1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 18 /* 19 ** Delete all the content of a Select structure but do not deallocate 20 ** the select structure itself. 21 */ 22 static void clearSelect(sqlite3 *db, Select *p){ 23 sqlite3ExprListDelete(db, p->pEList); 24 sqlite3SrcListDelete(db, p->pSrc); 25 sqlite3ExprDelete(db, p->pWhere); 26 sqlite3ExprListDelete(db, p->pGroupBy); 27 sqlite3ExprDelete(db, p->pHaving); 28 sqlite3ExprListDelete(db, p->pOrderBy); 29 sqlite3SelectDelete(db, p->pPrior); 30 sqlite3ExprDelete(db, p->pLimit); 31 sqlite3ExprDelete(db, p->pOffset); 32 } 33 34 /* 35 ** Initialize a SelectDest structure. 36 */ 37 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 38 pDest->eDest = (u8)eDest; 39 pDest->iParm = iParm; 40 pDest->affinity = 0; 41 pDest->iMem = 0; 42 pDest->nMem = 0; 43 } 44 45 46 /* 47 ** Allocate a new Select structure and return a pointer to that 48 ** structure. 49 */ 50 Select *sqlite3SelectNew( 51 Parse *pParse, /* Parsing context */ 52 ExprList *pEList, /* which columns to include in the result */ 53 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 54 Expr *pWhere, /* the WHERE clause */ 55 ExprList *pGroupBy, /* the GROUP BY clause */ 56 Expr *pHaving, /* the HAVING clause */ 57 ExprList *pOrderBy, /* the ORDER BY clause */ 58 int isDistinct, /* true if the DISTINCT keyword is present */ 59 Expr *pLimit, /* LIMIT value. NULL means not used */ 60 Expr *pOffset /* OFFSET value. NULL means no offset */ 61 ){ 62 Select *pNew; 63 Select standin; 64 sqlite3 *db = pParse->db; 65 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 66 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 67 if( pNew==0 ){ 68 pNew = &standin; 69 memset(pNew, 0, sizeof(*pNew)); 70 } 71 if( pEList==0 ){ 72 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 73 } 74 pNew->pEList = pEList; 75 pNew->pSrc = pSrc; 76 pNew->pWhere = pWhere; 77 pNew->pGroupBy = pGroupBy; 78 pNew->pHaving = pHaving; 79 pNew->pOrderBy = pOrderBy; 80 pNew->selFlags = isDistinct ? SF_Distinct : 0; 81 pNew->op = TK_SELECT; 82 pNew->pLimit = pLimit; 83 pNew->pOffset = pOffset; 84 assert( pOffset==0 || pLimit!=0 ); 85 pNew->addrOpenEphm[0] = -1; 86 pNew->addrOpenEphm[1] = -1; 87 pNew->addrOpenEphm[2] = -1; 88 if( db->mallocFailed ) { 89 clearSelect(db, pNew); 90 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 91 pNew = 0; 92 } 93 return pNew; 94 } 95 96 /* 97 ** Delete the given Select structure and all of its substructures. 98 */ 99 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 100 if( p ){ 101 clearSelect(db, p); 102 sqlite3DbFree(db, p); 103 } 104 } 105 106 /* 107 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 108 ** type of join. Return an integer constant that expresses that type 109 ** in terms of the following bit values: 110 ** 111 ** JT_INNER 112 ** JT_CROSS 113 ** JT_OUTER 114 ** JT_NATURAL 115 ** JT_LEFT 116 ** JT_RIGHT 117 ** 118 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 119 ** 120 ** If an illegal or unsupported join type is seen, then still return 121 ** a join type, but put an error in the pParse structure. 122 */ 123 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 124 int jointype = 0; 125 Token *apAll[3]; 126 Token *p; 127 /* 0123456789 123456789 123456789 123 */ 128 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 129 static const struct { 130 u8 i; /* Beginning of keyword text in zKeyText[] */ 131 u8 nChar; /* Length of the keyword in characters */ 132 u8 code; /* Join type mask */ 133 } aKeyword[] = { 134 /* natural */ { 0, 7, JT_NATURAL }, 135 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 136 /* outer */ { 10, 5, JT_OUTER }, 137 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 138 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 139 /* inner */ { 23, 5, JT_INNER }, 140 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 141 }; 142 int i, j; 143 apAll[0] = pA; 144 apAll[1] = pB; 145 apAll[2] = pC; 146 for(i=0; i<3 && apAll[i]; i++){ 147 p = apAll[i]; 148 for(j=0; j<ArraySize(aKeyword); j++){ 149 if( p->n==aKeyword[j].nChar 150 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 151 jointype |= aKeyword[j].code; 152 break; 153 } 154 } 155 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 156 if( j>=ArraySize(aKeyword) ){ 157 jointype |= JT_ERROR; 158 break; 159 } 160 } 161 if( 162 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 163 (jointype & JT_ERROR)!=0 164 ){ 165 const char *zSp = " "; 166 assert( pB!=0 ); 167 if( pC==0 ){ zSp++; } 168 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 169 "%T %T%s%T", pA, pB, zSp, pC); 170 jointype = JT_INNER; 171 }else if( (jointype & JT_OUTER)!=0 172 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 173 sqlite3ErrorMsg(pParse, 174 "RIGHT and FULL OUTER JOINs are not currently supported"); 175 jointype = JT_INNER; 176 } 177 return jointype; 178 } 179 180 /* 181 ** Return the index of a column in a table. Return -1 if the column 182 ** is not contained in the table. 183 */ 184 static int columnIndex(Table *pTab, const char *zCol){ 185 int i; 186 for(i=0; i<pTab->nCol; i++){ 187 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 188 } 189 return -1; 190 } 191 192 /* 193 ** Search the first N tables in pSrc, from left to right, looking for a 194 ** table that has a column named zCol. 195 ** 196 ** When found, set *piTab and *piCol to the table index and column index 197 ** of the matching column and return TRUE. 198 ** 199 ** If not found, return FALSE. 200 */ 201 static int tableAndColumnIndex( 202 SrcList *pSrc, /* Array of tables to search */ 203 int N, /* Number of tables in pSrc->a[] to search */ 204 const char *zCol, /* Name of the column we are looking for */ 205 int *piTab, /* Write index of pSrc->a[] here */ 206 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 207 ){ 208 int i; /* For looping over tables in pSrc */ 209 int iCol; /* Index of column matching zCol */ 210 211 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 212 for(i=0; i<N; i++){ 213 iCol = columnIndex(pSrc->a[i].pTab, zCol); 214 if( iCol>=0 ){ 215 if( piTab ){ 216 *piTab = i; 217 *piCol = iCol; 218 } 219 return 1; 220 } 221 } 222 return 0; 223 } 224 225 /* 226 ** This function is used to add terms implied by JOIN syntax to the 227 ** WHERE clause expression of a SELECT statement. The new term, which 228 ** is ANDed with the existing WHERE clause, is of the form: 229 ** 230 ** (tab1.col1 = tab2.col2) 231 ** 232 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 233 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 234 ** column iColRight of tab2. 235 */ 236 static void addWhereTerm( 237 Parse *pParse, /* Parsing context */ 238 SrcList *pSrc, /* List of tables in FROM clause */ 239 int iLeft, /* Index of first table to join in pSrc */ 240 int iColLeft, /* Index of column in first table */ 241 int iRight, /* Index of second table in pSrc */ 242 int iColRight, /* Index of column in second table */ 243 int isOuterJoin, /* True if this is an OUTER join */ 244 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 245 ){ 246 sqlite3 *db = pParse->db; 247 Expr *pE1; 248 Expr *pE2; 249 Expr *pEq; 250 251 assert( iLeft<iRight ); 252 assert( pSrc->nSrc>iRight ); 253 assert( pSrc->a[iLeft].pTab ); 254 assert( pSrc->a[iRight].pTab ); 255 256 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 257 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 258 259 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 260 if( pEq && isOuterJoin ){ 261 ExprSetProperty(pEq, EP_FromJoin); 262 assert( !ExprHasAnyProperty(pEq, EP_TokenOnly|EP_Reduced) ); 263 ExprSetIrreducible(pEq); 264 pEq->iRightJoinTable = (i16)pE2->iTable; 265 } 266 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 267 } 268 269 /* 270 ** Set the EP_FromJoin property on all terms of the given expression. 271 ** And set the Expr.iRightJoinTable to iTable for every term in the 272 ** expression. 273 ** 274 ** The EP_FromJoin property is used on terms of an expression to tell 275 ** the LEFT OUTER JOIN processing logic that this term is part of the 276 ** join restriction specified in the ON or USING clause and not a part 277 ** of the more general WHERE clause. These terms are moved over to the 278 ** WHERE clause during join processing but we need to remember that they 279 ** originated in the ON or USING clause. 280 ** 281 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 282 ** expression depends on table iRightJoinTable even if that table is not 283 ** explicitly mentioned in the expression. That information is needed 284 ** for cases like this: 285 ** 286 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 287 ** 288 ** The where clause needs to defer the handling of the t1.x=5 289 ** term until after the t2 loop of the join. In that way, a 290 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 291 ** defer the handling of t1.x=5, it will be processed immediately 292 ** after the t1 loop and rows with t1.x!=5 will never appear in 293 ** the output, which is incorrect. 294 */ 295 static void setJoinExpr(Expr *p, int iTable){ 296 while( p ){ 297 ExprSetProperty(p, EP_FromJoin); 298 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) ); 299 ExprSetIrreducible(p); 300 p->iRightJoinTable = (i16)iTable; 301 setJoinExpr(p->pLeft, iTable); 302 p = p->pRight; 303 } 304 } 305 306 /* 307 ** This routine processes the join information for a SELECT statement. 308 ** ON and USING clauses are converted into extra terms of the WHERE clause. 309 ** NATURAL joins also create extra WHERE clause terms. 310 ** 311 ** The terms of a FROM clause are contained in the Select.pSrc structure. 312 ** The left most table is the first entry in Select.pSrc. The right-most 313 ** table is the last entry. The join operator is held in the entry to 314 ** the left. Thus entry 0 contains the join operator for the join between 315 ** entries 0 and 1. Any ON or USING clauses associated with the join are 316 ** also attached to the left entry. 317 ** 318 ** This routine returns the number of errors encountered. 319 */ 320 static int sqliteProcessJoin(Parse *pParse, Select *p){ 321 SrcList *pSrc; /* All tables in the FROM clause */ 322 int i, j; /* Loop counters */ 323 struct SrcList_item *pLeft; /* Left table being joined */ 324 struct SrcList_item *pRight; /* Right table being joined */ 325 326 pSrc = p->pSrc; 327 pLeft = &pSrc->a[0]; 328 pRight = &pLeft[1]; 329 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 330 Table *pLeftTab = pLeft->pTab; 331 Table *pRightTab = pRight->pTab; 332 int isOuter; 333 334 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 335 isOuter = (pRight->jointype & JT_OUTER)!=0; 336 337 /* When the NATURAL keyword is present, add WHERE clause terms for 338 ** every column that the two tables have in common. 339 */ 340 if( pRight->jointype & JT_NATURAL ){ 341 if( pRight->pOn || pRight->pUsing ){ 342 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 343 "an ON or USING clause", 0); 344 return 1; 345 } 346 for(j=0; j<pRightTab->nCol; j++){ 347 char *zName; /* Name of column in the right table */ 348 int iLeft; /* Matching left table */ 349 int iLeftCol; /* Matching column in the left table */ 350 351 zName = pRightTab->aCol[j].zName; 352 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 353 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 354 isOuter, &p->pWhere); 355 } 356 } 357 } 358 359 /* Disallow both ON and USING clauses in the same join 360 */ 361 if( pRight->pOn && pRight->pUsing ){ 362 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 363 "clauses in the same join"); 364 return 1; 365 } 366 367 /* Add the ON clause to the end of the WHERE clause, connected by 368 ** an AND operator. 369 */ 370 if( pRight->pOn ){ 371 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 372 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 373 pRight->pOn = 0; 374 } 375 376 /* Create extra terms on the WHERE clause for each column named 377 ** in the USING clause. Example: If the two tables to be joined are 378 ** A and B and the USING clause names X, Y, and Z, then add this 379 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 380 ** Report an error if any column mentioned in the USING clause is 381 ** not contained in both tables to be joined. 382 */ 383 if( pRight->pUsing ){ 384 IdList *pList = pRight->pUsing; 385 for(j=0; j<pList->nId; j++){ 386 char *zName; /* Name of the term in the USING clause */ 387 int iLeft; /* Table on the left with matching column name */ 388 int iLeftCol; /* Column number of matching column on the left */ 389 int iRightCol; /* Column number of matching column on the right */ 390 391 zName = pList->a[j].zName; 392 iRightCol = columnIndex(pRightTab, zName); 393 if( iRightCol<0 394 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 395 ){ 396 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 397 "not present in both tables", zName); 398 return 1; 399 } 400 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 401 isOuter, &p->pWhere); 402 } 403 } 404 } 405 return 0; 406 } 407 408 /* 409 ** Insert code into "v" that will push the record on the top of the 410 ** stack into the sorter. 411 */ 412 static void pushOntoSorter( 413 Parse *pParse, /* Parser context */ 414 ExprList *pOrderBy, /* The ORDER BY clause */ 415 Select *pSelect, /* The whole SELECT statement */ 416 int regData /* Register holding data to be sorted */ 417 ){ 418 Vdbe *v = pParse->pVdbe; 419 int nExpr = pOrderBy->nExpr; 420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 421 int regRecord = sqlite3GetTempReg(pParse); 422 sqlite3ExprCacheClear(pParse); 423 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 424 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 425 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 426 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 427 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 428 sqlite3ReleaseTempReg(pParse, regRecord); 429 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 430 if( pSelect->iLimit ){ 431 int addr1, addr2; 432 int iLimit; 433 if( pSelect->iOffset ){ 434 iLimit = pSelect->iOffset+1; 435 }else{ 436 iLimit = pSelect->iLimit; 437 } 438 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 439 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 440 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 441 sqlite3VdbeJumpHere(v, addr1); 442 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 443 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 444 sqlite3VdbeJumpHere(v, addr2); 445 } 446 } 447 448 /* 449 ** Add code to implement the OFFSET 450 */ 451 static void codeOffset( 452 Vdbe *v, /* Generate code into this VM */ 453 Select *p, /* The SELECT statement being coded */ 454 int iContinue /* Jump here to skip the current record */ 455 ){ 456 if( p->iOffset && iContinue!=0 ){ 457 int addr; 458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 461 VdbeComment((v, "skip OFFSET records")); 462 sqlite3VdbeJumpHere(v, addr); 463 } 464 } 465 466 /* 467 ** Add code that will check to make sure the N registers starting at iMem 468 ** form a distinct entry. iTab is a sorting index that holds previously 469 ** seen combinations of the N values. A new entry is made in iTab 470 ** if the current N values are new. 471 ** 472 ** A jump to addrRepeat is made and the N+1 values are popped from the 473 ** stack if the top N elements are not distinct. 474 */ 475 static void codeDistinct( 476 Parse *pParse, /* Parsing and code generating context */ 477 int iTab, /* A sorting index used to test for distinctness */ 478 int addrRepeat, /* Jump to here if not distinct */ 479 int N, /* Number of elements */ 480 int iMem /* First element */ 481 ){ 482 Vdbe *v; 483 int r1; 484 485 v = pParse->pVdbe; 486 r1 = sqlite3GetTempReg(pParse); 487 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); 488 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 490 sqlite3ReleaseTempReg(pParse, r1); 491 } 492 493 #ifndef SQLITE_OMIT_SUBQUERY 494 /* 495 ** Generate an error message when a SELECT is used within a subexpression 496 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 497 ** column. We do this in a subroutine because the error used to occur 498 ** in multiple places. (The error only occurs in one place now, but we 499 ** retain the subroutine to minimize code disruption.) 500 */ 501 static int checkForMultiColumnSelectError( 502 Parse *pParse, /* Parse context. */ 503 SelectDest *pDest, /* Destination of SELECT results */ 504 int nExpr /* Number of result columns returned by SELECT */ 505 ){ 506 int eDest = pDest->eDest; 507 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 508 sqlite3ErrorMsg(pParse, "only a single result allowed for " 509 "a SELECT that is part of an expression"); 510 return 1; 511 }else{ 512 return 0; 513 } 514 } 515 #endif 516 517 /* 518 ** This routine generates the code for the inside of the inner loop 519 ** of a SELECT. 520 ** 521 ** If srcTab and nColumn are both zero, then the pEList expressions 522 ** are evaluated in order to get the data for this row. If nColumn>0 523 ** then data is pulled from srcTab and pEList is used only to get the 524 ** datatypes for each column. 525 */ 526 static void selectInnerLoop( 527 Parse *pParse, /* The parser context */ 528 Select *p, /* The complete select statement being coded */ 529 ExprList *pEList, /* List of values being extracted */ 530 int srcTab, /* Pull data from this table */ 531 int nColumn, /* Number of columns in the source table */ 532 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 533 int distinct, /* If >=0, make sure results are distinct */ 534 SelectDest *pDest, /* How to dispose of the results */ 535 int iContinue, /* Jump here to continue with next row */ 536 int iBreak /* Jump here to break out of the inner loop */ 537 ){ 538 Vdbe *v = pParse->pVdbe; 539 int i; 540 int hasDistinct; /* True if the DISTINCT keyword is present */ 541 int regResult; /* Start of memory holding result set */ 542 int eDest = pDest->eDest; /* How to dispose of results */ 543 int iParm = pDest->iParm; /* First argument to disposal method */ 544 int nResultCol; /* Number of result columns */ 545 546 assert( v ); 547 if( NEVER(v==0) ) return; 548 assert( pEList!=0 ); 549 hasDistinct = distinct>=0; 550 if( pOrderBy==0 && !hasDistinct ){ 551 codeOffset(v, p, iContinue); 552 } 553 554 /* Pull the requested columns. 555 */ 556 if( nColumn>0 ){ 557 nResultCol = nColumn; 558 }else{ 559 nResultCol = pEList->nExpr; 560 } 561 if( pDest->iMem==0 ){ 562 pDest->iMem = pParse->nMem+1; 563 pDest->nMem = nResultCol; 564 pParse->nMem += nResultCol; 565 }else{ 566 assert( pDest->nMem==nResultCol ); 567 } 568 regResult = pDest->iMem; 569 if( nColumn>0 ){ 570 for(i=0; i<nColumn; i++){ 571 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 572 } 573 }else if( eDest!=SRT_Exists ){ 574 /* If the destination is an EXISTS(...) expression, the actual 575 ** values returned by the SELECT are not required. 