1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** Trace output macros 19 */ 20 #if SELECTTRACE_ENABLED 21 /***/ int sqlite3SelectTrace = 0; 22 # define SELECTTRACE(K,P,S,X) \ 23 if(sqlite3SelectTrace&(K)) \ 24 sqlite3DebugPrintf("%u/%d/%p: ",(S)->selId,(P)->addrExplain,(S)),\ 25 sqlite3DebugPrintf X 26 #else 27 # define SELECTTRACE(K,P,S,X) 28 #endif 29 30 31 /* 32 ** An instance of the following object is used to record information about 33 ** how to process the DISTINCT keyword, to simplify passing that information 34 ** into the selectInnerLoop() routine. 35 */ 36 typedef struct DistinctCtx DistinctCtx; 37 struct DistinctCtx { 38 u8 isTnct; /* True if the DISTINCT keyword is present */ 39 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 40 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 41 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 42 }; 43 44 /* 45 ** An instance of the following object is used to record information about 46 ** the ORDER BY (or GROUP BY) clause of query is being coded. 47 ** 48 ** The aDefer[] array is used by the sorter-references optimization. For 49 ** example, assuming there is no index that can be used for the ORDER BY, 50 ** for the query: 51 ** 52 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 53 ** 54 ** it may be more efficient to add just the "a" values to the sorter, and 55 ** retrieve the associated "bigblob" values directly from table t1 as the 56 ** 10 smallest "a" values are extracted from the sorter. 57 ** 58 ** When the sorter-reference optimization is used, there is one entry in the 59 ** aDefer[] array for each database table that may be read as values are 60 ** extracted from the sorter. 61 */ 62 typedef struct SortCtx SortCtx; 63 struct SortCtx { 64 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 65 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 66 int iECursor; /* Cursor number for the sorter */ 67 int regReturn; /* Register holding block-output return address */ 68 int labelBkOut; /* Start label for the block-output subroutine */ 69 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 70 int labelDone; /* Jump here when done, ex: LIMIT reached */ 71 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 72 u8 bOrderedInnerLoop; /* ORDER BY correctly sorts the inner loop */ 73 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 74 u8 nDefer; /* Number of valid entries in aDefer[] */ 75 struct DeferredCsr { 76 Table *pTab; /* Table definition */ 77 int iCsr; /* Cursor number for table */ 78 int nKey; /* Number of PK columns for table pTab (>=1) */ 79 } aDefer[4]; 80 #endif 81 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 82 }; 83 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 84 85 /* 86 ** Delete all the content of a Select structure. Deallocate the structure 87 ** itself only if bFree is true. 88 */ 89 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 90 while( p ){ 91 Select *pPrior = p->pPrior; 92 sqlite3ExprListDelete(db, p->pEList); 93 sqlite3SrcListDelete(db, p->pSrc); 94 sqlite3ExprDelete(db, p->pWhere); 95 sqlite3ExprListDelete(db, p->pGroupBy); 96 sqlite3ExprDelete(db, p->pHaving); 97 sqlite3ExprListDelete(db, p->pOrderBy); 98 sqlite3ExprDelete(db, p->pLimit); 99 #ifndef SQLITE_OMIT_WINDOWFUNC 100 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 101 sqlite3WindowListDelete(db, p->pWinDefn); 102 } 103 #endif 104 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 105 if( bFree ) sqlite3DbFreeNN(db, p); 106 p = pPrior; 107 bFree = 1; 108 } 109 } 110 111 /* 112 ** Initialize a SelectDest structure. 113 */ 114 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 115 pDest->eDest = (u8)eDest; 116 pDest->iSDParm = iParm; 117 pDest->zAffSdst = 0; 118 pDest->iSdst = 0; 119 pDest->nSdst = 0; 120 } 121 122 123 /* 124 ** Allocate a new Select structure and return a pointer to that 125 ** structure. 126 */ 127 Select *sqlite3SelectNew( 128 Parse *pParse, /* Parsing context */ 129 ExprList *pEList, /* which columns to include in the result */ 130 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 131 Expr *pWhere, /* the WHERE clause */ 132 ExprList *pGroupBy, /* the GROUP BY clause */ 133 Expr *pHaving, /* the HAVING clause */ 134 ExprList *pOrderBy, /* the ORDER BY clause */ 135 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 136 Expr *pLimit /* LIMIT value. NULL means not used */ 137 ){ 138 Select *pNew; 139 Select standin; 140 pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 141 if( pNew==0 ){ 142 assert( pParse->db->mallocFailed ); 143 pNew = &standin; 144 } 145 if( pEList==0 ){ 146 pEList = sqlite3ExprListAppend(pParse, 0, 147 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 148 } 149 pNew->pEList = pEList; 150 pNew->op = TK_SELECT; 151 pNew->selFlags = selFlags; 152 pNew->iLimit = 0; 153 pNew->iOffset = 0; 154 pNew->selId = ++pParse->nSelect; 155 pNew->addrOpenEphm[0] = -1; 156 pNew->addrOpenEphm[1] = -1; 157 pNew->nSelectRow = 0; 158 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 159 pNew->pSrc = pSrc; 160 pNew->pWhere = pWhere; 161 pNew->pGroupBy = pGroupBy; 162 pNew->pHaving = pHaving; 163 pNew->pOrderBy = pOrderBy; 164 pNew->pPrior = 0; 165 pNew->pNext = 0; 166 pNew->pLimit = pLimit; 167 pNew->pWith = 0; 168 #ifndef SQLITE_OMIT_WINDOWFUNC 169 pNew->pWin = 0; 170 pNew->pWinDefn = 0; 171 #endif 172 if( pParse->db->mallocFailed ) { 173 clearSelect(pParse->db, pNew, pNew!=&standin); 174 pNew = 0; 175 }else{ 176 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 177 } 178 assert( pNew!=&standin ); 179 return pNew; 180 } 181 182 183 /* 184 ** Delete the given Select structure and all of its substructures. 185 */ 186 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 187 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 188 } 189 190 /* 191 ** Return a pointer to the right-most SELECT statement in a compound. 192 */ 193 static Select *findRightmost(Select *p){ 194 while( p->pNext ) p = p->pNext; 195 return p; 196 } 197 198 /* 199 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 200 ** type of join. Return an integer constant that expresses that type 201 ** in terms of the following bit values: 202 ** 203 ** JT_INNER 204 ** JT_CROSS 205 ** JT_OUTER 206 ** JT_NATURAL 207 ** JT_LEFT 208 ** JT_RIGHT 209 ** 210 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 211 ** 212 ** If an illegal or unsupported join type is seen, then still return 213 ** a join type, but put an error in the pParse structure. 214 */ 215 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 216 int jointype = 0; 217 Token *apAll[3]; 218 Token *p; 219 /* 0123456789 123456789 123456789 123 */ 220 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 221 static const struct { 222 u8 i; /* Beginning of keyword text in zKeyText[] */ 223 u8 nChar; /* Length of the keyword in characters */ 224 u8 code; /* Join type mask */ 225 } aKeyword[] = { 226 /* natural */ { 0, 7, JT_NATURAL }, 227 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 228 /* outer */ { 10, 5, JT_OUTER }, 229 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 230 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 231 /* inner */ { 23, 5, JT_INNER }, 232 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 233 }; 234 int i, j; 235 apAll[0] = pA; 236 apAll[1] = pB; 237 apAll[2] = pC; 238 for(i=0; i<3 && apAll[i]; i++){ 239 p = apAll[i]; 240 for(j=0; j<ArraySize(aKeyword); j++){ 241 if( p->n==aKeyword[j].nChar 242 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 243 jointype |= aKeyword[j].code; 244 break; 245 } 246 } 247 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 248 if( j>=ArraySize(aKeyword) ){ 249 jointype |= JT_ERROR; 250 break; 251 } 252 } 253 if( 254 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 255 (jointype & JT_ERROR)!=0 256 ){ 257 const char *zSp = " "; 258 assert( pB!=0 ); 259 if( pC==0 ){ zSp++; } 260 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 261 "%T %T%s%T", pA, pB, zSp, pC); 262 jointype = JT_INNER; 263 }else if( (jointype & JT_OUTER)!=0 264 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 265 sqlite3ErrorMsg(pParse, 266 "RIGHT and FULL OUTER JOINs are not currently supported"); 267 jointype = JT_INNER; 268 } 269 return jointype; 270 } 271 272 /* 273 ** Return the index of a column in a table. Return -1 if the column 274 ** is not contained in the table. 275 */ 276 static int columnIndex(Table *pTab, const char *zCol){ 277 int i; 278 for(i=0; i<pTab->nCol; i++){ 279 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 280 } 281 return -1; 282 } 283 284 /* 285 ** Search the first N tables in pSrc, from left to right, looking for a 286 ** table that has a column named zCol. 287 ** 288 ** When found, set *piTab and *piCol to the table index and column index 289 ** of the matching column and return TRUE. 290 ** 291 ** If not found, return FALSE. 292 */ 293 static int tableAndColumnIndex( 294 SrcList *pSrc, /* Array of tables to search */ 295 int N, /* Number of tables in pSrc->a[] to search */ 296 const char *zCol, /* Name of the column we are looking for */ 297 int *piTab, /* Write index of pSrc->a[] here */ 298 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 299 ){ 300 int i; /* For looping over tables in pSrc */ 301 int iCol; /* Index of column matching zCol */ 302 303 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 304 for(i=0; i<N; i++){ 305 iCol = columnIndex(pSrc->a[i].pTab, zCol); 306 if( iCol>=0 ){ 307 if( piTab ){ 308 *piTab = i; 309 *piCol = iCol; 310 } 311 return 1; 312 } 313 } 314 return 0; 315 } 316 317 /* 318 ** This function is used to add terms implied by JOIN syntax to the 319 ** WHERE clause expression of a SELECT statement. The new term, which 320 ** is ANDed with the existing WHERE clause, is of the form: 321 ** 322 ** (tab1.col1 = tab2.col2) 323 ** 324 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 325 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 326 ** column iColRight of tab2. 327 */ 328 static void addWhereTerm( 329 Parse *pParse, /* Parsing context */ 330 SrcList *pSrc, /* List of tables in FROM clause */ 331 int iLeft, /* Index of first table to join in pSrc */ 332 int iColLeft, /* Index of column in first table */ 333 int iRight, /* Index of second table in pSrc */ 334 int iColRight, /* Index of column in second table */ 335 int isOuterJoin, /* True if this is an OUTER join */ 336 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 337 ){ 338 sqlite3 *db = pParse->db; 339 Expr *pE1; 340 Expr *pE2; 341 Expr *pEq; 342 343 assert( iLeft<iRight ); 344 assert( pSrc->nSrc>iRight ); 345 assert( pSrc->a[iLeft].pTab ); 346 assert( pSrc->a[iRight].pTab ); 347 348 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 349 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 350 351 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 352 if( pEq && isOuterJoin ){ 353 ExprSetProperty(pEq, EP_FromJoin); 354 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 355 ExprSetVVAProperty(pEq, EP_NoReduce); 356 pEq->iRightJoinTable = (i16)pE2->iTable; 357 } 358 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 359 } 360 361 /* 362 ** Set the EP_FromJoin property on all terms of the given expression. 363 ** And set the Expr.iRightJoinTable to iTable for every term in the 364 ** expression. 365 ** 366 ** The EP_FromJoin property is used on terms of an expression to tell 367 ** the LEFT OUTER JOIN processing logic that this term is part of the 368 ** join restriction specified in the ON or USING clause and not a part 369 ** of the more general WHERE clause. These terms are moved over to the 370 ** WHERE clause during join processing but we need to remember that they 371 ** originated in the ON or USING clause. 372 ** 373 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 374 ** expression depends on table iRightJoinTable even if that table is not 375 ** explicitly mentioned in the expression. That information is needed 376 ** for cases like this: 377 ** 378 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 379 ** 380 ** The where clause needs to defer the handling of the t1.x=5 381 ** term until after the t2 loop of the join. In that way, a 382 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 383 ** defer the handling of t1.x=5, it will be processed immediately 384 ** after the t1 loop and rows with t1.x!=5 will never appear in 385 ** the output, which is incorrect. 386 */ 387 static void setJoinExpr(Expr *p, int iTable){ 388 while( p ){ 389 ExprSetProperty(p, EP_FromJoin); 390 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 391 ExprSetVVAProperty(p, EP_NoReduce); 392 p->iRightJoinTable = (i16)iTable; 393 if( p->op==TK_FUNCTION && p->x.pList ){ 394 int i; 395 for(i=0; i<p->x.pList->nExpr; i++){ 396 setJoinExpr(p->x.pList->a[i].pExpr, iTable); 397 } 398 } 399 setJoinExpr(p->pLeft, iTable); 400 p = p->pRight; 401 } 402 } 403 404 /* Undo the work of setJoinExpr(). In the expression tree p, convert every 405 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 406 ** an ordinary term that omits the EP_FromJoin mark. 407 ** 408 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 409 */ 410 static void unsetJoinExpr(Expr *p, int iTable){ 411 while( p ){ 412 if( ExprHasProperty(p, EP_FromJoin) 413 && (iTable<0 || p->iRightJoinTable==iTable) ){ 414 ExprClearProperty(p, EP_FromJoin); 415 } 416 if( p->op==TK_FUNCTION && p->x.pList ){ 417 int i; 418 for(i=0; i<p->x.pList->nExpr; i++){ 419 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 420 } 421 } 422 unsetJoinExpr(p->pLeft, iTable); 423 p = p->pRight; 424 } 425 } 426 427 /* 428 ** This routine processes the join information for a SELECT statement. 429 ** ON and USING clauses are converted into extra terms of the WHERE clause. 430 ** NATURAL joins also create extra WHERE clause terms. 431 ** 432 ** The terms of a FROM clause are contained in the Select.pSrc structure. 433 ** The left most table is the first entry in Select.pSrc. The right-most 434 ** table is the last entry. The join operator is held in the entry to 435 ** the left. Thus entry 0 contains the join operator for the join between 436 ** entries 0 and 1. Any ON or USING clauses associated with the join are 437 ** also attached to the left entry. 438 ** 439 ** This routine returns the number of errors encountered. 440 */ 441 static int sqliteProcessJoin(Parse *pParse, Select *p){ 442 SrcList *pSrc; /* All tables in the FROM clause */ 443 int i, j; /* Loop counters */ 444 struct SrcList_item *pLeft; /* Left table being joined */ 445 struct SrcList_item *pRight; /* Right table being joined */ 446 447 pSrc = p->pSrc; 448 pLeft = &pSrc->a[0]; 449 pRight = &pLeft[1]; 450 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 451 Table *pRightTab = pRight->pTab; 452 int isOuter; 453 454 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 455 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 456 457 /* When the NATURAL keyword is present, add WHERE clause terms for 458 ** every column that the two tables have in common. 459 */ 460 if( pRight->fg.jointype & JT_NATURAL ){ 461 if( pRight->pOn || pRight->pUsing ){ 462 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 463 "an ON or USING clause", 0); 464 return 1; 465 } 466 for(j=0; j<pRightTab->nCol; j++){ 467 char *zName; /* Name of column in the right table */ 468 int iLeft; /* Matching left table */ 469 int iLeftCol; /* Matching column in the left table */ 470 471 zName = pRightTab->aCol[j].zName; 472 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 473 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 474 isOuter, &p->pWhere); 475 } 476 } 477 } 478 479 /* Disallow both ON and USING clauses in the same join 480 */ 481 if( pRight->pOn && pRight->pUsing ){ 482 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 483 "clauses in the same join"); 484 return 1; 485 } 486 487 /* Add the ON clause to the end of the WHERE clause, connected by 488 ** an AND operator. 489 */ 490 if( pRight->pOn ){ 491 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 492 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 493 pRight->pOn = 0; 494 } 495 496 /* Create extra terms on the WHERE clause for each column named 497 ** in the USING clause. Example: If the two tables to be joined are 498 ** A and B and the USING clause names X, Y, and Z, then add this 499 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 500 ** Report an error if any column mentioned in the USING clause is 501 ** not contained in both tables to be joined. 502 */ 503 if( pRight->pUsing ){ 504 IdList *pList = pRight->pUsing; 505 for(j=0; j<pList->nId; j++){ 506 char *zName; /* Name of the term in the USING clause */ 507 int iLeft; /* Table on the left with matching column name */ 508 int iLeftCol; /* Column number of matching column on the left */ 509 int iRightCol; /* Column number of matching column on the right */ 510 511 zName = pList->a[j].zName; 512 iRightCol = columnIndex(pRightTab, zName); 513 if( iRightCol<0 514 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 515 ){ 516 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 517 "not present in both tables", zName); 518 return 1; 519 } 520 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 521 isOuter, &p->pWhere); 522 } 523 } 524 } 525 return 0; 526 } 527 528 /* 529 ** An instance of this object holds information (beyond pParse and pSelect) 530 ** needed to load the next result row that is to be added to the sorter. 531 */ 532 typedef struct RowLoadInfo RowLoadInfo; 533 struct RowLoadInfo { 534 int regResult; /* Store results in array of registers here */ 535 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 536 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 537 ExprList *pExtra; /* Extra columns needed by sorter refs */ 538 int regExtraResult; /* Where to load the extra columns */ 539 #endif 540 }; 541 542 /* 543 ** This routine does the work of loading query data into an array of 544 ** registers so that it can be added to the sorter. 545 */ 546 static void innerLoopLoadRow( 547 Parse *pParse, /* Statement under construction */ 548 Select *pSelect, /* The query being coded */ 549 RowLoadInfo *pInfo /* Info needed to complete the row load */ 550 ){ 551 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 552 0, pInfo->ecelFlags); 553 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 554 if( pInfo->pExtra ){ 555 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 556 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 557 } 558 #endif 559 } 560 561 /* 562 ** Code the OP_MakeRecord instruction that generates the entry to be 563 ** added into the sorter. 564 ** 565 ** Return the register in which the result is stored. 566 */ 567 static int makeSorterRecord( 568 Parse *pParse, 569 SortCtx *pSort, 570 Select *pSelect, 571 int regBase, 572 int nBase 573 ){ 574 int nOBSat = pSort->nOBSat; 575 Vdbe *v = pParse->pVdbe; 576 int regOut = ++pParse->nMem; 577 if( pSort->pDeferredRowLoad ){ 578 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 579 } 580 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 581 return regOut; 582 } 583 584 /* 585 ** Generate code that will push the record in registers regData 586 ** through regData+nData-1 onto the sorter. 587 */ 588 static void pushOntoSorter( 589 Parse *pParse, /* Parser context */ 590 SortCtx *pSort, /* Information about the ORDER BY clause */ 591 Select *pSelect, /* The whole SELECT statement */ 592 int regData, /* First register holding data to be sorted */ 593 int regOrigData, /* First register holding data before packing */ 594 int nData, /* Number of elements in the regData data array */ 595 int nPrefixReg /* No. of reg prior to regData available for use */ 596 ){ 597 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 598 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 599 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 600 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 601 int regBase; /* Regs for sorter record */ 602 int regRecord = 0; /* Assembled sorter record */ 603 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 604 int op; /* Opcode to add sorter record to sorter */ 605 int iLimit; /* LIMIT counter */ 606 int iSkip = 0; /* End of the sorter insert loop */ 607 608 assert( bSeq==0 || bSeq==1 ); 609 610 /* Three cases: 611 ** (1) The data to be sorted has already been packed into a Record 612 ** by a prior OP_MakeRecord. In this case nData==1 and regData 613 ** will be completely unrelated to regOrigData. 614 ** (2) All output columns are included in the sort record. In that 615 ** case regData==regOrigData. 616 ** (3) Some output columns are omitted from the sort record due to 617 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 618 ** SQLITE_ECEL_OMITREF optimization, or due to the 619 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 620 ** regOrigData is 0 to prevent this routine from trying to copy 621 ** values that might not yet exist. 622 */ 623 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 624 625 if( nPrefixReg ){ 626 assert( nPrefixReg==nExpr+bSeq ); 627 regBase = regData - nPrefixReg; 628 }else{ 629 regBase = pParse->nMem + 1; 630 pParse->nMem += nBase; 631 } 632 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 633 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 634 pSort->labelDone = sqlite3VdbeMakeLabel(v); 635 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 636 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 637 if( bSeq ){ 638 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 639 } 640 if( nPrefixReg==0 && nData>0 ){ 641 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 642 } 643 if( nOBSat>0 ){ 644 int regPrevKey; /* The first nOBSat columns of the previous row */ 645 int addrFirst; /* Address of the OP_IfNot opcode */ 646 int addrJmp; /* Address of the OP_Jump opcode */ 647 VdbeOp *pOp; /* Opcode that opens the sorter */ 648 int nKey; /* Number of sorting key columns, including OP_Sequence */ 649 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 650 651 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 652 regPrevKey = pParse->nMem+1; 653 pParse->nMem += pSort->nOBSat; 654 nKey = nExpr - pSort->nOBSat + bSeq; 655 if( bSeq ){ 656 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 657 }else{ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 659 } 660 VdbeCoverage(v); 661 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 662 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 663 if( pParse->db->mallocFailed ) return; 664 pOp->p2 = nKey + nData; 665 pKI = pOp->p4.pKeyInfo; 666 memset(pKI->aSortOrder, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 667 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 668 testcase( pKI->nAllField > pKI->nKeyField+2 ); 669 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 670 pKI->nAllField-pKI->nKeyField-1); 671 addrJmp = sqlite3VdbeCurrentAddr(v); 672 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 673 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 674 pSort->regReturn = ++pParse->nMem; 675 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 676 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 677 if( iLimit ){ 678 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 679 VdbeCoverage(v); 680 } 681 sqlite3VdbeJumpHere(v, addrFirst); 682 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 683 sqlite3VdbeJumpHere(v, addrJmp); 684 } 685 if( iLimit ){ 686 /* At this point the values for the new sorter entry are stored 687 ** in an array of registers. They need to be composed into a record 688 ** and inserted into the sorter if either (a) there are currently 689 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 690 ** the largest record currently in the sorter. If (b) is true and there 691 ** are already LIMIT+OFFSET items in the sorter, delete the largest 692 ** entry before inserting the new one. This way there are never more 693 ** than LIMIT+OFFSET items in the sorter. 694 ** 695 ** If the new record does not need to be inserted into the sorter, 696 ** jump to the next iteration of the loop. Or, if the 697 ** pSort->bOrderedInnerLoop flag is set to indicate that the inner 698 ** loop delivers items in sorted order, jump to the next iteration 699 ** of the outer loop. 700 */ 701 int iCsr = pSort->iECursor; 702 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 703 VdbeCoverage(v); 704 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 705 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 706 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 707 VdbeCoverage(v); 708 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 709 } 710 if( regRecord==0 ){ 711 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 712 } 713 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 714 op = OP_SorterInsert; 715 }else{ 716 op = OP_IdxInsert; 717 } 718 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 719 regBase+nOBSat, nBase-nOBSat); 720 if( iSkip ){ 721 assert( pSort->bOrderedInnerLoop==0 || pSort->bOrderedInnerLoop==1 ); 722 sqlite3VdbeChangeP2(v, iSkip, 723 sqlite3VdbeCurrentAddr(v) + pSort->bOrderedInnerLoop); 724 } 725 } 726 727 /* 728 ** Add code to implement the OFFSET 729 */ 730 static void codeOffset( 731 Vdbe *v, /* Generate code into this VM */ 732 int iOffset, /* Register holding the offset counter */ 733 int iContinue /* Jump here to skip the current record */ 734 ){ 735 if( iOffset>0 ){ 736 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 737 VdbeComment((v, "OFFSET")); 738 } 739 } 740 741 /* 742 ** Add code that will check to make sure the N registers starting at iMem 743 ** form a distinct entry. iTab is a sorting index that holds previously 744 ** seen combinations of the N values. A new entry is made in iTab 745 ** if the current N values are new. 746 ** 747 ** A jump to addrRepeat is made and the N+1 values are popped from the 748 ** stack if the top N elements are not distinct. 749 */ 750 static void codeDistinct( 751 Parse *pParse, /* Parsing and code generating context */ 752 int iTab, /* A sorting index used to test for distinctness */ 753 int addrRepeat, /* Jump to here if not distinct */ 754 int N, /* Number of elements */ 755 int iMem /* First element */ 756 ){ 757 Vdbe *v; 758 int r1; 759 760 v = pParse->pVdbe; 761 r1 = sqlite3GetTempReg(pParse); 762 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 763 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 764 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N); 765 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 766 sqlite3ReleaseTempReg(pParse, r1); 767 } 768 769 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 770 /* 771 ** This function is called as part of inner-loop generation for a SELECT 772 ** statement with an ORDER BY that is not optimized by an index. It 773 ** determines the expressions, if any, that the sorter-reference 774 ** optimization should be used for. The sorter-reference optimization 775 ** is used for SELECT queries like: 776 ** 777 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 778 ** 779 ** If the optimization is used for expression "bigblob", then instead of 780 ** storing values read from that column in the sorter records, the PK of 781 ** the row from table t1 is stored instead. Then, as records are extracted from 782 ** the sorter to return to the user, the required value of bigblob is 783 ** retrieved directly from table t1. If the values are very large, this 784 ** can be more efficient than storing them directly in the sorter records. 785 ** 786 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 787 ** for which the sorter-reference optimization should be enabled. 788 ** Additionally, the pSort->aDefer[] array is populated with entries 789 ** for all cursors required to evaluate all selected expressions. Finally. 790 ** output variable (*ppExtra) is set to an expression list containing 791 ** expressions for all extra PK values that should be stored in the 792 ** sorter records. 793 */ 794 static void selectExprDefer( 795 Parse *pParse, /* Leave any error here */ 796 SortCtx *pSort, /* Sorter context */ 797 ExprList *pEList, /* Expressions destined for sorter */ 798 ExprList **ppExtra /* Expressions to append to sorter record */ 799 ){ 800 int i; 801 int nDefer = 0; 802 ExprList *pExtra = 0; 803 for(i=0; i<pEList->nExpr; i++){ 804 struct ExprList_item *pItem = &pEList->a[i]; 805 if( pItem->u.x.iOrderByCol==0 ){ 806 Expr *pExpr = pItem->pExpr; 807 Table *pTab = pExpr->pTab; 808 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 809 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 810 ){ 811 int j; 812 for(j=0; j<nDefer; j++){ 813 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 814 } 815 if( j==nDefer ){ 816 if( nDefer==ArraySize(pSort->aDefer) ){ 817 continue; 818 }else{ 819 int nKey = 1; 820 int k; 821 Index *pPk = 0; 822 if( !HasRowid(pTab) ){ 823 pPk = sqlite3PrimaryKeyIndex(pTab); 824 nKey = pPk->nKeyCol; 825 } 826 for(k=0; k<nKey; k++){ 827 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 828 if( pNew ){ 829 pNew->iTable = pExpr->iTable; 830 pNew->pTab = pExpr->pTab; 831 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 832 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 833 } 834 } 835 pSort->aDefer[nDefer].pTab = pExpr->pTab; 836 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 837 pSort->aDefer[nDefer].nKey = nKey; 838 nDefer++; 839 } 840 } 841 pItem->bSorterRef = 1; 842 } 843 } 844 } 845 pSort->nDefer = (u8)nDefer; 846 *ppExtra = pExtra; 847 } 848 #endif 849 850 /* 851 ** This routine generates the code for the inside of the inner loop 852 ** of a SELECT. 