1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 while( p ){ 80 Select *pPrior = p->pPrior; 81 sqlite3ExprListDelete(db, p->pEList); 82 sqlite3SrcListDelete(db, p->pSrc); 83 sqlite3ExprDelete(db, p->pWhere); 84 sqlite3ExprListDelete(db, p->pGroupBy); 85 sqlite3ExprDelete(db, p->pHaving); 86 sqlite3ExprListDelete(db, p->pOrderBy); 87 sqlite3ExprDelete(db, p->pLimit); 88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 89 #ifndef SQLITE_OMIT_WINDOWFUNC 90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 91 sqlite3WindowListDelete(db, p->pWinDefn); 92 } 93 while( p->pWin ){ 94 assert( p->pWin->ppThis==&p->pWin ); 95 sqlite3WindowUnlinkFromSelect(p->pWin); 96 } 97 #endif 98 if( bFree ) sqlite3DbFreeNN(db, p); 99 p = pPrior; 100 bFree = 1; 101 } 102 } 103 104 /* 105 ** Initialize a SelectDest structure. 106 */ 107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 108 pDest->eDest = (u8)eDest; 109 pDest->iSDParm = iParm; 110 pDest->iSDParm2 = 0; 111 pDest->zAffSdst = 0; 112 pDest->iSdst = 0; 113 pDest->nSdst = 0; 114 } 115 116 117 /* 118 ** Allocate a new Select structure and return a pointer to that 119 ** structure. 120 */ 121 Select *sqlite3SelectNew( 122 Parse *pParse, /* Parsing context */ 123 ExprList *pEList, /* which columns to include in the result */ 124 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 125 Expr *pWhere, /* the WHERE clause */ 126 ExprList *pGroupBy, /* the GROUP BY clause */ 127 Expr *pHaving, /* the HAVING clause */ 128 ExprList *pOrderBy, /* the ORDER BY clause */ 129 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 130 Expr *pLimit /* LIMIT value. NULL means not used */ 131 ){ 132 Select *pNew, *pAllocated; 133 Select standin; 134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 135 if( pNew==0 ){ 136 assert( pParse->db->mallocFailed ); 137 pNew = &standin; 138 } 139 if( pEList==0 ){ 140 pEList = sqlite3ExprListAppend(pParse, 0, 141 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 142 } 143 pNew->pEList = pEList; 144 pNew->op = TK_SELECT; 145 pNew->selFlags = selFlags; 146 pNew->iLimit = 0; 147 pNew->iOffset = 0; 148 pNew->selId = ++pParse->nSelect; 149 pNew->addrOpenEphm[0] = -1; 150 pNew->addrOpenEphm[1] = -1; 151 pNew->nSelectRow = 0; 152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 153 pNew->pSrc = pSrc; 154 pNew->pWhere = pWhere; 155 pNew->pGroupBy = pGroupBy; 156 pNew->pHaving = pHaving; 157 pNew->pOrderBy = pOrderBy; 158 pNew->pPrior = 0; 159 pNew->pNext = 0; 160 pNew->pLimit = pLimit; 161 pNew->pWith = 0; 162 #ifndef SQLITE_OMIT_WINDOWFUNC 163 pNew->pWin = 0; 164 pNew->pWinDefn = 0; 165 #endif 166 if( pParse->db->mallocFailed ) { 167 clearSelect(pParse->db, pNew, pNew!=&standin); 168 pAllocated = 0; 169 }else{ 170 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 171 } 172 return pAllocated; 173 } 174 175 176 /* 177 ** Delete the given Select structure and all of its substructures. 178 */ 179 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 181 } 182 183 /* 184 ** Return a pointer to the right-most SELECT statement in a compound. 185 */ 186 static Select *findRightmost(Select *p){ 187 while( p->pNext ) p = p->pNext; 188 return p; 189 } 190 191 /* 192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 193 ** type of join. Return an integer constant that expresses that type 194 ** in terms of the following bit values: 195 ** 196 ** JT_INNER 197 ** JT_CROSS 198 ** JT_OUTER 199 ** JT_NATURAL 200 ** JT_LEFT 201 ** JT_RIGHT 202 ** 203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 204 ** 205 ** If an illegal or unsupported join type is seen, then still return 206 ** a join type, but put an error in the pParse structure. 207 */ 208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 209 int jointype = 0; 210 Token *apAll[3]; 211 Token *p; 212 /* 0123456789 123456789 123456789 123 */ 213 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 214 static const struct { 215 u8 i; /* Beginning of keyword text in zKeyText[] */ 216 u8 nChar; /* Length of the keyword in characters */ 217 u8 code; /* Join type mask */ 218 } aKeyword[] = { 219 /* natural */ { 0, 7, JT_NATURAL }, 220 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 221 /* outer */ { 10, 5, JT_OUTER }, 222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 224 /* inner */ { 23, 5, JT_INNER }, 225 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 226 }; 227 int i, j; 228 apAll[0] = pA; 229 apAll[1] = pB; 230 apAll[2] = pC; 231 for(i=0; i<3 && apAll[i]; i++){ 232 p = apAll[i]; 233 for(j=0; j<ArraySize(aKeyword); j++){ 234 if( p->n==aKeyword[j].nChar 235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 236 jointype |= aKeyword[j].code; 237 break; 238 } 239 } 240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 241 if( j>=ArraySize(aKeyword) ){ 242 jointype |= JT_ERROR; 243 break; 244 } 245 } 246 if( 247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 248 (jointype & JT_ERROR)!=0 249 ){ 250 const char *zSp = " "; 251 assert( pB!=0 ); 252 if( pC==0 ){ zSp++; } 253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 254 "%T %T%s%T", pA, pB, zSp, pC); 255 jointype = JT_INNER; 256 }else if( (jointype & JT_OUTER)!=0 257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 258 sqlite3ErrorMsg(pParse, 259 "RIGHT and FULL OUTER JOINs are not currently supported"); 260 jointype = JT_INNER; 261 } 262 return jointype; 263 } 264 265 /* 266 ** Return the index of a column in a table. Return -1 if the column 267 ** is not contained in the table. 268 */ 269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 270 int i; 271 u8 h = sqlite3StrIHash(zCol); 272 Column *pCol; 273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 274 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 275 } 276 return -1; 277 } 278 279 /* 280 ** Search the first N tables in pSrc, from left to right, looking for a 281 ** table that has a column named zCol. 282 ** 283 ** When found, set *piTab and *piCol to the table index and column index 284 ** of the matching column and return TRUE. 285 ** 286 ** If not found, return FALSE. 287 */ 288 static int tableAndColumnIndex( 289 SrcList *pSrc, /* Array of tables to search */ 290 int N, /* Number of tables in pSrc->a[] to search */ 291 const char *zCol, /* Name of the column we are looking for */ 292 int *piTab, /* Write index of pSrc->a[] here */ 293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 294 int bIgnoreHidden /* True to ignore hidden columns */ 295 ){ 296 int i; /* For looping over tables in pSrc */ 297 int iCol; /* Index of column matching zCol */ 298 299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 300 for(i=0; i<N; i++){ 301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 302 if( iCol>=0 303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 304 ){ 305 if( piTab ){ 306 *piTab = i; 307 *piCol = iCol; 308 } 309 return 1; 310 } 311 } 312 return 0; 313 } 314 315 /* 316 ** This function is used to add terms implied by JOIN syntax to the 317 ** WHERE clause expression of a SELECT statement. The new term, which 318 ** is ANDed with the existing WHERE clause, is of the form: 319 ** 320 ** (tab1.col1 = tab2.col2) 321 ** 322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 324 ** column iColRight of tab2. 325 */ 326 static void addWhereTerm( 327 Parse *pParse, /* Parsing context */ 328 SrcList *pSrc, /* List of tables in FROM clause */ 329 int iLeft, /* Index of first table to join in pSrc */ 330 int iColLeft, /* Index of column in first table */ 331 int iRight, /* Index of second table in pSrc */ 332 int iColRight, /* Index of column in second table */ 333 int isOuterJoin, /* True if this is an OUTER join */ 334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 335 ){ 336 sqlite3 *db = pParse->db; 337 Expr *pE1; 338 Expr *pE2; 339 Expr *pEq; 340 341 assert( iLeft<iRight ); 342 assert( pSrc->nSrc>iRight ); 343 assert( pSrc->a[iLeft].pTab ); 344 assert( pSrc->a[iRight].pTab ); 345 346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 348 349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 350 assert( pE2!=0 || pEq==0 ); /* Due to db->mallocFailed test 351 ** in sqlite3DbMallocRawNN() called from 352 ** sqlite3PExpr(). */ 353 if( pEq && isOuterJoin ){ 354 ExprSetProperty(pEq, EP_FromJoin); 355 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 356 ExprSetVVAProperty(pEq, EP_NoReduce); 357 pEq->iRightJoinTable = pE2->iTable; 358 } 359 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq); 360 } 361 362 /* 363 ** Set the EP_FromJoin property on all terms of the given expression. 364 ** And set the Expr.iRightJoinTable to iTable for every term in the 365 ** expression. 366 ** 367 ** The EP_FromJoin property is used on terms of an expression to tell 368 ** the LEFT OUTER JOIN processing logic that this term is part of the 369 ** join restriction specified in the ON or USING clause and not a part 370 ** of the more general WHERE clause. These terms are moved over to the 371 ** WHERE clause during join processing but we need to remember that they 372 ** originated in the ON or USING clause. 373 ** 374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 375 ** expression depends on table iRightJoinTable even if that table is not 376 ** explicitly mentioned in the expression. That information is needed 377 ** for cases like this: 378 ** 379 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 380 ** 381 ** The where clause needs to defer the handling of the t1.x=5 382 ** term until after the t2 loop of the join. In that way, a 383 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 384 ** defer the handling of t1.x=5, it will be processed immediately 385 ** after the t1 loop and rows with t1.x!=5 will never appear in 386 ** the output, which is incorrect. 387 */ 388 void sqlite3SetJoinExpr(Expr *p, int iTable){ 389 while( p ){ 390 ExprSetProperty(p, EP_FromJoin); 391 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 392 ExprSetVVAProperty(p, EP_NoReduce); 393 p->iRightJoinTable = iTable; 394 if( p->op==TK_FUNCTION && p->x.pList ){ 395 int i; 396 for(i=0; i<p->x.pList->nExpr; i++){ 397 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable); 398 } 399 } 400 sqlite3SetJoinExpr(p->pLeft, iTable); 401 p = p->pRight; 402 } 403 } 404 405 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every 406 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into 407 ** an ordinary term that omits the EP_FromJoin mark. 408 ** 409 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN. 410 */ 411 static void unsetJoinExpr(Expr *p, int iTable){ 412 while( p ){ 413 if( ExprHasProperty(p, EP_FromJoin) 414 && (iTable<0 || p->iRightJoinTable==iTable) ){ 415 ExprClearProperty(p, EP_FromJoin); 416 } 417 if( p->op==TK_COLUMN && p->iTable==iTable ){ 418 ExprClearProperty(p, EP_CanBeNull); 419 } 420 if( p->op==TK_FUNCTION && p->x.pList ){ 421 int i; 422 for(i=0; i<p->x.pList->nExpr; i++){ 423 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable); 424 } 425 } 426 unsetJoinExpr(p->pLeft, iTable); 427 p = p->pRight; 428 } 429 } 430 431 /* 432 ** This routine processes the join information for a SELECT statement. 433 ** ON and USING clauses are converted into extra terms of the WHERE clause. 434 ** NATURAL joins also create extra WHERE clause terms. 435 ** 436 ** The terms of a FROM clause are contained in the Select.pSrc structure. 437 ** The left most table is the first entry in Select.pSrc. The right-most 438 ** table is the last entry. The join operator is held in the entry to 439 ** the left. Thus entry 0 contains the join operator for the join between 440 ** entries 0 and 1. Any ON or USING clauses associated with the join are 441 ** also attached to the left entry. 442 ** 443 ** This routine returns the number of errors encountered. 444 */ 445 static int sqliteProcessJoin(Parse *pParse, Select *p){ 446 SrcList *pSrc; /* All tables in the FROM clause */ 447 int i, j; /* Loop counters */ 448 SrcItem *pLeft; /* Left table being joined */ 449 SrcItem *pRight; /* Right table being joined */ 450 451 pSrc = p->pSrc; 452 pLeft = &pSrc->a[0]; 453 pRight = &pLeft[1]; 454 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 455 Table *pRightTab = pRight->pTab; 456 int isOuter; 457 458 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 459 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; 460 461 /* When the NATURAL keyword is present, add WHERE clause terms for 462 ** every column that the two tables have in common. 463 */ 464 if( pRight->fg.jointype & JT_NATURAL ){ 465 if( pRight->pOn || pRight->pUsing ){ 466 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 467 "an ON or USING clause", 0); 468 return 1; 469 } 470 for(j=0; j<pRightTab->nCol; j++){ 471 char *zName; /* Name of column in the right table */ 472 int iLeft; /* Matching left table */ 473 int iLeftCol; /* Matching column in the left table */ 474 475 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 476 zName = pRightTab->aCol[j].zCnName; 477 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){ 478 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 479 isOuter, &p->pWhere); 480 } 481 } 482 } 483 484 /* Disallow both ON and USING clauses in the same join 485 */ 486 if( pRight->pOn && pRight->pUsing ){ 487 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 488 "clauses in the same join"); 489 return 1; 490 } 491 492 /* Add the ON clause to the end of the WHERE clause, connected by 493 ** an AND operator. 494 */ 495 if( pRight->pOn ){ 496 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor); 497 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn); 498 pRight->pOn = 0; 499 } 500 501 /* Create extra terms on the WHERE clause for each column named 502 ** in the USING clause. Example: If the two tables to be joined are 503 ** A and B and the USING clause names X, Y, and Z, then add this 504 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 505 ** Report an error if any column mentioned in the USING clause is 506 ** not contained in both tables to be joined. 507 */ 508 if( pRight->pUsing ){ 509 IdList *pList = pRight->pUsing; 510 for(j=0; j<pList->nId; j++){ 511 char *zName; /* Name of the term in the USING clause */ 512 int iLeft; /* Table on the left with matching column name */ 513 int iLeftCol; /* Column number of matching column on the left */ 514 int iRightCol; /* Column number of matching column on the right */ 515 516 zName = pList->a[j].zName; 517 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 518 if( iRightCol<0 519 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0) 520 ){ 521 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 522 "not present in both tables", zName); 523 return 1; 524 } 525 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 526 isOuter, &p->pWhere); 527 } 528 } 529 } 530 return 0; 531 } 532 533 /* 534 ** An instance of this object holds information (beyond pParse and pSelect) 535 ** needed to load the next result row that is to be added to the sorter. 536 */ 537 typedef struct RowLoadInfo RowLoadInfo; 538 struct RowLoadInfo { 539 int regResult; /* Store results in array of registers here */ 540 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 541 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 542 ExprList *pExtra; /* Extra columns needed by sorter refs */ 543 int regExtraResult; /* Where to load the extra columns */ 544 #endif 545 }; 546 547 /* 548 ** This routine does the work of loading query data into an array of 549 ** registers so that it can be added to the sorter. 550 */ 551 static void innerLoopLoadRow( 552 Parse *pParse, /* Statement under construction */ 553 Select *pSelect, /* The query being coded */ 554 RowLoadInfo *pInfo /* Info needed to complete the row load */ 555 ){ 556 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 557 0, pInfo->ecelFlags); 558 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 559 if( pInfo->pExtra ){ 560 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 561 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 562 } 563 #endif 564 } 565 566 /* 567 ** Code the OP_MakeRecord instruction that generates the entry to be 568 ** added into the sorter. 569 ** 570 ** Return the register in which the result is stored. 571 */ 572 static int makeSorterRecord( 573 Parse *pParse, 574 SortCtx *pSort, 575 Select *pSelect, 576 int regBase, 577 int nBase 578 ){ 579 int nOBSat = pSort->nOBSat; 580 Vdbe *v = pParse->pVdbe; 581 int regOut = ++pParse->nMem; 582 if( pSort->pDeferredRowLoad ){ 583 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 584 } 585 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 586 return regOut; 587 } 588 589 /* 590 ** Generate code that will push the record in registers regData 591 ** through regData+nData-1 onto the sorter. 592 */ 593 static void pushOntoSorter( 594 Parse *pParse, /* Parser context */ 595 SortCtx *pSort, /* Information about the ORDER BY clause */ 596 Select *pSelect, /* The whole SELECT statement */ 597 int regData, /* First register holding data to be sorted */ 598 int regOrigData, /* First register holding data before packing */ 599 int nData, /* Number of elements in the regData data array */ 600 int nPrefixReg /* No. of reg prior to regData available for use */ 601 ){ 602 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 603 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 604 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 605 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 606 int regBase; /* Regs for sorter record */ 607 int regRecord = 0; /* Assembled sorter record */ 608 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 609 int op; /* Opcode to add sorter record to sorter */ 610 int iLimit; /* LIMIT counter */ 611 int iSkip = 0; /* End of the sorter insert loop */ 612 613 assert( bSeq==0 || bSeq==1 ); 614 615 /* Three cases: 616 ** (1) The data to be sorted has already been packed into a Record 617 ** by a prior OP_MakeRecord. In this case nData==1 and regData 618 ** will be completely unrelated to regOrigData. 619 ** (2) All output columns are included in the sort record. In that 620 ** case regData==regOrigData. 621 ** (3) Some output columns are omitted from the sort record due to 622 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 623 ** SQLITE_ECEL_OMITREF optimization, or due to the 624 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 625 ** regOrigData is 0 to prevent this routine from trying to copy 626 ** values that might not yet exist. 627 */ 628 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 629 630 if( nPrefixReg ){ 631 assert( nPrefixReg==nExpr+bSeq ); 632 regBase = regData - nPrefixReg; 633 }else{ 634 regBase = pParse->nMem + 1; 635 pParse->nMem += nBase; 636 } 637 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 638 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 639 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 640 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 641 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 642 if( bSeq ){ 643 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 644 } 645 if( nPrefixReg==0 && nData>0 ){ 646 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 647 } 648 if( nOBSat>0 ){ 649 int regPrevKey; /* The first nOBSat columns of the previous row */ 650 int addrFirst; /* Address of the OP_IfNot opcode */ 651 int addrJmp; /* Address of the OP_Jump opcode */ 652 VdbeOp *pOp; /* Opcode that opens the sorter */ 653 int nKey; /* Number of sorting key columns, including OP_Sequence */ 654 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 655 656 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 657 regPrevKey = pParse->nMem+1; 658 pParse->nMem += pSort->nOBSat; 659 nKey = nExpr - pSort->nOBSat + bSeq; 660 if( bSeq ){ 661 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 662 }else{ 663 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 664 } 665 VdbeCoverage(v); 666 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 667 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 668 if( pParse->db->mallocFailed ) return; 669 pOp->p2 = nKey + nData; 670 pKI = pOp->p4.pKeyInfo; 671 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 672 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 673 testcase( pKI->nAllField > pKI->nKeyField+2 ); 674 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 675 pKI->nAllField-pKI->nKeyField-1); 676 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 677 addrJmp = sqlite3VdbeCurrentAddr(v); 678 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 679 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 680 pSort->regReturn = ++pParse->nMem; 681 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 682 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 683 if( iLimit ){ 684 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 685 VdbeCoverage(v); 686 } 687 sqlite3VdbeJumpHere(v, addrFirst); 688 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 689 sqlite3VdbeJumpHere(v, addrJmp); 690 } 691 if( iLimit ){ 692 /* At this point the values for the new sorter entry are stored 693 ** in an array of registers. They need to be composed into a record 694 ** and inserted into the sorter if either (a) there are currently 695 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 696 ** the largest record currently in the sorter. If (b) is true and there 697 ** are already LIMIT+OFFSET items in the sorter, delete the largest 698 ** entry before inserting the new one. This way there are never more 699 ** than LIMIT+OFFSET items in the sorter. 700 ** 701 ** If the new record does not need to be inserted into the sorter, 702 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 703 ** value is not zero, then it is a label of where to jump. Otherwise, 704 ** just bypass the row insert logic. See the header comment on the 705 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 706 */ 707 int iCsr = pSort->iECursor; 708 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 709 VdbeCoverage(v); 710 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 711 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 712 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 713 VdbeCoverage(v); 714 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 715 } 716 if( regRecord==0 ){ 717 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 718 } 719 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 720 op = OP_SorterInsert; 721 }else{ 722 op = OP_IdxInsert; 723 } 724 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 725 regBase+nOBSat, nBase-nOBSat); 726 if( iSkip ){ 727 sqlite3VdbeChangeP2(v, iSkip, 728 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 729 } 730 } 731 732 /* 733 ** Add code to implement the OFFSET 734 */ 735 static void codeOffset( 736 Vdbe *v, /* Generate code into this VM */ 737 int iOffset, /* Register holding the offset counter */ 738 int iContinue /* Jump here to skip the current record */ 739 ){ 740 if( iOffset>0 ){ 741 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 742 VdbeComment((v, "OFFSET")); 743 } 744 } 745 746 /* 747 ** Add code that will check to make sure the array of registers starting at 748 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 749 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 750 ** are available. Which is used depends on the value of parameter eTnctType, 751 ** as follows: 752 ** 753 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 754 ** Build an ephemeral table that contains all entries seen before and 755 ** skip entries which have been seen before. 756 ** 757 ** Parameter iTab is the cursor number of an ephemeral table that must 758 ** be opened before the VM code generated by this routine is executed. 759 ** The ephemeral cursor table is queried for a record identical to the 760 ** record formed by the current array of registers. If one is found, 761 ** jump to VM address addrRepeat. Otherwise, insert a new record into 762 ** the ephemeral cursor and proceed. 