576 */ 577 sqlite3ExprCacheClear(pParse); 578 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 579 } 580 nColumn = nResultCol; 581 582 /* If the DISTINCT keyword was present on the SELECT statement 583 ** and this row has been seen before, then do not make this row 584 ** part of the result. 585 */ 586 if( hasDistinct ){ 587 assert( pEList!=0 ); 588 assert( pEList->nExpr==nColumn ); 589 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 590 if( pOrderBy==0 ){ 591 codeOffset(v, p, iContinue); 592 } 593 } 594 595 switch( eDest ){ 596 /* In this mode, write each query result to the key of the temporary 597 ** table iParm. 598 */ 599 #ifndef SQLITE_OMIT_COMPOUND_SELECT 600 case SRT_Union: { 601 int r1; 602 r1 = sqlite3GetTempReg(pParse); 603 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 604 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 605 sqlite3ReleaseTempReg(pParse, r1); 606 break; 607 } 608 609 /* Construct a record from the query result, but instead of 610 ** saving that record, use it as a key to delete elements from 611 ** the temporary table iParm. 612 */ 613 case SRT_Except: { 614 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 615 break; 616 } 617 #endif 618 619 /* Store the result as data using a unique key. 620 */ 621 case SRT_Table: 622 case SRT_EphemTab: { 623 int r1 = sqlite3GetTempReg(pParse); 624 testcase( eDest==SRT_Table ); 625 testcase( eDest==SRT_EphemTab ); 626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 627 if( pOrderBy ){ 628 pushOntoSorter(pParse, pOrderBy, p, r1); 629 }else{ 630 int r2 = sqlite3GetTempReg(pParse); 631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 634 sqlite3ReleaseTempReg(pParse, r2); 635 } 636 sqlite3ReleaseTempReg(pParse, r1); 637 break; 638 } 639 640 #ifndef SQLITE_OMIT_SUBQUERY 641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 642 ** then there should be a single item on the stack. Write this 643 ** item into the set table with bogus data. 644 */ 645 case SRT_Set: { 646 assert( nColumn==1 ); 647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 648 if( pOrderBy ){ 649 /* At first glance you would think we could optimize out the 650 ** ORDER BY in this case since the order of entries in the set 651 ** does not matter. But there might be a LIMIT clause, in which 652 ** case the order does matter */ 653 pushOntoSorter(pParse, pOrderBy, p, regResult); 654 }else{ 655 int r1 = sqlite3GetTempReg(pParse); 656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 659 sqlite3ReleaseTempReg(pParse, r1); 660 } 661 break; 662 } 663 664 /* If any row exist in the result set, record that fact and abort. 665 */ 666 case SRT_Exists: { 667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 668 /* The LIMIT clause will terminate the loop for us */ 669 break; 670 } 671 672 /* If this is a scalar select that is part of an expression, then 673 ** store the results in the appropriate memory cell and break out 674 ** of the scan loop. 675 */ 676 case SRT_Mem: { 677 assert( nColumn==1 ); 678 if( pOrderBy ){ 679 pushOntoSorter(pParse, pOrderBy, p, regResult); 680 }else{ 681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 682 /* The LIMIT clause will jump out of the loop for us */ 683 } 684 break; 685 } 686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 687 688 /* Send the data to the callback function or to a subroutine. In the 689 ** case of a subroutine, the subroutine itself is responsible for 690 ** popping the data from the stack. 691 */ 692 case SRT_Coroutine: 693 case SRT_Output: { 694 testcase( eDest==SRT_Coroutine ); 695 testcase( eDest==SRT_Output ); 696 if( pOrderBy ){ 697 int r1 = sqlite3GetTempReg(pParse); 698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 699 pushOntoSorter(pParse, pOrderBy, p, r1); 700 sqlite3ReleaseTempReg(pParse, r1); 701 }else if( eDest==SRT_Coroutine ){ 702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 703 }else{ 704 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 705 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 706 } 707 break; 708 } 709 710 #if !defined(SQLITE_OMIT_TRIGGER) 711 /* Discard the results. This is used for SELECT statements inside 712 ** the body of a TRIGGER. The purpose of such selects is to call 713 ** user-defined functions that have side effects. We do not care 714 ** about the actual results of the select. 715 */ 716 default: { 717 assert( eDest==SRT_Discard ); 718 break; 719 } 720 #endif 721 } 722 723 /* Jump to the end of the loop if the LIMIT is reached. Except, if 724 ** there is a sorter, in which case the sorter has already limited 725 ** the output for us. 726 */ 727 if( pOrderBy==0 && p->iLimit ){ 728 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 729 } 730 } 731 732 /* 733 ** Given an expression list, generate a KeyInfo structure that records 734 ** the collating sequence for each expression in that expression list. 735 ** 736 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 737 ** KeyInfo structure is appropriate for initializing a virtual index to 738 ** implement that clause. If the ExprList is the result set of a SELECT 739 ** then the KeyInfo structure is appropriate for initializing a virtual 740 ** index to implement a DISTINCT test. 741 ** 742 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 743 ** function is responsible for seeing that this structure is eventually 744 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 745 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 746 */ 747 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 748 sqlite3 *db = pParse->db; 749 int nExpr; 750 KeyInfo *pInfo; 751 struct ExprList_item *pItem; 752 int i; 753 754 nExpr = pList->nExpr; 755 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 756 if( pInfo ){ 757 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 758 pInfo->nField = (u16)nExpr; 759 pInfo->enc = ENC(db); 760 pInfo->db = db; 761 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 762 CollSeq *pColl; 763 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 764 if( !pColl ){ 765 pColl = db->pDfltColl; 766 } 767 pInfo->aColl[i] = pColl; 768 pInfo->aSortOrder[i] = pItem->sortOrder; 769 } 770 } 771 return pInfo; 772 } 773 774 775 /* 776 ** If the inner loop was generated using a non-null pOrderBy argument, 777 ** then the results were placed in a sorter. After the loop is terminated 778 ** we need to run the sorter and output the results. The following 779 ** routine generates the code needed to do that. 780 */ 781 static void generateSortTail( 782 Parse *pParse, /* Parsing context */ 783 Select *p, /* The SELECT statement */ 784 Vdbe *v, /* Generate code into this VDBE */ 785 int nColumn, /* Number of columns of data */ 786 SelectDest *pDest /* Write the sorted results here */ 787 ){ 788 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 789 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 790 int addr; 791 int iTab; 792 int pseudoTab = 0; 793 ExprList *pOrderBy = p->pOrderBy; 794 795 int eDest = pDest->eDest; 796 int iParm = pDest->iParm; 797 798 int regRow; 799 int regRowid; 800 801 iTab = pOrderBy->iECursor; 802 regRow = sqlite3GetTempReg(pParse); 803 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 804 pseudoTab = pParse->nTab++; 805 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 806 regRowid = 0; 807 }else{ 808 regRowid = sqlite3GetTempReg(pParse); 809 } 810 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 811 codeOffset(v, p, addrContinue); 812 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 813 switch( eDest ){ 814 case SRT_Table: 815 case SRT_EphemTab: { 816 testcase( eDest==SRT_Table ); 817 testcase( eDest==SRT_EphemTab ); 818 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 819 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 820 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 821 break; 822 } 823 #ifndef SQLITE_OMIT_SUBQUERY 824 case SRT_Set: { 825 assert( nColumn==1 ); 826 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 827 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 828 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 829 break; 830 } 831 case SRT_Mem: { 832 assert( nColumn==1 ); 833 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 834 /* The LIMIT clause will terminate the loop for us */ 835 break; 836 } 837 #endif 838 default: { 839 int i; 840 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 841 testcase( eDest==SRT_Output ); 842 testcase( eDest==SRT_Coroutine ); 843 for(i=0; i<nColumn; i++){ 844 assert( regRow!=pDest->iMem+i ); 845 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 846 if( i==0 ){ 847 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 848 } 849 } 850 if( eDest==SRT_Output ){ 851 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 852 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 853 }else{ 854 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 855 } 856 break; 857 } 858 } 859 sqlite3ReleaseTempReg(pParse, regRow); 860 sqlite3ReleaseTempReg(pParse, regRowid); 861 862 /* The bottom of the loop 863 */ 864 sqlite3VdbeResolveLabel(v, addrContinue); 865 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 866 sqlite3VdbeResolveLabel(v, addrBreak); 867 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 868 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 869 } 870 } 871 872 /* 873 ** Return a pointer to a string containing the 'declaration type' of the 874 ** expression pExpr. The string may be treated as static by the caller. 875 ** 876 ** The declaration type is the exact datatype definition extracted from the 877 ** original CREATE TABLE statement if the expression is a column. The 878 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 879 ** is considered a column can be complex in the presence of subqueries. The 880 ** result-set expression in all of the following SELECT statements is 881 ** considered a column by this function. 882 ** 883 ** SELECT col FROM tbl; 884 ** SELECT (SELECT col FROM tbl; 885 ** SELECT (SELECT col FROM tbl); 886 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 887 ** 888 ** The declaration type for any expression other than a column is NULL. 889 */ 890 static const char *columnType( 891 NameContext *pNC, 892 Expr *pExpr, 893 const char **pzOriginDb, 894 const char **pzOriginTab, 895 const char **pzOriginCol 896 ){ 897 char const *zType = 0; 898 char const *zOriginDb = 0; 899 char const *zOriginTab = 0; 900 char const *zOriginCol = 0; 901 int j; 902 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 903 904 switch( pExpr->op ){ 905 case TK_AGG_COLUMN: 906 case TK_COLUMN: { 907 /* The expression is a column. Locate the table the column is being 908 ** extracted from in NameContext.pSrcList. This table may be real 909 ** database table or a subquery. 910 */ 911 Table *pTab = 0; /* Table structure column is extracted from */ 912 Select *pS = 0; /* Select the column is extracted from */ 913 int iCol = pExpr->iColumn; /* Index of column in pTab */ 914 testcase( pExpr->op==TK_AGG_COLUMN ); 915 testcase( pExpr->op==TK_COLUMN ); 916 while( pNC && !pTab ){ 917 SrcList *pTabList = pNC->pSrcList; 918 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 919 if( j<pTabList->nSrc ){ 920 pTab = pTabList->a[j].pTab; 921 pS = pTabList->a[j].pSelect; 922 }else{ 923 pNC = pNC->pNext; 924 } 925 } 926 927 if( pTab==0 ){ 928 /* At one time, code such as "SELECT new.x" within a trigger would 929 ** cause this condition to run. Since then, we have restructured how 930 ** trigger code is generated and so this condition is no longer 931 ** possible. However, it can still be true for statements like 932 ** the following: 933 ** 934 ** CREATE TABLE t1(col INTEGER); 935 ** SELECT (SELECT t1.col) FROM FROM t1; 936 ** 937 ** when columnType() is called on the expression "t1.col" in the 938 ** sub-select. In this case, set the column type to NULL, even 939 ** though it should really be "INTEGER". 940 ** 941 ** This is not a problem, as the column type of "t1.col" is never 942 ** used. When columnType() is called on the expression 943 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 944 ** branch below. */ 945 break; 946 } 947 948 assert( pTab && pExpr->pTab==pTab ); 949 if( pS ){ 950 /* The "table" is actually a sub-select or a view in the FROM clause 951 ** of the SELECT statement. Return the declaration type and origin 952 ** data for the result-set column of the sub-select. 953 */ 954 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 955 /* If iCol is less than zero, then the expression requests the 956 ** rowid of the sub-select or view. This expression is legal (see 957 ** test case misc2.2.2) - it always evaluates to NULL. 958 */ 959 NameContext sNC; 960 Expr *p = pS->pEList->a[iCol].pExpr; 961 sNC.pSrcList = pS->pSrc; 962 sNC.pNext = pNC; 963 sNC.pParse = pNC->pParse; 964 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 965 } 966 }else if( ALWAYS(pTab->pSchema) ){ 967 /* A real table */ 968 assert( !pS ); 969 if( iCol<0 ) iCol = pTab->iPKey; 970 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 971 if( iCol<0 ){ 972 zType = "INTEGER"; 973 zOriginCol = "rowid"; 974 }else{ 975 zType = pTab->aCol[iCol].zType; 976 zOriginCol = pTab->aCol[iCol].zName; 977 } 978 zOriginTab = pTab->zName; 979 if( pNC->pParse ){ 980 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 981 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 982 } 983 } 984 break; 985 } 986 #ifndef SQLITE_OMIT_SUBQUERY 987 case TK_SELECT: { 988 /* The expression is a sub-select. Return the declaration type and 989 ** origin info for the single column in the result set of the SELECT 990 ** statement. 991 */ 992 NameContext sNC; 993 Select *pS = pExpr->x.pSelect; 994 Expr *p = pS->pEList->a[0].pExpr; 995 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 996 sNC.pSrcList = pS->pSrc; 997 sNC.pNext = pNC; 998 sNC.pParse = pNC->pParse; 999 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 1000 break; 1001 } 1002 #endif 1003 } 1004 1005 if( pzOriginDb ){ 1006 assert( pzOriginTab && pzOriginCol ); 1007 *pzOriginDb = zOriginDb; 1008 *pzOriginTab = zOriginTab; 1009 *pzOriginCol = zOriginCol; 1010 } 1011 return zType; 1012 } 1013 1014 /* 1015 ** Generate code that will tell the VDBE the declaration types of columns 1016 ** in the result set. 1017 */ 1018 static void generateColumnTypes( 1019 Parse *pParse, /* Parser context */ 1020 SrcList *pTabList, /* List of tables */ 1021 ExprList *pEList /* Expressions defining the result set */ 1022 ){ 1023 #ifndef SQLITE_OMIT_DECLTYPE 1024 Vdbe *v = pParse->pVdbe; 1025 int i; 1026 NameContext sNC; 1027 sNC.pSrcList = pTabList; 1028 sNC.pParse = pParse; 1029 for(i=0; i<pEList->nExpr; i++){ 1030 Expr *p = pEList->a[i].pExpr; 1031 const char *zType; 1032 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1033 const char *zOrigDb = 0; 1034 const char *zOrigTab = 0; 1035 const char *zOrigCol = 0; 1036 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1037 1038 /* The vdbe must make its own copy of the column-type and other 1039 ** column specific strings, in case the schema is reset before this 1040 ** virtual machine is deleted. 1041 */ 1042 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1043 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1044 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1045 #else 1046 zType = columnType(&sNC, p, 0, 0, 0); 1047 #endif 1048 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1049 } 1050 #endif /* SQLITE_OMIT_DECLTYPE */ 1051 } 1052 1053 /* 1054 ** Generate code that will tell the VDBE the names of columns 1055 ** in the result set. This information is used to provide the 1056 ** azCol[] values in the callback. 1057 */ 1058 static void generateColumnNames( 1059 Parse *pParse, /* Parser context */ 1060 SrcList *pTabList, /* List of tables */ 1061 ExprList *pEList /* Expressions defining the result set */ 1062 ){ 1063 Vdbe *v = pParse->pVdbe; 1064 int i, j; 1065 sqlite3 *db = pParse->db; 1066 int fullNames, shortNames; 1067 1068 #ifndef SQLITE_OMIT_EXPLAIN 1069 /* If this is an EXPLAIN, skip this step */ 1070 if( pParse->explain ){ 1071 return; 1072 } 1073 #endif 1074 1075 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1076 pParse->colNamesSet = 1; 1077 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1078 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1079 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1080 for(i=0; i<pEList->nExpr; i++){ 1081 Expr *p; 1082 p = pEList->a[i].pExpr; 1083 if( NEVER(p==0) ) continue; 1084 if( pEList->a[i].zName ){ 1085 char *zName = pEList->a[i].zName; 1086 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1087 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1088 Table *pTab; 1089 char *zCol; 1090 int iCol = p->iColumn; 1091 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1092 if( pTabList->a[j].iCursor==p->iTable ) break; 1093 } 1094 assert( j<pTabList->nSrc ); 1095 pTab = pTabList->a[j].pTab; 1096 if( iCol<0 ) iCol = pTab->iPKey; 1097 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1098 if( iCol<0 ){ 1099 zCol = "rowid"; 1100 }else{ 1101 zCol = pTab->aCol[iCol].zName; 1102 } 1103 if( !shortNames && !fullNames ){ 1104 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1105 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1106 }else if( fullNames ){ 1107 char *zName = 0; 1108 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1109 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1110 }else{ 1111 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1112 } 1113 }else{ 1114 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1115 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1116 } 1117 } 1118 generateColumnTypes(pParse, pTabList, pEList); 1119 } 1120 1121 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1122 /* 1123 ** Name of the connection operator, used for error messages. 1124 */ 1125 static const char *selectOpName(int id){ 1126 char *z; 1127 switch( id ){ 1128 case TK_ALL: z = "UNION ALL"; break; 1129 case TK_INTERSECT: z = "INTERSECT"; break; 1130 case TK_EXCEPT: z = "EXCEPT"; break; 1131 default: z = "UNION"; break; 1132 } 1133 return z; 1134 } 1135 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1136 1137 /* 1138 ** Given a an expression list (which is really the list of expressions 1139 ** that form the result set of a SELECT statement) compute appropriate 1140 ** column names for a table that would hold the expression list. 1141 ** 1142 ** All column names will be unique. 1143 ** 1144 ** Only the column names are computed. Column.zType, Column.zColl, 1145 ** and other fields of Column are zeroed. 