xref: /sqlite-3.40.0/src/select.c (revision 7894b854)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** Trace output macros
19 */
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace = 0;
22 # define SELECTTRACE(K,P,S,X)  \
23   if(sqlite3SelectTrace&(K))   \
24     sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\
25     sqlite3DebugPrintf X
26 #else
27 # define SELECTTRACE(K,P,S,X)
28 #endif
29 
30 
31 /*
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
35 */
36 typedef struct DistinctCtx DistinctCtx;
37 struct DistinctCtx {
38   u8 isTnct;      /* True if the DISTINCT keyword is present */
39   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
40   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
41   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
42 };
43 
44 /*
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
47 **
48 ** The aDefer[] array is used by the sorter-references optimization. For
49 ** example, assuming there is no index that can be used for the ORDER BY,
50 ** for the query:
51 **
52 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
53 **
54 ** it may be more efficient to add just the "a" values to the sorter, and
55 ** retrieve the associated "bigblob" values directly from table t1 as the
56 ** 10 smallest "a" values are extracted from the sorter.
57 **
58 ** When the sorter-reference optimization is used, there is one entry in the
59 ** aDefer[] array for each database table that may be read as values are
60 ** extracted from the sorter.
61 */
62 typedef struct SortCtx SortCtx;
63 struct SortCtx {
64   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
65   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
66   int iECursor;         /* Cursor number for the sorter */
67   int regReturn;        /* Register holding block-output return address */
68   int labelBkOut;       /* Start label for the block-output subroutine */
69   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
70   int labelDone;        /* Jump here when done, ex: LIMIT reached */
71   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
72   u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */
73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
74   u8 nDefer;            /* Number of valid entries in aDefer[] */
75   struct DeferredCsr {
76     Table *pTab;        /* Table definition */
77     int iCsr;           /* Cursor number for table */
78     int nKey;           /* Number of PK columns for table pTab (>=1) */
79   } aDefer[4];
80 #endif
81   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
82 };
83 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
84 
85 /*
86 ** Delete all the content of a Select structure.  Deallocate the structure
87 ** itself only if bFree is true.
88 */
89 static void clearSelect(sqlite3 *db, Select *p, int bFree){
90   while( p ){
91     Select *pPrior = p->pPrior;
92     sqlite3ExprListDelete(db, p->pEList);
93     sqlite3SrcListDelete(db, p->pSrc);
94     sqlite3ExprDelete(db, p->pWhere);
95     sqlite3ExprListDelete(db, p->pGroupBy);
96     sqlite3ExprDelete(db, p->pHaving);
97     sqlite3ExprListDelete(db, p->pOrderBy);
98     sqlite3ExprDelete(db, p->pLimit);
99 #ifndef SQLITE_OMIT_WINDOWFUNC
100     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
101       sqlite3WindowListDelete(db, p->pWinDefn);
102     }
103 #endif
104     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
105     if( bFree ) sqlite3DbFreeNN(db, p);
106     p = pPrior;
107     bFree = 1;
108   }
109 }
110 
111 /*
112 ** Initialize a SelectDest structure.
113 */
114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
115   pDest->eDest = (u8)eDest;
116   pDest->iSDParm = iParm;
117   pDest->zAffSdst = 0;
118   pDest->iSdst = 0;
119   pDest->nSdst = 0;
120 }
121 
122 
123 /*
124 ** Allocate a new Select structure and return a pointer to that
125 ** structure.
126 */
127 Select *sqlite3SelectNew(
128   Parse *pParse,        /* Parsing context */
129   ExprList *pEList,     /* which columns to include in the result */
130   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
131   Expr *pWhere,         /* the WHERE clause */
132   ExprList *pGroupBy,   /* the GROUP BY clause */
133   Expr *pHaving,        /* the HAVING clause */
134   ExprList *pOrderBy,   /* the ORDER BY clause */
135   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
136   Expr *pLimit          /* LIMIT value.  NULL means not used */
137 ){
138   Select *pNew;
139   Select standin;
140   pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
141   if( pNew==0 ){
142     assert( pParse->db->mallocFailed );
143     pNew = &standin;
144   }
145   if( pEList==0 ){
146     pEList = sqlite3ExprListAppend(pParse, 0,
147                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
148   }
149   pNew->pEList = pEList;
150   pNew->op = TK_SELECT;
151   pNew->selFlags = selFlags;
152   pNew->iLimit = 0;
153   pNew->iOffset = 0;
154   pNew->selId = ++pParse->nSelect;
155   pNew->addrOpenEphm[0] = -1;
156   pNew->addrOpenEphm[1] = -1;
157   pNew->nSelectRow = 0;
158   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
159   pNew->pSrc = pSrc;
160   pNew->pWhere = pWhere;
161   pNew->pGroupBy = pGroupBy;
162   pNew->pHaving = pHaving;
163   pNew->pOrderBy = pOrderBy;
164   pNew->pPrior = 0;
165   pNew->pNext = 0;
166   pNew->pLimit = pLimit;
167   pNew->pWith = 0;
168 #ifndef SQLITE_OMIT_WINDOWFUNC
169   pNew->pWin = 0;
170   pNew->pWinDefn = 0;
171 #endif
172   if( pParse->db->mallocFailed ) {
173     clearSelect(pParse->db, pNew, pNew!=&standin);
174     pNew = 0;
175   }else{
176     assert( pNew->pSrc!=0 || pParse->nErr>0 );
177   }
178   assert( pNew!=&standin );
179   return pNew;
180 }
181 
182 
183 /*
184 ** Delete the given Select structure and all of its substructures.
185 */
186 void sqlite3SelectDelete(sqlite3 *db, Select *p){
187   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
188 }
189 
190 /*
191 ** Return a pointer to the right-most SELECT statement in a compound.
192 */
193 static Select *findRightmost(Select *p){
194   while( p->pNext ) p = p->pNext;
195   return p;
196 }
197 
198 /*
199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
200 ** type of join.  Return an integer constant that expresses that type
201 ** in terms of the following bit values:
202 **
203 **     JT_INNER
204 **     JT_CROSS
205 **     JT_OUTER
206 **     JT_NATURAL
207 **     JT_LEFT
208 **     JT_RIGHT
209 **
210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
211 **
212 ** If an illegal or unsupported join type is seen, then still return
213 ** a join type, but put an error in the pParse structure.
214 */
215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
216   int jointype = 0;
217   Token *apAll[3];
218   Token *p;
219                              /*   0123456789 123456789 123456789 123 */
220   static const char zKeyText[] = "naturaleftouterightfullinnercross";
221   static const struct {
222     u8 i;        /* Beginning of keyword text in zKeyText[] */
223     u8 nChar;    /* Length of the keyword in characters */
224     u8 code;     /* Join type mask */
225   } aKeyword[] = {
226     /* natural */ { 0,  7, JT_NATURAL                },
227     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
228     /* outer   */ { 10, 5, JT_OUTER                  },
229     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
230     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
231     /* inner   */ { 23, 5, JT_INNER                  },
232     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
233   };
234   int i, j;
235   apAll[0] = pA;
236   apAll[1] = pB;
237   apAll[2] = pC;
238   for(i=0; i<3 && apAll[i]; i++){
239     p = apAll[i];
240     for(j=0; j<ArraySize(aKeyword); j++){
241       if( p->n==aKeyword[j].nChar
242           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
243         jointype |= aKeyword[j].code;
244         break;
245       }
246     }
247     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
248     if( j>=ArraySize(aKeyword) ){
249       jointype |= JT_ERROR;
250       break;
251     }
252   }
253   if(
254      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
255      (jointype & JT_ERROR)!=0
256   ){
257     const char *zSp = " ";
258     assert( pB!=0 );
259     if( pC==0 ){ zSp++; }
260     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
261        "%T %T%s%T", pA, pB, zSp, pC);
262     jointype = JT_INNER;
263   }else if( (jointype & JT_OUTER)!=0
264          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
265     sqlite3ErrorMsg(pParse,
266       "RIGHT and FULL OUTER JOINs are not currently supported");
267     jointype = JT_INNER;
268   }
269   return jointype;
270 }
271 
272 /*
273 ** Return the index of a column in a table.  Return -1 if the column
274 ** is not contained in the table.
275 */
276 static int columnIndex(Table *pTab, const char *zCol){
277   int i;
278   for(i=0; i<pTab->nCol; i++){
279     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
280   }
281   return -1;
282 }
283 
284 /*
285 ** Search the first N tables in pSrc, from left to right, looking for a
286 ** table that has a column named zCol.
287 **
288 ** When found, set *piTab and *piCol to the table index and column index
289 ** of the matching column and return TRUE.
290 **
291 ** If not found, return FALSE.
292 */
293 static int tableAndColumnIndex(
294   SrcList *pSrc,       /* Array of tables to search */
295   int N,               /* Number of tables in pSrc->a[] to search */
296   const char *zCol,    /* Name of the column we are looking for */
297   int *piTab,          /* Write index of pSrc->a[] here */
298   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
299 ){
300   int i;               /* For looping over tables in pSrc */
301   int iCol;            /* Index of column matching zCol */
302 
303   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
304   for(i=0; i<N; i++){
305     iCol = columnIndex(pSrc->a[i].pTab, zCol);
306     if( iCol>=0 ){
307       if( piTab ){
308         *piTab = i;
309         *piCol = iCol;
310       }
311       return 1;
312     }
313   }
314   return 0;
315 }
316 
317 /*
318 ** This function is used to add terms implied by JOIN syntax to the
319 ** WHERE clause expression of a SELECT statement. The new term, which
320 ** is ANDed with the existing WHERE clause, is of the form:
321 **
322 **    (tab1.col1 = tab2.col2)
323 **
324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
326 ** column iColRight of tab2.
327 */
328 static void addWhereTerm(
329   Parse *pParse,                  /* Parsing context */
330   SrcList *pSrc,                  /* List of tables in FROM clause */
331   int iLeft,                      /* Index of first table to join in pSrc */
332   int iColLeft,                   /* Index of column in first table */
333   int iRight,                     /* Index of second table in pSrc */
334   int iColRight,                  /* Index of column in second table */
335   int isOuterJoin,                /* True if this is an OUTER join */
336   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
337 ){
338   sqlite3 *db = pParse->db;
339   Expr *pE1;
340   Expr *pE2;
341   Expr *pEq;
342 
343   assert( iLeft<iRight );
344   assert( pSrc->nSrc>iRight );
345   assert( pSrc->a[iLeft].pTab );
346   assert( pSrc->a[iRight].pTab );
347 
348   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
349   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
350 
351   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
352   if( pEq && isOuterJoin ){
353     ExprSetProperty(pEq, EP_FromJoin);
354     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
355     ExprSetVVAProperty(pEq, EP_NoReduce);
356     pEq->iRightJoinTable = (i16)pE2->iTable;
357   }
358   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
359 }
360 
361 /*
362 ** Set the EP_FromJoin property on all terms of the given expression.
363 ** And set the Expr.iRightJoinTable to iTable for every term in the
364 ** expression.
365 **
366 ** The EP_FromJoin property is used on terms of an expression to tell
367 ** the LEFT OUTER JOIN processing logic that this term is part of the
368 ** join restriction specified in the ON or USING clause and not a part
369 ** of the more general WHERE clause.  These terms are moved over to the
370 ** WHERE clause during join processing but we need to remember that they
371 ** originated in the ON or USING clause.
372 **
373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
374 ** expression depends on table iRightJoinTable even if that table is not
375 ** explicitly mentioned in the expression.  That information is needed
376 ** for cases like this:
377 **
378 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
379 **
380 ** The where clause needs to defer the handling of the t1.x=5
381 ** term until after the t2 loop of the join.  In that way, a
382 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
383 ** defer the handling of t1.x=5, it will be processed immediately
384 ** after the t1 loop and rows with t1.x!=5 will never appear in
385 ** the output, which is incorrect.
386 */
387 static void setJoinExpr(Expr *p, int iTable){
388   while( p ){
389     ExprSetProperty(p, EP_FromJoin);
390     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
391     ExprSetVVAProperty(p, EP_NoReduce);
392     p->iRightJoinTable = (i16)iTable;
393     if( p->op==TK_FUNCTION && p->x.pList ){
394       int i;
395       for(i=0; i<p->x.pList->nExpr; i++){
396         setJoinExpr(p->x.pList->a[i].pExpr, iTable);
397       }
398     }
399     setJoinExpr(p->pLeft, iTable);
400     p = p->pRight;
401   }
402 }
403 
404 /* Undo the work of setJoinExpr().  In the expression tree p, convert every
405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
406 ** an ordinary term that omits the EP_FromJoin mark.
407 **
408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
409 */
410 static void unsetJoinExpr(Expr *p, int iTable){
411   while( p ){
412     if( ExprHasProperty(p, EP_FromJoin)
413      && (iTable<0 || p->iRightJoinTable==iTable) ){
414       ExprClearProperty(p, EP_FromJoin);
415     }
416     if( p->op==TK_FUNCTION && p->x.pList ){
417       int i;
418       for(i=0; i<p->x.pList->nExpr; i++){
419         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
420       }
421     }
422     unsetJoinExpr(p->pLeft, iTable);
423     p = p->pRight;
424   }
425 }
426 
427 /*
428 ** This routine processes the join information for a SELECT statement.
429 ** ON and USING clauses are converted into extra terms of the WHERE clause.
430 ** NATURAL joins also create extra WHERE clause terms.
431 **
432 ** The terms of a FROM clause are contained in the Select.pSrc structure.
433 ** The left most table is the first entry in Select.pSrc.  The right-most
434 ** table is the last entry.  The join operator is held in the entry to
435 ** the left.  Thus entry 0 contains the join operator for the join between
436 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
437 ** also attached to the left entry.
438 **
439 ** This routine returns the number of errors encountered.
440 */
441 static int sqliteProcessJoin(Parse *pParse, Select *p){
442   SrcList *pSrc;                  /* All tables in the FROM clause */
443   int i, j;                       /* Loop counters */
444   struct SrcList_item *pLeft;     /* Left table being joined */
445   struct SrcList_item *pRight;    /* Right table being joined */
446 
447   pSrc = p->pSrc;
448   pLeft = &pSrc->a[0];
449   pRight = &pLeft[1];
450   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
451     Table *pRightTab = pRight->pTab;
452     int isOuter;
453 
454     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
455     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
456 
457     /* When the NATURAL keyword is present, add WHERE clause terms for
458     ** every column that the two tables have in common.
459     */
460     if( pRight->fg.jointype & JT_NATURAL ){
461       if( pRight->pOn || pRight->pUsing ){
462         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
463            "an ON or USING clause", 0);
464         return 1;
465       }
466       for(j=0; j<pRightTab->nCol; j++){
467         char *zName;   /* Name of column in the right table */
468         int iLeft;     /* Matching left table */
469         int iLeftCol;  /* Matching column in the left table */
470 
471         zName = pRightTab->aCol[j].zName;
472         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
473           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
474                        isOuter, &p->pWhere);
475         }
476       }
477     }
478 
479     /* Disallow both ON and USING clauses in the same join
480     */
481     if( pRight->pOn && pRight->pUsing ){
482       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
483         "clauses in the same join");
484       return 1;
485     }
486 
487     /* Add the ON clause to the end of the WHERE clause, connected by
488     ** an AND operator.
489     */
490     if( pRight->pOn ){
491       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
492       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
493       pRight->pOn = 0;
494     }
495 
496     /* Create extra terms on the WHERE clause for each column named
497     ** in the USING clause.  Example: If the two tables to be joined are
498     ** A and B and the USING clause names X, Y, and Z, then add this
499     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
500     ** Report an error if any column mentioned in the USING clause is
501     ** not contained in both tables to be joined.
502     */
503     if( pRight->pUsing ){
504       IdList *pList = pRight->pUsing;
505       for(j=0; j<pList->nId; j++){
506         char *zName;     /* Name of the term in the USING clause */
507         int iLeft;       /* Table on the left with matching column name */
508         int iLeftCol;    /* Column number of matching column on the left */
509         int iRightCol;   /* Column number of matching column on the right */
510 
511         zName = pList->a[j].zName;
512         iRightCol = columnIndex(pRightTab, zName);
513         if( iRightCol<0
514          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
515         ){
516           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
517             "not present in both tables", zName);
518           return 1;
519         }
520         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
521                      isOuter, &p->pWhere);
522       }
523     }
524   }
525   return 0;
526 }
527 
528 /*
529 ** An instance of this object holds information (beyond pParse and pSelect)
530 ** needed to load the next result row that is to be added to the sorter.
531 */
532 typedef struct RowLoadInfo RowLoadInfo;
533 struct RowLoadInfo {
534   int regResult;               /* Store results in array of registers here */
535   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
537   ExprList *pExtra;            /* Extra columns needed by sorter refs */
538   int regExtraResult;          /* Where to load the extra columns */
539 #endif
540 };
541 
542 /*
543 ** This routine does the work of loading query data into an array of
544 ** registers so that it can be added to the sorter.
545 */
546 static void innerLoopLoadRow(
547   Parse *pParse,             /* Statement under construction */
548   Select *pSelect,           /* The query being coded */
549   RowLoadInfo *pInfo         /* Info needed to complete the row load */
550 ){
551   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
552                           0, pInfo->ecelFlags);
553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
554   if( pInfo->pExtra ){
555     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
556     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
557   }
558 #endif
559 }
560 
561 /*
562 ** Code the OP_MakeRecord instruction that generates the entry to be
563 ** added into the sorter.
564 **
565 ** Return the register in which the result is stored.
566 */
567 static int makeSorterRecord(
568   Parse *pParse,
569   SortCtx *pSort,
570   Select *pSelect,
571   int regBase,
572   int nBase
573 ){
574   int nOBSat = pSort->nOBSat;
575   Vdbe *v = pParse->pVdbe;
576   int regOut = ++pParse->nMem;
577   if( pSort->pDeferredRowLoad ){
578     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
579   }
580   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
581   return regOut;
582 }
583 
584 /*
585 ** Generate code that will push the record in registers regData
586 ** through regData+nData-1 onto the sorter.
587 */
588 static void pushOntoSorter(
589   Parse *pParse,         /* Parser context */
590   SortCtx *pSort,        /* Information about the ORDER BY clause */
591   Select *pSelect,       /* The whole SELECT statement */
592   int regData,           /* First register holding data to be sorted */
593   int regOrigData,       /* First register holding data before packing */
594   int nData,             /* Number of elements in the regData data array */
595   int nPrefixReg         /* No. of reg prior to regData available for use */
596 ){
597   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
598   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
599   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
600   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
601   int regBase;                                     /* Regs for sorter record */
602   int regRecord = 0;                               /* Assembled sorter record */
603   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
604   int op;                            /* Opcode to add sorter record to sorter */
605   int iLimit;                        /* LIMIT counter */
606   int iSkip = 0;                     /* End of the sorter insert loop */
607 
608   assert( bSeq==0 || bSeq==1 );
609 
610   /* Three cases:
611   **   (1) The data to be sorted has already been packed into a Record
612   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
613   **       will be completely unrelated to regOrigData.
614   **   (2) All output columns are included in the sort record.  In that
615   **       case regData==regOrigData.
616   **   (3) Some output columns are omitted from the sort record due to
617   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
618   **       SQLITE_ECEL_OMITREF optimization, or due to the
619   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
620   **       regOrigData is 0 to prevent this routine from trying to copy
621   **       values that might not yet exist.
622   */
623   assert( nData==1 || regData==regOrigData || regOrigData==0 );
624 
625   if( nPrefixReg ){
626     assert( nPrefixReg==nExpr+bSeq );
627     regBase = regData - nPrefixReg;
628   }else{
629     regBase = pParse->nMem + 1;
630     pParse->nMem += nBase;
631   }
632   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
633   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
634   pSort->labelDone = sqlite3VdbeMakeLabel(v);
635   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
636                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
637   if( bSeq ){
638     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
639   }
640   if( nPrefixReg==0 && nData>0 ){
641     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
642   }
643   if( nOBSat>0 ){
644     int regPrevKey;   /* The first nOBSat columns of the previous row */
645     int addrFirst;    /* Address of the OP_IfNot opcode */
646     int addrJmp;      /* Address of the OP_Jump opcode */
647     VdbeOp *pOp;      /* Opcode that opens the sorter */
648     int nKey;         /* Number of sorting key columns, including OP_Sequence */
649     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
650 
651     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
652     regPrevKey = pParse->nMem+1;
653     pParse->nMem += pSort->nOBSat;
654     nKey = nExpr - pSort->nOBSat + bSeq;
655     if( bSeq ){
656       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
657     }else{
658       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
659     }
660     VdbeCoverage(v);
661     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
662     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
663     if( pParse->db->mallocFailed ) return;
664     pOp->p2 = nKey + nData;
665     pKI = pOp->p4.pKeyInfo;
666     memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */
667     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
668     testcase( pKI->nAllField > pKI->nKeyField+2 );
669     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
670                                            pKI->nAllField-pKI->nKeyField-1);
671     addrJmp = sqlite3VdbeCurrentAddr(v);
672     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
673     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
674     pSort->regReturn = ++pParse->nMem;
675     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
676     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
677     if( iLimit ){
678       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
679       VdbeCoverage(v);
680     }
681     sqlite3VdbeJumpHere(v, addrFirst);
682     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
683     sqlite3VdbeJumpHere(v, addrJmp);
684   }
685   if( iLimit ){
686     /* At this point the values for the new sorter entry are stored
687     ** in an array of registers. They need to be composed into a record
688     ** and inserted into the sorter if either (a) there are currently
689     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
690     ** the largest record currently in the sorter. If (b) is true and there
691     ** are already LIMIT+OFFSET items in the sorter, delete the largest
692     ** entry before inserting the new one. This way there are never more
693     ** than LIMIT+OFFSET items in the sorter.
694     **
695     ** If the new record does not need to be inserted into the sorter,
696     ** jump to the next iteration of the loop. Or, if the
697     ** pSort->bOrderedInnerLoop flag is set to indicate that the inner
698     ** loop delivers items in sorted order, jump to the next iteration
699     ** of the outer loop.
700     */
701     int iCsr = pSort->iECursor;
702     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
703     VdbeCoverage(v);
704     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
705     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
706                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
707     VdbeCoverage(v);
708     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
709   }
710   if( regRecord==0 ){
711     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
712   }
713   if( pSort->sortFlags & SORTFLAG_UseSorter ){
714     op = OP_SorterInsert;
715   }else{
716     op = OP_IdxInsert;
717   }
718   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
719                        regBase+nOBSat, nBase-nOBSat);
720   if( iSkip ){
721     assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 );
722     sqlite3VdbeChangeP2(v, iSkip,
723          sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop);
724   }
725 }
726 
727 /*
728 ** Add code to implement the OFFSET
729 */
730 static void codeOffset(
731   Vdbe *v,          /* Generate code into this VM */
732   int iOffset,      /* Register holding the offset counter */
733   int iContinue     /* Jump here to skip the current record */
734 ){
735   if( iOffset>0 ){
736     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
737     VdbeComment((v, "OFFSET"));
738   }
739 }
740 
741 /*
742 ** Add code that will check to make sure the N registers starting at iMem
743 ** form a distinct entry.  iTab is a sorting index that holds previously
744 ** seen combinations of the N values.  A new entry is made in iTab
745 ** if the current N values are new.
746 **
747 ** A jump to addrRepeat is made and the N+1 values are popped from the
748 ** stack if the top N elements are not distinct.
749 */
750 static void codeDistinct(
751   Parse *pParse,     /* Parsing and code generating context */
752   int iTab,          /* A sorting index used to test for distinctness */
753   int addrRepeat,    /* Jump to here if not distinct */
754   int N,             /* Number of elements */
755   int iMem           /* First element */
756 ){
757   Vdbe *v;
758   int r1;
759 
760   v = pParse->pVdbe;
761   r1 = sqlite3GetTempReg(pParse);
762   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
763   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
764   sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
765   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
766   sqlite3ReleaseTempReg(pParse, r1);
767 }
768 
769 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
770 /*
771 ** This function is called as part of inner-loop generation for a SELECT
772 ** statement with an ORDER BY that is not optimized by an index. It
773 ** determines the expressions, if any, that the sorter-reference
774 ** optimization should be used for. The sorter-reference optimization
775 ** is used for SELECT queries like:
776 **
777 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
778 **
779 ** If the optimization is used for expression "bigblob", then instead of
780 ** storing values read from that column in the sorter records, the PK of
781 ** the row from table t1 is stored instead. Then, as records are extracted from
782 ** the sorter to return to the user, the required value of bigblob is
783 ** retrieved directly from table t1. If the values are very large, this
784 ** can be more efficient than storing them directly in the sorter records.
785 **
786 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
787 ** for which the sorter-reference optimization should be enabled.
788 ** Additionally, the pSort->aDefer[] array is populated with entries
789 ** for all cursors required to evaluate all selected expressions. Finally.
790 ** output variable (*ppExtra) is set to an expression list containing
791 ** expressions for all extra PK values that should be stored in the
792 ** sorter records.
793 */
794 static void selectExprDefer(
795   Parse *pParse,                  /* Leave any error here */
796   SortCtx *pSort,                 /* Sorter context */
797   ExprList *pEList,               /* Expressions destined for sorter */
798   ExprList **ppExtra              /* Expressions to append to sorter record */
799 ){
800   int i;
801   int nDefer = 0;
802   ExprList *pExtra = 0;
803   for(i=0; i<pEList->nExpr; i++){
804     struct ExprList_item *pItem = &pEList->a[i];
805     if( pItem->u.x.iOrderByCol==0 ){
806       Expr *pExpr = pItem->pExpr;
807       Table *pTab = pExpr->pTab;
808       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
809        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
810       ){
811         int j;
812         for(j=0; j<nDefer; j++){
813           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
814         }
815         if( j==nDefer ){
816           if( nDefer==ArraySize(pSort->aDefer) ){
817             continue;
818           }else{
819             int nKey = 1;
820             int k;
821             Index *pPk = 0;
822             if( !HasRowid(pTab) ){
823               pPk = sqlite3PrimaryKeyIndex(pTab);
824               nKey = pPk->nKeyCol;
825             }
826             for(k=0; k<nKey; k++){
827               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
828               if( pNew ){
829                 pNew->iTable = pExpr->iTable;
830                 pNew->pTab = pExpr->pTab;
831                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
832                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
833               }
834             }
835             pSort->aDefer[nDefer].pTab = pExpr->pTab;
836             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
837             pSort->aDefer[nDefer].nKey = nKey;
838             nDefer++;
839           }
840         }
841         pItem->bSorterRef = 1;
842       }
843     }
844   }
845   pSort->nDefer = (u8)nDefer;
846   *ppExtra = pExtra;
847 }
848 #endif
849 
850 /*
851 ** This routine generates the code for the inside of the inner loop
852 ** of a SELECT.
853 **
854 ** If srcTab is negative, then the p->pEList expressions
855 ** are evaluated in order to get the data for this row.  If srcTab is
856 ** zero or more, then data is pulled from srcTab and p->pEList is used only
857 ** to get the number of columns and the collation sequence for each column.