853 ** 854 ** If srcTab is negative, then the p->pEList expressions 855 ** are evaluated in order to get the data for this row. If srcTab is 856 ** zero or more, then data is pulled from srcTab and p->pEList is used only 857 ** to get the number of columns and the collation sequence for each column. 858 */ 859 static void selectInnerLoop( 860 Parse *pParse, /* The parser context */ 861 Select *p, /* The complete select statement being coded */ 862 int srcTab, /* Pull data from this table if non-negative */ 863 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 864 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 865 SelectDest *pDest, /* How to dispose of the results */ 866 int iContinue, /* Jump here to continue with next row */ 867 int iBreak /* Jump here to break out of the inner loop */ 868 ){ 869 Vdbe *v = pParse->pVdbe; 870 int i; 871 int hasDistinct; /* True if the DISTINCT keyword is present */ 872 int eDest = pDest->eDest; /* How to dispose of results */ 873 int iParm = pDest->iSDParm; /* First argument to disposal method */ 874 int nResultCol; /* Number of result columns */ 875 int nPrefixReg = 0; /* Number of extra registers before regResult */ 876 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 877 878 /* Usually, regResult is the first cell in an array of memory cells 879 ** containing the current result row. In this case regOrig is set to the 880 ** same value. However, if the results are being sent to the sorter, the 881 ** values for any expressions that are also part of the sort-key are omitted 882 ** from this array. In this case regOrig is set to zero. */ 883 int regResult; /* Start of memory holding current results */ 884 int regOrig; /* Start of memory holding full result (or 0) */ 885 886 assert( v ); 887 assert( p->pEList!=0 ); 888 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 889 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 890 if( pSort==0 && !hasDistinct ){ 891 assert( iContinue!=0 ); 892 codeOffset(v, p->iOffset, iContinue); 893 } 894 895 /* Pull the requested columns. 896 */ 897 nResultCol = p->pEList->nExpr; 898 899 if( pDest->iSdst==0 ){ 900 if( pSort ){ 901 nPrefixReg = pSort->pOrderBy->nExpr; 902 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 903 pParse->nMem += nPrefixReg; 904 } 905 pDest->iSdst = pParse->nMem+1; 906 pParse->nMem += nResultCol; 907 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 908 /* This is an error condition that can result, for example, when a SELECT 909 ** on the right-hand side of an INSERT contains more result columns than 910 ** there are columns in the table on the left. The error will be caught 911 ** and reported later. But we need to make sure enough memory is allocated 912 ** to avoid other spurious errors in the meantime. */ 913 pParse->nMem += nResultCol; 914 } 915 pDest->nSdst = nResultCol; 916 regOrig = regResult = pDest->iSdst; 917 if( srcTab>=0 ){ 918 for(i=0; i<nResultCol; i++){ 919 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 920 VdbeComment((v, "%s", p->pEList->a[i].zName)); 921 } 922 }else if( eDest!=SRT_Exists ){ 923 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 924 ExprList *pExtra = 0; 925 #endif 926 /* If the destination is an EXISTS(...) expression, the actual 927 ** values returned by the SELECT are not required. 928 */ 929 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 930 ExprList *pEList; 931 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 932 ecelFlags = SQLITE_ECEL_DUP; 933 }else{ 934 ecelFlags = 0; 935 } 936 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 937 /* For each expression in p->pEList that is a copy of an expression in 938 ** the ORDER BY clause (pSort->pOrderBy), set the associated 939 ** iOrderByCol value to one more than the index of the ORDER BY 940 ** expression within the sort-key that pushOntoSorter() will generate. 941 ** This allows the p->pEList field to be omitted from the sorted record, 942 ** saving space and CPU cycles. */ 943 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 944 945 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 946 int j; 947 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 948 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 949 } 950 } 951 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 952 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 953 if( pExtra && pParse->db->mallocFailed==0 ){ 954 /* If there are any extra PK columns to add to the sorter records, 955 ** allocate extra memory cells and adjust the OpenEphemeral 956 ** instruction to account for the larger records. This is only 957 ** required if there are one or more WITHOUT ROWID tables with 958 ** composite primary keys in the SortCtx.aDefer[] array. */ 959 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 960 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 961 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 962 pParse->nMem += pExtra->nExpr; 963 } 964 #endif 965 966 /* Adjust nResultCol to account for columns that are omitted 967 ** from the sorter by the optimizations in this branch */ 968 pEList = p->pEList; 969 for(i=0; i<pEList->nExpr; i++){ 970 if( pEList->a[i].u.x.iOrderByCol>0 971 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 972 || pEList->a[i].bSorterRef 973 #endif 974 ){ 975 nResultCol--; 976 regOrig = 0; 977 } 978 } 979 980 testcase( regOrig ); 981 testcase( eDest==SRT_Set ); 982 testcase( eDest==SRT_Mem ); 983 testcase( eDest==SRT_Coroutine ); 984 testcase( eDest==SRT_Output ); 985 assert( eDest==SRT_Set || eDest==SRT_Mem 986 || eDest==SRT_Coroutine || eDest==SRT_Output ); 987 } 988 sRowLoadInfo.regResult = regResult; 989 sRowLoadInfo.ecelFlags = ecelFlags; 990 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 991 sRowLoadInfo.pExtra = pExtra; 992 sRowLoadInfo.regExtraResult = regResult + nResultCol; 993 if( pExtra ) nResultCol += pExtra->nExpr; 994 #endif 995 if( p->iLimit 996 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 997 && nPrefixReg>0 998 ){ 999 assert( pSort!=0 ); 1000 assert( hasDistinct==0 ); 1001 pSort->pDeferredRowLoad = &sRowLoadInfo; 1002 regOrig = 0; 1003 }else{ 1004 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1005 } 1006 } 1007 1008 /* If the DISTINCT keyword was present on the SELECT statement 1009 ** and this row has been seen before, then do not make this row 1010 ** part of the result. 1011 */ 1012 if( hasDistinct ){ 1013 switch( pDistinct->eTnctType ){ 1014 case WHERE_DISTINCT_ORDERED: { 1015 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 1016 int iJump; /* Jump destination */ 1017 int regPrev; /* Previous row content */ 1018 1019 /* Allocate space for the previous row */ 1020 regPrev = pParse->nMem+1; 1021 pParse->nMem += nResultCol; 1022 1023 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 1024 ** sets the MEM_Cleared bit on the first register of the 1025 ** previous value. This will cause the OP_Ne below to always 1026 ** fail on the first iteration of the loop even if the first 1027 ** row is all NULLs. 1028 */ 1029 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1030 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 1031 pOp->opcode = OP_Null; 1032 pOp->p1 = 1; 1033 pOp->p2 = regPrev; 1034 1035 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 1036 for(i=0; i<nResultCol; i++){ 1037 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr); 1038 if( i<nResultCol-1 ){ 1039 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 1040 VdbeCoverage(v); 1041 }else{ 1042 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 1043 VdbeCoverage(v); 1044 } 1045 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 1046 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 1047 } 1048 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 1049 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 1050 break; 1051 } 1052 1053 case WHERE_DISTINCT_UNIQUE: { 1054 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 1055 break; 1056 } 1057 1058 default: { 1059 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 1060 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, 1061 regResult); 1062 break; 1063 } 1064 } 1065 if( pSort==0 ){ 1066 codeOffset(v, p->iOffset, iContinue); 1067 } 1068 } 1069 1070 switch( eDest ){ 1071 /* In this mode, write each query result to the key of the temporary 1072 ** table iParm. 1073 */ 1074 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1075 case SRT_Union: { 1076 int r1; 1077 r1 = sqlite3GetTempReg(pParse); 1078 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1079 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1080 sqlite3ReleaseTempReg(pParse, r1); 1081 break; 1082 } 1083 1084 /* Construct a record from the query result, but instead of 1085 ** saving that record, use it as a key to delete elements from 1086 ** the temporary table iParm. 1087 */ 1088 case SRT_Except: { 1089 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1090 break; 1091 } 1092 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1093 1094 /* Store the result as data using a unique key. 1095 */ 1096 case SRT_Fifo: 1097 case SRT_DistFifo: 1098 case SRT_Table: 1099 case SRT_EphemTab: { 1100 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1101 testcase( eDest==SRT_Table ); 1102 testcase( eDest==SRT_EphemTab ); 1103 testcase( eDest==SRT_Fifo ); 1104 testcase( eDest==SRT_DistFifo ); 1105 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1106 #ifndef SQLITE_OMIT_CTE 1107 if( eDest==SRT_DistFifo ){ 1108 /* If the destination is DistFifo, then cursor (iParm+1) is open 1109 ** on an ephemeral index. If the current row is already present 1110 ** in the index, do not write it to the output. If not, add the 1111 ** current row to the index and proceed with writing it to the 1112 ** output table as well. */ 1113 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1114 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1115 VdbeCoverage(v); 1116 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1117 assert( pSort==0 ); 1118 } 1119 #endif 1120 if( pSort ){ 1121 assert( regResult==regOrig ); 1122 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1123 }else{ 1124 int r2 = sqlite3GetTempReg(pParse); 1125 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1126 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1127 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1128 sqlite3ReleaseTempReg(pParse, r2); 1129 } 1130 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1131 break; 1132 } 1133 1134 #ifndef SQLITE_OMIT_SUBQUERY 1135 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1136 ** then there should be a single item on the stack. Write this 1137 ** item into the set table with bogus data. 1138 */ 1139 case SRT_Set: { 1140 if( pSort ){ 1141 /* At first glance you would think we could optimize out the 1142 ** ORDER BY in this case since the order of entries in the set 1143 ** does not matter. But there might be a LIMIT clause, in which 1144 ** case the order does matter */ 1145 pushOntoSorter( 1146 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1147 }else{ 1148 int r1 = sqlite3GetTempReg(pParse); 1149 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1150 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1151 r1, pDest->zAffSdst, nResultCol); 1152 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1153 sqlite3ReleaseTempReg(pParse, r1); 1154 } 1155 break; 1156 } 1157 1158 /* If any row exist in the result set, record that fact and abort. 1159 */ 1160 case SRT_Exists: { 1161 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1162 /* The LIMIT clause will terminate the loop for us */ 1163 break; 1164 } 1165 1166 /* If this is a scalar select that is part of an expression, then 1167 ** store the results in the appropriate memory cell or array of 1168 ** memory cells and break out of the scan loop. 1169 */ 1170 case SRT_Mem: { 1171 if( pSort ){ 1172 assert( nResultCol<=pDest->nSdst ); 1173 pushOntoSorter( 1174 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1175 }else{ 1176 assert( nResultCol==pDest->nSdst ); 1177 assert( regResult==iParm ); 1178 /* The LIMIT clause will jump out of the loop for us */ 1179 } 1180 break; 1181 } 1182 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1183 1184 case SRT_Coroutine: /* Send data to a co-routine */ 1185 case SRT_Output: { /* Return the results */ 1186 testcase( eDest==SRT_Coroutine ); 1187 testcase( eDest==SRT_Output ); 1188 if( pSort ){ 1189 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1190 nPrefixReg); 1191 }else if( eDest==SRT_Coroutine ){ 1192 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1193 }else{ 1194 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1195 } 1196 break; 1197 } 1198 1199 #ifndef SQLITE_OMIT_CTE 1200 /* Write the results into a priority queue that is order according to 1201 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1202 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1203 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1204 ** final OP_Sequence column. The last column is the record as a blob. 1205 */ 1206 case SRT_DistQueue: 1207 case SRT_Queue: { 1208 int nKey; 1209 int r1, r2, r3; 1210 int addrTest = 0; 1211 ExprList *pSO; 1212 pSO = pDest->pOrderBy; 1213 assert( pSO ); 1214 nKey = pSO->nExpr; 1215 r1 = sqlite3GetTempReg(pParse); 1216 r2 = sqlite3GetTempRange(pParse, nKey+2); 1217 r3 = r2+nKey+1; 1218 if( eDest==SRT_DistQueue ){ 1219 /* If the destination is DistQueue, then cursor (iParm+1) is open 1220 ** on a second ephemeral index that holds all values every previously 1221 ** added to the queue. */ 1222 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1223 regResult, nResultCol); 1224 VdbeCoverage(v); 1225 } 1226 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1227 if( eDest==SRT_DistQueue ){ 1228 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1229 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1230 } 1231 for(i=0; i<nKey; i++){ 1232 sqlite3VdbeAddOp2(v, OP_SCopy, 1233 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1234 r2+i); 1235 } 1236 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1237 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1238 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1239 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1240 sqlite3ReleaseTempReg(pParse, r1); 1241 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1242 break; 1243 } 1244 #endif /* SQLITE_OMIT_CTE */ 1245 1246 1247 1248 #if !defined(SQLITE_OMIT_TRIGGER) 1249 /* Discard the results. This is used for SELECT statements inside 1250 ** the body of a TRIGGER. The purpose of such selects is to call 1251 ** user-defined functions that have side effects. We do not care 1252 ** about the actual results of the select. 1253 */ 1254 default: { 1255 assert( eDest==SRT_Discard ); 1256 break; 1257 } 1258 #endif 1259 } 1260 1261 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1262 ** there is a sorter, in which case the sorter has already limited 1263 ** the output for us. 1264 */ 1265 if( pSort==0 && p->iLimit ){ 1266 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1267 } 1268 } 1269 1270 /* 1271 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1272 ** X extra columns. 1273 */ 1274 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1275 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1276 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1277 if( p ){ 1278 p->aSortOrder = (u8*)&p->aColl[N+X]; 1279 p->nKeyField = (u16)N; 1280 p->nAllField = (u16)(N+X); 1281 p->enc = ENC(db); 1282 p->db = db; 1283 p->nRef = 1; 1284 memset(&p[1], 0, nExtra); 1285 }else{ 1286 sqlite3OomFault(db); 1287 } 1288 return p; 1289 } 1290 1291 /* 1292 ** Deallocate a KeyInfo object 1293 */ 1294 void sqlite3KeyInfoUnref(KeyInfo *p){ 1295 if( p ){ 1296 assert( p->nRef>0 ); 1297 p->nRef--; 1298 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1299 } 1300 } 1301 1302 /* 1303 ** Make a new pointer to a KeyInfo object 1304 */ 1305 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1306 if( p ){ 1307 assert( p->nRef>0 ); 1308 p->nRef++; 1309 } 1310 return p; 1311 } 1312 1313 #ifdef SQLITE_DEBUG 1314 /* 1315 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1316 ** can only be changed if this is just a single reference to the object. 1317 ** 1318 ** This routine is used only inside of assert() statements. 1319 */ 1320 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1321 #endif /* SQLITE_DEBUG */ 1322 1323 /* 1324 ** Given an expression list, generate a KeyInfo structure that records 1325 ** the collating sequence for each expression in that expression list. 1326 ** 1327 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1328 ** KeyInfo structure is appropriate for initializing a virtual index to 1329 ** implement that clause. If the ExprList is the result set of a SELECT 1330 ** then the KeyInfo structure is appropriate for initializing a virtual 1331 ** index to implement a DISTINCT test. 1332 ** 1333 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1334 ** function is responsible for seeing that this structure is eventually 1335 ** freed. 1336 */ 1337 KeyInfo *sqlite3KeyInfoFromExprList( 1338 Parse *pParse, /* Parsing context */ 1339 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1340 int iStart, /* Begin with this column of pList */ 1341 int nExtra /* Add this many extra columns to the end */ 1342 ){ 1343 int nExpr; 1344 KeyInfo *pInfo; 1345 struct ExprList_item *pItem; 1346 sqlite3 *db = pParse->db; 1347 int i; 1348 1349 nExpr = pList->nExpr; 1350 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1351 if( pInfo ){ 1352 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1353 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1354 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1355 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1356 } 1357 } 1358 return pInfo; 1359 } 1360 1361 /* 1362 ** Name of the connection operator, used for error messages. 1363 */ 1364 static const char *selectOpName(int id){ 1365 char *z; 1366 switch( id ){ 1367 case TK_ALL: z = "UNION ALL"; break; 1368 case TK_INTERSECT: z = "INTERSECT"; break; 1369 case TK_EXCEPT: z = "EXCEPT"; break; 1370 default: z = "UNION"; break; 1371 } 1372 return z; 1373 } 1374 1375 #ifndef SQLITE_OMIT_EXPLAIN 1376 /* 1377 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1378 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1379 ** where the caption is of the form: 1380 ** 1381 ** "USE TEMP B-TREE FOR xxx" 1382 ** 1383 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1384 ** is determined by the zUsage argument. 1385 */ 1386 static void explainTempTable(Parse *pParse, const char *zUsage){ 1387 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1388 } 1389 1390 /* 1391 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1392 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1393 ** in sqlite3Select() to assign values to structure member variables that 1394 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1395 ** code with #ifndef directives. 1396 */ 1397 # define explainSetInteger(a, b) a = b 1398 1399 #else 1400 /* No-op versions of the explainXXX() functions and macros. */ 1401 # define explainTempTable(y,z) 1402 # define explainSetInteger(y,z) 1403 #endif 1404 1405 1406 /* 1407 ** If the inner loop was generated using a non-null pOrderBy argument, 1408 ** then the results were placed in a sorter. After the loop is terminated 1409 ** we need to run the sorter and output the results. The following 1410 ** routine generates the code needed to do that. 1411 */ 1412 static void generateSortTail( 1413 Parse *pParse, /* Parsing context */ 1414 Select *p, /* The SELECT statement */ 1415 SortCtx *pSort, /* Information on the ORDER BY clause */ 1416 int nColumn, /* Number of columns of data */ 1417 SelectDest *pDest /* Write the sorted results here */ 1418 ){ 1419 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1420 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1421 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1422 int addr; /* Top of output loop. Jump for Next. */ 1423 int addrOnce = 0; 1424 int iTab; 1425 ExprList *pOrderBy = pSort->pOrderBy; 1426 int eDest = pDest->eDest; 1427 int iParm = pDest->iSDParm; 1428 int regRow; 1429 int regRowid; 1430 int iCol; 1431 int nKey; /* Number of key columns in sorter record */ 1432 int iSortTab; /* Sorter cursor to read from */ 1433 int i; 1434 int bSeq; /* True if sorter record includes seq. no. */ 1435 int nRefKey = 0; 1436 struct ExprList_item *aOutEx = p->pEList->a; 1437 1438 assert( addrBreak<0 ); 1439 if( pSort->labelBkOut ){ 1440 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1441 sqlite3VdbeGoto(v, addrBreak); 1442 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1443 } 1444 1445 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1446 /* Open any cursors needed for sorter-reference expressions */ 1447 for(i=0; i<pSort->nDefer; i++){ 1448 Table *pTab = pSort->aDefer[i].pTab; 1449 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1450 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1451 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1452 } 1453 #endif 1454 1455 iTab = pSort->iECursor; 1456 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1457 regRowid = 0; 1458 regRow = pDest->iSdst; 1459 }else{ 1460 regRowid = sqlite3GetTempReg(pParse); 1461 regRow = sqlite3GetTempRange(pParse, nColumn); 1462 } 1463 nKey = pOrderBy->nExpr - pSort->nOBSat; 1464 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1465 int regSortOut = ++pParse->nMem; 1466 iSortTab = pParse->nTab++; 1467 if( pSort->labelBkOut ){ 1468 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1469 } 1470 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1471 nKey+1+nColumn+nRefKey); 1472 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1473 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1474 VdbeCoverage(v); 1475 codeOffset(v, p->iOffset, addrContinue); 1476 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1477 bSeq = 0; 1478 }else{ 1479 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1480 codeOffset(v, p->iOffset, addrContinue); 1481 iSortTab = iTab; 1482 bSeq = 1; 1483 } 1484 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1485 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1486 if( aOutEx[i].bSorterRef ) continue; 1487 #endif 1488 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1489 } 1490 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1491 if( pSort->nDefer ){ 1492 int iKey = iCol+1; 1493 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1494 1495 for(i=0; i<pSort->nDefer; i++){ 1496 int iCsr = pSort->aDefer[i].iCsr; 1497 Table *pTab = pSort->aDefer[i].pTab; 1498 int nKey = pSort->aDefer[i].nKey; 1499 1500 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1501 if( HasRowid(pTab) ){ 1502 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1503 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1504 sqlite3VdbeCurrentAddr(v)+1, regKey); 1505 }else{ 1506 int k; 1507 int iJmp; 1508 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1509 for(k=0; k<nKey; k++){ 1510 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1511 } 1512 iJmp = sqlite3VdbeCurrentAddr(v); 1513 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1514 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1515 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1516 } 1517 } 1518 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1519 } 1520 #endif 1521 for(i=nColumn-1; i>=0; i--){ 1522 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1523 if( aOutEx[i].bSorterRef ){ 1524 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1525 }else 1526 #endif 1527 { 1528 int iRead; 1529 if( aOutEx[i].u.x.iOrderByCol ){ 1530 iRead = aOutEx[i].u.x.iOrderByCol-1; 1531 }else{ 1532 iRead = iCol--; 1533 } 1534 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1535 VdbeComment((v, "%s", aOutEx[i].zName?aOutEx[i].zName : aOutEx[i].zSpan)); 1536 } 1537 } 1538 switch( eDest ){ 1539 case SRT_Table: 1540 case SRT_EphemTab: { 1541 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1542 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1543 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1544 break; 1545 } 1546 #ifndef SQLITE_OMIT_SUBQUERY 1547 case SRT_Set: { 1548 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1549 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1550 pDest->zAffSdst, nColumn); 1551 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1552 break; 1553 } 1554 case SRT_Mem: { 1555 /* The LIMIT clause will terminate the loop for us */ 1556 break; 1557 } 1558 #endif 1559 default: { 1560 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1561 testcase( eDest==SRT_Output ); 1562 testcase( eDest==SRT_Coroutine ); 1563 if( eDest==SRT_Output ){ 1564 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1565 }else{ 1566 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1567 } 1568 break; 1569 } 1570 } 1571 if( regRowid ){ 1572 if( eDest==SRT_Set ){ 1573 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1574 }else{ 1575 sqlite3ReleaseTempReg(pParse, regRow); 1576 } 1577 sqlite3ReleaseTempReg(pParse, regRowid); 1578 } 1579 /* The bottom of the loop 1580 */ 1581 sqlite3VdbeResolveLabel(v, addrContinue); 1582 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1583 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1584 }else{ 1585 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1586 } 1587 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1588 sqlite3VdbeResolveLabel(v, addrBreak); 1589 } 1590 1591 /* 1592 ** Return a pointer to a string containing the 'declaration type' of the 1593 ** expression pExpr. The string may be treated as static by the caller. 1594 ** 1595 ** Also try to estimate the size of the returned value and return that 1596 ** result in *pEstWidth. 1597 ** 1598 ** The declaration type is the exact datatype definition extracted from the 1599 ** original CREATE TABLE statement if the expression is a column. The 1600 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1601 ** is considered a column can be complex in the presence of subqueries. The 1602 ** result-set expression in all of the following SELECT statements is 1603 ** considered a column by this function. 1604 ** 1605 ** SELECT col FROM tbl; 1606 ** SELECT (SELECT col FROM tbl; 1607 ** SELECT (SELECT col FROM tbl); 1608 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1609 ** 1610 ** The declaration type for any expression other than a column is NULL. 1611 ** 1612 ** This routine has either 3 or 6 parameters depending on whether or not 1613 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1614 */ 1615 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1616 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1617 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1618 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1619 #endif 1620 static const char *columnTypeImpl( 1621 NameContext *pNC, 1622 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1623 Expr *pExpr 1624 #else 1625 Expr *pExpr, 1626 const char **pzOrigDb, 1627 const char **pzOrigTab, 1628 const char **pzOrigCol 1629 #endif 1630 ){ 1631 char const *zType = 0; 1632 int j; 1633 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1634 char const *zOrigDb = 0; 1635 char const *zOrigTab = 0; 1636 char const *zOrigCol = 0; 1637 #endif 1638 1639 assert( pExpr!=0 ); 1640 assert( pNC->pSrcList!=0 ); 1641 assert( pExpr->op!=TK_AGG_COLUMN ); /* This routine runes before aggregates 1642 ** are processed */ 1643 switch( pExpr->op ){ 1644 case TK_COLUMN: { 1645 /* The expression is a column. Locate the table the column is being 1646 ** extracted from in NameContext.pSrcList. This table may be real 1647 ** database table or a subquery. 1648 */ 1649 Table *pTab = 0; /* Table structure column is extracted from */ 1650 Select *pS = 0; /* Select the column is extracted from */ 1651 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1652 while( pNC && !pTab ){ 1653 SrcList *pTabList = pNC->pSrcList; 1654 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1655 if( j<pTabList->nSrc ){ 1656 pTab = pTabList->a[j].pTab; 1657 pS = pTabList->a[j].pSelect; 1658 }else{ 1659 pNC = pNC->pNext; 1660 } 1661 } 1662 1663 if( pTab==0 ){ 1664 /* At one time, code such as "SELECT new.x" within a trigger would 1665 ** cause this condition to run. Since then, we have restructured how 1666 ** trigger code is generated and so this condition is no longer 1667 ** possible. However, it can still be true for statements like 1668 ** the following: 1669 ** 1670 ** CREATE TABLE t1(col INTEGER); 1671 ** SELECT (SELECT t1.col) FROM FROM t1; 1672 ** 1673 ** when columnType() is called on the expression "t1.col" in the 1674 ** sub-select. In this case, set the column type to NULL, even 1675 ** though it should really be "INTEGER". 1676 ** 1677 ** This is not a problem, as the column type of "t1.col" is never 1678 ** used. When columnType() is called on the expression 1679 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1680 ** branch below. */ 1681 break; 1682 } 1683 1684 assert( pTab && pExpr->pTab==pTab ); 1685 if( pS ){ 1686 /* The "table" is actually a sub-select or a view in the FROM clause 1687 ** of the SELECT statement. Return the declaration type and origin 1688 ** data for the result-set column of the sub-select. 