1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 ** 15 ** $Id: select.c,v 1.510 2009/04/24 15:46:22 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 19 20 /* 21 ** Delete all the content of a Select structure but do not deallocate 22 ** the select structure itself. 23 */ 24 static void clearSelect(sqlite3 *db, Select *p){ 25 sqlite3ExprListDelete(db, p->pEList); 26 sqlite3SrcListDelete(db, p->pSrc); 27 sqlite3ExprDelete(db, p->pWhere); 28 sqlite3ExprListDelete(db, p->pGroupBy); 29 sqlite3ExprDelete(db, p->pHaving); 30 sqlite3ExprListDelete(db, p->pOrderBy); 31 sqlite3SelectDelete(db, p->pPrior); 32 sqlite3ExprDelete(db, p->pLimit); 33 sqlite3ExprDelete(db, p->pOffset); 34 } 35 36 /* 37 ** Initialize a SelectDest structure. 38 */ 39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 40 pDest->eDest = (u8)eDest; 41 pDest->iParm = iParm; 42 pDest->affinity = 0; 43 pDest->iMem = 0; 44 pDest->nMem = 0; 45 } 46 47 48 /* 49 ** Allocate a new Select structure and return a pointer to that 50 ** structure. 51 */ 52 Select *sqlite3SelectNew( 53 Parse *pParse, /* Parsing context */ 54 ExprList *pEList, /* which columns to include in the result */ 55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 56 Expr *pWhere, /* the WHERE clause */ 57 ExprList *pGroupBy, /* the GROUP BY clause */ 58 Expr *pHaving, /* the HAVING clause */ 59 ExprList *pOrderBy, /* the ORDER BY clause */ 60 int isDistinct, /* true if the DISTINCT keyword is present */ 61 Expr *pLimit, /* LIMIT value. NULL means not used */ 62 Expr *pOffset /* OFFSET value. NULL means no offset */ 63 ){ 64 Select *pNew; 65 Select standin; 66 sqlite3 *db = pParse->db; 67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 68 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 69 if( pNew==0 ){ 70 pNew = &standin; 71 memset(pNew, 0, sizeof(*pNew)); 72 } 73 if( pEList==0 ){ 74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); 75 } 76 pNew->pEList = pEList; 77 pNew->pSrc = pSrc; 78 pNew->pWhere = pWhere; 79 pNew->pGroupBy = pGroupBy; 80 pNew->pHaving = pHaving; 81 pNew->pOrderBy = pOrderBy; 82 pNew->selFlags = isDistinct ? SF_Distinct : 0; 83 pNew->op = TK_SELECT; 84 pNew->pLimit = pLimit; 85 pNew->pOffset = pOffset; 86 pNew->addrOpenEphm[0] = -1; 87 pNew->addrOpenEphm[1] = -1; 88 pNew->addrOpenEphm[2] = -1; 89 if( db->mallocFailed ) { 90 clearSelect(db, pNew); 91 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 92 pNew = 0; 93 } 94 return pNew; 95 } 96 97 /* 98 ** Delete the given Select structure and all of its substructures. 99 */ 100 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 101 if( p ){ 102 clearSelect(db, p); 103 sqlite3DbFree(db, p); 104 } 105 } 106 107 /* 108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the 109 ** type of join. Return an integer constant that expresses that type 110 ** in terms of the following bit values: 111 ** 112 ** JT_INNER 113 ** JT_CROSS 114 ** JT_OUTER 115 ** JT_NATURAL 116 ** JT_LEFT 117 ** JT_RIGHT 118 ** 119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 120 ** 121 ** If an illegal or unsupported join type is seen, then still return 122 ** a join type, but put an error in the pParse structure. 123 */ 124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 125 int jointype = 0; 126 Token *apAll[3]; 127 Token *p; 128 static const struct { 129 const char zKeyword[8]; 130 u8 nChar; 131 u8 code; 132 } keywords[] = { 133 { "natural", 7, JT_NATURAL }, 134 { "left", 4, JT_LEFT|JT_OUTER }, 135 { "right", 5, JT_RIGHT|JT_OUTER }, 136 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 137 { "outer", 5, JT_OUTER }, 138 { "inner", 5, JT_INNER }, 139 { "cross", 5, JT_INNER|JT_CROSS }, 140 }; 141 int i, j; 142 apAll[0] = pA; 143 apAll[1] = pB; 144 apAll[2] = pC; 145 for(i=0; i<3 && apAll[i]; i++){ 146 p = apAll[i]; 147 for(j=0; j<ArraySize(keywords); j++){ 148 if( p->n==keywords[j].nChar 149 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ 150 jointype |= keywords[j].code; 151 break; 152 } 153 } 154 if( j>=ArraySize(keywords) ){ 155 jointype |= JT_ERROR; 156 break; 157 } 158 } 159 if( 160 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 161 (jointype & JT_ERROR)!=0 162 ){ 163 const char *zSp = " "; 164 assert( pB!=0 ); 165 if( pC==0 ){ zSp++; } 166 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 167 "%T %T%s%T", pA, pB, zSp, pC); 168 jointype = JT_INNER; 169 }else if( jointype & JT_RIGHT ){ 170 sqlite3ErrorMsg(pParse, 171 "RIGHT and FULL OUTER JOINs are not currently supported"); 172 jointype = JT_INNER; 173 } 174 return jointype; 175 } 176 177 /* 178 ** Return the index of a column in a table. Return -1 if the column 179 ** is not contained in the table. 180 */ 181 static int columnIndex(Table *pTab, const char *zCol){ 182 int i; 183 for(i=0; i<pTab->nCol; i++){ 184 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 185 } 186 return -1; 187 } 188 189 /* 190 ** Set the value of a token to a '\000'-terminated string. 191 */ 192 static void setToken(Token *p, const char *z){ 193 p->z = (u8*)z; 194 p->n = z ? sqlite3Strlen30(z) : 0; 195 p->dyn = 0; 196 } 197 198 /* 199 ** Set the token to the double-quoted and escaped version of the string pointed 200 ** to by z. For example; 201 ** 202 ** {a"bc} -> {"a""bc"} 203 */ 204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ 205 206 /* Check if the string appears to be quoted using "..." or `...` 207 ** or [...] or '...' or if the string contains any " characters. 208 ** If it does, then record a version of the string with the special 209 ** characters escaped. 210 */ 211 const char *z2 = z; 212 if( *z2!='[' && *z2!='`' && *z2!='\'' ){ 213 while( *z2 ){ 214 if( *z2=='"' ) break; 215 z2++; 216 } 217 } 218 219 if( *z2 ){ 220 /* String contains " characters - copy and quote the string. */ 221 p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); 222 if( p->z ){ 223 p->n = sqlite3Strlen30((char *)p->z); 224 p->dyn = 1; 225 } 226 }else{ 227 /* String contains no " characters - copy the pointer. */ 228 p->z = (u8*)z; 229 p->n = (int)(z2 - z); 230 p->dyn = 0; 231 } 232 } 233 234 /* 235 ** Create an expression node for an identifier with the name of zName 236 */ 237 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ 238 Token dummy; 239 setToken(&dummy, zName); 240 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); 241 } 242 243 /* 244 ** Add a term to the WHERE expression in *ppExpr that requires the 245 ** zCol column to be equal in the two tables pTab1 and pTab2. 246 */ 247 static void addWhereTerm( 248 Parse *pParse, /* Parsing context */ 249 const char *zCol, /* Name of the column */ 250 const Table *pTab1, /* First table */ 251 const char *zAlias1, /* Alias for first table. May be NULL */ 252 const Table *pTab2, /* Second table */ 253 const char *zAlias2, /* Alias for second table. May be NULL */ 254 int iRightJoinTable, /* VDBE cursor for the right table */ 255 Expr **ppExpr, /* Add the equality term to this expression */ 256 int isOuterJoin /* True if dealing with an OUTER join */ 257 ){ 258 Expr *pE1a, *pE1b, *pE1c; 259 Expr *pE2a, *pE2b, *pE2c; 260 Expr *pE; 261 262 pE1a = sqlite3CreateIdExpr(pParse, zCol); 263 pE2a = sqlite3CreateIdExpr(pParse, zCol); 264 if( zAlias1==0 ){ 265 zAlias1 = pTab1->zName; 266 } 267 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); 268 if( zAlias2==0 ){ 269 zAlias2 = pTab2->zName; 270 } 271 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); 272 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); 273 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); 274 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); 275 if( pE && isOuterJoin ){ 276 ExprSetProperty(pE, EP_FromJoin); 277 pE->iRightJoinTable = iRightJoinTable; 278 } 279 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); 280 } 281 282 /* 283 ** Set the EP_FromJoin property on all terms of the given expression. 284 ** And set the Expr.iRightJoinTable to iTable for every term in the 285 ** expression. 286 ** 287 ** The EP_FromJoin property is used on terms of an expression to tell 288 ** the LEFT OUTER JOIN processing logic that this term is part of the 289 ** join restriction specified in the ON or USING clause and not a part 290 ** of the more general WHERE clause. These terms are moved over to the 291 ** WHERE clause during join processing but we need to remember that they 292 ** originated in the ON or USING clause. 293 ** 294 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 295 ** expression depends on table iRightJoinTable even if that table is not 296 ** explicitly mentioned in the expression. That information is needed 297 ** for cases like this: 298 ** 299 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 300 ** 301 ** The where clause needs to defer the handling of the t1.x=5 302 ** term until after the t2 loop of the join. In that way, a 303 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 304 ** defer the handling of t1.x=5, it will be processed immediately 305 ** after the t1 loop and rows with t1.x!=5 will never appear in 306 ** the output, which is incorrect. 307 */ 308 static void setJoinExpr(Expr *p, int iTable){ 309 while( p ){ 310 ExprSetProperty(p, EP_FromJoin); 311 p->iRightJoinTable = iTable; 312 setJoinExpr(p->pLeft, iTable); 313 p = p->pRight; 314 } 315 } 316 317 /* 318 ** This routine processes the join information for a SELECT statement. 319 ** ON and USING clauses are converted into extra terms of the WHERE clause. 320 ** NATURAL joins also create extra WHERE clause terms. 321 ** 322 ** The terms of a FROM clause are contained in the Select.pSrc structure. 323 ** The left most table is the first entry in Select.pSrc. The right-most 324 ** table is the last entry. The join operator is held in the entry to 325 ** the left. Thus entry 0 contains the join operator for the join between 326 ** entries 0 and 1. Any ON or USING clauses associated with the join are 327 ** also attached to the left entry. 328 ** 329 ** This routine returns the number of errors encountered. 330 */ 331 static int sqliteProcessJoin(Parse *pParse, Select *p){ 332 SrcList *pSrc; /* All tables in the FROM clause */ 333 int i, j; /* Loop counters */ 334 struct SrcList_item *pLeft; /* Left table being joined */ 335 struct SrcList_item *pRight; /* Right table being joined */ 336 337 pSrc = p->pSrc; 338 pLeft = &pSrc->a[0]; 339 pRight = &pLeft[1]; 340 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 341 Table *pLeftTab = pLeft->pTab; 342 Table *pRightTab = pRight->pTab; 343 int isOuter; 344 345 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 346 isOuter = (pRight->jointype & JT_OUTER)!=0; 347 348 /* When the NATURAL keyword is present, add WHERE clause terms for 349 ** every column that the two tables have in common. 350 */ 351 if( pRight->jointype & JT_NATURAL ){ 352 if( pRight->pOn || pRight->pUsing ){ 353 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 354 "an ON or USING clause", 0); 355 return 1; 356 } 357 for(j=0; j<pLeftTab->nCol; j++){ 358 char *zName = pLeftTab->aCol[j].zName; 359 if( columnIndex(pRightTab, zName)>=0 ){ 360 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 361 pRightTab, pRight->zAlias, 362 pRight->iCursor, &p->pWhere, isOuter); 363 364 } 365 } 366 } 367 368 /* Disallow both ON and USING clauses in the same join 369 */ 370 if( pRight->pOn && pRight->pUsing ){ 371 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 372 "clauses in the same join"); 373 return 1; 374 } 375 376 /* Add the ON clause to the end of the WHERE clause, connected by 377 ** an AND operator. 378 */ 379 if( pRight->pOn ){ 380 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 381 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 382 pRight->pOn = 0; 383 } 384 385 /* Create extra terms on the WHERE clause for each column named 386 ** in the USING clause. Example: If the two tables to be joined are 387 ** A and B and the USING clause names X, Y, and Z, then add this 388 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 389 ** Report an error if any column mentioned in the USING clause is 390 ** not contained in both tables to be joined. 391 */ 392 if( pRight->pUsing ){ 393 IdList *pList = pRight->pUsing; 394 for(j=0; j<pList->nId; j++){ 395 char *zName = pList->a[j].zName; 396 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ 397 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 398 "not present in both tables", zName); 399 return 1; 400 } 401 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 402 pRightTab, pRight->zAlias, 403 pRight->iCursor, &p->pWhere, isOuter); 404 } 405 } 406 } 407 return 0; 408 } 409 410 /* 411 ** Insert code into "v" that will push the record on the top of the 412 ** stack into the sorter. 413 */ 414 static void pushOntoSorter( 415 Parse *pParse, /* Parser context */ 416 ExprList *pOrderBy, /* The ORDER BY clause */ 417 Select *pSelect, /* The whole SELECT statement */ 418 int regData /* Register holding data to be sorted */ 419 ){ 420 Vdbe *v = pParse->pVdbe; 421 int nExpr = pOrderBy->nExpr; 422 int regBase = sqlite3GetTempRange(pParse, nExpr+2); 423 int regRecord = sqlite3GetTempReg(pParse); 424 sqlite3ExprCacheClear(pParse); 425 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); 426 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); 427 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 428 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); 429 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); 430 sqlite3ReleaseTempReg(pParse, regRecord); 431 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); 432 if( pSelect->iLimit ){ 433 int addr1, addr2; 434 int iLimit; 435 if( pSelect->iOffset ){ 436 iLimit = pSelect->iOffset+1; 437 }else{ 438 iLimit = pSelect->iLimit; 439 } 440 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); 441 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 442 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 443 sqlite3VdbeJumpHere(v, addr1); 444 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); 445 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); 446 sqlite3VdbeJumpHere(v, addr2); 447 pSelect->iLimit = 0; 448 } 449 } 450 451 /* 452 ** Add code to implement the OFFSET 453 */ 454 static void codeOffset( 455 Vdbe *v, /* Generate code into this VM */ 456 Select *p, /* The SELECT statement being coded */ 457 int iContinue /* Jump here to skip the current record */ 458 ){ 459 if( p->iOffset && iContinue!=0 ){ 460 int addr; 461 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); 462 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); 463 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 464 VdbeComment((v, "skip OFFSET records")); 465 sqlite3VdbeJumpHere(v, addr); 466 } 467 } 468 469 /* 470 ** Add code that will check to make sure the N registers starting at iMem 471 ** form a distinct entry. iTab is a sorting index that holds previously 472 ** seen combinations of the N values. A new entry is made in iTab 473 ** if the current N values are new. 474 ** 475 ** A jump to addrRepeat is made and the N+1 values are popped from the 476 ** stack if the top N elements are not distinct. 477 */ 478 static void codeDistinct( 479 Parse *pParse, /* Parsing and code generating context */ 480 int iTab, /* A sorting index used to test for distinctness */ 481 int addrRepeat, /* Jump to here if not distinct */ 482 int N, /* Number of elements */ 483 int iMem /* First element */ 484 ){ 485 Vdbe *v; 486 int r1; 487 488 v = pParse->pVdbe; 489 r1 = sqlite3GetTempReg(pParse); 490 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 491 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); 492 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 493 sqlite3ReleaseTempReg(pParse, r1); 494 } 495 496 /* 497 ** Generate an error message when a SELECT is used within a subexpression 498 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 499 ** column. We do this in a subroutine because the error occurs in multiple 500 ** places. 501 */ 502 static int checkForMultiColumnSelectError( 503 Parse *pParse, /* Parse context. */ 504 SelectDest *pDest, /* Destination of SELECT results */ 505 int nExpr /* Number of result columns returned by SELECT */ 506 ){ 507 int eDest = pDest->eDest; 508 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 509 sqlite3ErrorMsg(pParse, "only a single result allowed for " 510 "a SELECT that is part of an expression"); 511 return 1; 512 }else{ 513 return 0; 514 } 515 } 516 517 /* 518 ** This routine generates the code for the inside of the inner loop 519 ** of a SELECT. 520 ** 521 ** If srcTab and nColumn are both zero, then the pEList expressions 522 ** are evaluated in order to get the data for this row. If nColumn>0 523 ** then data is pulled from srcTab and pEList is used only to get the 524 ** datatypes for each column. 525 */ 526 static void selectInnerLoop( 527 Parse *pParse, /* The parser context */ 528 Select *p, /* The complete select statement being coded */ 529 ExprList *pEList, /* List of values being extracted */ 530 int srcTab, /* Pull data from this table */ 531 int nColumn, /* Number of columns in the source table */ 532 ExprList *pOrderBy, /* If not NULL, sort results using this key */ 533 int distinct, /* If >=0, make sure results are distinct */ 534 SelectDest *pDest, /* How to dispose of the results */ 535 int iContinue, /* Jump here to continue with next row */ 536 int iBreak /* Jump here to break out of the inner loop */ 537 ){ 538 Vdbe *v = pParse->pVdbe; 539 int i; 540 int hasDistinct; /* True if the DISTINCT keyword is present */ 541 int regResult; /* Start of memory holding result set */ 542 int eDest = pDest->eDest; /* How to dispose of results */ 543 int iParm = pDest->iParm; /* First argument to disposal method */ 544 int nResultCol; /* Number of result columns */ 545 546 assert( v ); 547 if( NEVER(v==0) ) return; 548 assert( pEList!=0 ); 549 hasDistinct = distinct>=0; 550 if( pOrderBy==0 && !hasDistinct ){ 551 codeOffset(v, p, iContinue); 552 } 553 554 /* Pull the requested columns. 555 */ 556 if( nColumn>0 ){ 557 nResultCol = nColumn; 558 }else{ 559 nResultCol = pEList->nExpr; 560 } 561 if( pDest->iMem==0 ){ 562 pDest->iMem = pParse->nMem+1; 563 pDest->nMem = nResultCol; 564 pParse->nMem += nResultCol; 565 }else{ 566 assert( pDest->nMem==nResultCol ); 567 } 568 regResult = pDest->iMem; 569 if( nColumn>0 ){ 570 for(i=0; i<nColumn; i++){ 571 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 572 } 573 }else if( eDest!=SRT_Exists ){ 574 /* If the destination is an EXISTS(...) expression, the actual 575 ** values returned by the SELECT are not required. 576 */ 577 sqlite3ExprCacheClear(pParse); 578 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output); 579 } 580 nColumn = nResultCol; 581 582 /* If the DISTINCT keyword was present on the SELECT statement 583 ** and this row has been seen before, then do not make this row 584 ** part of the result. 