1146 ** 1147 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1148 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1149 */ 1150 static int selectColumnsFromExprList( 1151 Parse *pParse, /* Parsing context */ 1152 ExprList *pEList, /* Expr list from which to derive column names */ 1153 int *pnCol, /* Write the number of columns here */ 1154 Column **paCol /* Write the new column list here */ 1155 ){ 1156 sqlite3 *db = pParse->db; /* Database connection */ 1157 int i, j; /* Loop counters */ 1158 int cnt; /* Index added to make the name unique */ 1159 Column *aCol, *pCol; /* For looping over result columns */ 1160 int nCol; /* Number of columns in the result set */ 1161 Expr *p; /* Expression for a single result column */ 1162 char *zName; /* Column name */ 1163 int nName; /* Size of name in zName[] */ 1164 1165 *pnCol = nCol = pEList->nExpr; 1166 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1167 if( aCol==0 ) return SQLITE_NOMEM; 1168 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1169 /* Get an appropriate name for the column 1170 */ 1171 p = pEList->a[i].pExpr; 1172 assert( p->pRight==0 || ExprHasProperty(p->pRight, EP_IntValue) 1173 || p->pRight->u.zToken==0 || p->pRight->u.zToken[0]!=0 ); 1174 if( (zName = pEList->a[i].zName)!=0 ){ 1175 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1176 zName = sqlite3DbStrDup(db, zName); 1177 }else{ 1178 Expr *pColExpr = p; /* The expression that is the result column name */ 1179 Table *pTab; /* Table associated with this expression */ 1180 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1181 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1182 /* For columns use the column name name */ 1183 int iCol = pColExpr->iColumn; 1184 pTab = pColExpr->pTab; 1185 if( iCol<0 ) iCol = pTab->iPKey; 1186 zName = sqlite3MPrintf(db, "%s", 1187 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1188 }else if( pColExpr->op==TK_ID ){ 1189 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1190 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1191 }else{ 1192 /* Use the original text of the column expression as its name */ 1193 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1194 } 1195 } 1196 if( db->mallocFailed ){ 1197 sqlite3DbFree(db, zName); 1198 break; 1199 } 1200 1201 /* Make sure the column name is unique. If the name is not unique, 1202 ** append a integer to the name so that it becomes unique. 1203 */ 1204 nName = sqlite3Strlen30(zName); 1205 for(j=cnt=0; j<i; j++){ 1206 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1207 char *zNewName; 1208 zName[nName] = 0; 1209 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1210 sqlite3DbFree(db, zName); 1211 zName = zNewName; 1212 j = -1; 1213 if( zName==0 ) break; 1214 } 1215 } 1216 pCol->zName = zName; 1217 } 1218 if( db->mallocFailed ){ 1219 for(j=0; j<i; j++){ 1220 sqlite3DbFree(db, aCol[j].zName); 1221 } 1222 sqlite3DbFree(db, aCol); 1223 *paCol = 0; 1224 *pnCol = 0; 1225 return SQLITE_NOMEM; 1226 } 1227 return SQLITE_OK; 1228 } 1229 1230 /* 1231 ** Add type and collation information to a column list based on 1232 ** a SELECT statement. 1233 ** 1234 ** The column list presumably came from selectColumnNamesFromExprList(). 1235 ** The column list has only names, not types or collations. This 1236 ** routine goes through and adds the types and collations. 1237 ** 1238 ** This routine requires that all identifiers in the SELECT 1239 ** statement be resolved. 1240 */ 1241 static void selectAddColumnTypeAndCollation( 1242 Parse *pParse, /* Parsing contexts */ 1243 int nCol, /* Number of columns */ 1244 Column *aCol, /* List of columns */ 1245 Select *pSelect /* SELECT used to determine types and collations */ 1246 ){ 1247 sqlite3 *db = pParse->db; 1248 NameContext sNC; 1249 Column *pCol; 1250 CollSeq *pColl; 1251 int i; 1252 Expr *p; 1253 struct ExprList_item *a; 1254 1255 assert( pSelect!=0 ); 1256 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1257 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1258 if( db->mallocFailed ) return; 1259 memset(&sNC, 0, sizeof(sNC)); 1260 sNC.pSrcList = pSelect->pSrc; 1261 a = pSelect->pEList->a; 1262 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1263 p = a[i].pExpr; 1264 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1265 pCol->affinity = sqlite3ExprAffinity(p); 1266 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1267 pColl = sqlite3ExprCollSeq(pParse, p); 1268 if( pColl ){ 1269 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1270 } 1271 } 1272 } 1273 1274 /* 1275 ** Given a SELECT statement, generate a Table structure that describes 1276 ** the result set of that SELECT. 1277 */ 1278 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1279 Table *pTab; 1280 sqlite3 *db = pParse->db; 1281 int savedFlags; 1282 1283 savedFlags = db->flags; 1284 db->flags &= ~SQLITE_FullColNames; 1285 db->flags |= SQLITE_ShortColNames; 1286 sqlite3SelectPrep(pParse, pSelect, 0); 1287 if( pParse->nErr ) return 0; 1288 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1289 db->flags = savedFlags; 1290 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1291 if( pTab==0 ){ 1292 return 0; 1293 } 1294 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1295 ** is disabled */ 1296 assert( db->lookaside.bEnabled==0 ); 1297 pTab->nRef = 1; 1298 pTab->zName = 0; 1299 pTab->nRowEst = 1000000; 1300 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1301 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1302 pTab->iPKey = -1; 1303 if( db->mallocFailed ){ 1304 sqlite3DeleteTable(db, pTab); 1305 return 0; 1306 } 1307 return pTab; 1308 } 1309 1310 /* 1311 ** Get a VDBE for the given parser context. Create a new one if necessary. 1312 ** If an error occurs, return NULL and leave a message in pParse. 1313 */ 1314 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1315 Vdbe *v = pParse->pVdbe; 1316 if( v==0 ){ 1317 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1318 #ifndef SQLITE_OMIT_TRACE 1319 if( v ){ 1320 sqlite3VdbeAddOp0(v, OP_Trace); 1321 } 1322 #endif 1323 } 1324 return v; 1325 } 1326 1327 1328 /* 1329 ** Compute the iLimit and iOffset fields of the SELECT based on the 1330 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1331 ** that appear in the original SQL statement after the LIMIT and OFFSET 1332 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1333 ** are the integer memory register numbers for counters used to compute 1334 ** the limit and offset. If there is no limit and/or offset, then 1335 ** iLimit and iOffset are negative. 1336 ** 1337 ** This routine changes the values of iLimit and iOffset only if 1338 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1339 ** iOffset should have been preset to appropriate default values 1340 ** (usually but not always -1) prior to calling this routine. 1341 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1342 ** redefined. The UNION ALL operator uses this property to force 1343 ** the reuse of the same limit and offset registers across multiple 1344 ** SELECT statements. 1345 */ 1346 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1347 Vdbe *v = 0; 1348 int iLimit = 0; 1349 int iOffset; 1350 int addr1, n; 1351 if( p->iLimit ) return; 1352 1353 /* 1354 ** "LIMIT -1" always shows all rows. There is some 1355 ** contraversy about what the correct behavior should be. 1356 ** The current implementation interprets "LIMIT 0" to mean 1357 ** no rows. 1358 */ 1359 sqlite3ExprCacheClear(pParse); 1360 assert( p->pOffset==0 || p->pLimit!=0 ); 1361 if( p->pLimit ){ 1362 p->iLimit = iLimit = ++pParse->nMem; 1363 v = sqlite3GetVdbe(pParse); 1364 if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ 1365 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1366 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1367 VdbeComment((v, "LIMIT counter")); 1368 if( n==0 ){ 1369 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1370 } 1371 }else{ 1372 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1373 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1374 VdbeComment((v, "LIMIT counter")); 1375 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1376 } 1377 if( p->pOffset ){ 1378 p->iOffset = iOffset = ++pParse->nMem; 1379 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1380 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1381 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1382 VdbeComment((v, "OFFSET counter")); 1383 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1384 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1385 sqlite3VdbeJumpHere(v, addr1); 1386 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1387 VdbeComment((v, "LIMIT+OFFSET")); 1388 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1389 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1390 sqlite3VdbeJumpHere(v, addr1); 1391 } 1392 } 1393 } 1394 1395 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1396 /* 1397 ** Return the appropriate collating sequence for the iCol-th column of 1398 ** the result set for the compound-select statement "p". Return NULL if 1399 ** the column has no default collating sequence. 1400 ** 1401 ** The collating sequence for the compound select is taken from the 1402 ** left-most term of the select that has a collating sequence. 1403 */ 1404 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1405 CollSeq *pRet; 1406 if( p->pPrior ){ 1407 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1408 }else{ 1409 pRet = 0; 1410 } 1411 assert( iCol>=0 ); 1412 if( pRet==0 && iCol<p->pEList->nExpr ){ 1413 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1414 } 1415 return pRet; 1416 } 1417 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1418 1419 /* Forward reference */ 1420 static int multiSelectOrderBy( 1421 Parse *pParse, /* Parsing context */ 1422 Select *p, /* The right-most of SELECTs to be coded */ 1423 SelectDest *pDest /* What to do with query results */ 1424 ); 1425 1426 1427 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1428 /* 1429 ** This routine is called to process a compound query form from 1430 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1431 ** INTERSECT 1432 ** 1433 ** "p" points to the right-most of the two queries. the query on the 1434 ** left is p->pPrior. The left query could also be a compound query 1435 ** in which case this routine will be called recursively. 1436 ** 1437 ** The results of the total query are to be written into a destination 1438 ** of type eDest with parameter iParm. 1439 ** 1440 ** Example 1: Consider a three-way compound SQL statement. 1441 ** 1442 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1443 ** 1444 ** This statement is parsed up as follows: 1445 ** 1446 ** SELECT c FROM t3 1447 ** | 1448 ** `-----> SELECT b FROM t2 1449 ** | 1450 ** `------> SELECT a FROM t1 1451 ** 1452 ** The arrows in the diagram above represent the Select.pPrior pointer. 1453 ** So if this routine is called with p equal to the t3 query, then 1454 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1455 ** 1456 ** Notice that because of the way SQLite parses compound SELECTs, the 1457 ** individual selects always group from left to right. 1458 */ 1459 static int multiSelect( 1460 Parse *pParse, /* Parsing context */ 1461 Select *p, /* The right-most of SELECTs to be coded */ 1462 SelectDest *pDest /* What to do with query results */ 1463 ){ 1464 int rc = SQLITE_OK; /* Success code from a subroutine */ 1465 Select *pPrior; /* Another SELECT immediately to our left */ 1466 Vdbe *v; /* Generate code to this VDBE */ 1467 SelectDest dest; /* Alternative data destination */ 1468 Select *pDelete = 0; /* Chain of simple selects to delete */ 1469 sqlite3 *db; /* Database connection */ 1470 1471 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1472 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1473 */ 1474 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1475 db = pParse->db; 1476 pPrior = p->pPrior; 1477 assert( pPrior->pRightmost!=pPrior ); 1478 assert( pPrior->pRightmost==p->pRightmost ); 1479 dest = *pDest; 1480 if( pPrior->pOrderBy ){ 1481 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1482 selectOpName(p->op)); 1483 rc = 1; 1484 goto multi_select_end; 1485 } 1486 if( pPrior->pLimit ){ 1487 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1488 selectOpName(p->op)); 1489 rc = 1; 1490 goto multi_select_end; 1491 } 1492 1493 v = sqlite3GetVdbe(pParse); 1494 assert( v!=0 ); /* The VDBE already created by calling function */ 1495 1496 /* Create the destination temporary table if necessary 1497 */ 1498 if( dest.eDest==SRT_EphemTab ){ 1499 assert( p->pEList ); 1500 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1501 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 1502 dest.eDest = SRT_Table; 1503 } 1504 1505 /* Make sure all SELECTs in the statement have the same number of elements 1506 ** in their result sets. 1507 */ 1508 assert( p->pEList && pPrior->pEList ); 1509 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1510 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1511 " do not have the same number of result columns", selectOpName(p->op)); 1512 rc = 1; 1513 goto multi_select_end; 1514 } 1515 1516 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1517 */ 1518 if( p->pOrderBy ){ 1519 return multiSelectOrderBy(pParse, p, pDest); 1520 } 1521 1522 /* Generate code for the left and right SELECT statements. 1523 */ 1524 switch( p->op ){ 1525 case TK_ALL: { 1526 int addr = 0; 1527 assert( !pPrior->pLimit ); 1528 pPrior->pLimit = p->pLimit; 1529 pPrior->pOffset = p->pOffset; 1530 rc = sqlite3Select(pParse, pPrior, &dest); 1531 p->pLimit = 0; 1532 p->pOffset = 0; 1533 if( rc ){ 1534 goto multi_select_end; 1535 } 1536 p->pPrior = 0; 1537 p->iLimit = pPrior->iLimit; 1538 p->iOffset = pPrior->iOffset; 1539 if( p->iLimit ){ 1540 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1541 VdbeComment((v, "Jump ahead if LIMIT reached")); 1542 } 1543 rc = sqlite3Select(pParse, p, &dest); 1544 testcase( rc!=SQLITE_OK ); 1545 pDelete = p->pPrior; 1546 p->pPrior = pPrior; 1547 if( addr ){ 1548 sqlite3VdbeJumpHere(v, addr); 1549 } 1550 break; 1551 } 1552 case TK_EXCEPT: 1553 case TK_UNION: { 1554 int unionTab; /* Cursor number of the temporary table holding result */ 1555 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1556 int priorOp; /* The SRT_ operation to apply to prior selects */ 1557 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1558 int addr; 1559 SelectDest uniondest; 1560 1561 testcase( p->op==TK_EXCEPT ); 1562 testcase( p->op==TK_UNION ); 1563 priorOp = SRT_Union; 1564 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1565 /* We can reuse a temporary table generated by a SELECT to our 1566 ** right. 1567 */ 1568 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1569 ** of a 3-way or more compound */ 1570 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1571 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1572 unionTab = dest.iParm; 1573 }else{ 1574 /* We will need to create our own temporary table to hold the 1575 ** intermediate results. 1576 */ 1577 unionTab = pParse->nTab++; 1578 assert( p->pOrderBy==0 ); 1579 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1580 assert( p->addrOpenEphm[0] == -1 ); 1581 p->addrOpenEphm[0] = addr; 1582 p->pRightmost->selFlags |= SF_UsesEphemeral; 1583 assert( p->pEList ); 1584 } 1585 1586 /* Code the SELECT statements to our left 1587 */ 1588 assert( !pPrior->pOrderBy ); 1589 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1590 rc = sqlite3Select(pParse, pPrior, &uniondest); 1591 if( rc ){ 1592 goto multi_select_end; 1593 } 1594 1595 /* Code the current SELECT statement 1596 */ 1597 if( p->op==TK_EXCEPT ){ 1598 op = SRT_Except; 1599 }else{ 1600 assert( p->op==TK_UNION ); 1601 op = SRT_Union; 1602 } 1603 p->pPrior = 0; 1604 pLimit = p->pLimit; 1605 p->pLimit = 0; 1606 pOffset = p->pOffset; 1607 p->pOffset = 0; 1608 uniondest.eDest = op; 1609 rc = sqlite3Select(pParse, p, &uniondest); 1610 testcase( rc!=SQLITE_OK ); 1611 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1612 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1613 sqlite3ExprListDelete(db, p->pOrderBy); 1614 pDelete = p->pPrior; 1615 p->pPrior = pPrior; 1616 p->pOrderBy = 0; 1617 sqlite3ExprDelete(db, p->pLimit); 1618 p->pLimit = pLimit; 1619 p->pOffset = pOffset; 1620 p->iLimit = 0; 1621 p->iOffset = 0; 1622 1623 /* Convert the data in the temporary table into whatever form 1624 ** it is that we currently need. 1625 */ 1626 assert( unionTab==dest.iParm || dest.eDest!=priorOp ); 1627 if( dest.eDest!=priorOp ){ 1628 int iCont, iBreak, iStart; 1629 assert( p->pEList ); 1630 if( dest.eDest==SRT_Output ){ 1631 Select *pFirst = p; 1632 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1633 generateColumnNames(pParse, 0, pFirst->pEList); 1634 } 1635 iBreak = sqlite3VdbeMakeLabel(v); 1636 iCont = sqlite3VdbeMakeLabel(v); 1637 computeLimitRegisters(pParse, p, iBreak); 1638 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1639 iStart = sqlite3VdbeCurrentAddr(v); 1640 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1641 0, -1, &dest, iCont, iBreak); 1642 sqlite3VdbeResolveLabel(v, iCont); 1643 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1644 sqlite3VdbeResolveLabel(v, iBreak); 1645 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1646 } 1647 break; 1648 } 1649 default: assert( p->op==TK_INTERSECT ); { 1650 int tab1, tab2; 1651 int iCont, iBreak, iStart; 1652 Expr *pLimit, *pOffset; 1653 int addr; 1654 SelectDest intersectdest; 1655 int r1; 1656 1657 /* INTERSECT is different from the others since it requires 1658 ** two temporary tables. Hence it has its own case. Begin 1659 ** by allocating the tables we will need. 1660 */ 1661 tab1 = pParse->nTab++; 1662 tab2 = pParse->nTab++; 1663 assert( p->pOrderBy==0 ); 1664 1665 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1666 assert( p->addrOpenEphm[0] == -1 ); 1667 p->addrOpenEphm[0] = addr; 1668 p->pRightmost->selFlags |= SF_UsesEphemeral; 1669 assert( p->pEList ); 1670 1671 /* Code the SELECTs to our left into temporary table "tab1". 1672 */ 1673 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1674 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1675 if( rc ){ 1676 goto multi_select_end; 1677 } 1678 1679 /* Code the current SELECT into temporary table "tab2" 1680 */ 1681 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1682 assert( p->addrOpenEphm[1] == -1 ); 1683 p->addrOpenEphm[1] = addr; 1684 p->pPrior = 0; 1685 pLimit = p->pLimit; 1686 p->pLimit = 0; 1687 pOffset = p->pOffset; 1688 p->pOffset = 0; 1689 intersectdest.iParm = tab2; 1690 rc = sqlite3Select(pParse, p, &intersectdest); 1691 testcase( rc!=SQLITE_OK ); 1692 pDelete = p->pPrior; 1693 p->pPrior = pPrior; 1694 sqlite3ExprDelete(db, p->pLimit); 1695 p->pLimit = pLimit; 1696 p->pOffset = pOffset; 1697 1698 /* Generate code to take the intersection of the two temporary 1699 ** tables. 