763 ** 764 ** The returned value in this case is a copy of parameter iTab. 765 ** 766 ** WHERE_DISTINCT_ORDERED: 767 ** In this case rows are being delivered sorted order. The ephermal 768 ** table is not required. Instead, the current set of values 769 ** is compared against previous row. If they match, the new row 770 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 771 ** the VM program proceeds with processing the new row. 772 ** 773 ** The returned value in this case is the register number of the first 774 ** in an array of registers used to store the previous result row so that 775 ** it can be compared to the next. The caller must ensure that this 776 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 777 ** will take care of this initialization.) 778 ** 779 ** WHERE_DISTINCT_UNIQUE: 780 ** In this case it has already been determined that the rows are distinct. 781 ** No special action is required. The return value is zero. 782 ** 783 ** Parameter pEList is the list of expressions used to generated the 784 ** contents of each row. It is used by this routine to determine (a) 785 ** how many elements there are in the array of registers and (b) the 786 ** collation sequences that should be used for the comparisons if 787 ** eTnctType is WHERE_DISTINCT_ORDERED. 788 */ 789 static int codeDistinct( 790 Parse *pParse, /* Parsing and code generating context */ 791 int eTnctType, /* WHERE_DISTINCT_* value */ 792 int iTab, /* A sorting index used to test for distinctness */ 793 int addrRepeat, /* Jump to here if not distinct */ 794 ExprList *pEList, /* Expression for each element */ 795 int regElem /* First element */ 796 ){ 797 int iRet = 0; 798 int nResultCol = pEList->nExpr; 799 Vdbe *v = pParse->pVdbe; 800 801 switch( eTnctType ){ 802 case WHERE_DISTINCT_ORDERED: { 803 int i; 804 int iJump; /* Jump destination */ 805 int regPrev; /* Previous row content */ 806 807 /* Allocate space for the previous row */ 808 iRet = regPrev = pParse->nMem+1; 809 pParse->nMem += nResultCol; 810 811 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 812 for(i=0; i<nResultCol; i++){ 813 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 814 if( i<nResultCol-1 ){ 815 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 816 VdbeCoverage(v); 817 }else{ 818 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 819 VdbeCoverage(v); 820 } 821 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 822 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 823 } 824 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 825 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 826 break; 827 } 828 829 case WHERE_DISTINCT_UNIQUE: { 830 /* nothing to do */ 831 break; 832 } 833 834 default: { 835 int r1 = sqlite3GetTempReg(pParse); 836 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 837 VdbeCoverage(v); 838 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 839 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 840 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 841 sqlite3ReleaseTempReg(pParse, r1); 842 iRet = iTab; 843 break; 844 } 845 } 846 847 return iRet; 848 } 849 850 /* 851 ** This routine runs after codeDistinct(). It makes necessary 852 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 853 ** routine made use of. This processing must be done separately since 854 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 855 ** laid down. 856 ** 857 ** WHERE_DISTINCT_NOOP: 858 ** WHERE_DISTINCT_UNORDERED: 859 ** 860 ** No adjustments necessary. This function is a no-op. 861 ** 862 ** WHERE_DISTINCT_UNIQUE: 863 ** 864 ** The ephemeral table is not needed. So change the 865 ** OP_OpenEphemeral opcode into an OP_Noop. 866 ** 867 ** WHERE_DISTINCT_ORDERED: 868 ** 869 ** The ephemeral table is not needed. But we do need register 870 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 871 ** into an OP_Null on the iVal register. 872 */ 873 static void fixDistinctOpenEph( 874 Parse *pParse, /* Parsing and code generating context */ 875 int eTnctType, /* WHERE_DISTINCT_* value */ 876 int iVal, /* Value returned by codeDistinct() */ 877 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 878 ){ 879 if( pParse->nErr==0 880 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 881 ){ 882 Vdbe *v = pParse->pVdbe; 883 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 884 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 885 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 886 } 887 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 888 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 889 ** bit on the first register of the previous value. This will cause the 890 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 891 ** the loop even if the first row is all NULLs. */ 892 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 893 pOp->opcode = OP_Null; 894 pOp->p1 = 1; 895 pOp->p2 = iVal; 896 } 897 } 898 } 899 900 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 901 /* 902 ** This function is called as part of inner-loop generation for a SELECT 903 ** statement with an ORDER BY that is not optimized by an index. It 904 ** determines the expressions, if any, that the sorter-reference 905 ** optimization should be used for. The sorter-reference optimization 906 ** is used for SELECT queries like: 907 ** 908 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 909 ** 910 ** If the optimization is used for expression "bigblob", then instead of 911 ** storing values read from that column in the sorter records, the PK of 912 ** the row from table t1 is stored instead. Then, as records are extracted from 913 ** the sorter to return to the user, the required value of bigblob is 914 ** retrieved directly from table t1. If the values are very large, this 915 ** can be more efficient than storing them directly in the sorter records. 916 ** 917 ** The ExprList_item.bSorterRef flag is set for each expression in pEList 918 ** for which the sorter-reference optimization should be enabled. 919 ** Additionally, the pSort->aDefer[] array is populated with entries 920 ** for all cursors required to evaluate all selected expressions. Finally. 921 ** output variable (*ppExtra) is set to an expression list containing 922 ** expressions for all extra PK values that should be stored in the 923 ** sorter records. 924 */ 925 static void selectExprDefer( 926 Parse *pParse, /* Leave any error here */ 927 SortCtx *pSort, /* Sorter context */ 928 ExprList *pEList, /* Expressions destined for sorter */ 929 ExprList **ppExtra /* Expressions to append to sorter record */ 930 ){ 931 int i; 932 int nDefer = 0; 933 ExprList *pExtra = 0; 934 for(i=0; i<pEList->nExpr; i++){ 935 struct ExprList_item *pItem = &pEList->a[i]; 936 if( pItem->u.x.iOrderByCol==0 ){ 937 Expr *pExpr = pItem->pExpr; 938 Table *pTab = pExpr->y.pTab; 939 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) 940 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) 941 ){ 942 int j; 943 for(j=0; j<nDefer; j++){ 944 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 945 } 946 if( j==nDefer ){ 947 if( nDefer==ArraySize(pSort->aDefer) ){ 948 continue; 949 }else{ 950 int nKey = 1; 951 int k; 952 Index *pPk = 0; 953 if( !HasRowid(pTab) ){ 954 pPk = sqlite3PrimaryKeyIndex(pTab); 955 nKey = pPk->nKeyCol; 956 } 957 for(k=0; k<nKey; k++){ 958 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 959 if( pNew ){ 960 pNew->iTable = pExpr->iTable; 961 pNew->y.pTab = pExpr->y.pTab; 962 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 963 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 964 } 965 } 966 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 967 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 968 pSort->aDefer[nDefer].nKey = nKey; 969 nDefer++; 970 } 971 } 972 pItem->bSorterRef = 1; 973 } 974 } 975 } 976 pSort->nDefer = (u8)nDefer; 977 *ppExtra = pExtra; 978 } 979 #endif 980 981 /* 982 ** This routine generates the code for the inside of the inner loop 983 ** of a SELECT. 984 ** 985 ** If srcTab is negative, then the p->pEList expressions 986 ** are evaluated in order to get the data for this row. If srcTab is 987 ** zero or more, then data is pulled from srcTab and p->pEList is used only 988 ** to get the number of columns and the collation sequence for each column. 989 */ 990 static void selectInnerLoop( 991 Parse *pParse, /* The parser context */ 992 Select *p, /* The complete select statement being coded */ 993 int srcTab, /* Pull data from this table if non-negative */ 994 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 995 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 996 SelectDest *pDest, /* How to dispose of the results */ 997 int iContinue, /* Jump here to continue with next row */ 998 int iBreak /* Jump here to break out of the inner loop */ 999 ){ 1000 Vdbe *v = pParse->pVdbe; 1001 int i; 1002 int hasDistinct; /* True if the DISTINCT keyword is present */ 1003 int eDest = pDest->eDest; /* How to dispose of results */ 1004 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1005 int nResultCol; /* Number of result columns */ 1006 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1007 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1008 1009 /* Usually, regResult is the first cell in an array of memory cells 1010 ** containing the current result row. In this case regOrig is set to the 1011 ** same value. However, if the results are being sent to the sorter, the 1012 ** values for any expressions that are also part of the sort-key are omitted 1013 ** from this array. In this case regOrig is set to zero. */ 1014 int regResult; /* Start of memory holding current results */ 1015 int regOrig; /* Start of memory holding full result (or 0) */ 1016 1017 assert( v ); 1018 assert( p->pEList!=0 ); 1019 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1020 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1021 if( pSort==0 && !hasDistinct ){ 1022 assert( iContinue!=0 ); 1023 codeOffset(v, p->iOffset, iContinue); 1024 } 1025 1026 /* Pull the requested columns. 1027 */ 1028 nResultCol = p->pEList->nExpr; 1029 1030 if( pDest->iSdst==0 ){ 1031 if( pSort ){ 1032 nPrefixReg = pSort->pOrderBy->nExpr; 1033 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1034 pParse->nMem += nPrefixReg; 1035 } 1036 pDest->iSdst = pParse->nMem+1; 1037 pParse->nMem += nResultCol; 1038 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1039 /* This is an error condition that can result, for example, when a SELECT 1040 ** on the right-hand side of an INSERT contains more result columns than 1041 ** there are columns in the table on the left. The error will be caught 1042 ** and reported later. But we need to make sure enough memory is allocated 1043 ** to avoid other spurious errors in the meantime. */ 1044 pParse->nMem += nResultCol; 1045 } 1046 pDest->nSdst = nResultCol; 1047 regOrig = regResult = pDest->iSdst; 1048 if( srcTab>=0 ){ 1049 for(i=0; i<nResultCol; i++){ 1050 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1051 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1052 } 1053 }else if( eDest!=SRT_Exists ){ 1054 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1055 ExprList *pExtra = 0; 1056 #endif 1057 /* If the destination is an EXISTS(...) expression, the actual 1058 ** values returned by the SELECT are not required. 1059 */ 1060 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1061 ExprList *pEList; 1062 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1063 ecelFlags = SQLITE_ECEL_DUP; 1064 }else{ 1065 ecelFlags = 0; 1066 } 1067 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1068 /* For each expression in p->pEList that is a copy of an expression in 1069 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1070 ** iOrderByCol value to one more than the index of the ORDER BY 1071 ** expression within the sort-key that pushOntoSorter() will generate. 1072 ** This allows the p->pEList field to be omitted from the sorted record, 1073 ** saving space and CPU cycles. */ 1074 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1075 1076 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1077 int j; 1078 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1079 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1080 } 1081 } 1082 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1083 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1084 if( pExtra && pParse->db->mallocFailed==0 ){ 1085 /* If there are any extra PK columns to add to the sorter records, 1086 ** allocate extra memory cells and adjust the OpenEphemeral 1087 ** instruction to account for the larger records. This is only 1088 ** required if there are one or more WITHOUT ROWID tables with 1089 ** composite primary keys in the SortCtx.aDefer[] array. */ 1090 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1091 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1092 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1093 pParse->nMem += pExtra->nExpr; 1094 } 1095 #endif 1096 1097 /* Adjust nResultCol to account for columns that are omitted 1098 ** from the sorter by the optimizations in this branch */ 1099 pEList = p->pEList; 1100 for(i=0; i<pEList->nExpr; i++){ 1101 if( pEList->a[i].u.x.iOrderByCol>0 1102 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1103 || pEList->a[i].bSorterRef 1104 #endif 1105 ){ 1106 nResultCol--; 1107 regOrig = 0; 1108 } 1109 } 1110 1111 testcase( regOrig ); 1112 testcase( eDest==SRT_Set ); 1113 testcase( eDest==SRT_Mem ); 1114 testcase( eDest==SRT_Coroutine ); 1115 testcase( eDest==SRT_Output ); 1116 assert( eDest==SRT_Set || eDest==SRT_Mem 1117 || eDest==SRT_Coroutine || eDest==SRT_Output 1118 || eDest==SRT_Upfrom ); 1119 } 1120 sRowLoadInfo.regResult = regResult; 1121 sRowLoadInfo.ecelFlags = ecelFlags; 1122 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1123 sRowLoadInfo.pExtra = pExtra; 1124 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1125 if( pExtra ) nResultCol += pExtra->nExpr; 1126 #endif 1127 if( p->iLimit 1128 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1129 && nPrefixReg>0 1130 ){ 1131 assert( pSort!=0 ); 1132 assert( hasDistinct==0 ); 1133 pSort->pDeferredRowLoad = &sRowLoadInfo; 1134 regOrig = 0; 1135 }else{ 1136 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1137 } 1138 } 1139 1140 /* If the DISTINCT keyword was present on the SELECT statement 1141 ** and this row has been seen before, then do not make this row 1142 ** part of the result. 1143 */ 1144 if( hasDistinct ){ 1145 int eType = pDistinct->eTnctType; 1146 int iTab = pDistinct->tabTnct; 1147 assert( nResultCol==p->pEList->nExpr ); 1148 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1149 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1150 if( pSort==0 ){ 1151 codeOffset(v, p->iOffset, iContinue); 1152 } 1153 } 1154 1155 switch( eDest ){ 1156 /* In this mode, write each query result to the key of the temporary 1157 ** table iParm. 1158 */ 1159 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1160 case SRT_Union: { 1161 int r1; 1162 r1 = sqlite3GetTempReg(pParse); 1163 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1164 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1165 sqlite3ReleaseTempReg(pParse, r1); 1166 break; 1167 } 1168 1169 /* Construct a record from the query result, but instead of 1170 ** saving that record, use it as a key to delete elements from 1171 ** the temporary table iParm. 1172 */ 1173 case SRT_Except: { 1174 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1175 break; 1176 } 1177 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1178 1179 /* Store the result as data using a unique key. 1180 */ 1181 case SRT_Fifo: 1182 case SRT_DistFifo: 1183 case SRT_Table: 1184 case SRT_EphemTab: { 1185 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1186 testcase( eDest==SRT_Table ); 1187 testcase( eDest==SRT_EphemTab ); 1188 testcase( eDest==SRT_Fifo ); 1189 testcase( eDest==SRT_DistFifo ); 1190 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1191 #ifndef SQLITE_OMIT_CTE 1192 if( eDest==SRT_DistFifo ){ 1193 /* If the destination is DistFifo, then cursor (iParm+1) is open 1194 ** on an ephemeral index. If the current row is already present 1195 ** in the index, do not write it to the output. If not, add the 1196 ** current row to the index and proceed with writing it to the 1197 ** output table as well. */ 1198 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1199 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1200 VdbeCoverage(v); 1201 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1202 assert( pSort==0 ); 1203 } 1204 #endif 1205 if( pSort ){ 1206 assert( regResult==regOrig ); 1207 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1208 }else{ 1209 int r2 = sqlite3GetTempReg(pParse); 1210 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1211 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1212 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1213 sqlite3ReleaseTempReg(pParse, r2); 1214 } 1215 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1216 break; 1217 } 1218 1219 case SRT_Upfrom: { 1220 if( pSort ){ 1221 pushOntoSorter( 1222 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1223 }else{ 1224 int i2 = pDest->iSDParm2; 1225 int r1 = sqlite3GetTempReg(pParse); 1226 1227 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1228 ** might still be trying to return one row, because that is what 1229 ** aggregates do. Don't record that empty row in the output table. */ 1230 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1231 1232 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1233 regResult+(i2<0), nResultCol-(i2<0), r1); 1234 if( i2<0 ){ 1235 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1236 }else{ 1237 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1238 } 1239 } 1240 break; 1241 } 1242 1243 #ifndef SQLITE_OMIT_SUBQUERY 1244 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1245 ** then there should be a single item on the stack. Write this 1246 ** item into the set table with bogus data. 1247 */ 1248 case SRT_Set: { 1249 if( pSort ){ 1250 /* At first glance you would think we could optimize out the 1251 ** ORDER BY in this case since the order of entries in the set 1252 ** does not matter. But there might be a LIMIT clause, in which 1253 ** case the order does matter */ 1254 pushOntoSorter( 1255 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1256 }else{ 1257 int r1 = sqlite3GetTempReg(pParse); 1258 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1259 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1260 r1, pDest->zAffSdst, nResultCol); 1261 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1262 sqlite3ReleaseTempReg(pParse, r1); 1263 } 1264 break; 1265 } 1266 1267 1268 /* If any row exist in the result set, record that fact and abort. 1269 */ 1270 case SRT_Exists: { 1271 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1272 /* The LIMIT clause will terminate the loop for us */ 1273 break; 1274 } 1275 1276 /* If this is a scalar select that is part of an expression, then 1277 ** store the results in the appropriate memory cell or array of 1278 ** memory cells and break out of the scan loop. 1279 */ 1280 case SRT_Mem: { 1281 if( pSort ){ 1282 assert( nResultCol<=pDest->nSdst ); 1283 pushOntoSorter( 1284 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1285 }else{ 1286 assert( nResultCol==pDest->nSdst ); 1287 assert( regResult==iParm ); 1288 /* The LIMIT clause will jump out of the loop for us */ 1289 } 1290 break; 1291 } 1292 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1293 1294 case SRT_Coroutine: /* Send data to a co-routine */ 1295 case SRT_Output: { /* Return the results */ 1296 testcase( eDest==SRT_Coroutine ); 1297 testcase( eDest==SRT_Output ); 1298 if( pSort ){ 1299 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1300 nPrefixReg); 1301 }else if( eDest==SRT_Coroutine ){ 1302 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1303 }else{ 1304 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1305 } 1306 break; 1307 } 1308 1309 #ifndef SQLITE_OMIT_CTE 1310 /* Write the results into a priority queue that is order according to 1311 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1312 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1313 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1314 ** final OP_Sequence column. The last column is the record as a blob. 1315 */ 1316 case SRT_DistQueue: 1317 case SRT_Queue: { 1318 int nKey; 1319 int r1, r2, r3; 1320 int addrTest = 0; 1321 ExprList *pSO; 1322 pSO = pDest->pOrderBy; 1323 assert( pSO ); 1324 nKey = pSO->nExpr; 1325 r1 = sqlite3GetTempReg(pParse); 1326 r2 = sqlite3GetTempRange(pParse, nKey+2); 1327 r3 = r2+nKey+1; 1328 if( eDest==SRT_DistQueue ){ 1329 /* If the destination is DistQueue, then cursor (iParm+1) is open 1330 ** on a second ephemeral index that holds all values every previously 1331 ** added to the queue. */ 1332 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1333 regResult, nResultCol); 1334 VdbeCoverage(v); 1335 } 1336 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1337 if( eDest==SRT_DistQueue ){ 1338 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1339 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1340 } 1341 for(i=0; i<nKey; i++){ 1342 sqlite3VdbeAddOp2(v, OP_SCopy, 1343 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1344 r2+i); 1345 } 1346 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1347 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1348 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1349 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1350 sqlite3ReleaseTempReg(pParse, r1); 1351 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1352 break; 1353 } 1354 #endif /* SQLITE_OMIT_CTE */ 1355 1356 1357 1358 #if !defined(SQLITE_OMIT_TRIGGER) 1359 /* Discard the results. This is used for SELECT statements inside 1360 ** the body of a TRIGGER. The purpose of such selects is to call 1361 ** user-defined functions that have side effects. We do not care 1362 ** about the actual results of the select. 1363 */ 1364 default: { 1365 assert( eDest==SRT_Discard ); 1366 break; 1367 } 1368 #endif 1369 } 1370 1371 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1372 ** there is a sorter, in which case the sorter has already limited 1373 ** the output for us. 1374 */ 1375 if( pSort==0 && p->iLimit ){ 1376 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1377 } 1378 } 1379 1380 /* 1381 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1382 ** X extra columns. 1383 */ 1384 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1385 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1386 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1387 if( p ){ 1388 p->aSortFlags = (u8*)&p->aColl[N+X]; 1389 p->nKeyField = (u16)N; 1390 p->nAllField = (u16)(N+X); 1391 p->enc = ENC(db); 1392 p->db = db; 1393 p->nRef = 1; 1394 memset(&p[1], 0, nExtra); 1395 }else{ 1396 sqlite3OomFault(db); 1397 } 1398 return p; 1399 } 1400 1401 /* 1402 ** Deallocate a KeyInfo object 1403 */ 1404 void sqlite3KeyInfoUnref(KeyInfo *p){ 1405 if( p ){ 1406 assert( p->nRef>0 ); 1407 p->nRef--; 1408 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p); 1409 } 1410 } 1411 1412 /* 1413 ** Make a new pointer to a KeyInfo object 1414 */ 1415 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1416 if( p ){ 1417 assert( p->nRef>0 ); 1418 p->nRef++; 1419 } 1420 return p; 1421 } 1422 1423 #ifdef SQLITE_DEBUG 1424 /* 1425 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1426 ** can only be changed if this is just a single reference to the object. 1427 ** 1428 ** This routine is used only inside of assert() statements. 1429 */ 1430 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1431 #endif /* SQLITE_DEBUG */ 1432 1433 /* 1434 ** Given an expression list, generate a KeyInfo structure that records 1435 ** the collating sequence for each expression in that expression list. 1436 ** 1437 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1438 ** KeyInfo structure is appropriate for initializing a virtual index to 1439 ** implement that clause. If the ExprList is the result set of a SELECT 1440 ** then the KeyInfo structure is appropriate for initializing a virtual 1441 ** index to implement a DISTINCT test. 1442 ** 1443 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1444 ** function is responsible for seeing that this structure is eventually 1445 ** freed. 