1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 if( pEq && isOuterJoin ){ 351 ExprSetProperty(pEq, EP_FromJoin); 352 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 353 ExprSetVVAProperty(pEq, EP_NoReduce); 354 pEq->iRightJoinTable = pE2->iTable; 355 } 356 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 357 } 358 359 /* 360 ** Set the EP_FromJoin property on all terms of the given expression. 361 ** And set the Expr.iRightJoinTable to iTable for every term in the 362 ** expression. 363 ** 364 ** The EP_FromJoin property is used on terms of an expression to tell 365 ** the LEFT OUTER JOIN processing logic that this term is part of the 366 ** join restriction specified in the ON or USING clause and not a part 367 ** of the more general WHERE clause. These terms are moved over to the 368 ** WHERE clause during join processing but we need to remember that they 369 ** originated in the ON or USING clause. 370 ** 371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 372 ** expression depends on table iRightJoinTable even if that table is not 373 ** explicitly mentioned in the expression. That information is needed 374 ** for cases like this: 375 ** 376 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 377 ** 378 ** The where clause needs to defer the handling of the t1.x=5 379 ** term until after the t2 loop of the join. In that way, a 380 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 381 ** defer the handling of t1.x=5, it will be processed immediately 382 ** after the t1 loop and rows with t1.x!=5 will never appear in 383 ** the output, which is incorrect. 384 */ 385 void sqlite3SetJoinExpr(Expr *p, int iTable){ 386 while( p ){ 387 ExprSetProperty(p, EP_FromJoin); 388 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 389 ExprSetVVAProperty(p, EP_NoReduce); 390 p->iRightJoinTable = iTable; 391 if( p->op==TK_FUNCTION && p->x.pList ){ 392 int i; 393 for(i=0; i<p->x.pList->nExpr; i++){ 394 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 395 } 396 } 397 sqlite3SetJoinExpr(p->pLeft, iTable); 398 p = p->pRight; 399 } 400 } 401 402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 404 ** an ordinary term that omits the EP_FromJoin mark. 405 ** 406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 407 */ 408 static void unsetJoinExpr(Expr *p, int iTable){ 409 while( p ){ 410 if( ExprHasProperty(p, EP_FromJoin) 411 && (iTable<0 || p->iRightJoinTable==iTable) ){ 412 ExprClearProperty(p, EP_FromJoin); 413 } 414 if( p->op==TK_COLUMN && p->iTable==iTable ){ 415 ExprClearProperty(p, EP_CanBeNull); 416 } 417 if( p->op==TK_FUNCTION && p->x.pList ){ 418 int i; 419 for(i=0; i<p->x.pList->nExpr; i++){ 420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 421 } 422 } 423 unsetJoinExpr(p->pLeft, iTable); 424 p = p->pRight; 425 } 426 } 427 428 /* 429 ** This routine processes the join information for a SELECT statement. 430 ** ON and USING clauses are converted into extra terms of the WHERE clause. 431 ** NATURAL joins also create extra WHERE clause terms. 432 ** 433 ** The terms of a FROM clause are contained in the Select.pSrc structure. 434 ** The left most table is the first entry in Select.pSrc. The right-most 435 ** table is the last entry. The join operator is held in the entry to 436 ** the left. Thus entry 0 contains the join operator for the join between 437 ** entries 0 and 1. Any ON or USING clauses associated with the join are 438 ** also attached to the left entry. 439 ** 440 ** This routine returns the number of errors encountered. 441 */ 442 static int sqliteProcessJoin(Parse *pParse, Select *p){ 443 SrcList *pSrc; /* All tables in the FROM clause */ 444 int i, j; /* Loop counters */ 445 SrcItem *pLeft; /* Left table being joined */ 446 SrcItem *pRight; /* Right table being joined */ 447 448 pSrc = p->pSrc; 449 pLeft = &pSrc->a[0]; 450 pRight = &pLeft[1]; 451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 452 Table *pRightTab = pRight->pTab; 453 int isOuter; 454 455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 457 458 /* When the NATURAL keyword is present, add WHERE clause terms for 459 ** every column that the two tables have in common. 460 */ 461 if( pRight->fg.jointype & JT_NATURAL ){ 462 if( pRight->pOn || pRight->pUsing ){ 463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 464 "an ON or USING clause", 0); 465 return 1; 466 } 467 for(j=0; j<pRightTab->nCol; j++){ 468 char *zName; /* Name of column in the right table */ 469 int iLeft; /* Matching left table */ 470 int iLeftCol; /* Matching column in the left table */ 471 472 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 473 zName = pRightTab->aCol[j].zName; 474 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 475 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 476 isOuter, &p->pWhere); 477 } 478 } 479 } 480 481 /* Disallow both ON and USING clauses in the same join 482 */ 483 if( pRight->pOn && pRight->pUsing ){ 484 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 485 "clauses in the same join"); 486 return 1; 487 } 488 489 /* Add the ON clause to the end of the WHERE clause, connected by 490 ** an AND operator. 491 */ 492 if( pRight->pOn ){ 493 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 494 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 495 pRight->pOn = 0; 496 } 497 498 /* Create extra terms on the WHERE clause for each column named 499 ** in the USING clause. Example: If the two tables to be joined are 500 ** A and B and the USING clause names X, Y, and Z, then add this 501 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 502 ** Report an error if any column mentioned in the USING clause is 503 ** not contained in both tables to be joined. 504 */ 505 if( pRight->pUsing ){ 506 IdList *pList = pRight->pUsing; 507 for(j=0; j<pList->nId; j++){ 508 char *zName; /* Name of the term in the USING clause */ 509 int iLeft; /* Table on the left with matching column name */ 510 int iLeftCol; /* Column number of matching column on the left */ 511 int iRightCol; /* Column number of matching column on the right */ 512 513 zName = pList->a[j].zName; 514 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 515 if( iRightCol<0 516 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 517 ){ 518 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 519 "not present in both tables", zName); 520 return 1; 521 } 522 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 523 isOuter, &p->pWhere); 524 } 525 } 526 } 527 return 0; 528 } 529 530 /* 531 ** An instance of this object holds information (beyond pParse and pSelect) 532 ** needed to load the next result row that is to be added to the sorter. 533 */ 534 typedef struct RowLoadInfo RowLoadInfo; 535 struct RowLoadInfo { 536 int regResult; /* Store results in array of registers here */ 537 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 539 ExprList *pExtra; /* Extra columns needed by sorter refs */ 540 int regExtraResult; /* Where to load the extra columns */ 541 #endif 542 }; 543 544 /* 545 ** This routine does the work of loading query data into an array of 546 ** registers so that it can be added to the sorter. 547 */ 548 static void innerLoopLoadRow( 549 Parse *pParse, /* Statement under construction */ 550 Select *pSelect, /* The query being coded */ 551 RowLoadInfo *pInfo /* Info needed to complete the row load */ 552 ){ 553 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 554 0, pInfo->ecelFlags); 555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 556 if( pInfo->pExtra ){ 557 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 558 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 559 } 560 #endif 561 } 562 563 /* 564 ** Code the OP_MakeRecord instruction that generates the entry to be 565 ** added into the sorter. 566 ** 567 ** Return the register in which the result is stored. 568 */ 569 static int makeSorterRecord( 570 Parse *pParse, 571 SortCtx *pSort, 572 Select *pSelect, 573 int regBase, 574 int nBase 575 ){ 576 int nOBSat = pSort->nOBSat; 577 Vdbe *v = pParse->pVdbe; 578 int regOut = ++pParse->nMem; 579 if( pSort->pDeferredRowLoad ){ 580 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 581 } 582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 583 return regOut; 584 } 585 586 /* 587 ** Generate code that will push the record in registers regData 588 ** through regData+nData-1 onto the sorter. 589 */ 590 static void pushOntoSorter( 591 Parse *pParse, /* Parser context */ 592 SortCtx *pSort, /* Information about the ORDER BY clause */ 593 Select *pSelect, /* The whole SELECT statement */ 594 int regData, /* First register holding data to be sorted */ 595 int regOrigData, /* First register holding data before packing */ 596 int nData, /* Number of elements in the regData data array */ 597 int nPrefixReg /* No. of reg prior to regData available for use */ 598 ){ 599 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 600 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 601 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 602 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 603 int regBase; /* Regs for sorter record */ 604 int regRecord = 0; /* Assembled sorter record */ 605 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 606 int op; /* Opcode to add sorter record to sorter */ 607 int iLimit; /* LIMIT counter */ 608 int iSkip = 0; /* End of the sorter insert loop */ 609 610 assert( bSeq==0 || bSeq==1 ); 611 612 /* Three cases: 613 ** (1) The data to be sorted has already been packed into a Record 614 ** by a prior OP_MakeRecord. In this case nData==1 and regData 615 ** will be completely unrelated to regOrigData. 616 ** (2) All output columns are included in the sort record. In that 617 ** case regData==regOrigData. 618 ** (3) Some output columns are omitted from the sort record due to 619 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 620 ** SQLITE_ECEL_OMITREF optimization, or due to the 621 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 622 ** regOrigData is 0 to prevent this routine from trying to copy 623 ** values that might not yet exist. 624 */ 625 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 626 627 if( nPrefixReg ){ 628 assert( nPrefixReg==nExpr+bSeq ); 629 regBase = regData - nPrefixReg; 630 }else{ 631 regBase = pParse->nMem + 1; 632 pParse->nMem += nBase; 633 } 634 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 635 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 636 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 637 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 638 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 639 if( bSeq ){ 640 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 641 } 642 if( nPrefixReg==0 && nData>0 ){ 643 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 644 } 645 if( nOBSat>0 ){ 646 int regPrevKey; /* The first nOBSat columns of the previous row */ 647 int addrFirst; /* Address of the OP_IfNot opcode */ 648 int addrJmp; /* Address of the OP_Jump opcode */ 649 VdbeOp *pOp; /* Opcode that opens the sorter */ 650 int nKey; /* Number of sorting key columns, including OP_Sequence */ 651 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 652 653 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 654 regPrevKey = pParse->nMem+1; 655 pParse->nMem += pSort->nOBSat; 656 nKey = nExpr - pSort->nOBSat + bSeq; 657 if( bSeq ){ 658 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 659 }else{ 660 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 661 } 662 VdbeCoverage(v); 663 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 664 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 665 if( pParse->db->mallocFailed ) return; 666 pOp->p2 = nKey + nData; 667 pKI = pOp->p4.pKeyInfo; 668 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 669 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 670 testcase( pKI->nAllField > pKI->nKeyField+2 ); 671 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 672 pKI->nAllField-pKI->nKeyField-1); 673 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 674 addrJmp = sqlite3VdbeCurrentAddr(v); 675 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 676 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 677 pSort->regReturn = ++pParse->nMem; 678 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 679 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 680 if( iLimit ){ 681 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 682 VdbeCoverage(v); 683 } 684 sqlite3VdbeJumpHere(v, addrFirst); 685 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 686 sqlite3VdbeJumpHere(v, addrJmp); 687 } 688 if( iLimit ){ 689 /* At this point the values for the new sorter entry are stored 690 ** in an array of registers. They need to be composed into a record 691 ** and inserted into the sorter if either (a) there are currently 692 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 693 ** the largest record currently in the sorter. If (b) is true and there 694 ** are already LIMIT+OFFSET items in the sorter, delete the largest 695 ** entry before inserting the new one. This way there are never more 696 ** than LIMIT+OFFSET items in the sorter. 697 ** 698 ** If the new record does not need to be inserted into the sorter, 699 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 700 ** value is not zero, then it is a label of where to jump. Otherwise, 701 ** just bypass the row insert logic. See the header comment on the 702 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 703 */ 704 int iCsr = pSort->iECursor; 705 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 706 VdbeCoverage(v); 707 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 708 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 709 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 710 VdbeCoverage(v); 711 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 712 } 713 if( regRecord==0 ){ 714 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 715 } 716 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 717 op = OP_SorterInsert; 718 }else{ 719 op = OP_IdxInsert; 720 } 721 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 722 regBase+nOBSat, nBase-nOBSat); 723 if( iSkip ){ 724 sqlite3VdbeChangeP2(v, iSkip, 725 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 726 } 727 } 728 729 /* 730 ** Add code to implement the OFFSET 731 */ 732 static void codeOffset( 733 Vdbe *v, /* Generate code into this VM */ 734 int iOffset, /* Register holding the offset counter */ 735 int iContinue /* Jump here to skip the current record */ 736 ){ 737 if( iOffset>0 ){ 738 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 739 VdbeComment((v, "OFFSET")); 740 } 741 } 742 743 /* 744 ** Add code that will check to make sure the array of registers starting at 745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 747 ** are available. Which is used depends on the value of parameter eTnctType, 748 ** as follows: 749 ** 750 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 751 ** Build an ephemeral table that contains all entries seen before and 752 ** skip entries which have been seen before. 753 ** 754 ** Parameter iTab is the cursor number of an ephemeral table that must 755 ** be opened before the VM code generated by this routine is executed. 756 ** The ephemeral cursor table is queried for a record identical to the 757 ** record formed by the current array of registers. If one is found, 758 ** jump to VM address addrRepeat. Otherwise, insert a new record into 759 ** the ephemeral cursor and proceed. 760 ** 761 ** The returned value in this case is a copy of parameter iTab. 762 ** 763 ** WHERE_DISTINCT_ORDERED: 764 ** In this case rows are being delivered sorted order. The ephermal 765 ** table is not required. Instead, the current set of values 766 ** is compared against previous row. If they match, the new row 767 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 768 ** the VM program proceeds with processing the new row. 769 ** 770 ** The returned value in this case is the register number of the first 771 ** in an array of registers used to store the previous result row so that 772 ** it can be compared to the next. The caller must ensure that this 773 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 774 ** will take care of this initialization.) 775 ** 776 ** WHERE_DISTINCT_UNIQUE: 777 ** In this case it has already been determined that the rows are distinct. 778 ** No special action is required. The return value is zero. 779 ** 780 ** Parameter pEList is the list of expressions used to generated the 781 ** contents of each row. It is used by this routine to determine (a) 782 ** how many elements there are in the array of registers and (b) the 783 ** collation sequences that should be used for the comparisons if 784 ** eTnctType is WHERE_DISTINCT_ORDERED. 785 */ 786 static int codeDistinct( 787 Parse *pParse, /* Parsing and code generating context */ 788 int eTnctType, /* WHERE_DISTINCT_* value */ 789 int iTab, /* A sorting index used to test for distinctness */ 790 int addrRepeat, /* Jump to here if not distinct */ 791 ExprList *pEList, /* Expression for each element */ 792 int regElem /* First element */ 793 ){ 794 int iRet = 0; 795 int nResultCol = pEList->nExpr; 796 Vdbe *v = pParse->pVdbe; 797 798 switch( eTnctType ){ 799 case WHERE_DISTINCT_ORDERED: { 800 int i; 801 int iJump; /* Jump destination */ 802 int regPrev; /* Previous row content */ 803 804 /* Allocate space for the previous row */ 805 iRet = regPrev = pParse->nMem+1; 806 pParse->nMem += nResultCol; 807 808 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 809 for(i=0; i<nResultCol; i++){ 810 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 811 if( i<nResultCol-1 ){ 812 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 813 VdbeCoverage(v); 814 }else{ 815 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 816 VdbeCoverage(v); 817 } 818 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 819 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 820 } 821 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 822 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 823 break; 824 } 825 826 case WHERE_DISTINCT_UNIQUE: { 827 /* nothing to do */ 828 break; 829 } 830 831 default: { 832 int r1 = sqlite3GetTempReg(pParse); 833 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 834 VdbeCoverage(v); 835 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 836 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 837 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 838 sqlite3ReleaseTempReg(pParse, r1); 839 iRet = iTab; 840 break; 841 } 842 } 843 844 return iRet; 845 } 846 847 /* 848 ** This routine runs after codeDistinct(). It makes necessary 849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 850 ** routine made use of. This processing must be done separately since 851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 852 ** laid down. 853 ** 854 ** WHERE_DISTINCT_NOOP: 855 ** WHERE_DISTINCT_UNORDERED: 856 ** 857 ** No adjustments necessary. This function is a no-op. 858 ** 859 ** WHERE_DISTINCT_UNIQUE: 860 ** 861 ** The ephemeral table is not needed. So change the 862 ** OP_OpenEphemeral opcode into an OP_Noop. 863 ** 864 ** WHERE_DISTINCT_ORDERED: 865 ** 866 ** The ephemeral table is not needed. But we do need register 867 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 868 ** into an OP_Null on the iVal register. 869 */ 870 static void fixDistinctOpenEph( 871 Parse *pParse, /* Parsing and code generating context */ 872 int eTnctType, /* WHERE_DISTINCT_* value */ 873 int iVal, /* Value returned by codeDistinct() */ 874 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 875 ){ 876 if( eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED ){ 877 Vdbe *v = pParse->pVdbe; 878 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 879 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 880 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 881 } 882 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 883 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 884 ** bit on the first register of the previous value. This will cause the 885 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 886 ** the loop even if the first row is all NULLs. */ 887 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 888 pOp->opcode = OP_Null; 889 pOp->p1 = 1; 890 pOp->p2 = iVal; 891 } 892 } 893 } 894 895 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 896 /* 897 ** This function is called as part of inner-loop generation for a SELECT 898 ** statement with an ORDER BY that is not optimized by an index. It 899 ** determines the expressions, if any, that the sorter-reference 900 ** optimization should be used for. The sorter-reference optimization 901 ** is used for SELECT queries like: 902 ** 903 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 904 ** 905 ** If the optimization is used for expression "bigblob", then instead of 906 ** storing values read from that column in the sorter records, the PK of 907 ** the row from table t1 is stored instead. Then, as records are extracted from 908 ** the sorter to return to the user, the required value of bigblob is 909 ** retrieved directly from table t1. If the values are very large, this 910 ** can be more efficient than storing them directly in the sorter records. 911 ** 912 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 913 ** for which the sorter-reference optimization should be enabled. 914 ** Additionally, the pSort->aDefer[] array is populated with entries 915 ** for all cursors required to evaluate all selected expressions. Finally. 916 ** output variable (*ppExtra) is set to an expression list containing 917 ** expressions for all extra PK values that should be stored in the 918 ** sorter records. 919 */ 920 static void selectExprDefer( 921 Parse *pParse, /* Leave any error here */ 922 SortCtx *pSort, /* Sorter context */ 923 ExprList *pEList, /* Expressions destined for sorter */ 924 ExprList **ppExtra /* Expressions to append to sorter record */ 925 ){ 926 int i; 927 int nDefer = 0; 928 ExprList *pExtra = 0; 929 for(i=0; i<pEList->nExpr; i++){ 930 struct ExprList_item *pItem = &pEList->a[i]; 931 if( pItem->u.x.iOrderByCol==0 ){ 932 Expr *pExpr = pItem->pExpr; 933 Table *pTab = pExpr->y.pTab; 934 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 935 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 936 ){ 937 int j; 938 for(j=0; j<nDefer; j++){ 939 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 940 } 941 if( j==nDefer ){ 942 if( nDefer==ArraySize(pSort->aDefer) ){ 943 continue; 944 }else{ 945 int nKey = 1; 946 int k; 947 Index *pPk = 0; 948 if( !HasRowid(pTab) ){ 949 pPk = sqlite3PrimaryKeyIndex(pTab); 950 nKey = pPk->nKeyCol; 951 } 952 for(k=0; k<nKey; k++){ 953 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 954 if( pNew ){ 955 pNew->iTable = pExpr->iTable; 956 pNew->y.pTab = pExpr->y.pTab; 957 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 958 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 959 } 960 } 961 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 962 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 963 pSort->aDefer[nDefer].nKey = nKey; 964 nDefer++; 965 } 966 } 967 pItem->bSorterRef = 1; 968 } 969 } 970 } 971 pSort->nDefer = (u8)nDefer; 972 *ppExtra = pExtra; 973 } 974 #endif 975 976 /* 977 ** This routine generates the code for the inside of the inner loop 978 ** of a SELECT. 979 ** 980 ** If srcTab is negative, then the p->pEList expressions 981 ** are evaluated in order to get the data for this row. If srcTab is 982 ** zero or more, then data is pulled from srcTab and p->pEList is used only 983 ** to get the number of columns and the collation sequence for each column. 984 */ 985 static void selectInnerLoop( 986 Parse *pParse, /* The parser context */ 987 Select *p, /* The complete select statement being coded */ 988 int srcTab, /* Pull data from this table if non-negative */ 989 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 990 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 991 SelectDest *pDest, /* How to dispose of the results */ 992 int iContinue, /* Jump here to continue with next row */ 993 int iBreak /* Jump here to break out of the inner loop */ 994 ){ 995 Vdbe *v = pParse->pVdbe; 996 int i; 997 int hasDistinct; /* True if the DISTINCT keyword is present */ 998 int eDest = pDest->eDest; /* How to dispose of results */ 999 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1000 int nResultCol; /* Number of result columns */ 1001 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1002 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1003 1004 /* Usually, regResult is the first cell in an array of memory cells 1005 ** containing the current result row. In this case regOrig is set to the 1006 ** same value. However, if the results are being sent to the sorter, the 1007 ** values for any expressions that are also part of the sort-key are omitted 1008 ** from this array. In this case regOrig is set to zero. */ 1009 int regResult; /* Start of memory holding current results */ 1010 int regOrig; /* Start of memory holding full result (or 0) */ 1011 1012 assert( v ); 1013 assert( p->pEList!=0 ); 1014 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1015 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1016 if( pSort==0 && !hasDistinct ){ 1017 assert( iContinue!=0 ); 1018 codeOffset(v, p->iOffset, iContinue); 1019 } 1020 1021 /* Pull the requested columns. 1022 */ 1023 nResultCol = p->pEList->nExpr; 1024 1025 if( pDest->iSdst==0 ){ 1026 if( pSort ){ 1027 nPrefixReg = pSort->pOrderBy->nExpr; 1028 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1029 pParse->nMem += nPrefixReg; 1030 } 1031 pDest->iSdst = pParse->nMem+1; 1032 pParse->nMem += nResultCol; 1033 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1034 /* This is an error condition that can result, for example, when a SELECT 1035 ** on the right-hand side of an INSERT contains more result columns than 1036 ** there are columns in the table on the left. The error will be caught 1037 ** and reported later. But we need to make sure enough memory is allocated 1038 ** to avoid other spurious errors in the meantime. */ 1039 pParse->nMem += nResultCol; 1040 } 1041 pDest->nSdst = nResultCol; 1042 regOrig = regResult = pDest->iSdst; 1043 if( srcTab>=0 ){ 1044 for(i=0; i<nResultCol; i++){ 1045 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1046 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1047 } 1048 }else if( eDest!=SRT_Exists ){ 1049 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1050 ExprList *pExtra = 0; 1051 #endif 1052 /* If the destination is an EXISTS(...) expression, the actual 1053 ** values returned by the SELECT are not required. 1054 */ 1055 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1056 ExprList *pEList; 1057 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1058 ecelFlags = SQLITE_ECEL_DUP; 1059 }else{ 1060 ecelFlags = 0; 1061 } 1062 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1063 /* For each expression in p->pEList that is a copy of an expression in 1064 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1065 ** iOrderByCol value to one more than the index of the ORDER BY 1066 ** expression within the sort-key that pushOntoSorter() will generate. 1067 ** This allows the p->pEList field to be omitted from the sorted record, 1068 ** saving space and CPU cycles. */ 1069 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1070 1071 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1072 int j; 1073 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1074 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1075 } 1076 } 1077 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1078 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1079 if( pExtra && pParse->db->mallocFailed==0 ){ 1080 /* If there are any extra PK columns to add to the sorter records, 1081 ** allocate extra memory cells and adjust the OpenEphemeral 1082 ** instruction to account for the larger records. This is only 1083 ** required if there are one or more WITHOUT ROWID tables with 1084 ** composite primary keys in the SortCtx.aDefer[] array. */ 1085 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1086 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1087 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1088 pParse->nMem += pExtra->nExpr; 1089 } 1090 #endif 1091 1092 /* Adjust nResultCol to account for columns that are omitted 1093 ** from the sorter by the optimizations in this branch */ 1094 pEList = p->pEList; 1095 for(i=0; i<pEList->nExpr; i++){ 1096 if( pEList->a[i].u.x.iOrderByCol>0 1097 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1098 || pEList->a[i].bSorterRef 1099 #endif 1100 ){ 1101 nResultCol--; 1102 regOrig = 0; 1103 } 1104 } 1105 1106 testcase( regOrig ); 1107 testcase( eDest==SRT_Set ); 1108 testcase( eDest==SRT_Mem ); 1109 testcase( eDest==SRT_Coroutine ); 1110 testcase( eDest==SRT_Output ); 1111 assert( eDest==SRT_Set || eDest==SRT_Mem 1112 || eDest==SRT_Coroutine || eDest==SRT_Output 1113 || eDest==SRT_Upfrom ); 1114 } 1115 sRowLoadInfo.regResult = regResult; 1116 sRowLoadInfo.ecelFlags = ecelFlags; 1117 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1118 sRowLoadInfo.pExtra = pExtra; 1119 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1120 if( pExtra ) nResultCol += pExtra->nExpr; 1121 #endif 1122 if( p->iLimit 1123 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1124 && nPrefixReg>0 1125 ){ 1126 assert( pSort!=0 ); 1127 assert( hasDistinct==0 ); 1128 pSort->pDeferredRowLoad = &sRowLoadInfo; 1129 regOrig = 0; 1130 }else{ 1131 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1132 } 1133 } 1134 1135 /* If the DISTINCT keyword was present on the SELECT statement 1136 ** and this row has been seen before, then do not make this row 1137 ** part of the result. 1138 */ 1139 if( hasDistinct ){ 1140 int eType = pDistinct->eTnctType; 1141 int iTab = pDistinct->tabTnct; 1142 assert( nResultCol==p->pEList->nExpr ); 1143 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1144 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1145 if( pSort==0 ){ 1146 codeOffset(v, p->iOffset, iContinue); 1147 } 1148 } 1149 1150 switch( eDest ){ 1151 /* In this mode, write each query result to the key of the temporary 1152 ** table iParm. 1153 */ 1154 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1155 case SRT_Union: { 1156 int r1; 1157 r1 = sqlite3GetTempReg(pParse); 1158 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1159 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1160 sqlite3ReleaseTempReg(pParse, r1); 1161 break; 1162 } 1163 1164 /* Construct a record from the query result, but instead of 1165 ** saving that record, use it as a key to delete elements from 1166 ** the temporary table iParm. 