xref: /sqlite-3.40.0/src/select.c (revision 6f050aa2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 **
15 ** $Id: select.c,v 1.510 2009/04/24 15:46:22 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 
20 /*
21 ** Delete all the content of a Select structure but do not deallocate
22 ** the select structure itself.
23 */
24 static void clearSelect(sqlite3 *db, Select *p){
25   sqlite3ExprListDelete(db, p->pEList);
26   sqlite3SrcListDelete(db, p->pSrc);
27   sqlite3ExprDelete(db, p->pWhere);
28   sqlite3ExprListDelete(db, p->pGroupBy);
29   sqlite3ExprDelete(db, p->pHaving);
30   sqlite3ExprListDelete(db, p->pOrderBy);
31   sqlite3SelectDelete(db, p->pPrior);
32   sqlite3ExprDelete(db, p->pLimit);
33   sqlite3ExprDelete(db, p->pOffset);
34 }
35 
36 /*
37 ** Initialize a SelectDest structure.
38 */
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
40   pDest->eDest = (u8)eDest;
41   pDest->iParm = iParm;
42   pDest->affinity = 0;
43   pDest->iMem = 0;
44   pDest->nMem = 0;
45 }
46 
47 
48 /*
49 ** Allocate a new Select structure and return a pointer to that
50 ** structure.
51 */
52 Select *sqlite3SelectNew(
53   Parse *pParse,        /* Parsing context */
54   ExprList *pEList,     /* which columns to include in the result */
55   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
56   Expr *pWhere,         /* the WHERE clause */
57   ExprList *pGroupBy,   /* the GROUP BY clause */
58   Expr *pHaving,        /* the HAVING clause */
59   ExprList *pOrderBy,   /* the ORDER BY clause */
60   int isDistinct,       /* true if the DISTINCT keyword is present */
61   Expr *pLimit,         /* LIMIT value.  NULL means not used */
62   Expr *pOffset         /* OFFSET value.  NULL means no offset */
63 ){
64   Select *pNew;
65   Select standin;
66   sqlite3 *db = pParse->db;
67   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
68   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
69   if( pNew==0 ){
70     pNew = &standin;
71     memset(pNew, 0, sizeof(*pNew));
72   }
73   if( pEList==0 ){
74     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
75   }
76   pNew->pEList = pEList;
77   pNew->pSrc = pSrc;
78   pNew->pWhere = pWhere;
79   pNew->pGroupBy = pGroupBy;
80   pNew->pHaving = pHaving;
81   pNew->pOrderBy = pOrderBy;
82   pNew->selFlags = isDistinct ? SF_Distinct : 0;
83   pNew->op = TK_SELECT;
84   pNew->pLimit = pLimit;
85   pNew->pOffset = pOffset;
86   pNew->addrOpenEphm[0] = -1;
87   pNew->addrOpenEphm[1] = -1;
88   pNew->addrOpenEphm[2] = -1;
89   if( db->mallocFailed ) {
90     clearSelect(db, pNew);
91     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
92     pNew = 0;
93   }
94   return pNew;
95 }
96 
97 /*
98 ** Delete the given Select structure and all of its substructures.
99 */
100 void sqlite3SelectDelete(sqlite3 *db, Select *p){
101   if( p ){
102     clearSelect(db, p);
103     sqlite3DbFree(db, p);
104   }
105 }
106 
107 /*
108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
109 ** type of join.  Return an integer constant that expresses that type
110 ** in terms of the following bit values:
111 **
112 **     JT_INNER
113 **     JT_CROSS
114 **     JT_OUTER
115 **     JT_NATURAL
116 **     JT_LEFT
117 **     JT_RIGHT
118 **
119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
120 **
121 ** If an illegal or unsupported join type is seen, then still return
122 ** a join type, but put an error in the pParse structure.
123 */
124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
125   int jointype = 0;
126   Token *apAll[3];
127   Token *p;
128   static const struct {
129     const char zKeyword[8];
130     u8 nChar;
131     u8 code;
132   } keywords[] = {
133     { "natural", 7, JT_NATURAL },
134     { "left",    4, JT_LEFT|JT_OUTER },
135     { "right",   5, JT_RIGHT|JT_OUTER },
136     { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
137     { "outer",   5, JT_OUTER },
138     { "inner",   5, JT_INNER },
139     { "cross",   5, JT_INNER|JT_CROSS },
140   };
141   int i, j;
142   apAll[0] = pA;
143   apAll[1] = pB;
144   apAll[2] = pC;
145   for(i=0; i<3 && apAll[i]; i++){
146     p = apAll[i];
147     for(j=0; j<ArraySize(keywords); j++){
148       if( p->n==keywords[j].nChar
149           && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
150         jointype |= keywords[j].code;
151         break;
152       }
153     }
154     if( j>=ArraySize(keywords) ){
155       jointype |= JT_ERROR;
156       break;
157     }
158   }
159   if(
160      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
161      (jointype & JT_ERROR)!=0
162   ){
163     const char *zSp = " ";
164     assert( pB!=0 );
165     if( pC==0 ){ zSp++; }
166     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
167        "%T %T%s%T", pA, pB, zSp, pC);
168     jointype = JT_INNER;
169   }else if( jointype & JT_RIGHT ){
170     sqlite3ErrorMsg(pParse,
171       "RIGHT and FULL OUTER JOINs are not currently supported");
172     jointype = JT_INNER;
173   }
174   return jointype;
175 }
176 
177 /*
178 ** Return the index of a column in a table.  Return -1 if the column
179 ** is not contained in the table.
180 */
181 static int columnIndex(Table *pTab, const char *zCol){
182   int i;
183   for(i=0; i<pTab->nCol; i++){
184     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
185   }
186   return -1;
187 }
188 
189 /*
190 ** Set the value of a token to a '\000'-terminated string.
191 */
192 static void setToken(Token *p, const char *z){
193   p->z = (u8*)z;
194   p->n = z ? sqlite3Strlen30(z) : 0;
195   p->dyn = 0;
196 }
197 
198 /*
199 ** Set the token to the double-quoted and escaped version of the string pointed
200 ** to by z. For example;
201 **
202 **    {a"bc}  ->  {"a""bc"}
203 */
204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){
205 
206   /* Check if the string appears to be quoted using "..." or `...`
207   ** or [...] or '...' or if the string contains any " characters.
208   ** If it does, then record a version of the string with the special
209   ** characters escaped.
210   */
211   const char *z2 = z;
212   if( *z2!='[' && *z2!='`' && *z2!='\'' ){
213     while( *z2 ){
214       if( *z2=='"' ) break;
215       z2++;
216     }
217   }
218 
219   if( *z2 ){
220     /* String contains " characters - copy and quote the string. */
221     p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
222     if( p->z ){
223       p->n = sqlite3Strlen30((char *)p->z);
224       p->dyn = 1;
225     }
226   }else{
227     /* String contains no " characters - copy the pointer. */
228     p->z = (u8*)z;
229     p->n = (int)(z2 - z);
230     p->dyn = 0;
231   }
232 }
233 
234 /*
235 ** Create an expression node for an identifier with the name of zName
236 */
237 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
238   Token dummy;
239   setToken(&dummy, zName);
240   return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
241 }
242 
243 /*
244 ** Add a term to the WHERE expression in *ppExpr that requires the
245 ** zCol column to be equal in the two tables pTab1 and pTab2.
246 */
247 static void addWhereTerm(
248   Parse *pParse,           /* Parsing context */
249   const char *zCol,        /* Name of the column */
250   const Table *pTab1,      /* First table */
251   const char *zAlias1,     /* Alias for first table.  May be NULL */
252   const Table *pTab2,      /* Second table */
253   const char *zAlias2,     /* Alias for second table.  May be NULL */
254   int iRightJoinTable,     /* VDBE cursor for the right table */
255   Expr **ppExpr,           /* Add the equality term to this expression */
256   int isOuterJoin          /* True if dealing with an OUTER join */
257 ){
258   Expr *pE1a, *pE1b, *pE1c;
259   Expr *pE2a, *pE2b, *pE2c;
260   Expr *pE;
261 
262   pE1a = sqlite3CreateIdExpr(pParse, zCol);
263   pE2a = sqlite3CreateIdExpr(pParse, zCol);
264   if( zAlias1==0 ){
265     zAlias1 = pTab1->zName;
266   }
267   pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
268   if( zAlias2==0 ){
269     zAlias2 = pTab2->zName;
270   }
271   pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
272   pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
273   pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
274   pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
275   if( pE && isOuterJoin ){
276     ExprSetProperty(pE, EP_FromJoin);
277     pE->iRightJoinTable = iRightJoinTable;
278   }
279   *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
280 }
281 
282 /*
283 ** Set the EP_FromJoin property on all terms of the given expression.
284 ** And set the Expr.iRightJoinTable to iTable for every term in the
285 ** expression.
286 **
287 ** The EP_FromJoin property is used on terms of an expression to tell
288 ** the LEFT OUTER JOIN processing logic that this term is part of the
289 ** join restriction specified in the ON or USING clause and not a part
290 ** of the more general WHERE clause.  These terms are moved over to the
291 ** WHERE clause during join processing but we need to remember that they
292 ** originated in the ON or USING clause.
293 **
294 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
295 ** expression depends on table iRightJoinTable even if that table is not
296 ** explicitly mentioned in the expression.  That information is needed
297 ** for cases like this:
298 **
299 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
300 **
301 ** The where clause needs to defer the handling of the t1.x=5
302 ** term until after the t2 loop of the join.  In that way, a
303 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
304 ** defer the handling of t1.x=5, it will be processed immediately
305 ** after the t1 loop and rows with t1.x!=5 will never appear in
306 ** the output, which is incorrect.
307 */
308 static void setJoinExpr(Expr *p, int iTable){
309   while( p ){
310     ExprSetProperty(p, EP_FromJoin);
311     p->iRightJoinTable = iTable;
312     setJoinExpr(p->pLeft, iTable);
313     p = p->pRight;
314   }
315 }
316 
317 /*
318 ** This routine processes the join information for a SELECT statement.
319 ** ON and USING clauses are converted into extra terms of the WHERE clause.
320 ** NATURAL joins also create extra WHERE clause terms.
321 **
322 ** The terms of a FROM clause are contained in the Select.pSrc structure.
323 ** The left most table is the first entry in Select.pSrc.  The right-most
324 ** table is the last entry.  The join operator is held in the entry to
325 ** the left.  Thus entry 0 contains the join operator for the join between
326 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
327 ** also attached to the left entry.
328 **
329 ** This routine returns the number of errors encountered.
330 */
331 static int sqliteProcessJoin(Parse *pParse, Select *p){
332   SrcList *pSrc;                  /* All tables in the FROM clause */
333   int i, j;                       /* Loop counters */
334   struct SrcList_item *pLeft;     /* Left table being joined */
335   struct SrcList_item *pRight;    /* Right table being joined */
336 
337   pSrc = p->pSrc;
338   pLeft = &pSrc->a[0];
339   pRight = &pLeft[1];
340   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
341     Table *pLeftTab = pLeft->pTab;
342     Table *pRightTab = pRight->pTab;
343     int isOuter;
344 
345     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
346     isOuter = (pRight->jointype & JT_OUTER)!=0;
347 
348     /* When the NATURAL keyword is present, add WHERE clause terms for
349     ** every column that the two tables have in common.
350     */
351     if( pRight->jointype & JT_NATURAL ){
352       if( pRight->pOn || pRight->pUsing ){
353         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
354            "an ON or USING clause", 0);
355         return 1;
356       }
357       for(j=0; j<pLeftTab->nCol; j++){
358         char *zName = pLeftTab->aCol[j].zName;
359         if( columnIndex(pRightTab, zName)>=0 ){
360           addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
361                               pRightTab, pRight->zAlias,
362                               pRight->iCursor, &p->pWhere, isOuter);
363 
364         }
365       }
366     }
367 
368     /* Disallow both ON and USING clauses in the same join
369     */
370     if( pRight->pOn && pRight->pUsing ){
371       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
372         "clauses in the same join");
373       return 1;
374     }
375 
376     /* Add the ON clause to the end of the WHERE clause, connected by
377     ** an AND operator.
378     */
379     if( pRight->pOn ){
380       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
381       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
382       pRight->pOn = 0;
383     }
384 
385     /* Create extra terms on the WHERE clause for each column named
386     ** in the USING clause.  Example: If the two tables to be joined are
387     ** A and B and the USING clause names X, Y, and Z, then add this
388     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
389     ** Report an error if any column mentioned in the USING clause is
390     ** not contained in both tables to be joined.
391     */
392     if( pRight->pUsing ){
393       IdList *pList = pRight->pUsing;
394       for(j=0; j<pList->nId; j++){
395         char *zName = pList->a[j].zName;
396         if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
397           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
398             "not present in both tables", zName);
399           return 1;
400         }
401         addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias,
402                             pRightTab, pRight->zAlias,
403                             pRight->iCursor, &p->pWhere, isOuter);
404       }
405     }
406   }
407   return 0;
408 }
409 
410 /*
411 ** Insert code into "v" that will push the record on the top of the
412 ** stack into the sorter.
413 */
414 static void pushOntoSorter(
415   Parse *pParse,         /* Parser context */
416   ExprList *pOrderBy,    /* The ORDER BY clause */
417   Select *pSelect,       /* The whole SELECT statement */
418   int regData            /* Register holding data to be sorted */
419 ){
420   Vdbe *v = pParse->pVdbe;
421   int nExpr = pOrderBy->nExpr;
422   int regBase = sqlite3GetTempRange(pParse, nExpr+2);
423   int regRecord = sqlite3GetTempReg(pParse);
424   sqlite3ExprCacheClear(pParse);
425   sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
426   sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
427   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
428   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
429   sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
430   sqlite3ReleaseTempReg(pParse, regRecord);
431   sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
432   if( pSelect->iLimit ){
433     int addr1, addr2;
434     int iLimit;
435     if( pSelect->iOffset ){
436       iLimit = pSelect->iOffset+1;
437     }else{
438       iLimit = pSelect->iLimit;
439     }
440     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
441     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
442     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
443     sqlite3VdbeJumpHere(v, addr1);
444     sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
445     sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
446     sqlite3VdbeJumpHere(v, addr2);
447     pSelect->iLimit = 0;
448   }
449 }
450 
451 /*
452 ** Add code to implement the OFFSET
453 */
454 static void codeOffset(
455   Vdbe *v,          /* Generate code into this VM */
456   Select *p,        /* The SELECT statement being coded */
457   int iContinue     /* Jump here to skip the current record */
458 ){
459   if( p->iOffset && iContinue!=0 ){
460     int addr;
461     sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
462     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
463     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
464     VdbeComment((v, "skip OFFSET records"));
465     sqlite3VdbeJumpHere(v, addr);
466   }
467 }
468 
469 /*
470 ** Add code that will check to make sure the N registers starting at iMem
471 ** form a distinct entry.  iTab is a sorting index that holds previously
472 ** seen combinations of the N values.  A new entry is made in iTab
473 ** if the current N values are new.
474 **
475 ** A jump to addrRepeat is made and the N+1 values are popped from the
476 ** stack if the top N elements are not distinct.
477 */
478 static void codeDistinct(
479   Parse *pParse,     /* Parsing and code generating context */
480   int iTab,          /* A sorting index used to test for distinctness */
481   int addrRepeat,    /* Jump to here if not distinct */
482   int N,             /* Number of elements */
483   int iMem           /* First element */
484 ){
485   Vdbe *v;
486   int r1;
487 
488   v = pParse->pVdbe;
489   r1 = sqlite3GetTempReg(pParse);
490   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
491   sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
492   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
493   sqlite3ReleaseTempReg(pParse, r1);
494 }
495 
496 /*
497 ** Generate an error message when a SELECT is used within a subexpression
498 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
499 ** column.  We do this in a subroutine because the error occurs in multiple
500 ** places.
501 */
502 static int checkForMultiColumnSelectError(
503   Parse *pParse,       /* Parse context. */
504   SelectDest *pDest,   /* Destination of SELECT results */
505   int nExpr            /* Number of result columns returned by SELECT */
506 ){
507   int eDest = pDest->eDest;
508   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
509     sqlite3ErrorMsg(pParse, "only a single result allowed for "
510        "a SELECT that is part of an expression");
511     return 1;
512   }else{
513     return 0;
514   }
515 }
516 
517 /*
518 ** This routine generates the code for the inside of the inner loop
519 ** of a SELECT.
520 **
521 ** If srcTab and nColumn are both zero, then the pEList expressions
522 ** are evaluated in order to get the data for this row.  If nColumn>0
523 ** then data is pulled from srcTab and pEList is used only to get the
524 ** datatypes for each column.
525 */
526 static void selectInnerLoop(
527   Parse *pParse,          /* The parser context */
528   Select *p,              /* The complete select statement being coded */
529   ExprList *pEList,       /* List of values being extracted */
530   int srcTab,             /* Pull data from this table */
531   int nColumn,            /* Number of columns in the source table */
532   ExprList *pOrderBy,     /* If not NULL, sort results using this key */
533   int distinct,           /* If >=0, make sure results are distinct */
534   SelectDest *pDest,      /* How to dispose of the results */
535   int iContinue,          /* Jump here to continue with next row */
536   int iBreak              /* Jump here to break out of the inner loop */
537 ){
538   Vdbe *v = pParse->pVdbe;
539   int i;
540   int hasDistinct;        /* True if the DISTINCT keyword is present */
541   int regResult;              /* Start of memory holding result set */
542   int eDest = pDest->eDest;   /* How to dispose of results */
543   int iParm = pDest->iParm;   /* First argument to disposal method */
544   int nResultCol;             /* Number of result columns */
545 
546   assert( v );
547   if( NEVER(v==0) ) return;
548   assert( pEList!=0 );
549   hasDistinct = distinct>=0;
550   if( pOrderBy==0 && !hasDistinct ){
551     codeOffset(v, p, iContinue);
552   }
553 
554   /* Pull the requested columns.