1446 */ 1447 KeyInfo *sqlite3KeyInfoFromExprList( 1448 Parse *pParse, /* Parsing context */ 1449 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1450 int iStart, /* Begin with this column of pList */ 1451 int nExtra /* Add this many extra columns to the end */ 1452 ){ 1453 int nExpr; 1454 KeyInfo *pInfo; 1455 struct ExprList_item *pItem; 1456 sqlite3 *db = pParse->db; 1457 int i; 1458 1459 nExpr = pList->nExpr; 1460 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1461 if( pInfo ){ 1462 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1463 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1464 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1465 pInfo->aSortFlags[i-iStart] = pItem->sortFlags; 1466 } 1467 } 1468 return pInfo; 1469 } 1470 1471 /* 1472 ** Name of the connection operator, used for error messages. 1473 */ 1474 const char *sqlite3SelectOpName(int id){ 1475 char *z; 1476 switch( id ){ 1477 case TK_ALL: z = "UNION ALL"; break; 1478 case TK_INTERSECT: z = "INTERSECT"; break; 1479 case TK_EXCEPT: z = "EXCEPT"; break; 1480 default: z = "UNION"; break; 1481 } 1482 return z; 1483 } 1484 1485 #ifndef SQLITE_OMIT_EXPLAIN 1486 /* 1487 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1488 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1489 ** where the caption is of the form: 1490 ** 1491 ** "USE TEMP B-TREE FOR xxx" 1492 ** 1493 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1494 ** is determined by the zUsage argument. 1495 */ 1496 static void explainTempTable(Parse *pParse, const char *zUsage){ 1497 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1498 } 1499 1500 /* 1501 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1502 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1503 ** in sqlite3Select() to assign values to structure member variables that 1504 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1505 ** code with #ifndef directives. 1506 */ 1507 # define explainSetInteger(a, b) a = b 1508 1509 #else 1510 /* No-op versions of the explainXXX() functions and macros. */ 1511 # define explainTempTable(y,z) 1512 # define explainSetInteger(y,z) 1513 #endif 1514 1515 1516 /* 1517 ** If the inner loop was generated using a non-null pOrderBy argument, 1518 ** then the results were placed in a sorter. After the loop is terminated 1519 ** we need to run the sorter and output the results. The following 1520 ** routine generates the code needed to do that. 1521 */ 1522 static void generateSortTail( 1523 Parse *pParse, /* Parsing context */ 1524 Select *p, /* The SELECT statement */ 1525 SortCtx *pSort, /* Information on the ORDER BY clause */ 1526 int nColumn, /* Number of columns of data */ 1527 SelectDest *pDest /* Write the sorted results here */ 1528 ){ 1529 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1530 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1531 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1532 int addr; /* Top of output loop. Jump for Next. */ 1533 int addrOnce = 0; 1534 int iTab; 1535 ExprList *pOrderBy = pSort->pOrderBy; 1536 int eDest = pDest->eDest; 1537 int iParm = pDest->iSDParm; 1538 int regRow; 1539 int regRowid; 1540 int iCol; 1541 int nKey; /* Number of key columns in sorter record */ 1542 int iSortTab; /* Sorter cursor to read from */ 1543 int i; 1544 int bSeq; /* True if sorter record includes seq. no. */ 1545 int nRefKey = 0; 1546 struct ExprList_item *aOutEx = p->pEList->a; 1547 1548 assert( addrBreak<0 ); 1549 if( pSort->labelBkOut ){ 1550 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1551 sqlite3VdbeGoto(v, addrBreak); 1552 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1553 } 1554 1555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1556 /* Open any cursors needed for sorter-reference expressions */ 1557 for(i=0; i<pSort->nDefer; i++){ 1558 Table *pTab = pSort->aDefer[i].pTab; 1559 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1560 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1561 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1562 } 1563 #endif 1564 1565 iTab = pSort->iECursor; 1566 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1567 regRowid = 0; 1568 regRow = pDest->iSdst; 1569 }else{ 1570 regRowid = sqlite3GetTempReg(pParse); 1571 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1572 regRow = sqlite3GetTempReg(pParse); 1573 nColumn = 0; 1574 }else{ 1575 regRow = sqlite3GetTempRange(pParse, nColumn); 1576 } 1577 } 1578 nKey = pOrderBy->nExpr - pSort->nOBSat; 1579 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1580 int regSortOut = ++pParse->nMem; 1581 iSortTab = pParse->nTab++; 1582 if( pSort->labelBkOut ){ 1583 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1584 } 1585 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1586 nKey+1+nColumn+nRefKey); 1587 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1588 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1589 VdbeCoverage(v); 1590 codeOffset(v, p->iOffset, addrContinue); 1591 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1592 bSeq = 0; 1593 }else{ 1594 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1595 codeOffset(v, p->iOffset, addrContinue); 1596 iSortTab = iTab; 1597 bSeq = 1; 1598 } 1599 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1601 if( aOutEx[i].bSorterRef ) continue; 1602 #endif 1603 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1604 } 1605 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1606 if( pSort->nDefer ){ 1607 int iKey = iCol+1; 1608 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1609 1610 for(i=0; i<pSort->nDefer; i++){ 1611 int iCsr = pSort->aDefer[i].iCsr; 1612 Table *pTab = pSort->aDefer[i].pTab; 1613 int nKey = pSort->aDefer[i].nKey; 1614 1615 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1616 if( HasRowid(pTab) ){ 1617 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1618 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1619 sqlite3VdbeCurrentAddr(v)+1, regKey); 1620 }else{ 1621 int k; 1622 int iJmp; 1623 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1624 for(k=0; k<nKey; k++){ 1625 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1626 } 1627 iJmp = sqlite3VdbeCurrentAddr(v); 1628 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1629 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1630 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1631 } 1632 } 1633 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1634 } 1635 #endif 1636 for(i=nColumn-1; i>=0; i--){ 1637 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1638 if( aOutEx[i].bSorterRef ){ 1639 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1640 }else 1641 #endif 1642 { 1643 int iRead; 1644 if( aOutEx[i].u.x.iOrderByCol ){ 1645 iRead = aOutEx[i].u.x.iOrderByCol-1; 1646 }else{ 1647 iRead = iCol--; 1648 } 1649 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1650 VdbeComment((v, "%s", aOutEx[i].zEName)); 1651 } 1652 } 1653 switch( eDest ){ 1654 case SRT_Table: 1655 case SRT_EphemTab: { 1656 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1657 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1658 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1659 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1660 break; 1661 } 1662 #ifndef SQLITE_OMIT_SUBQUERY 1663 case SRT_Set: { 1664 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1665 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1666 pDest->zAffSdst, nColumn); 1667 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1668 break; 1669 } 1670 case SRT_Mem: { 1671 /* The LIMIT clause will terminate the loop for us */ 1672 break; 1673 } 1674 #endif 1675 case SRT_Upfrom: { 1676 int i2 = pDest->iSDParm2; 1677 int r1 = sqlite3GetTempReg(pParse); 1678 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1679 if( i2<0 ){ 1680 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1681 }else{ 1682 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1683 } 1684 break; 1685 } 1686 default: { 1687 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1688 testcase( eDest==SRT_Output ); 1689 testcase( eDest==SRT_Coroutine ); 1690 if( eDest==SRT_Output ){ 1691 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1692 }else{ 1693 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1694 } 1695 break; 1696 } 1697 } 1698 if( regRowid ){ 1699 if( eDest==SRT_Set ){ 1700 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1701 }else{ 1702 sqlite3ReleaseTempReg(pParse, regRow); 1703 } 1704 sqlite3ReleaseTempReg(pParse, regRowid); 1705 } 1706 /* The bottom of the loop 1707 */ 1708 sqlite3VdbeResolveLabel(v, addrContinue); 1709 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1710 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1711 }else{ 1712 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1713 } 1714 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1715 sqlite3VdbeResolveLabel(v, addrBreak); 1716 } 1717 1718 /* 1719 ** Return a pointer to a string containing the 'declaration type' of the 1720 ** expression pExpr. The string may be treated as static by the caller. 1721 ** 1722 ** Also try to estimate the size of the returned value and return that 1723 ** result in *pEstWidth. 1724 ** 1725 ** The declaration type is the exact datatype definition extracted from the 1726 ** original CREATE TABLE statement if the expression is a column. The 1727 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1728 ** is considered a column can be complex in the presence of subqueries. The 1729 ** result-set expression in all of the following SELECT statements is 1730 ** considered a column by this function. 1731 ** 1732 ** SELECT col FROM tbl; 1733 ** SELECT (SELECT col FROM tbl; 1734 ** SELECT (SELECT col FROM tbl); 1735 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1736 ** 1737 ** The declaration type for any expression other than a column is NULL. 1738 ** 1739 ** This routine has either 3 or 6 parameters depending on whether or not 1740 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1741 */ 1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1743 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1744 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1745 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1746 #endif 1747 static const char *columnTypeImpl( 1748 NameContext *pNC, 1749 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1750 Expr *pExpr 1751 #else 1752 Expr *pExpr, 1753 const char **pzOrigDb, 1754 const char **pzOrigTab, 1755 const char **pzOrigCol 1756 #endif 1757 ){ 1758 char const *zType = 0; 1759 int j; 1760 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1761 char const *zOrigDb = 0; 1762 char const *zOrigTab = 0; 1763 char const *zOrigCol = 0; 1764 #endif 1765 1766 assert( pExpr!=0 ); 1767 assert( pNC->pSrcList!=0 ); 1768 switch( pExpr->op ){ 1769 case TK_COLUMN: { 1770 /* The expression is a column. Locate the table the column is being 1771 ** extracted from in NameContext.pSrcList. This table may be real 1772 ** database table or a subquery. 1773 */ 1774 Table *pTab = 0; /* Table structure column is extracted from */ 1775 Select *pS = 0; /* Select the column is extracted from */ 1776 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1777 while( pNC && !pTab ){ 1778 SrcList *pTabList = pNC->pSrcList; 1779 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1780 if( j<pTabList->nSrc ){ 1781 pTab = pTabList->a[j].pTab; 1782 pS = pTabList->a[j].pSelect; 1783 }else{ 1784 pNC = pNC->pNext; 1785 } 1786 } 1787 1788 if( pTab==0 ){ 1789 /* At one time, code such as "SELECT new.x" within a trigger would 1790 ** cause this condition to run. Since then, we have restructured how 1791 ** trigger code is generated and so this condition is no longer 1792 ** possible. However, it can still be true for statements like 1793 ** the following: 1794 ** 1795 ** CREATE TABLE t1(col INTEGER); 1796 ** SELECT (SELECT t1.col) FROM FROM t1; 1797 ** 1798 ** when columnType() is called on the expression "t1.col" in the 1799 ** sub-select. In this case, set the column type to NULL, even 1800 ** though it should really be "INTEGER". 1801 ** 1802 ** This is not a problem, as the column type of "t1.col" is never 1803 ** used. When columnType() is called on the expression 1804 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1805 ** branch below. */ 1806 break; 1807 } 1808 1809 assert( pTab && pExpr->y.pTab==pTab ); 1810 if( pS ){ 1811 /* The "table" is actually a sub-select or a view in the FROM clause 1812 ** of the SELECT statement. Return the declaration type and origin 1813 ** data for the result-set column of the sub-select. 1814 */ 1815 if( iCol<pS->pEList->nExpr 1816 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1817 && iCol>=0 1818 #else 1819 && ALWAYS(iCol>=0) 1820 #endif 1821 ){ 1822 /* If iCol is less than zero, then the expression requests the 1823 ** rowid of the sub-select or view. This expression is legal (see 1824 ** test case misc2.2.2) - it always evaluates to NULL. 1825 */ 1826 NameContext sNC; 1827 Expr *p = pS->pEList->a[iCol].pExpr; 1828 sNC.pSrcList = pS->pSrc; 1829 sNC.pNext = pNC; 1830 sNC.pParse = pNC->pParse; 1831 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1832 } 1833 }else{ 1834 /* A real table or a CTE table */ 1835 assert( !pS ); 1836 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1837 if( iCol<0 ) iCol = pTab->iPKey; 1838 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1839 if( iCol<0 ){ 1840 zType = "INTEGER"; 1841 zOrigCol = "rowid"; 1842 }else{ 1843 zOrigCol = pTab->aCol[iCol].zCnName; 1844 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1845 } 1846 zOrigTab = pTab->zName; 1847 if( pNC->pParse && pTab->pSchema ){ 1848 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1849 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1850 } 1851 #else 1852 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1853 if( iCol<0 ){ 1854 zType = "INTEGER"; 1855 }else{ 1856 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1857 } 1858 #endif 1859 } 1860 break; 1861 } 1862 #ifndef SQLITE_OMIT_SUBQUERY 1863 case TK_SELECT: { 1864 /* The expression is a sub-select. Return the declaration type and 1865 ** origin info for the single column in the result set of the SELECT 1866 ** statement. 1867 */ 1868 NameContext sNC; 1869 Select *pS = pExpr->x.pSelect; 1870 Expr *p = pS->pEList->a[0].pExpr; 1871 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1872 sNC.pSrcList = pS->pSrc; 1873 sNC.pNext = pNC; 1874 sNC.pParse = pNC->pParse; 1875 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1876 break; 1877 } 1878 #endif 1879 } 1880 1881 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1882 if( pzOrigDb ){ 1883 assert( pzOrigTab && pzOrigCol ); 1884 *pzOrigDb = zOrigDb; 1885 *pzOrigTab = zOrigTab; 1886 *pzOrigCol = zOrigCol; 1887 } 1888 #endif 1889 return zType; 1890 } 1891 1892 /* 1893 ** Generate code that will tell the VDBE the declaration types of columns 1894 ** in the result set. 1895 */ 1896 static void generateColumnTypes( 1897 Parse *pParse, /* Parser context */ 1898 SrcList *pTabList, /* List of tables */ 1899 ExprList *pEList /* Expressions defining the result set */ 1900 ){ 1901 #ifndef SQLITE_OMIT_DECLTYPE 1902 Vdbe *v = pParse->pVdbe; 1903 int i; 1904 NameContext sNC; 1905 sNC.pSrcList = pTabList; 1906 sNC.pParse = pParse; 1907 sNC.pNext = 0; 1908 for(i=0; i<pEList->nExpr; i++){ 1909 Expr *p = pEList->a[i].pExpr; 1910 const char *zType; 1911 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1912 const char *zOrigDb = 0; 1913 const char *zOrigTab = 0; 1914 const char *zOrigCol = 0; 1915 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1916 1917 /* The vdbe must make its own copy of the column-type and other 1918 ** column specific strings, in case the schema is reset before this 1919 ** virtual machine is deleted. 1920 */ 1921 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1922 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1923 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1924 #else 1925 zType = columnType(&sNC, p, 0, 0, 0); 1926 #endif 1927 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1928 } 1929 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1930 } 1931 1932 1933 /* 1934 ** Compute the column names for a SELECT statement. 1935 ** 1936 ** The only guarantee that SQLite makes about column names is that if the 1937 ** column has an AS clause assigning it a name, that will be the name used. 1938 ** That is the only documented guarantee. However, countless applications 1939 ** developed over the years have made baseless assumptions about column names 1940 ** and will break if those assumptions changes. Hence, use extreme caution 1941 ** when modifying this routine to avoid breaking legacy. 1942 ** 1943 ** See Also: sqlite3ColumnsFromExprList() 1944 ** 1945 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 1946 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 1947 ** applications should operate this way. Nevertheless, we need to support the 1948 ** other modes for legacy: 1949 ** 1950 ** short=OFF, full=OFF: Column name is the text of the expression has it 1951 ** originally appears in the SELECT statement. In 1952 ** other words, the zSpan of the result expression. 1953 ** 1954 ** short=ON, full=OFF: (This is the default setting). If the result 1955 ** refers directly to a table column, then the 1956 ** result column name is just the table column 1957 ** name: COLUMN. Otherwise use zSpan. 1958 ** 1959 ** full=ON, short=ANY: If the result refers directly to a table column, 1960 ** then the result column name with the table name 1961 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 1962 */ 1963 void sqlite3GenerateColumnNames( 1964 Parse *pParse, /* Parser context */ 1965 Select *pSelect /* Generate column names for this SELECT statement */ 1966 ){ 1967 Vdbe *v = pParse->pVdbe; 1968 int i; 1969 Table *pTab; 1970 SrcList *pTabList; 1971 ExprList *pEList; 1972 sqlite3 *db = pParse->db; 1973 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 1974 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 1975 1976 #ifndef SQLITE_OMIT_EXPLAIN 1977 /* If this is an EXPLAIN, skip this step */ 1978 if( pParse->explain ){ 1979 return; 1980 } 1981 #endif 1982 1983 if( pParse->colNamesSet ) return; 1984 /* Column names are determined by the left-most term of a compound select */ 1985 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1986 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 1987 pTabList = pSelect->pSrc; 1988 pEList = pSelect->pEList; 1989 assert( v!=0 ); 1990 assert( pTabList!=0 ); 1991 pParse->colNamesSet = 1; 1992 fullName = (db->flags & SQLITE_FullColNames)!=0; 1993 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 1994 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1995 for(i=0; i<pEList->nExpr; i++){ 1996 Expr *p = pEList->a[i].pExpr; 1997 1998 assert( p!=0 ); 1999 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2000 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ 2001 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){ 2002 /* An AS clause always takes first priority */ 2003 char *zName = pEList->a[i].zEName; 2004 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2005 }else if( srcName && p->op==TK_COLUMN ){ 2006 char *zCol; 2007 int iCol = p->iColumn; 2008 pTab = p->y.pTab; 2009 assert( pTab!=0 ); 2010 if( iCol<0 ) iCol = pTab->iPKey; 2011 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2012 if( iCol<0 ){ 2013 zCol = "rowid"; 2014 }else{ 2015 zCol = pTab->aCol[iCol].zCnName; 2016 } 2017 if( fullName ){ 2018 char *zName = 0; 2019 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2020 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2021 }else{ 2022 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2023 } 2024 }else{ 2025 const char *z = pEList->a[i].zEName; 2026 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2027 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2028 } 2029 } 2030 generateColumnTypes(pParse, pTabList, pEList); 2031 } 2032 2033 /* 2034 ** Given an expression list (which is really the list of expressions 2035 ** that form the result set of a SELECT statement) compute appropriate 2036 ** column names for a table that would hold the expression list. 2037 ** 2038 ** All column names will be unique. 2039 ** 2040 ** Only the column names are computed. Column.zType, Column.zColl, 2041 ** and other fields of Column are zeroed. 2042 ** 2043 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2044 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2045 ** 2046 ** The only guarantee that SQLite makes about column names is that if the 2047 ** column has an AS clause assigning it a name, that will be the name used. 2048 ** That is the only documented guarantee. However, countless applications 2049 ** developed over the years have made baseless assumptions about column names 2050 ** and will break if those assumptions changes. Hence, use extreme caution 2051 ** when modifying this routine to avoid breaking legacy. 2052 ** 2053 ** See Also: sqlite3GenerateColumnNames() 2054 */ 2055 int sqlite3ColumnsFromExprList( 2056 Parse *pParse, /* Parsing context */ 2057 ExprList *pEList, /* Expr list from which to derive column names */ 2058 i16 *pnCol, /* Write the number of columns here */ 2059 Column **paCol /* Write the new column list here */ 2060 ){ 2061 sqlite3 *db = pParse->db; /* Database connection */ 2062 int i, j; /* Loop counters */ 2063 u32 cnt; /* Index added to make the name unique */ 2064 Column *aCol, *pCol; /* For looping over result columns */ 2065 int nCol; /* Number of columns in the result set */ 2066 char *zName; /* Column name */ 2067 int nName; /* Size of name in zName[] */ 2068 Hash ht; /* Hash table of column names */ 2069 Table *pTab; 2070 2071 sqlite3HashInit(&ht); 2072 if( pEList ){ 2073 nCol = pEList->nExpr; 2074 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2075 testcase( aCol==0 ); 2076 if( NEVER(nCol>32767) ) nCol = 32767; 2077 }else{ 2078 nCol = 0; 2079 aCol = 0; 2080 } 2081 assert( nCol==(i16)nCol ); 2082 *pnCol = nCol; 2083 *paCol = aCol; 2084 2085 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2086 /* Get an appropriate name for the column 2087 */ 2088 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){ 2089 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2090 }else{ 2091 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr); 2092 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2093 pColExpr = pColExpr->pRight; 2094 assert( pColExpr!=0 ); 2095 } 2096 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){ 2097 /* For columns use the column name name */ 2098 int iCol = pColExpr->iColumn; 2099 if( iCol<0 ) iCol = pTab->iPKey; 2100 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2101 }else if( pColExpr->op==TK_ID ){ 2102 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2103 zName = pColExpr->u.zToken; 2104 }else{ 2105 /* Use the original text of the column expression as its name */ 2106 zName = pEList->a[i].zEName; 2107 } 2108 } 2109 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2110 zName = sqlite3DbStrDup(db, zName); 2111 }else{ 2112 zName = sqlite3MPrintf(db,"column%d",i+1); 2113 } 2114 2115 /* Make sure the column name is unique. If the name is not unique, 2116 ** append an integer to the name so that it becomes unique. 2117 */ 2118 cnt = 0; 2119 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ 2120 nName = sqlite3Strlen30(zName); 2121 if( nName>0 ){ 2122 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2123 if( zName[j]==':' ) nName = j; 2124 } 2125 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2126 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2127 } 2128 pCol->zCnName = zName; 2129 pCol->hName = sqlite3StrIHash(zName); 2130 sqlite3ColumnPropertiesFromName(0, pCol); 2131 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ 2132 sqlite3OomFault(db); 2133 } 2134 } 2135 sqlite3HashClear(&ht); 2136 if( db->mallocFailed ){ 2137 for(j=0; j<i; j++){ 2138 sqlite3DbFree(db, aCol[j].zCnName); 2139 } 2140 sqlite3DbFree(db, aCol); 2141 *paCol = 0; 2142 *pnCol = 0; 2143 return SQLITE_NOMEM_BKPT; 2144 } 2145 return SQLITE_OK; 2146 } 2147 2148 /* 2149 ** Add type and collation information to a column list based on 2150 ** a SELECT statement. 