1167 */ 1168 case SRT_Except: { 1169 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1170 break; 1171 } 1172 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1173 1174 /* Store the result as data using a unique key. 1175 */ 1176 case SRT_Fifo: 1177 case SRT_DistFifo: 1178 case SRT_Table: 1179 case SRT_EphemTab: { 1180 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1181 testcase( eDest==SRT_Table ); 1182 testcase( eDest==SRT_EphemTab ); 1183 testcase( eDest==SRT_Fifo ); 1184 testcase( eDest==SRT_DistFifo ); 1185 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1186 #ifndef SQLITE_OMIT_CTE 1187 if( eDest==SRT_DistFifo ){ 1188 /* If the destination is DistFifo, then cursor (iParm+1) is open 1189 ** on an ephemeral index. If the current row is already present 1190 ** in the index, do not write it to the output. If not, add the 1191 ** current row to the index and proceed with writing it to the 1192 ** output table as well. */ 1193 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1194 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1195 VdbeCoverage(v); 1196 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1197 assert( pSort==0 ); 1198 } 1199 #endif 1200 if( pSort ){ 1201 assert( regResult==regOrig ); 1202 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1203 }else{ 1204 int r2 = sqlite3GetTempReg(pParse); 1205 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1206 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1207 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1208 sqlite3ReleaseTempReg(pParse, r2); 1209 } 1210 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1211 break; 1212 } 1213 1214 case SRT_Upfrom: { 1215 if( pSort ){ 1216 pushOntoSorter( 1217 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1218 }else{ 1219 int i2 = pDest->iSDParm2; 1220 int r1 = sqlite3GetTempReg(pParse); 1221 1222 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1223 ** might still be trying to return one row, because that is what 1224 ** aggregates do. Don't record that empty row in the output table. */ 1225 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1226 1227 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1228 regResult+(i2<0), nResultCol-(i2<0), r1); 1229 if( i2<0 ){ 1230 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1231 }else{ 1232 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1233 } 1234 } 1235 break; 1236 } 1237 1238 #ifndef SQLITE_OMIT_SUBQUERY 1239 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1240 ** then there should be a single item on the stack. Write this 1241 ** item into the set table with bogus data. 1242 */ 1243 case SRT_Set: { 1244 if( pSort ){ 1245 /* At first glance you would think we could optimize out the 1246 ** ORDER BY in this case since the order of entries in the set 1247 ** does not matter. But there might be a LIMIT clause, in which 1248 ** case the order does matter */ 1249 pushOntoSorter( 1250 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1251 }else{ 1252 int r1 = sqlite3GetTempReg(pParse); 1253 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1254 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1255 r1, pDest->zAffSdst, nResultCol); 1256 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1257 sqlite3ReleaseTempReg(pParse, r1); 1258 } 1259 break; 1260 } 1261 1262 1263 /* If any row exist in the result set, record that fact and abort. 1264 */ 1265 case SRT_Exists: { 1266 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1267 /* The LIMIT clause will terminate the loop for us */ 1268 break; 1269 } 1270 1271 /* If this is a scalar select that is part of an expression, then 1272 ** store the results in the appropriate memory cell or array of 1273 ** memory cells and break out of the scan loop. 1274 */ 1275 case SRT_Mem: { 1276 if( pSort ){ 1277 assert( nResultCol<=pDest->nSdst ); 1278 pushOntoSorter( 1279 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1280 }else{ 1281 assert( nResultCol==pDest->nSdst ); 1282 assert( regResult==iParm ); 1283 /* The LIMIT clause will jump out of the loop for us */ 1284 } 1285 break; 1286 } 1287 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1288 1289 case SRT_Coroutine: /* Send data to a co-routine */ 1290 case SRT_Output: { /* Return the results */ 1291 testcase( eDest==SRT_Coroutine ); 1292 testcase( eDest==SRT_Output ); 1293 if( pSort ){ 1294 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1295 nPrefixReg); 1296 }else if( eDest==SRT_Coroutine ){ 1297 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1298 }else{ 1299 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1300 } 1301 break; 1302 } 1303 1304 #ifndef SQLITE_OMIT_CTE 1305 /* Write the results into a priority queue that is order according to 1306 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1307 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1308 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1309 ** final OP_Sequence column. The last column is the record as a blob. 1310 */ 1311 case SRT_DistQueue: 1312 case SRT_Queue: { 1313 int nKey; 1314 int r1, r2, r3; 1315 int addrTest = 0; 1316 ExprList *pSO; 1317 pSO = pDest->pOrderBy; 1318 assert( pSO ); 1319 nKey = pSO->nExpr; 1320 r1 = sqlite3GetTempReg(pParse); 1321 r2 = sqlite3GetTempRange(pParse, nKey+2); 1322 r3 = r2+nKey+1; 1323 if( eDest==SRT_DistQueue ){ 1324 /* If the destination is DistQueue, then cursor (iParm+1) is open 1325 ** on a second ephemeral index that holds all values every previously 1326 ** added to the queue. */ 1327 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1328 regResult, nResultCol); 1329 VdbeCoverage(v); 1330 } 1331 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1332 if( eDest==SRT_DistQueue ){ 1333 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1334 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1335 } 1336 for(i=0; i<nKey; i++){ 1337 sqlite3VdbeAddOp2(v, OP_SCopy, 1338 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1339 r2+i); 1340 } 1341 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1342 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1343 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1344 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1345 sqlite3ReleaseTempReg(pParse, r1); 1346 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1347 break; 1348 } 1349 #endif /* SQLITE_OMIT_CTE */ 1350 1351 1352 1353 #if !defined(SQLITE_OMIT_TRIGGER) 1354 /* Discard the results. This is used for SELECT statements inside 1355 ** the body of a TRIGGER. The purpose of such selects is to call 1356 ** user-defined functions that have side effects. We do not care 1357 ** about the actual results of the select. 1358 */ 1359 default: { 1360 assert( eDest==SRT_Discard ); 1361 break; 1362 } 1363 #endif 1364 } 1365 1366 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1367 ** there is a sorter, in which case the sorter has already limited 1368 ** the output for us. 1369 */ 1370 if( pSort==0 && p->iLimit ){ 1371 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1372 } 1373 } 1374 1375 /* 1376 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1377 ** X extra columns. 1378 */ 1379 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1380 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1381 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1382 if( p ){ 1383 p->aSortFlags = (u8*)&p->aColl[N+X]; 1384 p->nKeyField = (u16)N; 1385 p->nAllField = (u16)(N+X); 1386 p->enc = ENC(db); 1387 p->db = db; 1388 p->nRef = 1; 1389 memset(&p[1], 0, nExtra); 1390 }else{ 1391 sqlite3OomFault(db); 1392 } 1393 return p; 1394 } 1395 1396 /* 1397 ** Deallocate a KeyInfo object 1398 */ 1399 void sqlite3KeyInfoUnref(KeyInfo *p){ 1400 if( p ){ 1401 assert( p->nRef>0 ); 1402 p->nRef--; 1403 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1404 } 1405 } 1406 1407 /* 1408 ** Make a new pointer to a KeyInfo object 1409 */ 1410 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1411 if( p ){ 1412 assert( p->nRef>0 ); 1413 p->nRef++; 1414 } 1415 return p; 1416 } 1417 1418 #ifdef SQLITE_DEBUG 1419 /* 1420 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1421 ** can only be changed if this is just a single reference to the object. 1422 ** 1423 ** This routine is used only inside of assert() statements. 1424 */ 1425 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1426 #endif /* SQLITE_DEBUG */ 1427 1428 /* 1429 ** Given an expression list, generate a KeyInfo structure that records 1430 ** the collating sequence for each expression in that expression list. 1431 ** 1432 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1433 ** KeyInfo structure is appropriate for initializing a virtual index to 1434 ** implement that clause. If the ExprList is the result set of a SELECT 1435 ** then the KeyInfo structure is appropriate for initializing a virtual 1436 ** index to implement a DISTINCT test. 1437 ** 1438 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1439 ** function is responsible for seeing that this structure is eventually 1440 ** freed. 1441 */ 1442 KeyInfo *sqlite3KeyInfoFromExprList( 1443 Parse *pParse, /* Parsing context */ 1444 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1445 int iStart, /* Begin with this column of pList */ 1446 int nExtra /* Add this many extra columns to the end */ 1447 ){ 1448 int nExpr; 1449 KeyInfo *pInfo; 1450 struct ExprList_item *pItem; 1451 sqlite3 *db = pParse->db; 1452 int i; 1453 1454 nExpr = pList->nExpr; 1455 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1456 if( pInfo ){ 1457 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1458 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1459 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1460 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1461 } 1462 } 1463 return pInfo; 1464 } 1465 1466 /* 1467 ** Name of the connection operator, used for error messages. 1468 */ 1469 const char *sqlite3SelectOpName(int id){ 1470 char *z; 1471 switch( id ){ 1472 case TK_ALL: z = "UNION ALL"; break; 1473 case TK_INTERSECT: z = "INTERSECT"; break; 1474 case TK_EXCEPT: z = "EXCEPT"; break; 1475 default: z = "UNION"; break; 1476 } 1477 return z; 1478 } 1479 1480 #ifndef SQLITE_OMIT_EXPLAIN 1481 /* 1482 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1483 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1484 ** where the caption is of the form: 1485 ** 1486 ** "USE TEMP B-TREE FOR xxx" 1487 ** 1488 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1489 ** is determined by the zUsage argument. 1490 */ 1491 static void explainTempTable(Parse *pParse, const char *zUsage){ 1492 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1493 } 1494 1495 /* 1496 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1497 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1498 ** in sqlite3Select() to assign values to structure member variables that 1499 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1500 ** code with #ifndef directives. 1501 */ 1502 # define explainSetInteger(a, b) a = b 1503 1504 #else 1505 /* No-op versions of the explainXXX() functions and macros. */ 1506 # define explainTempTable(y,z) 1507 # define explainSetInteger(y,z) 1508 #endif 1509 1510 1511 /* 1512 ** If the inner loop was generated using a non-null pOrderBy argument, 1513 ** then the results were placed in a sorter. After the loop is terminated 1514 ** we need to run the sorter and output the results. The following 1515 ** routine generates the code needed to do that. 1516 */ 1517 static void generateSortTail( 1518 Parse *pParse, /* Parsing context */ 1519 Select *p, /* The SELECT statement */ 1520 SortCtx *pSort, /* Information on the ORDER BY clause */ 1521 int nColumn, /* Number of columns of data */ 1522 SelectDest *pDest /* Write the sorted results here */ 1523 ){ 1524 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1525 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1526 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1527 int addr; /* Top of output loop. Jump for Next. */ 1528 int addrOnce = 0; 1529 int iTab; 1530 ExprList *pOrderBy = pSort->pOrderBy; 1531 int eDest = pDest->eDest; 1532 int iParm = pDest->iSDParm; 1533 int regRow; 1534 int regRowid; 1535 int iCol; 1536 int nKey; /* Number of key columns in sorter record */ 1537 int iSortTab; /* Sorter cursor to read from */ 1538 int i; 1539 int bSeq; /* True if sorter record includes seq. no. */ 1540 int nRefKey = 0; 1541 struct ExprList_item *aOutEx = p->pEList->a; 1542 1543 assert( addrBreak<0 ); 1544 if( pSort->labelBkOut ){ 1545 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1546 sqlite3VdbeGoto(v, addrBreak); 1547 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1548 } 1549 1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1551 /* Open any cursors needed for sorter-reference expressions */ 1552 for(i=0; i<pSort->nDefer; i++){ 1553 Table *pTab = pSort->aDefer[i].pTab; 1554 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1555 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1556 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1557 } 1558 #endif 1559 1560 iTab = pSort->iECursor; 1561 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1562 regRowid = 0; 1563 regRow = pDest->iSdst; 1564 }else{ 1565 regRowid = sqlite3GetTempReg(pParse); 1566 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1567 regRow = sqlite3GetTempReg(pParse); 1568 nColumn = 0; 1569 }else{ 1570 regRow = sqlite3GetTempRange(pParse, nColumn); 1571 } 1572 } 1573 nKey = pOrderBy->nExpr - pSort->nOBSat; 1574 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1575 int regSortOut = ++pParse->nMem; 1576 iSortTab = pParse->nTab++; 1577 if( pSort->labelBkOut ){ 1578 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1579 } 1580 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1581 nKey+1+nColumn+nRefKey); 1582 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1583 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1584 VdbeCoverage(v); 1585 codeOffset(v, p->iOffset, addrContinue); 1586 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1587 bSeq = 0; 1588 }else{ 1589 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1590 codeOffset(v, p->iOffset, addrContinue); 1591 iSortTab = iTab; 1592 bSeq = 1; 1593 } 1594 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1595 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1596 if( aOutEx[i].bSorterRef ) continue; 1597 #endif 1598 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1599 } 1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1601 if( pSort->nDefer ){ 1602 int iKey = iCol+1; 1603 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1604 1605 for(i=0; i<pSort->nDefer; i++){ 1606 int iCsr = pSort->aDefer[i].iCsr; 1607 Table *pTab = pSort->aDefer[i].pTab; 1608 int nKey = pSort->aDefer[i].nKey; 1609 1610 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1611 if( HasRowid(pTab) ){ 1612 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1613 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1614 sqlite3VdbeCurrentAddr(v)+1, regKey); 1615 }else{ 1616 int k; 1617 int iJmp; 1618 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1619 for(k=0; k<nKey; k++){ 1620 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1621 } 1622 iJmp = sqlite3VdbeCurrentAddr(v); 1623 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1624 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1625 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1626 } 1627 } 1628 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1629 } 1630 #endif 1631 for(i=nColumn-1; i>=0; i--){ 1632 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1633 if( aOutEx[i].bSorterRef ){ 1634 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1635 }else 1636 #endif 1637 { 1638 int iRead; 1639 if( aOutEx[i].u.x.iOrderByCol ){ 1640 iRead = aOutEx[i].u.x.iOrderByCol-1; 1641 }else{ 1642 iRead = iCol--; 1643 } 1644 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1645 VdbeComment((v, "%s", aOutEx[i].zEName)); 1646 } 1647 } 1648 switch( eDest ){ 1649 case SRT_Table: 1650 case SRT_EphemTab: { 1651 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1652 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1653 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1654 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1655 break; 1656 } 1657 #ifndef SQLITE_OMIT_SUBQUERY 1658 case SRT_Set: { 1659 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1660 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1661 pDest->zAffSdst, nColumn); 1662 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1663 break; 1664 } 1665 case SRT_Mem: { 1666 /* The LIMIT clause will terminate the loop for us */ 1667 break; 1668 } 1669 #endif 1670 case SRT_Upfrom: { 1671 int i2 = pDest->iSDParm2; 1672 int r1 = sqlite3GetTempReg(pParse); 1673 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1674 if( i2<0 ){ 1675 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1676 }else{ 1677 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1678 } 1679 break; 1680 } 1681 default: { 1682 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1683 testcase( eDest==SRT_Output ); 1684 testcase( eDest==SRT_Coroutine ); 1685 if( eDest==SRT_Output ){ 1686 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1687 }else{ 1688 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1689 } 1690 break; 1691 } 1692 } 1693 if( regRowid ){ 1694 if( eDest==SRT_Set ){ 1695 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1696 }else{ 1697 sqlite3ReleaseTempReg(pParse, regRow); 1698 } 1699 sqlite3ReleaseTempReg(pParse, regRowid); 1700 } 1701 /* The bottom of the loop 1702 */ 1703 sqlite3VdbeResolveLabel(v, addrContinue); 1704 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1705 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1706 }else{ 1707 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1708 } 1709 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1710 sqlite3VdbeResolveLabel(v, addrBreak); 1711 } 1712 1713 /* 1714 ** Return a pointer to a string containing the 'declaration type' of the 1715 ** expression pExpr. The string may be treated as static by the caller. 1716 ** 1717 ** Also try to estimate the size of the returned value and return that 1718 ** result in *pEstWidth. 1719 ** 1720 ** The declaration type is the exact datatype definition extracted from the 1721 ** original CREATE TABLE statement if the expression is a column. The 1722 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1723 ** is considered a column can be complex in the presence of subqueries. The 1724 ** result-set expression in all of the following SELECT statements is 1725 ** considered a column by this function. 1726 ** 1727 ** SELECT col FROM tbl; 1728 ** SELECT (SELECT col FROM tbl; 1729 ** SELECT (SELECT col FROM tbl); 1730 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1731 ** 1732 ** The declaration type for any expression other than a column is NULL. 1733 ** 1734 ** This routine has either 3 or 6 parameters depending on whether or not 1735 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1736 */ 1737 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1738 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1739 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1741 #endif 1742 static const char *columnTypeImpl( 1743 NameContext *pNC, 1744 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1745 Expr *pExpr 1746 #else 1747 Expr *pExpr, 1748 const char **pzOrigDb, 1749 const char **pzOrigTab, 1750 const char **pzOrigCol 1751 #endif 1752 ){ 1753 char const *zType = 0; 1754 int j; 1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1756 char const *zOrigDb = 0; 1757 char const *zOrigTab = 0; 1758 char const *zOrigCol = 0; 1759 #endif 1760 1761 assert( pExpr!=0 ); 1762 assert( pNC->pSrcList!=0 ); 1763 switch( pExpr->op ){ 1764 case TK_COLUMN: { 1765 /* The expression is a column. Locate the table the column is being 1766 ** extracted from in NameContext.pSrcList. This table may be real 1767 ** database table or a subquery. 1768 */ 1769 Table *pTab = 0; /* Table structure column is extracted from */ 1770 Select *pS = 0; /* Select the column is extracted from */ 1771 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1772 while( pNC && !pTab ){ 1773 SrcList *pTabList = pNC->pSrcList; 1774 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1775 if( j<pTabList->nSrc ){ 1776 pTab = pTabList->a[j].pTab; 1777 pS = pTabList->a[j].pSelect; 1778 }else{ 1779 pNC = pNC->pNext; 1780 } 1781 } 1782 1783 if( pTab==0 ){ 1784 /* At one time, code such as "SELECT new.x" within a trigger would 1785 ** cause this condition to run. Since then, we have restructured how 1786 ** trigger code is generated and so this condition is no longer 1787 ** possible. However, it can still be true for statements like 1788 ** the following: 1789 ** 1790 ** CREATE TABLE t1(col INTEGER); 1791 ** SELECT (SELECT t1.col) FROM FROM t1; 1792 ** 1793 ** when columnType() is called on the expression "t1.col" in the 1794 ** sub-select. In this case, set the column type to NULL, even 1795 ** though it should really be "INTEGER". 1796 ** 1797 ** This is not a problem, as the column type of "t1.col" is never 1798 ** used. When columnType() is called on the expression 1799 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1800 ** branch below. */ 1801 break; 1802 } 1803 1804 assert( pTab && pExpr->y.pTab==pTab ); 1805 if( pS ){ 1806 /* The "table" is actually a sub-select or a view in the FROM clause 1807 ** of the SELECT statement. Return the declaration type and origin 1808 ** data for the result-set column of the sub-select. 1809 */ 1810 if( iCol<pS->pEList->nExpr 1811 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1812 && iCol>=0 1813 #else 1814 && ALWAYS(iCol>=0) 1815 #endif 1816 ){ 1817 /* If iCol is less than zero, then the expression requests the 1818 ** rowid of the sub-select or view. This expression is legal (see 1819 ** test case misc2.2.2) - it always evaluates to NULL. 1820 */ 1821 NameContext sNC; 1822 Expr *p = pS->pEList->a[iCol].pExpr; 1823 sNC.pSrcList = pS->pSrc; 1824 sNC.pNext = pNC; 1825 sNC.pParse = pNC->pParse; 1826 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1827 } 1828 }else{ 1829 /* A real table or a CTE table */ 1830 assert( !pS ); 1831 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1832 if( iCol<0 ) iCol = pTab->iPKey; 1833 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1834 if( iCol<0 ){ 1835 zType = "INTEGER"; 1836 zOrigCol = "rowid"; 1837 }else{ 1838 zOrigCol = pTab->aCol[iCol].zName; 1839 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1840 } 1841 zOrigTab = pTab->zName; 1842 if( pNC->pParse && pTab->pSchema ){ 1843 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1844 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1845 } 1846 #else 1847 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1848 if( iCol<0 ){ 1849 zType = "INTEGER"; 1850 }else{ 1851 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1852 } 1853 #endif 1854 } 1855 break; 1856 } 1857 #ifndef SQLITE_OMIT_SUBQUERY 1858 case TK_SELECT: { 1859 /* The expression is a sub-select. Return the declaration type and 1860 ** origin info for the single column in the result set of the SELECT 1861 ** statement. 1862 */ 1863 NameContext sNC; 1864 Select *pS = pExpr->x.pSelect; 1865 Expr *p = pS->pEList->a[0].pExpr; 1866 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1867 sNC.pSrcList = pS->pSrc; 1868 sNC.pNext = pNC; 1869 sNC.pParse = pNC->pParse; 1870 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1871 break; 1872 } 1873 #endif 1874 } 1875 1876 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1877 if( pzOrigDb ){ 1878 assert( pzOrigTab && pzOrigCol ); 1879 *pzOrigDb = zOrigDb; 1880 *pzOrigTab = zOrigTab; 1881 *pzOrigCol = zOrigCol; 1882 } 1883 #endif 1884 return zType; 1885 } 1886 1887 /* 1888 ** Generate code that will tell the VDBE the declaration types of columns 1889 ** in the result set. 1890 */ 1891 static void generateColumnTypes( 1892 Parse *pParse, /* Parser context */ 1893 SrcList *pTabList, /* List of tables */ 1894 ExprList *pEList /* Expressions defining the result set */ 1895 ){ 1896 #ifndef SQLITE_OMIT_DECLTYPE 1897 Vdbe *v = pParse->pVdbe; 1898 int i; 1899 NameContext sNC; 1900 sNC.pSrcList = pTabList; 1901 sNC.pParse = pParse; 1902 sNC.pNext = 0; 1903 for(i=0; i<pEList->nExpr; i++){ 1904 Expr *p = pEList->a[i].pExpr; 1905 const char *zType; 1906 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1907 const char *zOrigDb = 0; 1908 const char *zOrigTab = 0; 1909 const char *zOrigCol = 0; 1910 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1911 1912 /* The vdbe must make its own copy of the column-type and other 1913 ** column specific strings, in case the schema is reset before this 1914 ** virtual machine is deleted. 1915 */ 1916 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1917 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1918 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1919 #else 1920 zType = columnType(&sNC, p, 0, 0, 0); 1921 #endif 1922 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1923 } 1924 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1925 } 1926 1927 1928 /* 1929 ** Compute the column names for a SELECT statement. 1930 ** 1931 ** The only guarantee that SQLite makes about column names is that if the 1932 ** column has an AS clause assigning it a name, that will be the name used. 1933 ** That is the only documented guarantee. However, countless applications 1934 ** developed over the years have made baseless assumptions about column names 1935 ** and will break if those assumptions changes. Hence, use extreme caution 1936 ** when modifying this routine to avoid breaking legacy. 1937 ** 1938 ** See Also: sqlite3ColumnsFromExprList() 1939 ** 1940 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1941 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1942 ** applications should operate this way. Nevertheless, we need to support the 1943 ** other modes for legacy: 1944 ** 1945 ** short=OFF, full=OFF: Column name is the text of the expression has it 1946 ** originally appears in the SELECT statement. In 1947 ** other words, the zSpan of the result expression. 1948 ** 1949 ** short=ON, full=OFF: (This is the default setting). If the result 1950 ** refers directly to a table column, then the 1951 ** result column name is just the table column 1952 ** name: COLUMN. Otherwise use zSpan. 1953 ** 1954 ** full=ON, short=ANY: If the result refers directly to a table column, 1955 ** then the result column name with the table name 1956 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1957 */ 1958 static void generateColumnNames( 1959 Parse *pParse, /* Parser context */ 1960 Select *pSelect /* Generate column names for this SELECT statement */ 1961 ){ 1962 Vdbe *v = pParse->pVdbe; 1963 int i; 1964 Table *pTab; 1965 SrcList *pTabList; 1966 ExprList *pEList; 1967 sqlite3 *db = pParse->db; 1968 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1969 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1970 1971 #ifndef SQLITE_OMIT_EXPLAIN 1972 /* If this is an EXPLAIN, skip this step */ 1973 if( pParse->explain ){ 1974 return; 1975 } 1976 #endif 1977 1978 if( pParse->colNamesSet ) return; 1979 /* Column names are determined by the left-most term of a compound select */ 1980 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1981 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1982 pTabList = pSelect->pSrc; 1983 pEList = pSelect->pEList; 1984 assert( v!=0 ); 1985 assert( pTabList!=0 ); 1986 pParse->colNamesSet = 1; 1987 fullName = (db->flags & SQLITE_FullColNames)!=0; 1988 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1989 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1990 for(i=0; i<pEList->nExpr; i++){ 1991 Expr *p = pEList->a[i].pExpr; 1992 1993 assert( p!=0 ); 1994 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 1995 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 1996 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 1997 /* An AS clause always takes first priority */ 1998 char *zName = pEList->a[i].zEName; 1999 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2000 }else if( srcName && p->op==TK_COLUMN ){ 2001 char *zCol; 2002 int iCol = p->iColumn; 2003 pTab = p->y.pTab; 2004 assert( pTab!=0 ); 2005 if( iCol<0 ) iCol = pTab->iPKey; 2006 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2007 if( iCol<0 ){ 2008 zCol = "rowid"; 2009 }else{ 2010 zCol = pTab->aCol[iCol].zName; 2011 } 2012 if( fullName ){ 2013 char *zName = 0; 2014 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2015 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2016 }else{ 2017 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2018 } 2019 }else{ 2020 const char *z = pEList->a[i].zEName; 2021 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2022 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2023 } 2024 } 2025 generateColumnTypes(pParse, pTabList, pEList); 2026 } 2027 2028 /* 2029 ** Given an expression list (which is really the list of expressions 2030 ** that form the result set of a SELECT statement) compute appropriate 2031 ** column names for a table that would hold the expression list. 2032 ** 2033 ** All column names will be unique. 2034 ** 2035 ** Only the column names are computed. Column.zType, Column.zColl, 2036 ** and other fields of Column are zeroed. 2037 ** 2038 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2039 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2040 ** 2041 ** The only guarantee that SQLite makes about column names is that if the 2042 ** column has an AS clause assigning it a name, that will be the name used. 2043 ** That is the only documented guarantee. However, countless applications 2044 ** developed over the years have made baseless assumptions about column names 2045 ** and will break if those assumptions changes. Hence, use extreme caution 2046 ** when modifying this routine to avoid breaking legacy. 2047 ** 2048 ** See Also: generateColumnNames() 2049 */ 2050 int sqlite3ColumnsFromExprList( 2051 Parse *pParse, /* Parsing context */ 2052 ExprList *pEList, /* Expr list from which to derive column names */ 2053 i16 *pnCol, /* Write the number of columns here */ 2054 Column **paCol /* Write the new column list here */ 2055 ){ 2056 sqlite3 *db = pParse->db; /* Database connection */ 2057 int i, j; /* Loop counters */ 2058 u32 cnt; /* Index added to make the name unique */ 2059 Column *aCol, *pCol; /* For looping over result columns */ 2060 int nCol; /* Number of columns in the result set */ 2061 char *zName; /* Column name */ 2062 int nName; /* Size of name in zName[] */ 2063 Hash ht; /* Hash table of column names */ 2064 Table *pTab; 2065 2066 sqlite3HashInit(&ht); 2067 if( pEList ){ 2068 nCol = pEList->nExpr; 2069 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2070 testcase( aCol==0 ); 2071 if( NEVER(nCol>32767) ) nCol = 32767; 2072 }else{ 2073 nCol = 0; 2074 aCol = 0; 2075 } 2076 assert( nCol==(i16)nCol ); 2077 *pnCol = nCol; 2078 *paCol = aCol; 2079 2080 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2081 /* Get an appropriate name for the column 2082 */ 2083 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2084 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2085 }else{ 2086 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2087 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2088 pColExpr = pColExpr->pRight; 2089 assert( pColExpr!