555   */
556   if( nColumn>0 ){
557     nResultCol = nColumn;
558   }else{
559     nResultCol = pEList->nExpr;
560   }
561   if( pDest->iMem==0 ){
562     pDest->iMem = pParse->nMem+1;
563     pDest->nMem = nResultCol;
564     pParse->nMem += nResultCol;
565   }else{
566     assert( pDest->nMem==nResultCol );
567   }
568   regResult = pDest->iMem;
569   if( nColumn>0 ){
570     for(i=0; i<nColumn; i++){
571       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
572     }
573   }else if( eDest!=SRT_Exists ){
574     /* If the destination is an EXISTS(...) expression, the actual
575     ** values returned by the SELECT are not required.
576     */
577     sqlite3ExprCacheClear(pParse);
578     sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
579   }
580   nColumn = nResultCol;
581 
582   /* If the DISTINCT keyword was present on the SELECT statement
583   ** and this row has been seen before, then do not make this row
584   ** part of the result.
585   */
586   if( hasDistinct ){
587     assert( pEList!=0 );
588     assert( pEList->nExpr==nColumn );
589     codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
590     if( pOrderBy==0 ){
591       codeOffset(v, p, iContinue);
592     }
593   }
594 
595   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
596     return;
597   }
598 
599   switch( eDest ){
600     /* In this mode, write each query result to the key of the temporary
601     ** table iParm.
602     */
603 #ifndef SQLITE_OMIT_COMPOUND_SELECT
604     case SRT_Union: {
605       int r1;
606       r1 = sqlite3GetTempReg(pParse);
607       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
608       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
609       sqlite3ReleaseTempReg(pParse, r1);
610       break;
611     }
612 
613     /* Construct a record from the query result, but instead of
614     ** saving that record, use it as a key to delete elements from
615     ** the temporary table iParm.
616     */
617     case SRT_Except: {
618       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
619       break;
620     }
621 #endif
622 
623     /* Store the result as data using a unique key.
624     */
625     case SRT_Table:
626     case SRT_EphemTab: {
627       int r1 = sqlite3GetTempReg(pParse);
628       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
629       if( pOrderBy ){
630         pushOntoSorter(pParse, pOrderBy, p, r1);
631       }else{
632         int r2 = sqlite3GetTempReg(pParse);
633         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
634         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
635         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
636         sqlite3ReleaseTempReg(pParse, r2);
637       }
638       sqlite3ReleaseTempReg(pParse, r1);
639       break;
640     }
641 
642 #ifndef SQLITE_OMIT_SUBQUERY
643     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
644     ** then there should be a single item on the stack.  Write this
645     ** item into the set table with bogus data.
646     */
647     case SRT_Set: {
648       assert( nColumn==1 );
649       p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
650       if( pOrderBy ){
651         /* At first glance you would think we could optimize out the
652         ** ORDER BY in this case since the order of entries in the set
653         ** does not matter.  But there might be a LIMIT clause, in which
654         ** case the order does matter */
655         pushOntoSorter(pParse, pOrderBy, p, regResult);
656       }else{
657         int r1 = sqlite3GetTempReg(pParse);
658         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
659         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
660         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
661         sqlite3ReleaseTempReg(pParse, r1);
662       }
663       break;
664     }
665 
666     /* If any row exist in the result set, record that fact and abort.
667     */
668     case SRT_Exists: {
669       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
670       /* The LIMIT clause will terminate the loop for us */
671       break;
672     }
673 
674     /* If this is a scalar select that is part of an expression, then
675     ** store the results in the appropriate memory cell and break out
676     ** of the scan loop.
677     */
678     case SRT_Mem: {
679       assert( nColumn==1 );
680       if( pOrderBy ){
681         pushOntoSorter(pParse, pOrderBy, p, regResult);
682       }else{
683         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
684         /* The LIMIT clause will jump out of the loop for us */
685       }
686       break;
687     }
688 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
689 
690     /* Send the data to the callback function or to a subroutine.  In the
691     ** case of a subroutine, the subroutine itself is responsible for
692     ** popping the data from the stack.
693     */
694     case SRT_Coroutine:
695     case SRT_Output: {
696       if( pOrderBy ){
697         int r1 = sqlite3GetTempReg(pParse);
698         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
699         pushOntoSorter(pParse, pOrderBy, p, r1);
700         sqlite3ReleaseTempReg(pParse, r1);
701       }else if( eDest==SRT_Coroutine ){
702         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
703       }else{
704         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
705         sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
706       }
707       break;
708     }
709 
710 #if !defined(SQLITE_OMIT_TRIGGER)
711     /* Discard the results.  This is used for SELECT statements inside
712     ** the body of a TRIGGER.  The purpose of such selects is to call
713     ** user-defined functions that have side effects.  We do not care
714     ** about the actual results of the select.
715     */
716     default: {
717       assert( eDest==SRT_Discard );
718       break;
719     }
720 #endif
721   }
722 
723   /* Jump to the end of the loop if the LIMIT is reached.
724   */
725   if( p->iLimit ){
726     assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
727                             ** pushOntoSorter() would have cleared p->iLimit */
728     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
729     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
730   }
731 }
732 
733 /*
734 ** Given an expression list, generate a KeyInfo structure that records
735 ** the collating sequence for each expression in that expression list.
736 **
737 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
738 ** KeyInfo structure is appropriate for initializing a virtual index to
739 ** implement that clause.  If the ExprList is the result set of a SELECT
740 ** then the KeyInfo structure is appropriate for initializing a virtual
741 ** index to implement a DISTINCT test.
742 **
743 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
744 ** function is responsible for seeing that this structure is eventually
745 ** freed.  Add the KeyInfo structure to the P4 field of an opcode using
746 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
747 */
748 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
749   sqlite3 *db = pParse->db;
750   int nExpr;
751   KeyInfo *pInfo;
752   struct ExprList_item *pItem;
753   int i;
754 
755   nExpr = pList->nExpr;
756   pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
757   if( pInfo ){
758     pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
759     pInfo->nField = (u16)nExpr;
760     pInfo->enc = ENC(db);
761     pInfo->db = db;
762     for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
763       CollSeq *pColl;
764       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
765       if( !pColl ){
766         pColl = db->pDfltColl;
767       }
768       pInfo->aColl[i] = pColl;
769       pInfo->aSortOrder[i] = pItem->sortOrder;
770     }
771   }
772   return pInfo;
773 }
774 
775 
776 /*
777 ** If the inner loop was generated using a non-null pOrderBy argument,
778 ** then the results were placed in a sorter.  After the loop is terminated
779 ** we need to run the sorter and output the results.  The following
780 ** routine generates the code needed to do that.
781 */
782 static void generateSortTail(
783   Parse *pParse,    /* Parsing context */
784   Select *p,        /* The SELECT statement */
785   Vdbe *v,          /* Generate code into this VDBE */
786   int nColumn,      /* Number of columns of data */
787   SelectDest *pDest /* Write the sorted results here */
788 ){
789   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
790   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
791   int addr;
792   int iTab;
793   int pseudoTab = 0;
794   ExprList *pOrderBy = p->pOrderBy;
795 
796   int eDest = pDest->eDest;
797   int iParm = pDest->iParm;
798 
799   int regRow;
800   int regRowid;
801 
802   iTab = pOrderBy->iECursor;
803   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
804     pseudoTab = pParse->nTab++;
805     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output, nColumn);
806   }
807   addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak);
808   codeOffset(v, p, addrContinue);
809   regRow = sqlite3GetTempReg(pParse);
810   regRowid = sqlite3GetTempReg(pParse);
811   sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
812   switch( eDest ){
813     case SRT_Table:
814     case SRT_EphemTab: {
815       testcase( eDest==SRT_Table );
816       testcase( eDest==SRT_EphemTab );
817       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
818       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
819       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
820       break;
821     }
822 #ifndef SQLITE_OMIT_SUBQUERY
823     case SRT_Set: {
824       assert( nColumn==1 );
825       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
826       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
827       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
828       break;
829     }
830     case SRT_Mem: {
831       assert( nColumn==1 );
832       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
833       /* The LIMIT clause will terminate the loop for us */
834       break;
835     }
836 #endif
837     case SRT_Output:
838     case SRT_Coroutine: {
839       int i;
840       testcase( eDest==SRT_Output );
841       testcase( eDest==SRT_Coroutine );
842       sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
843       sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
844       for(i=0; i<nColumn; i++){
845         assert( regRow!=pDest->iMem+i );
846         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
847       }
848       if( eDest==SRT_Output ){
849         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
850         sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
851       }else{
852         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
853       }
854       break;
855     }
856     default: {
857       /* Do nothing */
858       break;
859     }
860   }
861   sqlite3ReleaseTempReg(pParse, regRow);
862   sqlite3ReleaseTempReg(pParse, regRowid);
863 
864   /* LIMIT has been implemented by the pushOntoSorter() routine.
865   */
866   assert( p->iLimit==0 );
867 
868   /* The bottom of the loop
869   */
870   sqlite3VdbeResolveLabel(v, addrContinue);
871   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
872   sqlite3VdbeResolveLabel(v, addrBreak);
873   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
874     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
875   }
876 }
877 
878 /*
879 ** Return a pointer to a string containing the 'declaration type' of the
880 ** expression pExpr. The string may be treated as static by the caller.
881 **
882 ** The declaration type is the exact datatype definition extracted from the
883 ** original CREATE TABLE statement if the expression is a column. The
884 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
885 ** is considered a column can be complex in the presence of subqueries. The
886 ** result-set expression in all of the following SELECT statements is
887 ** considered a column by this function.
888 **
889 **   SELECT col FROM tbl;
890 **   SELECT (SELECT col FROM tbl;
891 **   SELECT (SELECT col FROM tbl);
892 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
893 **
894 ** The declaration type for any expression other than a column is NULL.
895 */
896 static const char *columnType(
897   NameContext *pNC,
898   Expr *pExpr,
899   const char **pzOriginDb,
900   const char **pzOriginTab,
901   const char **pzOriginCol
902 ){
903   char const *zType = 0;
904   char const *zOriginDb = 0;
905   char const *zOriginTab = 0;
906   char const *zOriginCol = 0;
907   int j;
908   if( pExpr==0 || pNC->pSrcList==0 ) return 0;
909 
910   switch( pExpr->op ){
911     case TK_AGG_COLUMN:
912     case TK_COLUMN: {
913       /* The expression is a column. Locate the table the column is being
914       ** extracted from in NameContext.pSrcList. This table may be real
915       ** database table or a subquery.
916       */
917       Table *pTab = 0;            /* Table structure column is extracted from */
918       Select *pS = 0;             /* Select the column is extracted from */
919       int iCol = pExpr->iColumn;  /* Index of column in pTab */
920       while( pNC && !pTab ){
921         SrcList *pTabList = pNC->pSrcList;
922         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
923         if( j<pTabList->nSrc ){
924           pTab = pTabList->a[j].pTab;
925           pS = pTabList->a[j].pSelect;
926         }else{
927           pNC = pNC->pNext;
928         }
929       }
930 
931       if( pTab==0 ){
932         /* FIX ME:
933         ** This can occurs if you have something like "SELECT new.x;" inside
934         ** a trigger.  In other words, if you reference the special "new"
935         ** table in the result set of a select.  We do not have a good way
936         ** to find the actual table type, so call it "TEXT".  This is really
937         ** something of a bug, but I do not know how to fix it.
938         **
939         ** This code does not produce the correct answer - it just prevents
940         ** a segfault.  See ticket #1229.
941         */
942         zType = "TEXT";
943         break;
944       }
945 
946       assert( pTab );
947       if( pS ){
948         /* The "table" is actually a sub-select or a view in the FROM clause
949         ** of the SELECT statement. Return the declaration type and origin
950         ** data for the result-set column of the sub-select.
951         */
952         if( ALWAYS(iCol>=0 && iCol<pS->pEList->nExpr) ){
953           /* If iCol is less than zero, then the expression requests the
954           ** rowid of the sub-select or view. This expression is legal (see
955           ** test case misc2.2.2) - it always evaluates to NULL.
956           */
957           NameContext sNC;
958           Expr *p = pS->pEList->a[iCol].pExpr;
959           sNC.pSrcList = pS->pSrc;
960           sNC.pNext = 0;
961           sNC.pParse = pNC->pParse;
962           zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
963         }
964       }else if( ALWAYS(pTab->pSchema) ){
965         /* A real table */
966         assert( !pS );
967         if( iCol<0 ) iCol = pTab->iPKey;
968         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
969         if( iCol<0 ){
970           zType = "INTEGER";
971           zOriginCol = "rowid";
972         }else{
973           zType = pTab->aCol[iCol].zType;
974           zOriginCol = pTab->aCol[iCol].zName;
975         }
976         zOriginTab = pTab->zName;
977         if( pNC->pParse ){
978           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
979           zOriginDb = pNC->pParse->db->aDb[iDb].zName;
980         }
981       }
982       break;
983     }
984 #ifndef SQLITE_OMIT_SUBQUERY
985     case TK_SELECT: {
986       /* The expression is a sub-select. Return the declaration type and
987       ** origin info for the single column in the result set of the SELECT
988       ** statement.
989       */
990       NameContext sNC;
991       Select *pS = pExpr->x.pSelect;
992       Expr *p = pS->pEList->a[0].pExpr;
993       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
994       sNC.pSrcList = pS->pSrc;
995       sNC.pNext = pNC;
996       sNC.pParse = pNC->pParse;
997       zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol);
998       break;
999     }
1000 #endif
1001   }
1002 
1003   if( pzOriginDb ){
1004     assert( pzOriginTab && pzOriginCol );
1005     *pzOriginDb = zOriginDb;
1006     *pzOriginTab = zOriginTab;
1007     *pzOriginCol = zOriginCol;
1008   }
1009   return zType;
1010 }
1011 
1012 /*
1013 ** Generate code that will tell the VDBE the declaration types of columns
1014 ** in the result set.
1015 */
1016 static void generateColumnTypes(
1017   Parse *pParse,      /* Parser context */
1018   SrcList *pTabList,  /* List of tables */
1019   ExprList *pEList    /* Expressions defining the result set */
1020 ){
1021 #ifndef SQLITE_OMIT_DECLTYPE
1022   Vdbe *v = pParse->pVdbe;
1023   int i;
1024   NameContext sNC;
1025   sNC.pSrcList = pTabList;
1026   sNC.pParse = pParse;
1027   for(i=0; i<pEList->nExpr; i++){
1028     Expr *p = pEList->a[i].pExpr;
1029     const char *zType;
1030 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1031     const char *zOrigDb = 0;
1032     const char *zOrigTab = 0;
1033     const char *zOrigCol = 0;
1034     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1035 
1036     /* The vdbe must make its own copy of the column-type and other
1037     ** column specific strings, in case the schema is reset before this
1038     ** virtual machine is deleted.
1039     */
1040     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1041     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1042     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1043 #else
1044     zType = columnType(&sNC, p, 0, 0, 0);
1045 #endif
1046     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1047   }
1048 #endif /* SQLITE_OMIT_DECLTYPE */
1049 }
1050 
1051 /*
1052 ** Generate code that will tell the VDBE the names of columns
1053 ** in the result set.  This information is used to provide the
1054 ** azCol[] values in the callback.
1055 */
1056 static void generateColumnNames(
1057   Parse *pParse,      /* Parser context */
1058   SrcList *pTabList,  /* List of tables */
1059   ExprList *pEList    /* Expressions defining the result set */
1060 ){
1061   Vdbe *v = pParse->pVdbe;
1062   int i, j;
1063   sqlite3 *db = pParse->db;
1064   int fullNames, shortNames;
1065 
1066 #ifndef SQLITE_OMIT_EXPLAIN
1067   /* If this is an EXPLAIN, skip this step */
1068   if( pParse->explain ){
1069     return;
1070   }
1071 #endif
1072 
1073   assert( v!=0 );
1074   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1075   pParse->colNamesSet = 1;
1076   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1077   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1078   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1079   for(i=0; i<pEList->nExpr; i++){
1080     Expr *p;
1081     p = pEList->a[i].pExpr;
1082     if( p==0 ) continue;
1083     if( pEList->a[i].zName ){
1084       char *zName = pEList->a[i].zName;
1085       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1086     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1087       Table *pTab;
1088       char *zCol;
1089       int iCol = p->iColumn;
1090       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1091         if( pTabList->a[j].iCursor==p->iTable ) break;
1092       }
1093       assert( j<pTabList->nSrc );
1094       pTab = pTabList->a[j].pTab;
1095       if( iCol<0 ) iCol = pTab->iPKey;
1096       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1097       if( iCol<0 ){
1098         zCol = "rowid";
1099       }else{
1100         zCol = pTab->aCol[iCol].zName;
1101       }
1102       if( !shortNames && !fullNames ){
1103         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1104             sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC);
1105       }else if( fullNames ){
1106         char *zName = 0;
1107         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1108         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1109       }else{
1110         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1111       }
1112     }else{
1113       sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1114           sqlite3DbStrNDup(db, (char*)p->span.z, p->span.n), SQLITE_DYNAMIC);
1115     }
1116   }
1117   generateColumnTypes(pParse, pTabList, pEList);
1118 }
1119 
1120 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1121 /*
1122 ** Name of the connection operator, used for error messages.
1123 */
1124 static const char *selectOpName(int id){
1125   char *z;
1126   switch( id ){
1127     case TK_ALL:       z = "UNION ALL";   break;
1128     case TK_INTERSECT: z = "INTERSECT";   break;
1129     case TK_EXCEPT:    z = "EXCEPT";      break;
1130     default:           z = "UNION";       break;
1131   }
1132   return z;
1133 }
1134 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1135 
1136 /*
1137 ** Given a an expression list (which is really the list of expressions
1138 ** that form the result set of a SELECT statement) compute appropriate
1139 ** column names for a table that would hold the expression list.
1140 **
1141 ** All column names will be unique.
1142 **
1143 ** Only the column names are computed.  Column.zType, Column.zColl,
1144 ** and other fields of Column are zeroed.