1689 */ 1690 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 1691 /* If iCol is less than zero, then the expression requests the 1692 ** rowid of the sub-select or view. This expression is legal (see 1693 ** test case misc2.2.2) - it always evaluates to NULL. 1694 */ 1695 NameContext sNC; 1696 Expr *p = pS->pEList->a[iCol].pExpr; 1697 sNC.pSrcList = pS->pSrc; 1698 sNC.pNext = pNC; 1699 sNC.pParse = pNC->pParse; 1700 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1701 } 1702 }else{ 1703 /* A real table or a CTE table */ 1704 assert( !pS ); 1705 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1706 if( iCol<0 ) iCol = pTab->iPKey; 1707 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1708 if( iCol<0 ){ 1709 zType = "INTEGER"; 1710 zOrigCol = "rowid"; 1711 }else{ 1712 zOrigCol = pTab->aCol[iCol].zName; 1713 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1714 } 1715 zOrigTab = pTab->zName; 1716 if( pNC->pParse && pTab->pSchema ){ 1717 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1718 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1719 } 1720 #else 1721 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1722 if( iCol<0 ){ 1723 zType = "INTEGER"; 1724 }else{ 1725 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1726 } 1727 #endif 1728 } 1729 break; 1730 } 1731 #ifndef SQLITE_OMIT_SUBQUERY 1732 case TK_SELECT: { 1733 /* The expression is a sub-select. Return the declaration type and 1734 ** origin info for the single column in the result set of the SELECT 1735 ** statement. 1736 */ 1737 NameContext sNC; 1738 Select *pS = pExpr->x.pSelect; 1739 Expr *p = pS->pEList->a[0].pExpr; 1740 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1741 sNC.pSrcList = pS->pSrc; 1742 sNC.pNext = pNC; 1743 sNC.pParse = pNC->pParse; 1744 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1745 break; 1746 } 1747 #endif 1748 } 1749 1750 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1751 if( pzOrigDb ){ 1752 assert( pzOrigTab && pzOrigCol ); 1753 *pzOrigDb = zOrigDb; 1754 *pzOrigTab = zOrigTab; 1755 *pzOrigCol = zOrigCol; 1756 } 1757 #endif 1758 return zType; 1759 } 1760 1761 /* 1762 ** Generate code that will tell the VDBE the declaration types of columns 1763 ** in the result set. 1764 */ 1765 static void generateColumnTypes( 1766 Parse *pParse, /* Parser context */ 1767 SrcList *pTabList, /* List of tables */ 1768 ExprList *pEList /* Expressions defining the result set */ 1769 ){ 1770 #ifndef SQLITE_OMIT_DECLTYPE 1771 Vdbe *v = pParse->pVdbe; 1772 int i; 1773 NameContext sNC; 1774 sNC.pSrcList = pTabList; 1775 sNC.pParse = pParse; 1776 sNC.pNext = 0; 1777 for(i=0; i<pEList->nExpr; i++){ 1778 Expr *p = pEList->a[i].pExpr; 1779 const char *zType; 1780 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1781 const char *zOrigDb = 0; 1782 const char *zOrigTab = 0; 1783 const char *zOrigCol = 0; 1784 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1785 1786 /* The vdbe must make its own copy of the column-type and other 1787 ** column specific strings, in case the schema is reset before this 1788 ** virtual machine is deleted. 1789 */ 1790 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1791 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1792 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1793 #else 1794 zType = columnType(&sNC, p, 0, 0, 0); 1795 #endif 1796 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1797 } 1798 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1799 } 1800 1801 1802 /* 1803 ** Compute the column names for a SELECT statement. 1804 ** 1805 ** The only guarantee that SQLite makes about column names is that if the 1806 ** column has an AS clause assigning it a name, that will be the name used. 1807 ** That is the only documented guarantee. However, countless applications 1808 ** developed over the years have made baseless assumptions about column names 1809 ** and will break if those assumptions changes. Hence, use extreme caution 1810 ** when modifying this routine to avoid breaking legacy. 1811 ** 1812 ** See Also: sqlite3ColumnsFromExprList() 1813 ** 1814 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1815 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1816 ** applications should operate this way. Nevertheless, we need to support the 1817 ** other modes for legacy: 1818 ** 1819 ** short=OFF, full=OFF: Column name is the text of the expression has it 1820 ** originally appears in the SELECT statement. In 1821 ** other words, the zSpan of the result expression. 1822 ** 1823 ** short=ON, full=OFF: (This is the default setting). If the result 1824 ** refers directly to a table column, then the 1825 ** result column name is just the table column 1826 ** name: COLUMN. Otherwise use zSpan. 1827 ** 1828 ** full=ON, short=ANY: If the result refers directly to a table column, 1829 ** then the result column name with the table name 1830 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1831 */ 1832 static void generateColumnNames( 1833 Parse *pParse, /* Parser context */ 1834 Select *pSelect /* Generate column names for this SELECT statement */ 1835 ){ 1836 Vdbe *v = pParse->pVdbe; 1837 int i; 1838 Table *pTab; 1839 SrcList *pTabList; 1840 ExprList *pEList; 1841 sqlite3 *db = pParse->db; 1842 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1843 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1844 1845 #ifndef SQLITE_OMIT_EXPLAIN 1846 /* If this is an EXPLAIN, skip this step */ 1847 if( pParse->explain ){ 1848 return; 1849 } 1850 #endif 1851 1852 if( pParse->colNamesSet ) return; 1853 /* Column names are determined by the left-most term of a compound select */ 1854 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1855 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1856 pTabList = pSelect->pSrc; 1857 pEList = pSelect->pEList; 1858 assert( v!=0 ); 1859 assert( pTabList!=0 ); 1860 pParse->colNamesSet = 1; 1861 fullName = (db->flags & SQLITE_FullColNames)!=0; 1862 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1863 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1864 for(i=0; i<pEList->nExpr; i++){ 1865 Expr *p = pEList->a[i].pExpr; 1866 1867 assert( p!=0 ); 1868 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1869 assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */ 1870 if( pEList->a[i].zName ){ 1871 /* An AS clause always takes first priority */ 1872 char *zName = pEList->a[i].zName; 1873 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1874 }else if( srcName && p->op==TK_COLUMN ){ 1875 char *zCol; 1876 int iCol = p->iColumn; 1877 pTab = p->pTab; 1878 assert( pTab!=0 ); 1879 if( iCol<0 ) iCol = pTab->iPKey; 1880 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1881 if( iCol<0 ){ 1882 zCol = "rowid"; 1883 }else{ 1884 zCol = pTab->aCol[iCol].zName; 1885 } 1886 if( fullName ){ 1887 char *zName = 0; 1888 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1889 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1890 }else{ 1891 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1892 } 1893 }else{ 1894 const char *z = pEList->a[i].zSpan; 1895 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1896 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1897 } 1898 } 1899 generateColumnTypes(pParse, pTabList, pEList); 1900 } 1901 1902 /* 1903 ** Given an expression list (which is really the list of expressions 1904 ** that form the result set of a SELECT statement) compute appropriate 1905 ** column names for a table that would hold the expression list. 1906 ** 1907 ** All column names will be unique. 1908 ** 1909 ** Only the column names are computed. Column.zType, Column.zColl, 1910 ** and other fields of Column are zeroed. 1911 ** 1912 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1913 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1914 ** 1915 ** The only guarantee that SQLite makes about column names is that if the 1916 ** column has an AS clause assigning it a name, that will be the name used. 1917 ** That is the only documented guarantee. However, countless applications 1918 ** developed over the years have made baseless assumptions about column names 1919 ** and will break if those assumptions changes. Hence, use extreme caution 1920 ** when modifying this routine to avoid breaking legacy. 1921 ** 1922 ** See Also: generateColumnNames() 1923 */ 1924 int sqlite3ColumnsFromExprList( 1925 Parse *pParse, /* Parsing context */ 1926 ExprList *pEList, /* Expr list from which to derive column names */ 1927 i16 *pnCol, /* Write the number of columns here */ 1928 Column **paCol /* Write the new column list here */ 1929 ){ 1930 sqlite3 *db = pParse->db; /* Database connection */ 1931 int i, j; /* Loop counters */ 1932 u32 cnt; /* Index added to make the name unique */ 1933 Column *aCol, *pCol; /* For looping over result columns */ 1934 int nCol; /* Number of columns in the result set */ 1935 char *zName; /* Column name */ 1936 int nName; /* Size of name in zName[] */ 1937 Hash ht; /* Hash table of column names */ 1938 1939 sqlite3HashInit(&ht); 1940 if( pEList ){ 1941 nCol = pEList->nExpr; 1942 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1943 testcase( aCol==0 ); 1944 if( nCol>32767 ) nCol = 32767; 1945 }else{ 1946 nCol = 0; 1947 aCol = 0; 1948 } 1949 assert( nCol==(i16)nCol ); 1950 *pnCol = nCol; 1951 *paCol = aCol; 1952 1953 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 1954 /* Get an appropriate name for the column 1955 */ 1956 if( (zName = pEList->a[i].zName)!=0 ){ 1957 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1958 }else{ 1959 Expr *pColExpr = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1960 while( pColExpr->op==TK_DOT ){ 1961 pColExpr = pColExpr->pRight; 1962 assert( pColExpr!=0 ); 1963 } 1964 assert( pColExpr->op!=TK_AGG_COLUMN ); 1965 if( pColExpr->op==TK_COLUMN ){ 1966 /* For columns use the column name name */ 1967 int iCol = pColExpr->iColumn; 1968 Table *pTab = pColExpr->pTab; 1969 assert( pTab!=0 ); 1970 if( iCol<0 ) iCol = pTab->iPKey; 1971 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 1972 }else if( pColExpr->op==TK_ID ){ 1973 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1974 zName = pColExpr->u.zToken; 1975 }else{ 1976 /* Use the original text of the column expression as its name */ 1977 zName = pEList->a[i].zSpan; 1978 } 1979 } 1980 if( zName ){ 1981 zName = sqlite3DbStrDup(db, zName); 1982 }else{ 1983 zName = sqlite3MPrintf(db,"column%d",i+1); 1984 } 1985 1986 /* Make sure the column name is unique. If the name is not unique, 1987 ** append an integer to the name so that it becomes unique. 1988 */ 1989 cnt = 0; 1990 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 1991 nName = sqlite3Strlen30(zName); 1992 if( nName>0 ){ 1993 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 1994 if( zName[j]==':' ) nName = j; 1995 } 1996 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 1997 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 1998 } 1999 pCol->zName = zName; 2000 sqlite3ColumnPropertiesFromName(0, pCol); 2001 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2002 sqlite3OomFault(db); 2003 } 2004 } 2005 sqlite3HashClear(&ht); 2006 if( db->mallocFailed ){ 2007 for(j=0; j<i; j++){ 2008 sqlite3DbFree(db, aCol[j].zName); 2009 } 2010 sqlite3DbFree(db, aCol); 2011 *paCol = 0; 2012 *pnCol = 0; 2013 return SQLITE_NOMEM_BKPT; 2014 } 2015 return SQLITE_OK; 2016 } 2017 2018 /* 2019 ** Add type and collation information to a column list based on 2020 ** a SELECT statement. 2021 ** 2022 ** The column list presumably came from selectColumnNamesFromExprList(). 2023 ** The column list has only names, not types or collations. This 2024 ** routine goes through and adds the types and collations. 2025 ** 2026 ** This routine requires that all identifiers in the SELECT 2027 ** statement be resolved. 2028 */ 2029 void sqlite3SelectAddColumnTypeAndCollation( 2030 Parse *pParse, /* Parsing contexts */ 2031 Table *pTab, /* Add column type information to this table */ 2032 Select *pSelect /* SELECT used to determine types and collations */ 2033 ){ 2034 sqlite3 *db = pParse->db; 2035 NameContext sNC; 2036 Column *pCol; 2037 CollSeq *pColl; 2038 int i; 2039 Expr *p; 2040 struct ExprList_item *a; 2041 2042 assert( pSelect!=0 ); 2043 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2044 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2045 if( db->mallocFailed ) return; 2046 memset(&sNC, 0, sizeof(sNC)); 2047 sNC.pSrcList = pSelect->pSrc; 2048 a = pSelect->pEList->a; 2049 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2050 const char *zType; 2051 int n, m; 2052 p = a[i].pExpr; 2053 zType = columnType(&sNC, p, 0, 0, 0); 2054 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2055 pCol->affinity = sqlite3ExprAffinity(p); 2056 if( zType ){ 2057 m = sqlite3Strlen30(zType); 2058 n = sqlite3Strlen30(pCol->zName); 2059 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2060 if( pCol->zName ){ 2061 memcpy(&pCol->zName[n+1], zType, m+1); 2062 pCol->colFlags |= COLFLAG_HASTYPE; 2063 } 2064 } 2065 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; 2066 pColl = sqlite3ExprCollSeq(pParse, p); 2067 if( pColl && pCol->zColl==0 ){ 2068 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2069 } 2070 } 2071 pTab->szTabRow = 1; /* Any non-zero value works */ 2072 } 2073 2074 /* 2075 ** Given a SELECT statement, generate a Table structure that describes 2076 ** the result set of that SELECT. 2077 */ 2078 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 2079 Table *pTab; 2080 sqlite3 *db = pParse->db; 2081 int savedFlags; 2082 2083 savedFlags = db->flags; 2084 db->flags &= ~SQLITE_FullColNames; 2085 db->flags |= SQLITE_ShortColNames; 2086 sqlite3SelectPrep(pParse, pSelect, 0); 2087 if( pParse->nErr ) return 0; 2088 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2089 db->flags = savedFlags; 2090 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2091 if( pTab==0 ){ 2092 return 0; 2093 } 2094 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 2095 ** is disabled */ 2096 assert( db->lookaside.bDisable ); 2097 pTab->nTabRef = 1; 2098 pTab->zName = 0; 2099 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2100 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2101 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect); 2102 pTab->iPKey = -1; 2103 if( db->mallocFailed ){ 2104 sqlite3DeleteTable(db, pTab); 2105 return 0; 2106 } 2107 return pTab; 2108 } 2109 2110 /* 2111 ** Get a VDBE for the given parser context. Create a new one if necessary. 2112 ** If an error occurs, return NULL and leave a message in pParse. 2113 */ 2114 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2115 if( pParse->pVdbe ){ 2116 return pParse->pVdbe; 2117 } 2118 if( pParse->pToplevel==0 2119 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2120 ){ 2121 pParse->okConstFactor = 1; 2122 } 2123 return sqlite3VdbeCreate(pParse); 2124 } 2125 2126 2127 /* 2128 ** Compute the iLimit and iOffset fields of the SELECT based on the 2129 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2130 ** that appear in the original SQL statement after the LIMIT and OFFSET 2131 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2132 ** are the integer memory register numbers for counters used to compute 2133 ** the limit and offset. If there is no limit and/or offset, then 2134 ** iLimit and iOffset are negative. 2135 ** 2136 ** This routine changes the values of iLimit and iOffset only if 2137 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2138 ** and iOffset should have been preset to appropriate default values (zero) 2139 ** prior to calling this routine. 2140 ** 2141 ** The iOffset register (if it exists) is initialized to the value 2142 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2143 ** iOffset+1 is initialized to LIMIT+OFFSET. 2144 ** 2145 ** Only if pLimit->pLeft!=0 do the limit registers get 2146 ** redefined. The UNION ALL operator uses this property to force 2147 ** the reuse of the same limit and offset registers across multiple 2148 ** SELECT statements. 2149 */ 2150 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2151 Vdbe *v = 0; 2152 int iLimit = 0; 2153 int iOffset; 2154 int n; 2155 Expr *pLimit = p->pLimit; 2156 2157 if( p->iLimit ) return; 2158 2159 /* 2160 ** "LIMIT -1" always shows all rows. There is some 2161 ** controversy about what the correct behavior should be. 2162 ** The current implementation interprets "LIMIT 0" to mean 2163 ** no rows. 2164 */ 2165 if( pLimit ){ 2166 assert( pLimit->op==TK_LIMIT ); 2167 assert( pLimit->pLeft!=0 ); 2168 p->iLimit = iLimit = ++pParse->nMem; 2169 v = sqlite3GetVdbe(pParse); 2170 assert( v!=0 ); 2171 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2172 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2173 VdbeComment((v, "LIMIT counter")); 2174 if( n==0 ){ 2175 sqlite3VdbeGoto(v, iBreak); 2176 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2177 p->nSelectRow = sqlite3LogEst((u64)n); 2178 p->selFlags |= SF_FixedLimit; 2179 } 2180 }else{ 2181 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2182 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2183 VdbeComment((v, "LIMIT counter")); 2184 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2185 } 2186 if( pLimit->pRight ){ 2187 p->iOffset = iOffset = ++pParse->nMem; 2188 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2189 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2190 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2191 VdbeComment((v, "OFFSET counter")); 2192 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2193 VdbeComment((v, "LIMIT+OFFSET")); 2194 } 2195 } 2196 } 2197 2198 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2199 /* 2200 ** Return the appropriate collating sequence for the iCol-th column of 2201 ** the result set for the compound-select statement "p". Return NULL if 2202 ** the column has no default collating sequence. 2203 ** 2204 ** The collating sequence for the compound select is taken from the 2205 ** left-most term of the select that has a collating sequence. 2206 */ 2207 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2208 CollSeq *pRet; 2209 if( p->pPrior ){ 2210 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2211 }else{ 2212 pRet = 0; 2213 } 2214 assert( iCol>=0 ); 2215 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2216 ** have been thrown during name resolution and we would not have gotten 2217 ** this far */ 2218 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2219 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2220 } 2221 return pRet; 2222 } 2223 2224 /* 2225 ** The select statement passed as the second parameter is a compound SELECT 2226 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2227 ** structure suitable for implementing the ORDER BY. 2228 ** 2229 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2230 ** function is responsible for ensuring that this structure is eventually 2231 ** freed. 2232 */ 2233 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2234 ExprList *pOrderBy = p->pOrderBy; 2235 int nOrderBy = p->pOrderBy->nExpr; 2236 sqlite3 *db = pParse->db; 2237 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2238 if( pRet ){ 2239 int i; 2240 for(i=0; i<nOrderBy; i++){ 2241 struct ExprList_item *pItem = &pOrderBy->a[i]; 2242 Expr *pTerm = pItem->pExpr; 2243 CollSeq *pColl; 2244 2245 if( pTerm->flags & EP_Collate ){ 2246 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2247 }else{ 2248 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2249 if( pColl==0 ) pColl = db->pDfltColl; 2250 pOrderBy->a[i].pExpr = 2251 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2252 } 2253 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2254 pRet->aColl[i] = pColl; 2255 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2256 } 2257 } 2258 2259 return pRet; 2260 } 2261 2262 #ifndef SQLITE_OMIT_CTE 2263 /* 2264 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2265 ** query of the form: 2266 ** 2267 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2268 ** \___________/ \_______________/ 2269 ** p->pPrior p 2270 ** 2271 ** 2272 ** There is exactly one reference to the recursive-table in the FROM clause 2273 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2274 ** 2275 ** The setup-query runs once to generate an initial set of rows that go 2276 ** into a Queue table. Rows are extracted from the Queue table one by 2277 ** one. Each row extracted from Queue is output to pDest. Then the single 2278 ** extracted row (now in the iCurrent table) becomes the content of the 2279 ** recursive-table for a recursive-query run. The output of the recursive-query 2280 ** is added back into the Queue table. Then another row is extracted from Queue 2281 ** and the iteration continues until the Queue table is empty. 2282 ** 2283 ** If the compound query operator is UNION then no duplicate rows are ever 2284 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2285 ** that have ever been inserted into Queue and causes duplicates to be 2286 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2287 ** 2288 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2289 ** ORDER BY order and the first entry is extracted for each cycle. Without 2290 ** an ORDER BY, the Queue table is just a FIFO. 2291 ** 2292 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2293 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2294 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2295 ** with a positive value, then the first OFFSET outputs are discarded rather 2296 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2297 ** rows have been skipped. 2298 */ 2299 static void generateWithRecursiveQuery( 2300 Parse *pParse, /* Parsing context */ 2301 Select *p, /* The recursive SELECT to be coded */ 2302 SelectDest *pDest /* What to do with query results */ 2303 ){ 2304 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2305 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2306 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2307 Select *pSetup = p->pPrior; /* The setup query */ 2308 int addrTop; /* Top of the loop */ 2309 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2310 int iCurrent = 0; /* The Current table */ 2311 int regCurrent; /* Register holding Current table */ 2312 int iQueue; /* The Queue table */ 2313 int iDistinct = 0; /* To ensure unique results if UNION */ 2314 int eDest = SRT_Fifo; /* How to write to Queue */ 2315 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2316 int i; /* Loop counter */ 2317 int rc; /* Result code */ 2318 ExprList *pOrderBy; /* The ORDER BY clause */ 2319 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2320 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2321 2322 /* Obtain authorization to do a recursive query */ 2323 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2324 2325 /* Process the LIMIT and OFFSET clauses, if they exist */ 2326 addrBreak = sqlite3VdbeMakeLabel(v); 2327 p->nSelectRow = 320; /* 4 billion rows */ 2328 computeLimitRegisters(pParse, p, addrBreak); 2329 pLimit = p->pLimit; 2330 regLimit = p->iLimit; 2331 regOffset = p->iOffset; 2332 p->pLimit = 0; 2333 p->iLimit = p->iOffset = 0; 2334 pOrderBy = p->pOrderBy; 2335 2336 /* Locate the cursor number of the Current table */ 2337 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2338 if( pSrc->a[i].fg.isRecursive ){ 2339 iCurrent = pSrc->a[i].iCursor; 2340 break; 2341 } 2342 } 2343 2344 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2345 ** the Distinct table must be exactly one greater than Queue in order 2346 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2347 iQueue = pParse->nTab++; 2348 if( p->op==TK_UNION ){ 2349 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2350 iDistinct = pParse->nTab++; 2351 }else{ 2352 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2353 } 2354 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2355 2356 /* Allocate cursors for Current, Queue, and Distinct. */ 2357 regCurrent = ++pParse->nMem; 2358 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2359 if( pOrderBy ){ 2360 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2361 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2362 (char*)pKeyInfo, P4_KEYINFO); 2363 destQueue.pOrderBy = pOrderBy; 2364 }else{ 2365 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2366 } 2367 VdbeComment((v, "Queue table")); 2368 if( iDistinct ){ 2369 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2370 p->selFlags |= SF_UsesEphemeral; 2371 } 2372 2373 /* Detach the ORDER BY clause from the compound SELECT */ 2374 p->pOrderBy = 0; 2375 2376 /* Store the results of the setup-query in Queue. */ 2377 pSetup->pNext = 0; 2378 ExplainQueryPlan((pParse, 1, "SETUP")); 2379 rc = sqlite3Select(pParse, pSetup, &destQueue); 2380 pSetup->pNext = p; 2381 if( rc ) goto end_of_recursive_query; 2382 2383 /* Find the next row in the Queue and output that row */ 2384 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2385 2386 /* Transfer the next row in Queue over to Current */ 2387 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2388 if( pOrderBy ){ 2389 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2390 }else{ 2391 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2392 } 2393 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2394 2395 /* Output the single row in Current */ 2396 addrCont = sqlite3VdbeMakeLabel(v); 2397 codeOffset(v, regOffset, addrCont); 2398 selectInnerLoop(pParse, p, iCurrent, 2399 0, 0, pDest, addrCont, addrBreak); 2400 if( regLimit ){ 2401 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2402 VdbeCoverage(v); 2403 } 2404 sqlite3VdbeResolveLabel(v, addrCont); 2405 2406 /* Execute the recursive SELECT taking the single row in Current as 2407 ** the value for the recursive-table. Store the results in the Queue. 2408 */ 2409 if( p->selFlags & SF_Aggregate ){ 2410 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2411 }else{ 2412 p->pPrior = 0; 2413 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2414 sqlite3Select(pParse, p, &destQueue); 2415 assert( p->pPrior==0 ); 2416 p->pPrior = pSetup; 2417 } 2418 2419 /* Keep running the loop until the Queue is empty */ 2420 sqlite3VdbeGoto(v, addrTop); 2421 sqlite3VdbeResolveLabel(v, addrBreak); 2422 2423 end_of_recursive_query: 2424 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2425 p->pOrderBy = pOrderBy; 2426 p->pLimit = pLimit; 2427 return; 2428 } 2429 #endif /* SQLITE_OMIT_CTE */ 2430 2431 /* Forward references */ 2432 static int multiSelectOrderBy( 2433 Parse *pParse, /* Parsing context */ 2434 Select *p, /* The right-most of SELECTs to be coded */ 2435 SelectDest *pDest /* What to do with query results */ 2436 ); 2437 2438 /* 2439 ** Handle the special case of a compound-select that originates from a 2440 ** VALUES clause. By handling this as a special case, we avoid deep 2441 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2442 ** on a VALUES clause. 2443 ** 2444 ** Because the Select object originates from a VALUES clause: 2445 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2446 ** (2) All terms are UNION ALL 2447 ** (3) There is no ORDER BY clause 2448 ** 2449 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2450 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2451 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2452 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2453 */ 2454 static int multiSelectValues( 2455 Parse *pParse, /* Parsing context */ 2456 Select *p, /* The right-most of SELECTs to be coded */ 2457 SelectDest *pDest /* What to do with query results */ 2458 ){ 2459 int nRow = 1; 2460 int rc = 0; 2461 int bShowAll = p->pLimit==0; 2462 assert( p->selFlags & SF_MultiValue ); 2463 do{ 2464 assert( p->selFlags & SF_Values ); 2465 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2466 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2467 if( p->pPrior==0 ) break; 2468 assert( p->pPrior->pNext==p ); 2469 p = p->pPrior; 2470 nRow += bShowAll; 2471 }while(1); 2472 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2473 nRow==1 ? "" : "S")); 2474 while( p ){ 2475 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2476 if( !bShowAll ) break; 2477 p->nSelectRow = nRow; 2478 p = p->pNext; 2479 } 2480 return rc; 2481 } 2482 2483 /* 2484 ** This routine is called to process a compound query form from 2485 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2486 ** INTERSECT 2487 ** 2488 ** "p" points to the right-most of the two queries. the query on the 2489 ** left is p->pPrior. The left query could also be a compound query 2490 ** in which case this routine will be called recursively. 2491 ** 2492 ** The results of the total query are to be written into a destination 2493 ** of type eDest with parameter iParm. 2494 ** 2495 ** Example 1: Consider a three-way compound SQL statement. 2496 ** 2497 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2498 ** 2499 ** This statement is parsed up as follows: 2500 ** 2501 ** SELECT c FROM t3 2502 ** | 2503 ** `-----> SELECT b FROM t2 2504 ** | 2505 ** `------> SELECT a FROM t1 2506 ** 2507 ** The arrows in the diagram above represent the Select.pPrior pointer. 2508 ** So if this routine is called with p equal to the t3 query, then 2509 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2510 ** 2511 ** Notice that because of the way SQLite parses compound SELECTs, the 2512 ** individual selects always group from left to right. 