1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.330 2007/03/02 07:27:00 danielk1977 Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(Select *p){ 25 sqlite3ExprListDelete(p->pEList); 26 sqlite3SrcListDelete(p->pSrc); 27 sqlite3ExprDelete(p->pWhere); 28 sqlite3ExprListDelete(p->pGroupBy); 29 sqlite3ExprDelete(p->pHaving); 30 sqlite3ExprListDelete(p->pOrderBy); 31 sqlite3SelectDelete(p->pPrior); 32 sqlite3ExprDelete(p->pLimit); 33 sqlite3ExprDelete(p->pOffset); 34 } 35 36 37 /* 38 ** Allocate a new Select structure and return a pointer to that 39 ** structure. 40 */ 41 Select *sqlite3SelectNew( 42 ExprList *pEList, /* which columns to include in the result */ 43 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 44 Expr *pWhere, /* the WHERE clause */ 45 ExprList *pGroupBy, /* the GROUP BY clause */ 46 Expr *pHaving, /* the HAVING clause */ 47 ExprList *pOrderBy, /* the ORDER BY clause */ 48 int isDistinct, /* true if the DISTINCT keyword is present */ 49 Expr *pLimit, /* LIMIT value. NULL means not used */ 50 Expr *pOffset /* OFFSET value. NULL means no offset */ 51 ){ 52 Select *pNew; 53 Select standin; 54 pNew = sqliteMalloc( sizeof(*pNew) ); 55 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ 56 if( pNew==0 ){ 57 pNew = &standin; 58 memset(pNew, 0, sizeof(*pNew)); 59 } 60 if( pEList==0 ){ 61 pEList = sqlite3ExprListAppend(0, sqlite3Expr(TK_ALL,0,0,0), 0); 62 } 63 pNew->pEList = pEList; 64 pNew->pSrc = pSrc; 65 pNew->pWhere = pWhere; 66 pNew->pGroupBy = pGroupBy; 67 pNew->pHaving = pHaving; 68 pNew->pOrderBy = pOrderBy; 69 pNew->isDistinct = isDistinct; 70 pNew->op = TK_SELECT; 71 assert( pOffset==0 || pLimit!=0 ); 72 pNew->pLimit = pLimit; 73 pNew->pOffset = pOffset; 74 pNew->iLimit = -1; 75 pNew->iOffset = -1; 76 pNew->addrOpenEphm[0] = -1; 77 pNew->addrOpenEphm[1] = -1; 78 pNew->addrOpenEphm[2] = -1; 79 if( pNew==&standin) { 80 clearSelect(pNew); 81 pNew = 0; 82 } 83 return pNew; 84 } 85 86 /* 87 ** Delete the given Select structure and all of its substructures. 88 */ 89 void sqlite3SelectDelete(Select *p){ 90 if( p ){ 91 clearSelect(p); 92 sqliteFree(p); 93 } 94 } 95 96 /* 97 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 98 ** type of join. Return an integer constant that expresses that type 99 ** in terms of the following bit values: 100 ** 101 ** JT_INNER 102 ** JT_CROSS 103 ** JT_OUTER 104 ** JT_NATURAL 105 ** JT_LEFT 106 ** JT_RIGHT 107 ** 108 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 109 ** 110 ** If an illegal or unsupported join type is seen, then still return 111 ** a join type, but put an error in the pParse structure. 112 */ 113 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 114 int jointype = 0; 115 Token *apAll[3]; 116 Token *p; 117 static const struct { 118 const char zKeyword[8]; 119 u8 nChar; 120 u8 code; 121 } keywords[] = { 122 { "natural", 7, JT_NATURAL }, 123 { "left", 4, JT_LEFT|JT_OUTER }, 124 { "right", 5, JT_RIGHT|JT_OUTER }, 125 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 126 { "outer", 5, JT_OUTER }, 127 { "inner", 5, JT_INNER }, 128 { "cross", 5, JT_INNER|JT_CROSS }, 129 }; 130 int i, j; 131 apAll[0] = pA; 132 apAll[1] = pB; 133 apAll[2] = pC; 134 for(i=0; i<3 && apAll[i]; i++){ 135 p = apAll[i]; 136 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ 137 if( p->n==keywords[j].nChar 138 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 139 jointype |= keywords[j].code; 140 break; 141 } 142 } 143 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ 144 jointype |= JT_ERROR; 145 break; 146 } 147 } 148 if( 149 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 150 (jointype & JT_ERROR)!=0 151 ){ 152 const char *zSp1 = " "; 153 const char *zSp2 = " "; 154 if( pB==0 ){ zSp1++; } 155 if( pC==0 ){ zSp2++; } 156 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 157 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 158 jointype = JT_INNER; 159 }else if( jointype & JT_RIGHT ){ 160 sqlite3ErrorMsg(pParse, 161 "RIGHT and FULL OUTER JOINs are not currently supported"); 162 jointype = JT_INNER; 163 } 164 return jointype; 165 } 166 167 /* 168 ** Return the index of a column in a table. Return -1 if the column 169 ** is not contained in the table. 170 */ 171 static int columnIndex(Table *pTab, const char *zCol){ 172 int i; 173 for(i=0; i<pTab->nCol; i++){ 174 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 175 } 176 return -1; 177 } 178 179 /* 180 ** Set the value of a token to a '\000'-terminated string. 181 */ 182 static void setToken(Token *p, const char *z){ 183 p->z = (u8*)z; 184 p->n = z ? strlen(z) : 0; 185 p->dyn = 0; 186 } 187 188 /* 189 ** Create an expression node for an identifier with the name of zName 190 */ 191 Expr *sqlite3CreateIdExpr(const char *zName){ 192 Token dummy; 193 setToken(&dummy, zName); 194 return sqlite3Expr(TK_ID, 0, 0, &dummy); 195 } 196 197 198 /* 199 ** Add a term to the WHERE expression in *ppExpr that requires the 200 ** zCol column to be equal in the two tables pTab1 and pTab2. 201 */ 202 static void addWhereTerm( 203 const char *zCol, /* Name of the column */ 204 const Table *pTab1, /* First table */ 205 const char *zAlias1, /* Alias for first table. May be NULL */ 206 const Table *pTab2, /* Second table */ 207 const char *zAlias2, /* Alias for second table. May be NULL */ 208 int iRightJoinTable, /* VDBE cursor for the right table */ 209 Expr **ppExpr /* Add the equality term to this expression */ 210 ){ 211 Expr *pE1a, *pE1b, *pE1c; 212 Expr *pE2a, *pE2b, *pE2c; 213 Expr *pE; 214 215 pE1a = sqlite3CreateIdExpr(zCol); 216 pE2a = sqlite3CreateIdExpr(zCol); 217 if( zAlias1==0 ){ 218 zAlias1 = pTab1->zName; 219 } 220 pE1b = sqlite3CreateIdExpr(zAlias1); 221 if( zAlias2==0 ){ 222 zAlias2 = pTab2->zName; 223 } 224 pE2b = sqlite3CreateIdExpr(zAlias2); 225 pE1c = sqlite3ExprOrFree(TK_DOT, pE1b, pE1a, 0); 226 pE2c = sqlite3ExprOrFree(TK_DOT, pE2b, pE2a, 0); 227 pE = sqlite3ExprOrFree(TK_EQ, pE1c, pE2c, 0); 228 if( pE ){ 229 ExprSetProperty(pE, EP_FromJoin); 230 pE->iRightJoinTable = iRightJoinTable; 231 } 232 pE = sqlite3ExprAnd(*ppExpr, pE); 233 if( pE ){ 234 *ppExpr = pE; 235 } 236 } 237 238 /* 239 ** Set the EP_FromJoin property on all terms of the given expression. 240 ** And set the Expr.iRightJoinTable to iTable for every term in the 241 ** expression. 242 ** 243 ** The EP_FromJoin property is used on terms of an expression to tell 244 ** the LEFT OUTER JOIN processing logic that this term is part of the 245 ** join restriction specified in the ON or USING clause and not a part 246 ** of the more general WHERE clause. These terms are moved over to the 247 ** WHERE clause during join processing but we need to remember that they 248 ** originated in the ON or USING clause. 249 ** 250 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 251 ** expression depends on table iRightJoinTable even if that table is not 252 ** explicitly mentioned in the expression. That information is needed 253 ** for cases like this: 254 ** 255 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 256 ** 257 ** The where clause needs to defer the handling of the t1.x=5 258 ** term until after the t2 loop of the join. In that way, a 259 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 260 ** defer the handling of t1.x=5, it will be processed immediately 261 ** after the t1 loop and rows with t1.x!=5 will never appear in 262 ** the output, which is incorrect. 263 */ 264 static void setJoinExpr(Expr *p, int iTable){ 265 while( p ){ 266 ExprSetProperty(p, EP_FromJoin); 267 p->iRightJoinTable = iTable; 268 setJoinExpr(p->pLeft, iTable); 269 p = p->pRight; 270 } 271 } 272 273 /* 274 ** This routine processes the join information for a SELECT statement. 275 ** ON and USING clauses are converted into extra terms of the WHERE clause. 276 ** NATURAL joins also create extra WHERE clause terms. 277 ** 278 ** The terms of a FROM clause are contained in the Select.pSrc structure. 279 ** The left most table is the first entry in Select.pSrc. The right-most 280 ** table is the last entry. The join operator is held in the entry to 281 ** the left. Thus entry 0 contains the join operator for the join between 282 ** entries 0 and 1. Any ON or USING clauses associated with the join are 283 ** also attached to the left entry. 284 ** 285 ** This routine returns the number of errors encountered. 286 */ 287 static int sqliteProcessJoin(Parse *pParse, Select *p){ 288 SrcList *pSrc; /* All tables in the FROM clause */ 289 int i, j; /* Loop counters */ 290 struct SrcList_item *pLeft; /* Left table being joined */ 291 struct SrcList_item *pRight; /* Right table being joined */ 292 293 pSrc = p->pSrc; 294 pLeft = &pSrc->a[0]; 295 pRight = &pLeft[1]; 296 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 297 Table *pLeftTab = pLeft->pTab; 298 Table *pRightTab = pRight->pTab; 299 300 if( pLeftTab==0 || pRightTab==0 ) continue; 301 302 /* When the NATURAL keyword is present, add WHERE clause terms for 303 ** every column that the two tables have in common. 304 */ 305 if( pRight->jointype & JT_NATURAL ){ 306 if( pRight->pOn || pRight->pUsing ){ 307 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 308 "an ON or USING clause", 0); 309 return 1; 310 } 311 for(j=0; j<pLeftTab->nCol; j++){ 312 char *zName = pLeftTab->aCol[j].zName; 313 if( columnIndex(pRightTab, zName)>=0 ){ 314 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 315 pRightTab, pRight->zAlias, 316 pRight->iCursor, &p->pWhere); 317 318 } 319 } 320 } 321 322 /* Disallow both ON and USING clauses in the same join 323 */ 324 if( pRight->pOn && pRight->pUsing ){ 325 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 326 "clauses in the same join"); 327 return 1; 328 } 329 330 /* Add the ON clause to the end of the WHERE clause, connected by 331 ** an AND operator. 332 */ 333 if( pRight->pOn ){ 334 setJoinExpr(pRight->pOn, pRight->iCursor); 335 p->pWhere = sqlite3ExprAnd(p->pWhere, pRight->pOn); 336 pRight->pOn = 0; 337 } 338 339 /* Create extra terms on the WHERE clause for each column named 340 ** in the USING clause. Example: If the two tables to be joined are 341 ** A and B and the USING clause names X, Y, and Z, then add this 342 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 343 ** Report an error if any column mentioned in the USING clause is 344 ** not contained in both tables to be joined. 345 */ 346 if( pRight->pUsing ){ 347 IdList *pList = pRight->pUsing; 348 for(j=0; j<pList->nId; j++){ 349 char *zName = pList->a[j].zName; 350 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 351 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 352 "not present in both tables", zName); 353 return 1; 354 } 355 addWhereTerm(zName, pLeftTab, pLeft->zAlias, 356 pRightTab, pRight->zAlias, 357 pRight->iCursor, &p->pWhere); 358 } 359 } 360 } 361 return 0; 362 } 363 364 /* 365 ** Insert code into "v" that will push the record on the top of the 366 ** stack into the sorter. 367 */ 368 static void pushOntoSorter( 369 Parse *pParse, /* Parser context */ 370 ExprList *pOrderBy, /* The ORDER BY clause */ 371 Select *pSelect /* The whole SELECT statement */ 372 ){ 373 Vdbe *v = pParse->pVdbe; 374 sqlite3ExprCodeExprList(pParse, pOrderBy); 375 sqlite3VdbeAddOp(v, OP_Sequence, pOrderBy->iECursor, 0); 376 sqlite3VdbeAddOp(v, OP_Pull, pOrderBy->nExpr + 1, 0); 377 sqlite3VdbeAddOp(v, OP_MakeRecord, pOrderBy->nExpr + 2, 0); 378 sqlite3VdbeAddOp(v, OP_IdxInsert, pOrderBy->iECursor, 0); 379 if( pSelect->iLimit>=0 ){ 380 int addr1, addr2; 381 addr1 = sqlite3VdbeAddOp(v, OP_IfMemZero, pSelect->iLimit+1, 0); 382 sqlite3VdbeAddOp(v, OP_MemIncr, -1, pSelect->iLimit+1); 383 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 384 sqlite3VdbeJumpHere(v, addr1); 385 sqlite3VdbeAddOp(v, OP_Last, pOrderBy->iECursor, 0); 386 sqlite3VdbeAddOp(v, OP_Delete, pOrderBy->iECursor, 0); 387 sqlite3VdbeJumpHere(v, addr2); 388 pSelect->iLimit = -1; 389 } 390 } 391 392 /* 393 ** Add code to implement the OFFSET 394 */ 395 static void codeOffset( 396 Vdbe *v, /* Generate code into this VM */ 397 Select *p, /* The SELECT statement being coded */ 398 int iContinue, /* Jump here to skip the current record */ 399 int nPop /* Number of times to pop stack when jumping */ 400 ){ 401 if( p->iOffset>=0 && iContinue!=0 ){ 402 int addr; 403 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iOffset); 404 addr = sqlite3VdbeAddOp(v, OP_IfMemNeg, p->iOffset, 0); 405 if( nPop>0 ){ 406 sqlite3VdbeAddOp(v, OP_Pop, nPop, 0); 407 } 408 sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue); 409 VdbeComment((v, "# skip OFFSET records")); 410 sqlite3VdbeJumpHere(v, addr); 411 } 412 } 413 414 /* 415 ** Add code that will check to make sure the top N elements of the 416 ** stack are distinct. iTab is a sorting index that holds previously 417 ** seen combinations of the N values. A new entry is made in iTab 418 ** if the current N values are new. 419 ** 420 ** A jump to addrRepeat is made and the N+1 values are popped from the 421 ** stack if the top N elements are not distinct. 422 */ 423 static void codeDistinct( 424 Vdbe *v, /* Generate code into this VM */ 425 int iTab, /* A sorting index used to test for distinctness */ 426 int addrRepeat, /* Jump to here if not distinct */ 427 int N /* The top N elements of the stack must be distinct */ 428 ){ 429 sqlite3VdbeAddOp(v, OP_MakeRecord, -N, 0); 430 sqlite3VdbeAddOp(v, OP_Distinct, iTab, sqlite3VdbeCurrentAddr(v)+3); 431 sqlite3VdbeAddOp(v, OP_Pop, N+1, 0); 432 sqlite3VdbeAddOp(v, OP_Goto, 0, addrRepeat); 433 VdbeComment((v, "# skip indistinct records")); 434 sqlite3VdbeAddOp(v, OP_IdxInsert, iTab, 0); 435 } 436 437 438 /* 439 ** This routine generates the code for the inside of the inner loop 440 ** of a SELECT. 441 ** 442 ** If srcTab and nColumn are both zero, then the pEList expressions 443 ** are evaluated in order to get the data for this row. If nColumn>0 444 ** then data is pulled from srcTab and pEList is used only to get the 445 ** datatypes for each column. 446 */ 447 static int selectInnerLoop( 448 Parse *pParse, /* The parser context */ 449 Select *p, /* The complete select statement being coded */ 450 ExprList *pEList, /* List of values being extracted */ 451 int srcTab, /* Pull data from this table */ 452 int nColumn, /* Number of columns in the source table */ 453 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 454 int distinct, /* If >=0, make sure results are distinct */ 455 int eDest, /* How to dispose of the results */ 456 int iParm, /* An argument to the disposal method */ 457 int iContinue, /* Jump here to continue with next row */ 458 int iBreak, /* Jump here to break out of the inner loop */ 459 char *aff /* affinity string if eDest is SRT_Union */ 460 ){ 461 Vdbe *v = pParse->pVdbe; 462 int i; 463 int hasDistinct; /* True if the DISTINCT keyword is present */ 464 465 if( v==0 ) return 0; 466 assert( pEList!