1145 **
1146 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1147 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1148 */
1149 static int selectColumnsFromExprList(
1150   Parse *pParse,          /* Parsing context */
1151   ExprList *pEList,       /* Expr list from which to derive column names */
1152   int *pnCol,             /* Write the number of columns here */
1153   Column **paCol          /* Write the new column list here */
1154 ){
1155   sqlite3 *db = pParse->db;   /* Database connection */
1156   int i, j;                   /* Loop counters */
1157   int cnt;                    /* Index added to make the name unique */
1158   Column *aCol, *pCol;        /* For looping over result columns */
1159   int nCol;                   /* Number of columns in the result set */
1160   Expr *p;                    /* Expression for a single result column */
1161   char *zName;                /* Column name */
1162   int nName;                  /* Size of name in zName[] */
1163 
1164   *pnCol = nCol = pEList->nExpr;
1165   aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1166   if( aCol==0 ) return SQLITE_NOMEM;
1167   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1168     /* Get an appropriate name for the column
1169     */
1170     p = pEList->a[i].pExpr;
1171     assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
1172     if( (zName = pEList->a[i].zName)!=0 ){
1173       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1174       zName = sqlite3DbStrDup(db, zName);
1175     }else{
1176       Expr *pColExpr = p;  /* The expression that is the result column name */
1177       Table *pTab;         /* Table associated with this expression */
1178       while( pColExpr->op==TK_DOT ) pColExpr = pColExpr->pRight;
1179       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->pTab)!=0 ){
1180         /* For columns use the column name name */
1181         int iCol = pColExpr->iColumn;
1182         if( iCol<0 ) iCol = pTab->iPKey;
1183         zName = sqlite3MPrintf(db, "%s",
1184                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1185       }else{
1186         /* Use the original text of the column expression as its name */
1187         Token *pToken = (pColExpr->span.z?&pColExpr->span:&pColExpr->token);
1188         zName = sqlite3MPrintf(db, "%T", pToken);
1189       }
1190     }
1191     if( db->mallocFailed ){
1192       sqlite3DbFree(db, zName);
1193       break;
1194     }
1195     sqlite3Dequote(zName);
1196 
1197     /* Make sure the column name is unique.  If the name is not unique,
1198     ** append a integer to the name so that it becomes unique.
1199     */
1200     nName = sqlite3Strlen30(zName);
1201     for(j=cnt=0; j<i; j++){
1202       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1203         char *zNewName;
1204         zName[nName] = 0;
1205         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1206         sqlite3DbFree(db, zName);
1207         zName = zNewName;
1208         j = -1;
1209         if( zName==0 ) break;
1210       }
1211     }
1212     pCol->zName = zName;
1213   }
1214   if( db->mallocFailed ){
1215     for(j=0; j<i; j++){
1216       sqlite3DbFree(db, aCol[j].zName);
1217     }
1218     sqlite3DbFree(db, aCol);
1219     *paCol = 0;
1220     *pnCol = 0;
1221     return SQLITE_NOMEM;
1222   }
1223   return SQLITE_OK;
1224 }
1225 
1226 /*
1227 ** Add type and collation information to a column list based on
1228 ** a SELECT statement.
1229 **
1230 ** The column list presumably came from selectColumnNamesFromExprList().
1231 ** The column list has only names, not types or collations.  This
1232 ** routine goes through and adds the types and collations.
1233 **
1234 ** This routine requires that all identifiers in the SELECT
1235 ** statement be resolved.
1236 */
1237 static void selectAddColumnTypeAndCollation(
1238   Parse *pParse,        /* Parsing contexts */
1239   int nCol,             /* Number of columns */
1240   Column *aCol,         /* List of columns */
1241   Select *pSelect       /* SELECT used to determine types and collations */
1242 ){
1243   sqlite3 *db = pParse->db;
1244   NameContext sNC;
1245   Column *pCol;
1246   CollSeq *pColl;
1247   int i;
1248   Expr *p;
1249   struct ExprList_item *a;
1250 
1251   assert( pSelect!=0 );
1252   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1253   assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
1254   if( db->mallocFailed ) return;
1255   memset(&sNC, 0, sizeof(sNC));
1256   sNC.pSrcList = pSelect->pSrc;
1257   a = pSelect->pEList->a;
1258   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1259     p = a[i].pExpr;
1260     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
1261     pCol->affinity = sqlite3ExprAffinity(p);
1262     pColl = sqlite3ExprCollSeq(pParse, p);
1263     if( pColl ){
1264       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1265     }
1266   }
1267 }
1268 
1269 /*
1270 ** Given a SELECT statement, generate a Table structure that describes
1271 ** the result set of that SELECT.
1272 */
1273 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1274   Table *pTab;
1275   sqlite3 *db = pParse->db;
1276   int savedFlags;
1277 
1278   savedFlags = db->flags;
1279   db->flags &= ~SQLITE_FullColNames;
1280   db->flags |= SQLITE_ShortColNames;
1281   sqlite3SelectPrep(pParse, pSelect, 0);
1282   if( pParse->nErr ) return 0;
1283   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1284   db->flags = savedFlags;
1285   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1286   if( pTab==0 ){
1287     return 0;
1288   }
1289   pTab->dbMem = db->lookaside.bEnabled ? db : 0;
1290   pTab->nRef = 1;
1291   pTab->zName = 0;
1292   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1293   selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
1294   pTab->iPKey = -1;
1295   if( db->mallocFailed ){
1296     sqlite3DeleteTable(pTab);
1297     return 0;
1298   }
1299   return pTab;
1300 }
1301 
1302 /*
1303 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1304 ** If an error occurs, return NULL and leave a message in pParse.
1305 */
1306 Vdbe *sqlite3GetVdbe(Parse *pParse){
1307   Vdbe *v = pParse->pVdbe;
1308   if( v==0 ){
1309     v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
1310 #ifndef SQLITE_OMIT_TRACE
1311     if( v ){
1312       sqlite3VdbeAddOp0(v, OP_Trace);
1313     }
1314 #endif
1315   }
1316   return v;
1317 }
1318 
1319 
1320 /*
1321 ** Compute the iLimit and iOffset fields of the SELECT based on the
1322 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1323 ** that appear in the original SQL statement after the LIMIT and OFFSET
1324 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1325 ** are the integer memory register numbers for counters used to compute
1326 ** the limit and offset.  If there is no limit and/or offset, then
1327 ** iLimit and iOffset are negative.
1328 **
1329 ** This routine changes the values of iLimit and iOffset only if
1330 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1331 ** iOffset should have been preset to appropriate default values
1332 ** (usually but not always -1) prior to calling this routine.
1333 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1334 ** redefined.  The UNION ALL operator uses this property to force
1335 ** the reuse of the same limit and offset registers across multiple
1336 ** SELECT statements.
1337 */
1338 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1339   Vdbe *v = 0;
1340   int iLimit = 0;
1341   int iOffset;
1342   int addr1;
1343   if( p->iLimit ) return;
1344 
1345   /*
1346   ** "LIMIT -1" always shows all rows.  There is some
1347   ** contraversy about what the correct behavior should be.
1348   ** The current implementation interprets "LIMIT 0" to mean
1349   ** no rows.
1350   */
1351   sqlite3ExprCacheClear(pParse);
1352   if( p->pLimit ){
1353     p->iLimit = iLimit = ++pParse->nMem;
1354     v = sqlite3GetVdbe(pParse);
1355     if( v==0 ) return;
1356     sqlite3ExprCode(pParse, p->pLimit, iLimit);
1357     sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
1358     VdbeComment((v, "LIMIT counter"));
1359     sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
1360   }
1361   if( p->pOffset ){
1362     p->iOffset = iOffset = ++pParse->nMem;
1363     if( p->pLimit ){
1364       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1365     }
1366     v = sqlite3GetVdbe(pParse);
1367     if( v==0 ) return;
1368     sqlite3ExprCode(pParse, p->pOffset, iOffset);
1369     sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
1370     VdbeComment((v, "OFFSET counter"));
1371     addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
1372     sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1373     sqlite3VdbeJumpHere(v, addr1);
1374     if( p->pLimit ){
1375       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1376       VdbeComment((v, "LIMIT+OFFSET"));
1377       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
1378       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1379       sqlite3VdbeJumpHere(v, addr1);
1380     }
1381   }
1382 }
1383 
1384 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1385 /*
1386 ** Return the appropriate collating sequence for the iCol-th column of
1387 ** the result set for the compound-select statement "p".  Return NULL if
1388 ** the column has no default collating sequence.
1389 **
1390 ** The collating sequence for the compound select is taken from the
1391 ** left-most term of the select that has a collating sequence.
1392 */
1393 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1394   CollSeq *pRet;
1395   if( p->pPrior ){
1396     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1397   }else{
1398     pRet = 0;
1399   }
1400   assert( iCol>=0 );
1401   if( pRet==0 && iCol<p->pEList->nExpr ){
1402     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1403   }
1404   return pRet;
1405 }
1406 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1407 
1408 /* Forward reference */
1409 static int multiSelectOrderBy(
1410   Parse *pParse,        /* Parsing context */
1411   Select *p,            /* The right-most of SELECTs to be coded */
1412   SelectDest *pDest     /* What to do with query results */
1413 );
1414 
1415 
1416 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1417 /*
1418 ** This routine is called to process a compound query form from
1419 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
1420 ** INTERSECT
1421 **
1422 ** "p" points to the right-most of the two queries.  the query on the
1423 ** left is p->pPrior.  The left query could also be a compound query
1424 ** in which case this routine will be called recursively.
1425 **
1426 ** The results of the total query are to be written into a destination
1427 ** of type eDest with parameter iParm.
1428 **
1429 ** Example 1:  Consider a three-way compound SQL statement.
1430 **
1431 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
1432 **
1433 ** This statement is parsed up as follows:
1434 **
1435 **     SELECT c FROM t3
1436 **      |
1437 **      `----->  SELECT b FROM t2
1438 **                |
1439 **                `------>  SELECT a FROM t1
1440 **
1441 ** The arrows in the diagram above represent the Select.pPrior pointer.
1442 ** So if this routine is called with p equal to the t3 query, then
1443 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
1444 **
1445 ** Notice that because of the way SQLite parses compound SELECTs, the
1446 ** individual selects always group from left to right.
1447 */
1448 static int multiSelect(
1449   Parse *pParse,        /* Parsing context */
1450   Select *p,            /* The right-most of SELECTs to be coded */
1451   SelectDest *pDest     /* What to do with query results */
1452 ){
1453   int rc = SQLITE_OK;   /* Success code from a subroutine */
1454   Select *pPrior;       /* Another SELECT immediately to our left */
1455   Vdbe *v;              /* Generate code to this VDBE */
1456   SelectDest dest;      /* Alternative data destination */
1457   Select *pDelete = 0;  /* Chain of simple selects to delete */
1458   sqlite3 *db;          /* Database connection */
1459 
1460   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
1461   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
1462   */
1463   assert( p && p->pPrior );  /* Calling function guarantees this much */
1464   db = pParse->db;
1465   pPrior = p->pPrior;
1466   assert( pPrior->pRightmost!=pPrior );
1467   assert( pPrior->pRightmost==p->pRightmost );
1468   dest = *pDest;
1469   if( pPrior->pOrderBy ){
1470     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
1471       selectOpName(p->op));
1472     rc = 1;
1473     goto multi_select_end;
1474   }
1475   if( pPrior->pLimit ){
1476     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
1477       selectOpName(p->op));
1478     rc = 1;
1479     goto multi_select_end;
1480   }
1481 
1482   v = sqlite3GetVdbe(pParse);
1483   assert( v!=0 );  /* The VDBE already created by calling function */
1484 
1485   /* Create the destination temporary table if necessary
1486   */
1487   if( dest.eDest==SRT_EphemTab ){
1488     assert( p->pEList );
1489     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
1490     dest.eDest = SRT_Table;
1491   }
1492 
1493   /* Make sure all SELECTs in the statement have the same number of elements
1494   ** in their result sets.
1495   */
1496   assert( p->pEList && pPrior->pEList );
1497   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
1498     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
1499       " do not have the same number of result columns", selectOpName(p->op));
1500     rc = 1;
1501     goto multi_select_end;
1502   }
1503 
1504   /* Compound SELECTs that have an ORDER BY clause are handled separately.
1505   */
1506   if( p->pOrderBy ){
1507     return multiSelectOrderBy(pParse, p, pDest);
1508   }
1509 
1510   /* Generate code for the left and right SELECT statements.
1511   */
1512   switch( p->op ){
1513     case TK_ALL: {
1514       int addr = 0;
1515       assert( !pPrior->pLimit );
1516       pPrior->pLimit = p->pLimit;
1517       pPrior->pOffset = p->pOffset;
1518       rc = sqlite3Select(pParse, pPrior, &dest);
1519       p->pLimit = 0;
1520       p->pOffset = 0;
1521       if( rc ){
1522         goto multi_select_end;
1523       }
1524       p->pPrior = 0;
1525       p->iLimit = pPrior->iLimit;
1526       p->iOffset = pPrior->iOffset;
1527       if( p->iLimit ){
1528         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
1529         VdbeComment((v, "Jump ahead if LIMIT reached"));
1530       }
1531       rc = sqlite3Select(pParse, p, &dest);
1532       pDelete = p->pPrior;
1533       p->pPrior = pPrior;
1534       if( rc ){
1535         goto multi_select_end;
1536       }
1537       if( addr ){
1538         sqlite3VdbeJumpHere(v, addr);
1539       }
1540       break;
1541     }
1542     case TK_EXCEPT:
1543     case TK_UNION: {
1544       int unionTab;    /* Cursor number of the temporary table holding result */
1545       u8 op = 0;       /* One of the SRT_ operations to apply to self */
1546       int priorOp;     /* The SRT_ operation to apply to prior selects */
1547       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
1548       int addr;
1549       SelectDest uniondest;
1550 
1551       priorOp = SRT_Union;
1552       if( dest.eDest==priorOp && ALWAYS(!p->pLimit &&!p->pOffset) ){
1553         /* We can reuse a temporary table generated by a SELECT to our
1554         ** right.
1555         */
1556         assert( p->pRightmost!=p );  /* Can only happen for leftward elements
1557                                      ** of a 3-way or more compound */
1558         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
1559         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
1560         unionTab = dest.iParm;
1561       }else{
1562         /* We will need to create our own temporary table to hold the
1563         ** intermediate results.
1564         */
1565         unionTab = pParse->nTab++;
1566         assert( p->pOrderBy==0 );
1567         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
1568         assert( p->addrOpenEphm[0] == -1 );
1569         p->addrOpenEphm[0] = addr;
1570         p->pRightmost->selFlags |= SF_UsesEphemeral;
1571         assert( p->pEList );
1572       }
1573 
1574       /* Code the SELECT statements to our left
1575       */
1576       assert( !pPrior->pOrderBy );
1577       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
1578       rc = sqlite3Select(pParse, pPrior, &uniondest);
1579       if( rc ){
1580         goto multi_select_end;
1581       }
1582 
1583       /* Code the current SELECT statement
1584       */
1585       if( p->op==TK_EXCEPT ){
1586         op = SRT_Except;
1587       }else{
1588         assert( p->op==TK_UNION );
1589         op = SRT_Union;
1590       }
1591       p->pPrior = 0;
1592       pLimit = p->pLimit;
1593       p->pLimit = 0;
1594       pOffset = p->pOffset;
1595       p->pOffset = 0;
1596       uniondest.eDest = op;
1597       rc = sqlite3Select(pParse, p, &uniondest);
1598       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
1599       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
1600       sqlite3ExprListDelete(db, p->pOrderBy);
1601       pDelete = p->pPrior;
1602       p->pPrior = pPrior;
1603       p->pOrderBy = 0;
1604       sqlite3ExprDelete(db, p->pLimit);
1605       p->pLimit = pLimit;
1606       p->pOffset = pOffset;
1607       p->iLimit = 0;
1608       p->iOffset = 0;
1609       if( rc ){
1610         goto multi_select_end;
1611       }
1612 
1613 
1614       /* Convert the data in the temporary table into whatever form
1615       ** it is that we currently need.
1616       */
1617       if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
1618         int iCont, iBreak, iStart;
1619         assert( p->pEList );
1620         if( dest.eDest==SRT_Output ){
1621           Select *pFirst = p;
1622           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1623           generateColumnNames(pParse, 0, pFirst->pEList);
1624         }
1625         iBreak = sqlite3VdbeMakeLabel(v);
1626         iCont = sqlite3VdbeMakeLabel(v);
1627         computeLimitRegisters(pParse, p, iBreak);
1628         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
1629         iStart = sqlite3VdbeCurrentAddr(v);
1630         selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
1631                         0, -1, &dest, iCont, iBreak);
1632         sqlite3VdbeResolveLabel(v, iCont);
1633         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
1634         sqlite3VdbeResolveLabel(v, iBreak);
1635         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
1636       }
1637       break;
1638     }
1639     case TK_INTERSECT: {
1640       int tab1, tab2;
1641       int iCont, iBreak, iStart;
1642       Expr *pLimit, *pOffset;
1643       int addr;
1644       SelectDest intersectdest;
1645       int r1;
1646 
1647       /* INTERSECT is different from the others since it requires
1648       ** two temporary tables.  Hence it has its own case.  Begin
1649       ** by allocating the tables we will need.
1650       */
1651       tab1 = pParse->nTab++;
1652       tab2 = pParse->nTab++;
1653       assert( p->pOrderBy==0 );
1654 
1655       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
1656       assert( p->addrOpenEphm[0] == -1 );
1657       p->addrOpenEphm[0] = addr;
1658       p->pRightmost->selFlags |= SF_UsesEphemeral;
1659       assert( p->pEList );
1660 
1661       /* Code the SELECTs to our left into temporary table "tab1".
1662       */
1663       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
1664       rc = sqlite3Select(pParse, pPrior, &intersectdest);
1665       if( rc ){
1666         goto multi_select_end;
1667       }
1668 
1669       /* Code the current SELECT into temporary table "tab2"
1670       */
1671       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
1672       assert( p->addrOpenEphm[1] == -1 );
1673       p->addrOpenEphm[1] = addr;
1674       p->pPrior = 0;
1675       pLimit = p->pLimit;
1676       p->pLimit = 0;
1677       pOffset = p->pOffset;
1678       p->pOffset = 0;
1679       intersectdest.iParm = tab2;
1680       rc = sqlite3Select(pParse, p, &intersectdest);
1681       pDelete = p->pPrior;
1682       p->pPrior = pPrior;
1683       sqlite3ExprDelete(db, p->pLimit);
1684       p->pLimit = pLimit;
1685       p->pOffset = pOffset;
1686       if( rc ){
1687         goto multi_select_end;
1688       }
1689 
1690       /* Generate code to take the intersection of the two temporary
1691       ** tables.
