xref: /sqlite-3.40.0/src/select.c (revision 74e4352a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.330 2007/03/02 07:27:00 danielk1977 Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(Select *p){
25   sqlite3ExprListDelete(p->pEList);
26   sqlite3SrcListDelete(p->pSrc);
27   sqlite3ExprDelete(p->pWhere);
28   sqlite3ExprListDelete(p->pGroupBy);
29   sqlite3ExprDelete(p->pHaving);
30   sqlite3ExprListDelete(p->pOrderBy);
31   sqlite3SelectDelete(p->pPrior);
32   sqlite3ExprDelete(p->pLimit);
33   sqlite3ExprDelete(p->pOffset);
34 }
35 
36 
37 /*
38 ** Allocate a new Select structure and return a pointer to that
39 ** structure.
40 */
41 Select *sqlite3SelectNew(
42   ExprList *pEList,     /* which columns to include in the result */
43   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
44   Expr *pWhere,         /* the WHERE clause */
45   ExprList *pGroupBy,   /* the GROUP BY clause */
46   Expr *pHaving,        /* the HAVING clause */
47   ExprList *pOrderBy,   /* the ORDER BY clause */
48   int isDistinct,       /* true if the DISTINCT keyword is present */
49   Expr *pLimit,         /* LIMIT value.  NULL means not used */
50   Expr *pOffset         /* OFFSET value.  NULL means no offset */
51 ){
52   Select *pNew;
53   Select standin;
54   pNew = sqliteMalloc( sizeof(*pNew) );
55   assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
56   if( pNew==0 ){
57     pNew = &standin;
58     memset(pNew, 0, sizeof(*pNew));
59   }
60   if( pEList==0 ){
61     pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0);
62   }
63   pNew->pEList = pEList;
64   pNew->pSrc = pSrc;
65   pNew->pWhere = pWhere;
66   pNew->pGroupBy = pGroupBy;
67   pNew->pHaving = pHaving;
68   pNew->pOrderBy = pOrderBy;
69   pNew->isDistinct = isDistinct;
70   pNew->op = TK_SELECT;
71   assert( pOffset==0 || pLimit!=0 );
72   pNew->pLimit = pLimit;
73   pNew->pOffset = pOffset;
74   pNew->iLimit = -1;
75   pNew->iOffset = -1;
76   pNew->addrOpenEphm[0] = -1;
77   pNew->addrOpenEphm[1] = -1;
78   pNew->addrOpenEphm[2] = -1;
79   if( pNew==&standin) {
80     clearSelect(pNew);
81     pNew = 0;
82   }
83   return pNew;
84 }
85 
86 /*
87 ** Delete the given Select structure and all of its substructures.
88 */
89 void sqlite3SelectDelete(Select *p){
90   if( p ){
91     clearSelect(p);
92     sqliteFree(p);
93   }
94 }
95 
96 /*
97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
98 ** type of join.  Return an integer constant that expresses that type
99 ** in terms of the following bit values:
100 **
101 **     JT_INNER
102 **     JT_CROSS
103 **     JT_OUTER
104 **     JT_NATURAL
105 **     JT_LEFT
106 **     JT_RIGHT
107 **
108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
109 **
110 ** If an illegal or unsupported join type is seen, then still return
111 ** a join type, but put an error in the pParse structure.
112 */
113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
114   int jointype = 0;
115   Token *apAll[3];
116   Token *p;
117   static const struct {
118     const char zKeyword[8];
119     u8 nChar;
120     u8 code;
121   } keywords[] = {
122     { "natural", 7, JT_NATURAL },
123     { "left",    4, JT_LEFT|JT_OUTER },
124     { "right",   5, JT_RIGHT|JT_OUTER },
125     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
126     { "outer",   5, JT_OUTER },
127     { "inner",   5, JT_INNER },
128     { "cross",   5, JT_INNER|JT_CROSS },
129   };
130   int i, j;
131   apAll[0] = pA;
132   apAll[1] = pB;
133   apAll[2] = pC;
134   for(i=0; i<3 && apAll[i]; i++){
135     p = apAll[i];
136     for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
137       if( p->n==keywords[j].nChar
138           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
139         jointype |= keywords[j].code;
140         break;
141       }
142     }
143     if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
144       jointype |= JT_ERROR;
145       break;
146     }
147   }
148   if(
149      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
150      (jointype & JT_ERROR)!=0
151   ){
152     const char *zSp1 = " ";
153     const char *zSp2 = " ";
154     if( pB==0 ){ zSp1++; }
155     if( pC==0 ){ zSp2++; }
156     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
157        "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
158     jointype = JT_INNER;
159   }else if( jointype & JT_RIGHT ){
160     sqlite3ErrorMsg(pParse,
161       "RIGHT and FULL OUTER JOINs are not currently supported");
162     jointype = JT_INNER;
163   }
164   return jointype;
165 }
166 
167 /*
168 ** Return the index of a column in a table.  Return -1 if the column
169 ** is not contained in the table.
170 */
171 static int columnIndex(Table *pTab, const char *zCol){
172   int i;
173   for(i=0; i<pTab->nCol; i++){
174     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
175   }
176   return -1;
177 }
178 
179 /*
180 ** Set the value of a token to a '\000'-terminated string.
181 */
182 static void setToken(Token *p, const char *z){
183   p->z = (u8*)z;
184   p->n = z ? strlen(z) : 0;
185   p->dyn = 0;
186 }
187 
188 /*
189 ** Create an expression node for an identifier with the name of zName
190 */
191 Expr *sqlite3CreateIdExpr(const char *zName){
192   Token dummy;
193   setToken(&dummy, zName);
194   return sqlite3Expr(TK_ID, 0, 0, &dummy);
195 }
196 
197 
198 /*
199 ** Add a term to the WHERE expression in *ppExpr that requires the
200 ** zCol column to be equal in the two tables pTab1 and pTab2.
201 */
202 static void addWhereTerm(
203   const char *zCol,        /* Name of the column */
204   const Table *pTab1,      /* First table */
205   const char *zAlias1,     /* Alias for first table.  May be NULL */
206   const Table *pTab2,      /* Second table */
207   const char *zAlias2,     /* Alias for second table.  May be NULL */
208   int iRightJoinTable,     /* VDBE cursor for the right table */
209   Expr **ppExpr            /* Add the equality term to this expression */
210 ){
211   Expr *pE1a, *pE1b, *pE1c;
212   Expr *pE2a, *pE2b, *pE2c;
213   Expr *pE;
214 
215   pE1a = sqlite3CreateIdExpr(zCol);
216   pE2a = sqlite3CreateIdExpr(zCol);
217   if( zAlias1==0 ){
218     zAlias1 = pTab1->zName;
219   }
220   pE1b = sqlite3CreateIdExpr(zAlias1);
221   if( zAlias2==0 ){
222     zAlias2 = pTab2->zName;
223   }
224   pE2b = sqlite3CreateIdExpr(zAlias2);
225   pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0);
226   pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0);
227   pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0);
228   if( pE ){
229     ExprSetProperty(pE, EP_FromJoin);
230     pE->iRightJoinTable = iRightJoinTable;
231   }
232   pE = sqlite3ExprAnd(*ppExpr, pE);
233   if( pE ){
234     *ppExpr = pE;
235   }
236 }
237 
238 /*
239 ** Set the EP_FromJoin property on all terms of the given expression.
240 ** And set the Expr.iRightJoinTable to iTable for every term in the
241 ** expression.
242 **
243 ** The EP_FromJoin property is used on terms of an expression to tell
244 ** the LEFT OUTER JOIN processing logic that this term is part of the
245 ** join restriction specified in the ON or USING clause and not a part
246 ** of the more general WHERE clause.  These terms are moved over to the
247 ** WHERE clause during join processing but we need to remember that they
248 ** originated in the ON or USING clause.
249 **
250 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
251 ** expression depends on table iRightJoinTable even if that table is not
252 ** explicitly mentioned in the expression.  That information is needed
253 ** for cases like this:
254 **
255 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
256 **
257 ** The where clause needs to defer the handling of the t1.x=5
258 ** term until after the t2 loop of the join.  In that way, a
259 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
260 ** defer the handling of t1.x=5, it will be processed immediately
261 ** after the t1 loop and rows with t1.x!=5 will never appear in
262 ** the output, which is incorrect.
263 */
264 static void setJoinExpr(Expr *p, int iTable){
265   while( p ){
266     ExprSetProperty(p, EP_FromJoin);
267     p->iRightJoinTable = iTable;
268     setJoinExpr(p->pLeft, iTable);
269     p = p->pRight;
270   }
271 }
272 
273 /*
274 ** This routine processes the join information for a SELECT statement.
275 ** ON and USING clauses are converted into extra terms of the WHERE clause.
276 ** NATURAL joins also create extra WHERE clause terms.
277 **
278 ** The terms of a FROM clause are contained in the Select.pSrc structure.
279 ** The left most table is the first entry in Select.pSrc.  The right-most
280 ** table is the last entry.  The join operator is held in the entry to
281 ** the left.  Thus entry 0 contains the join operator for the join between
282 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
283 ** also attached to the left entry.
284 **
285 ** This routine returns the number of errors encountered.
286 */
287 static int sqliteProcessJoin(Parse *pParse, Select *p){
288   SrcList *pSrc;                  /* All tables in the FROM clause */
289   int i, j;                       /* Loop counters */
290   struct SrcList_item *pLeft;     /* Left table being joined */
291   struct SrcList_item *pRight;    /* Right table being joined */
292 
293   pSrc = p->pSrc;
294   pLeft = &pSrc->a[0];
295   pRight = &pLeft[1];
296   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
297     Table *pLeftTab = pLeft->pTab;
298     Table *pRightTab = pRight->pTab;
299 
300     if( pLeftTab==0 || pRightTab==0 ) continue;
301 
302     /* When the NATURAL keyword is present, add WHERE clause terms for
303     ** every column that the two tables have in common.
304     */
305     if( pRight->jointype & JT_NATURAL ){
306       if( pRight->pOn || pRight->pUsing ){
307         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
308            "an ON or USING clause", 0);
309         return 1;
310       }
311       for(j=0; j<pLeftTab->nCol; j++){
312         char *zName = pLeftTab->aCol[j].zName;
313         if( columnIndex(pRightTab, zName)>=0 ){
314           addWhereTerm(zName, pLeftTab, pLeft->zAlias,
315                               pRightTab, pRight->zAlias,
316                               pRight->iCursor, &p->pWhere);
317 
318         }
319       }
320     }
321 
322     /* Disallow both ON and USING clauses in the same join
323     */
324     if( pRight->pOn && pRight->pUsing ){
325       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
326         "clauses in the same join");
327       return 1;
328     }
329 
330     /* Add the ON clause to the end of the WHERE clause, connected by
331     ** an AND operator.
332     */
333     if( pRight->pOn ){
334       setJoinExpr(pRight->pOn, pRight->iCursor);
335       p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn);
336       pRight->pOn = 0;
337     }
338 
339     /* Create extra terms on the WHERE clause for each column named
340     ** in the USING clause.  Example: If the two tables to be joined are
341     ** A and B and the USING clause names X, Y, and Z, then add this
342     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
343     ** Report an error if any column mentioned in the USING clause is
344     ** not contained in both tables to be joined.
345     */
346     if( pRight->pUsing ){
347       IdList *pList = pRight->pUsing;
348       for(j=0; j<pList->nId; j++){
349         char *zName = pList->a[j].zName;
350         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
351           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
352             "not present in both tables", zName);
353           return 1;
354         }
355         addWhereTerm(zName, pLeftTab, pLeft->zAlias,
356                             pRightTab, pRight->zAlias,
357                             pRight->iCursor, &p->pWhere);
358       }
359     }
360   }
361   return 0;
362 }
363 
364 /*
365 ** Insert code into "v" that will push the record on the top of the
366 ** stack into the sorter.
367 */
368 static void pushOntoSorter(
369   Parse *pParse,         /* Parser context */
370   ExprList *pOrderBy,    /* The ORDER BY clause */
371   Select *pSelect        /* The whole SELECT statement */
372 ){
373   Vdbe *v = pParse->pVdbe;
374   sqlite3ExprCodeExprList(pParse, pOrderBy);
375   sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0);
376   sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0);
377   sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0);
378   sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0);
379   if( pSelect->iLimit>=0 ){
380     int addr1, addr2;
381     addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0);
382     sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1);
383     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
384     sqlite3VdbeJumpHere(v, addr1);
385     sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0);
386     sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0);
387     sqlite3VdbeJumpHere(v, addr2);
388     pSelect->iLimit = -1;
389   }
390 }
391 
392 /*
393 ** Add code to implement the OFFSET
394 */
395 static void codeOffset(
396   Vdbe *v,          /* Generate code into this VM */
397   Select *p,        /* The SELECT statement being coded */
398   int iContinue,    /* Jump here to skip the current record */
399   int nPop          /* Number of times to pop stack when jumping */
400 ){
401   if( p->iOffset>=0 && iContinue!=0 ){
402     int addr;
403     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset);
404     addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0);
405     if( nPop>0 ){
406       sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
407     }
408     sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
409     VdbeComment((v, "# skip OFFSET records"));
410     sqlite3VdbeJumpHere(v, addr);
411   }
412 }
413 
414 /*
415 ** Add code that will check to make sure the top N elements of the
416 ** stack are distinct.  iTab is a sorting index that holds previously
417 ** seen combinations of the N values.  A new entry is made in iTab
418 ** if the current N values are new.
419 **
420 ** A jump to addrRepeat is made and the N+1 values are popped from the
421 ** stack if the top N elements are not distinct.
422 */
423 static void codeDistinct(
424   Vdbe *v,           /* Generate code into this VM */
425   int iTab,          /* A sorting index used to test for distinctness */
426   int addrRepeat,    /* Jump to here if not distinct */
427   int N              /* The top N elements of the stack must be distinct */
428 ){
429   sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0);
430   sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3);
431   sqlite3VdbeAddOp(v, OP_Pop, N+1, 0);
432   sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat);
433   VdbeComment((v, "# skip indistinct records"));
434   sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0);
435 }
436 
437 
438 /*
439 ** This routine generates the code for the inside of the inner loop
440 ** of a SELECT.
441 **
442 ** If srcTab and nColumn are both zero, then the pEList expressions
443 ** are evaluated in order to get the data for this row.  If nColumn>0
444 ** then data is pulled from srcTab and pEList is used only to get the
445 ** datatypes for each column.