1700 */ 1701 assert( p->pEList ); 1702 if( dest.eDest==SRT_Output ){ 1703 Select *pFirst = p; 1704 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1705 generateColumnNames(pParse, 0, pFirst->pEList); 1706 } 1707 iBreak = sqlite3VdbeMakeLabel(v); 1708 iCont = sqlite3VdbeMakeLabel(v); 1709 computeLimitRegisters(pParse, p, iBreak); 1710 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1711 r1 = sqlite3GetTempReg(pParse); 1712 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1713 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 1714 sqlite3ReleaseTempReg(pParse, r1); 1715 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1716 0, -1, &dest, iCont, iBreak); 1717 sqlite3VdbeResolveLabel(v, iCont); 1718 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1719 sqlite3VdbeResolveLabel(v, iBreak); 1720 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1721 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1722 break; 1723 } 1724 } 1725 1726 /* Compute collating sequences used by 1727 ** temporary tables needed to implement the compound select. 1728 ** Attach the KeyInfo structure to all temporary tables. 1729 ** 1730 ** This section is run by the right-most SELECT statement only. 1731 ** SELECT statements to the left always skip this part. The right-most 1732 ** SELECT might also skip this part if it has no ORDER BY clause and 1733 ** no temp tables are required. 1734 */ 1735 if( p->selFlags & SF_UsesEphemeral ){ 1736 int i; /* Loop counter */ 1737 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1738 Select *pLoop; /* For looping through SELECT statements */ 1739 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1740 int nCol; /* Number of columns in result set */ 1741 1742 assert( p->pRightmost==p ); 1743 nCol = p->pEList->nExpr; 1744 pKeyInfo = sqlite3DbMallocZero(db, 1745 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1746 if( !pKeyInfo ){ 1747 rc = SQLITE_NOMEM; 1748 goto multi_select_end; 1749 } 1750 1751 pKeyInfo->enc = ENC(db); 1752 pKeyInfo->nField = (u16)nCol; 1753 1754 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1755 *apColl = multiSelectCollSeq(pParse, p, i); 1756 if( 0==*apColl ){ 1757 *apColl = db->pDfltColl; 1758 } 1759 } 1760 1761 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1762 for(i=0; i<2; i++){ 1763 int addr = pLoop->addrOpenEphm[i]; 1764 if( addr<0 ){ 1765 /* If [0] is unused then [1] is also unused. So we can 1766 ** always safely abort as soon as the first unused slot is found */ 1767 assert( pLoop->addrOpenEphm[1]<0 ); 1768 break; 1769 } 1770 sqlite3VdbeChangeP2(v, addr, nCol); 1771 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1772 pLoop->addrOpenEphm[i] = -1; 1773 } 1774 } 1775 sqlite3DbFree(db, pKeyInfo); 1776 } 1777 1778 multi_select_end: 1779 pDest->iMem = dest.iMem; 1780 pDest->nMem = dest.nMem; 1781 sqlite3SelectDelete(db, pDelete); 1782 return rc; 1783 } 1784 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1785 1786 /* 1787 ** Code an output subroutine for a coroutine implementation of a 1788 ** SELECT statment. 1789 ** 1790 ** The data to be output is contained in pIn->iMem. There are 1791 ** pIn->nMem columns to be output. pDest is where the output should 1792 ** be sent. 1793 ** 1794 ** regReturn is the number of the register holding the subroutine 1795 ** return address. 1796 ** 1797 ** If regPrev>0 then it is the first register in a vector that 1798 ** records the previous output. mem[regPrev] is a flag that is false 1799 ** if there has been no previous output. If regPrev>0 then code is 1800 ** generated to suppress duplicates. pKeyInfo is used for comparing 1801 ** keys. 1802 ** 1803 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1804 ** iBreak. 1805 */ 1806 static int generateOutputSubroutine( 1807 Parse *pParse, /* Parsing context */ 1808 Select *p, /* The SELECT statement */ 1809 SelectDest *pIn, /* Coroutine supplying data */ 1810 SelectDest *pDest, /* Where to send the data */ 1811 int regReturn, /* The return address register */ 1812 int regPrev, /* Previous result register. No uniqueness if 0 */ 1813 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1814 int p4type, /* The p4 type for pKeyInfo */ 1815 int iBreak /* Jump here if we hit the LIMIT */ 1816 ){ 1817 Vdbe *v = pParse->pVdbe; 1818 int iContinue; 1819 int addr; 1820 1821 addr = sqlite3VdbeCurrentAddr(v); 1822 iContinue = sqlite3VdbeMakeLabel(v); 1823 1824 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1825 */ 1826 if( regPrev ){ 1827 int j1, j2; 1828 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1829 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1830 (char*)pKeyInfo, p4type); 1831 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1832 sqlite3VdbeJumpHere(v, j1); 1833 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1834 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1835 } 1836 if( pParse->db->mallocFailed ) return 0; 1837 1838 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1839 */ 1840 codeOffset(v, p, iContinue); 1841 1842 switch( pDest->eDest ){ 1843 /* Store the result as data using a unique key. 1844 */ 1845 case SRT_Table: 1846 case SRT_EphemTab: { 1847 int r1 = sqlite3GetTempReg(pParse); 1848 int r2 = sqlite3GetTempReg(pParse); 1849 testcase( pDest->eDest==SRT_Table ); 1850 testcase( pDest->eDest==SRT_EphemTab ); 1851 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1852 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1853 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1854 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1855 sqlite3ReleaseTempReg(pParse, r2); 1856 sqlite3ReleaseTempReg(pParse, r1); 1857 break; 1858 } 1859 1860 #ifndef SQLITE_OMIT_SUBQUERY 1861 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1862 ** then there should be a single item on the stack. Write this 1863 ** item into the set table with bogus data. 1864 */ 1865 case SRT_Set: { 1866 int r1; 1867 assert( pIn->nMem==1 ); 1868 p->affinity = 1869 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1870 r1 = sqlite3GetTempReg(pParse); 1871 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1872 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1873 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1874 sqlite3ReleaseTempReg(pParse, r1); 1875 break; 1876 } 1877 1878 #if 0 /* Never occurs on an ORDER BY query */ 1879 /* If any row exist in the result set, record that fact and abort. 1880 */ 1881 case SRT_Exists: { 1882 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1883 /* The LIMIT clause will terminate the loop for us */ 1884 break; 1885 } 1886 #endif 1887 1888 /* If this is a scalar select that is part of an expression, then 1889 ** store the results in the appropriate memory cell and break out 1890 ** of the scan loop. 1891 */ 1892 case SRT_Mem: { 1893 assert( pIn->nMem==1 ); 1894 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1895 /* The LIMIT clause will jump out of the loop for us */ 1896 break; 1897 } 1898 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1899 1900 /* The results are stored in a sequence of registers 1901 ** starting at pDest->iMem. Then the co-routine yields. 1902 */ 1903 case SRT_Coroutine: { 1904 if( pDest->iMem==0 ){ 1905 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1906 pDest->nMem = pIn->nMem; 1907 } 1908 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1909 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1910 break; 1911 } 1912 1913 /* If none of the above, then the result destination must be 1914 ** SRT_Output. This routine is never called with any other 1915 ** destination other than the ones handled above or SRT_Output. 1916 ** 1917 ** For SRT_Output, results are stored in a sequence of registers. 1918 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 1919 ** return the next row of result. 1920 */ 1921 default: { 1922 assert( pDest->eDest==SRT_Output ); 1923 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1924 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1925 break; 1926 } 1927 } 1928 1929 /* Jump to the end of the loop if the LIMIT is reached. 1930 */ 1931 if( p->iLimit ){ 1932 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); 1933 } 1934 1935 /* Generate the subroutine return 1936 */ 1937 sqlite3VdbeResolveLabel(v, iContinue); 1938 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1939 1940 return addr; 1941 } 1942 1943 /* 1944 ** Alternative compound select code generator for cases when there 1945 ** is an ORDER BY clause. 1946 ** 1947 ** We assume a query of the following form: 1948 ** 1949 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1950 ** 1951 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1952 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1953 ** co-routines. Then run the co-routines in parallel and merge the results 1954 ** into the output. In addition to the two coroutines (called selectA and 1955 ** selectB) there are 7 subroutines: 1956 ** 1957 ** outA: Move the output of the selectA coroutine into the output 1958 ** of the compound query. 1959 ** 1960 ** outB: Move the output of the selectB coroutine into the output 1961 ** of the compound query. (Only generated for UNION and 1962 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1963 ** appears only in B.) 1964 ** 1965 ** AltB: Called when there is data from both coroutines and A<B. 1966 ** 1967 ** AeqB: Called when there is data from both coroutines and A==B. 1968 ** 1969 ** AgtB: Called when there is data from both coroutines and A>B. 1970 ** 1971 ** EofA: Called when data is exhausted from selectA. 1972 ** 1973 ** EofB: Called when data is exhausted from selectB. 1974 ** 1975 ** The implementation of the latter five subroutines depend on which 1976 ** <operator> is used: 1977 ** 1978 ** 1979 ** UNION ALL UNION EXCEPT INTERSECT 1980 ** ------------- ----------------- -------------- ----------------- 1981 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1982 ** 1983 ** AeqB: outA, nextA nextA nextA outA, nextA 1984 ** 1985 ** AgtB: outB, nextB outB, nextB nextB nextB 1986 ** 1987 ** EofA: outB, nextB outB, nextB halt halt 1988 ** 1989 ** EofB: outA, nextA outA, nextA outA, nextA halt 1990 ** 1991 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1992 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1993 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1994 ** following nextX causes a jump to the end of the select processing. 1995 ** 1996 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1997 ** within the output subroutine. The regPrev register set holds the previously 1998 ** output value. A comparison is made against this value and the output 1999 ** is skipped if the next results would be the same as the previous. 2000 ** 2001 ** The implementation plan is to implement the two coroutines and seven 2002 ** subroutines first, then put the control logic at the bottom. Like this: 2003 ** 2004 ** goto Init 2005 ** coA: coroutine for left query (A) 2006 ** coB: coroutine for right query (B) 2007 ** outA: output one row of A 2008 ** outB: output one row of B (UNION and UNION ALL only) 2009 ** EofA: ... 2010 ** EofB: ... 2011 ** AltB: ... 2012 ** AeqB: ... 2013 ** AgtB: ... 2014 ** Init: initialize coroutine registers 2015 ** yield coA 2016 ** if eof(A) goto EofA 2017 ** yield coB 2018 ** if eof(B) goto EofB 2019 ** Cmpr: Compare A, B 2020 ** Jump AltB, AeqB, AgtB 2021 ** End: ... 2022 ** 2023 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2024 ** actually called using Gosub and they do not Return. EofA and EofB loop 2025 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2026 ** and AgtB jump to either L2 or to one of EofA or EofB. 2027 */ 2028 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2029 static int multiSelectOrderBy( 2030 Parse *pParse, /* Parsing context */ 2031 Select *p, /* The right-most of SELECTs to be coded */ 2032 SelectDest *pDest /* What to do with query results */ 2033 ){ 2034 int i, j; /* Loop counters */ 2035 Select *pPrior; /* Another SELECT immediately to our left */ 2036 Vdbe *v; /* Generate code to this VDBE */ 2037 SelectDest destA; /* Destination for coroutine A */ 2038 SelectDest destB; /* Destination for coroutine B */ 2039 int regAddrA; /* Address register for select-A coroutine */ 2040 int regEofA; /* Flag to indicate when select-A is complete */ 2041 int regAddrB; /* Address register for select-B coroutine */ 2042 int regEofB; /* Flag to indicate when select-B is complete */ 2043 int addrSelectA; /* Address of the select-A coroutine */ 2044 int addrSelectB; /* Address of the select-B coroutine */ 2045 int regOutA; /* Address register for the output-A subroutine */ 2046 int regOutB; /* Address register for the output-B subroutine */ 2047 int addrOutA; /* Address of the output-A subroutine */ 2048 int addrOutB = 0; /* Address of the output-B subroutine */ 2049 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2050 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2051 int addrAltB; /* Address of the A<B subroutine */ 2052 int addrAeqB; /* Address of the A==B subroutine */ 2053 int addrAgtB; /* Address of the A>B subroutine */ 2054 int regLimitA; /* Limit register for select-A */ 2055 int regLimitB; /* Limit register for select-A */ 2056 int regPrev; /* A range of registers to hold previous output */ 2057 int savedLimit; /* Saved value of p->iLimit */ 2058 int savedOffset; /* Saved value of p->iOffset */ 2059 int labelCmpr; /* Label for the start of the merge algorithm */ 2060 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2061 int j1; /* Jump instructions that get retargetted */ 2062 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2063 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2064 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2065 sqlite3 *db; /* Database connection */ 2066 ExprList *pOrderBy; /* The ORDER BY clause */ 2067 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2068 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2069 2070 assert( p->pOrderBy!=0 ); 2071 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2072 db = pParse->db; 2073 v = pParse->pVdbe; 2074 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2075 labelEnd = sqlite3VdbeMakeLabel(v); 2076 labelCmpr = sqlite3VdbeMakeLabel(v); 2077 2078 2079 /* Patch up the ORDER BY clause 2080 */ 2081 op = p->op; 2082 pPrior = p->pPrior; 2083 assert( pPrior->pOrderBy==0 ); 2084 pOrderBy = p->pOrderBy; 2085 assert( pOrderBy ); 2086 nOrderBy = pOrderBy->nExpr; 2087 2088 /* For operators other than UNION ALL we have to make sure that 2089 ** the ORDER BY clause covers every term of the result set. Add 2090 ** terms to the ORDER BY clause as necessary. 2091 */ 2092 if( op!=TK_ALL ){ 2093 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2094 struct ExprList_item *pItem; 2095 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2096 assert( pItem->iCol>0 ); 2097 if( pItem->iCol==i ) break; 2098 } 2099 if( j==nOrderBy ){ 2100 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2101 if( pNew==0 ) return SQLITE_NOMEM; 2102 pNew->flags |= EP_IntValue; 2103 pNew->u.iValue = i; 2104 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2105 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2106 } 2107 } 2108 } 2109 2110 /* Compute the comparison permutation and keyinfo that is used with 2111 ** the permutation used to determine if the next 2112 ** row of results comes from selectA or selectB. Also add explicit 2113 ** collations to the ORDER BY clause terms so that when the subqueries 2114 ** to the right and the left are evaluated, they use the correct 2115 ** collation. 2116 */ 2117 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2118 if( aPermute ){ 2119 struct ExprList_item *pItem; 2120 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2121 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2122 aPermute[i] = pItem->iCol - 1; 2123 } 2124 pKeyMerge = 2125 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2126 if( pKeyMerge ){ 2127 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2128 pKeyMerge->nField = (u16)nOrderBy; 2129 pKeyMerge->enc = ENC(db); 2130 for(i=0; i<nOrderBy; i++){ 2131 CollSeq *pColl; 2132 Expr *pTerm = pOrderBy->a[i].pExpr; 2133 if( pTerm->flags & EP_ExpCollate ){ 2134 pColl = pTerm->pColl; 2135 }else{ 2136 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2137 pTerm->flags |= EP_ExpCollate; 2138 pTerm->pColl = pColl; 2139 } 2140 pKeyMerge->aColl[i] = pColl; 2141 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2142 } 2143 } 2144 }else{ 2145 pKeyMerge = 0; 2146 } 2147 2148 /* Reattach the ORDER BY clause to the query. 2149 */ 2150 p->pOrderBy = pOrderBy; 2151 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2152 2153 /* Allocate a range of temporary registers and the KeyInfo needed 2154 ** for the logic that removes duplicate result rows when the 2155 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2156 */ 2157 if( op==TK_ALL ){ 2158 regPrev = 0; 2159 }else{ 2160 int nExpr = p->pEList->nExpr; 2161 assert( nOrderBy>=nExpr || db->mallocFailed ); 2162 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2163 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2164 pKeyDup = sqlite3DbMallocZero(db, 2165 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2166 if( pKeyDup ){ 2167 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2168 pKeyDup->nField = (u16)nExpr; 2169 pKeyDup->enc = ENC(db); 2170 for(i=0; i<nExpr; i++){ 2171 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2172 pKeyDup->aSortOrder[i] = 0; 2173 } 2174 } 2175 } 2176 2177 /* Separate the left and the right query from one another 2178 */ 2179 p->pPrior = 0; 2180 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2181 if( pPrior->pPrior==0 ){ 2182 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2183 } 2184 2185 /* Compute the limit registers */ 2186 computeLimitRegisters(pParse, p, labelEnd); 2187 if( p->iLimit && op==TK_ALL ){ 2188 regLimitA = ++pParse->nMem; 2189 regLimitB = ++pParse->nMem; 2190 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2191 regLimitA); 2192 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2193 }else{ 2194 regLimitA = regLimitB = 0; 2195 } 2196 sqlite3ExprDelete(db, p->pLimit); 2197 p->pLimit = 0; 2198 sqlite3ExprDelete(db, p->pOffset); 2199 p->pOffset = 0; 2200 2201 regAddrA = ++pParse->nMem; 2202 regEofA = ++pParse->nMem; 2203 regAddrB = ++pParse->nMem; 2204 regEofB = ++pParse->nMem; 2205 regOutA = ++pParse->nMem; 2206 regOutB = ++pParse->nMem; 2207 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2208 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2209 2210 /* Jump past the various subroutines and coroutines to the main 2211 ** merge loop 2212 */ 2213 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2214 addrSelectA = sqlite3VdbeCurrentAddr(v); 2215 2216 2217 /* Generate a coroutine to evaluate the SELECT statement to the 2218 ** left of the compound operator - the "A" select. 