=0 ); 2090 } 2091 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2092 /* For columns use the column name name */ 2093 int iCol = pColExpr->iColumn; 2094 if( iCol<0 ) iCol = pTab->iPKey; 2095 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; 2096 }else if( pColExpr->op==TK_ID ){ 2097 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2098 zName = pColExpr->u.zToken; 2099 }else{ 2100 /* Use the original text of the column expression as its name */ 2101 zName = pEList->a[i].zEName; 2102 } 2103 } 2104 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2105 zName = sqlite3DbStrDup(db, zName); 2106 }else{ 2107 zName = sqlite3MPrintf(db,"column%d",i+1); 2108 } 2109 2110 /* Make sure the column name is unique. If the name is not unique, 2111 ** append an integer to the name so that it becomes unique. 2112 */ 2113 cnt = 0; 2114 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2115 nName = sqlite3Strlen30(zName); 2116 if( nName>0 ){ 2117 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2118 if( zName[j]==':' ) nName = j; 2119 } 2120 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2121 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2122 } 2123 pCol->zName = zName; 2124 pCol->hName = sqlite3StrIHash(zName); 2125 sqlite3ColumnPropertiesFromName(0, pCol); 2126 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2127 sqlite3OomFault(db); 2128 } 2129 } 2130 sqlite3HashClear(&ht); 2131 if( db->mallocFailed ){ 2132 for(j=0; j<i; j++){ 2133 sqlite3DbFree(db, aCol[j].zName); 2134 } 2135 sqlite3DbFree(db, aCol); 2136 *paCol = 0; 2137 *pnCol = 0; 2138 return SQLITE_NOMEM_BKPT; 2139 } 2140 return SQLITE_OK; 2141 } 2142 2143 /* 2144 ** Add type and collation information to a column list based on 2145 ** a SELECT statement. 2146 ** 2147 ** The column list presumably came from selectColumnNamesFromExprList(). 2148 ** The column list has only names, not types or collations. This 2149 ** routine goes through and adds the types and collations. 2150 ** 2151 ** This routine requires that all identifiers in the SELECT 2152 ** statement be resolved. 2153 */ 2154 void sqlite3SelectAddColumnTypeAndCollation( 2155 Parse *pParse, /* Parsing contexts */ 2156 Table *pTab, /* Add column type information to this table */ 2157 Select *pSelect, /* SELECT used to determine types and collations */ 2158 char aff /* Default affinity for columns */ 2159 ){ 2160 sqlite3 *db = pParse->db; 2161 NameContext sNC; 2162 Column *pCol; 2163 CollSeq *pColl; 2164 int i; 2165 Expr *p; 2166 struct ExprList_item *a; 2167 2168 assert( pSelect!=0 ); 2169 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2170 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2171 if( db->mallocFailed ) return; 2172 memset(&sNC, 0, sizeof(sNC)); 2173 sNC.pSrcList = pSelect->pSrc; 2174 a = pSelect->pEList->a; 2175 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2176 const char *zType; 2177 int n, m; 2178 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2179 p = a[i].pExpr; 2180 zType = columnType(&sNC, p, 0, 0, 0); 2181 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2182 pCol->affinity = sqlite3ExprAffinity(p); 2183 if( zType ){ 2184 m = sqlite3Strlen30(zType); 2185 n = sqlite3Strlen30(pCol->zName); 2186 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2); 2187 if( pCol->zName ){ 2188 memcpy(&pCol->zName[n+1], zType, m+1); 2189 pCol->colFlags |= COLFLAG_HASTYPE; 2190 } 2191 } 2192 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2193 pColl = sqlite3ExprCollSeq(pParse, p); 2194 if( pColl && pCol->zColl==0 ){ 2195 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 2196 } 2197 } 2198 pTab->szTabRow = 1; /* Any non-zero value works */ 2199 } 2200 2201 /* 2202 ** Given a SELECT statement, generate a Table structure that describes 2203 ** the result set of that SELECT. 2204 */ 2205 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2206 Table *pTab; 2207 sqlite3 *db = pParse->db; 2208 u64 savedFlags; 2209 2210 savedFlags = db->flags; 2211 db->flags &= ~(u64)SQLITE_FullColNames; 2212 db->flags |= SQLITE_ShortColNames; 2213 sqlite3SelectPrep(pParse, pSelect, 0); 2214 db->flags = savedFlags; 2215 if( pParse->nErr ) return 0; 2216 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2217 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2218 if( pTab==0 ){ 2219 return 0; 2220 } 2221 pTab->nTabRef = 1; 2222 pTab->zName = 0; 2223 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2224 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2225 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2226 pTab->iPKey = -1; 2227 if( db->mallocFailed ){ 2228 sqlite3DeleteTable(db, pTab); 2229 return 0; 2230 } 2231 return pTab; 2232 } 2233 2234 /* 2235 ** Get a VDBE for the given parser context. Create a new one if necessary. 2236 ** If an error occurs, return NULL and leave a message in pParse. 2237 */ 2238 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2239 if( pParse->pVdbe ){ 2240 return pParse->pVdbe; 2241 } 2242 if( pParse->pToplevel==0 2243 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2244 ){ 2245 pParse->okConstFactor = 1; 2246 } 2247 return sqlite3VdbeCreate(pParse); 2248 } 2249 2250 2251 /* 2252 ** Compute the iLimit and iOffset fields of the SELECT based on the 2253 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2254 ** that appear in the original SQL statement after the LIMIT and OFFSET 2255 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2256 ** are the integer memory register numbers for counters used to compute 2257 ** the limit and offset. If there is no limit and/or offset, then 2258 ** iLimit and iOffset are negative. 2259 ** 2260 ** This routine changes the values of iLimit and iOffset only if 2261 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2262 ** and iOffset should have been preset to appropriate default values (zero) 2263 ** prior to calling this routine. 2264 ** 2265 ** The iOffset register (if it exists) is initialized to the value 2266 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2267 ** iOffset+1 is initialized to LIMIT+OFFSET. 2268 ** 2269 ** Only if pLimit->pLeft!=0 do the limit registers get 2270 ** redefined. The UNION ALL operator uses this property to force 2271 ** the reuse of the same limit and offset registers across multiple 2272 ** SELECT statements. 2273 */ 2274 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2275 Vdbe *v = 0; 2276 int iLimit = 0; 2277 int iOffset; 2278 int n; 2279 Expr *pLimit = p->pLimit; 2280 2281 if( p->iLimit ) return; 2282 2283 /* 2284 ** "LIMIT -1" always shows all rows. There is some 2285 ** controversy about what the correct behavior should be. 2286 ** The current implementation interprets "LIMIT 0" to mean 2287 ** no rows. 2288 */ 2289 if( pLimit ){ 2290 assert( pLimit->op==TK_LIMIT ); 2291 assert( pLimit->pLeft!=0 ); 2292 p->iLimit = iLimit = ++pParse->nMem; 2293 v = sqlite3GetVdbe(pParse); 2294 assert( v!=0 ); 2295 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2296 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2297 VdbeComment((v, "LIMIT counter")); 2298 if( n==0 ){ 2299 sqlite3VdbeGoto(v, iBreak); 2300 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2301 p->nSelectRow = sqlite3LogEst((u64)n); 2302 p->selFlags |= SF_FixedLimit; 2303 } 2304 }else{ 2305 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2306 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2307 VdbeComment((v, "LIMIT counter")); 2308 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2309 } 2310 if( pLimit->pRight ){ 2311 p->iOffset = iOffset = ++pParse->nMem; 2312 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2313 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2314 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2315 VdbeComment((v, "OFFSET counter")); 2316 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2317 VdbeComment((v, "LIMIT+OFFSET")); 2318 } 2319 } 2320 } 2321 2322 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2323 /* 2324 ** Return the appropriate collating sequence for the iCol-th column of 2325 ** the result set for the compound-select statement "p". Return NULL if 2326 ** the column has no default collating sequence. 2327 ** 2328 ** The collating sequence for the compound select is taken from the 2329 ** left-most term of the select that has a collating sequence. 2330 */ 2331 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2332 CollSeq *pRet; 2333 if( p->pPrior ){ 2334 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2335 }else{ 2336 pRet = 0; 2337 } 2338 assert( iCol>=0 ); 2339 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2340 ** have been thrown during name resolution and we would not have gotten 2341 ** this far */ 2342 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2343 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2344 } 2345 return pRet; 2346 } 2347 2348 /* 2349 ** The select statement passed as the second parameter is a compound SELECT 2350 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2351 ** structure suitable for implementing the ORDER BY. 2352 ** 2353 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2354 ** function is responsible for ensuring that this structure is eventually 2355 ** freed. 2356 */ 2357 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2358 ExprList *pOrderBy = p->pOrderBy; 2359 int nOrderBy = p->pOrderBy->nExpr; 2360 sqlite3 *db = pParse->db; 2361 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2362 if( pRet ){ 2363 int i; 2364 for(i=0; i<nOrderBy; i++){ 2365 struct ExprList_item *pItem = &pOrderBy->a[i]; 2366 Expr *pTerm = pItem->pExpr; 2367 CollSeq *pColl; 2368 2369 if( pTerm->flags & EP_Collate ){ 2370 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2371 }else{ 2372 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2373 if( pColl==0 ) pColl = db->pDfltColl; 2374 pOrderBy->a[i].pExpr = 2375 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2376 } 2377 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2378 pRet->aColl[i] = pColl; 2379 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2380 } 2381 } 2382 2383 return pRet; 2384 } 2385 2386 #ifndef SQLITE_OMIT_CTE 2387 /* 2388 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2389 ** query of the form: 2390 ** 2391 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2392 ** \___________/ \_______________/ 2393 ** p->pPrior p 2394 ** 2395 ** 2396 ** There is exactly one reference to the recursive-table in the FROM clause 2397 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2398 ** 2399 ** The setup-query runs once to generate an initial set of rows that go 2400 ** into a Queue table. Rows are extracted from the Queue table one by 2401 ** one. Each row extracted from Queue is output to pDest. Then the single 2402 ** extracted row (now in the iCurrent table) becomes the content of the 2403 ** recursive-table for a recursive-query run. The output of the recursive-query 2404 ** is added back into the Queue table. Then another row is extracted from Queue 2405 ** and the iteration continues until the Queue table is empty. 2406 ** 2407 ** If the compound query operator is UNION then no duplicate rows are ever 2408 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2409 ** that have ever been inserted into Queue and causes duplicates to be 2410 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2411 ** 2412 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2413 ** ORDER BY order and the first entry is extracted for each cycle. Without 2414 ** an ORDER BY, the Queue table is just a FIFO. 2415 ** 2416 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2417 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2418 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2419 ** with a positive value, then the first OFFSET outputs are discarded rather 2420 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2421 ** rows have been skipped. 2422 */ 2423 static void generateWithRecursiveQuery( 2424 Parse *pParse, /* Parsing context */ 2425 Select *p, /* The recursive SELECT to be coded */ 2426 SelectDest *pDest /* What to do with query results */ 2427 ){ 2428 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2429 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2430 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2431 Select *pSetup = p->pPrior; /* The setup query */ 2432 Select *pFirstRec; /* Left-most recursive term */ 2433 int addrTop; /* Top of the loop */ 2434 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2435 int iCurrent = 0; /* The Current table */ 2436 int regCurrent; /* Register holding Current table */ 2437 int iQueue; /* The Queue table */ 2438 int iDistinct = 0; /* To ensure unique results if UNION */ 2439 int eDest = SRT_Fifo; /* How to write to Queue */ 2440 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2441 int i; /* Loop counter */ 2442 int rc; /* Result code */ 2443 ExprList *pOrderBy; /* The ORDER BY clause */ 2444 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2445 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2446 2447 #ifndef SQLITE_OMIT_WINDOWFUNC 2448 if( p->pWin ){ 2449 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2450 return; 2451 } 2452 #endif 2453 2454 /* Obtain authorization to do a recursive query */ 2455 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2456 2457 /* Process the LIMIT and OFFSET clauses, if they exist */ 2458 addrBreak = sqlite3VdbeMakeLabel(pParse); 2459 p->nSelectRow = 320; /* 4 billion rows */ 2460 computeLimitRegisters(pParse, p, addrBreak); 2461 pLimit = p->pLimit; 2462 regLimit = p->iLimit; 2463 regOffset = p->iOffset; 2464 p->pLimit = 0; 2465 p->iLimit = p->iOffset = 0; 2466 pOrderBy = p->pOrderBy; 2467 2468 /* Locate the cursor number of the Current table */ 2469 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2470 if( pSrc->a[i].fg.isRecursive ){ 2471 iCurrent = pSrc->a[i].iCursor; 2472 break; 2473 } 2474 } 2475 2476 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2477 ** the Distinct table must be exactly one greater than Queue in order 2478 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2479 iQueue = pParse->nTab++; 2480 if( p->op==TK_UNION ){ 2481 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2482 iDistinct = pParse->nTab++; 2483 }else{ 2484 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2485 } 2486 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2487 2488 /* Allocate cursors for Current, Queue, and Distinct. */ 2489 regCurrent = ++pParse->nMem; 2490 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2491 if( pOrderBy ){ 2492 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2493 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2494 (char*)pKeyInfo, P4_KEYINFO); 2495 destQueue.pOrderBy = pOrderBy; 2496 }else{ 2497 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2498 } 2499 VdbeComment((v, "Queue table")); 2500 if( iDistinct ){ 2501 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2502 p->selFlags |= SF_UsesEphemeral; 2503 } 2504 2505 /* Detach the ORDER BY clause from the compound SELECT */ 2506 p->pOrderBy = 0; 2507 2508 /* Figure out how many elements of the compound SELECT are part of the 2509 ** recursive query. Make sure no recursive elements use aggregate 2510 ** functions. Mark the recursive elements as UNION ALL even if they 2511 ** are really UNION because the distinctness will be enforced by the 2512 ** iDistinct table. pFirstRec is left pointing to the left-most 2513 ** recursive term of the CTE. 2514 */ 2515 pFirstRec = p; 2516 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2517 if( pFirstRec->selFlags & SF_Aggregate ){ 2518 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2519 goto end_of_recursive_query; 2520 } 2521 pFirstRec->op = TK_ALL; 2522 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2523 } 2524 2525 /* Store the results of the setup-query in Queue. */ 2526 pSetup = pFirstRec->pPrior; 2527 pSetup->pNext = 0; 2528 ExplainQueryPlan((pParse, 1, "SETUP")); 2529 rc = sqlite3Select(pParse, pSetup, &destQueue); 2530 pSetup->pNext = p; 2531 if( rc ) goto end_of_recursive_query; 2532 2533 /* Find the next row in the Queue and output that row */ 2534 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2535 2536 /* Transfer the next row in Queue over to Current */ 2537 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2538 if( pOrderBy ){ 2539 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2540 }else{ 2541 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2542 } 2543 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2544 2545 /* Output the single row in Current */ 2546 addrCont = sqlite3VdbeMakeLabel(pParse); 2547 codeOffset(v, regOffset, addrCont); 2548 selectInnerLoop(pParse, p, iCurrent, 2549 0, 0, pDest, addrCont, addrBreak); 2550 if( regLimit ){ 2551 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2552 VdbeCoverage(v); 2553 } 2554 sqlite3VdbeResolveLabel(v, addrCont); 2555 2556 /* Execute the recursive SELECT taking the single row in Current as 2557 ** the value for the recursive-table. Store the results in the Queue. 2558 */ 2559 pFirstRec->pPrior = 0; 2560 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2561 sqlite3Select(pParse, p, &destQueue); 2562 assert( pFirstRec->pPrior==0 ); 2563 pFirstRec->pPrior = pSetup; 2564 2565 /* Keep running the loop until the Queue is empty */ 2566 sqlite3VdbeGoto(v, addrTop); 2567 sqlite3VdbeResolveLabel(v, addrBreak); 2568 2569 end_of_recursive_query: 2570 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2571 p->pOrderBy = pOrderBy; 2572 p->pLimit = pLimit; 2573 return; 2574 } 2575 #endif /* SQLITE_OMIT_CTE */ 2576 2577 /* Forward references */ 2578 static int multiSelectOrderBy( 2579 Parse *pParse, /* Parsing context */ 2580 Select *p, /* The right-most of SELECTs to be coded */ 2581 SelectDest *pDest /* What to do with query results */ 2582 ); 2583 2584 /* 2585 ** Handle the special case of a compound-select that originates from a 2586 ** VALUES clause. By handling this as a special case, we avoid deep 2587 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2588 ** on a VALUES clause. 2589 ** 2590 ** Because the Select object originates from a VALUES clause: 2591 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2592 ** (2) All terms are UNION ALL 2593 ** (3) There is no ORDER BY clause 2594 ** 2595 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2596 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2597 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2598 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2599 */ 2600 static int multiSelectValues( 2601 Parse *pParse, /* Parsing context */ 2602 Select *p, /* The right-most of SELECTs to be coded */ 2603 SelectDest *pDest /* What to do with query results */ 2604 ){ 2605 int nRow = 1; 2606 int rc = 0; 2607 int bShowAll = p->pLimit==0; 2608 assert( p->selFlags & SF_MultiValue ); 2609 do{ 2610 assert( p->selFlags & SF_Values ); 2611 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2612 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2613 #ifndef SQLITE_OMIT_WINDOWFUNC 2614 if( p->pWin ) return -1; 2615 #endif 2616 if( p->pPrior==0 ) break; 2617 assert( p->pPrior->pNext==p ); 2618 p = p->pPrior; 2619 nRow += bShowAll; 2620 }while(1); 2621 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2622 nRow==1 ? "" : "S")); 2623 while( p ){ 2624 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2625 if( !bShowAll ) break; 2626 p->nSelectRow = nRow; 2627 p = p->pNext; 2628 } 2629 return rc; 2630 } 2631 2632 /* 2633 ** Return true if the SELECT statement which is known to be the recursive 2634 ** part of a recursive CTE still has its anchor terms attached. If the 2635 ** anchor terms have already been removed, then return false. 2636 */ 2637 static int hasAnchor(Select *p){ 2638 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2639 return p!=0; 2640 } 2641 2642 /* 2643 ** This routine is called to process a compound query form from 2644 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2645 ** INTERSECT 2646 ** 2647 ** "p" points to the right-most of the two queries. the query on the 2648 ** left is p->pPrior. The left query could also be a compound query 2649 ** in which case this routine will be called recursively. 2650 ** 2651 ** The results of the total query are to be written into a destination 2652 ** of type eDest with parameter iParm. 2653 ** 2654 ** Example 1: Consider a three-way compound SQL statement. 2655 ** 2656 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2657 ** 2658 ** This statement is parsed up as follows: 2659 ** 2660 ** SELECT c FROM t3 2661 ** | 2662 ** `-----> SELECT b FROM t2 2663 ** | 2664 ** `------> SELECT a FROM t1 2665 ** 2666 ** The arrows in the diagram above represent the Select.pPrior pointer. 2667 ** So if this routine is called with p equal to the t3 query, then 2668 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2669 ** 2670 ** Notice that because of the way SQLite parses compound SELECTs, the 2671 ** individual selects always group from left to right. 2672 */ 2673 static int multiSelect( 2674 Parse *pParse, /* Parsing context */ 2675 Select *p, /* The right-most of SELECTs to be coded */ 2676 SelectDest *pDest /* What to do with query results */ 2677 ){ 2678 int rc = SQLITE_OK; /* Success code from a subroutine */ 2679 Select *pPrior; /* Another SELECT immediately to our left */ 2680 Vdbe *v; /* Generate code to this VDBE */ 2681 SelectDest dest; /* Alternative data destination */ 2682 Select *pDelete = 0; /* Chain of simple selects to delete */ 2683 sqlite3 *db; /* Database connection */ 2684 2685 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2686 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2687 */ 2688 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2689 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2690 assert( p->selFlags & SF_Compound ); 2691 db = pParse->db; 2692 pPrior = p->pPrior; 2693 dest = *pDest; 2694 assert( pPrior->pOrderBy==0 ); 2695 assert( pPrior->pLimit==0 ); 2696 2697 v = sqlite3GetVdbe(pParse); 2698 assert( v!=0 ); /* The VDBE already created by calling function */ 2699 2700 /* Create the destination temporary table if necessary 2701 */ 2702 if( dest.eDest==SRT_EphemTab ){ 2703 assert( p->pEList ); 2704 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2705 dest.eDest = SRT_Table; 2706 } 2707 2708 /* Special handling for a compound-select that originates as a VALUES clause. 2709 */ 2710 if( p->selFlags & SF_MultiValue ){ 2711 rc = multiSelectValues(pParse, p, &dest); 2712 if( rc>=0 ) goto multi_select_end; 2713 rc = SQLITE_OK; 2714 } 2715 2716 /* Make sure all SELECTs in the statement have the same number of elements 2717 ** in their result sets. 2718 */ 2719 assert( p->pEList && pPrior->pEList ); 2720 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2721 2722 #ifndef SQLITE_OMIT_CTE 2723 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2724 generateWithRecursiveQuery(pParse, p, &dest); 2725 }else 2726 #endif 2727 2728 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2729 */ 2730 if( p->pOrderBy ){ 2731 return multiSelectOrderBy(pParse, p, pDest); 2732 }else{ 2733 2734 #ifndef SQLITE_OMIT_EXPLAIN 2735 if( pPrior->pPrior==0 ){ 2736 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2737 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2738 } 2739 #endif 2740 2741 /* Generate code for the left and right SELECT statements. 2742 */ 2743 switch( p->op ){ 2744 case TK_ALL: { 2745 int addr = 0; 2746 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2747 assert( !pPrior->pLimit ); 2748 pPrior->iLimit = p->iLimit; 2749 pPrior->iOffset = p->iOffset; 2750 pPrior->pLimit = p->pLimit; 2751 rc = sqlite3Select(pParse, pPrior, &dest); 2752 pPrior->pLimit = 0; 2753 if( rc ){ 2754 goto multi_select_end; 2755 } 2756 p->pPrior = 0; 2757 p->iLimit = pPrior->iLimit; 2758 p->iOffset = pPrior->iOffset; 2759 if( p->iLimit ){ 2760 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2761 VdbeComment((v, "Jump ahead if LIMIT reached")); 2762 if( p->iOffset ){ 2763 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2764 p->iLimit, p->iOffset+1, p->iOffset); 2765 } 2766 } 2767 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2768 rc = sqlite3Select(pParse, p, &dest); 2769 testcase( rc!=SQLITE_OK ); 2770 pDelete = p->pPrior; 2771 p->pPrior = pPrior; 2772 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2773 if( p->pLimit 2774 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2775 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2776 ){ 2777 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2778 } 2779 if( addr ){ 2780 sqlite3VdbeJumpHere(v, addr); 2781 } 2782 break; 2783 } 2784 case TK_EXCEPT: 2785 case TK_UNION: { 2786 int unionTab; /* Cursor number of the temp table holding result */ 2787 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2788 int priorOp; /* The SRT_ operation to apply to prior selects */ 2789 Expr *pLimit; /* Saved values of p->nLimit */ 2790 int addr; 2791 SelectDest uniondest; 2792 2793 testcase( p->op==TK_EXCEPT ); 2794 testcase( p->op==TK_UNION ); 2795 priorOp = SRT_Union; 2796 if( dest.eDest==priorOp ){ 2797 /* We can reuse a temporary table generated by a SELECT to our 2798 ** right. 2799 */ 2800 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2801 unionTab = dest.iSDParm; 2802 }else{ 2803 /* We will need to create our own temporary table to hold the 2804 ** intermediate results. 2805 */ 2806 unionTab = pParse->nTab++; 2807 assert( p->pOrderBy==0 ); 2808 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2809 assert( p->addrOpenEphm[0] == -1 ); 2810 p->addrOpenEphm[0] = addr; 2811 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2812 assert( p->pEList ); 2813 } 2814 2815 2816 /* Code the SELECT statements to our left 2817 */ 2818 assert( !pPrior->pOrderBy ); 2819 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2820 rc = sqlite3Select(pParse, pPrior, &uniondest); 2821 if( rc ){ 2822 goto multi_select_end; 2823 } 2824 2825 /* Code the current SELECT statement 2826 */ 2827 if( p->op==TK_EXCEPT ){ 2828 op = SRT_Except; 2829 }else{ 2830 assert( p->op==TK_UNION ); 2831 op = SRT_Union; 2832 } 2833 p->pPrior = 0; 2834 pLimit = p->pLimit; 2835 p->pLimit = 0; 2836 uniondest.eDest = op; 2837 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2838 sqlite3SelectOpName(p->op))); 2839 rc = sqlite3Select(pParse, p, &uniondest); 2840 testcase( rc!=SQLITE_OK ); 2841 assert( p->pOrderBy==0 ); 2842 pDelete = p->pPrior; 2843 p->pPrior = pPrior; 2844 p->pOrderBy = 0; 2845 if( p->op==TK_UNION ){ 2846 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2847 } 2848 sqlite3ExprDelete(db, p->pLimit); 2849 p->pLimit = pLimit; 2850 p->iLimit = 0; 2851 p->iOffset = 0; 2852 2853 /* Convert the data in the temporary table into whatever form 2854 ** it is that we currently need. 2855 */ 2856 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2857 assert( p->pEList || db->mallocFailed ); 2858 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2859 int iCont, iBreak, iStart; 2860 iBreak = sqlite3VdbeMakeLabel(pParse); 2861 iCont = sqlite3VdbeMakeLabel(pParse); 2862 computeLimitRegisters(pParse, p, iBreak); 2863 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2864 iStart = sqlite3VdbeCurrentAddr(v); 2865 selectInnerLoop(pParse, p, unionTab, 2866 0, 0, &dest, iCont, iBreak); 2867 sqlite3VdbeResolveLabel(v, iCont); 2868 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2869 sqlite3VdbeResolveLabel(v, iBreak); 2870 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2871 } 2872 break; 2873 } 2874 default: assert( p->op==TK_INTERSECT ); { 2875 int tab1, tab2; 2876 int iCont, iBreak, iStart; 2877 Expr *pLimit; 2878 int addr; 2879 SelectDest intersectdest; 2880 int r1; 2881 2882 /* INTERSECT is different from the others since it requires 2883 ** two temporary tables. Hence it has its own case. Begin 2884 ** by allocating the tables we will need. 2885 */ 2886 tab1 = pParse->nTab++; 2887 tab2 = pParse->nTab++; 2888 assert( p->pOrderBy==0 ); 2889 2890 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2891 assert( p->addrOpenEphm[0] == -1 ); 2892 p->addrOpenEphm[0] = addr; 2893 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2894 assert( p->pEList ); 2895 2896 /* Code the SELECTs to our left into temporary table "tab1". 2897 */ 2898 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2899 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2900 if( rc ){ 2901 goto multi_select_end; 2902 } 2903 2904 /* Code the current SELECT into temporary table "tab2" 2905 */ 2906 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2907 assert( p->addrOpenEphm[1] == -1 ); 2908 p->addrOpenEphm[1] = addr; 2909 p->pPrior = 0; 2910 pLimit = p->pLimit; 2911 p->pLimit = 0; 2912 intersectdest.iSDParm = tab2; 2913 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2914 sqlite3SelectOpName(p->op))); 2915 rc = sqlite3Select(pParse, p, &intersectdest); 2916 testcase( rc!=SQLITE_OK ); 2917 pDelete = p->pPrior; 2918 p->pPrior = pPrior; 2919 if( p->nSelectRow>pPrior->nSelectRow ){ 2920 p->nSelectRow = pPrior->nSelectRow; 2921 } 2922 sqlite3ExprDelete(db, p->pLimit); 2923 p->pLimit = pLimit; 2924 2925 /* Generate code to take the intersection of the two temporary 2926 ** tables. 2927 */ 2928 if( rc ) break; 2929 assert( p->pEList ); 2930 iBreak = sqlite3VdbeMakeLabel(pParse); 2931 iCont = sqlite3VdbeMakeLabel(pParse); 2932 computeLimitRegisters(pParse, p, iBreak); 2933 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2934 r1 = sqlite3GetTempReg(pParse); 2935 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2936 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2937 VdbeCoverage(v); 2938 sqlite3ReleaseTempReg(pParse, r1); 2939 selectInnerLoop(pParse, p, tab1, 2940 0, 0, &dest, iCont, iBreak); 2941 sqlite3VdbeResolveLabel(v, iCont); 2942 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2943 sqlite3VdbeResolveLabel(v, iBreak); 2944 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2945 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2946 break; 2947 } 2948 } 2949 2950 #ifndef SQLITE_OMIT_EXPLAIN 2951 if( p->pNext==0 ){ 2952 ExplainQueryPlanPop(pParse); 2953 } 2954 #endif 2955 } 2956 if( pParse->nErr ) goto multi_select_end; 2957 2958 /* Compute collating sequences used by 2959 ** temporary tables needed to implement the compound select. 2960 ** Attach the KeyInfo structure to all temporary tables. 2961 ** 2962 ** This section is run by the right-most SELECT statement only. 2963 ** SELECT statements to the left always skip this part. The right-most 2964 ** SELECT might also skip this part if it has no ORDER BY clause and 2965 ** no temp tables are required. 