=0 ); 467 468 /* If there was a LIMIT clause on the SELECT statement, then do the check 469 ** to see if this row should be output. 470 */ 471 hasDistinct = distinct>=0 && pEList->nExpr>0; 472 if( pOrderBy==0 && !hasDistinct ){ 473 codeOffset(v, p, iContinue, 0); 474 } 475 476 /* Pull the requested columns. 477 */ 478 if( nColumn>0 ){ 479 for(i=0; i<nColumn; i++){ 480 sqlite3VdbeAddOp(v, OP_Column, srcTab, i); 481 } 482 }else{ 483 nColumn = pEList->nExpr; 484 sqlite3ExprCodeExprList(pParse, pEList); 485 } 486 487 /* If the DISTINCT keyword was present on the SELECT statement 488 ** and this row has been seen before, then do not make this row 489 ** part of the result. 490 */ 491 if( hasDistinct ){ 492 assert( pEList!=0 ); 493 assert( pEList->nExpr==nColumn ); 494 codeDistinct(v, distinct, iContinue, nColumn); 495 if( pOrderBy==0 ){ 496 codeOffset(v, p, iContinue, nColumn); 497 } 498 } 499 500 switch( eDest ){ 501 /* In this mode, write each query result to the key of the temporary 502 ** table iParm. 503 */ 504 #ifndef SQLITE_OMIT_COMPOUND_SELECT 505 case SRT_Union: { 506 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 507 if( aff ){ 508 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 509 } 510 sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0); 511 break; 512 } 513 514 /* Construct a record from the query result, but instead of 515 ** saving that record, use it as a key to delete elements from 516 ** the temporary table iParm. 517 */ 518 case SRT_Except: { 519 int addr; 520 addr = sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 521 sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC); 522 sqlite3VdbeAddOp(v, OP_NotFound, iParm, addr+3); 523 sqlite3VdbeAddOp(v, OP_Delete, iParm, 0); 524 break; 525 } 526 #endif 527 528 /* Store the result as data using a unique key. 529 */ 530 case SRT_Table: 531 case SRT_EphemTab: { 532 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 533 if( pOrderBy ){ 534 pushOntoSorter(pParse, pOrderBy, p); 535 }else{ 536 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 537 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 538 sqlite3VdbeAddOp(v, OP_Insert, iParm, 0); 539 } 540 break; 541 } 542 543 #ifndef SQLITE_OMIT_SUBQUERY 544 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 545 ** then there should be a single item on the stack. Write this 546 ** item into the set table with bogus data. 547 */ 548 case SRT_Set: { 549 int addr1 = sqlite3VdbeCurrentAddr(v); 550 int addr2; 551 552 assert( nColumn==1 ); 553 sqlite3VdbeAddOp(v, OP_NotNull, -1, addr1+3); 554 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 555 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 556 if( pOrderBy ){ 557 /* At first glance you would think we could optimize out the 558 ** ORDER BY in this case since the order of entries in the set 559 ** does not matter. But there might be a LIMIT clause, in which 560 ** case the order does matter */ 561 pushOntoSorter(pParse, pOrderBy, p); 562 }else{ 563 char affinity = (iParm>>16)&0xFF; 564 affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, affinity); 565 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, &affinity, 1); 566 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 567 } 568 sqlite3VdbeJumpHere(v, addr2); 569 break; 570 } 571 572 /* If any row exist in the result set, record that fact and abort. 573 */ 574 case SRT_Exists: { 575 sqlite3VdbeAddOp(v, OP_MemInt, 1, iParm); 576 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 577 /* The LIMIT clause will terminate the loop for us */ 578 break; 579 } 580 581 /* If this is a scalar select that is part of an expression, then 582 ** store the results in the appropriate memory cell and break out 583 ** of the scan loop. 584 */ 585 case SRT_Mem: { 586 assert( nColumn==1 ); 587 if( pOrderBy ){ 588 pushOntoSorter(pParse, pOrderBy, p); 589 }else{ 590 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 591 /* The LIMIT clause will jump out of the loop for us */ 592 } 593 break; 594 } 595 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 596 597 /* Send the data to the callback function or to a subroutine. In the 598 ** case of a subroutine, the subroutine itself is responsible for 599 ** popping the data from the stack. 600 */ 601 case SRT_Subroutine: 602 case SRT_Callback: { 603 if( pOrderBy ){ 604 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 605 pushOntoSorter(pParse, pOrderBy, p); 606 }else if( eDest==SRT_Subroutine ){ 607 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 608 }else{ 609 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 610 } 611 break; 612 } 613 614 #if !defined(SQLITE_OMIT_TRIGGER) 615 /* Discard the results. This is used for SELECT statements inside 616 ** the body of a TRIGGER. The purpose of such selects is to call 617 ** user-defined functions that have side effects. We do not care 618 ** about the actual results of the select. 619 */ 620 default: { 621 assert( eDest==SRT_Discard ); 622 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 623 break; 624 } 625 #endif 626 } 627 628 /* Jump to the end of the loop if the LIMIT is reached. 629 */ 630 if( p->iLimit>=0 && pOrderBy==0 ){ 631 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 632 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, iBreak); 633 } 634 return 0; 635 } 636 637 /* 638 ** Given an expression list, generate a KeyInfo structure that records 639 ** the collating sequence for each expression in that expression list. 640 ** 641 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 642 ** KeyInfo structure is appropriate for initializing a virtual index to 643 ** implement that clause. If the ExprList is the result set of a SELECT 644 ** then the KeyInfo structure is appropriate for initializing a virtual 645 ** index to implement a DISTINCT test. 646 ** 647 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 648 ** function is responsible for seeing that this structure is eventually 649 ** freed. Add the KeyInfo structure to the P3 field of an opcode using 650 ** P3_KEYINFO_HANDOFF is the usual way of dealing with this. 651 */ 652 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 653 sqlite3 *db = pParse->db; 654 int nExpr; 655 KeyInfo *pInfo; 656 struct ExprList_item *pItem; 657 int i; 658 659 nExpr = pList->nExpr; 660 pInfo = sqliteMalloc( sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 661 if( pInfo ){ 662 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 663 pInfo->nField = nExpr; 664 pInfo->enc = ENC(db); 665 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 666 CollSeq *pColl; 667 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 668 if( !pColl ){ 669 pColl = db->pDfltColl; 670 } 671 pInfo->aColl[i] = pColl; 672 pInfo->aSortOrder[i] = pItem->sortOrder; 673 } 674 } 675 return pInfo; 676 } 677 678 679 /* 680 ** If the inner loop was generated using a non-null pOrderBy argument, 681 ** then the results were placed in a sorter. After the loop is terminated 682 ** we need to run the sorter and output the results. The following 683 ** routine generates the code needed to do that. 684 */ 685 static void generateSortTail( 686 Parse *pParse, /* Parsing context */ 687 Select *p, /* The SELECT statement */ 688 Vdbe *v, /* Generate code into this VDBE */ 689 int nColumn, /* Number of columns of data */ 690 int eDest, /* Write the sorted results here */ 691 int iParm /* Optional parameter associated with eDest */ 692 ){ 693 int brk = sqlite3VdbeMakeLabel(v); 694 int cont = sqlite3VdbeMakeLabel(v); 695 int addr; 696 int iTab; 697 int pseudoTab; 698 ExprList *pOrderBy = p->pOrderBy; 699 700 iTab = pOrderBy->iECursor; 701 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 702 pseudoTab = pParse->nTab++; 703 sqlite3VdbeAddOp(v, OP_OpenPseudo, pseudoTab, 0); 704 sqlite3VdbeAddOp(v, OP_SetNumColumns, pseudoTab, nColumn); 705 } 706 addr = 1 + sqlite3VdbeAddOp(v, OP_Sort, iTab, brk); 707 codeOffset(v, p, cont, 0); 708 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 709 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 710 } 711 sqlite3VdbeAddOp(v, OP_Column, iTab, pOrderBy->nExpr + 1); 712 switch( eDest ){ 713 case SRT_Table: 714 case SRT_EphemTab: { 715 sqlite3VdbeAddOp(v, OP_NewRowid, iParm, 0); 716 sqlite3VdbeAddOp(v, OP_Pull, 1, 0); 717 sqlite3VdbeAddOp(v, OP_Insert, iParm, 0); 718 break; 719 } 720 #ifndef SQLITE_OMIT_SUBQUERY 721 case SRT_Set: { 722 assert( nColumn==1 ); 723 sqlite3VdbeAddOp(v, OP_NotNull, -1, sqlite3VdbeCurrentAddr(v)+3); 724 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 725 sqlite3VdbeAddOp(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+3); 726 sqlite3VdbeOp3(v, OP_MakeRecord, 1, 0, "c", P3_STATIC); 727 sqlite3VdbeAddOp(v, OP_IdxInsert, (iParm&0x0000FFFF), 0); 728 break; 729 } 730 case SRT_Mem: { 731 assert( nColumn==1 ); 732 sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1); 733 /* The LIMIT clause will terminate the loop for us */ 734 break; 735 } 736 #endif 737 case SRT_Callback: 738 case SRT_Subroutine: { 739 int i; 740 sqlite3VdbeAddOp(v, OP_Insert, pseudoTab, 0); 741 for(i=0; i<nColumn; i++){ 742 sqlite3VdbeAddOp(v, OP_Column, pseudoTab, i); 743 } 744 if( eDest==SRT_Callback ){ 745 sqlite3VdbeAddOp(v, OP_Callback, nColumn, 0); 746 }else{ 747 sqlite3VdbeAddOp(v, OP_Gosub, 0, iParm); 748 } 749 break; 750 } 751 default: { 752 /* Do nothing */ 753 break; 754 } 755 } 756 757 /* Jump to the end of the loop when the LIMIT is reached 758 */ 759 if( p->iLimit>=0 ){ 760 sqlite3VdbeAddOp(v, OP_MemIncr, -1, p->iLimit); 761 sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, brk); 762 } 763 764 /* The bottom of the loop 765 */ 766 sqlite3VdbeResolveLabel(v, cont); 767 sqlite3VdbeAddOp(v, OP_Next, iTab, addr); 768 sqlite3VdbeResolveLabel(v, brk); 769 if( eDest==SRT_Callback || eDest==SRT_Subroutine ){ 770 sqlite3VdbeAddOp(v, OP_Close, pseudoTab, 0); 771 } 772 773 } 774 775 /* 776 ** Return a pointer to a string containing the 'declaration type' of the 777 ** expression pExpr. The string may be treated as static by the caller. 778 ** 779 ** The declaration type is the exact datatype definition extracted from the 780 ** original CREATE TABLE statement if the expression is a column. The 781 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 782 ** is considered a column can be complex in the presence of subqueries. The 783 ** result-set expression in all of the following SELECT statements is 784 ** considered a column by this function. 785 ** 786 ** SELECT col FROM tbl; 787 ** SELECT (SELECT col FROM tbl; 788 ** SELECT (SELECT col FROM tbl); 789 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 790 ** 791 ** The declaration type for any expression other than a column is NULL. 792 */ 793 static const char *columnType( 794 NameContext *pNC, 795 Expr *pExpr, 796 const char **pzOriginDb, 797 const char **pzOriginTab, 798 const char **pzOriginCol 799 ){ 800 char const *zType = 0; 801 char const *zOriginDb = 0; 802 char const *zOriginTab = 0; 803 char const *zOriginCol = 0; 804 int j; 805 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 806 807 /* The TK_AS operator can only occur in ORDER BY, GROUP BY, HAVING, 808 ** and LIMIT clauses. But pExpr originates in the result set of a 809 ** SELECT. So pExpr can never contain an AS operator. 810 */ 811 assert( pExpr->op!=TK_AS ); 812 813 switch( pExpr->op ){ 814 case TK_AGG_COLUMN: 815 case TK_COLUMN: { 816 /* The expression is a column. Locate the table the column is being 817 ** extracted from in NameContext.pSrcList. This table may be real 818 ** database table or a subquery. 819 */ 820 Table *pTab = 0; /* Table structure column is extracted from */ 821 Select *pS = 0; /* Select the column is extracted from */ 822 int iCol = pExpr->iColumn; /* Index of column in pTab */ 823 while( pNC && !pTab ){ 824 SrcList *pTabList = pNC->pSrcList; 825 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 826 if( j<pTabList->nSrc ){ 827 pTab = pTabList->a[j].pTab; 828 pS = pTabList->a[j].pSelect; 829 }else{ 830 pNC = pNC->pNext; 831 } 832 } 833 834 if( pTab==0 ){ 835 /* FIX ME: 836 ** This can occurs if you have something like "SELECT new.x;" inside 837 ** a trigger. In other words, if you reference the special "new" 838 ** table in the result set of a select. We do not have a good way 839 ** to find the actual table type, so call it "TEXT". This is really 840 ** something of a bug, but I do not know how to fix it. 841 ** 842 ** This code does not produce the correct answer - it just prevents 843 ** a segfault. See ticket #1229. 844 */ 845 zType = "TEXT"; 846 break; 847 } 848 849 assert( pTab ); 850 if( pS ){ 851 /* The "table" is actually a sub-select or a view in the FROM clause 852 ** of the SELECT statement. Return the declaration type and origin 853 ** data for the result-set column of the sub-select. 854 */ 855 if( iCol>=0 && iCol<pS->pEList->nExpr ){ 856 /* If iCol is less than zero, then the expression requests the 857 ** rowid of the sub-select or view. This expression is legal (see 858 ** test case misc2.2.2) - it always evaluates to NULL. 859 */ 860 NameContext sNC; 861 Expr *p = pS->pEList->a[iCol].pExpr; 862 sNC.pSrcList = pS->pSrc; 863 sNC.pNext = 0; 864 sNC.pParse = pNC->pParse; 865 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 866 } 867 }else if( pTab->pSchema ){ 868 /* A real table */ 869 assert( !pS ); 870 if( iCol<0 ) iCol = pTab->iPKey; 871 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 872 if( iCol<0 ){ 873 zType = "INTEGER"; 874 zOriginCol = "rowid"; 875 }else{ 876 zType = pTab->aCol[iCol].zType; 877 zOriginCol = pTab->aCol[iCol].zName; 878 } 879 zOriginTab = pTab->zName; 880 if( pNC->pParse ){ 881 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 882 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 883 } 884 } 885 break; 886 } 887 #ifndef SQLITE_OMIT_SUBQUERY 888 case TK_SELECT: { 889 /* The expression is a sub-select. Return the declaration type and 890 ** origin info for the single column in the result set of the SELECT 891 ** statement. 