xref: /sqlite-3.40.0/src/select.c (revision 79d5bc80)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   int labelOBLopt;      /* Jump here when sorter is full */
72   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself depending on the value of bFree
88 **
89 ** If bFree==1, call sqlite3DbFree() on the p object.
90 ** If bFree==0, Leave the first Select object unfreed
91 */
92 static void clearSelect(sqlite3 *db, Select *p, int bFree){
93   while( p ){
94     Select *pPrior = p->pPrior;
95     sqlite3ExprListDelete(db, p->pEList);
96     sqlite3SrcListDelete(db, p->pSrc);
97     sqlite3ExprDelete(db, p->pWhere);
98     sqlite3ExprListDelete(db, p->pGroupBy);
99     sqlite3ExprDelete(db, p->pHaving);
100     sqlite3ExprListDelete(db, p->pOrderBy);
101     sqlite3ExprDelete(db, p->pLimit);
102 #ifndef SQLITE_OMIT_WINDOWFUNC
103     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
104       sqlite3WindowListDelete(db, p->pWinDefn);
105     }
106     assert( p->pWin==0 );
107 #endif
108     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
109     if( bFree ) sqlite3DbFreeNN(db, p);
110     p = pPrior;
111     bFree = 1;
112   }
113 }
114 
115 /*
116 ** Initialize a SelectDest structure.
117 */
118 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
119   pDest->eDest = (u8)eDest;
120   pDest->iSDParm = iParm;
121   pDest->zAffSdst = 0;
122   pDest->iSdst = 0;
123   pDest->nSdst = 0;
124 }
125 
126 
127 /*
128 ** Allocate a new Select structure and return a pointer to that
129 ** structure.
130 */
131 Select *sqlite3SelectNew(
132   Parse *pParse,        /* Parsing context */
133   ExprList *pEList,     /* which columns to include in the result */
134   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
135   Expr *pWhere,         /* the WHERE clause */
136   ExprList *pGroupBy,   /* the GROUP BY clause */
137   Expr *pHaving,        /* the HAVING clause */
138   ExprList *pOrderBy,   /* the ORDER BY clause */
139   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
140   Expr *pLimit          /* LIMIT value.  NULL means not used */
141 ){
142   Select *pNew;
143   Select standin;
144   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
145   if( pNew==0 ){
146     assert( pParse->db->mallocFailed );
147     pNew = &standin;
148   }
149   if( pEList==0 ){
150     pEList = sqlite3ExprListAppend(pParse, 0,
151                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
152   }
153   pNew->pEList = pEList;
154   pNew->op = TK_SELECT;
155   pNew->selFlags = selFlags;
156   pNew->iLimit = 0;
157   pNew->iOffset = 0;
158   pNew->selId = ++pParse->nSelect;
159   pNew->addrOpenEphm[0] = -1;
160   pNew->addrOpenEphm[1] = -1;
161   pNew->nSelectRow = 0;
162   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
163   pNew->pSrc = pSrc;
164   pNew->pWhere = pWhere;
165   pNew->pGroupBy = pGroupBy;
166   pNew->pHaving = pHaving;
167   pNew->pOrderBy = pOrderBy;
168   pNew->pPrior = 0;
169   pNew->pNext = 0;
170   pNew->pLimit = pLimit;
171   pNew->pWith = 0;
172 #ifndef SQLITE_OMIT_WINDOWFUNC
173   pNew->pWin = 0;
174   pNew->pWinDefn = 0;
175 #endif
176   if( pParse->db->mallocFailed ) {
177     clearSelect(pParse->db, pNew, pNew!=&standin);
178     pNew = 0;
179   }else{
180     assert( pNew->pSrc!=0 || pParse->nErr>0 );
181   }
182   assert( pNew!=&standin );
183   return pNew;
184 }
185 
186 
187 /*
188 ** Delete the given Select structure and all of its substructures.
189 */
190 void sqlite3SelectDelete(sqlite3 *db, Select *p){
191   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
192 }
193 
194 /*
195 ** Delete all the substructure for p, but keep p allocated.  Redefine
196 ** p to be a single SELECT where every column of the result set has a
197 ** value of NULL.
198 */
199 void sqlite3SelectReset(Parse *pParse, Select *p){
200   if( ALWAYS(p) ){
201     clearSelect(pParse->db, p, 0);
202     memset(&p->iLimit, 0, sizeof(Select) - offsetof(Select,iLimit));
203     p->pEList = sqlite3ExprListAppend(pParse, 0,
204                      sqlite3ExprAlloc(pParse->db,TK_NULL,0,0));
205     p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(SrcList));
206   }
207 }
208 
209 /*
210 ** Return a pointer to the right-most SELECT statement in a compound.
211 */
212 static Select *findRightmost(Select *p){
213   while( p->pNext ) p = p->pNext;
214   return p;
215 }
216 
217 /*
218 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
219 ** type of join.  Return an integer constant that expresses that type
220 ** in terms of the following bit values:
221 **
222 **     JT_INNER
223 **     JT_CROSS
224 **     JT_OUTER
225 **     JT_NATURAL
226 **     JT_LEFT
227 **     JT_RIGHT
228 **
229 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
230 **
231 ** If an illegal or unsupported join type is seen, then still return
232 ** a join type, but put an error in the pParse structure.
233 */
234 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
235   int jointype = 0;
236   Token *apAll[3];
237   Token *p;
238                              /*   0123456789 123456789 123456789 123 */
239   static const char zKeyText[] = "naturaleftouterightfullinnercross";
240   static const struct {
241     u8 i;        /* Beginning of keyword text in zKeyText[] */
242     u8 nChar;    /* Length of the keyword in characters */
243     u8 code;     /* Join type mask */
244   } aKeyword[] = {
245     /* natural */ { 0,  7, JT_NATURAL                },
246     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
247     /* outer   */ { 10, 5, JT_OUTER                  },
248     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
249     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
250     /* inner   */ { 23, 5, JT_INNER                  },
251     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
252   };
253   int i, j;
254   apAll[0] = pA;
255   apAll[1] = pB;
256   apAll[2] = pC;
257   for(i=0; i<3 && apAll[i]; i++){
258     p = apAll[i];
259     for(j=0; j<ArraySize(aKeyword); j++){
260       if( p->n==aKeyword[j].nChar
261           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
262         jointype |= aKeyword[j].code;
263         break;
264       }
265     }
266     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
267     if( j>=ArraySize(aKeyword) ){
268       jointype |= JT_ERROR;
269       break;
270     }
271   }
272   if(
273      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
274      (jointype & JT_ERROR)!=0
275   ){
276     const char *zSp = " ";
277     assert( pB!=0 );
278     if( pC==0 ){ zSp++; }
279     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
280        "%T %T%s%T", pA, pB, zSp, pC);
281     jointype = JT_INNER;
282   }else if( (jointype & JT_OUTER)!=0
283          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
284     sqlite3ErrorMsg(pParse,
285       "RIGHT and FULL OUTER JOINs are not currently supported");
286     jointype = JT_INNER;
287   }
288   return jointype;
289 }
290 
291 /*
292 ** Return the index of a column in a table.  Return -1 if the column
293 ** is not contained in the table.
294 */
295 static int columnIndex(Table *pTab, const char *zCol){
296   int i;
297   for(i=0; i<pTab->nCol; i++){
298     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
299   }
300   return -1;
301 }
302 
303 /*
304 ** Search the first N tables in pSrc, from left to right, looking for a
305 ** table that has a column named zCol.
306 **
307 ** When found, set *piTab and *piCol to the table index and column index
308 ** of the matching column and return TRUE.
309 **
310 ** If not found, return FALSE.
311 */
312 static int tableAndColumnIndex(
313   SrcList *pSrc,       /* Array of tables to search */
314   int N,               /* Number of tables in pSrc->a[] to search */
315   const char *zCol,    /* Name of the column we are looking for */
316   int *piTab,          /* Write index of pSrc->a[] here */
317   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
318   int bIgnoreHidden    /* True to ignore hidden columns */
319 ){
320   int i;               /* For looping over tables in pSrc */
321   int iCol;            /* Index of column matching zCol */
322 
323   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
324   for(i=0; i<N; i++){
325     iCol = columnIndex(pSrc->a[i].pTab, zCol);
326     if( iCol>=0
327      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
328     ){
329       if( piTab ){
330         *piTab = i;
331         *piCol = iCol;
332       }
333       return 1;
334     }
335   }
336   return 0;
337 }
338 
339 /*
340 ** This function is used to add terms implied by JOIN syntax to the
341 ** WHERE clause expression of a SELECT statement. The new term, which
342 ** is ANDed with the existing WHERE clause, is of the form:
343 **
344 **    (tab1.col1 = tab2.col2)
345 **
346 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
347 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
348 ** column iColRight of tab2.
349 */
350 static void addWhereTerm(
351   Parse *pParse,                  /* Parsing context */
352   SrcList *pSrc,                  /* List of tables in FROM clause */
353   int iLeft,                      /* Index of first table to join in pSrc */
354   int iColLeft,                   /* Index of column in first table */
355   int iRight,                     /* Index of second table in pSrc */
356   int iColRight,                  /* Index of column in second table */
357   int isOuterJoin,                /* True if this is an OUTER join */
358   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
359 ){
360   sqlite3 *db = pParse->db;
361   Expr *pE1;
362   Expr *pE2;
363   Expr *pEq;
364 
365   assert( iLeft<iRight );
366   assert( pSrc->nSrc>iRight );
367   assert( pSrc->a[iLeft].pTab );
368   assert( pSrc->a[iRight].pTab );
369 
370   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
371   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
372 
373   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
374   if( pEq && isOuterJoin ){
375     ExprSetProperty(pEq, EP_FromJoin);
376     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
377     ExprSetVVAProperty(pEq, EP_NoReduce);
378     pEq->iRightJoinTable = (i16)pE2->iTable;
379   }
380   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
381 }
382 
383 /*
384 ** Set the EP_FromJoin property on all terms of the given expression.
385 ** And set the Expr.iRightJoinTable to iTable for every term in the
386 ** expression.
387 **
388 ** The EP_FromJoin property is used on terms of an expression to tell
389 ** the LEFT OUTER JOIN processing logic that this term is part of the
390 ** join restriction specified in the ON or USING clause and not a part
391 ** of the more general WHERE clause.  These terms are moved over to the
392 ** WHERE clause during join processing but we need to remember that they
393 ** originated in the ON or USING clause.
394 **
395 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
396 ** expression depends on table iRightJoinTable even if that table is not
397 ** explicitly mentioned in the expression.  That information is needed
398 ** for cases like this:
399 **
400 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
401 **
402 ** The where clause needs to defer the handling of the t1.x=5
403 ** term until after the t2 loop of the join.  In that way, a
404 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
405 ** defer the handling of t1.x=5, it will be processed immediately
406 ** after the t1 loop and rows with t1.x!=5 will never appear in
407 ** the output, which is incorrect.
408 */
409 void sqlite3SetJoinExpr(Expr *p, int iTable){
410   while( p ){
411     ExprSetProperty(p, EP_FromJoin);
412     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
413     ExprSetVVAProperty(p, EP_NoReduce);
414     p->iRightJoinTable = (i16)iTable;
415     if( p->op==TK_FUNCTION && p->x.pList ){
416       int i;
417       for(i=0; i<p->x.pList->nExpr; i++){
418         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
419       }
420     }
421     sqlite3SetJoinExpr(p->pLeft, iTable);
422     p = p->pRight;
423   }
424 }
425 
426 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
427 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
428 ** an ordinary term that omits the EP_FromJoin mark.
429 **
430 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
431 */
432 static void unsetJoinExpr(Expr *p, int iTable){
433   while( p ){
434     if( ExprHasProperty(p, EP_FromJoin)
435      && (iTable<0 || p->iRightJoinTable==iTable) ){
436       ExprClearProperty(p, EP_FromJoin);
437     }
438     if( p->op==TK_FUNCTION && p->x.pList ){
439       int i;
440       for(i=0; i<p->x.pList->nExpr; i++){
441         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
442       }
443     }
444     unsetJoinExpr(p->pLeft, iTable);
445     p = p->pRight;
446   }
447 }
448 
449 /*
450 ** This routine processes the join information for a SELECT statement.
451 ** ON and USING clauses are converted into extra terms of the WHERE clause.
452 ** NATURAL joins also create extra WHERE clause terms.
453 **
454 ** The terms of a FROM clause are contained in the Select.pSrc structure.
455 ** The left most table is the first entry in Select.pSrc.  The right-most
456 ** table is the last entry.  The join operator is held in the entry to
457 ** the left.  Thus entry 0 contains the join operator for the join between
458 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
459 ** also attached to the left entry.
460 **
461 ** This routine returns the number of errors encountered.
462 */
463 static int sqliteProcessJoin(Parse *pParse, Select *p){
464   SrcList *pSrc;                  /* All tables in the FROM clause */
465   int i, j;                       /* Loop counters */
466   struct SrcList_item *pLeft;     /* Left table being joined */
467   struct SrcList_item *pRight;    /* Right table being joined */
468 
469   pSrc = p->pSrc;
470   pLeft = &pSrc->a[0];
471   pRight = &pLeft[1];
472   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
473     Table *pRightTab = pRight->pTab;
474     int isOuter;
475 
476     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
477     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
478 
479     /* When the NATURAL keyword is present, add WHERE clause terms for
480     ** every column that the two tables have in common.
481     */
482     if( pRight->fg.jointype & JT_NATURAL ){
483       if( pRight->pOn || pRight->pUsing ){
484         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
485            "an ON or USING clause", 0);
486         return 1;
487       }
488       for(j=0; j<pRightTab->nCol; j++){
489         char *zName;   /* Name of column in the right table */
490         int iLeft;     /* Matching left table */
491         int iLeftCol;  /* Matching column in the left table */
492 
493         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
494         zName = pRightTab->aCol[j].zName;
495         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
496           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
497                 isOuter, &p->pWhere);
498         }
499       }
500     }
501 
502     /* Disallow both ON and USING clauses in the same join
503     */
504     if( pRight->pOn && pRight->pUsing ){
505       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
506         "clauses in the same join");
507       return 1;
508     }
509 
510     /* Add the ON clause to the end of the WHERE clause, connected by
511     ** an AND operator.
512     */
513     if( pRight->pOn ){
514       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
515       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
516       pRight->pOn = 0;
517     }
518 
519     /* Create extra terms on the WHERE clause for each column named
520     ** in the USING clause.  Example: If the two tables to be joined are
521     ** A and B and the USING clause names X, Y, and Z, then add this
522     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
523     ** Report an error if any column mentioned in the USING clause is
524     ** not contained in both tables to be joined.
525     */
526     if( pRight->pUsing ){
527       IdList *pList = pRight->pUsing;
528       for(j=0; j<pList->nId; j++){
529         char *zName;     /* Name of the term in the USING clause */
530         int iLeft;       /* Table on the left with matching column name */
531         int iLeftCol;    /* Column number of matching column on the left */
532         int iRightCol;   /* Column number of matching column on the right */
533 
534         zName = pList->a[j].zName;
535         iRightCol = columnIndex(pRightTab, zName);
536         if( iRightCol<0
537          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
538         ){
539           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
540             "not present in both tables", zName);
541           return 1;
542         }
543         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
544                      isOuter, &p->pWhere);
545       }
546     }
547   }
548   return 0;
549 }
550 
551 /*
552 ** An instance of this object holds information (beyond pParse and pSelect)
553 ** needed to load the next result row that is to be added to the sorter.
554 */
555 typedef struct RowLoadInfo RowLoadInfo;
556 struct RowLoadInfo {
557   int regResult;               /* Store results in array of registers here */
558   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
559 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
560   ExprList *pExtra;            /* Extra columns needed by sorter refs */
561   int regExtraResult;          /* Where to load the extra columns */
562 #endif
563 };
564 
565 /*
566 ** This routine does the work of loading query data into an array of
567 ** registers so that it can be added to the sorter.
568 */
569 static void innerLoopLoadRow(
570   Parse *pParse,             /* Statement under construction */
571   Select *pSelect,           /* The query being coded */
572   RowLoadInfo *pInfo         /* Info needed to complete the row load */
573 ){
574   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
575                           0, pInfo->ecelFlags);
576 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
577   if( pInfo->pExtra ){
578     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
579     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
580   }
581 #endif
582 }
583 
584 /*
585 ** Code the OP_MakeRecord instruction that generates the entry to be
586 ** added into the sorter.
587 **
588 ** Return the register in which the result is stored.
589 */
590 static int makeSorterRecord(
591   Parse *pParse,
592   SortCtx *pSort,
593   Select *pSelect,
594   int regBase,
595   int nBase
596 ){
597   int nOBSat = pSort->nOBSat;
598   Vdbe *v = pParse->pVdbe;
599   int regOut = ++pParse->nMem;
600   if( pSort->pDeferredRowLoad ){
601     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
602   }
603   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
604   return regOut;
605 }
606 
607 /*
608 ** Generate code that will push the record in registers regData
609 ** through regData+nData-1 onto the sorter.
610 */
611 static void pushOntoSorter(
612   Parse *pParse,         /* Parser context */
613   SortCtx *pSort,        /* Information about the ORDER BY clause */
614   Select *pSelect,       /* The whole SELECT statement */
615   int regData,           /* First register holding data to be sorted */
616   int regOrigData,       /* First register holding data before packing */
617   int nData,             /* Number of elements in the regData data array */
618   int nPrefixReg         /* No. of reg prior to regData available for use */
619 ){
620   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
621   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
622   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
623   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
624   int regBase;                                     /* Regs for sorter record */
625   int regRecord = 0;                               /* Assembled sorter record */
626   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
627   int op;                            /* Opcode to add sorter record to sorter */
628   int iLimit;                        /* LIMIT counter */
629   int iSkip = 0;                     /* End of the sorter insert loop */
630 
631   assert( bSeq==0 || bSeq==1 );
632 
633   /* Three cases:
634   **   (1) The data to be sorted has already been packed into a Record
635   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
636   **       will be completely unrelated to regOrigData.
637   **   (2) All output columns are included in the sort record.  In that
638   **       case regData==regOrigData.
639   **   (3) Some output columns are omitted from the sort record due to
640   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
641   **       SQLITE_ECEL_OMITREF optimization, or due to the
642   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
643   **       regOrigData is 0 to prevent this routine from trying to copy
644   **       values that might not yet exist.
645   */
646   assert( nData==1 || regData==regOrigData || regOrigData==0 );
647 
648   if( nPrefixReg ){
649     assert( nPrefixReg==nExpr+bSeq );
650     regBase = regData - nPrefixReg;
651   }else{
652     regBase = pParse->nMem + 1;
653     pParse->nMem += nBase;
654   }
655   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
656   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
657   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
658   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
659                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
660   if( bSeq ){
661     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
662   }
663   if( nPrefixReg==0 && nData>0 ){
664     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
665   }
666   if( nOBSat>0 ){
667     int regPrevKey;   /* The first nOBSat columns of the previous row */
668     int addrFirst;    /* Address of the OP_IfNot opcode */
669     int addrJmp;      /* Address of the OP_Jump opcode */
670     VdbeOp *pOp;      /* Opcode that opens the sorter */
671     int nKey;         /* Number of sorting key columns, including OP_Sequence */
672     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
673 
674     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
675     regPrevKey = pParse->nMem+1;
676     pParse->nMem += pSort->nOBSat;
677     nKey = nExpr - pSort->nOBSat + bSeq;
678     if( bSeq ){
679       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
680     }else{
681       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
682     }
683     VdbeCoverage(v);
684     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
685     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
686     if( pParse->db->mallocFailed ) return;
687     pOp->p2 = nKey + nData;
688     pKI = pOp->p4.pKeyInfo;
689     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
690     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
691     testcase( pKI->nAllField > pKI->nKeyField+2 );
692     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
693                                            pKI->nAllField-pKI->nKeyField-1);
694     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
695     addrJmp = sqlite3VdbeCurrentAddr(v);
696     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
697     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
698     pSort->regReturn = ++pParse->nMem;
699     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
700     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
701     if( iLimit ){
702       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
703       VdbeCoverage(v);
704     }
705     sqlite3VdbeJumpHere(v, addrFirst);
706     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
707     sqlite3VdbeJumpHere(v, addrJmp);
708   }
709   if( iLimit ){
710     /* At this point the values for the new sorter entry are stored
711     ** in an array of registers. They need to be composed into a record
712     ** and inserted into the sorter if either (a) there are currently
713     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
714     ** the largest record currently in the sorter. If (b) is true and there
715     ** are already LIMIT+OFFSET items in the sorter, delete the largest
716     ** entry before inserting the new one. This way there are never more
717     ** than LIMIT+OFFSET items in the sorter.
718     **
719     ** If the new record does not need to be inserted into the sorter,
720     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
721     ** value is not zero, then it is a label of where to jump.  Otherwise,
722     ** just bypass the row insert logic.  See the header comment on the
723     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
724     */
725     int iCsr = pSort->iECursor;
726     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
727     VdbeCoverage(v);
728     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
729     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
730                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
731     VdbeCoverage(v);
732     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
733   }
734   if( regRecord==0 ){
735     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
736   }
737   if( pSort->sortFlags & SORTFLAG_UseSorter ){
738     op = OP_SorterInsert;
739   }else{
740     op = OP_IdxInsert;
741   }
742   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
743                        regBase+nOBSat, nBase-nOBSat);
744   if( iSkip ){
745     sqlite3VdbeChangeP2(v, iSkip,
746          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
747   }
748 }
749 
750 /*
751 ** Add code to implement the OFFSET
752 */
753 static void codeOffset(
754   Vdbe *v,          /* Generate code into this VM */
755   int iOffset,      /* Register holding the offset counter */
756   int iContinue     /* Jump here to skip the current record */
757 ){
758   if( iOffset>0 ){
759     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
760     VdbeComment((v, "OFFSET"));
761   }
762 }
763 
764 /*
765 ** Add code that will check to make sure the N registers starting at iMem
766 ** form a distinct entry.  iTab is a sorting index that holds previously
767 ** seen combinations of the N values.  A new entry is made in iTab
768 ** if the current N values are new.
769 **
770 ** A jump to addrRepeat is made and the N+1 values are popped from the
771 ** stack if the top N elements are not distinct.
772 */
773 static void codeDistinct(
774   Parse *pParse,     /* Parsing and code generating context */
775   int iTab,          /* A sorting index used to test for distinctness */
776   int addrRepeat,    /* Jump to here if not distinct */
777   int N,             /* Number of elements */
778   int iMem           /* First element */
779 ){
780   Vdbe *v;
781   int r1;
782 
783   v = pParse->pVdbe;
784   r1 = sqlite3GetTempReg(pParse);
785   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
786   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
787   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
788   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
789   sqlite3ReleaseTempReg(pParse, r1);
790 }
791 
792 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
793 /*
794 ** This function is called as part of inner-loop generation for a SELECT
795 ** statement with an ORDER BY that is not optimized by an index. It
796 ** determines the expressions, if any, that the sorter-reference
797 ** optimization should be used for. The sorter-reference optimization
798 ** is used for SELECT queries like:
799 **
800 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
801 **
802 ** If the optimization is used for expression "bigblob", then instead of
803 ** storing values read from that column in the sorter records, the PK of
804 ** the row from table t1 is stored instead. Then, as records are extracted from
805 ** the sorter to return to the user, the required value of bigblob is
806 ** retrieved directly from table t1. If the values are very large, this
807 ** can be more efficient than storing them directly in the sorter records.
808 **
809 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
810 ** for which the sorter-reference optimization should be enabled.
811 ** Additionally, the pSort->aDefer[] array is populated with entries
812 ** for all cursors required to evaluate all selected expressions. Finally.
813 ** output variable (*ppExtra) is set to an expression list containing
814 ** expressions for all extra PK values that should be stored in the
815 ** sorter records.
816 */
817 static void selectExprDefer(
818   Parse *pParse,                  /* Leave any error here */
819   SortCtx *pSort,                 /* Sorter context */
820   ExprList *pEList,               /* Expressions destined for sorter */
821   ExprList **ppExtra              /* Expressions to append to sorter record */
822 ){
823   int i;
824   int nDefer = 0;
825   ExprList *pExtra = 0;
826   for(i=0; i<pEList->nExpr; i++){
827     struct ExprList_item *pItem = &pEList->a[i];
828     if( pItem->u.x.iOrderByCol==0 ){
829       Expr *pExpr = pItem->pExpr;
830       Table *pTab = pExpr->y.pTab;
831       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
832        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
833       ){
834         int j;
835         for(j=0; j<nDefer; j++){
836           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
837         }
838         if( j==nDefer ){
839           if( nDefer==ArraySize(pSort->aDefer) ){
840             continue;
841           }else{
842             int nKey = 1;
843             int k;
844             Index *pPk = 0;
845             if( !HasRowid(pTab) ){
846               pPk = sqlite3PrimaryKeyIndex(pTab);
847               nKey = pPk->nKeyCol;
848             }
849             for(k=0; k<nKey; k++){
850               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
851               if( pNew ){
852                 pNew->iTable = pExpr->iTable;
853                 pNew->y.pTab = pExpr->y.pTab;
854                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
855                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
856               }
857             }
858             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
859             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
860             pSort->aDefer[nDefer].nKey = nKey;
861             nDefer++;
862           }
863         }
864         pItem->bSorterRef = 1;
865       }
866     }
867   }
868   pSort->nDefer = (u8)nDefer;
869   *ppExtra = pExtra;
870 }
871 #endif
872 
873 /*
874 ** This routine generates the code for the inside of the inner loop
875 ** of a SELECT.
876 **
877 ** If srcTab is negative, then the p->pEList expressions
878 ** are evaluated in order to get the data for this row.  If srcTab is
879 ** zero or more, then data is pulled from srcTab and p->pEList is used only
880 ** to get the number of columns and the collation sequence for each column.
881 */
882 static void selectInnerLoop(
883   Parse *pParse,          /* The parser context */
884   Select *p,              /* The complete select statement being coded */
885   int srcTab,             /* Pull data from this table if non-negative */
886   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
887   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
888   SelectDest *pDest,      /* How to dispose of the results */
889   int iContinue,          /* Jump here to continue with next row */
890   int iBreak              /* Jump here to break out of the inner loop */
891 ){
892   Vdbe *v = pParse->pVdbe;
893   int i;
894   int hasDistinct;            /* True if the DISTINCT keyword is present */
895   int eDest = pDest->eDest;   /* How to dispose of results */
896   int iParm = pDest->iSDParm; /* First argument to disposal method */
897   int nResultCol;             /* Number of result columns */
898   int nPrefixReg = 0;         /* Number of extra registers before regResult */
899   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
900 
901   /* Usually, regResult is the first cell in an array of memory cells
902   ** containing the current result row. In this case regOrig is set to the
903   ** same value. However, if the results are being sent to the sorter, the
904   ** values for any expressions that are also part of the sort-key are omitted
905   ** from this array. In this case regOrig is set to zero.  */
906   int regResult;              /* Start of memory holding current results */
907   int regOrig;                /* Start of memory holding full result (or 0) */
908 
909   assert( v );
910   assert( p->pEList!=0 );
911   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
912   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
913   if( pSort==0 && !hasDistinct ){
914     assert( iContinue!=0 );
915     codeOffset(v, p->iOffset, iContinue);
916   }
917 
918   /* Pull the requested columns.