1692       */
1693       assert( p->pEList );
1694       if( dest.eDest==SRT_Output ){
1695         Select *pFirst = p;
1696         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
1697         generateColumnNames(pParse, 0, pFirst->pEList);
1698       }
1699       iBreak = sqlite3VdbeMakeLabel(v);
1700       iCont = sqlite3VdbeMakeLabel(v);
1701       computeLimitRegisters(pParse, p, iBreak);
1702       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
1703       r1 = sqlite3GetTempReg(pParse);
1704       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
1705       sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
1706       sqlite3ReleaseTempReg(pParse, r1);
1707       selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
1708                       0, -1, &dest, iCont, iBreak);
1709       sqlite3VdbeResolveLabel(v, iCont);
1710       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
1711       sqlite3VdbeResolveLabel(v, iBreak);
1712       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
1713       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
1714       break;
1715     }
1716   }
1717 
1718   /* Compute collating sequences used by
1719   ** temporary tables needed to implement the compound select.
1720   ** Attach the KeyInfo structure to all temporary tables.
1721   **
1722   ** This section is run by the right-most SELECT statement only.
1723   ** SELECT statements to the left always skip this part.  The right-most
1724   ** SELECT might also skip this part if it has no ORDER BY clause and
1725   ** no temp tables are required.
1726   */
1727   if( p->selFlags & SF_UsesEphemeral ){
1728     int i;                        /* Loop counter */
1729     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
1730     Select *pLoop;                /* For looping through SELECT statements */
1731     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
1732     int nCol;                     /* Number of columns in result set */
1733 
1734     assert( p->pRightmost==p );
1735     nCol = p->pEList->nExpr;
1736     pKeyInfo = sqlite3DbMallocZero(db,
1737                        sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
1738     if( !pKeyInfo ){
1739       rc = SQLITE_NOMEM;
1740       goto multi_select_end;
1741     }
1742 
1743     pKeyInfo->enc = ENC(db);
1744     pKeyInfo->nField = (u16)nCol;
1745 
1746     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
1747       *apColl = multiSelectCollSeq(pParse, p, i);
1748       if( 0==*apColl ){
1749         *apColl = db->pDfltColl;
1750       }
1751     }
1752 
1753     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
1754       for(i=0; i<2; i++){
1755         int addr = pLoop->addrOpenEphm[i];
1756         if( addr<0 ){
1757           /* If [0] is unused then [1] is also unused.  So we can
1758           ** always safely abort as soon as the first unused slot is found */
1759           assert( pLoop->addrOpenEphm[1]<0 );
1760           break;
1761         }
1762         sqlite3VdbeChangeP2(v, addr, nCol);
1763         sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
1764         pLoop->addrOpenEphm[i] = -1;
1765       }
1766     }
1767     sqlite3DbFree(db, pKeyInfo);
1768   }
1769 
1770 multi_select_end:
1771   pDest->iMem = dest.iMem;
1772   pDest->nMem = dest.nMem;
1773   sqlite3SelectDelete(db, pDelete);
1774   return rc;
1775 }
1776 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1777 
1778 /*
1779 ** Code an output subroutine for a coroutine implementation of a
1780 ** SELECT statment.
1781 **
1782 ** The data to be output is contained in pIn->iMem.  There are
1783 ** pIn->nMem columns to be output.  pDest is where the output should
1784 ** be sent.
1785 **
1786 ** regReturn is the number of the register holding the subroutine
1787 ** return address.
1788 **
1789 ** If regPrev>0 then it is a the first register in a vector that
1790 ** records the previous output.  mem[regPrev] is a flag that is false
1791 ** if there has been no previous output.  If regPrev>0 then code is
1792 ** generated to suppress duplicates.  pKeyInfo is used for comparing
1793 ** keys.
1794 **
1795 ** If the LIMIT found in p->iLimit is reached, jump immediately to
1796 ** iBreak.
1797 */
1798 static int generateOutputSubroutine(
1799   Parse *pParse,          /* Parsing context */
1800   Select *p,              /* The SELECT statement */
1801   SelectDest *pIn,        /* Coroutine supplying data */
1802   SelectDest *pDest,      /* Where to send the data */
1803   int regReturn,          /* The return address register */
1804   int regPrev,            /* Previous result register.  No uniqueness if 0 */
1805   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
1806   int p4type,             /* The p4 type for pKeyInfo */
1807   int iBreak              /* Jump here if we hit the LIMIT */
1808 ){
1809   Vdbe *v = pParse->pVdbe;
1810   int iContinue;
1811   int addr;
1812 
1813   addr = sqlite3VdbeCurrentAddr(v);
1814   iContinue = sqlite3VdbeMakeLabel(v);
1815 
1816   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
1817   */
1818   if( regPrev ){
1819     int j1, j2;
1820     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
1821     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
1822                               (char*)pKeyInfo, p4type);
1823     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
1824     sqlite3VdbeJumpHere(v, j1);
1825     sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
1826     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
1827   }
1828   if( pParse->db->mallocFailed ) return 0;
1829 
1830   /* Suppress the the first OFFSET entries if there is an OFFSET clause
1831   */
1832   codeOffset(v, p, iContinue);
1833 
1834   switch( pDest->eDest ){
1835     /* Store the result as data using a unique key.
1836     */
1837     case SRT_Table:
1838     case SRT_EphemTab: {
1839       int r1 = sqlite3GetTempReg(pParse);
1840       int r2 = sqlite3GetTempReg(pParse);
1841       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
1842       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
1843       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
1844       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1845       sqlite3ReleaseTempReg(pParse, r2);
1846       sqlite3ReleaseTempReg(pParse, r1);
1847       break;
1848     }
1849 
1850 #ifndef SQLITE_OMIT_SUBQUERY
1851     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1852     ** then there should be a single item on the stack.  Write this
1853     ** item into the set table with bogus data.
1854     */
1855     case SRT_Set: {
1856       int r1;
1857       assert( pIn->nMem==1 );
1858       p->affinity =
1859          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
1860       r1 = sqlite3GetTempReg(pParse);
1861       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
1862       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
1863       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
1864       sqlite3ReleaseTempReg(pParse, r1);
1865       break;
1866     }
1867 
1868 #if 0  /* Never occurs on an ORDER BY query */
1869     /* If any row exist in the result set, record that fact and abort.
1870     */
1871     case SRT_Exists: {
1872       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
1873       /* The LIMIT clause will terminate the loop for us */
1874       break;
1875     }
1876 #endif
1877 
1878     /* If this is a scalar select that is part of an expression, then
1879     ** store the results in the appropriate memory cell and break out
1880     ** of the scan loop.
1881     */
1882     case SRT_Mem: {
1883       assert( pIn->nMem==1 );
1884       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
1885       /* The LIMIT clause will jump out of the loop for us */
1886       break;
1887     }
1888 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1889 
1890     /* The results are stored in a sequence of registers
1891     ** starting at pDest->iMem.  Then the co-routine yields.
1892     */
1893     case SRT_Coroutine: {
1894       if( pDest->iMem==0 ){
1895         pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
1896         pDest->nMem = pIn->nMem;
1897       }
1898       sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
1899       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
1900       break;
1901     }
1902 
1903     /* Results are stored in a sequence of registers.  Then the
1904     ** OP_ResultRow opcode is used to cause sqlite3_step() to return
1905     ** the next row of result.
1906     */
1907     case SRT_Output: {
1908       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
1909       sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
1910       break;
1911     }
1912 
1913 #if !defined(SQLITE_OMIT_TRIGGER)
1914     /* Discard the results.  This is used for SELECT statements inside
1915     ** the body of a TRIGGER.  The purpose of such selects is to call
1916     ** user-defined functions that have side effects.  We do not care
1917     ** about the actual results of the select.
1918     */
1919     default: {
1920       break;
1921     }
1922 #endif
1923   }
1924 
1925   /* Jump to the end of the loop if the LIMIT is reached.
1926   */
1927   if( p->iLimit ){
1928     sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
1929     sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
1930   }
1931 
1932   /* Generate the subroutine return
1933   */
1934   sqlite3VdbeResolveLabel(v, iContinue);
1935   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
1936 
1937   return addr;
1938 }
1939 
1940 /*
1941 ** Alternative compound select code generator for cases when there
1942 ** is an ORDER BY clause.
1943 **
1944 ** We assume a query of the following form:
1945 **
1946 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
1947 **
1948 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
1949 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
1950 ** co-routines.  Then run the co-routines in parallel and merge the results
1951 ** into the output.  In addition to the two coroutines (called selectA and
1952 ** selectB) there are 7 subroutines:
1953 **
1954 **    outA:    Move the output of the selectA coroutine into the output
1955 **             of the compound query.
1956 **
1957 **    outB:    Move the output of the selectB coroutine into the output
1958 **             of the compound query.  (Only generated for UNION and
1959 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
1960 **             appears only in B.)
1961 **
1962 **    AltB:    Called when there is data from both coroutines and A<B.
1963 **
1964 **    AeqB:    Called when there is data from both coroutines and A==B.
1965 **
1966 **    AgtB:    Called when there is data from both coroutines and A>B.
1967 **
1968 **    EofA:    Called when data is exhausted from selectA.
1969 **
1970 **    EofB:    Called when data is exhausted from selectB.
1971 **
1972 ** The implementation of the latter five subroutines depend on which
1973 ** <operator> is used:
1974 **
1975 **
1976 **             UNION ALL         UNION            EXCEPT          INTERSECT
1977 **          -------------  -----------------  --------------  -----------------
1978 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
1979 **
1980 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
1981 **
1982 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
1983 **
1984 **   EofA:   outB, nextB      outB, nextB          halt             halt
1985 **
1986 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
1987 **
1988 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
1989 ** causes an immediate jump to EofA and an EOF on B following nextB causes
1990 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
1991 ** following nextX causes a jump to the end of the select processing.
1992 **
1993 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
1994 ** within the output subroutine.  The regPrev register set holds the previously
1995 ** output value.  A comparison is made against this value and the output
1996 ** is skipped if the next results would be the same as the previous.
1997 **
1998 ** The implementation plan is to implement the two coroutines and seven
1999 ** subroutines first, then put the control logic at the bottom.  Like this:
2000 **
2001 **          goto Init
2002 **     coA: coroutine for left query (A)
2003 **     coB: coroutine for right query (B)
2004 **    outA: output one row of A
2005 **    outB: output one row of B (UNION and UNION ALL only)
2006 **    EofA: ...
2007 **    EofB: ...
2008 **    AltB: ...
2009 **    AeqB: ...
2010 **    AgtB: ...
2011 **    Init: initialize coroutine registers
2012 **          yield coA
2013 **          if eof(A) goto EofA
2014 **          yield coB
2015 **          if eof(B) goto EofB
2016 **    Cmpr: Compare A, B
2017 **          Jump AltB, AeqB, AgtB
2018 **     End: ...
2019 **
2020 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2021 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2022 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2023 ** and AgtB jump to either L2 or to one of EofA or EofB.
2024 */
2025 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2026 static int multiSelectOrderBy(
2027   Parse *pParse,        /* Parsing context */
2028   Select *p,            /* The right-most of SELECTs to be coded */
2029   SelectDest *pDest     /* What to do with query results */
2030 ){
2031   int i, j;             /* Loop counters */
2032   Select *pPrior;       /* Another SELECT immediately to our left */
2033   Vdbe *v;              /* Generate code to this VDBE */
2034   SelectDest destA;     /* Destination for coroutine A */
2035   SelectDest destB;     /* Destination for coroutine B */
2036   int regAddrA;         /* Address register for select-A coroutine */
2037   int regEofA;          /* Flag to indicate when select-A is complete */
2038   int regAddrB;         /* Address register for select-B coroutine */
2039   int regEofB;          /* Flag to indicate when select-B is complete */
2040   int addrSelectA;      /* Address of the select-A coroutine */
2041   int addrSelectB;      /* Address of the select-B coroutine */
2042   int regOutA;          /* Address register for the output-A subroutine */
2043   int regOutB;          /* Address register for the output-B subroutine */
2044   int addrOutA;         /* Address of the output-A subroutine */
2045   int addrOutB = 0;     /* Address of the output-B subroutine */
2046   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2047   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2048   int addrAltB;         /* Address of the A<B subroutine */
2049   int addrAeqB;         /* Address of the A==B subroutine */
2050   int addrAgtB;         /* Address of the A>B subroutine */
2051   int regLimitA;        /* Limit register for select-A */
2052   int regLimitB;        /* Limit register for select-A */
2053   int regPrev;          /* A range of registers to hold previous output */
2054   int savedLimit;       /* Saved value of p->iLimit */
2055   int savedOffset;      /* Saved value of p->iOffset */
2056   int labelCmpr;        /* Label for the start of the merge algorithm */
2057   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2058   int j1;               /* Jump instructions that get retargetted */
2059   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2060   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2061   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2062   sqlite3 *db;          /* Database connection */
2063   ExprList *pOrderBy;   /* The ORDER BY clause */
2064   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2065   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2066 
2067   assert( p->pOrderBy!=0 );
2068   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2069   db = pParse->db;
2070   v = pParse->pVdbe;
2071   if( v==0 ) return SQLITE_NOMEM;
2072   labelEnd = sqlite3VdbeMakeLabel(v);
2073   labelCmpr = sqlite3VdbeMakeLabel(v);
2074 
2075 
2076   /* Patch up the ORDER BY clause
2077   */
2078   op = p->op;
2079   pPrior = p->pPrior;
2080   assert( pPrior->pOrderBy==0 );
2081   pOrderBy = p->pOrderBy;
2082   assert( pOrderBy );
2083   nOrderBy = pOrderBy->nExpr;
2084 
2085   /* For operators other than UNION ALL we have to make sure that
2086   ** the ORDER BY clause covers every term of the result set.  Add
2087   ** terms to the ORDER BY clause as necessary.
2088   */
2089   if( op!=TK_ALL ){
2090     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2091       struct ExprList_item *pItem;
2092       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2093         assert( pItem->iCol>0 );
2094         if( pItem->iCol==i ) break;
2095       }
2096       if( j==nOrderBy ){
2097         Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
2098         if( pNew==0 ) return SQLITE_NOMEM;
2099         pNew->flags |= EP_IntValue;
2100         pNew->iTable = i;
2101         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
2102         pOrderBy->a[nOrderBy++].iCol = (u16)i;
2103       }
2104     }
2105   }
2106 
2107   /* Compute the comparison permutation and keyinfo that is used with
2108   ** the permutation used to determine if the next
2109   ** row of results comes from selectA or selectB.  Also add explicit
2110   ** collations to the ORDER BY clause terms so that when the subqueries
2111   ** to the right and the left are evaluated, they use the correct
2112   ** collation.
2113   */
2114   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2115   if( aPermute ){
2116     struct ExprList_item *pItem;
2117     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2118       assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
2119       aPermute[i] = pItem->iCol - 1;
2120     }
2121     pKeyMerge =
2122       sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
2123     if( pKeyMerge ){
2124       pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
2125       pKeyMerge->nField = (u16)nOrderBy;
2126       pKeyMerge->enc = ENC(db);
2127       for(i=0; i<nOrderBy; i++){
2128         CollSeq *pColl;
2129         Expr *pTerm = pOrderBy->a[i].pExpr;
2130         if( pTerm->flags & EP_ExpCollate ){
2131           pColl = pTerm->pColl;
2132         }else{
2133           pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
2134           pTerm->flags |= EP_ExpCollate;
2135           pTerm->pColl = pColl;
2136         }
2137         pKeyMerge->aColl[i] = pColl;
2138         pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
2139       }
2140     }
2141   }else{
2142     pKeyMerge = 0;
2143   }
2144 
2145   /* Reattach the ORDER BY clause to the query.
2146   */
2147   p->pOrderBy = pOrderBy;
2148   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2149 
2150   /* Allocate a range of temporary registers and the KeyInfo needed
2151   ** for the logic that removes duplicate result rows when the
2152   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2153   */
2154   if( op==TK_ALL ){
2155     regPrev = 0;
2156   }else{
2157     int nExpr = p->pEList->nExpr;
2158     assert( nOrderBy>=nExpr || db->mallocFailed );
2159     regPrev = sqlite3GetTempRange(pParse, nExpr+1);
2160     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2161     pKeyDup = sqlite3DbMallocZero(db,
2162                   sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
2163     if( pKeyDup ){
2164       pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
2165       pKeyDup->nField = (u16)nExpr;
2166       pKeyDup->enc = ENC(db);
2167       for(i=0; i<nExpr; i++){
2168         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2169         pKeyDup->aSortOrder[i] = 0;
2170       }
2171     }
2172   }
2173 
2174   /* Separate the left and the right query from one another
2175   */
2176   p->pPrior = 0;
2177   pPrior->pRightmost = 0;
2178   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2179   if( pPrior->pPrior==0 ){
2180     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2181   }
2182 
2183   /* Compute the limit registers */
2184   computeLimitRegisters(pParse, p, labelEnd);
2185   if( p->iLimit && op==TK_ALL ){
2186     regLimitA = ++pParse->nMem;
2187     regLimitB = ++pParse->nMem;
2188     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2189                                   regLimitA);
2190     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2191   }else{
2192     regLimitA = regLimitB = 0;
2193   }
2194   sqlite3ExprDelete(db, p->pLimit);
2195   p->pLimit = 0;
2196   sqlite3ExprDelete(db, p->pOffset);
2197   p->pOffset = 0;
2198 
2199   regAddrA = ++pParse->nMem;
2200   regEofA = ++pParse->nMem;
2201   regAddrB = ++pParse->nMem;
2202   regEofB = ++pParse->nMem;
2203   regOutA = ++pParse->nMem;
2204   regOutB = ++pParse->nMem;
2205   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2206   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2207 
2208   /* Jump past the various subroutines and coroutines to the main
2209   ** merge loop
2210   */
2211   j1 = sqlite3VdbeAddOp0(v, OP_Goto);
2212   addrSelectA = sqlite3VdbeCurrentAddr(v);
2213 
2214 
2215   /* Generate a coroutine to evaluate the SELECT statement to the
2216   ** left of the compound operator - the "A" select.
