 6372 if( groupBySort ){ 6373 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6374 }else{ 6375 sAggInfo.directMode = 1; 6376 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6377 } 6378 } 6379 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6380 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6381 addr1 = sqlite3VdbeCurrentAddr(v); 6382 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6383 6384 /* Generate code that runs whenever the GROUP BY changes. 6385 ** Changes in the GROUP BY are detected by the previous code 6386 ** block. If there were no changes, this block is skipped. 6387 ** 6388 ** This code copies current group by terms in b0,b1,b2,... 6389 ** over to a0,a1,a2. It then calls the output subroutine 6390 ** and resets the aggregate accumulator registers in preparation 6391 ** for the next GROUP BY batch. 6392 */ 6393 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6394 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6395 VdbeComment((v, "output one row")); 6396 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6397 VdbeComment((v, "check abort flag")); 6398 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6399 VdbeComment((v, "reset accumulator")); 6400 6401 /* Update the aggregate accumulators based on the content of 6402 ** the current row 6403 */ 6404 sqlite3VdbeJumpHere(v, addr1); 6405 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6406 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6407 VdbeComment((v, "indicate data in accumulator")); 6408 6409 /* End of the loop 6410 */ 6411 if( groupBySort ){ 6412 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6413 VdbeCoverage(v); 6414 }else{ 6415 sqlite3WhereEnd(pWInfo); 6416 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6417 } 6418 6419 /* Output the final row of result 6420 */ 6421 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6422 VdbeComment((v, "output final row")); 6423 6424 /* Jump over the subroutines 6425 */ 6426 sqlite3VdbeGoto(v, addrEnd); 6427 6428 /* Generate a subroutine that outputs a single row of the result 6429 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6430 ** is less than or equal to zero, the subroutine is a no-op. If 6431 ** the processing calls for the query to abort, this subroutine 6432 ** increments the iAbortFlag memory location before returning in 6433 ** order to signal the caller to abort. 6434 */ 6435 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6436 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6437 VdbeComment((v, "set abort flag")); 6438 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6439 sqlite3VdbeResolveLabel(v, addrOutputRow); 6440 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6441 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6442 VdbeCoverage(v); 6443 VdbeComment((v, "Groupby result generator entry point")); 6444 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6445 finalizeAggFunctions(pParse, &sAggInfo); 6446 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6447 selectInnerLoop(pParse, p, -1, &sSort, 6448 &sDistinct, pDest, 6449 addrOutputRow+1, addrSetAbort); 6450 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6451 VdbeComment((v, "end groupby result generator")); 6452 6453 /* Generate a subroutine that will reset the group-by accumulator 6454 */ 6455 sqlite3VdbeResolveLabel(v, addrReset); 6456 resetAccumulator(pParse, &sAggInfo); 6457 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6458 VdbeComment((v, "indicate accumulator empty")); 6459 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6460 6461 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6462 else { 6463 #ifndef SQLITE_OMIT_BTREECOUNT 6464 Table *pTab; 6465 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6466 /* If isSimpleCount() returns a pointer to a Table structure, then 6467 ** the SQL statement is of the form: 6468 ** 6469 ** SELECT count(*) FROM <tbl> 6470 ** 6471 ** where the Table structure returned represents table <tbl>. 6472 ** 6473 ** This statement is so common that it is optimized specially. The 6474 ** OP_Count instruction is executed either on the intkey table that 6475 ** contains the data for table <tbl> or on one of its indexes. It 6476 ** is better to execute the op on an index, as indexes are almost 6477 ** always spread across less pages than their corresponding tables. 6478 */ 6479 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6480 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6481 Index *pIdx; /* Iterator variable */ 6482 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6483 Index *pBest = 0; /* Best index found so far */ 6484 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6485 6486 sqlite3CodeVerifySchema(pParse, iDb); 6487 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6488 6489 /* Search for the index that has the lowest scan cost. 6490 ** 6491 ** (2011-04-15) Do not do a full scan of an unordered index. 