919   */
920   nResultCol = p->pEList->nExpr;
921 
922   if( pDest->iSdst==0 ){
923     if( pSort ){
924       nPrefixReg = pSort->pOrderBy->nExpr;
925       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
926       pParse->nMem += nPrefixReg;
927     }
928     pDest->iSdst = pParse->nMem+1;
929     pParse->nMem += nResultCol;
930   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
931     /* This is an error condition that can result, for example, when a SELECT
932     ** on the right-hand side of an INSERT contains more result columns than
933     ** there are columns in the table on the left.  The error will be caught
934     ** and reported later.  But we need to make sure enough memory is allocated
935     ** to avoid other spurious errors in the meantime. */
936     pParse->nMem += nResultCol;
937   }
938   pDest->nSdst = nResultCol;
939   regOrig = regResult = pDest->iSdst;
940   if( srcTab>=0 ){
941     for(i=0; i<nResultCol; i++){
942       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
943       VdbeComment((v, "%s", p->pEList->a[i].zEName));
944     }
945   }else if( eDest!=SRT_Exists ){
946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
947     ExprList *pExtra = 0;
948 #endif
949     /* If the destination is an EXISTS(...) expression, the actual
950     ** values returned by the SELECT are not required.
951     */
952     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
953     ExprList *pEList;
954     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
955       ecelFlags = SQLITE_ECEL_DUP;
956     }else{
957       ecelFlags = 0;
958     }
959     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
960       /* For each expression in p->pEList that is a copy of an expression in
961       ** the ORDER BY clause (pSort->pOrderBy), set the associated
962       ** iOrderByCol value to one more than the index of the ORDER BY
963       ** expression within the sort-key that pushOntoSorter() will generate.
964       ** This allows the p->pEList field to be omitted from the sorted record,
965       ** saving space and CPU cycles.  */
966       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
967 
968       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
969         int j;
970         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
971           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
972         }
973       }
974 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
975       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
976       if( pExtra && pParse->db->mallocFailed==0 ){
977         /* If there are any extra PK columns to add to the sorter records,
978         ** allocate extra memory cells and adjust the OpenEphemeral
979         ** instruction to account for the larger records. This is only
980         ** required if there are one or more WITHOUT ROWID tables with
981         ** composite primary keys in the SortCtx.aDefer[] array.  */
982         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
983         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
984         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
985         pParse->nMem += pExtra->nExpr;
986       }
987 #endif
988 
989       /* Adjust nResultCol to account for columns that are omitted
990       ** from the sorter by the optimizations in this branch */
991       pEList = p->pEList;
992       for(i=0; i<pEList->nExpr; i++){
993         if( pEList->a[i].u.x.iOrderByCol>0
994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
995          || pEList->a[i].bSorterRef
996 #endif
997         ){
998           nResultCol--;
999           regOrig = 0;
1000         }
1001       }
1002 
1003       testcase( regOrig );
1004       testcase( eDest==SRT_Set );
1005       testcase( eDest==SRT_Mem );
1006       testcase( eDest==SRT_Coroutine );
1007       testcase( eDest==SRT_Output );
1008       assert( eDest==SRT_Set || eDest==SRT_Mem
1009            || eDest==SRT_Coroutine || eDest==SRT_Output );
1010     }
1011     sRowLoadInfo.regResult = regResult;
1012     sRowLoadInfo.ecelFlags = ecelFlags;
1013 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1014     sRowLoadInfo.pExtra = pExtra;
1015     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1016     if( pExtra ) nResultCol += pExtra->nExpr;
1017 #endif
1018     if( p->iLimit
1019      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1020      && nPrefixReg>0
1021     ){
1022       assert( pSort!=0 );
1023       assert( hasDistinct==0 );
1024       pSort->pDeferredRowLoad = &sRowLoadInfo;
1025       regOrig = 0;
1026     }else{
1027       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1028     }
1029   }
1030 
1031   /* If the DISTINCT keyword was present on the SELECT statement
1032   ** and this row has been seen before, then do not make this row
1033   ** part of the result.
1034   */
1035   if( hasDistinct ){
1036     switch( pDistinct->eTnctType ){
1037       case WHERE_DISTINCT_ORDERED: {
1038         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1039         int iJump;              /* Jump destination */
1040         int regPrev;            /* Previous row content */
1041 
1042         /* Allocate space for the previous row */
1043         regPrev = pParse->nMem+1;
1044         pParse->nMem += nResultCol;
1045 
1046         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1047         ** sets the MEM_Cleared bit on the first register of the
1048         ** previous value.  This will cause the OP_Ne below to always
1049         ** fail on the first iteration of the loop even if the first
1050         ** row is all NULLs.
1051         */
1052         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1053         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1054         pOp->opcode = OP_Null;
1055         pOp->p1 = 1;
1056         pOp->p2 = regPrev;
1057         pOp = 0;  /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1058 
1059         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1060         for(i=0; i<nResultCol; i++){
1061           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1062           if( i<nResultCol-1 ){
1063             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1064             VdbeCoverage(v);
1065           }else{
1066             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1067             VdbeCoverage(v);
1068            }
1069           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1070           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1071         }
1072         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1073         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1074         break;
1075       }
1076 
1077       case WHERE_DISTINCT_UNIQUE: {
1078         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1079         break;
1080       }
1081 
1082       default: {
1083         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1084         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1085                      regResult);
1086         break;
1087       }
1088     }
1089     if( pSort==0 ){
1090       codeOffset(v, p->iOffset, iContinue);
1091     }
1092   }
1093 
1094   switch( eDest ){
1095     /* In this mode, write each query result to the key of the temporary
1096     ** table iParm.
1097     */
1098 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1099     case SRT_Union: {
1100       int r1;
1101       r1 = sqlite3GetTempReg(pParse);
1102       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1103       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1104       sqlite3ReleaseTempReg(pParse, r1);
1105       break;
1106     }
1107 
1108     /* Construct a record from the query result, but instead of
1109     ** saving that record, use it as a key to delete elements from
1110     ** the temporary table iParm.
1111     */
1112     case SRT_Except: {
1113       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1114       break;
1115     }
1116 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1117 
1118     /* Store the result as data using a unique key.
1119     */
1120     case SRT_Fifo:
1121     case SRT_DistFifo:
1122     case SRT_Table:
1123     case SRT_EphemTab: {
1124       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1125       testcase( eDest==SRT_Table );
1126       testcase( eDest==SRT_EphemTab );
1127       testcase( eDest==SRT_Fifo );
1128       testcase( eDest==SRT_DistFifo );
1129       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1130 #ifndef SQLITE_OMIT_CTE
1131       if( eDest==SRT_DistFifo ){
1132         /* If the destination is DistFifo, then cursor (iParm+1) is open
1133         ** on an ephemeral index. If the current row is already present
1134         ** in the index, do not write it to the output. If not, add the
1135         ** current row to the index and proceed with writing it to the
1136         ** output table as well.  */
1137         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1138         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1139         VdbeCoverage(v);
1140         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1141         assert( pSort==0 );
1142       }
1143 #endif
1144       if( pSort ){
1145         assert( regResult==regOrig );
1146         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1147       }else{
1148         int r2 = sqlite3GetTempReg(pParse);
1149         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1150         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1151         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1152         sqlite3ReleaseTempReg(pParse, r2);
1153       }
1154       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1155       break;
1156     }
1157 
1158 #ifndef SQLITE_OMIT_SUBQUERY
1159     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1160     ** then there should be a single item on the stack.  Write this
1161     ** item into the set table with bogus data.
1162     */
1163     case SRT_Set: {
1164       if( pSort ){
1165         /* At first glance you would think we could optimize out the
1166         ** ORDER BY in this case since the order of entries in the set
1167         ** does not matter.  But there might be a LIMIT clause, in which
1168         ** case the order does matter */
1169         pushOntoSorter(
1170             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1171       }else{
1172         int r1 = sqlite3GetTempReg(pParse);
1173         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1174         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1175             r1, pDest->zAffSdst, nResultCol);
1176         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1177         sqlite3ReleaseTempReg(pParse, r1);
1178       }
1179       break;
1180     }
1181 
1182     /* If any row exist in the result set, record that fact and abort.
1183     */
1184     case SRT_Exists: {
1185       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1186       /* The LIMIT clause will terminate the loop for us */
1187       break;
1188     }
1189 
1190     /* If this is a scalar select that is part of an expression, then
1191     ** store the results in the appropriate memory cell or array of
1192     ** memory cells and break out of the scan loop.
1193     */
1194     case SRT_Mem: {
1195       if( pSort ){
1196         assert( nResultCol<=pDest->nSdst );
1197         pushOntoSorter(
1198             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1199       }else{
1200         assert( nResultCol==pDest->nSdst );
1201         assert( regResult==iParm );
1202         /* The LIMIT clause will jump out of the loop for us */
1203       }
1204       break;
1205     }
1206 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1207 
1208     case SRT_Coroutine:       /* Send data to a co-routine */
1209     case SRT_Output: {        /* Return the results */
1210       testcase( eDest==SRT_Coroutine );
1211       testcase( eDest==SRT_Output );
1212       if( pSort ){
1213         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1214                        nPrefixReg);
1215       }else if( eDest==SRT_Coroutine ){
1216         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1217       }else{
1218         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1219       }
1220       break;
1221     }
1222 
1223 #ifndef SQLITE_OMIT_CTE
1224     /* Write the results into a priority queue that is order according to
1225     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1226     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1227     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1228     ** final OP_Sequence column.  The last column is the record as a blob.
1229     */
1230     case SRT_DistQueue:
1231     case SRT_Queue: {
1232       int nKey;
1233       int r1, r2, r3;
1234       int addrTest = 0;
1235       ExprList *pSO;
1236       pSO = pDest->pOrderBy;
1237       assert( pSO );
1238       nKey = pSO->nExpr;
1239       r1 = sqlite3GetTempReg(pParse);
1240       r2 = sqlite3GetTempRange(pParse, nKey+2);
1241       r3 = r2+nKey+1;
1242       if( eDest==SRT_DistQueue ){
1243         /* If the destination is DistQueue, then cursor (iParm+1) is open
1244         ** on a second ephemeral index that holds all values every previously
1245         ** added to the queue. */
1246         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1247                                         regResult, nResultCol);
1248         VdbeCoverage(v);
1249       }
1250       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1251       if( eDest==SRT_DistQueue ){
1252         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1253         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1254       }
1255       for(i=0; i<nKey; i++){
1256         sqlite3VdbeAddOp2(v, OP_SCopy,
1257                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1258                           r2+i);
1259       }
1260       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1261       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1262       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1263       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1264       sqlite3ReleaseTempReg(pParse, r1);
1265       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1266       break;
1267     }
1268 #endif /* SQLITE_OMIT_CTE */
1269 
1270 
1271 
1272 #if !defined(SQLITE_OMIT_TRIGGER)
1273     /* Discard the results.  This is used for SELECT statements inside
1274     ** the body of a TRIGGER.  The purpose of such selects is to call
1275     ** user-defined functions that have side effects.  We do not care
1276     ** about the actual results of the select.
1277     */
1278     default: {
1279       assert( eDest==SRT_Discard );
1280       break;
1281     }
1282 #endif
1283   }
1284 
1285   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1286   ** there is a sorter, in which case the sorter has already limited
1287   ** the output for us.
1288   */
1289   if( pSort==0 && p->iLimit ){
1290     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1291   }
1292 }
1293 
1294 /*
1295 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1296 ** X extra columns.
1297 */
1298 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1299   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1300   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1301   if( p ){
1302     p->aSortFlags = (u8*)&p->aColl[N+X];
1303     p->nKeyField = (u16)N;
1304     p->nAllField = (u16)(N+X);
1305     p->enc = ENC(db);
1306     p->db = db;
1307     p->nRef = 1;
1308     memset(&p[1], 0, nExtra);
1309   }else{
1310     sqlite3OomFault(db);
1311   }
1312   return p;
1313 }
1314 
1315 /*
1316 ** Deallocate a KeyInfo object
1317 */
1318 void sqlite3KeyInfoUnref(KeyInfo *p){
1319   if( p ){
1320     assert( p->nRef>0 );
1321     p->nRef--;
1322     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1323   }
1324 }
1325 
1326 /*
1327 ** Make a new pointer to a KeyInfo object
1328 */
1329 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1330   if( p ){
1331     assert( p->nRef>0 );
1332     p->nRef++;
1333   }
1334   return p;
1335 }
1336 
1337 #ifdef SQLITE_DEBUG
1338 /*
1339 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1340 ** can only be changed if this is just a single reference to the object.
1341 **
1342 ** This routine is used only inside of assert() statements.
1343 */
1344 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1345 #endif /* SQLITE_DEBUG */
1346 
1347 /*
1348 ** Given an expression list, generate a KeyInfo structure that records
1349 ** the collating sequence for each expression in that expression list.
1350 **
1351 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1352 ** KeyInfo structure is appropriate for initializing a virtual index to
1353 ** implement that clause.  If the ExprList is the result set of a SELECT
1354 ** then the KeyInfo structure is appropriate for initializing a virtual
1355 ** index to implement a DISTINCT test.
1356 **
1357 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1358 ** function is responsible for seeing that this structure is eventually
1359 ** freed.
1360 */
1361 KeyInfo *sqlite3KeyInfoFromExprList(
1362   Parse *pParse,       /* Parsing context */
1363   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1364   int iStart,          /* Begin with this column of pList */
1365   int nExtra           /* Add this many extra columns to the end */
1366 ){
1367   int nExpr;
1368   KeyInfo *pInfo;
1369   struct ExprList_item *pItem;
1370   sqlite3 *db = pParse->db;
1371   int i;
1372 
1373   nExpr = pList->nExpr;
1374   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1375   if( pInfo ){
1376     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1377     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1378       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1379       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1380     }
1381   }
1382   return pInfo;
1383 }
1384 
1385 /*
1386 ** Name of the connection operator, used for error messages.
1387 */
1388 static const char *selectOpName(int id){
1389   char *z;
1390   switch( id ){
1391     case TK_ALL:       z = "UNION ALL";   break;
1392     case TK_INTERSECT: z = "INTERSECT";   break;
1393     case TK_EXCEPT:    z = "EXCEPT";      break;
1394     default:           z = "UNION";       break;
1395   }
1396   return z;
1397 }
1398 
1399 #ifndef SQLITE_OMIT_EXPLAIN
1400 /*
1401 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1402 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1403 ** where the caption is of the form:
1404 **
1405 **   "USE TEMP B-TREE FOR xxx"
1406 **
1407 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1408 ** is determined by the zUsage argument.
1409 */
1410 static void explainTempTable(Parse *pParse, const char *zUsage){
1411   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1412 }
1413 
1414 /*
1415 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1416 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1417 ** in sqlite3Select() to assign values to structure member variables that
1418 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1419 ** code with #ifndef directives.
1420 */
1421 # define explainSetInteger(a, b) a = b
1422 
1423 #else
1424 /* No-op versions of the explainXXX() functions and macros. */
1425 # define explainTempTable(y,z)
1426 # define explainSetInteger(y,z)
1427 #endif
1428 
1429 
1430 /*
1431 ** If the inner loop was generated using a non-null pOrderBy argument,
1432 ** then the results were placed in a sorter.  After the loop is terminated
1433 ** we need to run the sorter and output the results.  The following
1434 ** routine generates the code needed to do that.
1435 */
1436 static void generateSortTail(
1437   Parse *pParse,    /* Parsing context */
1438   Select *p,        /* The SELECT statement */
1439   SortCtx *pSort,   /* Information on the ORDER BY clause */
1440   int nColumn,      /* Number of columns of data */
1441   SelectDest *pDest /* Write the sorted results here */
1442 ){
1443   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1444   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1445   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1446   int addr;                       /* Top of output loop. Jump for Next. */
1447   int addrOnce = 0;
1448   int iTab;
1449   ExprList *pOrderBy = pSort->pOrderBy;
1450   int eDest = pDest->eDest;
1451   int iParm = pDest->iSDParm;
1452   int regRow;
1453   int regRowid;
1454   int iCol;
1455   int nKey;                       /* Number of key columns in sorter record */
1456   int iSortTab;                   /* Sorter cursor to read from */
1457   int i;
1458   int bSeq;                       /* True if sorter record includes seq. no. */
1459   int nRefKey = 0;
1460   struct ExprList_item *aOutEx = p->pEList->a;
1461 
1462   assert( addrBreak<0 );
1463   if( pSort->labelBkOut ){
1464     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1465     sqlite3VdbeGoto(v, addrBreak);
1466     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1467   }
1468 
1469 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1470   /* Open any cursors needed for sorter-reference expressions */
1471   for(i=0; i<pSort->nDefer; i++){
1472     Table *pTab = pSort->aDefer[i].pTab;
1473     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1474     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1475     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1476   }
1477 #endif
1478 
1479   iTab = pSort->iECursor;
1480   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1481     regRowid = 0;
1482     regRow = pDest->iSdst;
1483   }else{
1484     regRowid = sqlite3GetTempReg(pParse);
1485     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1486       regRow = sqlite3GetTempReg(pParse);
1487       nColumn = 0;
1488     }else{
1489       regRow = sqlite3GetTempRange(pParse, nColumn);
1490     }
1491   }
1492   nKey = pOrderBy->nExpr - pSort->nOBSat;
1493   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1494     int regSortOut = ++pParse->nMem;
1495     iSortTab = pParse->nTab++;
1496     if( pSort->labelBkOut ){
1497       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1498     }
1499     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1500         nKey+1+nColumn+nRefKey);
1501     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1502     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1503     VdbeCoverage(v);
1504     codeOffset(v, p->iOffset, addrContinue);
1505     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1506     bSeq = 0;
1507   }else{
1508     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1509     codeOffset(v, p->iOffset, addrContinue);
1510     iSortTab = iTab;
1511     bSeq = 1;
1512   }
1513   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1514 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1515     if( aOutEx[i].bSorterRef ) continue;
1516 #endif
1517     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1518   }
1519 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1520   if( pSort->nDefer ){
1521     int iKey = iCol+1;
1522     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1523 
1524     for(i=0; i<pSort->nDefer; i++){
1525       int iCsr = pSort->aDefer[i].iCsr;
1526       Table *pTab = pSort->aDefer[i].pTab;
1527       int nKey = pSort->aDefer[i].nKey;
1528 
1529       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1530       if( HasRowid(pTab) ){
1531         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1532         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1533             sqlite3VdbeCurrentAddr(v)+1, regKey);
1534       }else{
1535         int k;
1536         int iJmp;
1537         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1538         for(k=0; k<nKey; k++){
1539           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1540         }
1541         iJmp = sqlite3VdbeCurrentAddr(v);
1542         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1543         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1544         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1545       }
1546     }
1547     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1548   }
1549 #endif
1550   for(i=nColumn-1; i>=0; i--){
1551 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1552     if( aOutEx[i].bSorterRef ){
1553       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1554     }else
1555 #endif
1556     {
1557       int iRead;
1558       if( aOutEx[i].u.x.iOrderByCol ){
1559         iRead = aOutEx[i].u.x.iOrderByCol-1;
1560       }else{
1561         iRead = iCol--;
1562       }
1563       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1564       VdbeComment((v, "%s", aOutEx[i].zEName));
1565     }
1566   }
1567   switch( eDest ){
1568     case SRT_Table:
1569     case SRT_EphemTab: {
1570       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1571       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1572       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1573       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1574       break;
1575     }
1576 #ifndef SQLITE_OMIT_SUBQUERY
1577     case SRT_Set: {
1578       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1579       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1580                         pDest->zAffSdst, nColumn);
1581       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1582       break;
1583     }
1584     case SRT_Mem: {
1585       /* The LIMIT clause will terminate the loop for us */
1586       break;
1587     }
1588 #endif
1589     default: {
1590       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1591       testcase( eDest==SRT_Output );
1592       testcase( eDest==SRT_Coroutine );
1593       if( eDest==SRT_Output ){
1594         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1595       }else{
1596         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1597       }
1598       break;
1599     }
1600   }
1601   if( regRowid ){
1602     if( eDest==SRT_Set ){
1603       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1604     }else{
1605       sqlite3ReleaseTempReg(pParse, regRow);
1606     }
1607     sqlite3ReleaseTempReg(pParse, regRowid);
1608   }
1609   /* The bottom of the loop
1610   */
1611   sqlite3VdbeResolveLabel(v, addrContinue);
1612   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1613     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1614   }else{
1615     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1616   }
1617   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1618   sqlite3VdbeResolveLabel(v, addrBreak);
1619 }
1620 
1621 /*
1622 ** Return a pointer to a string containing the 'declaration type' of the
1623 ** expression pExpr. The string may be treated as static by the caller.
1624 **
1625 ** Also try to estimate the size of the returned value and return that
1626 ** result in *pEstWidth.
1627 **
1628 ** The declaration type is the exact datatype definition extracted from the
1629 ** original CREATE TABLE statement if the expression is a column. The
1630 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1631 ** is considered a column can be complex in the presence of subqueries. The
1632 ** result-set expression in all of the following SELECT statements is
1633 ** considered a column by this function.
1634 **
1635 **   SELECT col FROM tbl;
1636 **   SELECT (SELECT col FROM tbl;
1637 **   SELECT (SELECT col FROM tbl);
1638 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1639 **
1640 ** The declaration type for any expression other than a column is NULL.
1641 **
1642 ** This routine has either 3 or 6 parameters depending on whether or not
1643 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1644 */
1645 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1646 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1647 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1648 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1649 #endif
1650 static const char *columnTypeImpl(
1651   NameContext *pNC,
1652 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1653   Expr *pExpr
1654 #else
1655   Expr *pExpr,
1656   const char **pzOrigDb,
1657   const char **pzOrigTab,
1658   const char **pzOrigCol
1659 #endif
1660 ){
1661   char const *zType = 0;
1662   int j;
1663 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1664   char const *zOrigDb = 0;
1665   char const *zOrigTab = 0;
1666   char const *zOrigCol = 0;
1667 #endif
1668 
1669   assert( pExpr!=0 );
1670   assert( pNC->pSrcList!=0 );
1671   switch( pExpr->op ){
1672     case TK_COLUMN: {
1673       /* The expression is a column. Locate the table the column is being
1674       ** extracted from in NameContext.pSrcList. This table may be real
1675       ** database table or a subquery.
1676       */
1677       Table *pTab = 0;            /* Table structure column is extracted from */
1678       Select *pS = 0;             /* Select the column is extracted from */
1679       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1680       while( pNC && !pTab ){
1681         SrcList *pTabList = pNC->pSrcList;
1682         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1683         if( j<pTabList->nSrc ){
1684           pTab = pTabList->a[j].pTab;
1685           pS = pTabList->a[j].pSelect;
1686         }else{
1687           pNC = pNC->pNext;
1688         }
1689       }
1690 
1691       if( pTab==0 ){
1692         /* At one time, code such as "SELECT new.x" within a trigger would
1693         ** cause this condition to run.  Since then, we have restructured how
1694         ** trigger code is generated and so this condition is no longer
1695         ** possible. However, it can still be true for statements like
1696         ** the following:
1697         **
1698         **   CREATE TABLE t1(col INTEGER);
1699         **   SELECT (SELECT t1.col) FROM FROM t1;
1700         **
1701         ** when columnType() is called on the expression "t1.col" in the
1702         ** sub-select. In this case, set the column type to NULL, even
1703         ** though it should really be "INTEGER".
1704         **
1705         ** This is not a problem, as the column type of "t1.col" is never
1706         ** used. When columnType() is called on the expression
1707         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1708         ** branch below.  */
1709         break;
1710       }
1711 
1712       assert( pTab && pExpr->y.pTab==pTab );
1713       if( pS ){
1714         /* The "table" is actually a sub-select or a view in the FROM clause
1715         ** of the SELECT statement. Return the declaration type and origin
1716         ** data for the result-set column of the sub-select.
1717         */
1718         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1719           /* If iCol is less than zero, then the expression requests the
1720           ** rowid of the sub-select or view. This expression is legal (see
1721           ** test case misc2.2.2) - it always evaluates to NULL.
1722           */
1723           NameContext sNC;
1724           Expr *p = pS->pEList->a[iCol].pExpr;
1725           sNC.pSrcList = pS->pSrc;
1726           sNC.pNext = pNC;
1727           sNC.pParse = pNC->pParse;
1728           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1729         }
1730       }else{
1731         /* A real table or a CTE table */
1732         assert( !pS );
1733 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1734         if( iCol<0 ) iCol = pTab->iPKey;
1735         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1736         if( iCol<0 ){
1737           zType = "INTEGER";
1738           zOrigCol = "rowid";
1739         }else{
1740           zOrigCol = pTab->aCol[iCol].zName;
1741           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1742         }
1743         zOrigTab = pTab->zName;
1744         if( pNC->pParse && pTab->pSchema ){
1745           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1746           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1747         }
1748 #else
1749         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1750         if( iCol<0 ){
1751           zType = "INTEGER";
1752         }else{
1753           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1754         }
1755 #endif
1756       }
1757       break;
1758     }
1759 #ifndef SQLITE_OMIT_SUBQUERY
1760     case TK_SELECT: {
1761       /* The expression is a sub-select. Return the declaration type and
1762       ** origin info for the single column in the result set of the SELECT
1763       ** statement.
1764       */
1765       NameContext sNC;
1766       Select *pS = pExpr->x.pSelect;
1767       Expr *p = pS->pEList->a[0].pExpr;
1768       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1769       sNC.pSrcList = pS->pSrc;
1770       sNC.pNext = pNC;
1771       sNC.pParse = pNC->pParse;
1772       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1773       break;
1774     }
1775 #endif
1776   }
1777 
1778 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1779   if( pzOrigDb ){
1780     assert( pzOrigTab && pzOrigCol );
1781     *pzOrigDb = zOrigDb;
1782     *pzOrigTab = zOrigTab;
1783     *pzOrigCol = zOrigCol;
1784   }
1785 #endif
1786   return zType;
1787 }
1788 
1789 /*
1790 ** Generate code that will tell the VDBE the declaration types of columns
1791 ** in the result set.
1792 */
1793 static void generateColumnTypes(
1794   Parse *pParse,      /* Parser context */
1795   SrcList *pTabList,  /* List of tables */
1796   ExprList *pEList    /* Expressions defining the result set */
1797 ){
1798 #ifndef SQLITE_OMIT_DECLTYPE
1799   Vdbe *v = pParse->pVdbe;
1800   int i;
1801   NameContext sNC;
1802   sNC.pSrcList = pTabList;
1803   sNC.pParse = pParse;
1804   sNC.pNext = 0;
1805   for(i=0; i<pEList->nExpr; i++){
1806     Expr *p = pEList->a[i].pExpr;
1807     const char *zType;
1808 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1809     const char *zOrigDb = 0;
1810     const char *zOrigTab = 0;
1811     const char *zOrigCol = 0;
1812     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1813 
1814     /* The vdbe must make its own copy of the column-type and other
1815     ** column specific strings, in case the schema is reset before this
1816     ** virtual machine is deleted.