585 */ 586 if( hasDistinct ){ 587 assert( pEList!=0 ); 588 assert( pEList->nExpr==nColumn ); 589 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); 590 if( pOrderBy==0 ){ 591 codeOffset(v, p, iContinue); 592 } 593 } 594 595 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 596 return; 597 } 598 599 switch( eDest ){ 600 /* In this mode, write each query result to the key of the temporary 601 ** table iParm. 602 */ 603 #ifndef SQLITE_OMIT_COMPOUND_SELECT 604 case SRT_Union: { 605 int r1; 606 r1 = sqlite3GetTempReg(pParse); 607 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 608 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 609 sqlite3ReleaseTempReg(pParse, r1); 610 break; 611 } 612 613 /* Construct a record from the query result, but instead of 614 ** saving that record, use it as a key to delete elements from 615 ** the temporary table iParm. 616 */ 617 case SRT_Except: { 618 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); 619 break; 620 } 621 #endif 622 623 /* Store the result as data using a unique key. 624 */ 625 case SRT_Table: 626 case SRT_EphemTab: { 627 int r1 = sqlite3GetTempReg(pParse); 628 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 629 if( pOrderBy ){ 630 pushOntoSorter(pParse, pOrderBy, p, r1); 631 }else{ 632 int r2 = sqlite3GetTempReg(pParse); 633 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 634 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 635 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 636 sqlite3ReleaseTempReg(pParse, r2); 637 } 638 sqlite3ReleaseTempReg(pParse, r1); 639 break; 640 } 641 642 #ifndef SQLITE_OMIT_SUBQUERY 643 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 644 ** then there should be a single item on the stack. Write this 645 ** item into the set table with bogus data. 646 */ 647 case SRT_Set: { 648 assert( nColumn==1 ); 649 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); 650 if( pOrderBy ){ 651 /* At first glance you would think we could optimize out the 652 ** ORDER BY in this case since the order of entries in the set 653 ** does not matter. But there might be a LIMIT clause, in which 654 ** case the order does matter */ 655 pushOntoSorter(pParse, pOrderBy, p, regResult); 656 }else{ 657 int r1 = sqlite3GetTempReg(pParse); 658 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); 659 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 660 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 661 sqlite3ReleaseTempReg(pParse, r1); 662 } 663 break; 664 } 665 666 /* If any row exist in the result set, record that fact and abort. 667 */ 668 case SRT_Exists: { 669 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 670 /* The LIMIT clause will terminate the loop for us */ 671 break; 672 } 673 674 /* If this is a scalar select that is part of an expression, then 675 ** store the results in the appropriate memory cell and break out 676 ** of the scan loop. 677 */ 678 case SRT_Mem: { 679 assert( nColumn==1 ); 680 if( pOrderBy ){ 681 pushOntoSorter(pParse, pOrderBy, p, regResult); 682 }else{ 683 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 684 /* The LIMIT clause will jump out of the loop for us */ 685 } 686 break; 687 } 688 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 689 690 /* Send the data to the callback function or to a subroutine. In the 691 ** case of a subroutine, the subroutine itself is responsible for 692 ** popping the data from the stack. 693 */ 694 case SRT_Coroutine: 695 case SRT_Output: { 696 if( pOrderBy ){ 697 int r1 = sqlite3GetTempReg(pParse); 698 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); 699 pushOntoSorter(pParse, pOrderBy, p, r1); 700 sqlite3ReleaseTempReg(pParse, r1); 701 }else if( eDest==SRT_Coroutine ){ 702 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 703 }else{ 704 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); 705 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); 706 } 707 break; 708 } 709 710 #if !defined(SQLITE_OMIT_TRIGGER) 711 /* Discard the results. This is used for SELECT statements inside 712 ** the body of a TRIGGER. The purpose of such selects is to call 713 ** user-defined functions that have side effects. We do not care 714 ** about the actual results of the select. 715 */ 716 default: { 717 assert( eDest==SRT_Discard ); 718 break; 719 } 720 #endif 721 } 722 723 /* Jump to the end of the loop if the LIMIT is reached. 724 */ 725 if( p->iLimit ){ 726 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to 727 ** pushOntoSorter() would have cleared p->iLimit */ 728 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 729 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 730 } 731 } 732 733 /* 734 ** Given an expression list, generate a KeyInfo structure that records 735 ** the collating sequence for each expression in that expression list. 736 ** 737 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 738 ** KeyInfo structure is appropriate for initializing a virtual index to 739 ** implement that clause. If the ExprList is the result set of a SELECT 740 ** then the KeyInfo structure is appropriate for initializing a virtual 741 ** index to implement a DISTINCT test. 742 ** 743 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 744 ** function is responsible for seeing that this structure is eventually 745 ** freed. Add the KeyInfo structure to the P4 field of an opcode using 746 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. 747 */ 748 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ 749 sqlite3 *db = pParse->db; 750 int nExpr; 751 KeyInfo *pInfo; 752 struct ExprList_item *pItem; 753 int i; 754 755 nExpr = pList->nExpr; 756 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); 757 if( pInfo ){ 758 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; 759 pInfo->nField = (u16)nExpr; 760 pInfo->enc = ENC(db); 761 pInfo->db = db; 762 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ 763 CollSeq *pColl; 764 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 765 if( !pColl ){ 766 pColl = db->pDfltColl; 767 } 768 pInfo->aColl[i] = pColl; 769 pInfo->aSortOrder[i] = pItem->sortOrder; 770 } 771 } 772 return pInfo; 773 } 774 775 776 /* 777 ** If the inner loop was generated using a non-null pOrderBy argument, 778 ** then the results were placed in a sorter. After the loop is terminated 779 ** we need to run the sorter and output the results. The following 780 ** routine generates the code needed to do that. 781 */ 782 static void generateSortTail( 783 Parse *pParse, /* Parsing context */ 784 Select *p, /* The SELECT statement */ 785 Vdbe *v, /* Generate code into this VDBE */ 786 int nColumn, /* Number of columns of data */ 787 SelectDest *pDest /* Write the sorted results here */ 788 ){ 789 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 790 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 791 int addr; 792 int iTab; 793 int pseudoTab = 0; 794 ExprList *pOrderBy = p->pOrderBy; 795 796 int eDest = pDest->eDest; 797 int iParm = pDest->iParm; 798 799 int regRow; 800 int regRowid; 801 802 iTab = pOrderBy->iECursor; 803 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 804 pseudoTab = pParse->nTab++; 805 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn); 806 } 807 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); 808 codeOffset(v, p, addrContinue); 809 regRow = sqlite3GetTempReg(pParse); 810 regRowid = sqlite3GetTempReg(pParse); 811 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); 812 switch( eDest ){ 813 case SRT_Table: 814 case SRT_EphemTab: { 815 testcase( eDest==SRT_Table ); 816 testcase( eDest==SRT_EphemTab ); 817 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 818 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 819 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 820 break; 821 } 822 #ifndef SQLITE_OMIT_SUBQUERY 823 case SRT_Set: { 824 assert( nColumn==1 ); 825 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); 826 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 827 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 828 break; 829 } 830 case SRT_Mem: { 831 assert( nColumn==1 ); 832 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 833 /* The LIMIT clause will terminate the loop for us */ 834 break; 835 } 836 #endif 837 case SRT_Output: 838 case SRT_Coroutine: { 839 int i; 840 testcase( eDest==SRT_Output ); 841 testcase( eDest==SRT_Coroutine ); 842 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); 843 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); 844 for(i=0; i<nColumn; i++){ 845 assert( regRow!=pDest->iMem+i ); 846 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); 847 } 848 if( eDest==SRT_Output ){ 849 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); 850 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); 851 }else{ 852 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 853 } 854 break; 855 } 856 default: { 857 /* Do nothing */ 858 break; 859 } 860 } 861 sqlite3ReleaseTempReg(pParse, regRow); 862 sqlite3ReleaseTempReg(pParse, regRowid); 863 864 /* LIMIT has been implemented by the pushOntoSorter() routine. 865 */ 866 assert( p->iLimit==0 ); 867 868 /* The bottom of the loop 869 */ 870 sqlite3VdbeResolveLabel(v, addrContinue); 871 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); 872 sqlite3VdbeResolveLabel(v, addrBreak); 873 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 874 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 875 } 876 } 877 878 /* 879 ** Return a pointer to a string containing the 'declaration type' of the 880 ** expression pExpr. The string may be treated as static by the caller. 881 ** 882 ** The declaration type is the exact datatype definition extracted from the 883 ** original CREATE TABLE statement if the expression is a column. The 884 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 885 ** is considered a column can be complex in the presence of subqueries. The 886 ** result-set expression in all of the following SELECT statements is 887 ** considered a column by this function. 888 ** 889 ** SELECT col FROM tbl; 890 ** SELECT (SELECT col FROM tbl; 891 ** SELECT (SELECT col FROM tbl); 892 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 893 ** 894 ** The declaration type for any expression other than a column is NULL. 895 */ 896 static const char *columnType( 897 NameContext *pNC, 898 Expr *pExpr, 899 const char **pzOriginDb, 900 const char **pzOriginTab, 901 const char **pzOriginCol 902 ){ 903 char const *zType = 0; 904 char const *zOriginDb = 0; 905 char const *zOriginTab = 0; 906 char const *zOriginCol = 0; 907 int j; 908 if( pExpr==0 || pNC->pSrcList==0 ) return 0; 909 910 switch( pExpr->op ){ 911 case TK_AGG_COLUMN: 912 case TK_COLUMN: { 913 /* The expression is a column. Locate the table the column is being 914 ** extracted from in NameContext.pSrcList. This table may be real 915 ** database table or a subquery. 916 */ 917 Table *pTab = 0; /* Table structure column is extracted from */ 918 Select *pS = 0; /* Select the column is extracted from */ 919 int iCol = pExpr->iColumn; /* Index of column in pTab */ 920 while( pNC && !pTab ){ 921 SrcList *pTabList = pNC->pSrcList; 922 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 923 if( j<pTabList->nSrc ){ 924 pTab = pTabList->a[j].pTab; 925 pS = pTabList->a[j].pSelect; 926 }else{ 927 pNC = pNC->pNext; 928 } 929 } 930 931 if( pTab==0 ){ 932 /* FIX ME: 933 ** This can occurs if you have something like "SELECT new.x;" inside 934 ** a trigger. In other words, if you reference the special "new" 935 ** table in the result set of a select. We do not have a good way 936 ** to find the actual table type, so call it "TEXT". This is really 937 ** something of a bug, but I do not know how to fix it. 938 ** 939 ** This code does not produce the correct answer - it just prevents 940 ** a segfault. See ticket #1229. 941 */ 942 zType = "TEXT"; 943 break; 944 } 945 946 assert( pTab ); 947 if( pS ){ 948 /* The "table" is actually a sub-select or a view in the FROM clause 949 ** of the SELECT statement. Return the declaration type and origin 950 ** data for the result-set column of the sub-select. 951 */ 952 if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){ 953 /* If iCol is less than zero, then the expression requests the 954 ** rowid of the sub-select or view. This expression is legal (see 955 ** test case misc2.2.2) - it always evaluates to NULL. 956 */ 957 NameContext sNC; 958 Expr *p = pS->pEList->a[iCol].pExpr; 959 sNC.pSrcList = pS->pSrc; 960 sNC.pNext = 0; 961 sNC.pParse = pNC->pParse; 962 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 963 } 964 }else if( ALWAYS(pTab->pSchema) ){ 965 /* A real table */ 966 assert( !pS ); 967 if( iCol<0 ) iCol = pTab->iPKey; 968 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 969 if( iCol<0 ){ 970 zType = "INTEGER"; 971 zOriginCol = "rowid"; 972 }else{ 973 zType = pTab->aCol[iCol].zType; 974 zOriginCol = pTab->aCol[iCol].zName; 975 } 976 zOriginTab = pTab->zName; 977 if( pNC->pParse ){ 978 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 979 zOriginDb = pNC->pParse->db->aDb[iDb].zName; 980 } 981 } 982 break; 983 } 984 #ifndef SQLITE_OMIT_SUBQUERY 985 case TK_SELECT: { 986 /* The expression is a sub-select. Return the declaration type and 987 ** origin info for the single column in the result set of the SELECT 988 ** statement. 989 */ 990 NameContext sNC; 991 Select *pS = pExpr->x.pSelect; 992 Expr *p = pS->pEList->a[0].pExpr; 993 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 994 sNC.pSrcList = pS->pSrc; 995 sNC.pNext = pNC; 996 sNC.pParse = pNC->pParse; 997 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 998 break; 999 } 1000 #endif 1001 } 1002 1003 if( pzOriginDb ){ 1004 assert( pzOriginTab && pzOriginCol ); 1005 *pzOriginDb = zOriginDb; 1006 *pzOriginTab = zOriginTab; 1007 *pzOriginCol = zOriginCol; 1008 } 1009 return zType; 1010 } 1011 1012 /* 1013 ** Generate code that will tell the VDBE the declaration types of columns 1014 ** in the result set. 1015 */ 1016 static void generateColumnTypes( 1017 Parse *pParse, /* Parser context */ 1018 SrcList *pTabList, /* List of tables */ 1019 ExprList *pEList /* Expressions defining the result set */ 1020 ){ 1021 #ifndef SQLITE_OMIT_DECLTYPE 1022 Vdbe *v = pParse->pVdbe; 1023 int i; 1024 NameContext sNC; 1025 sNC.pSrcList = pTabList; 1026 sNC.pParse = pParse; 1027 for(i=0; i<pEList->nExpr; i++){ 1028 Expr *p = pEList->a[i].pExpr; 1029 const char *zType; 1030 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1031 const char *zOrigDb = 0; 1032 const char *zOrigTab = 0; 1033 const char *zOrigCol = 0; 1034 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1035 1036 /* The vdbe must make its own copy of the column-type and other 1037 ** column specific strings, in case the schema is reset before this 1038 ** virtual machine is deleted. 1039 */ 1040 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1041 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1042 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1043 #else 1044 zType = columnType(&sNC, p, 0, 0, 0); 1045 #endif 1046 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1047 } 1048 #endif /* SQLITE_OMIT_DECLTYPE */ 1049 } 1050 1051 /* 1052 ** Generate code that will tell the VDBE the names of columns 1053 ** in the result set. This information is used to provide the 1054 ** azCol[] values in the callback. 1055 */ 1056 static void generateColumnNames( 1057 Parse *pParse, /* Parser context */ 1058 SrcList *pTabList, /* List of tables */ 1059 ExprList *pEList /* Expressions defining the result set */ 1060 ){ 1061 Vdbe *v = pParse->pVdbe; 1062 int i, j; 1063 sqlite3 *db = pParse->db; 1064 int fullNames, shortNames; 1065 1066 #ifndef SQLITE_OMIT_EXPLAIN 1067 /* If this is an EXPLAIN, skip this step */ 1068 if( pParse->explain ){ 1069 return; 1070 } 1071 #endif 1072 1073 assert( v!=0 ); 1074 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1075 pParse->colNamesSet = 1; 1076 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1077 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1078 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1079 for(i=0; i<pEList->nExpr; i++){ 1080 Expr *p; 1081 p = pEList->a[i].pExpr; 1082 if( p==0 ) continue; 1083 if( pEList->a[i].zName ){ 1084 char *zName = pEList->a[i].zName; 1085 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1086 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1087 Table *pTab; 1088 char *zCol; 1089 int iCol = p->iColumn; 1090 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1091 if( pTabList->a[j].iCursor==p->iTable ) break; 1092 } 1093 assert( j<pTabList->nSrc ); 1094 pTab = pTabList->a[j].pTab; 1095 if( iCol<0 ) iCol = pTab->iPKey; 1096 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1097 if( iCol<0 ){ 1098 zCol = "rowid"; 1099 }else{ 1100 zCol = pTab->aCol[iCol].zName; 1101 } 1102 if( !shortNames && !fullNames ){ 1103 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1104 sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC); 1105 }else if( fullNames ){ 1106 char *zName = 0; 1107 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1109 }else{ 1110 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1111 } 1112 }else{ 1113 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1114 sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC); 1115 } 1116 } 1117 generateColumnTypes(pParse, pTabList, pEList); 1118 } 1119 1120 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1121 /* 1122 ** Name of the connection operator, used for error messages. 1123 */ 1124 static const char *selectOpName(int id){ 1125 char *z; 1126 switch( id ){ 1127 case TK_ALL: z = "UNION ALL"; break; 1128 case TK_INTERSECT: z = "INTERSECT"; break; 1129 case TK_EXCEPT: z = "EXCEPT"; break; 1130 default: z = "UNION"; break; 1131 } 1132 return z; 1133 } 1134 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1135 1136 /* 1137 ** Given a an expression list (which is really the list of expressions 1138 ** that form the result set of a SELECT statement) compute appropriate 1139 ** column names for a table that would hold the expression list. 1140 ** 1141 ** All column names will be unique. 1142 ** 1143 ** Only the column names are computed. Column.zType, Column.zColl, 1144 ** and other fields of Column are zeroed. 