2513 */ 2514 static int multiSelect( 2515 Parse *pParse, /* Parsing context */ 2516 Select *p, /* The right-most of SELECTs to be coded */ 2517 SelectDest *pDest /* What to do with query results */ 2518 ){ 2519 int rc = SQLITE_OK; /* Success code from a subroutine */ 2520 Select *pPrior; /* Another SELECT immediately to our left */ 2521 Vdbe *v; /* Generate code to this VDBE */ 2522 SelectDest dest; /* Alternative data destination */ 2523 Select *pDelete = 0; /* Chain of simple selects to delete */ 2524 sqlite3 *db; /* Database connection */ 2525 2526 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2527 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2528 */ 2529 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2530 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2531 db = pParse->db; 2532 pPrior = p->pPrior; 2533 dest = *pDest; 2534 if( pPrior->pOrderBy || pPrior->pLimit ){ 2535 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 2536 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op)); 2537 rc = 1; 2538 goto multi_select_end; 2539 } 2540 2541 v = sqlite3GetVdbe(pParse); 2542 assert( v!=0 ); /* The VDBE already created by calling function */ 2543 2544 /* Create the destination temporary table if necessary 2545 */ 2546 if( dest.eDest==SRT_EphemTab ){ 2547 assert( p->pEList ); 2548 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2549 dest.eDest = SRT_Table; 2550 } 2551 2552 /* Special handling for a compound-select that originates as a VALUES clause. 2553 */ 2554 if( p->selFlags & SF_MultiValue ){ 2555 rc = multiSelectValues(pParse, p, &dest); 2556 goto multi_select_end; 2557 } 2558 2559 /* Make sure all SELECTs in the statement have the same number of elements 2560 ** in their result sets. 2561 */ 2562 assert( p->pEList && pPrior->pEList ); 2563 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2564 2565 #ifndef SQLITE_OMIT_CTE 2566 if( p->selFlags & SF_Recursive ){ 2567 generateWithRecursiveQuery(pParse, p, &dest); 2568 }else 2569 #endif 2570 2571 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2572 */ 2573 if( p->pOrderBy ){ 2574 return multiSelectOrderBy(pParse, p, pDest); 2575 }else{ 2576 2577 #ifndef SQLITE_OMIT_EXPLAIN 2578 if( pPrior->pPrior==0 ){ 2579 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2580 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2581 } 2582 #endif 2583 2584 /* Generate code for the left and right SELECT statements. 2585 */ 2586 switch( p->op ){ 2587 case TK_ALL: { 2588 int addr = 0; 2589 int nLimit; 2590 assert( !pPrior->pLimit ); 2591 pPrior->iLimit = p->iLimit; 2592 pPrior->iOffset = p->iOffset; 2593 pPrior->pLimit = p->pLimit; 2594 rc = sqlite3Select(pParse, pPrior, &dest); 2595 p->pLimit = 0; 2596 if( rc ){ 2597 goto multi_select_end; 2598 } 2599 p->pPrior = 0; 2600 p->iLimit = pPrior->iLimit; 2601 p->iOffset = pPrior->iOffset; 2602 if( p->iLimit ){ 2603 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2604 VdbeComment((v, "Jump ahead if LIMIT reached")); 2605 if( p->iOffset ){ 2606 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2607 p->iLimit, p->iOffset+1, p->iOffset); 2608 } 2609 } 2610 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2611 rc = sqlite3Select(pParse, p, &dest); 2612 testcase( rc!=SQLITE_OK ); 2613 pDelete = p->pPrior; 2614 p->pPrior = pPrior; 2615 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2616 if( pPrior->pLimit 2617 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit) 2618 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2619 ){ 2620 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2621 } 2622 if( addr ){ 2623 sqlite3VdbeJumpHere(v, addr); 2624 } 2625 break; 2626 } 2627 case TK_EXCEPT: 2628 case TK_UNION: { 2629 int unionTab; /* Cursor number of the temp table holding result */ 2630 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2631 int priorOp; /* The SRT_ operation to apply to prior selects */ 2632 Expr *pLimit; /* Saved values of p->nLimit */ 2633 int addr; 2634 SelectDest uniondest; 2635 2636 testcase( p->op==TK_EXCEPT ); 2637 testcase( p->op==TK_UNION ); 2638 priorOp = SRT_Union; 2639 if( dest.eDest==priorOp ){ 2640 /* We can reuse a temporary table generated by a SELECT to our 2641 ** right. 2642 */ 2643 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2644 unionTab = dest.iSDParm; 2645 }else{ 2646 /* We will need to create our own temporary table to hold the 2647 ** intermediate results. 2648 */ 2649 unionTab = pParse->nTab++; 2650 assert( p->pOrderBy==0 ); 2651 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2652 assert( p->addrOpenEphm[0] == -1 ); 2653 p->addrOpenEphm[0] = addr; 2654 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2655 assert( p->pEList ); 2656 } 2657 2658 /* Code the SELECT statements to our left 2659 */ 2660 assert( !pPrior->pOrderBy ); 2661 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2662 rc = sqlite3Select(pParse, pPrior, &uniondest); 2663 if( rc ){ 2664 goto multi_select_end; 2665 } 2666 2667 /* Code the current SELECT statement 2668 */ 2669 if( p->op==TK_EXCEPT ){ 2670 op = SRT_Except; 2671 }else{ 2672 assert( p->op==TK_UNION ); 2673 op = SRT_Union; 2674 } 2675 p->pPrior = 0; 2676 pLimit = p->pLimit; 2677 p->pLimit = 0; 2678 uniondest.eDest = op; 2679 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2680 selectOpName(p->op))); 2681 rc = sqlite3Select(pParse, p, &uniondest); 2682 testcase( rc!=SQLITE_OK ); 2683 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2684 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2685 sqlite3ExprListDelete(db, p->pOrderBy); 2686 pDelete = p->pPrior; 2687 p->pPrior = pPrior; 2688 p->pOrderBy = 0; 2689 if( p->op==TK_UNION ){ 2690 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2691 } 2692 sqlite3ExprDelete(db, p->pLimit); 2693 p->pLimit = pLimit; 2694 p->iLimit = 0; 2695 p->iOffset = 0; 2696 2697 /* Convert the data in the temporary table into whatever form 2698 ** it is that we currently need. 2699 */ 2700 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2701 if( dest.eDest!=priorOp ){ 2702 int iCont, iBreak, iStart; 2703 assert( p->pEList ); 2704 iBreak = sqlite3VdbeMakeLabel(v); 2705 iCont = sqlite3VdbeMakeLabel(v); 2706 computeLimitRegisters(pParse, p, iBreak); 2707 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2708 iStart = sqlite3VdbeCurrentAddr(v); 2709 selectInnerLoop(pParse, p, unionTab, 2710 0, 0, &dest, iCont, iBreak); 2711 sqlite3VdbeResolveLabel(v, iCont); 2712 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2713 sqlite3VdbeResolveLabel(v, iBreak); 2714 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2715 } 2716 break; 2717 } 2718 default: assert( p->op==TK_INTERSECT ); { 2719 int tab1, tab2; 2720 int iCont, iBreak, iStart; 2721 Expr *pLimit; 2722 int addr; 2723 SelectDest intersectdest; 2724 int r1; 2725 2726 /* INTERSECT is different from the others since it requires 2727 ** two temporary tables. Hence it has its own case. Begin 2728 ** by allocating the tables we will need. 2729 */ 2730 tab1 = pParse->nTab++; 2731 tab2 = pParse->nTab++; 2732 assert( p->pOrderBy==0 ); 2733 2734 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2735 assert( p->addrOpenEphm[0] == -1 ); 2736 p->addrOpenEphm[0] = addr; 2737 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2738 assert( p->pEList ); 2739 2740 /* Code the SELECTs to our left into temporary table "tab1". 2741 */ 2742 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2743 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2744 if( rc ){ 2745 goto multi_select_end; 2746 } 2747 2748 /* Code the current SELECT into temporary table "tab2" 2749 */ 2750 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2751 assert( p->addrOpenEphm[1] == -1 ); 2752 p->addrOpenEphm[1] = addr; 2753 p->pPrior = 0; 2754 pLimit = p->pLimit; 2755 p->pLimit = 0; 2756 intersectdest.iSDParm = tab2; 2757 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2758 selectOpName(p->op))); 2759 rc = sqlite3Select(pParse, p, &intersectdest); 2760 testcase( rc!=SQLITE_OK ); 2761 pDelete = p->pPrior; 2762 p->pPrior = pPrior; 2763 if( p->nSelectRow>pPrior->nSelectRow ){ 2764 p->nSelectRow = pPrior->nSelectRow; 2765 } 2766 sqlite3ExprDelete(db, p->pLimit); 2767 p->pLimit = pLimit; 2768 2769 /* Generate code to take the intersection of the two temporary 2770 ** tables. 2771 */ 2772 assert( p->pEList ); 2773 iBreak = sqlite3VdbeMakeLabel(v); 2774 iCont = sqlite3VdbeMakeLabel(v); 2775 computeLimitRegisters(pParse, p, iBreak); 2776 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2777 r1 = sqlite3GetTempReg(pParse); 2778 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2779 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2780 VdbeCoverage(v); 2781 sqlite3ReleaseTempReg(pParse, r1); 2782 selectInnerLoop(pParse, p, tab1, 2783 0, 0, &dest, iCont, iBreak); 2784 sqlite3VdbeResolveLabel(v, iCont); 2785 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2786 sqlite3VdbeResolveLabel(v, iBreak); 2787 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2788 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2789 break; 2790 } 2791 } 2792 2793 #ifndef SQLITE_OMIT_EXPLAIN 2794 if( p->pNext==0 ){ 2795 ExplainQueryPlanPop(pParse); 2796 } 2797 #endif 2798 } 2799 2800 /* Compute collating sequences used by 2801 ** temporary tables needed to implement the compound select. 2802 ** Attach the KeyInfo structure to all temporary tables. 2803 ** 2804 ** This section is run by the right-most SELECT statement only. 2805 ** SELECT statements to the left always skip this part. The right-most 2806 ** SELECT might also skip this part if it has no ORDER BY clause and 2807 ** no temp tables are required. 2808 */ 2809 if( p->selFlags & SF_UsesEphemeral ){ 2810 int i; /* Loop counter */ 2811 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2812 Select *pLoop; /* For looping through SELECT statements */ 2813 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2814 int nCol; /* Number of columns in result set */ 2815 2816 assert( p->pNext==0 ); 2817 nCol = p->pEList->nExpr; 2818 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2819 if( !pKeyInfo ){ 2820 rc = SQLITE_NOMEM_BKPT; 2821 goto multi_select_end; 2822 } 2823 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2824 *apColl = multiSelectCollSeq(pParse, p, i); 2825 if( 0==*apColl ){ 2826 *apColl = db->pDfltColl; 2827 } 2828 } 2829 2830 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2831 for(i=0; i<2; i++){ 2832 int addr = pLoop->addrOpenEphm[i]; 2833 if( addr<0 ){ 2834 /* If [0] is unused then [1] is also unused. So we can 2835 ** always safely abort as soon as the first unused slot is found */ 2836 assert( pLoop->addrOpenEphm[1]<0 ); 2837 break; 2838 } 2839 sqlite3VdbeChangeP2(v, addr, nCol); 2840 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2841 P4_KEYINFO); 2842 pLoop->addrOpenEphm[i] = -1; 2843 } 2844 } 2845 sqlite3KeyInfoUnref(pKeyInfo); 2846 } 2847 2848 multi_select_end: 2849 pDest->iSdst = dest.iSdst; 2850 pDest->nSdst = dest.nSdst; 2851 sqlite3SelectDelete(db, pDelete); 2852 return rc; 2853 } 2854 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2855 2856 /* 2857 ** Error message for when two or more terms of a compound select have different 2858 ** size result sets. 2859 */ 2860 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 2861 if( p->selFlags & SF_Values ){ 2862 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2863 }else{ 2864 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2865 " do not have the same number of result columns", selectOpName(p->op)); 2866 } 2867 } 2868 2869 /* 2870 ** Code an output subroutine for a coroutine implementation of a 2871 ** SELECT statment. 2872 ** 2873 ** The data to be output is contained in pIn->iSdst. There are 2874 ** pIn->nSdst columns to be output. pDest is where the output should 2875 ** be sent. 2876 ** 2877 ** regReturn is the number of the register holding the subroutine 2878 ** return address. 2879 ** 2880 ** If regPrev>0 then it is the first register in a vector that 2881 ** records the previous output. mem[regPrev] is a flag that is false 2882 ** if there has been no previous output. If regPrev>0 then code is 2883 ** generated to suppress duplicates. pKeyInfo is used for comparing 2884 ** keys. 2885 ** 2886 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2887 ** iBreak. 2888 */ 2889 static int generateOutputSubroutine( 2890 Parse *pParse, /* Parsing context */ 2891 Select *p, /* The SELECT statement */ 2892 SelectDest *pIn, /* Coroutine supplying data */ 2893 SelectDest *pDest, /* Where to send the data */ 2894 int regReturn, /* The return address register */ 2895 int regPrev, /* Previous result register. No uniqueness if 0 */ 2896 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2897 int iBreak /* Jump here if we hit the LIMIT */ 2898 ){ 2899 Vdbe *v = pParse->pVdbe; 2900 int iContinue; 2901 int addr; 2902 2903 addr = sqlite3VdbeCurrentAddr(v); 2904 iContinue = sqlite3VdbeMakeLabel(v); 2905 2906 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2907 */ 2908 if( regPrev ){ 2909 int addr1, addr2; 2910 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2911 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2912 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2913 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 2914 sqlite3VdbeJumpHere(v, addr1); 2915 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2916 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2917 } 2918 if( pParse->db->mallocFailed ) return 0; 2919 2920 /* Suppress the first OFFSET entries if there is an OFFSET clause 2921 */ 2922 codeOffset(v, p->iOffset, iContinue); 2923 2924 assert( pDest->eDest!=SRT_Exists ); 2925 assert( pDest->eDest!=SRT_Table ); 2926 switch( pDest->eDest ){ 2927 /* Store the result as data using a unique key. 2928 */ 2929 case SRT_EphemTab: { 2930 int r1 = sqlite3GetTempReg(pParse); 2931 int r2 = sqlite3GetTempReg(pParse); 2932 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2933 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2934 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2935 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2936 sqlite3ReleaseTempReg(pParse, r2); 2937 sqlite3ReleaseTempReg(pParse, r1); 2938 break; 2939 } 2940 2941 #ifndef SQLITE_OMIT_SUBQUERY 2942 /* If we are creating a set for an "expr IN (SELECT ...)". 2943 */ 2944 case SRT_Set: { 2945 int r1; 2946 testcase( pIn->nSdst>1 ); 2947 r1 = sqlite3GetTempReg(pParse); 2948 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 2949 r1, pDest->zAffSdst, pIn->nSdst); 2950 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 2951 pIn->iSdst, pIn->nSdst); 2952 sqlite3ReleaseTempReg(pParse, r1); 2953 break; 2954 } 2955 2956 /* If this is a scalar select that is part of an expression, then 2957 ** store the results in the appropriate memory cell and break out 2958 ** of the scan loop. 2959 */ 2960 case SRT_Mem: { 2961 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); 2962 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2963 /* The LIMIT clause will jump out of the loop for us */ 2964 break; 2965 } 2966 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2967 2968 /* The results are stored in a sequence of registers 2969 ** starting at pDest->iSdst. Then the co-routine yields. 2970 */ 2971 case SRT_Coroutine: { 2972 if( pDest->iSdst==0 ){ 2973 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2974 pDest->nSdst = pIn->nSdst; 2975 } 2976 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 2977 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2978 break; 2979 } 2980 2981 /* If none of the above, then the result destination must be 2982 ** SRT_Output. This routine is never called with any other 2983 ** destination other than the ones handled above or SRT_Output. 2984 ** 2985 ** For SRT_Output, results are stored in a sequence of registers. 2986 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2987 ** return the next row of result. 2988 */ 2989 default: { 2990 assert( pDest->eDest==SRT_Output ); 2991 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2992 break; 2993 } 2994 } 2995 2996 /* Jump to the end of the loop if the LIMIT is reached. 2997 */ 2998 if( p->iLimit ){ 2999 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3000 } 3001 3002 /* Generate the subroutine return 3003 */ 3004 sqlite3VdbeResolveLabel(v, iContinue); 3005 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3006 3007 return addr; 3008 } 3009 3010 /* 3011 ** Alternative compound select code generator for cases when there 3012 ** is an ORDER BY clause. 3013 ** 3014 ** We assume a query of the following form: 3015 ** 3016 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3017 ** 3018 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3019 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3020 ** co-routines. Then run the co-routines in parallel and merge the results 3021 ** into the output. In addition to the two coroutines (called selectA and 3022 ** selectB) there are 7 subroutines: 3023 ** 3024 ** outA: Move the output of the selectA coroutine into the output 3025 ** of the compound query. 3026 ** 3027 ** outB: Move the output of the selectB coroutine into the output 3028 ** of the compound query. (Only generated for UNION and 3029 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3030 ** appears only in B.) 3031 ** 3032 ** AltB: Called when there is data from both coroutines and A<B. 3033 ** 3034 ** AeqB: Called when there is data from both coroutines and A==B. 3035 ** 3036 ** AgtB: Called when there is data from both coroutines and A>B. 3037 ** 3038 ** EofA: Called when data is exhausted from selectA. 3039 ** 3040 ** EofB: Called when data is exhausted from selectB. 3041 ** 3042 ** The implementation of the latter five subroutines depend on which 3043 ** <operator> is used: 3044 ** 3045 ** 3046 ** UNION ALL UNION EXCEPT INTERSECT 3047 ** ------------- ----------------- -------------- ----------------- 3048 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3049 ** 3050 ** AeqB: outA, nextA nextA nextA outA, nextA 3051 ** 3052 ** AgtB: outB, nextB outB, nextB nextB nextB 3053 ** 3054 ** EofA: outB, nextB outB, nextB halt halt 3055 ** 3056 ** EofB: outA, nextA outA, nextA outA, nextA halt 3057 ** 3058 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3059 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3060 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3061 ** following nextX causes a jump to the end of the select processing. 3062 ** 3063 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3064 ** within the output subroutine. The regPrev register set holds the previously 3065 ** output value. A comparison is made against this value and the output 3066 ** is skipped if the next results would be the same as the previous. 3067 ** 3068 ** The implementation plan is to implement the two coroutines and seven 3069 ** subroutines first, then put the control logic at the bottom. Like this: 3070 ** 3071 ** goto Init 3072 ** coA: coroutine for left query (A) 3073 ** coB: coroutine for right query (B) 3074 ** outA: output one row of A 3075 ** outB: output one row of B (UNION and UNION ALL only) 3076 ** EofA: ... 3077 ** EofB: ... 3078 ** AltB: ... 3079 ** AeqB: ... 3080 ** AgtB: ... 3081 ** Init: initialize coroutine registers 3082 ** yield coA 3083 ** if eof(A) goto EofA 3084 ** yield coB 3085 ** if eof(B) goto EofB 3086 ** Cmpr: Compare A, B 3087 ** Jump AltB, AeqB, AgtB 3088 ** End: ... 3089 ** 3090 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3091 ** actually called using Gosub and they do not Return. EofA and EofB loop 3092 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3093 ** and AgtB jump to either L2 or to one of EofA or EofB. 3094 */ 3095 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3096 static int multiSelectOrderBy( 3097 Parse *pParse, /* Parsing context */ 3098 Select *p, /* The right-most of SELECTs to be coded */ 3099 SelectDest *pDest /* What to do with query results */ 3100 ){ 3101 int i, j; /* Loop counters */ 3102 Select *pPrior; /* Another SELECT immediately to our left */ 3103 Vdbe *v; /* Generate code to this VDBE */ 3104 SelectDest destA; /* Destination for coroutine A */ 3105 SelectDest destB; /* Destination for coroutine B */ 3106 int regAddrA; /* Address register for select-A coroutine */ 3107 int regAddrB; /* Address register for select-B coroutine */ 3108 int addrSelectA; /* Address of the select-A coroutine */ 3109 int addrSelectB; /* Address of the select-B coroutine */ 3110 int regOutA; /* Address register for the output-A subroutine */ 3111 int regOutB; /* Address register for the output-B subroutine */ 3112 int addrOutA; /* Address of the output-A subroutine */ 3113 int addrOutB = 0; /* Address of the output-B subroutine */ 3114 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3115 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3116 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3117 int addrAltB; /* Address of the A<B subroutine */ 3118 int addrAeqB; /* Address of the A==B subroutine */ 3119 int addrAgtB; /* Address of the A>B subroutine */ 3120 int regLimitA; /* Limit register for select-A */ 3121 int regLimitB; /* Limit register for select-A */ 3122 int regPrev; /* A range of registers to hold previous output */ 3123 int savedLimit; /* Saved value of p->iLimit */ 3124 int savedOffset; /* Saved value of p->iOffset */ 3125 int labelCmpr; /* Label for the start of the merge algorithm */ 3126 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3127 int addr1; /* Jump instructions that get retargetted */ 3128 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3129 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3130 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3131 sqlite3 *db; /* Database connection */ 3132 ExprList *pOrderBy; /* The ORDER BY clause */ 3133 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3134 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3135 3136 assert( p->pOrderBy!=0 ); 3137 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3138 db = pParse->db; 3139 v = pParse->pVdbe; 3140 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3141 labelEnd = sqlite3VdbeMakeLabel(v); 3142 labelCmpr = sqlite3VdbeMakeLabel(v); 3143 3144 3145 /* Patch up the ORDER BY clause 3146 */ 3147 op = p->op; 3148 pPrior = p->pPrior; 3149 assert( pPrior->pOrderBy==0 ); 3150 pOrderBy = p->pOrderBy; 3151 assert( pOrderBy ); 3152 nOrderBy = pOrderBy->nExpr; 3153 3154 /* For operators other than UNION ALL we have to make sure that 3155 ** the ORDER BY clause covers every term of the result set. Add 3156 ** terms to the ORDER BY clause as necessary. 3157 */ 3158 if( op!=TK_ALL ){ 3159 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3160 struct ExprList_item *pItem; 3161 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3162 assert( pItem->u.x.iOrderByCol>0 ); 3163 if( pItem->u.x.iOrderByCol==i ) break; 3164 } 3165 if( j==nOrderBy ){ 3166 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3167 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3168 pNew->flags |= EP_IntValue; 3169 pNew->u.iValue = i; 3170 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3171 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3172 } 3173 } 3174 } 3175 3176 /* Compute the comparison permutation and keyinfo that is used with 3177 ** the permutation used to determine if the next 3178 ** row of results comes from selectA or selectB. Also add explicit 3179 ** collations to the ORDER BY clause terms so that when the subqueries 3180 ** to the right and the left are evaluated, they use the correct 3181 ** collation. 3182 */ 3183 aPermute = sqlite3DbMallocRawNN(db, sizeof(int)*(nOrderBy + 1)); 3184 if( aPermute ){ 3185 struct ExprList_item *pItem; 3186 aPermute[0] = nOrderBy; 3187 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3188 assert( pItem->u.x.iOrderByCol>0 ); 3189 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3190 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3191 } 3192 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3193 }else{ 3194 pKeyMerge = 0; 3195 } 3196 3197 /* Reattach the ORDER BY clause to the query. 3198 */ 3199 p->pOrderBy = pOrderBy; 3200 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3201 3202 /* Allocate a range of temporary registers and the KeyInfo needed 3203 ** for the logic that removes duplicate result rows when the 3204 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3205 */ 3206 if( op==TK_ALL ){ 3207 regPrev = 0; 3208 }else{ 3209 int nExpr = p->pEList->nExpr; 3210 assert( nOrderBy>=nExpr || db->mallocFailed ); 3211 regPrev = pParse->nMem+1; 3212 pParse->nMem += nExpr+1; 3213 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3214 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3215 if( pKeyDup ){ 3216 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3217 for(i=0; i<nExpr; i++){ 3218 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3219 pKeyDup->aSortOrder[i] = 0; 3220 } 3221 } 3222 } 3223 3224 /* Separate the left and the right query from one another 3225 */ 3226 p->pPrior = 0; 3227 pPrior->pNext = 0; 3228 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3229 if( pPrior->pPrior==0 ){ 3230 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3231 } 3232 3233 /* Compute the limit registers */ 3234 computeLimitRegisters(pParse, p, labelEnd); 3235 if( p->iLimit && op==TK_ALL ){ 3236 regLimitA = ++pParse->nMem; 3237 regLimitB = ++pParse->nMem; 3238 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3239 regLimitA); 3240 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3241 }else{ 3242 regLimitA = regLimitB = 0; 3243 } 3244 sqlite3ExprDelete(db, p->pLimit); 3245 p->pLimit = 0; 3246 3247 regAddrA = ++pParse->nMem; 3248 regAddrB = ++pParse->nMem; 3249 regOutA = ++pParse->nMem; 3250 regOutB = ++pParse->nMem; 3251 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3252 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3253 3254 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op))); 3255 3256 /* Generate a coroutine to evaluate the SELECT statement to the 3257 ** left of the compound operator - the "A" select. 3258 */ 3259 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3260 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3261 VdbeComment((v, "left SELECT")); 3262 pPrior->iLimit = regLimitA; 3263 ExplainQueryPlan((pParse, 1, "LEFT")); 3264 sqlite3Select(pParse, pPrior, &destA); 3265 sqlite3VdbeEndCoroutine(v, regAddrA); 3266 sqlite3VdbeJumpHere(v, addr1); 3267 3268 /* Generate a coroutine to evaluate the SELECT statement on 3269 ** the right - the "B" select 3270 */ 3271 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3272 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3273 VdbeComment((v, "right SELECT")); 3274 savedLimit = p->iLimit; 3275 savedOffset = p->iOffset; 3276 p->iLimit = regLimitB; 3277 p->iOffset = 0; 3278 ExplainQueryPlan((pParse, 1, "RIGHT")); 3279 sqlite3Select(pParse, p, &destB); 3280 p->iLimit = savedLimit; 3281 p->iOffset = savedOffset; 3282 sqlite3VdbeEndCoroutine(v, regAddrB); 3283 3284 /* Generate a subroutine that outputs the current row of the A 3285 ** select as the next output row of the compound select. 3286 */ 3287 VdbeNoopComment((v, "Output routine for A")); 3288 addrOutA = generateOutputSubroutine(pParse, 3289 p, &destA, pDest, regOutA, 3290 regPrev, pKeyDup, labelEnd); 3291 3292 /* Generate a subroutine that outputs the current row of the B 3293 ** select as the next output row of the compound select. 3294 */ 3295 if( op==TK_ALL || op==TK_UNION ){ 3296 VdbeNoopComment((v, "Output routine for B")); 3297 addrOutB = generateOutputSubroutine(pParse, 3298 p, &destB, pDest, regOutB, 3299 regPrev, pKeyDup, labelEnd); 3300 } 3301 sqlite3KeyInfoUnref(pKeyDup); 3302 3303 /* Generate a subroutine to run when the results from select A 3304 ** are exhausted and only data in select B remains. 3305 */ 3306 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3307 addrEofA_noB = addrEofA = labelEnd; 3308 }else{ 3309 VdbeNoopComment((v, "eof-A subroutine")); 3310 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3311 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3312 VdbeCoverage(v); 3313 sqlite3VdbeGoto(v, addrEofA); 3314 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3315 } 3316 3317 /* Generate a subroutine to run when the results from select B 3318 ** are exhausted and only data in select A remains. 3319 */ 3320 if( op==TK_INTERSECT ){ 3321 addrEofB = addrEofA; 3322 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3323 }else{ 3324 VdbeNoopComment((v, "eof-B subroutine")); 3325 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3326 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3327 sqlite3VdbeGoto(v, addrEofB); 3328 } 3329 3330 /* Generate code to handle the case of A<B 3331 */ 3332 VdbeNoopComment((v, "A-lt-B subroutine")); 3333 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3334 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3335 sqlite3VdbeGoto(v, labelCmpr); 3336 3337 /* Generate code to handle the case of A==B 3338 */ 3339 if( op==TK_ALL ){ 3340 addrAeqB = addrAltB; 3341 }else if( op==TK_INTERSECT ){ 3342 addrAeqB = addrAltB; 3343 addrAltB++; 3344 }else{ 3345 VdbeNoopComment((v, "A-eq-B subroutine")); 3346 addrAeqB = 3347 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3348 sqlite3VdbeGoto(v, labelCmpr); 3349 } 3350 3351 /* Generate code to handle the case of A>B 3352 */ 3353 VdbeNoopComment((v, "A-gt-B subroutine")); 3354 addrAgtB = sqlite3VdbeCurrentAddr(v); 3355 if( op==TK_ALL || op==TK_UNION ){ 3356 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3357 } 3358 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3359 sqlite3VdbeGoto(v, labelCmpr); 3360 3361 /* This code runs once to initialize everything. 