1817     */
1818     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1819     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1820     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1821 #else
1822     zType = columnType(&sNC, p, 0, 0, 0);
1823 #endif
1824     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1825   }
1826 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1827 }
1828 
1829 
1830 /*
1831 ** Compute the column names for a SELECT statement.
1832 **
1833 ** The only guarantee that SQLite makes about column names is that if the
1834 ** column has an AS clause assigning it a name, that will be the name used.
1835 ** That is the only documented guarantee.  However, countless applications
1836 ** developed over the years have made baseless assumptions about column names
1837 ** and will break if those assumptions changes.  Hence, use extreme caution
1838 ** when modifying this routine to avoid breaking legacy.
1839 **
1840 ** See Also: sqlite3ColumnsFromExprList()
1841 **
1842 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1843 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1844 ** applications should operate this way.  Nevertheless, we need to support the
1845 ** other modes for legacy:
1846 **
1847 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1848 **                              originally appears in the SELECT statement.  In
1849 **                              other words, the zSpan of the result expression.
1850 **
1851 **    short=ON, full=OFF:       (This is the default setting).  If the result
1852 **                              refers directly to a table column, then the
1853 **                              result column name is just the table column
1854 **                              name: COLUMN.  Otherwise use zSpan.
1855 **
1856 **    full=ON, short=ANY:       If the result refers directly to a table column,
1857 **                              then the result column name with the table name
1858 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1859 */
1860 static void generateColumnNames(
1861   Parse *pParse,      /* Parser context */
1862   Select *pSelect     /* Generate column names for this SELECT statement */
1863 ){
1864   Vdbe *v = pParse->pVdbe;
1865   int i;
1866   Table *pTab;
1867   SrcList *pTabList;
1868   ExprList *pEList;
1869   sqlite3 *db = pParse->db;
1870   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1871   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1872 
1873 #ifndef SQLITE_OMIT_EXPLAIN
1874   /* If this is an EXPLAIN, skip this step */
1875   if( pParse->explain ){
1876     return;
1877   }
1878 #endif
1879 
1880   if( pParse->colNamesSet ) return;
1881   /* Column names are determined by the left-most term of a compound select */
1882   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1883   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1884   pTabList = pSelect->pSrc;
1885   pEList = pSelect->pEList;
1886   assert( v!=0 );
1887   assert( pTabList!=0 );
1888   pParse->colNamesSet = 1;
1889   fullName = (db->flags & SQLITE_FullColNames)!=0;
1890   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1891   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1892   for(i=0; i<pEList->nExpr; i++){
1893     Expr *p = pEList->a[i].pExpr;
1894 
1895     assert( p!=0 );
1896     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1897     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1898     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1899       /* An AS clause always takes first priority */
1900       char *zName = pEList->a[i].zEName;
1901       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1902     }else if( srcName && p->op==TK_COLUMN ){
1903       char *zCol;
1904       int iCol = p->iColumn;
1905       pTab = p->y.pTab;
1906       assert( pTab!=0 );
1907       if( iCol<0 ) iCol = pTab->iPKey;
1908       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1909       if( iCol<0 ){
1910         zCol = "rowid";
1911       }else{
1912         zCol = pTab->aCol[iCol].zName;
1913       }
1914       if( fullName ){
1915         char *zName = 0;
1916         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1917         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1918       }else{
1919         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1920       }
1921     }else{
1922       const char *z = pEList->a[i].zEName;
1923       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1924       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1925     }
1926   }
1927   generateColumnTypes(pParse, pTabList, pEList);
1928 }
1929 
1930 /*
1931 ** Given an expression list (which is really the list of expressions
1932 ** that form the result set of a SELECT statement) compute appropriate
1933 ** column names for a table that would hold the expression list.
1934 **
1935 ** All column names will be unique.
1936 **
1937 ** Only the column names are computed.  Column.zType, Column.zColl,
1938 ** and other fields of Column are zeroed.
1939 **
1940 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1941 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1942 **
1943 ** The only guarantee that SQLite makes about column names is that if the
1944 ** column has an AS clause assigning it a name, that will be the name used.
1945 ** That is the only documented guarantee.  However, countless applications
1946 ** developed over the years have made baseless assumptions about column names
1947 ** and will break if those assumptions changes.  Hence, use extreme caution
1948 ** when modifying this routine to avoid breaking legacy.
1949 **
1950 ** See Also: generateColumnNames()
1951 */
1952 int sqlite3ColumnsFromExprList(
1953   Parse *pParse,          /* Parsing context */
1954   ExprList *pEList,       /* Expr list from which to derive column names */
1955   i16 *pnCol,             /* Write the number of columns here */
1956   Column **paCol          /* Write the new column list here */
1957 ){
1958   sqlite3 *db = pParse->db;   /* Database connection */
1959   int i, j;                   /* Loop counters */
1960   u32 cnt;                    /* Index added to make the name unique */
1961   Column *aCol, *pCol;        /* For looping over result columns */
1962   int nCol;                   /* Number of columns in the result set */
1963   char *zName;                /* Column name */
1964   int nName;                  /* Size of name in zName[] */
1965   Hash ht;                    /* Hash table of column names */
1966 
1967   sqlite3HashInit(&ht);
1968   if( pEList ){
1969     nCol = pEList->nExpr;
1970     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1971     testcase( aCol==0 );
1972     if( nCol>32767 ) nCol = 32767;
1973   }else{
1974     nCol = 0;
1975     aCol = 0;
1976   }
1977   assert( nCol==(i16)nCol );
1978   *pnCol = nCol;
1979   *paCol = aCol;
1980 
1981   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1982     /* Get an appropriate name for the column
1983     */
1984     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1985       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1986     }else{
1987       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1988       while( pColExpr->op==TK_DOT ){
1989         pColExpr = pColExpr->pRight;
1990         assert( pColExpr!=0 );
1991       }
1992       if( pColExpr->op==TK_COLUMN ){
1993         /* For columns use the column name name */
1994         int iCol = pColExpr->iColumn;
1995         Table *pTab = pColExpr->y.pTab;
1996         assert( pTab!=0 );
1997         if( iCol<0 ) iCol = pTab->iPKey;
1998         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1999       }else if( pColExpr->op==TK_ID ){
2000         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2001         zName = pColExpr->u.zToken;
2002       }else{
2003         /* Use the original text of the column expression as its name */
2004         zName = pEList->a[i].zEName;
2005       }
2006     }
2007     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2008       zName = sqlite3DbStrDup(db, zName);
2009     }else{
2010       zName = sqlite3MPrintf(db,"column%d",i+1);
2011     }
2012 
2013     /* Make sure the column name is unique.  If the name is not unique,
2014     ** append an integer to the name so that it becomes unique.
2015     */
2016     cnt = 0;
2017     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2018       nName = sqlite3Strlen30(zName);
2019       if( nName>0 ){
2020         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2021         if( zName[j]==':' ) nName = j;
2022       }
2023       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2024       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2025     }
2026     pCol->zName = zName;
2027     sqlite3ColumnPropertiesFromName(0, pCol);
2028     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2029       sqlite3OomFault(db);
2030     }
2031   }
2032   sqlite3HashClear(&ht);
2033   if( db->mallocFailed ){
2034     for(j=0; j<i; j++){
2035       sqlite3DbFree(db, aCol[j].zName);
2036     }
2037     sqlite3DbFree(db, aCol);
2038     *paCol = 0;
2039     *pnCol = 0;
2040     return SQLITE_NOMEM_BKPT;
2041   }
2042   return SQLITE_OK;
2043 }
2044 
2045 /*
2046 ** Add type and collation information to a column list based on
2047 ** a SELECT statement.
2048 **
2049 ** The column list presumably came from selectColumnNamesFromExprList().
2050 ** The column list has only names, not types or collations.  This
2051 ** routine goes through and adds the types and collations.
2052 **
2053 ** This routine requires that all identifiers in the SELECT
2054 ** statement be resolved.
2055 */
2056 void sqlite3SelectAddColumnTypeAndCollation(
2057   Parse *pParse,        /* Parsing contexts */
2058   Table *pTab,          /* Add column type information to this table */
2059   Select *pSelect,      /* SELECT used to determine types and collations */
2060   char aff              /* Default affinity for columns */
2061 ){
2062   sqlite3 *db = pParse->db;
2063   NameContext sNC;
2064   Column *pCol;
2065   CollSeq *pColl;
2066   int i;
2067   Expr *p;
2068   struct ExprList_item *a;
2069 
2070   assert( pSelect!=0 );
2071   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2072   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2073   if( db->mallocFailed ) return;
2074   memset(&sNC, 0, sizeof(sNC));
2075   sNC.pSrcList = pSelect->pSrc;
2076   a = pSelect->pEList->a;
2077   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2078     const char *zType;
2079     int n, m;
2080     p = a[i].pExpr;
2081     zType = columnType(&sNC, p, 0, 0, 0);
2082     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2083     pCol->affinity = sqlite3ExprAffinity(p);
2084     if( zType ){
2085       m = sqlite3Strlen30(zType);
2086       n = sqlite3Strlen30(pCol->zName);
2087       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2088       if( pCol->zName ){
2089         memcpy(&pCol->zName[n+1], zType, m+1);
2090         pCol->colFlags |= COLFLAG_HASTYPE;
2091       }
2092     }
2093     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2094     pColl = sqlite3ExprCollSeq(pParse, p);
2095     if( pColl && pCol->zColl==0 ){
2096       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2097     }
2098   }
2099   pTab->szTabRow = 1; /* Any non-zero value works */
2100 }
2101 
2102 /*
2103 ** Given a SELECT statement, generate a Table structure that describes
2104 ** the result set of that SELECT.
2105 */
2106 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2107   Table *pTab;
2108   sqlite3 *db = pParse->db;
2109   u64 savedFlags;
2110 
2111   savedFlags = db->flags;
2112   db->flags &= ~(u64)SQLITE_FullColNames;
2113   db->flags |= SQLITE_ShortColNames;
2114   sqlite3SelectPrep(pParse, pSelect, 0);
2115   db->flags = savedFlags;
2116   if( pParse->nErr ) return 0;
2117   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2118   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2119   if( pTab==0 ){
2120     return 0;
2121   }
2122   pTab->nTabRef = 1;
2123   pTab->zName = 0;
2124   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2125   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2126   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2127   pTab->iPKey = -1;
2128   if( db->mallocFailed ){
2129     sqlite3DeleteTable(db, pTab);
2130     return 0;
2131   }
2132   return pTab;
2133 }
2134 
2135 /*
2136 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2137 ** If an error occurs, return NULL and leave a message in pParse.
2138 */
2139 Vdbe *sqlite3GetVdbe(Parse *pParse){
2140   if( pParse->pVdbe ){
2141     return pParse->pVdbe;
2142   }
2143   if( pParse->pToplevel==0
2144    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2145   ){
2146     pParse->okConstFactor = 1;
2147   }
2148   return sqlite3VdbeCreate(pParse);
2149 }
2150 
2151 
2152 /*
2153 ** Compute the iLimit and iOffset fields of the SELECT based on the
2154 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2155 ** that appear in the original SQL statement after the LIMIT and OFFSET
2156 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2157 ** are the integer memory register numbers for counters used to compute
2158 ** the limit and offset.  If there is no limit and/or offset, then
2159 ** iLimit and iOffset are negative.
2160 **
2161 ** This routine changes the values of iLimit and iOffset only if
2162 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2163 ** and iOffset should have been preset to appropriate default values (zero)
2164 ** prior to calling this routine.
2165 **
2166 ** The iOffset register (if it exists) is initialized to the value
2167 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2168 ** iOffset+1 is initialized to LIMIT+OFFSET.
2169 **
2170 ** Only if pLimit->pLeft!=0 do the limit registers get
2171 ** redefined.  The UNION ALL operator uses this property to force
2172 ** the reuse of the same limit and offset registers across multiple
2173 ** SELECT statements.
2174 */
2175 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2176   Vdbe *v = 0;
2177   int iLimit = 0;
2178   int iOffset;
2179   int n;
2180   Expr *pLimit = p->pLimit;
2181 
2182   if( p->iLimit ) return;
2183 
2184   /*
2185   ** "LIMIT -1" always shows all rows.  There is some
2186   ** controversy about what the correct behavior should be.
2187   ** The current implementation interprets "LIMIT 0" to mean
2188   ** no rows.
2189   */
2190   if( pLimit ){
2191     assert( pLimit->op==TK_LIMIT );
2192     assert( pLimit->pLeft!=0 );
2193     p->iLimit = iLimit = ++pParse->nMem;
2194     v = sqlite3GetVdbe(pParse);
2195     assert( v!=0 );
2196     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2197       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2198       VdbeComment((v, "LIMIT counter"));
2199       if( n==0 ){
2200         sqlite3VdbeGoto(v, iBreak);
2201       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2202         p->nSelectRow = sqlite3LogEst((u64)n);
2203         p->selFlags |= SF_FixedLimit;
2204       }
2205     }else{
2206       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2207       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2208       VdbeComment((v, "LIMIT counter"));
2209       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2210     }
2211     if( pLimit->pRight ){
2212       p->iOffset = iOffset = ++pParse->nMem;
2213       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2214       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2215       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2216       VdbeComment((v, "OFFSET counter"));
2217       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2218       VdbeComment((v, "LIMIT+OFFSET"));
2219     }
2220   }
2221 }
2222 
2223 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2224 /*
2225 ** Return the appropriate collating sequence for the iCol-th column of
2226 ** the result set for the compound-select statement "p".  Return NULL if
2227 ** the column has no default collating sequence.
2228 **
2229 ** The collating sequence for the compound select is taken from the
2230 ** left-most term of the select that has a collating sequence.
2231 */
2232 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2233   CollSeq *pRet;
2234   if( p->pPrior ){
2235     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2236   }else{
2237     pRet = 0;
2238   }
2239   assert( iCol>=0 );
2240   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2241   ** have been thrown during name resolution and we would not have gotten
2242   ** this far */
2243   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2244     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2245   }
2246   return pRet;
2247 }
2248 
2249 /*
2250 ** The select statement passed as the second parameter is a compound SELECT
2251 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2252 ** structure suitable for implementing the ORDER BY.
2253 **
2254 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2255 ** function is responsible for ensuring that this structure is eventually
2256 ** freed.
2257 */
2258 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2259   ExprList *pOrderBy = p->pOrderBy;
2260   int nOrderBy = p->pOrderBy->nExpr;
2261   sqlite3 *db = pParse->db;
2262   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2263   if( pRet ){
2264     int i;
2265     for(i=0; i<nOrderBy; i++){
2266       struct ExprList_item *pItem = &pOrderBy->a[i];
2267       Expr *pTerm = pItem->pExpr;
2268       CollSeq *pColl;
2269 
2270       if( pTerm->flags & EP_Collate ){
2271         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2272       }else{
2273         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2274         if( pColl==0 ) pColl = db->pDfltColl;
2275         pOrderBy->a[i].pExpr =
2276           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2277       }
2278       assert( sqlite3KeyInfoIsWriteable(pRet) );
2279       pRet->aColl[i] = pColl;
2280       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2281     }
2282   }
2283 
2284   return pRet;
2285 }
2286 
2287 #ifndef SQLITE_OMIT_CTE
2288 /*
2289 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2290 ** query of the form:
2291 **
2292 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2293 **                         \___________/             \_______________/
2294 **                           p->pPrior                      p
2295 **
2296 **
2297 ** There is exactly one reference to the recursive-table in the FROM clause
2298 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2299 **
2300 ** The setup-query runs once to generate an initial set of rows that go
2301 ** into a Queue table.  Rows are extracted from the Queue table one by
2302 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2303 ** extracted row (now in the iCurrent table) becomes the content of the
2304 ** recursive-table for a recursive-query run.  The output of the recursive-query
2305 ** is added back into the Queue table.  Then another row is extracted from Queue
2306 ** and the iteration continues until the Queue table is empty.
2307 **
2308 ** If the compound query operator is UNION then no duplicate rows are ever
2309 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2310 ** that have ever been inserted into Queue and causes duplicates to be
2311 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2312 **
2313 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2314 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2315 ** an ORDER BY, the Queue table is just a FIFO.
2316 **
2317 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2318 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2319 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2320 ** with a positive value, then the first OFFSET outputs are discarded rather
2321 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2322 ** rows have been skipped.
2323 */
2324 static void generateWithRecursiveQuery(
2325   Parse *pParse,        /* Parsing context */
2326   Select *p,            /* The recursive SELECT to be coded */
2327   SelectDest *pDest     /* What to do with query results */
2328 ){
2329   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2330   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2331   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2332   Select *pSetup = p->pPrior;   /* The setup query */
2333   int addrTop;                  /* Top of the loop */
2334   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2335   int iCurrent = 0;             /* The Current table */
2336   int regCurrent;               /* Register holding Current table */
2337   int iQueue;                   /* The Queue table */
2338   int iDistinct = 0;            /* To ensure unique results if UNION */
2339   int eDest = SRT_Fifo;         /* How to write to Queue */
2340   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2341   int i;                        /* Loop counter */
2342   int rc;                       /* Result code */
2343   ExprList *pOrderBy;           /* The ORDER BY clause */
2344   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2345   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2346 
2347 #ifndef SQLITE_OMIT_WINDOWFUNC
2348   if( p->pWin ){
2349     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2350     return;
2351   }
2352 #endif
2353 
2354   /* Obtain authorization to do a recursive query */
2355   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2356 
2357   /* Process the LIMIT and OFFSET clauses, if they exist */
2358   addrBreak = sqlite3VdbeMakeLabel(pParse);
2359   p->nSelectRow = 320;  /* 4 billion rows */
2360   computeLimitRegisters(pParse, p, addrBreak);
2361   pLimit = p->pLimit;
2362   regLimit = p->iLimit;
2363   regOffset = p->iOffset;
2364   p->pLimit = 0;
2365   p->iLimit = p->iOffset = 0;
2366   pOrderBy = p->pOrderBy;
2367 
2368   /* Locate the cursor number of the Current table */
2369   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2370     if( pSrc->a[i].fg.isRecursive ){
2371       iCurrent = pSrc->a[i].iCursor;
2372       break;
2373     }
2374   }
2375 
2376   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2377   ** the Distinct table must be exactly one greater than Queue in order
2378   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2379   iQueue = pParse->nTab++;
2380   if( p->op==TK_UNION ){
2381     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2382     iDistinct = pParse->nTab++;
2383   }else{
2384     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2385   }
2386   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2387 
2388   /* Allocate cursors for Current, Queue, and Distinct. */
2389   regCurrent = ++pParse->nMem;
2390   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2391   if( pOrderBy ){
2392     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2393     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2394                       (char*)pKeyInfo, P4_KEYINFO);
2395     destQueue.pOrderBy = pOrderBy;
2396   }else{
2397     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2398   }
2399   VdbeComment((v, "Queue table"));
2400   if( iDistinct ){
2401     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2402     p->selFlags |= SF_UsesEphemeral;
2403   }
2404 
2405   /* Detach the ORDER BY clause from the compound SELECT */
2406   p->pOrderBy = 0;
2407 
2408   /* Store the results of the setup-query in Queue. */
2409   pSetup->pNext = 0;
2410   ExplainQueryPlan((pParse, 1, "SETUP"));
2411   rc = sqlite3Select(pParse, pSetup, &destQueue);
2412   pSetup->pNext = p;
2413   if( rc ) goto end_of_recursive_query;
2414 
2415   /* Find the next row in the Queue and output that row */
2416   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2417 
2418   /* Transfer the next row in Queue over to Current */
2419   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2420   if( pOrderBy ){
2421     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2422   }else{
2423     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2424   }
2425   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2426 
2427   /* Output the single row in Current */
2428   addrCont = sqlite3VdbeMakeLabel(pParse);
2429   codeOffset(v, regOffset, addrCont);
2430   selectInnerLoop(pParse, p, iCurrent,
2431       0, 0, pDest, addrCont, addrBreak);
2432   if( regLimit ){
2433     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2434     VdbeCoverage(v);
2435   }
2436   sqlite3VdbeResolveLabel(v, addrCont);
2437 
2438   /* Execute the recursive SELECT taking the single row in Current as
2439   ** the value for the recursive-table. Store the results in the Queue.
2440   */
2441   if( p->selFlags & SF_Aggregate ){
2442     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2443   }else{
2444     p->pPrior = 0;
2445     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2446     sqlite3Select(pParse, p, &destQueue);
2447     assert( p->pPrior==0 );
2448     p->pPrior = pSetup;
2449   }
2450 
2451   /* Keep running the loop until the Queue is empty */
2452   sqlite3VdbeGoto(v, addrTop);
2453   sqlite3VdbeResolveLabel(v, addrBreak);
2454 
2455 end_of_recursive_query:
2456   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2457   p->pOrderBy = pOrderBy;
2458   p->pLimit = pLimit;
2459   return;
2460 }
2461 #endif /* SQLITE_OMIT_CTE */
2462 
2463 /* Forward references */
2464 static int multiSelectOrderBy(
2465   Parse *pParse,        /* Parsing context */
2466   Select *p,            /* The right-most of SELECTs to be coded */
2467   SelectDest *pDest     /* What to do with query results */
2468 );
2469 
2470 /*
2471 ** Handle the special case of a compound-select that originates from a
2472 ** VALUES clause.  By handling this as a special case, we avoid deep
2473 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2474 ** on a VALUES clause.
2475 **
2476 ** Because the Select object originates from a VALUES clause:
2477 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2478 **   (2) All terms are UNION ALL
2479 **   (3) There is no ORDER BY clause
2480 **
2481 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2482 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2483 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2484 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2485 */
2486 static int multiSelectValues(
2487   Parse *pParse,        /* Parsing context */
2488   Select *p,            /* The right-most of SELECTs to be coded */
2489   SelectDest *pDest     /* What to do with query results */
2490 ){
2491   int nRow = 1;
2492   int rc = 0;
2493   int bShowAll = p->pLimit==0;
2494   assert( p->selFlags & SF_MultiValue );
2495   do{
2496     assert( p->selFlags & SF_Values );
2497     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2498     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2499     if( p->pWin ) return -1;
2500     if( p->pPrior==0 ) break;
2501     assert( p->pPrior->pNext==p );
2502     p = p->pPrior;
2503     nRow += bShowAll;
2504   }while(1);
2505   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2506                     nRow==1 ? "" : "S"));
2507   while( p ){
2508     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2509     if( !bShowAll ) break;
2510     p->nSelectRow = nRow;
2511     p = p->pNext;
2512   }
2513   return rc;
2514 }
2515 
2516 /*
2517 ** This routine is called to process a compound query form from
2518 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2519 ** INTERSECT
2520 **
2521 ** "p" points to the right-most of the two queries.  the query on the
2522 ** left is p->pPrior.  The left query could also be a compound query
2523 ** in which case this routine will be called recursively.
2524 **
2525 ** The results of the total query are to be written into a destination
2526 ** of type eDest with parameter iParm.
2527 **
2528 ** Example 1:  Consider a three-way compound SQL statement.
2529 **
2530 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2531 **
2532 ** This statement is parsed up as follows:
2533 **
2534 **     SELECT c FROM t3
2535 **      |
2536 **      `----->  SELECT b FROM t2
2537 **                |
2538 **                `------>  SELECT a FROM t1
2539 **
2540 ** The arrows in the diagram above represent the Select.pPrior pointer.
2541 ** So if this routine is called with p equal to the t3 query, then
2542 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2543 **
2544 ** Notice that because of the way SQLite parses compound SELECTs, the
2545 ** individual selects always group from left to right.
2546 */
2547 static int multiSelect(
2548   Parse *pParse,        /* Parsing context */
2549   Select *p,            /* The right-most of SELECTs to be coded */
2550   SelectDest *pDest     /* What to do with query results */
2551 ){
2552   int rc = SQLITE_OK;   /* Success code from a subroutine */
2553   Select *pPrior;       /* Another SELECT immediately to our left */
2554   Vdbe *v;              /* Generate code to this VDBE */
2555   SelectDest dest;      /* Alternative data destination */
2556   Select *pDelete = 0;  /* Chain of simple selects to delete */
2557   sqlite3 *db;          /* Database connection */
2558 
2559   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2560   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2561   */
2562   assert( p && p->pPrior );  /* Calling function guarantees this much */
2563   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2564   assert( p->selFlags & SF_Compound );
2565   db = pParse->db;
2566   pPrior = p->pPrior;
2567   dest = *pDest;
2568   if( pPrior->pOrderBy || pPrior->pLimit ){
2569     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2570       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2571     rc = 1;
2572     goto multi_select_end;
2573   }
2574 
2575   v = sqlite3GetVdbe(pParse);
2576   assert( v!=0 );  /* The VDBE already created by calling function */
2577 
2578   /* Create the destination temporary table if necessary
2579   */
2580   if( dest.eDest==SRT_EphemTab ){
2581     assert( p->pEList );
2582     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2583     dest.eDest = SRT_Table;
2584   }
2585 
2586   /* Special handling for a compound-select that originates as a VALUES clause.
2587   */
2588   if( p->selFlags & SF_MultiValue ){
2589     rc = multiSelectValues(pParse, p, &dest);
2590     if( rc>=0 ) goto multi_select_end;
2591     rc = SQLITE_OK;
2592   }
2593 
2594   /* Make sure all SELECTs in the statement have the same number of elements
2595   ** in their result sets.
2596   */
2597   assert( p->pEList && pPrior->pEList );
2598   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2599 
2600 #ifndef SQLITE_OMIT_CTE
2601   if( p->selFlags & SF_Recursive ){
2602     generateWithRecursiveQuery(pParse, p, &dest);
2603   }else
2604 #endif
2605 
2606   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2607   */
2608   if( p->pOrderBy ){
2609     return multiSelectOrderBy(pParse, p, pDest);
2610   }else{
2611 
2612 #ifndef SQLITE_OMIT_EXPLAIN
2613     if( pPrior->pPrior==0 ){
2614       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2615       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2616     }
2617 #endif
2618 
2619     /* Generate code for the left and right SELECT statements.