1145 ** 1146 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1147 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1148 */ 1149 static int selectColumnsFromExprList( 1150 Parse *pParse, /* Parsing context */ 1151 ExprList *pEList, /* Expr list from which to derive column names */ 1152 int *pnCol, /* Write the number of columns here */ 1153 Column **paCol /* Write the new column list here */ 1154 ){ 1155 sqlite3 *db = pParse->db; /* Database connection */ 1156 int i, j; /* Loop counters */ 1157 int cnt; /* Index added to make the name unique */ 1158 Column *aCol, *pCol; /* For looping over result columns */ 1159 int nCol; /* Number of columns in the result set */ 1160 Expr *p; /* Expression for a single result column */ 1161 char *zName; /* Column name */ 1162 int nName; /* Size of name in zName[] */ 1163 1164 *pnCol = nCol = pEList->nExpr; 1165 aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1166 if( aCol==0 ) return SQLITE_NOMEM; 1167 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1168 /* Get an appropriate name for the column 1169 */ 1170 p = pEList->a[i].pExpr; 1171 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); 1172 if( (zName = pEList->a[i].zName)!=0 ){ 1173 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1174 zName = sqlite3DbStrDup(db, zName); 1175 }else{ 1176 Expr *pColExpr = p; /* The expression that is the result column name */ 1177 Table *pTab; /* Table associated with this expression */ 1178 while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight; 1179 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->pTab)!=0 ){ 1180 /* For columns use the column name name */ 1181 int iCol = pColExpr->iColumn; 1182 if( iCol<0 ) iCol = pTab->iPKey; 1183 zName = sqlite3MPrintf(db, "%s", 1184 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1185 }else{ 1186 /* Use the original text of the column expression as its name */ 1187 Token *pToken = (pColExpr->span.z?&pColExpr->span:&pColExpr->token); 1188 zName = sqlite3MPrintf(db, "%T", pToken); 1189 } 1190 } 1191 if( db->mallocFailed ){ 1192 sqlite3DbFree(db, zName); 1193 break; 1194 } 1195 sqlite3Dequote(zName); 1196 1197 /* Make sure the column name is unique. If the name is not unique, 1198 ** append a integer to the name so that it becomes unique. 1199 */ 1200 nName = sqlite3Strlen30(zName); 1201 for(j=cnt=0; j<i; j++){ 1202 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1203 char *zNewName; 1204 zName[nName] = 0; 1205 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1206 sqlite3DbFree(db, zName); 1207 zName = zNewName; 1208 j = -1; 1209 if( zName==0 ) break; 1210 } 1211 } 1212 pCol->zName = zName; 1213 } 1214 if( db->mallocFailed ){ 1215 for(j=0; j<i; j++){ 1216 sqlite3DbFree(db, aCol[j].zName); 1217 } 1218 sqlite3DbFree(db, aCol); 1219 *paCol = 0; 1220 *pnCol = 0; 1221 return SQLITE_NOMEM; 1222 } 1223 return SQLITE_OK; 1224 } 1225 1226 /* 1227 ** Add type and collation information to a column list based on 1228 ** a SELECT statement. 1229 ** 1230 ** The column list presumably came from selectColumnNamesFromExprList(). 1231 ** The column list has only names, not types or collations. This 1232 ** routine goes through and adds the types and collations. 1233 ** 1234 ** This routine requires that all identifiers in the SELECT 1235 ** statement be resolved. 1236 */ 1237 static void selectAddColumnTypeAndCollation( 1238 Parse *pParse, /* Parsing contexts */ 1239 int nCol, /* Number of columns */ 1240 Column *aCol, /* List of columns */ 1241 Select *pSelect /* SELECT used to determine types and collations */ 1242 ){ 1243 sqlite3 *db = pParse->db; 1244 NameContext sNC; 1245 Column *pCol; 1246 CollSeq *pColl; 1247 int i; 1248 Expr *p; 1249 struct ExprList_item *a; 1250 1251 assert( pSelect!=0 ); 1252 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1253 assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1254 if( db->mallocFailed ) return; 1255 memset(&sNC, 0, sizeof(sNC)); 1256 sNC.pSrcList = pSelect->pSrc; 1257 a = pSelect->pEList->a; 1258 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1259 p = a[i].pExpr; 1260 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); 1261 pCol->affinity = sqlite3ExprAffinity(p); 1262 pColl = sqlite3ExprCollSeq(pParse, p); 1263 if( pColl ){ 1264 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1265 } 1266 } 1267 } 1268 1269 /* 1270 ** Given a SELECT statement, generate a Table structure that describes 1271 ** the result set of that SELECT. 1272 */ 1273 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1274 Table *pTab; 1275 sqlite3 *db = pParse->db; 1276 int savedFlags; 1277 1278 savedFlags = db->flags; 1279 db->flags &= ~SQLITE_FullColNames; 1280 db->flags |= SQLITE_ShortColNames; 1281 sqlite3SelectPrep(pParse, pSelect, 0); 1282 if( pParse->nErr ) return 0; 1283 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1284 db->flags = savedFlags; 1285 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1286 if( pTab==0 ){ 1287 return 0; 1288 } 1289 pTab->dbMem = db->lookaside.bEnabled ? db : 0; 1290 pTab->nRef = 1; 1291 pTab->zName = 0; 1292 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1293 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); 1294 pTab->iPKey = -1; 1295 if( db->mallocFailed ){ 1296 sqlite3DeleteTable(pTab); 1297 return 0; 1298 } 1299 return pTab; 1300 } 1301 1302 /* 1303 ** Get a VDBE for the given parser context. Create a new one if necessary. 1304 ** If an error occurs, return NULL and leave a message in pParse. 1305 */ 1306 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1307 Vdbe *v = pParse->pVdbe; 1308 if( v==0 ){ 1309 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); 1310 #ifndef SQLITE_OMIT_TRACE 1311 if( v ){ 1312 sqlite3VdbeAddOp0(v, OP_Trace); 1313 } 1314 #endif 1315 } 1316 return v; 1317 } 1318 1319 1320 /* 1321 ** Compute the iLimit and iOffset fields of the SELECT based on the 1322 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1323 ** that appear in the original SQL statement after the LIMIT and OFFSET 1324 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1325 ** are the integer memory register numbers for counters used to compute 1326 ** the limit and offset. If there is no limit and/or offset, then 1327 ** iLimit and iOffset are negative. 1328 ** 1329 ** This routine changes the values of iLimit and iOffset only if 1330 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1331 ** iOffset should have been preset to appropriate default values 1332 ** (usually but not always -1) prior to calling this routine. 1333 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1334 ** redefined. The UNION ALL operator uses this property to force 1335 ** the reuse of the same limit and offset registers across multiple 1336 ** SELECT statements. 1337 */ 1338 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1339 Vdbe *v = 0; 1340 int iLimit = 0; 1341 int iOffset; 1342 int addr1; 1343 if( p->iLimit ) return; 1344 1345 /* 1346 ** "LIMIT -1" always shows all rows. There is some 1347 ** contraversy about what the correct behavior should be. 1348 ** The current implementation interprets "LIMIT 0" to mean 1349 ** no rows. 1350 */ 1351 sqlite3ExprCacheClear(pParse); 1352 if( p->pLimit ){ 1353 p->iLimit = iLimit = ++pParse->nMem; 1354 v = sqlite3GetVdbe(pParse); 1355 if( v==0 ) return; 1356 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1357 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); 1358 VdbeComment((v, "LIMIT counter")); 1359 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); 1360 } 1361 if( p->pOffset ){ 1362 p->iOffset = iOffset = ++pParse->nMem; 1363 if( p->pLimit ){ 1364 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1365 } 1366 v = sqlite3GetVdbe(pParse); 1367 if( v==0 ) return; 1368 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1369 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); 1370 VdbeComment((v, "OFFSET counter")); 1371 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); 1372 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1373 sqlite3VdbeJumpHere(v, addr1); 1374 if( p->pLimit ){ 1375 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1376 VdbeComment((v, "LIMIT+OFFSET")); 1377 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); 1378 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1379 sqlite3VdbeJumpHere(v, addr1); 1380 } 1381 } 1382 } 1383 1384 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1385 /* 1386 ** Return the appropriate collating sequence for the iCol-th column of 1387 ** the result set for the compound-select statement "p". Return NULL if 1388 ** the column has no default collating sequence. 1389 ** 1390 ** The collating sequence for the compound select is taken from the 1391 ** left-most term of the select that has a collating sequence. 1392 */ 1393 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1394 CollSeq *pRet; 1395 if( p->pPrior ){ 1396 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1397 }else{ 1398 pRet = 0; 1399 } 1400 assert( iCol>=0 ); 1401 if( pRet==0 && iCol<p->pEList->nExpr ){ 1402 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1403 } 1404 return pRet; 1405 } 1406 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1407 1408 /* Forward reference */ 1409 static int multiSelectOrderBy( 1410 Parse *pParse, /* Parsing context */ 1411 Select *p, /* The right-most of SELECTs to be coded */ 1412 SelectDest *pDest /* What to do with query results */ 1413 ); 1414 1415 1416 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1417 /* 1418 ** This routine is called to process a compound query form from 1419 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 1420 ** INTERSECT 1421 ** 1422 ** "p" points to the right-most of the two queries. the query on the 1423 ** left is p->pPrior. The left query could also be a compound query 1424 ** in which case this routine will be called recursively. 1425 ** 1426 ** The results of the total query are to be written into a destination 1427 ** of type eDest with parameter iParm. 1428 ** 1429 ** Example 1: Consider a three-way compound SQL statement. 1430 ** 1431 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 1432 ** 1433 ** This statement is parsed up as follows: 1434 ** 1435 ** SELECT c FROM t3 1436 ** | 1437 ** `-----> SELECT b FROM t2 1438 ** | 1439 ** `------> SELECT a FROM t1 1440 ** 1441 ** The arrows in the diagram above represent the Select.pPrior pointer. 1442 ** So if this routine is called with p equal to the t3 query, then 1443 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 1444 ** 1445 ** Notice that because of the way SQLite parses compound SELECTs, the 1446 ** individual selects always group from left to right. 1447 */ 1448 static int multiSelect( 1449 Parse *pParse, /* Parsing context */ 1450 Select *p, /* The right-most of SELECTs to be coded */ 1451 SelectDest *pDest /* What to do with query results */ 1452 ){ 1453 int rc = SQLITE_OK; /* Success code from a subroutine */ 1454 Select *pPrior; /* Another SELECT immediately to our left */ 1455 Vdbe *v; /* Generate code to this VDBE */ 1456 SelectDest dest; /* Alternative data destination */ 1457 Select *pDelete = 0; /* Chain of simple selects to delete */ 1458 sqlite3 *db; /* Database connection */ 1459 1460 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 1461 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 1462 */ 1463 assert( p && p->pPrior ); /* Calling function guarantees this much */ 1464 db = pParse->db; 1465 pPrior = p->pPrior; 1466 assert( pPrior->pRightmost!=pPrior ); 1467 assert( pPrior->pRightmost==p->pRightmost ); 1468 dest = *pDest; 1469 if( pPrior->pOrderBy ){ 1470 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 1471 selectOpName(p->op)); 1472 rc = 1; 1473 goto multi_select_end; 1474 } 1475 if( pPrior->pLimit ){ 1476 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 1477 selectOpName(p->op)); 1478 rc = 1; 1479 goto multi_select_end; 1480 } 1481 1482 v = sqlite3GetVdbe(pParse); 1483 assert( v!=0 ); /* The VDBE already created by calling function */ 1484 1485 /* Create the destination temporary table if necessary 1486 */ 1487 if( dest.eDest==SRT_EphemTab ){ 1488 assert( p->pEList ); 1489 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); 1490 dest.eDest = SRT_Table; 1491 } 1492 1493 /* Make sure all SELECTs in the statement have the same number of elements 1494 ** in their result sets. 1495 */ 1496 assert( p->pEList && pPrior->pEList ); 1497 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 1498 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 1499 " do not have the same number of result columns", selectOpName(p->op)); 1500 rc = 1; 1501 goto multi_select_end; 1502 } 1503 1504 /* Compound SELECTs that have an ORDER BY clause are handled separately. 1505 */ 1506 if( p->pOrderBy ){ 1507 return multiSelectOrderBy(pParse, p, pDest); 1508 } 1509 1510 /* Generate code for the left and right SELECT statements. 1511 */ 1512 switch( p->op ){ 1513 case TK_ALL: { 1514 int addr = 0; 1515 assert( !pPrior->pLimit ); 1516 pPrior->pLimit = p->pLimit; 1517 pPrior->pOffset = p->pOffset; 1518 rc = sqlite3Select(pParse, pPrior, &dest); 1519 p->pLimit = 0; 1520 p->pOffset = 0; 1521 if( rc ){ 1522 goto multi_select_end; 1523 } 1524 p->pPrior = 0; 1525 p->iLimit = pPrior->iLimit; 1526 p->iOffset = pPrior->iOffset; 1527 if( p->iLimit ){ 1528 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); 1529 VdbeComment((v, "Jump ahead if LIMIT reached")); 1530 } 1531 rc = sqlite3Select(pParse, p, &dest); 1532 pDelete = p->pPrior; 1533 p->pPrior = pPrior; 1534 if( rc ){ 1535 goto multi_select_end; 1536 } 1537 if( addr ){ 1538 sqlite3VdbeJumpHere(v, addr); 1539 } 1540 break; 1541 } 1542 case TK_EXCEPT: 1543 case TK_UNION: { 1544 int unionTab; /* Cursor number of the temporary table holding result */ 1545 u8 op = 0; /* One of the SRT_ operations to apply to self */ 1546 int priorOp; /* The SRT_ operation to apply to prior selects */ 1547 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 1548 int addr; 1549 SelectDest uniondest; 1550 1551 priorOp = SRT_Union; 1552 if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){ 1553 /* We can reuse a temporary table generated by a SELECT to our 1554 ** right. 1555 */ 1556 assert( p->pRightmost!=p ); /* Can only happen for leftward elements 1557 ** of a 3-way or more compound */ 1558 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 1559 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 1560 unionTab = dest.iParm; 1561 }else{ 1562 /* We will need to create our own temporary table to hold the 1563 ** intermediate results. 1564 */ 1565 unionTab = pParse->nTab++; 1566 assert( p->pOrderBy==0 ); 1567 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 1568 assert( p->addrOpenEphm[0] == -1 ); 1569 p->addrOpenEphm[0] = addr; 1570 p->pRightmost->selFlags |= SF_UsesEphemeral; 1571 assert( p->pEList ); 1572 } 1573 1574 /* Code the SELECT statements to our left 1575 */ 1576 assert( !pPrior->pOrderBy ); 1577 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 1578 rc = sqlite3Select(pParse, pPrior, &uniondest); 1579 if( rc ){ 1580 goto multi_select_end; 1581 } 1582 1583 /* Code the current SELECT statement 1584 */ 1585 if( p->op==TK_EXCEPT ){ 1586 op = SRT_Except; 1587 }else{ 1588 assert( p->op==TK_UNION ); 1589 op = SRT_Union; 1590 } 1591 p->pPrior = 0; 1592 pLimit = p->pLimit; 1593 p->pLimit = 0; 1594 pOffset = p->pOffset; 1595 p->pOffset = 0; 1596 uniondest.eDest = op; 1597 rc = sqlite3Select(pParse, p, &uniondest); 1598 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 1599 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 1600 sqlite3ExprListDelete(db, p->pOrderBy); 1601 pDelete = p->pPrior; 1602 p->pPrior = pPrior; 1603 p->pOrderBy = 0; 1604 sqlite3ExprDelete(db, p->pLimit); 1605 p->pLimit = pLimit; 1606 p->pOffset = pOffset; 1607 p->iLimit = 0; 1608 p->iOffset = 0; 1609 if( rc ){ 1610 goto multi_select_end; 1611 } 1612 1613 1614 /* Convert the data in the temporary table into whatever form 1615 ** it is that we currently need. 1616 */ 1617 if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ 1618 int iCont, iBreak, iStart; 1619 assert( p->pEList ); 1620 if( dest.eDest==SRT_Output ){ 1621 Select *pFirst = p; 1622 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1623 generateColumnNames(pParse, 0, pFirst->pEList); 1624 } 1625 iBreak = sqlite3VdbeMakeLabel(v); 1626 iCont = sqlite3VdbeMakeLabel(v); 1627 computeLimitRegisters(pParse, p, iBreak); 1628 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); 1629 iStart = sqlite3VdbeCurrentAddr(v); 1630 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, 1631 0, -1, &dest, iCont, iBreak); 1632 sqlite3VdbeResolveLabel(v, iCont); 1633 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); 1634 sqlite3VdbeResolveLabel(v, iBreak); 1635 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 1636 } 1637 break; 1638 } 1639 case TK_INTERSECT: { 1640 int tab1, tab2; 1641 int iCont, iBreak, iStart; 1642 Expr *pLimit, *pOffset; 1643 int addr; 1644 SelectDest intersectdest; 1645 int r1; 1646 1647 /* INTERSECT is different from the others since it requires 1648 ** two temporary tables. Hence it has its own case. Begin 1649 ** by allocating the tables we will need. 1650 */ 1651 tab1 = pParse->nTab++; 1652 tab2 = pParse->nTab++; 1653 assert( p->pOrderBy==0 ); 1654 1655 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 1656 assert( p->addrOpenEphm[0] == -1 ); 1657 p->addrOpenEphm[0] = addr; 1658 p->pRightmost->selFlags |= SF_UsesEphemeral; 1659 assert( p->pEList ); 1660 1661 /* Code the SELECTs to our left into temporary table "tab1". 1662 */ 1663 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 1664 rc = sqlite3Select(pParse, pPrior, &intersectdest); 1665 if( rc ){ 1666 goto multi_select_end; 1667 } 1668 1669 /* Code the current SELECT into temporary table "tab2" 1670 */ 1671 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 1672 assert( p->addrOpenEphm[1] == -1 ); 1673 p->addrOpenEphm[1] = addr; 1674 p->pPrior = 0; 1675 pLimit = p->pLimit; 1676 p->pLimit = 0; 1677 pOffset = p->pOffset; 1678 p->pOffset = 0; 1679 intersectdest.iParm = tab2; 1680 rc = sqlite3Select(pParse, p, &intersectdest); 1681 pDelete = p->pPrior; 1682 p->pPrior = pPrior; 1683 sqlite3ExprDelete(db, p->pLimit); 1684 p->pLimit = pLimit; 1685 p->pOffset = pOffset; 1686 if( rc ){ 1687 goto multi_select_end; 1688 } 1689 1690 /* Generate code to take the intersection of the two temporary 1691 ** tables. 1692 */ 1693 assert( p->pEList ); 1694 if( dest.eDest==SRT_Output ){ 1695 Select *pFirst = p; 1696 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 1697 generateColumnNames(pParse, 0, pFirst->pEList); 1698 } 1699 iBreak = sqlite3VdbeMakeLabel(v); 1700 iCont = sqlite3VdbeMakeLabel(v); 1701 computeLimitRegisters(pParse, p, iBreak); 1702 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); 1703 r1 = sqlite3GetTempReg(pParse); 1704 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 1705 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); 1706 sqlite3ReleaseTempReg(pParse, r1); 1707 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, 1708 0, -1, &dest, iCont, iBreak); 1709 sqlite3VdbeResolveLabel(v, iCont); 1710 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); 1711 sqlite3VdbeResolveLabel(v, iBreak); 1712 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 1713 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 1714 break; 1715 } 1716 } 1717 1718 /* Compute collating sequences used by 1719 ** temporary tables needed to implement the compound select. 