858 */
859 static void selectInnerLoop(
860   Parse *pParse,          /* The parser context */
861   Select *p,              /* The complete select statement being coded */
862   int srcTab,             /* Pull data from this table if non-negative */
863   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
864   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
865   SelectDest *pDest,      /* How to dispose of the results */
866   int iContinue,          /* Jump here to continue with next row */
867   int iBreak              /* Jump here to break out of the inner loop */
868 ){
869   Vdbe *v = pParse->pVdbe;
870   int i;
871   int hasDistinct;            /* True if the DISTINCT keyword is present */
872   int eDest = pDest->eDest;   /* How to dispose of results */
873   int iParm = pDest->iSDParm; /* First argument to disposal method */
874   int nResultCol;             /* Number of result columns */
875   int nPrefixReg = 0;         /* Number of extra registers before regResult */
876   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
877 
878   /* Usually, regResult is the first cell in an array of memory cells
879   ** containing the current result row. In this case regOrig is set to the
880   ** same value. However, if the results are being sent to the sorter, the
881   ** values for any expressions that are also part of the sort-key are omitted
882   ** from this array. In this case regOrig is set to zero.  */
883   int regResult;              /* Start of memory holding current results */
884   int regOrig;                /* Start of memory holding full result (or 0) */
885 
886   assert( v );
887   assert( p->pEList!=0 );
888   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
889   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
890   if( pSort==0 && !hasDistinct ){
891     assert( iContinue!=0 );
892     codeOffset(v, p->iOffset, iContinue);
893   }
894 
895   /* Pull the requested columns.
896   */
897   nResultCol = p->pEList->nExpr;
898 
899   if( pDest->iSdst==0 ){
900     if( pSort ){
901       nPrefixReg = pSort->pOrderBy->nExpr;
902       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
903       pParse->nMem += nPrefixReg;
904     }
905     pDest->iSdst = pParse->nMem+1;
906     pParse->nMem += nResultCol;
907   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
908     /* This is an error condition that can result, for example, when a SELECT
909     ** on the right-hand side of an INSERT contains more result columns than
910     ** there are columns in the table on the left.  The error will be caught
911     ** and reported later.  But we need to make sure enough memory is allocated
912     ** to avoid other spurious errors in the meantime. */
913     pParse->nMem += nResultCol;
914   }
915   pDest->nSdst = nResultCol;
916   regOrig = regResult = pDest->iSdst;
917   if( srcTab>=0 ){
918     for(i=0; i<nResultCol; i++){
919       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
920       VdbeComment((v, "%s", p->pEList->a[i].zName));
921     }
922   }else if( eDest!=SRT_Exists ){
923 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
924     ExprList *pExtra = 0;
925 #endif
926     /* If the destination is an EXISTS(...) expression, the actual
927     ** values returned by the SELECT are not required.
928     */
929     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
930     ExprList *pEList;
931     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
932       ecelFlags = SQLITE_ECEL_DUP;
933     }else{
934       ecelFlags = 0;
935     }
936     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
937       /* For each expression in p->pEList that is a copy of an expression in
938       ** the ORDER BY clause (pSort->pOrderBy), set the associated
939       ** iOrderByCol value to one more than the index of the ORDER BY
940       ** expression within the sort-key that pushOntoSorter() will generate.
941       ** This allows the p->pEList field to be omitted from the sorted record,
942       ** saving space and CPU cycles.  */
943       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
944 
945       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
946         int j;
947         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
948           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
949         }
950       }
951 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
952       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
953       if( pExtra && pParse->db->mallocFailed==0 ){
954         /* If there are any extra PK columns to add to the sorter records,
955         ** allocate extra memory cells and adjust the OpenEphemeral
956         ** instruction to account for the larger records. This is only
957         ** required if there are one or more WITHOUT ROWID tables with
958         ** composite primary keys in the SortCtx.aDefer[] array.  */
959         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
960         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
961         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
962         pParse->nMem += pExtra->nExpr;
963       }
964 #endif
965 
966       /* Adjust nResultCol to account for columns that are omitted
967       ** from the sorter by the optimizations in this branch */
968       pEList = p->pEList;
969       for(i=0; i<pEList->nExpr; i++){
970         if( pEList->a[i].u.x.iOrderByCol>0
971 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
972          || pEList->a[i].bSorterRef
973 #endif
974         ){
975           nResultCol--;
976           regOrig = 0;
977         }
978       }
979 
980       testcase( regOrig );
981       testcase( eDest==SRT_Set );
982       testcase( eDest==SRT_Mem );
983       testcase( eDest==SRT_Coroutine );
984       testcase( eDest==SRT_Output );
985       assert( eDest==SRT_Set || eDest==SRT_Mem
986            || eDest==SRT_Coroutine || eDest==SRT_Output );
987     }
988     sRowLoadInfo.regResult = regResult;
989     sRowLoadInfo.ecelFlags = ecelFlags;
990 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
991     sRowLoadInfo.pExtra = pExtra;
992     sRowLoadInfo.regExtraResult = regResult + nResultCol;
993     if( pExtra ) nResultCol += pExtra->nExpr;
994 #endif
995     if( p->iLimit
996      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
997      && nPrefixReg>0
998     ){
999       assert( pSort!=0 );
1000       assert( hasDistinct==0 );
1001       pSort->pDeferredRowLoad = &sRowLoadInfo;
1002       regOrig = 0;
1003     }else{
1004       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1005     }
1006   }
1007 
1008   /* If the DISTINCT keyword was present on the SELECT statement
1009   ** and this row has been seen before, then do not make this row
1010   ** part of the result.
1011   */
1012   if( hasDistinct ){
1013     switch( pDistinct->eTnctType ){
1014       case WHERE_DISTINCT_ORDERED: {
1015         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
1016         int iJump;              /* Jump destination */
1017         int regPrev;            /* Previous row content */
1018 
1019         /* Allocate space for the previous row */
1020         regPrev = pParse->nMem+1;
1021         pParse->nMem += nResultCol;
1022 
1023         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1024         ** sets the MEM_Cleared bit on the first register of the
1025         ** previous value.  This will cause the OP_Ne below to always
1026         ** fail on the first iteration of the loop even if the first
1027         ** row is all NULLs.
1028         */
1029         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1030         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1031         pOp->opcode = OP_Null;
1032         pOp->p1 = 1;
1033         pOp->p2 = regPrev;
1034 
1035         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1036         for(i=0; i<nResultCol; i++){
1037           CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1038           if( i<nResultCol-1 ){
1039             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1040             VdbeCoverage(v);
1041           }else{
1042             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1043             VdbeCoverage(v);
1044            }
1045           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1046           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1047         }
1048         assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1049         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1050         break;
1051       }
1052 
1053       case WHERE_DISTINCT_UNIQUE: {
1054         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1055         break;
1056       }
1057 
1058       default: {
1059         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1060         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1061                      regResult);
1062         break;
1063       }
1064     }
1065     if( pSort==0 ){
1066       codeOffset(v, p->iOffset, iContinue);
1067     }
1068   }
1069 
1070   switch( eDest ){
1071     /* In this mode, write each query result to the key of the temporary
1072     ** table iParm.
1073     */
1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1075     case SRT_Union: {
1076       int r1;
1077       r1 = sqlite3GetTempReg(pParse);
1078       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1079       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1080       sqlite3ReleaseTempReg(pParse, r1);
1081       break;
1082     }
1083 
1084     /* Construct a record from the query result, but instead of
1085     ** saving that record, use it as a key to delete elements from
1086     ** the temporary table iParm.
1087     */
1088     case SRT_Except: {
1089       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1090       break;
1091     }
1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1093 
1094     /* Store the result as data using a unique key.
1095     */
1096     case SRT_Fifo:
1097     case SRT_DistFifo:
1098     case SRT_Table:
1099     case SRT_EphemTab: {
1100       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1101       testcase( eDest==SRT_Table );
1102       testcase( eDest==SRT_EphemTab );
1103       testcase( eDest==SRT_Fifo );
1104       testcase( eDest==SRT_DistFifo );
1105       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1106 #ifndef SQLITE_OMIT_CTE
1107       if( eDest==SRT_DistFifo ){
1108         /* If the destination is DistFifo, then cursor (iParm+1) is open
1109         ** on an ephemeral index. If the current row is already present
1110         ** in the index, do not write it to the output. If not, add the
1111         ** current row to the index and proceed with writing it to the
1112         ** output table as well.  */
1113         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1114         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1115         VdbeCoverage(v);
1116         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1117         assert( pSort==0 );
1118       }
1119 #endif
1120       if( pSort ){
1121         assert( regResult==regOrig );
1122         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1123       }else{
1124         int r2 = sqlite3GetTempReg(pParse);
1125         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1126         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1127         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1128         sqlite3ReleaseTempReg(pParse, r2);
1129       }
1130       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1131       break;
1132     }
1133 
1134 #ifndef SQLITE_OMIT_SUBQUERY
1135     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1136     ** then there should be a single item on the stack.  Write this
1137     ** item into the set table with bogus data.
1138     */
1139     case SRT_Set: {
1140       if( pSort ){
1141         /* At first glance you would think we could optimize out the
1142         ** ORDER BY in this case since the order of entries in the set
1143         ** does not matter.  But there might be a LIMIT clause, in which
1144         ** case the order does matter */
1145         pushOntoSorter(
1146             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1147       }else{
1148         int r1 = sqlite3GetTempReg(pParse);
1149         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1150         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1151             r1, pDest->zAffSdst, nResultCol);
1152         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1153         sqlite3ReleaseTempReg(pParse, r1);
1154       }
1155       break;
1156     }
1157 
1158     /* If any row exist in the result set, record that fact and abort.
1159     */
1160     case SRT_Exists: {
1161       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1162       /* The LIMIT clause will terminate the loop for us */
1163       break;
1164     }
1165 
1166     /* If this is a scalar select that is part of an expression, then
1167     ** store the results in the appropriate memory cell or array of
1168     ** memory cells and break out of the scan loop.
1169     */
1170     case SRT_Mem: {
1171       if( pSort ){
1172         assert( nResultCol<=pDest->nSdst );
1173         pushOntoSorter(
1174             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1175       }else{
1176         assert( nResultCol==pDest->nSdst );
1177         assert( regResult==iParm );
1178         /* The LIMIT clause will jump out of the loop for us */
1179       }
1180       break;
1181     }
1182 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1183 
1184     case SRT_Coroutine:       /* Send data to a co-routine */
1185     case SRT_Output: {        /* Return the results */
1186       testcase( eDest==SRT_Coroutine );
1187       testcase( eDest==SRT_Output );
1188       if( pSort ){
1189         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1190                        nPrefixReg);
1191       }else if( eDest==SRT_Coroutine ){
1192         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1193       }else{
1194         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1195       }
1196       break;
1197     }
1198 
1199 #ifndef SQLITE_OMIT_CTE
1200     /* Write the results into a priority queue that is order according to
1201     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1202     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1203     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1204     ** final OP_Sequence column.  The last column is the record as a blob.
1205     */
1206     case SRT_DistQueue:
1207     case SRT_Queue: {
1208       int nKey;
1209       int r1, r2, r3;
1210       int addrTest = 0;
1211       ExprList *pSO;
1212       pSO = pDest->pOrderBy;
1213       assert( pSO );
1214       nKey = pSO->nExpr;
1215       r1 = sqlite3GetTempReg(pParse);
1216       r2 = sqlite3GetTempRange(pParse, nKey+2);
1217       r3 = r2+nKey+1;
1218       if( eDest==SRT_DistQueue ){
1219         /* If the destination is DistQueue, then cursor (iParm+1) is open
1220         ** on a second ephemeral index that holds all values every previously
1221         ** added to the queue. */
1222         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1223                                         regResult, nResultCol);
1224         VdbeCoverage(v);
1225       }
1226       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1227       if( eDest==SRT_DistQueue ){
1228         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1229         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1230       }
1231       for(i=0; i<nKey; i++){
1232         sqlite3VdbeAddOp2(v, OP_SCopy,
1233                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1234                           r2+i);
1235       }
1236       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1237       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1238       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1239       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1240       sqlite3ReleaseTempReg(pParse, r1);
1241       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1242       break;
1243     }
1244 #endif /* SQLITE_OMIT_CTE */
1245 
1246 
1247 
1248 #if !defined(SQLITE_OMIT_TRIGGER)
1249     /* Discard the results.  This is used for SELECT statements inside
1250     ** the body of a TRIGGER.  The purpose of such selects is to call
1251     ** user-defined functions that have side effects.  We do not care
1252     ** about the actual results of the select.
1253     */
1254     default: {
1255       assert( eDest==SRT_Discard );
1256       break;
1257     }
1258 #endif
1259   }
1260 
1261   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1262   ** there is a sorter, in which case the sorter has already limited
1263   ** the output for us.
1264   */
1265   if( pSort==0 && p->iLimit ){
1266     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1267   }
1268 }
1269 
1270 /*
1271 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1272 ** X extra columns.
1273 */
1274 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1275   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1276   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1277   if( p ){
1278     p->aSortOrder = (u8*)&p->aColl[N+X];
1279     p->nKeyField = (u16)N;
1280     p->nAllField = (u16)(N+X);
1281     p->enc = ENC(db);
1282     p->db = db;
1283     p->nRef = 1;
1284     memset(&p[1], 0, nExtra);
1285   }else{
1286     sqlite3OomFault(db);
1287   }
1288   return p;
1289 }
1290 
1291 /*
1292 ** Deallocate a KeyInfo object
1293 */
1294 void sqlite3KeyInfoUnref(KeyInfo *p){
1295   if( p ){
1296     assert( p->nRef>0 );
1297     p->nRef--;
1298     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1299   }
1300 }
1301 
1302 /*
1303 ** Make a new pointer to a KeyInfo object
1304 */
1305 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1306   if( p ){
1307     assert( p->nRef>0 );
1308     p->nRef++;
1309   }
1310   return p;
1311 }
1312 
1313 #ifdef SQLITE_DEBUG
1314 /*
1315 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1316 ** can only be changed if this is just a single reference to the object.
1317 **
1318 ** This routine is used only inside of assert() statements.
1319 */
1320 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1321 #endif /* SQLITE_DEBUG */
1322 
1323 /*
1324 ** Given an expression list, generate a KeyInfo structure that records
1325 ** the collating sequence for each expression in that expression list.
1326 **
1327 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1328 ** KeyInfo structure is appropriate for initializing a virtual index to
1329 ** implement that clause.  If the ExprList is the result set of a SELECT
1330 ** then the KeyInfo structure is appropriate for initializing a virtual
1331 ** index to implement a DISTINCT test.
1332 **
1333 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1334 ** function is responsible for seeing that this structure is eventually
1335 ** freed.
1336 */
1337 KeyInfo *sqlite3KeyInfoFromExprList(
1338   Parse *pParse,       /* Parsing context */
1339   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1340   int iStart,          /* Begin with this column of pList */
1341   int nExtra           /* Add this many extra columns to the end */
1342 ){
1343   int nExpr;
1344   KeyInfo *pInfo;
1345   struct ExprList_item *pItem;
1346   sqlite3 *db = pParse->db;
1347   int i;
1348 
1349   nExpr = pList->nExpr;
1350   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1351   if( pInfo ){
1352     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1353     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1354       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1355       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1356     }
1357   }
1358   return pInfo;
1359 }
1360 
1361 /*
1362 ** Name of the connection operator, used for error messages.
1363 */
1364 static const char *selectOpName(int id){
1365   char *z;
1366   switch( id ){
1367     case TK_ALL:       z = "UNION ALL";   break;
1368     case TK_INTERSECT: z = "INTERSECT";   break;
1369     case TK_EXCEPT:    z = "EXCEPT";      break;
1370     default:           z = "UNION";       break;
1371   }
1372   return z;
1373 }
1374 
1375 #ifndef SQLITE_OMIT_EXPLAIN
1376 /*
1377 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1378 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1379 ** where the caption is of the form:
1380 **
1381 **   "USE TEMP B-TREE FOR xxx"
1382 **
1383 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1384 ** is determined by the zUsage argument.
1385 */
1386 static void explainTempTable(Parse *pParse, const char *zUsage){
1387   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1388 }
1389 
1390 /*
1391 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1392 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1393 ** in sqlite3Select() to assign values to structure member variables that
1394 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1395 ** code with #ifndef directives.
1396 */
1397 # define explainSetInteger(a, b) a = b
1398 
1399 #else
1400 /* No-op versions of the explainXXX() functions and macros. */
1401 # define explainTempTable(y,z)
1402 # define explainSetInteger(y,z)
1403 #endif
1404 
1405 
1406 /*
1407 ** If the inner loop was generated using a non-null pOrderBy argument,
1408 ** then the results were placed in a sorter.  After the loop is terminated
1409 ** we need to run the sorter and output the results.  The following
1410 ** routine generates the code needed to do that.
1411 */
1412 static void generateSortTail(
1413   Parse *pParse,    /* Parsing context */
1414   Select *p,        /* The SELECT statement */
1415   SortCtx *pSort,   /* Information on the ORDER BY clause */
1416   int nColumn,      /* Number of columns of data */
1417   SelectDest *pDest /* Write the sorted results here */
1418 ){
1419   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1420   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1421   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1422   int addr;                       /* Top of output loop. Jump for Next. */
1423   int addrOnce = 0;
1424   int iTab;
1425   ExprList *pOrderBy = pSort->pOrderBy;
1426   int eDest = pDest->eDest;
1427   int iParm = pDest->iSDParm;
1428   int regRow;
1429   int regRowid;
1430   int iCol;
1431   int nKey;                       /* Number of key columns in sorter record */
1432   int iSortTab;                   /* Sorter cursor to read from */
1433   int i;
1434   int bSeq;                       /* True if sorter record includes seq. no. */
1435   int nRefKey = 0;
1436   struct ExprList_item *aOutEx = p->pEList->a;
1437 
1438   assert( addrBreak<0 );
1439   if( pSort->labelBkOut ){
1440     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1441     sqlite3VdbeGoto(v, addrBreak);
1442     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1443   }
1444 
1445 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1446   /* Open any cursors needed for sorter-reference expressions */
1447   for(i=0; i<pSort->nDefer; i++){
1448     Table *pTab = pSort->aDefer[i].pTab;
1449     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1450     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1451     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1452   }
1453 #endif
1454 
1455   iTab = pSort->iECursor;
1456   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1457     regRowid = 0;
1458     regRow = pDest->iSdst;
1459   }else{
1460     regRowid = sqlite3GetTempReg(pParse);
1461     regRow = sqlite3GetTempRange(pParse, nColumn);
1462   }
1463   nKey = pOrderBy->nExpr - pSort->nOBSat;
1464   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1465     int regSortOut = ++pParse->nMem;
1466     iSortTab = pParse->nTab++;
1467     if( pSort->labelBkOut ){
1468       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1469     }
1470     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1471         nKey+1+nColumn+nRefKey);
1472     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1473     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1474     VdbeCoverage(v);
1475     codeOffset(v, p->iOffset, addrContinue);
1476     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1477     bSeq = 0;
1478   }else{
1479     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1480     codeOffset(v, p->iOffset, addrContinue);
1481     iSortTab = iTab;
1482     bSeq = 1;
1483   }
1484   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1485 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1486     if( aOutEx[i].bSorterRef ) continue;
1487 #endif
1488     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1489   }
1490 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1491   if( pSort->nDefer ){
1492     int iKey = iCol+1;
1493     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1494 
1495     for(i=0; i<pSort->nDefer; i++){
1496       int iCsr = pSort->aDefer[i].iCsr;
1497       Table *pTab = pSort->aDefer[i].pTab;
1498       int nKey = pSort->aDefer[i].nKey;
1499 
1500       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1501       if( HasRowid(pTab) ){
1502         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1503         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1504             sqlite3VdbeCurrentAddr(v)+1, regKey);
1505       }else{
1506         int k;
1507         int iJmp;
1508         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1509         for(k=0; k<nKey; k++){
1510           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1511         }
1512         iJmp = sqlite3VdbeCurrentAddr(v);
1513         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1514         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1515         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1516       }
1517     }
1518     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1519   }
1520 #endif
1521   for(i=nColumn-1; i>=0; i--){
1522 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1523     if( aOutEx[i].bSorterRef ){
1524       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1525     }else
1526 #endif
1527     {
1528       int iRead;
1529       if( aOutEx[i].u.x.iOrderByCol ){
1530         iRead = aOutEx[i].u.x.iOrderByCol-1;
1531       }else{
1532         iRead = iCol--;
1533       }
1534       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1535       VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan));
1536     }
1537   }
1538   switch( eDest ){
1539     case SRT_Table:
1540     case SRT_EphemTab: {
1541       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1542       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1543       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1544       break;
1545     }
1546 #ifndef SQLITE_OMIT_SUBQUERY
1547     case SRT_Set: {
1548       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1549       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1550                         pDest->zAffSdst, nColumn);
1551       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1552       break;
1553     }
1554     case SRT_Mem: {
1555       /* The LIMIT clause will terminate the loop for us */
1556       break;
1557     }
1558 #endif
1559     default: {
1560       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1561       testcase( eDest==SRT_Output );
1562       testcase( eDest==SRT_Coroutine );
1563       if( eDest==SRT_Output ){
1564         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1565       }else{
1566         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1567       }
1568       break;
1569     }
1570   }
1571   if( regRowid ){
1572     if( eDest==SRT_Set ){
1573       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1574     }else{
1575       sqlite3ReleaseTempReg(pParse, regRow);
1576     }
1577     sqlite3ReleaseTempReg(pParse, regRowid);
1578   }
1579   /* The bottom of the loop
1580   */
1581   sqlite3VdbeResolveLabel(v, addrContinue);
1582   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1583     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1584   }else{
1585     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1586   }
1587   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1588   sqlite3VdbeResolveLabel(v, addrBreak);
1589 }
1590 
1591 /*
1592 ** Return a pointer to a string containing the 'declaration type' of the
1593 ** expression pExpr. The string may be treated as static by the caller.
1594 **
1595 ** Also try to estimate the size of the returned value and return that
1596 ** result in *pEstWidth.
1597 **
1598 ** The declaration type is the exact datatype definition extracted from the
1599 ** original CREATE TABLE statement if the expression is a column. The
1600 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1601 ** is considered a column can be complex in the presence of subqueries. The
1602 ** result-set expression in all of the following SELECT statements is
1603 ** considered a column by this function.
1604 **
1605 **   SELECT col FROM tbl;
1606 **   SELECT (SELECT col FROM tbl;
1607 **   SELECT (SELECT col FROM tbl);
1608 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1609 **
1610 ** The declaration type for any expression other than a column is NULL.
1611 **
1612 ** This routine has either 3 or 6 parameters depending on whether or not
1613 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1614 */
1615 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1616 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1617 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1618 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1619 #endif
1620 static const char *columnTypeImpl(
1621   NameContext *pNC,
1622 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1623   Expr *pExpr
1624 #else
1625   Expr *pExpr,
1626   const char **pzOrigDb,
1627   const char **pzOrigTab,
1628   const char **pzOrigCol
1629 #endif
1630 ){
1631   char const *zType = 0;
1632   int j;
1633 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1634   char const *zOrigDb = 0;
1635   char const *zOrigTab = 0;
1636   char const *zOrigCol = 0;
1637 #endif
1638 
1639   assert( pExpr!=0 );
1640   assert( pNC->pSrcList!=0 );
1641   assert( pExpr->op!=TK_AGG_COLUMN );  /* This routine runes before aggregates
1642                                        ** are processed */
1643   switch( pExpr->op ){
1644     case TK_COLUMN: {
1645       /* The expression is a column. Locate the table the column is being
1646       ** extracted from in NameContext.pSrcList. This table may be real
1647       ** database table or a subquery.
1648       */
1649       Table *pTab = 0;            /* Table structure column is extracted from */
1650       Select *pS = 0;             /* Select the column is extracted from */
1651       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1652       while( pNC && !pTab ){
1653         SrcList *pTabList = pNC->pSrcList;
1654         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1655         if( j<pTabList->nSrc ){
1656           pTab = pTabList->a[j].pTab;
1657           pS = pTabList->a[j].pSelect;
1658         }else{
1659           pNC = pNC->pNext;
1660         }
1661       }
1662 
1663       if( pTab==0 ){
1664         /* At one time, code such as "SELECT new.x" within a trigger would
1665         ** cause this condition to run.  Since then, we have restructured how
1666         ** trigger code is generated and so this condition is no longer
1667         ** possible. However, it can still be true for statements like
1668         ** the following:
1669         **
1670         **   CREATE TABLE t1(col INTEGER);
1671         **   SELECT (SELECT t1.col) FROM FROM t1;
1672         **
1673         ** when columnType() is called on the expression "t1.col" in the
1674         ** sub-select. In this case, set the column type to NULL, even
1675         ** though it should really be "INTEGER".
1676         **
1677         ** This is not a problem, as the column type of "t1.col" is never
1678         ** used. When columnType() is called on the expression
1679         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1680         ** branch below.  */
1681         break;
1682       }
1683 
1684       assert( pTab && pExpr->pTab==pTab );
1685       if( pS ){
1686         /* The "table" is actually a sub-select or a view in the FROM clause
1687         ** of the SELECT statement. Return the declaration type and origin
1688         ** data for the result-set column of the sub-select.
1689         */
1690         if( iCol>=0 && iCol<pS->pEList->nExpr ){
1691           /* If iCol is less than zero, then the expression requests the
1692           ** rowid of the sub-select or view. This expression is legal (see
1693           ** test case misc2.2.2) - it always evaluates to NULL.
1694           */
1695           NameContext sNC;
1696           Expr *p = pS->pEList->a[iCol].pExpr;
1697           sNC.pSrcList = pS->pSrc;
1698           sNC.pNext = pNC;
1699           sNC.pParse = pNC->pParse;
1700           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1701         }
1702       }else{
1703         /* A real table or a CTE table */
1704         assert( !pS );
1705 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1706         if( iCol<0 ) iCol = pTab->iPKey;
1707         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1708         if( iCol<0 ){
1709           zType = "INTEGER";
1710           zOrigCol = "rowid";
1711         }else{
1712           zOrigCol = pTab->aCol[iCol].zName;
1713           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1714         }
1715         zOrigTab = pTab->zName;
1716         if( pNC->pParse && pTab->pSchema ){
1717           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1718           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1719         }
1720 #else
1721         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1722         if( iCol<0 ){
1723           zType = "INTEGER";
1724         }else{
1725           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1726         }
1727 #endif
1728       }
1729       break;
1730     }
1731 #ifndef SQLITE_OMIT_SUBQUERY
1732     case TK_SELECT: {
1733       /* The expression is a sub-select. Return the declaration type and
1734       ** origin info for the single column in the result set of the SELECT
1735       ** statement.