3362 */ 3363 sqlite3VdbeJumpHere(v, addr1); 3364 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3365 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3366 3367 /* Implement the main merge loop 3368 */ 3369 sqlite3VdbeResolveLabel(v, labelCmpr); 3370 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3371 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3372 (char*)pKeyMerge, P4_KEYINFO); 3373 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3374 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3375 3376 /* Jump to the this point in order to terminate the query. 3377 */ 3378 sqlite3VdbeResolveLabel(v, labelEnd); 3379 3380 /* Reassembly the compound query so that it will be freed correctly 3381 ** by the calling function */ 3382 if( p->pPrior ){ 3383 sqlite3SelectDelete(db, p->pPrior); 3384 } 3385 p->pPrior = pPrior; 3386 pPrior->pNext = p; 3387 3388 /*** TBD: Insert subroutine calls to close cursors on incomplete 3389 **** subqueries ****/ 3390 ExplainQueryPlanPop(pParse); 3391 return pParse->nErr!=0; 3392 } 3393 #endif 3394 3395 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3396 3397 /* An instance of the SubstContext object describes an substitution edit 3398 ** to be performed on a parse tree. 3399 ** 3400 ** All references to columns in table iTable are to be replaced by corresponding 3401 ** expressions in pEList. 3402 */ 3403 typedef struct SubstContext { 3404 Parse *pParse; /* The parsing context */ 3405 int iTable; /* Replace references to this table */ 3406 int iNewTable; /* New table number */ 3407 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3408 ExprList *pEList; /* Replacement expressions */ 3409 } SubstContext; 3410 3411 /* Forward Declarations */ 3412 static void substExprList(SubstContext*, ExprList*); 3413 static void substSelect(SubstContext*, Select*, int); 3414 3415 /* 3416 ** Scan through the expression pExpr. Replace every reference to 3417 ** a column in table number iTable with a copy of the iColumn-th 3418 ** entry in pEList. (But leave references to the ROWID column 3419 ** unchanged.) 3420 ** 3421 ** This routine is part of the flattening procedure. A subquery 3422 ** whose result set is defined by pEList appears as entry in the 3423 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3424 ** FORM clause entry is iTable. This routine makes the necessary 3425 ** changes to pExpr so that it refers directly to the source table 3426 ** of the subquery rather the result set of the subquery. 3427 */ 3428 static Expr *substExpr( 3429 SubstContext *pSubst, /* Description of the substitution */ 3430 Expr *pExpr /* Expr in which substitution occurs */ 3431 ){ 3432 if( pExpr==0 ) return 0; 3433 if( ExprHasProperty(pExpr, EP_FromJoin) 3434 && pExpr->iRightJoinTable==pSubst->iTable 3435 ){ 3436 pExpr->iRightJoinTable = pSubst->iNewTable; 3437 } 3438 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){ 3439 if( pExpr->iColumn<0 ){ 3440 pExpr->op = TK_NULL; 3441 }else{ 3442 Expr *pNew; 3443 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3444 Expr ifNullRow; 3445 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3446 assert( pExpr->pRight==0 ); 3447 if( sqlite3ExprIsVector(pCopy) ){ 3448 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3449 }else{ 3450 sqlite3 *db = pSubst->pParse->db; 3451 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3452 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3453 ifNullRow.op = TK_IF_NULL_ROW; 3454 ifNullRow.pLeft = pCopy; 3455 ifNullRow.iTable = pSubst->iNewTable; 3456 pCopy = &ifNullRow; 3457 } 3458 pNew = sqlite3ExprDup(db, pCopy, 0); 3459 if( pNew && pSubst->isLeftJoin ){ 3460 ExprSetProperty(pNew, EP_CanBeNull); 3461 } 3462 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3463 pNew->iRightJoinTable = pExpr->iRightJoinTable; 3464 ExprSetProperty(pNew, EP_FromJoin); 3465 } 3466 sqlite3ExprDelete(db, pExpr); 3467 pExpr = pNew; 3468 } 3469 } 3470 }else{ 3471 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3472 pExpr->iTable = pSubst->iNewTable; 3473 } 3474 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3475 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3476 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3477 substSelect(pSubst, pExpr->x.pSelect, 1); 3478 }else{ 3479 substExprList(pSubst, pExpr->x.pList); 3480 } 3481 } 3482 return pExpr; 3483 } 3484 static void substExprList( 3485 SubstContext *pSubst, /* Description of the substitution */ 3486 ExprList *pList /* List to scan and in which to make substitutes */ 3487 ){ 3488 int i; 3489 if( pList==0 ) return; 3490 for(i=0; i<pList->nExpr; i++){ 3491 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3492 } 3493 } 3494 static void substSelect( 3495 SubstContext *pSubst, /* Description of the substitution */ 3496 Select *p, /* SELECT statement in which to make substitutions */ 3497 int doPrior /* Do substitutes on p->pPrior too */ 3498 ){ 3499 SrcList *pSrc; 3500 struct SrcList_item *pItem; 3501 int i; 3502 if( !p ) return; 3503 do{ 3504 substExprList(pSubst, p->pEList); 3505 substExprList(pSubst, p->pGroupBy); 3506 substExprList(pSubst, p->pOrderBy); 3507 p->pHaving = substExpr(pSubst, p->pHaving); 3508 p->pWhere = substExpr(pSubst, p->pWhere); 3509 pSrc = p->pSrc; 3510 assert( pSrc!=0 ); 3511 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3512 substSelect(pSubst, pItem->pSelect, 1); 3513 if( pItem->fg.isTabFunc ){ 3514 substExprList(pSubst, pItem->u1.pFuncArg); 3515 } 3516 } 3517 }while( doPrior && (p = p->pPrior)!=0 ); 3518 } 3519 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3520 3521 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3522 /* 3523 ** This routine attempts to flatten subqueries as a performance optimization. 3524 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3525 ** 3526 ** To understand the concept of flattening, consider the following 3527 ** query: 3528 ** 3529 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3530 ** 3531 ** The default way of implementing this query is to execute the 3532 ** subquery first and store the results in a temporary table, then 3533 ** run the outer query on that temporary table. This requires two 3534 ** passes over the data. Furthermore, because the temporary table 3535 ** has no indices, the WHERE clause on the outer query cannot be 3536 ** optimized. 3537 ** 3538 ** This routine attempts to rewrite queries such as the above into 3539 ** a single flat select, like this: 3540 ** 3541 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3542 ** 3543 ** The code generated for this simplification gives the same result 3544 ** but only has to scan the data once. And because indices might 3545 ** exist on the table t1, a complete scan of the data might be 3546 ** avoided. 3547 ** 3548 ** Flattening is subject to the following constraints: 3549 ** 3550 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3551 ** The subquery and the outer query cannot both be aggregates. 3552 ** 3553 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3554 ** (2) If the subquery is an aggregate then 3555 ** (2a) the outer query must not be a join and 3556 ** (2b) the outer query must not use subqueries 3557 ** other than the one FROM-clause subquery that is a candidate 3558 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3559 ** from 2015-02-09.) 3560 ** 3561 ** (3) If the subquery is the right operand of a LEFT JOIN then 3562 ** (3a) the subquery may not be a join and 3563 ** (3b) the FROM clause of the subquery may not contain a virtual 3564 ** table and 3565 ** (3c) the outer query may not be an aggregate. 3566 ** 3567 ** (4) The subquery can not be DISTINCT. 3568 ** 3569 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3570 ** sub-queries that were excluded from this optimization. Restriction 3571 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3572 ** 3573 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3574 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3575 ** 3576 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3577 ** A FROM clause, consider adding a FROM clause with the special 3578 ** table sqlite_once that consists of a single row containing a 3579 ** single NULL. 3580 ** 3581 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3582 ** 3583 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3584 ** 3585 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3586 ** accidently carried the comment forward until 2014-09-15. Original 3587 ** constraint: "If the subquery is aggregate then the outer query 3588 ** may not use LIMIT." 3589 ** 3590 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3591 ** 3592 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3593 ** a separate restriction deriving from ticket #350. 3594 ** 3595 ** (13) The subquery and outer query may not both use LIMIT. 3596 ** 3597 ** (14) The subquery may not use OFFSET. 3598 ** 3599 ** (15) If the outer query is part of a compound select, then the 3600 ** subquery may not use LIMIT. 3601 ** (See ticket #2339 and ticket [02a8e81d44]). 3602 ** 3603 ** (16) If the outer query is aggregate, then the subquery may not 3604 ** use ORDER BY. (Ticket #2942) This used to not matter 3605 ** until we introduced the group_concat() function. 3606 ** 3607 ** (17) If the subquery is a compound select, then 3608 ** (17a) all compound operators must be a UNION ALL, and 3609 ** (17b) no terms within the subquery compound may be aggregate 3610 ** or DISTINCT, and 3611 ** (17c) every term within the subquery compound must have a FROM clause 3612 ** (17d) the outer query may not be 3613 ** (17d1) aggregate, or 3614 ** (17d2) DISTINCT, or 3615 ** (17d3) a join. 3616 ** 3617 ** The parent and sub-query may contain WHERE clauses. Subject to 3618 ** rules (11), (13) and (14), they may also contain ORDER BY, 3619 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3620 ** operator other than UNION ALL because all the other compound 3621 ** operators have an implied DISTINCT which is disallowed by 3622 ** restriction (4). 3623 ** 3624 ** Also, each component of the sub-query must return the same number 3625 ** of result columns. This is actually a requirement for any compound 3626 ** SELECT statement, but all the code here does is make sure that no 3627 ** such (illegal) sub-query is flattened. The caller will detect the 3628 ** syntax error and return a detailed message. 3629 ** 3630 ** (18) If the sub-query is a compound select, then all terms of the 3631 ** ORDER BY clause of the parent must be simple references to 3632 ** columns of the sub-query. 3633 ** 3634 ** (19) If the subquery uses LIMIT then the outer query may not 3635 ** have a WHERE clause. 3636 ** 3637 ** (20) If the sub-query is a compound select, then it must not use 3638 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3639 ** somewhat by saying that the terms of the ORDER BY clause must 3640 ** appear as unmodified result columns in the outer query. But we 3641 ** have other optimizations in mind to deal with that case. 3642 ** 3643 ** (21) If the subquery uses LIMIT then the outer query may not be 3644 ** DISTINCT. (See ticket [752e1646fc]). 3645 ** 3646 ** (22) The subquery may not be a recursive CTE. 3647 ** 3648 ** (**) Subsumed into restriction (17d3). Was: If the outer query is 3649 ** a recursive CTE, then the sub-query may not be a compound query. 3650 ** This restriction is because transforming the 3651 ** parent to a compound query confuses the code that handles 3652 ** recursive queries in multiSelect(). 3653 ** 3654 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3655 ** The subquery may not be an aggregate that uses the built-in min() or 3656 ** or max() functions. (Without this restriction, a query like: 3657 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3658 ** return the value X for which Y was maximal.) 3659 ** 3660 ** (25) If either the subquery or the parent query contains a window 3661 ** function in the select list or ORDER BY clause, flattening 3662 ** is not attempted. 3663 ** 3664 ** 3665 ** In this routine, the "p" parameter is a pointer to the outer query. 3666 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3667 ** uses aggregates. 3668 ** 3669 ** If flattening is not attempted, this routine is a no-op and returns 0. 3670 ** If flattening is attempted this routine returns 1. 3671 ** 3672 ** All of the expression analysis must occur on both the outer query and 3673 ** the subquery before this routine runs. 3674 */ 3675 static int flattenSubquery( 3676 Parse *pParse, /* Parsing context */ 3677 Select *p, /* The parent or outer SELECT statement */ 3678 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3679 int isAgg /* True if outer SELECT uses aggregate functions */ 3680 ){ 3681 const char *zSavedAuthContext = pParse->zAuthContext; 3682 Select *pParent; /* Current UNION ALL term of the other query */ 3683 Select *pSub; /* The inner query or "subquery" */ 3684 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3685 SrcList *pSrc; /* The FROM clause of the outer query */ 3686 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3687 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3688 int iNewParent = -1;/* Replacement table for iParent */ 3689 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3690 int i; /* Loop counter */ 3691 Expr *pWhere; /* The WHERE clause */ 3692 struct SrcList_item *pSubitem; /* The subquery */ 3693 sqlite3 *db = pParse->db; 3694 3695 /* Check to see if flattening is permitted. Return 0 if not. 3696 */ 3697 assert( p!=0 ); 3698 assert( p->pPrior==0 ); 3699 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3700 pSrc = p->pSrc; 3701 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3702 pSubitem = &pSrc->a[iFrom]; 3703 iParent = pSubitem->iCursor; 3704 pSub = pSubitem->pSelect; 3705 assert( pSub!=0 ); 3706 3707 #ifndef SQLITE_OMIT_WINDOWFUNC 3708 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 3709 #endif 3710 3711 pSubSrc = pSub->pSrc; 3712 assert( pSubSrc ); 3713 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3714 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 3715 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3716 ** became arbitrary expressions, we were forced to add restrictions (13) 3717 ** and (14). */ 3718 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3719 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 3720 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3721 return 0; /* Restriction (15) */ 3722 } 3723 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3724 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 3725 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3726 return 0; /* Restrictions (8)(9) */ 3727 } 3728 if( p->pOrderBy && pSub->pOrderBy ){ 3729 return 0; /* Restriction (11) */ 3730 } 3731 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3732 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3733 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3734 return 0; /* Restriction (21) */ 3735 } 3736 if( pSub->selFlags & (SF_Recursive) ){ 3737 return 0; /* Restrictions (22) */ 3738 } 3739 3740 /* 3741 ** If the subquery is the right operand of a LEFT JOIN, then the 3742 ** subquery may not be a join itself (3a). Example of why this is not 3743 ** allowed: 3744 ** 3745 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3746 ** 3747 ** If we flatten the above, we would get 3748 ** 3749 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3750 ** 3751 ** which is not at all the same thing. 3752 ** 3753 ** If the subquery is the right operand of a LEFT JOIN, then the outer 3754 ** query cannot be an aggregate. (3c) This is an artifact of the way 3755 ** aggregates are processed - there is no mechanism to determine if 3756 ** the LEFT JOIN table should be all-NULL. 3757 ** 3758 ** See also tickets #306, #350, and #3300. 3759 */ 3760 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 3761 isLeftJoin = 1; 3762 if( pSubSrc->nSrc>1 || isAgg || IsVirtual(pSubSrc->a[0].pTab) ){ 3763 /* (3a) (3c) (3b) */ 3764 return 0; 3765 } 3766 } 3767 #ifdef SQLITE_EXTRA_IFNULLROW 3768 else if( iFrom>0 && !isAgg ){ 3769 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 3770 ** every reference to any result column from subquery in a join, even 3771 ** though they are not necessary. This will stress-test the OP_IfNullRow 3772 ** opcode. */ 3773 isLeftJoin = -1; 3774 } 3775 #endif 3776 3777 /* Restriction (17): If the sub-query is a compound SELECT, then it must 3778 ** use only the UNION ALL operator. And none of the simple select queries 3779 ** that make up the compound SELECT are allowed to be aggregate or distinct 3780 ** queries. 3781 */ 3782 if( pSub->pPrior ){ 3783 if( pSub->pOrderBy ){ 3784 return 0; /* Restriction (20) */ 3785 } 3786 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3787 return 0; /* (17d1), (17d2), or (17d3) */ 3788 } 3789 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3790 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3791 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3792 assert( pSub->pSrc!=0 ); 3793 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 3794 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 3795 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 3796 || pSub1->pSrc->nSrc<1 /* (17c) */ 3797 ){ 3798 return 0; 3799 } 3800 testcase( pSub1->pSrc->nSrc>1 ); 3801 } 3802 3803 /* Restriction (18). */ 3804 if( p->pOrderBy ){ 3805 int ii; 3806 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3807 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3808 } 3809 } 3810 } 3811 3812 /* Ex-restriction (23): 3813 ** The only way that the recursive part of a CTE can contain a compound 3814 ** subquery is for the subquery to be one term of a join. But if the 3815 ** subquery is a join, then the flattening has already been stopped by 3816 ** restriction (17d3) 3817 */ 3818 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 ); 3819 3820 /***** If we reach this point, flattening is permitted. *****/ 3821 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 3822 pSub->selId, pSub, iFrom)); 3823 3824 /* Authorize the subquery */ 3825 pParse->zAuthContext = pSubitem->zName; 3826 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3827 testcase( i==SQLITE_DENY ); 3828 pParse->zAuthContext = zSavedAuthContext; 3829 3830 /* If the sub-query is a compound SELECT statement, then (by restrictions 3831 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3832 ** be of the form: 3833 ** 3834 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3835 ** 3836 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3837 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3838 ** OFFSET clauses and joins them to the left-hand-side of the original 3839 ** using UNION ALL operators. In this case N is the number of simple 3840 ** select statements in the compound sub-query. 3841 ** 3842 ** Example: 3843 ** 3844 ** SELECT a+1 FROM ( 3845 ** SELECT x FROM tab 3846 ** UNION ALL 3847 ** SELECT y FROM tab 3848 ** UNION ALL 3849 ** SELECT abs(z*2) FROM tab2 3850 ** ) WHERE a!=5 ORDER BY 1 3851 ** 3852 ** Transformed into: 3853 ** 3854 ** SELECT x+1 FROM tab WHERE x+1!=5 3855 ** UNION ALL 3856 ** SELECT y+1 FROM tab WHERE y+1!=5 3857 ** UNION ALL 3858 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3859 ** ORDER BY 1 3860 ** 3861 ** We call this the "compound-subquery flattening". 3862 */ 3863 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3864 Select *pNew; 3865 ExprList *pOrderBy = p->pOrderBy; 3866 Expr *pLimit = p->pLimit; 3867 Select *pPrior = p->pPrior; 3868 p->pOrderBy = 0; 3869 p->pSrc = 0; 3870 p->pPrior = 0; 3871 p->pLimit = 0; 3872 pNew = sqlite3SelectDup(db, p, 0); 3873 p->pLimit = pLimit; 3874 p->pOrderBy = pOrderBy; 3875 p->pSrc = pSrc; 3876 p->op = TK_ALL; 3877 if( pNew==0 ){ 3878 p->pPrior = pPrior; 3879 }else{ 3880 pNew->pPrior = pPrior; 3881 if( pPrior ) pPrior->pNext = pNew; 3882 pNew->pNext = p; 3883 p->pPrior = pNew; 3884 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 3885 " creates %u as peer\n",pNew->selId)); 3886 } 3887 if( db->mallocFailed ) return 1; 3888 } 3889 3890 /* Begin flattening the iFrom-th entry of the FROM clause 3891 ** in the outer query. 3892 */ 3893 pSub = pSub1 = pSubitem->pSelect; 3894 3895 /* Delete the transient table structure associated with the 3896 ** subquery 3897 */ 3898 sqlite3DbFree(db, pSubitem->zDatabase); 3899 sqlite3DbFree(db, pSubitem->zName); 3900 sqlite3DbFree(db, pSubitem->zAlias); 3901 pSubitem->zDatabase = 0; 3902 pSubitem->zName = 0; 3903 pSubitem->zAlias = 0; 3904 pSubitem->pSelect = 0; 3905 3906 /* Defer deleting the Table object associated with the 3907 ** subquery until code generation is 3908 ** complete, since there may still exist Expr.pTab entries that 3909 ** refer to the subquery even after flattening. Ticket #3346. 3910 ** 3911 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3912 */ 3913 if( ALWAYS(pSubitem->pTab!=0) ){ 3914 Table *pTabToDel = pSubitem->pTab; 3915 if( pTabToDel->nTabRef==1 ){ 3916 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3917 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3918 pToplevel->pZombieTab = pTabToDel; 3919 }else{ 3920 pTabToDel->nTabRef--; 3921 } 3922 pSubitem->pTab = 0; 3923 } 3924 3925 /* The following loop runs once for each term in a compound-subquery 3926 ** flattening (as described above). If we are doing a different kind 3927 ** of flattening - a flattening other than a compound-subquery flattening - 3928 ** then this loop only runs once. 3929 ** 3930 ** This loop moves all of the FROM elements of the subquery into the 3931 ** the FROM clause of the outer query. Before doing this, remember 3932 ** the cursor number for the original outer query FROM element in 3933 ** iParent. The iParent cursor will never be used. Subsequent code 3934 ** will scan expressions looking for iParent references and replace 3935 ** those references with expressions that resolve to the subquery FROM 3936 ** elements we are now copying in. 3937 */ 3938 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3939 int nSubSrc; 3940 u8 jointype = 0; 3941 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3942 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3943 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3944 3945 if( pSrc ){ 3946 assert( pParent==p ); /* First time through the loop */ 3947 jointype = pSubitem->fg.jointype; 3948 }else{ 3949 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3950 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3951 if( pSrc==0 ){ 3952 assert( db->mallocFailed ); 3953 break; 3954 } 3955 } 3956 3957 /* The subquery uses a single slot of the FROM clause of the outer 3958 ** query. If the subquery has more than one element in its FROM clause, 3959 ** then expand the outer query to make space for it to hold all elements 3960 ** of the subquery. 3961 ** 3962 ** Example: 3963 ** 3964 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3965 ** 3966 ** The outer query has 3 slots in its FROM clause. One slot of the 3967 ** outer query (the middle slot) is used by the subquery. The next 3968 ** block of code will expand the outer query FROM clause to 4 slots. 3969 ** The middle slot is expanded to two slots in order to make space 3970 ** for the two elements in the FROM clause of the subquery. 3971 */ 3972 if( nSubSrc>1 ){ 3973 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3974 if( db->mallocFailed ){ 3975 break; 3976 } 3977 } 3978 3979 /* Transfer the FROM clause terms from the subquery into the 3980 ** outer query. 3981 */ 3982 for(i=0; i<nSubSrc; i++){ 3983 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3984 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 3985 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3986 iNewParent = pSubSrc->a[i].iCursor; 3987 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3988 } 3989 pSrc->a[iFrom].fg.jointype = jointype; 3990 3991 /* Now begin substituting subquery result set expressions for 3992 ** references to the iParent in the outer query. 3993 ** 3994 ** Example: 3995 ** 3996 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3997 ** \ \_____________ subquery __________/ / 3998 ** \_____________________ outer query ______________________________/ 3999 ** 4000 ** We look at every expression in the outer query and every place we see 4001 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4002 */ 4003 if( pSub->pOrderBy ){ 4004 /* At this point, any non-zero iOrderByCol values indicate that the 4005 ** ORDER BY column expression is identical to the iOrderByCol'th 4006 ** expression returned by SELECT statement pSub. Since these values 4007 ** do not necessarily correspond to columns in SELECT statement pParent, 4008 ** zero them before transfering the ORDER BY clause. 4009 ** 4010 ** Not doing this may cause an error if a subsequent call to this 4011 ** function attempts to flatten a compound sub-query into pParent 4012 ** (the only way this can happen is if the compound sub-query is 4013 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4014 ExprList *pOrderBy = pSub->pOrderBy; 4015 for(i=0; i<pOrderBy->nExpr; i++){ 4016 pOrderBy->a[i].u.x.iOrderByCol = 0; 4017 } 4018 assert( pParent->pOrderBy==0 ); 4019 pParent->pOrderBy = pOrderBy; 4020 pSub->pOrderBy = 0; 4021 } 4022 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 4023 if( isLeftJoin>0 ){ 4024 setJoinExpr(pWhere, iNewParent); 4025 } 4026 pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere); 4027 if( db->mallocFailed==0 ){ 4028 SubstContext x; 4029 x.pParse = pParse; 4030 x.iTable = iParent; 4031 x.iNewTable = iNewParent; 4032 x.isLeftJoin = isLeftJoin; 4033 x.pEList = pSub->pEList; 4034 substSelect(&x, pParent, 0); 4035 } 4036 4037 /* The flattened query is distinct if either the inner or the 4038 ** outer query is distinct. 4039 */ 4040 pParent->selFlags |= pSub->selFlags & SF_Distinct; 4041 4042 /* 4043 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4044 ** 4045 ** One is tempted to try to add a and b to combine the limits. But this 4046 ** does not work if either limit is negative. 4047 */ 4048 if( pSub->pLimit ){ 4049 pParent->pLimit = pSub->pLimit; 4050 pSub->pLimit = 0; 4051 } 4052 } 4053 4054 /* Finially, delete what is left of the subquery and return 4055 ** success. 4056 */ 4057 sqlite3SelectDelete(db, pSub1); 4058 4059 #if SELECTTRACE_ENABLED 4060 if( sqlite3SelectTrace & 0x100 ){ 4061 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4062 sqlite3TreeViewSelect(0, p, 0); 4063 } 4064 #endif 4065 4066 return 1; 4067 } 4068 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4069 4070 /* 4071 ** A structure to keep track of all of the column values that fixed to 4072 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4073 */ 4074 typedef struct WhereConst WhereConst; 4075 struct WhereConst { 4076 Parse *pParse; /* Parsing context */ 4077 int nConst; /* Number for COLUMN=CONSTANT terms */ 4078 int nChng; /* Number of times a constant is propagated */ 4079 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4080 }; 4081 4082 /* 4083 ** Add a new entry to the pConst object 4084 */ 4085 static void constInsert( 4086 WhereConst *pConst, 4087 Expr *pColumn, 4088 Expr *pValue 4089 ){ 4090 4091 pConst->nConst++; 4092 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4093 pConst->nConst*2*sizeof(Expr*)); 4094 if( pConst->apExpr==0 ){ 4095 pConst->nConst = 0; 4096 }else{ 4097 if( ExprHasProperty(pValue, EP_FixedCol) ) pValue = pValue->pLeft; 4098 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4099 pConst->apExpr[pConst->nConst*2-1] = pValue; 4100 } 4101 } 4102 4103 /* 4104 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4105 ** is a constant expression and where the term must be true because it 4106 ** is part of the AND-connected terms of the expression. For each term 4107 ** found, add it to the pConst structure. 4108 */ 4109 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4110 Expr *pRight, *pLeft; 4111 if( pExpr==0 ) return; 4112 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4113 if( pExpr->op==TK_AND ){ 4114 findConstInWhere(pConst, pExpr->pRight); 4115 findConstInWhere(pConst, pExpr->pLeft); 4116 return; 4117 } 4118 if( pExpr->op!=TK_EQ ) return; 4119 pRight = pExpr->pRight; 4120 pLeft = pExpr->pLeft; 4121 assert( pRight!=0 ); 4122 assert( pLeft!=0 ); 4123 if( pRight->op==TK_COLUMN 4124 && !ExprHasProperty(pRight, EP_FixedCol) 4125 && sqlite3ExprIsConstant(pLeft) 4126 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4127 ){ 4128 constInsert(pConst, pRight, pLeft); 4129 }else 4130 if( pLeft->op==TK_COLUMN 4131 && !ExprHasProperty(pLeft, EP_FixedCol) 4132 && sqlite3ExprIsConstant(pRight) 4133 && sqlite3IsBinary(sqlite3BinaryCompareCollSeq(pConst->pParse,pLeft,pRight)) 4134 ){ 4135 constInsert(pConst, pLeft, pRight); 4136 } 4137 } 4138 4139 /* 4140 ** This is a Walker expression callback. pExpr is a candidate expression 4141 ** to be replaced by a value. If pExpr is equivalent to one of the 4142 ** columns named in pWalker->u.pConst, then overwrite it with its 4143 ** corresponding value. 4144 */ 4145 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4146 int i; 4147 WhereConst *pConst; 4148 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4149 if( ExprHasProperty(pExpr, EP_FixedCol) ) return WRC_Continue; 4150 pConst = pWalker->u.pConst; 4151 for(i=0; i<pConst->nConst; i++){ 4152 Expr *pColumn = pConst->apExpr[i*2]; 4153 if( pColumn==pExpr ) continue; 4154 if( pColumn->iTable!