2151 ** 2152 ** The column list presumably came from selectColumnNamesFromExprList(). 2153 ** The column list has only names, not types or collations. This 2154 ** routine goes through and adds the types and collations. 2155 ** 2156 ** This routine requires that all identifiers in the SELECT 2157 ** statement be resolved. 2158 */ 2159 void sqlite3SelectAddColumnTypeAndCollation( 2160 Parse *pParse, /* Parsing contexts */ 2161 Table *pTab, /* Add column type information to this table */ 2162 Select *pSelect, /* SELECT used to determine types and collations */ 2163 char aff /* Default affinity for columns */ 2164 ){ 2165 sqlite3 *db = pParse->db; 2166 NameContext sNC; 2167 Column *pCol; 2168 CollSeq *pColl; 2169 int i; 2170 Expr *p; 2171 struct ExprList_item *a; 2172 2173 assert( pSelect!=0 ); 2174 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2175 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2176 if( db->mallocFailed ) return; 2177 memset(&sNC, 0, sizeof(sNC)); 2178 sNC.pSrcList = pSelect->pSrc; 2179 a = pSelect->pEList->a; 2180 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2181 const char *zType; 2182 int n, m; 2183 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2184 p = a[i].pExpr; 2185 zType = columnType(&sNC, p, 0, 0, 0); 2186 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2187 pCol->affinity = sqlite3ExprAffinity(p); 2188 if( zType ){ 2189 m = sqlite3Strlen30(zType); 2190 n = sqlite3Strlen30(pCol->zCnName); 2191 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2192 if( pCol->zCnName ){ 2193 memcpy(&pCol->zCnName[n+1], zType, m+1); 2194 pCol->colFlags |= COLFLAG_HASTYPE; 2195 } 2196 } 2197 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2198 pColl = sqlite3ExprCollSeq(pParse, p); 2199 if( pColl ){ 2200 assert( pTab->pIndex==0 ); 2201 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2202 } 2203 } 2204 pTab->szTabRow = 1; /* Any non-zero value works */ 2205 } 2206 2207 /* 2208 ** Given a SELECT statement, generate a Table structure that describes 2209 ** the result set of that SELECT. 2210 */ 2211 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2212 Table *pTab; 2213 sqlite3 *db = pParse->db; 2214 u64 savedFlags; 2215 2216 savedFlags = db->flags; 2217 db->flags &= ~(u64)SQLITE_FullColNames; 2218 db->flags |= SQLITE_ShortColNames; 2219 sqlite3SelectPrep(pParse, pSelect, 0); 2220 db->flags = savedFlags; 2221 if( pParse->nErr ) return 0; 2222 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2223 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2224 if( pTab==0 ){ 2225 return 0; 2226 } 2227 pTab->nTabRef = 1; 2228 pTab->zName = 0; 2229 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2230 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2231 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2232 pTab->iPKey = -1; 2233 if( db->mallocFailed ){ 2234 sqlite3DeleteTable(db, pTab); 2235 return 0; 2236 } 2237 return pTab; 2238 } 2239 2240 /* 2241 ** Get a VDBE for the given parser context. Create a new one if necessary. 2242 ** If an error occurs, return NULL and leave a message in pParse. 2243 */ 2244 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2245 if( pParse->pVdbe ){ 2246 return pParse->pVdbe; 2247 } 2248 if( pParse->pToplevel==0 2249 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2250 ){ 2251 pParse->okConstFactor = 1; 2252 } 2253 return sqlite3VdbeCreate(pParse); 2254 } 2255 2256 2257 /* 2258 ** Compute the iLimit and iOffset fields of the SELECT based on the 2259 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2260 ** that appear in the original SQL statement after the LIMIT and OFFSET 2261 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2262 ** are the integer memory register numbers for counters used to compute 2263 ** the limit and offset. If there is no limit and/or offset, then 2264 ** iLimit and iOffset are negative. 2265 ** 2266 ** This routine changes the values of iLimit and iOffset only if 2267 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2268 ** and iOffset should have been preset to appropriate default values (zero) 2269 ** prior to calling this routine. 2270 ** 2271 ** The iOffset register (if it exists) is initialized to the value 2272 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2273 ** iOffset+1 is initialized to LIMIT+OFFSET. 2274 ** 2275 ** Only if pLimit->pLeft!=0 do the limit registers get 2276 ** redefined. The UNION ALL operator uses this property to force 2277 ** the reuse of the same limit and offset registers across multiple 2278 ** SELECT statements. 2279 */ 2280 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2281 Vdbe *v = 0; 2282 int iLimit = 0; 2283 int iOffset; 2284 int n; 2285 Expr *pLimit = p->pLimit; 2286 2287 if( p->iLimit ) return; 2288 2289 /* 2290 ** "LIMIT -1" always shows all rows. There is some 2291 ** controversy about what the correct behavior should be. 2292 ** The current implementation interprets "LIMIT 0" to mean 2293 ** no rows. 2294 */ 2295 if( pLimit ){ 2296 assert( pLimit->op==TK_LIMIT ); 2297 assert( pLimit->pLeft!=0 ); 2298 p->iLimit = iLimit = ++pParse->nMem; 2299 v = sqlite3GetVdbe(pParse); 2300 assert( v!=0 ); 2301 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2302 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2303 VdbeComment((v, "LIMIT counter")); 2304 if( n==0 ){ 2305 sqlite3VdbeGoto(v, iBreak); 2306 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2307 p->nSelectRow = sqlite3LogEst((u64)n); 2308 p->selFlags |= SF_FixedLimit; 2309 } 2310 }else{ 2311 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2312 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2313 VdbeComment((v, "LIMIT counter")); 2314 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2315 } 2316 if( pLimit->pRight ){ 2317 p->iOffset = iOffset = ++pParse->nMem; 2318 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2319 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2320 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2321 VdbeComment((v, "OFFSET counter")); 2322 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2323 VdbeComment((v, "LIMIT+OFFSET")); 2324 } 2325 } 2326 } 2327 2328 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2329 /* 2330 ** Return the appropriate collating sequence for the iCol-th column of 2331 ** the result set for the compound-select statement "p". Return NULL if 2332 ** the column has no default collating sequence. 2333 ** 2334 ** The collating sequence for the compound select is taken from the 2335 ** left-most term of the select that has a collating sequence. 2336 */ 2337 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2338 CollSeq *pRet; 2339 if( p->pPrior ){ 2340 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2341 }else{ 2342 pRet = 0; 2343 } 2344 assert( iCol>=0 ); 2345 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2346 ** have been thrown during name resolution and we would not have gotten 2347 ** this far */ 2348 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2349 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2350 } 2351 return pRet; 2352 } 2353 2354 /* 2355 ** The select statement passed as the second parameter is a compound SELECT 2356 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2357 ** structure suitable for implementing the ORDER BY. 2358 ** 2359 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2360 ** function is responsible for ensuring that this structure is eventually 2361 ** freed. 2362 */ 2363 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2364 ExprList *pOrderBy = p->pOrderBy; 2365 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2366 sqlite3 *db = pParse->db; 2367 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2368 if( pRet ){ 2369 int i; 2370 for(i=0; i<nOrderBy; i++){ 2371 struct ExprList_item *pItem = &pOrderBy->a[i]; 2372 Expr *pTerm = pItem->pExpr; 2373 CollSeq *pColl; 2374 2375 if( pTerm->flags & EP_Collate ){ 2376 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2377 }else{ 2378 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2379 if( pColl==0 ) pColl = db->pDfltColl; 2380 pOrderBy->a[i].pExpr = 2381 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2382 } 2383 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2384 pRet->aColl[i] = pColl; 2385 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags; 2386 } 2387 } 2388 2389 return pRet; 2390 } 2391 2392 #ifndef SQLITE_OMIT_CTE 2393 /* 2394 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2395 ** query of the form: 2396 ** 2397 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2398 ** \___________/ \_______________/ 2399 ** p->pPrior p 2400 ** 2401 ** 2402 ** There is exactly one reference to the recursive-table in the FROM clause 2403 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2404 ** 2405 ** The setup-query runs once to generate an initial set of rows that go 2406 ** into a Queue table. Rows are extracted from the Queue table one by 2407 ** one. Each row extracted from Queue is output to pDest. Then the single 2408 ** extracted row (now in the iCurrent table) becomes the content of the 2409 ** recursive-table for a recursive-query run. The output of the recursive-query 2410 ** is added back into the Queue table. Then another row is extracted from Queue 2411 ** and the iteration continues until the Queue table is empty. 2412 ** 2413 ** If the compound query operator is UNION then no duplicate rows are ever 2414 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2415 ** that have ever been inserted into Queue and causes duplicates to be 2416 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2417 ** 2418 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2419 ** ORDER BY order and the first entry is extracted for each cycle. Without 2420 ** an ORDER BY, the Queue table is just a FIFO. 2421 ** 2422 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2423 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2424 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2425 ** with a positive value, then the first OFFSET outputs are discarded rather 2426 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2427 ** rows have been skipped. 2428 */ 2429 static void generateWithRecursiveQuery( 2430 Parse *pParse, /* Parsing context */ 2431 Select *p, /* The recursive SELECT to be coded */ 2432 SelectDest *pDest /* What to do with query results */ 2433 ){ 2434 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2435 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2436 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2437 Select *pSetup; /* The setup query */ 2438 Select *pFirstRec; /* Left-most recursive term */ 2439 int addrTop; /* Top of the loop */ 2440 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2441 int iCurrent = 0; /* The Current table */ 2442 int regCurrent; /* Register holding Current table */ 2443 int iQueue; /* The Queue table */ 2444 int iDistinct = 0; /* To ensure unique results if UNION */ 2445 int eDest = SRT_Fifo; /* How to write to Queue */ 2446 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2447 int i; /* Loop counter */ 2448 int rc; /* Result code */ 2449 ExprList *pOrderBy; /* The ORDER BY clause */ 2450 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2451 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2452 2453 #ifndef SQLITE_OMIT_WINDOWFUNC 2454 if( p->pWin ){ 2455 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2456 return; 2457 } 2458 #endif 2459 2460 /* Obtain authorization to do a recursive query */ 2461 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2462 2463 /* Process the LIMIT and OFFSET clauses, if they exist */ 2464 addrBreak = sqlite3VdbeMakeLabel(pParse); 2465 p->nSelectRow = 320; /* 4 billion rows */ 2466 computeLimitRegisters(pParse, p, addrBreak); 2467 pLimit = p->pLimit; 2468 regLimit = p->iLimit; 2469 regOffset = p->iOffset; 2470 p->pLimit = 0; 2471 p->iLimit = p->iOffset = 0; 2472 pOrderBy = p->pOrderBy; 2473 2474 /* Locate the cursor number of the Current table */ 2475 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2476 if( pSrc->a[i].fg.isRecursive ){ 2477 iCurrent = pSrc->a[i].iCursor; 2478 break; 2479 } 2480 } 2481 2482 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2483 ** the Distinct table must be exactly one greater than Queue in order 2484 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2485 iQueue = pParse->nTab++; 2486 if( p->op==TK_UNION ){ 2487 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2488 iDistinct = pParse->nTab++; 2489 }else{ 2490 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2491 } 2492 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2493 2494 /* Allocate cursors for Current, Queue, and Distinct. */ 2495 regCurrent = ++pParse->nMem; 2496 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2497 if( pOrderBy ){ 2498 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2499 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2500 (char*)pKeyInfo, P4_KEYINFO); 2501 destQueue.pOrderBy = pOrderBy; 2502 }else{ 2503 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2504 } 2505 VdbeComment((v, "Queue table")); 2506 if( iDistinct ){ 2507 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2508 p->selFlags |= SF_UsesEphemeral; 2509 } 2510 2511 /* Detach the ORDER BY clause from the compound SELECT */ 2512 p->pOrderBy = 0; 2513 2514 /* Figure out how many elements of the compound SELECT are part of the 2515 ** recursive query. Make sure no recursive elements use aggregate 2516 ** functions. Mark the recursive elements as UNION ALL even if they 2517 ** are really UNION because the distinctness will be enforced by the 2518 ** iDistinct table. pFirstRec is left pointing to the left-most 2519 ** recursive term of the CTE. 2520 */ 2521 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2522 if( pFirstRec->selFlags & SF_Aggregate ){ 2523 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2524 goto end_of_recursive_query; 2525 } 2526 pFirstRec->op = TK_ALL; 2527 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2528 } 2529 2530 /* Store the results of the setup-query in Queue. */ 2531 pSetup = pFirstRec->pPrior; 2532 pSetup->pNext = 0; 2533 ExplainQueryPlan((pParse, 1, "SETUP")); 2534 rc = sqlite3Select(pParse, pSetup, &destQueue); 2535 pSetup->pNext = p; 2536 if( rc ) goto end_of_recursive_query; 2537 2538 /* Find the next row in the Queue and output that row */ 2539 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2540 2541 /* Transfer the next row in Queue over to Current */ 2542 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2543 if( pOrderBy ){ 2544 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2545 }else{ 2546 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2547 } 2548 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2549 2550 /* Output the single row in Current */ 2551 addrCont = sqlite3VdbeMakeLabel(pParse); 2552 codeOffset(v, regOffset, addrCont); 2553 selectInnerLoop(pParse, p, iCurrent, 2554 0, 0, pDest, addrCont, addrBreak); 2555 if( regLimit ){ 2556 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2557 VdbeCoverage(v); 2558 } 2559 sqlite3VdbeResolveLabel(v, addrCont); 2560 2561 /* Execute the recursive SELECT taking the single row in Current as 2562 ** the value for the recursive-table. Store the results in the Queue. 2563 */ 2564 pFirstRec->pPrior = 0; 2565 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2566 sqlite3Select(pParse, p, &destQueue); 2567 assert( pFirstRec->pPrior==0 ); 2568 pFirstRec->pPrior = pSetup; 2569 2570 /* Keep running the loop until the Queue is empty */ 2571 sqlite3VdbeGoto(v, addrTop); 2572 sqlite3VdbeResolveLabel(v, addrBreak); 2573 2574 end_of_recursive_query: 2575 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2576 p->pOrderBy = pOrderBy; 2577 p->pLimit = pLimit; 2578 return; 2579 } 2580 #endif /* SQLITE_OMIT_CTE */ 2581 2582 /* Forward references */ 2583 static int multiSelectOrderBy( 2584 Parse *pParse, /* Parsing context */ 2585 Select *p, /* The right-most of SELECTs to be coded */ 2586 SelectDest *pDest /* What to do with query results */ 2587 ); 2588 2589 /* 2590 ** Handle the special case of a compound-select that originates from a 2591 ** VALUES clause. By handling this as a special case, we avoid deep 2592 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2593 ** on a VALUES clause. 2594 ** 2595 ** Because the Select object originates from a VALUES clause: 2596 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2597 ** (2) All terms are UNION ALL 2598 ** (3) There is no ORDER BY clause 2599 ** 2600 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2601 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2602 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2603 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES. 2604 */ 2605 static int multiSelectValues( 2606 Parse *pParse, /* Parsing context */ 2607 Select *p, /* The right-most of SELECTs to be coded */ 2608 SelectDest *pDest /* What to do with query results */ 2609 ){ 2610 int nRow = 1; 2611 int rc = 0; 2612 int bShowAll = p->pLimit==0; 2613 assert( p->selFlags & SF_MultiValue ); 2614 do{ 2615 assert( p->selFlags & SF_Values ); 2616 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2617 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2618 #ifndef SQLITE_OMIT_WINDOWFUNC 2619 if( p->pWin ) return -1; 2620 #endif 2621 if( p->pPrior==0 ) break; 2622 assert( p->pPrior->pNext==p ); 2623 p = p->pPrior; 2624 nRow += bShowAll; 2625 }while(1); 2626 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2627 nRow==1 ? "" : "S")); 2628 while( p ){ 2629 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2630 if( !bShowAll ) break; 2631 p->nSelectRow = nRow; 2632 p = p->pNext; 2633 } 2634 return rc; 2635 } 2636 2637 /* 2638 ** Return true if the SELECT statement which is known to be the recursive 2639 ** part of a recursive CTE still has its anchor terms attached. If the 2640 ** anchor terms have already been removed, then return false. 2641 */ 2642 static int hasAnchor(Select *p){ 2643 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2644 return p!=0; 2645 } 2646 2647 /* 2648 ** This routine is called to process a compound query form from 2649 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2650 ** INTERSECT 2651 ** 2652 ** "p" points to the right-most of the two queries. the query on the 2653 ** left is p->pPrior. The left query could also be a compound query 2654 ** in which case this routine will be called recursively. 2655 ** 2656 ** The results of the total query are to be written into a destination 2657 ** of type eDest with parameter iParm. 2658 ** 2659 ** Example 1: Consider a three-way compound SQL statement. 2660 ** 2661 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2662 ** 2663 ** This statement is parsed up as follows: 2664 ** 2665 ** SELECT c FROM t3 2666 ** | 2667 ** `-----> SELECT b FROM t2 2668 ** | 2669 ** `------> SELECT a FROM t1 2670 ** 2671 ** The arrows in the diagram above represent the Select.pPrior pointer. 2672 ** So if this routine is called with p equal to the t3 query, then 2673 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2674 ** 2675 ** Notice that because of the way SQLite parses compound SELECTs, the 2676 ** individual selects always group from left to right. 2677 */ 2678 static int multiSelect( 2679 Parse *pParse, /* Parsing context */ 2680 Select *p, /* The right-most of SELECTs to be coded */ 2681 SelectDest *pDest /* What to do with query results */ 2682 ){ 2683 int rc = SQLITE_OK; /* Success code from a subroutine */ 2684 Select *pPrior; /* Another SELECT immediately to our left */ 2685 Vdbe *v; /* Generate code to this VDBE */ 2686 SelectDest dest; /* Alternative data destination */ 2687 Select *pDelete = 0; /* Chain of simple selects to delete */ 2688 sqlite3 *db; /* Database connection */ 2689 2690 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2691 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2692 */ 2693 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2694 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2695 assert( p->selFlags & SF_Compound ); 2696 db = pParse->db; 2697 pPrior = p->pPrior; 2698 dest = *pDest; 2699 assert( pPrior->pOrderBy==0 ); 2700 assert( pPrior->pLimit==0 ); 2701 2702 v = sqlite3GetVdbe(pParse); 2703 assert( v!=0 ); /* The VDBE already created by calling function */ 2704 2705 /* Create the destination temporary table if necessary 2706 */ 2707 if( dest.eDest==SRT_EphemTab ){ 2708 assert( p->pEList ); 2709 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2710 dest.eDest = SRT_Table; 2711 } 2712 2713 /* Special handling for a compound-select that originates as a VALUES clause. 2714 */ 2715 if( p->selFlags & SF_MultiValue ){ 2716 rc = multiSelectValues(pParse, p, &dest); 2717 if( rc>=0 ) goto multi_select_end; 2718 rc = SQLITE_OK; 2719 } 2720 2721 /* Make sure all SELECTs in the statement have the same number of elements 2722 ** in their result sets. 2723 */ 2724 assert( p->pEList && pPrior->pEList ); 2725 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2726 2727 #ifndef SQLITE_OMIT_CTE 2728 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2729 generateWithRecursiveQuery(pParse, p, &dest); 2730 }else 2731 #endif 2732 2733 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2734 */ 2735 if( p->pOrderBy ){ 2736 return multiSelectOrderBy(pParse, p, pDest); 2737 }else{ 2738 2739 #ifndef SQLITE_OMIT_EXPLAIN 2740 if( pPrior->pPrior==0 ){ 2741 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2742 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2743 } 2744 #endif 2745 2746 /* Generate code for the left and right SELECT statements. 2747 */ 2748 switch( p->op ){ 2749 case TK_ALL: { 2750 int addr = 0; 2751 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2752 assert( !pPrior->pLimit ); 2753 pPrior->iLimit = p->iLimit; 2754 pPrior->iOffset = p->iOffset; 2755 pPrior->pLimit = p->pLimit; 2756 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2757 rc = sqlite3Select(pParse, pPrior, &dest); 2758 pPrior->pLimit = 0; 2759 if( rc ){ 2760 goto multi_select_end; 2761 } 2762 p->pPrior = 0; 2763 p->iLimit = pPrior->iLimit; 2764 p->iOffset = pPrior->iOffset; 2765 if( p->iLimit ){ 2766 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2767 VdbeComment((v, "Jump ahead if LIMIT reached")); 2768 if( p->iOffset ){ 2769 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2770 p->iLimit, p->iOffset+1, p->iOffset); 2771 } 2772 } 2773 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2774 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2775 rc = sqlite3Select(pParse, p, &dest); 2776 testcase( rc!=SQLITE_OK ); 2777 pDelete = p->pPrior; 2778 p->pPrior = pPrior; 2779 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2780 if( p->pLimit 2781 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2782 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2783 ){ 2784 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2785 } 2786 if( addr ){ 2787 sqlite3VdbeJumpHere(v, addr); 2788 } 2789 break; 2790 } 2791 case TK_EXCEPT: 2792 case TK_UNION: { 2793 int unionTab; /* Cursor number of the temp table holding result */ 2794 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2795 int priorOp; /* The SRT_ operation to apply to prior selects */ 2796 Expr *pLimit; /* Saved values of p->nLimit */ 2797 int addr; 2798 SelectDest uniondest; 2799 2800 testcase( p->op==TK_EXCEPT ); 2801 testcase( p->op==TK_UNION ); 2802 priorOp = SRT_Union; 2803 if( dest.eDest==priorOp ){ 2804 /* We can reuse a temporary table generated by a SELECT to our 2805 ** right. 2806 */ 2807 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2808 unionTab = dest.iSDParm; 2809 }else{ 2810 /* We will need to create our own temporary table to hold the 2811 ** intermediate results. 