1736       */
1737       NameContext sNC;
1738       Select *pS = pExpr->x.pSelect;
1739       Expr *p = pS->pEList->a[0].pExpr;
1740       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1741       sNC.pSrcList = pS->pSrc;
1742       sNC.pNext = pNC;
1743       sNC.pParse = pNC->pParse;
1744       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1745       break;
1746     }
1747 #endif
1748   }
1749 
1750 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1751   if( pzOrigDb ){
1752     assert( pzOrigTab && pzOrigCol );
1753     *pzOrigDb = zOrigDb;
1754     *pzOrigTab = zOrigTab;
1755     *pzOrigCol = zOrigCol;
1756   }
1757 #endif
1758   return zType;
1759 }
1760 
1761 /*
1762 ** Generate code that will tell the VDBE the declaration types of columns
1763 ** in the result set.
1764 */
1765 static void generateColumnTypes(
1766   Parse *pParse,      /* Parser context */
1767   SrcList *pTabList,  /* List of tables */
1768   ExprList *pEList    /* Expressions defining the result set */
1769 ){
1770 #ifndef SQLITE_OMIT_DECLTYPE
1771   Vdbe *v = pParse->pVdbe;
1772   int i;
1773   NameContext sNC;
1774   sNC.pSrcList = pTabList;
1775   sNC.pParse = pParse;
1776   sNC.pNext = 0;
1777   for(i=0; i<pEList->nExpr; i++){
1778     Expr *p = pEList->a[i].pExpr;
1779     const char *zType;
1780 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1781     const char *zOrigDb = 0;
1782     const char *zOrigTab = 0;
1783     const char *zOrigCol = 0;
1784     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1785 
1786     /* The vdbe must make its own copy of the column-type and other
1787     ** column specific strings, in case the schema is reset before this
1788     ** virtual machine is deleted.
1789     */
1790     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1791     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1792     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1793 #else
1794     zType = columnType(&sNC, p, 0, 0, 0);
1795 #endif
1796     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1797   }
1798 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1799 }
1800 
1801 
1802 /*
1803 ** Compute the column names for a SELECT statement.
1804 **
1805 ** The only guarantee that SQLite makes about column names is that if the
1806 ** column has an AS clause assigning it a name, that will be the name used.
1807 ** That is the only documented guarantee.  However, countless applications
1808 ** developed over the years have made baseless assumptions about column names
1809 ** and will break if those assumptions changes.  Hence, use extreme caution
1810 ** when modifying this routine to avoid breaking legacy.
1811 **
1812 ** See Also: sqlite3ColumnsFromExprList()
1813 **
1814 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1815 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1816 ** applications should operate this way.  Nevertheless, we need to support the
1817 ** other modes for legacy:
1818 **
1819 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1820 **                              originally appears in the SELECT statement.  In
1821 **                              other words, the zSpan of the result expression.
1822 **
1823 **    short=ON, full=OFF:       (This is the default setting).  If the result
1824 **                              refers directly to a table column, then the
1825 **                              result column name is just the table column
1826 **                              name: COLUMN.  Otherwise use zSpan.
1827 **
1828 **    full=ON, short=ANY:       If the result refers directly to a table column,
1829 **                              then the result column name with the table name
1830 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1831 */
1832 static void generateColumnNames(
1833   Parse *pParse,      /* Parser context */
1834   Select *pSelect     /* Generate column names for this SELECT statement */
1835 ){
1836   Vdbe *v = pParse->pVdbe;
1837   int i;
1838   Table *pTab;
1839   SrcList *pTabList;
1840   ExprList *pEList;
1841   sqlite3 *db = pParse->db;
1842   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1843   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1844 
1845 #ifndef SQLITE_OMIT_EXPLAIN
1846   /* If this is an EXPLAIN, skip this step */
1847   if( pParse->explain ){
1848     return;
1849   }
1850 #endif
1851 
1852   if( pParse->colNamesSet ) return;
1853   /* Column names are determined by the left-most term of a compound select */
1854   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1855   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1856   pTabList = pSelect->pSrc;
1857   pEList = pSelect->pEList;
1858   assert( v!=0 );
1859   assert( pTabList!=0 );
1860   pParse->colNamesSet = 1;
1861   fullName = (db->flags & SQLITE_FullColNames)!=0;
1862   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1863   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1864   for(i=0; i<pEList->nExpr; i++){
1865     Expr *p = pEList->a[i].pExpr;
1866 
1867     assert( p!=0 );
1868     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
1869     assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
1870     if( pEList->a[i].zName ){
1871       /* An AS clause always takes first priority */
1872       char *zName = pEList->a[i].zName;
1873       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1874     }else if( srcName && p->op==TK_COLUMN ){
1875       char *zCol;
1876       int iCol = p->iColumn;
1877       pTab = p->pTab;
1878       assert( pTab!=0 );
1879       if( iCol<0 ) iCol = pTab->iPKey;
1880       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1881       if( iCol<0 ){
1882         zCol = "rowid";
1883       }else{
1884         zCol = pTab->aCol[iCol].zName;
1885       }
1886       if( fullName ){
1887         char *zName = 0;
1888         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1889         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1890       }else{
1891         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1892       }
1893     }else{
1894       const char *z = pEList->a[i].zSpan;
1895       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1896       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1897     }
1898   }
1899   generateColumnTypes(pParse, pTabList, pEList);
1900 }
1901 
1902 /*
1903 ** Given an expression list (which is really the list of expressions
1904 ** that form the result set of a SELECT statement) compute appropriate
1905 ** column names for a table that would hold the expression list.
1906 **
1907 ** All column names will be unique.
1908 **
1909 ** Only the column names are computed.  Column.zType, Column.zColl,
1910 ** and other fields of Column are zeroed.
1911 **
1912 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1913 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1914 **
1915 ** The only guarantee that SQLite makes about column names is that if the
1916 ** column has an AS clause assigning it a name, that will be the name used.
1917 ** That is the only documented guarantee.  However, countless applications
1918 ** developed over the years have made baseless assumptions about column names
1919 ** and will break if those assumptions changes.  Hence, use extreme caution
1920 ** when modifying this routine to avoid breaking legacy.
1921 **
1922 ** See Also: generateColumnNames()
1923 */
1924 int sqlite3ColumnsFromExprList(
1925   Parse *pParse,          /* Parsing context */
1926   ExprList *pEList,       /* Expr list from which to derive column names */
1927   i16 *pnCol,             /* Write the number of columns here */
1928   Column **paCol          /* Write the new column list here */
1929 ){
1930   sqlite3 *db = pParse->db;   /* Database connection */
1931   int i, j;                   /* Loop counters */
1932   u32 cnt;                    /* Index added to make the name unique */
1933   Column *aCol, *pCol;        /* For looping over result columns */
1934   int nCol;                   /* Number of columns in the result set */
1935   char *zName;                /* Column name */
1936   int nName;                  /* Size of name in zName[] */
1937   Hash ht;                    /* Hash table of column names */
1938 
1939   sqlite3HashInit(&ht);
1940   if( pEList ){
1941     nCol = pEList->nExpr;
1942     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1943     testcase( aCol==0 );
1944     if( nCol>32767 ) nCol = 32767;
1945   }else{
1946     nCol = 0;
1947     aCol = 0;
1948   }
1949   assert( nCol==(i16)nCol );
1950   *pnCol = nCol;
1951   *paCol = aCol;
1952 
1953   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1954     /* Get an appropriate name for the column
1955     */
1956     if( (zName = pEList->a[i].zName)!=0 ){
1957       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1958     }else{
1959       Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1960       while( pColExpr->op==TK_DOT ){
1961         pColExpr = pColExpr->pRight;
1962         assert( pColExpr!=0 );
1963       }
1964       assert( pColExpr->op!=TK_AGG_COLUMN );
1965       if( pColExpr->op==TK_COLUMN ){
1966         /* For columns use the column name name */
1967         int iCol = pColExpr->iColumn;
1968         Table *pTab = pColExpr->pTab;
1969         assert( pTab!=0 );
1970         if( iCol<0 ) iCol = pTab->iPKey;
1971         zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
1972       }else if( pColExpr->op==TK_ID ){
1973         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1974         zName = pColExpr->u.zToken;
1975       }else{
1976         /* Use the original text of the column expression as its name */
1977         zName = pEList->a[i].zSpan;
1978       }
1979     }
1980     if( zName ){
1981       zName = sqlite3DbStrDup(db, zName);
1982     }else{
1983       zName = sqlite3MPrintf(db,"column%d",i+1);
1984     }
1985 
1986     /* Make sure the column name is unique.  If the name is not unique,
1987     ** append an integer to the name so that it becomes unique.
1988     */
1989     cnt = 0;
1990     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
1991       nName = sqlite3Strlen30(zName);
1992       if( nName>0 ){
1993         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
1994         if( zName[j]==':' ) nName = j;
1995       }
1996       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
1997       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
1998     }
1999     pCol->zName = zName;
2000     sqlite3ColumnPropertiesFromName(0, pCol);
2001     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2002       sqlite3OomFault(db);
2003     }
2004   }
2005   sqlite3HashClear(&ht);
2006   if( db->mallocFailed ){
2007     for(j=0; j<i; j++){
2008       sqlite3DbFree(db, aCol[j].zName);
2009     }
2010     sqlite3DbFree(db, aCol);
2011     *paCol = 0;
2012     *pnCol = 0;
2013     return SQLITE_NOMEM_BKPT;
2014   }
2015   return SQLITE_OK;
2016 }
2017 
2018 /*
2019 ** Add type and collation information to a column list based on
2020 ** a SELECT statement.
2021 **
2022 ** The column list presumably came from selectColumnNamesFromExprList().
2023 ** The column list has only names, not types or collations.  This
2024 ** routine goes through and adds the types and collations.
2025 **
2026 ** This routine requires that all identifiers in the SELECT
2027 ** statement be resolved.
2028 */
2029 void sqlite3SelectAddColumnTypeAndCollation(
2030   Parse *pParse,        /* Parsing contexts */
2031   Table *pTab,          /* Add column type information to this table */
2032   Select *pSelect       /* SELECT used to determine types and collations */
2033 ){
2034   sqlite3 *db = pParse->db;
2035   NameContext sNC;
2036   Column *pCol;
2037   CollSeq *pColl;
2038   int i;
2039   Expr *p;
2040   struct ExprList_item *a;
2041 
2042   assert( pSelect!=0 );
2043   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2044   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2045   if( db->mallocFailed ) return;
2046   memset(&sNC, 0, sizeof(sNC));
2047   sNC.pSrcList = pSelect->pSrc;
2048   a = pSelect->pEList->a;
2049   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2050     const char *zType;
2051     int n, m;
2052     p = a[i].pExpr;
2053     zType = columnType(&sNC, p, 0, 0, 0);
2054     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2055     pCol->affinity = sqlite3ExprAffinity(p);
2056     if( zType ){
2057       m = sqlite3Strlen30(zType);
2058       n = sqlite3Strlen30(pCol->zName);
2059       pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2060       if( pCol->zName ){
2061         memcpy(&pCol->zName[n+1], zType, m+1);
2062         pCol->colFlags |= COLFLAG_HASTYPE;
2063       }
2064     }
2065     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB;
2066     pColl = sqlite3ExprCollSeq(pParse, p);
2067     if( pColl && pCol->zColl==0 ){
2068       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2069     }
2070   }
2071   pTab->szTabRow = 1; /* Any non-zero value works */
2072 }
2073 
2074 /*
2075 ** Given a SELECT statement, generate a Table structure that describes
2076 ** the result set of that SELECT.
2077 */
2078 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
2079   Table *pTab;
2080   sqlite3 *db = pParse->db;
2081   int savedFlags;
2082 
2083   savedFlags = db->flags;
2084   db->flags &= ~SQLITE_FullColNames;
2085   db->flags |= SQLITE_ShortColNames;
2086   sqlite3SelectPrep(pParse, pSelect, 0);
2087   if( pParse->nErr ) return 0;
2088   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2089   db->flags = savedFlags;
2090   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2091   if( pTab==0 ){
2092     return 0;
2093   }
2094   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
2095   ** is disabled */
2096   assert( db->lookaside.bDisable );
2097   pTab->nTabRef = 1;
2098   pTab->zName = 0;
2099   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2100   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2101   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect);
2102   pTab->iPKey = -1;
2103   if( db->mallocFailed ){
2104     sqlite3DeleteTable(db, pTab);
2105     return 0;
2106   }
2107   return pTab;
2108 }
2109 
2110 /*
2111 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2112 ** If an error occurs, return NULL and leave a message in pParse.
2113 */
2114 Vdbe *sqlite3GetVdbe(Parse *pParse){
2115   if( pParse->pVdbe ){
2116     return pParse->pVdbe;
2117   }
2118   if( pParse->pToplevel==0
2119    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2120   ){
2121     pParse->okConstFactor = 1;
2122   }
2123   return sqlite3VdbeCreate(pParse);
2124 }
2125 
2126 
2127 /*
2128 ** Compute the iLimit and iOffset fields of the SELECT based on the
2129 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2130 ** that appear in the original SQL statement after the LIMIT and OFFSET
2131 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2132 ** are the integer memory register numbers for counters used to compute
2133 ** the limit and offset.  If there is no limit and/or offset, then
2134 ** iLimit and iOffset are negative.
2135 **
2136 ** This routine changes the values of iLimit and iOffset only if
2137 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2138 ** and iOffset should have been preset to appropriate default values (zero)
2139 ** prior to calling this routine.
2140 **
2141 ** The iOffset register (if it exists) is initialized to the value
2142 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2143 ** iOffset+1 is initialized to LIMIT+OFFSET.
2144 **
2145 ** Only if pLimit->pLeft!=0 do the limit registers get
2146 ** redefined.  The UNION ALL operator uses this property to force
2147 ** the reuse of the same limit and offset registers across multiple
2148 ** SELECT statements.
2149 */
2150 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2151   Vdbe *v = 0;
2152   int iLimit = 0;
2153   int iOffset;
2154   int n;
2155   Expr *pLimit = p->pLimit;
2156 
2157   if( p->iLimit ) return;
2158 
2159   /*
2160   ** "LIMIT -1" always shows all rows.  There is some
2161   ** controversy about what the correct behavior should be.
2162   ** The current implementation interprets "LIMIT 0" to mean
2163   ** no rows.
2164   */
2165   if( pLimit ){
2166     assert( pLimit->op==TK_LIMIT );
2167     assert( pLimit->pLeft!=0 );
2168     p->iLimit = iLimit = ++pParse->nMem;
2169     v = sqlite3GetVdbe(pParse);
2170     assert( v!=0 );
2171     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2172       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2173       VdbeComment((v, "LIMIT counter"));
2174       if( n==0 ){
2175         sqlite3VdbeGoto(v, iBreak);
2176       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2177         p->nSelectRow = sqlite3LogEst((u64)n);
2178         p->selFlags |= SF_FixedLimit;
2179       }
2180     }else{
2181       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2182       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2183       VdbeComment((v, "LIMIT counter"));
2184       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2185     }
2186     if( pLimit->pRight ){
2187       p->iOffset = iOffset = ++pParse->nMem;
2188       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2189       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2190       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2191       VdbeComment((v, "OFFSET counter"));
2192       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2193       VdbeComment((v, "LIMIT+OFFSET"));
2194     }
2195   }
2196 }
2197 
2198 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2199 /*
2200 ** Return the appropriate collating sequence for the iCol-th column of
2201 ** the result set for the compound-select statement "p".  Return NULL if
2202 ** the column has no default collating sequence.
2203 **
2204 ** The collating sequence for the compound select is taken from the
2205 ** left-most term of the select that has a collating sequence.
2206 */
2207 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2208   CollSeq *pRet;
2209   if( p->pPrior ){
2210     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2211   }else{
2212     pRet = 0;
2213   }
2214   assert( iCol>=0 );
2215   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2216   ** have been thrown during name resolution and we would not have gotten
2217   ** this far */
2218   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2219     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2220   }
2221   return pRet;
2222 }
2223 
2224 /*
2225 ** The select statement passed as the second parameter is a compound SELECT
2226 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2227 ** structure suitable for implementing the ORDER BY.
2228 **
2229 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2230 ** function is responsible for ensuring that this structure is eventually
2231 ** freed.
2232 */
2233 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2234   ExprList *pOrderBy = p->pOrderBy;
2235   int nOrderBy = p->pOrderBy->nExpr;
2236   sqlite3 *db = pParse->db;
2237   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2238   if( pRet ){
2239     int i;
2240     for(i=0; i<nOrderBy; i++){
2241       struct ExprList_item *pItem = &pOrderBy->a[i];
2242       Expr *pTerm = pItem->pExpr;
2243       CollSeq *pColl;
2244 
2245       if( pTerm->flags & EP_Collate ){
2246         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2247       }else{
2248         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2249         if( pColl==0 ) pColl = db->pDfltColl;
2250         pOrderBy->a[i].pExpr =
2251           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2252       }
2253       assert( sqlite3KeyInfoIsWriteable(pRet) );
2254       pRet->aColl[i] = pColl;
2255       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2256     }
2257   }
2258 
2259   return pRet;
2260 }
2261 
2262 #ifndef SQLITE_OMIT_CTE
2263 /*
2264 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2265 ** query of the form:
2266 **
2267 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2268 **                         \___________/             \_______________/
2269 **                           p->pPrior                      p
2270 **
2271 **
2272 ** There is exactly one reference to the recursive-table in the FROM clause
2273 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2274 **
2275 ** The setup-query runs once to generate an initial set of rows that go
2276 ** into a Queue table.  Rows are extracted from the Queue table one by
2277 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2278 ** extracted row (now in the iCurrent table) becomes the content of the
2279 ** recursive-table for a recursive-query run.  The output of the recursive-query
2280 ** is added back into the Queue table.  Then another row is extracted from Queue
2281 ** and the iteration continues until the Queue table is empty.
2282 **
2283 ** If the compound query operator is UNION then no duplicate rows are ever
2284 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2285 ** that have ever been inserted into Queue and causes duplicates to be
2286 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2287 **
2288 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2289 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2290 ** an ORDER BY, the Queue table is just a FIFO.
2291 **
2292 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2293 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2294 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2295 ** with a positive value, then the first OFFSET outputs are discarded rather
2296 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2297 ** rows have been skipped.
2298 */
2299 static void generateWithRecursiveQuery(
2300   Parse *pParse,        /* Parsing context */
2301   Select *p,            /* The recursive SELECT to be coded */
2302   SelectDest *pDest     /* What to do with query results */
2303 ){
2304   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2305   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2306   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2307   Select *pSetup = p->pPrior;   /* The setup query */
2308   int addrTop;                  /* Top of the loop */
2309   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2310   int iCurrent = 0;             /* The Current table */
2311   int regCurrent;               /* Register holding Current table */
2312   int iQueue;                   /* The Queue table */
2313   int iDistinct = 0;            /* To ensure unique results if UNION */
2314   int eDest = SRT_Fifo;         /* How to write to Queue */
2315   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2316   int i;                        /* Loop counter */
2317   int rc;                       /* Result code */
2318   ExprList *pOrderBy;           /* The ORDER BY clause */
2319   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2320   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2321 
2322   /* Obtain authorization to do a recursive query */
2323   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2324 
2325   /* Process the LIMIT and OFFSET clauses, if they exist */
2326   addrBreak = sqlite3VdbeMakeLabel(v);
2327   p->nSelectRow = 320;  /* 4 billion rows */
2328   computeLimitRegisters(pParse, p, addrBreak);
2329   pLimit = p->pLimit;
2330   regLimit = p->iLimit;
2331   regOffset = p->iOffset;
2332   p->pLimit = 0;
2333   p->iLimit = p->iOffset = 0;
2334   pOrderBy = p->pOrderBy;
2335 
2336   /* Locate the cursor number of the Current table */
2337   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2338     if( pSrc->a[i].fg.isRecursive ){
2339       iCurrent = pSrc->a[i].iCursor;
2340       break;
2341     }
2342   }
2343 
2344   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2345   ** the Distinct table must be exactly one greater than Queue in order
2346   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2347   iQueue = pParse->nTab++;
2348   if( p->op==TK_UNION ){
2349     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2350     iDistinct = pParse->nTab++;
2351   }else{
2352     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2353   }
2354   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2355 
2356   /* Allocate cursors for Current, Queue, and Distinct. */
2357   regCurrent = ++pParse->nMem;
2358   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2359   if( pOrderBy ){
2360     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2361     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2362                       (char*)pKeyInfo, P4_KEYINFO);
2363     destQueue.pOrderBy = pOrderBy;
2364   }else{
2365     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2366   }
2367   VdbeComment((v, "Queue table"));
2368   if( iDistinct ){
2369     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2370     p->selFlags |= SF_UsesEphemeral;
2371   }
2372 
2373   /* Detach the ORDER BY clause from the compound SELECT */
2374   p->pOrderBy = 0;
2375 
2376   /* Store the results of the setup-query in Queue. */
2377   pSetup->pNext = 0;
2378   ExplainQueryPlan((pParse, 1, "SETUP"));
2379   rc = sqlite3Select(pParse, pSetup, &destQueue);
2380   pSetup->pNext = p;
2381   if( rc ) goto end_of_recursive_query;
2382 
2383   /* Find the next row in the Queue and output that row */
2384   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2385 
2386   /* Transfer the next row in Queue over to Current */
2387   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2388   if( pOrderBy ){
2389     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2390   }else{
2391     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2392   }
2393   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2394 
2395   /* Output the single row in Current */
2396   addrCont = sqlite3VdbeMakeLabel(v);
2397   codeOffset(v, regOffset, addrCont);
2398   selectInnerLoop(pParse, p, iCurrent,
2399       0, 0, pDest, addrCont, addrBreak);
2400   if( regLimit ){
2401     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2402     VdbeCoverage(v);
2403   }
2404   sqlite3VdbeResolveLabel(v, addrCont);
2405 
2406   /* Execute the recursive SELECT taking the single row in Current as
2407   ** the value for the recursive-table. Store the results in the Queue.
2408   */
2409   if( p->selFlags & SF_Aggregate ){
2410     sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2411   }else{
2412     p->pPrior = 0;
2413     ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2414     sqlite3Select(pParse, p, &destQueue);
2415     assert( p->pPrior==0 );
2416     p->pPrior = pSetup;
2417   }
2418 
2419   /* Keep running the loop until the Queue is empty */
2420   sqlite3VdbeGoto(v, addrTop);
2421   sqlite3VdbeResolveLabel(v, addrBreak);
2422 
2423 end_of_recursive_query:
2424   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2425   p->pOrderBy = pOrderBy;
2426   p->pLimit = pLimit;
2427   return;
2428 }
2429 #endif /* SQLITE_OMIT_CTE */
2430 
2431 /* Forward references */
2432 static int multiSelectOrderBy(
2433   Parse *pParse,        /* Parsing context */
2434   Select *p,            /* The right-most of SELECTs to be coded */
2435   SelectDest *pDest     /* What to do with query results */
2436 );
2437 
2438 /*
2439 ** Handle the special case of a compound-select that originates from a
2440 ** VALUES clause.  By handling this as a special case, we avoid deep
2441 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2442 ** on a VALUES clause.
2443 **
2444 ** Because the Select object originates from a VALUES clause:
2445 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2446 **   (2) All terms are UNION ALL
2447 **   (3) There is no ORDER BY clause
2448 **
2449 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2450 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2451 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2452 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2453 */
2454 static int multiSelectValues(
2455   Parse *pParse,        /* Parsing context */
2456   Select *p,            /* The right-most of SELECTs to be coded */
2457   SelectDest *pDest     /* What to do with query results */
2458 ){
2459   int nRow = 1;
2460   int rc = 0;
2461   int bShowAll = p->pLimit==0;
2462   assert( p->selFlags & SF_MultiValue );
2463   do{
2464     assert( p->selFlags & SF_Values );
2465     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2466     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2467     if( p->pPrior==0 ) break;
2468     assert( p->pPrior->pNext==p );
2469     p = p->pPrior;
2470     nRow += bShowAll;
2471   }while(1);
2472   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2473                     nRow==1 ? "" : "S"));
2474   while( p ){
2475     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2476     if( !bShowAll ) break;
2477     p->nSelectRow = nRow;
2478     p = p->pNext;
2479   }
2480   return rc;
2481 }
2482 
2483 /*
2484 ** This routine is called to process a compound query form from
2485 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2486 ** INTERSECT
2487 **
2488 ** "p" points to the right-most of the two queries.  the query on the
2489 ** left is p->pPrior.  The left query could also be a compound query
2490 ** in which case this routine will be called recursively.
2491 **
2492 ** The results of the total query are to be written into a destination
2493 ** of type eDest with parameter iParm.
2494 **
2495 ** Example 1:  Consider a three-way compound SQL statement.
2496 **
2497 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2498 **
2499 ** This statement is parsed up as follows:
2500 **
2501 **     SELECT c FROM t3
2502 **      |
2503 **      `----->  SELECT b FROM t2
2504 **                |
2505 **                `------>  SELECT a FROM t1
2506 **
2507 ** The arrows in the diagram above represent the Select.pPrior pointer.
2508 ** So if this routine is called with p equal to the t3 query, then
2509 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2510 **
2511 ** Notice that because of the way SQLite parses compound SELECTs, the
2512 ** individual selects always group from left to right.
2513 */
2514 static int multiSelect(
2515   Parse *pParse,        /* Parsing context */
2516   Select *p,            /* The right-most of SELECTs to be coded */
2517   SelectDest *pDest     /* What to do with query results */
2518 ){
2519   int rc = SQLITE_OK;   /* Success code from a subroutine */
2520   Select *pPrior;       /* Another SELECT immediately to our left */
2521   Vdbe *v;              /* Generate code to this VDBE */
2522   SelectDest dest;      /* Alternative data destination */
2523   Select *pDelete = 0;  /* Chain of simple selects to delete */
2524   sqlite3 *db;          /* Database connection */
2525 
2526   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2527   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2528   */
2529   assert( p && p->pPrior );  /* Calling function guarantees this much */
2530   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2531   db = pParse->db;
2532   pPrior = p->pPrior;
2533   dest = *pDest;
2534   if( pPrior->pOrderBy || pPrior->pLimit ){
2535     sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2536       pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2537     rc = 1;
2538     goto multi_select_end;
2539   }
2540 
2541   v = sqlite3GetVdbe(pParse);
2542   assert( v!=0 );  /* The VDBE already created by calling function */
2543 
2544   /* Create the destination temporary table if necessary
2545   */
2546   if( dest.eDest==SRT_EphemTab ){
2547     assert( p->pEList );
2548     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2549     dest.eDest = SRT_Table;
2550   }
2551 
2552   /* Special handling for a compound-select that originates as a VALUES clause.
2553   */
2554   if( p->selFlags & SF_MultiValue ){
2555     rc = multiSelectValues(pParse, p, &dest);
2556     goto multi_select_end;
2557   }
2558 
2559   /* Make sure all SELECTs in the statement have the same number of elements
2560   ** in their result sets.