2620     */
2621     switch( p->op ){
2622       case TK_ALL: {
2623         int addr = 0;
2624         int nLimit;
2625         assert( !pPrior->pLimit );
2626         pPrior->iLimit = p->iLimit;
2627         pPrior->iOffset = p->iOffset;
2628         pPrior->pLimit = p->pLimit;
2629         rc = sqlite3Select(pParse, pPrior, &dest);
2630         p->pLimit = 0;
2631         if( rc ){
2632           goto multi_select_end;
2633         }
2634         p->pPrior = 0;
2635         p->iLimit = pPrior->iLimit;
2636         p->iOffset = pPrior->iOffset;
2637         if( p->iLimit ){
2638           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2639           VdbeComment((v, "Jump ahead if LIMIT reached"));
2640           if( p->iOffset ){
2641             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2642                               p->iLimit, p->iOffset+1, p->iOffset);
2643           }
2644         }
2645         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2646         rc = sqlite3Select(pParse, p, &dest);
2647         testcase( rc!=SQLITE_OK );
2648         pDelete = p->pPrior;
2649         p->pPrior = pPrior;
2650         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2651         if( pPrior->pLimit
2652          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2653          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2654         ){
2655           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2656         }
2657         if( addr ){
2658           sqlite3VdbeJumpHere(v, addr);
2659         }
2660         break;
2661       }
2662       case TK_EXCEPT:
2663       case TK_UNION: {
2664         int unionTab;    /* Cursor number of the temp table holding result */
2665         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2666         int priorOp;     /* The SRT_ operation to apply to prior selects */
2667         Expr *pLimit;    /* Saved values of p->nLimit  */
2668         int addr;
2669         SelectDest uniondest;
2670 
2671         testcase( p->op==TK_EXCEPT );
2672         testcase( p->op==TK_UNION );
2673         priorOp = SRT_Union;
2674         if( dest.eDest==priorOp ){
2675           /* We can reuse a temporary table generated by a SELECT to our
2676           ** right.
2677           */
2678           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2679           unionTab = dest.iSDParm;
2680         }else{
2681           /* We will need to create our own temporary table to hold the
2682           ** intermediate results.
2683           */
2684           unionTab = pParse->nTab++;
2685           assert( p->pOrderBy==0 );
2686           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2687           assert( p->addrOpenEphm[0] == -1 );
2688           p->addrOpenEphm[0] = addr;
2689           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2690           assert( p->pEList );
2691         }
2692 
2693         /* Code the SELECT statements to our left
2694         */
2695         assert( !pPrior->pOrderBy );
2696         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2697         rc = sqlite3Select(pParse, pPrior, &uniondest);
2698         if( rc ){
2699           goto multi_select_end;
2700         }
2701 
2702         /* Code the current SELECT statement
2703         */
2704         if( p->op==TK_EXCEPT ){
2705           op = SRT_Except;
2706         }else{
2707           assert( p->op==TK_UNION );
2708           op = SRT_Union;
2709         }
2710         p->pPrior = 0;
2711         pLimit = p->pLimit;
2712         p->pLimit = 0;
2713         uniondest.eDest = op;
2714         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2715                           selectOpName(p->op)));
2716         rc = sqlite3Select(pParse, p, &uniondest);
2717         testcase( rc!=SQLITE_OK );
2718         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2719         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2720         sqlite3ExprListDelete(db, p->pOrderBy);
2721         pDelete = p->pPrior;
2722         p->pPrior = pPrior;
2723         p->pOrderBy = 0;
2724         if( p->op==TK_UNION ){
2725           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2726         }
2727         sqlite3ExprDelete(db, p->pLimit);
2728         p->pLimit = pLimit;
2729         p->iLimit = 0;
2730         p->iOffset = 0;
2731 
2732         /* Convert the data in the temporary table into whatever form
2733         ** it is that we currently need.
2734         */
2735         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2736         assert( p->pEList || db->mallocFailed );
2737         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2738           int iCont, iBreak, iStart;
2739           iBreak = sqlite3VdbeMakeLabel(pParse);
2740           iCont = sqlite3VdbeMakeLabel(pParse);
2741           computeLimitRegisters(pParse, p, iBreak);
2742           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2743           iStart = sqlite3VdbeCurrentAddr(v);
2744           selectInnerLoop(pParse, p, unionTab,
2745                           0, 0, &dest, iCont, iBreak);
2746           sqlite3VdbeResolveLabel(v, iCont);
2747           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2748           sqlite3VdbeResolveLabel(v, iBreak);
2749           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2750         }
2751         break;
2752       }
2753       default: assert( p->op==TK_INTERSECT ); {
2754         int tab1, tab2;
2755         int iCont, iBreak, iStart;
2756         Expr *pLimit;
2757         int addr;
2758         SelectDest intersectdest;
2759         int r1;
2760 
2761         /* INTERSECT is different from the others since it requires
2762         ** two temporary tables.  Hence it has its own case.  Begin
2763         ** by allocating the tables we will need.
2764         */
2765         tab1 = pParse->nTab++;
2766         tab2 = pParse->nTab++;
2767         assert( p->pOrderBy==0 );
2768 
2769         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2770         assert( p->addrOpenEphm[0] == -1 );
2771         p->addrOpenEphm[0] = addr;
2772         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2773         assert( p->pEList );
2774 
2775         /* Code the SELECTs to our left into temporary table "tab1".
2776         */
2777         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2778         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2779         if( rc ){
2780           goto multi_select_end;
2781         }
2782 
2783         /* Code the current SELECT into temporary table "tab2"
2784         */
2785         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2786         assert( p->addrOpenEphm[1] == -1 );
2787         p->addrOpenEphm[1] = addr;
2788         p->pPrior = 0;
2789         pLimit = p->pLimit;
2790         p->pLimit = 0;
2791         intersectdest.iSDParm = tab2;
2792         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2793                           selectOpName(p->op)));
2794         rc = sqlite3Select(pParse, p, &intersectdest);
2795         testcase( rc!=SQLITE_OK );
2796         pDelete = p->pPrior;
2797         p->pPrior = pPrior;
2798         if( p->nSelectRow>pPrior->nSelectRow ){
2799           p->nSelectRow = pPrior->nSelectRow;
2800         }
2801         sqlite3ExprDelete(db, p->pLimit);
2802         p->pLimit = pLimit;
2803 
2804         /* Generate code to take the intersection of the two temporary
2805         ** tables.
2806         */
2807         assert( p->pEList );
2808         iBreak = sqlite3VdbeMakeLabel(pParse);
2809         iCont = sqlite3VdbeMakeLabel(pParse);
2810         computeLimitRegisters(pParse, p, iBreak);
2811         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2812         r1 = sqlite3GetTempReg(pParse);
2813         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2814         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2815         VdbeCoverage(v);
2816         sqlite3ReleaseTempReg(pParse, r1);
2817         selectInnerLoop(pParse, p, tab1,
2818                         0, 0, &dest, iCont, iBreak);
2819         sqlite3VdbeResolveLabel(v, iCont);
2820         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2821         sqlite3VdbeResolveLabel(v, iBreak);
2822         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2823         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2824         break;
2825       }
2826     }
2827 
2828   #ifndef SQLITE_OMIT_EXPLAIN
2829     if( p->pNext==0 ){
2830       ExplainQueryPlanPop(pParse);
2831     }
2832   #endif
2833   }
2834   if( pParse->nErr ) goto multi_select_end;
2835 
2836   /* Compute collating sequences used by
2837   ** temporary tables needed to implement the compound select.
2838   ** Attach the KeyInfo structure to all temporary tables.
2839   **
2840   ** This section is run by the right-most SELECT statement only.
2841   ** SELECT statements to the left always skip this part.  The right-most
2842   ** SELECT might also skip this part if it has no ORDER BY clause and
2843   ** no temp tables are required.
2844   */
2845   if( p->selFlags & SF_UsesEphemeral ){
2846     int i;                        /* Loop counter */
2847     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2848     Select *pLoop;                /* For looping through SELECT statements */
2849     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2850     int nCol;                     /* Number of columns in result set */
2851 
2852     assert( p->pNext==0 );
2853     nCol = p->pEList->nExpr;
2854     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2855     if( !pKeyInfo ){
2856       rc = SQLITE_NOMEM_BKPT;
2857       goto multi_select_end;
2858     }
2859     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2860       *apColl = multiSelectCollSeq(pParse, p, i);
2861       if( 0==*apColl ){
2862         *apColl = db->pDfltColl;
2863       }
2864     }
2865 
2866     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2867       for(i=0; i<2; i++){
2868         int addr = pLoop->addrOpenEphm[i];
2869         if( addr<0 ){
2870           /* If [0] is unused then [1] is also unused.  So we can
2871           ** always safely abort as soon as the first unused slot is found */
2872           assert( pLoop->addrOpenEphm[1]<0 );
2873           break;
2874         }
2875         sqlite3VdbeChangeP2(v, addr, nCol);
2876         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2877                             P4_KEYINFO);
2878         pLoop->addrOpenEphm[i] = -1;
2879       }
2880     }
2881     sqlite3KeyInfoUnref(pKeyInfo);
2882   }
2883 
2884 multi_select_end:
2885   pDest->iSdst = dest.iSdst;
2886   pDest->nSdst = dest.nSdst;
2887   sqlite3SelectDelete(db, pDelete);
2888   return rc;
2889 }
2890 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2891 
2892 /*
2893 ** Error message for when two or more terms of a compound select have different
2894 ** size result sets.
2895 */
2896 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2897   if( p->selFlags & SF_Values ){
2898     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2899   }else{
2900     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2901       " do not have the same number of result columns", selectOpName(p->op));
2902   }
2903 }
2904 
2905 /*
2906 ** Code an output subroutine for a coroutine implementation of a
2907 ** SELECT statment.
2908 **
2909 ** The data to be output is contained in pIn->iSdst.  There are
2910 ** pIn->nSdst columns to be output.  pDest is where the output should
2911 ** be sent.
2912 **
2913 ** regReturn is the number of the register holding the subroutine
2914 ** return address.
2915 **
2916 ** If regPrev>0 then it is the first register in a vector that
2917 ** records the previous output.  mem[regPrev] is a flag that is false
2918 ** if there has been no previous output.  If regPrev>0 then code is
2919 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2920 ** keys.
2921 **
2922 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2923 ** iBreak.
2924 */
2925 static int generateOutputSubroutine(
2926   Parse *pParse,          /* Parsing context */
2927   Select *p,              /* The SELECT statement */
2928   SelectDest *pIn,        /* Coroutine supplying data */
2929   SelectDest *pDest,      /* Where to send the data */
2930   int regReturn,          /* The return address register */
2931   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2932   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2933   int iBreak              /* Jump here if we hit the LIMIT */
2934 ){
2935   Vdbe *v = pParse->pVdbe;
2936   int iContinue;
2937   int addr;
2938 
2939   addr = sqlite3VdbeCurrentAddr(v);
2940   iContinue = sqlite3VdbeMakeLabel(pParse);
2941 
2942   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2943   */
2944   if( regPrev ){
2945     int addr1, addr2;
2946     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2947     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2948                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2949     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2950     sqlite3VdbeJumpHere(v, addr1);
2951     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2952     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2953   }
2954   if( pParse->db->mallocFailed ) return 0;
2955 
2956   /* Suppress the first OFFSET entries if there is an OFFSET clause
2957   */
2958   codeOffset(v, p->iOffset, iContinue);
2959 
2960   assert( pDest->eDest!=SRT_Exists );
2961   assert( pDest->eDest!=SRT_Table );
2962   switch( pDest->eDest ){
2963     /* Store the result as data using a unique key.
2964     */
2965     case SRT_EphemTab: {
2966       int r1 = sqlite3GetTempReg(pParse);
2967       int r2 = sqlite3GetTempReg(pParse);
2968       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2969       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2970       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2971       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2972       sqlite3ReleaseTempReg(pParse, r2);
2973       sqlite3ReleaseTempReg(pParse, r1);
2974       break;
2975     }
2976 
2977 #ifndef SQLITE_OMIT_SUBQUERY
2978     /* If we are creating a set for an "expr IN (SELECT ...)".
2979     */
2980     case SRT_Set: {
2981       int r1;
2982       testcase( pIn->nSdst>1 );
2983       r1 = sqlite3GetTempReg(pParse);
2984       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2985           r1, pDest->zAffSdst, pIn->nSdst);
2986       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2987                            pIn->iSdst, pIn->nSdst);
2988       sqlite3ReleaseTempReg(pParse, r1);
2989       break;
2990     }
2991 
2992     /* If this is a scalar select that is part of an expression, then
2993     ** store the results in the appropriate memory cell and break out
2994     ** of the scan loop.  Note that the select might return multiple columns
2995     ** if it is the RHS of a row-value IN operator.
2996     */
2997     case SRT_Mem: {
2998       if( pParse->nErr==0 ){
2999         testcase( pIn->nSdst>1 );
3000         sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3001       }
3002       /* The LIMIT clause will jump out of the loop for us */
3003       break;
3004     }
3005 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3006 
3007     /* The results are stored in a sequence of registers
3008     ** starting at pDest->iSdst.  Then the co-routine yields.
3009     */
3010     case SRT_Coroutine: {
3011       if( pDest->iSdst==0 ){
3012         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3013         pDest->nSdst = pIn->nSdst;
3014       }
3015       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3016       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3017       break;
3018     }
3019 
3020     /* If none of the above, then the result destination must be
3021     ** SRT_Output.  This routine is never called with any other
3022     ** destination other than the ones handled above or SRT_Output.
3023     **
3024     ** For SRT_Output, results are stored in a sequence of registers.
3025     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3026     ** return the next row of result.
3027     */
3028     default: {
3029       assert( pDest->eDest==SRT_Output );
3030       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3031       break;
3032     }
3033   }
3034 
3035   /* Jump to the end of the loop if the LIMIT is reached.
3036   */
3037   if( p->iLimit ){
3038     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3039   }
3040 
3041   /* Generate the subroutine return
3042   */
3043   sqlite3VdbeResolveLabel(v, iContinue);
3044   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3045 
3046   return addr;
3047 }
3048 
3049 /*
3050 ** Alternative compound select code generator for cases when there
3051 ** is an ORDER BY clause.
3052 **
3053 ** We assume a query of the following form:
3054 **
3055 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3056 **
3057 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3058 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3059 ** co-routines.  Then run the co-routines in parallel and merge the results
3060 ** into the output.  In addition to the two coroutines (called selectA and
3061 ** selectB) there are 7 subroutines:
3062 **
3063 **    outA:    Move the output of the selectA coroutine into the output
3064 **             of the compound query.
3065 **
3066 **    outB:    Move the output of the selectB coroutine into the output
3067 **             of the compound query.  (Only generated for UNION and
3068 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3069 **             appears only in B.)
3070 **
3071 **    AltB:    Called when there is data from both coroutines and A<B.
3072 **
3073 **    AeqB:    Called when there is data from both coroutines and A==B.
3074 **
3075 **    AgtB:    Called when there is data from both coroutines and A>B.
3076 **
3077 **    EofA:    Called when data is exhausted from selectA.
3078 **
3079 **    EofB:    Called when data is exhausted from selectB.
3080 **
3081 ** The implementation of the latter five subroutines depend on which
3082 ** <operator> is used:
3083 **
3084 **
3085 **             UNION ALL         UNION            EXCEPT          INTERSECT
3086 **          -------------  -----------------  --------------  -----------------
3087 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3088 **
3089 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3090 **
3091 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3092 **
3093 **   EofA:   outB, nextB      outB, nextB          halt             halt
3094 **
3095 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3096 **
3097 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3098 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3099 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3100 ** following nextX causes a jump to the end of the select processing.
3101 **
3102 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3103 ** within the output subroutine.  The regPrev register set holds the previously
3104 ** output value.  A comparison is made against this value and the output
3105 ** is skipped if the next results would be the same as the previous.
3106 **
3107 ** The implementation plan is to implement the two coroutines and seven
3108 ** subroutines first, then put the control logic at the bottom.  Like this:
3109 **
3110 **          goto Init
3111 **     coA: coroutine for left query (A)
3112 **     coB: coroutine for right query (B)
3113 **    outA: output one row of A
3114 **    outB: output one row of B (UNION and UNION ALL only)
3115 **    EofA: ...
3116 **    EofB: ...
3117 **    AltB: ...
3118 **    AeqB: ...
3119 **    AgtB: ...
3120 **    Init: initialize coroutine registers
3121 **          yield coA
3122 **          if eof(A) goto EofA
3123 **          yield coB
3124 **          if eof(B) goto EofB
3125 **    Cmpr: Compare A, B
3126 **          Jump AltB, AeqB, AgtB
3127 **     End: ...
3128 **
3129 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3130 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3131 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3132 ** and AgtB jump to either L2 or to one of EofA or EofB.
3133 */
3134 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3135 static int multiSelectOrderBy(
3136   Parse *pParse,        /* Parsing context */
3137   Select *p,            /* The right-most of SELECTs to be coded */
3138   SelectDest *pDest     /* What to do with query results */
3139 ){
3140   int i, j;             /* Loop counters */
3141   Select *pPrior;       /* Another SELECT immediately to our left */
3142   Vdbe *v;              /* Generate code to this VDBE */
3143   SelectDest destA;     /* Destination for coroutine A */
3144   SelectDest destB;     /* Destination for coroutine B */
3145   int regAddrA;         /* Address register for select-A coroutine */
3146   int regAddrB;         /* Address register for select-B coroutine */
3147   int addrSelectA;      /* Address of the select-A coroutine */
3148   int addrSelectB;      /* Address of the select-B coroutine */
3149   int regOutA;          /* Address register for the output-A subroutine */
3150   int regOutB;          /* Address register for the output-B subroutine */
3151   int addrOutA;         /* Address of the output-A subroutine */
3152   int addrOutB = 0;     /* Address of the output-B subroutine */
3153   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3154   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3155   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3156   int addrAltB;         /* Address of the A<B subroutine */
3157   int addrAeqB;         /* Address of the A==B subroutine */
3158   int addrAgtB;         /* Address of the A>B subroutine */
3159   int regLimitA;        /* Limit register for select-A */
3160   int regLimitB;        /* Limit register for select-A */
3161   int regPrev;          /* A range of registers to hold previous output */
3162   int savedLimit;       /* Saved value of p->iLimit */
3163   int savedOffset;      /* Saved value of p->iOffset */
3164   int labelCmpr;        /* Label for the start of the merge algorithm */
3165   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3166   int addr1;            /* Jump instructions that get retargetted */
3167   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3168   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3169   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3170   sqlite3 *db;          /* Database connection */
3171   ExprList *pOrderBy;   /* The ORDER BY clause */
3172   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3173   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3174 
3175   assert( p->pOrderBy!=0 );
3176   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3177   db = pParse->db;
3178   v = pParse->pVdbe;
3179   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3180   labelEnd = sqlite3VdbeMakeLabel(pParse);
3181   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3182 
3183 
3184   /* Patch up the ORDER BY clause
3185   */
3186   op = p->op;
3187   pPrior = p->pPrior;
3188   assert( pPrior->pOrderBy==0 );
3189   pOrderBy = p->pOrderBy;
3190   assert( pOrderBy );
3191   nOrderBy = pOrderBy->nExpr;
3192 
3193   /* For operators other than UNION ALL we have to make sure that
3194   ** the ORDER BY clause covers every term of the result set.  Add
3195   ** terms to the ORDER BY clause as necessary.
3196   */
3197   if( op!=TK_ALL ){
3198     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3199       struct ExprList_item *pItem;
3200       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3201         assert( pItem->u.x.iOrderByCol>0 );
3202         if( pItem->u.x.iOrderByCol==i ) break;
3203       }
3204       if( j==nOrderBy ){
3205         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3206         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3207         pNew->flags |= EP_IntValue;
3208         pNew->u.iValue = i;
3209         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3210         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3211       }
3212     }
3213   }
3214 
3215   /* Compute the comparison permutation and keyinfo that is used with
3216   ** the permutation used to determine if the next
3217   ** row of results comes from selectA or selectB.  Also add explicit
3218   ** collations to the ORDER BY clause terms so that when the subqueries
3219   ** to the right and the left are evaluated, they use the correct
3220   ** collation.
3221   */
3222   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3223   if( aPermute ){
3224     struct ExprList_item *pItem;
3225     aPermute[0] = nOrderBy;
3226     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3227       assert( pItem->u.x.iOrderByCol>0 );
3228       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3229       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3230     }
3231     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3232   }else{
3233     pKeyMerge = 0;
3234   }
3235 
3236   /* Reattach the ORDER BY clause to the query.
3237   */
3238   p->pOrderBy = pOrderBy;
3239   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3240 
3241   /* Allocate a range of temporary registers and the KeyInfo needed
3242   ** for the logic that removes duplicate result rows when the
3243   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3244   */
3245   if( op==TK_ALL ){
3246     regPrev = 0;
3247   }else{
3248     int nExpr = p->pEList->nExpr;
3249     assert( nOrderBy>=nExpr || db->mallocFailed );
3250     regPrev = pParse->nMem+1;
3251     pParse->nMem += nExpr+1;
3252     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3253     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3254     if( pKeyDup ){
3255       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3256       for(i=0; i<nExpr; i++){
3257         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3258         pKeyDup->aSortFlags[i] = 0;
3259       }
3260     }
3261   }
3262 
3263   /* Separate the left and the right query from one another
3264   */
3265   p->pPrior = 0;
3266   pPrior->pNext = 0;
3267   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3268   if( pPrior->pPrior==0 ){
3269     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3270   }
3271 
3272   /* Compute the limit registers */
3273   computeLimitRegisters(pParse, p, labelEnd);
3274   if( p->iLimit && op==TK_ALL ){
3275     regLimitA = ++pParse->nMem;
3276     regLimitB = ++pParse->nMem;
3277     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3278                                   regLimitA);
3279     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3280   }else{
3281     regLimitA = regLimitB = 0;
3282   }
3283   sqlite3ExprDelete(db, p->pLimit);
3284   p->pLimit = 0;
3285 
3286   regAddrA = ++pParse->nMem;
3287   regAddrB = ++pParse->nMem;
3288   regOutA = ++pParse->nMem;
3289   regOutB = ++pParse->nMem;
3290   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3291   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3292 
3293   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3294 
3295   /* Generate a coroutine to evaluate the SELECT statement to the
3296   ** left of the compound operator - the "A" select.
3297   */
3298   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3299   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3300   VdbeComment((v, "left SELECT"));
3301   pPrior->iLimit = regLimitA;
3302   ExplainQueryPlan((pParse, 1, "LEFT"));
3303   sqlite3Select(pParse, pPrior, &destA);
3304   sqlite3VdbeEndCoroutine(v, regAddrA);
3305   sqlite3VdbeJumpHere(v, addr1);
3306 
3307   /* Generate a coroutine to evaluate the SELECT statement on
3308   ** the right - the "B" select
3309   */
3310   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3311   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3312   VdbeComment((v, "right SELECT"));
3313   savedLimit = p->iLimit;
3314   savedOffset = p->iOffset;
3315   p->iLimit = regLimitB;
3316   p->iOffset = 0;
3317   ExplainQueryPlan((pParse, 1, "RIGHT"));
3318   sqlite3Select(pParse, p, &destB);
3319   p->iLimit = savedLimit;
3320   p->iOffset = savedOffset;
3321   sqlite3VdbeEndCoroutine(v, regAddrB);
3322 
3323   /* Generate a subroutine that outputs the current row of the A
3324   ** select as the next output row of the compound select.
3325   */
3326   VdbeNoopComment((v, "Output routine for A"));
3327   addrOutA = generateOutputSubroutine(pParse,
3328                  p, &destA, pDest, regOutA,
3329                  regPrev, pKeyDup, labelEnd);
3330 
3331   /* Generate a subroutine that outputs the current row of the B
3332   ** select as the next output row of the compound select.
3333   */
3334   if( op==TK_ALL || op==TK_UNION ){
3335     VdbeNoopComment((v, "Output routine for B"));
3336     addrOutB = generateOutputSubroutine(pParse,
3337                  p, &destB, pDest, regOutB,
3338                  regPrev, pKeyDup, labelEnd);
3339   }
3340   sqlite3KeyInfoUnref(pKeyDup);
3341 
3342   /* Generate a subroutine to run when the results from select A
3343   ** are exhausted and only data in select B remains.
3344   */
3345   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3346     addrEofA_noB = addrEofA = labelEnd;
3347   }else{
3348     VdbeNoopComment((v, "eof-A subroutine"));
3349     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3350     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3351                                      VdbeCoverage(v);
3352     sqlite3VdbeGoto(v, addrEofA);
3353     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3354   }
3355 
3356   /* Generate a subroutine to run when the results from select B
3357   ** are exhausted and only data in select A remains.
3358   */
3359   if( op==TK_INTERSECT ){
3360     addrEofB = addrEofA;
3361     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3362   }else{
3363     VdbeNoopComment((v, "eof-B subroutine"));
3364     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3365     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3366     sqlite3VdbeGoto(v, addrEofB);
3367   }
3368 
3369   /* Generate code to handle the case of A<B
3370   */
3371   VdbeNoopComment((v, "A-lt-B subroutine"));
3372   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3373   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3374   sqlite3VdbeGoto(v, labelCmpr);
3375 
3376   /* Generate code to handle the case of A==B
3377   */
3378   if( op==TK_ALL ){
3379     addrAeqB = addrAltB;
3380   }else if( op==TK_INTERSECT ){
3381     addrAeqB = addrAltB;
3382     addrAltB++;
3383   }else{
3384     VdbeNoopComment((v, "A-eq-B subroutine"));
3385     addrAeqB =
3386     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3387     sqlite3VdbeGoto(v, labelCmpr);
3388   }
3389 
3390   /* Generate code to handle the case of A>B
3391   */
3392   VdbeNoopComment((v, "A-gt-B subroutine"));
3393   addrAgtB = sqlite3VdbeCurrentAddr(v);
3394   if( op==TK_ALL || op==TK_UNION ){
3395     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3396   }
3397   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3398   sqlite3VdbeGoto(v, labelCmpr);
3399 
3400   /* This code runs once to initialize everything.
3401   */
3402   sqlite3VdbeJumpHere(v, addr1);
3403   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3404   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3405 
3406   /* Implement the main merge loop
3407   */
3408   sqlite3VdbeResolveLabel(v, labelCmpr);
3409   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3410   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3411                          (char*)pKeyMerge, P4_KEYINFO);
3412   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3413   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3414 
3415   /* Jump to the this point in order to terminate the query.
3416   */
3417   sqlite3VdbeResolveLabel(v, labelEnd);
3418 
3419   /* Reassembly the compound query so that it will be freed correctly
3420   ** by the calling function */
3421   if( p->pPrior ){
3422     sqlite3SelectDelete(db, p->pPrior);
3423   }
3424   p->pPrior = pPrior;
3425   pPrior->pNext = p;
3426 
3427   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3428   **** subqueries ****/
3429   ExplainQueryPlanPop(pParse);
3430   return pParse->nErr!=0;
3431 }
3432 #endif
3433 
3434 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3435 
3436 /* An instance of the SubstContext object describes an substitution edit
3437 ** to be performed on a parse tree.
3438 **
3439 ** All references to columns in table iTable are to be replaced by corresponding
3440 ** expressions in pEList.
3441 */
3442 typedef struct SubstContext {
3443   Parse *pParse;            /* The parsing context */
3444   int iTable;               /* Replace references to this table */
3445   int iNewTable;            /* New table number */
3446   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3447   ExprList *pEList;         /* Replacement expressions */
3448 } SubstContext;
3449 
3450 /* Forward Declarations */
3451 static void substExprList(SubstContext*, ExprList*);
3452 static void substSelect(SubstContext*, Select*, int);
3453 
3454 /*
3455 ** Scan through the expression pExpr.  Replace every reference to
3456 ** a column in table number iTable with a copy of the iColumn-th
3457 ** entry in pEList.  (But leave references to the ROWID column
3458 ** unchanged.)