2812 */ 2813 unionTab = pParse->nTab++; 2814 assert( p->pOrderBy==0 ); 2815 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2816 assert( p->addrOpenEphm[0] == -1 ); 2817 p->addrOpenEphm[0] = addr; 2818 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2819 assert( p->pEList ); 2820 } 2821 2822 2823 /* Code the SELECT statements to our left 2824 */ 2825 assert( !pPrior->pOrderBy ); 2826 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2827 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2828 rc = sqlite3Select(pParse, pPrior, &uniondest); 2829 if( rc ){ 2830 goto multi_select_end; 2831 } 2832 2833 /* Code the current SELECT statement 2834 */ 2835 if( p->op==TK_EXCEPT ){ 2836 op = SRT_Except; 2837 }else{ 2838 assert( p->op==TK_UNION ); 2839 op = SRT_Union; 2840 } 2841 p->pPrior = 0; 2842 pLimit = p->pLimit; 2843 p->pLimit = 0; 2844 uniondest.eDest = op; 2845 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2846 sqlite3SelectOpName(p->op))); 2847 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2848 rc = sqlite3Select(pParse, p, &uniondest); 2849 testcase( rc!=SQLITE_OK ); 2850 assert( p->pOrderBy==0 ); 2851 pDelete = p->pPrior; 2852 p->pPrior = pPrior; 2853 p->pOrderBy = 0; 2854 if( p->op==TK_UNION ){ 2855 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2856 } 2857 sqlite3ExprDelete(db, p->pLimit); 2858 p->pLimit = pLimit; 2859 p->iLimit = 0; 2860 p->iOffset = 0; 2861 2862 /* Convert the data in the temporary table into whatever form 2863 ** it is that we currently need. 2864 */ 2865 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2866 assert( p->pEList || db->mallocFailed ); 2867 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2868 int iCont, iBreak, iStart; 2869 iBreak = sqlite3VdbeMakeLabel(pParse); 2870 iCont = sqlite3VdbeMakeLabel(pParse); 2871 computeLimitRegisters(pParse, p, iBreak); 2872 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2873 iStart = sqlite3VdbeCurrentAddr(v); 2874 selectInnerLoop(pParse, p, unionTab, 2875 0, 0, &dest, iCont, iBreak); 2876 sqlite3VdbeResolveLabel(v, iCont); 2877 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2878 sqlite3VdbeResolveLabel(v, iBreak); 2879 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2880 } 2881 break; 2882 } 2883 default: assert( p->op==TK_INTERSECT ); { 2884 int tab1, tab2; 2885 int iCont, iBreak, iStart; 2886 Expr *pLimit; 2887 int addr; 2888 SelectDest intersectdest; 2889 int r1; 2890 2891 /* INTERSECT is different from the others since it requires 2892 ** two temporary tables. Hence it has its own case. Begin 2893 ** by allocating the tables we will need. 2894 */ 2895 tab1 = pParse->nTab++; 2896 tab2 = pParse->nTab++; 2897 assert( p->pOrderBy==0 ); 2898 2899 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2900 assert( p->addrOpenEphm[0] == -1 ); 2901 p->addrOpenEphm[0] = addr; 2902 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2903 assert( p->pEList ); 2904 2905 /* Code the SELECTs to our left into temporary table "tab1". 2906 */ 2907 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2908 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 2909 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2910 if( rc ){ 2911 goto multi_select_end; 2912 } 2913 2914 /* Code the current SELECT into temporary table "tab2" 2915 */ 2916 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2917 assert( p->addrOpenEphm[1] == -1 ); 2918 p->addrOpenEphm[1] = addr; 2919 p->pPrior = 0; 2920 pLimit = p->pLimit; 2921 p->pLimit = 0; 2922 intersectdest.iSDParm = tab2; 2923 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2924 sqlite3SelectOpName(p->op))); 2925 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 2926 rc = sqlite3Select(pParse, p, &intersectdest); 2927 testcase( rc!=SQLITE_OK ); 2928 pDelete = p->pPrior; 2929 p->pPrior = pPrior; 2930 if( p->nSelectRow>pPrior->nSelectRow ){ 2931 p->nSelectRow = pPrior->nSelectRow; 2932 } 2933 sqlite3ExprDelete(db, p->pLimit); 2934 p->pLimit = pLimit; 2935 2936 /* Generate code to take the intersection of the two temporary 2937 ** tables. 2938 */ 2939 if( rc ) break; 2940 assert( p->pEList ); 2941 iBreak = sqlite3VdbeMakeLabel(pParse); 2942 iCont = sqlite3VdbeMakeLabel(pParse); 2943 computeLimitRegisters(pParse, p, iBreak); 2944 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2945 r1 = sqlite3GetTempReg(pParse); 2946 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 2947 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 2948 VdbeCoverage(v); 2949 sqlite3ReleaseTempReg(pParse, r1); 2950 selectInnerLoop(pParse, p, tab1, 2951 0, 0, &dest, iCont, iBreak); 2952 sqlite3VdbeResolveLabel(v, iCont); 2953 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2954 sqlite3VdbeResolveLabel(v, iBreak); 2955 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2956 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2957 break; 2958 } 2959 } 2960 2961 #ifndef SQLITE_OMIT_EXPLAIN 2962 if( p->pNext==0 ){ 2963 ExplainQueryPlanPop(pParse); 2964 } 2965 #endif 2966 } 2967 if( pParse->nErr ) goto multi_select_end; 2968 2969 /* Compute collating sequences used by 2970 ** temporary tables needed to implement the compound select. 2971 ** Attach the KeyInfo structure to all temporary tables. 2972 ** 2973 ** This section is run by the right-most SELECT statement only. 2974 ** SELECT statements to the left always skip this part. The right-most 2975 ** SELECT might also skip this part if it has no ORDER BY clause and 2976 ** no temp tables are required. 2977 */ 2978 if( p->selFlags & SF_UsesEphemeral ){ 2979 int i; /* Loop counter */ 2980 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2981 Select *pLoop; /* For looping through SELECT statements */ 2982 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2983 int nCol; /* Number of columns in result set */ 2984 2985 assert( p->pNext==0 ); 2986 assert( p->pEList!=0 ); 2987 nCol = p->pEList->nExpr; 2988 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2989 if( !pKeyInfo ){ 2990 rc = SQLITE_NOMEM_BKPT; 2991 goto multi_select_end; 2992 } 2993 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2994 *apColl = multiSelectCollSeq(pParse, p, i); 2995 if( 0==*apColl ){ 2996 *apColl = db->pDfltColl; 2997 } 2998 } 2999 3000 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3001 for(i=0; i<2; i++){ 3002 int addr = pLoop->addrOpenEphm[i]; 3003 if( addr<0 ){ 3004 /* If [0] is unused then [1] is also unused. So we can 3005 ** always safely abort as soon as the first unused slot is found */ 3006 assert( pLoop->addrOpenEphm[1]<0 ); 3007 break; 3008 } 3009 sqlite3VdbeChangeP2(v, addr, nCol); 3010 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3011 P4_KEYINFO); 3012 pLoop->addrOpenEphm[i] = -1; 3013 } 3014 } 3015 sqlite3KeyInfoUnref(pKeyInfo); 3016 } 3017 3018 multi_select_end: 3019 pDest->iSdst = dest.iSdst; 3020 pDest->nSdst = dest.nSdst; 3021 if( pDelete ){ 3022 sqlite3ParserAddCleanup(pParse, 3023 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3024 pDelete); 3025 } 3026 return rc; 3027 } 3028 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3029 3030 /* 3031 ** Error message for when two or more terms of a compound select have different 3032 ** size result sets. 3033 */ 3034 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3035 if( p->selFlags & SF_Values ){ 3036 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3037 }else{ 3038 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3039 " do not have the same number of result columns", 3040 sqlite3SelectOpName(p->op)); 3041 } 3042 } 3043 3044 /* 3045 ** Code an output subroutine for a coroutine implementation of a 3046 ** SELECT statment. 3047 ** 3048 ** The data to be output is contained in pIn->iSdst. There are 3049 ** pIn->nSdst columns to be output. pDest is where the output should 3050 ** be sent. 3051 ** 3052 ** regReturn is the number of the register holding the subroutine 3053 ** return address. 3054 ** 3055 ** If regPrev>0 then it is the first register in a vector that 3056 ** records the previous output. mem[regPrev] is a flag that is false 3057 ** if there has been no previous output. If regPrev>0 then code is 3058 ** generated to suppress duplicates. pKeyInfo is used for comparing 3059 ** keys. 3060 ** 3061 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3062 ** iBreak. 3063 */ 3064 static int generateOutputSubroutine( 3065 Parse *pParse, /* Parsing context */ 3066 Select *p, /* The SELECT statement */ 3067 SelectDest *pIn, /* Coroutine supplying data */ 3068 SelectDest *pDest, /* Where to send the data */ 3069 int regReturn, /* The return address register */ 3070 int regPrev, /* Previous result register. No uniqueness if 0 */ 3071 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3072 int iBreak /* Jump here if we hit the LIMIT */ 3073 ){ 3074 Vdbe *v = pParse->pVdbe; 3075 int iContinue; 3076 int addr; 3077 3078 addr = sqlite3VdbeCurrentAddr(v); 3079 iContinue = sqlite3VdbeMakeLabel(pParse); 3080 3081 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3082 */ 3083 if( regPrev ){ 3084 int addr1, addr2; 3085 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3086 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3087 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3088 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3089 sqlite3VdbeJumpHere(v, addr1); 3090 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3091 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3092 } 3093 if( pParse->db->mallocFailed ) return 0; 3094 3095 /* Suppress the first OFFSET entries if there is an OFFSET clause 3096 */ 3097 codeOffset(v, p->iOffset, iContinue); 3098 3099 assert( pDest->eDest!=SRT_Exists ); 3100 assert( pDest->eDest!=SRT_Table ); 3101 switch( pDest->eDest ){ 3102 /* Store the result as data using a unique key. 3103 */ 3104 case SRT_EphemTab: { 3105 int r1 = sqlite3GetTempReg(pParse); 3106 int r2 = sqlite3GetTempReg(pParse); 3107 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3108 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3109 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3110 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3111 sqlite3ReleaseTempReg(pParse, r2); 3112 sqlite3ReleaseTempReg(pParse, r1); 3113 break; 3114 } 3115 3116 #ifndef SQLITE_OMIT_SUBQUERY 3117 /* If we are creating a set for an "expr IN (SELECT ...)". 3118 */ 3119 case SRT_Set: { 3120 int r1; 3121 testcase( pIn->nSdst>1 ); 3122 r1 = sqlite3GetTempReg(pParse); 3123 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3124 r1, pDest->zAffSdst, pIn->nSdst); 3125 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3126 pIn->iSdst, pIn->nSdst); 3127 sqlite3ReleaseTempReg(pParse, r1); 3128 break; 3129 } 3130 3131 /* If this is a scalar select that is part of an expression, then 3132 ** store the results in the appropriate memory cell and break out 3133 ** of the scan loop. Note that the select might return multiple columns 3134 ** if it is the RHS of a row-value IN operator. 3135 */ 3136 case SRT_Mem: { 3137 testcase( pIn->nSdst>1 ); 3138 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3139 /* The LIMIT clause will jump out of the loop for us */ 3140 break; 3141 } 3142 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3143 3144 /* The results are stored in a sequence of registers 3145 ** starting at pDest->iSdst. Then the co-routine yields. 3146 */ 3147 case SRT_Coroutine: { 3148 if( pDest->iSdst==0 ){ 3149 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3150 pDest->nSdst = pIn->nSdst; 3151 } 3152 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3153 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3154 break; 3155 } 3156 3157 /* If none of the above, then the result destination must be 3158 ** SRT_Output. This routine is never called with any other 3159 ** destination other than the ones handled above or SRT_Output. 3160 ** 3161 ** For SRT_Output, results are stored in a sequence of registers. 3162 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3163 ** return the next row of result. 3164 */ 3165 default: { 3166 assert( pDest->eDest==SRT_Output ); 3167 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3168 break; 3169 } 3170 } 3171 3172 /* Jump to the end of the loop if the LIMIT is reached. 3173 */ 3174 if( p->iLimit ){ 3175 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3176 } 3177 3178 /* Generate the subroutine return 3179 */ 3180 sqlite3VdbeResolveLabel(v, iContinue); 3181 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3182 3183 return addr; 3184 } 3185 3186 /* 3187 ** Alternative compound select code generator for cases when there 3188 ** is an ORDER BY clause. 3189 ** 3190 ** We assume a query of the following form: 3191 ** 3192 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3193 ** 3194 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3195 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3196 ** co-routines. Then run the co-routines in parallel and merge the results 3197 ** into the output. In addition to the two coroutines (called selectA and 3198 ** selectB) there are 7 subroutines: 3199 ** 3200 ** outA: Move the output of the selectA coroutine into the output 3201 ** of the compound query. 3202 ** 3203 ** outB: Move the output of the selectB coroutine into the output 3204 ** of the compound query. (Only generated for UNION and 3205 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3206 ** appears only in B.) 3207 ** 3208 ** AltB: Called when there is data from both coroutines and A<B. 3209 ** 3210 ** AeqB: Called when there is data from both coroutines and A==B. 3211 ** 3212 ** AgtB: Called when there is data from both coroutines and A>B. 3213 ** 3214 ** EofA: Called when data is exhausted from selectA. 3215 ** 3216 ** EofB: Called when data is exhausted from selectB. 3217 ** 3218 ** The implementation of the latter five subroutines depend on which 3219 ** <operator> is used: 3220 ** 3221 ** 3222 ** UNION ALL UNION EXCEPT INTERSECT 3223 ** ------------- ----------------- -------------- ----------------- 3224 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3225 ** 3226 ** AeqB: outA, nextA nextA nextA outA, nextA 3227 ** 3228 ** AgtB: outB, nextB outB, nextB nextB nextB 3229 ** 3230 ** EofA: outB, nextB outB, nextB halt halt 3231 ** 3232 ** EofB: outA, nextA outA, nextA outA, nextA halt 3233 ** 3234 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3235 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3236 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3237 ** following nextX causes a jump to the end of the select processing. 3238 ** 3239 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3240 ** within the output subroutine. The regPrev register set holds the previously 3241 ** output value. A comparison is made against this value and the output 3242 ** is skipped if the next results would be the same as the previous. 3243 ** 3244 ** The implementation plan is to implement the two coroutines and seven 3245 ** subroutines first, then put the control logic at the bottom. Like this: 3246 ** 3247 ** goto Init 3248 ** coA: coroutine for left query (A) 3249 ** coB: coroutine for right query (B) 3250 ** outA: output one row of A 3251 ** outB: output one row of B (UNION and UNION ALL only) 3252 ** EofA: ... 3253 ** EofB: ... 3254 ** AltB: ... 3255 ** AeqB: ... 3256 ** AgtB: ... 3257 ** Init: initialize coroutine registers 3258 ** yield coA 3259 ** if eof(A) goto EofA 3260 ** yield coB 3261 ** if eof(B) goto EofB 3262 ** Cmpr: Compare A, B 3263 ** Jump AltB, AeqB, AgtB 3264 ** End: ... 3265 ** 3266 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3267 ** actually called using Gosub and they do not Return. EofA and EofB loop 3268 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3269 ** and AgtB jump to either L2 or to one of EofA or EofB. 3270 */ 3271 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3272 static int multiSelectOrderBy( 3273 Parse *pParse, /* Parsing context */ 3274 Select *p, /* The right-most of SELECTs to be coded */ 3275 SelectDest *pDest /* What to do with query results */ 3276 ){ 3277 int i, j; /* Loop counters */ 3278 Select *pPrior; /* Another SELECT immediately to our left */ 3279 Vdbe *v; /* Generate code to this VDBE */ 3280 SelectDest destA; /* Destination for coroutine A */ 3281 SelectDest destB; /* Destination for coroutine B */ 3282 int regAddrA; /* Address register for select-A coroutine */ 3283 int regAddrB; /* Address register for select-B coroutine */ 3284 int addrSelectA; /* Address of the select-A coroutine */ 3285 int addrSelectB; /* Address of the select-B coroutine */ 3286 int regOutA; /* Address register for the output-A subroutine */ 3287 int regOutB; /* Address register for the output-B subroutine */ 3288 int addrOutA; /* Address of the output-A subroutine */ 3289 int addrOutB = 0; /* Address of the output-B subroutine */ 3290 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3291 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3292 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3293 int addrAltB; /* Address of the A<B subroutine */ 3294 int addrAeqB; /* Address of the A==B subroutine */ 3295 int addrAgtB; /* Address of the A>B subroutine */ 3296 int regLimitA; /* Limit register for select-A */ 3297 int regLimitB; /* Limit register for select-A */ 3298 int regPrev; /* A range of registers to hold previous output */ 3299 int savedLimit; /* Saved value of p->iLimit */ 3300 int savedOffset; /* Saved value of p->iOffset */ 3301 int labelCmpr; /* Label for the start of the merge algorithm */ 3302 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3303 int addr1; /* Jump instructions that get retargetted */ 3304 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3305 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3306 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3307 sqlite3 *db; /* Database connection */ 3308 ExprList *pOrderBy; /* The ORDER BY clause */ 3309 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3310 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3311 3312 assert( p->pOrderBy!=0 ); 3313 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3314 db = pParse->db; 3315 v = pParse->pVdbe; 3316 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3317 labelEnd = sqlite3VdbeMakeLabel(pParse); 3318 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3319 3320 3321 /* Patch up the ORDER BY clause 3322 */ 3323 op = p->op; 3324 pPrior = p->pPrior; 3325 assert( pPrior->pOrderBy==0 ); 3326 pOrderBy = p->pOrderBy; 3327 assert( pOrderBy ); 3328 nOrderBy = pOrderBy->nExpr; 3329 3330 /* For operators other than UNION ALL we have to make sure that 3331 ** the ORDER BY clause covers every term of the result set. Add 3332 ** terms to the ORDER BY clause as necessary. 3333 */ 3334 if( op!=TK_ALL ){ 3335 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3336 struct ExprList_item *pItem; 3337 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3338 assert( pItem!=0 ); 3339 assert( pItem->u.x.iOrderByCol>0 ); 3340 if( pItem->u.x.iOrderByCol==i ) break; 3341 } 3342 if( j==nOrderBy ){ 3343 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3344 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3345 pNew->flags |= EP_IntValue; 3346 pNew->u.iValue = i; 3347 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3348 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3349 } 3350 } 3351 } 3352 3353 /* Compute the comparison permutation and keyinfo that is used with 3354 ** the permutation used to determine if the next 3355 ** row of results comes from selectA or selectB. Also add explicit 3356 ** collations to the ORDER BY clause terms so that when the subqueries 3357 ** to the right and the left are evaluated, they use the correct 3358 ** collation. 3359 */ 3360 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3361 if( aPermute ){ 3362 struct ExprList_item *pItem; 3363 aPermute[0] = nOrderBy; 3364 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3365 assert( pItem!=0 ); 3366 assert( pItem->u.x.iOrderByCol>0 ); 3367 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3368 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3369 } 3370 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3371 }else{ 3372 pKeyMerge = 0; 3373 } 3374 3375 /* Reattach the ORDER BY clause to the query. 3376 */ 3377 p->pOrderBy = pOrderBy; 3378 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3379 3380 /* Allocate a range of temporary registers and the KeyInfo needed 3381 ** for the logic that removes duplicate result rows when the 3382 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3383 */ 3384 if( op==TK_ALL ){ 3385 regPrev = 0; 3386 }else{ 3387 int nExpr = p->pEList->nExpr; 3388 assert( nOrderBy>=nExpr || db->mallocFailed ); 3389 regPrev = pParse->nMem+1; 3390 pParse->nMem += nExpr+1; 3391 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3392 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3393 if( pKeyDup ){ 3394 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3395 for(i=0; i<nExpr; i++){ 3396 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3397 pKeyDup->aSortFlags[i] = 0; 3398 } 3399 } 3400 } 3401 3402 /* Separate the left and the right query from one another 3403 */ 3404 p->pPrior = 0; 3405 pPrior->pNext = 0; 3406 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3407 if( pPrior->pPrior==0 ){ 3408 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3409 } 3410 3411 /* Compute the limit registers */ 3412 computeLimitRegisters(pParse, p, labelEnd); 3413 if( p->iLimit && op==TK_ALL ){ 3414 regLimitA = ++pParse->nMem; 3415 regLimitB = ++pParse->nMem; 3416 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3417 regLimitA); 3418 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3419 }else{ 3420 regLimitA = regLimitB = 0; 3421 } 3422 sqlite3ExprDelete(db, p->pLimit); 3423 p->pLimit = 0; 3424 3425 regAddrA = ++pParse->nMem; 3426 regAddrB = ++pParse->nMem; 3427 regOutA = ++pParse->nMem; 3428 regOutB = ++pParse->nMem; 3429 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3430 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3431 3432 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3433 3434 /* Generate a coroutine to evaluate the SELECT statement to the 3435 ** left of the compound operator - the "A" select. 3436 */ 3437 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3438 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3439 VdbeComment((v, "left SELECT")); 3440 pPrior->iLimit = regLimitA; 3441 ExplainQueryPlan((pParse, 1, "LEFT")); 3442 sqlite3Select(pParse, pPrior, &destA); 3443 sqlite3VdbeEndCoroutine(v, regAddrA); 3444 sqlite3VdbeJumpHere(v, addr1); 3445 3446 /* Generate a coroutine to evaluate the SELECT statement on 3447 ** the right - the "B" select 3448 */ 3449 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3450 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3451 VdbeComment((v, "right SELECT")); 3452 savedLimit = p->iLimit; 3453 savedOffset = p->iOffset; 3454 p->iLimit = regLimitB; 3455 p->iOffset = 0; 3456 ExplainQueryPlan((pParse, 1, "RIGHT")); 3457 sqlite3Select(pParse, p, &destB); 3458 p->iLimit = savedLimit; 3459 p->iOffset = savedOffset; 3460 sqlite3VdbeEndCoroutine(v, regAddrB); 3461 3462 /* Generate a subroutine that outputs the current row of the A 3463 ** select as the next output row of the compound select. 3464 */ 3465 VdbeNoopComment((v, "Output routine for A")); 3466 addrOutA = generateOutputSubroutine(pParse, 3467 p, &destA, pDest, regOutA, 3468 regPrev, pKeyDup, labelEnd); 3469 3470 /* Generate a subroutine that outputs the current row of the B 3471 ** select as the next output row of the compound select. 3472 */ 3473 if( op==TK_ALL || op==TK_UNION ){ 3474 VdbeNoopComment((v, "Output routine for B")); 3475 addrOutB = generateOutputSubroutine(pParse, 3476 p, &destB, pDest, regOutB, 3477 regPrev, pKeyDup, labelEnd); 3478 } 3479 sqlite3KeyInfoUnref(pKeyDup); 3480 3481 /* Generate a subroutine to run when the results from select A 3482 ** are exhausted and only data in select B remains. 3483 */ 3484 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3485 addrEofA_noB = addrEofA = labelEnd; 3486 }else{ 3487 VdbeNoopComment((v, "eof-A subroutine")); 3488 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3489 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3490 VdbeCoverage(v); 3491 sqlite3VdbeGoto(v, addrEofA); 3492 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3493 } 3494 3495 /* Generate a subroutine to run when the results from select B 3496 ** are exhausted and only data in select A remains. 