2561   */
2562   assert( p->pEList && pPrior->pEList );
2563   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2564 
2565 #ifndef SQLITE_OMIT_CTE
2566   if( p->selFlags & SF_Recursive ){
2567     generateWithRecursiveQuery(pParse, p, &dest);
2568   }else
2569 #endif
2570 
2571   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2572   */
2573   if( p->pOrderBy ){
2574     return multiSelectOrderBy(pParse, p, pDest);
2575   }else{
2576 
2577 #ifndef SQLITE_OMIT_EXPLAIN
2578     if( pPrior->pPrior==0 ){
2579       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2580       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2581     }
2582 #endif
2583 
2584     /* Generate code for the left and right SELECT statements.
2585     */
2586     switch( p->op ){
2587       case TK_ALL: {
2588         int addr = 0;
2589         int nLimit;
2590         assert( !pPrior->pLimit );
2591         pPrior->iLimit = p->iLimit;
2592         pPrior->iOffset = p->iOffset;
2593         pPrior->pLimit = p->pLimit;
2594         rc = sqlite3Select(pParse, pPrior, &dest);
2595         p->pLimit = 0;
2596         if( rc ){
2597           goto multi_select_end;
2598         }
2599         p->pPrior = 0;
2600         p->iLimit = pPrior->iLimit;
2601         p->iOffset = pPrior->iOffset;
2602         if( p->iLimit ){
2603           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2604           VdbeComment((v, "Jump ahead if LIMIT reached"));
2605           if( p->iOffset ){
2606             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2607                               p->iLimit, p->iOffset+1, p->iOffset);
2608           }
2609         }
2610         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2611         rc = sqlite3Select(pParse, p, &dest);
2612         testcase( rc!=SQLITE_OK );
2613         pDelete = p->pPrior;
2614         p->pPrior = pPrior;
2615         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2616         if( pPrior->pLimit
2617          && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2618          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2619         ){
2620           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2621         }
2622         if( addr ){
2623           sqlite3VdbeJumpHere(v, addr);
2624         }
2625         break;
2626       }
2627       case TK_EXCEPT:
2628       case TK_UNION: {
2629         int unionTab;    /* Cursor number of the temp table holding result */
2630         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2631         int priorOp;     /* The SRT_ operation to apply to prior selects */
2632         Expr *pLimit;    /* Saved values of p->nLimit  */
2633         int addr;
2634         SelectDest uniondest;
2635 
2636         testcase( p->op==TK_EXCEPT );
2637         testcase( p->op==TK_UNION );
2638         priorOp = SRT_Union;
2639         if( dest.eDest==priorOp ){
2640           /* We can reuse a temporary table generated by a SELECT to our
2641           ** right.
2642           */
2643           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2644           unionTab = dest.iSDParm;
2645         }else{
2646           /* We will need to create our own temporary table to hold the
2647           ** intermediate results.
2648           */
2649           unionTab = pParse->nTab++;
2650           assert( p->pOrderBy==0 );
2651           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2652           assert( p->addrOpenEphm[0] == -1 );
2653           p->addrOpenEphm[0] = addr;
2654           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2655           assert( p->pEList );
2656         }
2657 
2658         /* Code the SELECT statements to our left
2659         */
2660         assert( !pPrior->pOrderBy );
2661         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2662         rc = sqlite3Select(pParse, pPrior, &uniondest);
2663         if( rc ){
2664           goto multi_select_end;
2665         }
2666 
2667         /* Code the current SELECT statement
2668         */
2669         if( p->op==TK_EXCEPT ){
2670           op = SRT_Except;
2671         }else{
2672           assert( p->op==TK_UNION );
2673           op = SRT_Union;
2674         }
2675         p->pPrior = 0;
2676         pLimit = p->pLimit;
2677         p->pLimit = 0;
2678         uniondest.eDest = op;
2679         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2680                           selectOpName(p->op)));
2681         rc = sqlite3Select(pParse, p, &uniondest);
2682         testcase( rc!=SQLITE_OK );
2683         /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2684         ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2685         sqlite3ExprListDelete(db, p->pOrderBy);
2686         pDelete = p->pPrior;
2687         p->pPrior = pPrior;
2688         p->pOrderBy = 0;
2689         if( p->op==TK_UNION ){
2690           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2691         }
2692         sqlite3ExprDelete(db, p->pLimit);
2693         p->pLimit = pLimit;
2694         p->iLimit = 0;
2695         p->iOffset = 0;
2696 
2697         /* Convert the data in the temporary table into whatever form
2698         ** it is that we currently need.
2699         */
2700         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2701         if( dest.eDest!=priorOp ){
2702           int iCont, iBreak, iStart;
2703           assert( p->pEList );
2704           iBreak = sqlite3VdbeMakeLabel(v);
2705           iCont = sqlite3VdbeMakeLabel(v);
2706           computeLimitRegisters(pParse, p, iBreak);
2707           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2708           iStart = sqlite3VdbeCurrentAddr(v);
2709           selectInnerLoop(pParse, p, unionTab,
2710                           0, 0, &dest, iCont, iBreak);
2711           sqlite3VdbeResolveLabel(v, iCont);
2712           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2713           sqlite3VdbeResolveLabel(v, iBreak);
2714           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2715         }
2716         break;
2717       }
2718       default: assert( p->op==TK_INTERSECT ); {
2719         int tab1, tab2;
2720         int iCont, iBreak, iStart;
2721         Expr *pLimit;
2722         int addr;
2723         SelectDest intersectdest;
2724         int r1;
2725 
2726         /* INTERSECT is different from the others since it requires
2727         ** two temporary tables.  Hence it has its own case.  Begin
2728         ** by allocating the tables we will need.
2729         */
2730         tab1 = pParse->nTab++;
2731         tab2 = pParse->nTab++;
2732         assert( p->pOrderBy==0 );
2733 
2734         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2735         assert( p->addrOpenEphm[0] == -1 );
2736         p->addrOpenEphm[0] = addr;
2737         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2738         assert( p->pEList );
2739 
2740         /* Code the SELECTs to our left into temporary table "tab1".
2741         */
2742         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2743         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2744         if( rc ){
2745           goto multi_select_end;
2746         }
2747 
2748         /* Code the current SELECT into temporary table "tab2"
2749         */
2750         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2751         assert( p->addrOpenEphm[1] == -1 );
2752         p->addrOpenEphm[1] = addr;
2753         p->pPrior = 0;
2754         pLimit = p->pLimit;
2755         p->pLimit = 0;
2756         intersectdest.iSDParm = tab2;
2757         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2758                           selectOpName(p->op)));
2759         rc = sqlite3Select(pParse, p, &intersectdest);
2760         testcase( rc!=SQLITE_OK );
2761         pDelete = p->pPrior;
2762         p->pPrior = pPrior;
2763         if( p->nSelectRow>pPrior->nSelectRow ){
2764           p->nSelectRow = pPrior->nSelectRow;
2765         }
2766         sqlite3ExprDelete(db, p->pLimit);
2767         p->pLimit = pLimit;
2768 
2769         /* Generate code to take the intersection of the two temporary
2770         ** tables.
2771         */
2772         assert( p->pEList );
2773         iBreak = sqlite3VdbeMakeLabel(v);
2774         iCont = sqlite3VdbeMakeLabel(v);
2775         computeLimitRegisters(pParse, p, iBreak);
2776         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2777         r1 = sqlite3GetTempReg(pParse);
2778         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2779         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2780         VdbeCoverage(v);
2781         sqlite3ReleaseTempReg(pParse, r1);
2782         selectInnerLoop(pParse, p, tab1,
2783                         0, 0, &dest, iCont, iBreak);
2784         sqlite3VdbeResolveLabel(v, iCont);
2785         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2786         sqlite3VdbeResolveLabel(v, iBreak);
2787         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2788         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2789         break;
2790       }
2791     }
2792 
2793   #ifndef SQLITE_OMIT_EXPLAIN
2794     if( p->pNext==0 ){
2795       ExplainQueryPlanPop(pParse);
2796     }
2797   #endif
2798   }
2799 
2800   /* Compute collating sequences used by
2801   ** temporary tables needed to implement the compound select.
2802   ** Attach the KeyInfo structure to all temporary tables.
2803   **
2804   ** This section is run by the right-most SELECT statement only.
2805   ** SELECT statements to the left always skip this part.  The right-most
2806   ** SELECT might also skip this part if it has no ORDER BY clause and
2807   ** no temp tables are required.
2808   */
2809   if( p->selFlags & SF_UsesEphemeral ){
2810     int i;                        /* Loop counter */
2811     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2812     Select *pLoop;                /* For looping through SELECT statements */
2813     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2814     int nCol;                     /* Number of columns in result set */
2815 
2816     assert( p->pNext==0 );
2817     nCol = p->pEList->nExpr;
2818     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2819     if( !pKeyInfo ){
2820       rc = SQLITE_NOMEM_BKPT;
2821       goto multi_select_end;
2822     }
2823     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2824       *apColl = multiSelectCollSeq(pParse, p, i);
2825       if( 0==*apColl ){
2826         *apColl = db->pDfltColl;
2827       }
2828     }
2829 
2830     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2831       for(i=0; i<2; i++){
2832         int addr = pLoop->addrOpenEphm[i];
2833         if( addr<0 ){
2834           /* If [0] is unused then [1] is also unused.  So we can
2835           ** always safely abort as soon as the first unused slot is found */
2836           assert( pLoop->addrOpenEphm[1]<0 );
2837           break;
2838         }
2839         sqlite3VdbeChangeP2(v, addr, nCol);
2840         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2841                             P4_KEYINFO);
2842         pLoop->addrOpenEphm[i] = -1;
2843       }
2844     }
2845     sqlite3KeyInfoUnref(pKeyInfo);
2846   }
2847 
2848 multi_select_end:
2849   pDest->iSdst = dest.iSdst;
2850   pDest->nSdst = dest.nSdst;
2851   sqlite3SelectDelete(db, pDelete);
2852   return rc;
2853 }
2854 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2855 
2856 /*
2857 ** Error message for when two or more terms of a compound select have different
2858 ** size result sets.
2859 */
2860 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2861   if( p->selFlags & SF_Values ){
2862     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2863   }else{
2864     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2865       " do not have the same number of result columns", selectOpName(p->op));
2866   }
2867 }
2868 
2869 /*
2870 ** Code an output subroutine for a coroutine implementation of a
2871 ** SELECT statment.
2872 **
2873 ** The data to be output is contained in pIn->iSdst.  There are
2874 ** pIn->nSdst columns to be output.  pDest is where the output should
2875 ** be sent.
2876 **
2877 ** regReturn is the number of the register holding the subroutine
2878 ** return address.
2879 **
2880 ** If regPrev>0 then it is the first register in a vector that
2881 ** records the previous output.  mem[regPrev] is a flag that is false
2882 ** if there has been no previous output.  If regPrev>0 then code is
2883 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2884 ** keys.
2885 **
2886 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2887 ** iBreak.
2888 */
2889 static int generateOutputSubroutine(
2890   Parse *pParse,          /* Parsing context */
2891   Select *p,              /* The SELECT statement */
2892   SelectDest *pIn,        /* Coroutine supplying data */
2893   SelectDest *pDest,      /* Where to send the data */
2894   int regReturn,          /* The return address register */
2895   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2896   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2897   int iBreak              /* Jump here if we hit the LIMIT */
2898 ){
2899   Vdbe *v = pParse->pVdbe;
2900   int iContinue;
2901   int addr;
2902 
2903   addr = sqlite3VdbeCurrentAddr(v);
2904   iContinue = sqlite3VdbeMakeLabel(v);
2905 
2906   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2907   */
2908   if( regPrev ){
2909     int addr1, addr2;
2910     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2911     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2912                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2913     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2914     sqlite3VdbeJumpHere(v, addr1);
2915     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2916     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2917   }
2918   if( pParse->db->mallocFailed ) return 0;
2919 
2920   /* Suppress the first OFFSET entries if there is an OFFSET clause
2921   */
2922   codeOffset(v, p->iOffset, iContinue);
2923 
2924   assert( pDest->eDest!=SRT_Exists );
2925   assert( pDest->eDest!=SRT_Table );
2926   switch( pDest->eDest ){
2927     /* Store the result as data using a unique key.
2928     */
2929     case SRT_EphemTab: {
2930       int r1 = sqlite3GetTempReg(pParse);
2931       int r2 = sqlite3GetTempReg(pParse);
2932       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2933       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2934       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2935       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2936       sqlite3ReleaseTempReg(pParse, r2);
2937       sqlite3ReleaseTempReg(pParse, r1);
2938       break;
2939     }
2940 
2941 #ifndef SQLITE_OMIT_SUBQUERY
2942     /* If we are creating a set for an "expr IN (SELECT ...)".
2943     */
2944     case SRT_Set: {
2945       int r1;
2946       testcase( pIn->nSdst>1 );
2947       r1 = sqlite3GetTempReg(pParse);
2948       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
2949           r1, pDest->zAffSdst, pIn->nSdst);
2950       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
2951                            pIn->iSdst, pIn->nSdst);
2952       sqlite3ReleaseTempReg(pParse, r1);
2953       break;
2954     }
2955 
2956     /* If this is a scalar select that is part of an expression, then
2957     ** store the results in the appropriate memory cell and break out
2958     ** of the scan loop.
2959     */
2960     case SRT_Mem: {
2961       assert( pIn->nSdst==1 || pParse->nErr>0 );  testcase( pIn->nSdst!=1 );
2962       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2963       /* The LIMIT clause will jump out of the loop for us */
2964       break;
2965     }
2966 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2967 
2968     /* The results are stored in a sequence of registers
2969     ** starting at pDest->iSdst.  Then the co-routine yields.
2970     */
2971     case SRT_Coroutine: {
2972       if( pDest->iSdst==0 ){
2973         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2974         pDest->nSdst = pIn->nSdst;
2975       }
2976       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
2977       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2978       break;
2979     }
2980 
2981     /* If none of the above, then the result destination must be
2982     ** SRT_Output.  This routine is never called with any other
2983     ** destination other than the ones handled above or SRT_Output.
2984     **
2985     ** For SRT_Output, results are stored in a sequence of registers.
2986     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2987     ** return the next row of result.
2988     */
2989     default: {
2990       assert( pDest->eDest==SRT_Output );
2991       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2992       break;
2993     }
2994   }
2995 
2996   /* Jump to the end of the loop if the LIMIT is reached.
2997   */
2998   if( p->iLimit ){
2999     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3000   }
3001 
3002   /* Generate the subroutine return
3003   */
3004   sqlite3VdbeResolveLabel(v, iContinue);
3005   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3006 
3007   return addr;
3008 }
3009 
3010 /*
3011 ** Alternative compound select code generator for cases when there
3012 ** is an ORDER BY clause.
3013 **
3014 ** We assume a query of the following form:
3015 **
3016 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3017 **
3018 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3019 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3020 ** co-routines.  Then run the co-routines in parallel and merge the results
3021 ** into the output.  In addition to the two coroutines (called selectA and
3022 ** selectB) there are 7 subroutines:
3023 **
3024 **    outA:    Move the output of the selectA coroutine into the output
3025 **             of the compound query.
3026 **
3027 **    outB:    Move the output of the selectB coroutine into the output
3028 **             of the compound query.  (Only generated for UNION and
3029 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3030 **             appears only in B.)
3031 **
3032 **    AltB:    Called when there is data from both coroutines and A<B.
3033 **
3034 **    AeqB:    Called when there is data from both coroutines and A==B.
3035 **
3036 **    AgtB:    Called when there is data from both coroutines and A>B.
3037 **
3038 **    EofA:    Called when data is exhausted from selectA.
3039 **
3040 **    EofB:    Called when data is exhausted from selectB.
3041 **
3042 ** The implementation of the latter five subroutines depend on which
3043 ** <operator> is used:
3044 **
3045 **
3046 **             UNION ALL         UNION            EXCEPT          INTERSECT
3047 **          -------------  -----------------  --------------  -----------------
3048 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3049 **
3050 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3051 **
3052 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3053 **
3054 **   EofA:   outB, nextB      outB, nextB          halt             halt
3055 **
3056 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3057 **
3058 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3059 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3060 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3061 ** following nextX causes a jump to the end of the select processing.
3062 **
3063 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3064 ** within the output subroutine.  The regPrev register set holds the previously
3065 ** output value.  A comparison is made against this value and the output
3066 ** is skipped if the next results would be the same as the previous.
3067 **
3068 ** The implementation plan is to implement the two coroutines and seven
3069 ** subroutines first, then put the control logic at the bottom.  Like this:
3070 **
3071 **          goto Init
3072 **     coA: coroutine for left query (A)
3073 **     coB: coroutine for right query (B)
3074 **    outA: output one row of A
3075 **    outB: output one row of B (UNION and UNION ALL only)
3076 **    EofA: ...
3077 **    EofB: ...
3078 **    AltB: ...
3079 **    AeqB: ...
3080 **    AgtB: ...
3081 **    Init: initialize coroutine registers
3082 **          yield coA
3083 **          if eof(A) goto EofA
3084 **          yield coB
3085 **          if eof(B) goto EofB
3086 **    Cmpr: Compare A, B
3087 **          Jump AltB, AeqB, AgtB
3088 **     End: ...
3089 **
3090 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3091 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3092 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3093 ** and AgtB jump to either L2 or to one of EofA or EofB.
3094 */
3095 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3096 static int multiSelectOrderBy(
3097   Parse *pParse,        /* Parsing context */
3098   Select *p,            /* The right-most of SELECTs to be coded */
3099   SelectDest *pDest     /* What to do with query results */
3100 ){
3101   int i, j;             /* Loop counters */
3102   Select *pPrior;       /* Another SELECT immediately to our left */
3103   Vdbe *v;              /* Generate code to this VDBE */
3104   SelectDest destA;     /* Destination for coroutine A */
3105   SelectDest destB;     /* Destination for coroutine B */
3106   int regAddrA;         /* Address register for select-A coroutine */
3107   int regAddrB;         /* Address register for select-B coroutine */
3108   int addrSelectA;      /* Address of the select-A coroutine */
3109   int addrSelectB;      /* Address of the select-B coroutine */
3110   int regOutA;          /* Address register for the output-A subroutine */
3111   int regOutB;          /* Address register for the output-B subroutine */
3112   int addrOutA;         /* Address of the output-A subroutine */
3113   int addrOutB = 0;     /* Address of the output-B subroutine */
3114   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3115   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3116   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3117   int addrAltB;         /* Address of the A<B subroutine */
3118   int addrAeqB;         /* Address of the A==B subroutine */
3119   int addrAgtB;         /* Address of the A>B subroutine */
3120   int regLimitA;        /* Limit register for select-A */
3121   int regLimitB;        /* Limit register for select-A */
3122   int regPrev;          /* A range of registers to hold previous output */
3123   int savedLimit;       /* Saved value of p->iLimit */
3124   int savedOffset;      /* Saved value of p->iOffset */
3125   int labelCmpr;        /* Label for the start of the merge algorithm */
3126   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3127   int addr1;            /* Jump instructions that get retargetted */
3128   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3129   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3130   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3131   sqlite3 *db;          /* Database connection */
3132   ExprList *pOrderBy;   /* The ORDER BY clause */
3133   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3134   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3135 
3136   assert( p->pOrderBy!=0 );
3137   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3138   db = pParse->db;
3139   v = pParse->pVdbe;
3140   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3141   labelEnd = sqlite3VdbeMakeLabel(v);
3142   labelCmpr = sqlite3VdbeMakeLabel(v);
3143 
3144 
3145   /* Patch up the ORDER BY clause
3146   */
3147   op = p->op;
3148   pPrior = p->pPrior;
3149   assert( pPrior->pOrderBy==0 );
3150   pOrderBy = p->pOrderBy;
3151   assert( pOrderBy );
3152   nOrderBy = pOrderBy->nExpr;
3153 
3154   /* For operators other than UNION ALL we have to make sure that
3155   ** the ORDER BY clause covers every term of the result set.  Add
3156   ** terms to the ORDER BY clause as necessary.
3157   */
3158   if( op!=TK_ALL ){
3159     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3160       struct ExprList_item *pItem;
3161       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3162         assert( pItem->u.x.iOrderByCol>0 );
3163         if( pItem->u.x.iOrderByCol==i ) break;
3164       }
3165       if( j==nOrderBy ){
3166         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3167         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3168         pNew->flags |= EP_IntValue;
3169         pNew->u.iValue = i;
3170         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3171         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3172       }
3173     }
3174   }
3175 
3176   /* Compute the comparison permutation and keyinfo that is used with
3177   ** the permutation used to determine if the next
3178   ** row of results comes from selectA or selectB.  Also add explicit
3179   ** collations to the ORDER BY clause terms so that when the subqueries
3180   ** to the right and the left are evaluated, they use the correct
3181   ** collation.
3182   */
3183   aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1));
3184   if( aPermute ){
3185     struct ExprList_item *pItem;
3186     aPermute[0] = nOrderBy;
3187     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3188       assert( pItem->u.x.iOrderByCol>0 );
3189       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3190       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3191     }
3192     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3193   }else{
3194     pKeyMerge = 0;
3195   }
3196 
3197   /* Reattach the ORDER BY clause to the query.
3198   */
3199   p->pOrderBy = pOrderBy;
3200   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3201 
3202   /* Allocate a range of temporary registers and the KeyInfo needed
3203   ** for the logic that removes duplicate result rows when the
3204   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3205   */
3206   if( op==TK_ALL ){
3207     regPrev = 0;
3208   }else{
3209     int nExpr = p->pEList->nExpr;
3210     assert( nOrderBy>=nExpr || db->mallocFailed );
3211     regPrev = pParse->nMem+1;
3212     pParse->nMem += nExpr+1;
3213     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3214     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3215     if( pKeyDup ){
3216       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3217       for(i=0; i<nExpr; i++){
3218         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3219         pKeyDup->aSortOrder[i] = 0;
3220       }
3221     }
3222   }
3223 
3224   /* Separate the left and the right query from one another
3225   */
3226   p->pPrior = 0;
3227   pPrior->pNext = 0;
3228   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3229   if( pPrior->pPrior==0 ){
3230     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3231   }
3232 
3233   /* Compute the limit registers */
3234   computeLimitRegisters(pParse, p, labelEnd);
3235   if( p->iLimit && op==TK_ALL ){
3236     regLimitA = ++pParse->nMem;
3237     regLimitB = ++pParse->nMem;
3238     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3239                                   regLimitA);
3240     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3241   }else{
3242     regLimitA = regLimitB = 0;
3243   }
3244   sqlite3ExprDelete(db, p->pLimit);
3245   p->pLimit = 0;
3246 
3247   regAddrA = ++pParse->nMem;
3248   regAddrB = ++pParse->nMem;
3249   regOutA = ++pParse->nMem;
3250   regOutB = ++pParse->nMem;
3251   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3252   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3253 
3254   ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3255 
3256   /* Generate a coroutine to evaluate the SELECT statement to the
3257   ** left of the compound operator - the "A" select.
3258   */
3259   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3260   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3261   VdbeComment((v, "left SELECT"));
3262   pPrior->iLimit = regLimitA;
3263   ExplainQueryPlan((pParse, 1, "LEFT"));
3264   sqlite3Select(pParse, pPrior, &destA);
3265   sqlite3VdbeEndCoroutine(v, regAddrA);
3266   sqlite3VdbeJumpHere(v, addr1);
3267 
3268   /* Generate a coroutine to evaluate the SELECT statement on
3269   ** the right - the "B" select
3270   */
3271   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3272   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3273   VdbeComment((v, "right SELECT"));
3274   savedLimit = p->iLimit;
3275   savedOffset = p->iOffset;
3276   p->iLimit = regLimitB;
3277   p->iOffset = 0;
3278   ExplainQueryPlan((pParse, 1, "RIGHT"));
3279   sqlite3Select(pParse, p, &destB);
3280   p->iLimit = savedLimit;
3281   p->iOffset = savedOffset;
3282   sqlite3VdbeEndCoroutine(v, regAddrB);
3283 
3284   /* Generate a subroutine that outputs the current row of the A
3285   ** select as the next output row of the compound select.
3286   */
3287   VdbeNoopComment((v, "Output routine for A"));
3288   addrOutA = generateOutputSubroutine(pParse,
3289                  p, &destA, pDest, regOutA,
3290                  regPrev, pKeyDup, labelEnd);
3291 
3292   /* Generate a subroutine that outputs the current row of the B
3293   ** select as the next output row of the compound select.
3294   */
3295   if( op==TK_ALL || op==TK_UNION ){
3296     VdbeNoopComment((v, "Output routine for B"));
3297     addrOutB = generateOutputSubroutine(pParse,
3298                  p, &destB, pDest, regOutB,
3299                  regPrev, pKeyDup, labelEnd);
3300   }
3301   sqlite3KeyInfoUnref(pKeyDup);
3302 
3303   /* Generate a subroutine to run when the results from select A
3304   ** are exhausted and only data in select B remains.
3305   */
3306   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3307     addrEofA_noB = addrEofA = labelEnd;
3308   }else{
3309     VdbeNoopComment((v, "eof-A subroutine"));
3310     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3311     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3312                                      VdbeCoverage(v);
3313     sqlite3VdbeGoto(v, addrEofA);
3314     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3315   }
3316 
3317   /* Generate a subroutine to run when the results from select B
3318   ** are exhausted and only data in select A remains.
3319   */
3320   if( op==TK_INTERSECT ){
3321     addrEofB = addrEofA;
3322     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3323   }else{
3324     VdbeNoopComment((v, "eof-B subroutine"));
3325     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3326     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3327     sqlite3VdbeGoto(v, addrEofB);
3328   }
3329 
3330   /* Generate code to handle the case of A<B
3331   */
3332   VdbeNoopComment((v, "A-lt-B subroutine"));
3333   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3334   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3335   sqlite3VdbeGoto(v, labelCmpr);
3336 
3337   /* Generate code to handle the case of A==B
3338   */
3339   if( op==TK_ALL ){
3340     addrAeqB = addrAltB;
3341   }else if( op==TK_INTERSECT ){
3342     addrAeqB = addrAltB;
3343     addrAltB++;
3344   }else{
3345     VdbeNoopComment((v, "A-eq-B subroutine"));
3346     addrAeqB =
3347     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3348     sqlite3VdbeGoto(v, labelCmpr);
3349   }
3350 
3351   /* Generate code to handle the case of A>B
3352   */
3353   VdbeNoopComment((v, "A-gt-B subroutine"));
3354   addrAgtB = sqlite3VdbeCurrentAddr(v);
3355   if( op==TK_ALL || op==TK_UNION ){
3356     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3357   }
3358   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3359   sqlite3VdbeGoto(v, labelCmpr);
3360 
3361   /* This code runs once to initialize everything.
3362   */
3363   sqlite3VdbeJumpHere(v, addr1);
3364   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3365   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3366 
3367   /* Implement the main merge loop
3368   */
3369   sqlite3VdbeResolveLabel(v, labelCmpr);
3370   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3371   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3372                          (char*)pKeyMerge, P4_KEYINFO);
3373   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3374   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3375 
3376   /* Jump to the this point in order to terminate the query.