1720 ** Attach the KeyInfo structure to all temporary tables. 1721 ** 1722 ** This section is run by the right-most SELECT statement only. 1723 ** SELECT statements to the left always skip this part. The right-most 1724 ** SELECT might also skip this part if it has no ORDER BY clause and 1725 ** no temp tables are required. 1726 */ 1727 if( p->selFlags & SF_UsesEphemeral ){ 1728 int i; /* Loop counter */ 1729 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 1730 Select *pLoop; /* For looping through SELECT statements */ 1731 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 1732 int nCol; /* Number of columns in result set */ 1733 1734 assert( p->pRightmost==p ); 1735 nCol = p->pEList->nExpr; 1736 pKeyInfo = sqlite3DbMallocZero(db, 1737 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); 1738 if( !pKeyInfo ){ 1739 rc = SQLITE_NOMEM; 1740 goto multi_select_end; 1741 } 1742 1743 pKeyInfo->enc = ENC(db); 1744 pKeyInfo->nField = (u16)nCol; 1745 1746 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 1747 *apColl = multiSelectCollSeq(pParse, p, i); 1748 if( 0==*apColl ){ 1749 *apColl = db->pDfltColl; 1750 } 1751 } 1752 1753 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 1754 for(i=0; i<2; i++){ 1755 int addr = pLoop->addrOpenEphm[i]; 1756 if( addr<0 ){ 1757 /* If [0] is unused then [1] is also unused. So we can 1758 ** always safely abort as soon as the first unused slot is found */ 1759 assert( pLoop->addrOpenEphm[1]<0 ); 1760 break; 1761 } 1762 sqlite3VdbeChangeP2(v, addr, nCol); 1763 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); 1764 pLoop->addrOpenEphm[i] = -1; 1765 } 1766 } 1767 sqlite3DbFree(db, pKeyInfo); 1768 } 1769 1770 multi_select_end: 1771 pDest->iMem = dest.iMem; 1772 pDest->nMem = dest.nMem; 1773 sqlite3SelectDelete(db, pDelete); 1774 return rc; 1775 } 1776 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1777 1778 /* 1779 ** Code an output subroutine for a coroutine implementation of a 1780 ** SELECT statment. 1781 ** 1782 ** The data to be output is contained in pIn->iMem. There are 1783 ** pIn->nMem columns to be output. pDest is where the output should 1784 ** be sent. 1785 ** 1786 ** regReturn is the number of the register holding the subroutine 1787 ** return address. 1788 ** 1789 ** If regPrev>0 then it is a the first register in a vector that 1790 ** records the previous output. mem[regPrev] is a flag that is false 1791 ** if there has been no previous output. If regPrev>0 then code is 1792 ** generated to suppress duplicates. pKeyInfo is used for comparing 1793 ** keys. 1794 ** 1795 ** If the LIMIT found in p->iLimit is reached, jump immediately to 1796 ** iBreak. 1797 */ 1798 static int generateOutputSubroutine( 1799 Parse *pParse, /* Parsing context */ 1800 Select *p, /* The SELECT statement */ 1801 SelectDest *pIn, /* Coroutine supplying data */ 1802 SelectDest *pDest, /* Where to send the data */ 1803 int regReturn, /* The return address register */ 1804 int regPrev, /* Previous result register. No uniqueness if 0 */ 1805 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 1806 int p4type, /* The p4 type for pKeyInfo */ 1807 int iBreak /* Jump here if we hit the LIMIT */ 1808 ){ 1809 Vdbe *v = pParse->pVdbe; 1810 int iContinue; 1811 int addr; 1812 1813 addr = sqlite3VdbeCurrentAddr(v); 1814 iContinue = sqlite3VdbeMakeLabel(v); 1815 1816 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 1817 */ 1818 if( regPrev ){ 1819 int j1, j2; 1820 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); 1821 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, 1822 (char*)pKeyInfo, p4type); 1823 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); 1824 sqlite3VdbeJumpHere(v, j1); 1825 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); 1826 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 1827 } 1828 if( pParse->db->mallocFailed ) return 0; 1829 1830 /* Suppress the the first OFFSET entries if there is an OFFSET clause 1831 */ 1832 codeOffset(v, p, iContinue); 1833 1834 switch( pDest->eDest ){ 1835 /* Store the result as data using a unique key. 1836 */ 1837 case SRT_Table: 1838 case SRT_EphemTab: { 1839 int r1 = sqlite3GetTempReg(pParse); 1840 int r2 = sqlite3GetTempReg(pParse); 1841 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); 1842 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); 1843 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); 1844 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1845 sqlite3ReleaseTempReg(pParse, r2); 1846 sqlite3ReleaseTempReg(pParse, r1); 1847 break; 1848 } 1849 1850 #ifndef SQLITE_OMIT_SUBQUERY 1851 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1852 ** then there should be a single item on the stack. Write this 1853 ** item into the set table with bogus data. 1854 */ 1855 case SRT_Set: { 1856 int r1; 1857 assert( pIn->nMem==1 ); 1858 p->affinity = 1859 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); 1860 r1 = sqlite3GetTempReg(pParse); 1861 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); 1862 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); 1863 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); 1864 sqlite3ReleaseTempReg(pParse, r1); 1865 break; 1866 } 1867 1868 #if 0 /* Never occurs on an ORDER BY query */ 1869 /* If any row exist in the result set, record that fact and abort. 1870 */ 1871 case SRT_Exists: { 1872 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); 1873 /* The LIMIT clause will terminate the loop for us */ 1874 break; 1875 } 1876 #endif 1877 1878 /* If this is a scalar select that is part of an expression, then 1879 ** store the results in the appropriate memory cell and break out 1880 ** of the scan loop. 1881 */ 1882 case SRT_Mem: { 1883 assert( pIn->nMem==1 ); 1884 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); 1885 /* The LIMIT clause will jump out of the loop for us */ 1886 break; 1887 } 1888 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1889 1890 /* The results are stored in a sequence of registers 1891 ** starting at pDest->iMem. Then the co-routine yields. 1892 */ 1893 case SRT_Coroutine: { 1894 if( pDest->iMem==0 ){ 1895 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); 1896 pDest->nMem = pIn->nMem; 1897 } 1898 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); 1899 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); 1900 break; 1901 } 1902 1903 /* Results are stored in a sequence of registers. Then the 1904 ** OP_ResultRow opcode is used to cause sqlite3_step() to return 1905 ** the next row of result. 1906 */ 1907 case SRT_Output: { 1908 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); 1909 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); 1910 break; 1911 } 1912 1913 #if !defined(SQLITE_OMIT_TRIGGER) 1914 /* Discard the results. This is used for SELECT statements inside 1915 ** the body of a TRIGGER. The purpose of such selects is to call 1916 ** user-defined functions that have side effects. We do not care 1917 ** about the actual results of the select. 1918 */ 1919 default: { 1920 break; 1921 } 1922 #endif 1923 } 1924 1925 /* Jump to the end of the loop if the LIMIT is reached. 1926 */ 1927 if( p->iLimit ){ 1928 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1929 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); 1930 } 1931 1932 /* Generate the subroutine return 1933 */ 1934 sqlite3VdbeResolveLabel(v, iContinue); 1935 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 1936 1937 return addr; 1938 } 1939 1940 /* 1941 ** Alternative compound select code generator for cases when there 1942 ** is an ORDER BY clause. 1943 ** 1944 ** We assume a query of the following form: 1945 ** 1946 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 1947 ** 1948 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 1949 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 1950 ** co-routines. Then run the co-routines in parallel and merge the results 1951 ** into the output. In addition to the two coroutines (called selectA and 1952 ** selectB) there are 7 subroutines: 1953 ** 1954 ** outA: Move the output of the selectA coroutine into the output 1955 ** of the compound query. 1956 ** 1957 ** outB: Move the output of the selectB coroutine into the output 1958 ** of the compound query. (Only generated for UNION and 1959 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 1960 ** appears only in B.) 1961 ** 1962 ** AltB: Called when there is data from both coroutines and A<B. 1963 ** 1964 ** AeqB: Called when there is data from both coroutines and A==B. 1965 ** 1966 ** AgtB: Called when there is data from both coroutines and A>B. 1967 ** 1968 ** EofA: Called when data is exhausted from selectA. 1969 ** 1970 ** EofB: Called when data is exhausted from selectB. 1971 ** 1972 ** The implementation of the latter five subroutines depend on which 1973 ** <operator> is used: 1974 ** 1975 ** 1976 ** UNION ALL UNION EXCEPT INTERSECT 1977 ** ------------- ----------------- -------------- ----------------- 1978 ** AltB: outA, nextA outA, nextA outA, nextA nextA 1979 ** 1980 ** AeqB: outA, nextA nextA nextA outA, nextA 1981 ** 1982 ** AgtB: outB, nextB outB, nextB nextB nextB 1983 ** 1984 ** EofA: outB, nextB outB, nextB halt halt 1985 ** 1986 ** EofB: outA, nextA outA, nextA outA, nextA halt 1987 ** 1988 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 1989 ** causes an immediate jump to EofA and an EOF on B following nextB causes 1990 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 1991 ** following nextX causes a jump to the end of the select processing. 1992 ** 1993 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 1994 ** within the output subroutine. The regPrev register set holds the previously 1995 ** output value. A comparison is made against this value and the output 1996 ** is skipped if the next results would be the same as the previous. 1997 ** 1998 ** The implementation plan is to implement the two coroutines and seven 1999 ** subroutines first, then put the control logic at the bottom. Like this: 2000 ** 2001 ** goto Init 2002 ** coA: coroutine for left query (A) 2003 ** coB: coroutine for right query (B) 2004 ** outA: output one row of A 2005 ** outB: output one row of B (UNION and UNION ALL only) 2006 ** EofA: ... 2007 ** EofB: ... 2008 ** AltB: ... 2009 ** AeqB: ... 2010 ** AgtB: ... 2011 ** Init: initialize coroutine registers 2012 ** yield coA 2013 ** if eof(A) goto EofA 2014 ** yield coB 2015 ** if eof(B) goto EofB 2016 ** Cmpr: Compare A, B 2017 ** Jump AltB, AeqB, AgtB 2018 ** End: ... 2019 ** 2020 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2021 ** actually called using Gosub and they do not Return. EofA and EofB loop 2022 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2023 ** and AgtB jump to either L2 or to one of EofA or EofB. 2024 */ 2025 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2026 static int multiSelectOrderBy( 2027 Parse *pParse, /* Parsing context */ 2028 Select *p, /* The right-most of SELECTs to be coded */ 2029 SelectDest *pDest /* What to do with query results */ 2030 ){ 2031 int i, j; /* Loop counters */ 2032 Select *pPrior; /* Another SELECT immediately to our left */ 2033 Vdbe *v; /* Generate code to this VDBE */ 2034 SelectDest destA; /* Destination for coroutine A */ 2035 SelectDest destB; /* Destination for coroutine B */ 2036 int regAddrA; /* Address register for select-A coroutine */ 2037 int regEofA; /* Flag to indicate when select-A is complete */ 2038 int regAddrB; /* Address register for select-B coroutine */ 2039 int regEofB; /* Flag to indicate when select-B is complete */ 2040 int addrSelectA; /* Address of the select-A coroutine */ 2041 int addrSelectB; /* Address of the select-B coroutine */ 2042 int regOutA; /* Address register for the output-A subroutine */ 2043 int regOutB; /* Address register for the output-B subroutine */ 2044 int addrOutA; /* Address of the output-A subroutine */ 2045 int addrOutB = 0; /* Address of the output-B subroutine */ 2046 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2047 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2048 int addrAltB; /* Address of the A<B subroutine */ 2049 int addrAeqB; /* Address of the A==B subroutine */ 2050 int addrAgtB; /* Address of the A>B subroutine */ 2051 int regLimitA; /* Limit register for select-A */ 2052 int regLimitB; /* Limit register for select-A */ 2053 int regPrev; /* A range of registers to hold previous output */ 2054 int savedLimit; /* Saved value of p->iLimit */ 2055 int savedOffset; /* Saved value of p->iOffset */ 2056 int labelCmpr; /* Label for the start of the merge algorithm */ 2057 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2058 int j1; /* Jump instructions that get retargetted */ 2059 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2060 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2061 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2062 sqlite3 *db; /* Database connection */ 2063 ExprList *pOrderBy; /* The ORDER BY clause */ 2064 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2065 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2066 2067 assert( p->pOrderBy!=0 ); 2068 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2069 db = pParse->db; 2070 v = pParse->pVdbe; 2071 if( v==0 ) return SQLITE_NOMEM; 2072 labelEnd = sqlite3VdbeMakeLabel(v); 2073 labelCmpr = sqlite3VdbeMakeLabel(v); 2074 2075 2076 /* Patch up the ORDER BY clause 2077 */ 2078 op = p->op; 2079 pPrior = p->pPrior; 2080 assert( pPrior->pOrderBy==0 ); 2081 pOrderBy = p->pOrderBy; 2082 assert( pOrderBy ); 2083 nOrderBy = pOrderBy->nExpr; 2084 2085 /* For operators other than UNION ALL we have to make sure that 2086 ** the ORDER BY clause covers every term of the result set. Add 2087 ** terms to the ORDER BY clause as necessary. 2088 */ 2089 if( op!=TK_ALL ){ 2090 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2091 struct ExprList_item *pItem; 2092 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2093 assert( pItem->iCol>0 ); 2094 if( pItem->iCol==i ) break; 2095 } 2096 if( j==nOrderBy ){ 2097 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); 2098 if( pNew==0 ) return SQLITE_NOMEM; 2099 pNew->flags |= EP_IntValue; 2100 pNew->iTable = i; 2101 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); 2102 pOrderBy->a[nOrderBy++].iCol = (u16)i; 2103 } 2104 } 2105 } 2106 2107 /* Compute the comparison permutation and keyinfo that is used with 2108 ** the permutation used to determine if the next 2109 ** row of results comes from selectA or selectB. Also add explicit 2110 ** collations to the ORDER BY clause terms so that when the subqueries 2111 ** to the right and the left are evaluated, they use the correct 2112 ** collation. 2113 */ 2114 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2115 if( aPermute ){ 2116 struct ExprList_item *pItem; 2117 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2118 assert( pItem->iCol>0 && pItem->iCol<=p->pEList->nExpr ); 2119 aPermute[i] = pItem->iCol - 1; 2120 } 2121 pKeyMerge = 2122 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); 2123 if( pKeyMerge ){ 2124 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; 2125 pKeyMerge->nField = (u16)nOrderBy; 2126 pKeyMerge->enc = ENC(db); 2127 for(i=0; i<nOrderBy; i++){ 2128 CollSeq *pColl; 2129 Expr *pTerm = pOrderBy->a[i].pExpr; 2130 if( pTerm->flags & EP_ExpCollate ){ 2131 pColl = pTerm->pColl; 2132 }else{ 2133 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); 2134 pTerm->flags |= EP_ExpCollate; 2135 pTerm->pColl = pColl; 2136 } 2137 pKeyMerge->aColl[i] = pColl; 2138 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; 2139 } 2140 } 2141 }else{ 2142 pKeyMerge = 0; 2143 } 2144 2145 /* Reattach the ORDER BY clause to the query. 2146 */ 2147 p->pOrderBy = pOrderBy; 2148 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2149 2150 /* Allocate a range of temporary registers and the KeyInfo needed 2151 ** for the logic that removes duplicate result rows when the 2152 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2153 */ 2154 if( op==TK_ALL ){ 2155 regPrev = 0; 2156 }else{ 2157 int nExpr = p->pEList->nExpr; 2158 assert( nOrderBy>=nExpr || db->mallocFailed ); 2159 regPrev = sqlite3GetTempRange(pParse, nExpr+1); 2160 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2161 pKeyDup = sqlite3DbMallocZero(db, 2162 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); 2163 if( pKeyDup ){ 2164 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; 2165 pKeyDup->nField = (u16)nExpr; 2166 pKeyDup->enc = ENC(db); 2167 for(i=0; i<nExpr; i++){ 2168 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2169 pKeyDup->aSortOrder[i] = 0; 2170 } 2171 } 2172 } 2173 2174 /* Separate the left and the right query from one another 2175 */ 2176 p->pPrior = 0; 2177 pPrior->pRightmost = 0; 2178 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2179 if( pPrior->pPrior==0 ){ 2180 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2181 } 2182 2183 /* Compute the limit registers */ 2184 computeLimitRegisters(pParse, p, labelEnd); 2185 if( p->iLimit && op==TK_ALL ){ 2186 regLimitA = ++pParse->nMem; 2187 regLimitB = ++pParse->nMem; 2188 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2189 regLimitA); 2190 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2191 }else{ 2192 regLimitA = regLimitB = 0; 2193 } 2194 sqlite3ExprDelete(db, p->pLimit); 2195 p->pLimit = 0; 2196 sqlite3ExprDelete(db, p->pOffset); 2197 p->pOffset = 0; 2198 2199 regAddrA = ++pParse->nMem; 2200 regEofA = ++pParse->nMem; 2201 regAddrB = ++pParse->nMem; 2202 regEofB = ++pParse->nMem; 2203 regOutA = ++pParse->nMem; 2204 regOutB = ++pParse->nMem; 2205 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2206 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2207 2208 /* Jump past the various subroutines and coroutines to the main 2209 ** merge loop 2210 */ 2211 j1 = sqlite3VdbeAddOp0(v, OP_Goto); 2212 addrSelectA = sqlite3VdbeCurrentAddr(v); 2213 2214 2215 /* Generate a coroutine to evaluate the SELECT statement to the 2216 ** left of the compound operator - the "A" select. 2217 */ 2218 VdbeNoopComment((v, "Begin coroutine for left SELECT")); 2219 pPrior->iLimit = regLimitA; 2220 sqlite3Select(pParse, pPrior, &destA); 2221 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); 2222 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2223 VdbeNoopComment((v, "End coroutine for left SELECT")); 2224 2225 /* Generate a coroutine to evaluate the SELECT statement on 2226 ** the right - the "B" select 2227 */ 2228 addrSelectB = sqlite3VdbeCurrentAddr(v); 2229 VdbeNoopComment((v, "Begin coroutine for right SELECT")); 2230 savedLimit = p->iLimit; 2231 savedOffset = p->iOffset; 2232 p->iLimit = regLimitB; 2233 p->iOffset = 0; 2234 sqlite3Select(pParse, p, &destB); 2235 p->iLimit = savedLimit; 2236 p->iOffset = savedOffset; 2237 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); 2238 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2239 VdbeNoopComment((v, "End coroutine for right SELECT")); 2240 2241 /* Generate a subroutine that outputs the current row of the A 2242 ** select as the next output row of the compound select. 