446 */
447 static int selectInnerLoop(
448   Parse *pParse,          /* The parser context */
449   Select *p,              /* The complete select statement being coded */
450   ExprList *pEList,       /* List of values being extracted */
451   int srcTab,             /* Pull data from this table */
452   int nColumn,            /* Number of columns in the source table */
453   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
454   int distinct,           /* If >=0, make sure results are distinct */
455   int eDest,              /* How to dispose of the results */
456   int iParm,              /* An argument to the disposal method */
457   int iContinue,          /* Jump here to continue with next row */
458   int iBreak,             /* Jump here to break out of the inner loop */
459   char *aff               /* affinity string if eDest is SRT_Union */
460 ){
461   Vdbe *v = pParse->pVdbe;
462   int i;
463   int hasDistinct;        /* True if the DISTINCT keyword is present */
464 
465   if( v==0 ) return 0;
466   assert( pEList!=0 );
467 
468   /* If there was a LIMIT clause on the SELECT statement, then do the check
469   ** to see if this row should be output.
470   */
471   hasDistinct = distinct>=0 && pEList->nExpr>0;
472   if( pOrderBy==0 && !hasDistinct ){
473     codeOffset(v, p, iContinue, 0);
474   }
475 
476   /* Pull the requested columns.
477   */
478   if( nColumn>0 ){
479     for(i=0; i<nColumn; i++){
480       sqlite3VdbeAddOp(v, OP_Column, srcTab, i);
481     }
482   }else{
483     nColumn = pEList->nExpr;
484     sqlite3ExprCodeExprList(pParse, pEList);
485   }
486 
487   /* If the DISTINCT keyword was present on the SELECT statement
488   ** and this row has been seen before, then do not make this row
489   ** part of the result.
490   */
491   if( hasDistinct ){
492     assert( pEList!=0 );
493     assert( pEList->nExpr==nColumn );
494     codeDistinct(v, distinct, iContinue, nColumn);
495     if( pOrderBy==0 ){
496       codeOffset(v, p, iContinue, nColumn);
497     }
498   }
499 
500   switch( eDest ){
501     /* In this mode, write each query result to the key of the temporary
502     ** table iParm.
503     */
504 #ifndef SQLITE_OMIT_COMPOUND_SELECT
505     case SRT_Union: {
506       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
507       if( aff ){
508         sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
509       }
510       sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
511       break;
512     }
513 
514     /* Construct a record from the query result, but instead of
515     ** saving that record, use it as a key to delete elements from
516     ** the temporary table iParm.
517     */
518     case SRT_Except: {
519       int addr;
520       addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
521       sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
522       sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3);
523       sqlite3VdbeAddOp(v, OP_Delete, iParm, 0);
524       break;
525     }
526 #endif
527 
528     /* Store the result as data using a unique key.
529     */
530     case SRT_Table:
531     case SRT_EphemTab: {
532       sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
533       if( pOrderBy ){
534         pushOntoSorter(pParse, pOrderBy, p);
535       }else{
536         sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
537         sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
538         sqlite3VdbeAddOp(v, OP_Insert, iParm, 0);
539       }
540       break;
541     }
542 
543 #ifndef SQLITE_OMIT_SUBQUERY
544     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
545     ** then there should be a single item on the stack.  Write this
546     ** item into the set table with bogus data.
547     */
548     case SRT_Set: {
549       int addr1 = sqlite3VdbeCurrentAddr(v);
550       int addr2;
551 
552       assert( nColumn==1 );
553       sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3);
554       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
555       addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
556       if( pOrderBy ){
557         /* At first glance you would think we could optimize out the
558         ** ORDER BY in this case since the order of entries in the set
559         ** does not matter.  But there might be a LIMIT clause, in which
560         ** case the order does matter */
561         pushOntoSorter(pParse, pOrderBy, p);
562       }else{
563         char affinity = (iParm>>16)&0xFF;
564         affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, affinity);
565         sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1);
566         sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
567       }
568       sqlite3VdbeJumpHere(v, addr2);
569       break;
570     }
571 
572     /* If any row exist in the result set, record that fact and abort.
573     */
574     case SRT_Exists: {
575       sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm);
576       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
577       /* The LIMIT clause will terminate the loop for us */
578       break;
579     }
580 
581     /* If this is a scalar select that is part of an expression, then
582     ** store the results in the appropriate memory cell and break out
583     ** of the scan loop.
584     */
585     case SRT_Mem: {
586       assert( nColumn==1 );
587       if( pOrderBy ){
588         pushOntoSorter(pParse, pOrderBy, p);
589       }else{
590         sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
591         /* The LIMIT clause will jump out of the loop for us */
592       }
593       break;
594     }
595 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
596 
597     /* Send the data to the callback function or to a subroutine.  In the
598     ** case of a subroutine, the subroutine itself is responsible for
599     ** popping the data from the stack.
600     */
601     case SRT_Subroutine:
602     case SRT_Callback: {
603       if( pOrderBy ){
604         sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
605         pushOntoSorter(pParse, pOrderBy, p);
606       }else if( eDest==SRT_Subroutine ){
607         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
608       }else{
609         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
610       }
611       break;
612     }
613 
614 #if !defined(SQLITE_OMIT_TRIGGER)
615     /* Discard the results.  This is used for SELECT statements inside
616     ** the body of a TRIGGER.  The purpose of such selects is to call
617     ** user-defined functions that have side effects.  We do not care
618     ** about the actual results of the select.
619     */
620     default: {
621       assert( eDest==SRT_Discard );
622       sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
623       break;
624     }
625 #endif
626   }
627 
628   /* Jump to the end of the loop if the LIMIT is reached.
629   */
630   if( p->iLimit>=0 && pOrderBy==0 ){
631     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
632     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak);
633   }
634   return 0;
635 }
636 
637 /*
638 ** Given an expression list, generate a KeyInfo structure that records
639 ** the collating sequence for each expression in that expression list.
640 **
641 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
642 ** KeyInfo structure is appropriate for initializing a virtual index to
643 ** implement that clause.  If the ExprList is the result set of a SELECT
644 ** then the KeyInfo structure is appropriate for initializing a virtual
645 ** index to implement a DISTINCT test.
646 **
647 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
648 ** function is responsible for seeing that this structure is eventually
649 ** freed.  Add the KeyInfo structure to the P3 field of an opcode using
650 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this.
651 */
652 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
653   sqlite3 *db = pParse->db;
654   int nExpr;
655   KeyInfo *pInfo;
656   struct ExprList_item *pItem;
657   int i;
658 
659   nExpr = pList->nExpr;
660   pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
661   if( pInfo ){
662     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
663     pInfo->nField = nExpr;
664     pInfo->enc = ENC(db);
665     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
666       CollSeq *pColl;
667       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
668       if( !pColl ){
669         pColl = db->pDfltColl;
670       }
671       pInfo->aColl[i] = pColl;
672       pInfo->aSortOrder[i] = pItem->sortOrder;
673     }
674   }
675   return pInfo;
676 }
677 
678 
679 /*
680 ** If the inner loop was generated using a non-null pOrderBy argument,
681 ** then the results were placed in a sorter.  After the loop is terminated
682 ** we need to run the sorter and output the results.  The following
683 ** routine generates the code needed to do that.
684 */
685 static void generateSortTail(
686   Parse *pParse,   /* Parsing context */
687   Select *p,       /* The SELECT statement */
688   Vdbe *v,         /* Generate code into this VDBE */
689   int nColumn,     /* Number of columns of data */
690   int eDest,       /* Write the sorted results here */
691   int iParm        /* Optional parameter associated with eDest */
692 ){
693   int brk = sqlite3VdbeMakeLabel(v);
694   int cont = sqlite3VdbeMakeLabel(v);
695   int addr;
696   int iTab;
697   int pseudoTab;
698   ExprList *pOrderBy = p->pOrderBy;
699 
700   iTab = pOrderBy->iECursor;
701   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
702     pseudoTab = pParse->nTab++;
703     sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0);
704     sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn);
705   }
706   addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk);
707   codeOffset(v, p, cont, 0);
708   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
709     sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
710   }
711   sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1);
712   switch( eDest ){
713     case SRT_Table:
714     case SRT_EphemTab: {
715       sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0);
716       sqlite3VdbeAddOp(v, OP_Pull, 1, 0);
717       sqlite3VdbeAddOp(v, OP_Insert, iParm, 0);
718       break;
719     }
720 #ifndef SQLITE_OMIT_SUBQUERY
721     case SRT_Set: {
722       assert( nColumn==1 );
723       sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3);
724       sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
725       sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3);
726       sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "c", P3_STATIC);
727       sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0);
728       break;
729     }
730     case SRT_Mem: {
731       assert( nColumn==1 );
732       sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
733       /* The LIMIT clause will terminate the loop for us */
734       break;
735     }
736 #endif
737     case SRT_Callback:
738     case SRT_Subroutine: {
739       int i;
740       sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0);
741       for(i=0; i<nColumn; i++){
742         sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i);
743       }
744       if( eDest==SRT_Callback ){
745         sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0);
746       }else{
747         sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm);
748       }
749       break;
750     }
751     default: {
752       /* Do nothing */
753       break;
754     }
755   }
756 
757   /* Jump to the end of the loop when the LIMIT is reached
758   */
759   if( p->iLimit>=0 ){
760     sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit);
761     sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk);
762   }
763 
764   /* The bottom of the loop
765   */
766   sqlite3VdbeResolveLabel(v, cont);
767   sqlite3VdbeAddOp(v, OP_Next, iTab, addr);
768   sqlite3VdbeResolveLabel(v, brk);
769   if( eDest==SRT_Callback || eDest==SRT_Subroutine ){
770     sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0);
771   }
772 
773 }
774 
775 /*
776 ** Return a pointer to a string containing the 'declaration type' of the
777 ** expression pExpr. The string may be treated as static by the caller.
778 **
779 ** The declaration type is the exact datatype definition extracted from the
780 ** original CREATE TABLE statement if the expression is a column. The
781 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
782 ** is considered a column can be complex in the presence of subqueries. The
783 ** result-set expression in all of the following SELECT statements is
784 ** considered a column by this function.
785 **
786 **   SELECT col FROM tbl;
787 **   SELECT (SELECT col FROM tbl;
788 **   SELECT (SELECT col FROM tbl);
789 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
790 **
791 ** The declaration type for any expression other than a column is NULL.
792 */
793 static const char *columnType(
794   NameContext *pNC,
795   Expr *pExpr,
796   const char **pzOriginDb,
797   const char **pzOriginTab,
798   const char **pzOriginCol
799 ){
800   char const *zType = 0;
801   char const *zOriginDb = 0;
802   char const *zOriginTab = 0;
803   char const *zOriginCol = 0;
804   int j;
805   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
806 
807   /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING,
808   ** and LIMIT clauses.  But pExpr originates in the result set of a
809   ** SELECT.  So pExpr can never contain an AS operator.
810   */
811   assert( pExpr->op!=TK_AS );
812 
813   switch( pExpr->op ){
814     case TK_AGG_COLUMN:
815     case TK_COLUMN: {
816       /* The expression is a column. Locate the table the column is being
817       ** extracted from in NameContext.pSrcList. This table may be real
818       ** database table or a subquery.
819       */
820       Table *pTab = 0;            /* Table structure column is extracted from */
821       Select *pS = 0;             /* Select the column is extracted from */
822       int iCol = pExpr->iColumn;  /* Index of column in pTab */
823       while( pNC && !pTab ){
824         SrcList *pTabList = pNC->pSrcList;
825         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
826         if( j<pTabList->nSrc ){
827           pTab = pTabList->a[j].pTab;
828           pS = pTabList->a[j].pSelect;
829         }else{
830           pNC = pNC->pNext;
831         }
832       }
833 
834       if( pTab==0 ){
835         /* FIX ME:
836         ** This can occurs if you have something like "SELECT new.x;" inside
837         ** a trigger.  In other words, if you reference the special "new"
838         ** table in the result set of a select.  We do not have a good way
839         ** to find the actual table type, so call it "TEXT".  This is really
840         ** something of a bug, but I do not know how to fix it.
841         **
842         ** This code does not produce the correct answer - it just prevents
843         ** a segfault.  See ticket #1229.
844         */
845         zType = "TEXT";
846         break;
847       }
848 
849       assert( pTab );
850       if( pS ){
851         /* The "table" is actually a sub-select or a view in the FROM clause
852         ** of the SELECT statement. Return the declaration type and origin
853         ** data for the result-set column of the sub-select.
854         */
855         if( iCol>=0 && iCol<pS->pEList->nExpr ){
856           /* If iCol is less than zero, then the expression requests the
857           ** rowid of the sub-select or view. This expression is legal (see
858           ** test case misc2.2.2) - it always evaluates to NULL.
859           */
860           NameContext sNC;
861           Expr *p = pS->pEList->a[iCol].pExpr;
862           sNC.pSrcList = pS->pSrc;
863           sNC.pNext = 0;
864           sNC.pParse = pNC->pParse;
865           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
866         }
867       }else if( pTab->pSchema ){
868         /* A real table */
869         assert( !pS );
870         if( iCol<0 ) iCol = pTab->iPKey;
871         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
872         if( iCol<0 ){
873           zType = "INTEGER";
874           zOriginCol = "rowid";
875         }else{
876           zType = pTab->aCol[iCol].zType;
877           zOriginCol = pTab->aCol[iCol].zName;
878         }
879         zOriginTab = pTab->zName;
880         if( pNC->pParse ){
881           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
882           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
883         }
884       }
885       break;
886     }
887 #ifndef SQLITE_OMIT_SUBQUERY
888     case TK_SELECT: {
889       /* The expression is a sub-select. Return the declaration type and
890       ** origin info for the single column in the result set of the SELECT
891       ** statement.
892       */
893       NameContext sNC;
894       Select *pS = pExpr->pSelect;
895       Expr *p = pS->pEList->a[0].pExpr;
896       sNC.pSrcList = pS->pSrc;
897       sNC.pNext = pNC;
898       sNC.pParse = pNC->pParse;
899       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
900       break;
901     }
902 #endif
903   }
904 
905   if( pzOriginDb ){
906     assert( pzOriginTab && pzOriginCol );
907     *pzOriginDb = zOriginDb;
908     *pzOriginTab = zOriginTab;
909     *pzOriginCol = zOriginCol;
910   }
911   return zType;
912 }
913 
914 /*
915 ** Generate code that will tell the VDBE the declaration types of columns
916 ** in the result set.