3377   */
3378   sqlite3VdbeResolveLabel(v, labelEnd);
3379 
3380   /* Reassembly the compound query so that it will be freed correctly
3381   ** by the calling function */
3382   if( p->pPrior ){
3383     sqlite3SelectDelete(db, p->pPrior);
3384   }
3385   p->pPrior = pPrior;
3386   pPrior->pNext = p;
3387 
3388   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3389   **** subqueries ****/
3390   ExplainQueryPlanPop(pParse);
3391   return pParse->nErr!=0;
3392 }
3393 #endif
3394 
3395 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3396 
3397 /* An instance of the SubstContext object describes an substitution edit
3398 ** to be performed on a parse tree.
3399 **
3400 ** All references to columns in table iTable are to be replaced by corresponding
3401 ** expressions in pEList.
3402 */
3403 typedef struct SubstContext {
3404   Parse *pParse;            /* The parsing context */
3405   int iTable;               /* Replace references to this table */
3406   int iNewTable;            /* New table number */
3407   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3408   ExprList *pEList;         /* Replacement expressions */
3409 } SubstContext;
3410 
3411 /* Forward Declarations */
3412 static void substExprList(SubstContext*, ExprList*);
3413 static void substSelect(SubstContext*, Select*, int);
3414 
3415 /*
3416 ** Scan through the expression pExpr.  Replace every reference to
3417 ** a column in table number iTable with a copy of the iColumn-th
3418 ** entry in pEList.  (But leave references to the ROWID column
3419 ** unchanged.)
3420 **
3421 ** This routine is part of the flattening procedure.  A subquery
3422 ** whose result set is defined by pEList appears as entry in the
3423 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3424 ** FORM clause entry is iTable.  This routine makes the necessary
3425 ** changes to pExpr so that it refers directly to the source table
3426 ** of the subquery rather the result set of the subquery.
3427 */
3428 static Expr *substExpr(
3429   SubstContext *pSubst,  /* Description of the substitution */
3430   Expr *pExpr            /* Expr in which substitution occurs */
3431 ){
3432   if( pExpr==0 ) return 0;
3433   if( ExprHasProperty(pExpr, EP_FromJoin)
3434    && pExpr->iRightJoinTable==pSubst->iTable
3435   ){
3436     pExpr->iRightJoinTable = pSubst->iNewTable;
3437   }
3438   if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
3439     if( pExpr->iColumn<0 ){
3440       pExpr->op = TK_NULL;
3441     }else{
3442       Expr *pNew;
3443       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3444       Expr ifNullRow;
3445       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3446       assert( pExpr->pRight==0 );
3447       if( sqlite3ExprIsVector(pCopy) ){
3448         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3449       }else{
3450         sqlite3 *db = pSubst->pParse->db;
3451         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3452           memset(&ifNullRow, 0, sizeof(ifNullRow));
3453           ifNullRow.op = TK_IF_NULL_ROW;
3454           ifNullRow.pLeft = pCopy;
3455           ifNullRow.iTable = pSubst->iNewTable;
3456           pCopy = &ifNullRow;
3457         }
3458         pNew = sqlite3ExprDup(db, pCopy, 0);
3459         if( pNew && pSubst->isLeftJoin ){
3460           ExprSetProperty(pNew, EP_CanBeNull);
3461         }
3462         if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3463           pNew->iRightJoinTable = pExpr->iRightJoinTable;
3464           ExprSetProperty(pNew, EP_FromJoin);
3465         }
3466         sqlite3ExprDelete(db, pExpr);
3467         pExpr = pNew;
3468       }
3469     }
3470   }else{
3471     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3472       pExpr->iTable = pSubst->iNewTable;
3473     }
3474     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3475     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3476     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3477       substSelect(pSubst, pExpr->x.pSelect, 1);
3478     }else{
3479       substExprList(pSubst, pExpr->x.pList);
3480     }
3481   }
3482   return pExpr;
3483 }
3484 static void substExprList(
3485   SubstContext *pSubst, /* Description of the substitution */
3486   ExprList *pList       /* List to scan and in which to make substitutes */
3487 ){
3488   int i;
3489   if( pList==0 ) return;
3490   for(i=0; i<pList->nExpr; i++){
3491     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3492   }
3493 }
3494 static void substSelect(
3495   SubstContext *pSubst, /* Description of the substitution */
3496   Select *p,            /* SELECT statement in which to make substitutions */
3497   int doPrior           /* Do substitutes on p->pPrior too */
3498 ){
3499   SrcList *pSrc;
3500   struct SrcList_item *pItem;
3501   int i;
3502   if( !p ) return;
3503   do{
3504     substExprList(pSubst, p->pEList);
3505     substExprList(pSubst, p->pGroupBy);
3506     substExprList(pSubst, p->pOrderBy);
3507     p->pHaving = substExpr(pSubst, p->pHaving);
3508     p->pWhere = substExpr(pSubst, p->pWhere);
3509     pSrc = p->pSrc;
3510     assert( pSrc!=0 );
3511     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3512       substSelect(pSubst, pItem->pSelect, 1);
3513       if( pItem->fg.isTabFunc ){
3514         substExprList(pSubst, pItem->u1.pFuncArg);
3515       }
3516     }
3517   }while( doPrior && (p = p->pPrior)!=0 );
3518 }
3519 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3520 
3521 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3522 /*
3523 ** This routine attempts to flatten subqueries as a performance optimization.
3524 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3525 **
3526 ** To understand the concept of flattening, consider the following
3527 ** query:
3528 **
3529 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3530 **
3531 ** The default way of implementing this query is to execute the
3532 ** subquery first and store the results in a temporary table, then
3533 ** run the outer query on that temporary table.  This requires two
3534 ** passes over the data.  Furthermore, because the temporary table
3535 ** has no indices, the WHERE clause on the outer query cannot be
3536 ** optimized.
3537 **
3538 ** This routine attempts to rewrite queries such as the above into
3539 ** a single flat select, like this:
3540 **
3541 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3542 **
3543 ** The code generated for this simplification gives the same result
3544 ** but only has to scan the data once.  And because indices might
3545 ** exist on the table t1, a complete scan of the data might be
3546 ** avoided.
3547 **
3548 ** Flattening is subject to the following constraints:
3549 **
3550 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3551 **        The subquery and the outer query cannot both be aggregates.
3552 **
3553 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3554 **        (2) If the subquery is an aggregate then
3555 **        (2a) the outer query must not be a join and
3556 **        (2b) the outer query must not use subqueries
3557 **             other than the one FROM-clause subquery that is a candidate
3558 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3559 **             from 2015-02-09.)
3560 **
3561 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3562 **        (3a) the subquery may not be a join and
3563 **        (3b) the FROM clause of the subquery may not contain a virtual
3564 **             table and
3565 **        (3c) the outer query may not be an aggregate.
3566 **
3567 **   (4)  The subquery can not be DISTINCT.
3568 **
3569 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3570 **        sub-queries that were excluded from this optimization. Restriction
3571 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3572 **
3573 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3574 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3575 **
3576 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3577 **        A FROM clause, consider adding a FROM clause with the special
3578 **        table sqlite_once that consists of a single row containing a
3579 **        single NULL.
3580 **
3581 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3582 **
3583 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3584 **
3585 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3586 **        accidently carried the comment forward until 2014-09-15.  Original
3587 **        constraint: "If the subquery is aggregate then the outer query
3588 **        may not use LIMIT."
3589 **
3590 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3591 **
3592 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3593 **        a separate restriction deriving from ticket #350.
3594 **
3595 **  (13)  The subquery and outer query may not both use LIMIT.
3596 **
3597 **  (14)  The subquery may not use OFFSET.
3598 **
3599 **  (15)  If the outer query is part of a compound select, then the
3600 **        subquery may not use LIMIT.
3601 **        (See ticket #2339 and ticket [02a8e81d44]).
3602 **
3603 **  (16)  If the outer query is aggregate, then the subquery may not
3604 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3605 **        until we introduced the group_concat() function.
3606 **
3607 **  (17)  If the subquery is a compound select, then
3608 **        (17a) all compound operators must be a UNION ALL, and
3609 **        (17b) no terms within the subquery compound may be aggregate
3610 **              or DISTINCT, and
3611 **        (17c) every term within the subquery compound must have a FROM clause
3612 **        (17d) the outer query may not be
3613 **              (17d1) aggregate, or
3614 **              (17d2) DISTINCT, or
3615 **              (17d3) a join.
3616 **
3617 **        The parent and sub-query may contain WHERE clauses. Subject to
3618 **        rules (11), (13) and (14), they may also contain ORDER BY,
3619 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3620 **        operator other than UNION ALL because all the other compound
3621 **        operators have an implied DISTINCT which is disallowed by
3622 **        restriction (4).
3623 **
3624 **        Also, each component of the sub-query must return the same number
3625 **        of result columns. This is actually a requirement for any compound
3626 **        SELECT statement, but all the code here does is make sure that no
3627 **        such (illegal) sub-query is flattened. The caller will detect the
3628 **        syntax error and return a detailed message.
3629 **
3630 **  (18)  If the sub-query is a compound select, then all terms of the
3631 **        ORDER BY clause of the parent must be simple references to
3632 **        columns of the sub-query.
3633 **
3634 **  (19)  If the subquery uses LIMIT then the outer query may not
3635 **        have a WHERE clause.
3636 **
3637 **  (20)  If the sub-query is a compound select, then it must not use
3638 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3639 **        somewhat by saying that the terms of the ORDER BY clause must
3640 **        appear as unmodified result columns in the outer query.  But we
3641 **        have other optimizations in mind to deal with that case.
3642 **
3643 **  (21)  If the subquery uses LIMIT then the outer query may not be
3644 **        DISTINCT.  (See ticket [752e1646fc]).
3645 **
3646 **  (22)  The subquery may not be a recursive CTE.
3647 **
3648 **  (**)  Subsumed into restriction (17d3).  Was: If the outer query is
3649 **        a recursive CTE, then the sub-query may not be a compound query.
3650 **        This restriction is because transforming the
3651 **        parent to a compound query confuses the code that handles
3652 **        recursive queries in multiSelect().
3653 **
3654 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3655 **        The subquery may not be an aggregate that uses the built-in min() or
3656 **        or max() functions.  (Without this restriction, a query like:
3657 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3658 **        return the value X for which Y was maximal.)
3659 **
3660 **  (25)  If either the subquery or the parent query contains a window
3661 **        function in the select list or ORDER BY clause, flattening
3662 **        is not attempted.
3663 **
3664 **
3665 ** In this routine, the "p" parameter is a pointer to the outer query.
3666 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3667 ** uses aggregates.
3668 **
3669 ** If flattening is not attempted, this routine is a no-op and returns 0.
3670 ** If flattening is attempted this routine returns 1.
3671 **
3672 ** All of the expression analysis must occur on both the outer query and
3673 ** the subquery before this routine runs.
3674 */
3675 static int flattenSubquery(
3676   Parse *pParse,       /* Parsing context */
3677   Select *p,           /* The parent or outer SELECT statement */
3678   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3679   int isAgg            /* True if outer SELECT uses aggregate functions */
3680 ){
3681   const char *zSavedAuthContext = pParse->zAuthContext;
3682   Select *pParent;    /* Current UNION ALL term of the other query */
3683   Select *pSub;       /* The inner query or "subquery" */
3684   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3685   SrcList *pSrc;      /* The FROM clause of the outer query */
3686   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3687   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3688   int iNewParent = -1;/* Replacement table for iParent */
3689   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3690   int i;              /* Loop counter */
3691   Expr *pWhere;                    /* The WHERE clause */
3692   struct SrcList_item *pSubitem;   /* The subquery */
3693   sqlite3 *db = pParse->db;
3694 
3695   /* Check to see if flattening is permitted.  Return 0 if not.
3696   */
3697   assert( p!=0 );
3698   assert( p->pPrior==0 );
3699   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3700   pSrc = p->pSrc;
3701   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3702   pSubitem = &pSrc->a[iFrom];
3703   iParent = pSubitem->iCursor;
3704   pSub = pSubitem->pSelect;
3705   assert( pSub!=0 );
3706 
3707 #ifndef SQLITE_OMIT_WINDOWFUNC
3708   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
3709 #endif
3710 
3711   pSubSrc = pSub->pSrc;
3712   assert( pSubSrc );
3713   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3714   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3715   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3716   ** became arbitrary expressions, we were forced to add restrictions (13)
3717   ** and (14). */
3718   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3719   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
3720   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3721     return 0;                                            /* Restriction (15) */
3722   }
3723   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3724   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
3725   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3726      return 0;         /* Restrictions (8)(9) */
3727   }
3728   if( p->pOrderBy && pSub->pOrderBy ){
3729      return 0;                                           /* Restriction (11) */
3730   }
3731   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3732   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3733   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3734      return 0;         /* Restriction (21) */
3735   }
3736   if( pSub->selFlags & (SF_Recursive) ){
3737     return 0; /* Restrictions (22) */
3738   }
3739 
3740   /*
3741   ** If the subquery is the right operand of a LEFT JOIN, then the
3742   ** subquery may not be a join itself (3a). Example of why this is not
3743   ** allowed:
3744   **
3745   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3746   **
3747   ** If we flatten the above, we would get
3748   **
3749   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3750   **
3751   ** which is not at all the same thing.
3752   **
3753   ** If the subquery is the right operand of a LEFT JOIN, then the outer
3754   ** query cannot be an aggregate. (3c)  This is an artifact of the way
3755   ** aggregates are processed - there is no mechanism to determine if
3756   ** the LEFT JOIN table should be all-NULL.
3757   **
3758   ** See also tickets #306, #350, and #3300.
3759   */
3760   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3761     isLeftJoin = 1;
3762     if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){
3763       /*  (3a)             (3c)     (3b) */
3764       return 0;
3765     }
3766   }
3767 #ifdef SQLITE_EXTRA_IFNULLROW
3768   else if( iFrom>0 && !isAgg ){
3769     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3770     ** every reference to any result column from subquery in a join, even
3771     ** though they are not necessary.  This will stress-test the OP_IfNullRow
3772     ** opcode. */
3773     isLeftJoin = -1;
3774   }
3775 #endif
3776 
3777   /* Restriction (17): If the sub-query is a compound SELECT, then it must
3778   ** use only the UNION ALL operator. And none of the simple select queries
3779   ** that make up the compound SELECT are allowed to be aggregate or distinct
3780   ** queries.
3781   */
3782   if( pSub->pPrior ){
3783     if( pSub->pOrderBy ){
3784       return 0;  /* Restriction (20) */
3785     }
3786     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3787       return 0; /* (17d1), (17d2), or (17d3) */
3788     }
3789     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3790       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3791       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3792       assert( pSub->pSrc!=0 );
3793       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3794       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
3795        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
3796        || pSub1->pSrc->nSrc<1                                  /* (17c) */
3797       ){
3798         return 0;
3799       }
3800       testcase( pSub1->pSrc->nSrc>1 );
3801     }
3802 
3803     /* Restriction (18). */
3804     if( p->pOrderBy ){
3805       int ii;
3806       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3807         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3808       }
3809     }
3810   }
3811 
3812   /* Ex-restriction (23):
3813   ** The only way that the recursive part of a CTE can contain a compound
3814   ** subquery is for the subquery to be one term of a join.  But if the
3815   ** subquery is a join, then the flattening has already been stopped by
3816   ** restriction (17d3)
3817   */
3818   assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3819 
3820   /***** If we reach this point, flattening is permitted. *****/
3821   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3822                    pSub->selId, pSub, iFrom));
3823 
3824   /* Authorize the subquery */
3825   pParse->zAuthContext = pSubitem->zName;
3826   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3827   testcase( i==SQLITE_DENY );
3828   pParse->zAuthContext = zSavedAuthContext;
3829 
3830   /* If the sub-query is a compound SELECT statement, then (by restrictions
3831   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3832   ** be of the form:
3833   **
3834   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3835   **
3836   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3837   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3838   ** OFFSET clauses and joins them to the left-hand-side of the original
3839   ** using UNION ALL operators. In this case N is the number of simple
3840   ** select statements in the compound sub-query.
3841   **
3842   ** Example:
3843   **
3844   **     SELECT a+1 FROM (
3845   **        SELECT x FROM tab
3846   **        UNION ALL
3847   **        SELECT y FROM tab
3848   **        UNION ALL
3849   **        SELECT abs(z*2) FROM tab2
3850   **     ) WHERE a!=5 ORDER BY 1
3851   **
3852   ** Transformed into:
3853   **
3854   **     SELECT x+1 FROM tab WHERE x+1!=5
3855   **     UNION ALL
3856   **     SELECT y+1 FROM tab WHERE y+1!=5
3857   **     UNION ALL
3858   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3859   **     ORDER BY 1
3860   **
3861   ** We call this the "compound-subquery flattening".
3862   */
3863   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3864     Select *pNew;
3865     ExprList *pOrderBy = p->pOrderBy;
3866     Expr *pLimit = p->pLimit;
3867     Select *pPrior = p->pPrior;
3868     p->pOrderBy = 0;
3869     p->pSrc = 0;
3870     p->pPrior = 0;
3871     p->pLimit = 0;
3872     pNew = sqlite3SelectDup(db, p, 0);
3873     p->pLimit = pLimit;
3874     p->pOrderBy = pOrderBy;
3875     p->pSrc = pSrc;
3876     p->op = TK_ALL;
3877     if( pNew==0 ){
3878       p->pPrior = pPrior;
3879     }else{
3880       pNew->pPrior = pPrior;
3881       if( pPrior ) pPrior->pNext = pNew;
3882       pNew->pNext = p;
3883       p->pPrior = pNew;
3884       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
3885                               " creates %u as peer\n",pNew->selId));
3886     }
3887     if( db->mallocFailed ) return 1;
3888   }
3889 
3890   /* Begin flattening the iFrom-th entry of the FROM clause
3891   ** in the outer query.
3892   */
3893   pSub = pSub1 = pSubitem->pSelect;
3894 
3895   /* Delete the transient table structure associated with the
3896   ** subquery
3897   */
3898   sqlite3DbFree(db, pSubitem->zDatabase);
3899   sqlite3DbFree(db, pSubitem->zName);
3900   sqlite3DbFree(db, pSubitem->zAlias);
3901   pSubitem->zDatabase = 0;
3902   pSubitem->zName = 0;
3903   pSubitem->zAlias = 0;
3904   pSubitem->pSelect = 0;
3905 
3906   /* Defer deleting the Table object associated with the
3907   ** subquery until code generation is
3908   ** complete, since there may still exist Expr.pTab entries that
3909   ** refer to the subquery even after flattening.  Ticket #3346.
3910   **
3911   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3912   */
3913   if( ALWAYS(pSubitem->pTab!=0) ){
3914     Table *pTabToDel = pSubitem->pTab;
3915     if( pTabToDel->nTabRef==1 ){
3916       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3917       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3918       pToplevel->pZombieTab = pTabToDel;
3919     }else{
3920       pTabToDel->nTabRef--;
3921     }
3922     pSubitem->pTab = 0;
3923   }
3924 
3925   /* The following loop runs once for each term in a compound-subquery
3926   ** flattening (as described above).  If we are doing a different kind
3927   ** of flattening - a flattening other than a compound-subquery flattening -
3928   ** then this loop only runs once.
3929   **
3930   ** This loop moves all of the FROM elements of the subquery into the
3931   ** the FROM clause of the outer query.  Before doing this, remember
3932   ** the cursor number for the original outer query FROM element in
3933   ** iParent.  The iParent cursor will never be used.  Subsequent code
3934   ** will scan expressions looking for iParent references and replace
3935   ** those references with expressions that resolve to the subquery FROM
3936   ** elements we are now copying in.
3937   */
3938   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3939     int nSubSrc;
3940     u8 jointype = 0;
3941     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3942     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3943     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3944 
3945     if( pSrc ){
3946       assert( pParent==p );  /* First time through the loop */
3947       jointype = pSubitem->fg.jointype;
3948     }else{
3949       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3950       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3951       if( pSrc==0 ){
3952         assert( db->mallocFailed );
3953         break;
3954       }
3955     }
3956 
3957     /* The subquery uses a single slot of the FROM clause of the outer
3958     ** query.  If the subquery has more than one element in its FROM clause,
3959     ** then expand the outer query to make space for it to hold all elements
3960     ** of the subquery.
3961     **
3962     ** Example:
3963     **
3964     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3965     **
3966     ** The outer query has 3 slots in its FROM clause.  One slot of the
3967     ** outer query (the middle slot) is used by the subquery.  The next
3968     ** block of code will expand the outer query FROM clause to 4 slots.
3969     ** The middle slot is expanded to two slots in order to make space
3970     ** for the two elements in the FROM clause of the subquery.
3971     */
3972     if( nSubSrc>1 ){
3973       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3974       if( db->mallocFailed ){
3975         break;
3976       }
3977     }
3978 
3979     /* Transfer the FROM clause terms from the subquery into the
3980     ** outer query.
3981     */
3982     for(i=0; i<nSubSrc; i++){
3983       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3984       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
3985       pSrc->a[i+iFrom] = pSubSrc->a[i];
3986       iNewParent = pSubSrc->a[i].iCursor;
3987       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3988     }
3989     pSrc->a[iFrom].fg.jointype = jointype;
3990 
3991     /* Now begin substituting subquery result set expressions for
3992     ** references to the iParent in the outer query.
3993     **
3994     ** Example:
3995     **
3996     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3997     **   \                     \_____________ subquery __________/          /
3998     **    \_____________________ outer query ______________________________/
3999     **
4000     ** We look at every expression in the outer query and every place we see
4001     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4002     */
4003     if( pSub->pOrderBy ){
4004       /* At this point, any non-zero iOrderByCol values indicate that the
4005       ** ORDER BY column expression is identical to the iOrderByCol'th
4006       ** expression returned by SELECT statement pSub. Since these values
4007       ** do not necessarily correspond to columns in SELECT statement pParent,
4008       ** zero them before transfering the ORDER BY clause.
4009       **
4010       ** Not doing this may cause an error if a subsequent call to this
4011       ** function attempts to flatten a compound sub-query into pParent
4012       ** (the only way this can happen is if the compound sub-query is
4013       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4014       ExprList *pOrderBy = pSub->pOrderBy;
4015       for(i=0; i<pOrderBy->nExpr; i++){
4016         pOrderBy->a[i].u.x.iOrderByCol = 0;
4017       }
4018       assert( pParent->pOrderBy==0 );
4019       pParent->pOrderBy = pOrderBy;
4020       pSub->pOrderBy = 0;
4021     }
4022     pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
4023     if( isLeftJoin>0 ){
4024       setJoinExpr(pWhere, iNewParent);
4025     }
4026     pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
4027     if( db->mallocFailed==0 ){
4028       SubstContext x;
4029       x.pParse = pParse;
4030       x.iTable = iParent;
4031       x.iNewTable = iNewParent;
4032       x.isLeftJoin = isLeftJoin;
4033       x.pEList = pSub->pEList;
4034       substSelect(&x, pParent, 0);
4035     }
4036 
4037     /* The flattened query is distinct if either the inner or the
4038     ** outer query is distinct.
4039     */
4040     pParent->selFlags |= pSub->selFlags & SF_Distinct;
4041 
4042     /*
4043     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4044     **
4045     ** One is tempted to try to add a and b to combine the limits.  But this
4046     ** does not work if either limit is negative.
4047     */
4048     if( pSub->pLimit ){
4049       pParent->pLimit = pSub->pLimit;
4050       pSub->pLimit = 0;
4051     }
4052   }
4053 
4054   /* Finially, delete what is left of the subquery and return
4055   ** success.
4056   */
4057   sqlite3SelectDelete(db, pSub1);
4058 
4059 #if SELECTTRACE_ENABLED
4060   if( sqlite3SelectTrace & 0x100 ){
4061     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4062     sqlite3TreeViewSelect(0, p, 0);
4063   }
4064 #endif
4065 
4066   return 1;
4067 }
4068 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4069 
4070 /*
4071 ** A structure to keep track of all of the column values that fixed to
4072 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4073 */
4074 typedef struct WhereConst WhereConst;
4075 struct WhereConst {
4076   Parse *pParse;   /* Parsing context */
4077   int nConst;      /* Number for COLUMN=CONSTANT terms */
4078   int nChng;       /* Number of times a constant is propagated */
4079   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4080 };
4081 
4082 /*
4083 ** Add a new entry to the pConst object
4084 */
4085 static void constInsert(
4086   WhereConst *pConst,
4087   Expr *pColumn,
4088   Expr *pValue
4089 ){
4090 
4091   pConst->nConst++;
4092   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4093                          pConst->nConst*2*sizeof(Expr*));
4094   if( pConst->apExpr==0 ){
4095     pConst->nConst = 0;
4096   }else{
4097     if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft;
4098     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4099     pConst->apExpr[pConst->nConst*2-1] = pValue;
4100   }
4101 }
4102 
4103 /*
4104 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4105 ** is a constant expression and where the term must be true because it
4106 ** is part of the AND-connected terms of the expression.  For each term
4107 ** found, add it to the pConst structure.
4108 */
4109 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4110   Expr *pRight, *pLeft;
4111   if( pExpr==0 ) return;
4112   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4113   if( pExpr->op==TK_AND ){
4114     findConstInWhere(pConst, pExpr->pRight);
4115     findConstInWhere(pConst, pExpr->pLeft);
4116     return;
4117   }
4118   if( pExpr->op!=TK_EQ ) return;
4119   pRight = pExpr->pRight;
4120   pLeft = pExpr->pLeft;
4121   assert( pRight!=0 );
4122   assert( pLeft!=0 );
4123   if( pRight->op==TK_COLUMN
4124    && !ExprHasProperty(pRight, EP_FixedCol)
4125    && sqlite3ExprIsConstant(pLeft)
4126    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4127   ){
4128     constInsert(pConst, pRight, pLeft);
4129   }else
4130   if( pLeft->op==TK_COLUMN
4131    && !ExprHasProperty(pLeft, EP_FixedCol)
4132    && sqlite3ExprIsConstant(pRight)
4133    && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight))
4134   ){
4135     constInsert(pConst, pLeft, pRight);
4136   }
4137 }
4138 
4139 /*
4140 ** This is a Walker expression callback.  pExpr is a candidate expression
4141 ** to be replaced by a value.  If pExpr is equivalent to one of the
4142 ** columns named in pWalker->u.pConst, then overwrite it with its
4143 ** corresponding value.
4144 */
4145 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4146   int i;
4147   WhereConst *pConst;
4148   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4149   if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue;
4150   pConst = pWalker->u.pConst;
4151   for(i=0; i<pConst->nConst; i++){
4152     Expr *pColumn = pConst->apExpr[i*2];
4153     if( pColumn==pExpr ) continue;
4154     if( pColumn->iTable!=pExpr->iTable ) continue;
4155     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4156     /* A match is found.  Add the EP_FixedCol property */
4157     pConst->nChng++;
4158     ExprClearProperty(pExpr, EP_Leaf);
4159     ExprSetProperty(pExpr, EP_FixedCol);
4160     assert( pExpr->pLeft==0 );
4161     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4162     break;
4163   }
4164   return WRC_Prune;
4165 }
4166 
4167 /*
4168 ** The WHERE-clause constant propagation optimization.