=pExpr->iTable ) continue; 4155 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4156 /* A match is found. Add the EP_FixedCol property */ 4157 pConst->nChng++; 4158 ExprClearProperty(pExpr, EP_Leaf); 4159 ExprSetProperty(pExpr, EP_FixedCol); 4160 assert( pExpr->pLeft==0 ); 4161 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4162 break; 4163 } 4164 return WRC_Prune; 4165 } 4166 4167 /* 4168 ** The WHERE-clause constant propagation optimization. 4169 ** 4170 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4171 ** CONSTANT=COLUMN that must be tree (in other words, if the terms top-level 4172 ** AND-connected terms that are not part of a ON clause from a LEFT JOIN) 4173 ** then throughout the query replace all other occurrences of COLUMN 4174 ** with CONSTANT within the WHERE clause. 4175 ** 4176 ** For example, the query: 4177 ** 4178 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4179 ** 4180 ** Is transformed into 4181 ** 4182 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4183 ** 4184 ** Return true if any transformations where made and false if not. 4185 ** 4186 ** Implementation note: Constant propagation is tricky due to affinity 4187 ** and collating sequence interactions. Consider this example: 4188 ** 4189 ** CREATE TABLE t1(a INT,b TEXT); 4190 ** INSERT INTO t1 VALUES(123,'0123'); 4191 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4192 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4193 ** 4194 ** The two SELECT statements above should return different answers. b=a 4195 ** is alway true because the comparison uses numeric affinity, but b=123 4196 ** is false because it uses text affinity and '0123' is not the same as '123'. 4197 ** To work around this, the expression tree is not actually changed from 4198 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4199 ** and the "123" value is hung off of the pLeft pointer. Code generator 4200 ** routines know to generate the constant "123" instead of looking up the 4201 ** column value. Also, to avoid collation problems, this optimization is 4202 ** only attempted if the "a=123" term uses the default BINARY collation. 4203 */ 4204 static int propagateConstants( 4205 Parse *pParse, /* The parsing context */ 4206 Select *p /* The query in which to propagate constants */ 4207 ){ 4208 WhereConst x; 4209 Walker w; 4210 int nChng = 0; 4211 x.pParse = pParse; 4212 do{ 4213 x.nConst = 0; 4214 x.nChng = 0; 4215 x.apExpr = 0; 4216 findConstInWhere(&x, p->pWhere); 4217 if( x.nConst ){ 4218 memset(&w, 0, sizeof(w)); 4219 w.pParse = pParse; 4220 w.xExprCallback = propagateConstantExprRewrite; 4221 w.xSelectCallback = sqlite3SelectWalkNoop; 4222 w.xSelectCallback2 = 0; 4223 w.walkerDepth = 0; 4224 w.u.pConst = &x; 4225 sqlite3WalkExpr(&w, p->pWhere); 4226 sqlite3DbFree(x.pParse->db, x.apExpr); 4227 nChng += x.nChng; 4228 } 4229 }while( x.nChng ); 4230 return nChng; 4231 } 4232 4233 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4234 /* 4235 ** Make copies of relevant WHERE clause terms of the outer query into 4236 ** the WHERE clause of subquery. Example: 4237 ** 4238 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4239 ** 4240 ** Transformed into: 4241 ** 4242 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4243 ** WHERE x=5 AND y=10; 4244 ** 4245 ** The hope is that the terms added to the inner query will make it more 4246 ** efficient. 4247 ** 4248 ** Do not attempt this optimization if: 4249 ** 4250 ** (1) (** This restriction was removed on 2017-09-29. We used to 4251 ** disallow this optimization for aggregate subqueries, but now 4252 ** it is allowed by putting the extra terms on the HAVING clause. 4253 ** The added HAVING clause is pointless if the subquery lacks 4254 ** a GROUP BY clause. But such a HAVING clause is also harmless 4255 ** so there does not appear to be any reason to add extra logic 4256 ** to suppress it. **) 4257 ** 4258 ** (2) The inner query is the recursive part of a common table expression. 4259 ** 4260 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4261 ** clause would change the meaning of the LIMIT). 4262 ** 4263 ** (4) The inner query is the right operand of a LEFT JOIN and the 4264 ** expression to be pushed down does not come from the ON clause 4265 ** on that LEFT JOIN. 4266 ** 4267 ** (5) The WHERE clause expression originates in the ON or USING clause 4268 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4269 ** left join. An example: 4270 ** 4271 ** SELECT * 4272 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4273 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4274 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4275 ** 4276 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4277 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4278 ** then the (1,1,NULL) row would be suppressed. 4279 ** 4280 ** (6) The inner query features one or more window-functions (since 4281 ** changes to the WHERE clause of the inner query could change the 4282 ** window over which window functions are calculated). 4283 ** 4284 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4285 ** terms are duplicated into the subquery. 4286 */ 4287 static int pushDownWhereTerms( 4288 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4289 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4290 Expr *pWhere, /* The WHERE clause of the outer query */ 4291 int iCursor, /* Cursor number of the subquery */ 4292 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4293 ){ 4294 Expr *pNew; 4295 int nChng = 0; 4296 if( pWhere==0 ) return 0; 4297 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */ 4298 4299 #ifndef SQLITE_OMIT_WINDOWFUNC 4300 if( pSubq->pWin ) return 0; /* restriction (6) */ 4301 #endif 4302 4303 #ifdef SQLITE_DEBUG 4304 /* Only the first term of a compound can have a WITH clause. But make 4305 ** sure no other terms are marked SF_Recursive in case something changes 4306 ** in the future. 4307 */ 4308 { 4309 Select *pX; 4310 for(pX=pSubq; pX; pX=pX->pPrior){ 4311 assert( (pX->selFlags & (SF_Recursive))==0 ); 4312 } 4313 } 4314 #endif 4315 4316 if( pSubq->pLimit!=0 ){ 4317 return 0; /* restriction (3) */ 4318 } 4319 while( pWhere->op==TK_AND ){ 4320 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4321 iCursor, isLeftJoin); 4322 pWhere = pWhere->pLeft; 4323 } 4324 if( isLeftJoin 4325 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4326 || pWhere->iRightJoinTable!=iCursor) 4327 ){ 4328 return 0; /* restriction (4) */ 4329 } 4330 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4331 return 0; /* restriction (5) */ 4332 } 4333 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4334 nChng++; 4335 while( pSubq ){ 4336 SubstContext x; 4337 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4338 unsetJoinExpr(pNew, -1); 4339 x.pParse = pParse; 4340 x.iTable = iCursor; 4341 x.iNewTable = iCursor; 4342 x.isLeftJoin = 0; 4343 x.pEList = pSubq->pEList; 4344 pNew = substExpr(&x, pNew); 4345 if( pSubq->selFlags & SF_Aggregate ){ 4346 pSubq->pHaving = sqlite3ExprAnd(pParse->db, pSubq->pHaving, pNew); 4347 }else{ 4348 pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew); 4349 } 4350 pSubq = pSubq->pPrior; 4351 } 4352 } 4353 return nChng; 4354 } 4355 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4356 4357 /* 4358 ** The pFunc is the only aggregate function in the query. Check to see 4359 ** if the query is a candidate for the min/max optimization. 4360 ** 4361 ** If the query is a candidate for the min/max optimization, then set 4362 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4363 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4364 ** whether pFunc is a min() or max() function. 4365 ** 4366 ** If the query is not a candidate for the min/max optimization, return 4367 ** WHERE_ORDERBY_NORMAL (which must be zero). 4368 ** 4369 ** This routine must be called after aggregate functions have been 4370 ** located but before their arguments have been subjected to aggregate 4371 ** analysis. 4372 */ 4373 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4374 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4375 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4376 const char *zFunc; /* Name of aggregate function pFunc */ 4377 ExprList *pOrderBy; 4378 u8 sortOrder; 4379 4380 assert( *ppMinMax==0 ); 4381 assert( pFunc->op==TK_AGG_FUNCTION ); 4382 if( pEList==0 || pEList->nExpr!=1 ) return eRet; 4383 zFunc = pFunc->u.zToken; 4384 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4385 eRet = WHERE_ORDERBY_MIN; 4386 sortOrder = SQLITE_SO_ASC; 4387 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4388 eRet = WHERE_ORDERBY_MAX; 4389 sortOrder = SQLITE_SO_DESC; 4390 }else{ 4391 return eRet; 4392 } 4393 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4394 assert( pOrderBy!=0 || db->mallocFailed ); 4395 if( pOrderBy ) pOrderBy->a[0].sortOrder = sortOrder; 4396 return eRet; 4397 } 4398 4399 /* 4400 ** The select statement passed as the first argument is an aggregate query. 4401 ** The second argument is the associated aggregate-info object. This 4402 ** function tests if the SELECT is of the form: 4403 ** 4404 ** SELECT count(*) FROM <tbl> 4405 ** 4406 ** where table is a database table, not a sub-select or view. If the query 4407 ** does match this pattern, then a pointer to the Table object representing 4408 ** <tbl> is returned. Otherwise, 0 is returned. 4409 */ 4410 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4411 Table *pTab; 4412 Expr *pExpr; 4413 4414 assert( !p->pGroupBy ); 4415 4416 if( p->pWhere || p->pEList->nExpr!=1 4417 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4418 ){ 4419 return 0; 4420 } 4421 pTab = p->pSrc->a[0].pTab; 4422 pExpr = p->pEList->a[0].pExpr; 4423 assert( pTab && !pTab->pSelect && pExpr ); 4424 4425 if( IsVirtual(pTab) ) return 0; 4426 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4427 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4428 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4429 if( pExpr->flags&EP_Distinct ) return 0; 4430 4431 return pTab; 4432 } 4433 4434 /* 4435 ** If the source-list item passed as an argument was augmented with an 4436 ** INDEXED BY clause, then try to locate the specified index. If there 4437 ** was such a clause and the named index cannot be found, return 4438 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4439 ** pFrom->pIndex and return SQLITE_OK. 4440 */ 4441 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 4442 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ 4443 Table *pTab = pFrom->pTab; 4444 char *zIndexedBy = pFrom->u1.zIndexedBy; 4445 Index *pIdx; 4446 for(pIdx=pTab->pIndex; 4447 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4448 pIdx=pIdx->pNext 4449 ); 4450 if( !pIdx ){ 4451 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4452 pParse->checkSchema = 1; 4453 return SQLITE_ERROR; 4454 } 4455 pFrom->pIBIndex = pIdx; 4456 } 4457 return SQLITE_OK; 4458 } 4459 /* 4460 ** Detect compound SELECT statements that use an ORDER BY clause with 4461 ** an alternative collating sequence. 4462 ** 4463 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4464 ** 4465 ** These are rewritten as a subquery: 4466 ** 4467 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4468 ** ORDER BY ... COLLATE ... 4469 ** 4470 ** This transformation is necessary because the multiSelectOrderBy() routine 4471 ** above that generates the code for a compound SELECT with an ORDER BY clause 4472 ** uses a merge algorithm that requires the same collating sequence on the 4473 ** result columns as on the ORDER BY clause. See ticket 4474 ** http://www.sqlite.org/src/info/6709574d2a 4475 ** 4476 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4477 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4478 ** there are COLLATE terms in the ORDER BY. 4479 */ 4480 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4481 int i; 4482 Select *pNew; 4483 Select *pX; 4484 sqlite3 *db; 4485 struct ExprList_item *a; 4486 SrcList *pNewSrc; 4487 Parse *pParse; 4488 Token dummy; 4489 4490 if( p->pPrior==0 ) return WRC_Continue; 4491 if( p->pOrderBy==0 ) return WRC_Continue; 4492 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4493 if( pX==0 ) return WRC_Continue; 4494 a = p->pOrderBy->a; 4495 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4496 if( a[i].pExpr->flags & EP_Collate ) break; 4497 } 4498 if( i<0 ) return WRC_Continue; 4499 4500 /* If we reach this point, that means the transformation is required. */ 4501 4502 pParse = pWalker->pParse; 4503 db = pParse->db; 4504 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4505 if( pNew==0 ) return WRC_Abort; 4506 memset(&dummy, 0, sizeof(dummy)); 4507 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4508 if( pNewSrc==0 ) return WRC_Abort; 4509 *pNew = *p; 4510 p->pSrc = pNewSrc; 4511 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4512 p->op = TK_SELECT; 4513 p->pWhere = 0; 4514 pNew->pGroupBy = 0; 4515 pNew->pHaving = 0; 4516 pNew->pOrderBy = 0; 4517 p->pPrior = 0; 4518 p->pNext = 0; 4519 p->pWith = 0; 4520 p->selFlags &= ~SF_Compound; 4521 assert( (p->selFlags & SF_Converted)==0 ); 4522 p->selFlags |= SF_Converted; 4523 assert( pNew->pPrior!=0 ); 4524 pNew->pPrior->pNext = pNew; 4525 pNew->pLimit = 0; 4526 return WRC_Continue; 4527 } 4528 4529 /* 4530 ** Check to see if the FROM clause term pFrom has table-valued function 4531 ** arguments. If it does, leave an error message in pParse and return 4532 ** non-zero, since pFrom is not allowed to be a table-valued function. 4533 */ 4534 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ 4535 if( pFrom->fg.isTabFunc ){ 4536 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4537 return 1; 4538 } 4539 return 0; 4540 } 4541 4542 #ifndef SQLITE_OMIT_CTE 4543 /* 4544 ** Argument pWith (which may be NULL) points to a linked list of nested 4545 ** WITH contexts, from inner to outermost. If the table identified by 4546 ** FROM clause element pItem is really a common-table-expression (CTE) 4547 ** then return a pointer to the CTE definition for that table. Otherwise 4548 ** return NULL. 4549 ** 4550 ** If a non-NULL value is returned, set *ppContext to point to the With 4551 ** object that the returned CTE belongs to. 4552 */ 4553 static struct Cte *searchWith( 4554 With *pWith, /* Current innermost WITH clause */ 4555 struct SrcList_item *pItem, /* FROM clause element to resolve */ 4556 With **ppContext /* OUT: WITH clause return value belongs to */ 4557 ){ 4558 const char *zName; 4559 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 4560 With *p; 4561 for(p=pWith; p; p=p->pOuter){ 4562 int i; 4563 for(i=0; i<p->nCte; i++){ 4564 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4565 *ppContext = p; 4566 return &p->a[i]; 4567 } 4568 } 4569 } 4570 } 4571 return 0; 4572 } 4573 4574 /* The code generator maintains a stack of active WITH clauses 4575 ** with the inner-most WITH clause being at the top of the stack. 4576 ** 4577 ** This routine pushes the WITH clause passed as the second argument 4578 ** onto the top of the stack. If argument bFree is true, then this 4579 ** WITH clause will never be popped from the stack. In this case it 4580 ** should be freed along with the Parse object. In other cases, when 4581 ** bFree==0, the With object will be freed along with the SELECT 4582 ** statement with which it is associated. 4583 */ 4584 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 4585 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); 4586 if( pWith ){ 4587 assert( pParse->pWith!=pWith ); 4588 pWith->pOuter = pParse->pWith; 4589 pParse->pWith = pWith; 4590 if( bFree ) pParse->pWithToFree = pWith; 4591 } 4592 } 4593 4594 /* 4595 ** This function checks if argument pFrom refers to a CTE declared by 4596 ** a WITH clause on the stack currently maintained by the parser. And, 4597 ** if currently processing a CTE expression, if it is a recursive 4598 ** reference to the current CTE. 4599 ** 4600 ** If pFrom falls into either of the two categories above, pFrom->pTab 4601 ** and other fields are populated accordingly. The caller should check 4602 ** (pFrom->pTab!=0) to determine whether or not a successful match 4603 ** was found. 4604 ** 4605 ** Whether or not a match is found, SQLITE_OK is returned if no error 4606 ** occurs. If an error does occur, an error message is stored in the 4607 ** parser and some error code other than SQLITE_OK returned. 4608 */ 4609 static int withExpand( 4610 Walker *pWalker, 4611 struct SrcList_item *pFrom 4612 ){ 4613 Parse *pParse = pWalker->pParse; 4614 sqlite3 *db = pParse->db; 4615 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 4616 With *pWith; /* WITH clause that pCte belongs to */ 4617 4618 assert( pFrom->pTab==0 ); 4619 4620 pCte = searchWith(pParse->pWith, pFrom, &pWith); 4621 if( pCte ){ 4622 Table *pTab; 4623 ExprList *pEList; 4624 Select *pSel; 4625 Select *pLeft; /* Left-most SELECT statement */ 4626 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 4627 With *pSavedWith; /* Initial value of pParse->pWith */ 4628 4629 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 4630 ** recursive reference to CTE pCte. Leave an error in pParse and return 4631 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 4632 ** In this case, proceed. */ 4633 if( pCte->zCteErr ){ 4634 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 4635 return SQLITE_ERROR; 4636 } 4637 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; 4638 4639 assert( pFrom->pTab==0 ); 4640 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4641 if( pTab==0 ) return WRC_Abort; 4642 pTab->nTabRef = 1; 4643 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 4644 pTab->iPKey = -1; 4645 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4646 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 4647 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 4648 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 4649 assert( pFrom->pSelect ); 4650 4651 /* Check if this is a recursive CTE. */ 4652 pSel = pFrom->pSelect; 4653 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 4654 if( bMayRecursive ){ 4655 int i; 4656 SrcList *pSrc = pFrom->pSelect->pSrc; 4657 for(i=0; i<pSrc->nSrc; i++){ 4658 struct SrcList_item *pItem = &pSrc->a[i]; 4659 if( pItem->zDatabase==0 4660 && pItem->zName!=0 4661 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 4662 ){ 4663 pItem->pTab = pTab; 4664 pItem->fg.isRecursive = 1; 4665 pTab->nTabRef++; 4666 pSel->selFlags |= SF_Recursive; 4667 } 4668 } 4669 } 4670 4671 /* Only one recursive reference is permitted. */ 4672 if( pTab->nTabRef>2 ){ 4673 sqlite3ErrorMsg( 4674 pParse, "multiple references to recursive table: %s", pCte->zName 4675 ); 4676 return SQLITE_ERROR; 4677 } 4678 assert( pTab->nTabRef==1 || 4679 ((pSel->selFlags&SF_Recursive) && pTab->nTabRef==2 )); 4680 4681 pCte->zCteErr = "circular reference: %s"; 4682 pSavedWith = pParse->pWith; 4683 pParse->pWith = pWith; 4684 if( bMayRecursive ){ 4685 Select *pPrior = pSel->pPrior; 4686 assert( pPrior->pWith==0 ); 4687 pPrior->pWith = pSel->pWith; 4688 sqlite3WalkSelect(pWalker, pPrior); 4689 pPrior->pWith = 0; 4690 }else{ 4691 sqlite3WalkSelect(pWalker, pSel); 4692 } 4693 pParse->pWith = pWith; 4694 4695 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 4696 pEList = pLeft->pEList; 4697 if( pCte->pCols ){ 4698 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 4699 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 4700 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 4701 ); 4702 pParse->pWith = pSavedWith; 4703 return SQLITE_ERROR; 4704 } 4705 pEList = pCte->pCols; 4706 } 4707 4708 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 4709 if( bMayRecursive ){ 4710 if( pSel->selFlags & SF_Recursive ){ 4711 pCte->zCteErr = "multiple recursive references: %s"; 4712 }else{ 4713 pCte->zCteErr = "recursive reference in a subquery: %s"; 4714 } 4715 sqlite3WalkSelect(pWalker, pSel); 4716 } 4717 pCte->zCteErr = 0; 4718 pParse->pWith = pSavedWith; 4719 } 4720 4721 return SQLITE_OK; 4722 } 4723 #endif 4724 4725 #ifndef SQLITE_OMIT_CTE 4726 /* 4727 ** If the SELECT passed as the second argument has an associated WITH 4728 ** clause, pop it from the stack stored as part of the Parse object. 4729 ** 4730 ** This function is used as the xSelectCallback2() callback by 4731 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 4732 ** names and other FROM clause elements. 4733 */ 4734 static void selectPopWith(Walker *pWalker, Select *p){ 4735 Parse *pParse = pWalker->pParse; 4736 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 4737 With *pWith = findRightmost(p)->pWith; 4738 if( pWith!=0 ){ 4739 assert( pParse->pWith==pWith ); 4740 pParse->pWith = pWith->pOuter; 4741 } 4742 } 4743 } 4744 #else 4745 #define selectPopWith 0 4746 #endif 4747 4748 /* 4749 ** The SrcList_item structure passed as the second argument represents a 4750 ** sub-query in the FROM clause of a SELECT statement. This function 4751 ** allocates and populates the SrcList_item.pTab object. If successful, 4752 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 4753 ** SQLITE_NOMEM. 4754 */ 4755 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){ 4756 Select *pSel = pFrom->pSelect; 4757 Table *pTab; 4758 4759 assert( pSel ); 4760 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 4761 if( pTab==0 ) return SQLITE_NOMEM; 4762 pTab->nTabRef = 1; 4763 if( pFrom->zAlias ){ 4764 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 4765 }else{ 4766 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 4767 } 4768 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4769 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 4770 pTab->iPKey = -1; 4771 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4772 pTab->tabFlags |= TF_Ephemeral; 4773 4774 return SQLITE_OK; 4775 } 4776 4777 /* 4778 ** This routine is a Walker callback for "expanding" a SELECT statement. 4779 ** "Expanding" means to do the following: 4780 ** 4781 ** (1) Make sure VDBE cursor numbers have been assigned to every 4782 ** element of the FROM clause. 4783 ** 4784 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 4785 ** defines FROM clause. When views appear in the FROM clause, 4786 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 4787 ** that implements the view. A copy is made of the view's SELECT 4788 ** statement so that we can freely modify or delete that statement 4789 ** without worrying about messing up the persistent representation 4790 ** of the view. 4791 ** 4792 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 4793 ** on joins and the ON and USING clause of joins. 4794 ** 4795 ** (4) Scan the list of columns in the result set (pEList) looking 4796 ** for instances of the "*" operator or the TABLE.* operator. 4797 ** If found, expand each "*" to be every column in every table 4798 ** and TABLE.* to be every column in TABLE. 4799 ** 4800 */ 4801 static int selectExpander(Walker *pWalker, Select *p){ 4802 Parse *pParse = pWalker->pParse; 4803 int i, j, k; 4804 SrcList *pTabList; 4805 ExprList *pEList; 4806 struct SrcList_item *pFrom; 4807 sqlite3 *db = pParse->db; 4808 Expr *pE, *pRight, *pExpr; 4809 u16 selFlags = p->selFlags; 4810 u32 elistFlags = 0; 4811 4812 p->selFlags |= SF_Expanded; 4813 if( db->mallocFailed ){ 4814 return WRC_Abort; 4815 } 4816 assert( p->pSrc!=0 ); 4817 if( (selFlags & SF_Expanded)!=0 ){ 4818 return WRC_Prune; 4819 } 4820 pTabList = p->pSrc; 4821 pEList = p->pEList; 4822 sqlite3WithPush(pParse, p->pWith, 0); 4823 4824 /* Make sure cursor numbers have been assigned to all entries in 4825 ** the FROM clause of the SELECT statement. 4826 */ 4827 sqlite3SrcListAssignCursors(pParse, pTabList); 4828 4829 /* Look up every table named in the FROM clause of the select. If 4830 ** an entry of the FROM clause is a subquery instead of a table or view, 4831 ** then create a transient table structure to describe the subquery. 4832 */ 4833 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4834 Table *pTab; 4835 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 4836 if( pFrom->fg.isRecursive ) continue; 4837 assert( pFrom->pTab==0 ); 4838 #ifndef SQLITE_OMIT_CTE 4839 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 4840 if( pFrom->pTab ) {} else 4841 #endif 4842 if( pFrom->zName==0 ){ 4843 #ifndef SQLITE_OMIT_SUBQUERY 4844 Select *pSel = pFrom->pSelect; 4845 /* A sub-query in the FROM clause of a SELECT */ 4846 assert( pSel!=0 ); 4847 assert( pFrom->pTab==0 ); 4848 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 4849 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 4850 #endif 4851 }else{ 4852 /* An ordinary table or view name in the FROM clause */ 4853 assert( pFrom->pTab==0 ); 4854 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4855 if( pTab==0 ) return WRC_Abort; 4856 if( pTab->nTabRef>=0xffff ){ 4857 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4858 pTab->zName); 4859 pFrom->pTab = 0; 4860 return WRC_Abort; 4861 } 4862 pTab->nTabRef++; 4863 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 4864 return WRC_Abort; 4865 } 4866 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4867 if( IsVirtual(pTab) || pTab->pSelect ){ 4868 i16 nCol; 4869 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4870 assert( pFrom->pSelect==0 ); 4871 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4872 nCol = pTab->nCol; 4873 pTab->nCol = -1; 4874 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4875 pTab->nCol = nCol; 4876 } 4877 #endif 4878 } 4879 4880 /* Locate the index named by the INDEXED BY clause, if any. */ 4881 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4882 return WRC_Abort; 4883 } 4884 } 4885 4886 /* Process NATURAL keywords, and ON and USING clauses of joins. 4887 */ 4888 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4889 return WRC_Abort; 4890 } 4891 4892 /* For every "*" that occurs in the column list, insert the names of 4893 ** all columns in all tables. And for every TABLE.* insert the names 4894 ** of all columns in TABLE. The parser inserted a special expression 4895 ** with the TK_ASTERISK operator for each "*" that it found in the column 4896 ** list. The following code just has to locate the TK_ASTERISK 4897 ** expressions and expand each one to the list of all columns in 4898 ** all tables. 4899 ** 4900 ** The first loop just checks to see if there are any "*" operators 4901 ** that need expanding. 4902 */ 4903 for(k=0; k<pEList->nExpr; k++){ 4904 pE = pEList->a[k].pExpr; 4905 if( pE->op==TK_ASTERISK ) break; 4906 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4907 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4908 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 4909 elistFlags |= pE->flags; 4910 } 4911 if( k<pEList->nExpr ){ 4912 /* 4913 ** If we get here it means the result set contains one or more "*" 4914 ** operators that need to be expanded. Loop through each expression 4915 ** in the result set and expand them one by one. 4916 */ 4917 struct ExprList_item *a = pEList->a; 4918 ExprList *pNew = 0; 4919 int flags = pParse->db->flags; 4920 int longNames = (flags & SQLITE_FullColNames)!=0 4921 && (flags & SQLITE_ShortColNames)==0; 4922 4923 for(k=0; k<pEList->nExpr; k++){ 4924 pE = a[k].pExpr; 4925 elistFlags |= pE->flags; 4926 pRight = pE->pRight; 4927 assert( pE->op!=TK_DOT || pRight!=0 ); 4928 if( pE->op!=TK_ASTERISK 4929 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 4930 ){ 4931 /* This particular expression does not need to be expanded. 4932 */ 4933 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4934 if( pNew ){ 4935 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4936 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4937 a[k].zName = 0; 4938 a[k].zSpan = 0; 4939 } 4940 a[k].pExpr = 0; 4941 }else{ 4942 /* This expression is a "*" or a "TABLE.*" and needs to be 4943 ** expanded. */ 4944 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4945 char *zTName = 0; /* text of name of TABLE */ 4946 if( pE->op==TK_DOT ){ 4947 assert( pE->pLeft!=0 ); 4948 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4949 zTName = pE->pLeft->u.zToken; 4950 } 4951 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4952 Table *pTab = pFrom->pTab; 4953 Select *pSub = pFrom->pSelect; 4954 char *zTabName = pFrom->zAlias; 4955 const char *zSchemaName = 0; 4956 int iDb; 4957 if( zTabName==0 ){ 4958 zTabName = pTab->zName; 4959 } 4960 if( db->mallocFailed ) break; 4961 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4962 pSub = 0; 4963 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4964 continue; 4965 } 4966 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4967 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 4968 } 4969 for(j=0; j<pTab->nCol; j++){ 4970 char *zName = pTab->aCol[j].zName; 4971 char *zColname; /* The computed column name */ 4972 char *zToFree; /* Malloced string that needs to be freed */ 4973 Token sColname; /* Computed column name as a token */ 4974 4975 assert( zName ); 4976 if( zTName && pSub 4977 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4978 ){ 4979 continue; 4980 } 4981 4982 /* If a column is marked as 'hidden', omit it from the expanded 4983 ** result-set list unless the SELECT has the SF_IncludeHidden 4984 ** bit set. 4985 */ 4986 if( (p->selFlags & SF_IncludeHidden)==0 4987 && IsHiddenColumn(&pTab->aCol[j]) 4988 ){ 4989 continue; 4990 } 4991 tableSeen = 1; 4992 4993 if( i>0 && zTName==0 ){ 4994 if( (pFrom->fg.jointype & JT_NATURAL)!