2219 */ 2220 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2221 pPrior->iLimit = regLimitA; 2222 sqlite3Select(pParse, pPrior, &destA); 2223 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2224 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2225 VdbeNoopComment((v, "End coroutine for left SELECT")); 2226 2227 /* Generate a coroutine to evaluate the SELECT statement on 2228 ** the right - the "B" select 2229 */ 2230 addrSelectB = sqlite3VdbeCurrentAddr(v); 2231 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2232 savedLimit = p->iLimit; 2233 savedOffset = p->iOffset; 2234 p->iLimit = regLimitB; 2235 p->iOffset = 0; 2236 sqlite3Select(pParse, p, &destB); 2237 p->iLimit = savedLimit; 2238 p->iOffset = savedOffset; 2239 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2240 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2241 VdbeNoopComment((v, "End coroutine for right SELECT")); 2242 2243 /* Generate a subroutine that outputs the current row of the A 2244 ** select as the next output row of the compound select. 2245 */ 2246 VdbeNoopComment((v, "Output routine for A")); 2247 addrOutA = generateOutputSubroutine(pParse, 2248 p, &destA, pDest, regOutA, 2249 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2250 2251 /* Generate a subroutine that outputs the current row of the B 2252 ** select as the next output row of the compound select. 2253 */ 2254 if( op==TK_ALL || op==TK_UNION ){ 2255 VdbeNoopComment((v, "Output routine for B")); 2256 addrOutB = generateOutputSubroutine(pParse, 2257 p, &destB, pDest, regOutB, 2258 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2259 } 2260 2261 /* Generate a subroutine to run when the results from select A 2262 ** are exhausted and only data in select B remains. 2263 */ 2264 VdbeNoopComment((v, "eof-A subroutine")); 2265 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2266 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2267 }else{ 2268 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2269 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2270 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2271 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2272 } 2273 2274 /* Generate a subroutine to run when the results from select B 2275 ** are exhausted and only data in select A remains. 2276 */ 2277 if( op==TK_INTERSECT ){ 2278 addrEofB = addrEofA; 2279 }else{ 2280 VdbeNoopComment((v, "eof-B subroutine")); 2281 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2282 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2283 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2284 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2285 } 2286 2287 /* Generate code to handle the case of A<B 2288 */ 2289 VdbeNoopComment((v, "A-lt-B subroutine")); 2290 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2291 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2292 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2293 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2294 2295 /* Generate code to handle the case of A==B 2296 */ 2297 if( op==TK_ALL ){ 2298 addrAeqB = addrAltB; 2299 }else if( op==TK_INTERSECT ){ 2300 addrAeqB = addrAltB; 2301 addrAltB++; 2302 }else{ 2303 VdbeNoopComment((v, "A-eq-B subroutine")); 2304 addrAeqB = 2305 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2306 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2307 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2308 } 2309 2310 /* Generate code to handle the case of A>B 2311 */ 2312 VdbeNoopComment((v, "A-gt-B subroutine")); 2313 addrAgtB = sqlite3VdbeCurrentAddr(v); 2314 if( op==TK_ALL || op==TK_UNION ){ 2315 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2316 } 2317 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2318 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2319 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2320 2321 /* This code runs once to initialize everything. 2322 */ 2323 sqlite3VdbeJumpHere(v, j1); 2324 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2325 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2326 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2327 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2328 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2329 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2330 2331 /* Implement the main merge loop 2332 */ 2333 sqlite3VdbeResolveLabel(v, labelCmpr); 2334 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2335 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2336 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2337 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2338 2339 /* Release temporary registers 2340 */ 2341 if( regPrev ){ 2342 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2343 } 2344 2345 /* Jump to the this point in order to terminate the query. 2346 */ 2347 sqlite3VdbeResolveLabel(v, labelEnd); 2348 2349 /* Set the number of output columns 2350 */ 2351 if( pDest->eDest==SRT_Output ){ 2352 Select *pFirst = pPrior; 2353 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2354 generateColumnNames(pParse, 0, pFirst->pEList); 2355 } 2356 2357 /* Reassembly the compound query so that it will be freed correctly 2358 ** by the calling function */ 2359 if( p->pPrior ){ 2360 sqlite3SelectDelete(db, p->pPrior); 2361 } 2362 p->pPrior = pPrior; 2363 2364 /*** TBD: Insert subroutine calls to close cursors on incomplete 2365 **** subqueries ****/ 2366 return SQLITE_OK; 2367 } 2368 #endif 2369 2370 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2371 /* Forward Declarations */ 2372 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2373 static void substSelect(sqlite3*, Select *, int, ExprList *); 2374 2375 /* 2376 ** Scan through the expression pExpr. Replace every reference to 2377 ** a column in table number iTable with a copy of the iColumn-th 2378 ** entry in pEList. (But leave references to the ROWID column 2379 ** unchanged.) 2380 ** 2381 ** This routine is part of the flattening procedure. A subquery 2382 ** whose result set is defined by pEList appears as entry in the 2383 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2384 ** FORM clause entry is iTable. This routine make the necessary 2385 ** changes to pExpr so that it refers directly to the source table 2386 ** of the subquery rather the result set of the subquery. 2387 */ 2388 static Expr *substExpr( 2389 sqlite3 *db, /* Report malloc errors to this connection */ 2390 Expr *pExpr, /* Expr in which substitution occurs */ 2391 int iTable, /* Table to be substituted */ 2392 ExprList *pEList /* Substitute expressions */ 2393 ){ 2394 if( pExpr==0 ) return 0; 2395 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2396 if( pExpr->iColumn<0 ){ 2397 pExpr->op = TK_NULL; 2398 }else{ 2399 Expr *pNew; 2400 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2401 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2402 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2403 if( pNew && pExpr->pColl ){ 2404 pNew->pColl = pExpr->pColl; 2405 } 2406 sqlite3ExprDelete(db, pExpr); 2407 pExpr = pNew; 2408 } 2409 }else{ 2410 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 2411 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 2412 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2413 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2414 }else{ 2415 substExprList(db, pExpr->x.pList, iTable, pEList); 2416 } 2417 } 2418 return pExpr; 2419 } 2420 static void substExprList( 2421 sqlite3 *db, /* Report malloc errors here */ 2422 ExprList *pList, /* List to scan and in which to make substitutes */ 2423 int iTable, /* Table to be substituted */ 2424 ExprList *pEList /* Substitute values */ 2425 ){ 2426 int i; 2427 if( pList==0 ) return; 2428 for(i=0; i<pList->nExpr; i++){ 2429 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 2430 } 2431 } 2432 static void substSelect( 2433 sqlite3 *db, /* Report malloc errors here */ 2434 Select *p, /* SELECT statement in which to make substitutions */ 2435 int iTable, /* Table to be replaced */ 2436 ExprList *pEList /* Substitute values */ 2437 ){ 2438 SrcList *pSrc; 2439 struct SrcList_item *pItem; 2440 int i; 2441 if( !p ) return; 2442 substExprList(db, p->pEList, iTable, pEList); 2443 substExprList(db, p->pGroupBy, iTable, pEList); 2444 substExprList(db, p->pOrderBy, iTable, pEList); 2445 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 2446 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 2447 substSelect(db, p->pPrior, iTable, pEList); 2448 pSrc = p->pSrc; 2449 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2450 if( ALWAYS(pSrc) ){ 2451 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2452 substSelect(db, pItem->pSelect, iTable, pEList); 2453 } 2454 } 2455 } 2456 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2457 2458 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2459 /* 2460 ** This routine attempts to flatten subqueries in order to speed 2461 ** execution. It returns 1 if it makes changes and 0 if no flattening 2462 ** occurs. 2463 ** 2464 ** To understand the concept of flattening, consider the following 2465 ** query: 2466 ** 2467 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2468 ** 2469 ** The default way of implementing this query is to execute the 2470 ** subquery first and store the results in a temporary table, then 2471 ** run the outer query on that temporary table. This requires two 2472 ** passes over the data. Furthermore, because the temporary table 2473 ** has no indices, the WHERE clause on the outer query cannot be 2474 ** optimized. 2475 ** 2476 ** This routine attempts to rewrite queries such as the above into 2477 ** a single flat select, like this: 2478 ** 2479 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2480 ** 2481 ** The code generated for this simpification gives the same result 2482 ** but only has to scan the data once. And because indices might 2483 ** exist on the table t1, a complete scan of the data might be 2484 ** avoided. 2485 ** 2486 ** Flattening is only attempted if all of the following are true: 2487 ** 2488 ** (1) The subquery and the outer query do not both use aggregates. 2489 ** 2490 ** (2) The subquery is not an aggregate or the outer query is not a join. 2491 ** 2492 ** (3) The subquery is not the right operand of a left outer join 2493 ** (Originally ticket #306. Strengthened by ticket #3300) 2494 ** 2495 ** (4) The subquery is not DISTINCT. 2496 ** 2497 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 2498 ** sub-queries that were excluded from this optimization. Restriction 2499 ** (4) has since been expanded to exclude all DISTINCT subqueries. 2500 ** 2501 ** (6) The subquery does not use aggregates or the outer query is not 2502 ** DISTINCT. 2503 ** 2504 ** (7) The subquery has a FROM clause. 2505 ** 2506 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2507 ** 2508 ** (9) The subquery does not use LIMIT or the outer query does not use 2509 ** aggregates. 2510 ** 2511 ** (10) The subquery does not use aggregates or the outer query does not 2512 ** use LIMIT. 2513 ** 2514 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2515 ** 2516 ** (**) Not implemented. Subsumed into restriction (3). Was previously 2517 ** a separate restriction deriving from ticket #350. 2518 ** 2519 ** (13) The subquery and outer query do not both use LIMIT. 2520 ** 2521 ** (14) The subquery does not use OFFSET. 2522 ** 2523 ** (15) The outer query is not part of a compound select or the 2524 ** subquery does not have a LIMIT clause. 2525 ** (See ticket #2339 and ticket [02a8e81d44]). 2526 ** 2527 ** (16) The outer query is not an aggregate or the subquery does 2528 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2529 ** until we introduced the group_concat() function. 2530 ** 2531 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2532 ** compound clause made up entirely of non-aggregate queries, and 2533 ** the parent query: 2534 ** 2535 ** * is not itself part of a compound select, 2536 ** * is not an aggregate or DISTINCT query, and 2537 ** * has no other tables or sub-selects in the FROM clause. 2538 ** 2539 ** The parent and sub-query may contain WHERE clauses. Subject to 2540 ** rules (11), (13) and (14), they may also contain ORDER BY, 2541 ** LIMIT and OFFSET clauses. 2542 ** 2543 ** (18) If the sub-query is a compound select, then all terms of the 2544 ** ORDER by clause of the parent must be simple references to 2545 ** columns of the sub-query. 2546 ** 2547 ** (19) The subquery does not use LIMIT or the outer query does not 2548 ** have a WHERE clause. 2549 ** 2550 ** (20) If the sub-query is a compound select, then it must not use 2551 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2552 ** somewhat by saying that the terms of the ORDER BY clause must 2553 ** appear as unmodified result columns in the outer query. But 2554 ** have other optimizations in mind to deal with that case. 2555 ** 2556 ** In this routine, the "p" parameter is a pointer to the outer query. 2557 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2558 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2559 ** 2560 ** If flattening is not attempted, this routine is a no-op and returns 0. 2561 ** If flattening is attempted this routine returns 1. 2562 ** 2563 ** All of the expression analysis must occur on both the outer query and 2564 ** the subquery before this routine runs. 2565 */ 2566 static int flattenSubquery( 2567 Parse *pParse, /* Parsing context */ 2568 Select *p, /* The parent or outer SELECT statement */ 2569 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2570 int isAgg, /* True if outer SELECT uses aggregate functions */ 2571 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2572 ){ 2573 const char *zSavedAuthContext = pParse->zAuthContext; 2574 Select *pParent; 2575 Select *pSub; /* The inner query or "subquery" */ 2576 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2577 SrcList *pSrc; /* The FROM clause of the outer query */ 2578 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2579 ExprList *pList; /* The result set of the outer query */ 2580 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2581 int i; /* Loop counter */ 2582 Expr *pWhere; /* The WHERE clause */ 2583 struct SrcList_item *pSubitem; /* The subquery */ 2584 sqlite3 *db = pParse->db; 2585 2586 /* Check to see if flattening is permitted. Return 0 if not. 2587 */ 2588 assert( p!=0 ); 2589 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2590 if( db->flags & SQLITE_QueryFlattener ) return 0; 2591 pSrc = p->pSrc; 2592 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2593 pSubitem = &pSrc->a[iFrom]; 2594 iParent = pSubitem->iCursor; 2595 pSub = pSubitem->pSelect; 2596 assert( pSub!=0 ); 2597 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2598 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2599 pSubSrc = pSub->pSrc; 2600 assert( pSubSrc ); 2601 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2602 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2603 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2604 ** became arbitrary expressions, we were forced to add restrictions (13) 2605 ** and (14). */ 2606 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2607 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2608 if( p->pRightmost && pSub->pLimit ){ 2609 return 0; /* Restriction (15) */ 2610 } 2611 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2612 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 2613 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 2614 return 0; /* Restrictions (8)(9) */ 2615 } 2616 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2617 return 0; /* Restriction (6) */ 2618 } 2619 if( p->pOrderBy && pSub->pOrderBy ){ 2620 return 0; /* Restriction (11) */ 2621 } 2622 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2623 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2624 2625 /* OBSOLETE COMMENT 1: 2626 ** Restriction 3: If the subquery is a join, make sure the subquery is 2627 ** not used as the right operand of an outer join. Examples of why this 2628 ** is not allowed: 2629 ** 2630 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2631 ** 2632 ** If we flatten the above, we would get 2633 ** 2634 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2635 ** 2636 ** which is not at all the same thing. 2637 ** 2638 ** OBSOLETE COMMENT 2: 2639 ** Restriction 12: If the subquery is the right operand of a left outer 2640 ** join, make sure the subquery has no WHERE clause. 2641 ** An examples of why this is not allowed: 2642 ** 2643 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2644 ** 2645 ** If we flatten the above, we would get 2646 ** 2647 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2648 ** 2649 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2650 ** effectively converts the OUTER JOIN into an INNER JOIN. 2651 ** 2652 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2653 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2654 ** is fraught with danger. Best to avoid the whole thing. If the 2655 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2656 */ 2657 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2658 return 0; 2659 } 2660 2661 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2662 ** use only the UNION ALL operator. And none of the simple select queries 2663 ** that make up the compound SELECT are allowed to be aggregate or distinct 2664 ** queries. 2665 */ 2666 if( pSub->pPrior ){ 2667 if( pSub->pOrderBy ){ 2668 return 0; /* Restriction 20 */ 2669 } 2670 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2671 return 0; 2672 } 2673 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2674 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 2675 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 2676 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2677 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2678 || NEVER(pSub1->pSrc==0) || pSub1->pSrc->nSrc!=1 2679 ){ 2680 return 0; 2681 } 2682 } 2683 2684 /* Restriction 18. */ 2685 if( p->pOrderBy ){ 2686 int ii; 2687 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2688 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2689 } 2690 } 2691 } 2692 2693 /***** If we reach this point, flattening is permitted. *****/ 2694 2695 /* Authorize the subquery */ 2696 pParse->zAuthContext = pSubitem->zName; 2697 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2698 pParse->zAuthContext = zSavedAuthContext; 2699 2700 /* If the sub-query is a compound SELECT statement, then (by restrictions 2701 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2702 ** be of the form: 2703 ** 2704 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2705 ** 2706 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2707 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2708 ** OFFSET clauses and joins them to the left-hand-side of the original 2709 ** using UNION ALL operators. In this case N is the number of simple 2710 ** select statements in the compound sub-query. 2711 ** 2712 ** Example: 2713 ** 2714 ** SELECT a+1 FROM ( 2715 ** SELECT x FROM tab 2716 ** UNION ALL 2717 ** SELECT y FROM tab 2718 ** UNION ALL 2719 ** SELECT abs(z*2) FROM tab2 2720 ** ) WHERE a!