892 */ 893 NameContext sNC; 894 Select *pS = pExpr->pSelect; 895 Expr *p = pS->pEList->a[0].pExpr; 896 sNC.pSrcList = pS->pSrc; 897 sNC.pNext = pNC; 898 sNC.pParse = pNC->pParse; 899 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 900 break; 901 } 902 #endif 903 } 904 905 if( pzOriginDb ){ 906 assert( pzOriginTab && pzOriginCol ); 907 *pzOriginDb = zOriginDb; 908 *pzOriginTab = zOriginTab; 909 *pzOriginCol = zOriginCol; 910 } 911 return zType; 912 } 913 914 /* 915 ** Generate code that will tell the VDBE the declaration types of columns 916 ** in the result set. 917 */ 918 static void generateColumnTypes( 919 Parse *pParse, /* Parser context */ 920 SrcList *pTabList, /* List of tables */ 921 ExprList *pEList /* Expressions defining the result set */ 922 ){ 923 Vdbe *v = pParse->pVdbe; 924 int i; 925 NameContext sNC; 926 sNC.pSrcList = pTabList; 927 sNC.pParse = pParse; 928 for(i=0; i<pEList->nExpr; i++){ 929 Expr *p = pEList->a[i].pExpr; 930 const char *zOrigDb = 0; 931 const char *zOrigTab = 0; 932 const char *zOrigCol = 0; 933 const char *zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 934 935 /* The vdbe must make it's own copy of the column-type and other 936 ** column specific strings, in case the schema is reset before this 937 ** virtual machine is deleted. 938 */ 939 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P3_TRANSIENT); 940 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P3_TRANSIENT); 941 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P3_TRANSIENT); 942 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P3_TRANSIENT); 943 } 944 } 945 946 /* 947 ** Generate code that will tell the VDBE the names of columns 948 ** in the result set. This information is used to provide the 949 ** azCol[] values in the callback. 950 */ 951 static void generateColumnNames( 952 Parse *pParse, /* Parser context */ 953 SrcList *pTabList, /* List of tables */ 954 ExprList *pEList /* Expressions defining the result set */ 955 ){ 956 Vdbe *v = pParse->pVdbe; 957 int i, j; 958 sqlite3 *db = pParse->db; 959 int fullNames, shortNames; 960 961 #ifndef SQLITE_OMIT_EXPLAIN 962 /* If this is an EXPLAIN, skip this step */ 963 if( pParse->explain ){ 964 return; 965 } 966 #endif 967 968 assert( v!=0 ); 969 if( pParse->colNamesSet || v==0 || sqlite3MallocFailed() ) return; 970 pParse->colNamesSet = 1; 971 fullNames = (db->flags & SQLITE_FullColNames)!=0; 972 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 973 sqlite3VdbeSetNumCols(v, pEList->nExpr); 974 for(i=0; i<pEList->nExpr; i++){ 975 Expr *p; 976 p = pEList->a[i].pExpr; 977 if( p==0 ) continue; 978 if( pEList->a[i].zName ){ 979 char *zName = pEList->a[i].zName; 980 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); 981 continue; 982 } 983 if( p->op==TK_COLUMN && pTabList ){ 984 Table *pTab; 985 char *zCol; 986 int iCol = p->iColumn; 987 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} 988 assert( j<pTabList->nSrc ); 989 pTab = pTabList->a[j].pTab; 990 if( iCol<0 ) iCol = pTab->iPKey; 991 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 992 if( iCol<0 ){ 993 zCol = "rowid"; 994 }else{ 995 zCol = pTab->aCol[iCol].zName; 996 } 997 if( !shortNames && !fullNames && p->span.z && p->span.z[0] ){ 998 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 999 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ 1000 char *zName = 0; 1001 char *zTab; 1002 1003 zTab = pTabList->a[j].zAlias; 1004 if( fullNames || zTab==0 ) zTab = pTab->zName; 1005 sqlite3SetString(&zName, zTab, ".", zCol, (char*)0); 1006 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P3_DYNAMIC); 1007 }else{ 1008 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); 1009 } 1010 }else if( p->span.z && p->span.z[0] ){ 1011 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); 1012 /* sqlite3VdbeCompressSpace(v, addr); */ 1013 }else{ 1014 char zName[30]; 1015 assert( p->op!=TK_COLUMN || pTabList==0 ); 1016 sprintf(zName, "column%d", i+1); 1017 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, 0); 1018 } 1019 } 1020 generateColumnTypes(pParse, pTabList, pEList); 1021 } 1022 1023 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1024 /* 1025 ** Name of the connection operator, used for error messages. 1026 */ 1027 static const char *selectOpName(int id){ 1028 char *z; 1029 switch( id ){ 1030 case TK_ALL: z = "UNION ALL"; break; 1031 case TK_INTERSECT: z = "INTERSECT"; break; 1032 case TK_EXCEPT: z = "EXCEPT"; break; 1033 default: z = "UNION"; break; 1034 } 1035 return z; 1036 } 1037 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1038 1039 /* 1040 ** Forward declaration 1041 */ 1042 static int prepSelectStmt(Parse*, Select*); 1043 1044 /* 1045 ** Given a SELECT statement, generate a Table structure that describes 1046 ** the result set of that SELECT. 1047 */ 1048 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ 1049 Table *pTab; 1050 int i, j; 1051 ExprList *pEList; 1052 Column *aCol, *pCol; 1053 1054 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1055 if( prepSelectStmt(pParse, pSelect) ){ 1056 return 0; 1057 } 1058 if( sqlite3SelectResolve(pParse, pSelect, 0) ){ 1059 return 0; 1060 } 1061 pTab = sqliteMalloc( sizeof(Table) ); 1062 if( pTab==0 ){ 1063 return 0; 1064 } 1065 pTab->nRef = 1; 1066 pTab->zName = zTabName ? sqliteStrDup(zTabName) : 0; 1067 pEList = pSelect->pEList; 1068 pTab->nCol = pEList->nExpr; 1069 assert( pTab->nCol>0 ); 1070 pTab->aCol = aCol = sqliteMalloc( sizeof(pTab->aCol[0])*pTab->nCol ); 1071 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ 1072 Expr *p, *pR; 1073 char *zType; 1074 char *zName; 1075 int nName; 1076 CollSeq *pColl; 1077 int cnt; 1078 NameContext sNC; 1079 1080 /* Get an appropriate name for the column 1081 */ 1082 p = pEList->a[i].pExpr; 1083 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1084 if( (zName = pEList->a[i].zName)!=0 ){ 1085 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1086 zName = sqliteStrDup(zName); 1087 }else if( p->op==TK_DOT 1088 && (pR=p->pRight)!=0 && pR->token.z && pR->token.z[0] ){ 1089 /* For columns of the from A.B use B as the name */ 1090 zName = sqlite3MPrintf("%T", &pR->token); 1091 }else if( p->span.z && p->span.z[0] ){ 1092 /* Use the original text of the column expression as its name */ 1093 zName = sqlite3MPrintf("%T", &p->span); 1094 }else{ 1095 /* If all else fails, make up a name */ 1096 zName = sqlite3MPrintf("column%d", i+1); 1097 } 1098 sqlite3Dequote(zName); 1099 if( sqlite3MallocFailed() ){ 1100 sqliteFree(zName); 1101 sqlite3DeleteTable(0, pTab); 1102 return 0; 1103 } 1104 1105 /* Make sure the column name is unique. If the name is not unique, 1106 ** append a integer to the name so that it becomes unique. 1107 */ 1108 nName = strlen(zName); 1109 for(j=cnt=0; j<i; j++){ 1110 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1111 zName[nName] = 0; 1112 zName = sqlite3MPrintf("%z:%d", zName, ++cnt); 1113 j = -1; 1114 if( zName==0 ) break; 1115 } 1116 } 1117 pCol->zName = zName; 1118 1119 /* Get the typename, type affinity, and collating sequence for the 1120 ** column. 1121 */ 1122 memset(&sNC, 0, sizeof(sNC)); 1123 sNC.pSrcList = pSelect->pSrc; 1124 zType = sqliteStrDup(columnType(&sNC, p, 0, 0, 0)); 1125 pCol->zType = zType; 1126 pCol->affinity = sqlite3ExprAffinity(p); 1127 pColl = sqlite3ExprCollSeq(pParse, p); 1128 if( pColl ){ 1129 pCol->zColl = sqliteStrDup(pColl->zName); 1130 } 1131 } 1132 pTab->iPKey = -1; 1133 return pTab; 1134 } 1135 1136 /* 1137 ** Prepare a SELECT statement for processing by doing the following 1138 ** things: 1139 ** 1140 ** (1) Make sure VDBE cursor numbers have been assigned to every 1141 ** element of the FROM clause. 1142 ** 1143 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 1144 ** defines FROM clause. When views appear in the FROM clause, 1145 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 1146 ** that implements the view. A copy is made of the view's SELECT 1147 ** statement so that we can freely modify or delete that statement 1148 ** without worrying about messing up the presistent representation 1149 ** of the view. 1150 ** 1151 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 1152 ** on joins and the ON and USING clause of joins. 1153 ** 1154 ** (4) Scan the list of columns in the result set (pEList) looking 1155 ** for instances of the "*" operator or the TABLE.* operator. 1156 ** If found, expand each "*" to be every column in every table 1157 ** and TABLE.* to be every column in TABLE. 1158 ** 1159 ** Return 0 on success. If there are problems, leave an error message 1160 ** in pParse and return non-zero. 1161 */ 1162 static int prepSelectStmt(Parse *pParse, Select *p){ 1163 int i, j, k, rc; 1164 SrcList *pTabList; 1165 ExprList *pEList; 1166 struct SrcList_item *pFrom; 1167 1168 if( p==0 || p->pSrc==0 || sqlite3MallocFailed() ){ 1169 return 1; 1170 } 1171 pTabList = p->pSrc; 1172 pEList = p->pEList; 1173 1174 /* Make sure cursor numbers have been assigned to all entries in 1175 ** the FROM clause of the SELECT statement. 1176 */ 1177 sqlite3SrcListAssignCursors(pParse, p->pSrc); 1178 1179 /* Look up every table named in the FROM clause of the select. If 1180 ** an entry of the FROM clause is a subquery instead of a table or view, 1181 ** then create a transient table structure to describe the subquery. 1182 */ 1183 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1184 Table *pTab; 1185 if( pFrom->pTab!=0 ){ 1186 /* This statement has already been prepared. There is no need 1187 ** to go further. */ 1188 assert( i==0 ); 1189 return 0; 1190 } 1191 if( pFrom->zName==0 ){ 1192 #ifndef SQLITE_OMIT_SUBQUERY 1193 /* A sub-query in the FROM clause of a SELECT */ 1194 assert( pFrom->pSelect!=0 ); 1195 if( pFrom->zAlias==0 ){ 1196 pFrom->zAlias = 1197 sqlite3MPrintf("sqlite_subquery_%p_", (void*)pFrom->pSelect); 1198 } 1199 assert( pFrom->pTab==0 ); 1200 pFrom->pTab = pTab = 1201 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); 1202 if( pTab==0 ){ 1203 return 1; 1204 } 1205 /* The isEphem flag indicates that the Table structure has been 1206 ** dynamically allocated and may be freed at any time. In other words, 1207 ** pTab is not pointing to a persistent table structure that defines 1208 ** part of the schema. */ 1209 pTab->isEphem = 1; 1210 #endif 1211 }else{ 1212 /* An ordinary table or view name in the FROM clause */ 1213 assert( pFrom->pTab==0 ); 1214 pFrom->pTab = pTab = 1215 sqlite3LocateTable(pParse,pFrom->zName,pFrom->zDatabase); 1216 if( pTab==0 ){ 1217 return 1; 1218 } 1219 pTab->nRef++; 1220 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 1221 if( pTab->pSelect || IsVirtual(pTab) ){ 1222 /* We reach here if the named table is a really a view */ 1223 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 1224 return 1; 1225 } 1226 /* If pFrom->pSelect!=0 it means we are dealing with a 1227 ** view within a view. The SELECT structure has already been 1228 ** copied by the outer view so we can skip the copy step here 1229 ** in the inner view. 1230 */ 1231 if( pFrom->pSelect==0 ){ 1232 pFrom->pSelect = sqlite3SelectDup(pTab->pSelect); 1233 } 1234 } 1235 #endif 1236 } 1237 } 1238 1239 /* Process NATURAL keywords, and ON and USING clauses of joins. 1240 */ 1241 if( sqliteProcessJoin(pParse, p) ) return 1; 1242 1243 /* For every "*" that occurs in the column list, insert the names of 1244 ** all columns in all tables. And for every TABLE.* insert the names 1245 ** of all columns in TABLE. The parser inserted a special expression 1246 ** with the TK_ALL operator for each "*" that it found in the column list. 1247 ** The following code just has to locate the TK_ALL expressions and expand 1248 ** each one to the list of all columns in all tables. 1249 ** 1250 ** The first loop just checks to see if there are any "*" operators 1251 ** that need expanding. 1252 */ 1253 for(k=0; k<pEList->nExpr; k++){ 1254 Expr *pE = pEList->a[k].pExpr; 1255 if( pE->op==TK_ALL ) break; 1256 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 1257 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 1258 } 1259 rc = 0; 1260 if( k<pEList->nExpr ){ 1261 /* 1262 ** If we get here it means the result set contains one or more "*" 1263 ** operators that need to be expanded. Loop through each expression 1264 ** in the result set and expand them one by one. 1265 */ 1266 struct ExprList_item *a = pEList->a; 1267 ExprList *pNew = 0; 1268 int flags = pParse->db->flags; 1269 int longNames = (flags & SQLITE_FullColNames)!=0 && 1270 (flags & SQLITE_ShortColNames)==0; 1271 1272 for(k=0; k<pEList->nExpr; k++){ 1273 Expr *pE = a[k].pExpr; 1274 if( pE->op!=TK_ALL && 1275 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 1276 /* This particular expression does not need to be expanded. 1277 */ 1278 pNew = sqlite3ExprListAppend(pNew, a[k].pExpr, 0); 1279 if( pNew ){ 1280 pNew->a[pNew->nExpr-1].zName = a[k].zName; 1281 }else{ 1282 rc = 1; 1283 } 1284 a[k].pExpr = 0; 1285 a[k].zName = 0; 1286 }else{ 1287 /* This expression is a "*" or a "TABLE.*" and needs to be 1288 ** expanded. */ 1289 int tableSeen = 0; /* Set to 1 when TABLE matches */ 1290 char *zTName; /* text of name of TABLE */ 1291 if( pE->op==TK_DOT && pE->pLeft ){ 1292 zTName = sqlite3NameFromToken(&pE->pLeft->token); 1293 }else{ 1294 zTName = 0; 1295 } 1296 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 1297 Table *pTab = pFrom->pTab; 1298 char *zTabName = pFrom->zAlias; 1299 if( zTabName==0 || zTabName[0]==0 ){ 1300 zTabName = pTab->zName; 1301 } 1302 if( zTName && (zTabName==0 || zTabName[0]==0 || 1303 sqlite3StrICmp(zTName, zTabName)!=0) ){ 1304 continue; 1305 } 1306 tableSeen = 1; 1307 for(j=0; j<pTab->nCol; j++){ 1308 Expr *pExpr, *pRight; 1309 char *zName = pTab->aCol[j].zName; 1310 1311 if( i>0 ){ 1312 struct SrcList_item *pLeft = &pTabList->a[i-1]; 1313 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 1314 columnIndex(pLeft->pTab, zName)>=0 ){ 1315 /* In a NATURAL join, omit the join columns from the 1316 ** table on the right */ 1317 continue; 1318 } 1319 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 1320 /* In a join with a USING clause, omit columns in the 1321 ** using clause from the table on the right. */ 1322 continue; 1323 } 1324 } 1325 pRight = sqlite3Expr(TK_ID, 0, 0, 0); 1326 if( pRight==0 ) break; 1327 setToken(&pRight->token, zName); 1328 if( zTabName && (longNames || pTabList->nSrc>1) ){ 1329 Expr *pLeft = sqlite3Expr(TK_ID, 0, 0, 0); 1330 pExpr = sqlite3Expr(TK_DOT, pLeft, pRight, 0); 1331 if( pExpr==0 ) break; 1332 setToken(&pLeft->token, zTabName); 1333 setToken(&pExpr->span, sqlite3MPrintf("%s.