2217   */
2218   VdbeNoopComment((v, "Begin coroutine for left SELECT"));
2219   pPrior->iLimit = regLimitA;
2220   sqlite3Select(pParse, pPrior, &destA);
2221   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
2222   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2223   VdbeNoopComment((v, "End coroutine for left SELECT"));
2224 
2225   /* Generate a coroutine to evaluate the SELECT statement on
2226   ** the right - the "B" select
2227   */
2228   addrSelectB = sqlite3VdbeCurrentAddr(v);
2229   VdbeNoopComment((v, "Begin coroutine for right SELECT"));
2230   savedLimit = p->iLimit;
2231   savedOffset = p->iOffset;
2232   p->iLimit = regLimitB;
2233   p->iOffset = 0;
2234   sqlite3Select(pParse, p, &destB);
2235   p->iLimit = savedLimit;
2236   p->iOffset = savedOffset;
2237   sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
2238   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2239   VdbeNoopComment((v, "End coroutine for right SELECT"));
2240 
2241   /* Generate a subroutine that outputs the current row of the A
2242   ** select as the next output row of the compound select.
2243   */
2244   VdbeNoopComment((v, "Output routine for A"));
2245   addrOutA = generateOutputSubroutine(pParse,
2246                  p, &destA, pDest, regOutA,
2247                  regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
2248 
2249   /* Generate a subroutine that outputs the current row of the B
2250   ** select as the next output row of the compound select.
2251   */
2252   if( op==TK_ALL || op==TK_UNION ){
2253     VdbeNoopComment((v, "Output routine for B"));
2254     addrOutB = generateOutputSubroutine(pParse,
2255                  p, &destB, pDest, regOutB,
2256                  regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
2257   }
2258 
2259   /* Generate a subroutine to run when the results from select A
2260   ** are exhausted and only data in select B remains.
2261   */
2262   VdbeNoopComment((v, "eof-A subroutine"));
2263   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2264     addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
2265   }else{
2266     addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
2267     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2268     sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2269     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2270   }
2271 
2272   /* Generate a subroutine to run when the results from select B
2273   ** are exhausted and only data in select A remains.
2274   */
2275   if( op==TK_INTERSECT ){
2276     addrEofB = addrEofA;
2277   }else{
2278     VdbeNoopComment((v, "eof-B subroutine"));
2279     addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
2280     sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2281     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2282     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2283   }
2284 
2285   /* Generate code to handle the case of A<B
2286   */
2287   VdbeNoopComment((v, "A-lt-B subroutine"));
2288   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2289   sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2290   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2291   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2292 
2293   /* Generate code to handle the case of A==B
2294   */
2295   if( op==TK_ALL ){
2296     addrAeqB = addrAltB;
2297   }else if( op==TK_INTERSECT ){
2298     addrAeqB = addrAltB;
2299     addrAltB++;
2300   }else{
2301     VdbeNoopComment((v, "A-eq-B subroutine"));
2302     addrAeqB =
2303     sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
2304     sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2305     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2306   }
2307 
2308   /* Generate code to handle the case of A>B
2309   */
2310   VdbeNoopComment((v, "A-gt-B subroutine"));
2311   addrAgtB = sqlite3VdbeCurrentAddr(v);
2312   if( op==TK_ALL || op==TK_UNION ){
2313     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2314   }
2315   sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
2316   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2317   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2318 
2319   /* This code runs once to initialize everything.
2320   */
2321   sqlite3VdbeJumpHere(v, j1);
2322   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
2323   sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
2324   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
2325   sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
2326   sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
2327   sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
2328 
2329   /* Implement the main merge loop
2330   */
2331   sqlite3VdbeResolveLabel(v, labelCmpr);
2332   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2333   sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
2334                          (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
2335   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
2336 
2337   /* Release temporary registers
2338   */
2339   if( regPrev ){
2340     sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
2341   }
2342 
2343   /* Jump to the this point in order to terminate the query.
2344   */
2345   sqlite3VdbeResolveLabel(v, labelEnd);
2346 
2347   /* Set the number of output columns
2348   */
2349   if( pDest->eDest==SRT_Output ){
2350     Select *pFirst = pPrior;
2351     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2352     generateColumnNames(pParse, 0, pFirst->pEList);
2353   }
2354 
2355   /* Reassembly the compound query so that it will be freed correctly
2356   ** by the calling function */
2357   if( p->pPrior ){
2358     sqlite3SelectDelete(db, p->pPrior);
2359   }
2360   p->pPrior = pPrior;
2361 
2362   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2363   **** subqueries ****/
2364   return SQLITE_OK;
2365 }
2366 #endif
2367 
2368 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2369 /* Forward Declarations */
2370 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2371 static void substSelect(sqlite3*, Select *, int, ExprList *);
2372 
2373 /*
2374 ** Scan through the expression pExpr.  Replace every reference to
2375 ** a column in table number iTable with a copy of the iColumn-th
2376 ** entry in pEList.  (But leave references to the ROWID column
2377 ** unchanged.)
2378 **
2379 ** This routine is part of the flattening procedure.  A subquery
2380 ** whose result set is defined by pEList appears as entry in the
2381 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2382 ** FORM clause entry is iTable.  This routine make the necessary
2383 ** changes to pExpr so that it refers directly to the source table
2384 ** of the subquery rather the result set of the subquery.
2385 */
2386 static void substExpr(
2387   sqlite3 *db,        /* Report malloc errors to this connection */
2388   Expr *pExpr,        /* Expr in which substitution occurs */
2389   int iTable,         /* Table to be substituted */
2390   ExprList *pEList    /* Substitute expressions */
2391 ){
2392   if( pExpr==0 ) return;
2393   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2394     if( pExpr->iColumn<0 ){
2395       pExpr->op = TK_NULL;
2396     }else{
2397       Expr *pNew;
2398       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2399       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2400       pNew = pEList->a[pExpr->iColumn].pExpr;
2401       assert( pNew!=0 );
2402       pExpr->op = pNew->op;
2403       assert( pExpr->pLeft==0 );
2404       pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft, 0);
2405       assert( pExpr->pRight==0 );
2406       pExpr->pRight = sqlite3ExprDup(db, pNew->pRight, 0);
2407       pExpr->iTable = pNew->iTable;
2408       pExpr->pTab = pNew->pTab;
2409       pExpr->iColumn = pNew->iColumn;
2410       pExpr->iAgg = pNew->iAgg;
2411       sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
2412       sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
2413       assert( pExpr->x.pList==0 && pExpr->x.pSelect==0 );
2414       if( ExprHasProperty(pNew, EP_xIsSelect) ){
2415         pExpr->x.pSelect = sqlite3SelectDup(db, pNew->x.pSelect, 0);
2416       }else{
2417         pExpr->x.pList = sqlite3ExprListDup(db, pNew->x.pList, 0);
2418       }
2419       pExpr->flags = pNew->flags;
2420       pExpr->pAggInfo = pNew->pAggInfo;
2421       pNew->pAggInfo = 0;
2422     }
2423   }else{
2424     substExpr(db, pExpr->pLeft, iTable, pEList);
2425     substExpr(db, pExpr->pRight, iTable, pEList);
2426     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2427       substSelect(db, pExpr->x.pSelect, iTable, pEList);
2428     }else{
2429       substExprList(db, pExpr->x.pList, iTable, pEList);
2430     }
2431   }
2432 }
2433 static void substExprList(
2434   sqlite3 *db,         /* Report malloc errors here */
2435   ExprList *pList,     /* List to scan and in which to make substitutes */
2436   int iTable,          /* Table to be substituted */
2437   ExprList *pEList     /* Substitute values */
2438 ){
2439   int i;
2440   if( pList==0 ) return;
2441   for(i=0; i<pList->nExpr; i++){
2442     substExpr(db, pList->a[i].pExpr, iTable, pEList);
2443   }
2444 }
2445 static void substSelect(
2446   sqlite3 *db,         /* Report malloc errors here */
2447   Select *p,           /* SELECT statement in which to make substitutions */
2448   int iTable,          /* Table to be replaced */
2449   ExprList *pEList     /* Substitute values */
2450 ){
2451   SrcList *pSrc;
2452   struct SrcList_item *pItem;
2453   int i;
2454   if( !p ) return;
2455   substExprList(db, p->pEList, iTable, pEList);
2456   substExprList(db, p->pGroupBy, iTable, pEList);
2457   substExprList(db, p->pOrderBy, iTable, pEList);
2458   substExpr(db, p->pHaving, iTable, pEList);
2459   substExpr(db, p->pWhere, iTable, pEList);
2460   substSelect(db, p->pPrior, iTable, pEList);
2461   pSrc = p->pSrc;
2462   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
2463   if( ALWAYS(pSrc) ){
2464     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
2465       substSelect(db, pItem->pSelect, iTable, pEList);
2466     }
2467   }
2468 }
2469 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2470 
2471 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2472 /*
2473 ** This routine attempts to flatten subqueries in order to speed
2474 ** execution.  It returns 1 if it makes changes and 0 if no flattening
2475 ** occurs.
2476 **
2477 ** To understand the concept of flattening, consider the following
2478 ** query:
2479 **
2480 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
2481 **
2482 ** The default way of implementing this query is to execute the
2483 ** subquery first and store the results in a temporary table, then
2484 ** run the outer query on that temporary table.  This requires two
2485 ** passes over the data.  Furthermore, because the temporary table
2486 ** has no indices, the WHERE clause on the outer query cannot be
2487 ** optimized.
2488 **
2489 ** This routine attempts to rewrite queries such as the above into
2490 ** a single flat select, like this:
2491 **
2492 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
2493 **
2494 ** The code generated for this simpification gives the same result
2495 ** but only has to scan the data once.  And because indices might
2496 ** exist on the table t1, a complete scan of the data might be
2497 ** avoided.
2498 **
2499 ** Flattening is only attempted if all of the following are true:
2500 **
2501 **   (1)  The subquery and the outer query do not both use aggregates.
2502 **
2503 **   (2)  The subquery is not an aggregate or the outer query is not a join.
2504 **
2505 **   (3)  The subquery is not the right operand of a left outer join
2506 **        (Originally ticket #306.  Strenghtened by ticket #3300)
2507 **
2508 **   (4)  The subquery is not DISTINCT or the outer query is not a join.
2509 **
2510 **   (5)  The subquery is not DISTINCT or the outer query does not use
2511 **        aggregates.
2512 **
2513 **   (6)  The subquery does not use aggregates or the outer query is not
2514 **        DISTINCT.
2515 **
2516 **   (7)  The subquery has a FROM clause.
2517 **
2518 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
2519 **
2520 **   (9)  The subquery does not use LIMIT or the outer query does not use
2521 **        aggregates.
2522 **
2523 **  (10)  The subquery does not use aggregates or the outer query does not
2524 **        use LIMIT.
2525 **
2526 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
2527 **
2528 **  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
2529 **        a separate restriction deriving from ticket #350.
2530 **
2531 **  (13)  The subquery and outer query do not both use LIMIT
2532 **
2533 **  (14)  The subquery does not use OFFSET
2534 **
2535 **  (15)  The outer query is not part of a compound select or the
2536 **        subquery does not have both an ORDER BY and a LIMIT clause.
2537 **        (See ticket #2339)
2538 **
2539 **  (16)  The outer query is not an aggregate or the subquery does
2540 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
2541 **        until we introduced the group_concat() function.
2542 **
2543 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
2544 **        compound clause made up entirely of non-aggregate queries, and
2545 **        the parent query:
2546 **
2547 **          * is not itself part of a compound select,
2548 **          * is not an aggregate or DISTINCT query, and
2549 **          * has no other tables or sub-selects in the FROM clause.
2550 **
2551 **        The parent and sub-query may contain WHERE clauses. Subject to
2552 **        rules (11), (13) and (14), they may also contain ORDER BY,
2553 **        LIMIT and OFFSET clauses.
2554 **
2555 **  (18)  If the sub-query is a compound select, then all terms of the
2556 **        ORDER by clause of the parent must be simple references to
2557 **        columns of the sub-query.
2558 **
2559 **  (19)  The subquery does not use LIMIT or the outer query does not
2560 **        have a WHERE clause.
2561 **
2562 **  (20)  If the sub-query is a compound select, then it must not use
2563 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
2564 **        somewhat by saying that the terms of the ORDER BY clause must
2565 **        appear as unmodified result columns in the outer query.  But
2566 **        have other optimizations in mind to deal with that case.
2567 **
2568 ** In this routine, the "p" parameter is a pointer to the outer query.
2569 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
2570 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
2571 **
2572 ** If flattening is not attempted, this routine is a no-op and returns 0.
2573 ** If flattening is attempted this routine returns 1.
2574 **
2575 ** All of the expression analysis must occur on both the outer query and
2576 ** the subquery before this routine runs.
2577 */
2578 static int flattenSubquery(
2579   Parse *pParse,       /* Parsing context */
2580   Select *p,           /* The parent or outer SELECT statement */
2581   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
2582   int isAgg,           /* True if outer SELECT uses aggregate functions */
2583   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
2584 ){
2585   const char *zSavedAuthContext = pParse->zAuthContext;
2586   Select *pParent;
2587   Select *pSub;       /* The inner query or "subquery" */
2588   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
2589   SrcList *pSrc;      /* The FROM clause of the outer query */
2590   SrcList *pSubSrc;   /* The FROM clause of the subquery */
2591   ExprList *pList;    /* The result set of the outer query */
2592   int iParent;        /* VDBE cursor number of the pSub result set temp table */
2593   int i;              /* Loop counter */
2594   Expr *pWhere;                    /* The WHERE clause */
2595   struct SrcList_item *pSubitem;   /* The subquery */
2596   sqlite3 *db = pParse->db;
2597 
2598   /* Check to see if flattening is permitted.  Return 0 if not.
2599   */
2600   assert( p!=0 );
2601   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
2602   pSrc = p->pSrc;
2603   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
2604   pSubitem = &pSrc->a[iFrom];
2605   iParent = pSubitem->iCursor;
2606   pSub = pSubitem->pSelect;
2607   assert( pSub!=0 );
2608   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
2609   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
2610   pSubSrc = pSub->pSrc;
2611   assert( pSubSrc );
2612   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
2613   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
2614   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
2615   ** became arbitrary expressions, we were forced to add restrictions (13)
2616   ** and (14). */
2617   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
2618   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
2619   if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
2620     return 0;                                            /* Restriction (15) */
2621   }
2622   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
2623   if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit)
2624          && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
2625      return 0;
2626   }
2627   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
2628      return 0;         /* Restriction (6)  */
2629   }
2630   if( p->pOrderBy && pSub->pOrderBy ){
2631      return 0;                                           /* Restriction (11) */
2632   }
2633   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
2634   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
2635 
2636   /* OBSOLETE COMMENT 1:
2637   ** Restriction 3:  If the subquery is a join, make sure the subquery is
2638   ** not used as the right operand of an outer join.  Examples of why this
2639   ** is not allowed:
2640   **
2641   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
2642   **
2643   ** If we flatten the above, we would get
2644   **
2645   **         (t1 LEFT OUTER JOIN t2) JOIN t3
2646   **
2647   ** which is not at all the same thing.
2648   **
2649   ** OBSOLETE COMMENT 2:
2650   ** Restriction 12:  If the subquery is the right operand of a left outer
2651   ** join, make sure the subquery has no WHERE clause.
2652   ** An examples of why this is not allowed:
2653   **
2654   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
2655   **
2656   ** If we flatten the above, we would get
2657   **
2658   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
2659   **
2660   ** But the t2.x>0 test will always fail on a NULL row of t2, which
2661   ** effectively converts the OUTER JOIN into an INNER JOIN.
2662   **
2663   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
2664   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
2665   ** is fraught with danger.  Best to avoid the whole thing.  If the
2666   ** subquery is the right term of a LEFT JOIN, then do not flatten.
2667   */
2668   if( (pSubitem->jointype & JT_OUTER)!=0 ){
2669     return 0;
2670   }
2671 
2672   /* Restriction 17: If the sub-query is a compound SELECT, then it must
2673   ** use only the UNION ALL operator. And none of the simple select queries
2674   ** that make up the compound SELECT are allowed to be aggregate or distinct
2675   ** queries.
2676   */
2677   if( pSub->pPrior ){
2678     if( pSub->pOrderBy ){
2679       return 0;  /* Restriction 20 */
2680     }
2681     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
2682       return 0;
2683     }
2684     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
2685       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
2686        || (pSub1->pPrior && pSub1->op!=TK_ALL)
2687        || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
2688       ){
2689         return 0;
2690       }
2691     }
2692 
2693     /* Restriction 18. */
2694     if( p->pOrderBy ){
2695       int ii;
2696       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
2697         if( p->pOrderBy->a[ii].iCol==0 ) return 0;
2698       }
2699     }
2700   }
2701 
2702   /***** If we reach this point, flattening is permitted. *****/
2703 
2704   /* Authorize the subquery */
2705   pParse->zAuthContext = pSubitem->zName;
2706   sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
2707   pParse->zAuthContext = zSavedAuthContext;
2708 
2709   /* If the sub-query is a compound SELECT statement, then (by restrictions
2710   ** 17 and 18 above) it must be a UNION ALL and the parent query must
2711   ** be of the form:
2712   **
2713   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
2714   **
2715   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
2716   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
2717   ** OFFSET clauses and joins them to the left-hand-side of the original
2718   ** using UNION ALL operators. In this case N is the number of simple
2719   ** select statements in the compound sub-query.
2720   **
2721   ** Example:
2722   **
2723   **     SELECT a+1 FROM (
2724   **        SELECT x FROM tab
2725   **        UNION ALL
2726   **        SELECT y FROM tab
2727   **        UNION ALL
2728   **        SELECT abs(z*2) FROM tab2
2729   **     ) WHERE a!=5 ORDER BY 1
2730   **
2731   ** Transformed into:
2732   **
2733   **     SELECT x+1 FROM tab WHERE x+1!=5
2734   **     UNION ALL
2735   **     SELECT y+1 FROM tab WHERE y+1!=5
2736   **     UNION ALL
2737   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
2738   **     ORDER BY 1
2739   **
2740   ** We call this the "compound-subquery flattening".