6492 ** 6493 ** (2013-10-03) Do not count the entries in a partial index. 6494 ** 6495 ** In practice the KeyInfo structure will not be used. It is only 6496 ** passed to keep OP_OpenRead happy. 6497 */ 6498 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6499 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6500 if( pIdx->bUnordered==0 6501 && pIdx->szIdxRow<pTab->szTabRow 6502 && pIdx->pPartIdxWhere==0 6503 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6504 ){ 6505 pBest = pIdx; 6506 } 6507 } 6508 if( pBest ){ 6509 iRoot = pBest->tnum; 6510 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6511 } 6512 6513 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6514 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6515 if( pKeyInfo ){ 6516 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6517 } 6518 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6519 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6520 explainSimpleCount(pParse, pTab, pBest); 6521 }else 6522 #endif /* SQLITE_OMIT_BTREECOUNT */ 6523 { 6524 int regAcc = 0; /* "populate accumulators" flag */ 6525 6526 /* If there are accumulator registers but no min() or max() functions, 6527 ** allocate register regAcc. Register regAcc will contain 0 the first 6528 ** time the inner loop runs, and 1 thereafter. The code generated 6529 ** by updateAccumulator() only updates the accumulator registers if 6530 ** regAcc contains 0. */ 6531 if( sAggInfo.nAccumulator ){ 6532 for(i=0; i<sAggInfo.nFunc; i++){ 6533 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6534 } 6535 if( i==sAggInfo.nFunc ){ 6536 regAcc = ++pParse->nMem; 6537 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6538 } 6539 } 6540 6541 /* This case runs if the aggregate has no GROUP BY clause. The 6542 ** processing is much simpler since there is only a single row 6543 ** of output. 6544 */ 6545 assert( p->pGroupBy==0 ); 6546 resetAccumulator(pParse, &sAggInfo); 6547 6548 /* If this query is a candidate for the min/max optimization, then 6549 ** minMaxFlag will have been previously set to either 6550 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6551 ** be an appropriate ORDER BY expression for the optimization. 6552 */ 6553 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6554 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6555 6556 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6557 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6558 0, minMaxFlag, 0); 6559 if( pWInfo==0 ){ 6560 goto select_end; 6561 } 6562 updateAccumulator(pParse, regAcc, &sAggInfo); 6563 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6564 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6565 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6566 VdbeComment((v, "%s() by index", 6567 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6568 } 6569 sqlite3WhereEnd(pWInfo); 6570 finalizeAggFunctions(pParse, &sAggInfo); 6571 } 6572 6573 sSort.pOrderBy = 0; 6574 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6575 selectInnerLoop(pParse, p, -1, 0, 0, 6576 pDest, addrEnd, addrEnd); 6577 } 6578 sqlite3VdbeResolveLabel(v, addrEnd); 6579 6580 } /* endif aggregate query */ 6581 6582 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6583 explainTempTable(pParse, "DISTINCT"); 6584 } 6585 6586 /* If there is an ORDER BY clause, then we need to sort the results 6587 ** and send them to the callback one by one. 6588 */ 6589 if( sSort.pOrderBy ){ 6590 explainTempTable(pParse, 6591 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6592 assert( p->pEList==pEList ); 6593 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6594 } 6595 6596 /* Jump here to skip this query 6597 */ 6598 sqlite3VdbeResolveLabel(v, iEnd); 6599 6600 /* The SELECT has been coded. If there is an error in the Parse structure, 6601 ** set the return code to 1. Otherwise 0. */ 6602 rc = (pParse->nErr>0); 6603 6604 /* Control jumps to here if an error is encountered above, or upon 6605 ** successful coding of the SELECT. 6606 */ 6607 select_end: 6608 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6609 sqlite3DbFree(db, sAggInfo.aCol); 6610 sqlite3DbFree(db, sAggInfo.aFunc); 6611 #if SELECTTRACE_ENABLED 6612 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6613 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6614 sqlite3TreeViewSelect(0, p, 0); 6615 } 6616 #endif 6617 ExplainQueryPlanPop(pParse); 6618 return rc; 6619 } 6620