=0 4995 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4996 ){ 4997 /* In a NATURAL join, omit the join columns from the 4998 ** table to the right of the join */ 4999 continue; 5000 } 5001 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5002 /* In a join with a USING clause, omit columns in the 5003 ** using clause from the table on the right. */ 5004 continue; 5005 } 5006 } 5007 pRight = sqlite3Expr(db, TK_ID, zName); 5008 zColname = zName; 5009 zToFree = 0; 5010 if( longNames || pTabList->nSrc>1 ){ 5011 Expr *pLeft; 5012 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5013 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5014 if( zSchemaName ){ 5015 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5016 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5017 } 5018 if( longNames ){ 5019 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5020 zToFree = zColname; 5021 } 5022 }else{ 5023 pExpr = pRight; 5024 } 5025 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5026 sqlite3TokenInit(&sColname, zColname); 5027 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5028 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 5029 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5030 if( pSub ){ 5031 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 5032 testcase( pX->zSpan==0 ); 5033 }else{ 5034 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 5035 zSchemaName, zTabName, zColname); 5036 testcase( pX->zSpan==0 ); 5037 } 5038 pX->bSpanIsTab = 1; 5039 } 5040 sqlite3DbFree(db, zToFree); 5041 } 5042 } 5043 if( !tableSeen ){ 5044 if( zTName ){ 5045 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5046 }else{ 5047 sqlite3ErrorMsg(pParse, "no tables specified"); 5048 } 5049 } 5050 } 5051 } 5052 sqlite3ExprListDelete(db, pEList); 5053 p->pEList = pNew; 5054 } 5055 if( p->pEList ){ 5056 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5057 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5058 return WRC_Abort; 5059 } 5060 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5061 p->selFlags |= SF_ComplexResult; 5062 } 5063 } 5064 return WRC_Continue; 5065 } 5066 5067 /* 5068 ** No-op routine for the parse-tree walker. 5069 ** 5070 ** When this routine is the Walker.xExprCallback then expression trees 5071 ** are walked without any actions being taken at each node. Presumably, 5072 ** when this routine is used for Walker.xExprCallback then 5073 ** Walker.xSelectCallback is set to do something useful for every 5074 ** subquery in the parser tree. 5075 */ 5076 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 5077 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5078 return WRC_Continue; 5079 } 5080 5081 /* 5082 ** No-op routine for the parse-tree walker for SELECT statements. 5083 ** subquery in the parser tree. 5084 */ 5085 int sqlite3SelectWalkNoop(Walker *NotUsed, Select *NotUsed2){ 5086 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5087 return WRC_Continue; 5088 } 5089 5090 #if SQLITE_DEBUG 5091 /* 5092 ** Always assert. This xSelectCallback2 implementation proves that the 5093 ** xSelectCallback2 is never invoked. 5094 */ 5095 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5096 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5097 assert( 0 ); 5098 } 5099 #endif 5100 /* 5101 ** This routine "expands" a SELECT statement and all of its subqueries. 5102 ** For additional information on what it means to "expand" a SELECT 5103 ** statement, see the comment on the selectExpand worker callback above. 5104 ** 5105 ** Expanding a SELECT statement is the first step in processing a 5106 ** SELECT statement. The SELECT statement must be expanded before 5107 ** name resolution is performed. 5108 ** 5109 ** If anything goes wrong, an error message is written into pParse. 5110 ** The calling function can detect the problem by looking at pParse->nErr 5111 ** and/or pParse->db->mallocFailed. 5112 */ 5113 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5114 Walker w; 5115 w.xExprCallback = sqlite3ExprWalkNoop; 5116 w.pParse = pParse; 5117 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5118 w.xSelectCallback = convertCompoundSelectToSubquery; 5119 w.xSelectCallback2 = 0; 5120 sqlite3WalkSelect(&w, pSelect); 5121 } 5122 w.xSelectCallback = selectExpander; 5123 w.xSelectCallback2 = selectPopWith; 5124 sqlite3WalkSelect(&w, pSelect); 5125 } 5126 5127 5128 #ifndef SQLITE_OMIT_SUBQUERY 5129 /* 5130 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5131 ** interface. 5132 ** 5133 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5134 ** information to the Table structure that represents the result set 5135 ** of that subquery. 5136 ** 5137 ** The Table structure that represents the result set was constructed 5138 ** by selectExpander() but the type and collation information was omitted 5139 ** at that point because identifiers had not yet been resolved. This 5140 ** routine is called after identifier resolution. 5141 */ 5142 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5143 Parse *pParse; 5144 int i; 5145 SrcList *pTabList; 5146 struct SrcList_item *pFrom; 5147 5148 assert( p->selFlags & SF_Resolved ); 5149 if( p->selFlags & SF_HasTypeInfo ) return; 5150 p->selFlags |= SF_HasTypeInfo; 5151 pParse = pWalker->pParse; 5152 pTabList = p->pSrc; 5153 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5154 Table *pTab = pFrom->pTab; 5155 assert( pTab!=0 ); 5156 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5157 /* A sub-query in the FROM clause of a SELECT */ 5158 Select *pSel = pFrom->pSelect; 5159 if( pSel ){ 5160 while( pSel->pPrior ) pSel = pSel->pPrior; 5161 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel); 5162 } 5163 } 5164 } 5165 } 5166 #endif 5167 5168 5169 /* 5170 ** This routine adds datatype and collating sequence information to 5171 ** the Table structures of all FROM-clause subqueries in a 5172 ** SELECT statement. 5173 ** 5174 ** Use this routine after name resolution. 5175 */ 5176 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5177 #ifndef SQLITE_OMIT_SUBQUERY 5178 Walker w; 5179 w.xSelectCallback = sqlite3SelectWalkNoop; 5180 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5181 w.xExprCallback = sqlite3ExprWalkNoop; 5182 w.pParse = pParse; 5183 sqlite3WalkSelect(&w, pSelect); 5184 #endif 5185 } 5186 5187 5188 /* 5189 ** This routine sets up a SELECT statement for processing. The 5190 ** following is accomplished: 5191 ** 5192 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5193 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5194 ** * ON and USING clauses are shifted into WHERE statements 5195 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5196 ** * Identifiers in expression are matched to tables. 5197 ** 5198 ** This routine acts recursively on all subqueries within the SELECT. 5199 */ 5200 void sqlite3SelectPrep( 5201 Parse *pParse, /* The parser context */ 5202 Select *p, /* The SELECT statement being coded. */ 5203 NameContext *pOuterNC /* Name context for container */ 5204 ){ 5205 assert( p!=0 || pParse->db->mallocFailed ); 5206 if( pParse->db->mallocFailed ) return; 5207 if( p->selFlags & SF_HasTypeInfo ) return; 5208 sqlite3SelectExpand(pParse, p); 5209 if( pParse->nErr || pParse->db->mallocFailed ) return; 5210 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5211 if( pParse->nErr || pParse->db->mallocFailed ) return; 5212 sqlite3SelectAddTypeInfo(pParse, p); 5213 } 5214 5215 /* 5216 ** Reset the aggregate accumulator. 5217 ** 5218 ** The aggregate accumulator is a set of memory cells that hold 5219 ** intermediate results while calculating an aggregate. This 5220 ** routine generates code that stores NULLs in all of those memory 5221 ** cells. 5222 */ 5223 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5224 Vdbe *v = pParse->pVdbe; 5225 int i; 5226 struct AggInfo_func *pFunc; 5227 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5228 if( nReg==0 ) return; 5229 #ifdef SQLITE_DEBUG 5230 /* Verify that all AggInfo registers are within the range specified by 5231 ** AggInfo.mnReg..AggInfo.mxReg */ 5232 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5233 for(i=0; i<pAggInfo->nColumn; i++){ 5234 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5235 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5236 } 5237 for(i=0; i<pAggInfo->nFunc; i++){ 5238 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5239 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5240 } 5241 #endif 5242 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5243 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5244 if( pFunc->iDistinct>=0 ){ 5245 Expr *pE = pFunc->pExpr; 5246 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5247 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5248 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5249 "argument"); 5250 pFunc->iDistinct = -1; 5251 }else{ 5252 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5253 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 5254 (char*)pKeyInfo, P4_KEYINFO); 5255 } 5256 } 5257 } 5258 } 5259 5260 /* 5261 ** Invoke the OP_AggFinalize opcode for every aggregate function 5262 ** in the AggInfo structure. 5263 */ 5264 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5265 Vdbe *v = pParse->pVdbe; 5266 int i; 5267 struct AggInfo_func *pF; 5268 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5269 ExprList *pList = pF->pExpr->x.pList; 5270 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5271 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5272 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5273 } 5274 } 5275 5276 5277 /* 5278 ** Update the accumulator memory cells for an aggregate based on 5279 ** the current cursor position. 5280 ** 5281 ** If regAcc is non-zero and there are no min() or max() aggregates 5282 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5283 ** registers i register regAcc contains 0. The caller will take care 5284 ** of setting and clearing regAcc. 5285 */ 5286 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){ 5287 Vdbe *v = pParse->pVdbe; 5288 int i; 5289 int regHit = 0; 5290 int addrHitTest = 0; 5291 struct AggInfo_func *pF; 5292 struct AggInfo_col *pC; 5293 5294 pAggInfo->directMode = 1; 5295 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5296 int nArg; 5297 int addrNext = 0; 5298 int regAgg; 5299 ExprList *pList = pF->pExpr->x.pList; 5300 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 5301 if( pList ){ 5302 nArg = pList->nExpr; 5303 regAgg = sqlite3GetTempRange(pParse, nArg); 5304 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5305 }else{ 5306 nArg = 0; 5307 regAgg = 0; 5308 } 5309 if( pF->iDistinct>=0 ){ 5310 addrNext = sqlite3VdbeMakeLabel(v); 5311 testcase( nArg==0 ); /* Error condition */ 5312 testcase( nArg>1 ); /* Also an error */ 5313 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 5314 } 5315 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5316 CollSeq *pColl = 0; 5317 struct ExprList_item *pItem; 5318 int j; 5319 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5320 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5321 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5322 } 5323 if( !pColl ){ 5324 pColl = pParse->db->pDfltColl; 5325 } 5326 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5327 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5328 } 5329 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5330 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5331 sqlite3VdbeChangeP5(v, (u8)nArg); 5332 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5333 if( addrNext ){ 5334 sqlite3VdbeResolveLabel(v, addrNext); 5335 } 5336 } 5337 if( regHit==0 && pAggInfo->nAccumulator ){ 5338 regHit = regAcc; 5339 } 5340 if( regHit ){ 5341 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5342 } 5343 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5344 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 5345 } 5346 pAggInfo->directMode = 0; 5347 if( addrHitTest ){ 5348 sqlite3VdbeJumpHere(v, addrHitTest); 5349 } 5350 } 5351 5352 /* 5353 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5354 ** count(*) query ("SELECT count(*) FROM pTab"). 5355 */ 5356 #ifndef SQLITE_OMIT_EXPLAIN 5357 static void explainSimpleCount( 5358 Parse *pParse, /* Parse context */ 5359 Table *pTab, /* Table being queried */ 5360 Index *pIdx /* Index used to optimize scan, or NULL */ 5361 ){ 5362 if( pParse->explain==2 ){ 5363 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5364 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s", 5365 pTab->zName, 5366 bCover ? " USING COVERING INDEX " : "", 5367 bCover ? pIdx->zName : "" 5368 ); 5369 } 5370 } 5371 #else 5372 # define explainSimpleCount(a,b,c) 5373 #endif 5374 5375 /* 5376 ** sqlite3WalkExpr() callback used by havingToWhere(). 5377 ** 5378 ** If the node passed to the callback is a TK_AND node, return 5379 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5380 ** 5381 ** Otherwise, return WRC_Prune. In this case, also check if the 5382 ** sub-expression matches the criteria for being moved to the WHERE 5383 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5384 ** within the HAVING expression with a constant "1". 5385 */ 5386 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5387 if( pExpr->op!=TK_AND ){ 5388 Select *pS = pWalker->u.pSelect; 5389 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) ){ 5390 sqlite3 *db = pWalker->pParse->db; 5391 Expr *pNew = sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[1], 0); 5392 if( pNew ){ 5393 Expr *pWhere = pS->pWhere; 5394 SWAP(Expr, *pNew, *pExpr); 5395 pNew = sqlite3ExprAnd(db, pWhere, pNew); 5396 pS->pWhere = pNew; 5397 pWalker->eCode = 1; 5398 } 5399 } 5400 return WRC_Prune; 5401 } 5402 return WRC_Continue; 5403 } 5404 5405 /* 5406 ** Transfer eligible terms from the HAVING clause of a query, which is 5407 ** processed after grouping, to the WHERE clause, which is processed before 5408 ** grouping. For example, the query: 5409 ** 5410 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5411 ** 5412 ** can be rewritten as: 5413 ** 5414 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5415 ** 5416 ** A term of the HAVING expression is eligible for transfer if it consists 5417 ** entirely of constants and expressions that are also GROUP BY terms that 5418 ** use the "BINARY" collation sequence. 5419 */ 5420 static void havingToWhere(Parse *pParse, Select *p){ 5421 Walker sWalker; 5422 memset(&sWalker, 0, sizeof(sWalker)); 5423 sWalker.pParse = pParse; 5424 sWalker.xExprCallback = havingToWhereExprCb; 5425 sWalker.u.pSelect = p; 5426 sqlite3WalkExpr(&sWalker, p->pHaving); 5427 #if SELECTTRACE_ENABLED 5428 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5429 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5430 sqlite3TreeViewSelect(0, p, 0); 5431 } 5432 #endif 5433 } 5434 5435 /* 5436 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5437 ** If it is, then return the SrcList_item for the prior view. If it is not, 5438 ** then return 0. 5439 */ 5440 static struct SrcList_item *isSelfJoinView( 5441 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5442 struct SrcList_item *pThis /* Search for prior reference to this subquery */ 5443 ){ 5444 struct SrcList_item *pItem; 5445 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5446 if( pItem->pSelect==0 ) continue; 5447 if( pItem->fg.viaCoroutine ) continue; 5448 if( pItem->zName==0 ) continue; 5449 if( sqlite3_stricmp(pItem->zDatabase, pThis->zDatabase)!=0 ) continue; 5450 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5451 if( sqlite3ExprCompare(0, 5452 pThis->pSelect->pWhere, pItem->pSelect->pWhere, -1) 5453 ){ 5454 /* The view was modified by some other optimization such as 5455 ** pushDownWhereTerms() */ 5456 continue; 5457 } 5458 return pItem; 5459 } 5460 return 0; 5461 } 5462 5463 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5464 /* 5465 ** Attempt to transform a query of the form 5466 ** 5467 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 5468 ** 5469 ** Into this: 5470 ** 5471 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 5472 ** 5473 ** The transformation only works if all of the following are true: 5474 ** 5475 ** * The subquery is a UNION ALL of two or more terms 5476 ** * The subquery does not have a LIMIT clause 5477 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 5478 ** * The outer query is a simple count(*) 5479 ** 5480 ** Return TRUE if the optimization is undertaken. 5481 */ 5482 static int countOfViewOptimization(Parse *pParse, Select *p){ 5483 Select *pSub, *pPrior; 5484 Expr *pExpr; 5485 Expr *pCount; 5486 sqlite3 *db; 5487 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 5488 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 5489 pExpr = p->pEList->a[0].pExpr; 5490 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 5491 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 5492 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 5493 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 5494 pSub = p->pSrc->a[0].pSelect; 5495 if( pSub==0 ) return 0; /* The FROM is a subquery */ 5496 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 5497 do{ 5498 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 5499 if( pSub->pWhere ) return 0; /* No WHERE clause */ 5500 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 5501 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 5502 pSub = pSub->pPrior; /* Repeat over compound */ 5503 }while( pSub ); 5504 5505 /* If we reach this point then it is OK to perform the transformation */ 5506 5507 db = pParse->db; 5508 pCount = pExpr; 5509 pExpr = 0; 5510 pSub = p->pSrc->a[0].pSelect; 5511 p->pSrc->a[0].pSelect = 0; 5512 sqlite3SrcListDelete(db, p->pSrc); 5513 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 5514 while( pSub ){ 5515 Expr *pTerm; 5516 pPrior = pSub->pPrior; 5517 pSub->pPrior = 0; 5518 pSub->pNext = 0; 5519 pSub->selFlags |= SF_Aggregate; 5520 pSub->selFlags &= ~SF_Compound; 5521 pSub->nSelectRow = 0; 5522 sqlite3ExprListDelete(db, pSub->pEList); 5523 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 5524 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 5525 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 5526 sqlite3PExprAddSelect(pParse, pTerm, pSub); 5527 if( pExpr==0 ){ 5528 pExpr = pTerm; 5529 }else{ 5530 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 5531 } 5532 pSub = pPrior; 5533 } 5534 p->pEList->a[0].pExpr = pExpr; 5535 p->selFlags &= ~SF_Aggregate; 5536 5537 #if SELECTTRACE_ENABLED 5538 if( sqlite3SelectTrace & 0x400 ){ 5539 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 5540 sqlite3TreeViewSelect(0, p, 0); 5541 } 5542 #endif 5543 return 1; 5544 } 5545 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 5546 5547 /* 5548 ** Generate code for the SELECT statement given in the p argument. 5549 ** 5550 ** The results are returned according to the SelectDest structure. 5551 ** See comments in sqliteInt.h for further information. 5552 ** 5553 ** This routine returns the number of errors. If any errors are 5554 ** encountered, then an appropriate error message is left in 5555 ** pParse->zErrMsg. 5556 ** 5557 ** This routine does NOT free the Select structure passed in. The 5558 ** calling function needs to do that. 5559 */ 5560 int sqlite3Select( 5561 Parse *pParse, /* The parser context */ 5562 Select *p, /* The SELECT statement being coded. */ 5563 SelectDest *pDest /* What to do with the query results */ 5564 ){ 5565 int i, j; /* Loop counters */ 5566 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 5567 Vdbe *v; /* The virtual machine under construction */ 5568 int isAgg; /* True for select lists like "count(*)" */ 5569 ExprList *pEList = 0; /* List of columns to extract. */ 5570 SrcList *pTabList; /* List of tables to select from */ 5571 Expr *pWhere; /* The WHERE clause. May be NULL */ 5572 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 5573 Expr *pHaving; /* The HAVING clause. May be NULL */ 5574 int rc = 1; /* Value to return from this function */ 5575 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 5576 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 5577 AggInfo sAggInfo; /* Information used by aggregate queries */ 5578 int iEnd; /* Address of the end of the query */ 5579 sqlite3 *db; /* The database connection */ 5580 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 5581 u8 minMaxFlag; /* Flag for min/max queries */ 5582 5583 db = pParse->db; 5584 v = sqlite3GetVdbe(pParse); 5585 if( p==0 || db->mallocFailed || pParse->nErr ){ 5586 return 1; 5587 } 5588 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 5589 memset(&sAggInfo, 0, sizeof(sAggInfo)); 5590 #if SELECTTRACE_ENABLED 5591 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 5592 if( sqlite3SelectTrace & 0x100 ){ 5593 sqlite3TreeViewSelect(0, p, 0); 5594 } 5595 #endif 5596 5597 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 5598 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 5599 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 5600 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 5601 if( IgnorableOrderby(pDest) ){ 5602 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 5603 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 5604 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 5605 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 5606 /* If ORDER BY makes no difference in the output then neither does 5607 ** DISTINCT so it can be removed too. */ 5608 sqlite3ExprListDelete(db, p->pOrderBy); 5609 p->pOrderBy = 0; 5610 p->selFlags &= ~SF_Distinct; 5611 } 5612 sqlite3SelectPrep(pParse, p, 0); 5613 if( pParse->nErr || db->mallocFailed ){ 5614 goto select_end; 5615 } 5616 assert( p->pEList!=0 ); 5617 #if SELECTTRACE_ENABLED 5618 if( sqlite3SelectTrace & 0x104 ){ 5619 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 5620 sqlite3TreeViewSelect(0, p, 0); 5621 } 5622 #endif 5623 5624 if( pDest->eDest==SRT_Output ){ 5625 generateColumnNames(pParse, p); 5626 } 5627 5628 #ifndef SQLITE_OMIT_WINDOWFUNC 5629 if( sqlite3WindowRewrite(pParse, p) ){ 5630 goto select_end; 5631 } 5632 #if SELECTTRACE_ENABLED 5633 if( sqlite3SelectTrace & 0x108 ){ 5634 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 5635 sqlite3TreeViewSelect(0, p, 0); 5636 } 5637 #endif 5638 #endif /* SQLITE_OMIT_WINDOWFUNC */ 5639 pTabList = p->pSrc; 5640 isAgg = (p->selFlags & SF_Aggregate)!=0; 5641 memset(&sSort, 0, sizeof(sSort)); 5642 sSort.pOrderBy = p->pOrderBy; 5643 5644 /* Try to various optimizations (flattening subqueries, and strength 5645 ** reduction of join operators) in the FROM clause up into the main query 5646 */ 5647 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5648 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 5649 struct SrcList_item *pItem = &pTabList->a[i]; 5650 Select *pSub = pItem->pSelect; 5651 Table *pTab = pItem->pTab; 5652 5653 /* Convert LEFT JOIN into JOIN if there are terms of the right table 5654 ** of the LEFT JOIN used in the WHERE clause. 5655 */ 5656 if( (pItem->fg.jointype & JT_LEFT)!=0 5657 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 5658 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 5659 ){ 5660 SELECTTRACE(0x100,pParse,p, 5661 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 5662 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 5663 unsetJoinExpr(p->pWhere, pItem->iCursor); 5664 } 5665 5666 /* No futher action if this term of the FROM clause is no a subquery */ 5667 if( pSub==0 ) continue; 5668 5669 /* Catch mismatch in the declared columns of a view and the number of 5670 ** columns in the SELECT on the RHS */ 5671 if( pTab->nCol!=pSub->pEList->nExpr ){ 5672 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 5673 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 5674 goto select_end; 5675 } 5676 5677 /* Do not try to flatten an aggregate subquery. 5678 ** 5679 ** Flattening an aggregate subquery is only possible if the outer query 5680 ** is not a join. But if the outer query is not a join, then the subquery 5681 ** will be implemented as a co-routine and there is no advantage to 5682 ** flattening in that case. 5683 */ 5684 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 5685 assert( pSub->pGroupBy==0 ); 5686 5687 /* If the outer query contains a "complex" result set (that is, 5688 ** if the result set of the outer query uses functions or subqueries) 5689 ** and if the subquery contains an ORDER BY clause and if 5690 ** it will be implemented as a co-routine, then do not flatten. This 5691 ** restriction allows SQL constructs like this: 5692 ** 5693 ** SELECT expensive_function(x) 5694 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5695 ** 5696 ** The expensive_function() is only computed on the 10 rows that 5697 ** are output, rather than every row of the table. 5698 ** 5699 ** The requirement that the outer query have a complex result set 5700 ** means that flattening does occur on simpler SQL constraints without 5701 ** the expensive_function() like: 5702 ** 5703 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 5704 */ 5705 if( pSub->pOrderBy!=0 5706 && i==0 5707 && (p->selFlags & SF_ComplexResult)!=0 5708 && (pTabList->nSrc==1 5709 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 5710 ){ 5711 continue; 5712 } 5713 5714 if( flattenSubquery(pParse, p, i, isAgg) ){ 5715 /* This subquery can be absorbed into its parent. */ 5716 i = -1; 5717 } 5718 pTabList = p->pSrc; 5719 if( db->mallocFailed ) goto select_end; 5720 if( !IgnorableOrderby(pDest) ){ 5721 sSort.pOrderBy = p->pOrderBy; 5722 } 5723 } 5724 #endif 5725 5726 #ifndef SQLITE_OMIT_COMPOUND_SELECT 5727 /* Handle compound SELECT statements using the separate multiSelect() 5728 ** procedure. 5729 */ 5730 if( p->pPrior ){ 5731 rc = multiSelect(pParse, p, pDest); 5732 #if SELECTTRACE_ENABLED 5733 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 5734 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 5735 sqlite3TreeViewSelect(0, p, 0); 5736 } 5737 #endif 5738 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 5739 return rc; 5740 } 5741 #endif 5742 5743 /* Do the WHERE-clause constant propagation optimization if this is 5744 ** a join. No need to speed time on this operation for non-join queries 5745 ** as the equivalent optimization will be handled by query planner in 5746 ** sqlite3WhereBegin(). 5747 */ 5748 if( pTabList->nSrc>1 5749 && OptimizationEnabled(db, SQLITE_PropagateConst) 5750 && propagateConstants(pParse, p) 5751 ){ 5752 #if SELECTTRACE_ENABLED 5753 if( sqlite3SelectTrace & 0x100 ){ 5754 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 5755 sqlite3TreeViewSelect(0, p, 0); 5756 } 5757 #endif 5758 }else{ 5759 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 5760 } 5761 5762 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 5763 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 5764 && countOfViewOptimization(pParse, p) 5765 ){ 5766 if( db->mallocFailed ) goto select_end; 5767 pEList = p->pEList; 5768 pTabList = p->pSrc; 5769 } 5770 #endif 5771 5772 /* For each term in the FROM clause, do two things: 5773 ** (1) Authorized unreferenced tables 5774 ** (2) Generate code for all sub-queries 5775 */ 5776 for(i=0; i<pTabList->nSrc; i++){ 5777 struct SrcList_item *pItem = &pTabList->a[i]; 5778 SelectDest dest; 5779 Select *pSub; 5780 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5781 const char *zSavedAuthContext; 5782 #endif 5783 5784 /* Issue SQLITE_READ authorizations with a fake column name for any 5785 ** tables that are referenced but from which no values are extracted. 5786 ** Examples of where these kinds of null SQLITE_READ authorizations 5787 ** would occur: 5788 ** 5789 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 5790 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 5791 ** 5792 ** The fake column name is an empty string. It is possible for a table to 5793 ** have a column named by the empty string, in which case there is no way to 5794 ** distinguish between an unreferenced table and an actual reference to the 5795 ** "" column. The original design was for the fake column name to be a NULL, 5796 ** which would be unambiguous. But legacy authorization callbacks might 5797 ** assume the column name is non-NULL and segfault. The use of an empty 5798 ** string for the fake column name seems safer. 5799 */ 5800 if( pItem->colUsed==0 ){ 5801 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 5802 } 5803 5804 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 5805 /* Generate code for all sub-queries in the FROM clause 5806 */ 5807 pSub = pItem->pSelect; 5808 if( pSub==0 ) continue; 5809 5810 /* Sometimes the code for a subquery will be generated more than 5811 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 5812 ** for example. In that case, do not regenerate the code to manifest 5813 ** a view or the co-routine to implement a view. The first instance 5814 ** is sufficient, though the subroutine to manifest the view does need 5815 ** to be invoked again. */ 5816 if( pItem->addrFillSub ){ 5817 if( pItem->fg.viaCoroutine==0 ){ 5818 /* The subroutine that manifests the view might be a one-time routine, 5819 ** or it might need to be rerun on each iteration because it 5820 ** encodes a correlated subquery. */ 5821 testcase( sqlite3VdbeGetOp(v, pItem->addrFillSub)->opcode==OP_Once ); 5822 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 5823 } 5824 continue; 5825 } 5826 5827 /* Increment Parse.nHeight by the height of the largest expression 5828 ** tree referred to by this, the parent select. The child select 5829 ** may contain expression trees of at most 5830 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 5831 ** more conservative than necessary, but much easier than enforcing 5832 ** an exact limit. 