4169 **
4170 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4171 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level
4172 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN)
4173 ** then throughout the query replace all other occurrences of COLUMN
4174 ** with CONSTANT within the WHERE clause.
4175 **
4176 ** For example, the query:
4177 **
4178 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4179 **
4180 ** Is transformed into
4181 **
4182 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4183 **
4184 ** Return true if any transformations where made and false if not.
4185 **
4186 ** Implementation note:  Constant propagation is tricky due to affinity
4187 ** and collating sequence interactions.  Consider this example:
4188 **
4189 **    CREATE TABLE t1(a INT,b TEXT);
4190 **    INSERT INTO t1 VALUES(123,'0123');
4191 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4192 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4193 **
4194 ** The two SELECT statements above should return different answers.  b=a
4195 ** is alway true because the comparison uses numeric affinity, but b=123
4196 ** is false because it uses text affinity and '0123' is not the same as '123'.
4197 ** To work around this, the expression tree is not actually changed from
4198 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4199 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4200 ** routines know to generate the constant "123" instead of looking up the
4201 ** column value.  Also, to avoid collation problems, this optimization is
4202 ** only attempted if the "a=123" term uses the default BINARY collation.
4203 */
4204 static int propagateConstants(
4205   Parse *pParse,   /* The parsing context */
4206   Select *p        /* The query in which to propagate constants */
4207 ){
4208   WhereConst x;
4209   Walker w;
4210   int nChng = 0;
4211   x.pParse = pParse;
4212   do{
4213     x.nConst = 0;
4214     x.nChng = 0;
4215     x.apExpr = 0;
4216     findConstInWhere(&x, p->pWhere);
4217     if( x.nConst ){
4218       memset(&w, 0, sizeof(w));
4219       w.pParse = pParse;
4220       w.xExprCallback = propagateConstantExprRewrite;
4221       w.xSelectCallback = sqlite3SelectWalkNoop;
4222       w.xSelectCallback2 = 0;
4223       w.walkerDepth = 0;
4224       w.u.pConst = &x;
4225       sqlite3WalkExpr(&w, p->pWhere);
4226       sqlite3DbFree(x.pParse->db, x.apExpr);
4227       nChng += x.nChng;
4228     }
4229   }while( x.nChng );
4230   return nChng;
4231 }
4232 
4233 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4234 /*
4235 ** Make copies of relevant WHERE clause terms of the outer query into
4236 ** the WHERE clause of subquery.  Example:
4237 **
4238 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4239 **
4240 ** Transformed into:
4241 **
4242 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4243 **     WHERE x=5 AND y=10;
4244 **
4245 ** The hope is that the terms added to the inner query will make it more
4246 ** efficient.
4247 **
4248 ** Do not attempt this optimization if:
4249 **
4250 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4251 **           disallow this optimization for aggregate subqueries, but now
4252 **           it is allowed by putting the extra terms on the HAVING clause.
4253 **           The added HAVING clause is pointless if the subquery lacks
4254 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4255 **           so there does not appear to be any reason to add extra logic
4256 **           to suppress it. **)
4257 **
4258 **   (2) The inner query is the recursive part of a common table expression.
4259 **
4260 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4261 **       clause would change the meaning of the LIMIT).
4262 **
4263 **   (4) The inner query is the right operand of a LEFT JOIN and the
4264 **       expression to be pushed down does not come from the ON clause
4265 **       on that LEFT JOIN.
4266 **
4267 **   (5) The WHERE clause expression originates in the ON or USING clause
4268 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4269 **       left join.  An example:
4270 **
4271 **           SELECT *
4272 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4273 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4274 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4275 **
4276 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4277 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4278 **       then the (1,1,NULL) row would be suppressed.
4279 **
4280 **   (6) The inner query features one or more window-functions (since
4281 **       changes to the WHERE clause of the inner query could change the
4282 **       window over which window functions are calculated).
4283 **
4284 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4285 ** terms are duplicated into the subquery.
4286 */
4287 static int pushDownWhereTerms(
4288   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4289   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4290   Expr *pWhere,         /* The WHERE clause of the outer query */
4291   int iCursor,          /* Cursor number of the subquery */
4292   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4293 ){
4294   Expr *pNew;
4295   int nChng = 0;
4296   if( pWhere==0 ) return 0;
4297   if( pSubq->selFlags & SF_Recursive ) return 0;  /* restriction (2) */
4298 
4299 #ifndef SQLITE_OMIT_WINDOWFUNC
4300   if( pSubq->pWin ) return 0;    /* restriction (6) */
4301 #endif
4302 
4303 #ifdef SQLITE_DEBUG
4304   /* Only the first term of a compound can have a WITH clause.  But make
4305   ** sure no other terms are marked SF_Recursive in case something changes
4306   ** in the future.
4307   */
4308   {
4309     Select *pX;
4310     for(pX=pSubq; pX; pX=pX->pPrior){
4311       assert( (pX->selFlags & (SF_Recursive))==0 );
4312     }
4313   }
4314 #endif
4315 
4316   if( pSubq->pLimit!=0 ){
4317     return 0; /* restriction (3) */
4318   }
4319   while( pWhere->op==TK_AND ){
4320     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4321                                 iCursor, isLeftJoin);
4322     pWhere = pWhere->pLeft;
4323   }
4324   if( isLeftJoin
4325    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4326          || pWhere->iRightJoinTable!=iCursor)
4327   ){
4328     return 0; /* restriction (4) */
4329   }
4330   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4331     return 0; /* restriction (5) */
4332   }
4333   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4334     nChng++;
4335     while( pSubq ){
4336       SubstContext x;
4337       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4338       unsetJoinExpr(pNew, -1);
4339       x.pParse = pParse;
4340       x.iTable = iCursor;
4341       x.iNewTable = iCursor;
4342       x.isLeftJoin = 0;
4343       x.pEList = pSubq->pEList;
4344       pNew = substExpr(&x, pNew);
4345       if( pSubq->selFlags & SF_Aggregate ){
4346         pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew);
4347       }else{
4348         pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
4349       }
4350       pSubq = pSubq->pPrior;
4351     }
4352   }
4353   return nChng;
4354 }
4355 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4356 
4357 /*
4358 ** The pFunc is the only aggregate function in the query.  Check to see
4359 ** if the query is a candidate for the min/max optimization.
4360 **
4361 ** If the query is a candidate for the min/max optimization, then set
4362 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4363 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4364 ** whether pFunc is a min() or max() function.
4365 **
4366 ** If the query is not a candidate for the min/max optimization, return
4367 ** WHERE_ORDERBY_NORMAL (which must be zero).
4368 **
4369 ** This routine must be called after aggregate functions have been
4370 ** located but before their arguments have been subjected to aggregate
4371 ** analysis.
4372 */
4373 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4374   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4375   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4376   const char *zFunc;                    /* Name of aggregate function pFunc */
4377   ExprList *pOrderBy;
4378   u8 sortOrder;
4379 
4380   assert( *ppMinMax==0 );
4381   assert( pFunc->op==TK_AGG_FUNCTION );
4382   if( pEList==0 || pEList->nExpr!=1 ) return eRet;
4383   zFunc = pFunc->u.zToken;
4384   if( sqlite3StrICmp(zFunc, "min")==0 ){
4385     eRet = WHERE_ORDERBY_MIN;
4386     sortOrder = SQLITE_SO_ASC;
4387   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4388     eRet = WHERE_ORDERBY_MAX;
4389     sortOrder = SQLITE_SO_DESC;
4390   }else{
4391     return eRet;
4392   }
4393   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4394   assert( pOrderBy!=0 || db->mallocFailed );
4395   if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder;
4396   return eRet;
4397 }
4398 
4399 /*
4400 ** The select statement passed as the first argument is an aggregate query.
4401 ** The second argument is the associated aggregate-info object. This
4402 ** function tests if the SELECT is of the form:
4403 **
4404 **   SELECT count(*) FROM <tbl>
4405 **
4406 ** where table is a database table, not a sub-select or view. If the query
4407 ** does match this pattern, then a pointer to the Table object representing
4408 ** <tbl> is returned. Otherwise, 0 is returned.
4409 */
4410 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4411   Table *pTab;
4412   Expr *pExpr;
4413 
4414   assert( !p->pGroupBy );
4415 
4416   if( p->pWhere || p->pEList->nExpr!=1
4417    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4418   ){
4419     return 0;
4420   }
4421   pTab = p->pSrc->a[0].pTab;
4422   pExpr = p->pEList->a[0].pExpr;
4423   assert( pTab && !pTab->pSelect && pExpr );
4424 
4425   if( IsVirtual(pTab) ) return 0;
4426   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4427   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4428   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4429   if( pExpr->flags&EP_Distinct ) return 0;
4430 
4431   return pTab;
4432 }
4433 
4434 /*
4435 ** If the source-list item passed as an argument was augmented with an
4436 ** INDEXED BY clause, then try to locate the specified index. If there
4437 ** was such a clause and the named index cannot be found, return
4438 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4439 ** pFrom->pIndex and return SQLITE_OK.
4440 */
4441 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4442   if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4443     Table *pTab = pFrom->pTab;
4444     char *zIndexedBy = pFrom->u1.zIndexedBy;
4445     Index *pIdx;
4446     for(pIdx=pTab->pIndex;
4447         pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4448         pIdx=pIdx->pNext
4449     );
4450     if( !pIdx ){
4451       sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4452       pParse->checkSchema = 1;
4453       return SQLITE_ERROR;
4454     }
4455     pFrom->pIBIndex = pIdx;
4456   }
4457   return SQLITE_OK;
4458 }
4459 /*
4460 ** Detect compound SELECT statements that use an ORDER BY clause with
4461 ** an alternative collating sequence.
4462 **
4463 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4464 **
4465 ** These are rewritten as a subquery:
4466 **
4467 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4468 **     ORDER BY ... COLLATE ...
4469 **
4470 ** This transformation is necessary because the multiSelectOrderBy() routine
4471 ** above that generates the code for a compound SELECT with an ORDER BY clause
4472 ** uses a merge algorithm that requires the same collating sequence on the
4473 ** result columns as on the ORDER BY clause.  See ticket
4474 ** http://www.sqlite.org/src/info/6709574d2a
4475 **
4476 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4477 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4478 ** there are COLLATE terms in the ORDER BY.
4479 */
4480 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4481   int i;
4482   Select *pNew;
4483   Select *pX;
4484   sqlite3 *db;
4485   struct ExprList_item *a;
4486   SrcList *pNewSrc;
4487   Parse *pParse;
4488   Token dummy;
4489 
4490   if( p->pPrior==0 ) return WRC_Continue;
4491   if( p->pOrderBy==0 ) return WRC_Continue;
4492   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4493   if( pX==0 ) return WRC_Continue;
4494   a = p->pOrderBy->a;
4495   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4496     if( a[i].pExpr->flags & EP_Collate ) break;
4497   }
4498   if( i<0 ) return WRC_Continue;
4499 
4500   /* If we reach this point, that means the transformation is required. */
4501 
4502   pParse = pWalker->pParse;
4503   db = pParse->db;
4504   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4505   if( pNew==0 ) return WRC_Abort;
4506   memset(&dummy, 0, sizeof(dummy));
4507   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4508   if( pNewSrc==0 ) return WRC_Abort;
4509   *pNew = *p;
4510   p->pSrc = pNewSrc;
4511   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4512   p->op = TK_SELECT;
4513   p->pWhere = 0;
4514   pNew->pGroupBy = 0;
4515   pNew->pHaving = 0;
4516   pNew->pOrderBy = 0;
4517   p->pPrior = 0;
4518   p->pNext = 0;
4519   p->pWith = 0;
4520   p->selFlags &= ~SF_Compound;
4521   assert( (p->selFlags & SF_Converted)==0 );
4522   p->selFlags |= SF_Converted;
4523   assert( pNew->pPrior!=0 );
4524   pNew->pPrior->pNext = pNew;
4525   pNew->pLimit = 0;
4526   return WRC_Continue;
4527 }
4528 
4529 /*
4530 ** Check to see if the FROM clause term pFrom has table-valued function
4531 ** arguments.  If it does, leave an error message in pParse and return
4532 ** non-zero, since pFrom is not allowed to be a table-valued function.
4533 */
4534 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4535   if( pFrom->fg.isTabFunc ){
4536     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4537     return 1;
4538   }
4539   return 0;
4540 }
4541 
4542 #ifndef SQLITE_OMIT_CTE
4543 /*
4544 ** Argument pWith (which may be NULL) points to a linked list of nested
4545 ** WITH contexts, from inner to outermost. If the table identified by
4546 ** FROM clause element pItem is really a common-table-expression (CTE)
4547 ** then return a pointer to the CTE definition for that table. Otherwise
4548 ** return NULL.
4549 **
4550 ** If a non-NULL value is returned, set *ppContext to point to the With
4551 ** object that the returned CTE belongs to.
4552 */
4553 static struct Cte *searchWith(
4554   With *pWith,                    /* Current innermost WITH clause */
4555   struct SrcList_item *pItem,     /* FROM clause element to resolve */
4556   With **ppContext                /* OUT: WITH clause return value belongs to */
4557 ){
4558   const char *zName;
4559   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4560     With *p;
4561     for(p=pWith; p; p=p->pOuter){
4562       int i;
4563       for(i=0; i<p->nCte; i++){
4564         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4565           *ppContext = p;
4566           return &p->a[i];
4567         }
4568       }
4569     }
4570   }
4571   return 0;
4572 }
4573 
4574 /* The code generator maintains a stack of active WITH clauses
4575 ** with the inner-most WITH clause being at the top of the stack.
4576 **
4577 ** This routine pushes the WITH clause passed as the second argument
4578 ** onto the top of the stack. If argument bFree is true, then this
4579 ** WITH clause will never be popped from the stack. In this case it
4580 ** should be freed along with the Parse object. In other cases, when
4581 ** bFree==0, the With object will be freed along with the SELECT
4582 ** statement with which it is associated.
4583 */
4584 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4585   assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4586   if( pWith ){
4587     assert( pParse->pWith!=pWith );
4588     pWith->pOuter = pParse->pWith;
4589     pParse->pWith = pWith;
4590     if( bFree ) pParse->pWithToFree = pWith;
4591   }
4592 }
4593 
4594 /*
4595 ** This function checks if argument pFrom refers to a CTE declared by
4596 ** a WITH clause on the stack currently maintained by the parser. And,
4597 ** if currently processing a CTE expression, if it is a recursive
4598 ** reference to the current CTE.
4599 **
4600 ** If pFrom falls into either of the two categories above, pFrom->pTab
4601 ** and other fields are populated accordingly. The caller should check
4602 ** (pFrom->pTab!=0) to determine whether or not a successful match
4603 ** was found.
4604 **
4605 ** Whether or not a match is found, SQLITE_OK is returned if no error
4606 ** occurs. If an error does occur, an error message is stored in the
4607 ** parser and some error code other than SQLITE_OK returned.
4608 */
4609 static int withExpand(
4610   Walker *pWalker,
4611   struct SrcList_item *pFrom
4612 ){
4613   Parse *pParse = pWalker->pParse;
4614   sqlite3 *db = pParse->db;
4615   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
4616   With *pWith;                    /* WITH clause that pCte belongs to */
4617 
4618   assert( pFrom->pTab==0 );
4619 
4620   pCte = searchWith(pParse->pWith, pFrom, &pWith);
4621   if( pCte ){
4622     Table *pTab;
4623     ExprList *pEList;
4624     Select *pSel;
4625     Select *pLeft;                /* Left-most SELECT statement */
4626     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
4627     With *pSavedWith;             /* Initial value of pParse->pWith */
4628 
4629     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4630     ** recursive reference to CTE pCte. Leave an error in pParse and return
4631     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4632     ** In this case, proceed.  */
4633     if( pCte->zCteErr ){
4634       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4635       return SQLITE_ERROR;
4636     }
4637     if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4638 
4639     assert( pFrom->pTab==0 );
4640     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4641     if( pTab==0 ) return WRC_Abort;
4642     pTab->nTabRef = 1;
4643     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4644     pTab->iPKey = -1;
4645     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4646     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4647     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4648     if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4649     assert( pFrom->pSelect );
4650 
4651     /* Check if this is a recursive CTE. */
4652     pSel = pFrom->pSelect;
4653     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4654     if( bMayRecursive ){
4655       int i;
4656       SrcList *pSrc = pFrom->pSelect->pSrc;
4657       for(i=0; i<pSrc->nSrc; i++){
4658         struct SrcList_item *pItem = &pSrc->a[i];
4659         if( pItem->zDatabase==0
4660          && pItem->zName!=0
4661          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4662           ){
4663           pItem->pTab = pTab;
4664           pItem->fg.isRecursive = 1;
4665           pTab->nTabRef++;
4666           pSel->selFlags |= SF_Recursive;
4667         }
4668       }
4669     }
4670 
4671     /* Only one recursive reference is permitted. */
4672     if( pTab->nTabRef>2 ){
4673       sqlite3ErrorMsg(
4674           pParse, "multiple references to recursive table: %s", pCte->zName
4675       );
4676       return SQLITE_ERROR;
4677     }
4678     assert( pTab->nTabRef==1 ||
4679             ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 ));
4680 
4681     pCte->zCteErr = "circular reference: %s";
4682     pSavedWith = pParse->pWith;
4683     pParse->pWith = pWith;
4684     if( bMayRecursive ){
4685       Select *pPrior = pSel->pPrior;
4686       assert( pPrior->pWith==0 );
4687       pPrior->pWith = pSel->pWith;
4688       sqlite3WalkSelect(pWalker, pPrior);
4689       pPrior->pWith = 0;
4690     }else{
4691       sqlite3WalkSelect(pWalker, pSel);
4692     }
4693     pParse->pWith = pWith;
4694 
4695     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4696     pEList = pLeft->pEList;
4697     if( pCte->pCols ){
4698       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4699         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4700             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4701         );
4702         pParse->pWith = pSavedWith;
4703         return SQLITE_ERROR;
4704       }
4705       pEList = pCte->pCols;
4706     }
4707 
4708     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4709     if( bMayRecursive ){
4710       if( pSel->selFlags & SF_Recursive ){
4711         pCte->zCteErr = "multiple recursive references: %s";
4712       }else{
4713         pCte->zCteErr = "recursive reference in a subquery: %s";
4714       }
4715       sqlite3WalkSelect(pWalker, pSel);
4716     }
4717     pCte->zCteErr = 0;
4718     pParse->pWith = pSavedWith;
4719   }
4720 
4721   return SQLITE_OK;
4722 }
4723 #endif
4724 
4725 #ifndef SQLITE_OMIT_CTE
4726 /*
4727 ** If the SELECT passed as the second argument has an associated WITH
4728 ** clause, pop it from the stack stored as part of the Parse object.
4729 **
4730 ** This function is used as the xSelectCallback2() callback by
4731 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4732 ** names and other FROM clause elements.
4733 */
4734 static void selectPopWith(Walker *pWalker, Select *p){
4735   Parse *pParse = pWalker->pParse;
4736   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4737     With *pWith = findRightmost(p)->pWith;
4738     if( pWith!=0 ){
4739       assert( pParse->pWith==pWith );
4740       pParse->pWith = pWith->pOuter;
4741     }
4742   }
4743 }
4744 #else
4745 #define selectPopWith 0
4746 #endif
4747 
4748 /*
4749 ** The SrcList_item structure passed as the second argument represents a
4750 ** sub-query in the FROM clause of a SELECT statement. This function
4751 ** allocates and populates the SrcList_item.pTab object. If successful,
4752 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4753 ** SQLITE_NOMEM.
4754 */
4755 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4756   Select *pSel = pFrom->pSelect;
4757   Table *pTab;
4758 
4759   assert( pSel );
4760   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4761   if( pTab==0 ) return SQLITE_NOMEM;
4762   pTab->nTabRef = 1;
4763   if( pFrom->zAlias ){
4764     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4765   }else{
4766     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4767   }
4768   while( pSel->pPrior ){ pSel = pSel->pPrior; }
4769   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4770   pTab->iPKey = -1;
4771   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4772   pTab->tabFlags |= TF_Ephemeral;
4773 
4774   return SQLITE_OK;
4775 }
4776 
4777 /*
4778 ** This routine is a Walker callback for "expanding" a SELECT statement.
4779 ** "Expanding" means to do the following:
4780 **
4781 **    (1)  Make sure VDBE cursor numbers have been assigned to every
4782 **         element of the FROM clause.
4783 **
4784 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
4785 **         defines FROM clause.  When views appear in the FROM clause,
4786 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
4787 **         that implements the view.  A copy is made of the view's SELECT
4788 **         statement so that we can freely modify or delete that statement
4789 **         without worrying about messing up the persistent representation
4790 **         of the view.
4791 **
4792 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
4793 **         on joins and the ON and USING clause of joins.
4794 **
4795 **    (4)  Scan the list of columns in the result set (pEList) looking
4796 **         for instances of the "*" operator or the TABLE.* operator.
4797 **         If found, expand each "*" to be every column in every table
4798 **         and TABLE.* to be every column in TABLE.
4799 **
4800 */
4801 static int selectExpander(Walker *pWalker, Select *p){
4802   Parse *pParse = pWalker->pParse;
4803   int i, j, k;
4804   SrcList *pTabList;
4805   ExprList *pEList;
4806   struct SrcList_item *pFrom;
4807   sqlite3 *db = pParse->db;
4808   Expr *pE, *pRight, *pExpr;
4809   u16 selFlags = p->selFlags;
4810   u32 elistFlags = 0;
4811 
4812   p->selFlags |= SF_Expanded;
4813   if( db->mallocFailed  ){
4814     return WRC_Abort;
4815   }
4816   assert( p->pSrc!=0 );
4817   if( (selFlags & SF_Expanded)!=0 ){
4818     return WRC_Prune;
4819   }
4820   pTabList = p->pSrc;
4821   pEList = p->pEList;
4822   sqlite3WithPush(pParse, p->pWith, 0);
4823 
4824   /* Make sure cursor numbers have been assigned to all entries in
4825   ** the FROM clause of the SELECT statement.
4826   */
4827   sqlite3SrcListAssignCursors(pParse, pTabList);
4828 
4829   /* Look up every table named in the FROM clause of the select.  If
4830   ** an entry of the FROM clause is a subquery instead of a table or view,
4831   ** then create a transient table structure to describe the subquery.
4832   */
4833   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4834     Table *pTab;
4835     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
4836     if( pFrom->fg.isRecursive ) continue;
4837     assert( pFrom->pTab==0 );
4838 #ifndef SQLITE_OMIT_CTE
4839     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
4840     if( pFrom->pTab ) {} else
4841 #endif
4842     if( pFrom->zName==0 ){
4843 #ifndef SQLITE_OMIT_SUBQUERY
4844       Select *pSel = pFrom->pSelect;
4845       /* A sub-query in the FROM clause of a SELECT */
4846       assert( pSel!=0 );
4847       assert( pFrom->pTab==0 );
4848       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
4849       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
4850 #endif
4851     }else{
4852       /* An ordinary table or view name in the FROM clause */
4853       assert( pFrom->pTab==0 );
4854       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4855       if( pTab==0 ) return WRC_Abort;
4856       if( pTab->nTabRef>=0xffff ){
4857         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4858            pTab->zName);
4859         pFrom->pTab = 0;
4860         return WRC_Abort;
4861       }
4862       pTab->nTabRef++;
4863       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
4864         return WRC_Abort;
4865       }
4866 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4867       if( IsVirtual(pTab) || pTab->pSelect ){
4868         i16 nCol;
4869         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4870         assert( pFrom->pSelect==0 );
4871         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4872         nCol = pTab->nCol;
4873         pTab->nCol = -1;
4874         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4875         pTab->nCol = nCol;
4876       }
4877 #endif
4878     }
4879 
4880     /* Locate the index named by the INDEXED BY clause, if any. */
4881     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4882       return WRC_Abort;
4883     }
4884   }
4885 
4886   /* Process NATURAL keywords, and ON and USING clauses of joins.
4887   */
4888   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4889     return WRC_Abort;
4890   }
4891 
4892   /* For every "*" that occurs in the column list, insert the names of
4893   ** all columns in all tables.  And for every TABLE.* insert the names
4894   ** of all columns in TABLE.  The parser inserted a special expression
4895   ** with the TK_ASTERISK operator for each "*" that it found in the column
4896   ** list.  The following code just has to locate the TK_ASTERISK
4897   ** expressions and expand each one to the list of all columns in
4898   ** all tables.
4899   **
4900   ** The first loop just checks to see if there are any "*" operators
4901   ** that need expanding.
4902   */
4903   for(k=0; k<pEList->nExpr; k++){
4904     pE = pEList->a[k].pExpr;
4905     if( pE->op==TK_ASTERISK ) break;
4906     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4907     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4908     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
4909     elistFlags |= pE->flags;
4910   }
4911   if( k<pEList->nExpr ){
4912     /*
4913     ** If we get here it means the result set contains one or more "*"
4914     ** operators that need to be expanded.  Loop through each expression
4915     ** in the result set and expand them one by one.
4916     */
4917     struct ExprList_item *a = pEList->a;
4918     ExprList *pNew = 0;
4919     int flags = pParse->db->flags;
4920     int longNames = (flags & SQLITE_FullColNames)!=0
4921                       && (flags & SQLITE_ShortColNames)==0;
4922 
4923     for(k=0; k<pEList->nExpr; k++){
4924       pE = a[k].pExpr;
4925       elistFlags |= pE->flags;
4926       pRight = pE->pRight;
4927       assert( pE->op!=TK_DOT || pRight!=0 );
4928       if( pE->op!=TK_ASTERISK
4929        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
4930       ){
4931         /* This particular expression does not need to be expanded.
4932         */
4933         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4934         if( pNew ){
4935           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4936           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4937           a[k].zName = 0;
4938           a[k].zSpan = 0;
4939         }
4940         a[k].pExpr = 0;
4941       }else{
4942         /* This expression is a "*" or a "TABLE.*" and needs to be
4943         ** expanded. */
4944         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4945         char *zTName = 0;       /* text of name of TABLE */
4946         if( pE->op==TK_DOT ){
4947           assert( pE->pLeft!=0 );
4948           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4949           zTName = pE->pLeft->u.zToken;
4950         }
4951         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4952           Table *pTab = pFrom->pTab;
4953           Select *pSub = pFrom->pSelect;
4954           char *zTabName = pFrom->zAlias;
4955           const char *zSchemaName = 0;
4956           int iDb;
4957           if( zTabName==0 ){
4958             zTabName = pTab->zName;
4959           }
4960           if( db->mallocFailed ) break;
4961           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4962             pSub = 0;
4963             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4964               continue;
4965             }
4966             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4967             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
4968           }
4969           for(j=0; j<pTab->nCol; j++){
4970             char *zName = pTab->aCol[j].zName;
4971             char *zColname;  /* The computed column name */
4972             char *zToFree;   /* Malloced string that needs to be freed */
4973             Token sColname;  /* Computed column name as a token */
4974 
4975             assert( zName );
4976             if( zTName && pSub
4977              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4978             ){
4979               continue;
4980             }
4981 
4982             /* If a column is marked as 'hidden', omit it from the expanded
4983             ** result-set list unless the SELECT has the SF_IncludeHidden
4984             ** bit set.