%s", zTabName, zName)); 1334 pExpr->span.dyn = 1; 1335 pExpr->token.z = 0; 1336 pExpr->token.n = 0; 1337 pExpr->token.dyn = 0; 1338 }else{ 1339 pExpr = pRight; 1340 pExpr->span = pExpr->token; 1341 } 1342 if( longNames ){ 1343 pNew = sqlite3ExprListAppend(pNew, pExpr, &pExpr->span); 1344 }else{ 1345 pNew = sqlite3ExprListAppend(pNew, pExpr, &pRight->token); 1346 } 1347 } 1348 } 1349 if( !tableSeen ){ 1350 if( zTName ){ 1351 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 1352 }else{ 1353 sqlite3ErrorMsg(pParse, "no tables specified"); 1354 } 1355 rc = 1; 1356 } 1357 sqliteFree(zTName); 1358 } 1359 } 1360 sqlite3ExprListDelete(pEList); 1361 p->pEList = pNew; 1362 } 1363 return rc; 1364 } 1365 1366 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1367 /* 1368 ** This routine associates entries in an ORDER BY expression list with 1369 ** columns in a result. For each ORDER BY expression, the opcode of 1370 ** the top-level node is changed to TK_COLUMN and the iColumn value of 1371 ** the top-level node is filled in with column number and the iTable 1372 ** value of the top-level node is filled with iTable parameter. 1373 ** 1374 ** If there are prior SELECT clauses, they are processed first. A match 1375 ** in an earlier SELECT takes precedence over a later SELECT. 1376 ** 1377 ** Any entry that does not match is flagged as an error. The number 1378 ** of errors is returned. 1379 */ 1380 static int matchOrderbyToColumn( 1381 Parse *pParse, /* A place to leave error messages */ 1382 Select *pSelect, /* Match to result columns of this SELECT */ 1383 ExprList *pOrderBy, /* The ORDER BY values to match against columns */ 1384 int iTable, /* Insert this value in iTable */ 1385 int mustComplete /* If TRUE all ORDER BYs must match */ 1386 ){ 1387 int nErr = 0; 1388 int i, j; 1389 ExprList *pEList; 1390 1391 if( pSelect==0 || pOrderBy==0 ) return 1; 1392 if( mustComplete ){ 1393 for(i=0; i<pOrderBy->nExpr; i++){ pOrderBy->a[i].done = 0; } 1394 } 1395 if( prepSelectStmt(pParse, pSelect) ){ 1396 return 1; 1397 } 1398 if( pSelect->pPrior ){ 1399 if( matchOrderbyToColumn(pParse, pSelect->pPrior, pOrderBy, iTable, 0) ){ 1400 return 1; 1401 } 1402 } 1403 pEList = pSelect->pEList; 1404 for(i=0; i<pOrderBy->nExpr; i++){ 1405 Expr *pE = pOrderBy->a[i].pExpr; 1406 int iCol = -1; 1407 if( pOrderBy->a[i].done ) continue; 1408 if( sqlite3ExprIsInteger(pE, &iCol) ){ 1409 if( iCol<=0 || iCol>pEList->nExpr ){ 1410 sqlite3ErrorMsg(pParse, 1411 "ORDER BY position %d should be between 1 and %d", 1412 iCol, pEList->nExpr); 1413 nErr++; 1414 break; 1415 } 1416 if( !mustComplete ) continue; 1417 iCol--; 1418 } 1419 for(j=0; iCol<0 && j<pEList->nExpr; j++){ 1420 if( pEList->a[j].zName && (pE->op==TK_ID || pE->op==TK_STRING) ){ 1421 char *zName, *zLabel; 1422 zName = pEList->a[j].zName; 1423 zLabel = sqlite3NameFromToken(&pE->token); 1424 assert( zLabel!=0 ); 1425 if( sqlite3StrICmp(zName, zLabel)==0 ){ 1426 iCol = j; 1427 } 1428 sqliteFree(zLabel); 1429 } 1430 if( iCol<0 && sqlite3ExprCompare(pE, pEList->a[j].pExpr) ){ 1431 iCol = j; 1432 } 1433 } 1434 if( iCol>=0 ){ 1435 pE->op = TK_COLUMN; 1436 pE->iColumn = iCol; 1437 pE->iTable = iTable; 1438 pE->iAgg = -1; 1439 pOrderBy->a[i].done = 1; 1440 } 1441 if( iCol<0 && mustComplete ){ 1442 sqlite3ErrorMsg(pParse, 1443 "ORDER BY term number %d does not match any result column", i+1); 1444 nErr++; 1445 break; 1446 } 1447 } 1448 return nErr; 1449 } 1450 #endif /* #ifndef SQLITE_OMIT_COMPOUND_SELECT */ 1451 1452 /* 1453 ** Get a VDBE for the given parser context. Create a new one if necessary. 1454 ** If an error occurs, return NULL and leave a message in pParse. 1455 */ 1456 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1457 Vdbe *v = pParse->pVdbe; 1458 if( v==0 ){ 1459 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1460 } 1461 return v; 1462 } 1463 1464 1465 /* 1466 ** Compute the iLimit and iOffset fields of the SELECT based on the 1467 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1468 ** that appear in the original SQL statement after the LIMIT and OFFSET 1469 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1470 ** are the integer memory register numbers for counters used to compute 1471 ** the limit and offset. If there is no limit and/or offset, then 1472 ** iLimit and iOffset are negative. 1473 ** 1474 ** This routine changes the values of iLimit and iOffset only if 1475 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1476 ** iOffset should have been preset to appropriate default values 1477 ** (usually but not always -1) prior to calling this routine. 1478 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1479 ** redefined. The UNION ALL operator uses this property to force 1480 ** the reuse of the same limit and offset registers across multiple 1481 ** SELECT statements. 1482 */ 1483 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1484 Vdbe *v = 0; 1485 int iLimit = 0; 1486 int iOffset; 1487 int addr1, addr2; 1488 1489 /* 1490 ** "LIMIT -1" always shows all rows. There is some 1491 ** contraversy about what the correct behavior should be. 1492 ** The current implementation interprets "LIMIT 0" to mean 1493 ** no rows. 1494 */ 1495 if( p->pLimit ){ 1496 p->iLimit = iLimit = pParse->nMem; 1497 pParse->nMem += 2; 1498 v = sqlite3GetVdbe(pParse); 1499 if( v==0 ) return; 1500 sqlite3ExprCode(pParse, p->pLimit); 1501 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1502 sqlite3VdbeAddOp(v, OP_MemStore, iLimit, 0); 1503 VdbeComment((v, "# LIMIT counter")); 1504 sqlite3VdbeAddOp(v, OP_IfMemZero, iLimit, iBreak); 1505 } 1506 if( p->pOffset ){ 1507 p->iOffset = iOffset = pParse->nMem++; 1508 v = sqlite3GetVdbe(pParse); 1509 if( v==0 ) return; 1510 sqlite3ExprCode(pParse, p->pOffset); 1511 sqlite3VdbeAddOp(v, OP_MustBeInt, 0, 0); 1512 sqlite3VdbeAddOp(v, OP_MemStore, iOffset, p->pLimit==0); 1513 VdbeComment((v, "# OFFSET counter")); 1514 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iOffset, 0); 1515 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1516 sqlite3VdbeAddOp(v, OP_Integer, 0, 0); 1517 sqlite3VdbeJumpHere(v, addr1); 1518 if( p->pLimit ){ 1519 sqlite3VdbeAddOp(v, OP_Add, 0, 0); 1520 } 1521 } 1522 if( p->pLimit ){ 1523 addr1 = sqlite3VdbeAddOp(v, OP_IfMemPos, iLimit, 0); 1524 sqlite3VdbeAddOp(v, OP_Pop, 1, 0); 1525 sqlite3VdbeAddOp(v, OP_MemInt, -1, iLimit+1); 1526 addr2 = sqlite3VdbeAddOp(v, OP_Goto, 0, 0); 1527 sqlite3VdbeJumpHere(v, addr1); 1528 sqlite3VdbeAddOp(v, OP_MemStore, iLimit+1, 1); 1529 VdbeComment((v, "# LIMIT+OFFSET")); 1530 sqlite3VdbeJumpHere(v, addr2); 1531 } 1532 } 1533 1534 /* 1535 ** Allocate a virtual index to use for sorting. 1536 */ 1537 static void createSortingIndex(Parse *pParse, Select *p, ExprList *pOrderBy){ 1538 if( pOrderBy ){ 1539 int addr; 1540 assert( pOrderBy->iECursor==0 ); 1541 pOrderBy->iECursor = pParse->nTab++; 1542 addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenEphemeral, 1543 pOrderBy->iECursor, pOrderBy->nExpr+1); 1544 assert( p->addrOpenEphm[2] == -1 ); 1545 p->addrOpenEphm[2] = addr; 1546 } 1547 } 1548 1549 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1550 /* 1551 ** Return the appropriate collating sequence for the iCol-th column of 1552 ** the result set for the compound-select statement "p". Return NULL if 1553 ** the column has no default collating sequence. 1554 ** 1555 ** The collating sequence for the compound select is taken from the 1556 ** left-most term of the select that has a collating sequence. 1557 */ 1558 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1559 CollSeq *pRet; 1560 if( p->pPrior ){ 1561 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1562 }else{ 1563 pRet = 0; 1564 } 1565 if( pRet==0 ){ 1566 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1567 } 1568 return pRet; 1569 } 1570 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1571 1572 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1573 /* 1574 ** This routine is called to process a query that is really the union 1575 ** or intersection of two or more separate queries. 1576 ** 1577 ** "p" points to the right-most of the two queries. the query on the 1578 ** left is p->pPrior. The left query could also be a compound query 1579 ** in which case this routine will be called recursively. 1580 ** 1581 ** The results of the total query are to be written into a destination 1582 ** of type eDest with parameter iParm. 1583 ** 1584 ** Example 1: Consider a three-way compound SQL statement. 1585 ** 1586 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1587 ** 1588 ** This statement is parsed up as follows: 1589 ** 1590 ** SELECT c FROM t3 1591 ** | 1592 ** `-----> SELECT b FROM t2 1593 ** | 1594 ** `------> SELECT a FROM t1 1595 ** 1596 ** The arrows in the diagram above represent the Select.pPrior pointer. 1597 ** So if this routine is called with p equal to the t3 query, then 1598 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1599 ** 1600 ** Notice that because of the way SQLite parses compound SELECTs, the 1601 ** individual selects always group from left to right. 1602 */ 1603 static int multiSelect( 1604 Parse *pParse, /* Parsing context */ 1605 Select *p, /* The right-most of SELECTs to be coded */ 1606 int eDest, /* \___ Store query results as specified */ 1607 int iParm, /* / by these two parameters. */ 1608 char *aff /* If eDest is SRT_Union, the affinity string */ 1609 ){ 1610 int rc = SQLITE_OK; /* Success code from a subroutine */ 1611 Select *pPrior; /* Another SELECT immediately to our left */ 1612 Vdbe *v; /* Generate code to this VDBE */ 1613 int nCol; /* Number of columns in the result set */ 1614 ExprList *pOrderBy; /* The ORDER BY clause on p */ 1615 int aSetP2[2]; /* Set P2 value of these op to number of columns */ 1616 int nSetP2 = 0; /* Number of slots in aSetP2[] used */ 1617 1618 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1619 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1620 */ 1621 if( p==0 || p->pPrior==0 ){ 1622 rc = 1; 1623 goto multi_select_end; 1624 } 1625 pPrior = p->pPrior; 1626 assert( pPrior->pRightmost!=pPrior ); 1627 assert( pPrior->pRightmost==p->pRightmost ); 1628 if( pPrior->pOrderBy ){ 1629 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1630 selectOpName(p->op)); 1631 rc = 1; 1632 goto multi_select_end; 1633 } 1634 if( pPrior->pLimit ){ 1635 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1636 selectOpName(p->op)); 1637 rc = 1; 1638 goto multi_select_end; 1639 } 1640 1641 /* Make sure we have a valid query engine. If not, create a new one. 1642 */ 1643 v = sqlite3GetVdbe(pParse); 1644 if( v==0 ){ 1645 rc = 1; 1646 goto multi_select_end; 1647 } 1648 1649 /* Create the destination temporary table if necessary 1650 */ 1651 if( eDest==SRT_EphemTab ){ 1652 assert( p->pEList ); 1653 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1654 aSetP2[nSetP2++] = sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 0); 1655 eDest = SRT_Table; 1656 } 1657 1658 /* Generate code for the left and right SELECT statements. 1659 */ 1660 pOrderBy = p->pOrderBy; 1661 switch( p->op ){ 1662 case TK_ALL: { 1663 if( pOrderBy==0 ){ 1664 int addr = 0; 1665 assert( !pPrior->pLimit ); 1666 pPrior->pLimit = p->pLimit; 1667 pPrior->pOffset = p->pOffset; 1668 rc = sqlite3Select(pParse, pPrior, eDest, iParm, 0, 0, 0, aff); 1669 p->pLimit = 0; 1670 p->pOffset = 0; 1671 if( rc ){ 1672 goto multi_select_end; 1673 } 1674 p->pPrior = 0; 1675 p->iLimit = pPrior->iLimit; 1676 p->iOffset = pPrior->iOffset; 1677 if( p->iLimit>=0 ){ 1678 addr = sqlite3VdbeAddOp(v, OP_IfMemZero, p->iLimit, 0); 1679 VdbeComment((v, "# Jump ahead if LIMIT reached")); 1680 } 1681 rc = sqlite3Select(pParse, p, eDest, iParm, 0, 0, 0, aff); 1682 p->pPrior = pPrior; 1683 if( rc ){ 1684 goto multi_select_end; 1685 } 1686 if( addr ){ 1687 sqlite3VdbeJumpHere(v, addr); 1688 } 1689 break; 1690 } 1691 /* For UNION ALL ... ORDER BY fall through to the next case */ 1692 } 1693 case TK_EXCEPT: 1694 case TK_UNION: { 1695 int unionTab; /* Cursor number of the temporary table holding result */ 1696 int op = 0; /* One of the SRT_ operations to apply to self */ 1697 int priorOp; /* The SRT_ operation to apply to prior selects */ 1698 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1699 int addr; 1700 1701 priorOp = p->op==TK_ALL ? SRT_Table : SRT_Union; 1702 if( eDest==priorOp && pOrderBy==0 && !p->pLimit && !p->pOffset ){ 1703 /* We can reuse a temporary table generated by a SELECT to our 1704 ** right. 1705 */ 1706 unionTab = iParm; 1707 }else{ 1708 /* We will need to create our own temporary table to hold the 1709 ** intermediate results. 1710 */ 1711 unionTab = pParse->nTab++; 1712 if( pOrderBy && matchOrderbyToColumn(pParse, p, pOrderBy, unionTab,1) ){ 1713 rc = 1; 1714 goto multi_select_end; 1715 } 1716 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, unionTab, 0); 1717 if( priorOp==SRT_Table ){ 1718 assert( nSetP2<sizeof(aSetP2)/sizeof(aSetP2[0]) ); 1719 aSetP2[nSetP2++] = addr; 1720 }else{ 1721 assert( p->addrOpenEphm[0] == -1 ); 1722 p->addrOpenEphm[0] = addr; 1723 p->pRightmost->usesEphm = 1; 1724 } 1725 createSortingIndex(pParse, p, pOrderBy); 1726 assert( p->pEList ); 1727 } 1728 1729 /* Code the SELECT statements to our left 1730 */ 1731 assert( !pPrior->pOrderBy ); 1732 rc = sqlite3Select(pParse, pPrior, priorOp, unionTab, 0, 0, 0, aff); 1733 if( rc ){ 1734 goto multi_select_end; 1735 } 1736 1737 /* Code the current SELECT statement 1738 */ 1739 switch( p->op ){ 1740 case TK_EXCEPT: op = SRT_Except; break; 1741 case TK_UNION: op = SRT_Union; break; 1742 case TK_ALL: op = SRT_Table; break; 1743 } 1744 p->pPrior = 0; 1745 p->pOrderBy = 0; 1746 p->disallowOrderBy = pOrderBy!=0; 1747 pLimit = p->pLimit; 1748 p->pLimit = 0; 1749 pOffset = p->pOffset; 1750 p->pOffset = 0; 1751 rc = sqlite3Select(pParse, p, op, unionTab, 0, 0, 0, aff); 1752 p->pPrior = pPrior; 1753 p->pOrderBy = pOrderBy; 1754 sqlite3ExprDelete(p->pLimit); 1755 p->pLimit = pLimit; 1756 p->pOffset = pOffset; 1757 p->iLimit = -1; 1758 p->iOffset = -1; 1759 if( rc ){ 1760 goto multi_select_end; 1761 } 1762 1763 1764 /* Convert the data in the temporary table into whatever form 1765 ** it is that we currently need. 1766 */ 1767 if( eDest!=priorOp || unionTab!