917 */
918 static void generateColumnTypes(
919   Parse *pParse,      /* Parser context */
920   SrcList *pTabList,  /* List of tables */
921   ExprList *pEList    /* Expressions defining the result set */
922 ){
923   Vdbe *v = pParse->pVdbe;
924   int i;
925   NameContext sNC;
926   sNC.pSrcList = pTabList;
927   sNC.pParse = pParse;
928   for(i=0; i<pEList->nExpr; i++){
929     Expr *p = pEList->a[i].pExpr;
930     const char *zOrigDb = 0;
931     const char *zOrigTab = 0;
932     const char *zOrigCol = 0;
933     const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
934 
935     /* The vdbe must make it's own copy of the column-type and other
936     ** column specific strings, in case the schema is reset before this
937     ** virtual machine is deleted.
938     */
939     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT);
940     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT);
941     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT);
942     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT);
943   }
944 }
945 
946 /*
947 ** Generate code that will tell the VDBE the names of columns
948 ** in the result set.  This information is used to provide the
949 ** azCol[] values in the callback.
950 */
951 static void generateColumnNames(
952   Parse *pParse,      /* Parser context */
953   SrcList *pTabList,  /* List of tables */
954   ExprList *pEList    /* Expressions defining the result set */
955 ){
956   Vdbe *v = pParse->pVdbe;
957   int i, j;
958   sqlite3 *db = pParse->db;
959   int fullNames, shortNames;
960 
961 #ifndef SQLITE_OMIT_EXPLAIN
962   /* If this is an EXPLAIN, skip this step */
963   if( pParse->explain ){
964     return;
965   }
966 #endif
967 
968   assert( v!=0 );
969   if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return;
970   pParse->colNamesSet = 1;
971   fullNames = (db->flags & SQLITE_FullColNames)!=0;
972   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
973   sqlite3VdbeSetNumCols(v, pEList->nExpr);
974   for(i=0; i<pEList->nExpr; i++){
975     Expr *p;
976     p = pEList->a[i].pExpr;
977     if( p==0 ) continue;
978     if( pEList->a[i].zName ){
979       char *zName = pEList->a[i].zName;
980       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
981       continue;
982     }
983     if( p->op==TK_COLUMN && pTabList ){
984       Table *pTab;
985       char *zCol;
986       int iCol = p->iColumn;
987       for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
988       assert( j<pTabList->nSrc );
989       pTab = pTabList->a[j].pTab;
990       if( iCol<0 ) iCol = pTab->iPKey;
991       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
992       if( iCol<0 ){
993         zCol = "rowid";
994       }else{
995         zCol = pTab->aCol[iCol].zName;
996       }
997       if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){
998         sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
999       }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
1000         char *zName = 0;
1001         char *zTab;
1002 
1003         zTab = pTabList->a[j].zAlias;
1004         if( fullNames || zTab==0 ) zTab = pTab->zName;
1005         sqlite3SetString(&zName, zTab, ".", zCol, (char*)0);
1006         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC);
1007       }else{
1008         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
1009       }
1010     }else if( p->span.z && p->span.z[0] ){
1011       sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
1012       /* sqlite3VdbeCompressSpace(v, addr); */
1013     }else{
1014       char zName[30];
1015       assert( p->op!=TK_COLUMN || pTabList==0 );
1016       sprintf(zName, "column%d", i+1);
1017       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0);
1018     }
1019   }
1020   generateColumnTypes(pParse, pTabList, pEList);
1021 }
1022 
1023 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1024 /*
1025 ** Name of the connection operator, used for error messages.
1026 */
1027 static const char *selectOpName(int id){
1028   char *z;
1029   switch( id ){
1030     case TK_ALL:       z = "UNION ALL";   break;
1031     case TK_INTERSECT: z = "INTERSECT";   break;
1032     case TK_EXCEPT:    z = "EXCEPT";      break;
1033     default:           z = "UNION";       break;
1034   }
1035   return z;
1036 }
1037 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1038 
1039 /*
1040 ** Forward declaration
1041 */
1042 static int prepSelectStmt(Parse*, Select*);
1043 
1044 /*
1045 ** Given a SELECT statement, generate a Table structure that describes
1046 ** the result set of that SELECT.
1047 */
1048 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
1049   Table *pTab;
1050   int i, j;
1051   ExprList *pEList;
1052   Column *aCol, *pCol;
1053 
1054   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1055   if( prepSelectStmt(pParse, pSelect) ){
1056     return 0;
1057   }
1058   if( sqlite3SelectResolve(pParse, pSelect, 0) ){
1059     return 0;
1060   }
1061   pTab = sqliteMalloc( sizeof(Table) );
1062   if( pTab==0 ){
1063     return 0;
1064   }
1065   pTab->nRef = 1;
1066   pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0;
1067   pEList = pSelect->pEList;
1068   pTab->nCol = pEList->nExpr;
1069   assert( pTab->nCol>0 );
1070   pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol );
1071   for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
1072     Expr *p, *pR;
1073     char *zType;
1074     char *zName;
1075     int nName;
1076     CollSeq *pColl;
1077     int cnt;
1078     NameContext sNC;
1079 
1080     /* Get an appropriate name for the column
1081     */
1082     p = pEList->a[i].pExpr;
1083     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1084     if( (zName = pEList->a[i].zName)!=0 ){
1085       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1086       zName = sqliteStrDup(zName);
1087     }else if( p->op==TK_DOT
1088               && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){
1089       /* For columns of the from A.B use B as the name */
1090       zName = sqlite3MPrintf("%T", &pR->token);
1091     }else if( p->span.z && p->span.z[0] ){
1092       /* Use the original text of the column expression as its name */
1093       zName = sqlite3MPrintf("%T", &p->span);
1094     }else{
1095       /* If all else fails, make up a name */
1096       zName = sqlite3MPrintf("column%d", i+1);
1097     }
1098     sqlite3Dequote(zName);
1099     if( sqlite3MallocFailed() ){
1100       sqliteFree(zName);
1101       sqlite3DeleteTable(0, pTab);
1102       return 0;
1103     }
1104 
1105     /* Make sure the column name is unique.  If the name is not unique,
1106     ** append a integer to the name so that it becomes unique.
1107     */
1108     nName = strlen(zName);
1109     for(j=cnt=0; j<i; j++){
1110       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1111         zName[nName] = 0;
1112         zName = sqlite3MPrintf("%z:%d", zName, ++cnt);
1113         j = -1;
1114         if( zName==0 ) break;
1115       }
1116     }
1117     pCol->zName = zName;
1118 
1119     /* Get the typename, type affinity, and collating sequence for the
1120     ** column.
1121     */
1122     memset(&sNC, 0, sizeof(sNC));
1123     sNC.pSrcList = pSelect->pSrc;
1124     zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0));
1125     pCol->zType = zType;
1126     pCol->affinity = sqlite3ExprAffinity(p);
1127     pColl = sqlite3ExprCollSeq(pParse, p);
1128     if( pColl ){
1129       pCol->zColl = sqliteStrDup(pColl->zName);
1130     }
1131   }
1132   pTab->iPKey = -1;
1133   return pTab;
1134 }
1135 
1136 /*
1137 ** Prepare a SELECT statement for processing by doing the following
1138 ** things:
1139 **
1140 **    (1)  Make sure VDBE cursor numbers have been assigned to every
1141 **         element of the FROM clause.
1142 **
1143 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
1144 **         defines FROM clause.  When views appear in the FROM clause,
1145 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
1146 **         that implements the view.  A copy is made of the view's SELECT
1147 **         statement so that we can freely modify or delete that statement
1148 **         without worrying about messing up the presistent representation
1149 **         of the view.
1150 **
1151 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
1152 **         on joins and the ON and USING clause of joins.
1153 **
1154 **    (4)  Scan the list of columns in the result set (pEList) looking
1155 **         for instances of the "*" operator or the TABLE.* operator.
1156 **         If found, expand each "*" to be every column in every table
1157 **         and TABLE.* to be every column in TABLE.
1158 **
1159 ** Return 0 on success.  If there are problems, leave an error message
1160 ** in pParse and return non-zero.
1161 */
1162 static int prepSelectStmt(Parse *pParse, Select *p){
1163   int i, j, k, rc;
1164   SrcList *pTabList;
1165   ExprList *pEList;
1166   struct SrcList_item *pFrom;
1167 
1168   if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){
1169     return 1;
1170   }
1171   pTabList = p->pSrc;
1172   pEList = p->pEList;
1173 
1174   /* Make sure cursor numbers have been assigned to all entries in
1175   ** the FROM clause of the SELECT statement.
1176   */
1177   sqlite3SrcListAssignCursors(pParse, p->pSrc);
1178 
1179   /* Look up every table named in the FROM clause of the select.  If
1180   ** an entry of the FROM clause is a subquery instead of a table or view,
1181   ** then create a transient table structure to describe the subquery.
1182   */
1183   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1184     Table *pTab;
1185     if( pFrom->pTab!=0 ){
1186       /* This statement has already been prepared.  There is no need
1187       ** to go further. */
1188       assert( i==0 );
1189       return 0;
1190     }
1191     if( pFrom->zName==0 ){
1192 #ifndef SQLITE_OMIT_SUBQUERY
1193       /* A sub-query in the FROM clause of a SELECT */
1194       assert( pFrom->pSelect!=0 );
1195       if( pFrom->zAlias==0 ){
1196         pFrom->zAlias =
1197           sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect);
1198       }
1199       assert( pFrom->pTab==0 );
1200       pFrom->pTab = pTab =
1201         sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
1202       if( pTab==0 ){
1203         return 1;
1204       }
1205       /* The isEphem flag indicates that the Table structure has been
1206       ** dynamically allocated and may be freed at any time.  In other words,
1207       ** pTab is not pointing to a persistent table structure that defines
1208       ** part of the schema. */
1209       pTab->isEphem = 1;
1210 #endif
1211     }else{
1212       /* An ordinary table or view name in the FROM clause */
1213       assert( pFrom->pTab==0 );
1214       pFrom->pTab = pTab =
1215         sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase);
1216       if( pTab==0 ){
1217         return 1;
1218       }
1219       pTab->nRef++;
1220 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
1221       if( pTab->pSelect || IsVirtual(pTab) ){
1222         /* We reach here if the named table is a really a view */
1223         if( sqlite3ViewGetColumnNames(pParse, pTab) ){
1224           return 1;
1225         }
1226         /* If pFrom->pSelect!=0 it means we are dealing with a
1227         ** view within a view.  The SELECT structure has already been
1228         ** copied by the outer view so we can skip the copy step here
1229         ** in the inner view.
1230         */
1231         if( pFrom->pSelect==0 ){
1232           pFrom->pSelect = sqlite3SelectDup(pTab->pSelect);
1233         }
1234       }
1235 #endif
1236     }
1237   }
1238 
1239   /* Process NATURAL keywords, and ON and USING clauses of joins.
1240   */
1241   if( sqliteProcessJoin(pParse, p) ) return 1;
1242 
1243   /* For every "*" that occurs in the column list, insert the names of
1244   ** all columns in all tables.  And for every TABLE.* insert the names
1245   ** of all columns in TABLE.  The parser inserted a special expression
1246   ** with the TK_ALL operator for each "*" that it found in the column list.
1247   ** The following code just has to locate the TK_ALL expressions and expand
1248   ** each one to the list of all columns in all tables.
1249   **
1250   ** The first loop just checks to see if there are any "*" operators
1251   ** that need expanding.
1252   */
1253   for(k=0; k<pEList->nExpr; k++){
1254     Expr *pE = pEList->a[k].pExpr;
1255     if( pE->op==TK_ALL ) break;
1256     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
1257          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
1258   }
1259   rc = 0;
1260   if( k<pEList->nExpr ){
1261     /*
1262     ** If we get here it means the result set contains one or more "*"
1263     ** operators that need to be expanded.  Loop through each expression
1264     ** in the result set and expand them one by one.
1265     */
1266     struct ExprList_item *a = pEList->a;
1267     ExprList *pNew = 0;
1268     int flags = pParse->db->flags;
1269     int longNames = (flags & SQLITE_FullColNames)!=0 &&
1270                       (flags & SQLITE_ShortColNames)==0;
1271 
1272     for(k=0; k<pEList->nExpr; k++){
1273       Expr *pE = a[k].pExpr;
1274       if( pE->op!=TK_ALL &&
1275            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
1276         /* This particular expression does not need to be expanded.
1277         */
1278         pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0);
1279         if( pNew ){
1280           pNew->a[pNew->nExpr-1].zName = a[k].zName;
1281         }else{
1282           rc = 1;
1283         }
1284         a[k].pExpr = 0;
1285         a[k].zName = 0;
1286       }else{
1287         /* This expression is a "*" or a "TABLE.*" and needs to be
1288         ** expanded. */
1289         int tableSeen = 0;      /* Set to 1 when TABLE matches */
1290         char *zTName;            /* text of name of TABLE */
1291         if( pE->op==TK_DOT && pE->pLeft ){
1292           zTName = sqlite3NameFromToken(&pE->pLeft->token);
1293         }else{
1294           zTName = 0;
1295         }
1296         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
1297           Table *pTab = pFrom->pTab;
1298           char *zTabName = pFrom->zAlias;
1299           if( zTabName==0 || zTabName[0]==0 ){
1300             zTabName = pTab->zName;
1301           }
1302           if( zTName && (zTabName==0 || zTabName[0]==0 ||
1303                  sqlite3StrICmp(zTName, zTabName)!=0) ){
1304             continue;
1305           }
1306           tableSeen = 1;
1307           for(j=0; j<pTab->nCol; j++){
1308             Expr *pExpr, *pRight;
1309             char *zName = pTab->aCol[j].zName;
1310 
1311             if( i>0 ){
1312               struct SrcList_item *pLeft = &pTabList->a[i-1];
1313               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
1314                         columnIndex(pLeft->pTab, zName)>=0 ){
1315                 /* In a NATURAL join, omit the join columns from the
1316                 ** table on the right */
1317                 continue;
1318               }
1319               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
1320                 /* In a join with a USING clause, omit columns in the
1321                 ** using clause from the table on the right. */
1322                 continue;
1323               }
1324             }
1325             pRight = sqlite3Expr(TK_ID, 0, 0, 0);
1326             if( pRight==0 ) break;
1327             setToken(&pRight->token, zName);
1328             if( zTabName && (longNames || pTabList->nSrc>1) ){
1329               Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0);
1330               pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0);
1331               if( pExpr==0 ) break;
1332               setToken(&pLeft->token, zTabName);
1333               setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName));
1334               pExpr->span.dyn = 1;
1335               pExpr->token.z = 0;
1336               pExpr->token.n = 0;
1337               pExpr->token.dyn = 0;
1338             }else{
1339               pExpr = pRight;
1340               pExpr->span = pExpr->token;
1341             }
1342             if( longNames ){
1343               pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span);
1344             }else{
1345               pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token);
1346             }
1347           }
1348         }
1349         if( !tableSeen ){
1350           if( zTName ){
1351             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
1352           }else{
1353             sqlite3ErrorMsg(pParse, "no tables specified");
1354           }
1355           rc = 1;
1356         }
1357         sqliteFree(zTName);
1358       }
1359     }
1360     sqlite3ExprListDelete(pEList);
1361     p->pEList = pNew;
1362   }
1363   return rc;
1364 }
1365 
1366 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1367 /*
1368 ** This routine associates entries in an ORDER BY expression list with
1369 ** columns in a result.  For each ORDER BY expression, the opcode of
1370 ** the top-level node is changed to TK_COLUMN and the iColumn value of
1371 ** the top-level node is filled in with column number and the iTable
1372 ** value of the top-level node is filled with iTable parameter.