4985             */
4986             if( (p->selFlags & SF_IncludeHidden)==0
4987              && IsHiddenColumn(&pTab->aCol[j])
4988             ){
4989               continue;
4990             }
4991             tableSeen = 1;
4992 
4993             if( i>0 && zTName==0 ){
4994               if( (pFrom->fg.jointype & JT_NATURAL)!=0
4995                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4996               ){
4997                 /* In a NATURAL join, omit the join columns from the
4998                 ** table to the right of the join */
4999                 continue;
5000               }
5001               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5002                 /* In a join with a USING clause, omit columns in the
5003                 ** using clause from the table on the right. */
5004                 continue;
5005               }
5006             }
5007             pRight = sqlite3Expr(db, TK_ID, zName);
5008             zColname = zName;
5009             zToFree = 0;
5010             if( longNames || pTabList->nSrc>1 ){
5011               Expr *pLeft;
5012               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5013               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5014               if( zSchemaName ){
5015                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5016                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5017               }
5018               if( longNames ){
5019                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5020                 zToFree = zColname;
5021               }
5022             }else{
5023               pExpr = pRight;
5024             }
5025             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5026             sqlite3TokenInit(&sColname, zColname);
5027             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5028             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
5029               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5030               if( pSub ){
5031                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
5032                 testcase( pX->zSpan==0 );
5033               }else{
5034                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
5035                                            zSchemaName, zTabName, zColname);
5036                 testcase( pX->zSpan==0 );
5037               }
5038               pX->bSpanIsTab = 1;
5039             }
5040             sqlite3DbFree(db, zToFree);
5041           }
5042         }
5043         if( !tableSeen ){
5044           if( zTName ){
5045             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5046           }else{
5047             sqlite3ErrorMsg(pParse, "no tables specified");
5048           }
5049         }
5050       }
5051     }
5052     sqlite3ExprListDelete(db, pEList);
5053     p->pEList = pNew;
5054   }
5055   if( p->pEList ){
5056     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5057       sqlite3ErrorMsg(pParse, "too many columns in result set");
5058       return WRC_Abort;
5059     }
5060     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5061       p->selFlags |= SF_ComplexResult;
5062     }
5063   }
5064   return WRC_Continue;
5065 }
5066 
5067 /*
5068 ** No-op routine for the parse-tree walker.
5069 **
5070 ** When this routine is the Walker.xExprCallback then expression trees
5071 ** are walked without any actions being taken at each node.  Presumably,
5072 ** when this routine is used for Walker.xExprCallback then
5073 ** Walker.xSelectCallback is set to do something useful for every
5074 ** subquery in the parser tree.
5075 */
5076 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
5077   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5078   return WRC_Continue;
5079 }
5080 
5081 /*
5082 ** No-op routine for the parse-tree walker for SELECT statements.
5083 ** subquery in the parser tree.
5084 */
5085 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){
5086   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5087   return WRC_Continue;
5088 }
5089 
5090 #if SQLITE_DEBUG
5091 /*
5092 ** Always assert.  This xSelectCallback2 implementation proves that the
5093 ** xSelectCallback2 is never invoked.
5094 */
5095 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5096   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5097   assert( 0 );
5098 }
5099 #endif
5100 /*
5101 ** This routine "expands" a SELECT statement and all of its subqueries.
5102 ** For additional information on what it means to "expand" a SELECT
5103 ** statement, see the comment on the selectExpand worker callback above.
5104 **
5105 ** Expanding a SELECT statement is the first step in processing a
5106 ** SELECT statement.  The SELECT statement must be expanded before
5107 ** name resolution is performed.
5108 **
5109 ** If anything goes wrong, an error message is written into pParse.
5110 ** The calling function can detect the problem by looking at pParse->nErr
5111 ** and/or pParse->db->mallocFailed.
5112 */
5113 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5114   Walker w;
5115   w.xExprCallback = sqlite3ExprWalkNoop;
5116   w.pParse = pParse;
5117   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5118     w.xSelectCallback = convertCompoundSelectToSubquery;
5119     w.xSelectCallback2 = 0;
5120     sqlite3WalkSelect(&w, pSelect);
5121   }
5122   w.xSelectCallback = selectExpander;
5123   w.xSelectCallback2 = selectPopWith;
5124   sqlite3WalkSelect(&w, pSelect);
5125 }
5126 
5127 
5128 #ifndef SQLITE_OMIT_SUBQUERY
5129 /*
5130 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5131 ** interface.
5132 **
5133 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5134 ** information to the Table structure that represents the result set
5135 ** of that subquery.
5136 **
5137 ** The Table structure that represents the result set was constructed
5138 ** by selectExpander() but the type and collation information was omitted
5139 ** at that point because identifiers had not yet been resolved.  This
5140 ** routine is called after identifier resolution.
5141 */
5142 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5143   Parse *pParse;
5144   int i;
5145   SrcList *pTabList;
5146   struct SrcList_item *pFrom;
5147 
5148   assert( p->selFlags & SF_Resolved );
5149   if( p->selFlags & SF_HasTypeInfo ) return;
5150   p->selFlags |= SF_HasTypeInfo;
5151   pParse = pWalker->pParse;
5152   pTabList = p->pSrc;
5153   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5154     Table *pTab = pFrom->pTab;
5155     assert( pTab!=0 );
5156     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5157       /* A sub-query in the FROM clause of a SELECT */
5158       Select *pSel = pFrom->pSelect;
5159       if( pSel ){
5160         while( pSel->pPrior ) pSel = pSel->pPrior;
5161         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel);
5162       }
5163     }
5164   }
5165 }
5166 #endif
5167 
5168 
5169 /*
5170 ** This routine adds datatype and collating sequence information to
5171 ** the Table structures of all FROM-clause subqueries in a
5172 ** SELECT statement.
5173 **
5174 ** Use this routine after name resolution.
5175 */
5176 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5177 #ifndef SQLITE_OMIT_SUBQUERY
5178   Walker w;
5179   w.xSelectCallback = sqlite3SelectWalkNoop;
5180   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5181   w.xExprCallback = sqlite3ExprWalkNoop;
5182   w.pParse = pParse;
5183   sqlite3WalkSelect(&w, pSelect);
5184 #endif
5185 }
5186 
5187 
5188 /*
5189 ** This routine sets up a SELECT statement for processing.  The
5190 ** following is accomplished:
5191 **
5192 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5193 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5194 **     *  ON and USING clauses are shifted into WHERE statements
5195 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5196 **     *  Identifiers in expression are matched to tables.
5197 **
5198 ** This routine acts recursively on all subqueries within the SELECT.
5199 */
5200 void sqlite3SelectPrep(
5201   Parse *pParse,         /* The parser context */
5202   Select *p,             /* The SELECT statement being coded. */
5203   NameContext *pOuterNC  /* Name context for container */
5204 ){
5205   assert( p!=0 || pParse->db->mallocFailed );
5206   if( pParse->db->mallocFailed ) return;
5207   if( p->selFlags & SF_HasTypeInfo ) return;
5208   sqlite3SelectExpand(pParse, p);
5209   if( pParse->nErr || pParse->db->mallocFailed ) return;
5210   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5211   if( pParse->nErr || pParse->db->mallocFailed ) return;
5212   sqlite3SelectAddTypeInfo(pParse, p);
5213 }
5214 
5215 /*
5216 ** Reset the aggregate accumulator.
5217 **
5218 ** The aggregate accumulator is a set of memory cells that hold
5219 ** intermediate results while calculating an aggregate.  This
5220 ** routine generates code that stores NULLs in all of those memory
5221 ** cells.
5222 */
5223 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5224   Vdbe *v = pParse->pVdbe;
5225   int i;
5226   struct AggInfo_func *pFunc;
5227   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5228   if( nReg==0 ) return;
5229 #ifdef SQLITE_DEBUG
5230   /* Verify that all AggInfo registers are within the range specified by
5231   ** AggInfo.mnReg..AggInfo.mxReg */
5232   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5233   for(i=0; i<pAggInfo->nColumn; i++){
5234     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5235          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5236   }
5237   for(i=0; i<pAggInfo->nFunc; i++){
5238     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5239          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5240   }
5241 #endif
5242   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5243   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5244     if( pFunc->iDistinct>=0 ){
5245       Expr *pE = pFunc->pExpr;
5246       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5247       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5248         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5249            "argument");
5250         pFunc->iDistinct = -1;
5251       }else{
5252         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5253         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5254                           (char*)pKeyInfo, P4_KEYINFO);
5255       }
5256     }
5257   }
5258 }
5259 
5260 /*
5261 ** Invoke the OP_AggFinalize opcode for every aggregate function
5262 ** in the AggInfo structure.
5263 */
5264 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5265   Vdbe *v = pParse->pVdbe;
5266   int i;
5267   struct AggInfo_func *pF;
5268   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5269     ExprList *pList = pF->pExpr->x.pList;
5270     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5271     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5272     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5273   }
5274 }
5275 
5276 
5277 /*
5278 ** Update the accumulator memory cells for an aggregate based on
5279 ** the current cursor position.
5280 **
5281 ** If regAcc is non-zero and there are no min() or max() aggregates
5282 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5283 ** registers i register regAcc contains 0. The caller will take care
5284 ** of setting and clearing regAcc.
5285 */
5286 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5287   Vdbe *v = pParse->pVdbe;
5288   int i;
5289   int regHit = 0;
5290   int addrHitTest = 0;
5291   struct AggInfo_func *pF;
5292   struct AggInfo_col *pC;
5293 
5294   pAggInfo->directMode = 1;
5295   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5296     int nArg;
5297     int addrNext = 0;
5298     int regAgg;
5299     ExprList *pList = pF->pExpr->x.pList;
5300     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
5301     if( pList ){
5302       nArg = pList->nExpr;
5303       regAgg = sqlite3GetTempRange(pParse, nArg);
5304       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5305     }else{
5306       nArg = 0;
5307       regAgg = 0;
5308     }
5309     if( pF->iDistinct>=0 ){
5310       addrNext = sqlite3VdbeMakeLabel(v);
5311       testcase( nArg==0 );  /* Error condition */
5312       testcase( nArg>1 );   /* Also an error */
5313       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5314     }
5315     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5316       CollSeq *pColl = 0;
5317       struct ExprList_item *pItem;
5318       int j;
5319       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5320       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5321         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5322       }
5323       if( !pColl ){
5324         pColl = pParse->db->pDfltColl;
5325       }
5326       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5327       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5328     }
5329     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5330     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5331     sqlite3VdbeChangeP5(v, (u8)nArg);
5332     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5333     if( addrNext ){
5334       sqlite3VdbeResolveLabel(v, addrNext);
5335     }
5336   }
5337   if( regHit==0 && pAggInfo->nAccumulator ){
5338     regHit = regAcc;
5339   }
5340   if( regHit ){
5341     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5342   }
5343   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5344     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
5345   }
5346   pAggInfo->directMode = 0;
5347   if( addrHitTest ){
5348     sqlite3VdbeJumpHere(v, addrHitTest);
5349   }
5350 }
5351 
5352 /*
5353 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5354 ** count(*) query ("SELECT count(*) FROM pTab").
5355 */
5356 #ifndef SQLITE_OMIT_EXPLAIN
5357 static void explainSimpleCount(
5358   Parse *pParse,                  /* Parse context */
5359   Table *pTab,                    /* Table being queried */
5360   Index *pIdx                     /* Index used to optimize scan, or NULL */
5361 ){
5362   if( pParse->explain==2 ){
5363     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5364     sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5365         pTab->zName,
5366         bCover ? " USING COVERING INDEX " : "",
5367         bCover ? pIdx->zName : ""
5368     );
5369   }
5370 }
5371 #else
5372 # define explainSimpleCount(a,b,c)
5373 #endif
5374 
5375 /*
5376 ** sqlite3WalkExpr() callback used by havingToWhere().
5377 **
5378 ** If the node passed to the callback is a TK_AND node, return
5379 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5380 **
5381 ** Otherwise, return WRC_Prune. In this case, also check if the
5382 ** sub-expression matches the criteria for being moved to the WHERE
5383 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5384 ** within the HAVING expression with a constant "1".
5385 */
5386 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5387   if( pExpr->op!=TK_AND ){
5388     Select *pS = pWalker->u.pSelect;
5389     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){
5390       sqlite3 *db = pWalker->pParse->db;
5391       Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0);
5392       if( pNew ){
5393         Expr *pWhere = pS->pWhere;
5394         SWAP(Expr, *pNew, *pExpr);
5395         pNew = sqlite3ExprAnd(db, pWhere, pNew);
5396         pS->pWhere = pNew;
5397         pWalker->eCode = 1;
5398       }
5399     }
5400     return WRC_Prune;
5401   }
5402   return WRC_Continue;
5403 }
5404 
5405 /*
5406 ** Transfer eligible terms from the HAVING clause of a query, which is
5407 ** processed after grouping, to the WHERE clause, which is processed before
5408 ** grouping. For example, the query:
5409 **
5410 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5411 **
5412 ** can be rewritten as:
5413 **
5414 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5415 **
5416 ** A term of the HAVING expression is eligible for transfer if it consists
5417 ** entirely of constants and expressions that are also GROUP BY terms that
5418 ** use the "BINARY" collation sequence.
5419 */
5420 static void havingToWhere(Parse *pParse, Select *p){
5421   Walker sWalker;
5422   memset(&sWalker, 0, sizeof(sWalker));
5423   sWalker.pParse = pParse;
5424   sWalker.xExprCallback = havingToWhereExprCb;
5425   sWalker.u.pSelect = p;
5426   sqlite3WalkExpr(&sWalker, p->pHaving);
5427 #if SELECTTRACE_ENABLED
5428   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
5429     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5430     sqlite3TreeViewSelect(0, p, 0);
5431   }
5432 #endif
5433 }
5434 
5435 /*
5436 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5437 ** If it is, then return the SrcList_item for the prior view.  If it is not,
5438 ** then return 0.
5439 */
5440 static struct SrcList_item *isSelfJoinView(
5441   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
5442   struct SrcList_item *pThis   /* Search for prior reference to this subquery */
5443 ){
5444   struct SrcList_item *pItem;
5445   for(pItem = pTabList->a; pItem<pThis; pItem++){
5446     if( pItem->pSelect==0 ) continue;
5447     if( pItem->fg.viaCoroutine ) continue;
5448     if( pItem->zName==0 ) continue;
5449     if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue;
5450     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5451     if( sqlite3ExprCompare(0,
5452           pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1)
5453     ){
5454       /* The view was modified by some other optimization such as
5455       ** pushDownWhereTerms() */
5456       continue;
5457     }
5458     return pItem;
5459   }
5460   return 0;
5461 }
5462 
5463 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5464 /*
5465 ** Attempt to transform a query of the form
5466 **
5467 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5468 **
5469 ** Into this:
5470 **
5471 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5472 **
5473 ** The transformation only works if all of the following are true:
5474 **
5475 **   *  The subquery is a UNION ALL of two or more terms
5476 **   *  The subquery does not have a LIMIT clause
5477 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5478 **   *  The outer query is a simple count(*)
5479 **
5480 ** Return TRUE if the optimization is undertaken.
5481 */
5482 static int countOfViewOptimization(Parse *pParse, Select *p){
5483   Select *pSub, *pPrior;
5484   Expr *pExpr;
5485   Expr *pCount;
5486   sqlite3 *db;
5487   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
5488   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
5489   pExpr = p->pEList->a[0].pExpr;
5490   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
5491   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
5492   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
5493   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
5494   pSub = p->pSrc->a[0].pSelect;
5495   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
5496   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
5497   do{
5498     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
5499     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
5500     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
5501     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
5502     pSub = pSub->pPrior;                              /* Repeat over compound */
5503   }while( pSub );
5504 
5505   /* If we reach this point then it is OK to perform the transformation */
5506 
5507   db = pParse->db;
5508   pCount = pExpr;
5509   pExpr = 0;
5510   pSub = p->pSrc->a[0].pSelect;
5511   p->pSrc->a[0].pSelect = 0;
5512   sqlite3SrcListDelete(db, p->pSrc);
5513   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5514   while( pSub ){
5515     Expr *pTerm;
5516     pPrior = pSub->pPrior;
5517     pSub->pPrior = 0;
5518     pSub->pNext = 0;
5519     pSub->selFlags |= SF_Aggregate;
5520     pSub->selFlags &= ~SF_Compound;
5521     pSub->nSelectRow = 0;
5522     sqlite3ExprListDelete(db, pSub->pEList);
5523     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5524     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5525     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5526     sqlite3PExprAddSelect(pParse, pTerm, pSub);
5527     if( pExpr==0 ){
5528       pExpr = pTerm;
5529     }else{
5530       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5531     }
5532     pSub = pPrior;
5533   }
5534   p->pEList->a[0].pExpr = pExpr;
5535   p->selFlags &= ~SF_Aggregate;
5536 
5537 #if SELECTTRACE_ENABLED
5538   if( sqlite3SelectTrace & 0x400 ){
5539     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5540     sqlite3TreeViewSelect(0, p, 0);
5541   }
5542 #endif
5543   return 1;
5544 }
5545 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5546 
5547 /*
5548 ** Generate code for the SELECT statement given in the p argument.
5549 **
5550 ** The results are returned according to the SelectDest structure.
5551 ** See comments in sqliteInt.h for further information.
5552 **
5553 ** This routine returns the number of errors.  If any errors are
5554 ** encountered, then an appropriate error message is left in
5555 ** pParse->zErrMsg.
5556 **
5557 ** This routine does NOT free the Select structure passed in.  The
5558 ** calling function needs to do that.
5559 */
5560 int sqlite3Select(
5561   Parse *pParse,         /* The parser context */
5562   Select *p,             /* The SELECT statement being coded. */
5563   SelectDest *pDest      /* What to do with the query results */
5564 ){
5565   int i, j;              /* Loop counters */
5566   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
5567   Vdbe *v;               /* The virtual machine under construction */
5568   int isAgg;             /* True for select lists like "count(*)" */
5569   ExprList *pEList = 0;  /* List of columns to extract. */
5570   SrcList *pTabList;     /* List of tables to select from */
5571   Expr *pWhere;          /* The WHERE clause.  May be NULL */
5572   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
5573   Expr *pHaving;         /* The HAVING clause.  May be NULL */
5574   int rc = 1;            /* Value to return from this function */
5575   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5576   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
5577   AggInfo sAggInfo;      /* Information used by aggregate queries */
5578   int iEnd;              /* Address of the end of the query */
5579   sqlite3 *db;           /* The database connection */
5580   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
5581   u8 minMaxFlag;                 /* Flag for min/max queries */
5582 
5583   db = pParse->db;
5584   v = sqlite3GetVdbe(pParse);
5585   if( p==0 || db->mallocFailed || pParse->nErr ){
5586     return 1;
5587   }
5588   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5589   memset(&sAggInfo, 0, sizeof(sAggInfo));
5590 #if SELECTTRACE_ENABLED
5591   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5592   if( sqlite3SelectTrace & 0x100 ){
5593     sqlite3TreeViewSelect(0, p, 0);
5594   }
5595 #endif
5596 
5597   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5598   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5599   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5600   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5601   if( IgnorableOrderby(pDest) ){
5602     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5603            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5604            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
5605            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
5606     /* If ORDER BY makes no difference in the output then neither does
5607     ** DISTINCT so it can be removed too. */
5608     sqlite3ExprListDelete(db, p->pOrderBy);
5609     p->pOrderBy = 0;
5610     p->selFlags &= ~SF_Distinct;
5611   }
5612   sqlite3SelectPrep(pParse, p, 0);
5613   if( pParse->nErr || db->mallocFailed ){
5614     goto select_end;
5615   }
5616   assert( p->pEList!=0 );
5617 #if SELECTTRACE_ENABLED
5618   if( sqlite3SelectTrace & 0x104 ){
5619     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5620     sqlite3TreeViewSelect(0, p, 0);
5621   }
5622 #endif
5623 
5624   if( pDest->eDest==SRT_Output ){
5625     generateColumnNames(pParse, p);
5626   }
5627 
5628 #ifndef SQLITE_OMIT_WINDOWFUNC
5629   if( sqlite3WindowRewrite(pParse, p) ){
5630     goto select_end;
5631   }
5632 #if SELECTTRACE_ENABLED
5633   if( sqlite3SelectTrace & 0x108 ){
5634     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5635     sqlite3TreeViewSelect(0, p, 0);
5636   }
5637 #endif
5638 #endif /* SQLITE_OMIT_WINDOWFUNC */
5639   pTabList = p->pSrc;
5640   isAgg = (p->selFlags & SF_Aggregate)!=0;
5641   memset(&sSort, 0, sizeof(sSort));
5642   sSort.pOrderBy = p->pOrderBy;
5643 
5644   /* Try to various optimizations (flattening subqueries, and strength
5645   ** reduction of join operators) in the FROM clause up into the main query
5646   */
5647 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5648   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5649     struct SrcList_item *pItem = &pTabList->a[i];
5650     Select *pSub = pItem->pSelect;
5651     Table *pTab = pItem->pTab;
5652 
5653     /* Convert LEFT JOIN into JOIN if there are terms of the right table
5654     ** of the LEFT JOIN used in the WHERE clause.
5655     */
5656     if( (pItem->fg.jointype & JT_LEFT)!=0
5657      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5658      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5659     ){
5660       SELECTTRACE(0x100,pParse,p,
5661                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5662       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5663       unsetJoinExpr(p->pWhere, pItem->iCursor);
5664     }
5665 
5666     /* No futher action if this term of the FROM clause is no a subquery */
5667     if( pSub==0 ) continue;
5668 
5669     /* Catch mismatch in the declared columns of a view and the number of
5670     ** columns in the SELECT on the RHS */
5671     if( pTab->nCol!=pSub->pEList->nExpr ){
5672       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5673                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5674       goto select_end;
5675     }
5676 
5677     /* Do not try to flatten an aggregate subquery.
5678     **
5679     ** Flattening an aggregate subquery is only possible if the outer query
5680     ** is not a join.  But if the outer query is not a join, then the subquery
5681     ** will be implemented as a co-routine and there is no advantage to
5682     ** flattening in that case.
5683     */
5684     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5685     assert( pSub->pGroupBy==0 );
5686 
5687     /* If the outer query contains a "complex" result set (that is,
5688     ** if the result set of the outer query uses functions or subqueries)
5689     ** and if the subquery contains an ORDER BY clause and if
5690     ** it will be implemented as a co-routine, then do not flatten.  This
5691     ** restriction allows SQL constructs like this:
5692     **
5693     **  SELECT expensive_function(x)
5694     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5695     **
5696     ** The expensive_function() is only computed on the 10 rows that
5697     ** are output, rather than every row of the table.
5698     **
5699     ** The requirement that the outer query have a complex result set
5700     ** means that flattening does occur on simpler SQL constraints without
5701     ** the expensive_function() like:
5702     **
5703     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5704     */
5705     if( pSub->pOrderBy!=0
5706      && i==0
5707      && (p->selFlags & SF_ComplexResult)!=0
5708      && (pTabList->nSrc==1
5709          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5710     ){
5711       continue;
5712     }
5713 
5714     if( flattenSubquery(pParse, p, i, isAgg) ){
5715       /* This subquery can be absorbed into its parent. */
5716       i = -1;
5717     }
5718     pTabList = p->pSrc;
5719     if( db->mallocFailed ) goto select_end;
5720     if( !IgnorableOrderby(pDest) ){
5721       sSort.pOrderBy = p->pOrderBy;
5722     }
5723   }
5724 #endif
5725 
5726 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5727   /* Handle compound SELECT statements using the separate multiSelect()
5728   ** procedure.
5729   */
5730   if( p->pPrior ){
5731     rc = multiSelect(pParse, p, pDest);
5732 #if SELECTTRACE_ENABLED
5733     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
5734     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
5735       sqlite3TreeViewSelect(0, p, 0);
5736     }
5737 #endif
5738     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
5739     return rc;
5740   }
5741 #endif
5742 
5743   /* Do the WHERE-clause constant propagation optimization if this is
5744   ** a join.  No need to speed time on this operation for non-join queries
5745   ** as the equivalent optimization will be handled by query planner in
5746   ** sqlite3WhereBegin().
5747   */
5748   if( pTabList->nSrc>1
5749    && OptimizationEnabled(db, SQLITE_PropagateConst)
5750    && propagateConstants(pParse, p)
5751   ){
5752 #if SELECTTRACE_ENABLED
5753     if( sqlite3SelectTrace & 0x100 ){
5754       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
5755       sqlite3TreeViewSelect(0, p, 0);
5756     }
5757 #endif
5758   }else{
5759     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
5760   }
5761 
5762 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5763   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
5764    && countOfViewOptimization(pParse, p)
5765   ){
5766     if( db->mallocFailed ) goto select_end;
5767     pEList = p->pEList;
5768     pTabList = p->pSrc;
5769   }
5770 #endif
5771 
5772   /* For each term in the FROM clause, do two things:
5773   ** (1) Authorized unreferenced tables
5774   ** (2) Generate code for all sub-queries
5775   */
5776   for(i=0; i<pTabList->nSrc; i++){
5777     struct SrcList_item *pItem = &pTabList->a[i];
5778     SelectDest dest;
5779     Select *pSub;
5780 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5781     const char *zSavedAuthContext;
5782 #endif
5783 
5784     /* Issue SQLITE_READ authorizations with a fake column name for any
5785     ** tables that are referenced but from which no values are extracted.
5786     ** Examples of where these kinds of null SQLITE_READ authorizations
5787     ** would occur:
5788     **
5789     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
5790     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
5791     **
5792     ** The fake column name is an empty string.  It is possible for a table to
5793     ** have a column named by the empty string, in which case there is no way to
5794     ** distinguish between an unreferenced table and an actual reference to the
5795     ** "" column. The original design was for the fake column name to be a NULL,
5796     ** which would be unambiguous.  But legacy authorization callbacks might
5797     ** assume the column name is non-NULL and segfault.  The use of an empty
5798     ** string for the fake column name seems safer.