2243 */ 2244 VdbeNoopComment((v, "Output routine for A")); 2245 addrOutA = generateOutputSubroutine(pParse, 2246 p, &destA, pDest, regOutA, 2247 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); 2248 2249 /* Generate a subroutine that outputs the current row of the B 2250 ** select as the next output row of the compound select. 2251 */ 2252 if( op==TK_ALL || op==TK_UNION ){ 2253 VdbeNoopComment((v, "Output routine for B")); 2254 addrOutB = generateOutputSubroutine(pParse, 2255 p, &destB, pDest, regOutB, 2256 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); 2257 } 2258 2259 /* Generate a subroutine to run when the results from select A 2260 ** are exhausted and only data in select B remains. 2261 */ 2262 VdbeNoopComment((v, "eof-A subroutine")); 2263 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2264 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); 2265 }else{ 2266 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); 2267 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2268 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2269 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2270 } 2271 2272 /* Generate a subroutine to run when the results from select B 2273 ** are exhausted and only data in select A remains. 2274 */ 2275 if( op==TK_INTERSECT ){ 2276 addrEofB = addrEofA; 2277 }else{ 2278 VdbeNoopComment((v, "eof-B subroutine")); 2279 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); 2280 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2281 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2282 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2283 } 2284 2285 /* Generate code to handle the case of A<B 2286 */ 2287 VdbeNoopComment((v, "A-lt-B subroutine")); 2288 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2289 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2290 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2291 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2292 2293 /* Generate code to handle the case of A==B 2294 */ 2295 if( op==TK_ALL ){ 2296 addrAeqB = addrAltB; 2297 }else if( op==TK_INTERSECT ){ 2298 addrAeqB = addrAltB; 2299 addrAltB++; 2300 }else{ 2301 VdbeNoopComment((v, "A-eq-B subroutine")); 2302 addrAeqB = 2303 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); 2304 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2305 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2306 } 2307 2308 /* Generate code to handle the case of A>B 2309 */ 2310 VdbeNoopComment((v, "A-gt-B subroutine")); 2311 addrAgtB = sqlite3VdbeCurrentAddr(v); 2312 if( op==TK_ALL || op==TK_UNION ){ 2313 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2314 } 2315 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); 2316 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2317 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2318 2319 /* This code runs once to initialize everything. 2320 */ 2321 sqlite3VdbeJumpHere(v, j1); 2322 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); 2323 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); 2324 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); 2325 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); 2326 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); 2327 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); 2328 2329 /* Implement the main merge loop 2330 */ 2331 sqlite3VdbeResolveLabel(v, labelCmpr); 2332 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2333 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, 2334 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); 2335 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); 2336 2337 /* Release temporary registers 2338 */ 2339 if( regPrev ){ 2340 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); 2341 } 2342 2343 /* Jump to the this point in order to terminate the query. 2344 */ 2345 sqlite3VdbeResolveLabel(v, labelEnd); 2346 2347 /* Set the number of output columns 2348 */ 2349 if( pDest->eDest==SRT_Output ){ 2350 Select *pFirst = pPrior; 2351 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2352 generateColumnNames(pParse, 0, pFirst->pEList); 2353 } 2354 2355 /* Reassembly the compound query so that it will be freed correctly 2356 ** by the calling function */ 2357 if( p->pPrior ){ 2358 sqlite3SelectDelete(db, p->pPrior); 2359 } 2360 p->pPrior = pPrior; 2361 2362 /*** TBD: Insert subroutine calls to close cursors on incomplete 2363 **** subqueries ****/ 2364 return SQLITE_OK; 2365 } 2366 #endif 2367 2368 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2369 /* Forward Declarations */ 2370 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2371 static void substSelect(sqlite3*, Select *, int, ExprList *); 2372 2373 /* 2374 ** Scan through the expression pExpr. Replace every reference to 2375 ** a column in table number iTable with a copy of the iColumn-th 2376 ** entry in pEList. (But leave references to the ROWID column 2377 ** unchanged.) 2378 ** 2379 ** This routine is part of the flattening procedure. A subquery 2380 ** whose result set is defined by pEList appears as entry in the 2381 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2382 ** FORM clause entry is iTable. This routine make the necessary 2383 ** changes to pExpr so that it refers directly to the source table 2384 ** of the subquery rather the result set of the subquery. 2385 */ 2386 static void substExpr( 2387 sqlite3 *db, /* Report malloc errors to this connection */ 2388 Expr *pExpr, /* Expr in which substitution occurs */ 2389 int iTable, /* Table to be substituted */ 2390 ExprList *pEList /* Substitute expressions */ 2391 ){ 2392 if( pExpr==0 ) return; 2393 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2394 if( pExpr->iColumn<0 ){ 2395 pExpr->op = TK_NULL; 2396 }else{ 2397 Expr *pNew; 2398 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2399 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2400 pNew = pEList->a[pExpr->iColumn].pExpr; 2401 assert( pNew!=0 ); 2402 pExpr->op = pNew->op; 2403 assert( pExpr->pLeft==0 ); 2404 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft, 0); 2405 assert( pExpr->pRight==0 ); 2406 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight, 0); 2407 pExpr->iTable = pNew->iTable; 2408 pExpr->pTab = pNew->pTab; 2409 pExpr->iColumn = pNew->iColumn; 2410 pExpr->iAgg = pNew->iAgg; 2411 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); 2412 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); 2413 assert( pExpr->x.pList==0 && pExpr->x.pSelect==0 ); 2414 if( ExprHasProperty(pNew, EP_xIsSelect) ){ 2415 pExpr->x.pSelect = sqlite3SelectDup(db, pNew->x.pSelect, 0); 2416 }else{ 2417 pExpr->x.pList = sqlite3ExprListDup(db, pNew->x.pList, 0); 2418 } 2419 pExpr->flags = pNew->flags; 2420 pExpr->pAggInfo = pNew->pAggInfo; 2421 pNew->pAggInfo = 0; 2422 } 2423 }else{ 2424 substExpr(db, pExpr->pLeft, iTable, pEList); 2425 substExpr(db, pExpr->pRight, iTable, pEList); 2426 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2427 substSelect(db, pExpr->x.pSelect, iTable, pEList); 2428 }else{ 2429 substExprList(db, pExpr->x.pList, iTable, pEList); 2430 } 2431 } 2432 } 2433 static void substExprList( 2434 sqlite3 *db, /* Report malloc errors here */ 2435 ExprList *pList, /* List to scan and in which to make substitutes */ 2436 int iTable, /* Table to be substituted */ 2437 ExprList *pEList /* Substitute values */ 2438 ){ 2439 int i; 2440 if( pList==0 ) return; 2441 for(i=0; i<pList->nExpr; i++){ 2442 substExpr(db, pList->a[i].pExpr, iTable, pEList); 2443 } 2444 } 2445 static void substSelect( 2446 sqlite3 *db, /* Report malloc errors here */ 2447 Select *p, /* SELECT statement in which to make substitutions */ 2448 int iTable, /* Table to be replaced */ 2449 ExprList *pEList /* Substitute values */ 2450 ){ 2451 SrcList *pSrc; 2452 struct SrcList_item *pItem; 2453 int i; 2454 if( !p ) return; 2455 substExprList(db, p->pEList, iTable, pEList); 2456 substExprList(db, p->pGroupBy, iTable, pEList); 2457 substExprList(db, p->pOrderBy, iTable, pEList); 2458 substExpr(db, p->pHaving, iTable, pEList); 2459 substExpr(db, p->pWhere, iTable, pEList); 2460 substSelect(db, p->pPrior, iTable, pEList); 2461 pSrc = p->pSrc; 2462 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 2463 if( ALWAYS(pSrc) ){ 2464 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 2465 substSelect(db, pItem->pSelect, iTable, pEList); 2466 } 2467 } 2468 } 2469 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2470 2471 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2472 /* 2473 ** This routine attempts to flatten subqueries in order to speed 2474 ** execution. It returns 1 if it makes changes and 0 if no flattening 2475 ** occurs. 2476 ** 2477 ** To understand the concept of flattening, consider the following 2478 ** query: 2479 ** 2480 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 2481 ** 2482 ** The default way of implementing this query is to execute the 2483 ** subquery first and store the results in a temporary table, then 2484 ** run the outer query on that temporary table. This requires two 2485 ** passes over the data. Furthermore, because the temporary table 2486 ** has no indices, the WHERE clause on the outer query cannot be 2487 ** optimized. 2488 ** 2489 ** This routine attempts to rewrite queries such as the above into 2490 ** a single flat select, like this: 2491 ** 2492 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 2493 ** 2494 ** The code generated for this simpification gives the same result 2495 ** but only has to scan the data once. And because indices might 2496 ** exist on the table t1, a complete scan of the data might be 2497 ** avoided. 2498 ** 2499 ** Flattening is only attempted if all of the following are true: 2500 ** 2501 ** (1) The subquery and the outer query do not both use aggregates. 2502 ** 2503 ** (2) The subquery is not an aggregate or the outer query is not a join. 2504 ** 2505 ** (3) The subquery is not the right operand of a left outer join 2506 ** (Originally ticket #306. Strenghtened by ticket #3300) 2507 ** 2508 ** (4) The subquery is not DISTINCT or the outer query is not a join. 2509 ** 2510 ** (5) The subquery is not DISTINCT or the outer query does not use 2511 ** aggregates. 2512 ** 2513 ** (6) The subquery does not use aggregates or the outer query is not 2514 ** DISTINCT. 2515 ** 2516 ** (7) The subquery has a FROM clause. 2517 ** 2518 ** (8) The subquery does not use LIMIT or the outer query is not a join. 2519 ** 2520 ** (9) The subquery does not use LIMIT or the outer query does not use 2521 ** aggregates. 2522 ** 2523 ** (10) The subquery does not use aggregates or the outer query does not 2524 ** use LIMIT. 2525 ** 2526 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 2527 ** 2528 ** (12) Not implemented. Subsumed into restriction (3). Was previously 2529 ** a separate restriction deriving from ticket #350. 2530 ** 2531 ** (13) The subquery and outer query do not both use LIMIT 2532 ** 2533 ** (14) The subquery does not use OFFSET 2534 ** 2535 ** (15) The outer query is not part of a compound select or the 2536 ** subquery does not have both an ORDER BY and a LIMIT clause. 2537 ** (See ticket #2339) 2538 ** 2539 ** (16) The outer query is not an aggregate or the subquery does 2540 ** not contain ORDER BY. (Ticket #2942) This used to not matter 2541 ** until we introduced the group_concat() function. 2542 ** 2543 ** (17) The sub-query is not a compound select, or it is a UNION ALL 2544 ** compound clause made up entirely of non-aggregate queries, and 2545 ** the parent query: 2546 ** 2547 ** * is not itself part of a compound select, 2548 ** * is not an aggregate or DISTINCT query, and 2549 ** * has no other tables or sub-selects in the FROM clause. 2550 ** 2551 ** The parent and sub-query may contain WHERE clauses. Subject to 2552 ** rules (11), (13) and (14), they may also contain ORDER BY, 2553 ** LIMIT and OFFSET clauses. 2554 ** 2555 ** (18) If the sub-query is a compound select, then all terms of the 2556 ** ORDER by clause of the parent must be simple references to 2557 ** columns of the sub-query. 2558 ** 2559 ** (19) The subquery does not use LIMIT or the outer query does not 2560 ** have a WHERE clause. 2561 ** 2562 ** (20) If the sub-query is a compound select, then it must not use 2563 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 2564 ** somewhat by saying that the terms of the ORDER BY clause must 2565 ** appear as unmodified result columns in the outer query. But 2566 ** have other optimizations in mind to deal with that case. 2567 ** 2568 ** In this routine, the "p" parameter is a pointer to the outer query. 2569 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 2570 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 2571 ** 2572 ** If flattening is not attempted, this routine is a no-op and returns 0. 2573 ** If flattening is attempted this routine returns 1. 2574 ** 2575 ** All of the expression analysis must occur on both the outer query and 2576 ** the subquery before this routine runs. 2577 */ 2578 static int flattenSubquery( 2579 Parse *pParse, /* Parsing context */ 2580 Select *p, /* The parent or outer SELECT statement */ 2581 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 2582 int isAgg, /* True if outer SELECT uses aggregate functions */ 2583 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 2584 ){ 2585 const char *zSavedAuthContext = pParse->zAuthContext; 2586 Select *pParent; 2587 Select *pSub; /* The inner query or "subquery" */ 2588 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 2589 SrcList *pSrc; /* The FROM clause of the outer query */ 2590 SrcList *pSubSrc; /* The FROM clause of the subquery */ 2591 ExprList *pList; /* The result set of the outer query */ 2592 int iParent; /* VDBE cursor number of the pSub result set temp table */ 2593 int i; /* Loop counter */ 2594 Expr *pWhere; /* The WHERE clause */ 2595 struct SrcList_item *pSubitem; /* The subquery */ 2596 sqlite3 *db = pParse->db; 2597 2598 /* Check to see if flattening is permitted. Return 0 if not. 2599 */ 2600 assert( p!=0 ); 2601 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 2602 pSrc = p->pSrc; 2603 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 2604 pSubitem = &pSrc->a[iFrom]; 2605 iParent = pSubitem->iCursor; 2606 pSub = pSubitem->pSelect; 2607 assert( pSub!=0 ); 2608 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 2609 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 2610 pSubSrc = pSub->pSrc; 2611 assert( pSubSrc ); 2612 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 2613 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 2614 ** because they could be computed at compile-time. But when LIMIT and OFFSET 2615 ** became arbitrary expressions, we were forced to add restrictions (13) 2616 ** and (14). */ 2617 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 2618 if( pSub->pOffset ) return 0; /* Restriction (14) */ 2619 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ 2620 return 0; /* Restriction (15) */ 2621 } 2622 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 2623 if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 2624 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ 2625 return 0; 2626 } 2627 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 2628 return 0; /* Restriction (6) */ 2629 } 2630 if( p->pOrderBy && pSub->pOrderBy ){ 2631 return 0; /* Restriction (11) */ 2632 } 2633 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 2634 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 2635 2636 /* OBSOLETE COMMENT 1: 2637 ** Restriction 3: If the subquery is a join, make sure the subquery is 2638 ** not used as the right operand of an outer join. Examples of why this 2639 ** is not allowed: 2640 ** 2641 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 2642 ** 2643 ** If we flatten the above, we would get 2644 ** 2645 ** (t1 LEFT OUTER JOIN t2) JOIN t3 2646 ** 2647 ** which is not at all the same thing. 2648 ** 2649 ** OBSOLETE COMMENT 2: 2650 ** Restriction 12: If the subquery is the right operand of a left outer 2651 ** join, make sure the subquery has no WHERE clause. 2652 ** An examples of why this is not allowed: 2653 ** 2654 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 2655 ** 2656 ** If we flatten the above, we would get 2657 ** 2658 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 2659 ** 2660 ** But the t2.x>0 test will always fail on a NULL row of t2, which 2661 ** effectively converts the OUTER JOIN into an INNER JOIN. 2662 ** 2663 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 2664 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 2665 ** is fraught with danger. Best to avoid the whole thing. If the 2666 ** subquery is the right term of a LEFT JOIN, then do not flatten. 2667 */ 2668 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 2669 return 0; 2670 } 2671 2672 /* Restriction 17: If the sub-query is a compound SELECT, then it must 2673 ** use only the UNION ALL operator. And none of the simple select queries 2674 ** that make up the compound SELECT are allowed to be aggregate or distinct 2675 ** queries. 2676 */ 2677 if( pSub->pPrior ){ 2678 if( pSub->pOrderBy ){ 2679 return 0; /* Restriction 20 */ 2680 } 2681 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 2682 return 0; 2683 } 2684 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 2685 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 2686 || (pSub1->pPrior && pSub1->op!=TK_ALL) 2687 || !pSub1->pSrc || pSub1->pSrc->nSrc!=1 2688 ){ 2689 return 0; 2690 } 2691 } 2692 2693 /* Restriction 18. */ 2694 if( p->pOrderBy ){ 2695 int ii; 2696 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 2697 if( p->pOrderBy->a[ii].iCol==0 ) return 0; 2698 } 2699 } 2700 } 2701 2702 /***** If we reach this point, flattening is permitted. *****/ 2703 2704 /* Authorize the subquery */ 2705 pParse->zAuthContext = pSubitem->zName; 2706 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 2707 pParse->zAuthContext = zSavedAuthContext; 2708 2709 /* If the sub-query is a compound SELECT statement, then (by restrictions 2710 ** 17 and 18 above) it must be a UNION ALL and the parent query must 2711 ** be of the form: 2712 ** 2713 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 2714 ** 2715 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 2716 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 2717 ** OFFSET clauses and joins them to the left-hand-side of the original 2718 ** using UNION ALL operators. In this case N is the number of simple 2719 ** select statements in the compound sub-query. 