2966 */ 2967 if( p->selFlags & SF_UsesEphemeral ){ 2968 int i; /* Loop counter */ 2969 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2970 Select *pLoop; /* For looping through SELECT statements */ 2971 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2972 int nCol; /* Number of columns in result set */ 2973 2974 assert( p->pNext==0 ); 2975 nCol = p->pEList->nExpr; 2976 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2977 if( !pKeyInfo ){ 2978 rc = SQLITE_NOMEM_BKPT; 2979 goto multi_select_end; 2980 } 2981 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2982 *apColl = multiSelectCollSeq(pParse, p, i); 2983 if( 0==*apColl ){ 2984 *apColl = db->pDfltColl; 2985 } 2986 } 2987 2988 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2989 for(i=0; i<2; i++){ 2990 int addr = pLoop->addrOpenEphm[i]; 2991 if( addr<0 ){ 2992 /* If [0] is unused then [1] is also unused. So we can 2993 ** always safely abort as soon as the first unused slot is found */ 2994 assert( pLoop->addrOpenEphm[1]<0 ); 2995 break; 2996 } 2997 sqlite3VdbeChangeP2(v, addr, nCol); 2998 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2999 P4_KEYINFO); 3000 pLoop->addrOpenEphm[i] = -1; 3001 } 3002 } 3003 sqlite3KeyInfoUnref(pKeyInfo); 3004 } 3005 3006 multi_select_end: 3007 pDest->iSdst = dest.iSdst; 3008 pDest->nSdst = dest.nSdst; 3009 sqlite3SelectDelete(db, pDelete); 3010 return rc; 3011 } 3012 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3013 3014 /* 3015 ** Error message for when two or more terms of a compound select have different 3016 ** size result sets. 3017 */ 3018 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3019 if( p->selFlags & SF_Values ){ 3020 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3021 }else{ 3022 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3023 " do not have the same number of result columns", 3024 sqlite3SelectOpName(p->op)); 3025 } 3026 } 3027 3028 /* 3029 ** Code an output subroutine for a coroutine implementation of a 3030 ** SELECT statment. 3031 ** 3032 ** The data to be output is contained in pIn->iSdst. There are 3033 ** pIn->nSdst columns to be output. pDest is where the output should 3034 ** be sent. 3035 ** 3036 ** regReturn is the number of the register holding the subroutine 3037 ** return address. 3038 ** 3039 ** If regPrev>0 then it is the first register in a vector that 3040 ** records the previous output. mem[regPrev] is a flag that is false 3041 ** if there has been no previous output. If regPrev>0 then code is 3042 ** generated to suppress duplicates. pKeyInfo is used for comparing 3043 ** keys. 3044 ** 3045 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3046 ** iBreak. 3047 */ 3048 static int generateOutputSubroutine( 3049 Parse *pParse, /* Parsing context */ 3050 Select *p, /* The SELECT statement */ 3051 SelectDest *pIn, /* Coroutine supplying data */ 3052 SelectDest *pDest, /* Where to send the data */ 3053 int regReturn, /* The return address register */ 3054 int regPrev, /* Previous result register. No uniqueness if 0 */ 3055 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3056 int iBreak /* Jump here if we hit the LIMIT */ 3057 ){ 3058 Vdbe *v = pParse->pVdbe; 3059 int iContinue; 3060 int addr; 3061 3062 addr = sqlite3VdbeCurrentAddr(v); 3063 iContinue = sqlite3VdbeMakeLabel(pParse); 3064 3065 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3066 */ 3067 if( regPrev ){ 3068 int addr1, addr2; 3069 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3070 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3071 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3072 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3073 sqlite3VdbeJumpHere(v, addr1); 3074 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3075 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3076 } 3077 if( pParse->db->mallocFailed ) return 0; 3078 3079 /* Suppress the first OFFSET entries if there is an OFFSET clause 3080 */ 3081 codeOffset(v, p->iOffset, iContinue); 3082 3083 assert( pDest->eDest!=SRT_Exists ); 3084 assert( pDest->eDest!=SRT_Table ); 3085 switch( pDest->eDest ){ 3086 /* Store the result as data using a unique key. 3087 */ 3088 case SRT_EphemTab: { 3089 int r1 = sqlite3GetTempReg(pParse); 3090 int r2 = sqlite3GetTempReg(pParse); 3091 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3092 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3093 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3094 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3095 sqlite3ReleaseTempReg(pParse, r2); 3096 sqlite3ReleaseTempReg(pParse, r1); 3097 break; 3098 } 3099 3100 #ifndef SQLITE_OMIT_SUBQUERY 3101 /* If we are creating a set for an "expr IN (SELECT ...)". 3102 */ 3103 case SRT_Set: { 3104 int r1; 3105 testcase( pIn->nSdst>1 ); 3106 r1 = sqlite3GetTempReg(pParse); 3107 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3108 r1, pDest->zAffSdst, pIn->nSdst); 3109 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3110 pIn->iSdst, pIn->nSdst); 3111 sqlite3ReleaseTempReg(pParse, r1); 3112 break; 3113 } 3114 3115 /* If this is a scalar select that is part of an expression, then 3116 ** store the results in the appropriate memory cell and break out 3117 ** of the scan loop. Note that the select might return multiple columns 3118 ** if it is the RHS of a row-value IN operator. 3119 */ 3120 case SRT_Mem: { 3121 testcase( pIn->nSdst>1 ); 3122 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3123 /* The LIMIT clause will jump out of the loop for us */ 3124 break; 3125 } 3126 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3127 3128 /* The results are stored in a sequence of registers 3129 ** starting at pDest->iSdst. Then the co-routine yields. 3130 */ 3131 case SRT_Coroutine: { 3132 if( pDest->iSdst==0 ){ 3133 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3134 pDest->nSdst = pIn->nSdst; 3135 } 3136 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3137 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3138 break; 3139 } 3140 3141 /* If none of the above, then the result destination must be 3142 ** SRT_Output. This routine is never called with any other 3143 ** destination other than the ones handled above or SRT_Output. 3144 ** 3145 ** For SRT_Output, results are stored in a sequence of registers. 3146 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3147 ** return the next row of result. 3148 */ 3149 default: { 3150 assert( pDest->eDest==SRT_Output ); 3151 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3152 break; 3153 } 3154 } 3155 3156 /* Jump to the end of the loop if the LIMIT is reached. 3157 */ 3158 if( p->iLimit ){ 3159 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3160 } 3161 3162 /* Generate the subroutine return 3163 */ 3164 sqlite3VdbeResolveLabel(v, iContinue); 3165 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3166 3167 return addr; 3168 } 3169 3170 /* 3171 ** Alternative compound select code generator for cases when there 3172 ** is an ORDER BY clause. 3173 ** 3174 ** We assume a query of the following form: 3175 ** 3176 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3177 ** 3178 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3179 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3180 ** co-routines. Then run the co-routines in parallel and merge the results 3181 ** into the output. In addition to the two coroutines (called selectA and 3182 ** selectB) there are 7 subroutines: 3183 ** 3184 ** outA: Move the output of the selectA coroutine into the output 3185 ** of the compound query. 3186 ** 3187 ** outB: Move the output of the selectB coroutine into the output 3188 ** of the compound query. (Only generated for UNION and 3189 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3190 ** appears only in B.) 3191 ** 3192 ** AltB: Called when there is data from both coroutines and A<B. 3193 ** 3194 ** AeqB: Called when there is data from both coroutines and A==B. 3195 ** 3196 ** AgtB: Called when there is data from both coroutines and A>B. 3197 ** 3198 ** EofA: Called when data is exhausted from selectA. 3199 ** 3200 ** EofB: Called when data is exhausted from selectB. 3201 ** 3202 ** The implementation of the latter five subroutines depend on which 3203 ** <operator> is used: 3204 ** 3205 ** 3206 ** UNION ALL UNION EXCEPT INTERSECT 3207 ** ------------- ----------------- -------------- ----------------- 3208 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3209 ** 3210 ** AeqB: outA, nextA nextA nextA outA, nextA 3211 ** 3212 ** AgtB: outB, nextB outB, nextB nextB nextB 3213 ** 3214 ** EofA: outB, nextB outB, nextB halt halt 3215 ** 3216 ** EofB: outA, nextA outA, nextA outA, nextA halt 3217 ** 3218 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3219 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3220 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3221 ** following nextX causes a jump to the end of the select processing. 3222 ** 3223 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3224 ** within the output subroutine. The regPrev register set holds the previously 3225 ** output value. A comparison is made against this value and the output 3226 ** is skipped if the next results would be the same as the previous. 3227 ** 3228 ** The implementation plan is to implement the two coroutines and seven 3229 ** subroutines first, then put the control logic at the bottom. Like this: 3230 ** 3231 ** goto Init 3232 ** coA: coroutine for left query (A) 3233 ** coB: coroutine for right query (B) 3234 ** outA: output one row of A 3235 ** outB: output one row of B (UNION and UNION ALL only) 3236 ** EofA: ... 3237 ** EofB: ... 3238 ** AltB: ... 3239 ** AeqB: ... 3240 ** AgtB: ... 3241 ** Init: initialize coroutine registers 3242 ** yield coA 3243 ** if eof(A) goto EofA 3244 ** yield coB 3245 ** if eof(B) goto EofB 3246 ** Cmpr: Compare A, B 3247 ** Jump AltB, AeqB, AgtB 3248 ** End: ... 3249 ** 3250 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3251 ** actually called using Gosub and they do not Return. EofA and EofB loop 3252 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3253 ** and AgtB jump to either L2 or to one of EofA or EofB. 3254 */ 3255 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3256 static int multiSelectOrderBy( 3257 Parse *pParse, /* Parsing context */ 3258 Select *p, /* The right-most of SELECTs to be coded */ 3259 SelectDest *pDest /* What to do with query results */ 3260 ){ 3261 int i, j; /* Loop counters */ 3262 Select *pPrior; /* Another SELECT immediately to our left */ 3263 Vdbe *v; /* Generate code to this VDBE */ 3264 SelectDest destA; /* Destination for coroutine A */ 3265 SelectDest destB; /* Destination for coroutine B */ 3266 int regAddrA; /* Address register for select-A coroutine */ 3267 int regAddrB; /* Address register for select-B coroutine */ 3268 int addrSelectA; /* Address of the select-A coroutine */ 3269 int addrSelectB; /* Address of the select-B coroutine */ 3270 int regOutA; /* Address register for the output-A subroutine */ 3271 int regOutB; /* Address register for the output-B subroutine */ 3272 int addrOutA; /* Address of the output-A subroutine */ 3273 int addrOutB = 0; /* Address of the output-B subroutine */ 3274 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3275 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3276 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3277 int addrAltB; /* Address of the A<B subroutine */ 3278 int addrAeqB; /* Address of the A==B subroutine */ 3279 int addrAgtB; /* Address of the A>B subroutine */ 3280 int regLimitA; /* Limit register for select-A */ 3281 int regLimitB; /* Limit register for select-A */ 3282 int regPrev; /* A range of registers to hold previous output */ 3283 int savedLimit; /* Saved value of p->iLimit */ 3284 int savedOffset; /* Saved value of p->iOffset */ 3285 int labelCmpr; /* Label for the start of the merge algorithm */ 3286 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3287 int addr1; /* Jump instructions that get retargetted */ 3288 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3289 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3290 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3291 sqlite3 *db; /* Database connection */ 3292 ExprList *pOrderBy; /* The ORDER BY clause */ 3293 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3294 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3295 3296 assert( p->pOrderBy!=0 ); 3297 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3298 db = pParse->db; 3299 v = pParse->pVdbe; 3300 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3301 labelEnd = sqlite3VdbeMakeLabel(pParse); 3302 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3303 3304 3305 /* Patch up the ORDER BY clause 3306 */ 3307 op = p->op; 3308 pPrior = p->pPrior; 3309 assert( pPrior->pOrderBy==0 ); 3310 pOrderBy = p->pOrderBy; 3311 assert( pOrderBy ); 3312 nOrderBy = pOrderBy->nExpr; 3313 3314 /* For operators other than UNION ALL we have to make sure that 3315 ** the ORDER BY clause covers every term of the result set. Add 3316 ** terms to the ORDER BY clause as necessary. 3317 */ 3318 if( op!=TK_ALL ){ 3319 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3320 struct ExprList_item *pItem; 3321 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3322 assert( pItem->u.x.iOrderByCol>0 ); 3323 if( pItem->u.x.iOrderByCol==i ) break; 3324 } 3325 if( j==nOrderBy ){ 3326 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3327 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3328 pNew->flags |= EP_IntValue; 3329 pNew->u.iValue = i; 3330 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3331 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3332 } 3333 } 3334 } 3335 3336 /* Compute the comparison permutation and keyinfo that is used with 3337 ** the permutation used to determine if the next 3338 ** row of results comes from selectA or selectB. Also add explicit 3339 ** collations to the ORDER BY clause terms so that when the subqueries 3340 ** to the right and the left are evaluated, they use the correct 3341 ** collation. 3342 */ 3343 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3344 if( aPermute ){ 3345 struct ExprList_item *pItem; 3346 aPermute[0] = nOrderBy; 3347 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3348 assert( pItem->u.x.iOrderByCol>0 ); 3349 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3350 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3351 } 3352 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3353 }else{ 3354 pKeyMerge = 0; 3355 } 3356 3357 /* Reattach the ORDER BY clause to the query. 3358 */ 3359 p->pOrderBy = pOrderBy; 3360 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3361 3362 /* Allocate a range of temporary registers and the KeyInfo needed 3363 ** for the logic that removes duplicate result rows when the 3364 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3365 */ 3366 if( op==TK_ALL ){ 3367 regPrev = 0; 3368 }else{ 3369 int nExpr = p->pEList->nExpr; 3370 assert( nOrderBy>=nExpr || db->mallocFailed ); 3371 regPrev = pParse->nMem+1; 3372 pParse->nMem += nExpr+1; 3373 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3374 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3375 if( pKeyDup ){ 3376 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3377 for(i=0; i<nExpr; i++){ 3378 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3379 pKeyDup->aSortFlags[i] = 0; 3380 } 3381 } 3382 } 3383 3384 /* Separate the left and the right query from one another 3385 */ 3386 p->pPrior = 0; 3387 pPrior->pNext = 0; 3388 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3389 if( pPrior->pPrior==0 ){ 3390 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3391 } 3392 3393 /* Compute the limit registers */ 3394 computeLimitRegisters(pParse, p, labelEnd); 3395 if( p->iLimit && op==TK_ALL ){ 3396 regLimitA = ++pParse->nMem; 3397 regLimitB = ++pParse->nMem; 3398 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3399 regLimitA); 3400 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3401 }else{ 3402 regLimitA = regLimitB = 0; 3403 } 3404 sqlite3ExprDelete(db, p->pLimit); 3405 p->pLimit = 0; 3406 3407 regAddrA = ++pParse->nMem; 3408 regAddrB = ++pParse->nMem; 3409 regOutA = ++pParse->nMem; 3410 regOutB = ++pParse->nMem; 3411 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3412 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3413 3414 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3415 3416 /* Generate a coroutine to evaluate the SELECT statement to the 3417 ** left of the compound operator - the "A" select. 3418 */ 3419 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3420 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3421 VdbeComment((v, "left SELECT")); 3422 pPrior->iLimit = regLimitA; 3423 ExplainQueryPlan((pParse, 1, "LEFT")); 3424 sqlite3Select(pParse, pPrior, &destA); 3425 sqlite3VdbeEndCoroutine(v, regAddrA); 3426 sqlite3VdbeJumpHere(v, addr1); 3427 3428 /* Generate a coroutine to evaluate the SELECT statement on 3429 ** the right - the "B" select 3430 */ 3431 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3432 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3433 VdbeComment((v, "right SELECT")); 3434 savedLimit = p->iLimit; 3435 savedOffset = p->iOffset; 3436 p->iLimit = regLimitB; 3437 p->iOffset = 0; 3438 ExplainQueryPlan((pParse, 1, "RIGHT")); 3439 sqlite3Select(pParse, p, &destB); 3440 p->iLimit = savedLimit; 3441 p->iOffset = savedOffset; 3442 sqlite3VdbeEndCoroutine(v, regAddrB); 3443 3444 /* Generate a subroutine that outputs the current row of the A 3445 ** select as the next output row of the compound select. 3446 */ 3447 VdbeNoopComment((v, "Output routine for A")); 3448 addrOutA = generateOutputSubroutine(pParse, 3449 p, &destA, pDest, regOutA, 3450 regPrev, pKeyDup, labelEnd); 3451 3452 /* Generate a subroutine that outputs the current row of the B 3453 ** select as the next output row of the compound select. 3454 */ 3455 if( op==TK_ALL || op==TK_UNION ){ 3456 VdbeNoopComment((v, "Output routine for B")); 3457 addrOutB = generateOutputSubroutine(pParse, 3458 p, &destB, pDest, regOutB, 3459 regPrev, pKeyDup, labelEnd); 3460 } 3461 sqlite3KeyInfoUnref(pKeyDup); 3462 3463 /* Generate a subroutine to run when the results from select A 3464 ** are exhausted and only data in select B remains. 3465 */ 3466 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3467 addrEofA_noB = addrEofA = labelEnd; 3468 }else{ 3469 VdbeNoopComment((v, "eof-A subroutine")); 3470 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3471 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3472 VdbeCoverage(v); 3473 sqlite3VdbeGoto(v, addrEofA); 3474 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3475 } 3476 3477 /* Generate a subroutine to run when the results from select B 3478 ** are exhausted and only data in select A remains. 3479 */ 3480 if( op==TK_INTERSECT ){ 3481 addrEofB = addrEofA; 3482 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3483 }else{ 3484 VdbeNoopComment((v, "eof-B subroutine")); 3485 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3486 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3487 sqlite3VdbeGoto(v, addrEofB); 3488 } 3489 3490 /* Generate code to handle the case of A<B 3491 */ 3492 VdbeNoopComment((v, "A-lt-B subroutine")); 3493 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3494 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3495 sqlite3VdbeGoto(v, labelCmpr); 3496 3497 /* Generate code to handle the case of A==B 3498 */ 3499 if( op==TK_ALL ){ 3500 addrAeqB = addrAltB; 3501 }else if( op==TK_INTERSECT ){ 3502 addrAeqB = addrAltB; 3503 addrAltB++; 3504 }else{ 3505 VdbeNoopComment((v, "A-eq-B subroutine")); 3506 addrAeqB = 3507 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3508 sqlite3VdbeGoto(v, labelCmpr); 3509 } 3510 3511 /* Generate code to handle the case of A>B 3512 */ 3513 VdbeNoopComment((v, "A-gt-B subroutine")); 3514 addrAgtB = sqlite3VdbeCurrentAddr(v); 3515 if( op==TK_ALL || op==TK_UNION ){ 3516 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3517 } 3518 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3519 sqlite3VdbeGoto(v, labelCmpr); 3520 3521 /* This code runs once to initialize everything. 3522 */ 3523 sqlite3VdbeJumpHere(v, addr1); 3524 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3525 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3526 3527 /* Implement the main merge loop 3528 */ 3529 sqlite3VdbeResolveLabel(v, labelCmpr); 3530 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3531 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3532 (char*)pKeyMerge, P4_KEYINFO); 3533 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3534 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3535 3536 /* Jump to the this point in order to terminate the query. 3537 */ 3538 sqlite3VdbeResolveLabel(v, labelEnd); 3539 3540 /* Reassembly the compound query so that it will be freed correctly 3541 ** by the calling function */ 3542 if( p->pPrior ){ 3543 sqlite3SelectDelete(db, p->pPrior); 3544 } 3545 p->pPrior = pPrior; 3546 pPrior->pNext = p; 3547 3548 /*** TBD: Insert subroutine calls to close cursors on incomplete 3549 **** subqueries ****/ 3550 ExplainQueryPlanPop(pParse); 3551 return pParse->nErr!=0; 3552 } 3553 #endif 3554 3555 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3556 3557 /* An instance of the SubstContext object describes an substitution edit 3558 ** to be performed on a parse tree. 3559 ** 3560 ** All references to columns in table iTable are to be replaced by corresponding 3561 ** expressions in pEList. 3562 */ 3563 typedef struct SubstContext { 3564 Parse *pParse; /* The parsing context */ 3565 int iTable; /* Replace references to this table */ 3566 int iNewTable; /* New table number */ 3567 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3568 ExprList *pEList; /* Replacement expressions */ 3569 } SubstContext; 3570 3571 /* Forward Declarations */ 3572 static void substExprList(SubstContext*, ExprList*); 3573 static void substSelect(SubstContext*, Select*, int); 3574 3575 /* 3576 ** Scan through the expression pExpr. Replace every reference to 3577 ** a column in table number iTable with a copy of the iColumn-th 3578 ** entry in pEList. (But leave references to the ROWID column 3579 ** unchanged.) 3580 ** 3581 ** This routine is part of the flattening procedure. A subquery 3582 ** whose result set is defined by pEList appears as entry in the 3583 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3584 ** FORM clause entry is iTable. This routine makes the necessary 3585 ** changes to pExpr so that it refers directly to the source table 3586 ** of the subquery rather the result set of the subquery. 3587 */ 3588 static Expr *substExpr( 3589 SubstContext *pSubst, /* Description of the substitution */ 3590 Expr *pExpr /* Expr in which substitution occurs */ 3591 ){ 3592 if( pExpr==0 ) return 0; 3593 if( ExprHasProperty(pExpr, EP_FromJoin) 3594 && pExpr->iRightJoinTable==pSubst->iTable 3595 ){ 3596 pExpr->iRightJoinTable = pSubst->iNewTable; 3597 } 3598 if( pExpr->op==TK_COLUMN 3599 && pExpr->iTable==pSubst->iTable 3600 && !ExprHasProperty(pExpr, EP_FixedCol) 3601 ){ 3602 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3603 if( pExpr->iColumn<0 ){ 3604 pExpr->op = TK_NULL; 3605 }else 3606 #endif 3607 { 3608 Expr *pNew; 3609 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3610 Expr ifNullRow; 3611 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3612 assert( pExpr->pRight==0 ); 3613 if( sqlite3ExprIsVector(pCopy) ){ 3614 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3615 }else{ 3616 sqlite3 *db = pSubst->pParse->db; 3617 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3618 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3619 ifNullRow.op = TK_IF_NULL_ROW; 3620 ifNullRow.pLeft = pCopy; 3621 ifNullRow.iTable = pSubst->iNewTable; 3622 ifNullRow.flags = EP_IfNullRow; 3623 pCopy = &ifNullRow; 3624 } 3625 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3626 pNew = sqlite3ExprDup(db, pCopy, 0); 3627 if( pNew && pSubst->isLeftJoin ){ 3628 ExprSetProperty(pNew, EP_CanBeNull); 3629 } 3630 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){ 3631 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3632 } 3633 sqlite3ExprDelete(db, pExpr); 3634 pExpr = pNew; 3635 3636 /* Ensure that the expression now has an implicit collation sequence, 3637 ** just as it did when it was a column of a view or sub-query. */ 3638 if( pExpr ){ 3639 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3640 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3641 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3642 (pColl ? pColl->zName : "BINARY") 3643 ); 3644 } 3645 ExprClearProperty(pExpr, EP_Collate); 3646 } 3647 } 3648 } 3649 }else{ 3650 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3651 pExpr->iTable = pSubst->iNewTable; 3652 } 3653 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3654 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3655 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3656 substSelect(pSubst, pExpr->x.pSelect, 1); 3657 }else{ 3658 substExprList(pSubst, pExpr->x.pList); 3659 } 3660 #ifndef SQLITE_OMIT_WINDOWFUNC 3661 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3662 Window *pWin = pExpr->y.pWin; 3663 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3664 substExprList(pSubst, pWin->pPartition); 3665 substExprList(pSubst, pWin->pOrderBy); 3666 } 3667 #endif 3668 } 3669 return pExpr; 3670 } 3671 static void substExprList( 3672 SubstContext *pSubst, /* Description of the substitution */ 3673 ExprList *pList /* List to scan and in which to make substitutes */ 3674 ){ 3675 int i; 3676 if( pList==0 ) return; 3677 for(i=0; i<pList->nExpr; i++){ 3678 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3679 } 3680 } 3681 static void substSelect( 3682 SubstContext *pSubst, /* Description of the substitution */ 3683 Select *p, /* SELECT statement in which to make substitutions */ 3684 int doPrior /* Do substitutes on p->pPrior too */ 3685 ){ 3686 SrcList *pSrc; 3687 SrcItem *pItem; 3688 int i; 3689 if( !p ) return; 3690 do{ 3691 substExprList(pSubst, p->pEList); 3692 substExprList(pSubst, p->pGroupBy); 3693 substExprList(pSubst, p->pOrderBy); 3694 p->pHaving = substExpr(pSubst, p->pHaving); 3695 p->pWhere = substExpr(pSubst, p->pWhere); 3696 pSrc = p->pSrc; 3697 assert( pSrc!=0 ); 3698 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3699 substSelect(pSubst, pItem->pSelect, 1); 3700 if( pItem->fg.isTabFunc ){ 3701 substExprList(pSubst, pItem->u1.pFuncArg); 3702 } 3703 } 3704 }while( doPrior && (p = p->pPrior)!=0 ); 3705 } 3706 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3707 3708 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3709 /* 3710 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3711 ** clause of that SELECT. 3712 ** 3713 ** This routine scans the entire SELECT statement and recomputes the 3714 ** pSrcItem->colUsed mask. 3715 */ 3716 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3717 SrcItem *pItem; 3718 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3719 pItem = pWalker->u.pSrcItem; 3720 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3721 if( pExpr->iColumn<0 ) return WRC_Continue; 3722 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3723 return WRC_Continue; 3724 } 3725 static void recomputeColumnsUsed( 3726 Select *pSelect, /* The complete SELECT statement */ 3727 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3728 ){ 3729 Walker w; 3730 if( NEVER(pSrcItem->pTab==0) ) return; 3731 memset(&w, 0, sizeof(w)); 3732 w.xExprCallback = recomputeColumnsUsedExpr; 3733 w.xSelectCallback = sqlite3SelectWalkNoop; 3734 w.u.pSrcItem = pSrcItem; 3735 pSrcItem->colUsed = 0; 3736 sqlite3WalkSelect(&w, pSelect); 3737 } 3738 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3739 3740 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3741 /* 3742 ** Assign new cursor numbers to each of the items in pSrc. For each 3743 ** new cursor number assigned, set an entry in the aCsrMap[] array 3744 ** to map the old cursor number to the new: 3745 ** 3746 ** aCsrMap[iOld] = iNew; 3747 ** 3748 ** The array is guaranteed by the caller to be large enough for all 3749 ** existing cursor numbers in pSrc. 3750 ** 3751 ** If pSrc contains any sub-selects, call this routine recursively 3752 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3753 */ 3754 static void srclistRenumberCursors( 3755 Parse *pParse, /* Parse context */ 3756 int *aCsrMap, /* Array to store cursor mappings in */ 3757 SrcList *pSrc, /* FROM clause to renumber */ 3758 int iExcept /* FROM clause item to skip */ 3759 ){ 3760 int i; 3761 SrcItem *pItem; 3762 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3763 if( i!=iExcept ){ 3764 Select *p; 3765 pItem->iCursor = aCsrMap[pItem->iCursor] = pParse->nTab++; 3766 for(p=pItem->pSelect; p; p=p->pPrior){ 3767 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3768 } 3769 } 3770 } 3771 } 3772 3773 /* 3774 ** Expression walker callback used by renumberCursors() to update 3775 ** Expr objects to match newly assigned cursor numbers. 3776 */ 3777 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3778 int *aCsrMap = pWalker->u.aiCol; 3779 int op = pExpr->op; 3780 if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){ 3781 pExpr->iTable = aCsrMap[pExpr->iTable]; 3782 } 3783 if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){ 3784 pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable]; 3785 } 3786 return WRC_Continue; 3787 } 3788 3789 /* 3790 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3791 ** of the SELECT statement passed as the second argument, and to each 3792 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3793 ** Except, do not assign a new cursor number to the iExcept'th element in 3794 ** the FROM clause of (*p). Update all expressions and other references 3795 ** to refer to the new cursor numbers. 3796 ** 3797 ** Argument aCsrMap is an array that may be used for temporary working 3798 ** space. Two guarantees are made by the caller: 3799 ** 3800 ** * the array is larger than the largest cursor number used within the 3801 ** select statement passed as an argument, and 3802 ** 3803 ** * the array entries for all cursor numbers that do *not* appear in 3804 ** FROM clauses of the select statement as described above are 3805 ** initialized to zero. 3806 */ 3807 static void renumberCursors( 3808 Parse *pParse, /* Parse context */ 3809 Select *p, /* Select to renumber cursors within */ 3810 int iExcept, /* FROM clause item to skip */ 3811 int *aCsrMap /* Working space */ 3812 ){ 3813 Walker w; 3814 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3815 memset(&w, 0, sizeof(w)); 3816 w.u.aiCol = aCsrMap; 3817 w.xExprCallback = renumberCursorsCb; 3818 w.xSelectCallback = sqlite3SelectWalkNoop; 3819 sqlite3WalkSelect(&w, p); 3820 } 3821 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3822 3823 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3824 /* 3825 ** This routine attempts to flatten subqueries as a performance optimization. 3826 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3827 ** 3828 ** To understand the concept of flattening, consider the following 3829 ** query: 3830 ** 3831 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3832 ** 3833 ** The default way of implementing this query is to execute the 3834 ** subquery first and store the results in a temporary table, then 3835 ** run the outer query on that temporary table. This requires two 3836 ** passes over the data. Furthermore, because the temporary table 3837 ** has no indices, the WHERE clause on the outer query cannot be 3838 ** optimized. 3839 ** 3840 ** This routine attempts to rewrite queries such as the above into 3841 ** a single flat select, like this: 3842 ** 3843 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3844 ** 3845 ** The code generated for this simplification gives the same result 3846 ** but only has to scan the data once. And because indices might 3847 ** exist on the table t1, a complete scan of the data might be 3848 ** avoided. 3849 ** 3850 ** Flattening is subject to the following constraints: 3851 ** 3852 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3853 ** The subquery and the outer query cannot both be aggregates. 