1373 **
1374 ** If there are prior SELECT clauses, they are processed first.  A match
1375 ** in an earlier SELECT takes precedence over a later SELECT.
1376 **
1377 ** Any entry that does not match is flagged as an error.  The number
1378 ** of errors is returned.
1379 */
1380 static int matchOrderbyToColumn(
1381   Parse *pParse,          /* A place to leave error messages */
1382   Select *pSelect,        /* Match to result columns of this SELECT */
1383   ExprList *pOrderBy,     /* The ORDER BY values to match against columns */
1384   int iTable,             /* Insert this value in iTable */
1385   int mustComplete        /* If TRUE all ORDER BYs must match */
1386 ){
1387   int nErr = 0;
1388   int i, j;
1389   ExprList *pEList;
1390 
1391   if( pSelect==0 || pOrderBy==0 ) return 1;
1392   if( mustComplete ){
1393     for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; }
1394   }
1395   if( prepSelectStmt(pParse, pSelect) ){
1396     return 1;
1397   }
1398   if( pSelect->pPrior ){
1399     if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){
1400       return 1;
1401     }
1402   }
1403   pEList = pSelect->pEList;
1404   for(i=0; i<pOrderBy->nExpr; i++){
1405     Expr *pE = pOrderBy->a[i].pExpr;
1406     int iCol = -1;
1407     if( pOrderBy->a[i].done ) continue;
1408     if( sqlite3ExprIsInteger(pE, &iCol) ){
1409       if( iCol<=0 || iCol>pEList->nExpr ){
1410         sqlite3ErrorMsg(pParse,
1411           "ORDER BY position %d should be between 1 and %d",
1412           iCol, pEList->nExpr);
1413         nErr++;
1414         break;
1415       }
1416       if( !mustComplete ) continue;
1417       iCol--;
1418     }
1419     for(j=0; iCol<0 && j<pEList->nExpr; j++){
1420       if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){
1421         char *zName, *zLabel;
1422         zName = pEList->a[j].zName;
1423         zLabel = sqlite3NameFromToken(&pE->token);
1424         assert( zLabel!=0 );
1425         if( sqlite3StrICmp(zName, zLabel)==0 ){
1426           iCol = j;
1427         }
1428         sqliteFree(zLabel);
1429       }
1430       if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){
1431         iCol = j;
1432       }
1433     }
1434     if( iCol>=0 ){
1435       pE->op = TK_COLUMN;
1436       pE->iColumn = iCol;
1437       pE->iTable = iTable;
1438       pE->iAgg = -1;
1439       pOrderBy->a[i].done = 1;
1440     }
1441     if( iCol<0 && mustComplete ){
1442       sqlite3ErrorMsg(pParse,
1443         "ORDER BY term number %d does not match any result column", i+1);
1444       nErr++;
1445       break;
1446     }
1447   }
1448   return nErr;
1449 }
1450 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */
1451 
1452 /*
1453 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1454 ** If an error occurs, return NULL and leave a message in pParse.
1455 */
1456 Vdbe *sqlite3GetVdbe(Parse *pParse){
1457   Vdbe *v = pParse->pVdbe;
1458   if( v==0 ){
1459     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1460   }
1461   return v;
1462 }
1463 
1464 
1465 /*
1466 ** Compute the iLimit and iOffset fields of the SELECT based on the
1467 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1468 ** that appear in the original SQL statement after the LIMIT and OFFSET
1469 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1470 ** are the integer memory register numbers for counters used to compute
1471 ** the limit and offset.  If there is no limit and/or offset, then
1472 ** iLimit and iOffset are negative.
1473 **
1474 ** This routine changes the values of iLimit and iOffset only if
1475 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1476 ** iOffset should have been preset to appropriate default values
1477 ** (usually but not always -1) prior to calling this routine.
1478 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1479 ** redefined.  The UNION ALL operator uses this property to force
1480 ** the reuse of the same limit and offset registers across multiple
1481 ** SELECT statements.
1482 */
1483 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1484   Vdbe *v = 0;
1485   int iLimit = 0;
1486   int iOffset;
1487   int addr1, addr2;
1488 
1489   /*
1490   ** "LIMIT -1" always shows all rows.  There is some
1491   ** contraversy about what the correct behavior should be.
1492   ** The current implementation interprets "LIMIT 0" to mean
1493   ** no rows.
1494   */
1495   if( p->pLimit ){
1496     p->iLimit = iLimit = pParse->nMem;
1497     pParse->nMem += 2;
1498     v = sqlite3GetVdbe(pParse);
1499     if( v==0 ) return;
1500     sqlite3ExprCode(pParse, p->pLimit);
1501     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1502     sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0);
1503     VdbeComment((v, "# LIMIT counter"));
1504     sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak);
1505   }
1506   if( p->pOffset ){
1507     p->iOffset = iOffset = pParse->nMem++;
1508     v = sqlite3GetVdbe(pParse);
1509     if( v==0 ) return;
1510     sqlite3ExprCode(pParse, p->pOffset);
1511     sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0);
1512     sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0);
1513     VdbeComment((v, "# OFFSET counter"));
1514     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0);
1515     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1516     sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
1517     sqlite3VdbeJumpHere(v, addr1);
1518     if( p->pLimit ){
1519       sqlite3VdbeAddOp(v, OP_Add, 0, 0);
1520     }
1521   }
1522   if( p->pLimit ){
1523     addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0);
1524     sqlite3VdbeAddOp(v, OP_Pop, 1, 0);
1525     sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1);
1526     addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0);
1527     sqlite3VdbeJumpHere(v, addr1);
1528     sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1);
1529     VdbeComment((v, "# LIMIT+OFFSET"));
1530     sqlite3VdbeJumpHere(v, addr2);
1531   }
1532 }
1533 
1534 /*
1535 ** Allocate a virtual index to use for sorting.
1536 */
1537 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){
1538   if( pOrderBy ){
1539     int addr;
1540     assert( pOrderBy->iECursor==0 );
1541     pOrderBy->iECursor = pParse->nTab++;
1542     addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral,
1543                             pOrderBy->iECursor, pOrderBy->nExpr+1);
1544     assert( p->addrOpenEphm[2] == -1 );
1545     p->addrOpenEphm[2] = addr;
1546   }
1547 }
1548 
1549 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1550 /*
1551 ** Return the appropriate collating sequence for the iCol-th column of
1552 ** the result set for the compound-select statement "p".  Return NULL if
1553 ** the column has no default collating sequence.
1554 **
1555 ** The collating sequence for the compound select is taken from the
1556 ** left-most term of the select that has a collating sequence.
1557 */
1558 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1559   CollSeq *pRet;
1560   if( p->pPrior ){
1561     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1562   }else{
1563     pRet = 0;
1564   }
1565   if( pRet==0 ){
1566     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1567   }
1568   return pRet;
1569 }
1570 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1571 
1572 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1573 /*
1574 ** This routine is called to process a query that is really the union
1575 ** or intersection of two or more separate queries.
1576 **
1577 ** "p" points to the right-most of the two queries.  the query on the
1578 ** left is p->pPrior.  The left query could also be a compound query
1579 ** in which case this routine will be called recursively.
1580 **
1581 ** The results of the total query are to be written into a destination
1582 ** of type eDest with parameter iParm.
1583 **
1584 ** Example 1:  Consider a three-way compound SQL statement.
1585 **
1586 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1587 **
1588 ** This statement is parsed up as follows:
1589 **
1590 **     SELECT c FROM t3
1591 **      |
1592 **      `----->  SELECT b FROM t2
1593 **                |
1594 **                `------>  SELECT a FROM t1
1595 **
1596 ** The arrows in the diagram above represent the Select.pPrior pointer.
1597 ** So if this routine is called with p equal to the t3 query, then
1598 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1599 **
1600 ** Notice that because of the way SQLite parses compound SELECTs, the
1601 ** individual selects always group from left to right.
1602 */
1603 static int multiSelect(
1604   Parse *pParse,        /* Parsing context */
1605   Select *p,            /* The right-most of SELECTs to be coded */
1606   int eDest,            /* \___  Store query results as specified */
1607   int iParm,            /* /     by these two parameters.         */
1608   char *aff             /* If eDest is SRT_Union, the affinity string */
1609 ){
1610   int rc = SQLITE_OK;   /* Success code from a subroutine */
1611   Select *pPrior;       /* Another SELECT immediately to our left */
1612   Vdbe *v;              /* Generate code to this VDBE */
1613   int nCol;             /* Number of columns in the result set */
1614   ExprList *pOrderBy;   /* The ORDER BY clause on p */
1615   int aSetP2[2];        /* Set P2 value of these op to number of columns */
1616   int nSetP2 = 0;       /* Number of slots in aSetP2[] used */
1617 
1618   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1619   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1620   */
1621   if( p==0 || p->pPrior==0 ){
1622     rc = 1;
1623     goto multi_select_end;
1624   }
1625   pPrior = p->pPrior;
1626   assert( pPrior->pRightmost!=pPrior );
1627   assert( pPrior->pRightmost==p->pRightmost );
1628   if( pPrior->pOrderBy ){
1629     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1630       selectOpName(p->op));
1631     rc = 1;
1632     goto multi_select_end;
1633   }
1634   if( pPrior->pLimit ){
1635     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1636       selectOpName(p->op));
1637     rc = 1;
1638     goto multi_select_end;
1639   }
1640 
1641   /* Make sure we have a valid query engine.  If not, create a new one.
1642   */
1643   v = sqlite3GetVdbe(pParse);
1644   if( v==0 ){
1645     rc = 1;
1646     goto multi_select_end;
1647   }
1648 
1649   /* Create the destination temporary table if necessary
1650   */
1651   if( eDest==SRT_EphemTab ){
1652     assert( p->pEList );
1653     assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1654     aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0);
1655     eDest = SRT_Table;
1656   }
1657 
1658   /* Generate code for the left and right SELECT statements.
1659   */
1660   pOrderBy = p->pOrderBy;
1661   switch( p->op ){
1662     case TK_ALL: {
1663       if( pOrderBy==0 ){
1664         int addr = 0;
1665         assert( !pPrior->pLimit );
1666         pPrior->pLimit = p->pLimit;
1667         pPrior->pOffset = p->pOffset;
1668         rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff);
1669         p->pLimit = 0;
1670         p->pOffset = 0;
1671         if( rc ){
1672           goto multi_select_end;
1673         }
1674         p->pPrior = 0;
1675         p->iLimit = pPrior->iLimit;
1676         p->iOffset = pPrior->iOffset;
1677         if( p->iLimit>=0 ){
1678           addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0);
1679           VdbeComment((v, "# Jump ahead if LIMIT reached"));
1680         }
1681         rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff);
1682         p->pPrior = pPrior;
1683         if( rc ){
1684           goto multi_select_end;
1685         }
1686         if( addr ){
1687           sqlite3VdbeJumpHere(v, addr);
1688         }
1689         break;
1690       }
1691       /* For UNION ALL ... ORDER BY fall through to the next case */
1692     }
1693     case TK_EXCEPT:
1694     case TK_UNION: {
1695       int unionTab;    /* Cursor number of the temporary table holding result */
1696       int op = 0;      /* One of the SRT_ operations to apply to self */
1697       int priorOp;     /* The SRT_ operation to apply to prior selects */
1698       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1699       int addr;
1700 
1701       priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union;
1702       if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){
1703         /* We can reuse a temporary table generated by a SELECT to our
1704         ** right.
1705         */
1706         unionTab = iParm;
1707       }else{
1708         /* We will need to create our own temporary table to hold the
1709         ** intermediate results.
1710         */
1711         unionTab = pParse->nTab++;
1712         if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){
1713           rc = 1;
1714           goto multi_select_end;
1715         }
1716         addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0);
1717         if( priorOp==SRT_Table ){
1718           assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) );
1719           aSetP2[nSetP2++] = addr;
1720         }else{
1721           assert( p->addrOpenEphm[0] == -1 );
1722           p->addrOpenEphm[0] = addr;
1723           p->pRightmost->usesEphm = 1;
1724         }
1725         createSortingIndex(pParse, p, pOrderBy);
1726         assert( p->pEList );
1727       }
1728 
1729       /* Code the SELECT statements to our left
1730       */
1731       assert( !pPrior->pOrderBy );
1732       rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff);
1733       if( rc ){
1734         goto multi_select_end;
1735       }
1736 
1737       /* Code the current SELECT statement
1738       */
1739       switch( p->op ){
1740          case TK_EXCEPT:  op = SRT_Except;   break;
1741          case TK_UNION:   op = SRT_Union;    break;
1742          case TK_ALL:     op = SRT_Table;    break;
1743       }
1744       p->pPrior = 0;
1745       p->pOrderBy = 0;
1746       p->disallowOrderBy = pOrderBy!=0;
1747       pLimit = p->pLimit;
1748       p->pLimit = 0;
1749       pOffset = p->pOffset;
1750       p->pOffset = 0;
1751       rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff);
1752       p->pPrior = pPrior;
1753       p->pOrderBy = pOrderBy;
1754       sqlite3ExprDelete(p->pLimit);
1755       p->pLimit = pLimit;
1756       p->pOffset = pOffset;
1757       p->iLimit = -1;
1758       p->iOffset = -1;
1759       if( rc ){
1760         goto multi_select_end;
1761       }
1762 
1763 
1764       /* Convert the data in the temporary table into whatever form
1765       ** it is that we currently need.