3459 **
3460 ** This routine is part of the flattening procedure.  A subquery
3461 ** whose result set is defined by pEList appears as entry in the
3462 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3463 ** FORM clause entry is iTable.  This routine makes the necessary
3464 ** changes to pExpr so that it refers directly to the source table
3465 ** of the subquery rather the result set of the subquery.
3466 */
3467 static Expr *substExpr(
3468   SubstContext *pSubst,  /* Description of the substitution */
3469   Expr *pExpr            /* Expr in which substitution occurs */
3470 ){
3471   if( pExpr==0 ) return 0;
3472   if( ExprHasProperty(pExpr, EP_FromJoin)
3473    && pExpr->iRightJoinTable==pSubst->iTable
3474   ){
3475     pExpr->iRightJoinTable = pSubst->iNewTable;
3476   }
3477   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3478     if( pExpr->iColumn<0 ){
3479       pExpr->op = TK_NULL;
3480     }else{
3481       Expr *pNew;
3482       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3483       Expr ifNullRow;
3484       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3485       assert( pExpr->pRight==0 );
3486       if( sqlite3ExprIsVector(pCopy) ){
3487         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3488       }else{
3489         sqlite3 *db = pSubst->pParse->db;
3490         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3491           memset(&ifNullRow, 0, sizeof(ifNullRow));
3492           ifNullRow.op = TK_IF_NULL_ROW;
3493           ifNullRow.pLeft = pCopy;
3494           ifNullRow.iTable = pSubst->iNewTable;
3495           pCopy = &ifNullRow;
3496         }
3497         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3498         pNew = sqlite3ExprDup(db, pCopy, 0);
3499         if( pNew && pSubst->isLeftJoin ){
3500           ExprSetProperty(pNew, EP_CanBeNull);
3501         }
3502         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3503           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3504           ExprSetProperty(pNew, EP_FromJoin);
3505         }
3506         sqlite3ExprDelete(db, pExpr);
3507         pExpr = pNew;
3508 
3509         /* Ensure that the expression now has an implicit collation sequence,
3510         ** just as it did when it was a column of a view or sub-query. */
3511         if( pExpr ){
3512           if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3513             CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3514             pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3515                 (pColl ? pColl->zName : "BINARY")
3516             );
3517           }
3518           ExprClearProperty(pExpr, EP_Collate);
3519         }
3520       }
3521     }
3522   }else{
3523     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3524       pExpr->iTable = pSubst->iNewTable;
3525     }
3526     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3527     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3528     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3529       substSelect(pSubst, pExpr->x.pSelect, 1);
3530     }else{
3531       substExprList(pSubst, pExpr->x.pList);
3532     }
3533 #ifndef SQLITE_OMIT_WINDOWFUNC
3534     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3535       Window *pWin = pExpr->y.pWin;
3536       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3537       substExprList(pSubst, pWin->pPartition);
3538       substExprList(pSubst, pWin->pOrderBy);
3539     }
3540 #endif
3541   }
3542   return pExpr;
3543 }
3544 static void substExprList(
3545   SubstContext *pSubst, /* Description of the substitution */
3546   ExprList *pList       /* List to scan and in which to make substitutes */
3547 ){
3548   int i;
3549   if( pList==0 ) return;
3550   for(i=0; i<pList->nExpr; i++){
3551     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3552   }
3553 }
3554 static void substSelect(
3555   SubstContext *pSubst, /* Description of the substitution */
3556   Select *p,            /* SELECT statement in which to make substitutions */
3557   int doPrior           /* Do substitutes on p->pPrior too */
3558 ){
3559   SrcList *pSrc;
3560   struct SrcList_item *pItem;
3561   int i;
3562   if( !p ) return;
3563   do{
3564     substExprList(pSubst, p->pEList);
3565     substExprList(pSubst, p->pGroupBy);
3566     substExprList(pSubst, p->pOrderBy);
3567     p->pHaving = substExpr(pSubst, p->pHaving);
3568     p->pWhere = substExpr(pSubst, p->pWhere);
3569     pSrc = p->pSrc;
3570     assert( pSrc!=0 );
3571     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3572       substSelect(pSubst, pItem->pSelect, 1);
3573       if( pItem->fg.isTabFunc ){
3574         substExprList(pSubst, pItem->u1.pFuncArg);
3575       }
3576     }
3577   }while( doPrior && (p = p->pPrior)!=0 );
3578 }
3579 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3580 
3581 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3582 /*
3583 ** This routine attempts to flatten subqueries as a performance optimization.
3584 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3585 **
3586 ** To understand the concept of flattening, consider the following
3587 ** query:
3588 **
3589 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3590 **
3591 ** The default way of implementing this query is to execute the
3592 ** subquery first and store the results in a temporary table, then
3593 ** run the outer query on that temporary table.  This requires two
3594 ** passes over the data.  Furthermore, because the temporary table
3595 ** has no indices, the WHERE clause on the outer query cannot be
3596 ** optimized.
3597 **
3598 ** This routine attempts to rewrite queries such as the above into
3599 ** a single flat select, like this:
3600 **
3601 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3602 **
3603 ** The code generated for this simplification gives the same result
3604 ** but only has to scan the data once.  And because indices might
3605 ** exist on the table t1, a complete scan of the data might be
3606 ** avoided.
3607 **
3608 ** Flattening is subject to the following constraints:
3609 **
3610 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3611 **        The subquery and the outer query cannot both be aggregates.
3612 **
3613 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3614 **        (2) If the subquery is an aggregate then
3615 **        (2a) the outer query must not be a join and
3616 **        (2b) the outer query must not use subqueries
3617 **             other than the one FROM-clause subquery that is a candidate
3618 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3619 **             from 2015-02-09.)
3620 **
3621 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3622 **        (3a) the subquery may not be a join and
3623 **        (3b) the FROM clause of the subquery may not contain a virtual
3624 **             table and
3625 **        (3c) the outer query may not be an aggregate.
3626 **        (3d) the outer query may not be DISTINCT.
3627 **
3628 **   (4)  The subquery can not be DISTINCT.
3629 **
3630 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3631 **        sub-queries that were excluded from this optimization. Restriction
3632 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3633 **
3634 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3635 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3636 **
3637 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3638 **        A FROM clause, consider adding a FROM clause with the special
3639 **        table sqlite_once that consists of a single row containing a
3640 **        single NULL.
3641 **
3642 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3643 **
3644 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3645 **
3646 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3647 **        accidently carried the comment forward until 2014-09-15.  Original
3648 **        constraint: "If the subquery is aggregate then the outer query
3649 **        may not use LIMIT."
3650 **
3651 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3652 **
3653 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3654 **        a separate restriction deriving from ticket #350.
3655 **
3656 **  (13)  The subquery and outer query may not both use LIMIT.
3657 **
3658 **  (14)  The subquery may not use OFFSET.
3659 **
3660 **  (15)  If the outer query is part of a compound select, then the
3661 **        subquery may not use LIMIT.
3662 **        (See ticket #2339 and ticket [02a8e81d44]).
3663 **
3664 **  (16)  If the outer query is aggregate, then the subquery may not
3665 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3666 **        until we introduced the group_concat() function.
3667 **
3668 **  (17)  If the subquery is a compound select, then
3669 **        (17a) all compound operators must be a UNION ALL, and
3670 **        (17b) no terms within the subquery compound may be aggregate
3671 **              or DISTINCT, and
3672 **        (17c) every term within the subquery compound must have a FROM clause
3673 **        (17d) the outer query may not be
3674 **              (17d1) aggregate, or
3675 **              (17d2) DISTINCT, or
3676 **              (17d3) a join.
3677 **        (17e) the subquery may not contain window functions
3678 **
3679 **        The parent and sub-query may contain WHERE clauses. Subject to
3680 **        rules (11), (13) and (14), they may also contain ORDER BY,
3681 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3682 **        operator other than UNION ALL because all the other compound
3683 **        operators have an implied DISTINCT which is disallowed by
3684 **        restriction (4).
3685 **
3686 **        Also, each component of the sub-query must return the same number
3687 **        of result columns. This is actually a requirement for any compound
3688 **        SELECT statement, but all the code here does is make sure that no
3689 **        such (illegal) sub-query is flattened. The caller will detect the
3690 **        syntax error and return a detailed message.
3691 **
3692 **  (18)  If the sub-query is a compound select, then all terms of the
3693 **        ORDER BY clause of the parent must be simple references to
3694 **        columns of the sub-query.
3695 **
3696 **  (19)  If the subquery uses LIMIT then the outer query may not
3697 **        have a WHERE clause.
3698 **
3699 **  (20)  If the sub-query is a compound select, then it must not use
3700 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3701 **        somewhat by saying that the terms of the ORDER BY clause must
3702 **        appear as unmodified result columns in the outer query.  But we
3703 **        have other optimizations in mind to deal with that case.
3704 **
3705 **  (21)  If the subquery uses LIMIT then the outer query may not be
3706 **        DISTINCT.  (See ticket [752e1646fc]).
3707 **
3708 **  (22)  The subquery may not be a recursive CTE.
3709 **
3710 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3711 **        a recursive CTE, then the sub-query may not be a compound query.
3712 **        This restriction is because transforming the
3713 **        parent to a compound query confuses the code that handles
3714 **        recursive queries in multiSelect().
3715 **
3716 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3717 **        The subquery may not be an aggregate that uses the built-in min() or
3718 **        or max() functions.  (Without this restriction, a query like:
3719 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3720 **        return the value X for which Y was maximal.)
3721 **
3722 **  (25)  If either the subquery or the parent query contains a window
3723 **        function in the select list or ORDER BY clause, flattening
3724 **        is not attempted.
3725 **
3726 **
3727 ** In this routine, the "p" parameter is a pointer to the outer query.
3728 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3729 ** uses aggregates.
3730 **
3731 ** If flattening is not attempted, this routine is a no-op and returns 0.
3732 ** If flattening is attempted this routine returns 1.
3733 **
3734 ** All of the expression analysis must occur on both the outer query and
3735 ** the subquery before this routine runs.
3736 */
3737 static int flattenSubquery(
3738   Parse *pParse,       /* Parsing context */
3739   Select *p,           /* The parent or outer SELECT statement */
3740   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3741   int isAgg            /* True if outer SELECT uses aggregate functions */
3742 ){
3743   const char *zSavedAuthContext = pParse->zAuthContext;
3744   Select *pParent;    /* Current UNION ALL term of the other query */
3745   Select *pSub;       /* The inner query or "subquery" */
3746   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3747   SrcList *pSrc;      /* The FROM clause of the outer query */
3748   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3749   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3750   int iNewParent = -1;/* Replacement table for iParent */
3751   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3752   int i;              /* Loop counter */
3753   Expr *pWhere;                    /* The WHERE clause */
3754   struct SrcList_item *pSubitem;   /* The subquery */
3755   sqlite3 *db = pParse->db;
3756 
3757   /* Check to see if flattening is permitted.  Return 0 if not.
3758   */
3759   assert( p!=0 );
3760   assert( p->pPrior==0 );
3761   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3762   pSrc = p->pSrc;
3763   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3764   pSubitem = &pSrc->a[iFrom];
3765   iParent = pSubitem->iCursor;
3766   pSub = pSubitem->pSelect;
3767   assert( pSub!=0 );
3768 
3769 #ifndef SQLITE_OMIT_WINDOWFUNC
3770   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3771 #endif
3772 
3773   pSubSrc = pSub->pSrc;
3774   assert( pSubSrc );
3775   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3776   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3777   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3778   ** became arbitrary expressions, we were forced to add restrictions (13)
3779   ** and (14). */
3780   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3781   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3782   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3783     return 0;                                            /* Restriction (15) */
3784   }
3785   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3786   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3787   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3788      return 0;         /* Restrictions (8)(9) */
3789   }
3790   if( p->pOrderBy && pSub->pOrderBy ){
3791      return 0;                                           /* Restriction (11) */
3792   }
3793   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3794   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3795   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3796      return 0;         /* Restriction (21) */
3797   }
3798   if( pSub->selFlags & (SF_Recursive) ){
3799     return 0; /* Restrictions (22) */
3800   }
3801 
3802   /*
3803   ** If the subquery is the right operand of a LEFT JOIN, then the
3804   ** subquery may not be a join itself (3a). Example of why this is not
3805   ** allowed:
3806   **
3807   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3808   **
3809   ** If we flatten the above, we would get
3810   **
3811   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3812   **
3813   ** which is not at all the same thing.
3814   **
3815   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3816   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3817   ** aggregates are processed - there is no mechanism to determine if
3818   ** the LEFT JOIN table should be all-NULL.
3819   **
3820   ** See also tickets #306, #350, and #3300.
3821   */
3822   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3823     isLeftJoin = 1;
3824     if( pSubSrc->nSrc>1                   /* (3a) */
3825      || isAgg                             /* (3b) */
3826      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
3827      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
3828     ){
3829       return 0;
3830     }
3831   }
3832 #ifdef SQLITE_EXTRA_IFNULLROW
3833   else if( iFrom>0 && !isAgg ){
3834     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3835     ** every reference to any result column from subquery in a join, even
3836     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3837     ** opcode. */
3838     isLeftJoin = -1;
3839   }
3840 #endif
3841 
3842   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3843   ** use only the UNION ALL operator. And none of the simple select queries
3844   ** that make up the compound SELECT are allowed to be aggregate or distinct
3845   ** queries.
3846   */
3847   if( pSub->pPrior ){
3848     if( pSub->pOrderBy ){
3849       return 0;  /* Restriction (20) */
3850     }
3851     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3852       return 0; /* (17d1), (17d2), or (17d3) */
3853     }
3854     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3855       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3856       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3857       assert( pSub->pSrc!=0 );
3858       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3859       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3860        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3861        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3862        || pSub1->pWin                                          /* (17e) */
3863       ){
3864         return 0;
3865       }
3866       testcase( pSub1->pSrc->nSrc>1 );
3867     }
3868 
3869     /* Restriction (18). */
3870     if( p->pOrderBy ){
3871       int ii;
3872       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3873         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3874       }
3875     }
3876   }
3877 
3878   /* Ex-restriction (23):
3879   ** The only way that the recursive part of a CTE can contain a compound
3880   ** subquery is for the subquery to be one term of a join.  But if the
3881   ** subquery is a join, then the flattening has already been stopped by
3882   ** restriction (17d3)
3883   */
3884   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3885 
3886   /***** If we reach this point, flattening is permitted. *****/
3887   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3888                    pSub->selId, pSub, iFrom));
3889 
3890   /* Authorize the subquery */
3891   pParse->zAuthContext = pSubitem->zName;
3892   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3893   testcase( i==SQLITE_DENY );
3894   pParse->zAuthContext = zSavedAuthContext;
3895 
3896   /* If the sub-query is a compound SELECT statement, then (by restrictions
3897   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3898   ** be of the form:
3899   **
3900   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3901   **
3902   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3903   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3904   ** OFFSET clauses and joins them to the left-hand-side of the original
3905   ** using UNION ALL operators. In this case N is the number of simple
3906   ** select statements in the compound sub-query.
3907   **
3908   ** Example:
3909   **
3910   **     SELECT a+1 FROM (
3911   **        SELECT x FROM tab
3912   **        UNION ALL
3913   **        SELECT y FROM tab
3914   **        UNION ALL
3915   **        SELECT abs(z*2) FROM tab2
3916   **     ) WHERE a!=5 ORDER BY 1
3917   **
3918   ** Transformed into:
3919   **
3920   **     SELECT x+1 FROM tab WHERE x+1!=5
3921   **     UNION ALL
3922   **     SELECT y+1 FROM tab WHERE y+1!=5
3923   **     UNION ALL
3924   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3925   **     ORDER BY 1
3926   **
3927   ** We call this the "compound-subquery flattening".
3928   */
3929   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3930     Select *pNew;
3931     ExprList *pOrderBy = p->pOrderBy;
3932     Expr *pLimit = p->pLimit;
3933     Select *pPrior = p->pPrior;
3934     p->pOrderBy = 0;
3935     p->pSrc = 0;
3936     p->pPrior = 0;
3937     p->pLimit = 0;
3938     pNew = sqlite3SelectDup(db, p, 0);
3939     p->pLimit = pLimit;
3940     p->pOrderBy = pOrderBy;
3941     p->pSrc = pSrc;
3942     p->op = TK_ALL;
3943     if( pNew==0 ){
3944       p->pPrior = pPrior;
3945     }else{
3946       pNew->pPrior = pPrior;
3947       if( pPrior ) pPrior->pNext = pNew;
3948       pNew->pNext = p;
3949       p->pPrior = pNew;
3950       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3951                               " creates %u as peer\n",pNew->selId));
3952     }
3953     if( db->mallocFailed ) return 1;
3954   }
3955 
3956   /* Begin flattening the iFrom-th entry of the FROM clause
3957   ** in the outer query.
3958   */
3959   pSub = pSub1 = pSubitem->pSelect;
3960 
3961   /* Delete the transient table structure associated with the
3962   ** subquery
3963   */
3964   sqlite3DbFree(db, pSubitem->zDatabase);
3965   sqlite3DbFree(db, pSubitem->zName);
3966   sqlite3DbFree(db, pSubitem->zAlias);
3967   pSubitem->zDatabase = 0;
3968   pSubitem->zName = 0;
3969   pSubitem->zAlias = 0;
3970   pSubitem->pSelect = 0;
3971 
3972   /* Defer deleting the Table object associated with the
3973   ** subquery until code generation is
3974   ** complete, since there may still exist Expr.pTab entries that
3975   ** refer to the subquery even after flattening.  Ticket #3346.
3976   **
3977   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3978   */
3979   if( ALWAYS(pSubitem->pTab!=0) ){
3980     Table *pTabToDel = pSubitem->pTab;
3981     if( pTabToDel->nTabRef==1 ){
3982       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3983       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3984       pToplevel->pZombieTab = pTabToDel;
3985     }else{
3986       pTabToDel->nTabRef--;
3987     }
3988     pSubitem->pTab = 0;
3989   }
3990 
3991   /* The following loop runs once for each term in a compound-subquery
3992   ** flattening (as described above).  If we are doing a different kind
3993   ** of flattening - a flattening other than a compound-subquery flattening -
3994   ** then this loop only runs once.
3995   **
3996   ** This loop moves all of the FROM elements of the subquery into the
3997   ** the FROM clause of the outer query.  Before doing this, remember
3998   ** the cursor number for the original outer query FROM element in
3999   ** iParent.  The iParent cursor will never be used.  Subsequent code
4000   ** will scan expressions looking for iParent references and replace
4001   ** those references with expressions that resolve to the subquery FROM
4002   ** elements we are now copying in.
4003   */
4004   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4005     int nSubSrc;
4006     u8 jointype = 0;
4007     assert( pSub!=0 );
4008     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4009     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4010     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4011 
4012     if( pSrc ){
4013       assert( pParent==p );  /* First time through the loop */
4014       jointype = pSubitem->fg.jointype;
4015     }else{
4016       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
4017       pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
4018       if( pSrc==0 ) break;
4019       pParent->pSrc = pSrc;
4020     }
4021 
4022     /* The subquery uses a single slot of the FROM clause of the outer
4023     ** query.  If the subquery has more than one element in its FROM clause,
4024     ** then expand the outer query to make space for it to hold all elements
4025     ** of the subquery.
4026     **
4027     ** Example:
4028     **
4029     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4030     **
4031     ** The outer query has 3 slots in its FROM clause.  One slot of the
4032     ** outer query (the middle slot) is used by the subquery.  The next
4033     ** block of code will expand the outer query FROM clause to 4 slots.
4034     ** The middle slot is expanded to two slots in order to make space
4035     ** for the two elements in the FROM clause of the subquery.
4036     */
4037     if( nSubSrc>1 ){
4038       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4039       if( pSrc==0 ) break;
4040       pParent->pSrc = pSrc;
4041     }
4042 
4043     /* Transfer the FROM clause terms from the subquery into the
4044     ** outer query.
4045     */
4046     for(i=0; i<nSubSrc; i++){
4047       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4048       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4049       pSrc->a[i+iFrom] = pSubSrc->a[i];
4050       iNewParent = pSubSrc->a[i].iCursor;
4051       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4052     }
4053     pSrc->a[iFrom].fg.jointype = jointype;
4054 
4055     /* Now begin substituting subquery result set expressions for
4056     ** references to the iParent in the outer query.
4057     **
4058     ** Example:
4059     **
4060     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4061     **   \                     \_____________ subquery __________/          /
4062     **    \_____________________ outer query ______________________________/
4063     **
4064     ** We look at every expression in the outer query and every place we see
4065     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4066     */
4067     if( pSub->pOrderBy ){
4068       /* At this point, any non-zero iOrderByCol values indicate that the
4069       ** ORDER BY column expression is identical to the iOrderByCol'th
4070       ** expression returned by SELECT statement pSub. Since these values
4071       ** do not necessarily correspond to columns in SELECT statement pParent,
4072       ** zero them before transfering the ORDER BY clause.
4073       **
4074       ** Not doing this may cause an error if a subsequent call to this
4075       ** function attempts to flatten a compound sub-query into pParent
4076       ** (the only way this can happen is if the compound sub-query is
4077       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4078       ExprList *pOrderBy = pSub->pOrderBy;
4079       for(i=0; i<pOrderBy->nExpr; i++){
4080         pOrderBy->a[i].u.x.iOrderByCol = 0;
4081       }
4082       assert( pParent->pOrderBy==0 );
4083       pParent->pOrderBy = pOrderBy;
4084       pSub->pOrderBy = 0;
4085     }
4086     pWhere = pSub->pWhere;
4087     pSub->pWhere = 0;
4088     if( isLeftJoin>0 ){
4089       sqlite3SetJoinExpr(pWhere, iNewParent);
4090     }
4091     pParent->pWhere = sqlite3ExprAnd(pParse, pWhere, pParent->pWhere);
4092     if( db->mallocFailed==0 ){
4093       SubstContext x;
4094       x.pParse = pParse;
4095       x.iTable = iParent;
4096       x.iNewTable = iNewParent;
4097       x.isLeftJoin = isLeftJoin;
4098       x.pEList = pSub->pEList;
4099       substSelect(&x, pParent, 0);
4100     }
4101 
4102     /* The flattened query is a compound if either the inner or the
4103     ** outer query is a compound. */
4104     pParent->selFlags |= pSub->selFlags & SF_Compound;
4105     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4106 
4107     /*
4108     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4109     **
4110     ** One is tempted to try to add a and b to combine the limits.  But this
4111     ** does not work if either limit is negative.
4112     */
4113     if( pSub->pLimit ){
4114       pParent->pLimit = pSub->pLimit;
4115       pSub->pLimit = 0;
4116     }
4117   }
4118 
4119   /* Finially, delete what is left of the subquery and return
4120   ** success.
4121   */
4122   sqlite3SelectDelete(db, pSub1);
4123 
4124 #if SELECTTRACE_ENABLED
4125   if( sqlite3SelectTrace & 0x100 ){
4126     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4127     sqlite3TreeViewSelect(0, p, 0);
4128   }
4129 #endif
4130 
4131   return 1;
4132 }
4133 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4134 
4135 /*
4136 ** A structure to keep track of all of the column values that are fixed to
4137 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4138 */
4139 typedef struct WhereConst WhereConst;
4140 struct WhereConst {
4141   Parse *pParse;   /* Parsing context */
4142   int nConst;      /* Number for COLUMN=CONSTANT terms */
4143   int nChng;       /* Number of times a constant is propagated */
4144   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4145 };
4146 
4147 /*
4148 ** Add a new entry to the pConst object.  Except, do not add duplicate
4149 ** pColumn entires.
4150 */
4151 static void constInsert(
4152   WhereConst *pConst,      /* The WhereConst into which we are inserting */
4153   Expr *pColumn,           /* The COLUMN part of the constraint */
4154   Expr *pValue             /* The VALUE part of the constraint */
4155 ){
4156   int i;
4157   assert( pColumn->op==TK_COLUMN );
4158 
4159   /* 2018-10-25 ticket [cf5ed20f]
4160   ** Make sure the same pColumn is not inserted more than once */
4161   for(i=0; i<pConst->nConst; i++){
4162     const Expr *pExpr = pConst->apExpr[i*2];
4163     assert( pExpr->op==TK_COLUMN );
4164     if( pExpr->iTable==pColumn->iTable
4165      && pExpr->iColumn==pColumn->iColumn
4166     ){
4167       return;  /* Already present.  Return without doing anything. */
4168     }
4169   }
4170 
4171   pConst->nConst++;
4172   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4173                          pConst->nConst*2*sizeof(Expr*));
4174   if( pConst->apExpr==0 ){
4175     pConst->nConst = 0;
4176   }else{
4177     if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4178     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4179     pConst->apExpr[pConst->nConst*2-1] = pValue;
4180   }
4181 }
4182 
4183 /*
4184 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4185 ** is a constant expression and where the term must be true because it
4186 ** is part of the AND-connected terms of the expression.  For each term
4187 ** found, add it to the pConst structure.
4188 */
4189 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4190   Expr *pRight, *pLeft;
4191   if( pExpr==0 ) return;
4192   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4193   if( pExpr->op==TK_AND ){
4194     findConstInWhere(pConst, pExpr->pRight);
4195     findConstInWhere(pConst, pExpr->pLeft);
4196     return;
4197   }
4198   if( pExpr->op!=TK_EQ ) return;
4199   pRight = pExpr->pRight;
4200   pLeft = pExpr->pLeft;
4201   assert( pRight!=0 );
4202   assert( pLeft!=0 );
4203   if( pRight->op==TK_COLUMN
4204    && !ExprHasProperty(pRight, EP_FixedCol)
4205    && sqlite3ExprIsConstant(pLeft)
4206    && sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr))
4207   ){
4208     constInsert(pConst, pRight, pLeft);
4209   }else
4210   if( pLeft->op==TK_COLUMN
4211    && !ExprHasProperty(pLeft, EP_FixedCol)
4212    && sqlite3ExprIsConstant(pRight)
4213    && sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr))
4214   ){
4215     constInsert(pConst, pLeft, pRight);
4216   }
4217 }
4218 
4219 /*
4220 ** This is a Walker expression callback.  pExpr is a candidate expression
4221 ** to be replaced by a value.  If pExpr is equivalent to one of the
4222 ** columns named in pWalker->u.pConst, then overwrite it with its
4223 ** corresponding value.
4224 */
4225 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4226   int i;
4227   WhereConst *pConst;
4228   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4229   if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4230   pConst = pWalker->u.pConst;
4231   for(i=0; i<pConst->nConst; i++){
4232     Expr *pColumn = pConst->apExpr[i*2];
4233     if( pColumn==pExpr ) continue;
4234     if( pColumn->iTable!=pExpr->iTable ) continue;
4235     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4236     /* A match is found.  Add the EP_FixedCol property */
4237     pConst->nChng++;
4238     ExprClearProperty(pExpr, EP_Leaf);
4239     ExprSetProperty(pExpr, EP_FixedCol);
4240     assert( pExpr->pLeft==0 );
4241     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4242     break;
4243   }
4244   return WRC_Prune;
4245 }
4246 
4247 /*
4248 ** The WHERE-clause constant propagation optimization.