=iParm ){ 1768 int iCont, iBreak, iStart; 1769 assert( p->pEList ); 1770 if( eDest==SRT_Callback ){ 1771 Select *pFirst = p; 1772 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1773 generateColumnNames(pParse, 0, pFirst->pEList); 1774 } 1775 iBreak = sqlite3VdbeMakeLabel(v); 1776 iCont = sqlite3VdbeMakeLabel(v); 1777 computeLimitRegisters(pParse, p, iBreak); 1778 sqlite3VdbeAddOp(v, OP_Rewind, unionTab, iBreak); 1779 iStart = sqlite3VdbeCurrentAddr(v); 1780 rc = selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1781 pOrderBy, -1, eDest, iParm, 1782 iCont, iBreak, 0); 1783 if( rc ){ 1784 rc = 1; 1785 goto multi_select_end; 1786 } 1787 sqlite3VdbeResolveLabel(v, iCont); 1788 sqlite3VdbeAddOp(v, OP_Next, unionTab, iStart); 1789 sqlite3VdbeResolveLabel(v, iBreak); 1790 sqlite3VdbeAddOp(v, OP_Close, unionTab, 0); 1791 } 1792 break; 1793 } 1794 case TK_INTERSECT: { 1795 int tab1, tab2; 1796 int iCont, iBreak, iStart; 1797 Expr *pLimit, *pOffset; 1798 int addr; 1799 1800 /* INTERSECT is different from the others since it requires 1801 ** two temporary tables. Hence it has its own case. Begin 1802 ** by allocating the tables we will need. 1803 */ 1804 tab1 = pParse->nTab++; 1805 tab2 = pParse->nTab++; 1806 if( pOrderBy && matchOrderbyToColumn(pParse,p,pOrderBy,tab1,1) ){ 1807 rc = 1; 1808 goto multi_select_end; 1809 } 1810 createSortingIndex(pParse, p, pOrderBy); 1811 1812 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab1, 0); 1813 assert( p->addrOpenEphm[0] == -1 ); 1814 p->addrOpenEphm[0] = addr; 1815 p->pRightmost->usesEphm = 1; 1816 assert( p->pEList ); 1817 1818 /* Code the SELECTs to our left into temporary table "tab1". 1819 */ 1820 rc = sqlite3Select(pParse, pPrior, SRT_Union, tab1, 0, 0, 0, aff); 1821 if( rc ){ 1822 goto multi_select_end; 1823 } 1824 1825 /* Code the current SELECT into temporary table "tab2" 1826 */ 1827 addr = sqlite3VdbeAddOp(v, OP_OpenEphemeral, tab2, 0); 1828 assert( p->addrOpenEphm[1] == -1 ); 1829 p->addrOpenEphm[1] = addr; 1830 p->pPrior = 0; 1831 pLimit = p->pLimit; 1832 p->pLimit = 0; 1833 pOffset = p->pOffset; 1834 p->pOffset = 0; 1835 rc = sqlite3Select(pParse, p, SRT_Union, tab2, 0, 0, 0, aff); 1836 p->pPrior = pPrior; 1837 sqlite3ExprDelete(p->pLimit); 1838 p->pLimit = pLimit; 1839 p->pOffset = pOffset; 1840 if( rc ){ 1841 goto multi_select_end; 1842 } 1843 1844 /* Generate code to take the intersection of the two temporary 1845 ** tables. 1846 */ 1847 assert( p->pEList ); 1848 if( eDest==SRT_Callback ){ 1849 Select *pFirst = p; 1850 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1851 generateColumnNames(pParse, 0, pFirst->pEList); 1852 } 1853 iBreak = sqlite3VdbeMakeLabel(v); 1854 iCont = sqlite3VdbeMakeLabel(v); 1855 computeLimitRegisters(pParse, p, iBreak); 1856 sqlite3VdbeAddOp(v, OP_Rewind, tab1, iBreak); 1857 iStart = sqlite3VdbeAddOp(v, OP_RowKey, tab1, 0); 1858 sqlite3VdbeAddOp(v, OP_NotFound, tab2, iCont); 1859 rc = selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1860 pOrderBy, -1, eDest, iParm, 1861 iCont, iBreak, 0); 1862 if( rc ){ 1863 rc = 1; 1864 goto multi_select_end; 1865 } 1866 sqlite3VdbeResolveLabel(v, iCont); 1867 sqlite3VdbeAddOp(v, OP_Next, tab1, iStart); 1868 sqlite3VdbeResolveLabel(v, iBreak); 1869 sqlite3VdbeAddOp(v, OP_Close, tab2, 0); 1870 sqlite3VdbeAddOp(v, OP_Close, tab1, 0); 1871 break; 1872 } 1873 } 1874 1875 /* Make sure all SELECTs in the statement have the same number of elements 1876 ** in their result sets. 1877 */ 1878 assert( p->pEList && pPrior->pEList ); 1879 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1880 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1881 " do not have the same number of result columns", selectOpName(p->op)); 1882 rc = 1; 1883 goto multi_select_end; 1884 } 1885 1886 /* Set the number of columns in temporary tables 1887 */ 1888 nCol = p->pEList->nExpr; 1889 while( nSetP2 ){ 1890 sqlite3VdbeChangeP2(v, aSetP2[--nSetP2], nCol); 1891 } 1892 1893 /* Compute collating sequences used by either the ORDER BY clause or 1894 ** by any temporary tables needed to implement the compound select. 1895 ** Attach the KeyInfo structure to all temporary tables. Invoke the 1896 ** ORDER BY processing if there is an ORDER BY clause. 1897 ** 1898 ** This section is run by the right-most SELECT statement only. 1899 ** SELECT statements to the left always skip this part. The right-most 1900 ** SELECT might also skip this part if it has no ORDER BY clause and 1901 ** no temp tables are required. 1902 */ 1903 if( pOrderBy || p->usesEphm ){ 1904 int i; /* Loop counter */ 1905 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1906 Select *pLoop; /* For looping through SELECT statements */ 1907 int nKeyCol; /* Number of entries in pKeyInfo->aCol[] */ 1908 CollSeq **apColl; 1909 CollSeq **aCopy; 1910 1911 assert( p->pRightmost==p ); 1912 nKeyCol = nCol + (pOrderBy ? pOrderBy->nExpr : 0); 1913 pKeyInfo = sqliteMalloc(sizeof(*pKeyInfo)+nKeyCol*(sizeof(CollSeq*) + 1)); 1914 if( !pKeyInfo ){ 1915 rc = SQLITE_NOMEM; 1916 goto multi_select_end; 1917 } 1918 1919 pKeyInfo->enc = ENC(pParse->db); 1920 pKeyInfo->nField = nCol; 1921 1922 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1923 *apColl = multiSelectCollSeq(pParse, p, i); 1924 if( 0==*apColl ){ 1925 *apColl = pParse->db->pDfltColl; 1926 } 1927 } 1928 1929 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1930 for(i=0; i<2; i++){ 1931 int addr = pLoop->addrOpenEphm[i]; 1932 if( addr<0 ){ 1933 /* If [0] is unused then [1] is also unused. So we can 1934 ** always safely abort as soon as the first unused slot is found */ 1935 assert( pLoop->addrOpenEphm[1]<0 ); 1936 break; 1937 } 1938 sqlite3VdbeChangeP2(v, addr, nCol); 1939 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO); 1940 pLoop->addrOpenEphm[i] = -1; 1941 } 1942 } 1943 1944 if( pOrderBy ){ 1945 struct ExprList_item *pOTerm = pOrderBy->a; 1946 int nOrderByExpr = pOrderBy->nExpr; 1947 int addr; 1948 u8 *pSortOrder; 1949 1950 aCopy = &pKeyInfo->aColl[nOrderByExpr]; 1951 pSortOrder = pKeyInfo->aSortOrder = (u8*)&aCopy[nCol]; 1952 memcpy(aCopy, pKeyInfo->aColl, nCol*sizeof(CollSeq*)); 1953 apColl = pKeyInfo->aColl; 1954 for(i=0; i<nOrderByExpr; i++, pOTerm++, apColl++, pSortOrder++){ 1955 Expr *pExpr = pOTerm->pExpr; 1956 if( (pExpr->flags & EP_ExpCollate) ){ 1957 assert( pExpr->pColl!=0 ); 1958 *apColl = pExpr->pColl; 1959 }else{ 1960 *apColl = aCopy[pExpr->iColumn]; 1961 } 1962 *pSortOrder = pOTerm->sortOrder; 1963 } 1964 assert( p->pRightmost==p ); 1965 assert( p->addrOpenEphm[2]>=0 ); 1966 addr = p->addrOpenEphm[2]; 1967 sqlite3VdbeChangeP2(v, addr, p->pEList->nExpr+2); 1968 pKeyInfo->nField = nOrderByExpr; 1969 sqlite3VdbeChangeP3(v, addr, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 1970 pKeyInfo = 0; 1971 generateSortTail(pParse, p, v, p->pEList->nExpr, eDest, iParm); 1972 } 1973 1974 sqliteFree(pKeyInfo); 1975 } 1976 1977 multi_select_end: 1978 return rc; 1979 } 1980 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1981 1982 #ifndef SQLITE_OMIT_VIEW 1983 /* 1984 ** Scan through the expression pExpr. Replace every reference to 1985 ** a column in table number iTable with a copy of the iColumn-th 1986 ** entry in pEList. (But leave references to the ROWID column 1987 ** unchanged.) 1988 ** 1989 ** This routine is part of the flattening procedure. A subquery 1990 ** whose result set is defined by pEList appears as entry in the 1991 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 1992 ** FORM clause entry is iTable. This routine make the necessary 1993 ** changes to pExpr so that it refers directly to the source table 1994 ** of the subquery rather the result set of the subquery. 1995 */ 1996 static void substExprList(ExprList*,int,ExprList*); /* Forward Decl */ 1997 static void substSelect(Select *, int, ExprList *); /* Forward Decl */ 1998 static void substExpr(Expr *pExpr, int iTable, ExprList *pEList){ 1999 if( pExpr==0 ) return; 2000 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2001 if( pExpr->iColumn<0 ){ 2002 pExpr->op = TK_NULL; 2003 }else{ 2004 Expr *pNew; 2005 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2006 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); 2007 pNew = pEList->a[pExpr->iColumn].pExpr; 2008 assert( pNew!=0 ); 2009 pExpr->op = pNew->op; 2010 assert( pExpr->pLeft==0 ); 2011 pExpr->pLeft = sqlite3ExprDup(pNew->pLeft); 2012 assert( pExpr->pRight==0 ); 2013 pExpr->pRight = sqlite3ExprDup(pNew->pRight); 2014 assert( pExpr->pList==0 ); 2015 pExpr->pList = sqlite3ExprListDup(pNew->pList); 2016 pExpr->iTable = pNew->iTable; 2017 pExpr->pTab = pNew->pTab; 2018 pExpr->iColumn = pNew->iColumn; 2019 pExpr->iAgg = pNew->iAgg; 2020 sqlite3TokenCopy(&pExpr->token, &pNew->token); 2021 sqlite3TokenCopy(&pExpr->span, &pNew->span); 2022 pExpr->pSelect = sqlite3SelectDup(pNew->pSelect); 2023 pExpr->flags = pNew->flags; 2024 } 2025 }else{ 2026 substExpr(pExpr->pLeft, iTable, pEList); 2027 substExpr(pExpr->pRight, iTable, pEList); 2028 substSelect(pExpr->pSelect, iTable, pEList); 2029 substExprList(pExpr->pList, iTable, pEList); 2030 } 2031 } 2032 static void substExprList(ExprList *pList, int iTable, ExprList *pEList){ 2033 int i; 2034 if( pList==0 ) return; 2035 for(i=0; i<pList->nExpr; i++){ 2036 substExpr(pList->a[i].pExpr, iTable, pEList); 2037 } 2038 } 2039 static void substSelect(Select *p, int iTable, ExprList *pEList){ 2040 if( !p ) return; 2041 substExprList(p->pEList, iTable, pEList); 2042 substExprList(p->pGroupBy, iTable, pEList); 2043 substExprList(p->pOrderBy, iTable, pEList); 2044 substExpr(p->pHaving, iTable, pEList); 2045 substExpr(p->pWhere, iTable, pEList); 2046 } 2047 #endif /* !defined(SQLITE_OMIT_VIEW) */ 2048 2049 #ifndef SQLITE_OMIT_VIEW 2050 /* 2051 ** This routine attempts to flatten subqueries in order to speed 2052 ** execution. It returns 1 if it makes changes and 0 if no flattening 2053 ** occurs. 2054 ** 2055 ** To understand the concept of flattening, consider the following 2056 ** query: 2057 ** 2058 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2059 ** 2060 ** The default way of implementing this query is to execute the 2061 ** subquery first and store the results in a temporary table, then 2062 ** run the outer query on that temporary table. This requires two 2063 ** passes over the data. Furthermore, because the temporary table 2064 ** has no indices, the WHERE clause on the outer query cannot be 2065 ** optimized. 2066 ** 2067 ** This routine attempts to rewrite queries such as the above into 2068 ** a single flat select, like this: 2069 ** 2070 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2071 ** 2072 ** The code generated for this simpification gives the same result 2073 ** but only has to scan the data once. And because indices might 2074 ** exist on the table t1, a complete scan of the data might be 2075 ** avoided. 2076 ** 2077 ** Flattening is only attempted if all of the following are true: 2078 ** 2079 ** (1) The subquery and the outer query do not both use aggregates. 2080 ** 2081 ** (2) The subquery is not an aggregate or the outer query is not a join. 2082 ** 2083 ** (3) The subquery is not the right operand of a left outer join, or 2084 ** the subquery is not itself a join. (Ticket #306) 2085 ** 2086 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2087 ** 2088 ** (5) The subquery is not DISTINCT or the outer query does not use 2089 ** aggregates. 2090 ** 2091 ** (6) The subquery does not use aggregates or the outer query is not 2092 ** DISTINCT. 2093 ** 2094 ** (7) The subquery has a FROM clause. 2095 ** 2096 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2097 ** 2098 ** (9) The subquery does not use LIMIT or the outer query does not use 2099 ** aggregates. 2100 ** 2101 ** (10) The subquery does not use aggregates or the outer query does not 2102 ** use LIMIT. 2103 ** 2104 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2105 ** 2106 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the 2107 ** subquery has no WHERE clause. (added by ticket #350) 2108 ** 2109 ** (13) The subquery and outer query do not both use LIMIT 2110 ** 2111 ** (14) The subquery does not use OFFSET 2112 ** 2113 ** In this routine, the "p" parameter is a pointer to the outer query. 2114 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2115 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2116 ** 2117 ** If flattening is not attempted, this routine is a no-op and returns 0. 2118 ** If flattening is attempted this routine returns 1. 2119 ** 2120 ** All of the expression analysis must occur on both the outer query and 2121 ** the subquery before this routine runs. 2122 */ 2123 static int flattenSubquery( 2124 Select *p, /* The parent or outer SELECT statement */ 2125 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2126 int isAgg, /* True if outer SELECT uses aggregate functions */ 2127 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2128 ){ 2129 Select *pSub; /* The inner query or "subquery" */ 2130 SrcList *pSrc; /* The FROM clause of the outer query */ 2131 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2132 ExprList *pList; /* The result set of the outer query */ 2133 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2134 int i; /* Loop counter */ 2135 Expr *pWhere; /* The WHERE clause */ 2136 struct SrcList_item *pSubitem; /* The subquery */ 2137 2138 /* Check to see if flattening is permitted. Return 0 if not. 2139 */ 2140 if( p==0 ) return 0; 2141 pSrc = p->pSrc; 2142 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2143 pSubitem = &pSrc->a[iFrom]; 2144 pSub = pSubitem->pSelect; 2145 assert( pSub!=0 ); 2146 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2147 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2148 pSubSrc = pSub->pSrc; 2149 assert( pSubSrc ); 2150 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2151 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2152 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2153 ** became arbitrary expressions, we were forced to add restrictions (13) 2154 ** and (14). */ 2155 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2156 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2157 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2158 if( (pSub->isDistinct || pSub->pLimit) 2159 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2160 return 0; 2161 } 2162 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ 2163 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ 2164 return 0; /* Restriction (11) */ 2165 } 2166 2167 /* Restriction 3: If the subquery is a join, make sure the subquery is 2168 ** not used as the right operand of an outer join. Examples of why this 2169 ** is not allowed: 2170 ** 2171 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2172 ** 2173 ** If we flatten the above, we would get 2174 ** 2175 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2176 ** 2177 ** which is not at all the same thing. 