1766       */
1767       if( eDest!=priorOp || unionTab!=iParm ){
1768         int iCont, iBreak, iStart;
1769         assert( p->pEList );
1770         if( eDest==SRT_Callback ){
1771           Select *pFirst = p;
1772           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1773           generateColumnNames(pParse, 0, pFirst->pEList);
1774         }
1775         iBreak = sqlite3VdbeMakeLabel(v);
1776         iCont = sqlite3VdbeMakeLabel(v);
1777         computeLimitRegisters(pParse, p, iBreak);
1778         sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak);
1779         iStart = sqlite3VdbeCurrentAddr(v);
1780         rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1781                              pOrderBy, -1, eDest, iParm,
1782                              iCont, iBreak, 0);
1783         if( rc ){
1784           rc = 1;
1785           goto multi_select_end;
1786         }
1787         sqlite3VdbeResolveLabel(v, iCont);
1788         sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart);
1789         sqlite3VdbeResolveLabel(v, iBreak);
1790         sqlite3VdbeAddOp(v, OP_Close, unionTab, 0);
1791       }
1792       break;
1793     }
1794     case TK_INTERSECT: {
1795       int tab1, tab2;
1796       int iCont, iBreak, iStart;
1797       Expr *pLimit, *pOffset;
1798       int addr;
1799 
1800       /* INTERSECT is different from the others since it requires
1801       ** two temporary tables.  Hence it has its own case.  Begin
1802       ** by allocating the tables we will need.
1803       */
1804       tab1 = pParse->nTab++;
1805       tab2 = pParse->nTab++;
1806       if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){
1807         rc = 1;
1808         goto multi_select_end;
1809       }
1810       createSortingIndex(pParse, p, pOrderBy);
1811 
1812       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0);
1813       assert( p->addrOpenEphm[0] == -1 );
1814       p->addrOpenEphm[0] = addr;
1815       p->pRightmost->usesEphm = 1;
1816       assert( p->pEList );
1817 
1818       /* Code the SELECTs to our left into temporary table "tab1".
1819       */
1820       rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff);
1821       if( rc ){
1822         goto multi_select_end;
1823       }
1824 
1825       /* Code the current SELECT into temporary table "tab2"
1826       */
1827       addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0);
1828       assert( p->addrOpenEphm[1] == -1 );
1829       p->addrOpenEphm[1] = addr;
1830       p->pPrior = 0;
1831       pLimit = p->pLimit;
1832       p->pLimit = 0;
1833       pOffset = p->pOffset;
1834       p->pOffset = 0;
1835       rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff);
1836       p->pPrior = pPrior;
1837       sqlite3ExprDelete(p->pLimit);
1838       p->pLimit = pLimit;
1839       p->pOffset = pOffset;
1840       if( rc ){
1841         goto multi_select_end;
1842       }
1843 
1844       /* Generate code to take the intersection of the two temporary
1845       ** tables.
1846       */
1847       assert( p->pEList );
1848       if( eDest==SRT_Callback ){
1849         Select *pFirst = p;
1850         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1851         generateColumnNames(pParse, 0, pFirst->pEList);
1852       }
1853       iBreak = sqlite3VdbeMakeLabel(v);
1854       iCont = sqlite3VdbeMakeLabel(v);
1855       computeLimitRegisters(pParse, p, iBreak);
1856       sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak);
1857       iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0);
1858       sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont);
1859       rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1860                              pOrderBy, -1, eDest, iParm,
1861                              iCont, iBreak, 0);
1862       if( rc ){
1863         rc = 1;
1864         goto multi_select_end;
1865       }
1866       sqlite3VdbeResolveLabel(v, iCont);
1867       sqlite3VdbeAddOp(v, OP_Next, tab1, iStart);
1868       sqlite3VdbeResolveLabel(v, iBreak);
1869       sqlite3VdbeAddOp(v, OP_Close, tab2, 0);
1870       sqlite3VdbeAddOp(v, OP_Close, tab1, 0);
1871       break;
1872     }
1873   }
1874 
1875   /* Make sure all SELECTs in the statement have the same number of elements
1876   ** in their result sets.
1877   */
1878   assert( p->pEList && pPrior->pEList );
1879   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1880     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1881       " do not have the same number of result columns", selectOpName(p->op));
1882     rc = 1;
1883     goto multi_select_end;
1884   }
1885 
1886   /* Set the number of columns in temporary tables
1887   */
1888   nCol = p->pEList->nExpr;
1889   while( nSetP2 ){
1890     sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol);
1891   }
1892 
1893   /* Compute collating sequences used by either the ORDER BY clause or
1894   ** by any temporary tables needed to implement the compound select.
1895   ** Attach the KeyInfo structure to all temporary tables.  Invoke the
1896   ** ORDER BY processing if there is an ORDER BY clause.
1897   **
1898   ** This section is run by the right-most SELECT statement only.
1899   ** SELECT statements to the left always skip this part.  The right-most
1900   ** SELECT might also skip this part if it has no ORDER BY clause and
1901   ** no temp tables are required.
1902   */
1903   if( pOrderBy || p->usesEphm ){
1904     int i;                        /* Loop counter */
1905     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1906     Select *pLoop;                /* For looping through SELECT statements */
1907     int nKeyCol;                  /* Number of entries in pKeyInfo->aCol[] */
1908     CollSeq **apColl;
1909     CollSeq **aCopy;
1910 
1911     assert( p->pRightmost==p );
1912     nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0);
1913     pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1));
1914     if( !pKeyInfo ){
1915       rc = SQLITE_NOMEM;
1916       goto multi_select_end;
1917     }
1918 
1919     pKeyInfo->enc = ENC(pParse->db);
1920     pKeyInfo->nField = nCol;
1921 
1922     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1923       *apColl = multiSelectCollSeq(pParse, p, i);
1924       if( 0==*apColl ){
1925         *apColl = pParse->db->pDfltColl;
1926       }
1927     }
1928 
1929     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1930       for(i=0; i<2; i++){
1931         int addr = pLoop->addrOpenEphm[i];
1932         if( addr<0 ){
1933           /* If [0] is unused then [1] is also unused.  So we can
1934           ** always safely abort as soon as the first unused slot is found */
1935           assert( pLoop->addrOpenEphm[1]<0 );
1936           break;
1937         }
1938         sqlite3VdbeChangeP2(v, addr, nCol);
1939         sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO);
1940         pLoop->addrOpenEphm[i] = -1;
1941       }
1942     }
1943 
1944     if( pOrderBy ){
1945       struct ExprList_item *pOTerm = pOrderBy->a;
1946       int nOrderByExpr = pOrderBy->nExpr;
1947       int addr;
1948       u8 *pSortOrder;
1949 
1950       aCopy = &pKeyInfo->aColl[nOrderByExpr];
1951       pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol];
1952       memcpy(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*));
1953       apColl = pKeyInfo->aColl;
1954       for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){
1955         Expr *pExpr = pOTerm->pExpr;
1956         if( (pExpr->flags & EP_ExpCollate) ){
1957           assert( pExpr->pColl!=0 );
1958           *apColl = pExpr->pColl;
1959         }else{
1960           *apColl = aCopy[pExpr->iColumn];
1961         }
1962         *pSortOrder = pOTerm->sortOrder;
1963       }
1964       assert( p->pRightmost==p );
1965       assert( p->addrOpenEphm[2]>=0 );
1966       addr = p->addrOpenEphm[2];
1967       sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2);
1968       pKeyInfo->nField = nOrderByExpr;
1969       sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
1970       pKeyInfo = 0;
1971       generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm);
1972     }
1973 
1974     sqliteFree(pKeyInfo);
1975   }
1976 
1977 multi_select_end:
1978   return rc;
1979 }
1980 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1981 
1982 #ifndef SQLITE_OMIT_VIEW
1983 /*
1984 ** Scan through the expression pExpr.  Replace every reference to
1985 ** a column in table number iTable with a copy of the iColumn-th
1986 ** entry in pEList.  (But leave references to the ROWID column
1987 ** unchanged.)
1988 **
1989 ** This routine is part of the flattening procedure.  A subquery
1990 ** whose result set is defined by pEList appears as entry in the
1991 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
1992 ** FORM clause entry is iTable.  This routine make the necessary
1993 ** changes to pExpr so that it refers directly to the source table
1994 ** of the subquery rather the result set of the subquery.
1995 */
1996 static void substExprList(ExprList*,int,ExprList*);  /* Forward Decl */
1997 static void substSelect(Select *, int, ExprList *);  /* Forward Decl */
1998 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){
1999   if( pExpr==0 ) return;
2000   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2001     if( pExpr->iColumn<0 ){
2002       pExpr->op = TK_NULL;
2003     }else{
2004       Expr *pNew;
2005       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2006       assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
2007       pNew = pEList->a[pExpr->iColumn].pExpr;
2008       assert( pNew!=0 );
2009       pExpr->op = pNew->op;
2010       assert( pExpr->pLeft==0 );
2011       pExpr->pLeft = sqlite3ExprDup(pNew->pLeft);
2012       assert( pExpr->pRight==0 );
2013       pExpr->pRight = sqlite3ExprDup(pNew->pRight);
2014       assert( pExpr->pList==0 );
2015       pExpr->pList = sqlite3ExprListDup(pNew->pList);
2016       pExpr->iTable = pNew->iTable;
2017       pExpr->pTab = pNew->pTab;
2018       pExpr->iColumn = pNew->iColumn;
2019       pExpr->iAgg = pNew->iAgg;
2020       sqlite3TokenCopy(&pExpr->token, &pNew->token);
2021       sqlite3TokenCopy(&pExpr->span, &pNew->span);
2022       pExpr->pSelect = sqlite3SelectDup(pNew->pSelect);
2023       pExpr->flags = pNew->flags;
2024     }
2025   }else{
2026     substExpr(pExpr->pLeft, iTable, pEList);
2027     substExpr(pExpr->pRight, iTable, pEList);
2028     substSelect(pExpr->pSelect, iTable, pEList);
2029     substExprList(pExpr->pList, iTable, pEList);
2030   }
2031 }
2032 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){
2033   int i;
2034   if( pList==0 ) return;
2035   for(i=0; i<pList->nExpr; i++){
2036     substExpr(pList->a[i].pExpr, iTable, pEList);
2037   }
2038 }
2039 static void substSelect(Select *p, int iTable, ExprList *pEList){
2040   if( !p ) return;
2041   substExprList(p->pEList, iTable, pEList);
2042   substExprList(p->pGroupBy, iTable, pEList);
2043   substExprList(p->pOrderBy, iTable, pEList);
2044   substExpr(p->pHaving, iTable, pEList);
2045   substExpr(p->pWhere, iTable, pEList);
2046 }
2047 #endif /* !defined(SQLITE_OMIT_VIEW) */
2048 
2049 #ifndef SQLITE_OMIT_VIEW
2050 /*
2051 ** This routine attempts to flatten subqueries in order to speed
2052 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2053 ** occurs.
2054 **
2055 ** To understand the concept of flattening, consider the following
2056 ** query:
2057 **
2058 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2059 **
2060 ** The default way of implementing this query is to execute the
2061 ** subquery first and store the results in a temporary table, then
2062 ** run the outer query on that temporary table.  This requires two
2063 ** passes over the data.  Furthermore, because the temporary table
2064 ** has no indices, the WHERE clause on the outer query cannot be
2065 ** optimized.
2066 **
2067 ** This routine attempts to rewrite queries such as the above into
2068 ** a single flat select, like this:
2069 **
2070 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2071 **
2072 ** The code generated for this simpification gives the same result
2073 ** but only has to scan the data once.  And because indices might
2074 ** exist on the table t1, a complete scan of the data might be
2075 ** avoided.
2076 **
2077 ** Flattening is only attempted if all of the following are true:
2078 **
2079 **   (1)  The subquery and the outer query do not both use aggregates.
2080 **
2081 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2082 **
2083 **   (3)  The subquery is not the right operand of a left outer join, or
2084 **        the subquery is not itself a join.  (Ticket #306)
2085 **
2086 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2087 **
2088 **   (5)  The subquery is not DISTINCT or the outer query does not use
2089 **        aggregates.
2090 **
2091 **   (6)  The subquery does not use aggregates or the outer query is not
2092 **        DISTINCT.
2093 **
2094 **   (7)  The subquery has a FROM clause.
2095 **
2096 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2097 **
2098 **   (9)  The subquery does not use LIMIT or the outer query does not use
2099 **        aggregates.
2100 **
2101 **  (10)  The subquery does not use aggregates or the outer query does not
2102 **        use LIMIT.
2103 **
2104 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2105 **
2106 **  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
2107 **        subquery has no WHERE clause.  (added by ticket #350)
2108 **
2109 **  (13)  The subquery and outer query do not both use LIMIT
2110 **
2111 **  (14)  The subquery does not use OFFSET
2112 **
2113 ** In this routine, the "p" parameter is a pointer to the outer query.
2114 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2115 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2116 **
2117 ** If flattening is not attempted, this routine is a no-op and returns 0.
2118 ** If flattening is attempted this routine returns 1.
2119 **
2120 ** All of the expression analysis must occur on both the outer query and
2121 ** the subquery before this routine runs.
2122 */
2123 static int flattenSubquery(
2124   Select *p,           /* The parent or outer SELECT statement */
2125   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2126   int isAgg,           /* True if outer SELECT uses aggregate functions */
2127   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2128 ){
2129   Select *pSub;       /* The inner query or "subquery" */
2130   SrcList *pSrc;      /* The FROM clause of the outer query */
2131   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2132   ExprList *pList;    /* The result set of the outer query */
2133   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2134   int i;              /* Loop counter */
2135   Expr *pWhere;                    /* The WHERE clause */
2136   struct SrcList_item *pSubitem;   /* The subquery */
2137 
2138   /* Check to see if flattening is permitted.  Return 0 if not.
2139   */
2140   if( p==0 ) return 0;
2141   pSrc = p->pSrc;
2142   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2143   pSubitem = &pSrc->a[iFrom];
2144   pSub = pSubitem->pSelect;
2145   assert( pSub!=0 );
2146   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2147   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2148   pSubSrc = pSub->pSrc;
2149   assert( pSubSrc );
2150   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2151   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2152   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2153   ** became arbitrary expressions, we were forced to add restrictions (13)
2154   ** and (14). */
2155   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2156   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2157   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2158   if( (pSub->isDistinct || pSub->pLimit)
2159          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2160      return 0;
2161   }
2162   if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
2163   if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
2164      return 0;                                           /* Restriction (11) */
2165   }
2166 
2167   /* Restriction 3:  If the subquery is a join, make sure the subquery is
2168   ** not used as the right operand of an outer join.  Examples of why this
2169   ** is not allowed:
2170   **
2171   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2172   **
2173   ** If we flatten the above, we would get
2174   **
2175   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2176   **
2177   ** which is not at all the same thing.