4249 **
4250 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4251 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4252 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4253 ** then throughout the query replace all other occurrences of COLUMN
4254 ** with CONSTANT within the WHERE clause.
4255 **
4256 ** For example, the query:
4257 **
4258 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4259 **
4260 ** Is transformed into
4261 **
4262 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4263 **
4264 ** Return true if any transformations where made and false if not.
4265 **
4266 ** Implementation note:  Constant propagation is tricky due to affinity
4267 ** and collating sequence interactions.  Consider this example:
4268 **
4269 **    CREATE TABLE t1(a INT,b TEXT);
4270 **    INSERT INTO t1 VALUES(123,'0123');
4271 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4272 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4273 **
4274 ** The two SELECT statements above should return different answers.  b=a
4275 ** is alway true because the comparison uses numeric affinity, but b=123
4276 ** is false because it uses text affinity and '0123' is not the same as '123'.
4277 ** To work around this, the expression tree is not actually changed from
4278 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4279 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4280 ** routines know to generate the constant "123" instead of looking up the
4281 ** column value.  Also, to avoid collation problems, this optimization is
4282 ** only attempted if the "a=123" term uses the default BINARY collation.
4283 */
4284 static int propagateConstants(
4285   Parse *pParse,   /* The parsing context */
4286   Select *p        /* The query in which to propagate constants */
4287 ){
4288   WhereConst x;
4289   Walker w;
4290   int nChng = 0;
4291   x.pParse = pParse;
4292   do{
4293     x.nConst = 0;
4294     x.nChng = 0;
4295     x.apExpr = 0;
4296     findConstInWhere(&x, p->pWhere);
4297     if( x.nConst ){
4298       memset(&w, 0, sizeof(w));
4299       w.pParse = pParse;
4300       w.xExprCallback = propagateConstantExprRewrite;
4301       w.xSelectCallback = sqlite3SelectWalkNoop;
4302       w.xSelectCallback2 = 0;
4303       w.walkerDepth = 0;
4304       w.u.pConst = &x;
4305       sqlite3WalkExpr(&w, p->pWhere);
4306       sqlite3DbFree(x.pParse->db, x.apExpr);
4307       nChng += x.nChng;
4308     }
4309   }while( x.nChng );
4310   return nChng;
4311 }
4312 
4313 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4314 /*
4315 ** Make copies of relevant WHERE clause terms of the outer query into
4316 ** the WHERE clause of subquery.  Example:
4317 **
4318 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4319 **
4320 ** Transformed into:
4321 **
4322 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4323 **     WHERE x=5 AND y=10;
4324 **
4325 ** The hope is that the terms added to the inner query will make it more
4326 ** efficient.
4327 **
4328 ** Do not attempt this optimization if:
4329 **
4330 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4331 **           disallow this optimization for aggregate subqueries, but now
4332 **           it is allowed by putting the extra terms on the HAVING clause.
4333 **           The added HAVING clause is pointless if the subquery lacks
4334 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4335 **           so there does not appear to be any reason to add extra logic
4336 **           to suppress it. **)
4337 **
4338 **   (2) The inner query is the recursive part of a common table expression.
4339 **
4340 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4341 **       clause would change the meaning of the LIMIT).
4342 **
4343 **   (4) The inner query is the right operand of a LEFT JOIN and the
4344 **       expression to be pushed down does not come from the ON clause
4345 **       on that LEFT JOIN.
4346 **
4347 **   (5) The WHERE clause expression originates in the ON or USING clause
4348 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4349 **       left join.  An example:
4350 **
4351 **           SELECT *
4352 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4353 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4354 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4355 **
4356 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4357 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4358 **       then the (1,1,NULL) row would be suppressed.
4359 **
4360 **   (6) The inner query features one or more window-functions (since
4361 **       changes to the WHERE clause of the inner query could change the
4362 **       window over which window functions are calculated).
4363 **
4364 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4365 ** terms are duplicated into the subquery.
4366 */
4367 static int pushDownWhereTerms(
4368   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4369   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4370   Expr *pWhere,         /* The WHERE clause of the outer query */
4371   int iCursor,          /* Cursor number of the subquery */
4372   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4373 ){
4374   Expr *pNew;
4375   int nChng = 0;
4376   if( pWhere==0 ) return 0;
4377   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4378 
4379 #ifndef SQLITE_OMIT_WINDOWFUNC
4380   if( pSubq->pWin ) return 0;    /* restriction (6) */
4381 #endif
4382 
4383 #ifdef SQLITE_DEBUG
4384   /* Only the first term of a compound can have a WITH clause.  But make
4385   ** sure no other terms are marked SF_Recursive in case something changes
4386   ** in the future.
4387   */
4388   {
4389     Select *pX;
4390     for(pX=pSubq; pX; pX=pX->pPrior){
4391       assert( (pX->selFlags & (SF_Recursive))==0 );
4392     }
4393   }
4394 #endif
4395 
4396   if( pSubq->pLimit!=0 ){
4397     return 0; /* restriction (3) */
4398   }
4399   while( pWhere->op==TK_AND ){
4400     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4401                                 iCursor, isLeftJoin);
4402     pWhere = pWhere->pLeft;
4403   }
4404   if( isLeftJoin
4405    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4406          || pWhere->iRightJoinTable!=iCursor)
4407   ){
4408     return 0; /* restriction (4) */
4409   }
4410   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4411     return 0; /* restriction (5) */
4412   }
4413   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4414     nChng++;
4415     while( pSubq ){
4416       SubstContext x;
4417       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4418       unsetJoinExpr(pNew, -1);
4419       x.pParse = pParse;
4420       x.iTable = iCursor;
4421       x.iNewTable = iCursor;
4422       x.isLeftJoin = 0;
4423       x.pEList = pSubq->pEList;
4424       pNew = substExpr(&x, pNew);
4425       if( pSubq->selFlags & SF_Aggregate ){
4426         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4427       }else{
4428         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4429       }
4430       pSubq = pSubq->pPrior;
4431     }
4432   }
4433   return nChng;
4434 }
4435 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4436 
4437 /*
4438 ** The pFunc is the only aggregate function in the query.  Check to see
4439 ** if the query is a candidate for the min/max optimization.
4440 **
4441 ** If the query is a candidate for the min/max optimization, then set
4442 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4443 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4444 ** whether pFunc is a min() or max() function.
4445 **
4446 ** If the query is not a candidate for the min/max optimization, return
4447 ** WHERE_ORDERBY_NORMAL (which must be zero).
4448 **
4449 ** This routine must be called after aggregate functions have been
4450 ** located but before their arguments have been subjected to aggregate
4451 ** analysis.
4452 */
4453 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4454   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4455   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4456   const char *zFunc;                    /* Name of aggregate function pFunc */
4457   ExprList *pOrderBy;
4458   u8 sortFlags;
4459 
4460   assert( *ppMinMax==0 );
4461   assert( pFunc->op==TK_AGG_FUNCTION );
4462   assert( !IsWindowFunc(pFunc) );
4463   if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4464     return eRet;
4465   }
4466   zFunc = pFunc->u.zToken;
4467   if( sqlite3StrICmp(zFunc, "min")==0 ){
4468     eRet = WHERE_ORDERBY_MIN;
4469     sortFlags = KEYINFO_ORDER_BIGNULL;
4470   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4471     eRet = WHERE_ORDERBY_MAX;
4472     sortFlags = KEYINFO_ORDER_DESC;
4473   }else{
4474     return eRet;
4475   }
4476   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4477   assert( pOrderBy!=0 || db->mallocFailed );
4478   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4479   return eRet;
4480 }
4481 
4482 /*
4483 ** The select statement passed as the first argument is an aggregate query.
4484 ** The second argument is the associated aggregate-info object. This
4485 ** function tests if the SELECT is of the form:
4486 **
4487 **   SELECT count(*) FROM <tbl>
4488 **
4489 ** where table is a database table, not a sub-select or view. If the query
4490 ** does match this pattern, then a pointer to the Table object representing
4491 ** <tbl> is returned. Otherwise, 0 is returned.
4492 */
4493 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4494   Table *pTab;
4495   Expr *pExpr;
4496 
4497   assert( !p->pGroupBy );
4498 
4499   if( p->pWhere || p->pEList->nExpr!=1
4500    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4501   ){
4502     return 0;
4503   }
4504   pTab = p->pSrc->a[0].pTab;
4505   pExpr = p->pEList->a[0].pExpr;
4506   assert( pTab && !pTab->pSelect && pExpr );
4507 
4508   if( IsVirtual(pTab) ) return 0;
4509   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4510   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4511   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4512   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4513 
4514   return pTab;
4515 }
4516 
4517 /*
4518 ** If the source-list item passed as an argument was augmented with an
4519 ** INDEXED BY clause, then try to locate the specified index. If there
4520 ** was such a clause and the named index cannot be found, return
4521 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4522 ** pFrom->pIndex and return SQLITE_OK.
4523 */
4524 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4525   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4526     Table *pTab = pFrom->pTab;
4527     char *zIndexedBy = pFrom->u1.zIndexedBy;
4528     Index *pIdx;
4529     for(pIdx=pTab->pIndex;
4530         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4531         pIdx=pIdx->pNext
4532     );
4533     if( !pIdx ){
4534       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4535       pParse->checkSchema = 1;
4536       return SQLITE_ERROR;
4537     }
4538     pFrom->pIBIndex = pIdx;
4539   }
4540   return SQLITE_OK;
4541 }
4542 /*
4543 ** Detect compound SELECT statements that use an ORDER BY clause with
4544 ** an alternative collating sequence.
4545 **
4546 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4547 **
4548 ** These are rewritten as a subquery:
4549 **
4550 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4551 **     ORDER BY ... COLLATE ...
4552 **
4553 ** This transformation is necessary because the multiSelectOrderBy() routine
4554 ** above that generates the code for a compound SELECT with an ORDER BY clause
4555 ** uses a merge algorithm that requires the same collating sequence on the
4556 ** result columns as on the ORDER BY clause.  See ticket
4557 ** http://www.sqlite.org/src/info/6709574d2a
4558 **
4559 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4560 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4561 ** there are COLLATE terms in the ORDER BY.
4562 */
4563 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4564   int i;
4565   Select *pNew;
4566   Select *pX;
4567   sqlite3 *db;
4568   struct ExprList_item *a;
4569   SrcList *pNewSrc;
4570   Parse *pParse;
4571   Token dummy;
4572 
4573   if( p->pPrior==0 ) return WRC_Continue;
4574   if( p->pOrderBy==0 ) return WRC_Continue;
4575   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4576   if( pX==0 ) return WRC_Continue;
4577   a = p->pOrderBy->a;
4578   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4579     if( a[i].pExpr->flags & EP_Collate ) break;
4580   }
4581   if( i<0 ) return WRC_Continue;
4582 
4583   /* If we reach this point, that means the transformation is required. */
4584 
4585   pParse = pWalker->pParse;
4586   db = pParse->db;
4587   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4588   if( pNew==0 ) return WRC_Abort;
4589   memset(&dummy, 0, sizeof(dummy));
4590   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4591   if( pNewSrc==0 ) return WRC_Abort;
4592   *pNew = *p;
4593   p->pSrc = pNewSrc;
4594   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4595   p->op = TK_SELECT;
4596   p->pWhere = 0;
4597   pNew->pGroupBy = 0;
4598   pNew->pHaving = 0;
4599   pNew->pOrderBy = 0;
4600   p->pPrior = 0;
4601   p->pNext = 0;
4602   p->pWith = 0;
4603 #ifndef SQLITE_OMIT_WINDOWFUNC
4604   p->pWinDefn = 0;
4605 #endif
4606   p->selFlags &= ~SF_Compound;
4607   assert( (p->selFlags & SF_Converted)==0 );
4608   p->selFlags |= SF_Converted;
4609   assert( pNew->pPrior!=0 );
4610   pNew->pPrior->pNext = pNew;
4611   pNew->pLimit = 0;
4612   return WRC_Continue;
4613 }
4614 
4615 /*
4616 ** Check to see if the FROM clause term pFrom has table-valued function
4617 ** arguments.  If it does, leave an error message in pParse and return
4618 ** non-zero, since pFrom is not allowed to be a table-valued function.
4619 */
4620 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4621   if( pFrom->fg.isTabFunc ){
4622     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4623     return 1;
4624   }
4625   return 0;
4626 }
4627 
4628 #ifndef SQLITE_OMIT_CTE
4629 /*
4630 ** Argument pWith (which may be NULL) points to a linked list of nested
4631 ** WITH contexts, from inner to outermost. If the table identified by
4632 ** FROM clause element pItem is really a common-table-expression (CTE)
4633 ** then return a pointer to the CTE definition for that table. Otherwise
4634 ** return NULL.
4635 **
4636 ** If a non-NULL value is returned, set *ppContext to point to the With
4637 ** object that the returned CTE belongs to.
4638 */
4639 static struct Cte *searchWith(
4640   With *pWith,                    /* Current innermost WITH clause */
4641   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4642   With **ppContext                /* OUT: WITH clause return value belongs to */
4643 ){
4644   const char *zName;
4645   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4646     With *p;
4647     for(p=pWith; p; p=p->pOuter){
4648       int i;
4649       for(i=0; i<p->nCte; i++){
4650         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4651           *ppContext = p;
4652           return &p->a[i];
4653         }
4654       }
4655     }
4656   }
4657   return 0;
4658 }
4659 
4660 /* The code generator maintains a stack of active WITH clauses
4661 ** with the inner-most WITH clause being at the top of the stack.
4662 **
4663 ** This routine pushes the WITH clause passed as the second argument
4664 ** onto the top of the stack. If argument bFree is true, then this
4665 ** WITH clause will never be popped from the stack. In this case it
4666 ** should be freed along with the Parse object. In other cases, when
4667 ** bFree==0, the With object will be freed along with the SELECT
4668 ** statement with which it is associated.
4669 */
4670 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4671   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4672   if( pWith ){
4673     assert( pParse->pWith!=pWith );
4674     pWith->pOuter = pParse->pWith;
4675     pParse->pWith = pWith;
4676     if( bFree ) pParse->pWithToFree = pWith;
4677   }
4678 }
4679 
4680 /*
4681 ** This function checks if argument pFrom refers to a CTE declared by
4682 ** a WITH clause on the stack currently maintained by the parser. And,
4683 ** if currently processing a CTE expression, if it is a recursive
4684 ** reference to the current CTE.
4685 **
4686 ** If pFrom falls into either of the two categories above, pFrom->pTab
4687 ** and other fields are populated accordingly. The caller should check
4688 ** (pFrom->pTab!=0) to determine whether or not a successful match
4689 ** was found.
4690 **
4691 ** Whether or not a match is found, SQLITE_OK is returned if no error
4692 ** occurs. If an error does occur, an error message is stored in the
4693 ** parser and some error code other than SQLITE_OK returned.
4694 */
4695 static int withExpand(
4696   Walker *pWalker,
4697   struct SrcList_item *pFrom
4698 ){
4699   Parse *pParse = pWalker->pParse;
4700   sqlite3 *db = pParse->db;
4701   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4702   With *pWith;                    /* WITH clause that pCte belongs to */
4703 
4704   assert( pFrom->pTab==0 );
4705   if( pParse->nErr ){
4706     return SQLITE_ERROR;
4707   }
4708 
4709   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4710   if( pCte ){
4711     Table *pTab;
4712     ExprList *pEList;
4713     Select *pSel;
4714     Select *pLeft;                /* Left-most SELECT statement */
4715     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4716     With *pSavedWith;             /* Initial value of pParse->pWith */
4717 
4718     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4719     ** recursive reference to CTE pCte. Leave an error in pParse and return
4720     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4721     ** In this case, proceed.  */
4722     if( pCte->zCteErr ){
4723       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4724       return SQLITE_ERROR;
4725     }
4726     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4727 
4728     assert( pFrom->pTab==0 );
4729     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4730     if( pTab==0 ) return WRC_Abort;
4731     pTab->nTabRef = 1;
4732     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4733     pTab->iPKey = -1;
4734     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4735     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4736     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4737     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4738     assert( pFrom->pSelect );
4739 
4740     /* Check if this is a recursive CTE. */
4741     pSel = pFrom->pSelect;
4742     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4743     if( bMayRecursive ){
4744       int i;
4745       SrcList *pSrc = pFrom->pSelect->pSrc;
4746       for(i=0; i<pSrc->nSrc; i++){
4747         struct SrcList_item *pItem = &pSrc->a[i];
4748         if( pItem->zDatabase==0
4749          && pItem->zName!=0
4750          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4751           ){
4752           pItem->pTab = pTab;
4753           pItem->fg.isRecursive = 1;
4754           pTab->nTabRef++;
4755           pSel->selFlags |= SF_Recursive;
4756         }
4757       }
4758     }
4759 
4760     /* Only one recursive reference is permitted. */
4761     if( pTab->nTabRef>2 ){
4762       sqlite3ErrorMsg(
4763           pParse, "multiple references to recursive table: %s", pCte->zName
4764       );
4765       return SQLITE_ERROR;
4766     }
4767     assert( pTab->nTabRef==1 ||
4768             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4769 
4770     pCte->zCteErr = "circular reference: %s";
4771     pSavedWith = pParse->pWith;
4772     pParse->pWith = pWith;
4773     if( bMayRecursive ){
4774       Select *pPrior = pSel->pPrior;
4775       assert( pPrior->pWith==0 );
4776       pPrior->pWith = pSel->pWith;
4777       sqlite3WalkSelect(pWalker, pPrior);
4778       pPrior->pWith = 0;
4779     }else{
4780       sqlite3WalkSelect(pWalker, pSel);
4781     }
4782     pParse->pWith = pWith;
4783 
4784     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4785     pEList = pLeft->pEList;
4786     if( pCte->pCols ){
4787       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4788         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4789             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4790         );
4791         pParse->pWith = pSavedWith;
4792         return SQLITE_ERROR;
4793       }
4794       pEList = pCte->pCols;
4795     }
4796 
4797     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4798     if( bMayRecursive ){
4799       if( pSel->selFlags & SF_Recursive ){
4800         pCte->zCteErr = "multiple recursive references: %s";
4801       }else{
4802         pCte->zCteErr = "recursive reference in a subquery: %s";
4803       }
4804       sqlite3WalkSelect(pWalker, pSel);
4805     }
4806     pCte->zCteErr = 0;
4807     pParse->pWith = pSavedWith;
4808   }
4809 
4810   return SQLITE_OK;
4811 }
4812 #endif
4813 
4814 #ifndef SQLITE_OMIT_CTE
4815 /*
4816 ** If the SELECT passed as the second argument has an associated WITH
4817 ** clause, pop it from the stack stored as part of the Parse object.
4818 **
4819 ** This function is used as the xSelectCallback2() callback by
4820 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4821 ** names and other FROM clause elements.
4822 */
4823 static void selectPopWith(Walker *pWalker, Select *p){
4824   Parse *pParse = pWalker->pParse;
4825   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4826     With *pWith = findRightmost(p)->pWith;
4827     if( pWith!=0 ){
4828       assert( pParse->pWith==pWith );
4829       pParse->pWith = pWith->pOuter;
4830     }
4831   }
4832 }
4833 #else
4834 #define selectPopWith 0
4835 #endif
4836 
4837 /*
4838 ** The SrcList_item structure passed as the second argument represents a
4839 ** sub-query in the FROM clause of a SELECT statement. This function
4840 ** allocates and populates the SrcList_item.pTab object. If successful,
4841 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4842 ** SQLITE_NOMEM.
4843 */
4844 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4845   Select *pSel = pFrom->pSelect;
4846   Table *pTab;
4847 
4848   assert( pSel );
4849   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4850   if( pTab==0 ) return SQLITE_NOMEM;
4851   pTab->nTabRef = 1;
4852   if( pFrom->zAlias ){
4853     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4854   }else{
4855     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4856   }
4857   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4858   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4859   pTab->iPKey = -1;
4860   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4861   pTab->tabFlags |= TF_Ephemeral;
4862 
4863   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4864 }
4865 
4866 /*
4867 ** This routine is a Walker callback for "expanding" a SELECT statement.
4868 ** "Expanding" means to do the following:
4869 **
4870 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4871 **         element of the FROM clause.
4872 **
4873 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4874 **         defines FROM clause.  When views appear in the FROM clause,
4875 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4876 **         that implements the view.  A copy is made of the view's SELECT
4877 **         statement so that we can freely modify or delete that statement
4878 **         without worrying about messing up the persistent representation
4879 **         of the view.
4880 **
4881 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4882 **         on joins and the ON and USING clause of joins.
4883 **
4884 **    (4)  Scan the list of columns in the result set (pEList) looking
4885 **         for instances of the "*" operator or the TABLE.* operator.
4886 **         If found, expand each "*" to be every column in every table
4887 **         and TABLE.* to be every column in TABLE.
4888 **
4889 */
4890 static int selectExpander(Walker *pWalker, Select *p){
4891   Parse *pParse = pWalker->pParse;
4892   int i, j, k;
4893   SrcList *pTabList;
4894   ExprList *pEList;
4895   struct SrcList_item *pFrom;
4896   sqlite3 *db = pParse->db;
4897   Expr *pE, *pRight, *pExpr;
4898   u16 selFlags = p->selFlags;
4899   u32 elistFlags = 0;
4900 
4901   p->selFlags |= SF_Expanded;
4902   if( db->mallocFailed  ){
4903     return WRC_Abort;
4904   }
4905   assert( p->pSrc!=0 );
4906   if( (selFlags & SF_Expanded)!=0 ){
4907     return WRC_Prune;
4908   }
4909   if( pWalker->eCode ){
4910     /* Renumber selId because it has been copied from a view */
4911     p->selId = ++pParse->nSelect;
4912   }
4913   pTabList = p->pSrc;
4914   pEList = p->pEList;
4915   sqlite3WithPush(pParse, p->pWith, 0);
4916 
4917   /* Make sure cursor numbers have been assigned to all entries in
4918   ** the FROM clause of the SELECT statement.
4919   */
4920   sqlite3SrcListAssignCursors(pParse, pTabList);
4921 
4922   /* Look up every table named in the FROM clause of the select.  If
4923   ** an entry of the FROM clause is a subquery instead of a table or view,
4924   ** then create a transient table structure to describe the subquery.
4925   */
4926   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4927     Table *pTab;
4928     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4929     if( pFrom->fg.isRecursive ) continue;
4930     assert( pFrom->pTab==0 );
4931 #ifndef SQLITE_OMIT_CTE
4932     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4933     if( pFrom->pTab ) {} else
4934 #endif
4935     if( pFrom->zName==0 ){
4936 #ifndef SQLITE_OMIT_SUBQUERY
4937       Select *pSel = pFrom->pSelect;
4938       /* A sub-query in the FROM clause of a SELECT */
4939       assert( pSel!=0 );
4940       assert( pFrom->pTab==0 );
4941       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4942       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4943 #endif
4944     }else{
4945       /* An ordinary table or view name in the FROM clause */
4946       assert( pFrom->pTab==0 );
4947       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4948       if( pTab==0 ) return WRC_Abort;
4949       if( pTab->nTabRef>=0xffff ){
4950         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4951            pTab->zName);
4952         pFrom->pTab = 0;
4953         return WRC_Abort;
4954       }
4955       pTab->nTabRef++;
4956       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4957         return WRC_Abort;
4958       }
4959 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4960       if( IsVirtual(pTab) || pTab->pSelect ){
4961         i16 nCol;
4962         u8 eCodeOrig = pWalker->eCode;
4963         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4964         assert( pFrom->pSelect==0 );
4965         if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
4966           sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
4967               pTab->zName);
4968         }
4969         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4970         nCol = pTab->nCol;
4971         pTab->nCol = -1;
4972         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
4973         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4974         pWalker->eCode = eCodeOrig;
4975         pTab->nCol = nCol;
4976       }
4977 #endif
4978     }
4979 
4980     /* Locate the index named by the INDEXED BY clause, if any. */
4981     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4982       return WRC_Abort;
4983     }
4984   }
4985 
4986   /* Process NATURAL keywords, and ON and USING clauses of joins.
4987   */
4988   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4989     return WRC_Abort;
4990   }
4991 
4992   /* For every "*" that occurs in the column list, insert the names of
4993   ** all columns in all tables.  And for every TABLE.* insert the names
4994   ** of all columns in TABLE.  The parser inserted a special expression
4995   ** with the TK_ASTERISK operator for each "*" that it found in the column
4996   ** list.  The following code just has to locate the TK_ASTERISK
4997   ** expressions and expand each one to the list of all columns in
4998   ** all tables.
4999   **
5000   ** The first loop just checks to see if there are any "*" operators
5001   ** that need expanding.
5002   */
5003   for(k=0; k<pEList->nExpr; k++){
5004     pE = pEList->a[k].pExpr;
5005     if( pE->op==TK_ASTERISK ) break;
5006     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5007     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5008     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5009     elistFlags |= pE->flags;
5010   }
5011   if( k<pEList->nExpr ){
5012     /*
5013     ** If we get here it means the result set contains one or more "*"
5014     ** operators that need to be expanded.  Loop through each expression
5015     ** in the result set and expand them one by one.
5016     */
5017     struct ExprList_item *a = pEList->a;
5018     ExprList *pNew = 0;
5019     int flags = pParse->db->flags;
5020     int longNames = (flags & SQLITE_FullColNames)!=0
5021                       && (flags & SQLITE_ShortColNames)==0;
5022 
5023     for(k=0; k<pEList->nExpr; k++){
5024       pE = a[k].pExpr;
5025       elistFlags |= pE->flags;
5026       pRight = pE->pRight;
5027       assert( pE->op!=TK_DOT || pRight!=0 );
5028       if( pE->op!=TK_ASTERISK
5029        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5030       ){
5031         /* This particular expression does not need to be expanded.
5032         */
5033         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5034         if( pNew ){
5035           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5036           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5037           a[k].zEName = 0;
5038         }
5039         a[k].pExpr = 0;
5040       }else{
5041         /* This expression is a "*" or a "TABLE.*" and needs to be
5042         ** expanded. */
5043         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5044         char *zTName = 0;       /* text of name of TABLE */
5045         if( pE->op==TK_DOT ){
5046           assert( pE->pLeft!=0 );
5047           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5048           zTName = pE->pLeft->u.zToken;
5049         }
5050         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5051           Table *pTab = pFrom->pTab;
5052           Select *pSub = pFrom->pSelect;
5053           char *zTabName = pFrom->zAlias;
5054           const char *zSchemaName = 0;
5055           int iDb;
5056           if( zTabName==0 ){
5057             zTabName = pTab->zName;
5058           }
5059           if( db->mallocFailed ) break;
5060           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5061             pSub = 0;
5062             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5063               continue;
5064             }
5065             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5066             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5067           }
5068           for(j=0; j<pTab->nCol; j++){
5069             char *zName = pTab->aCol[j].zName;
5070             char *zColname;  /* The computed column name */
5071             char *zToFree;   /* Malloced string that needs to be freed */
5072             Token sColname;  /* Computed column name as a token */
5073 
5074             assert( zName );
5075             if( zTName && pSub
5076              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5077             ){
5078               continue;
5079             }
5080 
5081             /* If a column is marked as 'hidden', omit it from the expanded
5082             ** result-set list unless the SELECT has the SF_IncludeHidden
5083             ** bit set.