2178 */ 2179 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ 2180 return 0; 2181 } 2182 2183 /* Restriction 12: If the subquery is the right operand of a left outer 2184 ** join, make sure the subquery has no WHERE clause. 2185 ** An examples of why this is not allowed: 2186 ** 2187 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2188 ** 2189 ** If we flatten the above, we would get 2190 ** 2191 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2192 ** 2193 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2194 ** effectively converts the OUTER JOIN into an INNER JOIN. 2195 */ 2196 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ 2197 return 0; 2198 } 2199 2200 /* If we reach this point, it means flattening is permitted for the 2201 ** iFrom-th entry of the FROM clause in the outer query. 2202 */ 2203 2204 /* Move all of the FROM elements of the subquery into the 2205 ** the FROM clause of the outer query. Before doing this, remember 2206 ** the cursor number for the original outer query FROM element in 2207 ** iParent. The iParent cursor will never be used. Subsequent code 2208 ** will scan expressions looking for iParent references and replace 2209 ** those references with expressions that resolve to the subquery FROM 2210 ** elements we are now copying in. 2211 */ 2212 iParent = pSubitem->iCursor; 2213 { 2214 int nSubSrc = pSubSrc->nSrc; 2215 int jointype = pSubitem->jointype; 2216 2217 sqlite3DeleteTable(0, pSubitem->pTab); 2218 sqliteFree(pSubitem->zDatabase); 2219 sqliteFree(pSubitem->zName); 2220 sqliteFree(pSubitem->zAlias); 2221 if( nSubSrc>1 ){ 2222 int extra = nSubSrc - 1; 2223 for(i=1; i<nSubSrc; i++){ 2224 pSrc = sqlite3SrcListAppend(pSrc, 0, 0); 2225 } 2226 p->pSrc = pSrc; 2227 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ 2228 pSrc->a[i] = pSrc->a[i-extra]; 2229 } 2230 } 2231 for(i=0; i<nSubSrc; i++){ 2232 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2233 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2234 } 2235 pSrc->a[iFrom].jointype = jointype; 2236 } 2237 2238 /* Now begin substituting subquery result set expressions for 2239 ** references to the iParent in the outer query. 2240 ** 2241 ** Example: 2242 ** 2243 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2244 ** \ \_____________ subquery __________/ / 2245 ** \_____________________ outer query ______________________________/ 2246 ** 2247 ** We look at every expression in the outer query and every place we see 2248 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2249 */ 2250 pList = p->pEList; 2251 for(i=0; i<pList->nExpr; i++){ 2252 Expr *pExpr; 2253 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2254 pList->a[i].zName = sqliteStrNDup((char*)pExpr->span.z, pExpr->span.n); 2255 } 2256 } 2257 substExprList(p->pEList, iParent, pSub->pEList); 2258 if( isAgg ){ 2259 substExprList(p->pGroupBy, iParent, pSub->pEList); 2260 substExpr(p->pHaving, iParent, pSub->pEList); 2261 } 2262 if( pSub->pOrderBy ){ 2263 assert( p->pOrderBy==0 ); 2264 p->pOrderBy = pSub->pOrderBy; 2265 pSub->pOrderBy = 0; 2266 }else if( p->pOrderBy ){ 2267 substExprList(p->pOrderBy, iParent, pSub->pEList); 2268 } 2269 if( pSub->pWhere ){ 2270 pWhere = sqlite3ExprDup(pSub->pWhere); 2271 }else{ 2272 pWhere = 0; 2273 } 2274 if( subqueryIsAgg ){ 2275 assert( p->pHaving==0 ); 2276 p->pHaving = p->pWhere; 2277 p->pWhere = pWhere; 2278 substExpr(p->pHaving, iParent, pSub->pEList); 2279 p->pHaving = sqlite3ExprAnd(p->pHaving, sqlite3ExprDup(pSub->pHaving)); 2280 assert( p->pGroupBy==0 ); 2281 p->pGroupBy = sqlite3ExprListDup(pSub->pGroupBy); 2282 }else{ 2283 substExpr(p->pWhere, iParent, pSub->pEList); 2284 p->pWhere = sqlite3ExprAnd(p->pWhere, pWhere); 2285 } 2286 2287 /* The flattened query is distinct if either the inner or the 2288 ** outer query is distinct. 2289 */ 2290 p->isDistinct = p->isDistinct || pSub->isDistinct; 2291 2292 /* 2293 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2294 ** 2295 ** One is tempted to try to add a and b to combine the limits. But this 2296 ** does not work if either limit is negative. 2297 */ 2298 if( pSub->pLimit ){ 2299 p->pLimit = pSub->pLimit; 2300 pSub->pLimit = 0; 2301 } 2302 2303 /* Finially, delete what is left of the subquery and return 2304 ** success. 2305 */ 2306 sqlite3SelectDelete(pSub); 2307 return 1; 2308 } 2309 #endif /* SQLITE_OMIT_VIEW */ 2310 2311 /* 2312 ** Analyze the SELECT statement passed in as an argument to see if it 2313 ** is a simple min() or max() query. If it is and this query can be 2314 ** satisfied using a single seek to the beginning or end of an index, 2315 ** then generate the code for this SELECT and return 1. If this is not a 2316 ** simple min() or max() query, then return 0; 2317 ** 2318 ** A simply min() or max() query looks like this: 2319 ** 2320 ** SELECT min(a) FROM table; 2321 ** SELECT max(a) FROM table; 2322 ** 2323 ** The query may have only a single table in its FROM argument. There 2324 ** can be no GROUP BY or HAVING or WHERE clauses. The result set must 2325 ** be the min() or max() of a single column of the table. The column 2326 ** in the min() or max() function must be indexed. 2327 ** 2328 ** The parameters to this routine are the same as for sqlite3Select(). 2329 ** See the header comment on that routine for additional information. 2330 */ 2331 static int simpleMinMaxQuery(Parse *pParse, Select *p, int eDest, int iParm){ 2332 Expr *pExpr; 2333 int iCol; 2334 Table *pTab; 2335 Index *pIdx; 2336 int base; 2337 Vdbe *v; 2338 int seekOp; 2339 ExprList *pEList, *pList, eList; 2340 struct ExprList_item eListItem; 2341 SrcList *pSrc; 2342 int brk; 2343 int iDb; 2344 2345 /* Check to see if this query is a simple min() or max() query. Return 2346 ** zero if it is not. 2347 */ 2348 if( p->pGroupBy || p->pHaving || p->pWhere ) return 0; 2349 pSrc = p->pSrc; 2350 if( pSrc->nSrc!=1 ) return 0; 2351 pEList = p->pEList; 2352 if( pEList->nExpr!=1 ) return 0; 2353 pExpr = pEList->a[0].pExpr; 2354 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2355 pList = pExpr->pList; 2356 if( pList==0 || pList->nExpr!=1 ) return 0; 2357 if( pExpr->token.n!=3 ) return 0; 2358 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2359 seekOp = OP_Rewind; 2360 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2361 seekOp = OP_Last; 2362 }else{ 2363 return 0; 2364 } 2365 pExpr = pList->a[0].pExpr; 2366 if( pExpr->op!=TK_COLUMN ) return 0; 2367 iCol = pExpr->iColumn; 2368 pTab = pSrc->a[0].pTab; 2369 2370 /* This optimization cannot be used with virtual tables. */ 2371 if( IsVirtual(pTab) ) return 0; 2372 2373 /* If we get to here, it means the query is of the correct form. 2374 ** Check to make sure we have an index and make pIdx point to the 2375 ** appropriate index. If the min() or max() is on an INTEGER PRIMARY 2376 ** key column, no index is necessary so set pIdx to NULL. If no 2377 ** usable index is found, return 0. 2378 */ 2379 if( iCol<0 ){ 2380 pIdx = 0; 2381 }else{ 2382 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr); 2383 if( pColl==0 ) return 0; 2384 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 2385 assert( pIdx->nColumn>=1 ); 2386 if( pIdx->aiColumn[0]==iCol && 2387 0==sqlite3StrICmp(pIdx->azColl[0], pColl->zName) ){ 2388 break; 2389 } 2390 } 2391 if( pIdx==0 ) return 0; 2392 } 2393 2394 /* Identify column types if we will be using the callback. This 2395 ** step is skipped if the output is going to a table or a memory cell. 2396 ** The column names have already been generated in the calling function. 2397 */ 2398 v = sqlite3GetVdbe(pParse); 2399 if( v==0 ) return 0; 2400 2401 /* If the output is destined for a temporary table, open that table. 2402 */ 2403 if( eDest==SRT_EphemTab ){ 2404 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, 1); 2405 } 2406 2407 /* Generating code to find the min or the max. Basically all we have 2408 ** to do is find the first or the last entry in the chosen index. If 2409 ** the min() or max() is on the INTEGER PRIMARY KEY, then find the first 2410 ** or last entry in the main table. 2411 */ 2412 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2413 assert( iDb>=0 || pTab->isEphem ); 2414 sqlite3CodeVerifySchema(pParse, iDb); 2415 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2416 base = pSrc->a[0].iCursor; 2417 brk = sqlite3VdbeMakeLabel(v); 2418 computeLimitRegisters(pParse, p, brk); 2419 if( pSrc->a[0].pSelect==0 ){ 2420 sqlite3OpenTable(pParse, base, iDb, pTab, OP_OpenRead); 2421 } 2422 if( pIdx==0 ){ 2423 sqlite3VdbeAddOp(v, seekOp, base, 0); 2424 }else{ 2425 /* Even though the cursor used to open the index here is closed 2426 ** as soon as a single value has been read from it, allocate it 2427 ** using (pParse->nTab++) to prevent the cursor id from being 2428 ** reused. This is important for statements of the form 2429 ** "INSERT INTO x SELECT max() FROM x". 2430 */ 2431 int iIdx; 2432 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); 2433 iIdx = pParse->nTab++; 2434 assert( pIdx->pSchema==pTab->pSchema ); 2435 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2436 sqlite3VdbeOp3(v, OP_OpenRead, iIdx, pIdx->tnum, 2437 (char*)pKey, P3_KEYINFO_HANDOFF); 2438 if( seekOp==OP_Rewind ){ 2439 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 2440 sqlite3VdbeAddOp(v, OP_MakeRecord, 1, 0); 2441 seekOp = OP_MoveGt; 2442 } 2443 sqlite3VdbeAddOp(v, seekOp, iIdx, 0); 2444 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdx, 0); 2445 sqlite3VdbeAddOp(v, OP_Close, iIdx, 0); 2446 sqlite3VdbeAddOp(v, OP_MoveGe, base, 0); 2447 } 2448 eList.nExpr = 1; 2449 memset(&eListItem, 0, sizeof(eListItem)); 2450 eList.a = &eListItem; 2451 eList.a[0].pExpr = pExpr; 2452 selectInnerLoop(pParse, p, &eList, 0, 0, 0, -1, eDest, iParm, brk, brk, 0); 2453 sqlite3VdbeResolveLabel(v, brk); 2454 sqlite3VdbeAddOp(v, OP_Close, base, 0); 2455 2456 return 1; 2457 } 2458 2459 /* 2460 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return 2461 ** the number of errors seen. 2462 ** 2463 ** An ORDER BY or GROUP BY is a list of expressions. If any expression 2464 ** is an integer constant, then that expression is replaced by the 2465 ** corresponding entry in the result set. 2466 */ 2467 static int processOrderGroupBy( 2468 NameContext *pNC, /* Name context of the SELECT statement. */ 2469 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ 2470 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ 2471 ){ 2472 int i; 2473 ExprList *pEList = pNC->pEList; /* The result set of the SELECT */ 2474 Parse *pParse = pNC->pParse; /* The result set of the SELECT */ 2475 assert( pEList ); 2476 2477 if( pOrderBy==0 ) return 0; 2478 for(i=0; i<pOrderBy->nExpr; i++){ 2479 int iCol; 2480 Expr *pE = pOrderBy->a[i].pExpr; 2481 if( sqlite3ExprIsInteger(pE, &iCol) ){ 2482 if( iCol>0 && iCol<=pEList->nExpr ){ 2483 CollSeq *pColl = pE->pColl; 2484 int flags = pE->flags & EP_ExpCollate; 2485 sqlite3ExprDelete(pE); 2486 pE = pOrderBy->a[i].pExpr = sqlite3ExprDup(pEList->a[iCol-1].pExpr); 2487 if( pColl && flags ){ 2488 pE->pColl = pColl; 2489 pE->flags |= flags; 2490 } 2491 }else{ 2492 sqlite3ErrorMsg(pParse, 2493 "%s BY column number %d out of range - should be " 2494 "between 1 and %d", zType, iCol, pEList->nExpr); 2495 return 1; 2496 } 2497 } 2498 if( sqlite3ExprResolveNames(pNC, pE) ){ 2499 return 1; 2500 } 2501 } 2502 return 0; 2503 } 2504 2505 /* 2506 ** This routine resolves any names used in the result set of the 2507 ** supplied SELECT statement. If the SELECT statement being resolved 2508 ** is a sub-select, then pOuterNC is a pointer to the NameContext 2509 ** of the parent SELECT. 2510 */ 2511 int sqlite3SelectResolve( 2512 Parse *pParse, /* The parser context */ 2513 Select *p, /* The SELECT statement being coded. */ 2514 NameContext *pOuterNC /* The outer name context. May be NULL. */ 2515 ){ 2516 ExprList *pEList; /* Result set. */ 2517 int i; /* For-loop variable used in multiple places */ 2518 NameContext sNC; /* Local name-context */ 2519 ExprList *pGroupBy; /* The group by clause */ 2520 2521 /* If this routine has run before, return immediately. */ 2522 if( p->isResolved ){ 2523 assert( !pOuterNC ); 2524 return SQLITE_OK; 2525 } 2526 p->isResolved = 1; 2527 2528 /* If there have already been errors, do nothing. */ 2529 if( pParse->nErr>0 ){ 2530 return SQLITE_ERROR; 2531 } 2532 2533 /* Prepare the select statement. This call will allocate all cursors 2534 ** required to handle the tables and subqueries in the FROM clause. 2535 */ 2536 if( prepSelectStmt(pParse, p) ){ 2537 return SQLITE_ERROR; 2538 } 2539 2540 /* Resolve the expressions in the LIMIT and OFFSET clauses. These 2541 ** are not allowed to refer to any names, so pass an empty NameContext. 2542 */ 2543 memset(&sNC, 0, sizeof(sNC)); 2544 sNC.pParse = pParse; 2545 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || 2546 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ 2547 return SQLITE_ERROR; 2548 } 2549 2550 /* Set up the local name-context to pass to ExprResolveNames() to 2551 ** resolve the expression-list. 2552 */ 2553 sNC.allowAgg = 1; 2554 sNC.pSrcList = p->pSrc; 2555 sNC.pNext = pOuterNC; 2556 2557 /* Resolve names in the result set. */ 2558 pEList = p->pEList; 2559 if( !pEList ) return SQLITE_ERROR; 2560 for(i=0; i<pEList->nExpr; i++){ 2561 Expr *pX = pEList->a[i].pExpr; 2562 if( sqlite3ExprResolveNames(&sNC, pX) ){ 2563 return SQLITE_ERROR; 2564 } 2565 } 2566 2567 /* If there are no aggregate functions in the result-set, and no GROUP BY 2568 ** expression, do not allow aggregates in any of the other expressions. 2569 */ 2570 assert( !p->isAgg ); 2571 pGroupBy = p->pGroupBy; 2572 if( pGroupBy || sNC.hasAgg ){ 2573 p->isAgg = 1; 2574 }else{ 2575 sNC.allowAgg = 0; 2576 } 2577 2578 /* If a HAVING clause is present, then there must be a GROUP BY clause. 