2178   */
2179   if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
2180     return 0;
2181   }
2182 
2183   /* Restriction 12:  If the subquery is the right operand of a left outer
2184   ** join, make sure the subquery has no WHERE clause.
2185   ** An examples of why this is not allowed:
2186   **
2187   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2188   **
2189   ** If we flatten the above, we would get
2190   **
2191   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2192   **
2193   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2194   ** effectively converts the OUTER JOIN into an INNER JOIN.
2195   */
2196   if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
2197     return 0;
2198   }
2199 
2200   /* If we reach this point, it means flattening is permitted for the
2201   ** iFrom-th entry of the FROM clause in the outer query.
2202   */
2203 
2204   /* Move all of the FROM elements of the subquery into the
2205   ** the FROM clause of the outer query.  Before doing this, remember
2206   ** the cursor number for the original outer query FROM element in
2207   ** iParent.  The iParent cursor will never be used.  Subsequent code
2208   ** will scan expressions looking for iParent references and replace
2209   ** those references with expressions that resolve to the subquery FROM
2210   ** elements we are now copying in.
2211   */
2212   iParent = pSubitem->iCursor;
2213   {
2214     int nSubSrc = pSubSrc->nSrc;
2215     int jointype = pSubitem->jointype;
2216 
2217     sqlite3DeleteTable(0, pSubitem->pTab);
2218     sqliteFree(pSubitem->zDatabase);
2219     sqliteFree(pSubitem->zName);
2220     sqliteFree(pSubitem->zAlias);
2221     if( nSubSrc>1 ){
2222       int extra = nSubSrc - 1;
2223       for(i=1; i<nSubSrc; i++){
2224         pSrc = sqlite3SrcListAppend(pSrc, 0, 0);
2225       }
2226       p->pSrc = pSrc;
2227       for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
2228         pSrc->a[i] = pSrc->a[i-extra];
2229       }
2230     }
2231     for(i=0; i<nSubSrc; i++){
2232       pSrc->a[i+iFrom] = pSubSrc->a[i];
2233       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2234     }
2235     pSrc->a[iFrom].jointype = jointype;
2236   }
2237 
2238   /* Now begin substituting subquery result set expressions for
2239   ** references to the iParent in the outer query.
2240   **
2241   ** Example:
2242   **
2243   **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2244   **   \                     \_____________ subquery __________/          /
2245   **    \_____________________ outer query ______________________________/
2246   **
2247   ** We look at every expression in the outer query and every place we see
2248   ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2249   */
2250   pList = p->pEList;
2251   for(i=0; i<pList->nExpr; i++){
2252     Expr *pExpr;
2253     if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2254       pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n);
2255     }
2256   }
2257   substExprList(p->pEList, iParent, pSub->pEList);
2258   if( isAgg ){
2259     substExprList(p->pGroupBy, iParent, pSub->pEList);
2260     substExpr(p->pHaving, iParent, pSub->pEList);
2261   }
2262   if( pSub->pOrderBy ){
2263     assert( p->pOrderBy==0 );
2264     p->pOrderBy = pSub->pOrderBy;
2265     pSub->pOrderBy = 0;
2266   }else if( p->pOrderBy ){
2267     substExprList(p->pOrderBy, iParent, pSub->pEList);
2268   }
2269   if( pSub->pWhere ){
2270     pWhere = sqlite3ExprDup(pSub->pWhere);
2271   }else{
2272     pWhere = 0;
2273   }
2274   if( subqueryIsAgg ){
2275     assert( p->pHaving==0 );
2276     p->pHaving = p->pWhere;
2277     p->pWhere = pWhere;
2278     substExpr(p->pHaving, iParent, pSub->pEList);
2279     p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving));
2280     assert( p->pGroupBy==0 );
2281     p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy);
2282   }else{
2283     substExpr(p->pWhere, iParent, pSub->pEList);
2284     p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere);
2285   }
2286 
2287   /* The flattened query is distinct if either the inner or the
2288   ** outer query is distinct.
2289   */
2290   p->isDistinct = p->isDistinct || pSub->isDistinct;
2291 
2292   /*
2293   ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2294   **
2295   ** One is tempted to try to add a and b to combine the limits.  But this
2296   ** does not work if either limit is negative.
2297   */
2298   if( pSub->pLimit ){
2299     p->pLimit = pSub->pLimit;
2300     pSub->pLimit = 0;
2301   }
2302 
2303   /* Finially, delete what is left of the subquery and return
2304   ** success.
2305   */
2306   sqlite3SelectDelete(pSub);
2307   return 1;
2308 }
2309 #endif /* SQLITE_OMIT_VIEW */
2310 
2311 /*
2312 ** Analyze the SELECT statement passed in as an argument to see if it
2313 ** is a simple min() or max() query.  If it is and this query can be
2314 ** satisfied using a single seek to the beginning or end of an index,
2315 ** then generate the code for this SELECT and return 1.  If this is not a
2316 ** simple min() or max() query, then return 0;
2317 **
2318 ** A simply min() or max() query looks like this:
2319 **
2320 **    SELECT min(a) FROM table;
2321 **    SELECT max(a) FROM table;
2322 **
2323 ** The query may have only a single table in its FROM argument.  There
2324 ** can be no GROUP BY or HAVING or WHERE clauses.  The result set must
2325 ** be the min() or max() of a single column of the table.  The column
2326 ** in the min() or max() function must be indexed.
2327 **
2328 ** The parameters to this routine are the same as for sqlite3Select().
2329 ** See the header comment on that routine for additional information.
2330 */
2331 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){
2332   Expr *pExpr;
2333   int iCol;
2334   Table *pTab;
2335   Index *pIdx;
2336   int base;
2337   Vdbe *v;
2338   int seekOp;
2339   ExprList *pEList, *pList, eList;
2340   struct ExprList_item eListItem;
2341   SrcList *pSrc;
2342   int brk;
2343   int iDb;
2344 
2345   /* Check to see if this query is a simple min() or max() query.  Return
2346   ** zero if it is  not.
2347   */
2348   if( p->pGroupBy || p->pHaving || p->pWhere ) return 0;
2349   pSrc = p->pSrc;
2350   if( pSrc->nSrc!=1 ) return 0;
2351   pEList = p->pEList;
2352   if( pEList->nExpr!=1 ) return 0;
2353   pExpr = pEList->a[0].pExpr;
2354   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2355   pList = pExpr->pList;
2356   if( pList==0 || pList->nExpr!=1 ) return 0;
2357   if( pExpr->token.n!=3 ) return 0;
2358   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2359     seekOp = OP_Rewind;
2360   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2361     seekOp = OP_Last;
2362   }else{
2363     return 0;
2364   }
2365   pExpr = pList->a[0].pExpr;
2366   if( pExpr->op!=TK_COLUMN ) return 0;
2367   iCol = pExpr->iColumn;
2368   pTab = pSrc->a[0].pTab;
2369 
2370   /* This optimization cannot be used with virtual tables. */
2371   if( IsVirtual(pTab) ) return 0;
2372 
2373   /* If we get to here, it means the query is of the correct form.
2374   ** Check to make sure we have an index and make pIdx point to the
2375   ** appropriate index.  If the min() or max() is on an INTEGER PRIMARY
2376   ** key column, no index is necessary so set pIdx to NULL.  If no
2377   ** usable index is found, return 0.
2378   */
2379   if( iCol<0 ){
2380     pIdx = 0;
2381   }else{
2382     CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr);
2383     if( pColl==0 ) return 0;
2384     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2385       assert( pIdx->nColumn>=1 );
2386       if( pIdx->aiColumn[0]==iCol &&
2387           0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){
2388         break;
2389       }
2390     }
2391     if( pIdx==0 ) return 0;
2392   }
2393 
2394   /* Identify column types if we will be using the callback.  This
2395   ** step is skipped if the output is going to a table or a memory cell.
2396   ** The column names have already been generated in the calling function.
2397   */
2398   v = sqlite3GetVdbe(pParse);
2399   if( v==0 ) return 0;
2400 
2401   /* If the output is destined for a temporary table, open that table.
2402   */
2403   if( eDest==SRT_EphemTab ){
2404     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1);
2405   }
2406 
2407   /* Generating code to find the min or the max.  Basically all we have
2408   ** to do is find the first or the last entry in the chosen index.  If
2409   ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first
2410   ** or last entry in the main table.
2411   */
2412   iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2413   assert( iDb>=0 || pTab->isEphem );
2414   sqlite3CodeVerifySchema(pParse, iDb);
2415   sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2416   base = pSrc->a[0].iCursor;
2417   brk = sqlite3VdbeMakeLabel(v);
2418   computeLimitRegisters(pParse, p, brk);
2419   if( pSrc->a[0].pSelect==0 ){
2420     sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead);
2421   }
2422   if( pIdx==0 ){
2423     sqlite3VdbeAddOp(v, seekOp, base, 0);
2424   }else{
2425     /* Even though the cursor used to open the index here is closed
2426     ** as soon as a single value has been read from it, allocate it
2427     ** using (pParse->nTab++) to prevent the cursor id from being
2428     ** reused. This is important for statements of the form
2429     ** "INSERT INTO x SELECT max() FROM x".
2430     */
2431     int iIdx;
2432     KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
2433     iIdx = pParse->nTab++;
2434     assert( pIdx->pSchema==pTab->pSchema );
2435     sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2436     sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum,
2437         (char*)pKey, P3_KEYINFO_HANDOFF);
2438     if( seekOp==OP_Rewind ){
2439       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
2440       sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0);
2441       seekOp = OP_MoveGt;
2442     }
2443     sqlite3VdbeAddOp(v, seekOp, iIdx, 0);
2444     sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0);
2445     sqlite3VdbeAddOp(v, OP_Close, iIdx, 0);
2446     sqlite3VdbeAddOp(v, OP_MoveGe, base, 0);
2447   }
2448   eList.nExpr = 1;
2449   memset(&eListItem, 0, sizeof(eListItem));
2450   eList.a = &eListItem;
2451   eList.a[0].pExpr = pExpr;
2452   selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0);
2453   sqlite3VdbeResolveLabel(v, brk);
2454   sqlite3VdbeAddOp(v, OP_Close, base, 0);
2455 
2456   return 1;
2457 }
2458 
2459 /*
2460 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
2461 ** the number of errors seen.
2462 **
2463 ** An ORDER BY or GROUP BY is a list of expressions.  If any expression
2464 ** is an integer constant, then that expression is replaced by the
2465 ** corresponding entry in the result set.
2466 */
2467 static int processOrderGroupBy(
2468   NameContext *pNC,     /* Name context of the SELECT statement. */
2469   ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
2470   const char *zType     /* Either "ORDER" or "GROUP", as appropriate */
2471 ){
2472   int i;
2473   ExprList *pEList = pNC->pEList;     /* The result set of the SELECT */
2474   Parse *pParse = pNC->pParse;     /* The result set of the SELECT */
2475   assert( pEList );
2476 
2477   if( pOrderBy==0 ) return 0;
2478   for(i=0; i<pOrderBy->nExpr; i++){
2479     int iCol;
2480     Expr *pE = pOrderBy->a[i].pExpr;
2481     if( sqlite3ExprIsInteger(pE, &iCol) ){
2482       if( iCol>0 && iCol<=pEList->nExpr ){
2483         CollSeq *pColl = pE->pColl;
2484         int flags = pE->flags & EP_ExpCollate;
2485         sqlite3ExprDelete(pE);
2486         pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr);
2487         if( pColl && flags ){
2488           pE->pColl = pColl;
2489           pE->flags |= flags;
2490         }
2491       }else{
2492         sqlite3ErrorMsg(pParse,
2493            "%s BY column number %d out of range - should be "
2494            "between 1 and %d", zType, iCol, pEList->nExpr);
2495         return 1;
2496       }
2497     }
2498     if( sqlite3ExprResolveNames(pNC, pE) ){
2499       return 1;
2500     }
2501   }
2502   return 0;
2503 }
2504 
2505 /*
2506 ** This routine resolves any names used in the result set of the
2507 ** supplied SELECT statement. If the SELECT statement being resolved
2508 ** is a sub-select, then pOuterNC is a pointer to the NameContext
2509 ** of the parent SELECT.
2510 */
2511 int sqlite3SelectResolve(
2512   Parse *pParse,         /* The parser context */
2513   Select *p,             /* The SELECT statement being coded. */
2514   NameContext *pOuterNC  /* The outer name context. May be NULL. */
2515 ){
2516   ExprList *pEList;          /* Result set. */
2517   int i;                     /* For-loop variable used in multiple places */
2518   NameContext sNC;           /* Local name-context */
2519   ExprList *pGroupBy;        /* The group by clause */
2520 
2521   /* If this routine has run before, return immediately. */
2522   if( p->isResolved ){
2523     assert( !pOuterNC );
2524     return SQLITE_OK;
2525   }
2526   p->isResolved = 1;
2527 
2528   /* If there have already been errors, do nothing. */
2529   if( pParse->nErr>0 ){
2530     return SQLITE_ERROR;
2531   }
2532 
2533   /* Prepare the select statement. This call will allocate all cursors
2534   ** required to handle the tables and subqueries in the FROM clause.
2535   */
2536   if( prepSelectStmt(pParse, p) ){
2537     return SQLITE_ERROR;
2538   }
2539 
2540   /* Resolve the expressions in the LIMIT and OFFSET clauses. These
2541   ** are not allowed to refer to any names, so pass an empty NameContext.
2542   */
2543   memset(&sNC, 0, sizeof(sNC));
2544   sNC.pParse = pParse;
2545   if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
2546       sqlite3ExprResolveNames(&sNC, p->pOffset) ){
2547     return SQLITE_ERROR;
2548   }
2549 
2550   /* Set up the local name-context to pass to ExprResolveNames() to
2551   ** resolve the expression-list.
2552   */
2553   sNC.allowAgg = 1;
2554   sNC.pSrcList = p->pSrc;
2555   sNC.pNext = pOuterNC;
2556 
2557   /* Resolve names in the result set. */
2558   pEList = p->pEList;
2559   if( !pEList ) return SQLITE_ERROR;
2560   for(i=0; i<pEList->nExpr; i++){
2561     Expr *pX = pEList->a[i].pExpr;
2562     if( sqlite3ExprResolveNames(&sNC, pX) ){
2563       return SQLITE_ERROR;
2564     }
2565   }
2566 
2567   /* If there are no aggregate functions in the result-set, and no GROUP BY
2568   ** expression, do not allow aggregates in any of the other expressions.