=5 ORDER BY 1 2721 ** 2722 ** Transformed into: 2723 ** 2724 ** SELECT x+1 FROM tab WHERE x+1!=5 2725 ** UNION ALL 2726 ** SELECT y+1 FROM tab WHERE y+1!=5 2727 ** UNION ALL 2728 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2729 ** ORDER BY 1 2730 ** 2731 ** We call this the "compound-subquery flattening". 2732 */ 2733 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2734 Select *pNew; 2735 ExprList *pOrderBy = p->pOrderBy; 2736 Expr *pLimit = p->pLimit; 2737 Select *pPrior = p->pPrior; 2738 p->pOrderBy = 0; 2739 p->pSrc = 0; 2740 p->pPrior = 0; 2741 p->pLimit = 0; 2742 pNew = sqlite3SelectDup(db, p, 0); 2743 p->pLimit = pLimit; 2744 p->pOrderBy = pOrderBy; 2745 p->pSrc = pSrc; 2746 p->op = TK_ALL; 2747 p->pRightmost = 0; 2748 if( pNew==0 ){ 2749 pNew = pPrior; 2750 }else{ 2751 pNew->pPrior = pPrior; 2752 pNew->pRightmost = 0; 2753 } 2754 p->pPrior = pNew; 2755 if( db->mallocFailed ) return 1; 2756 } 2757 2758 /* Begin flattening the iFrom-th entry of the FROM clause 2759 ** in the outer query. 2760 */ 2761 pSub = pSub1 = pSubitem->pSelect; 2762 2763 /* Delete the transient table structure associated with the 2764 ** subquery 2765 */ 2766 sqlite3DbFree(db, pSubitem->zDatabase); 2767 sqlite3DbFree(db, pSubitem->zName); 2768 sqlite3DbFree(db, pSubitem->zAlias); 2769 pSubitem->zDatabase = 0; 2770 pSubitem->zName = 0; 2771 pSubitem->zAlias = 0; 2772 pSubitem->pSelect = 0; 2773 2774 /* Defer deleting the Table object associated with the 2775 ** subquery until code generation is 2776 ** complete, since there may still exist Expr.pTab entries that 2777 ** refer to the subquery even after flattening. Ticket #3346. 2778 ** 2779 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 2780 */ 2781 if( ALWAYS(pSubitem->pTab!=0) ){ 2782 Table *pTabToDel = pSubitem->pTab; 2783 if( pTabToDel->nRef==1 ){ 2784 Parse *pToplevel = sqlite3ParseToplevel(pParse); 2785 pTabToDel->pNextZombie = pToplevel->pZombieTab; 2786 pToplevel->pZombieTab = pTabToDel; 2787 }else{ 2788 pTabToDel->nRef--; 2789 } 2790 pSubitem->pTab = 0; 2791 } 2792 2793 /* The following loop runs once for each term in a compound-subquery 2794 ** flattening (as described above). If we are doing a different kind 2795 ** of flattening - a flattening other than a compound-subquery flattening - 2796 ** then this loop only runs once. 2797 ** 2798 ** This loop moves all of the FROM elements of the subquery into the 2799 ** the FROM clause of the outer query. Before doing this, remember 2800 ** the cursor number for the original outer query FROM element in 2801 ** iParent. The iParent cursor will never be used. Subsequent code 2802 ** will scan expressions looking for iParent references and replace 2803 ** those references with expressions that resolve to the subquery FROM 2804 ** elements we are now copying in. 2805 */ 2806 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2807 int nSubSrc; 2808 u8 jointype = 0; 2809 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2810 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2811 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2812 2813 if( pSrc ){ 2814 assert( pParent==p ); /* First time through the loop */ 2815 jointype = pSubitem->jointype; 2816 }else{ 2817 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2818 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2819 if( pSrc==0 ){ 2820 assert( db->mallocFailed ); 2821 break; 2822 } 2823 } 2824 2825 /* The subquery uses a single slot of the FROM clause of the outer 2826 ** query. If the subquery has more than one element in its FROM clause, 2827 ** then expand the outer query to make space for it to hold all elements 2828 ** of the subquery. 2829 ** 2830 ** Example: 2831 ** 2832 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2833 ** 2834 ** The outer query has 3 slots in its FROM clause. One slot of the 2835 ** outer query (the middle slot) is used by the subquery. The next 2836 ** block of code will expand the out query to 4 slots. The middle 2837 ** slot is expanded to two slots in order to make space for the 2838 ** two elements in the FROM clause of the subquery. 2839 */ 2840 if( nSubSrc>1 ){ 2841 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2842 if( db->mallocFailed ){ 2843 break; 2844 } 2845 } 2846 2847 /* Transfer the FROM clause terms from the subquery into the 2848 ** outer query. 2849 */ 2850 for(i=0; i<nSubSrc; i++){ 2851 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 2852 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2853 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2854 } 2855 pSrc->a[iFrom].jointype = jointype; 2856 2857 /* Now begin substituting subquery result set expressions for 2858 ** references to the iParent in the outer query. 2859 ** 2860 ** Example: 2861 ** 2862 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2863 ** \ \_____________ subquery __________/ / 2864 ** \_____________________ outer query ______________________________/ 2865 ** 2866 ** We look at every expression in the outer query and every place we see 2867 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2868 */ 2869 pList = pParent->pEList; 2870 for(i=0; i<pList->nExpr; i++){ 2871 if( pList->a[i].zName==0 ){ 2872 const char *zSpan = pList->a[i].zSpan; 2873 if( ALWAYS(zSpan) ){ 2874 pList->a[i].zName = sqlite3DbStrDup(db, zSpan); 2875 } 2876 } 2877 } 2878 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2879 if( isAgg ){ 2880 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2881 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2882 } 2883 if( pSub->pOrderBy ){ 2884 assert( pParent->pOrderBy==0 ); 2885 pParent->pOrderBy = pSub->pOrderBy; 2886 pSub->pOrderBy = 0; 2887 }else if( pParent->pOrderBy ){ 2888 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2889 } 2890 if( pSub->pWhere ){ 2891 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2892 }else{ 2893 pWhere = 0; 2894 } 2895 if( subqueryIsAgg ){ 2896 assert( pParent->pHaving==0 ); 2897 pParent->pHaving = pParent->pWhere; 2898 pParent->pWhere = pWhere; 2899 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2900 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2901 sqlite3ExprDup(db, pSub->pHaving, 0)); 2902 assert( pParent->pGroupBy==0 ); 2903 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 2904 }else{ 2905 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2906 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2907 } 2908 2909 /* The flattened query is distinct if either the inner or the 2910 ** outer query is distinct. 2911 */ 2912 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2913 2914 /* 2915 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2916 ** 2917 ** One is tempted to try to add a and b to combine the limits. But this 2918 ** does not work if either limit is negative. 2919 */ 2920 if( pSub->pLimit ){ 2921 pParent->pLimit = pSub->pLimit; 2922 pSub->pLimit = 0; 2923 } 2924 } 2925 2926 /* Finially, delete what is left of the subquery and return 2927 ** success. 2928 */ 2929 sqlite3SelectDelete(db, pSub1); 2930 2931 return 1; 2932 } 2933 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2934 2935 /* 2936 ** Analyze the SELECT statement passed as an argument to see if it 2937 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2938 ** it is, or 0 otherwise. At present, a query is considered to be 2939 ** a min()/max() query if: 2940 ** 2941 ** 1. There is a single object in the FROM clause. 2942 ** 2943 ** 2. There is a single expression in the result set, and it is 2944 ** either min(x) or max(x), where x is a column reference. 2945 */ 2946 static u8 minMaxQuery(Select *p){ 2947 Expr *pExpr; 2948 ExprList *pEList = p->pEList; 2949 2950 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2951 pExpr = pEList->a[0].pExpr; 2952 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2953 if( NEVER(ExprHasProperty(pExpr, EP_xIsSelect)) ) return 0; 2954 pEList = pExpr->x.pList; 2955 if( pEList==0 || pEList->nExpr!=1 ) return 0; 2956 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2957 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 2958 if( sqlite3StrICmp(pExpr->u.zToken,"min")==0 ){ 2959 return WHERE_ORDERBY_MIN; 2960 }else if( sqlite3StrICmp(pExpr->u.zToken,"max")==0 ){ 2961 return WHERE_ORDERBY_MAX; 2962 } 2963 return WHERE_ORDERBY_NORMAL; 2964 } 2965 2966 /* 2967 ** The select statement passed as the first argument is an aggregate query. 2968 ** The second argment is the associated aggregate-info object. This 2969 ** function tests if the SELECT is of the form: 2970 ** 2971 ** SELECT count(*) FROM <tbl> 2972 ** 2973 ** where table is a database table, not a sub-select or view. If the query 2974 ** does match this pattern, then a pointer to the Table object representing 2975 ** <tbl> is returned. Otherwise, 0 is returned. 2976 */ 2977 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 2978 Table *pTab; 2979 Expr *pExpr; 2980 2981 assert( !p->pGroupBy ); 2982 2983 if( p->pWhere || p->pEList->nExpr!=1 2984 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 2985 ){ 2986 return 0; 2987 } 2988 pTab = p->pSrc->a[0].pTab; 2989 pExpr = p->pEList->a[0].pExpr; 2990 assert( pTab && !pTab->pSelect && pExpr ); 2991 2992 if( IsVirtual(pTab) ) return 0; 2993 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2994 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 2995 if( pExpr->flags&EP_Distinct ) return 0; 2996 2997 return pTab; 2998 } 2999 3000 /* 3001 ** If the source-list item passed as an argument was augmented with an 3002 ** INDEXED BY clause, then try to locate the specified index. If there 3003 ** was such a clause and the named index cannot be found, return 3004 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3005 ** pFrom->pIndex and return SQLITE_OK. 3006 */ 3007 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3008 if( pFrom->pTab && pFrom->zIndex ){ 3009 Table *pTab = pFrom->pTab; 3010 char *zIndex = pFrom->zIndex; 3011 Index *pIdx; 3012 for(pIdx=pTab->pIndex; 3013 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3014 pIdx=pIdx->pNext 3015 ); 3016 if( !pIdx ){ 3017 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3018 pParse->checkSchema = 1; 3019 return SQLITE_ERROR; 3020 } 3021 pFrom->pIndex = pIdx; 3022 } 3023 return SQLITE_OK; 3024 } 3025 3026 /* 3027 ** This routine is a Walker callback for "expanding" a SELECT statement. 3028 ** "Expanding" means to do the following: 3029 ** 3030 ** (1) Make sure VDBE cursor numbers have been assigned to every 3031 ** element of the FROM clause. 3032 ** 3033 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3034 ** defines FROM clause. When views appear in the FROM clause, 3035 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3036 ** that implements the view. A copy is made of the view's SELECT 3037 ** statement so that we can freely modify or delete that statement 3038 ** without worrying about messing up the presistent representation 3039 ** of the view. 3040 ** 3041 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3042 ** on joins and the ON and USING clause of joins. 3043 ** 3044 ** (4) Scan the list of columns in the result set (pEList) looking 3045 ** for instances of the "*" operator or the TABLE.* operator. 3046 ** If found, expand each "*" to be every column in every table 3047 ** and TABLE.* to be every column in TABLE. 3048 ** 3049 */ 3050 static int selectExpander(Walker *pWalker, Select *p){ 3051 Parse *pParse = pWalker->pParse; 3052 int i, j, k; 3053 SrcList *pTabList; 3054 ExprList *pEList; 3055 struct SrcList_item *pFrom; 3056 sqlite3 *db = pParse->db; 3057 3058 if( db->mallocFailed ){ 3059 return WRC_Abort; 3060 } 3061 if( NEVER(p->pSrc==0) || (p->selFlags & SF_Expanded)!=0 ){ 3062 return WRC_Prune; 3063 } 3064 p->selFlags |= SF_Expanded; 3065 pTabList = p->pSrc; 3066 pEList = p->pEList; 3067 3068 /* Make sure cursor numbers have been assigned to all entries in 3069 ** the FROM clause of the SELECT statement. 3070 */ 3071 sqlite3SrcListAssignCursors(pParse, pTabList); 3072 3073 /* Look up every table named in the FROM clause of the select. If 3074 ** an entry of the FROM clause is a subquery instead of a table or view, 3075 ** then create a transient table structure to describe the subquery. 3076 */ 3077 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3078 Table *pTab; 3079 if( pFrom->pTab!=0 ){ 3080 /* This statement has already been prepared. There is no need 3081 ** to go further. */ 3082 assert( i==0 ); 3083 return WRC_Prune; 3084 } 3085 if( pFrom->zName==0 ){ 3086 #ifndef SQLITE_OMIT_SUBQUERY 3087 Select *pSel = pFrom->pSelect; 3088 /* A sub-query in the FROM clause of a SELECT */ 3089 assert( pSel!=0 ); 3090 assert( pFrom->pTab==0 ); 3091 sqlite3WalkSelect(pWalker, pSel); 3092 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3093 if( pTab==0 ) return WRC_Abort; 3094 pTab->nRef = 1; 3095 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3096 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3097 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3098 pTab->iPKey = -1; 3099 pTab->nRowEst = 1000000; 3100 pTab->tabFlags |= TF_Ephemeral; 3101 #endif 3102 }else{ 3103 /* An ordinary table or view name in the FROM clause */ 3104 assert( pFrom->pTab==0 ); 3105 pFrom->pTab = pTab = 3106 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3107 if( pTab==0 ) return WRC_Abort; 3108 pTab->nRef++; 3109 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3110 if( pTab->pSelect || IsVirtual(pTab) ){ 3111 /* We reach here if the named table is a really a view */ 3112 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3113 assert( pFrom->pSelect==0 ); 3114 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3115 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3116 } 3117 #endif 3118 } 3119 3120 /* Locate the index named by the INDEXED BY clause, if any. */ 3121 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3122 return WRC_Abort; 3123 } 3124 } 3125 3126 /* Process NATURAL keywords, and ON and USING clauses of joins. 3127 */ 3128 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3129 return WRC_Abort; 3130 } 3131 3132 /* For every "*" that occurs in the column list, insert the names of 3133 ** all columns in all tables. And for every TABLE.* insert the names 3134 ** of all columns in TABLE. The parser inserted a special expression 3135 ** with the TK_ALL operator for each "*" that it found in the column list. 3136 ** The following code just has to locate the TK_ALL expressions and expand 3137 ** each one to the list of all columns in all tables. 3138 ** 3139 ** The first loop just checks to see if there are any "*" operators 3140 ** that need expanding. 3141 */ 3142 for(k=0; k<pEList->nExpr; k++){ 3143 Expr *pE = pEList->a[k].pExpr; 3144 if( pE->op==TK_ALL ) break; 3145 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3146 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 3147 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 3148 } 3149 if( k<pEList->nExpr ){ 3150 /* 3151 ** If we get here it means the result set contains one or more "*" 3152 ** operators that need to be expanded. Loop through each expression 3153 ** in the result set and expand them one by one. 3154 */ 3155 struct ExprList_item *a = pEList->a; 3156 ExprList *pNew = 0; 3157 int flags = pParse->db->flags; 3158 int longNames = (flags & SQLITE_FullColNames)!=0 3159 && (flags & SQLITE_ShortColNames)==0; 3160 3161 for(k=0; k<pEList->nExpr; k++){ 3162 Expr *pE = a[k].pExpr; 3163 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 3164 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pE->pRight->op!=TK_ALL) ){ 3165 /* This particular expression does not need to be expanded. 3166 */ 3167 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 3168 if( pNew ){ 3169 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3170 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 3171 a[k].zName = 0; 3172 a[k].zSpan = 0; 3173 } 3174 a[k].pExpr = 0; 3175 }else{ 3176 /* This expression is a "*" or a "TABLE.*" and needs to be 3177 ** expanded. */ 3178 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3179 char *zTName; /* text of name of TABLE */ 3180 if( pE->op==TK_DOT ){ 3181 assert( pE->pLeft!=0 ); 3182 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 3183 zTName = pE->pLeft->u.zToken; 3184 }else{ 3185 zTName = 0; 3186 } 3187 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3188 Table *pTab = pFrom->pTab; 3189 char *zTabName = pFrom->zAlias; 3190 if( zTabName==0 ){ 3191 zTabName = pTab->zName; 3192 } 3193 if( db->mallocFailed ) break; 3194 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3195 continue; 3196 } 3197 tableSeen = 1; 3198 for(j=0; j<pTab->nCol; j++){ 3199 Expr *pExpr, *pRight; 3200 char *zName = pTab->aCol[j].zName; 3201 char *zColname; /* The computed column name */ 3202 char *zToFree; /* Malloced string that needs to be freed */ 3203 Token sColname; /* Computed column name as a token */ 3204 3205 /* If a column is marked as 'hidden' (currently only possible 3206 ** for virtual tables), do not include it in the expanded 3207 ** result-set list. 3208 */ 3209 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3210 assert(IsVirtual(pTab)); 3211 continue; 3212 } 3213 3214 if( i>0 && zTName==0 ){ 3215 if( (pFrom->jointype & JT_NATURAL)!=0 3216 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 3217 ){ 3218 /* In a NATURAL join, omit the join columns from the 3219 ** table to the right of the join */ 3220 continue; 3221 } 3222 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 3223 /* In a join with a USING clause, omit columns in the 3224 ** using clause from the table on the right. */ 3225 continue; 3226 } 3227 } 3228 pRight = sqlite3Expr(db, TK_ID, zName); 3229 zColname = zName; 3230 zToFree = 0; 3231 if( longNames || pTabList->nSrc>1 ){ 3232 Expr *pLeft; 3233 pLeft = sqlite3Expr(db, TK_ID, zTabName); 3234 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3235 if( longNames ){ 3236 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 3237 zToFree = zColname; 3238 } 3239 }else{ 3240 pExpr = pRight; 3241 } 3242 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 3243 sColname.z = zColname; 3244 sColname.n = sqlite3Strlen30(zColname); 3245 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 3246 sqlite3DbFree(db, zToFree); 3247 } 3248 } 3249 if( !tableSeen ){ 3250 if( zTName ){ 3251 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3252 }else{ 3253 sqlite3ErrorMsg(pParse, "no tables specified"); 3254 } 3255 } 3256 } 3257 } 3258 sqlite3ExprListDelete(db, pEList); 3259 p->pEList = pNew; 3260 } 3261 #if SQLITE_MAX_COLUMN 3262 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3263 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3264 } 3265 #endif 3266 return WRC_Continue; 3267 } 3268 3269 /* 3270 ** No-op routine for the parse-tree walker. 