2741   */
2742   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
2743     Select *pNew;
2744     ExprList *pOrderBy = p->pOrderBy;
2745     Expr *pLimit = p->pLimit;
2746     Select *pPrior = p->pPrior;
2747     p->pOrderBy = 0;
2748     p->pSrc = 0;
2749     p->pPrior = 0;
2750     p->pLimit = 0;
2751     pNew = sqlite3SelectDup(db, p, 0);
2752     p->pLimit = pLimit;
2753     p->pOrderBy = pOrderBy;
2754     p->pSrc = pSrc;
2755     p->op = TK_ALL;
2756     p->pRightmost = 0;
2757     if( pNew==0 ){
2758       pNew = pPrior;
2759     }else{
2760       pNew->pPrior = pPrior;
2761       pNew->pRightmost = 0;
2762     }
2763     p->pPrior = pNew;
2764     if( db->mallocFailed ) return 1;
2765   }
2766 
2767   /* Begin flattening the iFrom-th entry of the FROM clause
2768   ** in the outer query.
2769   */
2770   pSub = pSub1 = pSubitem->pSelect;
2771 
2772   /* Delete the transient table structure associated with the
2773   ** subquery
2774   */
2775   sqlite3DbFree(db, pSubitem->zDatabase);
2776   sqlite3DbFree(db, pSubitem->zName);
2777   sqlite3DbFree(db, pSubitem->zAlias);
2778   pSubitem->zDatabase = 0;
2779   pSubitem->zName = 0;
2780   pSubitem->zAlias = 0;
2781   pSubitem->pSelect = 0;
2782 
2783   /* Defer deleting the Table object associated with the
2784   ** subquery until code generation is
2785   ** complete, since there may still exist Expr.pTab entries that
2786   ** refer to the subquery even after flattening.  Ticket #3346.
2787   */
2788   if( pSubitem->pTab!=0 ){
2789     Table *pTabToDel = pSubitem->pTab;
2790     if( pTabToDel->nRef==1 ){
2791       pTabToDel->pNextZombie = pParse->pZombieTab;
2792       pParse->pZombieTab = pTabToDel;
2793     }else{
2794       pTabToDel->nRef--;
2795     }
2796     pSubitem->pTab = 0;
2797   }
2798 
2799   /* The following loop runs once for each term in a compound-subquery
2800   ** flattening (as described above).  If we are doing a different kind
2801   ** of flattening - a flattening other than a compound-subquery flattening -
2802   ** then this loop only runs once.
2803   **
2804   ** This loop moves all of the FROM elements of the subquery into the
2805   ** the FROM clause of the outer query.  Before doing this, remember
2806   ** the cursor number for the original outer query FROM element in
2807   ** iParent.  The iParent cursor will never be used.  Subsequent code
2808   ** will scan expressions looking for iParent references and replace
2809   ** those references with expressions that resolve to the subquery FROM
2810   ** elements we are now copying in.
2811   */
2812   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
2813     int nSubSrc;
2814     u8 jointype = 0;
2815     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
2816     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
2817     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
2818 
2819     if( pSrc ){
2820       assert( pParent==p );  /* First time through the loop */
2821       jointype = pSubitem->jointype;
2822     }else{
2823       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
2824       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
2825       if( pSrc==0 ){
2826         assert( db->mallocFailed );
2827         break;
2828       }
2829     }
2830 
2831     /* The subquery uses a single slot of the FROM clause of the outer
2832     ** query.  If the subquery has more than one element in its FROM clause,
2833     ** then expand the outer query to make space for it to hold all elements
2834     ** of the subquery.
2835     **
2836     ** Example:
2837     **
2838     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
2839     **
2840     ** The outer query has 3 slots in its FROM clause.  One slot of the
2841     ** outer query (the middle slot) is used by the subquery.  The next
2842     ** block of code will expand the out query to 4 slots.  The middle
2843     ** slot is expanded to two slots in order to make space for the
2844     ** two elements in the FROM clause of the subquery.
2845     */
2846     if( nSubSrc>1 ){
2847       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
2848       if( db->mallocFailed ){
2849         break;
2850       }
2851     }
2852 
2853     /* Transfer the FROM clause terms from the subquery into the
2854     ** outer query.
2855     */
2856     for(i=0; i<nSubSrc; i++){
2857       pSrc->a[i+iFrom] = pSubSrc->a[i];
2858       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
2859     }
2860     pSrc->a[iFrom].jointype = jointype;
2861 
2862     /* Now begin substituting subquery result set expressions for
2863     ** references to the iParent in the outer query.
2864     **
2865     ** Example:
2866     **
2867     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
2868     **   \                     \_____________ subquery __________/          /
2869     **    \_____________________ outer query ______________________________/
2870     **
2871     ** We look at every expression in the outer query and every place we see
2872     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
2873     */
2874     pList = pParent->pEList;
2875     for(i=0; i<pList->nExpr; i++){
2876       Expr *pExpr;
2877       if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
2878         pList->a[i].zName =
2879                sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
2880       }
2881     }
2882     substExprList(db, pParent->pEList, iParent, pSub->pEList);
2883     if( isAgg ){
2884       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
2885       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2886     }
2887     if( pSub->pOrderBy ){
2888       assert( pParent->pOrderBy==0 );
2889       pParent->pOrderBy = pSub->pOrderBy;
2890       pSub->pOrderBy = 0;
2891     }else if( pParent->pOrderBy ){
2892       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
2893     }
2894     if( pSub->pWhere ){
2895       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
2896     }else{
2897       pWhere = 0;
2898     }
2899     if( subqueryIsAgg ){
2900       assert( pParent->pHaving==0 );
2901       pParent->pHaving = pParent->pWhere;
2902       pParent->pWhere = pWhere;
2903       substExpr(db, pParent->pHaving, iParent, pSub->pEList);
2904       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
2905                                   sqlite3ExprDup(db, pSub->pHaving, 0));
2906       assert( pParent->pGroupBy==0 );
2907       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
2908     }else{
2909       substExpr(db, pParent->pWhere, iParent, pSub->pEList);
2910       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
2911     }
2912 
2913     /* The flattened query is distinct if either the inner or the
2914     ** outer query is distinct.
2915     */
2916     pParent->selFlags |= pSub->selFlags & SF_Distinct;
2917 
2918     /*
2919     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
2920     **
2921     ** One is tempted to try to add a and b to combine the limits.  But this
2922     ** does not work if either limit is negative.
2923     */
2924     if( pSub->pLimit ){
2925       pParent->pLimit = pSub->pLimit;
2926       pSub->pLimit = 0;
2927     }
2928   }
2929 
2930   /* Finially, delete what is left of the subquery and return
2931   ** success.
2932   */
2933   sqlite3SelectDelete(db, pSub1);
2934 
2935   return 1;
2936 }
2937 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
2938 
2939 /*
2940 ** Analyze the SELECT statement passed as an argument to see if it
2941 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if
2942 ** it is, or 0 otherwise. At present, a query is considered to be
2943 ** a min()/max() query if:
2944 **
2945 **   1. There is a single object in the FROM clause.
2946 **
2947 **   2. There is a single expression in the result set, and it is
2948 **      either min(x) or max(x), where x is a column reference.
2949 */
2950 static u8 minMaxQuery(Select *p){
2951   Expr *pExpr;
2952   ExprList *pEList = p->pEList;
2953 
2954   if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
2955   pExpr = pEList->a[0].pExpr;
2956   if( ExprHasProperty(pExpr, EP_xIsSelect) ) return 0;
2957   pEList = pExpr->x.pList;
2958   if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
2959   if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
2960   if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
2961   if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
2962     return WHERE_ORDERBY_MIN;
2963   }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
2964     return WHERE_ORDERBY_MAX;
2965   }
2966   return WHERE_ORDERBY_NORMAL;
2967 }
2968 
2969 /*
2970 ** The select statement passed as the first argument is an aggregate query.
2971 ** The second argment is the associated aggregate-info object. This
2972 ** function tests if the SELECT is of the form:
2973 **
2974 **   SELECT count(*) FROM <tbl>
2975 **
2976 ** where table is a database table, not a sub-select or view. If the query
2977 ** does match this pattern, then a pointer to the Table object representing
2978 ** <tbl> is returned. Otherwise, 0 is returned.
2979 */
2980 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
2981   Table *pTab;
2982   Expr *pExpr;
2983 
2984   assert( !p->pGroupBy );
2985 
2986   if( p->pWhere || p->pEList->nExpr!=1
2987    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
2988   ){
2989     return 0;
2990   }
2991   pTab = p->pSrc->a[0].pTab;
2992   pExpr = p->pEList->a[0].pExpr;
2993   assert( pTab && !pTab->pSelect && pExpr );
2994 
2995   if( IsVirtual(pTab) ) return 0;
2996   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
2997   if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
2998   if( pExpr->flags&EP_Distinct ) return 0;
2999 
3000   return pTab;
3001 }
3002 
3003 /*
3004 ** If the source-list item passed as an argument was augmented with an
3005 ** INDEXED BY clause, then try to locate the specified index. If there
3006 ** was such a clause and the named index cannot be found, return
3007 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3008 ** pFrom->pIndex and return SQLITE_OK.
3009 */
3010 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3011   if( pFrom->pTab && pFrom->zIndex ){
3012     Table *pTab = pFrom->pTab;
3013     char *zIndex = pFrom->zIndex;
3014     Index *pIdx;
3015     for(pIdx=pTab->pIndex;
3016         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3017         pIdx=pIdx->pNext
3018     );
3019     if( !pIdx ){
3020       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3021       return SQLITE_ERROR;
3022     }
3023     pFrom->pIndex = pIdx;
3024   }
3025   return SQLITE_OK;
3026 }
3027 
3028 /*
3029 ** This routine is a Walker callback for "expanding" a SELECT statement.
3030 ** "Expanding" means to do the following:
3031 **
3032 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3033 **         element of the FROM clause.
3034 **
3035 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3036 **         defines FROM clause.  When views appear in the FROM clause,
3037 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3038 **         that implements the view.  A copy is made of the view's SELECT
3039 **         statement so that we can freely modify or delete that statement
3040 **         without worrying about messing up the presistent representation
3041 **         of the view.
3042 **
3043 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3044 **         on joins and the ON and USING clause of joins.
3045 **
3046 **    (4)  Scan the list of columns in the result set (pEList) looking
3047 **         for instances of the "*" operator or the TABLE.* operator.
3048 **         If found, expand each "*" to be every column in every table
3049 **         and TABLE.* to be every column in TABLE.
3050 **
3051 */
3052 static int selectExpander(Walker *pWalker, Select *p){
3053   Parse *pParse = pWalker->pParse;
3054   int i, j, k;
3055   SrcList *pTabList;
3056   ExprList *pEList;
3057   struct SrcList_item *pFrom;
3058   sqlite3 *db = pParse->db;
3059 
3060   if( db->mallocFailed  ){
3061     return WRC_Abort;
3062   }
3063   if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
3064     return WRC_Prune;
3065   }
3066   p->selFlags |= SF_Expanded;
3067   pTabList = p->pSrc;
3068   pEList = p->pEList;
3069 
3070   /* Make sure cursor numbers have been assigned to all entries in
3071   ** the FROM clause of the SELECT statement.
3072   */
3073   sqlite3SrcListAssignCursors(pParse, pTabList);
3074 
3075   /* Look up every table named in the FROM clause of the select.  If
3076   ** an entry of the FROM clause is a subquery instead of a table or view,
3077   ** then create a transient table structure to describe the subquery.
3078   */
3079   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3080     Table *pTab;
3081     if( pFrom->pTab!=0 ){
3082       /* This statement has already been prepared.  There is no need
3083       ** to go further. */
3084       assert( i==0 );
3085       return WRC_Prune;
3086     }
3087     if( pFrom->zName==0 ){
3088 #ifndef SQLITE_OMIT_SUBQUERY
3089       Select *pSel = pFrom->pSelect;
3090       /* A sub-query in the FROM clause of a SELECT */
3091       assert( pSel!=0 );
3092       assert( pFrom->pTab==0 );
3093       sqlite3WalkSelect(pWalker, pSel);
3094       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3095       if( pTab==0 ) return WRC_Abort;
3096       pTab->dbMem = db->lookaside.bEnabled ? db : 0;
3097       pTab->nRef = 1;
3098       pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
3099       while( pSel->pPrior ){ pSel = pSel->pPrior; }
3100       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
3101       pTab->iPKey = -1;
3102       pTab->tabFlags |= TF_Ephemeral;
3103 #endif
3104     }else{
3105       /* An ordinary table or view name in the FROM clause */
3106       assert( pFrom->pTab==0 );
3107       pFrom->pTab = pTab =
3108         sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
3109       if( pTab==0 ) return WRC_Abort;
3110       pTab->nRef++;
3111 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
3112       if( pTab->pSelect || IsVirtual(pTab) ){
3113         /* We reach here if the named table is a really a view */
3114         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
3115 
3116         /* If pFrom->pSelect!=0 it means we are dealing with a
3117         ** view within a view.  The SELECT structure has already been
3118         ** copied by the outer view so we can skip the copy step here
3119         ** in the inner view.
3120         */
3121         if( pFrom->pSelect==0 ){
3122           pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
3123           sqlite3WalkSelect(pWalker, pFrom->pSelect);
3124         }
3125       }
3126 #endif
3127     }
3128 
3129     /* Locate the index named by the INDEXED BY clause, if any. */
3130     if( sqlite3IndexedByLookup(pParse, pFrom) ){
3131       return WRC_Abort;
3132     }
3133   }
3134 
3135   /* Process NATURAL keywords, and ON and USING clauses of joins.
3136   */
3137   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
3138     return WRC_Abort;
3139   }
3140 
3141   /* For every "*" that occurs in the column list, insert the names of
3142   ** all columns in all tables.  And for every TABLE.* insert the names
3143   ** of all columns in TABLE.  The parser inserted a special expression
3144   ** with the TK_ALL operator for each "*" that it found in the column list.
3145   ** The following code just has to locate the TK_ALL expressions and expand
3146   ** each one to the list of all columns in all tables.
3147   **
3148   ** The first loop just checks to see if there are any "*" operators
3149   ** that need expanding.
3150   */
3151   for(k=0; k<pEList->nExpr; k++){
3152     Expr *pE = pEList->a[k].pExpr;
3153     if( pE->op==TK_ALL ) break;
3154     if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
3155          && pE->pLeft && pE->pLeft->op==TK_ID ) break;
3156   }
3157   if( k<pEList->nExpr ){
3158     /*
3159     ** If we get here it means the result set contains one or more "*"
3160     ** operators that need to be expanded.  Loop through each expression
3161     ** in the result set and expand them one by one.
3162     */
3163     struct ExprList_item *a = pEList->a;
3164     ExprList *pNew = 0;
3165     int flags = pParse->db->flags;
3166     int longNames = (flags & SQLITE_FullColNames)!=0
3167                       && (flags & SQLITE_ShortColNames)==0;
3168 
3169     for(k=0; k<pEList->nExpr; k++){
3170       Expr *pE = a[k].pExpr;
3171       if( pE->op!=TK_ALL &&
3172            (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
3173         /* This particular expression does not need to be expanded.
3174         */
3175         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
3176         if( pNew ){
3177           pNew->a[pNew->nExpr-1].zName = a[k].zName;
3178         }
3179         a[k].pExpr = 0;
3180         a[k].zName = 0;
3181       }else{
3182         /* This expression is a "*" or a "TABLE.*" and needs to be
3183         ** expanded. */
3184         int tableSeen = 0;      /* Set to 1 when TABLE matches */
3185         char *zTName;            /* text of name of TABLE */
3186         if( pE->op==TK_DOT && pE->pLeft ){
3187           zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
3188         }else{
3189           zTName = 0;
3190         }
3191         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3192           Table *pTab = pFrom->pTab;
3193           char *zTabName = pFrom->zAlias;
3194           if( zTabName==0 || zTabName[0]==0 ){
3195             zTabName = pTab->zName;
3196           }
3197           if( db->mallocFailed ) break;
3198           if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
3199             continue;
3200           }
3201           tableSeen = 1;
3202           for(j=0; j<pTab->nCol; j++){
3203             Expr *pExpr, *pRight;
3204             char *zName = pTab->aCol[j].zName;
3205 
3206             /* If a column is marked as 'hidden' (currently only possible
3207             ** for virtual tables), do not include it in the expanded
3208             ** result-set list.
3209             */
3210             if( IsHiddenColumn(&pTab->aCol[j]) ){
3211               assert(IsVirtual(pTab));
3212               continue;
3213             }
3214 
3215             if( i>0 && zTName==0 ){
3216               struct SrcList_item *pLeft = &pTabList->a[i-1];
3217               if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
3218                         columnIndex(pLeft->pTab, zName)>=0 ){
3219                 /* In a NATURAL join, omit the join columns from the
3220                 ** table on the right */
3221                 continue;
3222               }
3223               if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
3224                 /* In a join with a USING clause, omit columns in the
3225                 ** using clause from the table on the right. */
3226                 continue;
3227               }
3228             }
3229             pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3230             if( pRight==0 ) break;
3231             setQuotedToken(pParse, &pRight->token, zName);
3232             if( longNames || pTabList->nSrc>1 ){
3233               Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
3234               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
3235               if( pExpr==0 ) break;
3236               setQuotedToken(pParse, &pLeft->token, zTabName);
3237               setToken(&pExpr->span,
3238                   sqlite3MPrintf(db, "%s.%s", zTabName, zName));
3239               pExpr->span.dyn = 1;
3240               pExpr->token.z = 0;
3241               pExpr->token.n = 0;
3242               pExpr->token.dyn = 0;
3243             }else{
3244               pExpr = pRight;
3245               pExpr->span = pExpr->token;
3246               pExpr->span.dyn = 0;
3247             }
3248             if( longNames ){
3249               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
3250             }else{
3251               pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
3252             }
3253           }
3254         }
3255         if( !tableSeen ){
3256           if( zTName ){
3257             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
3258           }else{
3259             sqlite3ErrorMsg(pParse, "no tables specified");
3260           }
3261         }
3262         sqlite3DbFree(db, zTName);
3263       }
3264     }
3265     sqlite3ExprListDelete(db, pEList);
3266     p->pEList = pNew;
3267   }
3268 #if SQLITE_MAX_COLUMN
3269   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
3270     sqlite3ErrorMsg(pParse, "too many columns in result set");
3271   }
3272 #endif
3273   return WRC_Continue;
3274 }
3275 
3276 /*
3277 ** No-op routine for the parse-tree walker.