2579 */ 2580 if( p->pHaving && !pGroupBy ){ 2581 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); 2582 return SQLITE_ERROR; 2583 } 2584 2585 /* Add the expression list to the name-context before parsing the 2586 ** other expressions in the SELECT statement. This is so that 2587 ** expressions in the WHERE clause (etc.) can refer to expressions by 2588 ** aliases in the result set. 2589 ** 2590 ** Minor point: If this is the case, then the expression will be 2591 ** re-evaluated for each reference to it. 2592 */ 2593 sNC.pEList = p->pEList; 2594 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || 2595 sqlite3ExprResolveNames(&sNC, p->pHaving) || 2596 processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") || 2597 processOrderGroupBy(&sNC, pGroupBy, "GROUP") 2598 ){ 2599 return SQLITE_ERROR; 2600 } 2601 2602 /* Make sure the GROUP BY clause does not contain aggregate functions. 2603 */ 2604 if( pGroupBy ){ 2605 struct ExprList_item *pItem; 2606 2607 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ 2608 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ 2609 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " 2610 "the GROUP BY clause"); 2611 return SQLITE_ERROR; 2612 } 2613 } 2614 } 2615 2616 /* If this is one SELECT of a compound, be sure to resolve names 2617 ** in the other SELECTs. 2618 */ 2619 if( p->pPrior ){ 2620 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); 2621 }else{ 2622 return SQLITE_OK; 2623 } 2624 } 2625 2626 /* 2627 ** Reset the aggregate accumulator. 2628 ** 2629 ** The aggregate accumulator is a set of memory cells that hold 2630 ** intermediate results while calculating an aggregate. This 2631 ** routine simply stores NULLs in all of those memory cells. 2632 */ 2633 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2634 Vdbe *v = pParse->pVdbe; 2635 int i; 2636 struct AggInfo_func *pFunc; 2637 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 2638 return; 2639 } 2640 for(i=0; i<pAggInfo->nColumn; i++){ 2641 sqlite3VdbeAddOp(v, OP_MemNull, pAggInfo->aCol[i].iMem, 0); 2642 } 2643 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 2644 sqlite3VdbeAddOp(v, OP_MemNull, pFunc->iMem, 0); 2645 if( pFunc->iDistinct>=0 ){ 2646 Expr *pE = pFunc->pExpr; 2647 if( pE->pList==0 || pE->pList->nExpr!=1 ){ 2648 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " 2649 "by an expression"); 2650 pFunc->iDistinct = -1; 2651 }else{ 2652 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); 2653 sqlite3VdbeOp3(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 2654 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2655 } 2656 } 2657 } 2658 } 2659 2660 /* 2661 ** Invoke the OP_AggFinalize opcode for every aggregate function 2662 ** in the AggInfo structure. 2663 */ 2664 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 2665 Vdbe *v = pParse->pVdbe; 2666 int i; 2667 struct AggInfo_func *pF; 2668 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2669 ExprList *pList = pF->pExpr->pList; 2670 sqlite3VdbeOp3(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 2671 (void*)pF->pFunc, P3_FUNCDEF); 2672 } 2673 } 2674 2675 /* 2676 ** Update the accumulator memory cells for an aggregate based on 2677 ** the current cursor position. 2678 */ 2679 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 2680 Vdbe *v = pParse->pVdbe; 2681 int i; 2682 struct AggInfo_func *pF; 2683 struct AggInfo_col *pC; 2684 2685 pAggInfo->directMode = 1; 2686 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 2687 int nArg; 2688 int addrNext = 0; 2689 ExprList *pList = pF->pExpr->pList; 2690 if( pList ){ 2691 nArg = pList->nExpr; 2692 sqlite3ExprCodeExprList(pParse, pList); 2693 }else{ 2694 nArg = 0; 2695 } 2696 if( pF->iDistinct>=0 ){ 2697 addrNext = sqlite3VdbeMakeLabel(v); 2698 assert( nArg==1 ); 2699 codeDistinct(v, pF->iDistinct, addrNext, 1); 2700 } 2701 if( pF->pFunc->needCollSeq ){ 2702 CollSeq *pColl = 0; 2703 struct ExprList_item *pItem; 2704 int j; 2705 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ 2706 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 2707 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 2708 } 2709 if( !pColl ){ 2710 pColl = pParse->db->pDfltColl; 2711 } 2712 sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ); 2713 } 2714 sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF); 2715 if( addrNext ){ 2716 sqlite3VdbeResolveLabel(v, addrNext); 2717 } 2718 } 2719 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 2720 sqlite3ExprCode(pParse, pC->pExpr); 2721 sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1); 2722 } 2723 pAggInfo->directMode = 0; 2724 } 2725 2726 2727 /* 2728 ** Generate code for the given SELECT statement. 2729 ** 2730 ** The results are distributed in various ways depending on the 2731 ** value of eDest and iParm. 2732 ** 2733 ** eDest Value Result 2734 ** ------------ ------------------------------------------- 2735 ** SRT_Callback Invoke the callback for each row of the result. 2736 ** 2737 ** SRT_Mem Store first result in memory cell iParm 2738 ** 2739 ** SRT_Set Store results as keys of table iParm. 2740 ** 2741 ** SRT_Union Store results as a key in a temporary table iParm 2742 ** 2743 ** SRT_Except Remove results from the temporary table iParm. 2744 ** 2745 ** SRT_Table Store results in temporary table iParm 2746 ** 2747 ** The table above is incomplete. Additional eDist value have be added 2748 ** since this comment was written. See the selectInnerLoop() function for 2749 ** a complete listing of the allowed values of eDest and their meanings. 2750 ** 2751 ** This routine returns the number of errors. If any errors are 2752 ** encountered, then an appropriate error message is left in 2753 ** pParse->zErrMsg. 2754 ** 2755 ** This routine does NOT free the Select structure passed in. The 2756 ** calling function needs to do that. 2757 ** 2758 ** The pParent, parentTab, and *pParentAgg fields are filled in if this 2759 ** SELECT is a subquery. This routine may try to combine this SELECT 2760 ** with its parent to form a single flat query. In so doing, it might 2761 ** change the parent query from a non-aggregate to an aggregate query. 2762 ** For that reason, the pParentAgg flag is passed as a pointer, so it 2763 ** can be changed. 2764 ** 2765 ** Example 1: The meaning of the pParent parameter. 2766 ** 2767 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; 2768 ** \ \_______ subquery _______/ / 2769 ** \ / 2770 ** \____________________ outer query ___________________/ 2771 ** 2772 ** This routine is called for the outer query first. For that call, 2773 ** pParent will be NULL. During the processing of the outer query, this 2774 ** routine is called recursively to handle the subquery. For the recursive 2775 ** call, pParent will point to the outer query. Because the subquery is 2776 ** the second element in a three-way join, the parentTab parameter will 2777 ** be 1 (the 2nd value of a 0-indexed array.) 2778 */ 2779 int sqlite3Select( 2780 Parse *pParse, /* The parser context */ 2781 Select *p, /* The SELECT statement being coded. */ 2782 int eDest, /* How to dispose of the results */ 2783 int iParm, /* A parameter used by the eDest disposal method */ 2784 Select *pParent, /* Another SELECT for which this is a sub-query */ 2785 int parentTab, /* Index in pParent->pSrc of this query */ 2786 int *pParentAgg, /* True if pParent uses aggregate functions */ 2787 char *aff /* If eDest is SRT_Union, the affinity string */ 2788 ){ 2789 int i, j; /* Loop counters */ 2790 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 2791 Vdbe *v; /* The virtual machine under construction */ 2792 int isAgg; /* True for select lists like "count(*)" */ 2793 ExprList *pEList; /* List of columns to extract. */ 2794 SrcList *pTabList; /* List of tables to select from */ 2795 Expr *pWhere; /* The WHERE clause. May be NULL */ 2796 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 2797 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 2798 Expr *pHaving; /* The HAVING clause. May be NULL */ 2799 int isDistinct; /* True if the DISTINCT keyword is present */ 2800 int distinct; /* Table to use for the distinct set */ 2801 int rc = 1; /* Value to return from this function */ 2802 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 2803 AggInfo sAggInfo; /* Information used by aggregate queries */ 2804 int iEnd; /* Address of the end of the query */ 2805 2806 if( p==0 || sqlite3MallocFailed() || pParse->nErr ){ 2807 return 1; 2808 } 2809 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 2810 memset(&sAggInfo, 0, sizeof(sAggInfo)); 2811 2812 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2813 /* If there is are a sequence of queries, do the earlier ones first. 2814 */ 2815 if( p->pPrior ){ 2816 if( p->pRightmost==0 ){ 2817 Select *pLoop; 2818 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2819 pLoop->pRightmost = p; 2820 } 2821 } 2822 return multiSelect(pParse, p, eDest, iParm, aff); 2823 } 2824 #endif 2825 2826 pOrderBy = p->pOrderBy; 2827 if( IgnorableOrderby(eDest) ){ 2828 p->pOrderBy = 0; 2829 } 2830 if( sqlite3SelectResolve(pParse, p, 0) ){ 2831 goto select_end; 2832 } 2833 p->pOrderBy = pOrderBy; 2834 2835 /* Make local copies of the parameters for this query. 2836 */ 2837 pTabList = p->pSrc; 2838 pWhere = p->pWhere; 2839 pGroupBy = p->pGroupBy; 2840 pHaving = p->pHaving; 2841 isAgg = p->isAgg; 2842 isDistinct = p->isDistinct; 2843 pEList = p->pEList; 2844 if( pEList==0 ) goto select_end; 2845 2846 /* 2847 ** Do not even attempt to generate any code if we have already seen 2848 ** errors before this routine starts. 2849 */ 2850 if( pParse->nErr>0 ) goto select_end; 2851 2852 /* If writing to memory or generating a set 2853 ** only a single column may be output. 2854 */ 2855 #ifndef SQLITE_OMIT_SUBQUERY 2856 if( (eDest==SRT_Mem || eDest==SRT_Set) && pEList->nExpr>1 ){ 2857 sqlite3ErrorMsg(pParse, "only a single result allowed for " 2858 "a SELECT that is part of an expression"); 2859 goto select_end; 2860 } 2861 #endif 2862 2863 /* ORDER BY is ignored for some destinations. 2864 */ 2865 if( IgnorableOrderby(eDest) ){ 2866 pOrderBy = 0; 2867 } 2868 2869 /* Begin generating code. 2870 */ 2871 v = sqlite3GetVdbe(pParse); 2872 if( v==0 ) goto select_end; 2873 2874 /* Generate code for all sub-queries in the FROM clause 2875 */ 2876 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2877 for(i=0; i<pTabList->nSrc; i++){ 2878 const char *zSavedAuthContext = 0; 2879 int needRestoreContext; 2880 struct SrcList_item *pItem = &pTabList->a[i]; 2881 2882 if( pItem->pSelect==0 || pItem->isPopulated ) continue; 2883 if( pItem->zName!=0 ){ 2884 zSavedAuthContext = pParse->zAuthContext; 2885 pParse->zAuthContext = pItem->zName; 2886 needRestoreContext = 1; 2887 }else{ 2888 needRestoreContext = 0; 2889 } 2890 sqlite3Select(pParse, pItem->pSelect, SRT_EphemTab, 2891 pItem->iCursor, p, i, &isAgg, 0); 2892 if( needRestoreContext ){ 2893 pParse->zAuthContext = zSavedAuthContext; 2894 } 2895 pTabList = p->pSrc; 2896 pWhere = p->pWhere; 2897 if( !IgnorableOrderby(eDest) ){ 2898 pOrderBy = p->pOrderBy; 2899 } 2900 pGroupBy = p->pGroupBy; 2901 pHaving = p->pHaving; 2902 isDistinct = p->isDistinct; 2903 } 2904 #endif 2905 2906 /* Check for the special case of a min() or max() function by itself 2907 ** in the result set. 2908 */ 2909 if( simpleMinMaxQuery(pParse, p, eDest, iParm) ){ 2910 rc = 0; 2911 goto select_end; 2912 } 2913 2914 /* Check to see if this is a subquery that can be "flattened" into its parent. 2915 ** If flattening is a possiblity, do so and return immediately. 2916 */ 2917 #ifndef SQLITE_OMIT_VIEW 2918 if( pParent && pParentAgg && 2919 flattenSubquery(pParent, parentTab, *pParentAgg, isAgg) ){ 2920 if( isAgg ) *pParentAgg = 1; 2921 goto select_end; 2922 } 2923 #endif 2924 2925 /* If there is an ORDER BY clause, then this sorting 2926 ** index might end up being unused if the data can be 2927 ** extracted in pre-sorted order. If that is the case, then the 2928 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 2929 ** we figure out that the sorting index is not needed. The addrSortIndex 2930 ** variable is used to facilitate that change. 2931 */ 2932 if( pOrderBy ){ 2933 KeyInfo *pKeyInfo; 2934 if( pParse->nErr ){ 2935 goto select_end; 2936 } 2937 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 2938 pOrderBy->iECursor = pParse->nTab++; 2939 p->addrOpenEphm[2] = addrSortIndex = 2940 sqlite3VdbeOp3(v, OP_OpenEphemeral, pOrderBy->iECursor, pOrderBy->nExpr+2, (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2941 }else{ 2942 addrSortIndex = -1; 2943 } 2944 2945 /* If the output is destined for a temporary table, open that table. 2946 */ 2947 if( eDest==SRT_EphemTab ){ 2948 sqlite3VdbeAddOp(v, OP_OpenEphemeral, iParm, pEList->nExpr); 2949 } 2950 2951 /* Set the limiter. 2952 */ 2953 iEnd = sqlite3VdbeMakeLabel(v); 2954 computeLimitRegisters(pParse, p, iEnd); 2955 2956 /* Open a virtual index to use for the distinct set. 2957 */ 2958 if( isDistinct ){ 2959 KeyInfo *pKeyInfo; 2960 distinct = pParse->nTab++; 2961 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 2962 sqlite3VdbeOp3(v, OP_OpenEphemeral, distinct, 0, 2963 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 2964 }else{ 2965 distinct = -1; 2966 } 2967 2968 /* Aggregate and non-aggregate queries are handled differently */ 2969 if( !isAgg && pGroupBy==0 ){ 2970 /* This case is for non-aggregate queries 2971 ** Begin the database scan 2972 */ 2973 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy); 2974 if( pWInfo==0 ) goto select_end; 2975 2976 /* If sorting index that was created by a prior OP_OpenEphemeral 2977 ** instruction ended up not being needed, then change the OP_OpenEphemeral 2978 ** into an OP_Noop. 2979 */ 2980 if( addrSortIndex>=0 && pOrderBy==0 ){ 2981 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 2982 p->addrOpenEphm[2] = -1; 2983 } 2984 2985 /* Use the standard inner loop 2986 */ 2987 if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest, 2988 iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){ 2989 goto select_end; 2990 } 2991 2992 /* End the database scan loop. 2993 */ 2994 sqlite3WhereEnd(pWInfo); 2995 }else{ 2996 /* This is the processing for aggregate queries */ 2997 NameContext sNC; /* Name context for processing aggregate information */ 2998 int iAMem; /* First Mem address for storing current GROUP BY */ 2999 int iBMem; /* First Mem address for previous GROUP BY */ 3000 int iUseFlag; /* Mem address holding flag indicating that at least 3001 ** one row of the input to the aggregator has been 3002 ** processed */ 3003 int iAbortFlag; /* Mem address which causes query abort if positive */ 3004 int groupBySort; /* Rows come from source in GROUP BY order */ 3005 3006 3007 /* The following variables hold addresses or labels for parts of the 3008 ** virtual machine program we are putting together */ 3009 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3010 int addrSetAbort; /* Set the abort flag and return */ 3011 int addrInitializeLoop; /* Start of code that initializes the input loop */ 3012 int addrTopOfLoop; /* Top of the input loop */ 3013 int addrGroupByChange; /* Code that runs when any GROUP BY term changes */ 3014 int addrProcessRow; /* Code to process a single input row */ 3015 int addrEnd; /* End of all processing */ 3016 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3017 int addrReset; /* Subroutine for resetting the accumulator */ 3018 3019 addrEnd = sqlite3VdbeMakeLabel(v); 3020 3021 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3022 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3023 ** SELECT statement. 