3497 */ 3498 if( op==TK_INTERSECT ){ 3499 addrEofB = addrEofA; 3500 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3501 }else{ 3502 VdbeNoopComment((v, "eof-B subroutine")); 3503 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3504 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3505 sqlite3VdbeGoto(v, addrEofB); 3506 } 3507 3508 /* Generate code to handle the case of A<B 3509 */ 3510 VdbeNoopComment((v, "A-lt-B subroutine")); 3511 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3512 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3513 sqlite3VdbeGoto(v, labelCmpr); 3514 3515 /* Generate code to handle the case of A==B 3516 */ 3517 if( op==TK_ALL ){ 3518 addrAeqB = addrAltB; 3519 }else if( op==TK_INTERSECT ){ 3520 addrAeqB = addrAltB; 3521 addrAltB++; 3522 }else{ 3523 VdbeNoopComment((v, "A-eq-B subroutine")); 3524 addrAeqB = 3525 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3526 sqlite3VdbeGoto(v, labelCmpr); 3527 } 3528 3529 /* Generate code to handle the case of A>B 3530 */ 3531 VdbeNoopComment((v, "A-gt-B subroutine")); 3532 addrAgtB = sqlite3VdbeCurrentAddr(v); 3533 if( op==TK_ALL || op==TK_UNION ){ 3534 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3535 } 3536 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3537 sqlite3VdbeGoto(v, labelCmpr); 3538 3539 /* This code runs once to initialize everything. 3540 */ 3541 sqlite3VdbeJumpHere(v, addr1); 3542 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3543 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3544 3545 /* Implement the main merge loop 3546 */ 3547 sqlite3VdbeResolveLabel(v, labelCmpr); 3548 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3549 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3550 (char*)pKeyMerge, P4_KEYINFO); 3551 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3552 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3553 3554 /* Jump to the this point in order to terminate the query. 3555 */ 3556 sqlite3VdbeResolveLabel(v, labelEnd); 3557 3558 /* Reassembly the compound query so that it will be freed correctly 3559 ** by the calling function */ 3560 if( p->pPrior ){ 3561 sqlite3SelectDelete(db, p->pPrior); 3562 } 3563 p->pPrior = pPrior; 3564 pPrior->pNext = p; 3565 3566 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3567 pPrior->pOrderBy = 0; 3568 3569 /*** TBD: Insert subroutine calls to close cursors on incomplete 3570 **** subqueries ****/ 3571 ExplainQueryPlanPop(pParse); 3572 return pParse->nErr!=0; 3573 } 3574 #endif 3575 3576 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3577 3578 /* An instance of the SubstContext object describes an substitution edit 3579 ** to be performed on a parse tree. 3580 ** 3581 ** All references to columns in table iTable are to be replaced by corresponding 3582 ** expressions in pEList. 3583 */ 3584 typedef struct SubstContext { 3585 Parse *pParse; /* The parsing context */ 3586 int iTable; /* Replace references to this table */ 3587 int iNewTable; /* New table number */ 3588 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3589 ExprList *pEList; /* Replacement expressions */ 3590 } SubstContext; 3591 3592 /* Forward Declarations */ 3593 static void substExprList(SubstContext*, ExprList*); 3594 static void substSelect(SubstContext*, Select*, int); 3595 3596 /* 3597 ** Scan through the expression pExpr. Replace every reference to 3598 ** a column in table number iTable with a copy of the iColumn-th 3599 ** entry in pEList. (But leave references to the ROWID column 3600 ** unchanged.) 3601 ** 3602 ** This routine is part of the flattening procedure. A subquery 3603 ** whose result set is defined by pEList appears as entry in the 3604 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3605 ** FORM clause entry is iTable. This routine makes the necessary 3606 ** changes to pExpr so that it refers directly to the source table 3607 ** of the subquery rather the result set of the subquery. 3608 */ 3609 static Expr *substExpr( 3610 SubstContext *pSubst, /* Description of the substitution */ 3611 Expr *pExpr /* Expr in which substitution occurs */ 3612 ){ 3613 if( pExpr==0 ) return 0; 3614 if( ExprHasProperty(pExpr, EP_FromJoin) 3615 && pExpr->iRightJoinTable==pSubst->iTable 3616 ){ 3617 pExpr->iRightJoinTable = pSubst->iNewTable; 3618 } 3619 if( pExpr->op==TK_COLUMN 3620 && pExpr->iTable==pSubst->iTable 3621 && !ExprHasProperty(pExpr, EP_FixedCol) 3622 ){ 3623 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3624 if( pExpr->iColumn<0 ){ 3625 pExpr->op = TK_NULL; 3626 }else 3627 #endif 3628 { 3629 Expr *pNew; 3630 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3631 Expr ifNullRow; 3632 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3633 assert( pExpr->pRight==0 ); 3634 if( sqlite3ExprIsVector(pCopy) ){ 3635 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3636 }else{ 3637 sqlite3 *db = pSubst->pParse->db; 3638 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){ 3639 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3640 ifNullRow.op = TK_IF_NULL_ROW; 3641 ifNullRow.pLeft = pCopy; 3642 ifNullRow.iTable = pSubst->iNewTable; 3643 ifNullRow.flags = EP_IfNullRow; 3644 pCopy = &ifNullRow; 3645 } 3646 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3647 pNew = sqlite3ExprDup(db, pCopy, 0); 3648 if( db->mallocFailed ){ 3649 sqlite3ExprDelete(db, pNew); 3650 return pExpr; 3651 } 3652 if( pSubst->isLeftJoin ){ 3653 ExprSetProperty(pNew, EP_CanBeNull); 3654 } 3655 if( ExprHasProperty(pExpr,EP_FromJoin) ){ 3656 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable); 3657 } 3658 sqlite3ExprDelete(db, pExpr); 3659 pExpr = pNew; 3660 3661 /* Ensure that the expression now has an implicit collation sequence, 3662 ** just as it did when it was a column of a view or sub-query. */ 3663 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3664 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3665 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3666 (pColl ? pColl->zName : "BINARY") 3667 ); 3668 } 3669 ExprClearProperty(pExpr, EP_Collate); 3670 } 3671 } 3672 }else{ 3673 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3674 pExpr->iTable = pSubst->iNewTable; 3675 } 3676 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3677 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3678 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3679 substSelect(pSubst, pExpr->x.pSelect, 1); 3680 }else{ 3681 substExprList(pSubst, pExpr->x.pList); 3682 } 3683 #ifndef SQLITE_OMIT_WINDOWFUNC 3684 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3685 Window *pWin = pExpr->y.pWin; 3686 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3687 substExprList(pSubst, pWin->pPartition); 3688 substExprList(pSubst, pWin->pOrderBy); 3689 } 3690 #endif 3691 } 3692 return pExpr; 3693 } 3694 static void substExprList( 3695 SubstContext *pSubst, /* Description of the substitution */ 3696 ExprList *pList /* List to scan and in which to make substitutes */ 3697 ){ 3698 int i; 3699 if( pList==0 ) return; 3700 for(i=0; i<pList->nExpr; i++){ 3701 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3702 } 3703 } 3704 static void substSelect( 3705 SubstContext *pSubst, /* Description of the substitution */ 3706 Select *p, /* SELECT statement in which to make substitutions */ 3707 int doPrior /* Do substitutes on p->pPrior too */ 3708 ){ 3709 SrcList *pSrc; 3710 SrcItem *pItem; 3711 int i; 3712 if( !p ) return; 3713 do{ 3714 substExprList(pSubst, p->pEList); 3715 substExprList(pSubst, p->pGroupBy); 3716 substExprList(pSubst, p->pOrderBy); 3717 p->pHaving = substExpr(pSubst, p->pHaving); 3718 p->pWhere = substExpr(pSubst, p->pWhere); 3719 pSrc = p->pSrc; 3720 assert( pSrc!=0 ); 3721 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3722 substSelect(pSubst, pItem->pSelect, 1); 3723 if( pItem->fg.isTabFunc ){ 3724 substExprList(pSubst, pItem->u1.pFuncArg); 3725 } 3726 } 3727 }while( doPrior && (p = p->pPrior)!=0 ); 3728 } 3729 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3730 3731 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3732 /* 3733 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3734 ** clause of that SELECT. 3735 ** 3736 ** This routine scans the entire SELECT statement and recomputes the 3737 ** pSrcItem->colUsed mask. 3738 */ 3739 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3740 SrcItem *pItem; 3741 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3742 pItem = pWalker->u.pSrcItem; 3743 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3744 if( pExpr->iColumn<0 ) return WRC_Continue; 3745 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3746 return WRC_Continue; 3747 } 3748 static void recomputeColumnsUsed( 3749 Select *pSelect, /* The complete SELECT statement */ 3750 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3751 ){ 3752 Walker w; 3753 if( NEVER(pSrcItem->pTab==0) ) return; 3754 memset(&w, 0, sizeof(w)); 3755 w.xExprCallback = recomputeColumnsUsedExpr; 3756 w.xSelectCallback = sqlite3SelectWalkNoop; 3757 w.u.pSrcItem = pSrcItem; 3758 pSrcItem->colUsed = 0; 3759 sqlite3WalkSelect(&w, pSelect); 3760 } 3761 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3762 3763 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3764 /* 3765 ** Assign new cursor numbers to each of the items in pSrc. For each 3766 ** new cursor number assigned, set an entry in the aCsrMap[] array 3767 ** to map the old cursor number to the new: 3768 ** 3769 ** aCsrMap[iOld+1] = iNew; 3770 ** 3771 ** The array is guaranteed by the caller to be large enough for all 3772 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3773 ** 3774 ** If pSrc contains any sub-selects, call this routine recursively 3775 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3776 */ 3777 static void srclistRenumberCursors( 3778 Parse *pParse, /* Parse context */ 3779 int *aCsrMap, /* Array to store cursor mappings in */ 3780 SrcList *pSrc, /* FROM clause to renumber */ 3781 int iExcept /* FROM clause item to skip */ 3782 ){ 3783 int i; 3784 SrcItem *pItem; 3785 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3786 if( i!=iExcept ){ 3787 Select *p; 3788 assert( pItem->iCursor < aCsrMap[0] ); 3789 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3790 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3791 } 3792 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3793 for(p=pItem->pSelect; p; p=p->pPrior){ 3794 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3795 } 3796 } 3797 } 3798 } 3799 3800 /* 3801 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3802 */ 3803 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3804 int *aCsrMap = pWalker->u.aiCol; 3805 int iCsr = *piCursor; 3806 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3807 *piCursor = aCsrMap[iCsr+1]; 3808 } 3809 } 3810 3811 /* 3812 ** Expression walker callback used by renumberCursors() to update 3813 ** Expr objects to match newly assigned cursor numbers. 3814 */ 3815 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3816 int op = pExpr->op; 3817 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3818 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3819 } 3820 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 3821 renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable); 3822 } 3823 return WRC_Continue; 3824 } 3825 3826 /* 3827 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3828 ** of the SELECT statement passed as the second argument, and to each 3829 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 3830 ** Except, do not assign a new cursor number to the iExcept'th element in 3831 ** the FROM clause of (*p). Update all expressions and other references 3832 ** to refer to the new cursor numbers. 3833 ** 3834 ** Argument aCsrMap is an array that may be used for temporary working 3835 ** space. Two guarantees are made by the caller: 3836 ** 3837 ** * the array is larger than the largest cursor number used within the 3838 ** select statement passed as an argument, and 3839 ** 3840 ** * the array entries for all cursor numbers that do *not* appear in 3841 ** FROM clauses of the select statement as described above are 3842 ** initialized to zero. 3843 */ 3844 static void renumberCursors( 3845 Parse *pParse, /* Parse context */ 3846 Select *p, /* Select to renumber cursors within */ 3847 int iExcept, /* FROM clause item to skip */ 3848 int *aCsrMap /* Working space */ 3849 ){ 3850 Walker w; 3851 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 3852 memset(&w, 0, sizeof(w)); 3853 w.u.aiCol = aCsrMap; 3854 w.xExprCallback = renumberCursorsCb; 3855 w.xSelectCallback = sqlite3SelectWalkNoop; 3856 sqlite3WalkSelect(&w, p); 3857 } 3858 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3859 3860 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3861 /* 3862 ** This routine attempts to flatten subqueries as a performance optimization. 3863 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3864 ** 3865 ** To understand the concept of flattening, consider the following 3866 ** query: 3867 ** 3868 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3869 ** 3870 ** The default way of implementing this query is to execute the 3871 ** subquery first and store the results in a temporary table, then 3872 ** run the outer query on that temporary table. This requires two 3873 ** passes over the data. Furthermore, because the temporary table 3874 ** has no indices, the WHERE clause on the outer query cannot be 3875 ** optimized. 3876 ** 3877 ** This routine attempts to rewrite queries such as the above into 3878 ** a single flat select, like this: 3879 ** 3880 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3881 ** 3882 ** The code generated for this simplification gives the same result 3883 ** but only has to scan the data once. And because indices might 3884 ** exist on the table t1, a complete scan of the data might be 3885 ** avoided. 3886 ** 3887 ** Flattening is subject to the following constraints: 3888 ** 3889 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3890 ** The subquery and the outer query cannot both be aggregates. 3891 ** 3892 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3893 ** (2) If the subquery is an aggregate then 3894 ** (2a) the outer query must not be a join and 3895 ** (2b) the outer query must not use subqueries 3896 ** other than the one FROM-clause subquery that is a candidate 3897 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 3898 ** from 2015-02-09.) 3899 ** 3900 ** (3) If the subquery is the right operand of a LEFT JOIN then 3901 ** (3a) the subquery may not be a join and 3902 ** (3b) the FROM clause of the subquery may not contain a virtual 3903 ** table and 3904 ** (3c) the outer query may not be an aggregate. 3905 ** (3d) the outer query may not be DISTINCT. 3906 ** 3907 ** (4) The subquery can not be DISTINCT. 3908 ** 3909 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3910 ** sub-queries that were excluded from this optimization. Restriction 3911 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3912 ** 3913 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3914 ** If the subquery is aggregate, the outer query may not be DISTINCT. 3915 ** 3916 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 3917 ** A FROM clause, consider adding a FROM clause with the special 3918 ** table sqlite_once that consists of a single row containing a 3919 ** single NULL. 3920 ** 3921 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 3922 ** 3923 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 3924 ** 3925 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 3926 ** accidently carried the comment forward until 2014-09-15. Original 3927 ** constraint: "If the subquery is aggregate then the outer query 3928 ** may not use LIMIT." 3929 ** 3930 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 3931 ** 3932 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3933 ** a separate restriction deriving from ticket #350. 3934 ** 3935 ** (13) The subquery and outer query may not both use LIMIT. 3936 ** 3937 ** (14) The subquery may not use OFFSET. 3938 ** 3939 ** (15) If the outer query is part of a compound select, then the 3940 ** subquery may not use LIMIT. 3941 ** (See ticket #2339 and ticket [02a8e81d44]). 3942 ** 3943 ** (16) If the outer query is aggregate, then the subquery may not 3944 ** use ORDER BY. (Ticket #2942) This used to not matter 3945 ** until we introduced the group_concat() function. 3946 ** 3947 ** (17) If the subquery is a compound select, then 3948 ** (17a) all compound operators must be a UNION ALL, and 3949 ** (17b) no terms within the subquery compound may be aggregate 3950 ** or DISTINCT, and 3951 ** (17c) every term within the subquery compound must have a FROM clause 3952 ** (17d) the outer query may not be 3953 ** (17d1) aggregate, or 3954 ** (17d2) DISTINCT 3955 ** (17e) the subquery may not contain window functions, and 3956 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 3957 ** 3958 ** The parent and sub-query may contain WHERE clauses. Subject to 3959 ** rules (11), (13) and (14), they may also contain ORDER BY, 3960 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3961 ** operator other than UNION ALL because all the other compound 3962 ** operators have an implied DISTINCT which is disallowed by 3963 ** restriction (4). 3964 ** 3965 ** Also, each component of the sub-query must return the same number 3966 ** of result columns. This is actually a requirement for any compound 3967 ** SELECT statement, but all the code here does is make sure that no 3968 ** such (illegal) sub-query is flattened. The caller will detect the 3969 ** syntax error and return a detailed message. 3970 ** 3971 ** (18) If the sub-query is a compound select, then all terms of the 3972 ** ORDER BY clause of the parent must be copies of a term returned 3973 ** by the parent query. 3974 ** 3975 ** (19) If the subquery uses LIMIT then the outer query may not 3976 ** have a WHERE clause. 3977 ** 3978 ** (20) If the sub-query is a compound select, then it must not use 3979 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3980 ** somewhat by saying that the terms of the ORDER BY clause must 3981 ** appear as unmodified result columns in the outer query. But we 3982 ** have other optimizations in mind to deal with that case. 3983 ** 3984 ** (21) If the subquery uses LIMIT then the outer query may not be 3985 ** DISTINCT. (See ticket [752e1646fc]). 3986 ** 3987 ** (22) The subquery may not be a recursive CTE. 3988 ** 3989 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 3990 ** a compound query. This restriction is because transforming the 3991 ** parent to a compound query confuses the code that handles 3992 ** recursive queries in multiSelect(). 3993 ** 3994 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 3995 ** The subquery may not be an aggregate that uses the built-in min() or 3996 ** or max() functions. (Without this restriction, a query like: 3997 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 3998 ** return the value X for which Y was maximal.) 3999 ** 4000 ** (25) If either the subquery or the parent query contains a window 4001 ** function in the select list or ORDER BY clause, flattening 4002 ** is not attempted. 4003 ** 4004 ** 4005 ** In this routine, the "p" parameter is a pointer to the outer query. 4006 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4007 ** uses aggregates. 4008 ** 4009 ** If flattening is not attempted, this routine is a no-op and returns 0. 4010 ** If flattening is attempted this routine returns 1. 4011 ** 4012 ** All of the expression analysis must occur on both the outer query and 4013 ** the subquery before this routine runs. 4014 */ 4015 static int flattenSubquery( 4016 Parse *pParse, /* Parsing context */ 4017 Select *p, /* The parent or outer SELECT statement */ 4018 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4019 int isAgg /* True if outer SELECT uses aggregate functions */ 4020 ){ 4021 const char *zSavedAuthContext = pParse->zAuthContext; 4022 Select *pParent; /* Current UNION ALL term of the other query */ 4023 Select *pSub; /* The inner query or "subquery" */ 4024 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4025 SrcList *pSrc; /* The FROM clause of the outer query */ 4026 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4027 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4028 int iNewParent = -1;/* Replacement table for iParent */ 4029 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4030 int i; /* Loop counter */ 4031 Expr *pWhere; /* The WHERE clause */ 4032 SrcItem *pSubitem; /* The subquery */ 4033 sqlite3 *db = pParse->db; 4034 Walker w; /* Walker to persist agginfo data */ 4035 int *aCsrMap = 0; 4036 4037 /* Check to see if flattening is permitted. Return 0 if not. 4038 */ 4039 assert( p!=0 ); 4040 assert( p->pPrior==0 ); 4041 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4042 pSrc = p->pSrc; 4043 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4044 pSubitem = &pSrc->a[iFrom]; 4045 iParent = pSubitem->iCursor; 4046 pSub = pSubitem->pSelect; 4047 assert( pSub!=0 ); 4048 4049 #ifndef SQLITE_OMIT_WINDOWFUNC 4050 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4051 #endif 4052 4053 pSubSrc = pSub->pSrc; 4054 assert( pSubSrc ); 4055 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4056 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4057 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4058 ** became arbitrary expressions, we were forced to add restrictions (13) 4059 ** and (14). */ 4060 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4061 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4062 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4063 return 0; /* Restriction (15) */ 4064 } 4065 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4066 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4067 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4068 return 0; /* Restrictions (8)(9) */ 4069 } 4070 if( p->pOrderBy && pSub->pOrderBy ){ 4071 return 0; /* Restriction (11) */ 4072 } 4073 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4074 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4075 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4076 return 0; /* Restriction (21) */ 4077 } 4078 if( pSub->selFlags & (SF_Recursive) ){ 4079 return 0; /* Restrictions (22) */ 4080 } 4081 4082 /* 4083 ** If the subquery is the right operand of a LEFT JOIN, then the 4084 ** subquery may not be a join itself (3a). Example of why this is not 4085 ** allowed: 4086 ** 4087 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4088 ** 4089 ** If we flatten the above, we would get 4090 ** 4091 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4092 ** 4093 ** which is not at all the same thing. 4094 ** 4095 ** If the subquery is the right operand of a LEFT JOIN, then the outer 4096 ** query cannot be an aggregate. (3c) This is an artifact of the way 4097 ** aggregates are processed - there is no mechanism to determine if 4098 ** the LEFT JOIN table should be all-NULL. 4099 ** 4100 ** See also tickets #306, #350, and #3300. 4101 */ 4102 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ 4103 isLeftJoin = 1; 4104 if( pSubSrc->nSrc>1 /* (3a) */ 4105 || isAgg /* (3b) */ 4106 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */ 4107 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4108 ){ 4109 return 0; 4110 } 4111 } 4112 #ifdef SQLITE_EXTRA_IFNULLROW 4113 else if( iFrom>0 && !isAgg ){ 4114 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for 4115 ** every reference to any result column from subquery in a join, even 4116 ** though they are not necessary. This will stress-test the OP_IfNullRow 4117 ** opcode. */ 4118 isLeftJoin = -1; 4119 } 4120 #endif 4121 4122 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4123 ** use only the UNION ALL operator. And none of the simple select queries 4124 ** that make up the compound SELECT are allowed to be aggregate or distinct 4125 ** queries. 