3271 ** 3272 ** When this routine is the Walker.xExprCallback then expression trees 3273 ** are walked without any actions being taken at each node. Presumably, 3274 ** when this routine is used for Walker.xExprCallback then 3275 ** Walker.xSelectCallback is set to do something useful for every 3276 ** subquery in the parser tree. 3277 */ 3278 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3279 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3280 return WRC_Continue; 3281 } 3282 3283 /* 3284 ** This routine "expands" a SELECT statement and all of its subqueries. 3285 ** For additional information on what it means to "expand" a SELECT 3286 ** statement, see the comment on the selectExpand worker callback above. 3287 ** 3288 ** Expanding a SELECT statement is the first step in processing a 3289 ** SELECT statement. The SELECT statement must be expanded before 3290 ** name resolution is performed. 3291 ** 3292 ** If anything goes wrong, an error message is written into pParse. 3293 ** The calling function can detect the problem by looking at pParse->nErr 3294 ** and/or pParse->db->mallocFailed. 3295 */ 3296 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3297 Walker w; 3298 w.xSelectCallback = selectExpander; 3299 w.xExprCallback = exprWalkNoop; 3300 w.pParse = pParse; 3301 sqlite3WalkSelect(&w, pSelect); 3302 } 3303 3304 3305 #ifndef SQLITE_OMIT_SUBQUERY 3306 /* 3307 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3308 ** interface. 3309 ** 3310 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3311 ** information to the Table structure that represents the result set 3312 ** of that subquery. 3313 ** 3314 ** The Table structure that represents the result set was constructed 3315 ** by selectExpander() but the type and collation information was omitted 3316 ** at that point because identifiers had not yet been resolved. This 3317 ** routine is called after identifier resolution. 3318 */ 3319 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3320 Parse *pParse; 3321 int i; 3322 SrcList *pTabList; 3323 struct SrcList_item *pFrom; 3324 3325 assert( p->selFlags & SF_Resolved ); 3326 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3327 p->selFlags |= SF_HasTypeInfo; 3328 pParse = pWalker->pParse; 3329 pTabList = p->pSrc; 3330 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3331 Table *pTab = pFrom->pTab; 3332 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3333 /* A sub-query in the FROM clause of a SELECT */ 3334 Select *pSel = pFrom->pSelect; 3335 assert( pSel ); 3336 while( pSel->pPrior ) pSel = pSel->pPrior; 3337 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3338 } 3339 } 3340 } 3341 return WRC_Continue; 3342 } 3343 #endif 3344 3345 3346 /* 3347 ** This routine adds datatype and collating sequence information to 3348 ** the Table structures of all FROM-clause subqueries in a 3349 ** SELECT statement. 3350 ** 3351 ** Use this routine after name resolution. 3352 */ 3353 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3354 #ifndef SQLITE_OMIT_SUBQUERY 3355 Walker w; 3356 w.xSelectCallback = selectAddSubqueryTypeInfo; 3357 w.xExprCallback = exprWalkNoop; 3358 w.pParse = pParse; 3359 sqlite3WalkSelect(&w, pSelect); 3360 #endif 3361 } 3362 3363 3364 /* 3365 ** This routine sets of a SELECT statement for processing. The 3366 ** following is accomplished: 3367 ** 3368 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3369 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3370 ** * ON and USING clauses are shifted into WHERE statements 3371 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3372 ** * Identifiers in expression are matched to tables. 3373 ** 3374 ** This routine acts recursively on all subqueries within the SELECT. 3375 */ 3376 void sqlite3SelectPrep( 3377 Parse *pParse, /* The parser context */ 3378 Select *p, /* The SELECT statement being coded. */ 3379 NameContext *pOuterNC /* Name context for container */ 3380 ){ 3381 sqlite3 *db; 3382 if( NEVER(p==0) ) return; 3383 db = pParse->db; 3384 if( p->selFlags & SF_HasTypeInfo ) return; 3385 sqlite3SelectExpand(pParse, p); 3386 if( pParse->nErr || db->mallocFailed ) return; 3387 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3388 if( pParse->nErr || db->mallocFailed ) return; 3389 sqlite3SelectAddTypeInfo(pParse, p); 3390 } 3391 3392 /* 3393 ** Reset the aggregate accumulator. 3394 ** 3395 ** The aggregate accumulator is a set of memory cells that hold 3396 ** intermediate results while calculating an aggregate. This 3397 ** routine simply stores NULLs in all of those memory cells. 3398 */ 3399 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3400 Vdbe *v = pParse->pVdbe; 3401 int i; 3402 struct AggInfo_func *pFunc; 3403 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3404 return; 3405 } 3406 for(i=0; i<pAggInfo->nColumn; i++){ 3407 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3408 } 3409 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3410 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3411 if( pFunc->iDistinct>=0 ){ 3412 Expr *pE = pFunc->pExpr; 3413 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3414 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3415 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3416 "argument"); 3417 pFunc->iDistinct = -1; 3418 }else{ 3419 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3420 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3421 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3422 } 3423 } 3424 } 3425 } 3426 3427 /* 3428 ** Invoke the OP_AggFinalize opcode for every aggregate function 3429 ** in the AggInfo structure. 3430 */ 3431 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3432 Vdbe *v = pParse->pVdbe; 3433 int i; 3434 struct AggInfo_func *pF; 3435 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3436 ExprList *pList = pF->pExpr->x.pList; 3437 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3438 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3439 (void*)pF->pFunc, P4_FUNCDEF); 3440 } 3441 } 3442 3443 /* 3444 ** Update the accumulator memory cells for an aggregate based on 3445 ** the current cursor position. 3446 */ 3447 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3448 Vdbe *v = pParse->pVdbe; 3449 int i; 3450 struct AggInfo_func *pF; 3451 struct AggInfo_col *pC; 3452 3453 pAggInfo->directMode = 1; 3454 sqlite3ExprCacheClear(pParse); 3455 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3456 int nArg; 3457 int addrNext = 0; 3458 int regAgg; 3459 ExprList *pList = pF->pExpr->x.pList; 3460 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3461 if( pList ){ 3462 nArg = pList->nExpr; 3463 regAgg = sqlite3GetTempRange(pParse, nArg); 3464 sqlite3ExprCodeExprList(pParse, pList, regAgg, 1); 3465 }else{ 3466 nArg = 0; 3467 regAgg = 0; 3468 } 3469 if( pF->iDistinct>=0 ){ 3470 addrNext = sqlite3VdbeMakeLabel(v); 3471 assert( nArg==1 ); 3472 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3473 } 3474 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3475 CollSeq *pColl = 0; 3476 struct ExprList_item *pItem; 3477 int j; 3478 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3479 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3480 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3481 } 3482 if( !pColl ){ 3483 pColl = pParse->db->pDfltColl; 3484 } 3485 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3486 } 3487 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3488 (void*)pF->pFunc, P4_FUNCDEF); 3489 sqlite3VdbeChangeP5(v, (u8)nArg); 3490 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3491 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3492 if( addrNext ){ 3493 sqlite3VdbeResolveLabel(v, addrNext); 3494 sqlite3ExprCacheClear(pParse); 3495 } 3496 } 3497 3498 /* Before populating the accumulator registers, clear the column cache. 3499 ** Otherwise, if any of the required column values are already present 3500 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 3501 ** to pC->iMem. But by the time the value is used, the original register 3502 ** may have been used, invalidating the underlying buffer holding the 3503 ** text or blob value. See ticket [883034dcb5]. 3504 ** 3505 ** Another solution would be to change the OP_SCopy used to copy cached 3506 ** values to an OP_Copy. 3507 */ 3508 sqlite3ExprCacheClear(pParse); 3509 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3510 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3511 } 3512 pAggInfo->directMode = 0; 3513 sqlite3ExprCacheClear(pParse); 3514 } 3515 3516 /* 3517 ** Generate code for the SELECT statement given in the p argument. 3518 ** 3519 ** The results are distributed in various ways depending on the 3520 ** contents of the SelectDest structure pointed to by argument pDest 3521 ** as follows: 3522 ** 3523 ** pDest->eDest Result 3524 ** ------------ ------------------------------------------- 3525 ** SRT_Output Generate a row of output (using the OP_ResultRow 3526 ** opcode) for each row in the result set. 3527 ** 3528 ** SRT_Mem Only valid if the result is a single column. 3529 ** Store the first column of the first result row 3530 ** in register pDest->iParm then abandon the rest 3531 ** of the query. This destination implies "LIMIT 1". 3532 ** 3533 ** SRT_Set The result must be a single column. Store each 3534 ** row of result as the key in table pDest->iParm. 3535 ** Apply the affinity pDest->affinity before storing 3536 ** results. Used to implement "IN (SELECT ...)". 3537 ** 3538 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3539 ** 3540 ** SRT_Except Remove results from the temporary table pDest->iParm. 3541 ** 3542 ** SRT_Table Store results in temporary table pDest->iParm. 3543 ** This is like SRT_EphemTab except that the table 3544 ** is assumed to already be open. 3545 ** 3546 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3547 ** the result there. The cursor is left open after 3548 ** returning. This is like SRT_Table except that 3549 ** this destination uses OP_OpenEphemeral to create 3550 ** the table first. 3551 ** 3552 ** SRT_Coroutine Generate a co-routine that returns a new row of 3553 ** results each time it is invoked. The entry point 3554 ** of the co-routine is stored in register pDest->iParm. 3555 ** 3556 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3557 ** set is not empty. 3558 ** 3559 ** SRT_Discard Throw the results away. This is used by SELECT 3560 ** statements within triggers whose only purpose is 3561 ** the side-effects of functions. 3562 ** 3563 ** This routine returns the number of errors. If any errors are 3564 ** encountered, then an appropriate error message is left in 3565 ** pParse->zErrMsg. 3566 ** 3567 ** This routine does NOT free the Select structure passed in. The 3568 ** calling function needs to do that. 3569 */ 3570 int sqlite3Select( 3571 Parse *pParse, /* The parser context */ 3572 Select *p, /* The SELECT statement being coded. */ 3573 SelectDest *pDest /* What to do with the query results */ 3574 ){ 3575 int i, j; /* Loop counters */ 3576 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3577 Vdbe *v; /* The virtual machine under construction */ 3578 int isAgg; /* True for select lists like "count(*)" */ 3579 ExprList *pEList; /* List of columns to extract. */ 3580 SrcList *pTabList; /* List of tables to select from */ 3581 Expr *pWhere; /* The WHERE clause. May be NULL */ 3582 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3583 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3584 Expr *pHaving; /* The HAVING clause. May be NULL */ 3585 int isDistinct; /* True if the DISTINCT keyword is present */ 3586 int distinct; /* Table to use for the distinct set */ 3587 int rc = 1; /* Value to return from this function */ 3588 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3589 AggInfo sAggInfo; /* Information used by aggregate queries */ 3590 int iEnd; /* Address of the end of the query */ 3591 sqlite3 *db; /* The database connection */ 3592 3593 db = pParse->db; 3594 if( p==0 || db->mallocFailed || pParse->nErr ){ 3595 return 1; 3596 } 3597 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3598 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3599 3600 if( IgnorableOrderby(pDest) ){ 3601 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3602 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3603 /* If ORDER BY makes no difference in the output then neither does 3604 ** DISTINCT so it can be removed too. */ 3605 sqlite3ExprListDelete(db, p->pOrderBy); 3606 p->pOrderBy = 0; 3607 p->selFlags &= ~SF_Distinct; 3608 } 3609 sqlite3SelectPrep(pParse, p, 0); 3610 pOrderBy = p->pOrderBy; 3611 pTabList = p->pSrc; 3612 pEList = p->pEList; 3613 if( pParse->nErr || db->mallocFailed ){ 3614 goto select_end; 3615 } 3616 isAgg = (p->selFlags & SF_Aggregate)!=0; 3617 assert( pEList!=0 ); 3618 3619 /* Begin generating code. 3620 */ 3621 v = sqlite3GetVdbe(pParse); 3622 if( v==0 ) goto select_end; 3623 3624 /* If writing to memory or generating a set 3625 ** only a single column may be output. 3626 */ 3627 #ifndef SQLITE_OMIT_SUBQUERY 3628 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3629 goto select_end; 3630 } 3631 #endif 3632 3633 /* Generate code for all sub-queries in the FROM clause 3634 */ 3635 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3636 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3637 struct SrcList_item *pItem = &pTabList->a[i]; 3638 SelectDest dest; 3639 Select *pSub = pItem->pSelect; 3640 int isAggSub; 3641 3642 if( pSub==0 || pItem->isPopulated ) continue; 3643 3644 /* Increment Parse.nHeight by the height of the largest expression 3645 ** tree refered to by this, the parent select. The child select 3646 ** may contain expression trees of at most 3647 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3648 ** more conservative than necessary, but much easier than enforcing 3649 ** an exact limit. 3650 */ 3651 pParse->nHeight += sqlite3SelectExprHeight(p); 3652 3653 /* Check to see if the subquery can be absorbed into the parent. */ 3654 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3655 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3656 if( isAggSub ){ 3657 isAgg = 1; 3658 p->selFlags |= SF_Aggregate; 3659 } 3660 i = -1; 3661 }else{ 3662 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3663 assert( pItem->isPopulated==0 ); 3664 sqlite3Select(pParse, pSub, &dest); 3665 pItem->isPopulated = 1; 3666 } 3667 if( /*pParse->nErr ||*/ db->mallocFailed ){ 3668 goto select_end; 3669 } 3670 pParse->nHeight -= sqlite3SelectExprHeight(p); 3671 pTabList = p->pSrc; 3672 if( !IgnorableOrderby(pDest) ){ 3673 pOrderBy = p->pOrderBy; 3674 } 3675 } 3676 pEList = p->pEList; 3677 #endif 3678 pWhere = p->pWhere; 3679 pGroupBy = p->pGroupBy; 3680 pHaving = p->pHaving; 3681 isDistinct = (p->selFlags & SF_Distinct)!=0; 3682 3683 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3684 /* If there is are a sequence of queries, do the earlier ones first. 3685 */ 3686 if( p->pPrior ){ 3687 if( p->pRightmost==0 ){ 3688 Select *pLoop, *pRight = 0; 3689 int cnt = 0; 3690 int mxSelect; 3691 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3692 pLoop->pRightmost = p; 3693 pLoop->pNext = pRight; 3694 pRight = pLoop; 3695 } 3696 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3697 if( mxSelect && cnt>mxSelect ){ 3698 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3699 return 1; 3700 } 3701 } 3702 return multiSelect(pParse, p, pDest); 3703 } 3704 #endif 3705 3706 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3707 ** GROUP BY might use an index, DISTINCT never does. 3708 */ 3709 assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 ); 3710 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){ 3711 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3712 pGroupBy = p->pGroupBy; 3713 p->selFlags &= ~SF_Distinct; 3714 isDistinct = 0; 3715 } 3716 3717 /* If there is both a GROUP BY and an ORDER BY clause and they are 3718 ** identical, then disable the ORDER BY clause since the GROUP BY 3719 ** will cause elements to come out in the correct order. This is 3720 ** an optimization - the correct answer should result regardless. 3721 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER 3722 ** to disable this optimization for testing purposes. 3723 */ 3724 if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 3725 && (db->flags & SQLITE_GroupByOrder)==0 ){ 3726 pOrderBy = 0; 3727 } 3728 3729 /* If there is an ORDER BY clause, then this sorting 3730 ** index might end up being unused if the data can be 3731 ** extracted in pre-sorted order. If that is the case, then the 3732 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3733 ** we figure out that the sorting index is not needed. The addrSortIndex 3734 ** variable is used to facilitate that change. 3735 */ 3736 if( pOrderBy ){ 3737 KeyInfo *pKeyInfo; 3738 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3739 pOrderBy->iECursor = pParse->nTab++; 3740 p->addrOpenEphm[2] = addrSortIndex = 3741 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3742 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3743 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3744 }else{ 3745 addrSortIndex = -1; 3746 } 3747 3748 /* If the output is destined for a temporary table, open that table. 3749 */ 3750 if( pDest->eDest==SRT_EphemTab ){ 3751 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3752 } 3753 3754 /* Set the limiter. 3755 */ 3756 iEnd = sqlite3VdbeMakeLabel(v); 3757 computeLimitRegisters(pParse, p, iEnd); 3758 3759 /* Open a virtual index to use for the distinct set. 3760 */ 3761 if( isDistinct ){ 3762 KeyInfo *pKeyInfo; 3763 assert( isAgg || pGroupBy ); 3764 distinct = pParse->nTab++; 3765 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3766 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3767 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3768 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 3769 }else{ 3770 distinct = -1; 3771 } 3772 3773 /* Aggregate and non-aggregate queries are handled differently */ 3774 if( !isAgg && pGroupBy==0 ){ 3775 /* This case is for non-aggregate queries 3776 ** Begin the database scan 3777 */ 3778 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3779 if( pWInfo==0 ) goto select_end; 3780 3781 /* If sorting index that was created by a prior OP_OpenEphemeral 3782 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3783 ** into an OP_Noop. 3784 */ 3785 if( addrSortIndex>=0 && pOrderBy==0 ){ 3786 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3787 p->addrOpenEphm[2] = -1; 3788 } 3789 3790 /* Use the standard inner loop 3791 */ 3792 assert(!isDistinct); 3793 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3794 pWInfo->iContinue, pWInfo->iBreak); 3795 3796 /* End the database scan loop. 3797 */ 3798 sqlite3WhereEnd(pWInfo); 3799 }else{ 3800 /* This is the processing for aggregate queries */ 3801 NameContext sNC; /* Name context for processing aggregate information */ 3802 int iAMem; /* First Mem address for storing current GROUP BY */ 3803 int iBMem; /* First Mem address for previous GROUP BY */ 3804 int iUseFlag; /* Mem address holding flag indicating that at least 3805 ** one row of the input to the aggregator has been 3806 ** processed */ 3807 int iAbortFlag; /* Mem address which causes query abort if positive */ 3808 int groupBySort; /* Rows come from source in GROUP BY order */ 3809 int addrEnd; /* End of processing for this SELECT */ 3810 3811 /* Remove any and all aliases between the result set and the 3812 ** GROUP BY clause. 