2569   */
2570   assert( !p->isAgg );
2571   pGroupBy = p->pGroupBy;
2572   if( pGroupBy || sNC.hasAgg ){
2573     p->isAgg = 1;
2574   }else{
2575     sNC.allowAgg = 0;
2576   }
2577 
2578   /* If a HAVING clause is present, then there must be a GROUP BY clause.
2579   */
2580   if( p->pHaving && !pGroupBy ){
2581     sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
2582     return SQLITE_ERROR;
2583   }
2584 
2585   /* Add the expression list to the name-context before parsing the
2586   ** other expressions in the SELECT statement. This is so that
2587   ** expressions in the WHERE clause (etc.) can refer to expressions by
2588   ** aliases in the result set.
2589   **
2590   ** Minor point: If this is the case, then the expression will be
2591   ** re-evaluated for each reference to it.
2592   */
2593   sNC.pEList = p->pEList;
2594   if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
2595       sqlite3ExprResolveNames(&sNC, p->pHaving) ||
2596       processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
2597       processOrderGroupBy(&sNC, pGroupBy, "GROUP")
2598   ){
2599     return SQLITE_ERROR;
2600   }
2601 
2602   /* Make sure the GROUP BY clause does not contain aggregate functions.
2603   */
2604   if( pGroupBy ){
2605     struct ExprList_item *pItem;
2606 
2607     for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
2608       if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
2609         sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
2610             "the GROUP BY clause");
2611         return SQLITE_ERROR;
2612       }
2613     }
2614   }
2615 
2616   /* If this is one SELECT of a compound, be sure to resolve names
2617   ** in the other SELECTs.
2618   */
2619   if( p->pPrior ){
2620     return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
2621   }else{
2622     return SQLITE_OK;
2623   }
2624 }
2625 
2626 /*
2627 ** Reset the aggregate accumulator.
2628 **
2629 ** The aggregate accumulator is a set of memory cells that hold
2630 ** intermediate results while calculating an aggregate.  This
2631 ** routine simply stores NULLs in all of those memory cells.
2632 */
2633 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
2634   Vdbe *v = pParse->pVdbe;
2635   int i;
2636   struct AggInfo_func *pFunc;
2637   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
2638     return;
2639   }
2640   for(i=0; i<pAggInfo->nColumn; i++){
2641     sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0);
2642   }
2643   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
2644     sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0);
2645     if( pFunc->iDistinct>=0 ){
2646       Expr *pE = pFunc->pExpr;
2647       if( pE->pList==0 || pE->pList->nExpr!=1 ){
2648         sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
2649            "by an expression");
2650         pFunc->iDistinct = -1;
2651       }else{
2652         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
2653         sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0,
2654                           (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2655       }
2656     }
2657   }
2658 }
2659 
2660 /*
2661 ** Invoke the OP_AggFinalize opcode for every aggregate function
2662 ** in the AggInfo structure.
2663 */
2664 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
2665   Vdbe *v = pParse->pVdbe;
2666   int i;
2667   struct AggInfo_func *pF;
2668   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2669     ExprList *pList = pF->pExpr->pList;
2670     sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0,
2671                       (void*)pF->pFunc, P3_FUNCDEF);
2672   }
2673 }
2674 
2675 /*
2676 ** Update the accumulator memory cells for an aggregate based on
2677 ** the current cursor position.
2678 */
2679 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
2680   Vdbe *v = pParse->pVdbe;
2681   int i;
2682   struct AggInfo_func *pF;
2683   struct AggInfo_col *pC;
2684 
2685   pAggInfo->directMode = 1;
2686   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
2687     int nArg;
2688     int addrNext = 0;
2689     ExprList *pList = pF->pExpr->pList;
2690     if( pList ){
2691       nArg = pList->nExpr;
2692       sqlite3ExprCodeExprList(pParse, pList);
2693     }else{
2694       nArg = 0;
2695     }
2696     if( pF->iDistinct>=0 ){
2697       addrNext = sqlite3VdbeMakeLabel(v);
2698       assert( nArg==1 );
2699       codeDistinct(v, pF->iDistinct, addrNext, 1);
2700     }
2701     if( pF->pFunc->needCollSeq ){
2702       CollSeq *pColl = 0;
2703       struct ExprList_item *pItem;
2704       int j;
2705       assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
2706       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
2707         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
2708       }
2709       if( !pColl ){
2710         pColl = pParse->db->pDfltColl;
2711       }
2712       sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
2713     }
2714     sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
2715     if( addrNext ){
2716       sqlite3VdbeResolveLabel(v, addrNext);
2717     }
2718   }
2719   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
2720     sqlite3ExprCode(pParse, pC->pExpr);
2721     sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
2722   }
2723   pAggInfo->directMode = 0;
2724 }
2725 
2726 
2727 /*
2728 ** Generate code for the given SELECT statement.
2729 **
2730 ** The results are distributed in various ways depending on the
2731 ** value of eDest and iParm.
2732 **
2733 **     eDest Value       Result
2734 **     ------------    -------------------------------------------
2735 **     SRT_Callback    Invoke the callback for each row of the result.
2736 **
2737 **     SRT_Mem         Store first result in memory cell iParm
2738 **
2739 **     SRT_Set         Store results as keys of table iParm.
2740 **
2741 **     SRT_Union       Store results as a key in a temporary table iParm
2742 **
2743 **     SRT_Except      Remove results from the temporary table iParm.
2744 **
2745 **     SRT_Table       Store results in temporary table iParm
2746 **
2747 ** The table above is incomplete.  Additional eDist value have be added
2748 ** since this comment was written.  See the selectInnerLoop() function for
2749 ** a complete listing of the allowed values of eDest and their meanings.
2750 **
2751 ** This routine returns the number of errors.  If any errors are
2752 ** encountered, then an appropriate error message is left in
2753 ** pParse->zErrMsg.
2754 **
2755 ** This routine does NOT free the Select structure passed in.  The
2756 ** calling function needs to do that.
2757 **
2758 ** The pParent, parentTab, and *pParentAgg fields are filled in if this
2759 ** SELECT is a subquery.  This routine may try to combine this SELECT
2760 ** with its parent to form a single flat query.  In so doing, it might
2761 ** change the parent query from a non-aggregate to an aggregate query.
2762 ** For that reason, the pParentAgg flag is passed as a pointer, so it
2763 ** can be changed.
2764 **
2765 ** Example 1:   The meaning of the pParent parameter.
2766 **
2767 **    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
2768 **    \                      \_______ subquery _______/        /
2769 **     \                                                      /
2770 **      \____________________ outer query ___________________/
2771 **
2772 ** This routine is called for the outer query first.   For that call,
2773 ** pParent will be NULL.  During the processing of the outer query, this
2774 ** routine is called recursively to handle the subquery.  For the recursive
2775 ** call, pParent will point to the outer query.  Because the subquery is
2776 ** the second element in a three-way join, the parentTab parameter will
2777 ** be 1 (the 2nd value of a 0-indexed array.)
2778 */
2779 int sqlite3Select(
2780   Parse *pParse,         /* The parser context */
2781   Select *p,             /* The SELECT statement being coded. */
2782   int eDest,             /* How to dispose of the results */
2783   int iParm,             /* A parameter used by the eDest disposal method */
2784   Select *pParent,       /* Another SELECT for which this is a sub-query */
2785   int parentTab,         /* Index in pParent->pSrc of this query */
2786   int *pParentAgg,       /* True if pParent uses aggregate functions */
2787   char *aff              /* If eDest is SRT_Union, the affinity string */
2788 ){
2789   int i, j;              /* Loop counters */
2790   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
2791   Vdbe *v;               /* The virtual machine under construction */
2792   int isAgg;             /* True for select lists like "count(*)" */
2793   ExprList *pEList;      /* List of columns to extract. */
2794   SrcList *pTabList;     /* List of tables to select from */
2795   Expr *pWhere;          /* The WHERE clause.  May be NULL */
2796   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
2797   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
2798   Expr *pHaving;         /* The HAVING clause.  May be NULL */
2799   int isDistinct;        /* True if the DISTINCT keyword is present */
2800   int distinct;          /* Table to use for the distinct set */
2801   int rc = 1;            /* Value to return from this function */
2802   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
2803   AggInfo sAggInfo;      /* Information used by aggregate queries */
2804   int iEnd;              /* Address of the end of the query */
2805 
2806   if( p==0 || sqlite3MallocFailed() || pParse->nErr ){
2807     return 1;
2808   }
2809   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
2810   memset(&sAggInfo, 0, sizeof(sAggInfo));
2811 
2812 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2813   /* If there is are a sequence of queries, do the earlier ones first.
2814   */
2815   if( p->pPrior ){
2816     if( p->pRightmost==0 ){
2817       Select *pLoop;
2818       for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2819         pLoop->pRightmost = p;
2820       }
2821     }
2822     return multiSelect(pParse, p, eDest, iParm, aff);
2823   }
2824 #endif
2825 
2826   pOrderBy = p->pOrderBy;
2827   if( IgnorableOrderby(eDest) ){
2828     p->pOrderBy = 0;
2829   }
2830   if( sqlite3SelectResolve(pParse, p, 0) ){
2831     goto select_end;
2832   }
2833   p->pOrderBy = pOrderBy;
2834 
2835   /* Make local copies of the parameters for this query.
2836   */
2837   pTabList = p->pSrc;
2838   pWhere = p->pWhere;
2839   pGroupBy = p->pGroupBy;
2840   pHaving = p->pHaving;
2841   isAgg = p->isAgg;
2842   isDistinct = p->isDistinct;
2843   pEList = p->pEList;
2844   if( pEList==0 ) goto select_end;
2845 
2846   /*
2847   ** Do not even attempt to generate any code if we have already seen
2848   ** errors before this routine starts.
2849   */
2850   if( pParse->nErr>0 ) goto select_end;
2851 
2852   /* If writing to memory or generating a set
2853   ** only a single column may be output.
2854   */
2855 #ifndef SQLITE_OMIT_SUBQUERY
2856   if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){
2857     sqlite3ErrorMsg(pParse, "only a single result allowed for "
2858        "a SELECT that is part of an expression");
2859     goto select_end;
2860   }
2861 #endif
2862 
2863   /* ORDER BY is ignored for some destinations.
2864   */
2865   if( IgnorableOrderby(eDest) ){
2866     pOrderBy = 0;
2867   }
2868 
2869   /* Begin generating code.
2870   */
2871   v = sqlite3GetVdbe(pParse);
2872   if( v==0 ) goto select_end;
2873 
2874   /* Generate code for all sub-queries in the FROM clause
2875   */
2876 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2877   for(i=0; i<pTabList->nSrc; i++){
2878     const char *zSavedAuthContext = 0;
2879     int needRestoreContext;
2880     struct SrcList_item *pItem = &pTabList->a[i];
2881 
2882     if( pItem->pSelect==0 || pItem->isPopulated ) continue;
2883     if( pItem->zName!=0 ){
2884       zSavedAuthContext = pParse->zAuthContext;
2885       pParse->zAuthContext = pItem->zName;
2886       needRestoreContext = 1;
2887     }else{
2888       needRestoreContext = 0;
2889     }
2890     sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab,
2891                  pItem->iCursor, p, i, &isAgg, 0);
2892     if( needRestoreContext ){
2893       pParse->zAuthContext = zSavedAuthContext;
2894     }
2895     pTabList = p->pSrc;
2896     pWhere = p->pWhere;
2897     if( !IgnorableOrderby(eDest) ){
2898       pOrderBy = p->pOrderBy;
2899     }
2900     pGroupBy = p->pGroupBy;
2901     pHaving = p->pHaving;
2902     isDistinct = p->isDistinct;
2903   }
2904 #endif
2905 
2906   /* Check for the special case of a min() or max() function by itself
2907   ** in the result set.
2908   */
2909   if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){
2910     rc = 0;
2911     goto select_end;
2912   }
2913 
2914   /* Check to see if this is a subquery that can be "flattened" into its parent.
2915   ** If flattening is a possiblity, do so and return immediately.
2916   */
2917 #ifndef SQLITE_OMIT_VIEW
2918   if( pParent && pParentAgg &&
2919       flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){
2920     if( isAgg ) *pParentAgg = 1;
2921     goto select_end;
2922   }
2923 #endif
2924 
2925   /* If there is an ORDER BY clause, then this sorting
2926   ** index might end up being unused if the data can be
2927   ** extracted in pre-sorted order.  If that is the case, then the
2928   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
2929   ** we figure out that the sorting index is not needed.  The addrSortIndex
2930   ** variable is used to facilitate that change.
2931   */
2932   if( pOrderBy ){
2933     KeyInfo *pKeyInfo;
2934     if( pParse->nErr ){
2935       goto select_end;
2936     }
2937     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
2938     pOrderBy->iECursor = pParse->nTab++;
2939     p->addrOpenEphm[2] = addrSortIndex =
2940       sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2,                     (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2941   }else{
2942     addrSortIndex = -1;
2943   }
2944 
2945   /* If the output is destined for a temporary table, open that table.
2946   */
2947   if( eDest==SRT_EphemTab ){
2948     sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr);
2949   }
2950 
2951   /* Set the limiter.
2952   */
2953   iEnd = sqlite3VdbeMakeLabel(v);
2954   computeLimitRegisters(pParse, p, iEnd);
2955 
2956   /* Open a virtual index to use for the distinct set.
2957   */
2958   if( isDistinct ){
2959     KeyInfo *pKeyInfo;
2960     distinct = pParse->nTab++;
2961     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
2962     sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0,
2963                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
2964   }else{
2965     distinct = -1;
2966   }
2967 
2968   /* Aggregate and non-aggregate queries are handled differently */
2969   if( !isAgg && pGroupBy==0 ){
2970     /* This case is for non-aggregate queries
2971     ** Begin the database scan
2972     */
2973     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);
2974     if( pWInfo==0 ) goto select_end;
2975 
2976     /* If sorting index that was created by a prior OP_OpenEphemeral
2977     ** instruction ended up not being needed, then change the OP_OpenEphemeral
2978     ** into an OP_Noop.
2979     */
2980     if( addrSortIndex>=0 && pOrderBy==0 ){
2981       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
2982       p->addrOpenEphm[2] = -1;
2983     }
2984 
2985     /* Use the standard inner loop
2986     */
2987     if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
2988                     iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
2989        goto select_end;
2990     }
2991 
2992     /* End the database scan loop.