4126 */ 4127 if( pSub->pPrior ){ 4128 if( pSub->pOrderBy ){ 4129 return 0; /* Restriction (20) */ 4130 } 4131 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){ 4132 return 0; /* (17d1), (17d2), or (17f) */ 4133 } 4134 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4135 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4136 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4137 assert( pSub->pSrc!=0 ); 4138 assert( (pSub->selFlags & SF_Recursive)==0 ); 4139 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4140 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4141 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4142 || pSub1->pSrc->nSrc<1 /* (17c) */ 4143 #ifndef SQLITE_OMIT_WINDOWFUNC 4144 || pSub1->pWin /* (17e) */ 4145 #endif 4146 ){ 4147 return 0; 4148 } 4149 testcase( pSub1->pSrc->nSrc>1 ); 4150 } 4151 4152 /* Restriction (18). */ 4153 if( p->pOrderBy ){ 4154 int ii; 4155 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4156 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4157 } 4158 } 4159 4160 /* Restriction (23) */ 4161 if( (p->selFlags & SF_Recursive) ) return 0; 4162 4163 if( pSrc->nSrc>1 ){ 4164 if( pParse->nSelect>500 ) return 0; 4165 aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int)); 4166 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4167 } 4168 } 4169 4170 /***** If we reach this point, flattening is permitted. *****/ 4171 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4172 pSub->selId, pSub, iFrom)); 4173 4174 /* Authorize the subquery */ 4175 pParse->zAuthContext = pSubitem->zName; 4176 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4177 testcase( i==SQLITE_DENY ); 4178 pParse->zAuthContext = zSavedAuthContext; 4179 4180 /* Delete the transient structures associated with thesubquery */ 4181 pSub1 = pSubitem->pSelect; 4182 sqlite3DbFree(db, pSubitem->zDatabase); 4183 sqlite3DbFree(db, pSubitem->zName); 4184 sqlite3DbFree(db, pSubitem->zAlias); 4185 pSubitem->zDatabase = 0; 4186 pSubitem->zName = 0; 4187 pSubitem->zAlias = 0; 4188 pSubitem->pSelect = 0; 4189 assert( pSubitem->pOn==0 ); 4190 4191 /* If the sub-query is a compound SELECT statement, then (by restrictions 4192 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4193 ** be of the form: 4194 ** 4195 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4196 ** 4197 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4198 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4199 ** OFFSET clauses and joins them to the left-hand-side of the original 4200 ** using UNION ALL operators. In this case N is the number of simple 4201 ** select statements in the compound sub-query. 4202 ** 4203 ** Example: 4204 ** 4205 ** SELECT a+1 FROM ( 4206 ** SELECT x FROM tab 4207 ** UNION ALL 4208 ** SELECT y FROM tab 4209 ** UNION ALL 4210 ** SELECT abs(z*2) FROM tab2 4211 ** ) WHERE a!=5 ORDER BY 1 4212 ** 4213 ** Transformed into: 4214 ** 4215 ** SELECT x+1 FROM tab WHERE x+1!=5 4216 ** UNION ALL 4217 ** SELECT y+1 FROM tab WHERE y+1!=5 4218 ** UNION ALL 4219 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4220 ** ORDER BY 1 4221 ** 4222 ** We call this the "compound-subquery flattening". 4223 */ 4224 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4225 Select *pNew; 4226 ExprList *pOrderBy = p->pOrderBy; 4227 Expr *pLimit = p->pLimit; 4228 Select *pPrior = p->pPrior; 4229 Table *pItemTab = pSubitem->pTab; 4230 pSubitem->pTab = 0; 4231 p->pOrderBy = 0; 4232 p->pPrior = 0; 4233 p->pLimit = 0; 4234 pNew = sqlite3SelectDup(db, p, 0); 4235 p->pLimit = pLimit; 4236 p->pOrderBy = pOrderBy; 4237 p->op = TK_ALL; 4238 pSubitem->pTab = pItemTab; 4239 if( pNew==0 ){ 4240 p->pPrior = pPrior; 4241 }else{ 4242 pNew->selId = ++pParse->nSelect; 4243 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4244 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4245 } 4246 pNew->pPrior = pPrior; 4247 if( pPrior ) pPrior->pNext = pNew; 4248 pNew->pNext = p; 4249 p->pPrior = pNew; 4250 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4251 " creates %u as peer\n",pNew->selId)); 4252 } 4253 assert( pSubitem->pSelect==0 ); 4254 } 4255 sqlite3DbFree(db, aCsrMap); 4256 if( db->mallocFailed ){ 4257 pSubitem->pSelect = pSub1; 4258 return 1; 4259 } 4260 4261 /* Defer deleting the Table object associated with the 4262 ** subquery until code generation is 4263 ** complete, since there may still exist Expr.pTab entries that 4264 ** refer to the subquery even after flattening. Ticket #3346. 4265 ** 4266 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4267 */ 4268 if( ALWAYS(pSubitem->pTab!=0) ){ 4269 Table *pTabToDel = pSubitem->pTab; 4270 if( pTabToDel->nTabRef==1 ){ 4271 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4272 sqlite3ParserAddCleanup(pToplevel, 4273 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4274 pTabToDel); 4275 testcase( pToplevel->earlyCleanup ); 4276 }else{ 4277 pTabToDel->nTabRef--; 4278 } 4279 pSubitem->pTab = 0; 4280 } 4281 4282 /* The following loop runs once for each term in a compound-subquery 4283 ** flattening (as described above). If we are doing a different kind 4284 ** of flattening - a flattening other than a compound-subquery flattening - 4285 ** then this loop only runs once. 4286 ** 4287 ** This loop moves all of the FROM elements of the subquery into the 4288 ** the FROM clause of the outer query. Before doing this, remember 4289 ** the cursor number for the original outer query FROM element in 4290 ** iParent. The iParent cursor will never be used. Subsequent code 4291 ** will scan expressions looking for iParent references and replace 4292 ** those references with expressions that resolve to the subquery FROM 4293 ** elements we are now copying in. 4294 */ 4295 pSub = pSub1; 4296 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4297 int nSubSrc; 4298 u8 jointype = 0; 4299 assert( pSub!=0 ); 4300 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4301 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4302 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4303 4304 if( pParent==p ){ 4305 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4306 } 4307 4308 /* The subquery uses a single slot of the FROM clause of the outer 4309 ** query. If the subquery has more than one element in its FROM clause, 4310 ** then expand the outer query to make space for it to hold all elements 4311 ** of the subquery. 4312 ** 4313 ** Example: 4314 ** 4315 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4316 ** 4317 ** The outer query has 3 slots in its FROM clause. One slot of the 4318 ** outer query (the middle slot) is used by the subquery. The next 4319 ** block of code will expand the outer query FROM clause to 4 slots. 4320 ** The middle slot is expanded to two slots in order to make space 4321 ** for the two elements in the FROM clause of the subquery. 4322 */ 4323 if( nSubSrc>1 ){ 4324 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4325 if( pSrc==0 ) break; 4326 pParent->pSrc = pSrc; 4327 } 4328 4329 /* Transfer the FROM clause terms from the subquery into the 4330 ** outer query. 4331 */ 4332 for(i=0; i<nSubSrc; i++){ 4333 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 4334 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); 4335 pSrc->a[i+iFrom] = pSubSrc->a[i]; 4336 iNewParent = pSubSrc->a[i].iCursor; 4337 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4338 } 4339 pSrc->a[iFrom].fg.jointype = jointype; 4340 4341 /* Now begin substituting subquery result set expressions for 4342 ** references to the iParent in the outer query. 4343 ** 4344 ** Example: 4345 ** 4346 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4347 ** \ \_____________ subquery __________/ / 4348 ** \_____________________ outer query ______________________________/ 4349 ** 4350 ** We look at every expression in the outer query and every place we see 4351 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4352 */ 4353 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4354 /* At this point, any non-zero iOrderByCol values indicate that the 4355 ** ORDER BY column expression is identical to the iOrderByCol'th 4356 ** expression returned by SELECT statement pSub. Since these values 4357 ** do not necessarily correspond to columns in SELECT statement pParent, 4358 ** zero them before transfering the ORDER BY clause. 4359 ** 4360 ** Not doing this may cause an error if a subsequent call to this 4361 ** function attempts to flatten a compound sub-query into pParent 4362 ** (the only way this can happen is if the compound sub-query is 4363 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4364 ExprList *pOrderBy = pSub->pOrderBy; 4365 for(i=0; i<pOrderBy->nExpr; i++){ 4366 pOrderBy->a[i].u.x.iOrderByCol = 0; 4367 } 4368 assert( pParent->pOrderBy==0 ); 4369 pParent->pOrderBy = pOrderBy; 4370 pSub->pOrderBy = 0; 4371 } 4372 pWhere = pSub->pWhere; 4373 pSub->pWhere = 0; 4374 if( isLeftJoin>0 ){ 4375 sqlite3SetJoinExpr(pWhere, iNewParent); 4376 } 4377 if( pWhere ){ 4378 if( pParent->pWhere ){ 4379 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4380 }else{ 4381 pParent->pWhere = pWhere; 4382 } 4383 } 4384 if( db->mallocFailed==0 ){ 4385 SubstContext x; 4386 x.pParse = pParse; 4387 x.iTable = iParent; 4388 x.iNewTable = iNewParent; 4389 x.isLeftJoin = isLeftJoin; 4390 x.pEList = pSub->pEList; 4391 substSelect(&x, pParent, 0); 4392 } 4393 4394 /* The flattened query is a compound if either the inner or the 4395 ** outer query is a compound. */ 4396 pParent->selFlags |= pSub->selFlags & SF_Compound; 4397 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4398 4399 /* 4400 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4401 ** 4402 ** One is tempted to try to add a and b to combine the limits. But this 4403 ** does not work if either limit is negative. 4404 */ 4405 if( pSub->pLimit ){ 4406 pParent->pLimit = pSub->pLimit; 4407 pSub->pLimit = 0; 4408 } 4409 4410 /* Recompute the SrcList_item.colUsed masks for the flattened 4411 ** tables. */ 4412 for(i=0; i<nSubSrc; i++){ 4413 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4414 } 4415 } 4416 4417 /* Finially, delete what is left of the subquery and return 4418 ** success. 4419 */ 4420 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4421 sqlite3WalkSelect(&w,pSub1); 4422 sqlite3SelectDelete(db, pSub1); 4423 4424 #if SELECTTRACE_ENABLED 4425 if( sqlite3SelectTrace & 0x100 ){ 4426 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4427 sqlite3TreeViewSelect(0, p, 0); 4428 } 4429 #endif 4430 4431 return 1; 4432 } 4433 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4434 4435 /* 4436 ** A structure to keep track of all of the column values that are fixed to 4437 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4438 */ 4439 typedef struct WhereConst WhereConst; 4440 struct WhereConst { 4441 Parse *pParse; /* Parsing context */ 4442 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4443 int nConst; /* Number for COLUMN=CONSTANT terms */ 4444 int nChng; /* Number of times a constant is propagated */ 4445 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4446 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4447 }; 4448 4449 /* 4450 ** Add a new entry to the pConst object. Except, do not add duplicate 4451 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4452 ** 4453 ** The caller guarantees the pColumn is a column and pValue is a constant. 4454 ** This routine has to do some additional checks before completing the 4455 ** insert. 4456 */ 4457 static void constInsert( 4458 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4459 Expr *pColumn, /* The COLUMN part of the constraint */ 4460 Expr *pValue, /* The VALUE part of the constraint */ 4461 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4462 ){ 4463 int i; 4464 assert( pColumn->op==TK_COLUMN ); 4465 assert( sqlite3ExprIsConstant(pValue) ); 4466 4467 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4468 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4469 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4470 return; 4471 } 4472 4473 /* 2018-10-25 ticket [cf5ed20f] 4474 ** Make sure the same pColumn is not inserted more than once */ 4475 for(i=0; i<pConst->nConst; i++){ 4476 const Expr *pE2 = pConst->apExpr[i*2]; 4477 assert( pE2->op==TK_COLUMN ); 4478 if( pE2->iTable==pColumn->iTable 4479 && pE2->iColumn==pColumn->iColumn 4480 ){ 4481 return; /* Already present. Return without doing anything. */ 4482 } 4483 } 4484 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4485 pConst->bHasAffBlob = 1; 4486 } 4487 4488 pConst->nConst++; 4489 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4490 pConst->nConst*2*sizeof(Expr*)); 4491 if( pConst->apExpr==0 ){ 4492 pConst->nConst = 0; 4493 }else{ 4494 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4495 pConst->apExpr[pConst->nConst*2-1] = pValue; 4496 } 4497 } 4498 4499 /* 4500 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4501 ** is a constant expression and where the term must be true because it 4502 ** is part of the AND-connected terms of the expression. For each term 4503 ** found, add it to the pConst structure. 4504 */ 4505 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4506 Expr *pRight, *pLeft; 4507 if( NEVER(pExpr==0) ) return; 4508 if( ExprHasProperty(pExpr, EP_FromJoin) ) return; 4509 if( pExpr->op==TK_AND ){ 4510 findConstInWhere(pConst, pExpr->pRight); 4511 findConstInWhere(pConst, pExpr->pLeft); 4512 return; 4513 } 4514 if( pExpr->op!=TK_EQ ) return; 4515 pRight = pExpr->pRight; 4516 pLeft = pExpr->pLeft; 4517 assert( pRight!=0 ); 4518 assert( pLeft!=0 ); 4519 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4520 constInsert(pConst,pRight,pLeft,pExpr); 4521 } 4522 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4523 constInsert(pConst,pLeft,pRight,pExpr); 4524 } 4525 } 4526 4527 /* 4528 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4529 ** 4530 ** Argument pExpr is a candidate expression to be replaced by a value. If 4531 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4532 ** then overwrite it with the corresponding value. Except, do not do so 4533 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4534 ** is SQLITE_AFF_BLOB. 4535 */ 4536 static int propagateConstantExprRewriteOne( 4537 WhereConst *pConst, 4538 Expr *pExpr, 4539 int bIgnoreAffBlob 4540 ){ 4541 int i; 4542 if( pConst->pOomFault[0] ) return WRC_Prune; 4543 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4544 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){ 4545 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4546 testcase( ExprHasProperty(pExpr, EP_FromJoin) ); 4547 return WRC_Continue; 4548 } 4549 for(i=0; i<pConst->nConst; i++){ 4550 Expr *pColumn = pConst->apExpr[i*2]; 4551 if( pColumn==pExpr ) continue; 4552 if( pColumn->iTable!=pExpr->iTable ) continue; 4553 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4554 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4555 break; 4556 } 4557 /* A match is found. Add the EP_FixedCol property */ 4558 pConst->nChng++; 4559 ExprClearProperty(pExpr, EP_Leaf); 4560 ExprSetProperty(pExpr, EP_FixedCol); 4561 assert( pExpr->pLeft==0 ); 4562 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4563 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4564 break; 4565 } 4566 return WRC_Prune; 4567 } 4568 4569 /* 4570 ** This is a Walker expression callback. pExpr is a node from the WHERE 4571 ** clause of a SELECT statement. This function examines pExpr to see if 4572 ** any substitutions based on the contents of pWalker->u.pConst should 4573 ** be made to pExpr or its immediate children. 4574 ** 4575 ** A substitution is made if: 4576 ** 4577 ** + pExpr is a column with an affinity other than BLOB that matches 4578 ** one of the columns in pWalker->u.pConst, or 4579 ** 4580 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4581 ** uses an affinity other than TEXT and one of its immediate 4582 ** children is a column that matches one of the columns in 4583 ** pWalker->u.pConst. 4584 */ 4585 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4586 WhereConst *pConst = pWalker->u.pConst; 4587 assert( TK_GT==TK_EQ+1 ); 4588 assert( TK_LE==TK_EQ+2 ); 4589 assert( TK_LT==TK_EQ+3 ); 4590 assert( TK_GE==TK_EQ+4 ); 4591 if( pConst->bHasAffBlob ){ 4592 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4593 || pExpr->op==TK_IS 4594 ){ 4595 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4596 if( pConst->pOomFault[0] ) return WRC_Prune; 4597 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4598 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4599 } 4600 } 4601 } 4602 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4603 } 4604 4605 /* 4606 ** The WHERE-clause constant propagation optimization. 4607 ** 4608 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4609 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4610 ** part of a ON clause from a LEFT JOIN, then throughout the query 4611 ** replace all other occurrences of COLUMN with CONSTANT. 4612 ** 4613 ** For example, the query: 4614 ** 4615 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4616 ** 4617 ** Is transformed into 4618 ** 4619 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4620 ** 4621 ** Return true if any transformations where made and false if not. 4622 ** 4623 ** Implementation note: Constant propagation is tricky due to affinity 4624 ** and collating sequence interactions. Consider this example: 4625 ** 4626 ** CREATE TABLE t1(a INT,b TEXT); 4627 ** INSERT INTO t1 VALUES(123,'0123'); 4628 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4629 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4630 ** 4631 ** The two SELECT statements above should return different answers. b=a 4632 ** is alway true because the comparison uses numeric affinity, but b=123 4633 ** is false because it uses text affinity and '0123' is not the same as '123'. 4634 ** To work around this, the expression tree is not actually changed from 4635 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4636 ** and the "123" value is hung off of the pLeft pointer. Code generator 4637 ** routines know to generate the constant "123" instead of looking up the 4638 ** column value. Also, to avoid collation problems, this optimization is 4639 ** only attempted if the "a=123" term uses the default BINARY collation. 4640 ** 4641 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4642 ** 4643 ** CREATE TABLE t1(x); 4644 ** INSERT INTO t1 VALUES(10.0); 4645 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4646 ** 4647 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4648 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4649 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4650 ** resulting in a false positive. To avoid this, constant propagation for 4651 ** columns with BLOB affinity is only allowed if the constant is used with 4652 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4653 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4654 ** for details. 4655 */ 4656 static int propagateConstants( 4657 Parse *pParse, /* The parsing context */ 4658 Select *p /* The query in which to propagate constants */ 4659 ){ 4660 WhereConst x; 4661 Walker w; 4662 int nChng = 0; 4663 x.pParse = pParse; 4664 x.pOomFault = &pParse->db->mallocFailed; 4665 do{ 4666 x.nConst = 0; 4667 x.nChng = 0; 4668 x.apExpr = 0; 4669 x.bHasAffBlob = 0; 4670 findConstInWhere(&x, p->pWhere); 4671 if( x.nConst ){ 4672 memset(&w, 0, sizeof(w)); 4673 w.pParse = pParse; 4674 w.xExprCallback = propagateConstantExprRewrite; 4675 w.xSelectCallback = sqlite3SelectWalkNoop; 4676 w.xSelectCallback2 = 0; 4677 w.walkerDepth = 0; 4678 w.u.pConst = &x; 4679 sqlite3WalkExpr(&w, p->pWhere); 4680 sqlite3DbFree(x.pParse->db, x.apExpr); 4681 nChng += x.nChng; 4682 } 4683 }while( x.nChng ); 4684 return nChng; 4685 } 4686 4687 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4688 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4689 /* 4690 ** This function is called to determine whether or not it is safe to 4691 ** push WHERE clause expression pExpr down to FROM clause sub-query 4692 ** pSubq, which contains at least one window function. Return 1 4693 ** if it is safe and the expression should be pushed down, or 0 4694 ** otherwise. 4695 ** 4696 ** It is only safe to push the expression down if it consists only 4697 ** of constants and copies of expressions that appear in the PARTITION 4698 ** BY clause of all window function used by the sub-query. It is safe 4699 ** to filter out entire partitions, but not rows within partitions, as 4700 ** this may change the results of the window functions. 4701 ** 4702 ** At the time this function is called it is guaranteed that 4703 ** 4704 ** * the sub-query uses only one distinct window frame, and 4705 ** * that the window frame has a PARTITION BY clase. 4706 */ 4707 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4708 assert( pSubq->pWin->pPartition ); 4709 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4710 assert( pSubq->pPrior==0 ); 4711 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4712 } 4713 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4714 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4715 4716 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4717 /* 4718 ** Make copies of relevant WHERE clause terms of the outer query into 4719 ** the WHERE clause of subquery. Example: 4720 ** 4721 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4722 ** 4723 ** Transformed into: 4724 ** 4725 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4726 ** WHERE x=5 AND y=10; 4727 ** 4728 ** The hope is that the terms added to the inner query will make it more 4729 ** efficient. 4730 ** 4731 ** Do not attempt this optimization if: 4732 ** 4733 ** (1) (** This restriction was removed on 2017-09-29. We used to 4734 ** disallow this optimization for aggregate subqueries, but now 4735 ** it is allowed by putting the extra terms on the HAVING clause. 4736 ** The added HAVING clause is pointless if the subquery lacks 4737 ** a GROUP BY clause. But such a HAVING clause is also harmless 4738 ** so there does not appear to be any reason to add extra logic 4739 ** to suppress it. **) 4740 ** 4741 ** (2) The inner query is the recursive part of a common table expression. 4742 ** 4743 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4744 ** clause would change the meaning of the LIMIT). 4745 ** 4746 ** (4) The inner query is the right operand of a LEFT JOIN and the 4747 ** expression to be pushed down does not come from the ON clause 4748 ** on that LEFT JOIN. 4749 ** 4750 ** (5) The WHERE clause expression originates in the ON or USING clause 4751 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4752 ** left join. An example: 4753 ** 4754 ** SELECT * 4755 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4756 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4757 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4758 ** 4759 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4760 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4761 ** then the (1,1,NULL) row would be suppressed. 4762 ** 4763 ** (6) Window functions make things tricky as changes to the WHERE clause 4764 ** of the inner query could change the window over which window 4765 ** functions are calculated. Therefore, do not attempt the optimization 4766 ** if: 4767 ** 4768 ** (6a) The inner query uses multiple incompatible window partitions. 4769 ** 4770 ** (6b) The inner query is a compound and uses window-functions. 4771 ** 4772 ** (6c) The WHERE clause does not consist entirely of constants and 4773 ** copies of expressions found in the PARTITION BY clause of 4774 ** all window-functions used by the sub-query. It is safe to 4775 ** filter out entire partitions, as this does not change the 4776 ** window over which any window-function is calculated. 4777 ** 4778 ** (7) The inner query is a Common Table Expression (CTE) that should 4779 ** be materialized. (This restriction is implemented in the calling 4780 ** routine.) 4781 ** 4782 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4783 ** terms are duplicated into the subquery. 