3854 ** 3855 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3856 ** (2) If the subquery is an aggregate then 3857 ** (2a) the outer query must not be a join and 3858 ** (2b) the outer query must not use subqueries 3859 ** other than the one FROM-clause subquery that is a candidate 3860 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3861 ** from 2015-02-09.) 3862 ** 3863 ** (3) If the subquery is the right operand of a LEFT JOIN then 3864 ** (3a) the subquery may not be a join and 3865 ** (3b) the FROM clause of the subquery may not contain a virtual 3866 ** table and 3867 ** (3c) the outer query may not be an aggregate. 3868 ** (3d) the outer query may not be DISTINCT. 3869 ** 3870 ** (4) The subquery can not be DISTINCT. 3871 ** 3872 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3873 ** sub-queries that were excluded from this optimization. Restriction 3874 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3875 ** 3876 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3877 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3878 ** 3879 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3880 ** A FROM clause, consider adding a FROM clause with the special 3881 ** table sqlite_once that consists of a single row containing a 3882 ** single NULL. 3883 ** 3884 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3885 ** 3886 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3887 ** 3888 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3889 ** accidently carried the comment forward until 2014-09-15. Original 3890 ** constraint: "If the subquery is aggregate then the outer query 3891 ** may not use LIMIT." 3892 ** 3893 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3894 ** 3895 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3896 ** a separate restriction deriving from ticket #350. 3897 ** 3898 ** (13) The subquery and outer query may not both use LIMIT. 3899 ** 3900 ** (14) The subquery may not use OFFSET. 3901 ** 3902 ** (15) If the outer query is part of a compound select, then the 3903 ** subquery may not use LIMIT. 3904 ** (See ticket #2339 and ticket [02a8e81d44]). 3905 ** 3906 ** (16) If the outer query is aggregate, then the subquery may not 3907 ** use ORDER BY. (Ticket #2942) This used to not matter 3908 ** until we introduced the group_concat() function. 3909 ** 3910 ** (17) If the subquery is a compound select, then 3911 ** (17a) all compound operators must be a UNION ALL, and 3912 ** (17b) no terms within the subquery compound may be aggregate 3913 ** or DISTINCT, and 3914 ** (17c) every term within the subquery compound must have a FROM clause 3915 ** (17d) the outer query may not be 3916 ** (17d1) aggregate, or 3917 ** (17d2) DISTINCT 3918 ** (17e) the subquery may not contain window functions, and 3919 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3920 ** 3921 ** The parent and sub-query may contain WHERE clauses. Subject to 3922 ** rules (11), (13) and (14), they may also contain ORDER BY, 3923 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3924 ** operator other than UNION ALL because all the other compound 3925 ** operators have an implied DISTINCT which is disallowed by 3926 ** restriction (4). 3927 ** 3928 ** Also, each component of the sub-query must return the same number 3929 ** of result columns. This is actually a requirement for any compound 3930 ** SELECT statement, but all the code here does is make sure that no 3931 ** such (illegal) sub-query is flattened. The caller will detect the 3932 ** syntax error and return a detailed message. 3933 ** 3934 ** (18) If the sub-query is a compound select, then all terms of the 3935 ** ORDER BY clause of the parent must be copies of a term returned 3936 ** by the parent query. 3937 ** 3938 ** (19) If the subquery uses LIMIT then the outer query may not 3939 ** have a WHERE clause. 3940 ** 3941 ** (20) If the sub-query is a compound select, then it must not use 3942 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3943 ** somewhat by saying that the terms of the ORDER BY clause must 3944 ** appear as unmodified result columns in the outer query. But we 3945 ** have other optimizations in mind to deal with that case. 3946 ** 3947 ** (21) If the subquery uses LIMIT then the outer query may not be 3948 ** DISTINCT. (See ticket [752e1646fc]). 3949 ** 3950 ** (22) The subquery may not be a recursive CTE. 3951 ** 3952 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3953 ** a compound query. This restriction is because transforming the 3954 ** parent to a compound query confuses the code that handles 3955 ** recursive queries in multiSelect(). 3956 ** 3957 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3958 ** The subquery may not be an aggregate that uses the built-in min() or 3959 ** or max() functions. (Without this restriction, a query like: 3960 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3961 ** return the value X for which Y was maximal.) 3962 ** 3963 ** (25) If either the subquery or the parent query contains a window 3964 ** function in the select list or ORDER BY clause, flattening 3965 ** is not attempted. 3966 ** 3967 ** 3968 ** In this routine, the "p" parameter is a pointer to the outer query. 3969 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3970 ** uses aggregates. 3971 ** 3972 ** If flattening is not attempted, this routine is a no-op and returns 0. 3973 ** If flattening is attempted this routine returns 1. 3974 ** 3975 ** All of the expression analysis must occur on both the outer query and 3976 ** the subquery before this routine runs. 3977 */ 3978 static int flattenSubquery( 3979 Parse *pParse, /* Parsing context */ 3980 Select *p, /* The parent or outer SELECT statement */ 3981 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3982 int isAgg /* True if outer SELECT uses aggregate functions */ 3983 ){ 3984 const char *zSavedAuthContext = pParse->zAuthContext; 3985 Select *pParent; /* Current UNION ALL term of the other query */ 3986 Select *pSub; /* The inner query or "subquery" */ 3987 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3988 SrcList *pSrc; /* The FROM clause of the outer query */ 3989 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3990 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3991 int iNewParent = -1;/* Replacement table for iParent */ 3992 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 3993 int i; /* Loop counter */ 3994 Expr *pWhere; /* The WHERE clause */ 3995 SrcItem *pSubitem; /* The subquery */ 3996 sqlite3 *db = pParse->db; 3997 Walker w; /* Walker to persist agginfo data */ 3998 int *aCsrMap = 0; 3999 4000 /* Check to see if flattening is permitted. Return 0 if not. 4001 */ 4002 assert( p!=0 ); 4003 assert( p->pPrior==0 ); 4004 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4005 pSrc = p->pSrc; 4006 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4007 pSubitem = &pSrc->a[iFrom]; 4008 iParent = pSubitem->iCursor; 4009 pSub = pSubitem->pSelect; 4010 assert( pSub!=0 ); 4011 4012 #ifndef SQLITE_OMIT_WINDOWFUNC 4013 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4014 #endif 4015 4016 pSubSrc = pSub->pSrc; 4017 assert( pSubSrc ); 4018 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4019 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4020 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4021 ** became arbitrary expressions, we were forced to add restrictions (13) 4022 ** and (14). */ 4023 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4024 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4025 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4026 return 0; /* Restriction (15) */ 4027 } 4028 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4029 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4030 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4031 return 0; /* Restrictions (8)(9) */ 4032 } 4033 if( p->pOrderBy && pSub->pOrderBy ){ 4034 return 0; /* Restriction (11) */ 4035 } 4036 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4037 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4038 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4039 return 0; /* Restriction (21) */ 4040 } 4041 if( pSub->selFlags & (SF_Recursive) ){ 4042 return 0; /* Restrictions (22) */ 4043 } 4044 4045 /* 4046 ** If the subquery is the right operand of a LEFT JOIN, then the 4047 ** subquery may not be a join itself (3a). Example of why this is not 4048 ** allowed: 4049 ** 4050 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4051 ** 4052 ** If we flatten the above, we would get 4053 ** 4054 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4055 ** 4056 ** which is not at all the same thing. 4057 ** 4058 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4059 ** query cannot be an aggregate. (3c) This is an artifact of the way 4060 ** aggregates are processed - there is no mechanism to determine if 4061 ** the LEFT JOIN table should be all-NULL. 4062 ** 4063 ** See also tickets #306, #350, and #3300. 4064 */ 4065 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4066 isLeftJoin = 1; 4067 if( pSubSrc->nSrc>1 /* (3a) */ 4068 || isAgg /* (3b) */ 4069 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4070 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4071 ){ 4072 return 0; 4073 } 4074 } 4075 #ifdef SQLITE_EXTRA_IFNULLROW 4076 else if( iFrom>0 && !isAgg ){ 4077 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4078 ** every reference to any result column from subquery in a join, even 4079 ** though they are not necessary. This will stress-test the OP_IfNullRow 4080 ** opcode. */ 4081 isLeftJoin = -1; 4082 } 4083 #endif 4084 4085 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4086 ** use only the UNION ALL operator. And none of the simple select queries 4087 ** that make up the compound SELECT are allowed to be aggregate or distinct 4088 ** queries. 4089 */ 4090 if( pSub->pPrior ){ 4091 if( pSub->pOrderBy ){ 4092 return 0; /* Restriction (20) */ 4093 } 4094 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4095 return 0; /* (17d1), (17d2), or (17f) */ 4096 } 4097 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4098 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4099 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4100 assert( pSub->pSrc!=0 ); 4101 assert( (pSub->selFlags & SF_Recursive)==0 ); 4102 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4103 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4104 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4105 || pSub1->pSrc->nSrc<1 /* (17c) */ 4106 #ifndef SQLITE_OMIT_WINDOWFUNC 4107 || pSub1->pWin /* (17e) */ 4108 #endif 4109 ){ 4110 return 0; 4111 } 4112 testcase( pSub1->pSrc->nSrc>1 ); 4113 } 4114 4115 /* Restriction (18). */ 4116 if( p->pOrderBy ){ 4117 int ii; 4118 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4119 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4120 } 4121 } 4122 4123 /* Restriction (23) */ 4124 if( (p->selFlags & SF_Recursive) ) return 0; 4125 4126 if( pSrc->nSrc>1 ){ 4127 if( pParse->nSelect>500 ) return 0; 4128 aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int)); 4129 } 4130 } 4131 4132 /***** If we reach this point, flattening is permitted. *****/ 4133 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4134 pSub->selId, pSub, iFrom)); 4135 4136 /* Authorize the subquery */ 4137 pParse->zAuthContext = pSubitem->zName; 4138 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4139 testcase( i==SQLITE_DENY ); 4140 pParse->zAuthContext = zSavedAuthContext; 4141 4142 /* Delete the transient structures associated with thesubquery */ 4143 pSub1 = pSubitem->pSelect; 4144 sqlite3DbFree(db, pSubitem->zDatabase); 4145 sqlite3DbFree(db, pSubitem->zName); 4146 sqlite3DbFree(db, pSubitem->zAlias); 4147 pSubitem->zDatabase = 0; 4148 pSubitem->zName = 0; 4149 pSubitem->zAlias = 0; 4150 pSubitem->pSelect = 0; 4151 assert( pSubitem->pOn==0 ); 4152 4153 /* If the sub-query is a compound SELECT statement, then (by restrictions 4154 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4155 ** be of the form: 4156 ** 4157 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4158 ** 4159 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4160 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4161 ** OFFSET clauses and joins them to the left-hand-side of the original 4162 ** using UNION ALL operators. In this case N is the number of simple 4163 ** select statements in the compound sub-query. 4164 ** 4165 ** Example: 4166 ** 4167 ** SELECT a+1 FROM ( 4168 ** SELECT x FROM tab 4169 ** UNION ALL 4170 ** SELECT y FROM tab 4171 ** UNION ALL 4172 ** SELECT abs(z*2) FROM tab2 4173 ** ) WHERE a!=5 ORDER BY 1 4174 ** 4175 ** Transformed into: 4176 ** 4177 ** SELECT x+1 FROM tab WHERE x+1!=5 4178 ** UNION ALL 4179 ** SELECT y+1 FROM tab WHERE y+1!=5 4180 ** UNION ALL 4181 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4182 ** ORDER BY 1 4183 ** 4184 ** We call this the "compound-subquery flattening". 4185 */ 4186 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4187 Select *pNew; 4188 ExprList *pOrderBy = p->pOrderBy; 4189 Expr *pLimit = p->pLimit; 4190 Select *pPrior = p->pPrior; 4191 Table *pItemTab = pSubitem->pTab; 4192 pSubitem->pTab = 0; 4193 p->pOrderBy = 0; 4194 p->pPrior = 0; 4195 p->pLimit = 0; 4196 pNew = sqlite3SelectDup(db, p, 0); 4197 p->pLimit = pLimit; 4198 p->pOrderBy = pOrderBy; 4199 p->op = TK_ALL; 4200 pSubitem->pTab = pItemTab; 4201 if( pNew==0 ){ 4202 p->pPrior = pPrior; 4203 }else{ 4204 pNew->selId = ++pParse->nSelect; 4205 if( aCsrMap && db->mallocFailed==0 ){ 4206 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4207 } 4208 pNew->pPrior = pPrior; 4209 if( pPrior ) pPrior->pNext = pNew; 4210 pNew->pNext = p; 4211 p->pPrior = pNew; 4212 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4213 " creates %u as peer\n",pNew->selId)); 4214 } 4215 assert( pSubitem->pSelect==0 ); 4216 } 4217 sqlite3DbFree(db, aCsrMap); 4218 if( db->mallocFailed ){ 4219 pSubitem->pSelect = pSub1; 4220 return 1; 4221 } 4222 4223 /* Defer deleting the Table object associated with the 4224 ** subquery until code generation is 4225 ** complete, since there may still exist Expr.pTab entries that 4226 ** refer to the subquery even after flattening. Ticket #3346. 4227 ** 4228 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4229 */ 4230 if( ALWAYS(pSubitem->pTab!=0) ){ 4231 Table *pTabToDel = pSubitem->pTab; 4232 if( pTabToDel->nTabRef==1 ){ 4233 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4234 sqlite3ParserAddCleanup(pToplevel, 4235 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4236 pTabToDel); 4237 testcase( pToplevel->earlyCleanup ); 4238 }else{ 4239 pTabToDel->nTabRef--; 4240 } 4241 pSubitem->pTab = 0; 4242 } 4243 4244 /* The following loop runs once for each term in a compound-subquery 4245 ** flattening (as described above). If we are doing a different kind 4246 ** of flattening - a flattening other than a compound-subquery flattening - 4247 ** then this loop only runs once. 4248 ** 4249 ** This loop moves all of the FROM elements of the subquery into the 4250 ** the FROM clause of the outer query. Before doing this, remember 4251 ** the cursor number for the original outer query FROM element in 4252 ** iParent. The iParent cursor will never be used. Subsequent code 4253 ** will scan expressions looking for iParent references and replace 4254 ** those references with expressions that resolve to the subquery FROM 4255 ** elements we are now copying in. 4256 */ 4257 pSub = pSub1; 4258 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4259 int nSubSrc; 4260 u8 jointype = 0; 4261 assert( pSub!=0 ); 4262 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4263 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4264 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4265 4266 if( pParent==p ){ 4267 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4268 } 4269 4270 /* The subquery uses a single slot of the FROM clause of the outer 4271 ** query. If the subquery has more than one element in its FROM clause, 4272 ** then expand the outer query to make space for it to hold all elements 4273 ** of the subquery. 4274 ** 4275 ** Example: 4276 ** 4277 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4278 ** 4279 ** The outer query has 3 slots in its FROM clause. One slot of the 4280 ** outer query (the middle slot) is used by the subquery. The next 4281 ** block of code will expand the outer query FROM clause to 4 slots. 4282 ** The middle slot is expanded to two slots in order to make space 4283 ** for the two elements in the FROM clause of the subquery. 4284 */ 4285 if( nSubSrc>1 ){ 4286 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4287 if( pSrc==0 ) break; 4288 pParent->pSrc = pSrc; 4289 } 4290 4291 /* Transfer the FROM clause terms from the subquery into the 4292 ** outer query. 4293 */ 4294 for(i=0; i<nSubSrc; i++){ 4295 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4296 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4297 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4298 iNewParent = pSubSrc->a[i].iCursor; 4299 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4300 } 4301 pSrc->a[iFrom].fg.jointype = jointype; 4302 4303 /* Now begin substituting subquery result set expressions for 4304 ** references to the iParent in the outer query. 4305 ** 4306 ** Example: 4307 ** 4308 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4309 ** \ \_____________ subquery __________/ / 4310 ** \_____________________ outer query ______________________________/ 4311 ** 4312 ** We look at every expression in the outer query and every place we see 4313 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4314 */ 4315 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4316 /* At this point, any non-zero iOrderByCol values indicate that the 4317 ** ORDER BY column expression is identical to the iOrderByCol'th 4318 ** expression returned by SELECT statement pSub. Since these values 4319 ** do not necessarily correspond to columns in SELECT statement pParent, 4320 ** zero them before transfering the ORDER BY clause. 4321 ** 4322 ** Not doing this may cause an error if a subsequent call to this 4323 ** function attempts to flatten a compound sub-query into pParent 4324 ** (the only way this can happen is if the compound sub-query is 4325 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4326 ExprList *pOrderBy = pSub->pOrderBy; 4327 for(i=0; i<pOrderBy->nExpr; i++){ 4328 pOrderBy->a[i].u.x.iOrderByCol = 0; 4329 } 4330 assert( pParent->pOrderBy==0 ); 4331 pParent->pOrderBy = pOrderBy; 4332 pSub->pOrderBy = 0; 4333 } 4334 pWhere = pSub->pWhere; 4335 pSub->pWhere = 0; 4336 if( isLeftJoin>0 ){ 4337 sqlite3SetJoinExpr(pWhere, iNewParent); 4338 } 4339 if( pWhere ){ 4340 if( pParent->pWhere ){ 4341 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4342 }else{ 4343 pParent->pWhere = pWhere; 4344 } 4345 } 4346 if( db->mallocFailed==0 ){ 4347 SubstContext x; 4348 x.pParse = pParse; 4349 x.iTable = iParent; 4350 x.iNewTable = iNewParent; 4351 x.isLeftJoin = isLeftJoin; 4352 x.pEList = pSub->pEList; 4353 substSelect(&x, pParent, 0); 4354 } 4355 4356 /* The flattened query is a compound if either the inner or the 4357 ** outer query is a compound. */ 4358 pParent->selFlags |= pSub->selFlags & SF_Compound; 4359 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4360 4361 /* 4362 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4363 ** 4364 ** One is tempted to try to add a and b to combine the limits. But this 4365 ** does not work if either limit is negative. 4366 */ 4367 if( pSub->pLimit ){ 4368 pParent->pLimit = pSub->pLimit; 4369 pSub->pLimit = 0; 4370 } 4371 4372 /* Recompute the SrcList_item.colUsed masks for the flattened 4373 ** tables. */ 4374 for(i=0; i<nSubSrc; i++){ 4375 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4376 } 4377 } 4378 4379 /* Finially, delete what is left of the subquery and return 4380 ** success. 4381 */ 4382 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4383 sqlite3WalkSelect(&w,pSub1); 4384 sqlite3SelectDelete(db, pSub1); 4385 4386 #if SELECTTRACE_ENABLED 4387 if( sqlite3SelectTrace & 0x100 ){ 4388 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4389 sqlite3TreeViewSelect(0, p, 0); 4390 } 4391 #endif 4392 4393 return 1; 4394 } 4395 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4396 4397 /* 4398 ** A structure to keep track of all of the column values that are fixed to 4399 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4400 */ 4401 typedef struct WhereConst WhereConst; 4402 struct WhereConst { 4403 Parse *pParse; /* Parsing context */ 4404 int nConst; /* Number for COLUMN=CONSTANT terms */ 4405 int nChng; /* Number of times a constant is propagated */ 4406 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4407 }; 4408 4409 /* 4410 ** Add a new entry to the pConst object. Except, do not add duplicate 4411 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4412 ** 4413 ** The caller guarantees the pColumn is a column and pValue is a constant. 4414 ** This routine has to do some additional checks before completing the 4415 ** insert. 4416 */ 4417 static void constInsert( 4418 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4419 Expr *pColumn, /* The COLUMN part of the constraint */ 4420 Expr *pValue, /* The VALUE part of the constraint */ 4421 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4422 ){ 4423 int i; 4424 assert( pColumn->op==TK_COLUMN ); 4425 assert( sqlite3ExprIsConstant(pValue) ); 4426 4427 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4428 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4429 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4430 return; 4431 } 4432 4433 /* 2018-10-25 ticket [cf5ed20f] 4434 ** Make sure the same pColumn is not inserted more than once */ 4435 for(i=0; i<pConst->nConst; i++){ 4436 const Expr *pE2 = pConst->apExpr[i*2]; 4437 assert( pE2->op==TK_COLUMN ); 4438 if( pE2->iTable==pColumn->iTable 4439 && pE2->iColumn==pColumn->iColumn 4440 ){ 4441 return; /* Already present. Return without doing anything. */ 4442 } 4443 } 4444 4445 pConst->nConst++; 4446 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4447 pConst->nConst*2*sizeof(Expr*)); 4448 if( pConst->apExpr==0 ){ 4449 pConst->nConst = 0; 4450 }else{ 4451 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4452 pConst->apExpr[pConst->nConst*2-1] = pValue; 4453 } 4454 } 4455 4456 /* 4457 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4458 ** is a constant expression and where the term must be true because it 4459 ** is part of the AND-connected terms of the expression. For each term 4460 ** found, add it to the pConst structure. 4461 */ 4462 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4463 Expr *pRight, *pLeft; 4464 if( pExpr==0 ) return; 4465 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4466 if( pExpr->op==TK_AND ){ 4467 findConstInWhere(pConst, pExpr->pRight); 4468 findConstInWhere(pConst, pExpr->pLeft); 4469 return; 4470 } 4471 if( pExpr->op!=TK_EQ ) return; 4472 pRight = pExpr->pRight; 4473 pLeft = pExpr->pLeft; 4474 assert( pRight!=0 ); 4475 assert( pLeft!=0 ); 4476 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4477 constInsert(pConst,pRight,pLeft,pExpr); 4478 } 4479 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4480 constInsert(pConst,pLeft,pRight,pExpr); 4481 } 4482 } 4483 4484 /* 4485 ** This is a Walker expression callback. pExpr is a candidate expression 4486 ** to be replaced by a value. If pExpr is equivalent to one of the 4487 ** columns named in pWalker->u.pConst, then overwrite it with its 4488 ** corresponding value. 4489 */ 4490 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4491 int i; 4492 WhereConst *pConst; 4493 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4494 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4495 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4496 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4497 return WRC_Continue; 4498 } 4499 pConst = pWalker->u.pConst; 4500 for(i=0; i<pConst->nConst; i++){ 4501 Expr *pColumn = pConst->apExpr[i*2]; 4502 if( pColumn==pExpr ) continue; 4503 if( pColumn->iTable!=pExpr->iTable ) continue; 4504 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4505 /* A match is found. Add the EP_FixedCol property */ 4506 pConst->nChng++; 4507 ExprClearProperty(pExpr, EP_Leaf); 4508 ExprSetProperty(pExpr, EP_FixedCol); 4509 assert( pExpr->pLeft==0 ); 4510 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4511 break; 4512 } 4513 return WRC_Prune; 4514 } 4515 4516 /* 4517 ** The WHERE-clause constant propagation optimization. 4518 ** 4519 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4520 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4521 ** part of a ON clause from a LEFT JOIN, then throughout the query 4522 ** replace all other occurrences of COLUMN with CONSTANT. 4523 ** 4524 ** For example, the query: 4525 ** 4526 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4527 ** 4528 ** Is transformed into 4529 ** 4530 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4531 ** 4532 ** Return true if any transformations where made and false if not. 4533 ** 4534 ** Implementation note: Constant propagation is tricky due to affinity 4535 ** and collating sequence interactions. Consider this example: 4536 ** 4537 ** CREATE TABLE t1(a INT,b TEXT); 4538 ** INSERT INTO t1 VALUES(123,'0123'); 4539 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4540 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4541 ** 4542 ** The two SELECT statements above should return different answers. b=a 4543 ** is alway true because the comparison uses numeric affinity, but b=123 4544 ** is false because it uses text affinity and '0123' is not the same as '123'. 4545 ** To work around this, the expression tree is not actually changed from 4546 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4547 ** and the "123" value is hung off of the pLeft pointer. Code generator 4548 ** routines know to generate the constant "123" instead of looking up the 4549 ** column value. Also, to avoid collation problems, this optimization is 4550 ** only attempted if the "a=123" term uses the default BINARY collation. 4551 */ 4552 static int propagateConstants( 4553 Parse *pParse, /* The parsing context */ 4554 Select *p /* The query in which to propagate constants */ 4555 ){ 4556 WhereConst x; 4557 Walker w; 4558 int nChng = 0; 4559 x.pParse = pParse; 4560 do{ 4561 x.nConst = 0; 4562 x.nChng = 0; 4563 x.apExpr = 0; 4564 findConstInWhere(&x, p->pWhere); 4565 if( x.nConst ){ 4566 memset(&w, 0, sizeof(w)); 4567 w.pParse = pParse; 4568 w.xExprCallback = propagateConstantExprRewrite; 4569 w.xSelectCallback = sqlite3SelectWalkNoop; 4570 w.xSelectCallback2 = 0; 4571 w.walkerDepth = 0; 4572 w.u.pConst = &x; 4573 sqlite3WalkExpr(&w, p->pWhere); 4574 sqlite3DbFree(x.pParse->db, x.apExpr); 4575 nChng += x.nChng; 4576 } 4577 }while( x.nChng ); 4578 return nChng; 4579 } 4580 4581 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4582 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4583 /* 4584 ** This function is called to determine whether or not it is safe to 4585 ** push WHERE clause expression pExpr down to FROM clause sub-query 4586 ** pSubq, which contains at least one window function. Return 1 4587 ** if it is safe and the expression should be pushed down, or 0 4588 ** otherwise. 4589 ** 4590 ** It is only safe to push the expression down if it consists only 4591 ** of constants and copies of expressions that appear in the PARTITION 4592 ** BY clause of all window function used by the sub-query. It is safe 4593 ** to filter out entire partitions, but not rows within partitions, as 4594 ** this may change the results of the window functions. 4595 ** 4596 ** At the time this function is called it is guaranteed that 4597 ** 4598 ** * the sub-query uses only one distinct window frame, and 4599 ** * that the window frame has a PARTITION BY clase. 4600 */ 4601 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4602 assert( pSubq->pWin->pPartition ); 4603 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4604 assert( pSubq->pPrior==0 ); 4605 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4606 } 4607 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4608 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4609 4610 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4611 /* 4612 ** Make copies of relevant WHERE clause terms of the outer query into 4613 ** the WHERE clause of subquery. Example: 4614 ** 4615 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4616 ** 4617 ** Transformed into: 4618 ** 4619 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4620 ** WHERE x=5 AND y=10; 4621 ** 4622 ** The hope is that the terms added to the inner query will make it more 4623 ** efficient. 4624 ** 4625 ** Do not attempt this optimization if: 4626 ** 4627 ** (1) (** This restriction was removed on 2017-09-29. We used to 4628 ** disallow this optimization for aggregate subqueries, but now 4629 ** it is allowed by putting the extra terms on the HAVING clause. 4630 ** The added HAVING clause is pointless if the subquery lacks 4631 ** a GROUP BY clause. But such a HAVING clause is also harmless 4632 ** so there does not appear to be any reason to add extra logic 4633 ** to suppress it. **) 4634 ** 4635 ** (2) The inner query is the recursive part of a common table expression. 4636 ** 4637 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4638 ** clause would change the meaning of the LIMIT). 4639 ** 4640 ** (4) The inner query is the right operand of a LEFT JOIN and the 4641 ** expression to be pushed down does not come from the ON clause 4642 ** on that LEFT JOIN. 4643 ** 4644 ** (5) The WHERE clause expression originates in the ON or USING clause 4645 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4646 ** left join. An example: 4647 ** 4648 ** SELECT * 4649 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4650 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4651 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4652 ** 4653 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4654 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4655 ** then the (1,1,NULL) row would be suppressed. 4656 ** 4657 ** (6) Window functions make things tricky as changes to the WHERE clause 4658 ** of the inner query could change the window over which window 4659 ** functions are calculated. Therefore, do not attempt the optimization 4660 ** if: 4661 ** 4662 ** (6a) The inner query uses multiple incompatible window partitions. 4663 ** 4664 ** (6b) The inner query is a compound and uses window-functions. 4665 ** 4666 ** (6c) The WHERE clause does not consist entirely of constants and 4667 ** copies of expressions found in the PARTITION BY clause of 4668 ** all window-functions used by the sub-query. It is safe to 4669 ** filter out entire partitions, as this does not change the 4670 ** window over which any window-function is calculated. 4671 ** 4672 ** (7) The inner query is a Common Table Expression (CTE) that should 4673 ** be materialized. (This restriction is implemented in the calling 4674 ** routine.) 4675 ** 4676 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4677 ** terms are duplicated into the subquery. 