5799     */
5800     if( pItem->colUsed==0 ){
5801       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
5802     }
5803 
5804 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5805     /* Generate code for all sub-queries in the FROM clause
5806     */
5807     pSub = pItem->pSelect;
5808     if( pSub==0 ) continue;
5809 
5810     /* Sometimes the code for a subquery will be generated more than
5811     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
5812     ** for example.  In that case, do not regenerate the code to manifest
5813     ** a view or the co-routine to implement a view.  The first instance
5814     ** is sufficient, though the subroutine to manifest the view does need
5815     ** to be invoked again. */
5816     if( pItem->addrFillSub ){
5817       if( pItem->fg.viaCoroutine==0 ){
5818         /* The subroutine that manifests the view might be a one-time routine,
5819         ** or it might need to be rerun on each iteration because it
5820         ** encodes a correlated subquery. */
5821         testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once );
5822         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
5823       }
5824       continue;
5825     }
5826 
5827     /* Increment Parse.nHeight by the height of the largest expression
5828     ** tree referred to by this, the parent select. The child select
5829     ** may contain expression trees of at most
5830     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
5831     ** more conservative than necessary, but much easier than enforcing
5832     ** an exact limit.
5833     */
5834     pParse->nHeight += sqlite3SelectExprHeight(p);
5835 
5836     /* Make copies of constant WHERE-clause terms in the outer query down
5837     ** inside the subquery.  This can help the subquery to run more efficiently.
5838     */
5839     if( OptimizationEnabled(db, SQLITE_PushDown)
5840      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
5841                            (pItem->fg.jointype & JT_OUTER)!=0)
5842     ){
5843 #if SELECTTRACE_ENABLED
5844       if( sqlite3SelectTrace & 0x100 ){
5845         SELECTTRACE(0x100,pParse,p,
5846             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
5847         sqlite3TreeViewSelect(0, p, 0);
5848       }
5849 #endif
5850     }else{
5851       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
5852     }
5853 
5854     zSavedAuthContext = pParse->zAuthContext;
5855     pParse->zAuthContext = pItem->zName;
5856 
5857     /* Generate code to implement the subquery
5858     **
5859     ** The subquery is implemented as a co-routine if the subquery is
5860     ** guaranteed to be the outer loop (so that it does not need to be
5861     ** computed more than once)
5862     **
5863     ** TODO: Are there other reasons beside (1) to use a co-routine
5864     ** implementation?
5865     */
5866     if( i==0
5867      && (pTabList->nSrc==1
5868             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
5869     ){
5870       /* Implement a co-routine that will return a single row of the result
5871       ** set on each invocation.
5872       */
5873       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
5874 
5875       pItem->regReturn = ++pParse->nMem;
5876       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
5877       VdbeComment((v, "%s", pItem->pTab->zName));
5878       pItem->addrFillSub = addrTop;
5879       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
5880       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
5881       sqlite3Select(pParse, pSub, &dest);
5882       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5883       pItem->fg.viaCoroutine = 1;
5884       pItem->regResult = dest.iSdst;
5885       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
5886       sqlite3VdbeJumpHere(v, addrTop-1);
5887       sqlite3ClearTempRegCache(pParse);
5888     }else{
5889       /* Generate a subroutine that will fill an ephemeral table with
5890       ** the content of this subquery.  pItem->addrFillSub will point
5891       ** to the address of the generated subroutine.  pItem->regReturn
5892       ** is a register allocated to hold the subroutine return address
5893       */
5894       int topAddr;
5895       int onceAddr = 0;
5896       int retAddr;
5897       struct SrcList_item *pPrior;
5898 
5899       assert( pItem->addrFillSub==0 );
5900       pItem->regReturn = ++pParse->nMem;
5901       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
5902       pItem->addrFillSub = topAddr+1;
5903       if( pItem->fg.isCorrelated==0 ){
5904         /* If the subquery is not correlated and if we are not inside of
5905         ** a trigger, then we only need to compute the value of the subquery
5906         ** once. */
5907         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5908         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
5909       }else{
5910         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
5911       }
5912       pPrior = isSelfJoinView(pTabList, pItem);
5913       if( pPrior ){
5914         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
5915         assert( pPrior->pSelect!=0 );
5916         pSub->nSelectRow = pPrior->pSelect->nSelectRow;
5917       }else{
5918         sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
5919         ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
5920         sqlite3Select(pParse, pSub, &dest);
5921       }
5922       pItem->pTab->nRowLogEst = pSub->nSelectRow;
5923       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
5924       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
5925       VdbeComment((v, "end %s", pItem->pTab->zName));
5926       sqlite3VdbeChangeP1(v, topAddr, retAddr);
5927       sqlite3ClearTempRegCache(pParse);
5928     }
5929     if( db->mallocFailed ) goto select_end;
5930     pParse->nHeight -= sqlite3SelectExprHeight(p);
5931     pParse->zAuthContext = zSavedAuthContext;
5932 #endif
5933   }
5934 
5935   /* Various elements of the SELECT copied into local variables for
5936   ** convenience */
5937   pEList = p->pEList;
5938   pWhere = p->pWhere;
5939   pGroupBy = p->pGroupBy;
5940   pHaving = p->pHaving;
5941   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
5942 
5943 #if SELECTTRACE_ENABLED
5944   if( sqlite3SelectTrace & 0x400 ){
5945     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
5946     sqlite3TreeViewSelect(0, p, 0);
5947   }
5948 #endif
5949 
5950   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
5951   ** if the select-list is the same as the ORDER BY list, then this query
5952   ** can be rewritten as a GROUP BY. In other words, this:
5953   **
5954   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
5955   **
5956   ** is transformed to:
5957   **
5958   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
5959   **
5960   ** The second form is preferred as a single index (or temp-table) may be
5961   ** used for both the ORDER BY and DISTINCT processing. As originally
5962   ** written the query must use a temp-table for at least one of the ORDER
5963   ** BY and DISTINCT, and an index or separate temp-table for the other.
5964   */
5965   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
5966    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
5967   ){
5968     p->selFlags &= ~SF_Distinct;
5969     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
5970     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
5971     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
5972     ** original setting of the SF_Distinct flag, not the current setting */
5973     assert( sDistinct.isTnct );
5974 
5975 #if SELECTTRACE_ENABLED
5976     if( sqlite3SelectTrace & 0x400 ){
5977       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
5978       sqlite3TreeViewSelect(0, p, 0);
5979     }
5980 #endif
5981   }
5982 
5983   /* If there is an ORDER BY clause, then create an ephemeral index to
5984   ** do the sorting.  But this sorting ephemeral index might end up
5985   ** being unused if the data can be extracted in pre-sorted order.
5986   ** If that is the case, then the OP_OpenEphemeral instruction will be
5987   ** changed to an OP_Noop once we figure out that the sorting index is
5988   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
5989   ** that change.
5990   */
5991   if( sSort.pOrderBy ){
5992     KeyInfo *pKeyInfo;
5993     pKeyInfo = sqlite3KeyInfoFromExprList(
5994         pParse, sSort.pOrderBy, 0, pEList->nExpr);
5995     sSort.iECursor = pParse->nTab++;
5996     sSort.addrSortIndex =
5997       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5998           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
5999           (char*)pKeyInfo, P4_KEYINFO
6000       );
6001   }else{
6002     sSort.addrSortIndex = -1;
6003   }
6004 
6005   /* If the output is destined for a temporary table, open that table.
6006   */
6007   if( pDest->eDest==SRT_EphemTab ){
6008     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6009   }
6010 
6011   /* Set the limiter.
6012   */
6013   iEnd = sqlite3VdbeMakeLabel(v);
6014   if( (p->selFlags & SF_FixedLimit)==0 ){
6015     p->nSelectRow = 320;  /* 4 billion rows */
6016   }
6017   computeLimitRegisters(pParse, p, iEnd);
6018   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6019     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6020     sSort.sortFlags |= SORTFLAG_UseSorter;
6021   }
6022 
6023   /* Open an ephemeral index to use for the distinct set.
6024   */
6025   if( p->selFlags & SF_Distinct ){
6026     sDistinct.tabTnct = pParse->nTab++;
6027     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6028                        sDistinct.tabTnct, 0, 0,
6029                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6030                        P4_KEYINFO);
6031     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6032     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6033   }else{
6034     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6035   }
6036 
6037   if( !isAgg && pGroupBy==0 ){
6038     /* No aggregate functions and no GROUP BY clause */
6039     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6040                    | (p->selFlags & SF_FixedLimit);
6041 #ifndef SQLITE_OMIT_WINDOWFUNC
6042     Window *pWin = p->pWin;      /* Master window object (or NULL) */
6043     if( pWin ){
6044       sqlite3WindowCodeInit(pParse, pWin);
6045     }
6046 #endif
6047     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6048 
6049 
6050     /* Begin the database scan. */
6051     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6052     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6053                                p->pEList, wctrlFlags, p->nSelectRow);
6054     if( pWInfo==0 ) goto select_end;
6055     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6056       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6057     }
6058     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6059       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6060     }
6061     if( sSort.pOrderBy ){
6062       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6063       sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo);
6064       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6065         sSort.pOrderBy = 0;
6066       }
6067     }
6068 
6069     /* If sorting index that was created by a prior OP_OpenEphemeral
6070     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6071     ** into an OP_Noop.
6072     */
6073     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6074       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6075     }
6076 
6077     assert( p->pEList==pEList );
6078 #ifndef SQLITE_OMIT_WINDOWFUNC
6079     if( pWin ){
6080       int addrGosub = sqlite3VdbeMakeLabel(v);
6081       int iCont = sqlite3VdbeMakeLabel(v);
6082       int iBreak = sqlite3VdbeMakeLabel(v);
6083       int regGosub = ++pParse->nMem;
6084 
6085       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6086 
6087       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6088       sqlite3VdbeResolveLabel(v, addrGosub);
6089       VdbeNoopComment((v, "inner-loop subroutine"));
6090       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6091       sqlite3VdbeResolveLabel(v, iCont);
6092       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6093       VdbeComment((v, "end inner-loop subroutine"));
6094       sqlite3VdbeResolveLabel(v, iBreak);
6095     }else
6096 #endif /* SQLITE_OMIT_WINDOWFUNC */
6097     {
6098       /* Use the standard inner loop. */
6099       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6100           sqlite3WhereContinueLabel(pWInfo),
6101           sqlite3WhereBreakLabel(pWInfo));
6102 
6103       /* End the database scan loop.
6104       */
6105       sqlite3WhereEnd(pWInfo);
6106     }
6107   }else{
6108     /* This case when there exist aggregate functions or a GROUP BY clause
6109     ** or both */
6110     NameContext sNC;    /* Name context for processing aggregate information */
6111     int iAMem;          /* First Mem address for storing current GROUP BY */
6112     int iBMem;          /* First Mem address for previous GROUP BY */
6113     int iUseFlag;       /* Mem address holding flag indicating that at least
6114                         ** one row of the input to the aggregator has been
6115                         ** processed */
6116     int iAbortFlag;     /* Mem address which causes query abort if positive */
6117     int groupBySort;    /* Rows come from source in GROUP BY order */
6118     int addrEnd;        /* End of processing for this SELECT */
6119     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6120     int sortOut = 0;    /* Output register from the sorter */
6121     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6122 
6123     /* Remove any and all aliases between the result set and the
6124     ** GROUP BY clause.
6125     */
6126     if( pGroupBy ){
6127       int k;                        /* Loop counter */
6128       struct ExprList_item *pItem;  /* For looping over expression in a list */
6129 
6130       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6131         pItem->u.x.iAlias = 0;
6132       }
6133       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6134         pItem->u.x.iAlias = 0;
6135       }
6136       assert( 66==sqlite3LogEst(100) );
6137       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6138     }else{
6139       assert( 0==sqlite3LogEst(1) );
6140       p->nSelectRow = 0;
6141     }
6142 
6143     /* If there is both a GROUP BY and an ORDER BY clause and they are
6144     ** identical, then it may be possible to disable the ORDER BY clause
6145     ** on the grounds that the GROUP BY will cause elements to come out
6146     ** in the correct order. It also may not - the GROUP BY might use a
6147     ** database index that causes rows to be grouped together as required
6148     ** but not actually sorted. Either way, record the fact that the
6149     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6150     ** variable.  */
6151     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6152       orderByGrp = 1;
6153     }
6154 
6155     /* Create a label to jump to when we want to abort the query */
6156     addrEnd = sqlite3VdbeMakeLabel(v);
6157 
6158     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6159     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6160     ** SELECT statement.
6161     */
6162     memset(&sNC, 0, sizeof(sNC));
6163     sNC.pParse = pParse;
6164     sNC.pSrcList = pTabList;
6165     sNC.uNC.pAggInfo = &sAggInfo;
6166     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6167     sAggInfo.mnReg = pParse->nMem+1;
6168     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6169     sAggInfo.pGroupBy = pGroupBy;
6170     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6171     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6172     if( pHaving ){
6173       if( pGroupBy ){
6174         assert( pWhere==p->pWhere );
6175         assert( pHaving==p->pHaving );
6176         assert( pGroupBy==p->pGroupBy );
6177         havingToWhere(pParse, p);
6178         pWhere = p->pWhere;
6179       }
6180       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6181     }
6182     sAggInfo.nAccumulator = sAggInfo.nColumn;
6183     if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){
6184       minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy);
6185     }else{
6186       minMaxFlag = WHERE_ORDERBY_NORMAL;
6187     }
6188     for(i=0; i<sAggInfo.nFunc; i++){
6189       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
6190       sNC.ncFlags |= NC_InAggFunc;
6191       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
6192       sNC.ncFlags &= ~NC_InAggFunc;
6193     }
6194     sAggInfo.mxReg = pParse->nMem;
6195     if( db->mallocFailed ) goto select_end;
6196 #if SELECTTRACE_ENABLED
6197     if( sqlite3SelectTrace & 0x400 ){
6198       int ii;
6199       SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n"));
6200       sqlite3TreeViewSelect(0, p, 0);
6201       for(ii=0; ii<sAggInfo.nColumn; ii++){
6202         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6203             ii, sAggInfo.aCol[ii].iMem);
6204         sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0);
6205       }
6206       for(ii=0; ii<sAggInfo.nFunc; ii++){
6207         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6208             ii, sAggInfo.aFunc[ii].iMem);
6209         sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0);
6210       }
6211     }
6212 #endif
6213 
6214 
6215     /* Processing for aggregates with GROUP BY is very different and
6216     ** much more complex than aggregates without a GROUP BY.
6217     */
6218     if( pGroupBy ){
6219       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
6220       int addr1;          /* A-vs-B comparision jump */
6221       int addrOutputRow;  /* Start of subroutine that outputs a result row */
6222       int regOutputRow;   /* Return address register for output subroutine */
6223       int addrSetAbort;   /* Set the abort flag and return */
6224       int addrTopOfLoop;  /* Top of the input loop */
6225       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6226       int addrReset;      /* Subroutine for resetting the accumulator */
6227       int regReset;       /* Return address register for reset subroutine */
6228 
6229       /* If there is a GROUP BY clause we might need a sorting index to
6230       ** implement it.  Allocate that sorting index now.  If it turns out
6231       ** that we do not need it after all, the OP_SorterOpen instruction
6232       ** will be converted into a Noop.
6233       */
6234       sAggInfo.sortingIdx = pParse->nTab++;
6235       pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn);
6236       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6237           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
6238           0, (char*)pKeyInfo, P4_KEYINFO);
6239 
6240       /* Initialize memory locations used by GROUP BY aggregate processing
6241       */
6242       iUseFlag = ++pParse->nMem;
6243       iAbortFlag = ++pParse->nMem;
6244       regOutputRow = ++pParse->nMem;
6245       addrOutputRow = sqlite3VdbeMakeLabel(v);
6246       regReset = ++pParse->nMem;
6247       addrReset = sqlite3VdbeMakeLabel(v);
6248       iAMem = pParse->nMem + 1;
6249       pParse->nMem += pGroupBy->nExpr;
6250       iBMem = pParse->nMem + 1;
6251       pParse->nMem += pGroupBy->nExpr;
6252       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6253       VdbeComment((v, "clear abort flag"));
6254       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6255 
6256       /* Begin a loop that will extract all source rows in GROUP BY order.
6257       ** This might involve two separate loops with an OP_Sort in between, or
6258       ** it might be a single loop that uses an index to extract information
6259       ** in the right order to begin with.
6260       */
6261       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6262       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6263       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6264           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6265       );
6266       if( pWInfo==0 ) goto select_end;
6267       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6268         /* The optimizer is able to deliver rows in group by order so
6269         ** we do not have to sort.  The OP_OpenEphemeral table will be
6270         ** cancelled later because we still need to use the pKeyInfo
6271         */
6272         groupBySort = 0;
6273       }else{
6274         /* Rows are coming out in undetermined order.  We have to push
6275         ** each row into a sorting index, terminate the first loop,
6276         ** then loop over the sorting index in order to get the output
6277         ** in sorted order
6278         */
6279         int regBase;
6280         int regRecord;
6281         int nCol;
6282         int nGroupBy;
6283 
6284         explainTempTable(pParse,
6285             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6286                     "DISTINCT" : "GROUP BY");
6287 
6288         groupBySort = 1;
6289         nGroupBy = pGroupBy->nExpr;
6290         nCol = nGroupBy;
6291         j = nGroupBy;
6292         for(i=0; i<sAggInfo.nColumn; i++){
6293           if( sAggInfo.aCol[i].iSorterColumn>=j ){
6294             nCol++;
6295             j++;
6296           }
6297         }
6298         regBase = sqlite3GetTempRange(pParse, nCol);
6299         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6300         j = nGroupBy;
6301         for(i=0; i<sAggInfo.nColumn; i++){
6302           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
6303           if( pCol->iSorterColumn>=j ){
6304             int r1 = j + regBase;
6305             sqlite3ExprCodeGetColumnOfTable(v,
6306                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6307             j++;
6308           }
6309         }
6310         regRecord = sqlite3GetTempReg(pParse);
6311         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6312         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
6313         sqlite3ReleaseTempReg(pParse, regRecord);
6314         sqlite3ReleaseTempRange(pParse, regBase, nCol);
6315         sqlite3WhereEnd(pWInfo);
6316         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
6317         sortOut = sqlite3GetTempReg(pParse);
6318         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6319         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
6320         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6321         sAggInfo.useSortingIdx = 1;
6322       }
6323 
6324       /* If the index or temporary table used by the GROUP BY sort
6325       ** will naturally deliver rows in the order required by the ORDER BY
6326       ** clause, cancel the ephemeral table open coded earlier.
6327       **
6328       ** This is an optimization - the correct answer should result regardless.
6329       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6330       ** disable this optimization for testing purposes.  */
6331       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6332        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6333       ){
6334         sSort.pOrderBy = 0;
6335         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6336       }
6337 
6338       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6339       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6340       ** Then compare the current GROUP BY terms against the GROUP BY terms
6341       ** from the previous row currently stored in a0, a1, a2...
6342       */
6343       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6344       if( groupBySort ){
6345         sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx,
6346                           sortOut, sortPTab);
6347       }
6348       for(j=0; j<pGroupBy->nExpr; j++){
6349         if( groupBySort ){
6350           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6351         }else{
6352           sAggInfo.directMode = 1;
6353           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6354         }
6355       }
6356       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6357                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6358       addr1 = sqlite3VdbeCurrentAddr(v);
6359       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6360 
6361       /* Generate code that runs whenever the GROUP BY changes.
6362       ** Changes in the GROUP BY are detected by the previous code
6363       ** block.  If there were no changes, this block is skipped.
6364       **
6365       ** This code copies current group by terms in b0,b1,b2,...
6366       ** over to a0,a1,a2.  It then calls the output subroutine
6367       ** and resets the aggregate accumulator registers in preparation
6368       ** for the next GROUP BY batch.
6369       */
6370       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6371       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6372       VdbeComment((v, "output one row"));
6373       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6374       VdbeComment((v, "check abort flag"));
6375       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6376       VdbeComment((v, "reset accumulator"));
6377 
6378       /* Update the aggregate accumulators based on the content of
6379       ** the current row
6380       */
6381       sqlite3VdbeJumpHere(v, addr1);
6382       updateAccumulator(pParse, iUseFlag, &sAggInfo);
6383       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6384       VdbeComment((v, "indicate data in accumulator"));
6385 
6386       /* End of the loop
6387       */
6388       if( groupBySort ){
6389         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
6390         VdbeCoverage(v);
6391       }else{
6392         sqlite3WhereEnd(pWInfo);
6393         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6394       }
6395 
6396       /* Output the final row of result
6397       */
6398       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6399       VdbeComment((v, "output final row"));
6400 
6401       /* Jump over the subroutines
6402       */
6403       sqlite3VdbeGoto(v, addrEnd);
6404 
6405       /* Generate a subroutine that outputs a single row of the result
6406       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
6407       ** is less than or equal to zero, the subroutine is a no-op.  If
6408       ** the processing calls for the query to abort, this subroutine
6409       ** increments the iAbortFlag memory location before returning in
6410       ** order to signal the caller to abort.
6411       */
6412       addrSetAbort = sqlite3VdbeCurrentAddr(v);
6413       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6414       VdbeComment((v, "set abort flag"));
6415       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6416       sqlite3VdbeResolveLabel(v, addrOutputRow);
6417       addrOutputRow = sqlite3VdbeCurrentAddr(v);
6418       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6419       VdbeCoverage(v);
6420       VdbeComment((v, "Groupby result generator entry point"));
6421       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6422       finalizeAggFunctions(pParse, &sAggInfo);
6423       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6424       selectInnerLoop(pParse, p, -1, &sSort,
6425                       &sDistinct, pDest,
6426                       addrOutputRow+1, addrSetAbort);
6427       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6428       VdbeComment((v, "end groupby result generator"));
6429 
6430       /* Generate a subroutine that will reset the group-by accumulator
6431       */
6432       sqlite3VdbeResolveLabel(v, addrReset);
6433       resetAccumulator(pParse, &sAggInfo);
6434       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6435       VdbeComment((v, "indicate accumulator empty"));
6436       sqlite3VdbeAddOp1(v, OP_Return, regReset);
6437 
6438     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
6439     else {
6440 #ifndef SQLITE_OMIT_BTREECOUNT
6441       Table *pTab;
6442       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
6443         /* If isSimpleCount() returns a pointer to a Table structure, then
6444         ** the SQL statement is of the form:
6445         **
6446         **   SELECT count(*) FROM <tbl>
6447         **
6448         ** where the Table structure returned represents table <tbl>.
6449         **
6450         ** This statement is so common that it is optimized specially. The
6451         ** OP_Count instruction is executed either on the intkey table that
6452         ** contains the data for table <tbl> or on one of its indexes. It
6453         ** is better to execute the op on an index, as indexes are almost
6454         ** always spread across less pages than their corresponding tables.
6455         */
6456         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6457         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
6458         Index *pIdx;                         /* Iterator variable */
6459         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
6460         Index *pBest = 0;                    /* Best index found so far */
6461         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
6462 
6463         sqlite3CodeVerifySchema(pParse, iDb);
6464         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6465 
6466         /* Search for the index that has the lowest scan cost.
6467         **
6468         ** (2011-04-15) Do not do a full scan of an unordered index.
6469         **
6470         ** (2013-10-03) Do not count the entries in a partial index.
6471         **
6472         ** In practice the KeyInfo structure will not be used. It is only
6473         ** passed to keep OP_OpenRead happy.
6474         */
6475         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6476         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6477           if( pIdx->bUnordered==0
6478            && pIdx->szIdxRow<pTab->szTabRow
6479            && pIdx->pPartIdxWhere==0
6480            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6481           ){
6482             pBest = pIdx;
6483           }
6484         }
6485         if( pBest ){
6486           iRoot = pBest->tnum;
6487           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6488         }
6489 
6490         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6491         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
6492         if( pKeyInfo ){
6493           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6494         }
6495         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
6496         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6497         explainSimpleCount(pParse, pTab, pBest);
6498       }else
6499 #endif /* SQLITE_OMIT_BTREECOUNT */
6500       {
6501         int regAcc = 0;           /* "populate accumulators" flag */
6502 
6503         /* If there are accumulator registers but no min() or max() functions,
6504         ** allocate register regAcc. Register regAcc will contain 0 the first
6505         ** time the inner loop runs, and 1 thereafter. The code generated
6506         ** by updateAccumulator() only updates the accumulator registers if
6507         ** regAcc contains 0.  */
6508         if( sAggInfo.nAccumulator ){
6509           for(i=0; i<sAggInfo.nFunc; i++){
6510             if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break;
6511           }
6512           if( i==sAggInfo.nFunc ){
6513             regAcc = ++pParse->nMem;
6514             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6515           }
6516         }
6517 
6518         /* This case runs if the aggregate has no GROUP BY clause.  The
6519         ** processing is much simpler since there is only a single row
6520         ** of output.
6521         */
6522         assert( p->pGroupBy==0 );
6523         resetAccumulator(pParse, &sAggInfo);
6524 
6525         /* If this query is a candidate for the min/max optimization, then
6526         ** minMaxFlag will have been previously set to either
6527         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6528         ** be an appropriate ORDER BY expression for the optimization.
6529         */
6530         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6531         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6532 
6533         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6534         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6535                                    0, minMaxFlag, 0);
6536         if( pWInfo==0 ){
6537           goto select_end;
6538         }
6539         updateAccumulator(pParse, regAcc, &sAggInfo);
6540         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6541         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
6542           sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo));
6543           VdbeComment((v, "%s() by index",
6544                 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max")));
6545         }
6546         sqlite3WhereEnd(pWInfo);
6547         finalizeAggFunctions(pParse, &sAggInfo);
6548       }
6549 
6550       sSort.pOrderBy = 0;
6551       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6552       selectInnerLoop(pParse, p, -1, 0, 0,
6553                       pDest, addrEnd, addrEnd);
6554     }
6555     sqlite3VdbeResolveLabel(v, addrEnd);
6556 
6557   } /* endif aggregate query */
6558 
6559   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6560     explainTempTable(pParse, "DISTINCT");
6561   }
6562 
6563   /* If there is an ORDER BY clause, then we need to sort the results
6564   ** and send them to the callback one by one.
6565   */
6566   if( sSort.pOrderBy ){
6567     explainTempTable(pParse,
6568                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6569     assert( p->pEList==pEList );
6570     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6571   }
6572 
6573   /* Jump here to skip this query
6574   */
6575   sqlite3VdbeResolveLabel(v, iEnd);
6576 
6577   /* The SELECT has been coded. If there is an error in the Parse structure,
6578   ** set the return code to 1. Otherwise 0. */
6579   rc = (pParse->nErr>0);
6580 
6581   /* Control jumps to here if an error is encountered above, or upon
6582   ** successful coding of the SELECT.
6583   */
6584 select_end:
6585   sqlite3ExprListDelete(db, pMinMaxOrderBy);
6586   sqlite3DbFree(db, sAggInfo.aCol);
6587   sqlite3DbFree(db, sAggInfo.aFunc);
6588 #if SELECTTRACE_ENABLED
6589   SELECTTRACE(0x1,pParse,p,("end processing\n"));
6590   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6591     sqlite3TreeViewSelect(0, p, 0);
6592   }
6593 #endif
6594   ExplainQueryPlanPop(pParse);
6595   return rc;
6596 }
6597