5084             */
5085             if( (p->selFlags & SF_IncludeHidden)==0
5086              && IsHiddenColumn(&pTab->aCol[j])
5087             ){
5088               continue;
5089             }
5090             tableSeen = 1;
5091 
5092             if( i>0 && zTName==0 ){
5093               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5094                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5095               ){
5096                 /* In a NATURAL join, omit the join columns from the
5097                 ** table to the right of the join */
5098                 continue;
5099               }
5100               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5101                 /* In a join with a USING clause, omit columns in the
5102                 ** using clause from the table on the right. */
5103                 continue;
5104               }
5105             }
5106             pRight = sqlite3Expr(db, TK_ID, zName);
5107             zColname = zName;
5108             zToFree = 0;
5109             if( longNames || pTabList->nSrc>1 ){
5110               Expr *pLeft;
5111               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5112               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5113               if( zSchemaName ){
5114                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5115                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5116               }
5117               if( longNames ){
5118                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5119                 zToFree = zColname;
5120               }
5121             }else{
5122               pExpr = pRight;
5123             }
5124             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5125             sqlite3TokenInit(&sColname, zColname);
5126             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5127             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5128               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5129               sqlite3DbFree(db, pX->zEName);
5130               if( pSub ){
5131                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5132                 testcase( pX->zEName==0 );
5133               }else{
5134                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5135                                            zSchemaName, zTabName, zColname);
5136                 testcase( pX->zEName==0 );
5137               }
5138               pX->eEName = ENAME_TAB;
5139             }
5140             sqlite3DbFree(db, zToFree);
5141           }
5142         }
5143         if( !tableSeen ){
5144           if( zTName ){
5145             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5146           }else{
5147             sqlite3ErrorMsg(pParse, "no tables specified");
5148           }
5149         }
5150       }
5151     }
5152     sqlite3ExprListDelete(db, pEList);
5153     p->pEList = pNew;
5154   }
5155   if( p->pEList ){
5156     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5157       sqlite3ErrorMsg(pParse, "too many columns in result set");
5158       return WRC_Abort;
5159     }
5160     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5161       p->selFlags |= SF_ComplexResult;
5162     }
5163   }
5164   return WRC_Continue;
5165 }
5166 
5167 /*
5168 ** No-op routine for the parse-tree walker.
5169 **
5170 ** When this routine is the Walker.xExprCallback then expression trees
5171 ** are walked without any actions being taken at each node.  Presumably,
5172 ** when this routine is used for Walker.xExprCallback then
5173 ** Walker.xSelectCallback is set to do something useful for every
5174 ** subquery in the parser tree.
5175 */
5176 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5177   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5178   return WRC_Continue;
5179 }
5180 
5181 /*
5182 ** No-op routine for the parse-tree walker for SELECT statements.
5183 ** subquery in the parser tree.
5184 */
5185 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5186   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5187   return WRC_Continue;
5188 }
5189 
5190 #if SQLITE_DEBUG
5191 /*
5192 ** Always assert.  This xSelectCallback2 implementation proves that the
5193 ** xSelectCallback2 is never invoked.
5194 */
5195 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5196   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5197   assert( 0 );
5198 }
5199 #endif
5200 /*
5201 ** This routine "expands" a SELECT statement and all of its subqueries.
5202 ** For additional information on what it means to "expand" a SELECT
5203 ** statement, see the comment on the selectExpand worker callback above.
5204 **
5205 ** Expanding a SELECT statement is the first step in processing a
5206 ** SELECT statement.  The SELECT statement must be expanded before
5207 ** name resolution is performed.
5208 **
5209 ** If anything goes wrong, an error message is written into pParse.
5210 ** The calling function can detect the problem by looking at pParse->nErr
5211 ** and/or pParse->db->mallocFailed.
5212 */
5213 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5214   Walker w;
5215   w.xExprCallback = sqlite3ExprWalkNoop;
5216   w.pParse = pParse;
5217   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5218     w.xSelectCallback = convertCompoundSelectToSubquery;
5219     w.xSelectCallback2 = 0;
5220     sqlite3WalkSelect(&w, pSelect);
5221   }
5222   w.xSelectCallback = selectExpander;
5223   w.xSelectCallback2 = selectPopWith;
5224   w.eCode = 0;
5225   sqlite3WalkSelect(&w, pSelect);
5226 }
5227 
5228 
5229 #ifndef SQLITE_OMIT_SUBQUERY
5230 /*
5231 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5232 ** interface.
5233 **
5234 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5235 ** information to the Table structure that represents the result set
5236 ** of that subquery.
5237 **
5238 ** The Table structure that represents the result set was constructed
5239 ** by selectExpander() but the type and collation information was omitted
5240 ** at that point because identifiers had not yet been resolved.  This
5241 ** routine is called after identifier resolution.
5242 */
5243 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5244   Parse *pParse;
5245   int i;
5246   SrcList *pTabList;
5247   struct SrcList_item *pFrom;
5248 
5249   assert( p->selFlags & SF_Resolved );
5250   if( p->selFlags & SF_HasTypeInfo ) return;
5251   p->selFlags |= SF_HasTypeInfo;
5252   pParse = pWalker->pParse;
5253   pTabList = p->pSrc;
5254   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5255     Table *pTab = pFrom->pTab;
5256     assert( pTab!=0 );
5257     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5258       /* A sub-query in the FROM clause of a SELECT */
5259       Select *pSel = pFrom->pSelect;
5260       if( pSel ){
5261         while( pSel->pPrior ) pSel = pSel->pPrior;
5262         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5263                                                SQLITE_AFF_NONE);
5264       }
5265     }
5266   }
5267 }
5268 #endif
5269 
5270 
5271 /*
5272 ** This routine adds datatype and collating sequence information to
5273 ** the Table structures of all FROM-clause subqueries in a
5274 ** SELECT statement.
5275 **
5276 ** Use this routine after name resolution.
5277 */
5278 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5279 #ifndef SQLITE_OMIT_SUBQUERY
5280   Walker w;
5281   w.xSelectCallback = sqlite3SelectWalkNoop;
5282   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5283   w.xExprCallback = sqlite3ExprWalkNoop;
5284   w.pParse = pParse;
5285   sqlite3WalkSelect(&w, pSelect);
5286 #endif
5287 }
5288 
5289 
5290 /*
5291 ** This routine sets up a SELECT statement for processing.  The
5292 ** following is accomplished:
5293 **
5294 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5295 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5296 **     *  ON and USING clauses are shifted into WHERE statements
5297 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5298 **     *  Identifiers in expression are matched to tables.
5299 **
5300 ** This routine acts recursively on all subqueries within the SELECT.
5301 */
5302 void sqlite3SelectPrep(
5303   Parse *pParse,         /* The parser context */
5304   Select *p,             /* The SELECT statement being coded. */
5305   NameContext *pOuterNC  /* Name context for container */
5306 ){
5307   assert( p!=0 || pParse->db->mallocFailed );
5308   if( pParse->db->mallocFailed ) return;
5309   if( p->selFlags & SF_HasTypeInfo ) return;
5310   sqlite3SelectExpand(pParse, p);
5311   if( pParse->nErr || pParse->db->mallocFailed ) return;
5312   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5313   if( pParse->nErr || pParse->db->mallocFailed ) return;
5314   sqlite3SelectAddTypeInfo(pParse, p);
5315 }
5316 
5317 /*
5318 ** Reset the aggregate accumulator.
5319 **
5320 ** The aggregate accumulator is a set of memory cells that hold
5321 ** intermediate results while calculating an aggregate.  This
5322 ** routine generates code that stores NULLs in all of those memory
5323 ** cells.
5324 */
5325 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5326   Vdbe *v = pParse->pVdbe;
5327   int i;
5328   struct AggInfo_func *pFunc;
5329   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5330   if( nReg==0 ) return;
5331 #ifdef SQLITE_DEBUG
5332   /* Verify that all AggInfo registers are within the range specified by
5333   ** AggInfo.mnReg..AggInfo.mxReg */
5334   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5335   for(i=0; i<pAggInfo->nColumn; i++){
5336     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5337          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5338   }
5339   for(i=0; i<pAggInfo->nFunc; i++){
5340     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5341          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5342   }
5343 #endif
5344   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5345   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5346     if( pFunc->iDistinct>=0 ){
5347       Expr *pE = pFunc->pExpr;
5348       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5349       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5350         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5351            "argument");
5352         pFunc->iDistinct = -1;
5353       }else{
5354         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5355         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5356                           (char*)pKeyInfo, P4_KEYINFO);
5357       }
5358     }
5359   }
5360 }
5361 
5362 /*
5363 ** Invoke the OP_AggFinalize opcode for every aggregate function
5364 ** in the AggInfo structure.
5365 */
5366 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5367   Vdbe *v = pParse->pVdbe;
5368   int i;
5369   struct AggInfo_func *pF;
5370   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5371     ExprList *pList = pF->pExpr->x.pList;
5372     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5373     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5374     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5375   }
5376 }
5377 
5378 
5379 /*
5380 ** Update the accumulator memory cells for an aggregate based on
5381 ** the current cursor position.
5382 **
5383 ** If regAcc is non-zero and there are no min() or max() aggregates
5384 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5385 ** registers if register regAcc contains 0. The caller will take care
5386 ** of setting and clearing regAcc.
5387 */
5388 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5389   Vdbe *v = pParse->pVdbe;
5390   int i;
5391   int regHit = 0;
5392   int addrHitTest = 0;
5393   struct AggInfo_func *pF;
5394   struct AggInfo_col *pC;
5395 
5396   pAggInfo->directMode = 1;
5397   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5398     int nArg;
5399     int addrNext = 0;
5400     int regAgg;
5401     ExprList *pList = pF->pExpr->x.pList;
5402     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5403     assert( !IsWindowFunc(pF->pExpr) );
5404     if( ExprHasProperty(pF->pExpr, EP_WinFunc) ){
5405       Expr *pFilter = pF->pExpr->y.pWin->pFilter;
5406       if( pAggInfo->nAccumulator
5407        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5408       ){
5409         if( regHit==0 ) regHit = ++pParse->nMem;
5410         /* If this is the first row of the group (regAcc==0), clear the
5411         ** "magnet" register regHit so that the accumulator registers
5412         ** are populated if the FILTER clause jumps over the the
5413         ** invocation of min() or max() altogether. Or, if this is not
5414         ** the first row (regAcc==1), set the magnet register so that the
5415         ** accumulators are not populated unless the min()/max() is invoked and
5416         ** indicates that they should be.  */
5417         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5418       }
5419       addrNext = sqlite3VdbeMakeLabel(pParse);
5420       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5421     }
5422     if( pList ){
5423       nArg = pList->nExpr;
5424       regAgg = sqlite3GetTempRange(pParse, nArg);
5425       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5426     }else{
5427       nArg = 0;
5428       regAgg = 0;
5429     }
5430     if( pF->iDistinct>=0 ){
5431       if( addrNext==0 ){
5432         addrNext = sqlite3VdbeMakeLabel(pParse);
5433       }
5434       testcase( nArg==0 );  /* Error condition */
5435       testcase( nArg>1 );   /* Also an error */
5436       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5437     }
5438     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5439       CollSeq *pColl = 0;
5440       struct ExprList_item *pItem;
5441       int j;
5442       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5443       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5444         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5445       }
5446       if( !pColl ){
5447         pColl = pParse->db->pDfltColl;
5448       }
5449       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5450       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5451     }
5452     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5453     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5454     sqlite3VdbeChangeP5(v, (u8)nArg);
5455     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5456     if( addrNext ){
5457       sqlite3VdbeResolveLabel(v, addrNext);
5458     }
5459   }
5460   if( regHit==0 && pAggInfo->nAccumulator ){
5461     regHit = regAcc;
5462   }
5463   if( regHit ){
5464     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5465   }
5466   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5467     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5468   }
5469 
5470   pAggInfo->directMode = 0;
5471   if( addrHitTest ){
5472     sqlite3VdbeJumpHere(v, addrHitTest);
5473   }
5474 }
5475 
5476 /*
5477 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5478 ** count(*) query ("SELECT count(*) FROM pTab").
5479 */
5480 #ifndef SQLITE_OMIT_EXPLAIN
5481 static void explainSimpleCount(
5482   Parse *pParse,                  /* Parse context */
5483   Table *pTab,                    /* Table being queried */
5484   Index *pIdx                     /* Index used to optimize scan, or NULL */
5485 ){
5486   if( pParse->explain==2 ){
5487     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5488     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5489         pTab->zName,
5490         bCover ? " USING COVERING INDEX " : "",
5491         bCover ? pIdx->zName : ""
5492     );
5493   }
5494 }
5495 #else
5496 # define explainSimpleCount(a,b,c)
5497 #endif
5498 
5499 /*
5500 ** sqlite3WalkExpr() callback used by havingToWhere().
5501 **
5502 ** If the node passed to the callback is a TK_AND node, return
5503 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5504 **
5505 ** Otherwise, return WRC_Prune. In this case, also check if the
5506 ** sub-expression matches the criteria for being moved to the WHERE
5507 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5508 ** within the HAVING expression with a constant "1".
5509 */
5510 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5511   if( pExpr->op!=TK_AND ){
5512     Select *pS = pWalker->u.pSelect;
5513     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5514       sqlite3 *db = pWalker->pParse->db;
5515       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5516       if( pNew ){
5517         Expr *pWhere = pS->pWhere;
5518         SWAP(Expr, *pNew, *pExpr);
5519         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5520         pS->pWhere = pNew;
5521         pWalker->eCode = 1;
5522       }
5523     }
5524     return WRC_Prune;
5525   }
5526   return WRC_Continue;
5527 }
5528 
5529 /*
5530 ** Transfer eligible terms from the HAVING clause of a query, which is
5531 ** processed after grouping, to the WHERE clause, which is processed before
5532 ** grouping. For example, the query:
5533 **
5534 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5535 **
5536 ** can be rewritten as:
5537 **
5538 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5539 **
5540 ** A term of the HAVING expression is eligible for transfer if it consists
5541 ** entirely of constants and expressions that are also GROUP BY terms that
5542 ** use the "BINARY" collation sequence.
5543 */
5544 static void havingToWhere(Parse *pParse, Select *p){
5545   Walker sWalker;
5546   memset(&sWalker, 0, sizeof(sWalker));
5547   sWalker.pParse = pParse;
5548   sWalker.xExprCallback = havingToWhereExprCb;
5549   sWalker.u.pSelect = p;
5550   sqlite3WalkExpr(&sWalker, p->pHaving);
5551 #if SELECTTRACE_ENABLED
5552   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5553     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5554     sqlite3TreeViewSelect(0, p, 0);
5555   }
5556 #endif
5557 }
5558 
5559 /*
5560 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5561 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5562 ** then return 0.
5563 */
5564 static struct SrcList_item *isSelfJoinView(
5565   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5566   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5567 ){
5568   struct SrcList_item *pItem;
5569   for(pItem = pTabList->a; pItem<pThis; pItem++){
5570     Select *pS1;
5571     if( pItem->pSelect==0 ) continue;
5572     if( pItem->fg.viaCoroutine ) continue;
5573     if( pItem->zName==0 ) continue;
5574     assert( pItem->pTab!=0 );
5575     assert( pThis->pTab!=0 );
5576     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5577     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5578     pS1 = pItem->pSelect;
5579     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5580       /* The query flattener left two different CTE tables with identical
5581       ** names in the same FROM clause. */
5582       continue;
5583     }
5584     if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5585      || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5586     ){
5587       /* The view was modified by some other optimization such as
5588       ** pushDownWhereTerms() */
5589       continue;
5590     }
5591     return pItem;
5592   }
5593   return 0;
5594 }
5595 
5596 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5597 /*
5598 ** Attempt to transform a query of the form
5599 **
5600 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5601 **
5602 ** Into this:
5603 **
5604 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5605 **
5606 ** The transformation only works if all of the following are true:
5607 **
5608 **   *  The subquery is a UNION ALL of two or more terms
5609 **   *  The subquery does not have a LIMIT clause
5610 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5611 **   *  The outer query is a simple count(*) with no WHERE clause or other
5612 **      extraneous syntax.
5613 **
5614 ** Return TRUE if the optimization is undertaken.
5615 */
5616 static int countOfViewOptimization(Parse *pParse, Select *p){
5617   Select *pSub, *pPrior;
5618   Expr *pExpr;
5619   Expr *pCount;
5620   sqlite3 *db;
5621   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5622   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5623   if( p->pWhere ) return 0;
5624   if( p->pGroupBy ) return 0;
5625   pExpr = p->pEList->a[0].pExpr;
5626   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5627   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5628   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5629   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5630   pSub = p->pSrc->a[0].pSelect;
5631   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5632   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5633   do{
5634     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5635     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5636     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5637     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5638     pSub = pSub->pPrior;                              /* Repeat over compound */
5639   }while( pSub );
5640 
5641   /* If we reach this point then it is OK to perform the transformation */
5642 
5643   db = pParse->db;
5644   pCount = pExpr;
5645   pExpr = 0;
5646   pSub = p->pSrc->a[0].pSelect;
5647   p->pSrc->a[0].pSelect = 0;
5648   sqlite3SrcListDelete(db, p->pSrc);
5649   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5650   while( pSub ){
5651     Expr *pTerm;
5652     pPrior = pSub->pPrior;
5653     pSub->pPrior = 0;
5654     pSub->pNext = 0;
5655     pSub->selFlags |= SF_Aggregate;
5656     pSub->selFlags &= ~SF_Compound;
5657     pSub->nSelectRow = 0;
5658     sqlite3ExprListDelete(db, pSub->pEList);
5659     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5660     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5661     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5662     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5663     if( pExpr==0 ){
5664       pExpr = pTerm;
5665     }else{
5666       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5667     }
5668     pSub = pPrior;
5669   }
5670   p->pEList->a[0].pExpr = pExpr;
5671   p->selFlags &= ~SF_Aggregate;
5672 
5673 #if SELECTTRACE_ENABLED
5674   if( sqlite3SelectTrace & 0x400 ){
5675     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5676     sqlite3TreeViewSelect(0, p, 0);
5677   }
5678 #endif
5679   return 1;
5680 }
5681 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5682 
5683 /*
5684 ** Generate code for the SELECT statement given in the p argument.
5685 **
5686 ** The results are returned according to the SelectDest structure.
5687 ** See comments in sqliteInt.h for further information.
5688 **
5689 ** This routine returns the number of errors.  If any errors are
5690 ** encountered, then an appropriate error message is left in
5691 ** pParse->zErrMsg.
5692 **
5693 ** This routine does NOT free the Select structure passed in.  The
5694 ** calling function needs to do that.
5695 */
5696 int sqlite3Select(
5697   Parse *pParse,         /* The parser context */
5698   Select *p,             /* The SELECT statement being coded. */
5699   SelectDest *pDest      /* What to do with the query results */
5700 ){
5701   int i, j;              /* Loop counters */
5702   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5703   Vdbe *v;               /* The virtual machine under construction */
5704   int isAgg;             /* True for select lists like "count(*)" */
5705   ExprList *pEList = 0;  /* List of columns to extract. */
5706   SrcList *pTabList;     /* List of tables to select from */
5707   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5708   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5709   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5710   int rc = 1;            /* Value to return from this function */
5711   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5712   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5713   AggInfo sAggInfo;      /* Information used by aggregate queries */
5714   int iEnd;              /* Address of the end of the query */
5715   sqlite3 *db;           /* The database connection */
5716   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5717   u8 minMaxFlag;                 /* Flag for min/max queries */
5718 
5719   db = pParse->db;
5720   v = sqlite3GetVdbe(pParse);
5721   if( p==0 || db->mallocFailed || pParse->nErr ){
5722     return 1;
5723   }
5724   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5725   memset(&sAggInfo, 0, sizeof(sAggInfo));
5726 #if SELECTTRACE_ENABLED
5727   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5728   if( sqlite3SelectTrace & 0x100 ){
5729     sqlite3TreeViewSelect(0, p, 0);
5730   }
5731 #endif
5732 
5733   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5734   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5735   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5736   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5737   if( IgnorableOrderby(pDest) ){
5738     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5739            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5740            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5741            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5742     /* If ORDER BY makes no difference in the output then neither does
5743     ** DISTINCT so it can be removed too. */
5744     sqlite3ExprListDelete(db, p->pOrderBy);
5745     p->pOrderBy = 0;
5746     p->selFlags &= ~SF_Distinct;
5747   }
5748   sqlite3SelectPrep(pParse, p, 0);
5749   if( pParse->nErr || db->mallocFailed ){
5750     goto select_end;
5751   }
5752   assert( p->pEList!=0 );
5753 #if SELECTTRACE_ENABLED
5754   if( sqlite3SelectTrace & 0x104 ){
5755     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5756     sqlite3TreeViewSelect(0, p, 0);
5757   }
5758 #endif
5759 
5760   if( pDest->eDest==SRT_Output ){
5761     generateColumnNames(pParse, p);
5762   }
5763 
5764 #ifndef SQLITE_OMIT_WINDOWFUNC
5765   rc = sqlite3WindowRewrite(pParse, p);
5766   if( rc ){
5767     assert( db->mallocFailed || pParse->nErr>0 );
5768     goto select_end;
5769   }
5770 #if SELECTTRACE_ENABLED
5771   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
5772     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5773     sqlite3TreeViewSelect(0, p, 0);
5774   }
5775 #endif
5776 #endif /* SQLITE_OMIT_WINDOWFUNC */
5777   pTabList = p->pSrc;
5778   isAgg = (p->selFlags & SF_Aggregate)!=0;
5779   memset(&sSort, 0, sizeof(sSort));
5780   sSort.pOrderBy = p->pOrderBy;
5781 
5782   /* Try to various optimizations (flattening subqueries, and strength
5783   ** reduction of join operators) in the FROM clause up into the main query
5784   */
5785 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5786   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5787     struct SrcList_item *pItem = &pTabList->a[i];
5788     Select *pSub = pItem->pSelect;
5789     Table *pTab = pItem->pTab;
5790 
5791     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5792     ** of the LEFT JOIN used in the WHERE clause.
5793     */
5794     if( (pItem->fg.jointype & JT_LEFT)!=0
5795      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5796      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5797     ){
5798       SELECTTRACE(0x100,pParse,p,
5799                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5800       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5801       unsetJoinExpr(p->pWhere, pItem->iCursor);
5802     }
5803 
5804     /* No futher action if this term of the FROM clause is no a subquery */
5805     if( pSub==0 ) continue;
5806 
5807     /* Catch mismatch in the declared columns of a view and the number of
5808     ** columns in the SELECT on the RHS */
5809     if( pTab->nCol!=pSub->pEList->nExpr ){
5810       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5811                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5812       goto select_end;
5813     }
5814 
5815     /* Do not try to flatten an aggregate subquery.
5816     **
5817     ** Flattening an aggregate subquery is only possible if the outer query
5818     ** is not a join.  But if the outer query is not a join, then the subquery
5819     ** will be implemented as a co-routine and there is no advantage to
5820     ** flattening in that case.
5821     */
5822     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5823     assert( pSub->pGroupBy==0 );
5824 
5825     /* If the outer query contains a "complex" result set (that is,
5826     ** if the result set of the outer query uses functions or subqueries)
5827     ** and if the subquery contains an ORDER BY clause and if
5828     ** it will be implemented as a co-routine, then do not flatten.  This
5829     ** restriction allows SQL constructs like this:
5830     **
5831     **  SELECT expensive_function(x)
5832     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5833     **
5834     ** The expensive_function() is only computed on the 10 rows that
5835     ** are output, rather than every row of the table.
5836     **
5837     ** The requirement that the outer query have a complex result set
5838     ** means that flattening does occur on simpler SQL constraints without
5839     ** the expensive_function() like:
5840     **
5841     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5842     */
5843     if( pSub->pOrderBy!=0
5844      && i==0
5845      && (p->selFlags & SF_ComplexResult)!=0
5846      && (pTabList->nSrc==1
5847          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5848     ){
5849       continue;
5850     }
5851 
5852     if( flattenSubquery(pParse, p, i, isAgg) ){
5853       if( pParse->nErr ) goto select_end;
5854       /* This subquery can be absorbed into its parent. */
5855       i = -1;
5856     }
5857     pTabList = p->pSrc;
5858     if( db->mallocFailed ) goto select_end;
5859     if( !IgnorableOrderby(pDest) ){
5860       sSort.pOrderBy = p->pOrderBy;
5861     }
5862   }
5863 #endif
5864 
5865 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5866   /* Handle compound SELECT statements using the separate multiSelect()
5867   ** procedure.
5868   */
5869   if( p->pPrior ){
5870     rc = multiSelect(pParse, p, pDest);
5871 #if SELECTTRACE_ENABLED
5872     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5873     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5874       sqlite3TreeViewSelect(0, p, 0);
5875     }
5876 #endif
5877     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5878     return rc;
5879   }
5880 #endif
5881 
5882   /* Do the WHERE-clause constant propagation optimization if this is
5883   ** a join.  No need to speed time on this operation for non-join queries
5884   ** as the equivalent optimization will be handled by query planner in
5885   ** sqlite3WhereBegin().
5886   */
5887   if( pTabList->nSrc>1
5888    && OptimizationEnabled(db, SQLITE_PropagateConst)
5889    && propagateConstants(pParse, p)
5890   ){
5891 #if SELECTTRACE_ENABLED
5892     if( sqlite3SelectTrace & 0x100 ){
5893       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5894       sqlite3TreeViewSelect(0, p, 0);
5895     }
5896 #endif
5897   }else{
5898     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5899   }
5900 
5901 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5902   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5903    && countOfViewOptimization(pParse, p)
5904   ){
5905     if( db->mallocFailed ) goto select_end;
5906     pEList = p->pEList;
5907     pTabList = p->pSrc;
5908   }
5909 #endif
5910 
5911   /* For each term in the FROM clause, do two things:
5912   ** (1) Authorized unreferenced tables
5913   ** (2) Generate code for all sub-queries
5914   */
5915   for(i=0; i<pTabList->nSrc; i++){
5916     struct SrcList_item *pItem = &pTabList->a[i];
5917     SelectDest dest;
5918     Select *pSub;
5919 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5920     const char *zSavedAuthContext;
5921 #endif
5922 
5923     /* Issue SQLITE_READ authorizations with a fake column name for any
5924     ** tables that are referenced but from which no values are extracted.
5925     ** Examples of where these kinds of null SQLITE_READ authorizations
5926     ** would occur:
5927     **
5928     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5929     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5930     **
5931     ** The fake column name is an empty string.  It is possible for a table to
5932     ** have a column named by the empty string, in which case there is no way to
5933     ** distinguish between an unreferenced table and an actual reference to the
5934     ** "" column. The original design was for the fake column name to be a NULL,
5935     ** which would be unambiguous.  But legacy authorization callbacks might
5936     ** assume the column name is non-NULL and segfault.  The use of an empty
5937     ** string for the fake column name seems safer.