4678 */ 4679 static int pushDownWhereTerms( 4680 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4681 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4682 Expr *pWhere, /* The WHERE clause of the outer query */ 4683 int iCursor, /* Cursor number of the subquery */ 4684 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4685 ){ 4686 Expr *pNew; 4687 int nChng = 0; 4688 if( pWhere==0 ) return 0; 4689 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4690 4691 #ifndef SQLITE_OMIT_WINDOWFUNC 4692 if( pSubq->pPrior ){ 4693 Select *pSel; 4694 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4695 if( pSel->pWin ) return 0; /* restriction (6b) */ 4696 } 4697 }else{ 4698 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4699 } 4700 #endif 4701 4702 #ifdef SQLITE_DEBUG 4703 /* Only the first term of a compound can have a WITH clause. But make 4704 ** sure no other terms are marked SF_Recursive in case something changes 4705 ** in the future. 4706 */ 4707 { 4708 Select *pX; 4709 for(pX=pSubq; pX; pX=pX->pPrior){ 4710 assert( (pX->selFlags & (SF_Recursive))==0 ); 4711 } 4712 } 4713 #endif 4714 4715 if( pSubq->pLimit!=0 ){ 4716 return 0; /* restriction (3) */ 4717 } 4718 while( pWhere->op==TK_AND ){ 4719 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4720 iCursor, isLeftJoin); 4721 pWhere = pWhere->pLeft; 4722 } 4723 if( isLeftJoin 4724 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4725 || pWhere->iRightJoinTable!=iCursor) 4726 ){ 4727 return 0; /* restriction (4) */ 4728 } 4729 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4730 return 0; /* restriction (5) */ 4731 } 4732 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4733 nChng++; 4734 pSubq->selFlags |= SF_PushDown; 4735 while( pSubq ){ 4736 SubstContext x; 4737 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4738 unsetJoinExpr(pNew, -1); 4739 x.pParse = pParse; 4740 x.iTable = iCursor; 4741 x.iNewTable = iCursor; 4742 x.isLeftJoin = 0; 4743 x.pEList = pSubq->pEList; 4744 pNew = substExpr(&x, pNew); 4745 #ifndef SQLITE_OMIT_WINDOWFUNC 4746 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4747 /* Restriction 6c has prevented push-down in this case */ 4748 sqlite3ExprDelete(pParse->db, pNew); 4749 nChng--; 4750 break; 4751 } 4752 #endif 4753 if( pSubq->selFlags & SF_Aggregate ){ 4754 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4755 }else{ 4756 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4757 } 4758 pSubq = pSubq->pPrior; 4759 } 4760 } 4761 return nChng; 4762 } 4763 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4764 4765 /* 4766 ** The pFunc is the only aggregate function in the query. Check to see 4767 ** if the query is a candidate for the min/max optimization. 4768 ** 4769 ** If the query is a candidate for the min/max optimization, then set 4770 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4771 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4772 ** whether pFunc is a min() or max() function. 4773 ** 4774 ** If the query is not a candidate for the min/max optimization, return 4775 ** WHERE_ORDERBY_NORMAL (which must be zero). 4776 ** 4777 ** This routine must be called after aggregate functions have been 4778 ** located but before their arguments have been subjected to aggregate 4779 ** analysis. 4780 */ 4781 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4782 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4783 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4784 const char *zFunc; /* Name of aggregate function pFunc */ 4785 ExprList *pOrderBy; 4786 u8 sortFlags = 0; 4787 4788 assert( *ppMinMax==0 ); 4789 assert( pFunc->op==TK_AGG_FUNCTION ); 4790 assert( !IsWindowFunc(pFunc) ); 4791 if( pEList==0 4792 || pEList->nExpr!=1 4793 || ExprHasProperty(pFunc, EP_WinFunc) 4794 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4795 ){ 4796 return eRet; 4797 } 4798 zFunc = pFunc->u.zToken; 4799 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4800 eRet = WHERE_ORDERBY_MIN; 4801 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4802 sortFlags = KEYINFO_ORDER_BIGNULL; 4803 } 4804 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4805 eRet = WHERE_ORDERBY_MAX; 4806 sortFlags = KEYINFO_ORDER_DESC; 4807 }else{ 4808 return eRet; 4809 } 4810 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4811 assert( pOrderBy!=0 || db->mallocFailed ); 4812 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4813 return eRet; 4814 } 4815 4816 /* 4817 ** The select statement passed as the first argument is an aggregate query. 4818 ** The second argument is the associated aggregate-info object. This 4819 ** function tests if the SELECT is of the form: 4820 ** 4821 ** SELECT count(*) FROM <tbl> 4822 ** 4823 ** where table is a database table, not a sub-select or view. If the query 4824 ** does match this pattern, then a pointer to the Table object representing 4825 ** <tbl> is returned. Otherwise, 0 is returned. 4826 */ 4827 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4828 Table *pTab; 4829 Expr *pExpr; 4830 4831 assert( !p->pGroupBy ); 4832 4833 if( p->pWhere || p->pEList->nExpr!=1 4834 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4835 ){ 4836 return 0; 4837 } 4838 pTab = p->pSrc->a[0].pTab; 4839 pExpr = p->pEList->a[0].pExpr; 4840 assert( pTab && !pTab->pSelect && pExpr ); 4841 4842 if( IsVirtual(pTab) ) return 0; 4843 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4844 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4845 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4846 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4847 4848 return pTab; 4849 } 4850 4851 /* 4852 ** If the source-list item passed as an argument was augmented with an 4853 ** INDEXED BY clause, then try to locate the specified index. If there 4854 ** was such a clause and the named index cannot be found, return 4855 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4856 ** pFrom->pIndex and return SQLITE_OK. 4857 */ 4858 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4859 Table *pTab = pFrom->pTab; 4860 char *zIndexedBy = pFrom->u1.zIndexedBy; 4861 Index *pIdx; 4862 assert( pTab!=0 ); 4863 assert( pFrom->fg.isIndexedBy!=0 ); 4864 4865 for(pIdx=pTab->pIndex; 4866 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4867 pIdx=pIdx->pNext 4868 ); 4869 if( !pIdx ){ 4870 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4871 pParse->checkSchema = 1; 4872 return SQLITE_ERROR; 4873 } 4874 pFrom->u2.pIBIndex = pIdx; 4875 return SQLITE_OK; 4876 } 4877 4878 /* 4879 ** Detect compound SELECT statements that use an ORDER BY clause with 4880 ** an alternative collating sequence. 4881 ** 4882 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4883 ** 4884 ** These are rewritten as a subquery: 4885 ** 4886 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4887 ** ORDER BY ... COLLATE ... 4888 ** 4889 ** This transformation is necessary because the multiSelectOrderBy() routine 4890 ** above that generates the code for a compound SELECT with an ORDER BY clause 4891 ** uses a merge algorithm that requires the same collating sequence on the 4892 ** result columns as on the ORDER BY clause. See ticket 4893 ** http://www.sqlite.org/src/info/6709574d2a 4894 ** 4895 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 4896 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 4897 ** there are COLLATE terms in the ORDER BY. 4898 */ 4899 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 4900 int i; 4901 Select *pNew; 4902 Select *pX; 4903 sqlite3 *db; 4904 struct ExprList_item *a; 4905 SrcList *pNewSrc; 4906 Parse *pParse; 4907 Token dummy; 4908 4909 if( p->pPrior==0 ) return WRC_Continue; 4910 if( p->pOrderBy==0 ) return WRC_Continue; 4911 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 4912 if( pX==0 ) return WRC_Continue; 4913 a = p->pOrderBy->a; 4914 #ifndef SQLITE_OMIT_WINDOWFUNC 4915 /* If iOrderByCol is already non-zero, then it has already been matched 4916 ** to a result column of the SELECT statement. This occurs when the 4917 ** SELECT is rewritten for window-functions processing and then passed 4918 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 4919 ** by this function is not required in this case. */ 4920 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 4921 #endif 4922 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 4923 if( a[i].pExpr->flags & EP_Collate ) break; 4924 } 4925 if( i<0 ) return WRC_Continue; 4926 4927 /* If we reach this point, that means the transformation is required. */ 4928 4929 pParse = pWalker->pParse; 4930 db = pParse->db; 4931 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 4932 if( pNew==0 ) return WRC_Abort; 4933 memset(&dummy, 0, sizeof(dummy)); 4934 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 4935 if( pNewSrc==0 ) return WRC_Abort; 4936 *pNew = *p; 4937 p->pSrc = pNewSrc; 4938 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 4939 p->op = TK_SELECT; 4940 p->pWhere = 0; 4941 pNew->pGroupBy = 0; 4942 pNew->pHaving = 0; 4943 pNew->pOrderBy = 0; 4944 p->pPrior = 0; 4945 p->pNext = 0; 4946 p->pWith = 0; 4947 #ifndef SQLITE_OMIT_WINDOWFUNC 4948 p->pWinDefn = 0; 4949 #endif 4950 p->selFlags &= ~SF_Compound; 4951 assert( (p->selFlags & SF_Converted)==0 ); 4952 p->selFlags |= SF_Converted; 4953 assert( pNew->pPrior!=0 ); 4954 pNew->pPrior->pNext = pNew; 4955 pNew->pLimit = 0; 4956 return WRC_Continue; 4957 } 4958 4959 /* 4960 ** Check to see if the FROM clause term pFrom has table-valued function 4961 ** arguments. If it does, leave an error message in pParse and return 4962 ** non-zero, since pFrom is not allowed to be a table-valued function. 4963 */ 4964 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 4965 if( pFrom->fg.isTabFunc ){ 4966 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 4967 return 1; 4968 } 4969 return 0; 4970 } 4971 4972 #ifndef SQLITE_OMIT_CTE 4973 /* 4974 ** Argument pWith (which may be NULL) points to a linked list of nested 4975 ** WITH contexts, from inner to outermost. If the table identified by 4976 ** FROM clause element pItem is really a common-table-expression (CTE) 4977 ** then return a pointer to the CTE definition for that table. Otherwise 4978 ** return NULL. 4979 ** 4980 ** If a non-NULL value is returned, set *ppContext to point to the With 4981 ** object that the returned CTE belongs to. 4982 */ 4983 static struct Cte *searchWith( 4984 With *pWith, /* Current innermost WITH clause */ 4985 SrcItem *pItem, /* FROM clause element to resolve */ 4986 With **ppContext /* OUT: WITH clause return value belongs to */ 4987 ){ 4988 const char *zName = pItem->zName; 4989 With *p; 4990 assert( pItem->zDatabase==0 ); 4991 assert( zName!=0 ); 4992 for(p=pWith; p; p=p->pOuter){ 4993 int i; 4994 for(i=0; i<p->nCte; i++){ 4995 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 4996 *ppContext = p; 4997 return &p->a[i]; 4998 } 4999 } 5000 } 5001 return 0; 5002 } 5003 5004 /* The code generator maintains a stack of active WITH clauses 5005 ** with the inner-most WITH clause being at the top of the stack. 5006 ** 5007 ** This routine pushes the WITH clause passed as the second argument 5008 ** onto the top of the stack. If argument bFree is true, then this 5009 ** WITH clause will never be popped from the stack. In this case it 5010 ** should be freed along with the Parse object. In other cases, when 5011 ** bFree==0, the With object will be freed along with the SELECT 5012 ** statement with which it is associated. 5013 */ 5014 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5015 if( pWith ){ 5016 assert( pParse->pWith!=pWith ); 5017 pWith->pOuter = pParse->pWith; 5018 pParse->pWith = pWith; 5019 if( bFree ){ 5020 sqlite3ParserAddCleanup(pParse, 5021 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5022 pWith); 5023 testcase( pParse->earlyCleanup ); 5024 } 5025 } 5026 } 5027 5028 /* 5029 ** This function checks if argument pFrom refers to a CTE declared by 5030 ** a WITH clause on the stack currently maintained by the parser (on the 5031 ** pParse->pWith linked list). And if currently processing a CTE 5032 ** CTE expression, through routine checks to see if the reference is 5033 ** a recursive reference to the CTE. 5034 ** 5035 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5036 ** and other fields are populated accordingly. 5037 ** 5038 ** Return 0 if no match is found. 5039 ** Return 1 if a match is found. 5040 ** Return 2 if an error condition is detected. 5041 */ 5042 static int resolveFromTermToCte( 5043 Parse *pParse, /* The parsing context */ 5044 Walker *pWalker, /* Current tree walker */ 5045 SrcItem *pFrom /* The FROM clause term to check */ 5046 ){ 5047 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5048 With *pWith; /* The matching WITH */ 5049 5050 assert( pFrom->pTab==0 ); 5051 if( pParse->pWith==0 ){ 5052 /* There are no WITH clauses in the stack. No match is possible */ 5053 return 0; 5054 } 5055 if( pFrom->zDatabase!=0 ){ 5056 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5057 ** it cannot possibly be a CTE reference. */ 5058 return 0; 5059 } 5060 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5061 if( pCte ){ 5062 sqlite3 *db = pParse->db; 5063 Table *pTab; 5064 ExprList *pEList; 5065 Select *pSel; 5066 Select *pLeft; /* Left-most SELECT statement */ 5067 Select *pRecTerm; /* Left-most recursive term */ 5068 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5069 With *pSavedWith; /* Initial value of pParse->pWith */ 5070 int iRecTab = -1; /* Cursor for recursive table */ 5071 CteUse *pCteUse; 5072 5073 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5074 ** recursive reference to CTE pCte. Leave an error in pParse and return 5075 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5076 ** In this case, proceed. */ 5077 if( pCte->zCteErr ){ 5078 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5079 return 2; 5080 } 5081 if( cannotBeFunction(pParse, pFrom) ) return 2; 5082 5083 assert( pFrom->pTab==0 ); 5084 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5085 if( pTab==0 ) return 2; 5086 pCteUse = pCte->pUse; 5087 if( pCteUse==0 ){ 5088 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5089 if( pCteUse==0 5090 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5091 ){ 5092 sqlite3DbFree(db, pTab); 5093 return 2; 5094 } 5095 pCteUse->eM10d = pCte->eM10d; 5096 } 5097 pFrom->pTab = pTab; 5098 pTab->nTabRef = 1; 5099 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5100 pTab->iPKey = -1; 5101 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5102 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5103 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5104 if( db->mallocFailed ) return 2; 5105 assert( pFrom->pSelect ); 5106 pFrom->fg.isCte = 1; 5107 pFrom->u2.pCteUse = pCteUse; 5108 pCteUse->nUse++; 5109 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5110 pCteUse->eM10d = M10d_Yes; 5111 } 5112 5113 /* Check if this is a recursive CTE. */ 5114 pRecTerm = pSel = pFrom->pSelect; 5115 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5116 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5117 int i; 5118 SrcList *pSrc = pRecTerm->pSrc; 5119 assert( pRecTerm->pPrior!=0 ); 5120 for(i=0; i<pSrc->nSrc; i++){ 5121 SrcItem *pItem = &pSrc->a[i]; 5122 if( pItem->zDatabase==0 5123 && pItem->zName!=0 5124 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5125 ){ 5126 pItem->pTab = pTab; 5127 pTab->nTabRef++; 5128 pItem->fg.isRecursive = 1; 5129 if( pRecTerm->selFlags & SF_Recursive ){ 5130 sqlite3ErrorMsg(pParse, 5131 "multiple references to recursive table: %s", pCte->zName 5132 ); 5133 return 2; 5134 } 5135 pRecTerm->selFlags |= SF_Recursive; 5136 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5137 pItem->iCursor = iRecTab; 5138 } 5139 } 5140 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5141 pRecTerm = pRecTerm->pPrior; 5142 } 5143 5144 pCte->zCteErr = "circular reference: %s"; 5145 pSavedWith = pParse->pWith; 5146 pParse->pWith = pWith; 5147 if( pSel->selFlags & SF_Recursive ){ 5148 int rc; 5149 assert( pRecTerm!=0 ); 5150 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5151 assert( pRecTerm->pNext!=0 ); 5152 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5153 assert( pRecTerm->pWith==0 ); 5154 pRecTerm->pWith = pSel->pWith; 5155 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5156 pRecTerm->pWith = 0; 5157 if( rc ){ 5158 pParse->pWith = pSavedWith; 5159 return 2; 5160 } 5161 }else{ 5162 if( sqlite3WalkSelect(pWalker, pSel) ){ 5163 pParse->pWith = pSavedWith; 5164 return 2; 5165 } 5166 } 5167 pParse->pWith = pWith; 5168 5169 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5170 pEList = pLeft->pEList; 5171 if( pCte->pCols ){ 5172 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5173 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5174 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5175 ); 5176 pParse->pWith = pSavedWith; 5177 return 2; 5178 } 5179 pEList = pCte->pCols; 5180 } 5181 5182 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5183 if( bMayRecursive ){ 5184 if( pSel->selFlags & SF_Recursive ){ 5185 pCte->zCteErr = "multiple recursive references: %s"; 5186 }else{ 5187 pCte->zCteErr = "recursive reference in a subquery: %s"; 5188 } 5189 sqlite3WalkSelect(pWalker, pSel); 5190 } 5191 pCte->zCteErr = 0; 5192 pParse->pWith = pSavedWith; 5193 return 1; /* Success */ 5194 } 5195 return 0; /* No match */ 5196 } 5197 #endif 5198 5199 #ifndef SQLITE_OMIT_CTE 5200 /* 5201 ** If the SELECT passed as the second argument has an associated WITH 5202 ** clause, pop it from the stack stored as part of the Parse object. 5203 ** 5204 ** This function is used as the xSelectCallback2() callback by 5205 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5206 ** names and other FROM clause elements. 5207 */ 5208 static void selectPopWith(Walker *pWalker, Select *p){ 5209 Parse *pParse = pWalker->pParse; 5210 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5211 With *pWith = findRightmost(p)->pWith; 5212 if( pWith!=0 ){ 5213 assert( pParse->pWith==pWith || pParse->nErr ); 5214 pParse->pWith = pWith->pOuter; 5215 } 5216 } 5217 } 5218 #else 5219 #define selectPopWith 0 5220 #endif 5221 5222 /* 5223 ** The SrcList_item structure passed as the second argument represents a 5224 ** sub-query in the FROM clause of a SELECT statement. This function 5225 ** allocates and populates the SrcList_item.pTab object. If successful, 5226 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5227 ** SQLITE_NOMEM. 5228 */ 5229 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5230 Select *pSel = pFrom->pSelect; 5231 Table *pTab; 5232 5233 assert( pSel ); 5234 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5235 if( pTab==0 ) return SQLITE_NOMEM; 5236 pTab->nTabRef = 1; 5237 if( pFrom->zAlias ){ 5238 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5239 }else{ 5240 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5241 } 5242 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5243 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5244 pTab->iPKey = -1; 5245 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5246 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5247 /* The usual case - do not allow ROWID on a subquery */ 5248 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5249 #else 5250 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5251 #endif 5252 5253 5254 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5255 } 5256 5257 /* 5258 ** This routine is a Walker callback for "expanding" a SELECT statement. 5259 ** "Expanding" means to do the following: 5260 ** 5261 ** (1) Make sure VDBE cursor numbers have been assigned to every 5262 ** element of the FROM clause. 5263 ** 5264 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5265 ** defines FROM clause. When views appear in the FROM clause, 5266 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5267 ** that implements the view. A copy is made of the view's SELECT 5268 ** statement so that we can freely modify or delete that statement 5269 ** without worrying about messing up the persistent representation 5270 ** of the view. 5271 ** 5272 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5273 ** on joins and the ON and USING clause of joins. 5274 ** 5275 ** (4) Scan the list of columns in the result set (pEList) looking 5276 ** for instances of the "*" operator or the TABLE.* operator. 5277 ** If found, expand each "*" to be every column in every table 5278 ** and TABLE.* to be every column in TABLE. 5279 ** 5280 */ 5281 static int selectExpander(Walker *pWalker, Select *p){ 5282 Parse *pParse = pWalker->pParse; 5283 int i, j, k, rc; 5284 SrcList *pTabList; 5285 ExprList *pEList; 5286 SrcItem *pFrom; 5287 sqlite3 *db = pParse->db; 5288 Expr *pE, *pRight, *pExpr; 5289 u16 selFlags = p->selFlags; 5290 u32 elistFlags = 0; 5291 5292 p->selFlags |= SF_Expanded; 5293 if( db->mallocFailed ){ 5294 return WRC_Abort; 5295 } 5296 assert( p->pSrc!=0 ); 5297 if( (selFlags & SF_Expanded)!=0 ){ 5298 return WRC_Prune; 5299 } 5300 if( pWalker->eCode ){ 5301 /* Renumber selId because it has been copied from a view */ 5302 p->selId = ++pParse->nSelect; 5303 } 5304 pTabList = p->pSrc; 5305 pEList = p->pEList; 5306 sqlite3WithPush(pParse, p->pWith, 0); 5307 5308 /* Make sure cursor numbers have been assigned to all entries in 5309 ** the FROM clause of the SELECT statement. 5310 */ 5311 sqlite3SrcListAssignCursors(pParse, pTabList); 5312 5313 /* Look up every table named in the FROM clause of the select. If 5314 ** an entry of the FROM clause is a subquery instead of a table or view, 5315 ** then create a transient table structure to describe the subquery. 5316 */ 5317 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5318 Table *pTab; 5319 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5320 if( pFrom->pTab ) continue; 5321 assert( pFrom->fg.isRecursive==0 ); 5322 if( pFrom->zName==0 ){ 5323 #ifndef SQLITE_OMIT_SUBQUERY 5324 Select *pSel = pFrom->pSelect; 5325 /* A sub-query in the FROM clause of a SELECT */ 5326 assert( pSel!=0 ); 5327 assert( pFrom->pTab==0 ); 5328 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5329 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5330 #endif 5331 #ifndef SQLITE_OMIT_CTE 5332 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5333 if( rc>1 ) return WRC_Abort; 5334 pTab = pFrom->pTab; 5335 assert( pTab!=0 ); 5336 #endif 5337 }else{ 5338 /* An ordinary table or view name in the FROM clause */ 5339 assert( pFrom->pTab==0 ); 5340 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5341 if( pTab==0 ) return WRC_Abort; 5342 if( pTab->nTabRef>=0xffff ){ 5343 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5344 pTab->zName); 5345 pFrom->pTab = 0; 5346 return WRC_Abort; 5347 } 5348 pTab->nTabRef++; 5349 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5350 return WRC_Abort; 5351 } 5352 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5353 if( IsVirtual(pTab) || pTab->pSelect ){ 5354 i16 nCol; 5355 u8 eCodeOrig = pWalker->eCode; 5356 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5357 assert( pFrom->pSelect==0 ); 5358 if( pTab->pSelect 5359 && (db->flags & SQLITE_EnableView)==0 5360 && pTab->pSchema!=db->aDb[1].pSchema 5361 ){ 5362 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5363 pTab->zName); 5364 } 5365 #ifndef SQLITE_OMIT_VIRTUALTABLE 5366 if( IsVirtual(pTab) 5367 && pFrom->fg.fromDDL 5368 && ALWAYS(pTab->pVTable!=0) 5369 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5370 ){ 5371 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5372 pTab->zName); 5373 } 5374 #endif 5375 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 5376 nCol = pTab->nCol; 5377 pTab->nCol = -1; 5378 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5379 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5380 pWalker->eCode = eCodeOrig; 5381 pTab->nCol = nCol; 5382 } 5383 #endif 5384 } 5385 5386 /* Locate the index named by the INDEXED BY clause, if any. */ 5387 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5388 return WRC_Abort; 5389 } 5390 } 5391 5392 /* Process NATURAL keywords, and ON and USING clauses of joins. 5393 */ 5394 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5395 return WRC_Abort; 5396 } 5397 5398 /* For every "*" that occurs in the column list, insert the names of 5399 ** all columns in all tables. And for every TABLE.* insert the names 5400 ** of all columns in TABLE. The parser inserted a special expression 5401 ** with the TK_ASTERISK operator for each "*" that it found in the column 5402 ** list. The following code just has to locate the TK_ASTERISK 5403 ** expressions and expand each one to the list of all columns in 5404 ** all tables. 5405 ** 5406 ** The first loop just checks to see if there are any "*" operators 5407 ** that need expanding. 5408 */ 5409 for(k=0; k<pEList->nExpr; k++){ 5410 pE = pEList->a[k].pExpr; 5411 if( pE->op==TK_ASTERISK ) break; 5412 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5413 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5414 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5415 elistFlags |= pE->flags; 5416 } 5417 if( k<pEList->nExpr ){ 5418 /* 5419 ** If we get here it means the result set contains one or more "*" 5420 ** operators that need to be expanded. Loop through each expression 5421 ** in the result set and expand them one by one. 5422 */ 5423 struct ExprList_item *a = pEList->a; 5424 ExprList *pNew = 0; 5425 int flags = pParse->db->flags; 5426 int longNames = (flags & SQLITE_FullColNames)!=0 5427 && (flags & SQLITE_ShortColNames)==0; 5428 5429 for(k=0; k<pEList->nExpr; k++){ 5430 pE = a[k].pExpr; 5431 elistFlags |= pE->flags; 5432 pRight = pE->pRight; 5433 assert( pE->op!=TK_DOT || pRight!=0 ); 5434 if( pE->op!=TK_ASTERISK 5435 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5436 ){ 5437 /* This particular expression does not need to be expanded. 5438 */ 5439 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5440 if( pNew ){ 5441 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5442 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5443 a[k].zEName = 0; 5444 } 5445 a[k].pExpr = 0; 5446 }else{ 5447 /* This expression is a "*" or a "TABLE.*" and needs to be 5448 ** expanded. */ 5449 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5450 char *zTName = 0; /* text of name of TABLE */ 5451 if( pE->op==TK_DOT ){ 5452 assert( pE->pLeft!=0 ); 5453 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5454 zTName = pE->pLeft->u.zToken; 5455 } 5456 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5457 Table *pTab = pFrom->pTab; 5458 Select *pSub = pFrom->pSelect; 5459 char *zTabName = pFrom->zAlias; 5460 const char *zSchemaName = 0; 5461 int iDb; 5462 if( zTabName==0 ){ 5463 zTabName = pTab->zName; 5464 } 5465 if( db->mallocFailed ) break; 5466 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5467 pSub = 0; 5468 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5469 continue; 5470 } 5471 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5472 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5473 } 5474 for(j=0; j<pTab->nCol; j++){ 5475 char *zName = pTab->aCol[j].zName; 5476 char *zColname; /* The computed column name */ 5477 char *zToFree; /* Malloced string that needs to be freed */ 5478 Token sColname; /* Computed column name as a token */ 5479 5480 assert( zName ); 5481 if( zTName && pSub 5482 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5483 ){ 5484 continue; 5485 } 5486 5487 /* If a column is marked as 'hidden', omit it from the expanded 5488 ** result-set list unless the SELECT has the SF_IncludeHidden 5489 ** bit set. 5490 */ 5491 if( (p->selFlags & SF_IncludeHidden)==0 5492 && IsHiddenColumn(&pTab->aCol[j]) 5493 ){ 5494 continue; 5495 } 5496 tableSeen = 1; 5497 5498 if( i>0 && zTName==0 ){ 5499 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5500 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5501 ){ 5502 /* In a NATURAL join, omit the join columns from the 5503 ** table to the right of the join */ 5504 continue; 5505 } 5506 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5507 /* In a join with a USING clause, omit columns in the 5508 ** using clause from the table on the right. */ 5509 continue; 5510 } 5511 } 5512 pRight = sqlite3Expr(db, TK_ID, zName); 5513 zColname = zName; 5514 zToFree = 0; 5515 if( longNames || pTabList->nSrc>1 ){ 5516 Expr *pLeft; 5517 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5518 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5519 if( zSchemaName ){ 5520 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5521 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5522 } 5523 if( longNames ){ 5524 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5525 zToFree = zColname; 5526 } 5527 }else{ 5528 pExpr = pRight; 5529 } 5530 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5531 sqlite3TokenInit(&sColname, zColname); 5532 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5533 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5534 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5535 sqlite3DbFree(db, pX->zEName); 5536 if( pSub ){ 5537 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5538 testcase( pX->zEName==0 ); 5539 }else{ 5540 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5541 zSchemaName, zTabName, zColname); 5542 testcase( pX->zEName==0 ); 5543 } 5544 pX->eEName = ENAME_TAB; 5545 } 5546 sqlite3DbFree(db, zToFree); 5547 } 5548 } 5549 if( !tableSeen ){ 5550 if( zTName ){ 5551 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5552 }else{ 5553 sqlite3ErrorMsg(pParse, "no tables specified"); 5554 } 5555 } 5556 } 5557 } 5558 sqlite3ExprListDelete(db, pEList); 5559 p->pEList = pNew; 5560 } 5561 if( p->pEList ){ 5562 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5563 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5564 return WRC_Abort; 5565 } 5566 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5567 p->selFlags |= SF_ComplexResult; 5568 } 5569 } 5570 return WRC_Continue; 5571 } 5572 5573 #if SQLITE_DEBUG 5574 /* 5575 ** Always assert. This xSelectCallback2 implementation proves that the 5576 ** xSelectCallback2 is never invoked. 5577 */ 5578 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5579 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5580 assert( 0 ); 5581 } 5582 #endif 5583 /* 5584 ** This routine "expands" a SELECT statement and all of its subqueries. 5585 ** For additional information on what it means to "expand" a SELECT 5586 ** statement, see the comment on the selectExpand worker callback above. 5587 ** 5588 ** Expanding a SELECT statement is the first step in processing a 5589 ** SELECT statement. The SELECT statement must be expanded before 5590 ** name resolution is performed. 5591 ** 5592 ** If anything goes wrong, an error message is written into pParse. 5593 ** The calling function can detect the problem by looking at pParse->nErr 5594 ** and/or pParse->db->mallocFailed. 5595 */ 5596 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5597 Walker w; 5598 w.xExprCallback = sqlite3ExprWalkNoop; 5599 w.pParse = pParse; 5600 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5601 w.xSelectCallback = convertCompoundSelectToSubquery; 5602 w.xSelectCallback2 = 0; 5603 sqlite3WalkSelect(&w, pSelect); 5604 } 5605 w.xSelectCallback = selectExpander; 5606 w.xSelectCallback2 = selectPopWith; 5607 w.eCode = 0; 5608 sqlite3WalkSelect(&w, pSelect); 5609 } 5610 5611 5612 #ifndef SQLITE_OMIT_SUBQUERY 5613 /* 5614 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5615 ** interface. 