3813 */ 3814 if( pGroupBy ){ 3815 int k; /* Loop counter */ 3816 struct ExprList_item *pItem; /* For looping over expression in a list */ 3817 3818 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3819 pItem->iAlias = 0; 3820 } 3821 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3822 pItem->iAlias = 0; 3823 } 3824 } 3825 3826 3827 /* Create a label to jump to when we want to abort the query */ 3828 addrEnd = sqlite3VdbeMakeLabel(v); 3829 3830 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3831 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3832 ** SELECT statement. 3833 */ 3834 memset(&sNC, 0, sizeof(sNC)); 3835 sNC.pParse = pParse; 3836 sNC.pSrcList = pTabList; 3837 sNC.pAggInfo = &sAggInfo; 3838 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3839 sAggInfo.pGroupBy = pGroupBy; 3840 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3841 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3842 if( pHaving ){ 3843 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3844 } 3845 sAggInfo.nAccumulator = sAggInfo.nColumn; 3846 for(i=0; i<sAggInfo.nFunc; i++){ 3847 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3848 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3849 } 3850 if( db->mallocFailed ) goto select_end; 3851 3852 /* Processing for aggregates with GROUP BY is very different and 3853 ** much more complex than aggregates without a GROUP BY. 3854 */ 3855 if( pGroupBy ){ 3856 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3857 int j1; /* A-vs-B comparision jump */ 3858 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3859 int regOutputRow; /* Return address register for output subroutine */ 3860 int addrSetAbort; /* Set the abort flag and return */ 3861 int addrTopOfLoop; /* Top of the input loop */ 3862 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3863 int addrReset; /* Subroutine for resetting the accumulator */ 3864 int regReset; /* Return address register for reset subroutine */ 3865 3866 /* If there is a GROUP BY clause we might need a sorting index to 3867 ** implement it. Allocate that sorting index now. If it turns out 3868 ** that we do not need it after all, the OpenEphemeral instruction 3869 ** will be converted into a Noop. 3870 */ 3871 sAggInfo.sortingIdx = pParse->nTab++; 3872 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3873 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3874 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3875 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3876 3877 /* Initialize memory locations used by GROUP BY aggregate processing 3878 */ 3879 iUseFlag = ++pParse->nMem; 3880 iAbortFlag = ++pParse->nMem; 3881 regOutputRow = ++pParse->nMem; 3882 addrOutputRow = sqlite3VdbeMakeLabel(v); 3883 regReset = ++pParse->nMem; 3884 addrReset = sqlite3VdbeMakeLabel(v); 3885 iAMem = pParse->nMem + 1; 3886 pParse->nMem += pGroupBy->nExpr; 3887 iBMem = pParse->nMem + 1; 3888 pParse->nMem += pGroupBy->nExpr; 3889 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3890 VdbeComment((v, "clear abort flag")); 3891 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3892 VdbeComment((v, "indicate accumulator empty")); 3893 3894 /* Begin a loop that will extract all source rows in GROUP BY order. 3895 ** This might involve two separate loops with an OP_Sort in between, or 3896 ** it might be a single loop that uses an index to extract information 3897 ** in the right order to begin with. 3898 */ 3899 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3900 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3901 if( pWInfo==0 ) goto select_end; 3902 if( pGroupBy==0 ){ 3903 /* The optimizer is able to deliver rows in group by order so 3904 ** we do not have to sort. The OP_OpenEphemeral table will be 3905 ** cancelled later because we still need to use the pKeyInfo 3906 */ 3907 pGroupBy = p->pGroupBy; 3908 groupBySort = 0; 3909 }else{ 3910 /* Rows are coming out in undetermined order. We have to push 3911 ** each row into a sorting index, terminate the first loop, 3912 ** then loop over the sorting index in order to get the output 3913 ** in sorted order 3914 */ 3915 int regBase; 3916 int regRecord; 3917 int nCol; 3918 int nGroupBy; 3919 3920 groupBySort = 1; 3921 nGroupBy = pGroupBy->nExpr; 3922 nCol = nGroupBy + 1; 3923 j = nGroupBy+1; 3924 for(i=0; i<sAggInfo.nColumn; i++){ 3925 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3926 nCol++; 3927 j++; 3928 } 3929 } 3930 regBase = sqlite3GetTempRange(pParse, nCol); 3931 sqlite3ExprCacheClear(pParse); 3932 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3933 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3934 j = nGroupBy+1; 3935 for(i=0; i<sAggInfo.nColumn; i++){ 3936 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3937 if( pCol->iSorterColumn>=j ){ 3938 int r1 = j + regBase; 3939 int r2; 3940 3941 r2 = sqlite3ExprCodeGetColumn(pParse, 3942 pCol->pTab, pCol->iColumn, pCol->iTable, r1); 3943 if( r1!=r2 ){ 3944 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3945 } 3946 j++; 3947 } 3948 } 3949 regRecord = sqlite3GetTempReg(pParse); 3950 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3951 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3952 sqlite3ReleaseTempReg(pParse, regRecord); 3953 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3954 sqlite3WhereEnd(pWInfo); 3955 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3956 VdbeComment((v, "GROUP BY sort")); 3957 sAggInfo.useSortingIdx = 1; 3958 sqlite3ExprCacheClear(pParse); 3959 } 3960 3961 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3962 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3963 ** Then compare the current GROUP BY terms against the GROUP BY terms 3964 ** from the previous row currently stored in a0, a1, a2... 3965 */ 3966 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3967 sqlite3ExprCacheClear(pParse); 3968 for(j=0; j<pGroupBy->nExpr; j++){ 3969 if( groupBySort ){ 3970 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3971 }else{ 3972 sAggInfo.directMode = 1; 3973 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3974 } 3975 } 3976 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3977 (char*)pKeyInfo, P4_KEYINFO); 3978 j1 = sqlite3VdbeCurrentAddr(v); 3979 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3980 3981 /* Generate code that runs whenever the GROUP BY changes. 3982 ** Changes in the GROUP BY are detected by the previous code 3983 ** block. If there were no changes, this block is skipped. 3984 ** 3985 ** This code copies current group by terms in b0,b1,b2,... 3986 ** over to a0,a1,a2. It then calls the output subroutine 3987 ** and resets the aggregate accumulator registers in preparation 3988 ** for the next GROUP BY batch. 3989 */ 3990 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3991 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3992 VdbeComment((v, "output one row")); 3993 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3994 VdbeComment((v, "check abort flag")); 3995 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3996 VdbeComment((v, "reset accumulator")); 3997 3998 /* Update the aggregate accumulators based on the content of 3999 ** the current row 4000 */ 4001 sqlite3VdbeJumpHere(v, j1); 4002 updateAccumulator(pParse, &sAggInfo); 4003 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4004 VdbeComment((v, "indicate data in accumulator")); 4005 4006 /* End of the loop 4007 */ 4008 if( groupBySort ){ 4009 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 4010 }else{ 4011 sqlite3WhereEnd(pWInfo); 4012 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 4013 } 4014 4015 /* Output the final row of result 4016 */ 4017 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4018 VdbeComment((v, "output final row")); 4019 4020 /* Jump over the subroutines 4021 */ 4022 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4023 4024 /* Generate a subroutine that outputs a single row of the result 4025 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4026 ** is less than or equal to zero, the subroutine is a no-op. If 4027 ** the processing calls for the query to abort, this subroutine 4028 ** increments the iAbortFlag memory location before returning in 4029 ** order to signal the caller to abort. 4030 */ 4031 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4032 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4033 VdbeComment((v, "set abort flag")); 4034 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4035 sqlite3VdbeResolveLabel(v, addrOutputRow); 4036 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4037 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4038 VdbeComment((v, "Groupby result generator entry point")); 4039 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4040 finalizeAggFunctions(pParse, &sAggInfo); 4041 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4042 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4043 distinct, pDest, 4044 addrOutputRow+1, addrSetAbort); 4045 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4046 VdbeComment((v, "end groupby result generator")); 4047 4048 /* Generate a subroutine that will reset the group-by accumulator 4049 */ 4050 sqlite3VdbeResolveLabel(v, addrReset); 4051 resetAccumulator(pParse, &sAggInfo); 4052 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4053 4054 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 4055 else { 4056 ExprList *pDel = 0; 4057 #ifndef SQLITE_OMIT_BTREECOUNT 4058 Table *pTab; 4059 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4060 /* If isSimpleCount() returns a pointer to a Table structure, then 4061 ** the SQL statement is of the form: 4062 ** 4063 ** SELECT count(*) FROM <tbl> 4064 ** 4065 ** where the Table structure returned represents table <tbl>. 4066 ** 4067 ** This statement is so common that it is optimized specially. The 4068 ** OP_Count instruction is executed either on the intkey table that 4069 ** contains the data for table <tbl> or on one of its indexes. It 4070 ** is better to execute the op on an index, as indexes are almost 4071 ** always spread across less pages than their corresponding tables. 4072 */ 4073 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4074 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4075 Index *pIdx; /* Iterator variable */ 4076 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4077 Index *pBest = 0; /* Best index found so far */ 4078 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4079 4080 sqlite3CodeVerifySchema(pParse, iDb); 4081 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4082 4083 /* Search for the index that has the least amount of columns. If 4084 ** there is such an index, and it has less columns than the table 4085 ** does, then we can assume that it consumes less space on disk and 4086 ** will therefore be cheaper to scan to determine the query result. 4087 ** In this case set iRoot to the root page number of the index b-tree 4088 ** and pKeyInfo to the KeyInfo structure required to navigate the 4089 ** index. 4090 ** 4091 ** In practice the KeyInfo structure will not be used. It is only 4092 ** passed to keep OP_OpenRead happy. 4093 */ 4094 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4095 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4096 pBest = pIdx; 4097 } 4098 } 4099 if( pBest && pBest->nColumn<pTab->nCol ){ 4100 iRoot = pBest->tnum; 4101 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4102 } 4103 4104 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4105 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4106 if( pKeyInfo ){ 4107 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4108 } 4109 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4110 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4111 }else 4112 #endif /* SQLITE_OMIT_BTREECOUNT */ 4113 { 4114 /* Check if the query is of one of the following forms: 4115 ** 4116 ** SELECT min(x) FROM ... 4117 ** SELECT max(x) FROM ... 4118 ** 4119 ** If it is, then ask the code in where.c to attempt to sort results 4120 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4121 ** If where.c is able to produce results sorted in this order, then 4122 ** add vdbe code to break out of the processing loop after the 4123 ** first iteration (since the first iteration of the loop is 4124 ** guaranteed to operate on the row with the minimum or maximum 4125 ** value of x, the only row required). 4126 ** 4127 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4128 ** modify behaviour as follows: 4129 ** 4130 ** + If the query is a "SELECT min(x)", then the loop coded by 4131 ** where.c should not iterate over any values with a NULL value 4132 ** for x. 4133 ** 4134 ** + The optimizer code in where.c (the thing that decides which 4135 ** index or indices to use) should place a different priority on 4136 ** satisfying the 'ORDER BY' clause than it does in other cases. 4137 ** Refer to code and comments in where.c for details. 4138 */ 4139 ExprList *pMinMax = 0; 4140 u8 flag = minMaxQuery(p); 4141 if( flag ){ 4142 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4143 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4144 pDel = pMinMax; 4145 if( pMinMax && !db->mallocFailed ){ 4146 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4147 pMinMax->a[0].pExpr->op = TK_COLUMN; 4148 } 4149 } 4150 4151 /* This case runs if the aggregate has no GROUP BY clause. The 4152 ** processing is much simpler since there is only a single row 4153 ** of output. 4154 */ 4155 resetAccumulator(pParse, &sAggInfo); 4156 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4157 if( pWInfo==0 ){ 4158 sqlite3ExprListDelete(db, pDel); 4159 goto select_end; 4160 } 4161 updateAccumulator(pParse, &sAggInfo); 4162 if( !pMinMax && flag ){ 4163 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4164 VdbeComment((v, "%s() by index", 4165 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4166 } 4167 sqlite3WhereEnd(pWInfo); 4168 finalizeAggFunctions(pParse, &sAggInfo); 4169 } 4170 4171 pOrderBy = 0; 4172 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4173 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4174 pDest, addrEnd, addrEnd); 4175 sqlite3ExprListDelete(db, pDel); 4176 } 4177 sqlite3VdbeResolveLabel(v, addrEnd); 4178 4179 } /* endif aggregate query */ 4180 4181 /* If there is an ORDER BY clause, then we need to sort the results 4182 ** and send them to the callback one by one. 4183 */ 4184 if( pOrderBy ){ 4185 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4186 } 4187 4188 /* Jump here to skip this query 4189 */ 4190 sqlite3VdbeResolveLabel(v, iEnd); 4191 4192 /* The SELECT was successfully coded. Set the return code to 0 4193 ** to indicate no errors. 4194 */ 4195 rc = 0; 4196 4197 /* Control jumps to here if an error is encountered above, or upon 4198 ** successful coding of the SELECT. 4199 */ 4200 select_end: 4201 4202 /* Identify column names if results of the SELECT are to be output. 4203 */ 4204 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4205 generateColumnNames(pParse, pTabList, pEList); 4206 } 4207 4208 sqlite3DbFree(db, sAggInfo.aCol); 4209 sqlite3DbFree(db, sAggInfo.aFunc); 4210 return rc; 4211 } 4212 4213 #if defined(SQLITE_DEBUG) 4214 /* 4215 ******************************************************************************* 4216 ** The following code is used for testing and debugging only. The code 4217 ** that follows does not appear in normal builds. 4218 ** 4219 ** These routines are used to print out the content of all or part of a 4220 ** parse structures such as Select or Expr. Such printouts are useful 4221 ** for helping to understand what is happening inside the code generator 4222 ** during the execution of complex SELECT statements. 4223 ** 4224 ** These routine are not called anywhere from within the normal 4225 ** code base. Then are intended to be called from within the debugger 4226 ** or from temporary "printf" statements inserted for debugging. 4227 */ 4228 void sqlite3PrintExpr(Expr *p){ 4229 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ 4230 sqlite3DebugPrintf("(%s", p->u.zToken); 4231 }else{ 4232 sqlite3DebugPrintf("(%d", p->op); 4233 } 4234 if( p->pLeft ){ 4235 sqlite3DebugPrintf(" "); 4236 sqlite3PrintExpr(p->pLeft); 4237 } 4238 if( p->pRight ){ 4239 sqlite3DebugPrintf(" "); 4240 sqlite3PrintExpr(p->pRight); 4241 } 4242 sqlite3DebugPrintf(")"); 4243 } 4244 void sqlite3PrintExprList(ExprList *pList){ 4245 int i; 4246 for(i=0; i<pList->nExpr; i++){ 4247 sqlite3PrintExpr(pList->a[i].pExpr); 4248 if( i<pList->nExpr-1 ){ 4249 sqlite3DebugPrintf(", "); 4250 } 4251 } 4252 } 4253 void sqlite3PrintSelect(Select *p, int indent){ 4254 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4255 sqlite3PrintExprList(p->pEList); 4256 sqlite3DebugPrintf("\n"); 4257 if( p->pSrc ){ 4258 char *zPrefix; 4259 int i; 4260 zPrefix = "FROM"; 4261 for(i=0; i<p->pSrc->nSrc; i++){ 4262 struct SrcList_item *pItem = &p->pSrc->a[i]; 4263 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4264 zPrefix = ""; 4265 if( pItem->pSelect ){ 4266 sqlite3DebugPrintf("(\n"); 4267 sqlite3PrintSelect(pItem->pSelect, indent+10); 4268 sqlite3DebugPrintf("%*s)", indent+8, ""); 4269 }else if( pItem->zName ){ 4270 sqlite3DebugPrintf("%s", pItem->zName); 4271 } 4272 if( pItem->pTab ){ 4273 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4274 } 4275 if( pItem->zAlias ){ 4276 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4277 } 4278 if( i<p->pSrc->nSrc-1 ){ 4279 sqlite3DebugPrintf(","); 4280 } 4281 sqlite3DebugPrintf("\n"); 4282 } 4283 } 4284 if( p->pWhere ){ 4285 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4286 sqlite3PrintExpr(p->pWhere); 4287 sqlite3DebugPrintf("\n"); 4288 } 4289 if( p->pGroupBy ){ 4290 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4291 sqlite3PrintExprList(p->pGroupBy); 4292 sqlite3DebugPrintf("\n"); 4293 } 4294 if( p->pHaving ){ 4295 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4296 sqlite3PrintExpr(p->pHaving); 4297 sqlite3DebugPrintf("\n"); 4298 } 4299 if( p->pOrderBy ){ 4300 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4301 sqlite3PrintExprList(p->pOrderBy); 4302 sqlite3DebugPrintf("\n"); 4303 } 4304 } 4305 /* End of the structure debug printing code 4306 *****************************************************************************/ 4307 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4308