5938     */
5939     if( pItem->colUsed==0 && pItem->zName!=0 ){
5940       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5941     }
5942 
5943 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5944     /* Generate code for all sub-queries in the FROM clause
5945     */
5946     pSub = pItem->pSelect;
5947     if( pSub==0 ) continue;
5948 
5949     /* The code for a subquery should only be generated once, though it is
5950     ** technically harmless for it to be generated multiple times. The
5951     ** following assert() will detect if something changes to cause
5952     ** the same subquery to be coded multiple times, as a signal to the
5953     ** developers to try to optimize the situation.
5954     **
5955     ** Update 2019-07-24:
5956     ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
5957     ** The dbsqlfuzz fuzzer found a case where the same subquery gets
5958     ** coded twice.  So this assert() now becomes a testcase().  It should
5959     ** be very rare, though.
5960     */
5961     testcase( pItem->addrFillSub!=0 );
5962 
5963     /* Increment Parse.nHeight by the height of the largest expression
5964     ** tree referred to by this, the parent select. The child select
5965     ** may contain expression trees of at most
5966     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5967     ** more conservative than necessary, but much easier than enforcing
5968     ** an exact limit.
5969     */
5970     pParse->nHeight += sqlite3SelectExprHeight(p);
5971 
5972     /* Make copies of constant WHERE-clause terms in the outer query down
5973     ** inside the subquery.  This can help the subquery to run more efficiently.
5974     */
5975     if( OptimizationEnabled(db, SQLITE_PushDown)
5976      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5977                            (pItem->fg.jointype & JT_OUTER)!=0)
5978     ){
5979 #if SELECTTRACE_ENABLED
5980       if( sqlite3SelectTrace & 0x100 ){
5981         SELECTTRACE(0x100,pParse,p,
5982             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5983         sqlite3TreeViewSelect(0, p, 0);
5984       }
5985 #endif
5986     }else{
5987       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5988     }
5989 
5990     zSavedAuthContext = pParse->zAuthContext;
5991     pParse->zAuthContext = pItem->zName;
5992 
5993     /* Generate code to implement the subquery
5994     **
5995     ** The subquery is implemented as a co-routine if the subquery is
5996     ** guaranteed to be the outer loop (so that it does not need to be
5997     ** computed more than once)
5998     **
5999     ** TODO: Are there other reasons beside (1) to use a co-routine
6000     ** implementation?
6001     */
6002     if( i==0
6003      && (pTabList->nSrc==1
6004             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6005     ){
6006       /* Implement a co-routine that will return a single row of the result
6007       ** set on each invocation.
6008       */
6009       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6010 
6011       pItem->regReturn = ++pParse->nMem;
6012       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6013       VdbeComment((v, "%s", pItem->pTab->zName));
6014       pItem->addrFillSub = addrTop;
6015       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6016       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6017       sqlite3Select(pParse, pSub, &dest);
6018       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6019       pItem->fg.viaCoroutine = 1;
6020       pItem->regResult = dest.iSdst;
6021       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6022       sqlite3VdbeJumpHere(v, addrTop-1);
6023       sqlite3ClearTempRegCache(pParse);
6024     }else{
6025       /* Generate a subroutine that will fill an ephemeral table with
6026       ** the content of this subquery.  pItem->addrFillSub will point
6027       ** to the address of the generated subroutine.  pItem->regReturn
6028       ** is a register allocated to hold the subroutine return address
6029       */
6030       int topAddr;
6031       int onceAddr = 0;
6032       int retAddr;
6033       struct SrcList_item *pPrior;
6034 
6035       testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6036       pItem->regReturn = ++pParse->nMem;
6037       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6038       pItem->addrFillSub = topAddr+1;
6039       if( pItem->fg.isCorrelated==0 ){
6040         /* If the subquery is not correlated and if we are not inside of
6041         ** a trigger, then we only need to compute the value of the subquery
6042         ** once. */
6043         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6044         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6045       }else{
6046         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6047       }
6048       pPrior = isSelfJoinView(pTabList, pItem);
6049       if( pPrior ){
6050         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6051         assert( pPrior->pSelect!=0 );
6052         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6053       }else{
6054         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6055         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6056         sqlite3Select(pParse, pSub, &dest);
6057       }
6058       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6059       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6060       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6061       VdbeComment((v, "end %s", pItem->pTab->zName));
6062       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6063       sqlite3ClearTempRegCache(pParse);
6064     }
6065     if( db->mallocFailed ) goto select_end;
6066     pParse->nHeight -= sqlite3SelectExprHeight(p);
6067     pParse->zAuthContext = zSavedAuthContext;
6068 #endif
6069   }
6070 
6071   /* Various elements of the SELECT copied into local variables for
6072   ** convenience */
6073   pEList = p->pEList;
6074   pWhere = p->pWhere;
6075   pGroupBy = p->pGroupBy;
6076   pHaving = p->pHaving;
6077   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6078 
6079 #if SELECTTRACE_ENABLED
6080   if( sqlite3SelectTrace & 0x400 ){
6081     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6082     sqlite3TreeViewSelect(0, p, 0);
6083   }
6084 #endif
6085 
6086   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6087   ** if the select-list is the same as the ORDER BY list, then this query
6088   ** can be rewritten as a GROUP BY. In other words, this:
6089   **
6090   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6091   **
6092   ** is transformed to:
6093   **
6094   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6095   **
6096   ** The second form is preferred as a single index (or temp-table) may be
6097   ** used for both the ORDER BY and DISTINCT processing. As originally
6098   ** written the query must use a temp-table for at least one of the ORDER
6099   ** BY and DISTINCT, and an index or separate temp-table for the other.
6100   */
6101   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6102    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6103    && p->pWin==0
6104   ){
6105     p->selFlags &= ~SF_Distinct;
6106     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6107     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6108     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6109     ** original setting of the SF_Distinct flag, not the current setting */
6110     assert( sDistinct.isTnct );
6111 
6112 #if SELECTTRACE_ENABLED
6113     if( sqlite3SelectTrace & 0x400 ){
6114       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6115       sqlite3TreeViewSelect(0, p, 0);
6116     }
6117 #endif
6118   }
6119 
6120   /* If there is an ORDER BY clause, then create an ephemeral index to
6121   ** do the sorting.  But this sorting ephemeral index might end up
6122   ** being unused if the data can be extracted in pre-sorted order.
6123   ** If that is the case, then the OP_OpenEphemeral instruction will be
6124   ** changed to an OP_Noop once we figure out that the sorting index is
6125   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6126   ** that change.
6127   */
6128   if( sSort.pOrderBy ){
6129     KeyInfo *pKeyInfo;
6130     pKeyInfo = sqlite3KeyInfoFromExprList(
6131         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6132     sSort.iECursor = pParse->nTab++;
6133     sSort.addrSortIndex =
6134       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6135           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6136           (char*)pKeyInfo, P4_KEYINFO
6137       );
6138   }else{
6139     sSort.addrSortIndex = -1;
6140   }
6141 
6142   /* If the output is destined for a temporary table, open that table.
6143   */
6144   if( pDest->eDest==SRT_EphemTab ){
6145     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6146   }
6147 
6148   /* Set the limiter.
6149   */
6150   iEnd = sqlite3VdbeMakeLabel(pParse);
6151   if( (p->selFlags & SF_FixedLimit)==0 ){
6152     p->nSelectRow = 320;  /* 4 billion rows */
6153   }
6154   computeLimitRegisters(pParse, p, iEnd);
6155   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6156     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6157     sSort.sortFlags |= SORTFLAG_UseSorter;
6158   }
6159 
6160   /* Open an ephemeral index to use for the distinct set.
6161   */
6162   if( p->selFlags & SF_Distinct ){
6163     sDistinct.tabTnct = pParse->nTab++;
6164     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6165                        sDistinct.tabTnct, 0, 0,
6166                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6167                        P4_KEYINFO);
6168     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6169     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6170   }else{
6171     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6172   }
6173 
6174   if( !isAgg && pGroupBy==0 ){
6175     /* No aggregate functions and no GROUP BY clause */
6176     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6177                    | (p->selFlags & SF_FixedLimit);
6178 #ifndef SQLITE_OMIT_WINDOWFUNC
6179     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6180     if( pWin ){
6181       sqlite3WindowCodeInit(pParse, p);
6182     }
6183 #endif
6184     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6185 
6186 
6187     /* Begin the database scan. */
6188     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6189     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6190                                p->pEList, wctrlFlags, p->nSelectRow);
6191     if( pWInfo==0 ) goto select_end;
6192     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6193       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6194     }
6195     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6196       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6197     }
6198     if( sSort.pOrderBy ){
6199       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6200       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6201       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6202         sSort.pOrderBy = 0;
6203       }
6204     }
6205 
6206     /* If sorting index that was created by a prior OP_OpenEphemeral
6207     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6208     ** into an OP_Noop.
6209     */
6210     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6211       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6212     }
6213 
6214     assert( p->pEList==pEList );
6215 #ifndef SQLITE_OMIT_WINDOWFUNC
6216     if( pWin ){
6217       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6218       int iCont = sqlite3VdbeMakeLabel(pParse);
6219       int iBreak = sqlite3VdbeMakeLabel(pParse);
6220       int regGosub = ++pParse->nMem;
6221 
6222       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6223 
6224       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6225       sqlite3VdbeResolveLabel(v, addrGosub);
6226       VdbeNoopComment((v, "inner-loop subroutine"));
6227       sSort.labelOBLopt = 0;
6228       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6229       sqlite3VdbeResolveLabel(v, iCont);
6230       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6231       VdbeComment((v, "end inner-loop subroutine"));
6232       sqlite3VdbeResolveLabel(v, iBreak);
6233     }else
6234 #endif /* SQLITE_OMIT_WINDOWFUNC */
6235     {
6236       /* Use the standard inner loop. */
6237       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6238           sqlite3WhereContinueLabel(pWInfo),
6239           sqlite3WhereBreakLabel(pWInfo));
6240 
6241       /* End the database scan loop.
6242       */
6243       sqlite3WhereEnd(pWInfo);
6244     }
6245   }else{
6246     /* This case when there exist aggregate functions or a GROUP BY clause
6247     ** or both */
6248     NameContext sNC;    /* Name context for processing aggregate information */
6249     int iAMem;          /* First Mem address for storing current GROUP BY */
6250     int iBMem;          /* First Mem address for previous GROUP BY */
6251     int iUseFlag;       /* Mem address holding flag indicating that at least
6252                         ** one row of the input to the aggregator has been
6253                         ** processed */
6254     int iAbortFlag;     /* Mem address which causes query abort if positive */
6255     int groupBySort;    /* Rows come from source in GROUP BY order */
6256     int addrEnd;        /* End of processing for this SELECT */
6257     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6258     int sortOut = 0;    /* Output register from the sorter */
6259     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6260 
6261     /* Remove any and all aliases between the result set and the
6262     ** GROUP BY clause.
6263     */
6264     if( pGroupBy ){
6265       int k;                        /* Loop counter */
6266       struct ExprList_item *pItem;  /* For looping over expression in a list */
6267 
6268       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6269         pItem->u.x.iAlias = 0;
6270       }
6271       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6272         pItem->u.x.iAlias = 0;
6273       }
6274       assert( 66==sqlite3LogEst(100) );
6275       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6276 
6277       /* If there is both a GROUP BY and an ORDER BY clause and they are
6278       ** identical, then it may be possible to disable the ORDER BY clause
6279       ** on the grounds that the GROUP BY will cause elements to come out
6280       ** in the correct order. It also may not - the GROUP BY might use a
6281       ** database index that causes rows to be grouped together as required
6282       ** but not actually sorted. Either way, record the fact that the
6283       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6284       ** variable.  */
6285       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6286         int ii;
6287         /* The GROUP BY processing doesn't care whether rows are delivered in
6288         ** ASC or DESC order - only that each group is returned contiguously.
6289         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6290         ** ORDER BY to maximize the chances of rows being delivered in an
6291         ** order that makes the ORDER BY redundant.  */
6292         for(ii=0; ii<pGroupBy->nExpr; ii++){
6293           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6294           pGroupBy->a[ii].sortFlags = sortFlags;
6295         }
6296         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6297           orderByGrp = 1;
6298         }
6299       }
6300     }else{
6301       assert( 0==sqlite3LogEst(1) );
6302       p->nSelectRow = 0;
6303     }
6304 
6305     /* Create a label to jump to when we want to abort the query */
6306     addrEnd = sqlite3VdbeMakeLabel(pParse);
6307 
6308     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6309     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6310     ** SELECT statement.
6311     */
6312     memset(&sNC, 0, sizeof(sNC));
6313     sNC.pParse = pParse;
6314     sNC.pSrcList = pTabList;
6315     sNC.uNC.pAggInfo = &sAggInfo;
6316     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6317     sAggInfo.mnReg = pParse->nMem+1;
6318     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6319     sAggInfo.pGroupBy = pGroupBy;
6320     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6321     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6322     if( pHaving ){
6323       if( pGroupBy ){
6324         assert( pWhere==p->pWhere );
6325         assert( pHaving==p->pHaving );
6326         assert( pGroupBy==p->pGroupBy );
6327         havingToWhere(pParse, p);
6328         pWhere = p->pWhere;
6329       }
6330       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6331     }
6332     sAggInfo.nAccumulator = sAggInfo.nColumn;
6333     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6334       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6335     }else{
6336       minMaxFlag = WHERE_ORDERBY_NORMAL;
6337     }
6338     for(i=0; i<sAggInfo.nFunc; i++){
6339       Expr *pExpr = sAggInfo.aFunc[i].pExpr;
6340       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6341       sNC.ncFlags |= NC_InAggFunc;
6342       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6343 #ifndef SQLITE_OMIT_WINDOWFUNC
6344       assert( !IsWindowFunc(pExpr) );
6345       if( ExprHasProperty(pExpr, EP_WinFunc) ){
6346         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6347       }
6348 #endif
6349       sNC.ncFlags &= ~NC_InAggFunc;
6350     }
6351     sAggInfo.mxReg = pParse->nMem;
6352     if( db->mallocFailed ) goto select_end;
6353 #if SELECTTRACE_ENABLED
6354     if( sqlite3SelectTrace & 0x400 ){
6355       int ii;
6356       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6357       sqlite3TreeViewSelect(0, p, 0);
6358       for(ii=0; ii<sAggInfo.nColumn; ii++){
6359         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6360             ii, sAggInfo.aCol[ii].iMem);
6361         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6362       }
6363       for(ii=0; ii<sAggInfo.nFunc; ii++){
6364         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6365             ii, sAggInfo.aFunc[ii].iMem);
6366         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6367       }
6368     }
6369 #endif
6370 
6371 
6372     /* Processing for aggregates with GROUP BY is very different and
6373     ** much more complex than aggregates without a GROUP BY.
6374     */
6375     if( pGroupBy ){
6376       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6377       int addr1;          /* A-vs-B comparision jump */
6378       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6379       int regOutputRow;   /* Return address register for output subroutine */
6380       int addrSetAbort;   /* Set the abort flag and return */
6381       int addrTopOfLoop;  /* Top of the input loop */
6382       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6383       int addrReset;      /* Subroutine for resetting the accumulator */
6384       int regReset;       /* Return address register for reset subroutine */
6385 
6386       /* If there is a GROUP BY clause we might need a sorting index to
6387       ** implement it.  Allocate that sorting index now.  If it turns out
6388       ** that we do not need it after all, the OP_SorterOpen instruction
6389       ** will be converted into a Noop.
6390       */
6391       sAggInfo.sortingIdx = pParse->nTab++;
6392       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6393       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6394           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6395           0, (char*)pKeyInfo, P4_KEYINFO);
6396 
6397       /* Initialize memory locations used by GROUP BY aggregate processing
6398       */
6399       iUseFlag = ++pParse->nMem;
6400       iAbortFlag = ++pParse->nMem;
6401       regOutputRow = ++pParse->nMem;
6402       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6403       regReset = ++pParse->nMem;
6404       addrReset = sqlite3VdbeMakeLabel(pParse);
6405       iAMem = pParse->nMem + 1;
6406       pParse->nMem += pGroupBy->nExpr;
6407       iBMem = pParse->nMem + 1;
6408       pParse->nMem += pGroupBy->nExpr;
6409       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6410       VdbeComment((v, "clear abort flag"));
6411       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6412 
6413       /* Begin a loop that will extract all source rows in GROUP BY order.
6414       ** This might involve two separate loops with an OP_Sort in between, or
6415       ** it might be a single loop that uses an index to extract information
6416       ** in the right order to begin with.
6417       */
6418       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6419       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6420       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6421           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6422       );
6423       if( pWInfo==0 ) goto select_end;
6424       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6425         /* The optimizer is able to deliver rows in group by order so
6426         ** we do not have to sort.  The OP_OpenEphemeral table will be
6427         ** cancelled later because we still need to use the pKeyInfo
6428         */
6429         groupBySort = 0;
6430       }else{
6431         /* Rows are coming out in undetermined order.  We have to push
6432         ** each row into a sorting index, terminate the first loop,
6433         ** then loop over the sorting index in order to get the output
6434         ** in sorted order
6435         */
6436         int regBase;
6437         int regRecord;
6438         int nCol;
6439         int nGroupBy;
6440 
6441         explainTempTable(pParse,
6442             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6443                     "DISTINCT" : "GROUP BY");
6444 
6445         groupBySort = 1;
6446         nGroupBy = pGroupBy->nExpr;
6447         nCol = nGroupBy;
6448         j = nGroupBy;
6449         for(i=0; i<sAggInfo.nColumn; i++){
6450           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6451             nCol++;
6452             j++;
6453           }
6454         }
6455         regBase = sqlite3GetTempRange(pParse, nCol);
6456         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6457         j = nGroupBy;
6458         for(i=0; i<sAggInfo.nColumn; i++){
6459           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6460           if( pCol->iSorterColumn>=j ){
6461             int r1 = j + regBase;
6462             sqlite3ExprCodeGetColumnOfTable(v,
6463                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6464             j++;
6465           }
6466         }
6467         regRecord = sqlite3GetTempReg(pParse);
6468         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6469         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6470         sqlite3ReleaseTempReg(pParse, regRecord);
6471         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6472         sqlite3WhereEnd(pWInfo);
6473         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6474         sortOut = sqlite3GetTempReg(pParse);
6475         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6476         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6477         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6478         sAggInfo.useSortingIdx = 1;
6479       }
6480 
6481       /* If the index or temporary table used by the GROUP BY sort
6482       ** will naturally deliver rows in the order required by the ORDER BY
6483       ** clause, cancel the ephemeral table open coded earlier.
6484       **
6485       ** This is an optimization - the correct answer should result regardless.
6486       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6487       ** disable this optimization for testing purposes.  */
6488       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6489        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6490       ){
6491         sSort.pOrderBy = 0;
6492         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6493       }
6494 
6495       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6496       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6497       ** Then compare the current GROUP BY terms against the GROUP BY terms
6498       ** from the previous row currently stored in a0, a1, a2...
6499       */
6500       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6501       if( groupBySort ){
6502         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6503                           sortOut, sortPTab);
6504       }
6505       for(j=0; j<pGroupBy->nExpr; j++){
6506         if( groupBySort ){
6507           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6508         }else{
6509           sAggInfo.directMode = 1;
6510           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6511         }
6512       }
6513       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6514                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6515       addr1 = sqlite3VdbeCurrentAddr(v);
6516       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6517 
6518       /* Generate code that runs whenever the GROUP BY changes.
6519       ** Changes in the GROUP BY are detected by the previous code
6520       ** block.  If there were no changes, this block is skipped.
6521       **
6522       ** This code copies current group by terms in b0,b1,b2,...
6523       ** over to a0,a1,a2.  It then calls the output subroutine
6524       ** and resets the aggregate accumulator registers in preparation
6525       ** for the next GROUP BY batch.
6526       */
6527       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6528       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6529       VdbeComment((v, "output one row"));
6530       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6531       VdbeComment((v, "check abort flag"));
6532       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6533       VdbeComment((v, "reset accumulator"));
6534 
6535       /* Update the aggregate accumulators based on the content of
6536       ** the current row
6537       */
6538       sqlite3VdbeJumpHere(v, addr1);
6539       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6540       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6541       VdbeComment((v, "indicate data in accumulator"));
6542 
6543       /* End of the loop
6544       */
6545       if( groupBySort ){
6546         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6547         VdbeCoverage(v);
6548       }else{
6549         sqlite3WhereEnd(pWInfo);
6550         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6551       }
6552 
6553       /* Output the final row of result
6554       */
6555       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6556       VdbeComment((v, "output final row"));
6557 
6558       /* Jump over the subroutines
6559       */
6560       sqlite3VdbeGoto(v, addrEnd);
6561 
6562       /* Generate a subroutine that outputs a single row of the result
6563       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6564       ** is less than or equal to zero, the subroutine is a no-op.  If
6565       ** the processing calls for the query to abort, this subroutine
6566       ** increments the iAbortFlag memory location before returning in
6567       ** order to signal the caller to abort.
6568       */
6569       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6570       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6571       VdbeComment((v, "set abort flag"));
6572       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6573       sqlite3VdbeResolveLabel(v, addrOutputRow);
6574       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6575       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6576       VdbeCoverage(v);
6577       VdbeComment((v, "Groupby result generator entry point"));
6578       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6579       finalizeAggFunctions(pParse, &sAggInfo);
6580       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6581       selectInnerLoop(pParse, p, -1, &sSort,
6582                       &sDistinct, pDest,
6583                       addrOutputRow+1, addrSetAbort);
6584       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6585       VdbeComment((v, "end groupby result generator"));
6586 
6587       /* Generate a subroutine that will reset the group-by accumulator
6588       */
6589       sqlite3VdbeResolveLabel(v, addrReset);
6590       resetAccumulator(pParse, &sAggInfo);
6591       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6592       VdbeComment((v, "indicate accumulator empty"));
6593       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6594 
6595     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6596     else {
6597 #ifndef SQLITE_OMIT_BTREECOUNT
6598       Table *pTab;
6599       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6600         /* If isSimpleCount() returns a pointer to a Table structure, then
6601         ** the SQL statement is of the form:
6602         **
6603         **   SELECT count(*) FROM <tbl>
6604         **
6605         ** where the Table structure returned represents table <tbl>.
6606         **
6607         ** This statement is so common that it is optimized specially. The
6608         ** OP_Count instruction is executed either on the intkey table that
6609         ** contains the data for table <tbl> or on one of its indexes. It
6610         ** is better to execute the op on an index, as indexes are almost
6611         ** always spread across less pages than their corresponding tables.
6612         */
6613         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6614         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6615         Index *pIdx;                         /* Iterator variable */
6616         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6617         Index *pBest = 0;                    /* Best index found so far */
6618         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6619 
6620         sqlite3CodeVerifySchema(pParse, iDb);
6621         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6622 
6623         /* Search for the index that has the lowest scan cost.
6624         **
6625         ** (2011-04-15) Do not do a full scan of an unordered index.
6626         **
6627         ** (2013-10-03) Do not count the entries in a partial index.
6628         **
6629         ** In practice the KeyInfo structure will not be used. It is only
6630         ** passed to keep OP_OpenRead happy.
6631         */
6632         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6633         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6634           if( pIdx->bUnordered==0
6635            && pIdx->szIdxRow<pTab->szTabRow
6636            && pIdx->pPartIdxWhere==0
6637            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6638           ){
6639             pBest = pIdx;
6640           }
6641         }
6642         if( pBest ){
6643           iRoot = pBest->tnum;
6644           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6645         }
6646 
6647         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6648         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6649         if( pKeyInfo ){
6650           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6651         }
6652         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6653         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6654         explainSimpleCount(pParse, pTab, pBest);
6655       }else
6656 #endif /* SQLITE_OMIT_BTREECOUNT */
6657       {
6658         int regAcc = 0;           /* "populate accumulators" flag */
6659 
6660         /* If there are accumulator registers but no min() or max() functions
6661         ** without FILTER clauses, allocate register regAcc. Register regAcc
6662         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6663         ** The code generated by updateAccumulator() uses this to ensure
6664         ** that the accumulator registers are (a) updated only once if
6665         ** there are no min() or max functions or (b) always updated for the
6666         ** first row visited by the aggregate, so that they are updated at
6667         ** least once even if the FILTER clause means the min() or max()
6668         ** function visits zero rows.  */
6669         if( sAggInfo.nAccumulator ){
6670           for(i=0; i<sAggInfo.nFunc; i++){
6671             if( ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_WinFunc) ) continue;
6672             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6673           }
6674           if( i==sAggInfo.nFunc ){
6675             regAcc = ++pParse->nMem;
6676             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6677           }
6678         }
6679 
6680         /* This case runs if the aggregate has no GROUP BY clause.  The
6681         ** processing is much simpler since there is only a single row
6682         ** of output.
6683         */
6684         assert( p->pGroupBy==0 );
6685         resetAccumulator(pParse, &sAggInfo);
6686 
6687         /* If this query is a candidate for the min/max optimization, then
6688         ** minMaxFlag will have been previously set to either
6689         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6690         ** be an appropriate ORDER BY expression for the optimization.
6691         */
6692         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6693         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6694 
6695         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6696         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6697                                    0, minMaxFlag, 0);
6698         if( pWInfo==0 ){
6699           goto select_end;
6700         }
6701         updateAccumulator(pParse, regAcc, &sAggInfo);
6702         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6703         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6704           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6705           VdbeComment((v, "%s() by index",
6706                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6707         }
6708         sqlite3WhereEnd(pWInfo);
6709         finalizeAggFunctions(pParse, &sAggInfo);
6710       }
6711 
6712       sSort.pOrderBy = 0;
6713       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6714       selectInnerLoop(pParse, p, -1, 0, 0,
6715                       pDest, addrEnd, addrEnd);
6716     }
6717     sqlite3VdbeResolveLabel(v, addrEnd);
6718 
6719   } /* endif aggregate query */
6720 
6721   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6722     explainTempTable(pParse, "DISTINCT");
6723   }
6724 
6725   /* If there is an ORDER BY clause, then we need to sort the results
6726   ** and send them to the callback one by one.
6727   */
6728   if( sSort.pOrderBy ){
6729     explainTempTable(pParse,
6730                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6731     assert( p->pEList==pEList );
6732     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6733   }
6734 
6735   /* Jump here to skip this query
6736   */
6737   sqlite3VdbeResolveLabel(v, iEnd);
6738 
6739   /* The SELECT has been coded. If there is an error in the Parse structure,
6740   ** set the return code to 1. Otherwise 0. */
6741   rc = (pParse->nErr>0);
6742 
6743   /* Control jumps to here if an error is encountered above, or upon
6744   ** successful coding of the SELECT.
6745   */
6746 select_end:
6747   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6748   sqlite3DbFree(db, sAggInfo.aCol);
6749   sqlite3DbFree(db, sAggInfo.aFunc);
6750 #if SELECTTRACE_ENABLED
6751   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6752   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6753     sqlite3TreeViewSelect(0, p, 0);
6754   }
6755 #endif
6756   ExplainQueryPlanPop(pParse);
6757   return rc;
6758 }
6759