5616 ** 5617 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5618 ** information to the Table structure that represents the result set 5619 ** of that subquery. 5620 ** 5621 ** The Table structure that represents the result set was constructed 5622 ** by selectExpander() but the type and collation information was omitted 5623 ** at that point because identifiers had not yet been resolved. This 5624 ** routine is called after identifier resolution. 5625 */ 5626 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5627 Parse *pParse; 5628 int i; 5629 SrcList *pTabList; 5630 SrcItem *pFrom; 5631 5632 assert( p->selFlags & SF_Resolved ); 5633 if( p->selFlags & SF_HasTypeInfo ) return; 5634 p->selFlags |= SF_HasTypeInfo; 5635 pParse = pWalker->pParse; 5636 pTabList = p->pSrc; 5637 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5638 Table *pTab = pFrom->pTab; 5639 assert( pTab!=0 ); 5640 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5641 /* A sub-query in the FROM clause of a SELECT */ 5642 Select *pSel = pFrom->pSelect; 5643 if( pSel ){ 5644 while( pSel->pPrior ) pSel = pSel->pPrior; 5645 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5646 SQLITE_AFF_NONE); 5647 } 5648 } 5649 } 5650 } 5651 #endif 5652 5653 5654 /* 5655 ** This routine adds datatype and collating sequence information to 5656 ** the Table structures of all FROM-clause subqueries in a 5657 ** SELECT statement. 5658 ** 5659 ** Use this routine after name resolution. 5660 */ 5661 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5662 #ifndef SQLITE_OMIT_SUBQUERY 5663 Walker w; 5664 w.xSelectCallback = sqlite3SelectWalkNoop; 5665 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5666 w.xExprCallback = sqlite3ExprWalkNoop; 5667 w.pParse = pParse; 5668 sqlite3WalkSelect(&w, pSelect); 5669 #endif 5670 } 5671 5672 5673 /* 5674 ** This routine sets up a SELECT statement for processing. The 5675 ** following is accomplished: 5676 ** 5677 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5678 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5679 ** * ON and USING clauses are shifted into WHERE statements 5680 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5681 ** * Identifiers in expression are matched to tables. 5682 ** 5683 ** This routine acts recursively on all subqueries within the SELECT. 5684 */ 5685 void sqlite3SelectPrep( 5686 Parse *pParse, /* The parser context */ 5687 Select *p, /* The SELECT statement being coded. */ 5688 NameContext *pOuterNC /* Name context for container */ 5689 ){ 5690 assert( p!=0 || pParse->db->mallocFailed ); 5691 if( pParse->db->mallocFailed ) return; 5692 if( p->selFlags & SF_HasTypeInfo ) return; 5693 sqlite3SelectExpand(pParse, p); 5694 if( pParse->nErr || pParse->db->mallocFailed ) return; 5695 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5696 if( pParse->nErr || pParse->db->mallocFailed ) return; 5697 sqlite3SelectAddTypeInfo(pParse, p); 5698 } 5699 5700 /* 5701 ** Reset the aggregate accumulator. 5702 ** 5703 ** The aggregate accumulator is a set of memory cells that hold 5704 ** intermediate results while calculating an aggregate. This 5705 ** routine generates code that stores NULLs in all of those memory 5706 ** cells. 5707 */ 5708 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5709 Vdbe *v = pParse->pVdbe; 5710 int i; 5711 struct AggInfo_func *pFunc; 5712 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5713 if( nReg==0 ) return; 5714 if( pParse->nErr || pParse->db->mallocFailed ) return; 5715 #ifdef SQLITE_DEBUG 5716 /* Verify that all AggInfo registers are within the range specified by 5717 ** AggInfo.mnReg..AggInfo.mxReg */ 5718 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5719 for(i=0; i<pAggInfo->nColumn; i++){ 5720 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5721 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5722 } 5723 for(i=0; i<pAggInfo->nFunc; i++){ 5724 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5725 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5726 } 5727 #endif 5728 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5729 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5730 if( pFunc->iDistinct>=0 ){ 5731 Expr *pE = pFunc->pFExpr; 5732 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5733 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5734 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5735 "argument"); 5736 pFunc->iDistinct = -1; 5737 }else{ 5738 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5739 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5740 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5741 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5742 pFunc->pFunc->zName)); 5743 } 5744 } 5745 } 5746 } 5747 5748 /* 5749 ** Invoke the OP_AggFinalize opcode for every aggregate function 5750 ** in the AggInfo structure. 5751 */ 5752 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5753 Vdbe *v = pParse->pVdbe; 5754 int i; 5755 struct AggInfo_func *pF; 5756 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5757 ExprList *pList = pF->pFExpr->x.pList; 5758 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5759 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5760 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5761 } 5762 } 5763 5764 5765 /* 5766 ** Update the accumulator memory cells for an aggregate based on 5767 ** the current cursor position. 5768 ** 5769 ** If regAcc is non-zero and there are no min() or max() aggregates 5770 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5771 ** registers if register regAcc contains 0. The caller will take care 5772 ** of setting and clearing regAcc. 5773 */ 5774 static void updateAccumulator( 5775 Parse *pParse, 5776 int regAcc, 5777 AggInfo *pAggInfo, 5778 int eDistinctType 5779 ){ 5780 Vdbe *v = pParse->pVdbe; 5781 int i; 5782 int regHit = 0; 5783 int addrHitTest = 0; 5784 struct AggInfo_func *pF; 5785 struct AggInfo_col *pC; 5786 5787 pAggInfo->directMode = 1; 5788 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5789 int nArg; 5790 int addrNext = 0; 5791 int regAgg; 5792 ExprList *pList = pF->pFExpr->x.pList; 5793 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5794 assert( !IsWindowFunc(pF->pFExpr) ); 5795 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5796 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5797 if( pAggInfo->nAccumulator 5798 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5799 && regAcc 5800 ){ 5801 /* If regAcc==0, there there exists some min() or max() function 5802 ** without a FILTER clause that will ensure the magnet registers 5803 ** are populated. */ 5804 if( regHit==0 ) regHit = ++pParse->nMem; 5805 /* If this is the first row of the group (regAcc contains 0), clear the 5806 ** "magnet" register regHit so that the accumulator registers 5807 ** are populated if the FILTER clause jumps over the the 5808 ** invocation of min() or max() altogether. Or, if this is not 5809 ** the first row (regAcc contains 1), set the magnet register so that 5810 ** the accumulators are not populated unless the min()/max() is invoked 5811 ** and indicates that they should be. */ 5812 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5813 } 5814 addrNext = sqlite3VdbeMakeLabel(pParse); 5815 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5816 } 5817 if( pList ){ 5818 nArg = pList->nExpr; 5819 regAgg = sqlite3GetTempRange(pParse, nArg); 5820 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5821 }else{ 5822 nArg = 0; 5823 regAgg = 0; 5824 } 5825 if( pF->iDistinct>=0 && pList ){ 5826 if( addrNext==0 ){ 5827 addrNext = sqlite3VdbeMakeLabel(pParse); 5828 } 5829 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5830 pF->iDistinct, addrNext, pList, regAgg); 5831 } 5832 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5833 CollSeq *pColl = 0; 5834 struct ExprList_item *pItem; 5835 int j; 5836 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5837 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5838 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5839 } 5840 if( !pColl ){ 5841 pColl = pParse->db->pDfltColl; 5842 } 5843 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5844 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5845 } 5846 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5847 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5848 sqlite3VdbeChangeP5(v, (u8)nArg); 5849 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5850 if( addrNext ){ 5851 sqlite3VdbeResolveLabel(v, addrNext); 5852 } 5853 } 5854 if( regHit==0 && pAggInfo->nAccumulator ){ 5855 regHit = regAcc; 5856 } 5857 if( regHit ){ 5858 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5859 } 5860 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 5861 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 5862 } 5863 5864 pAggInfo->directMode = 0; 5865 if( addrHitTest ){ 5866 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 5867 } 5868 } 5869 5870 /* 5871 ** Add a single OP_Explain instruction to the VDBE to explain a simple 5872 ** count(*) query ("SELECT count(*) FROM pTab"). 5873 */ 5874 #ifndef SQLITE_OMIT_EXPLAIN 5875 static void explainSimpleCount( 5876 Parse *pParse, /* Parse context */ 5877 Table *pTab, /* Table being queried */ 5878 Index *pIdx /* Index used to optimize scan, or NULL */ 5879 ){ 5880 if( pParse->explain==2 ){ 5881 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 5882 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 5883 pTab->zName, 5884 bCover ? " USING COVERING INDEX " : "", 5885 bCover ? pIdx->zName : "" 5886 ); 5887 } 5888 } 5889 #else 5890 # define explainSimpleCount(a,b,c) 5891 #endif 5892 5893 /* 5894 ** sqlite3WalkExpr() callback used by havingToWhere(). 5895 ** 5896 ** If the node passed to the callback is a TK_AND node, return 5897 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 5898 ** 5899 ** Otherwise, return WRC_Prune. In this case, also check if the 5900 ** sub-expression matches the criteria for being moved to the WHERE 5901 ** clause. If so, add it to the WHERE clause and replace the sub-expression 5902 ** within the HAVING expression with a constant "1". 5903 */ 5904 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 5905 if( pExpr->op!=TK_AND ){ 5906 Select *pS = pWalker->u.pSelect; 5907 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 5908 && ExprAlwaysFalse(pExpr)==0 5909 ){ 5910 sqlite3 *db = pWalker->pParse->db; 5911 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 5912 if( pNew ){ 5913 Expr *pWhere = pS->pWhere; 5914 SWAP(Expr, *pNew, *pExpr); 5915 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 5916 pS->pWhere = pNew; 5917 pWalker->eCode = 1; 5918 } 5919 } 5920 return WRC_Prune; 5921 } 5922 return WRC_Continue; 5923 } 5924 5925 /* 5926 ** Transfer eligible terms from the HAVING clause of a query, which is 5927 ** processed after grouping, to the WHERE clause, which is processed before 5928 ** grouping. For example, the query: 5929 ** 5930 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 5931 ** 5932 ** can be rewritten as: 5933 ** 5934 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 5935 ** 5936 ** A term of the HAVING expression is eligible for transfer if it consists 5937 ** entirely of constants and expressions that are also GROUP BY terms that 5938 ** use the "BINARY" collation sequence. 5939 */ 5940 static void havingToWhere(Parse *pParse, Select *p){ 5941 Walker sWalker; 5942 memset(&sWalker, 0, sizeof(sWalker)); 5943 sWalker.pParse = pParse; 5944 sWalker.xExprCallback = havingToWhereExprCb; 5945 sWalker.u.pSelect = p; 5946 sqlite3WalkExpr(&sWalker, p->pHaving); 5947 #if SELECTTRACE_ENABLED 5948 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 5949 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 5950 sqlite3TreeViewSelect(0, p, 0); 5951 } 5952 #endif 5953 } 5954 5955 /* 5956 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 5957 ** If it is, then return the SrcList_item for the prior view. If it is not, 5958 ** then return 0. 5959 */ 5960 static SrcItem *isSelfJoinView( 5961 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 5962 SrcItem *pThis /* Search for prior reference to this subquery */ 5963 ){ 5964 SrcItem *pItem; 5965 assert( pThis->pSelect!=0 ); 5966 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 5967 for(pItem = pTabList->a; pItem<pThis; pItem++){ 5968 Select *pS1; 5969 if( pItem->pSelect==0 ) continue; 5970 if( pItem->fg.viaCoroutine ) continue; 5971 if( pItem->zName==0 ) continue; 5972 assert( pItem->pTab!=0 ); 5973 assert( pThis->pTab!=0 ); 5974 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 5975 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 5976 pS1 = pItem->pSelect; 5977 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 5978 /* The query flattener left two different CTE tables with identical 5979 ** names in the same FROM clause. */ 5980 continue; 5981 } 5982 if( pItem->pSelect->selFlags & SF_PushDown ){ 5983 /* The view was modified by some other optimization such as 5984 ** pushDownWhereTerms() */ 5985 continue; 5986 } 5987 return pItem; 5988 } 5989 return 0; 5990 } 5991 5992 /* 5993 ** Deallocate a single AggInfo object 5994 */ 5995 static void agginfoFree(sqlite3 *db, AggInfo *p){ 5996 sqlite3DbFree(db, p->aCol); 5997 sqlite3DbFree(db, p->aFunc); 5998 sqlite3DbFreeNN(db, p); 5999 } 6000 6001 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6002 /* 6003 ** Attempt to transform a query of the form 6004 ** 6005 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6006 ** 6007 ** Into this: 6008 ** 6009 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6010 ** 6011 ** The transformation only works if all of the following are true: 6012 ** 6013 ** * The subquery is a UNION ALL of two or more terms 6014 ** * The subquery does not have a LIMIT clause 6015 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6016 ** * The outer query is a simple count(*) with no WHERE clause or other 6017 ** extraneous syntax. 6018 ** 6019 ** Return TRUE if the optimization is undertaken. 6020 */ 6021 static int countOfViewOptimization(Parse *pParse, Select *p){ 6022 Select *pSub, *pPrior; 6023 Expr *pExpr; 6024 Expr *pCount; 6025 sqlite3 *db; 6026 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6027 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6028 if( p->pWhere ) return 0; 6029 if( p->pGroupBy ) return 0; 6030 pExpr = p->pEList->a[0].pExpr; 6031 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6032 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6033 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6034 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6035 pSub = p->pSrc->a[0].pSelect; 6036 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6037 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6038 do{ 6039 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6040 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6041 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6042 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6043 pSub = pSub->pPrior; /* Repeat over compound */ 6044 }while( pSub ); 6045 6046 /* If we reach this point then it is OK to perform the transformation */ 6047 6048 db = pParse->db; 6049 pCount = pExpr; 6050 pExpr = 0; 6051 pSub = p->pSrc->a[0].pSelect; 6052 p->pSrc->a[0].pSelect = 0; 6053 sqlite3SrcListDelete(db, p->pSrc); 6054 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6055 while( pSub ){ 6056 Expr *pTerm; 6057 pPrior = pSub->pPrior; 6058 pSub->pPrior = 0; 6059 pSub->pNext = 0; 6060 pSub->selFlags |= SF_Aggregate; 6061 pSub->selFlags &= ~SF_Compound; 6062 pSub->nSelectRow = 0; 6063 sqlite3ExprListDelete(db, pSub->pEList); 6064 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6065 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6066 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6067 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6068 if( pExpr==0 ){ 6069 pExpr = pTerm; 6070 }else{ 6071 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6072 } 6073 pSub = pPrior; 6074 } 6075 p->pEList->a[0].pExpr = pExpr; 6076 p->selFlags &= ~SF_Aggregate; 6077 6078 #if SELECTTRACE_ENABLED 6079 if( sqlite3SelectTrace & 0x400 ){ 6080 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6081 sqlite3TreeViewSelect(0, p, 0); 6082 } 6083 #endif 6084 return 1; 6085 } 6086 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6087 6088 /* 6089 ** Generate code for the SELECT statement given in the p argument. 6090 ** 6091 ** The results are returned according to the SelectDest structure. 6092 ** See comments in sqliteInt.h for further information. 6093 ** 6094 ** This routine returns the number of errors. If any errors are 6095 ** encountered, then an appropriate error message is left in 6096 ** pParse->zErrMsg. 6097 ** 6098 ** This routine does NOT free the Select structure passed in. The 6099 ** calling function needs to do that. 6100 */ 6101 int sqlite3Select( 6102 Parse *pParse, /* The parser context */ 6103 Select *p, /* The SELECT statement being coded. */ 6104 SelectDest *pDest /* What to do with the query results */ 6105 ){ 6106 int i, j; /* Loop counters */ 6107 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6108 Vdbe *v; /* The virtual machine under construction */ 6109 int isAgg; /* True for select lists like "count(*)" */ 6110 ExprList *pEList = 0; /* List of columns to extract. */ 6111 SrcList *pTabList; /* List of tables to select from */ 6112 Expr *pWhere; /* The WHERE clause. May be NULL */ 6113 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6114 Expr *pHaving; /* The HAVING clause. May be NULL */ 6115 AggInfo *pAggInfo = 0; /* Aggregate information */ 6116 int rc = 1; /* Value to return from this function */ 6117 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6118 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6119 int iEnd; /* Address of the end of the query */ 6120 sqlite3 *db; /* The database connection */ 6121 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6122 u8 minMaxFlag; /* Flag for min/max queries */ 6123 6124 db = pParse->db; 6125 v = sqlite3GetVdbe(pParse); 6126 if( p==0 || db->mallocFailed || pParse->nErr ){ 6127 return 1; 6128 } 6129 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6130 #if SELECTTRACE_ENABLED 6131 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6132 if( sqlite3SelectTrace & 0x100 ){ 6133 sqlite3TreeViewSelect(0, p, 0); 6134 } 6135 #endif 6136 6137 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6138 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6139 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6140 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6141 if( IgnorableDistinct(pDest) ){ 6142 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6143 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6144 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6145 /* All of these destinations are also able to ignore the ORDER BY clause */ 6146 if( p->pOrderBy ){ 6147 #if SELECTTRACE_ENABLED 6148 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6149 if( sqlite3SelectTrace & 0x100 ){ 6150 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6151 } 6152 #endif 6153 sqlite3ParserAddCleanup(pParse, 6154 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6155 p->pOrderBy); 6156 testcase( pParse->earlyCleanup ); 6157 p->pOrderBy = 0; 6158 } 6159 p->selFlags &= ~SF_Distinct; 6160 p->selFlags |= SF_NoopOrderBy; 6161 } 6162 sqlite3SelectPrep(pParse, p, 0); 6163 if( pParse->nErr || db->mallocFailed ){ 6164 goto select_end; 6165 } 6166 assert( p->pEList!=0 ); 6167 #if SELECTTRACE_ENABLED 6168 if( sqlite3SelectTrace & 0x104 ){ 6169 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6170 sqlite3TreeViewSelect(0, p, 0); 6171 } 6172 #endif 6173 6174 /* If the SF_UpdateFrom flag is set, then this function is being called 6175 ** as part of populating the temp table for an UPDATE...FROM statement. 6176 ** In this case, it is an error if the target object (pSrc->a[0]) name 6177 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */ 6178 if( p->selFlags & SF_UpdateFrom ){ 6179 SrcItem *p0 = &p->pSrc->a[0]; 6180 for(i=1; i<p->pSrc->nSrc; i++){ 6181 SrcItem *p1 = &p->pSrc->a[i]; 6182 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6183 sqlite3ErrorMsg(pParse, 6184 "target object/alias may not appear in FROM clause: %s", 6185 p0->zAlias ? p0->zAlias : p0->pTab->zName 6186 ); 6187 goto select_end; 6188 } 6189 } 6190 } 6191 6192 if( pDest->eDest==SRT_Output ){ 6193 generateColumnNames(pParse, p); 6194 } 6195 6196 #ifndef SQLITE_OMIT_WINDOWFUNC 6197 rc = sqlite3WindowRewrite(pParse, p); 6198 if( rc ){ 6199 assert( db->mallocFailed || pParse->nErr>0 ); 6200 goto select_end; 6201 } 6202 #if SELECTTRACE_ENABLED 6203 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6204 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6205 sqlite3TreeViewSelect(0, p, 0); 6206 } 6207 #endif 6208 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6209 pTabList = p->pSrc; 6210 isAgg = (p->selFlags & SF_Aggregate)!=0; 6211 memset(&sSort, 0, sizeof(sSort)); 6212 sSort.pOrderBy = p->pOrderBy; 6213 6214 /* Try to do various optimizations (flattening subqueries, and strength 6215 ** reduction of join operators) in the FROM clause up into the main query 6216 */ 6217 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6218 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6219 SrcItem *pItem = &pTabList->a[i]; 6220 Select *pSub = pItem->pSelect; 6221 Table *pTab = pItem->pTab; 6222 6223 /* The expander should have already created transient Table objects 6224 ** even for FROM clause elements such as subqueries that do not correspond 6225 ** to a real table */ 6226 assert( pTab!=0 ); 6227 6228 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6229 ** of the LEFT JOIN used in the WHERE clause. 6230 */ 6231 if( (pItem->fg.jointype & JT_LEFT)!=0 6232 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6233 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6234 ){ 6235 SELECTTRACE(0x100,pParse,p, 6236 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6237 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6238 unsetJoinExpr(p->pWhere, pItem->iCursor); 6239 } 6240 6241 /* No futher action if this term of the FROM clause is no a subquery */ 6242 if( pSub==0 ) continue; 6243 6244 /* Catch mismatch in the declared columns of a view and the number of 6245 ** columns in the SELECT on the RHS */ 6246 if( pTab->nCol!=pSub->pEList->nExpr ){ 6247 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6248 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6249 goto select_end; 6250 } 6251 6252 /* Do not try to flatten an aggregate subquery. 6253 ** 6254 ** Flattening an aggregate subquery is only possible if the outer query 6255 ** is not a join. But if the outer query is not a join, then the subquery 6256 ** will be implemented as a co-routine and there is no advantage to 6257 ** flattening in that case. 6258 */ 6259 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6260 assert( pSub->pGroupBy==0 ); 6261 6262 /* If the outer query contains a "complex" result set (that is, 6263 ** if the result set of the outer query uses functions or subqueries) 6264 ** and if the subquery contains an ORDER BY clause and if 6265 ** it will be implemented as a co-routine, then do not flatten. This 6266 ** restriction allows SQL constructs like this: 6267 ** 6268 ** SELECT expensive_function(x) 6269 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6270 ** 6271 ** The expensive_function() is only computed on the 10 rows that 6272 ** are output, rather than every row of the table. 6273 ** 6274 ** The requirement that the outer query have a complex result set 6275 ** means that flattening does occur on simpler SQL constraints without 6276 ** the expensive_function() like: 6277 ** 6278 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6279 */ 6280 if( pSub->pOrderBy!=0 6281 && i==0 6282 && (p->selFlags & SF_ComplexResult)!=0 6283 && (pTabList->nSrc==1 6284 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6285 ){ 6286 continue; 6287 } 6288 6289 if( flattenSubquery(pParse, p, i, isAgg) ){ 6290 if( pParse->nErr ) goto select_end; 6291 /* This subquery can be absorbed into its parent. */ 6292 i = -1; 6293 } 6294 pTabList = p->pSrc; 6295 if( db->mallocFailed ) goto select_end; 6296 if( !IgnorableOrderby(pDest) ){ 6297 sSort.pOrderBy = p->pOrderBy; 6298 } 6299 } 6300 #endif 6301 6302 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6303 /* Handle compound SELECT statements using the separate multiSelect() 6304 ** procedure. 6305 */ 6306 if( p->pPrior ){ 6307 rc = multiSelect(pParse, p, pDest); 6308 #if SELECTTRACE_ENABLED 6309 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6310 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6311 sqlite3TreeViewSelect(0, p, 0); 6312 } 6313 #endif 6314 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6315 return rc; 6316 } 6317 #endif 6318 6319 /* Do the WHERE-clause constant propagation optimization if this is 6320 ** a join. No need to speed time on this operation for non-join queries 6321 ** as the equivalent optimization will be handled by query planner in 6322 ** sqlite3WhereBegin(). 6323 */ 6324 if( pTabList->nSrc>1 6325 && OptimizationEnabled(db, SQLITE_PropagateConst) 6326 && propagateConstants(pParse, p) 6327 ){ 6328 #if SELECTTRACE_ENABLED 6329 if( sqlite3SelectTrace & 0x100 ){ 6330 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6331 sqlite3TreeViewSelect(0, p, 0); 6332 } 6333 #endif 6334 }else{ 6335 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6336 } 6337 6338 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6339 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6340 && countOfViewOptimization(pParse, p) 6341 ){ 6342 if( db->mallocFailed ) goto select_end; 6343 pEList = p->pEList; 6344 pTabList = p->pSrc; 6345 } 6346 #endif 6347 6348 /* For each term in the FROM clause, do two things: 6349 ** (1) Authorized unreferenced tables 6350 ** (2) Generate code for all sub-queries 6351 */ 6352 for(i=0; i<pTabList->nSrc; i++){ 6353 SrcItem *pItem = &pTabList->a[i]; 6354 SrcItem *pPrior; 6355 SelectDest dest; 6356 Select *pSub; 6357 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6358 const char *zSavedAuthContext; 6359 #endif 6360 6361 /* Issue SQLITE_READ authorizations with a fake column name for any 6362 ** tables that are referenced but from which no values are extracted. 6363 ** Examples of where these kinds of null SQLITE_READ authorizations 6364 ** would occur: 6365 ** 6366 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6367 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6368 ** 6369 ** The fake column name is an empty string. It is possible for a table to 6370 ** have a column named by the empty string, in which case there is no way to 6371 ** distinguish between an unreferenced table and an actual reference to the 6372 ** "" column. The original design was for the fake column name to be a NULL, 6373 ** which would be unambiguous. But legacy authorization callbacks might 6374 ** assume the column name is non-NULL and segfault. The use of an empty 6375 ** string for the fake column name seems safer. 6376 */ 6377 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6378 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6379 } 6380 6381 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6382 /* Generate code for all sub-queries in the FROM clause 6383 */ 6384 pSub = pItem->pSelect; 6385 if( pSub==0 ) continue; 6386 6387 /* The code for a subquery should only be generated once, though it is 6388 ** technically harmless for it to be generated multiple times. The 6389 ** following assert() will detect if something changes to cause 6390 ** the same subquery to be coded multiple times, as a signal to the 6391 ** developers to try to optimize the situation. 6392 ** 6393 ** Update 2019-07-24: 6394 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40. 6395 ** The dbsqlfuzz fuzzer found a case where the same subquery gets 6396 ** coded twice. So this assert() now becomes a testcase(). It should 6397 ** be very rare, though. 6398 */ 6399 testcase( pItem->addrFillSub!=0 ); 6400 6401 /* Increment Parse.nHeight by the height of the largest expression 6402 ** tree referred to by this, the parent select. The child select 6403 ** may contain expression trees of at most 6404 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6405 ** more conservative than necessary, but much easier than enforcing 6406 ** an exact limit. 6407 */ 6408 pParse->nHeight += sqlite3SelectExprHeight(p); 6409 6410 /* Make copies of constant WHERE-clause terms in the outer query down 6411 ** inside the subquery. This can help the subquery to run more efficiently. 6412 */ 6413 if( OptimizationEnabled(db, SQLITE_PushDown) 6414 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) 6415 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6416 (pItem->fg.jointype & JT_OUTER)!=0) 6417 ){ 6418 #if SELECTTRACE_ENABLED 6419 if( sqlite3SelectTrace & 0x100 ){ 6420 SELECTTRACE(0x100,pParse,p, 6421 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6422 sqlite3TreeViewSelect(0, p, 0); 6423 } 6424 #endif 6425 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6426 }else{ 6427 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6428 } 6429 6430 zSavedAuthContext = pParse->zAuthContext; 6431 pParse->zAuthContext = pItem->zName; 6432 6433 /* Generate code to implement the subquery 6434 ** 6435 ** The subquery is implemented as a co-routine if: 6436 ** (1) the subquery is guaranteed to be the outer loop (so that 6437 ** it does not need to be computed more than once), and 6438 ** (2) the subquery is not a CTE that should be materialized 6439 ** 6440 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6441 ** implementation? 6442 */ 6443 if( i==0 6444 && (pTabList->nSrc==1 6445 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6446 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6447 ){ 6448 /* Implement a co-routine that will return a single row of the result 6449 ** set on each invocation. 6450 */ 6451 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6452 6453 pItem->regReturn = ++pParse->nMem; 6454 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6455 VdbeComment((v, "%!S", pItem)); 6456 pItem->addrFillSub = addrTop; 6457 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6458 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6459 sqlite3Select(pParse, pSub, &dest); 6460 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6461 pItem->fg.viaCoroutine = 1; 6462 pItem->regResult = dest.iSdst; 6463 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6464 sqlite3VdbeJumpHere(v, addrTop-1); 6465 sqlite3ClearTempRegCache(pParse); 6466 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6467 /* This is a CTE for which materialization code has already been 6468 ** generated. Invoke the subroutine to compute the materialization, 6469 ** the make the pItem->iCursor be a copy of the ephemerial table that 6470 ** holds the result of the materialization. */ 6471 CteUse *pCteUse = pItem->u2.pCteUse; 6472 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6473 if( pItem->iCursor!