3024 */ 3025 memset(&sNC, 0, sizeof(sNC)); 3026 sNC.pParse = pParse; 3027 sNC.pSrcList = pTabList; 3028 sNC.pAggInfo = &sAggInfo; 3029 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3030 sAggInfo.pGroupBy = pGroupBy; 3031 if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){ 3032 goto select_end; 3033 } 3034 if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){ 3035 goto select_end; 3036 } 3037 if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){ 3038 goto select_end; 3039 } 3040 sAggInfo.nAccumulator = sAggInfo.nColumn; 3041 for(i=0; i<sAggInfo.nFunc; i++){ 3042 if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){ 3043 goto select_end; 3044 } 3045 } 3046 if( sqlite3MallocFailed() ) goto select_end; 3047 3048 /* Processing for aggregates with GROUP BY is very different and 3049 ** much more complex tha aggregates without a GROUP BY. 3050 */ 3051 if( pGroupBy ){ 3052 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3053 3054 /* Create labels that we will be needing 3055 */ 3056 3057 addrInitializeLoop = sqlite3VdbeMakeLabel(v); 3058 addrGroupByChange = sqlite3VdbeMakeLabel(v); 3059 addrProcessRow = sqlite3VdbeMakeLabel(v); 3060 3061 /* If there is a GROUP BY clause we might need a sorting index to 3062 ** implement it. Allocate that sorting index now. If it turns out 3063 ** that we do not need it after all, the OpenEphemeral instruction 3064 ** will be converted into a Noop. 3065 */ 3066 sAggInfo.sortingIdx = pParse->nTab++; 3067 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3068 addrSortingIdx = 3069 sqlite3VdbeOp3(v, OP_OpenEphemeral, sAggInfo.sortingIdx, 3070 sAggInfo.nSortingColumn, 3071 (char*)pKeyInfo, P3_KEYINFO_HANDOFF); 3072 3073 /* Initialize memory locations used by GROUP BY aggregate processing 3074 */ 3075 iUseFlag = pParse->nMem++; 3076 iAbortFlag = pParse->nMem++; 3077 iAMem = pParse->nMem; 3078 pParse->nMem += pGroupBy->nExpr; 3079 iBMem = pParse->nMem; 3080 pParse->nMem += pGroupBy->nExpr; 3081 sqlite3VdbeAddOp(v, OP_MemInt, 0, iAbortFlag); 3082 VdbeComment((v, "# clear abort flag")); 3083 sqlite3VdbeAddOp(v, OP_MemInt, 0, iUseFlag); 3084 VdbeComment((v, "# indicate accumulator empty")); 3085 sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop); 3086 3087 /* Generate a subroutine that outputs a single row of the result 3088 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 3089 ** is less than or equal to zero, the subroutine is a no-op. If 3090 ** the processing calls for the query to abort, this subroutine 3091 ** increments the iAbortFlag memory location before returning in 3092 ** order to signal the caller to abort. 3093 */ 3094 addrSetAbort = sqlite3VdbeCurrentAddr(v); 3095 sqlite3VdbeAddOp(v, OP_MemInt, 1, iAbortFlag); 3096 VdbeComment((v, "# set abort flag")); 3097 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3098 addrOutputRow = sqlite3VdbeCurrentAddr(v); 3099 sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2); 3100 VdbeComment((v, "# Groupby result generator entry point")); 3101 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3102 finalizeAggFunctions(pParse, &sAggInfo); 3103 if( pHaving ){ 3104 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1); 3105 } 3106 rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 3107 distinct, eDest, iParm, 3108 addrOutputRow+1, addrSetAbort, aff); 3109 if( rc ){ 3110 goto select_end; 3111 } 3112 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3113 VdbeComment((v, "# end groupby result generator")); 3114 3115 /* Generate a subroutine that will reset the group-by accumulator 3116 */ 3117 addrReset = sqlite3VdbeCurrentAddr(v); 3118 resetAccumulator(pParse, &sAggInfo); 3119 sqlite3VdbeAddOp(v, OP_Return, 0, 0); 3120 3121 /* Begin a loop that will extract all source rows in GROUP BY order. 3122 ** This might involve two separate loops with an OP_Sort in between, or 3123 ** it might be a single loop that uses an index to extract information 3124 ** in the right order to begin with. 3125 */ 3126 sqlite3VdbeResolveLabel(v, addrInitializeLoop); 3127 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3128 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy); 3129 if( pWInfo==0 ) goto select_end; 3130 if( pGroupBy==0 ){ 3131 /* The optimizer is able to deliver rows in group by order so 3132 ** we do not have to sort. The OP_OpenEphemeral table will be 3133 ** cancelled later because we still need to use the pKeyInfo 3134 */ 3135 pGroupBy = p->pGroupBy; 3136 groupBySort = 0; 3137 }else{ 3138 /* Rows are coming out in undetermined order. We have to push 3139 ** each row into a sorting index, terminate the first loop, 3140 ** then loop over the sorting index in order to get the output 3141 ** in sorted order 3142 */ 3143 groupBySort = 1; 3144 sqlite3ExprCodeExprList(pParse, pGroupBy); 3145 sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0); 3146 j = pGroupBy->nExpr+1; 3147 for(i=0; i<sAggInfo.nColumn; i++){ 3148 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3149 if( pCol->iSorterColumn<j ) continue; 3150 sqlite3ExprCodeGetColumn(v, pCol->pTab, pCol->iColumn, pCol->iTable); 3151 j++; 3152 } 3153 sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0); 3154 sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0); 3155 sqlite3WhereEnd(pWInfo); 3156 sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3157 VdbeComment((v, "# GROUP BY sort")); 3158 sAggInfo.useSortingIdx = 1; 3159 } 3160 3161 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3162 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3163 ** Then compare the current GROUP BY terms against the GROUP BY terms 3164 ** from the previous row currently stored in a0, a1, a2... 3165 */ 3166 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3167 for(j=0; j<pGroupBy->nExpr; j++){ 3168 if( groupBySort ){ 3169 sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j); 3170 }else{ 3171 sAggInfo.directMode = 1; 3172 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr); 3173 } 3174 sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1); 3175 } 3176 for(j=pGroupBy->nExpr-1; j>=0; j--){ 3177 if( j<pGroupBy->nExpr-1 ){ 3178 sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0); 3179 } 3180 sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0); 3181 if( j==0 ){ 3182 sqlite3VdbeAddOp(v, OP_Eq, 0x200, addrProcessRow); 3183 }else{ 3184 sqlite3VdbeAddOp(v, OP_Ne, 0x200, addrGroupByChange); 3185 } 3186 sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ); 3187 } 3188 3189 /* Generate code that runs whenever the GROUP BY changes. 3190 ** Change in the GROUP BY are detected by the previous code 3191 ** block. If there were no changes, this block is skipped. 3192 ** 3193 ** This code copies current group by terms in b0,b1,b2,... 3194 ** over to a0,a1,a2. It then calls the output subroutine 3195 ** and resets the aggregate accumulator registers in preparation 3196 ** for the next GROUP BY batch. 3197 */ 3198 sqlite3VdbeResolveLabel(v, addrGroupByChange); 3199 for(j=0; j<pGroupBy->nExpr; j++){ 3200 sqlite3VdbeAddOp(v, OP_MemMove, iAMem+j, iBMem+j); 3201 } 3202 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3203 VdbeComment((v, "# output one row")); 3204 sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd); 3205 VdbeComment((v, "# check abort flag")); 3206 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrReset); 3207 VdbeComment((v, "# reset accumulator")); 3208 3209 /* Update the aggregate accumulators based on the content of 3210 ** the current row 3211 */ 3212 sqlite3VdbeResolveLabel(v, addrProcessRow); 3213 updateAccumulator(pParse, &sAggInfo); 3214 sqlite3VdbeAddOp(v, OP_MemInt, 1, iUseFlag); 3215 VdbeComment((v, "# indicate data in accumulator")); 3216 3217 /* End of the loop 3218 */ 3219 if( groupBySort ){ 3220 sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 3221 }else{ 3222 sqlite3WhereEnd(pWInfo); 3223 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 3224 } 3225 3226 /* Output the final row of result 3227 */ 3228 sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow); 3229 VdbeComment((v, "# output final row")); 3230 3231 } /* endif pGroupBy */ 3232 else { 3233 /* This case runs if the aggregate has no GROUP BY clause. The 3234 ** processing is much simpler since there is only a single row 3235 ** of output. 3236 */ 3237 resetAccumulator(pParse, &sAggInfo); 3238 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0); 3239 if( pWInfo==0 ) goto select_end; 3240 updateAccumulator(pParse, &sAggInfo); 3241 sqlite3WhereEnd(pWInfo); 3242 finalizeAggFunctions(pParse, &sAggInfo); 3243 pOrderBy = 0; 3244 if( pHaving ){ 3245 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, 1); 3246 } 3247 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 3248 eDest, iParm, addrEnd, addrEnd, aff); 3249 } 3250 sqlite3VdbeResolveLabel(v, addrEnd); 3251 3252 } /* endif aggregate query */ 3253 3254 /* If there is an ORDER BY clause, then we need to sort the results 3255 ** and send them to the callback one by one. 3256 */ 3257 if( pOrderBy ){ 3258 generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm); 3259 } 3260 3261 #ifndef SQLITE_OMIT_SUBQUERY 3262 /* If this was a subquery, we have now converted the subquery into a 3263 ** temporary table. So set the SrcList_item.isPopulated flag to prevent 3264 ** this subquery from being evaluated again and to force the use of 3265 ** the temporary table. 3266 */ 3267 if( pParent ){ 3268 assert( pParent->pSrc->nSrc>parentTab ); 3269 assert( pParent->pSrc->a[parentTab].pSelect==p ); 3270 pParent->pSrc->a[parentTab].isPopulated = 1; 3271 } 3272 #endif 3273 3274 /* Jump here to skip this query 3275 */ 3276 sqlite3VdbeResolveLabel(v, iEnd); 3277 3278 /* The SELECT was successfully coded. Set the return code to 0 3279 ** to indicate no errors. 3280 */ 3281 rc = 0; 3282 3283 /* Control jumps to here if an error is encountered above, or upon 3284 ** successful coding of the SELECT. 3285 */ 3286 select_end: 3287 3288 /* Identify column names if we will be using them in a callback. This 3289 ** step is skipped if the output is going to some other destination. 3290 */ 3291 if( rc==SQLITE_OK && eDest==SRT_Callback ){ 3292 generateColumnNames(pParse, pTabList, pEList); 3293 } 3294 3295 sqliteFree(sAggInfo.aCol); 3296 sqliteFree(sAggInfo.aFunc); 3297 return rc; 3298 } 3299 3300 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 3301 /* 3302 ******************************************************************************* 3303 ** The following code is used for testing and debugging only. The code 3304 ** that follows does not appear in normal builds. 3305 ** 3306 ** These routines are used to print out the content of all or part of a 3307 ** parse structures such as Select or Expr. Such printouts are useful 3308 ** for helping to understand what is happening inside the code generator 3309 ** during the execution of complex SELECT statements. 3310 ** 3311 ** These routine are not called anywhere from within the normal 3312 ** code base. Then are intended to be called from within the debugger 3313 ** or from temporary "printf" statements inserted for debugging. 3314 */ 3315 void sqlite3PrintExpr(Expr *p){ 3316 if( p->token.z && p->token.n>0 ){ 3317 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 3318 }else{ 3319 sqlite3DebugPrintf("(%d", p->op); 3320 } 3321 if( p->pLeft ){ 3322 sqlite3DebugPrintf(" "); 3323 sqlite3PrintExpr(p->pLeft); 3324 } 3325 if( p->pRight ){ 3326 sqlite3DebugPrintf(" "); 3327 sqlite3PrintExpr(p->pRight); 3328 } 3329 sqlite3DebugPrintf(")"); 3330 } 3331 void sqlite3PrintExprList(ExprList *pList){ 3332 int i; 3333 for(i=0; i<pList->nExpr; i++){ 3334 sqlite3PrintExpr(pList->a[i].pExpr); 3335 if( i<pList->nExpr-1 ){ 3336 sqlite3DebugPrintf(", "); 3337 } 3338 } 3339 } 3340 void sqlite3PrintSelect(Select *p, int indent){ 3341 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 3342 sqlite3PrintExprList(p->pEList); 3343 sqlite3DebugPrintf("\n"); 3344 if( p->pSrc ){ 3345 char *zPrefix; 3346 int i; 3347 zPrefix = "FROM"; 3348 for(i=0; i<p->pSrc->nSrc; i++){ 3349 struct SrcList_item *pItem = &p->pSrc->a[i]; 3350 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 3351 zPrefix = ""; 3352 if( pItem->pSelect ){ 3353 sqlite3DebugPrintf("(\n"); 3354 sqlite3PrintSelect(pItem->pSelect, indent+10); 3355 sqlite3DebugPrintf("%*s)", indent+8, ""); 3356 }else if( pItem->zName ){ 3357 sqlite3DebugPrintf("%s", pItem->zName); 3358 } 3359 if( pItem->pTab ){ 3360 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 3361 } 3362 if( pItem->zAlias ){ 3363 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 3364 } 3365 if( i<p->pSrc->nSrc-1 ){ 3366 sqlite3DebugPrintf(","); 3367 } 3368 sqlite3DebugPrintf("\n"); 3369 } 3370 } 3371 if( p->pWhere ){ 3372 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 3373 sqlite3PrintExpr(p->pWhere); 3374 sqlite3DebugPrintf("\n"); 3375 } 3376 if( p->pGroupBy ){ 3377 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 3378 sqlite3PrintExprList(p->pGroupBy); 3379 sqlite3DebugPrintf("\n"); 3380 } 3381 if( p->pHaving ){ 3382 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 3383 sqlite3PrintExpr(p->pHaving); 3384 sqlite3DebugPrintf("\n"); 3385 } 3386 if( p->pOrderBy ){ 3387 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 3388 sqlite3PrintExprList(p->pOrderBy); 3389 sqlite3DebugPrintf("\n"); 3390 } 3391 } 3392 /* End of the structure debug printing code 3393 *****************************************************************************/ 3394 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 3395