2720 ** 2721 ** Example: 2722 ** 2723 ** SELECT a+1 FROM ( 2724 ** SELECT x FROM tab 2725 ** UNION ALL 2726 ** SELECT y FROM tab 2727 ** UNION ALL 2728 ** SELECT abs(z*2) FROM tab2 2729 ** ) WHERE a!=5 ORDER BY 1 2730 ** 2731 ** Transformed into: 2732 ** 2733 ** SELECT x+1 FROM tab WHERE x+1!=5 2734 ** UNION ALL 2735 ** SELECT y+1 FROM tab WHERE y+1!=5 2736 ** UNION ALL 2737 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 2738 ** ORDER BY 1 2739 ** 2740 ** We call this the "compound-subquery flattening". 2741 */ 2742 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 2743 Select *pNew; 2744 ExprList *pOrderBy = p->pOrderBy; 2745 Expr *pLimit = p->pLimit; 2746 Select *pPrior = p->pPrior; 2747 p->pOrderBy = 0; 2748 p->pSrc = 0; 2749 p->pPrior = 0; 2750 p->pLimit = 0; 2751 pNew = sqlite3SelectDup(db, p, 0); 2752 p->pLimit = pLimit; 2753 p->pOrderBy = pOrderBy; 2754 p->pSrc = pSrc; 2755 p->op = TK_ALL; 2756 p->pRightmost = 0; 2757 if( pNew==0 ){ 2758 pNew = pPrior; 2759 }else{ 2760 pNew->pPrior = pPrior; 2761 pNew->pRightmost = 0; 2762 } 2763 p->pPrior = pNew; 2764 if( db->mallocFailed ) return 1; 2765 } 2766 2767 /* Begin flattening the iFrom-th entry of the FROM clause 2768 ** in the outer query. 2769 */ 2770 pSub = pSub1 = pSubitem->pSelect; 2771 2772 /* Delete the transient table structure associated with the 2773 ** subquery 2774 */ 2775 sqlite3DbFree(db, pSubitem->zDatabase); 2776 sqlite3DbFree(db, pSubitem->zName); 2777 sqlite3DbFree(db, pSubitem->zAlias); 2778 pSubitem->zDatabase = 0; 2779 pSubitem->zName = 0; 2780 pSubitem->zAlias = 0; 2781 pSubitem->pSelect = 0; 2782 2783 /* Defer deleting the Table object associated with the 2784 ** subquery until code generation is 2785 ** complete, since there may still exist Expr.pTab entries that 2786 ** refer to the subquery even after flattening. Ticket #3346. 2787 */ 2788 if( pSubitem->pTab!=0 ){ 2789 Table *pTabToDel = pSubitem->pTab; 2790 if( pTabToDel->nRef==1 ){ 2791 pTabToDel->pNextZombie = pParse->pZombieTab; 2792 pParse->pZombieTab = pTabToDel; 2793 }else{ 2794 pTabToDel->nRef--; 2795 } 2796 pSubitem->pTab = 0; 2797 } 2798 2799 /* The following loop runs once for each term in a compound-subquery 2800 ** flattening (as described above). If we are doing a different kind 2801 ** of flattening - a flattening other than a compound-subquery flattening - 2802 ** then this loop only runs once. 2803 ** 2804 ** This loop moves all of the FROM elements of the subquery into the 2805 ** the FROM clause of the outer query. Before doing this, remember 2806 ** the cursor number for the original outer query FROM element in 2807 ** iParent. The iParent cursor will never be used. Subsequent code 2808 ** will scan expressions looking for iParent references and replace 2809 ** those references with expressions that resolve to the subquery FROM 2810 ** elements we are now copying in. 2811 */ 2812 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 2813 int nSubSrc; 2814 u8 jointype = 0; 2815 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 2816 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 2817 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 2818 2819 if( pSrc ){ 2820 assert( pParent==p ); /* First time through the loop */ 2821 jointype = pSubitem->jointype; 2822 }else{ 2823 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 2824 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 2825 if( pSrc==0 ){ 2826 assert( db->mallocFailed ); 2827 break; 2828 } 2829 } 2830 2831 /* The subquery uses a single slot of the FROM clause of the outer 2832 ** query. If the subquery has more than one element in its FROM clause, 2833 ** then expand the outer query to make space for it to hold all elements 2834 ** of the subquery. 2835 ** 2836 ** Example: 2837 ** 2838 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 2839 ** 2840 ** The outer query has 3 slots in its FROM clause. One slot of the 2841 ** outer query (the middle slot) is used by the subquery. The next 2842 ** block of code will expand the out query to 4 slots. The middle 2843 ** slot is expanded to two slots in order to make space for the 2844 ** two elements in the FROM clause of the subquery. 2845 */ 2846 if( nSubSrc>1 ){ 2847 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 2848 if( db->mallocFailed ){ 2849 break; 2850 } 2851 } 2852 2853 /* Transfer the FROM clause terms from the subquery into the 2854 ** outer query. 2855 */ 2856 for(i=0; i<nSubSrc; i++){ 2857 pSrc->a[i+iFrom] = pSubSrc->a[i]; 2858 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 2859 } 2860 pSrc->a[iFrom].jointype = jointype; 2861 2862 /* Now begin substituting subquery result set expressions for 2863 ** references to the iParent in the outer query. 2864 ** 2865 ** Example: 2866 ** 2867 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 2868 ** \ \_____________ subquery __________/ / 2869 ** \_____________________ outer query ______________________________/ 2870 ** 2871 ** We look at every expression in the outer query and every place we see 2872 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 2873 */ 2874 pList = pParent->pEList; 2875 for(i=0; i<pList->nExpr; i++){ 2876 Expr *pExpr; 2877 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ 2878 pList->a[i].zName = 2879 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); 2880 } 2881 } 2882 substExprList(db, pParent->pEList, iParent, pSub->pEList); 2883 if( isAgg ){ 2884 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 2885 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2886 } 2887 if( pSub->pOrderBy ){ 2888 assert( pParent->pOrderBy==0 ); 2889 pParent->pOrderBy = pSub->pOrderBy; 2890 pSub->pOrderBy = 0; 2891 }else if( pParent->pOrderBy ){ 2892 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 2893 } 2894 if( pSub->pWhere ){ 2895 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 2896 }else{ 2897 pWhere = 0; 2898 } 2899 if( subqueryIsAgg ){ 2900 assert( pParent->pHaving==0 ); 2901 pParent->pHaving = pParent->pWhere; 2902 pParent->pWhere = pWhere; 2903 substExpr(db, pParent->pHaving, iParent, pSub->pEList); 2904 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 2905 sqlite3ExprDup(db, pSub->pHaving, 0)); 2906 assert( pParent->pGroupBy==0 ); 2907 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 2908 }else{ 2909 substExpr(db, pParent->pWhere, iParent, pSub->pEList); 2910 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 2911 } 2912 2913 /* The flattened query is distinct if either the inner or the 2914 ** outer query is distinct. 2915 */ 2916 pParent->selFlags |= pSub->selFlags & SF_Distinct; 2917 2918 /* 2919 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 2920 ** 2921 ** One is tempted to try to add a and b to combine the limits. But this 2922 ** does not work if either limit is negative. 2923 */ 2924 if( pSub->pLimit ){ 2925 pParent->pLimit = pSub->pLimit; 2926 pSub->pLimit = 0; 2927 } 2928 } 2929 2930 /* Finially, delete what is left of the subquery and return 2931 ** success. 2932 */ 2933 sqlite3SelectDelete(db, pSub1); 2934 2935 return 1; 2936 } 2937 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 2938 2939 /* 2940 ** Analyze the SELECT statement passed as an argument to see if it 2941 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 2942 ** it is, or 0 otherwise. At present, a query is considered to be 2943 ** a min()/max() query if: 2944 ** 2945 ** 1. There is a single object in the FROM clause. 2946 ** 2947 ** 2. There is a single expression in the result set, and it is 2948 ** either min(x) or max(x), where x is a column reference. 2949 */ 2950 static u8 minMaxQuery(Select *p){ 2951 Expr *pExpr; 2952 ExprList *pEList = p->pEList; 2953 2954 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; 2955 pExpr = pEList->a[0].pExpr; 2956 if( ExprHasProperty(pExpr, EP_xIsSelect) ) return 0; 2957 pEList = pExpr->x.pList; 2958 if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; 2959 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; 2960 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; 2961 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ 2962 return WHERE_ORDERBY_MIN; 2963 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ 2964 return WHERE_ORDERBY_MAX; 2965 } 2966 return WHERE_ORDERBY_NORMAL; 2967 } 2968 2969 /* 2970 ** The select statement passed as the first argument is an aggregate query. 2971 ** The second argment is the associated aggregate-info object. This 2972 ** function tests if the SELECT is of the form: 2973 ** 2974 ** SELECT count(*) FROM <tbl> 2975 ** 2976 ** where table is a database table, not a sub-select or view. If the query 2977 ** does match this pattern, then a pointer to the Table object representing 2978 ** <tbl> is returned. Otherwise, 0 is returned. 2979 */ 2980 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 2981 Table *pTab; 2982 Expr *pExpr; 2983 2984 assert( !p->pGroupBy ); 2985 2986 if( p->pWhere || p->pEList->nExpr!=1 2987 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 2988 ){ 2989 return 0; 2990 } 2991 pTab = p->pSrc->a[0].pTab; 2992 pExpr = p->pEList->a[0].pExpr; 2993 assert( pTab && !pTab->pSelect && pExpr ); 2994 2995 if( IsVirtual(pTab) ) return 0; 2996 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 2997 if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0; 2998 if( pExpr->flags&EP_Distinct ) return 0; 2999 3000 return pTab; 3001 } 3002 3003 /* 3004 ** If the source-list item passed as an argument was augmented with an 3005 ** INDEXED BY clause, then try to locate the specified index. If there 3006 ** was such a clause and the named index cannot be found, return 3007 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3008 ** pFrom->pIndex and return SQLITE_OK. 3009 */ 3010 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3011 if( pFrom->pTab && pFrom->zIndex ){ 3012 Table *pTab = pFrom->pTab; 3013 char *zIndex = pFrom->zIndex; 3014 Index *pIdx; 3015 for(pIdx=pTab->pIndex; 3016 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3017 pIdx=pIdx->pNext 3018 ); 3019 if( !pIdx ){ 3020 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3021 return SQLITE_ERROR; 3022 } 3023 pFrom->pIndex = pIdx; 3024 } 3025 return SQLITE_OK; 3026 } 3027 3028 /* 3029 ** This routine is a Walker callback for "expanding" a SELECT statement. 3030 ** "Expanding" means to do the following: 3031 ** 3032 ** (1) Make sure VDBE cursor numbers have been assigned to every 3033 ** element of the FROM clause. 3034 ** 3035 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3036 ** defines FROM clause. When views appear in the FROM clause, 3037 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3038 ** that implements the view. A copy is made of the view's SELECT 3039 ** statement so that we can freely modify or delete that statement 3040 ** without worrying about messing up the presistent representation 3041 ** of the view. 3042 ** 3043 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3044 ** on joins and the ON and USING clause of joins. 3045 ** 3046 ** (4) Scan the list of columns in the result set (pEList) looking 3047 ** for instances of the "*" operator or the TABLE.* operator. 3048 ** If found, expand each "*" to be every column in every table 3049 ** and TABLE.* to be every column in TABLE. 3050 ** 3051 */ 3052 static int selectExpander(Walker *pWalker, Select *p){ 3053 Parse *pParse = pWalker->pParse; 3054 int i, j, k; 3055 SrcList *pTabList; 3056 ExprList *pEList; 3057 struct SrcList_item *pFrom; 3058 sqlite3 *db = pParse->db; 3059 3060 if( db->mallocFailed ){ 3061 return WRC_Abort; 3062 } 3063 if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){ 3064 return WRC_Prune; 3065 } 3066 p->selFlags |= SF_Expanded; 3067 pTabList = p->pSrc; 3068 pEList = p->pEList; 3069 3070 /* Make sure cursor numbers have been assigned to all entries in 3071 ** the FROM clause of the SELECT statement. 3072 */ 3073 sqlite3SrcListAssignCursors(pParse, pTabList); 3074 3075 /* Look up every table named in the FROM clause of the select. If 3076 ** an entry of the FROM clause is a subquery instead of a table or view, 3077 ** then create a transient table structure to describe the subquery. 3078 */ 3079 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3080 Table *pTab; 3081 if( pFrom->pTab!=0 ){ 3082 /* This statement has already been prepared. There is no need 3083 ** to go further. */ 3084 assert( i==0 ); 3085 return WRC_Prune; 3086 } 3087 if( pFrom->zName==0 ){ 3088 #ifndef SQLITE_OMIT_SUBQUERY 3089 Select *pSel = pFrom->pSelect; 3090 /* A sub-query in the FROM clause of a SELECT */ 3091 assert( pSel!=0 ); 3092 assert( pFrom->pTab==0 ); 3093 sqlite3WalkSelect(pWalker, pSel); 3094 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3095 if( pTab==0 ) return WRC_Abort; 3096 pTab->dbMem = db->lookaside.bEnabled ? db : 0; 3097 pTab->nRef = 1; 3098 pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); 3099 while( pSel->pPrior ){ pSel = pSel->pPrior; } 3100 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 3101 pTab->iPKey = -1; 3102 pTab->tabFlags |= TF_Ephemeral; 3103 #endif 3104 }else{ 3105 /* An ordinary table or view name in the FROM clause */ 3106 assert( pFrom->pTab==0 ); 3107 pFrom->pTab = pTab = 3108 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); 3109 if( pTab==0 ) return WRC_Abort; 3110 pTab->nRef++; 3111 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 3112 if( pTab->pSelect || IsVirtual(pTab) ){ 3113 /* We reach here if the named table is a really a view */ 3114 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 3115 3116 /* If pFrom->pSelect!=0 it means we are dealing with a 3117 ** view within a view. The SELECT structure has already been 3118 ** copied by the outer view so we can skip the copy step here 3119 ** in the inner view. 3120 */ 3121 if( pFrom->pSelect==0 ){ 3122 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 3123 sqlite3WalkSelect(pWalker, pFrom->pSelect); 3124 } 3125 } 3126 #endif 3127 } 3128 3129 /* Locate the index named by the INDEXED BY clause, if any. */ 3130 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 3131 return WRC_Abort; 3132 } 3133 } 3134 3135 /* Process NATURAL keywords, and ON and USING clauses of joins. 3136 */ 3137 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 3138 return WRC_Abort; 3139 } 3140 3141 /* For every "*" that occurs in the column list, insert the names of 3142 ** all columns in all tables. And for every TABLE.* insert the names 3143 ** of all columns in TABLE. The parser inserted a special expression 3144 ** with the TK_ALL operator for each "*" that it found in the column list. 3145 ** The following code just has to locate the TK_ALL expressions and expand 3146 ** each one to the list of all columns in all tables. 3147 ** 3148 ** The first loop just checks to see if there are any "*" operators 3149 ** that need expanding. 3150 */ 3151 for(k=0; k<pEList->nExpr; k++){ 3152 Expr *pE = pEList->a[k].pExpr; 3153 if( pE->op==TK_ALL ) break; 3154 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL 3155 && pE->pLeft && pE->pLeft->op==TK_ID ) break; 3156 } 3157 if( k<pEList->nExpr ){ 3158 /* 3159 ** If we get here it means the result set contains one or more "*" 3160 ** operators that need to be expanded. Loop through each expression 3161 ** in the result set and expand them one by one. 3162 */ 3163 struct ExprList_item *a = pEList->a; 3164 ExprList *pNew = 0; 3165 int flags = pParse->db->flags; 3166 int longNames = (flags & SQLITE_FullColNames)!=0 3167 && (flags & SQLITE_ShortColNames)==0; 3168 3169 for(k=0; k<pEList->nExpr; k++){ 3170 Expr *pE = a[k].pExpr; 3171 if( pE->op!=TK_ALL && 3172 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ 3173 /* This particular expression does not need to be expanded. 3174 */ 3175 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); 3176 if( pNew ){ 3177 pNew->a[pNew->nExpr-1].zName = a[k].zName; 3178 } 3179 a[k].pExpr = 0; 3180 a[k].zName = 0; 3181 }else{ 3182 /* This expression is a "*" or a "TABLE.*" and needs to be 3183 ** expanded. */ 3184 int tableSeen = 0; /* Set to 1 when TABLE matches */ 3185 char *zTName; /* text of name of TABLE */ 3186 if( pE->op==TK_DOT && pE->pLeft ){ 3187 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); 3188 }else{ 3189 zTName = 0; 3190 } 3191 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3192 Table *pTab = pFrom->pTab; 3193 char *zTabName = pFrom->zAlias; 3194 if( zTabName==0 || zTabName[0]==0 ){ 3195 zTabName = pTab->zName; 3196 } 3197 if( db->mallocFailed ) break; 3198 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 3199 continue; 3200 } 3201 tableSeen = 1; 3202 for(j=0; j<pTab->nCol; j++){ 3203 Expr *pExpr, *pRight; 3204 char *zName = pTab->aCol[j].zName; 3205 3206 /* If a column is marked as 'hidden' (currently only possible 3207 ** for virtual tables), do not include it in the expanded 3208 ** result-set list. 3209 */ 3210 if( IsHiddenColumn(&pTab->aCol[j]) ){ 3211 assert(IsVirtual(pTab)); 3212 continue; 3213 } 3214 3215 if( i>0 && zTName==0 ){ 3216 struct SrcList_item *pLeft = &pTabList->a[i-1]; 3217 if( (pLeft[1].jointype & JT_NATURAL)!=0 && 3218 columnIndex(pLeft->pTab, zName)>=0 ){ 3219 /* In a NATURAL join, omit the join columns from the 3220 ** table on the right */ 3221 continue; 3222 } 3223 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ 3224 /* In a join with a USING clause, omit columns in the 3225 ** using clause from the table on the right. */ 3226 continue; 3227 } 3228 } 3229 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3230 if( pRight==0 ) break; 3231 setQuotedToken(pParse, &pRight->token, zName); 3232 if( longNames || pTabList->nSrc>1 ){ 3233 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); 3234 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 3235 if( pExpr==0 ) break; 3236 setQuotedToken(pParse, &pLeft->token, zTabName); 3237 setToken(&pExpr->span, 3238 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); 3239 pExpr->span.dyn = 1; 3240 pExpr->token.z = 0; 3241 pExpr->token.n = 0; 3242 pExpr->token.dyn = 0; 3243 }else{ 3244 pExpr = pRight; 3245 pExpr->span = pExpr->token; 3246 pExpr->span.dyn = 0; 3247 } 3248 if( longNames ){ 3249 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); 3250 }else{ 3251 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); 3252 } 3253 } 3254 } 3255 if( !tableSeen ){ 3256 if( zTName ){ 3257 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 3258 }else{ 3259 sqlite3ErrorMsg(pParse, "no tables specified"); 3260 } 3261 } 3262 sqlite3DbFree(db, zTName); 3263 } 3264 } 3265 sqlite3ExprListDelete(db, pEList); 3266 p->pEList = pNew; 3267 } 3268 #if SQLITE_MAX_COLUMN 3269 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 3270 sqlite3ErrorMsg(pParse, "too many columns in result set"); 3271 } 3272 #endif 3273 return WRC_Continue; 3274 } 3275 3276 /* 3277 ** No-op routine for the parse-tree walker. 