2993     */
2994     sqlite3WhereEnd(pWInfo);
2995   }else{
2996     /* This is the processing for aggregate queries */
2997     NameContext sNC;    /* Name context for processing aggregate information */
2998     int iAMem;          /* First Mem address for storing current GROUP BY */
2999     int iBMem;          /* First Mem address for previous GROUP BY */
3000     int iUseFlag;       /* Mem address holding flag indicating that at least
3001                         ** one row of the input to the aggregator has been
3002                         ** processed */
3003     int iAbortFlag;     /* Mem address which causes query abort if positive */
3004     int groupBySort;    /* Rows come from source in GROUP BY order */
3005 
3006 
3007     /* The following variables hold addresses or labels for parts of the
3008     ** virtual machine program we are putting together */
3009     int addrOutputRow;      /* Start of subroutine that outputs a result row */
3010     int addrSetAbort;       /* Set the abort flag and return */
3011     int addrInitializeLoop; /* Start of code that initializes the input loop */
3012     int addrTopOfLoop;      /* Top of the input loop */
3013     int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
3014     int addrProcessRow;     /* Code to process a single input row */
3015     int addrEnd;            /* End of all processing */
3016     int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
3017     int addrReset;          /* Subroutine for resetting the accumulator */
3018 
3019     addrEnd = sqlite3VdbeMakeLabel(v);
3020 
3021     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3022     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3023     ** SELECT statement.
3024     */
3025     memset(&sNC, 0, sizeof(sNC));
3026     sNC.pParse = pParse;
3027     sNC.pSrcList = pTabList;
3028     sNC.pAggInfo = &sAggInfo;
3029     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3030     sAggInfo.pGroupBy = pGroupBy;
3031     if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
3032       goto select_end;
3033     }
3034     if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
3035       goto select_end;
3036     }
3037     if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
3038       goto select_end;
3039     }
3040     sAggInfo.nAccumulator = sAggInfo.nColumn;
3041     for(i=0; i<sAggInfo.nFunc; i++){
3042       if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
3043         goto select_end;
3044       }
3045     }
3046     if( sqlite3MallocFailed() ) goto select_end;
3047 
3048     /* Processing for aggregates with GROUP BY is very different and
3049     ** much more complex tha aggregates without a GROUP BY.
3050     */
3051     if( pGroupBy ){
3052       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3053 
3054       /* Create labels that we will be needing
3055       */
3056 
3057       addrInitializeLoop = sqlite3VdbeMakeLabel(v);
3058       addrGroupByChange = sqlite3VdbeMakeLabel(v);
3059       addrProcessRow = sqlite3VdbeMakeLabel(v);
3060 
3061       /* If there is a GROUP BY clause we might need a sorting index to
3062       ** implement it.  Allocate that sorting index now.  If it turns out
3063       ** that we do not need it after all, the OpenEphemeral instruction
3064       ** will be converted into a Noop.
3065       */
3066       sAggInfo.sortingIdx = pParse->nTab++;
3067       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3068       addrSortingIdx =
3069           sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx,
3070                          sAggInfo.nSortingColumn,
3071                          (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
3072 
3073       /* Initialize memory locations used by GROUP BY aggregate processing
3074       */
3075       iUseFlag = pParse->nMem++;
3076       iAbortFlag = pParse->nMem++;
3077       iAMem = pParse->nMem;
3078       pParse->nMem += pGroupBy->nExpr;
3079       iBMem = pParse->nMem;
3080       pParse->nMem += pGroupBy->nExpr;
3081       sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag);
3082       VdbeComment((v, "# clear abort flag"));
3083       sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag);
3084       VdbeComment((v, "# indicate accumulator empty"));
3085       sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);
3086 
3087       /* Generate a subroutine that outputs a single row of the result
3088       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
3089       ** is less than or equal to zero, the subroutine is a no-op.  If
3090       ** the processing calls for the query to abort, this subroutine
3091       ** increments the iAbortFlag memory location before returning in
3092       ** order to signal the caller to abort.
3093       */
3094       addrSetAbort = sqlite3VdbeCurrentAddr(v);
3095       sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag);
3096       VdbeComment((v, "# set abort flag"));
3097       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3098       addrOutputRow = sqlite3VdbeCurrentAddr(v);
3099       sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
3100       VdbeComment((v, "# Groupby result generator entry point"));
3101       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3102       finalizeAggFunctions(pParse, &sAggInfo);
3103       if( pHaving ){
3104         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
3105       }
3106       rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
3107                            distinct, eDest, iParm,
3108                            addrOutputRow+1, addrSetAbort, aff);
3109       if( rc ){
3110         goto select_end;
3111       }
3112       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3113       VdbeComment((v, "# end groupby result generator"));
3114 
3115       /* Generate a subroutine that will reset the group-by accumulator
3116       */
3117       addrReset = sqlite3VdbeCurrentAddr(v);
3118       resetAccumulator(pParse, &sAggInfo);
3119       sqlite3VdbeAddOp(v, OP_Return, 0, 0);
3120 
3121       /* Begin a loop that will extract all source rows in GROUP BY order.
3122       ** This might involve two separate loops with an OP_Sort in between, or
3123       ** it might be a single loop that uses an index to extract information
3124       ** in the right order to begin with.
3125       */
3126       sqlite3VdbeResolveLabel(v, addrInitializeLoop);
3127       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3128       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
3129       if( pWInfo==0 ) goto select_end;
3130       if( pGroupBy==0 ){
3131         /* The optimizer is able to deliver rows in group by order so
3132         ** we do not have to sort.  The OP_OpenEphemeral table will be
3133         ** cancelled later because we still need to use the pKeyInfo
3134         */
3135         pGroupBy = p->pGroupBy;
3136         groupBySort = 0;
3137       }else{
3138         /* Rows are coming out in undetermined order.  We have to push
3139         ** each row into a sorting index, terminate the first loop,
3140         ** then loop over the sorting index in order to get the output
3141         ** in sorted order
3142         */
3143         groupBySort = 1;
3144         sqlite3ExprCodeExprList(pParse, pGroupBy);
3145         sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
3146         j = pGroupBy->nExpr+1;
3147         for(i=0; i<sAggInfo.nColumn; i++){
3148           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3149           if( pCol->iSorterColumn<j ) continue;
3150           sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable);
3151           j++;
3152         }
3153         sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
3154         sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
3155         sqlite3WhereEnd(pWInfo);
3156         sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3157         VdbeComment((v, "# GROUP BY sort"));
3158         sAggInfo.useSortingIdx = 1;
3159       }
3160 
3161       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3162       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3163       ** Then compare the current GROUP BY terms against the GROUP BY terms
3164       ** from the previous row currently stored in a0, a1, a2...
3165       */
3166       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3167       for(j=0; j<pGroupBy->nExpr; j++){
3168         if( groupBySort ){
3169           sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
3170         }else{
3171           sAggInfo.directMode = 1;
3172           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
3173         }
3174         sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
3175       }
3176       for(j=pGroupBy->nExpr-1; j>=0; j--){
3177         if( j<pGroupBy->nExpr-1 ){
3178           sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
3179         }
3180         sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
3181         if( j==0 ){
3182           sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow);
3183         }else{
3184           sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange);
3185         }
3186         sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
3187       }
3188 
3189       /* Generate code that runs whenever the GROUP BY changes.
3190       ** Change in the GROUP BY are detected by the previous code
3191       ** block.  If there were no changes, this block is skipped.
3192       **
3193       ** This code copies current group by terms in b0,b1,b2,...
3194       ** over to a0,a1,a2.  It then calls the output subroutine
3195       ** and resets the aggregate accumulator registers in preparation
3196       ** for the next GROUP BY batch.
3197       */
3198       sqlite3VdbeResolveLabel(v, addrGroupByChange);
3199       for(j=0; j<pGroupBy->nExpr; j++){
3200         sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j);
3201       }
3202       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3203       VdbeComment((v, "# output one row"));
3204       sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
3205       VdbeComment((v, "# check abort flag"));
3206       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset);
3207       VdbeComment((v, "# reset accumulator"));
3208 
3209       /* Update the aggregate accumulators based on the content of
3210       ** the current row
3211       */
3212       sqlite3VdbeResolveLabel(v, addrProcessRow);
3213       updateAccumulator(pParse, &sAggInfo);
3214       sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag);
3215       VdbeComment((v, "# indicate data in accumulator"));
3216 
3217       /* End of the loop
3218       */
3219       if( groupBySort ){
3220         sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
3221       }else{
3222         sqlite3WhereEnd(pWInfo);
3223         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
3224       }
3225 
3226       /* Output the final row of result
3227       */
3228       sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
3229       VdbeComment((v, "# output final row"));
3230 
3231     } /* endif pGroupBy */
3232     else {
3233       /* This case runs if the aggregate has no GROUP BY clause.  The
3234       ** processing is much simpler since there is only a single row
3235       ** of output.
3236       */
3237       resetAccumulator(pParse, &sAggInfo);
3238       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
3239       if( pWInfo==0 ) goto select_end;
3240       updateAccumulator(pParse, &sAggInfo);
3241       sqlite3WhereEnd(pWInfo);
3242       finalizeAggFunctions(pParse, &sAggInfo);
3243       pOrderBy = 0;
3244       if( pHaving ){
3245         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1);
3246       }
3247       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
3248                       eDest, iParm, addrEnd, addrEnd, aff);
3249     }
3250     sqlite3VdbeResolveLabel(v, addrEnd);
3251 
3252   } /* endif aggregate query */
3253 
3254   /* If there is an ORDER BY clause, then we need to sort the results
3255   ** and send them to the callback one by one.
3256   */
3257   if( pOrderBy ){
3258     generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
3259   }
3260 
3261 #ifndef SQLITE_OMIT_SUBQUERY
3262   /* If this was a subquery, we have now converted the subquery into a
3263   ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
3264   ** this subquery from being evaluated again and to force the use of
3265   ** the temporary table.
3266   */
3267   if( pParent ){
3268     assert( pParent->pSrc->nSrc>parentTab );
3269     assert( pParent->pSrc->a[parentTab].pSelect==p );
3270     pParent->pSrc->a[parentTab].isPopulated = 1;
3271   }
3272 #endif
3273 
3274   /* Jump here to skip this query
3275   */
3276   sqlite3VdbeResolveLabel(v, iEnd);
3277 
3278   /* The SELECT was successfully coded.   Set the return code to 0
3279   ** to indicate no errors.
3280   */
3281   rc = 0;
3282 
3283   /* Control jumps to here if an error is encountered above, or upon
3284   ** successful coding of the SELECT.
3285   */
3286 select_end:
3287 
3288   /* Identify column names if we will be using them in a callback.  This
3289   ** step is skipped if the output is going to some other destination.
3290   */
3291   if( rc==SQLITE_OK && eDest==SRT_Callback ){
3292     generateColumnNames(pParse, pTabList, pEList);
3293   }
3294 
3295   sqliteFree(sAggInfo.aCol);
3296   sqliteFree(sAggInfo.aFunc);
3297   return rc;
3298 }
3299 
3300 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
3301 /*
3302 *******************************************************************************
3303 ** The following code is used for testing and debugging only.  The code
3304 ** that follows does not appear in normal builds.
3305 **
3306 ** These routines are used to print out the content of all or part of a
3307 ** parse structures such as Select or Expr.  Such printouts are useful
3308 ** for helping to understand what is happening inside the code generator
3309 ** during the execution of complex SELECT statements.
3310 **
3311 ** These routine are not called anywhere from within the normal
3312 ** code base.  Then are intended to be called from within the debugger
3313 ** or from temporary "printf" statements inserted for debugging.
3314 */
3315 void sqlite3PrintExpr(Expr *p){
3316   if( p->token.z && p->token.n>0 ){
3317     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
3318   }else{
3319     sqlite3DebugPrintf("(%d", p->op);
3320   }
3321   if( p->pLeft ){
3322     sqlite3DebugPrintf(" ");
3323     sqlite3PrintExpr(p->pLeft);
3324   }
3325   if( p->pRight ){
3326     sqlite3DebugPrintf(" ");
3327     sqlite3PrintExpr(p->pRight);
3328   }
3329   sqlite3DebugPrintf(")");
3330 }
3331 void sqlite3PrintExprList(ExprList *pList){
3332   int i;
3333   for(i=0; i<pList->nExpr; i++){
3334     sqlite3PrintExpr(pList->a[i].pExpr);
3335     if( i<pList->nExpr-1 ){
3336       sqlite3DebugPrintf(", ");
3337     }
3338   }
3339 }
3340 void sqlite3PrintSelect(Select *p, int indent){
3341   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
3342   sqlite3PrintExprList(p->pEList);
3343   sqlite3DebugPrintf("\n");
3344   if( p->pSrc ){
3345     char *zPrefix;
3346     int i;
3347     zPrefix = "FROM";
3348     for(i=0; i<p->pSrc->nSrc; i++){
3349       struct SrcList_item *pItem = &p->pSrc->a[i];
3350       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
3351       zPrefix = "";
3352       if( pItem->pSelect ){
3353         sqlite3DebugPrintf("(\n");
3354         sqlite3PrintSelect(pItem->pSelect, indent+10);
3355         sqlite3DebugPrintf("%*s)", indent+8, "");
3356       }else if( pItem->zName ){
3357         sqlite3DebugPrintf("%s", pItem->zName);
3358       }
3359       if( pItem->pTab ){
3360         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
3361       }
3362       if( pItem->zAlias ){
3363         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
3364       }
3365       if( i<p->pSrc->nSrc-1 ){
3366         sqlite3DebugPrintf(",");
3367       }
3368       sqlite3DebugPrintf("\n");
3369     }
3370   }
3371   if( p->pWhere ){
3372     sqlite3DebugPrintf("%*s WHERE ", indent, "");
3373     sqlite3PrintExpr(p->pWhere);
3374     sqlite3DebugPrintf("\n");
3375   }
3376   if( p->pGroupBy ){
3377     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
3378     sqlite3PrintExprList(p->pGroupBy);
3379     sqlite3DebugPrintf("\n");
3380   }
3381   if( p->pHaving ){
3382     sqlite3DebugPrintf("%*s HAVING ", indent, "");
3383     sqlite3PrintExpr(p->pHaving);
3384     sqlite3DebugPrintf("\n");
3385   }
3386   if( p->pOrderBy ){
3387     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
3388     sqlite3PrintExprList(p->pOrderBy);
3389     sqlite3DebugPrintf("\n");
3390   }
3391 }
3392 /* End of the structure debug printing code
3393 *****************************************************************************/
3394 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
3395