3278 **
3279 ** When this routine is the Walker.xExprCallback then expression trees
3280 ** are walked without any actions being taken at each node.  Presumably,
3281 ** when this routine is used for Walker.xExprCallback then
3282 ** Walker.xSelectCallback is set to do something useful for every
3283 ** subquery in the parser tree.
3284 */
3285 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
3286   UNUSED_PARAMETER2(NotUsed, NotUsed2);
3287   return WRC_Continue;
3288 }
3289 
3290 /*
3291 ** This routine "expands" a SELECT statement and all of its subqueries.
3292 ** For additional information on what it means to "expand" a SELECT
3293 ** statement, see the comment on the selectExpand worker callback above.
3294 **
3295 ** Expanding a SELECT statement is the first step in processing a
3296 ** SELECT statement.  The SELECT statement must be expanded before
3297 ** name resolution is performed.
3298 **
3299 ** If anything goes wrong, an error message is written into pParse.
3300 ** The calling function can detect the problem by looking at pParse->nErr
3301 ** and/or pParse->db->mallocFailed.
3302 */
3303 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
3304   Walker w;
3305   w.xSelectCallback = selectExpander;
3306   w.xExprCallback = exprWalkNoop;
3307   w.pParse = pParse;
3308   sqlite3WalkSelect(&w, pSelect);
3309 }
3310 
3311 
3312 #ifndef SQLITE_OMIT_SUBQUERY
3313 /*
3314 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
3315 ** interface.
3316 **
3317 ** For each FROM-clause subquery, add Column.zType and Column.zColl
3318 ** information to the Table structure that represents the result set
3319 ** of that subquery.
3320 **
3321 ** The Table structure that represents the result set was constructed
3322 ** by selectExpander() but the type and collation information was omitted
3323 ** at that point because identifiers had not yet been resolved.  This
3324 ** routine is called after identifier resolution.
3325 */
3326 static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
3327   Parse *pParse;
3328   int i;
3329   SrcList *pTabList;
3330   struct SrcList_item *pFrom;
3331 
3332   assert( p->selFlags & SF_Resolved );
3333   if( (p->selFlags & SF_HasTypeInfo)==0 ){
3334     p->selFlags |= SF_HasTypeInfo;
3335     pParse = pWalker->pParse;
3336     pTabList = p->pSrc;
3337     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3338       Table *pTab = pFrom->pTab;
3339       if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
3340         /* A sub-query in the FROM clause of a SELECT */
3341         Select *pSel = pFrom->pSelect;
3342         assert( pSel );
3343         while( pSel->pPrior ) pSel = pSel->pPrior;
3344         selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
3345       }
3346     }
3347   }
3348   return WRC_Continue;
3349 }
3350 #endif
3351 
3352 
3353 /*
3354 ** This routine adds datatype and collating sequence information to
3355 ** the Table structures of all FROM-clause subqueries in a
3356 ** SELECT statement.
3357 **
3358 ** Use this routine after name resolution.
3359 */
3360 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
3361 #ifndef SQLITE_OMIT_SUBQUERY
3362   Walker w;
3363   w.xSelectCallback = selectAddSubqueryTypeInfo;
3364   w.xExprCallback = exprWalkNoop;
3365   w.pParse = pParse;
3366   sqlite3WalkSelect(&w, pSelect);
3367 #endif
3368 }
3369 
3370 
3371 /*
3372 ** This routine sets of a SELECT statement for processing.  The
3373 ** following is accomplished:
3374 **
3375 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
3376 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
3377 **     *  ON and USING clauses are shifted into WHERE statements
3378 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
3379 **     *  Identifiers in expression are matched to tables.
3380 **
3381 ** This routine acts recursively on all subqueries within the SELECT.
3382 */
3383 void sqlite3SelectPrep(
3384   Parse *pParse,         /* The parser context */
3385   Select *p,             /* The SELECT statement being coded. */
3386   NameContext *pOuterNC  /* Name context for container */
3387 ){
3388   sqlite3 *db;
3389   if( p==0 ) return;
3390   db = pParse->db;
3391   if( p->selFlags & SF_HasTypeInfo ) return;
3392   if( pParse->nErr || db->mallocFailed ) return;
3393   sqlite3SelectExpand(pParse, p);
3394   if( pParse->nErr || db->mallocFailed ) return;
3395   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
3396   if( pParse->nErr || db->mallocFailed ) return;
3397   sqlite3SelectAddTypeInfo(pParse, p);
3398 }
3399 
3400 /*
3401 ** Reset the aggregate accumulator.
3402 **
3403 ** The aggregate accumulator is a set of memory cells that hold
3404 ** intermediate results while calculating an aggregate.  This
3405 ** routine simply stores NULLs in all of those memory cells.
3406 */
3407 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
3408   Vdbe *v = pParse->pVdbe;
3409   int i;
3410   struct AggInfo_func *pFunc;
3411   if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
3412     return;
3413   }
3414   for(i=0; i<pAggInfo->nColumn; i++){
3415     sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
3416   }
3417   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
3418     sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
3419     if( pFunc->iDistinct>=0 ){
3420       Expr *pE = pFunc->pExpr;
3421       assert( !ExprHasProperty(pE, EP_xIsSelect) );
3422       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
3423         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
3424            "argument");
3425         pFunc->iDistinct = -1;
3426       }else{
3427         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList);
3428         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
3429                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3430       }
3431     }
3432   }
3433 }
3434 
3435 /*
3436 ** Invoke the OP_AggFinalize opcode for every aggregate function
3437 ** in the AggInfo structure.
3438 */
3439 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
3440   Vdbe *v = pParse->pVdbe;
3441   int i;
3442   struct AggInfo_func *pF;
3443   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3444     ExprList *pList = pF->pExpr->x.pList;
3445     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3446     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
3447                       (void*)pF->pFunc, P4_FUNCDEF);
3448   }
3449 }
3450 
3451 /*
3452 ** Update the accumulator memory cells for an aggregate based on
3453 ** the current cursor position.
3454 */
3455 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
3456   Vdbe *v = pParse->pVdbe;
3457   int i;
3458   struct AggInfo_func *pF;
3459   struct AggInfo_col *pC;
3460 
3461   pAggInfo->directMode = 1;
3462   sqlite3ExprCacheClear(pParse);
3463   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
3464     int nArg;
3465     int addrNext = 0;
3466     int regAgg;
3467     ExprList *pList = pF->pExpr->x.pList;
3468     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
3469     if( pList ){
3470       nArg = pList->nExpr;
3471       regAgg = sqlite3GetTempRange(pParse, nArg);
3472       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
3473     }else{
3474       nArg = 0;
3475       regAgg = 0;
3476     }
3477     if( pF->iDistinct>=0 ){
3478       addrNext = sqlite3VdbeMakeLabel(v);
3479       assert( nArg==1 );
3480       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
3481     }
3482     if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
3483       CollSeq *pColl = 0;
3484       struct ExprList_item *pItem;
3485       int j;
3486       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
3487       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
3488         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
3489       }
3490       if( !pColl ){
3491         pColl = pParse->db->pDfltColl;
3492       }
3493       sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
3494     }
3495     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
3496                       (void*)pF->pFunc, P4_FUNCDEF);
3497     sqlite3VdbeChangeP5(v, (u8)nArg);
3498     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
3499     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
3500     if( addrNext ){
3501       sqlite3VdbeResolveLabel(v, addrNext);
3502       sqlite3ExprCacheClear(pParse);
3503     }
3504   }
3505   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
3506     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
3507   }
3508   pAggInfo->directMode = 0;
3509   sqlite3ExprCacheClear(pParse);
3510 }
3511 
3512 /*
3513 ** Generate code for the SELECT statement given in the p argument.
3514 **
3515 ** The results are distributed in various ways depending on the
3516 ** contents of the SelectDest structure pointed to by argument pDest
3517 ** as follows:
3518 **
3519 **     pDest->eDest    Result
3520 **     ------------    -------------------------------------------
3521 **     SRT_Output      Generate a row of output (using the OP_ResultRow
3522 **                     opcode) for each row in the result set.
3523 **
3524 **     SRT_Mem         Only valid if the result is a single column.
3525 **                     Store the first column of the first result row
3526 **                     in register pDest->iParm then abandon the rest
3527 **                     of the query.  This destination implies "LIMIT 1".
3528 **
3529 **     SRT_Set         The result must be a single column.  Store each
3530 **                     row of result as the key in table pDest->iParm.
3531 **                     Apply the affinity pDest->affinity before storing
3532 **                     results.  Used to implement "IN (SELECT ...)".
3533 **
3534 **     SRT_Union       Store results as a key in a temporary table pDest->iParm.
3535 **
3536 **     SRT_Except      Remove results from the temporary table pDest->iParm.
3537 **
3538 **     SRT_Table       Store results in temporary table pDest->iParm.
3539 **                     This is like SRT_EphemTab except that the table
3540 **                     is assumed to already be open.
3541 **
3542 **     SRT_EphemTab    Create an temporary table pDest->iParm and store
3543 **                     the result there. The cursor is left open after
3544 **                     returning.  This is like SRT_Table except that
3545 **                     this destination uses OP_OpenEphemeral to create
3546 **                     the table first.
3547 **
3548 **     SRT_Coroutine   Generate a co-routine that returns a new row of
3549 **                     results each time it is invoked.  The entry point
3550 **                     of the co-routine is stored in register pDest->iParm.
3551 **
3552 **     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
3553 **                     set is not empty.
3554 **
3555 **     SRT_Discard     Throw the results away.  This is used by SELECT
3556 **                     statements within triggers whose only purpose is
3557 **                     the side-effects of functions.
3558 **
3559 ** This routine returns the number of errors.  If any errors are
3560 ** encountered, then an appropriate error message is left in
3561 ** pParse->zErrMsg.
3562 **
3563 ** This routine does NOT free the Select structure passed in.  The
3564 ** calling function needs to do that.
3565 */
3566 int sqlite3Select(
3567   Parse *pParse,         /* The parser context */
3568   Select *p,             /* The SELECT statement being coded. */
3569   SelectDest *pDest      /* What to do with the query results */
3570 ){
3571   int i, j;              /* Loop counters */
3572   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
3573   Vdbe *v;               /* The virtual machine under construction */
3574   int isAgg;             /* True for select lists like "count(*)" */
3575   ExprList *pEList;      /* List of columns to extract. */
3576   SrcList *pTabList;     /* List of tables to select from */
3577   Expr *pWhere;          /* The WHERE clause.  May be NULL */
3578   ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
3579   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
3580   Expr *pHaving;         /* The HAVING clause.  May be NULL */
3581   int isDistinct;        /* True if the DISTINCT keyword is present */
3582   int distinct;          /* Table to use for the distinct set */
3583   int rc = 1;            /* Value to return from this function */
3584   int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
3585   AggInfo sAggInfo;      /* Information used by aggregate queries */
3586   int iEnd;              /* Address of the end of the query */
3587   sqlite3 *db;           /* The database connection */
3588 
3589   db = pParse->db;
3590   if( p==0 || db->mallocFailed || pParse->nErr ){
3591     return 1;
3592   }
3593   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
3594   memset(&sAggInfo, 0, sizeof(sAggInfo));
3595 
3596   pOrderBy = p->pOrderBy;
3597   if( IgnorableOrderby(pDest) ){
3598     p->pOrderBy = 0;
3599 
3600     /* In these cases the DISTINCT operator makes no difference to the
3601     ** results, so remove it if it were specified.
3602     */
3603     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
3604            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
3605     p->selFlags &= ~SF_Distinct;
3606   }
3607   sqlite3SelectPrep(pParse, p, 0);
3608   pTabList = p->pSrc;
3609   pEList = p->pEList;
3610   if( pParse->nErr || db->mallocFailed ){
3611     goto select_end;
3612   }
3613   p->pOrderBy = pOrderBy;
3614   isAgg = (p->selFlags & SF_Aggregate)!=0;
3615   if( pEList==0 ) goto select_end;
3616 
3617   /*
3618   ** Do not even attempt to generate any code if we have already seen
3619   ** errors before this routine starts.
3620   */
3621   if( pParse->nErr>0 ) goto select_end;
3622 
3623   /* ORDER BY is ignored for some destinations.
3624   */
3625   if( IgnorableOrderby(pDest) ){
3626     pOrderBy = 0;
3627   }
3628 
3629   /* Begin generating code.
3630   */
3631   v = sqlite3GetVdbe(pParse);
3632   if( v==0 ) goto select_end;
3633 
3634   /* Generate code for all sub-queries in the FROM clause
3635   */
3636 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3637   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
3638     struct SrcList_item *pItem = &pTabList->a[i];
3639     SelectDest dest;
3640     Select *pSub = pItem->pSelect;
3641     int isAggSub;
3642 
3643     if( pSub==0 || pItem->isPopulated ) continue;
3644 
3645     /* Increment Parse.nHeight by the height of the largest expression
3646     ** tree refered to by this, the parent select. The child select
3647     ** may contain expression trees of at most
3648     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
3649     ** more conservative than necessary, but much easier than enforcing
3650     ** an exact limit.
3651     */
3652     pParse->nHeight += sqlite3SelectExprHeight(p);
3653 
3654     /* Check to see if the subquery can be absorbed into the parent. */
3655     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
3656     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
3657       if( isAggSub ){
3658         isAgg = 1;
3659         p->selFlags |= SF_Aggregate;
3660       }
3661       i = -1;
3662     }else{
3663       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
3664       assert( pItem->isPopulated==0 );
3665       sqlite3Select(pParse, pSub, &dest);
3666       pItem->isPopulated = 1;
3667     }
3668     if( pParse->nErr || db->mallocFailed ){
3669       goto select_end;
3670     }
3671     pParse->nHeight -= sqlite3SelectExprHeight(p);
3672     pTabList = p->pSrc;
3673     if( !IgnorableOrderby(pDest) ){
3674       pOrderBy = p->pOrderBy;
3675     }
3676   }
3677   pEList = p->pEList;
3678 #endif
3679   pWhere = p->pWhere;
3680   pGroupBy = p->pGroupBy;
3681   pHaving = p->pHaving;
3682   isDistinct = (p->selFlags & SF_Distinct)!=0;
3683 
3684 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3685   /* If there is are a sequence of queries, do the earlier ones first.
3686   */
3687   if( p->pPrior ){
3688     if( p->pRightmost==0 ){
3689       Select *pLoop, *pRight = 0;
3690       int cnt = 0;
3691       int mxSelect;
3692       for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
3693         pLoop->pRightmost = p;
3694         pLoop->pNext = pRight;
3695         pRight = pLoop;
3696       }
3697       mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
3698       if( mxSelect && cnt>mxSelect ){
3699         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
3700         return 1;
3701       }
3702     }
3703     return multiSelect(pParse, p, pDest);
3704   }
3705 #endif
3706 
3707   /* If writing to memory or generating a set
3708   ** only a single column may be output.
3709   */
3710 #ifndef SQLITE_OMIT_SUBQUERY
3711   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
3712     goto select_end;
3713   }
3714 #endif
3715 
3716   /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
3717   ** GROUP BY might use an index, DISTINCT never does.
3718   */
3719   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
3720     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
3721     pGroupBy = p->pGroupBy;
3722     p->selFlags &= ~SF_Distinct;
3723     isDistinct = 0;
3724   }
3725 
3726   /* If there is an ORDER BY clause, then this sorting
3727   ** index might end up being unused if the data can be
3728   ** extracted in pre-sorted order.  If that is the case, then the
3729   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
3730   ** we figure out that the sorting index is not needed.  The addrSortIndex
3731   ** variable is used to facilitate that change.
3732   */
3733   if( pOrderBy ){
3734     KeyInfo *pKeyInfo;
3735     pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
3736     pOrderBy->iECursor = pParse->nTab++;
3737     p->addrOpenEphm[2] = addrSortIndex =
3738       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3739                            pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
3740                            (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3741   }else{
3742     addrSortIndex = -1;
3743   }
3744 
3745   /* If the output is destined for a temporary table, open that table.
3746   */
3747   if( pDest->eDest==SRT_EphemTab ){
3748     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
3749   }
3750 
3751   /* Set the limiter.
3752   */
3753   iEnd = sqlite3VdbeMakeLabel(v);
3754   computeLimitRegisters(pParse, p, iEnd);
3755 
3756   /* Open a virtual index to use for the distinct set.
3757   */
3758   if( isDistinct ){
3759     KeyInfo *pKeyInfo;
3760     assert( isAgg || pGroupBy );
3761     distinct = pParse->nTab++;
3762     pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
3763     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
3764                         (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3765   }else{
3766     distinct = -1;
3767   }
3768 
3769   /* Aggregate and non-aggregate queries are handled differently */
3770   if( !isAgg && pGroupBy==0 ){
3771     /* This case is for non-aggregate queries
3772     ** Begin the database scan
3773     */
3774     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
3775     if( pWInfo==0 ) goto select_end;
3776 
3777     /* If sorting index that was created by a prior OP_OpenEphemeral
3778     ** instruction ended up not being needed, then change the OP_OpenEphemeral
3779     ** into an OP_Noop.
3780     */
3781     if( addrSortIndex>=0 && pOrderBy==0 ){
3782       sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
3783       p->addrOpenEphm[2] = -1;
3784     }
3785 
3786     /* Use the standard inner loop
3787     */
3788     assert(!isDistinct);
3789     selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
3790                     pWInfo->iContinue, pWInfo->iBreak);
3791 
3792     /* End the database scan loop.
3793     */
3794     sqlite3WhereEnd(pWInfo);
3795   }else{
3796     /* This is the processing for aggregate queries */
3797     NameContext sNC;    /* Name context for processing aggregate information */
3798     int iAMem;          /* First Mem address for storing current GROUP BY */
3799     int iBMem;          /* First Mem address for previous GROUP BY */
3800     int iUseFlag;       /* Mem address holding flag indicating that at least
3801                         ** one row of the input to the aggregator has been
3802                         ** processed */
3803     int iAbortFlag;     /* Mem address which causes query abort if positive */
3804     int groupBySort;    /* Rows come from source in GROUP BY order */
3805     int addrEnd;        /* End of processing for this SELECT */
3806 
3807     /* Remove any and all aliases between the result set and the
3808     ** GROUP BY clause.