3278 ** 3279 ** When this routine is the Walker.xExprCallback then expression trees 3280 ** are walked without any actions being taken at each node. Presumably, 3281 ** when this routine is used for Walker.xExprCallback then 3282 ** Walker.xSelectCallback is set to do something useful for every 3283 ** subquery in the parser tree. 3284 */ 3285 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 3286 UNUSED_PARAMETER2(NotUsed, NotUsed2); 3287 return WRC_Continue; 3288 } 3289 3290 /* 3291 ** This routine "expands" a SELECT statement and all of its subqueries. 3292 ** For additional information on what it means to "expand" a SELECT 3293 ** statement, see the comment on the selectExpand worker callback above. 3294 ** 3295 ** Expanding a SELECT statement is the first step in processing a 3296 ** SELECT statement. The SELECT statement must be expanded before 3297 ** name resolution is performed. 3298 ** 3299 ** If anything goes wrong, an error message is written into pParse. 3300 ** The calling function can detect the problem by looking at pParse->nErr 3301 ** and/or pParse->db->mallocFailed. 3302 */ 3303 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 3304 Walker w; 3305 w.xSelectCallback = selectExpander; 3306 w.xExprCallback = exprWalkNoop; 3307 w.pParse = pParse; 3308 sqlite3WalkSelect(&w, pSelect); 3309 } 3310 3311 3312 #ifndef SQLITE_OMIT_SUBQUERY 3313 /* 3314 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 3315 ** interface. 3316 ** 3317 ** For each FROM-clause subquery, add Column.zType and Column.zColl 3318 ** information to the Table structure that represents the result set 3319 ** of that subquery. 3320 ** 3321 ** The Table structure that represents the result set was constructed 3322 ** by selectExpander() but the type and collation information was omitted 3323 ** at that point because identifiers had not yet been resolved. This 3324 ** routine is called after identifier resolution. 3325 */ 3326 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 3327 Parse *pParse; 3328 int i; 3329 SrcList *pTabList; 3330 struct SrcList_item *pFrom; 3331 3332 assert( p->selFlags & SF_Resolved ); 3333 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 3334 p->selFlags |= SF_HasTypeInfo; 3335 pParse = pWalker->pParse; 3336 pTabList = p->pSrc; 3337 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3338 Table *pTab = pFrom->pTab; 3339 if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3340 /* A sub-query in the FROM clause of a SELECT */ 3341 Select *pSel = pFrom->pSelect; 3342 assert( pSel ); 3343 while( pSel->pPrior ) pSel = pSel->pPrior; 3344 selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); 3345 } 3346 } 3347 } 3348 return WRC_Continue; 3349 } 3350 #endif 3351 3352 3353 /* 3354 ** This routine adds datatype and collating sequence information to 3355 ** the Table structures of all FROM-clause subqueries in a 3356 ** SELECT statement. 3357 ** 3358 ** Use this routine after name resolution. 3359 */ 3360 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 3361 #ifndef SQLITE_OMIT_SUBQUERY 3362 Walker w; 3363 w.xSelectCallback = selectAddSubqueryTypeInfo; 3364 w.xExprCallback = exprWalkNoop; 3365 w.pParse = pParse; 3366 sqlite3WalkSelect(&w, pSelect); 3367 #endif 3368 } 3369 3370 3371 /* 3372 ** This routine sets of a SELECT statement for processing. The 3373 ** following is accomplished: 3374 ** 3375 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 3376 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 3377 ** * ON and USING clauses are shifted into WHERE statements 3378 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 3379 ** * Identifiers in expression are matched to tables. 3380 ** 3381 ** This routine acts recursively on all subqueries within the SELECT. 3382 */ 3383 void sqlite3SelectPrep( 3384 Parse *pParse, /* The parser context */ 3385 Select *p, /* The SELECT statement being coded. */ 3386 NameContext *pOuterNC /* Name context for container */ 3387 ){ 3388 sqlite3 *db; 3389 if( p==0 ) return; 3390 db = pParse->db; 3391 if( p->selFlags & SF_HasTypeInfo ) return; 3392 if( pParse->nErr || db->mallocFailed ) return; 3393 sqlite3SelectExpand(pParse, p); 3394 if( pParse->nErr || db->mallocFailed ) return; 3395 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 3396 if( pParse->nErr || db->mallocFailed ) return; 3397 sqlite3SelectAddTypeInfo(pParse, p); 3398 } 3399 3400 /* 3401 ** Reset the aggregate accumulator. 3402 ** 3403 ** The aggregate accumulator is a set of memory cells that hold 3404 ** intermediate results while calculating an aggregate. This 3405 ** routine simply stores NULLs in all of those memory cells. 3406 */ 3407 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3408 Vdbe *v = pParse->pVdbe; 3409 int i; 3410 struct AggInfo_func *pFunc; 3411 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ 3412 return; 3413 } 3414 for(i=0; i<pAggInfo->nColumn; i++){ 3415 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); 3416 } 3417 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 3418 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); 3419 if( pFunc->iDistinct>=0 ){ 3420 Expr *pE = pFunc->pExpr; 3421 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 3422 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 3423 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 3424 "argument"); 3425 pFunc->iDistinct = -1; 3426 }else{ 3427 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList); 3428 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 3429 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3430 } 3431 } 3432 } 3433 } 3434 3435 /* 3436 ** Invoke the OP_AggFinalize opcode for every aggregate function 3437 ** in the AggInfo structure. 3438 */ 3439 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 3440 Vdbe *v = pParse->pVdbe; 3441 int i; 3442 struct AggInfo_func *pF; 3443 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3444 ExprList *pList = pF->pExpr->x.pList; 3445 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3446 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 3447 (void*)pF->pFunc, P4_FUNCDEF); 3448 } 3449 } 3450 3451 /* 3452 ** Update the accumulator memory cells for an aggregate based on 3453 ** the current cursor position. 3454 */ 3455 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 3456 Vdbe *v = pParse->pVdbe; 3457 int i; 3458 struct AggInfo_func *pF; 3459 struct AggInfo_col *pC; 3460 3461 pAggInfo->directMode = 1; 3462 sqlite3ExprCacheClear(pParse); 3463 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 3464 int nArg; 3465 int addrNext = 0; 3466 int regAgg; 3467 ExprList *pList = pF->pExpr->x.pList; 3468 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 3469 if( pList ){ 3470 nArg = pList->nExpr; 3471 regAgg = sqlite3GetTempRange(pParse, nArg); 3472 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); 3473 }else{ 3474 nArg = 0; 3475 regAgg = 0; 3476 } 3477 if( pF->iDistinct>=0 ){ 3478 addrNext = sqlite3VdbeMakeLabel(v); 3479 assert( nArg==1 ); 3480 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 3481 } 3482 if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ 3483 CollSeq *pColl = 0; 3484 struct ExprList_item *pItem; 3485 int j; 3486 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 3487 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 3488 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 3489 } 3490 if( !pColl ){ 3491 pColl = pParse->db->pDfltColl; 3492 } 3493 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); 3494 } 3495 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 3496 (void*)pF->pFunc, P4_FUNCDEF); 3497 sqlite3VdbeChangeP5(v, (u8)nArg); 3498 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 3499 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 3500 if( addrNext ){ 3501 sqlite3VdbeResolveLabel(v, addrNext); 3502 sqlite3ExprCacheClear(pParse); 3503 } 3504 } 3505 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 3506 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 3507 } 3508 pAggInfo->directMode = 0; 3509 sqlite3ExprCacheClear(pParse); 3510 } 3511 3512 /* 3513 ** Generate code for the SELECT statement given in the p argument. 3514 ** 3515 ** The results are distributed in various ways depending on the 3516 ** contents of the SelectDest structure pointed to by argument pDest 3517 ** as follows: 3518 ** 3519 ** pDest->eDest Result 3520 ** ------------ ------------------------------------------- 3521 ** SRT_Output Generate a row of output (using the OP_ResultRow 3522 ** opcode) for each row in the result set. 3523 ** 3524 ** SRT_Mem Only valid if the result is a single column. 3525 ** Store the first column of the first result row 3526 ** in register pDest->iParm then abandon the rest 3527 ** of the query. This destination implies "LIMIT 1". 3528 ** 3529 ** SRT_Set The result must be a single column. Store each 3530 ** row of result as the key in table pDest->iParm. 3531 ** Apply the affinity pDest->affinity before storing 3532 ** results. Used to implement "IN (SELECT ...)". 3533 ** 3534 ** SRT_Union Store results as a key in a temporary table pDest->iParm. 3535 ** 3536 ** SRT_Except Remove results from the temporary table pDest->iParm. 3537 ** 3538 ** SRT_Table Store results in temporary table pDest->iParm. 3539 ** This is like SRT_EphemTab except that the table 3540 ** is assumed to already be open. 3541 ** 3542 ** SRT_EphemTab Create an temporary table pDest->iParm and store 3543 ** the result there. The cursor is left open after 3544 ** returning. This is like SRT_Table except that 3545 ** this destination uses OP_OpenEphemeral to create 3546 ** the table first. 3547 ** 3548 ** SRT_Coroutine Generate a co-routine that returns a new row of 3549 ** results each time it is invoked. The entry point 3550 ** of the co-routine is stored in register pDest->iParm. 3551 ** 3552 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result 3553 ** set is not empty. 3554 ** 3555 ** SRT_Discard Throw the results away. This is used by SELECT 3556 ** statements within triggers whose only purpose is 3557 ** the side-effects of functions. 3558 ** 3559 ** This routine returns the number of errors. If any errors are 3560 ** encountered, then an appropriate error message is left in 3561 ** pParse->zErrMsg. 3562 ** 3563 ** This routine does NOT free the Select structure passed in. The 3564 ** calling function needs to do that. 3565 */ 3566 int sqlite3Select( 3567 Parse *pParse, /* The parser context */ 3568 Select *p, /* The SELECT statement being coded. */ 3569 SelectDest *pDest /* What to do with the query results */ 3570 ){ 3571 int i, j; /* Loop counters */ 3572 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 3573 Vdbe *v; /* The virtual machine under construction */ 3574 int isAgg; /* True for select lists like "count(*)" */ 3575 ExprList *pEList; /* List of columns to extract. */ 3576 SrcList *pTabList; /* List of tables to select from */ 3577 Expr *pWhere; /* The WHERE clause. May be NULL */ 3578 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ 3579 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 3580 Expr *pHaving; /* The HAVING clause. May be NULL */ 3581 int isDistinct; /* True if the DISTINCT keyword is present */ 3582 int distinct; /* Table to use for the distinct set */ 3583 int rc = 1; /* Value to return from this function */ 3584 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ 3585 AggInfo sAggInfo; /* Information used by aggregate queries */ 3586 int iEnd; /* Address of the end of the query */ 3587 sqlite3 *db; /* The database connection */ 3588 3589 db = pParse->db; 3590 if( p==0 || db->mallocFailed || pParse->nErr ){ 3591 return 1; 3592 } 3593 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 3594 memset(&sAggInfo, 0, sizeof(sAggInfo)); 3595 3596 pOrderBy = p->pOrderBy; 3597 if( IgnorableOrderby(pDest) ){ 3598 p->pOrderBy = 0; 3599 3600 /* In these cases the DISTINCT operator makes no difference to the 3601 ** results, so remove it if it were specified. 3602 */ 3603 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 3604 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); 3605 p->selFlags &= ~SF_Distinct; 3606 } 3607 sqlite3SelectPrep(pParse, p, 0); 3608 pTabList = p->pSrc; 3609 pEList = p->pEList; 3610 if( pParse->nErr || db->mallocFailed ){ 3611 goto select_end; 3612 } 3613 p->pOrderBy = pOrderBy; 3614 isAgg = (p->selFlags & SF_Aggregate)!=0; 3615 if( pEList==0 ) goto select_end; 3616 3617 /* 3618 ** Do not even attempt to generate any code if we have already seen 3619 ** errors before this routine starts. 3620 */ 3621 if( pParse->nErr>0 ) goto select_end; 3622 3623 /* ORDER BY is ignored for some destinations. 3624 */ 3625 if( IgnorableOrderby(pDest) ){ 3626 pOrderBy = 0; 3627 } 3628 3629 /* Begin generating code. 3630 */ 3631 v = sqlite3GetVdbe(pParse); 3632 if( v==0 ) goto select_end; 3633 3634 /* Generate code for all sub-queries in the FROM clause 3635 */ 3636 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3637 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 3638 struct SrcList_item *pItem = &pTabList->a[i]; 3639 SelectDest dest; 3640 Select *pSub = pItem->pSelect; 3641 int isAggSub; 3642 3643 if( pSub==0 || pItem->isPopulated ) continue; 3644 3645 /* Increment Parse.nHeight by the height of the largest expression 3646 ** tree refered to by this, the parent select. The child select 3647 ** may contain expression trees of at most 3648 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 3649 ** more conservative than necessary, but much easier than enforcing 3650 ** an exact limit. 3651 */ 3652 pParse->nHeight += sqlite3SelectExprHeight(p); 3653 3654 /* Check to see if the subquery can be absorbed into the parent. */ 3655 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 3656 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 3657 if( isAggSub ){ 3658 isAgg = 1; 3659 p->selFlags |= SF_Aggregate; 3660 } 3661 i = -1; 3662 }else{ 3663 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 3664 assert( pItem->isPopulated==0 ); 3665 sqlite3Select(pParse, pSub, &dest); 3666 pItem->isPopulated = 1; 3667 } 3668 if( pParse->nErr || db->mallocFailed ){ 3669 goto select_end; 3670 } 3671 pParse->nHeight -= sqlite3SelectExprHeight(p); 3672 pTabList = p->pSrc; 3673 if( !IgnorableOrderby(pDest) ){ 3674 pOrderBy = p->pOrderBy; 3675 } 3676 } 3677 pEList = p->pEList; 3678 #endif 3679 pWhere = p->pWhere; 3680 pGroupBy = p->pGroupBy; 3681 pHaving = p->pHaving; 3682 isDistinct = (p->selFlags & SF_Distinct)!=0; 3683 3684 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3685 /* If there is are a sequence of queries, do the earlier ones first. 3686 */ 3687 if( p->pPrior ){ 3688 if( p->pRightmost==0 ){ 3689 Select *pLoop, *pRight = 0; 3690 int cnt = 0; 3691 int mxSelect; 3692 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ 3693 pLoop->pRightmost = p; 3694 pLoop->pNext = pRight; 3695 pRight = pLoop; 3696 } 3697 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; 3698 if( mxSelect && cnt>mxSelect ){ 3699 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 3700 return 1; 3701 } 3702 } 3703 return multiSelect(pParse, p, pDest); 3704 } 3705 #endif 3706 3707 /* If writing to memory or generating a set 3708 ** only a single column may be output. 3709 */ 3710 #ifndef SQLITE_OMIT_SUBQUERY 3711 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 3712 goto select_end; 3713 } 3714 #endif 3715 3716 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. 3717 ** GROUP BY might use an index, DISTINCT never does. 3718 */ 3719 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){ 3720 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 3721 pGroupBy = p->pGroupBy; 3722 p->selFlags &= ~SF_Distinct; 3723 isDistinct = 0; 3724 } 3725 3726 /* If there is an ORDER BY clause, then this sorting 3727 ** index might end up being unused if the data can be 3728 ** extracted in pre-sorted order. If that is the case, then the 3729 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 3730 ** we figure out that the sorting index is not needed. The addrSortIndex 3731 ** variable is used to facilitate that change. 3732 */ 3733 if( pOrderBy ){ 3734 KeyInfo *pKeyInfo; 3735 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); 3736 pOrderBy->iECursor = pParse->nTab++; 3737 p->addrOpenEphm[2] = addrSortIndex = 3738 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3739 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, 3740 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3741 }else{ 3742 addrSortIndex = -1; 3743 } 3744 3745 /* If the output is destined for a temporary table, open that table. 3746 */ 3747 if( pDest->eDest==SRT_EphemTab ){ 3748 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); 3749 } 3750 3751 /* Set the limiter. 3752 */ 3753 iEnd = sqlite3VdbeMakeLabel(v); 3754 computeLimitRegisters(pParse, p, iEnd); 3755 3756 /* Open a virtual index to use for the distinct set. 3757 */ 3758 if( isDistinct ){ 3759 KeyInfo *pKeyInfo; 3760 assert( isAgg || pGroupBy ); 3761 distinct = pParse->nTab++; 3762 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); 3763 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, 3764 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3765 }else{ 3766 distinct = -1; 3767 } 3768 3769 /* Aggregate and non-aggregate queries are handled differently */ 3770 if( !isAgg && pGroupBy==0 ){ 3771 /* This case is for non-aggregate queries 3772 ** Begin the database scan 3773 */ 3774 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); 3775 if( pWInfo==0 ) goto select_end; 3776 3777 /* If sorting index that was created by a prior OP_OpenEphemeral 3778 ** instruction ended up not being needed, then change the OP_OpenEphemeral 3779 ** into an OP_Noop. 3780 */ 3781 if( addrSortIndex>=0 && pOrderBy==0 ){ 3782 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); 3783 p->addrOpenEphm[2] = -1; 3784 } 3785 3786 /* Use the standard inner loop 3787 */ 3788 assert(!isDistinct); 3789 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, 3790 pWInfo->iContinue, pWInfo->iBreak); 3791 3792 /* End the database scan loop. 3793 */ 3794 sqlite3WhereEnd(pWInfo); 3795 }else{ 3796 /* This is the processing for aggregate queries */ 3797 NameContext sNC; /* Name context for processing aggregate information */ 3798 int iAMem; /* First Mem address for storing current GROUP BY */ 3799 int iBMem; /* First Mem address for previous GROUP BY */ 3800 int iUseFlag; /* Mem address holding flag indicating that at least 3801 ** one row of the input to the aggregator has been 3802 ** processed */ 3803 int iAbortFlag; /* Mem address which causes query abort if positive */ 3804 int groupBySort; /* Rows come from source in GROUP BY order */ 3805 int addrEnd; /* End of processing for this SELECT */ 3806 3807 /* Remove any and all aliases between the result set and the 3808 ** GROUP BY clause. 