5833 */ 5834 pParse->nHeight += sqlite3SelectExprHeight(p); 5835 5836 /* Make copies of constant WHERE-clause terms in the outer query down 5837 ** inside the subquery. This can help the subquery to run more efficiently. 5838 */ 5839 if( OptimizationEnabled(db, SQLITE_PushDown) 5840 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 5841 (pItem->fg.jointype & JT_OUTER)!=0) 5842 ){ 5843 #if SELECTTRACE_ENABLED 5844 if( sqlite3SelectTrace & 0x100 ){ 5845 SELECTTRACE(0x100,pParse,p, 5846 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 5847 sqlite3TreeViewSelect(0, p, 0); 5848 } 5849 #endif 5850 }else{ 5851 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 5852 } 5853 5854 zSavedAuthContext = pParse->zAuthContext; 5855 pParse->zAuthContext = pItem->zName; 5856 5857 /* Generate code to implement the subquery 5858 ** 5859 ** The subquery is implemented as a co-routine if the subquery is 5860 ** guaranteed to be the outer loop (so that it does not need to be 5861 ** computed more than once) 5862 ** 5863 ** TODO: Are there other reasons beside (1) to use a co-routine 5864 ** implementation? 5865 */ 5866 if( i==0 5867 && (pTabList->nSrc==1 5868 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 5869 ){ 5870 /* Implement a co-routine that will return a single row of the result 5871 ** set on each invocation. 5872 */ 5873 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 5874 5875 pItem->regReturn = ++pParse->nMem; 5876 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 5877 VdbeComment((v, "%s", pItem->pTab->zName)); 5878 pItem->addrFillSub = addrTop; 5879 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 5880 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId)); 5881 sqlite3Select(pParse, pSub, &dest); 5882 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5883 pItem->fg.viaCoroutine = 1; 5884 pItem->regResult = dest.iSdst; 5885 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 5886 sqlite3VdbeJumpHere(v, addrTop-1); 5887 sqlite3ClearTempRegCache(pParse); 5888 }else{ 5889 /* Generate a subroutine that will fill an ephemeral table with 5890 ** the content of this subquery. pItem->addrFillSub will point 5891 ** to the address of the generated subroutine. pItem->regReturn 5892 ** is a register allocated to hold the subroutine return address 5893 */ 5894 int topAddr; 5895 int onceAddr = 0; 5896 int retAddr; 5897 struct SrcList_item *pPrior; 5898 5899 assert( pItem->addrFillSub==0 ); 5900 pItem->regReturn = ++pParse->nMem; 5901 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 5902 pItem->addrFillSub = topAddr+1; 5903 if( pItem->fg.isCorrelated==0 ){ 5904 /* If the subquery is not correlated and if we are not inside of 5905 ** a trigger, then we only need to compute the value of the subquery 5906 ** once. */ 5907 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 5908 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5909 }else{ 5910 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 5911 } 5912 pPrior = isSelfJoinView(pTabList, pItem); 5913 if( pPrior ){ 5914 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 5915 assert( pPrior->pSelect!=0 ); 5916 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 5917 }else{ 5918 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 5919 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId)); 5920 sqlite3Select(pParse, pSub, &dest); 5921 } 5922 pItem->pTab->nRowLogEst = pSub->nSelectRow; 5923 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 5924 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 5925 VdbeComment((v, "end %s", pItem->pTab->zName)); 5926 sqlite3VdbeChangeP1(v, topAddr, retAddr); 5927 sqlite3ClearTempRegCache(pParse); 5928 } 5929 if( db->mallocFailed ) goto select_end; 5930 pParse->nHeight -= sqlite3SelectExprHeight(p); 5931 pParse->zAuthContext = zSavedAuthContext; 5932 #endif 5933 } 5934 5935 /* Various elements of the SELECT copied into local variables for 5936 ** convenience */ 5937 pEList = p->pEList; 5938 pWhere = p->pWhere; 5939 pGroupBy = p->pGroupBy; 5940 pHaving = p->pHaving; 5941 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 5942 5943 #if SELECTTRACE_ENABLED 5944 if( sqlite3SelectTrace & 0x400 ){ 5945 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 5946 sqlite3TreeViewSelect(0, p, 0); 5947 } 5948 #endif 5949 5950 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 5951 ** if the select-list is the same as the ORDER BY list, then this query 5952 ** can be rewritten as a GROUP BY. In other words, this: 5953 ** 5954 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 5955 ** 5956 ** is transformed to: 5957 ** 5958 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 5959 ** 5960 ** The second form is preferred as a single index (or temp-table) may be 5961 ** used for both the ORDER BY and DISTINCT processing. As originally 5962 ** written the query must use a temp-table for at least one of the ORDER 5963 ** BY and DISTINCT, and an index or separate temp-table for the other. 5964 */ 5965 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 5966 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 5967 ){ 5968 p->selFlags &= ~SF_Distinct; 5969 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 5970 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 5971 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 5972 ** original setting of the SF_Distinct flag, not the current setting */ 5973 assert( sDistinct.isTnct ); 5974 5975 #if SELECTTRACE_ENABLED 5976 if( sqlite3SelectTrace & 0x400 ){ 5977 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 5978 sqlite3TreeViewSelect(0, p, 0); 5979 } 5980 #endif 5981 } 5982 5983 /* If there is an ORDER BY clause, then create an ephemeral index to 5984 ** do the sorting. But this sorting ephemeral index might end up 5985 ** being unused if the data can be extracted in pre-sorted order. 5986 ** If that is the case, then the OP_OpenEphemeral instruction will be 5987 ** changed to an OP_Noop once we figure out that the sorting index is 5988 ** not needed. The sSort.addrSortIndex variable is used to facilitate 5989 ** that change. 5990 */ 5991 if( sSort.pOrderBy ){ 5992 KeyInfo *pKeyInfo; 5993 pKeyInfo = sqlite3KeyInfoFromExprList( 5994 pParse, sSort.pOrderBy, 0, pEList->nExpr); 5995 sSort.iECursor = pParse->nTab++; 5996 sSort.addrSortIndex = 5997 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5998 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 5999 (char*)pKeyInfo, P4_KEYINFO 6000 ); 6001 }else{ 6002 sSort.addrSortIndex = -1; 6003 } 6004 6005 /* If the output is destined for a temporary table, open that table. 6006 */ 6007 if( pDest->eDest==SRT_EphemTab ){ 6008 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6009 } 6010 6011 /* Set the limiter. 6012 */ 6013 iEnd = sqlite3VdbeMakeLabel(v); 6014 if( (p->selFlags & SF_FixedLimit)==0 ){ 6015 p->nSelectRow = 320; /* 4 billion rows */ 6016 } 6017 computeLimitRegisters(pParse, p, iEnd); 6018 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6019 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6020 sSort.sortFlags |= SORTFLAG_UseSorter; 6021 } 6022 6023 /* Open an ephemeral index to use for the distinct set. 6024 */ 6025 if( p->selFlags & SF_Distinct ){ 6026 sDistinct.tabTnct = pParse->nTab++; 6027 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6028 sDistinct.tabTnct, 0, 0, 6029 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6030 P4_KEYINFO); 6031 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6032 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6033 }else{ 6034 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6035 } 6036 6037 if( !isAgg && pGroupBy==0 ){ 6038 /* No aggregate functions and no GROUP BY clause */ 6039 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6040 | (p->selFlags & SF_FixedLimit); 6041 #ifndef SQLITE_OMIT_WINDOWFUNC 6042 Window *pWin = p->pWin; /* Master window object (or NULL) */ 6043 if( pWin ){ 6044 sqlite3WindowCodeInit(pParse, pWin); 6045 } 6046 #endif 6047 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6048 6049 6050 /* Begin the database scan. */ 6051 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6052 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6053 p->pEList, wctrlFlags, p->nSelectRow); 6054 if( pWInfo==0 ) goto select_end; 6055 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6056 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6057 } 6058 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6059 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6060 } 6061 if( sSort.pOrderBy ){ 6062 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6063 sSort.bOrderedInnerLoop = sqlite3WhereOrderedInnerLoop(pWInfo); 6064 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6065 sSort.pOrderBy = 0; 6066 } 6067 } 6068 6069 /* If sorting index that was created by a prior OP_OpenEphemeral 6070 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6071 ** into an OP_Noop. 6072 */ 6073 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6074 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6075 } 6076 6077 assert( p->pEList==pEList ); 6078 #ifndef SQLITE_OMIT_WINDOWFUNC 6079 if( pWin ){ 6080 int addrGosub = sqlite3VdbeMakeLabel(v); 6081 int iCont = sqlite3VdbeMakeLabel(v); 6082 int iBreak = sqlite3VdbeMakeLabel(v); 6083 int regGosub = ++pParse->nMem; 6084 6085 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6086 6087 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6088 sqlite3VdbeResolveLabel(v, addrGosub); 6089 VdbeNoopComment((v, "inner-loop subroutine")); 6090 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6091 sqlite3VdbeResolveLabel(v, iCont); 6092 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6093 VdbeComment((v, "end inner-loop subroutine")); 6094 sqlite3VdbeResolveLabel(v, iBreak); 6095 }else 6096 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6097 { 6098 /* Use the standard inner loop. */ 6099 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6100 sqlite3WhereContinueLabel(pWInfo), 6101 sqlite3WhereBreakLabel(pWInfo)); 6102 6103 /* End the database scan loop. 6104 */ 6105 sqlite3WhereEnd(pWInfo); 6106 } 6107 }else{ 6108 /* This case when there exist aggregate functions or a GROUP BY clause 6109 ** or both */ 6110 NameContext sNC; /* Name context for processing aggregate information */ 6111 int iAMem; /* First Mem address for storing current GROUP BY */ 6112 int iBMem; /* First Mem address for previous GROUP BY */ 6113 int iUseFlag; /* Mem address holding flag indicating that at least 6114 ** one row of the input to the aggregator has been 6115 ** processed */ 6116 int iAbortFlag; /* Mem address which causes query abort if positive */ 6117 int groupBySort; /* Rows come from source in GROUP BY order */ 6118 int addrEnd; /* End of processing for this SELECT */ 6119 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6120 int sortOut = 0; /* Output register from the sorter */ 6121 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6122 6123 /* Remove any and all aliases between the result set and the 6124 ** GROUP BY clause. 6125 */ 6126 if( pGroupBy ){ 6127 int k; /* Loop counter */ 6128 struct ExprList_item *pItem; /* For looping over expression in a list */ 6129 6130 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6131 pItem->u.x.iAlias = 0; 6132 } 6133 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6134 pItem->u.x.iAlias = 0; 6135 } 6136 assert( 66==sqlite3LogEst(100) ); 6137 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6138 }else{ 6139 assert( 0==sqlite3LogEst(1) ); 6140 p->nSelectRow = 0; 6141 } 6142 6143 /* If there is both a GROUP BY and an ORDER BY clause and they are 6144 ** identical, then it may be possible to disable the ORDER BY clause 6145 ** on the grounds that the GROUP BY will cause elements to come out 6146 ** in the correct order. It also may not - the GROUP BY might use a 6147 ** database index that causes rows to be grouped together as required 6148 ** but not actually sorted. Either way, record the fact that the 6149 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6150 ** variable. */ 6151 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6152 orderByGrp = 1; 6153 } 6154 6155 /* Create a label to jump to when we want to abort the query */ 6156 addrEnd = sqlite3VdbeMakeLabel(v); 6157 6158 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6159 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6160 ** SELECT statement. 6161 */ 6162 memset(&sNC, 0, sizeof(sNC)); 6163 sNC.pParse = pParse; 6164 sNC.pSrcList = pTabList; 6165 sNC.uNC.pAggInfo = &sAggInfo; 6166 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6167 sAggInfo.mnReg = pParse->nMem+1; 6168 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6169 sAggInfo.pGroupBy = pGroupBy; 6170 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6171 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6172 if( pHaving ){ 6173 if( pGroupBy ){ 6174 assert( pWhere==p->pWhere ); 6175 assert( pHaving==p->pHaving ); 6176 assert( pGroupBy==p->pGroupBy ); 6177 havingToWhere(pParse, p); 6178 pWhere = p->pWhere; 6179 } 6180 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6181 } 6182 sAggInfo.nAccumulator = sAggInfo.nColumn; 6183 if( p->pGroupBy==0 && p->pHaving==0 && sAggInfo.nFunc==1 ){ 6184 minMaxFlag = minMaxQuery(db, sAggInfo.aFunc[0].pExpr, &pMinMaxOrderBy); 6185 }else{ 6186 minMaxFlag = WHERE_ORDERBY_NORMAL; 6187 } 6188 for(i=0; i<sAggInfo.nFunc; i++){ 6189 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 6190 sNC.ncFlags |= NC_InAggFunc; 6191 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 6192 sNC.ncFlags &= ~NC_InAggFunc; 6193 } 6194 sAggInfo.mxReg = pParse->nMem; 6195 if( db->mallocFailed ) goto select_end; 6196 #if SELECTTRACE_ENABLED 6197 if( sqlite3SelectTrace & 0x400 ){ 6198 int ii; 6199 SELECTTRACE(0x400,pParse,p,("After aggregate analysis:\n")); 6200 sqlite3TreeViewSelect(0, p, 0); 6201 for(ii=0; ii<sAggInfo.nColumn; ii++){ 6202 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6203 ii, sAggInfo.aCol[ii].iMem); 6204 sqlite3TreeViewExpr(0, sAggInfo.aCol[ii].pExpr, 0); 6205 } 6206 for(ii=0; ii<sAggInfo.nFunc; ii++){ 6207 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6208 ii, sAggInfo.aFunc[ii].iMem); 6209 sqlite3TreeViewExpr(0, sAggInfo.aFunc[ii].pExpr, 0); 6210 } 6211 } 6212 #endif 6213 6214 6215 /* Processing for aggregates with GROUP BY is very different and 6216 ** much more complex than aggregates without a GROUP BY. 6217 */ 6218 if( pGroupBy ){ 6219 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6220 int addr1; /* A-vs-B comparision jump */ 6221 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6222 int regOutputRow; /* Return address register for output subroutine */ 6223 int addrSetAbort; /* Set the abort flag and return */ 6224 int addrTopOfLoop; /* Top of the input loop */ 6225 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6226 int addrReset; /* Subroutine for resetting the accumulator */ 6227 int regReset; /* Return address register for reset subroutine */ 6228 6229 /* If there is a GROUP BY clause we might need a sorting index to 6230 ** implement it. Allocate that sorting index now. If it turns out 6231 ** that we do not need it after all, the OP_SorterOpen instruction 6232 ** will be converted into a Noop. 6233 */ 6234 sAggInfo.sortingIdx = pParse->nTab++; 6235 pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pGroupBy,0,sAggInfo.nColumn); 6236 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6237 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 6238 0, (char*)pKeyInfo, P4_KEYINFO); 6239 6240 /* Initialize memory locations used by GROUP BY aggregate processing 6241 */ 6242 iUseFlag = ++pParse->nMem; 6243 iAbortFlag = ++pParse->nMem; 6244 regOutputRow = ++pParse->nMem; 6245 addrOutputRow = sqlite3VdbeMakeLabel(v); 6246 regReset = ++pParse->nMem; 6247 addrReset = sqlite3VdbeMakeLabel(v); 6248 iAMem = pParse->nMem + 1; 6249 pParse->nMem += pGroupBy->nExpr; 6250 iBMem = pParse->nMem + 1; 6251 pParse->nMem += pGroupBy->nExpr; 6252 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6253 VdbeComment((v, "clear abort flag")); 6254 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6255 6256 /* Begin a loop that will extract all source rows in GROUP BY order. 6257 ** This might involve two separate loops with an OP_Sort in between, or 6258 ** it might be a single loop that uses an index to extract information 6259 ** in the right order to begin with. 6260 */ 6261 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6262 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6263 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 6264 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 6265 ); 6266 if( pWInfo==0 ) goto select_end; 6267 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6268 /* The optimizer is able to deliver rows in group by order so 6269 ** we do not have to sort. The OP_OpenEphemeral table will be 6270 ** cancelled later because we still need to use the pKeyInfo 6271 */ 6272 groupBySort = 0; 6273 }else{ 6274 /* Rows are coming out in undetermined order. We have to push 6275 ** each row into a sorting index, terminate the first loop, 6276 ** then loop over the sorting index in order to get the output 6277 ** in sorted order 6278 */ 6279 int regBase; 6280 int regRecord; 6281 int nCol; 6282 int nGroupBy; 6283 6284 explainTempTable(pParse, 6285 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6286 "DISTINCT" : "GROUP BY"); 6287 6288 groupBySort = 1; 6289 nGroupBy = pGroupBy->nExpr; 6290 nCol = nGroupBy; 6291 j = nGroupBy; 6292 for(i=0; i<sAggInfo.nColumn; i++){ 6293 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 6294 nCol++; 6295 j++; 6296 } 6297 } 6298 regBase = sqlite3GetTempRange(pParse, nCol); 6299 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6300 j = nGroupBy; 6301 for(i=0; i<sAggInfo.nColumn; i++){ 6302 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 6303 if( pCol->iSorterColumn>=j ){ 6304 int r1 = j + regBase; 6305 sqlite3ExprCodeGetColumnOfTable(v, 6306 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6307 j++; 6308 } 6309 } 6310 regRecord = sqlite3GetTempReg(pParse); 6311 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6312 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 6313 sqlite3ReleaseTempReg(pParse, regRecord); 6314 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6315 sqlite3WhereEnd(pWInfo); 6316 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 6317 sortOut = sqlite3GetTempReg(pParse); 6318 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6319 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 6320 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6321 sAggInfo.useSortingIdx = 1; 6322 } 6323 6324 /* If the index or temporary table used by the GROUP BY sort 6325 ** will naturally deliver rows in the order required by the ORDER BY 6326 ** clause, cancel the ephemeral table open coded earlier. 6327 ** 6328 ** This is an optimization - the correct answer should result regardless. 6329 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6330 ** disable this optimization for testing purposes. */ 6331 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6332 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6333 ){ 6334 sSort.pOrderBy = 0; 6335 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6336 } 6337 6338 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6339 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6340 ** Then compare the current GROUP BY terms against the GROUP BY terms 6341 ** from the previous row currently stored in a0, a1, a2... 6342 */ 6343 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6344 if( groupBySort ){ 6345 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, 6346 sortOut, sortPTab); 6347 } 6348 for(j=0; j<pGroupBy->nExpr; j++){ 6349 if( groupBySort ){ 6350 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 6351 }else{ 6352 sAggInfo.directMode = 1; 6353 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 6354 } 6355 } 6356 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 6357 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 6358 addr1 = sqlite3VdbeCurrentAddr(v); 6359 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 6360 6361 /* Generate code that runs whenever the GROUP BY changes. 6362 ** Changes in the GROUP BY are detected by the previous code 6363 ** block. If there were no changes, this block is skipped. 6364 ** 6365 ** This code copies current group by terms in b0,b1,b2,... 6366 ** over to a0,a1,a2. It then calls the output subroutine 6367 ** and resets the aggregate accumulator registers in preparation 6368 ** for the next GROUP BY batch. 6369 */ 6370 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 6371 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6372 VdbeComment((v, "output one row")); 6373 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 6374 VdbeComment((v, "check abort flag")); 6375 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6376 VdbeComment((v, "reset accumulator")); 6377 6378 /* Update the aggregate accumulators based on the content of 6379 ** the current row 6380 */ 6381 sqlite3VdbeJumpHere(v, addr1); 6382 updateAccumulator(pParse, iUseFlag, &sAggInfo); 6383 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 6384 VdbeComment((v, "indicate data in accumulator")); 6385 6386 /* End of the loop 6387 */ 6388 if( groupBySort ){ 6389 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 6390 VdbeCoverage(v); 6391 }else{ 6392 sqlite3WhereEnd(pWInfo); 6393 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 6394 } 6395 6396 /* Output the final row of result 6397 */ 6398 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 6399 VdbeComment((v, "output final row")); 6400 6401 /* Jump over the subroutines 6402 */ 6403 sqlite3VdbeGoto(v, addrEnd); 6404 6405 /* Generate a subroutine that outputs a single row of the result 6406 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 6407 ** is less than or equal to zero, the subroutine is a no-op. If 6408 ** the processing calls for the query to abort, this subroutine 6409 ** increments the iAbortFlag memory location before returning in 6410 ** order to signal the caller to abort. 6411 */ 6412 addrSetAbort = sqlite3VdbeCurrentAddr(v); 6413 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 6414 VdbeComment((v, "set abort flag")); 6415 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6416 sqlite3VdbeResolveLabel(v, addrOutputRow); 6417 addrOutputRow = sqlite3VdbeCurrentAddr(v); 6418 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 6419 VdbeCoverage(v); 6420 VdbeComment((v, "Groupby result generator entry point")); 6421 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6422 finalizeAggFunctions(pParse, &sAggInfo); 6423 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 6424 selectInnerLoop(pParse, p, -1, &sSort, 6425 &sDistinct, pDest, 6426 addrOutputRow+1, addrSetAbort); 6427 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 6428 VdbeComment((v, "end groupby result generator")); 6429 6430 /* Generate a subroutine that will reset the group-by accumulator 6431 */ 6432 sqlite3VdbeResolveLabel(v, addrReset); 6433 resetAccumulator(pParse, &sAggInfo); 6434 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 6435 VdbeComment((v, "indicate accumulator empty")); 6436 sqlite3VdbeAddOp1(v, OP_Return, regReset); 6437 6438 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 6439 else { 6440 #ifndef SQLITE_OMIT_BTREECOUNT 6441 Table *pTab; 6442 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 6443 /* If isSimpleCount() returns a pointer to a Table structure, then 6444 ** the SQL statement is of the form: 6445 ** 6446 ** SELECT count(*) FROM <tbl> 6447 ** 6448 ** where the Table structure returned represents table <tbl>. 6449 ** 6450 ** This statement is so common that it is optimized specially. The 6451 ** OP_Count instruction is executed either on the intkey table that 6452 ** contains the data for table <tbl> or on one of its indexes. It 6453 ** is better to execute the op on an index, as indexes are almost 6454 ** always spread across less pages than their corresponding tables. 6455 */ 6456 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 6457 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 6458 Index *pIdx; /* Iterator variable */ 6459 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 6460 Index *pBest = 0; /* Best index found so far */ 6461 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 6462 6463 sqlite3CodeVerifySchema(pParse, iDb); 6464 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6465 6466 /* Search for the index that has the lowest scan cost. 6467 ** 6468 ** (2011-04-15) Do not do a full scan of an unordered index. 6469 ** 6470 ** (2013-10-03) Do not count the entries in a partial index. 6471 ** 6472 ** In practice the KeyInfo structure will not be used. It is only 6473 ** passed to keep OP_OpenRead happy. 6474 */ 6475 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 6476 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6477 if( pIdx->bUnordered==0 6478 && pIdx->szIdxRow<pTab->szTabRow 6479 && pIdx->pPartIdxWhere==0 6480 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 6481 ){ 6482 pBest = pIdx; 6483 } 6484 } 6485 if( pBest ){ 6486 iRoot = pBest->tnum; 6487 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 6488 } 6489 6490 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 6491 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 6492 if( pKeyInfo ){ 6493 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 6494 } 6495 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 6496 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 6497 explainSimpleCount(pParse, pTab, pBest); 6498 }else 6499 #endif /* SQLITE_OMIT_BTREECOUNT */ 6500 { 6501 int regAcc = 0; /* "populate accumulators" flag */ 6502 6503 /* If there are accumulator registers but no min() or max() functions, 6504 ** allocate register regAcc. Register regAcc will contain 0 the first 6505 ** time the inner loop runs, and 1 thereafter. The code generated 6506 ** by updateAccumulator() only updates the accumulator registers if 6507 ** regAcc contains 0. */ 6508 if( sAggInfo.nAccumulator ){ 6509 for(i=0; i<sAggInfo.nFunc; i++){ 6510 if( sAggInfo.aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ) break; 6511 } 6512 if( i==sAggInfo.nFunc ){ 6513 regAcc = ++pParse->nMem; 6514 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 6515 } 6516 } 6517 6518 /* This case runs if the aggregate has no GROUP BY clause. The 6519 ** processing is much simpler since there is only a single row 6520 ** of output. 6521 */ 6522 assert( p->pGroupBy==0 ); 6523 resetAccumulator(pParse, &sAggInfo); 6524 6525 /* If this query is a candidate for the min/max optimization, then 6526 ** minMaxFlag will have been previously set to either 6527 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 6528 ** be an appropriate ORDER BY expression for the optimization. 6529 */ 6530 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 6531 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 6532 6533 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6534 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 6535 0, minMaxFlag, 0); 6536 if( pWInfo==0 ){ 6537 goto select_end; 6538 } 6539 updateAccumulator(pParse, regAcc, &sAggInfo); 6540 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 6541 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 6542 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); 6543 VdbeComment((v, "%s() by index", 6544 (minMaxFlag==WHERE_ORDERBY_MIN?"min":"max"))); 6545 } 6546 sqlite3WhereEnd(pWInfo); 6547 finalizeAggFunctions(pParse, &sAggInfo); 6548 } 6549 6550 sSort.pOrderBy = 0; 6551 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 6552 selectInnerLoop(pParse, p, -1, 0, 0, 6553 pDest, addrEnd, addrEnd); 6554 } 6555 sqlite3VdbeResolveLabel(v, addrEnd); 6556 6557 } /* endif aggregate query */ 6558 6559 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 6560 explainTempTable(pParse, "DISTINCT"); 6561 } 6562 6563 /* If there is an ORDER BY clause, then we need to sort the results 6564 ** and send them to the callback one by one. 6565 */ 6566 if( sSort.pOrderBy ){ 6567 explainTempTable(pParse, 6568 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 6569 assert( p->pEList==pEList ); 6570 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 6571 } 6572 6573 /* Jump here to skip this query 6574 */ 6575 sqlite3VdbeResolveLabel(v, iEnd); 6576 6577 /* The SELECT has been coded. If there is an error in the Parse structure, 6578 ** set the return code to 1. Otherwise 0. */ 6579 rc = (pParse->nErr>0); 6580 6581 /* Control jumps to here if an error is encountered above, or upon 6582 ** successful coding of the SELECT. 6583 */ 6584 select_end: 6585 sqlite3ExprListDelete(db, pMinMaxOrderBy); 6586 sqlite3DbFree(db, sAggInfo.aCol); 6587 sqlite3DbFree(db, sAggInfo.aFunc); 6588 #if SELECTTRACE_ENABLED 6589 SELECTTRACE(0x1,pParse,p,("end processing\n")); 6590 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6591 sqlite3TreeViewSelect(0, p, 0); 6592 } 6593 #endif 6594 ExplainQueryPlanPop(pParse); 6595 return rc; 6596 } 6597