3809     */
3810     if( pGroupBy ){
3811       int k;                        /* Loop counter */
3812       struct ExprList_item *pItem;  /* For looping over expression in a list */
3813 
3814       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
3815         pItem->iAlias = 0;
3816       }
3817       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
3818         pItem->iAlias = 0;
3819       }
3820     }
3821 
3822 
3823     /* Create a label to jump to when we want to abort the query */
3824     addrEnd = sqlite3VdbeMakeLabel(v);
3825 
3826     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
3827     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
3828     ** SELECT statement.
3829     */
3830     memset(&sNC, 0, sizeof(sNC));
3831     sNC.pParse = pParse;
3832     sNC.pSrcList = pTabList;
3833     sNC.pAggInfo = &sAggInfo;
3834     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
3835     sAggInfo.pGroupBy = pGroupBy;
3836     sqlite3ExprAnalyzeAggList(&sNC, pEList);
3837     sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
3838     if( pHaving ){
3839       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
3840     }
3841     sAggInfo.nAccumulator = sAggInfo.nColumn;
3842     for(i=0; i<sAggInfo.nFunc; i++){
3843       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
3844       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
3845     }
3846     if( db->mallocFailed ) goto select_end;
3847 
3848     /* Processing for aggregates with GROUP BY is very different and
3849     ** much more complex than aggregates without a GROUP BY.
3850     */
3851     if( pGroupBy ){
3852       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
3853       int j1;             /* A-vs-B comparision jump */
3854       int addrOutputRow;  /* Start of subroutine that outputs a result row */
3855       int regOutputRow;   /* Return address register for output subroutine */
3856       int addrSetAbort;   /* Set the abort flag and return */
3857       int addrTopOfLoop;  /* Top of the input loop */
3858       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
3859       int addrReset;      /* Subroutine for resetting the accumulator */
3860       int regReset;       /* Return address register for reset subroutine */
3861 
3862       /* If there is a GROUP BY clause we might need a sorting index to
3863       ** implement it.  Allocate that sorting index now.  If it turns out
3864       ** that we do not need it after all, the OpenEphemeral instruction
3865       ** will be converted into a Noop.
3866       */
3867       sAggInfo.sortingIdx = pParse->nTab++;
3868       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
3869       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
3870           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
3871           0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
3872 
3873       /* Initialize memory locations used by GROUP BY aggregate processing
3874       */
3875       iUseFlag = ++pParse->nMem;
3876       iAbortFlag = ++pParse->nMem;
3877       regOutputRow = ++pParse->nMem;
3878       addrOutputRow = sqlite3VdbeMakeLabel(v);
3879       regReset = ++pParse->nMem;
3880       addrReset = sqlite3VdbeMakeLabel(v);
3881       iAMem = pParse->nMem + 1;
3882       pParse->nMem += pGroupBy->nExpr;
3883       iBMem = pParse->nMem + 1;
3884       pParse->nMem += pGroupBy->nExpr;
3885       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
3886       VdbeComment((v, "clear abort flag"));
3887       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
3888       VdbeComment((v, "indicate accumulator empty"));
3889 
3890       /* Begin a loop that will extract all source rows in GROUP BY order.
3891       ** This might involve two separate loops with an OP_Sort in between, or
3892       ** it might be a single loop that uses an index to extract information
3893       ** in the right order to begin with.
3894       */
3895       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3896       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
3897       if( pWInfo==0 ) goto select_end;
3898       if( pGroupBy==0 ){
3899         /* The optimizer is able to deliver rows in group by order so
3900         ** we do not have to sort.  The OP_OpenEphemeral table will be
3901         ** cancelled later because we still need to use the pKeyInfo
3902         */
3903         pGroupBy = p->pGroupBy;
3904         groupBySort = 0;
3905       }else{
3906         /* Rows are coming out in undetermined order.  We have to push
3907         ** each row into a sorting index, terminate the first loop,
3908         ** then loop over the sorting index in order to get the output
3909         ** in sorted order
3910         */
3911         int regBase;
3912         int regRecord;
3913         int nCol;
3914         int nGroupBy;
3915 
3916         groupBySort = 1;
3917         nGroupBy = pGroupBy->nExpr;
3918         nCol = nGroupBy + 1;
3919         j = nGroupBy+1;
3920         for(i=0; i<sAggInfo.nColumn; i++){
3921           if( sAggInfo.aCol[i].iSorterColumn>=j ){
3922             nCol++;
3923             j++;
3924           }
3925         }
3926         regBase = sqlite3GetTempRange(pParse, nCol);
3927         sqlite3ExprCacheClear(pParse);
3928         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
3929         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
3930         j = nGroupBy+1;
3931         for(i=0; i<sAggInfo.nColumn; i++){
3932           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
3933           if( pCol->iSorterColumn>=j ){
3934             int r1 = j + regBase;
3935             int r2;
3936 
3937             r2 = sqlite3ExprCodeGetColumn(pParse,
3938                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
3939             if( r1!=r2 ){
3940               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
3941             }
3942             j++;
3943           }
3944         }
3945         regRecord = sqlite3GetTempReg(pParse);
3946         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
3947         sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
3948         sqlite3ReleaseTempReg(pParse, regRecord);
3949         sqlite3ReleaseTempRange(pParse, regBase, nCol);
3950         sqlite3WhereEnd(pWInfo);
3951         sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
3952         VdbeComment((v, "GROUP BY sort"));
3953         sAggInfo.useSortingIdx = 1;
3954         sqlite3ExprCacheClear(pParse);
3955       }
3956 
3957       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
3958       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
3959       ** Then compare the current GROUP BY terms against the GROUP BY terms
3960       ** from the previous row currently stored in a0, a1, a2...
3961       */
3962       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
3963       sqlite3ExprCacheClear(pParse);
3964       for(j=0; j<pGroupBy->nExpr; j++){
3965         if( groupBySort ){
3966           sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
3967         }else{
3968           sAggInfo.directMode = 1;
3969           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
3970         }
3971       }
3972       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
3973                           (char*)pKeyInfo, P4_KEYINFO);
3974       j1 = sqlite3VdbeCurrentAddr(v);
3975       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
3976 
3977       /* Generate code that runs whenever the GROUP BY changes.
3978       ** Changes in the GROUP BY are detected by the previous code
3979       ** block.  If there were no changes, this block is skipped.
3980       **
3981       ** This code copies current group by terms in b0,b1,b2,...
3982       ** over to a0,a1,a2.  It then calls the output subroutine
3983       ** and resets the aggregate accumulator registers in preparation
3984       ** for the next GROUP BY batch.
3985       */
3986       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
3987       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
3988       VdbeComment((v, "output one row"));
3989       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
3990       VdbeComment((v, "check abort flag"));
3991       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
3992       VdbeComment((v, "reset accumulator"));
3993 
3994       /* Update the aggregate accumulators based on the content of
3995       ** the current row
3996       */
3997       sqlite3VdbeJumpHere(v, j1);
3998       updateAccumulator(pParse, &sAggInfo);
3999       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
4000       VdbeComment((v, "indicate data in accumulator"));
4001 
4002       /* End of the loop
4003       */
4004       if( groupBySort ){
4005         sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
4006       }else{
4007         sqlite3WhereEnd(pWInfo);
4008         sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
4009       }
4010 
4011       /* Output the final row of result
4012       */
4013       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
4014       VdbeComment((v, "output final row"));
4015 
4016       /* Jump over the subroutines
4017       */
4018       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
4019 
4020       /* Generate a subroutine that outputs a single row of the result
4021       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
4022       ** is less than or equal to zero, the subroutine is a no-op.  If
4023       ** the processing calls for the query to abort, this subroutine
4024       ** increments the iAbortFlag memory location before returning in
4025       ** order to signal the caller to abort.
4026       */
4027       addrSetAbort = sqlite3VdbeCurrentAddr(v);
4028       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
4029       VdbeComment((v, "set abort flag"));
4030       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4031       sqlite3VdbeResolveLabel(v, addrOutputRow);
4032       addrOutputRow = sqlite3VdbeCurrentAddr(v);
4033       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
4034       VdbeComment((v, "Groupby result generator entry point"));
4035       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4036       finalizeAggFunctions(pParse, &sAggInfo);
4037       if( pHaving ){
4038         sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
4039       }
4040       selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
4041                       distinct, pDest,
4042                       addrOutputRow+1, addrSetAbort);
4043       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
4044       VdbeComment((v, "end groupby result generator"));
4045 
4046       /* Generate a subroutine that will reset the group-by accumulator
4047       */
4048       sqlite3VdbeResolveLabel(v, addrReset);
4049       resetAccumulator(pParse, &sAggInfo);
4050       sqlite3VdbeAddOp1(v, OP_Return, regReset);
4051 
4052     } /* endif pGroupBy */
4053     else {
4054       ExprList *pDel = 0;
4055 #ifndef SQLITE_OMIT_BTREECOUNT
4056       Table *pTab;
4057       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
4058         /* If isSimpleCount() returns a pointer to a Table structure, then
4059         ** the SQL statement is of the form:
4060         **
4061         **   SELECT count(*) FROM <tbl>
4062         **
4063         ** where the Table structure returned represents table <tbl>.
4064         **
4065         ** This statement is so common that it is optimized specially. The
4066         ** OP_Count instruction is executed either on the intkey table that
4067         ** contains the data for table <tbl> or on one of its indexes. It
4068         ** is better to execute the op on an index, as indexes are almost
4069         ** always spread across less pages than their corresponding tables.
4070         */
4071         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4072         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
4073         Index *pIdx;                         /* Iterator variable */
4074         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
4075         Index *pBest = 0;                    /* Best index found so far */
4076         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
4077 
4078         sqlite3CodeVerifySchema(pParse, iDb);
4079         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4080 
4081         /* Search for the index that has the least amount of columns. If
4082         ** there is such an index, and it has less columns than the table
4083         ** does, then we can assume that it consumes less space on disk and
4084         ** will therefore be cheaper to scan to determine the query result.
4085         ** In this case set iRoot to the root page number of the index b-tree
4086         ** and pKeyInfo to the KeyInfo structure required to navigate the
4087         ** index.
4088         **
4089         ** In practice the KeyInfo structure will not be used. It is only
4090         ** passed to keep OP_OpenRead happy.
4091         */
4092         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4093           if( !pBest || pIdx->nColumn<pBest->nColumn ){
4094             pBest = pIdx;
4095           }
4096         }
4097         if( pBest && pBest->nColumn<pTab->nCol ){
4098           iRoot = pBest->tnum;
4099           pKeyInfo = sqlite3IndexKeyinfo(pParse, pBest);
4100         }
4101 
4102         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
4103         sqlite3VdbeAddOp3(v, OP_OpenRead, iCsr, iRoot, iDb);
4104         if( pKeyInfo ){
4105           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO_HANDOFF);
4106         }
4107         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
4108         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
4109       }else
4110 #endif /* SQLITE_OMIT_BTREECOUNT */
4111       {
4112         /* Check if the query is of one of the following forms:
4113         **
4114         **   SELECT min(x) FROM ...
4115         **   SELECT max(x) FROM ...
4116         **
4117         ** If it is, then ask the code in where.c to attempt to sort results
4118         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
4119         ** If where.c is able to produce results sorted in this order, then
4120         ** add vdbe code to break out of the processing loop after the
4121         ** first iteration (since the first iteration of the loop is
4122         ** guaranteed to operate on the row with the minimum or maximum
4123         ** value of x, the only row required).
4124         **
4125         ** A special flag must be passed to sqlite3WhereBegin() to slightly
4126         ** modify behaviour as follows:
4127         **
4128         **   + If the query is a "SELECT min(x)", then the loop coded by
4129         **     where.c should not iterate over any values with a NULL value
4130         **     for x.
4131         **
4132         **   + The optimizer code in where.c (the thing that decides which
4133         **     index or indices to use) should place a different priority on
4134         **     satisfying the 'ORDER BY' clause than it does in other cases.
4135         **     Refer to code and comments in where.c for details.
4136         */
4137         ExprList *pMinMax = 0;
4138         u8 flag = minMaxQuery(p);
4139         if( flag ){
4140           assert( !ExprHasProperty(p->pEList->a[0].pExpr, EP_xIsSelect) );
4141           pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->x.pList,0);
4142           pDel = pMinMax;
4143           if( pMinMax && !db->mallocFailed ){
4144             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
4145             pMinMax->a[0].pExpr->op = TK_COLUMN;
4146           }
4147         }
4148 
4149         /* This case runs if the aggregate has no GROUP BY clause.  The
4150         ** processing is much simpler since there is only a single row
4151         ** of output.
4152         */
4153         resetAccumulator(pParse, &sAggInfo);
4154         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
4155         if( pWInfo==0 ){
4156           sqlite3ExprListDelete(db, pDel);
4157           goto select_end;
4158         }
4159         updateAccumulator(pParse, &sAggInfo);
4160         if( !pMinMax && flag ){
4161           sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
4162           VdbeComment((v, "%s() by index",
4163                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
4164         }
4165         sqlite3WhereEnd(pWInfo);
4166         finalizeAggFunctions(pParse, &sAggInfo);
4167       }
4168 
4169       pOrderBy = 0;
4170       if( pHaving ){
4171         sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
4172       }
4173       selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1,
4174                       pDest, addrEnd, addrEnd);
4175       sqlite3ExprListDelete(db, pDel);
4176     }
4177     sqlite3VdbeResolveLabel(v, addrEnd);
4178 
4179   } /* endif aggregate query */
4180 
4181   /* If there is an ORDER BY clause, then we need to sort the results
4182   ** and send them to the callback one by one.
4183   */
4184   if( pOrderBy ){
4185     generateSortTail(pParse, p, v, pEList->nExpr, pDest);
4186   }
4187 
4188   /* Jump here to skip this query
4189   */
4190   sqlite3VdbeResolveLabel(v, iEnd);
4191 
4192   /* The SELECT was successfully coded.   Set the return code to 0
4193   ** to indicate no errors.
4194   */
4195   rc = 0;
4196 
4197   /* Control jumps to here if an error is encountered above, or upon
4198   ** successful coding of the SELECT.
4199   */
4200 select_end:
4201 
4202   /* Identify column names if results of the SELECT are to be output.
4203   */
4204   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
4205     generateColumnNames(pParse, pTabList, pEList);
4206   }
4207 
4208   sqlite3DbFree(db, sAggInfo.aCol);
4209   sqlite3DbFree(db, sAggInfo.aFunc);
4210   return rc;
4211 }
4212 
4213 #if defined(SQLITE_DEBUG)
4214 /*
4215 *******************************************************************************
4216 ** The following code is used for testing and debugging only.  The code
4217 ** that follows does not appear in normal builds.
4218 **
4219 ** These routines are used to print out the content of all or part of a
4220 ** parse structures such as Select or Expr.  Such printouts are useful
4221 ** for helping to understand what is happening inside the code generator
4222 ** during the execution of complex SELECT statements.
4223 **
4224 ** These routine are not called anywhere from within the normal
4225 ** code base.  Then are intended to be called from within the debugger
4226 ** or from temporary "printf" statements inserted for debugging.
4227 */
4228 void sqlite3PrintExpr(Expr *p){
4229   if( p->token.z && p->token.n>0 ){
4230     sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
4231   }else{
4232     sqlite3DebugPrintf("(%d", p->op);
4233   }
4234   if( p->pLeft ){
4235     sqlite3DebugPrintf(" ");
4236     sqlite3PrintExpr(p->pLeft);
4237   }
4238   if( p->pRight ){
4239     sqlite3DebugPrintf(" ");
4240     sqlite3PrintExpr(p->pRight);
4241   }
4242   sqlite3DebugPrintf(")");
4243 }
4244 void sqlite3PrintExprList(ExprList *pList){
4245   int i;
4246   for(i=0; i<pList->nExpr; i++){
4247     sqlite3PrintExpr(pList->a[i].pExpr);
4248     if( i<pList->nExpr-1 ){
4249       sqlite3DebugPrintf(", ");
4250     }
4251   }
4252 }
4253 void sqlite3PrintSelect(Select *p, int indent){
4254   sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
4255   sqlite3PrintExprList(p->pEList);
4256   sqlite3DebugPrintf("\n");
4257   if( p->pSrc ){
4258     char *zPrefix;
4259     int i;
4260     zPrefix = "FROM";
4261     for(i=0; i<p->pSrc->nSrc; i++){
4262       struct SrcList_item *pItem = &p->pSrc->a[i];
4263       sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
4264       zPrefix = "";
4265       if( pItem->pSelect ){
4266         sqlite3DebugPrintf("(\n");
4267         sqlite3PrintSelect(pItem->pSelect, indent+10);
4268         sqlite3DebugPrintf("%*s)", indent+8, "");
4269       }else if( pItem->zName ){
4270         sqlite3DebugPrintf("%s", pItem->zName);
4271       }
4272       if( pItem->pTab ){
4273         sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
4274       }
4275       if( pItem->zAlias ){
4276         sqlite3DebugPrintf(" AS %s", pItem->zAlias);
4277       }
4278       if( i<p->pSrc->nSrc-1 ){
4279         sqlite3DebugPrintf(",");
4280       }
4281       sqlite3DebugPrintf("\n");
4282     }
4283   }
4284   if( p->pWhere ){
4285     sqlite3DebugPrintf("%*s WHERE ", indent, "");
4286     sqlite3PrintExpr(p->pWhere);
4287     sqlite3DebugPrintf("\n");
4288   }
4289   if( p->pGroupBy ){
4290     sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
4291     sqlite3PrintExprList(p->pGroupBy);
4292     sqlite3DebugPrintf("\n");
4293   }
4294   if( p->pHaving ){
4295     sqlite3DebugPrintf("%*s HAVING ", indent, "");
4296     sqlite3PrintExpr(p->pHaving);
4297     sqlite3DebugPrintf("\n");
4298   }
4299   if( p->pOrderBy ){
4300     sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
4301     sqlite3PrintExprList(p->pOrderBy);
4302     sqlite3DebugPrintf("\n");
4303   }
4304 }
4305 /* End of the structure debug printing code
4306 *****************************************************************************/
4307 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
4308