=pCteUse->iCur ){ 6474 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6475 } 6476 pSub->nSelectRow = pCteUse->nRowEst; 6477 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6478 /* This view has already been materialized by a prior entry in 6479 ** this same FROM clause. Reuse it. */ 6480 if( pPrior->addrFillSub ){ 6481 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6482 } 6483 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6484 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6485 }else{ 6486 /* Materalize the view. If the view is not correlated, generate a 6487 ** subroutine to do the materialization so that subsequent uses of 6488 ** the same view can reuse the materialization. */ 6489 int topAddr; 6490 int onceAddr = 0; 6491 int retAddr; 6492 6493 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */ 6494 pItem->regReturn = ++pParse->nMem; 6495 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6496 pItem->addrFillSub = topAddr+1; 6497 if( pItem->fg.isCorrelated==0 ){ 6498 /* If the subquery is not correlated and if we are not inside of 6499 ** a trigger, then we only need to compute the value of the subquery 6500 ** once. */ 6501 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6502 VdbeComment((v, "materialize %!S", pItem)); 6503 }else{ 6504 VdbeNoopComment((v, "materialize %!S", pItem)); 6505 } 6506 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6507 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6508 sqlite3Select(pParse, pSub, &dest); 6509 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6510 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6511 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6512 VdbeComment((v, "end %!S", pItem)); 6513 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6514 sqlite3ClearTempRegCache(pParse); 6515 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6516 CteUse *pCteUse = pItem->u2.pCteUse; 6517 pCteUse->addrM9e = pItem->addrFillSub; 6518 pCteUse->regRtn = pItem->regReturn; 6519 pCteUse->iCur = pItem->iCursor; 6520 pCteUse->nRowEst = pSub->nSelectRow; 6521 } 6522 } 6523 if( db->mallocFailed ) goto select_end; 6524 pParse->nHeight -= sqlite3SelectExprHeight(p); 6525 pParse->zAuthContext = zSavedAuthContext; 6526 #endif 6527 } 6528 6529 /* Various elements of the SELECT copied into local variables for 6530 ** convenience */ 6531 pEList = p->pEList; 6532 pWhere = p->pWhere; 6533 pGroupBy = p->pGroupBy; 6534 pHaving = p->pHaving; 6535 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6536 6537 #if SELECTTRACE_ENABLED 6538 if( sqlite3SelectTrace & 0x400 ){ 6539 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6540 sqlite3TreeViewSelect(0, p, 0); 6541 } 6542 #endif 6543 6544 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6545 ** if the select-list is the same as the ORDER BY list, then this query 6546 ** can be rewritten as a GROUP BY. In other words, this: 6547 ** 6548 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6549 ** 6550 ** is transformed to: 6551 ** 6552 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6553 ** 6554 ** The second form is preferred as a single index (or temp-table) may be 6555 ** used for both the ORDER BY and DISTINCT processing. As originally 6556 ** written the query must use a temp-table for at least one of the ORDER 6557 ** BY and DISTINCT, and an index or separate temp-table for the other. 6558 */ 6559 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6560 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6561 #ifndef SQLITE_OMIT_WINDOWFUNC 6562 && p->pWin==0 6563 #endif 6564 ){ 6565 p->selFlags &= ~SF_Distinct; 6566 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6567 p->selFlags |= SF_Aggregate; 6568 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6569 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6570 ** original setting of the SF_Distinct flag, not the current setting */ 6571 assert( sDistinct.isTnct ); 6572 6573 #if SELECTTRACE_ENABLED 6574 if( sqlite3SelectTrace & 0x400 ){ 6575 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6576 sqlite3TreeViewSelect(0, p, 0); 6577 } 6578 #endif 6579 } 6580 6581 /* If there is an ORDER BY clause, then create an ephemeral index to 6582 ** do the sorting. But this sorting ephemeral index might end up 6583 ** being unused if the data can be extracted in pre-sorted order. 6584 ** If that is the case, then the OP_OpenEphemeral instruction will be 6585 ** changed to an OP_Noop once we figure out that the sorting index is 6586 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6587 ** that change. 6588 */ 6589 if( sSort.pOrderBy ){ 6590 KeyInfo *pKeyInfo; 6591 pKeyInfo = sqlite3KeyInfoFromExprList( 6592 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6593 sSort.iECursor = pParse->nTab++; 6594 sSort.addrSortIndex = 6595 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6596 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6597 (char*)pKeyInfo, P4_KEYINFO 6598 ); 6599 }else{ 6600 sSort.addrSortIndex = -1; 6601 } 6602 6603 /* If the output is destined for a temporary table, open that table. 6604 */ 6605 if( pDest->eDest==SRT_EphemTab ){ 6606 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6607 } 6608 6609 /* Set the limiter. 6610 */ 6611 iEnd = sqlite3VdbeMakeLabel(pParse); 6612 if( (p->selFlags & SF_FixedLimit)==0 ){ 6613 p->nSelectRow = 320; /* 4 billion rows */ 6614 } 6615 computeLimitRegisters(pParse, p, iEnd); 6616 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6617 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6618 sSort.sortFlags |= SORTFLAG_UseSorter; 6619 } 6620 6621 /* Open an ephemeral index to use for the distinct set. 6622 */ 6623 if( p->selFlags & SF_Distinct ){ 6624 sDistinct.tabTnct = pParse->nTab++; 6625 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6626 sDistinct.tabTnct, 0, 0, 6627 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6628 P4_KEYINFO); 6629 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6630 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6631 }else{ 6632 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6633 } 6634 6635 if( !isAgg && pGroupBy==0 ){ 6636 /* No aggregate functions and no GROUP BY clause */ 6637 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6638 | (p->selFlags & SF_FixedLimit); 6639 #ifndef SQLITE_OMIT_WINDOWFUNC 6640 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6641 if( pWin ){ 6642 sqlite3WindowCodeInit(pParse, p); 6643 } 6644 #endif 6645 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6646 6647 6648 /* Begin the database scan. */ 6649 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6650 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6651 p->pEList, wctrlFlags, p->nSelectRow); 6652 if( pWInfo==0 ) goto select_end; 6653 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6654 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6655 } 6656 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6657 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6658 } 6659 if( sSort.pOrderBy ){ 6660 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6661 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6662 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6663 sSort.pOrderBy = 0; 6664 } 6665 } 6666 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6667 6668 /* If sorting index that was created by a prior OP_OpenEphemeral 6669 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6670 ** into an OP_Noop. 6671 */ 6672 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6673 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6674 } 6675 6676 assert( p->pEList==pEList ); 6677 #ifndef SQLITE_OMIT_WINDOWFUNC 6678 if( pWin ){ 6679 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6680 int iCont = sqlite3VdbeMakeLabel(pParse); 6681 int iBreak = sqlite3VdbeMakeLabel(pParse); 6682 int regGosub = ++pParse->nMem; 6683 6684 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6685 6686 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6687 sqlite3VdbeResolveLabel(v, addrGosub); 6688 VdbeNoopComment((v, "inner-loop subroutine")); 6689 sSort.labelOBLopt = 0; 6690 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6691 sqlite3VdbeResolveLabel(v, iCont); 6692 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6693 VdbeComment((v, "end inner-loop subroutine")); 6694 sqlite3VdbeResolveLabel(v, iBreak); 6695 }else 6696 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6697 { 6698 /* Use the standard inner loop. */ 6699 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6700 sqlite3WhereContinueLabel(pWInfo), 6701 sqlite3WhereBreakLabel(pWInfo)); 6702 6703 /* End the database scan loop. 6704 */ 6705 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6706 sqlite3WhereEnd(pWInfo); 6707 } 6708 }else{ 6709 /* This case when there exist aggregate functions or a GROUP BY clause 6710 ** or both */ 6711 NameContext sNC; /* Name context for processing aggregate information */ 6712 int iAMem; /* First Mem address for storing current GROUP BY */ 6713 int iBMem; /* First Mem address for previous GROUP BY */ 6714 int iUseFlag; /* Mem address holding flag indicating that at least 6715 ** one row of the input to the aggregator has been 6716 ** processed */ 6717 int iAbortFlag; /* Mem address which causes query abort if positive */ 6718 int groupBySort; /* Rows come from source in GROUP BY order */ 6719 int addrEnd; /* End of processing for this SELECT */ 6720 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6721 int sortOut = 0; /* Output register from the sorter */ 6722 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6723 6724 /* Remove any and all aliases between the result set and the 6725 ** GROUP BY clause. 6726 */ 6727 if( pGroupBy ){ 6728 int k; /* Loop counter */ 6729 struct ExprList_item *pItem; /* For looping over expression in a list */ 6730 6731 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6732 pItem->u.x.iAlias = 0; 6733 } 6734 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6735 pItem->u.x.iAlias = 0; 6736 } 6737 assert( 66==sqlite3LogEst(100) ); 6738 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6739 6740 /* If there is both a GROUP BY and an ORDER BY clause and they are 6741 ** identical, then it may be possible to disable the ORDER BY clause 6742 ** on the grounds that the GROUP BY will cause elements to come out 6743 ** in the correct order. It also may not - the GROUP BY might use a 6744 ** database index that causes rows to be grouped together as required 6745 ** but not actually sorted. Either way, record the fact that the 6746 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6747 ** variable. */ 6748 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6749 int ii; 6750 /* The GROUP BY processing doesn't care whether rows are delivered in 6751 ** ASC or DESC order - only that each group is returned contiguously. 6752 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6753 ** ORDER BY to maximize the chances of rows being delivered in an 6754 ** order that makes the ORDER BY redundant. */ 6755 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6756 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6757 pGroupBy->a[ii].sortFlags = sortFlags; 6758 } 6759 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6760 orderByGrp = 1; 6761 } 6762 } 6763 }else{ 6764 assert( 0==sqlite3LogEst(1) ); 6765 p->nSelectRow = 0; 6766 } 6767 6768 /* Create a label to jump to when we want to abort the query */ 6769 addrEnd = sqlite3VdbeMakeLabel(pParse); 6770 6771 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6772 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6773 ** SELECT statement. 6774 */ 6775 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6776 if( pAggInfo ){ 6777 sqlite3ParserAddCleanup(pParse, 6778 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6779 testcase( pParse->earlyCleanup ); 6780 } 6781 if( db->mallocFailed ){ 6782 goto select_end; 6783 } 6784 pAggInfo->selId = p->selId; 6785 memset(&sNC, 0, sizeof(sNC)); 6786 sNC.pParse = pParse; 6787 sNC.pSrcList = pTabList; 6788 sNC.uNC.pAggInfo = pAggInfo; 6789 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6790 pAggInfo->mnReg = pParse->nMem+1; 6791 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6792 pAggInfo->pGroupBy = pGroupBy; 6793 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6794 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6795 if( pHaving ){ 6796 if( pGroupBy ){ 6797 assert( pWhere==p->pWhere ); 6798 assert( pHaving==p->pHaving ); 6799 assert( pGroupBy==p->pGroupBy ); 6800 havingToWhere(pParse, p); 6801 pWhere = p->pWhere; 6802 } 6803 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6804 } 6805 pAggInfo->nAccumulator = pAggInfo->nColumn; 6806 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6807 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6808 }else{ 6809 minMaxFlag = WHERE_ORDERBY_NORMAL; 6810 } 6811 for(i=0; i<pAggInfo->nFunc; i++){ 6812 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6813 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6814 sNC.ncFlags |= NC_InAggFunc; 6815 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6816 #ifndef SQLITE_OMIT_WINDOWFUNC 6817 assert( !IsWindowFunc(pExpr) ); 6818 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 6819 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 6820 } 6821 #endif 6822 sNC.ncFlags &= ~NC_InAggFunc; 6823 } 6824 pAggInfo->mxReg = pParse->nMem; 6825 if( db->mallocFailed ) goto select_end; 6826 #if SELECTTRACE_ENABLED 6827 if( sqlite3SelectTrace & 0x400 ){ 6828 int ii; 6829 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 6830 sqlite3TreeViewSelect(0, p, 0); 6831 if( minMaxFlag ){ 6832 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 6833 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 6834 } 6835 for(ii=0; ii<pAggInfo->nColumn; ii++){ 6836 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 6837 ii, pAggInfo->aCol[ii].iMem); 6838 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 6839 } 6840 for(ii=0; ii<pAggInfo->nFunc; ii++){ 6841 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 6842 ii, pAggInfo->aFunc[ii].iMem); 6843 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 6844 } 6845 } 6846 #endif 6847 6848 6849 /* Processing for aggregates with GROUP BY is very different and 6850 ** much more complex than aggregates without a GROUP BY. 6851 */ 6852 if( pGroupBy ){ 6853 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 6854 int addr1; /* A-vs-B comparision jump */ 6855 int addrOutputRow; /* Start of subroutine that outputs a result row */ 6856 int regOutputRow; /* Return address register for output subroutine */ 6857 int addrSetAbort; /* Set the abort flag and return */ 6858 int addrTopOfLoop; /* Top of the input loop */ 6859 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 6860 int addrReset; /* Subroutine for resetting the accumulator */ 6861 int regReset; /* Return address register for reset subroutine */ 6862 ExprList *pDistinct = 0; 6863 u16 distFlag = 0; 6864 int eDist = WHERE_DISTINCT_NOOP; 6865 6866 if( pAggInfo->nFunc==1 6867 && pAggInfo->aFunc[0].iDistinct>=0 6868 && pAggInfo->aFunc[0].pFExpr->x.pList 6869 ){ 6870 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 6871 pExpr = sqlite3ExprDup(db, pExpr, 0); 6872 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 6873 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 6874 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 6875 } 6876 6877 /* If there is a GROUP BY clause we might need a sorting index to 6878 ** implement it. Allocate that sorting index now. If it turns out 6879 ** that we do not need it after all, the OP_SorterOpen instruction 6880 ** will be converted into a Noop. 6881 */ 6882 pAggInfo->sortingIdx = pParse->nTab++; 6883 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 6884 0, pAggInfo->nColumn); 6885 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 6886 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 6887 0, (char*)pKeyInfo, P4_KEYINFO); 6888 6889 /* Initialize memory locations used by GROUP BY aggregate processing 6890 */ 6891 iUseFlag = ++pParse->nMem; 6892 iAbortFlag = ++pParse->nMem; 6893 regOutputRow = ++pParse->nMem; 6894 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 6895 regReset = ++pParse->nMem; 6896 addrReset = sqlite3VdbeMakeLabel(pParse); 6897 iAMem = pParse->nMem + 1; 6898 pParse->nMem += pGroupBy->nExpr; 6899 iBMem = pParse->nMem + 1; 6900 pParse->nMem += pGroupBy->nExpr; 6901 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 6902 VdbeComment((v, "clear abort flag")); 6903 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 6904 6905 /* Begin a loop that will extract all source rows in GROUP BY order. 6906 ** This might involve two separate loops with an OP_Sort in between, or 6907 ** it might be a single loop that uses an index to extract information 6908 ** in the right order to begin with. 6909 */ 6910 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 6911 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6912 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 6913 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 6914 ); 6915 sqlite3ExprListDelete(db, pDistinct); 6916 if( pWInfo==0 ) goto select_end; 6917 eDist = sqlite3WhereIsDistinct(pWInfo); 6918 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6919 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 6920 /* The optimizer is able to deliver rows in group by order so 6921 ** we do not have to sort. The OP_OpenEphemeral table will be 6922 ** cancelled later because we still need to use the pKeyInfo 6923 */ 6924 groupBySort = 0; 6925 }else{ 6926 /* Rows are coming out in undetermined order. We have to push 6927 ** each row into a sorting index, terminate the first loop, 6928 ** then loop over the sorting index in order to get the output 6929 ** in sorted order 6930 */ 6931 int regBase; 6932 int regRecord; 6933 int nCol; 6934 int nGroupBy; 6935 6936 explainTempTable(pParse, 6937 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 6938 "DISTINCT" : "GROUP BY"); 6939 6940 groupBySort = 1; 6941 nGroupBy = pGroupBy->nExpr; 6942 nCol = nGroupBy; 6943 j = nGroupBy; 6944 for(i=0; i<pAggInfo->nColumn; i++){ 6945 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 6946 nCol++; 6947 j++; 6948 } 6949 } 6950 regBase = sqlite3GetTempRange(pParse, nCol); 6951 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 6952 j = nGroupBy; 6953 for(i=0; i<pAggInfo->nColumn; i++){ 6954 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 6955 if( pCol->iSorterColumn>=j ){ 6956 int r1 = j + regBase; 6957 sqlite3ExprCodeGetColumnOfTable(v, 6958 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 6959 j++; 6960 } 6961 } 6962 regRecord = sqlite3GetTempReg(pParse); 6963 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 6964 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 6965 sqlite3ReleaseTempReg(pParse, regRecord); 6966 sqlite3ReleaseTempRange(pParse, regBase, nCol); 6967 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6968 sqlite3WhereEnd(pWInfo); 6969 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 6970 sortOut = sqlite3GetTempReg(pParse); 6971 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 6972 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 6973 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 6974 pAggInfo->useSortingIdx = 1; 6975 } 6976 6977 /* If the index or temporary table used by the GROUP BY sort 6978 ** will naturally deliver rows in the order required by the ORDER BY 6979 ** clause, cancel the ephemeral table open coded earlier. 6980 ** 6981 ** This is an optimization - the correct answer should result regardless. 6982 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 6983 ** disable this optimization for testing purposes. */ 6984 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 6985 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 6986 ){ 6987 sSort.pOrderBy = 0; 6988 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6989 } 6990 6991 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 6992 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 6993 ** Then compare the current GROUP BY terms against the GROUP BY terms 6994 ** from the previous row currently stored in a0, a1, a2... 6995 */ 6996 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 6997 if( groupBySort ){ 6998 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 6999 sortOut, sortPTab); 7000 } 7001 for(j=0; j<pGroupBy->nExpr; j++){ 7002 if( groupBySort ){ 7003 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7004 }else{ 7005 pAggInfo->directMode = 1; 7006 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7007 } 7008 } 7009 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7010 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7011 addr1 = sqlite3VdbeCurrentAddr(v); 7012 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7013 7014 /* Generate code that runs whenever the GROUP BY changes. 7015 ** Changes in the GROUP BY are detected by the previous code 7016 ** block. If there were no changes, this block is skipped. 7017 ** 7018 ** This code copies current group by terms in b0,b1,b2,... 7019 ** over to a0,a1,a2. It then calls the output subroutine 7020 ** and resets the aggregate accumulator registers in preparation 7021 ** for the next GROUP BY batch. 7022 */ 7023 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7024 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7025 VdbeComment((v, "output one row")); 7026 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7027 VdbeComment((v, "check abort flag")); 7028 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7029 VdbeComment((v, "reset accumulator")); 7030 7031 /* Update the aggregate accumulators based on the content of 7032 ** the current row 7033 */ 7034 sqlite3VdbeJumpHere(v, addr1); 7035 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7036 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7037 VdbeComment((v, "indicate data in accumulator")); 7038 7039 /* End of the loop 7040 */ 7041 if( groupBySort ){ 7042 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7043 VdbeCoverage(v); 7044 }else{ 7045 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7046 sqlite3WhereEnd(pWInfo); 7047 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7048 } 7049 7050 /* Output the final row of result 7051 */ 7052 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7053 VdbeComment((v, "output final row")); 7054 7055 /* Jump over the subroutines 7056 */ 7057 sqlite3VdbeGoto(v, addrEnd); 7058 7059 /* Generate a subroutine that outputs a single row of the result 7060 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7061 ** is less than or equal to zero, the subroutine is a no-op. If 7062 ** the processing calls for the query to abort, this subroutine 7063 ** increments the iAbortFlag memory location before returning in 7064 ** order to signal the caller to abort. 7065 */ 7066 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7067 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7068 VdbeComment((v, "set abort flag")); 7069 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7070 sqlite3VdbeResolveLabel(v, addrOutputRow); 7071 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7072 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7073 VdbeCoverage(v); 7074 VdbeComment((v, "Groupby result generator entry point")); 7075 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7076 finalizeAggFunctions(pParse, pAggInfo); 7077 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7078 selectInnerLoop(pParse, p, -1, &sSort, 7079 &sDistinct, pDest, 7080 addrOutputRow+1, addrSetAbort); 7081 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7082 VdbeComment((v, "end groupby result generator")); 7083 7084 /* Generate a subroutine that will reset the group-by accumulator 7085 */ 7086 sqlite3VdbeResolveLabel(v, addrReset); 7087 resetAccumulator(pParse, pAggInfo); 7088 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7089 VdbeComment((v, "indicate accumulator empty")); 7090 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7091 7092 if( eDist!=WHERE_DISTINCT_NOOP ){ 7093 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7094 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7095 } 7096 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7097 else { 7098 Table *pTab; 7099 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7100 /* If isSimpleCount() returns a pointer to a Table structure, then 7101 ** the SQL statement is of the form: 7102 ** 7103 ** SELECT count(*) FROM <tbl> 7104 ** 7105 ** where the Table structure returned represents table <tbl>. 7106 ** 7107 ** This statement is so common that it is optimized specially. The 7108 ** OP_Count instruction is executed either on the intkey table that 7109 ** contains the data for table <tbl> or on one of its indexes. It 7110 ** is better to execute the op on an index, as indexes are almost 7111 ** always spread across less pages than their corresponding tables. 7112 */ 7113 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7114 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7115 Index *pIdx; /* Iterator variable */ 7116 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7117 Index *pBest = 0; /* Best index found so far */ 7118 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7119 7120 sqlite3CodeVerifySchema(pParse, iDb); 7121 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7122 7123 /* Search for the index that has the lowest scan cost. 7124 ** 7125 ** (2011-04-15) Do not do a full scan of an unordered index. 7126 ** 7127 ** (2013-10-03) Do not count the entries in a partial index. 7128 ** 7129 ** In practice the KeyInfo structure will not be used. It is only 7130 ** passed to keep OP_OpenRead happy. 7131 */ 7132 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7133 if( !p->pSrc->a[0].fg.notIndexed ){ 7134 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7135 if( pIdx->bUnordered==0 7136 && pIdx->szIdxRow<pTab->szTabRow 7137 && pIdx->pPartIdxWhere==0 7138 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7139 ){ 7140 pBest = pIdx; 7141 } 7142 } 7143 } 7144 if( pBest ){ 7145 iRoot = pBest->tnum; 7146 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7147 } 7148 7149 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7150 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7151 if( pKeyInfo ){ 7152 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7153 } 7154 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7155 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7156 explainSimpleCount(pParse, pTab, pBest); 7157 }else{ 7158 int regAcc = 0; /* "populate accumulators" flag */ 7159 ExprList *pDistinct = 0; 7160 u16 distFlag = 0; 7161 int eDist; 7162 7163 /* If there are accumulator registers but no min() or max() functions 7164 ** without FILTER clauses, allocate register regAcc. Register regAcc 7165 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7166 ** The code generated by updateAccumulator() uses this to ensure 7167 ** that the accumulator registers are (a) updated only once if 7168 ** there are no min() or max functions or (b) always updated for the 7169 ** first row visited by the aggregate, so that they are updated at 7170 ** least once even if the FILTER clause means the min() or max() 7171 ** function visits zero rows. */ 7172 if( pAggInfo->nAccumulator ){ 7173 for(i=0; i<pAggInfo->nFunc; i++){ 7174 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7175 continue; 7176 } 7177 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7178 break; 7179 } 7180 } 7181 if( i==pAggInfo->nFunc ){ 7182 regAcc = ++pParse->nMem; 7183 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7184 } 7185 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7186 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7187 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7188 } 7189 7190 /* This case runs if the aggregate has no GROUP BY clause. The 7191 ** processing is much simpler since there is only a single row 7192 ** of output. 7193 */ 7194 assert( p->pGroupBy==0 ); 7195 resetAccumulator(pParse, pAggInfo); 7196 7197 /* If this query is a candidate for the min/max optimization, then 7198 ** minMaxFlag will have been previously set to either 7199 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7200 ** be an appropriate ORDER BY expression for the optimization. 7201 */ 7202 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7203 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7204 7205 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7206 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7207 pDistinct, minMaxFlag|distFlag, 0); 7208 if( pWInfo==0 ){ 7209 goto select_end; 7210 } 7211 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7212 eDist = sqlite3WhereIsDistinct(pWInfo); 7213 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7214 if( eDist!=WHERE_DISTINCT_NOOP ){ 7215 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7216 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7217 } 7218 7219 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7220 if( minMaxFlag ){ 7221 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7222 } 7223 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7224 sqlite3WhereEnd(pWInfo); 7225 finalizeAggFunctions(pParse, pAggInfo); 7226 } 7227 7228 sSort.pOrderBy = 0; 7229 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7230 selectInnerLoop(pParse, p, -1, 0, 0, 7231 pDest, addrEnd, addrEnd); 7232 } 7233 sqlite3VdbeResolveLabel(v, addrEnd); 7234 7235 } /* endif aggregate query */ 7236 7237 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7238 explainTempTable(pParse, "DISTINCT"); 7239 } 7240 7241 /* If there is an ORDER BY clause, then we need to sort the results 7242 ** and send them to the callback one by one. 7243 */ 7244 if( sSort.pOrderBy ){ 7245 explainTempTable(pParse, 7246 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7247 assert( p->pEList==pEList ); 7248 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7249 } 7250 7251 /* Jump here to skip this query 7252 */ 7253 sqlite3VdbeResolveLabel(v, iEnd); 7254 7255 /* The SELECT has been coded. If there is an error in the Parse structure, 7256 ** set the return code to 1. Otherwise 0. */ 7257 rc = (pParse->nErr>0); 7258 7259 /* Control jumps to here if an error is encountered above, or upon 7260 ** successful coding of the SELECT. 7261 */ 7262 select_end: 7263 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7264 #ifdef SQLITE_DEBUG 7265 if( pAggInfo && !db->mallocFailed ){ 7266 for(i=0; i<pAggInfo->nColumn; i++){ 7267 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7268 assert( pExpr!=0 ); 7269 assert( pExpr->pAggInfo==pAggInfo ); 7270 assert( pExpr->iAgg==i ); 7271 } 7272 for(i=0; i<pAggInfo->nFunc; i++){ 7273 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7274 assert( pExpr!=0 ); 7275 assert( pExpr->pAggInfo==pAggInfo ); 7276 assert( pExpr->iAgg==i ); 7277 } 7278 } 7279 #endif 7280 7281 #if SELECTTRACE_ENABLED 7282 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7283 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7284 sqlite3TreeViewSelect(0, p, 0); 7285 } 7286 #endif 7287 ExplainQueryPlanPop(pParse); 7288 return rc; 7289 } 7290