3809 */ 3810 if( pGroupBy ){ 3811 int k; /* Loop counter */ 3812 struct ExprList_item *pItem; /* For looping over expression in a list */ 3813 3814 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 3815 pItem->iAlias = 0; 3816 } 3817 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 3818 pItem->iAlias = 0; 3819 } 3820 } 3821 3822 3823 /* Create a label to jump to when we want to abort the query */ 3824 addrEnd = sqlite3VdbeMakeLabel(v); 3825 3826 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 3827 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 3828 ** SELECT statement. 3829 */ 3830 memset(&sNC, 0, sizeof(sNC)); 3831 sNC.pParse = pParse; 3832 sNC.pSrcList = pTabList; 3833 sNC.pAggInfo = &sAggInfo; 3834 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 3835 sAggInfo.pGroupBy = pGroupBy; 3836 sqlite3ExprAnalyzeAggList(&sNC, pEList); 3837 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); 3838 if( pHaving ){ 3839 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 3840 } 3841 sAggInfo.nAccumulator = sAggInfo.nColumn; 3842 for(i=0; i<sAggInfo.nFunc; i++){ 3843 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 3844 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 3845 } 3846 if( db->mallocFailed ) goto select_end; 3847 3848 /* Processing for aggregates with GROUP BY is very different and 3849 ** much more complex than aggregates without a GROUP BY. 3850 */ 3851 if( pGroupBy ){ 3852 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 3853 int j1; /* A-vs-B comparision jump */ 3854 int addrOutputRow; /* Start of subroutine that outputs a result row */ 3855 int regOutputRow; /* Return address register for output subroutine */ 3856 int addrSetAbort; /* Set the abort flag and return */ 3857 int addrTopOfLoop; /* Top of the input loop */ 3858 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 3859 int addrReset; /* Subroutine for resetting the accumulator */ 3860 int regReset; /* Return address register for reset subroutine */ 3861 3862 /* If there is a GROUP BY clause we might need a sorting index to 3863 ** implement it. Allocate that sorting index now. If it turns out 3864 ** that we do not need it after all, the OpenEphemeral instruction 3865 ** will be converted into a Noop. 3866 */ 3867 sAggInfo.sortingIdx = pParse->nTab++; 3868 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); 3869 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 3870 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 3871 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); 3872 3873 /* Initialize memory locations used by GROUP BY aggregate processing 3874 */ 3875 iUseFlag = ++pParse->nMem; 3876 iAbortFlag = ++pParse->nMem; 3877 regOutputRow = ++pParse->nMem; 3878 addrOutputRow = sqlite3VdbeMakeLabel(v); 3879 regReset = ++pParse->nMem; 3880 addrReset = sqlite3VdbeMakeLabel(v); 3881 iAMem = pParse->nMem + 1; 3882 pParse->nMem += pGroupBy->nExpr; 3883 iBMem = pParse->nMem + 1; 3884 pParse->nMem += pGroupBy->nExpr; 3885 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 3886 VdbeComment((v, "clear abort flag")); 3887 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 3888 VdbeComment((v, "indicate accumulator empty")); 3889 3890 /* Begin a loop that will extract all source rows in GROUP BY order. 3891 ** This might involve two separate loops with an OP_Sort in between, or 3892 ** it might be a single loop that uses an index to extract information 3893 ** in the right order to begin with. 3894 */ 3895 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3896 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); 3897 if( pWInfo==0 ) goto select_end; 3898 if( pGroupBy==0 ){ 3899 /* The optimizer is able to deliver rows in group by order so 3900 ** we do not have to sort. The OP_OpenEphemeral table will be 3901 ** cancelled later because we still need to use the pKeyInfo 3902 */ 3903 pGroupBy = p->pGroupBy; 3904 groupBySort = 0; 3905 }else{ 3906 /* Rows are coming out in undetermined order. We have to push 3907 ** each row into a sorting index, terminate the first loop, 3908 ** then loop over the sorting index in order to get the output 3909 ** in sorted order 3910 */ 3911 int regBase; 3912 int regRecord; 3913 int nCol; 3914 int nGroupBy; 3915 3916 groupBySort = 1; 3917 nGroupBy = pGroupBy->nExpr; 3918 nCol = nGroupBy + 1; 3919 j = nGroupBy+1; 3920 for(i=0; i<sAggInfo.nColumn; i++){ 3921 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 3922 nCol++; 3923 j++; 3924 } 3925 } 3926 regBase = sqlite3GetTempRange(pParse, nCol); 3927 sqlite3ExprCacheClear(pParse); 3928 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 3929 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 3930 j = nGroupBy+1; 3931 for(i=0; i<sAggInfo.nColumn; i++){ 3932 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 3933 if( pCol->iSorterColumn>=j ){ 3934 int r1 = j + regBase; 3935 int r2; 3936 3937 r2 = sqlite3ExprCodeGetColumn(pParse, 3938 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 3939 if( r1!=r2 ){ 3940 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 3941 } 3942 j++; 3943 } 3944 } 3945 regRecord = sqlite3GetTempReg(pParse); 3946 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 3947 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); 3948 sqlite3ReleaseTempReg(pParse, regRecord); 3949 sqlite3ReleaseTempRange(pParse, regBase, nCol); 3950 sqlite3WhereEnd(pWInfo); 3951 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); 3952 VdbeComment((v, "GROUP BY sort")); 3953 sAggInfo.useSortingIdx = 1; 3954 sqlite3ExprCacheClear(pParse); 3955 } 3956 3957 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 3958 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 3959 ** Then compare the current GROUP BY terms against the GROUP BY terms 3960 ** from the previous row currently stored in a0, a1, a2... 3961 */ 3962 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 3963 sqlite3ExprCacheClear(pParse); 3964 for(j=0; j<pGroupBy->nExpr; j++){ 3965 if( groupBySort ){ 3966 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); 3967 }else{ 3968 sAggInfo.directMode = 1; 3969 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 3970 } 3971 } 3972 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 3973 (char*)pKeyInfo, P4_KEYINFO); 3974 j1 = sqlite3VdbeCurrentAddr(v); 3975 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); 3976 3977 /* Generate code that runs whenever the GROUP BY changes. 3978 ** Changes in the GROUP BY are detected by the previous code 3979 ** block. If there were no changes, this block is skipped. 3980 ** 3981 ** This code copies current group by terms in b0,b1,b2,... 3982 ** over to a0,a1,a2. It then calls the output subroutine 3983 ** and resets the aggregate accumulator registers in preparation 3984 ** for the next GROUP BY batch. 3985 */ 3986 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 3987 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 3988 VdbeComment((v, "output one row")); 3989 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); 3990 VdbeComment((v, "check abort flag")); 3991 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 3992 VdbeComment((v, "reset accumulator")); 3993 3994 /* Update the aggregate accumulators based on the content of 3995 ** the current row 3996 */ 3997 sqlite3VdbeJumpHere(v, j1); 3998 updateAccumulator(pParse, &sAggInfo); 3999 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 4000 VdbeComment((v, "indicate data in accumulator")); 4001 4002 /* End of the loop 4003 */ 4004 if( groupBySort ){ 4005 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); 4006 }else{ 4007 sqlite3WhereEnd(pWInfo); 4008 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); 4009 } 4010 4011 /* Output the final row of result 4012 */ 4013 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 4014 VdbeComment((v, "output final row")); 4015 4016 /* Jump over the subroutines 4017 */ 4018 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 4019 4020 /* Generate a subroutine that outputs a single row of the result 4021 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 4022 ** is less than or equal to zero, the subroutine is a no-op. If 4023 ** the processing calls for the query to abort, this subroutine 4024 ** increments the iAbortFlag memory location before returning in 4025 ** order to signal the caller to abort. 4026 */ 4027 addrSetAbort = sqlite3VdbeCurrentAddr(v); 4028 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 4029 VdbeComment((v, "set abort flag")); 4030 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4031 sqlite3VdbeResolveLabel(v, addrOutputRow); 4032 addrOutputRow = sqlite3VdbeCurrentAddr(v); 4033 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 4034 VdbeComment((v, "Groupby result generator entry point")); 4035 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4036 finalizeAggFunctions(pParse, &sAggInfo); 4037 if( pHaving ){ 4038 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 4039 } 4040 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, 4041 distinct, pDest, 4042 addrOutputRow+1, addrSetAbort); 4043 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 4044 VdbeComment((v, "end groupby result generator")); 4045 4046 /* Generate a subroutine that will reset the group-by accumulator 4047 */ 4048 sqlite3VdbeResolveLabel(v, addrReset); 4049 resetAccumulator(pParse, &sAggInfo); 4050 sqlite3VdbeAddOp1(v, OP_Return, regReset); 4051 4052 } /* endif pGroupBy */ 4053 else { 4054 ExprList *pDel = 0; 4055 #ifndef SQLITE_OMIT_BTREECOUNT 4056 Table *pTab; 4057 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 4058 /* If isSimpleCount() returns a pointer to a Table structure, then 4059 ** the SQL statement is of the form: 4060 ** 4061 ** SELECT count(*) FROM <tbl> 4062 ** 4063 ** where the Table structure returned represents table <tbl>. 4064 ** 4065 ** This statement is so common that it is optimized specially. The 4066 ** OP_Count instruction is executed either on the intkey table that 4067 ** contains the data for table <tbl> or on one of its indexes. It 4068 ** is better to execute the op on an index, as indexes are almost 4069 ** always spread across less pages than their corresponding tables. 4070 */ 4071 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 4072 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 4073 Index *pIdx; /* Iterator variable */ 4074 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 4075 Index *pBest = 0; /* Best index found so far */ 4076 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 4077 4078 sqlite3CodeVerifySchema(pParse, iDb); 4079 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4080 4081 /* Search for the index that has the least amount of columns. If 4082 ** there is such an index, and it has less columns than the table 4083 ** does, then we can assume that it consumes less space on disk and 4084 ** will therefore be cheaper to scan to determine the query result. 4085 ** In this case set iRoot to the root page number of the index b-tree 4086 ** and pKeyInfo to the KeyInfo structure required to navigate the 4087 ** index. 4088 ** 4089 ** In practice the KeyInfo structure will not be used. It is only 4090 ** passed to keep OP_OpenRead happy. 4091 */ 4092 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4093 if( !pBest || pIdx->nColumn<pBest->nColumn ){ 4094 pBest = pIdx; 4095 } 4096 } 4097 if( pBest && pBest->nColumn<pTab->nCol ){ 4098 iRoot = pBest->tnum; 4099 pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest); 4100 } 4101 4102 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 4103 sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb); 4104 if( pKeyInfo ){ 4105 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF); 4106 } 4107 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 4108 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 4109 }else 4110 #endif /* SQLITE_OMIT_BTREECOUNT */ 4111 { 4112 /* Check if the query is of one of the following forms: 4113 ** 4114 ** SELECT min(x) FROM ... 4115 ** SELECT max(x) FROM ... 4116 ** 4117 ** If it is, then ask the code in where.c to attempt to sort results 4118 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 4119 ** If where.c is able to produce results sorted in this order, then 4120 ** add vdbe code to break out of the processing loop after the 4121 ** first iteration (since the first iteration of the loop is 4122 ** guaranteed to operate on the row with the minimum or maximum 4123 ** value of x, the only row required). 4124 ** 4125 ** A special flag must be passed to sqlite3WhereBegin() to slightly 4126 ** modify behaviour as follows: 4127 ** 4128 ** + If the query is a "SELECT min(x)", then the loop coded by 4129 ** where.c should not iterate over any values with a NULL value 4130 ** for x. 4131 ** 4132 ** + The optimizer code in where.c (the thing that decides which 4133 ** index or indices to use) should place a different priority on 4134 ** satisfying the 'ORDER BY' clause than it does in other cases. 4135 ** Refer to code and comments in where.c for details. 4136 */ 4137 ExprList *pMinMax = 0; 4138 u8 flag = minMaxQuery(p); 4139 if( flag ){ 4140 assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) ); 4141 pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0); 4142 pDel = pMinMax; 4143 if( pMinMax && !db->mallocFailed ){ 4144 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 4145 pMinMax->a[0].pExpr->op = TK_COLUMN; 4146 } 4147 } 4148 4149 /* This case runs if the aggregate has no GROUP BY clause. The 4150 ** processing is much simpler since there is only a single row 4151 ** of output. 4152 */ 4153 resetAccumulator(pParse, &sAggInfo); 4154 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); 4155 if( pWInfo==0 ){ 4156 sqlite3ExprListDelete(db, pDel); 4157 goto select_end; 4158 } 4159 updateAccumulator(pParse, &sAggInfo); 4160 if( !pMinMax && flag ){ 4161 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); 4162 VdbeComment((v, "%s() by index", 4163 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 4164 } 4165 sqlite3WhereEnd(pWInfo); 4166 finalizeAggFunctions(pParse, &sAggInfo); 4167 } 4168 4169 pOrderBy = 0; 4170 if( pHaving ){ 4171 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 4172 } 4173 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 4174 pDest, addrEnd, addrEnd); 4175 sqlite3ExprListDelete(db, pDel); 4176 } 4177 sqlite3VdbeResolveLabel(v, addrEnd); 4178 4179 } /* endif aggregate query */ 4180 4181 /* If there is an ORDER BY clause, then we need to sort the results 4182 ** and send them to the callback one by one. 4183 */ 4184 if( pOrderBy ){ 4185 generateSortTail(pParse, p, v, pEList->nExpr, pDest); 4186 } 4187 4188 /* Jump here to skip this query 4189 */ 4190 sqlite3VdbeResolveLabel(v, iEnd); 4191 4192 /* The SELECT was successfully coded. Set the return code to 0 4193 ** to indicate no errors. 4194 */ 4195 rc = 0; 4196 4197 /* Control jumps to here if an error is encountered above, or upon 4198 ** successful coding of the SELECT. 4199 */ 4200 select_end: 4201 4202 /* Identify column names if results of the SELECT are to be output. 4203 */ 4204 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 4205 generateColumnNames(pParse, pTabList, pEList); 4206 } 4207 4208 sqlite3DbFree(db, sAggInfo.aCol); 4209 sqlite3DbFree(db, sAggInfo.aFunc); 4210 return rc; 4211 } 4212 4213 #if defined(SQLITE_DEBUG) 4214 /* 4215 ******************************************************************************* 4216 ** The following code is used for testing and debugging only. The code 4217 ** that follows does not appear in normal builds. 4218 ** 4219 ** These routines are used to print out the content of all or part of a 4220 ** parse structures such as Select or Expr. Such printouts are useful 4221 ** for helping to understand what is happening inside the code generator 4222 ** during the execution of complex SELECT statements. 4223 ** 4224 ** These routine are not called anywhere from within the normal 4225 ** code base. Then are intended to be called from within the debugger 4226 ** or from temporary "printf" statements inserted for debugging. 4227 */ 4228 void sqlite3PrintExpr(Expr *p){ 4229 if( p->token.z && p->token.n>0 ){ 4230 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); 4231 }else{ 4232 sqlite3DebugPrintf("(%d", p->op); 4233 } 4234 if( p->pLeft ){ 4235 sqlite3DebugPrintf(" "); 4236 sqlite3PrintExpr(p->pLeft); 4237 } 4238 if( p->pRight ){ 4239 sqlite3DebugPrintf(" "); 4240 sqlite3PrintExpr(p->pRight); 4241 } 4242 sqlite3DebugPrintf(")"); 4243 } 4244 void sqlite3PrintExprList(ExprList *pList){ 4245 int i; 4246 for(i=0; i<pList->nExpr; i++){ 4247 sqlite3PrintExpr(pList->a[i].pExpr); 4248 if( i<pList->nExpr-1 ){ 4249 sqlite3DebugPrintf(", "); 4250 } 4251 } 4252 } 4253 void sqlite3PrintSelect(Select *p, int indent){ 4254 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); 4255 sqlite3PrintExprList(p->pEList); 4256 sqlite3DebugPrintf("\n"); 4257 if( p->pSrc ){ 4258 char *zPrefix; 4259 int i; 4260 zPrefix = "FROM"; 4261 for(i=0; i<p->pSrc->nSrc; i++){ 4262 struct SrcList_item *pItem = &p->pSrc->a[i]; 4263 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); 4264 zPrefix = ""; 4265 if( pItem->pSelect ){ 4266 sqlite3DebugPrintf("(\n"); 4267 sqlite3PrintSelect(pItem->pSelect, indent+10); 4268 sqlite3DebugPrintf("%*s)", indent+8, ""); 4269 }else if( pItem->zName ){ 4270 sqlite3DebugPrintf("%s", pItem->zName); 4271 } 4272 if( pItem->pTab ){ 4273 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); 4274 } 4275 if( pItem->zAlias ){ 4276 sqlite3DebugPrintf(" AS %s", pItem->zAlias); 4277 } 4278 if( i<p->pSrc->nSrc-1 ){ 4279 sqlite3DebugPrintf(","); 4280 } 4281 sqlite3DebugPrintf("\n"); 4282 } 4283 } 4284 if( p->pWhere ){ 4285 sqlite3DebugPrintf("%*s WHERE ", indent, ""); 4286 sqlite3PrintExpr(p->pWhere); 4287 sqlite3DebugPrintf("\n"); 4288 } 4289 if( p->pGroupBy ){ 4290 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); 4291 sqlite3PrintExprList(p->pGroupBy); 4292 sqlite3DebugPrintf("\n"); 4293 } 4294 if( p->pHaving ){ 4295 sqlite3DebugPrintf("%*s HAVING ", indent, ""); 4296 sqlite3PrintExpr(p->pHaving); 4297 sqlite3DebugPrintf("\n"); 4298 } 4299 if( p->pOrderBy ){ 4300 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); 4301 sqlite3PrintExprList(p->pOrderBy); 4302 sqlite3DebugPrintf("\n"); 4303 } 4304 } 4305 /* End of the structure debug printing code 4306 *****************************************************************************/ 4307 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 4308