4784 */ 4785 static int pushDownWhereTerms( 4786 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4787 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4788 Expr *pWhere, /* The WHERE clause of the outer query */ 4789 int iCursor, /* Cursor number of the subquery */ 4790 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */ 4791 ){ 4792 Expr *pNew; 4793 int nChng = 0; 4794 if( pWhere==0 ) return 0; 4795 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 4796 4797 #ifndef SQLITE_OMIT_WINDOWFUNC 4798 if( pSubq->pPrior ){ 4799 Select *pSel; 4800 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 4801 if( pSel->pWin ) return 0; /* restriction (6b) */ 4802 } 4803 }else{ 4804 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 4805 } 4806 #endif 4807 4808 #ifdef SQLITE_DEBUG 4809 /* Only the first term of a compound can have a WITH clause. But make 4810 ** sure no other terms are marked SF_Recursive in case something changes 4811 ** in the future. 4812 */ 4813 { 4814 Select *pX; 4815 for(pX=pSubq; pX; pX=pX->pPrior){ 4816 assert( (pX->selFlags & (SF_Recursive))==0 ); 4817 } 4818 } 4819 #endif 4820 4821 if( pSubq->pLimit!=0 ){ 4822 return 0; /* restriction (3) */ 4823 } 4824 while( pWhere->op==TK_AND ){ 4825 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, 4826 iCursor, isLeftJoin); 4827 pWhere = pWhere->pLeft; 4828 } 4829 if( isLeftJoin 4830 && (ExprHasProperty(pWhere,EP_FromJoin)==0 4831 || pWhere->iRightJoinTable!=iCursor) 4832 ){ 4833 return 0; /* restriction (4) */ 4834 } 4835 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){ 4836 return 0; /* restriction (5) */ 4837 } 4838 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ 4839 nChng++; 4840 pSubq->selFlags |= SF_PushDown; 4841 while( pSubq ){ 4842 SubstContext x; 4843 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 4844 unsetJoinExpr(pNew, -1); 4845 x.pParse = pParse; 4846 x.iTable = iCursor; 4847 x.iNewTable = iCursor; 4848 x.isLeftJoin = 0; 4849 x.pEList = pSubq->pEList; 4850 pNew = substExpr(&x, pNew); 4851 #ifndef SQLITE_OMIT_WINDOWFUNC 4852 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 4853 /* Restriction 6c has prevented push-down in this case */ 4854 sqlite3ExprDelete(pParse->db, pNew); 4855 nChng--; 4856 break; 4857 } 4858 #endif 4859 if( pSubq->selFlags & SF_Aggregate ){ 4860 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 4861 }else{ 4862 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 4863 } 4864 pSubq = pSubq->pPrior; 4865 } 4866 } 4867 return nChng; 4868 } 4869 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4870 4871 /* 4872 ** The pFunc is the only aggregate function in the query. Check to see 4873 ** if the query is a candidate for the min/max optimization. 4874 ** 4875 ** If the query is a candidate for the min/max optimization, then set 4876 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 4877 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 4878 ** whether pFunc is a min() or max() function. 4879 ** 4880 ** If the query is not a candidate for the min/max optimization, return 4881 ** WHERE_ORDERBY_NORMAL (which must be zero). 4882 ** 4883 ** This routine must be called after aggregate functions have been 4884 ** located but before their arguments have been subjected to aggregate 4885 ** analysis. 4886 */ 4887 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 4888 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 4889 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */ 4890 const char *zFunc; /* Name of aggregate function pFunc */ 4891 ExprList *pOrderBy; 4892 u8 sortFlags = 0; 4893 4894 assert( *ppMinMax==0 ); 4895 assert( pFunc->op==TK_AGG_FUNCTION ); 4896 assert( !IsWindowFunc(pFunc) ); 4897 if( pEList==0 4898 || pEList->nExpr!=1 4899 || ExprHasProperty(pFunc, EP_WinFunc) 4900 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 4901 ){ 4902 return eRet; 4903 } 4904 zFunc = pFunc->u.zToken; 4905 if( sqlite3StrICmp(zFunc, "min")==0 ){ 4906 eRet = WHERE_ORDERBY_MIN; 4907 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 4908 sortFlags = KEYINFO_ORDER_BIGNULL; 4909 } 4910 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 4911 eRet = WHERE_ORDERBY_MAX; 4912 sortFlags = KEYINFO_ORDER_DESC; 4913 }else{ 4914 return eRet; 4915 } 4916 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 4917 assert( pOrderBy!=0 || db->mallocFailed ); 4918 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags; 4919 return eRet; 4920 } 4921 4922 /* 4923 ** The select statement passed as the first argument is an aggregate query. 4924 ** The second argument is the associated aggregate-info object. This 4925 ** function tests if the SELECT is of the form: 4926 ** 4927 ** SELECT count(*) FROM <tbl> 4928 ** 4929 ** where table is a database table, not a sub-select or view. If the query 4930 ** does match this pattern, then a pointer to the Table object representing 4931 ** <tbl> is returned. Otherwise, 0 is returned. 4932 */ 4933 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 4934 Table *pTab; 4935 Expr *pExpr; 4936 4937 assert( !p->pGroupBy ); 4938 4939 if( p->pWhere || p->pEList->nExpr!=1 4940 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 4941 ){ 4942 return 0; 4943 } 4944 pTab = p->pSrc->a[0].pTab; 4945 pExpr = p->pEList->a[0].pExpr; 4946 assert( pTab && !IsView(pTab) && pExpr ); 4947 4948 if( IsVirtual(pTab) ) return 0; 4949 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 4950 if( NEVER(pAggInfo->nFunc==0) ) return 0; 4951 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 4952 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 4953 4954 return pTab; 4955 } 4956 4957 /* 4958 ** If the source-list item passed as an argument was augmented with an 4959 ** INDEXED BY clause, then try to locate the specified index. If there 4960 ** was such a clause and the named index cannot be found, return 4961 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 4962 ** pFrom->pIndex and return SQLITE_OK. 4963 */ 4964 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 4965 Table *pTab = pFrom->pTab; 4966 char *zIndexedBy = pFrom->u1.zIndexedBy; 4967 Index *pIdx; 4968 assert( pTab!=0 ); 4969 assert( pFrom->fg.isIndexedBy!=0 ); 4970 4971 for(pIdx=pTab->pIndex; 4972 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 4973 pIdx=pIdx->pNext 4974 ); 4975 if( !pIdx ){ 4976 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 4977 pParse->checkSchema = 1; 4978 return SQLITE_ERROR; 4979 } 4980 pFrom->u2.pIBIndex = pIdx; 4981 return SQLITE_OK; 4982 } 4983 4984 /* 4985 ** Detect compound SELECT statements that use an ORDER BY clause with 4986 ** an alternative collating sequence. 4987 ** 4988 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 4989 ** 4990 ** These are rewritten as a subquery: 4991 ** 4992 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 4993 ** ORDER BY ... COLLATE ... 4994 ** 4995 ** This transformation is necessary because the multiSelectOrderBy() routine 4996 ** above that generates the code for a compound SELECT with an ORDER BY clause 4997 ** uses a merge algorithm that requires the same collating sequence on the 4998 ** result columns as on the ORDER BY clause. See ticket 4999 ** http://www.sqlite.org/src/info/6709574d2a 5000 ** 5001 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5002 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5003 ** there are COLLATE terms in the ORDER BY. 5004 */ 5005 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5006 int i; 5007 Select *pNew; 5008 Select *pX; 5009 sqlite3 *db; 5010 struct ExprList_item *a; 5011 SrcList *pNewSrc; 5012 Parse *pParse; 5013 Token dummy; 5014 5015 if( p->pPrior==0 ) return WRC_Continue; 5016 if( p->pOrderBy==0 ) return WRC_Continue; 5017 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5018 if( pX==0 ) return WRC_Continue; 5019 a = p->pOrderBy->a; 5020 #ifndef SQLITE_OMIT_WINDOWFUNC 5021 /* If iOrderByCol is already non-zero, then it has already been matched 5022 ** to a result column of the SELECT statement. This occurs when the 5023 ** SELECT is rewritten for window-functions processing and then passed 5024 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5025 ** by this function is not required in this case. */ 5026 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5027 #endif 5028 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5029 if( a[i].pExpr->flags & EP_Collate ) break; 5030 } 5031 if( i<0 ) return WRC_Continue; 5032 5033 /* If we reach this point, that means the transformation is required. */ 5034 5035 pParse = pWalker->pParse; 5036 db = pParse->db; 5037 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5038 if( pNew==0 ) return WRC_Abort; 5039 memset(&dummy, 0, sizeof(dummy)); 5040 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 5041 if( pNewSrc==0 ) return WRC_Abort; 5042 *pNew = *p; 5043 p->pSrc = pNewSrc; 5044 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5045 p->op = TK_SELECT; 5046 p->pWhere = 0; 5047 pNew->pGroupBy = 0; 5048 pNew->pHaving = 0; 5049 pNew->pOrderBy = 0; 5050 p->pPrior = 0; 5051 p->pNext = 0; 5052 p->pWith = 0; 5053 #ifndef SQLITE_OMIT_WINDOWFUNC 5054 p->pWinDefn = 0; 5055 #endif 5056 p->selFlags &= ~SF_Compound; 5057 assert( (p->selFlags & SF_Converted)==0 ); 5058 p->selFlags |= SF_Converted; 5059 assert( pNew->pPrior!=0 ); 5060 pNew->pPrior->pNext = pNew; 5061 pNew->pLimit = 0; 5062 return WRC_Continue; 5063 } 5064 5065 /* 5066 ** Check to see if the FROM clause term pFrom has table-valued function 5067 ** arguments. If it does, leave an error message in pParse and return 5068 ** non-zero, since pFrom is not allowed to be a table-valued function. 5069 */ 5070 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5071 if( pFrom->fg.isTabFunc ){ 5072 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5073 return 1; 5074 } 5075 return 0; 5076 } 5077 5078 #ifndef SQLITE_OMIT_CTE 5079 /* 5080 ** Argument pWith (which may be NULL) points to a linked list of nested 5081 ** WITH contexts, from inner to outermost. If the table identified by 5082 ** FROM clause element pItem is really a common-table-expression (CTE) 5083 ** then return a pointer to the CTE definition for that table. Otherwise 5084 ** return NULL. 5085 ** 5086 ** If a non-NULL value is returned, set *ppContext to point to the With 5087 ** object that the returned CTE belongs to. 5088 */ 5089 static struct Cte *searchWith( 5090 With *pWith, /* Current innermost WITH clause */ 5091 SrcItem *pItem, /* FROM clause element to resolve */ 5092 With **ppContext /* OUT: WITH clause return value belongs to */ 5093 ){ 5094 const char *zName = pItem->zName; 5095 With *p; 5096 assert( pItem->zDatabase==0 ); 5097 assert( zName!=0 ); 5098 for(p=pWith; p; p=p->pOuter){ 5099 int i; 5100 for(i=0; i<p->nCte; i++){ 5101 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5102 *ppContext = p; 5103 return &p->a[i]; 5104 } 5105 } 5106 if( p->bView ) break; 5107 } 5108 return 0; 5109 } 5110 5111 /* The code generator maintains a stack of active WITH clauses 5112 ** with the inner-most WITH clause being at the top of the stack. 5113 ** 5114 ** This routine pushes the WITH clause passed as the second argument 5115 ** onto the top of the stack. If argument bFree is true, then this 5116 ** WITH clause will never be popped from the stack but should instead 5117 ** be freed along with the Parse object. In other cases, when 5118 ** bFree==0, the With object will be freed along with the SELECT 5119 ** statement with which it is associated. 5120 ** 5121 ** This routine returns a copy of pWith. Or, if bFree is true and 5122 ** the pWith object is destroyed immediately due to an OOM condition, 5123 ** then this routine return NULL. 5124 ** 5125 ** If bFree is true, do not continue to use the pWith pointer after 5126 ** calling this routine, Instead, use only the return value. 5127 */ 5128 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5129 if( pWith ){ 5130 if( bFree ){ 5131 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5132 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5133 pWith); 5134 if( pWith==0 ) return 0; 5135 } 5136 if( pParse->nErr==0 ){ 5137 assert( pParse->pWith!=pWith ); 5138 pWith->pOuter = pParse->pWith; 5139 pParse->pWith = pWith; 5140 } 5141 } 5142 return pWith; 5143 } 5144 5145 /* 5146 ** This function checks if argument pFrom refers to a CTE declared by 5147 ** a WITH clause on the stack currently maintained by the parser (on the 5148 ** pParse->pWith linked list). And if currently processing a CTE 5149 ** CTE expression, through routine checks to see if the reference is 5150 ** a recursive reference to the CTE. 5151 ** 5152 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5153 ** and other fields are populated accordingly. 5154 ** 5155 ** Return 0 if no match is found. 5156 ** Return 1 if a match is found. 5157 ** Return 2 if an error condition is detected. 5158 */ 5159 static int resolveFromTermToCte( 5160 Parse *pParse, /* The parsing context */ 5161 Walker *pWalker, /* Current tree walker */ 5162 SrcItem *pFrom /* The FROM clause term to check */ 5163 ){ 5164 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5165 With *pWith; /* The matching WITH */ 5166 5167 assert( pFrom->pTab==0 ); 5168 if( pParse->pWith==0 ){ 5169 /* There are no WITH clauses in the stack. No match is possible */ 5170 return 0; 5171 } 5172 if( pParse->nErr ){ 5173 /* Prior errors might have left pParse->pWith in a goofy state, so 5174 ** go no further. */ 5175 return 0; 5176 } 5177 if( pFrom->zDatabase!=0 ){ 5178 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5179 ** it cannot possibly be a CTE reference. */ 5180 return 0; 5181 } 5182 if( pFrom->fg.notCte ){ 5183 /* The FROM term is specifically excluded from matching a CTE. 5184 ** (1) It is part of a trigger that used to have zDatabase but had 5185 ** zDatabase removed by sqlite3FixTriggerStep(). 5186 ** (2) This is the first term in the FROM clause of an UPDATE. 5187 */ 5188 return 0; 5189 } 5190 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5191 if( pCte ){ 5192 sqlite3 *db = pParse->db; 5193 Table *pTab; 5194 ExprList *pEList; 5195 Select *pSel; 5196 Select *pLeft; /* Left-most SELECT statement */ 5197 Select *pRecTerm; /* Left-most recursive term */ 5198 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5199 With *pSavedWith; /* Initial value of pParse->pWith */ 5200 int iRecTab = -1; /* Cursor for recursive table */ 5201 CteUse *pCteUse; 5202 5203 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5204 ** recursive reference to CTE pCte. Leave an error in pParse and return 5205 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5206 ** In this case, proceed. */ 5207 if( pCte->zCteErr ){ 5208 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5209 return 2; 5210 } 5211 if( cannotBeFunction(pParse, pFrom) ) return 2; 5212 5213 assert( pFrom->pTab==0 ); 5214 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5215 if( pTab==0 ) return 2; 5216 pCteUse = pCte->pUse; 5217 if( pCteUse==0 ){ 5218 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5219 if( pCteUse==0 5220 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5221 ){ 5222 sqlite3DbFree(db, pTab); 5223 return 2; 5224 } 5225 pCteUse->eM10d = pCte->eM10d; 5226 } 5227 pFrom->pTab = pTab; 5228 pTab->nTabRef = 1; 5229 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5230 pTab->iPKey = -1; 5231 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5232 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5233 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5234 if( db->mallocFailed ) return 2; 5235 pFrom->pSelect->selFlags |= SF_CopyCte; 5236 assert( pFrom->pSelect ); 5237 pFrom->fg.isCte = 1; 5238 pFrom->u2.pCteUse = pCteUse; 5239 pCteUse->nUse++; 5240 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5241 pCteUse->eM10d = M10d_Yes; 5242 } 5243 5244 /* Check if this is a recursive CTE. */ 5245 pRecTerm = pSel = pFrom->pSelect; 5246 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5247 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5248 int i; 5249 SrcList *pSrc = pRecTerm->pSrc; 5250 assert( pRecTerm->pPrior!=0 ); 5251 for(i=0; i<pSrc->nSrc; i++){ 5252 SrcItem *pItem = &pSrc->a[i]; 5253 if( pItem->zDatabase==0 5254 && pItem->zName!=0 5255 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5256 ){ 5257 pItem->pTab = pTab; 5258 pTab->nTabRef++; 5259 pItem->fg.isRecursive = 1; 5260 if( pRecTerm->selFlags & SF_Recursive ){ 5261 sqlite3ErrorMsg(pParse, 5262 "multiple references to recursive table: %s", pCte->zName 5263 ); 5264 return 2; 5265 } 5266 pRecTerm->selFlags |= SF_Recursive; 5267 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5268 pItem->iCursor = iRecTab; 5269 } 5270 } 5271 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5272 pRecTerm = pRecTerm->pPrior; 5273 } 5274 5275 pCte->zCteErr = "circular reference: %s"; 5276 pSavedWith = pParse->pWith; 5277 pParse->pWith = pWith; 5278 if( pSel->selFlags & SF_Recursive ){ 5279 int rc; 5280 assert( pRecTerm!=0 ); 5281 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5282 assert( pRecTerm->pNext!=0 ); 5283 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5284 assert( pRecTerm->pWith==0 ); 5285 pRecTerm->pWith = pSel->pWith; 5286 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5287 pRecTerm->pWith = 0; 5288 if( rc ){ 5289 pParse->pWith = pSavedWith; 5290 return 2; 5291 } 5292 }else{ 5293 if( sqlite3WalkSelect(pWalker, pSel) ){ 5294 pParse->pWith = pSavedWith; 5295 return 2; 5296 } 5297 } 5298 pParse->pWith = pWith; 5299 5300 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5301 pEList = pLeft->pEList; 5302 if( pCte->pCols ){ 5303 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5304 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5305 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5306 ); 5307 pParse->pWith = pSavedWith; 5308 return 2; 5309 } 5310 pEList = pCte->pCols; 5311 } 5312 5313 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5314 if( bMayRecursive ){ 5315 if( pSel->selFlags & SF_Recursive ){ 5316 pCte->zCteErr = "multiple recursive references: %s"; 5317 }else{ 5318 pCte->zCteErr = "recursive reference in a subquery: %s"; 5319 } 5320 sqlite3WalkSelect(pWalker, pSel); 5321 } 5322 pCte->zCteErr = 0; 5323 pParse->pWith = pSavedWith; 5324 return 1; /* Success */ 5325 } 5326 return 0; /* No match */ 5327 } 5328 #endif 5329 5330 #ifndef SQLITE_OMIT_CTE 5331 /* 5332 ** If the SELECT passed as the second argument has an associated WITH 5333 ** clause, pop it from the stack stored as part of the Parse object. 5334 ** 5335 ** This function is used as the xSelectCallback2() callback by 5336 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5337 ** names and other FROM clause elements. 5338 */ 5339 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5340 Parse *pParse = pWalker->pParse; 5341 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5342 With *pWith = findRightmost(p)->pWith; 5343 if( pWith!=0 ){ 5344 assert( pParse->pWith==pWith || pParse->nErr ); 5345 pParse->pWith = pWith->pOuter; 5346 } 5347 } 5348 } 5349 #endif 5350 5351 /* 5352 ** The SrcList_item structure passed as the second argument represents a 5353 ** sub-query in the FROM clause of a SELECT statement. This function 5354 ** allocates and populates the SrcList_item.pTab object. If successful, 5355 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5356 ** SQLITE_NOMEM. 5357 */ 5358 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5359 Select *pSel = pFrom->pSelect; 5360 Table *pTab; 5361 5362 assert( pSel ); 5363 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5364 if( pTab==0 ) return SQLITE_NOMEM; 5365 pTab->nTabRef = 1; 5366 if( pFrom->zAlias ){ 5367 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5368 }else{ 5369 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId); 5370 } 5371 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5372 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5373 pTab->iPKey = -1; 5374 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5375 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5376 /* The usual case - do not allow ROWID on a subquery */ 5377 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5378 #else 5379 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5380 #endif 5381 5382 5383 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5384 } 5385 5386 /* 5387 ** This routine is a Walker callback for "expanding" a SELECT statement. 5388 ** "Expanding" means to do the following: 5389 ** 5390 ** (1) Make sure VDBE cursor numbers have been assigned to every 5391 ** element of the FROM clause. 5392 ** 5393 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5394 ** defines FROM clause. When views appear in the FROM clause, 5395 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5396 ** that implements the view. A copy is made of the view's SELECT 5397 ** statement so that we can freely modify or delete that statement 5398 ** without worrying about messing up the persistent representation 5399 ** of the view. 5400 ** 5401 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5402 ** on joins and the ON and USING clause of joins. 5403 ** 5404 ** (4) Scan the list of columns in the result set (pEList) looking 5405 ** for instances of the "*" operator or the TABLE.* operator. 5406 ** If found, expand each "*" to be every column in every table 5407 ** and TABLE.* to be every column in TABLE. 5408 ** 5409 */ 5410 static int selectExpander(Walker *pWalker, Select *p){ 5411 Parse *pParse = pWalker->pParse; 5412 int i, j, k, rc; 5413 SrcList *pTabList; 5414 ExprList *pEList; 5415 SrcItem *pFrom; 5416 sqlite3 *db = pParse->db; 5417 Expr *pE, *pRight, *pExpr; 5418 u16 selFlags = p->selFlags; 5419 u32 elistFlags = 0; 5420 5421 p->selFlags |= SF_Expanded; 5422 if( db->mallocFailed ){ 5423 return WRC_Abort; 5424 } 5425 assert( p->pSrc!=0 ); 5426 if( (selFlags & SF_Expanded)!=0 ){ 5427 return WRC_Prune; 5428 } 5429 if( pWalker->eCode ){ 5430 /* Renumber selId because it has been copied from a view */ 5431 p->selId = ++pParse->nSelect; 5432 } 5433 pTabList = p->pSrc; 5434 pEList = p->pEList; 5435 if( pParse->pWith && (p->selFlags & SF_View) ){ 5436 if( p->pWith==0 ){ 5437 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5438 if( p->pWith==0 ){ 5439 return WRC_Abort; 5440 } 5441 } 5442 p->pWith->bView = 1; 5443 } 5444 sqlite3WithPush(pParse, p->pWith, 0); 5445 5446 /* Make sure cursor numbers have been assigned to all entries in 5447 ** the FROM clause of the SELECT statement. 5448 */ 5449 sqlite3SrcListAssignCursors(pParse, pTabList); 5450 5451 /* Look up every table named in the FROM clause of the select. If 5452 ** an entry of the FROM clause is a subquery instead of a table or view, 5453 ** then create a transient table structure to describe the subquery. 5454 */ 5455 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5456 Table *pTab; 5457 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5458 if( pFrom->pTab ) continue; 5459 assert( pFrom->fg.isRecursive==0 ); 5460 if( pFrom->zName==0 ){ 5461 #ifndef SQLITE_OMIT_SUBQUERY 5462 Select *pSel = pFrom->pSelect; 5463 /* A sub-query in the FROM clause of a SELECT */ 5464 assert( pSel!=0 ); 5465 assert( pFrom->pTab==0 ); 5466 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5467 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5468 #endif 5469 #ifndef SQLITE_OMIT_CTE 5470 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5471 if( rc>1 ) return WRC_Abort; 5472 pTab = pFrom->pTab; 5473 assert( pTab!=0 ); 5474 #endif 5475 }else{ 5476 /* An ordinary table or view name in the FROM clause */ 5477 assert( pFrom->pTab==0 ); 5478 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5479 if( pTab==0 ) return WRC_Abort; 5480 if( pTab->nTabRef>=0xffff ){ 5481 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5482 pTab->zName); 5483 pFrom->pTab = 0; 5484 return WRC_Abort; 5485 } 5486 pTab->nTabRef++; 5487 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5488 return WRC_Abort; 5489 } 5490 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5491 if( !IsOrdinaryTable(pTab) ){ 5492 i16 nCol; 5493 u8 eCodeOrig = pWalker->eCode; 5494 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5495 assert( pFrom->pSelect==0 ); 5496 if( IsView(pTab) ){ 5497 if( (db->flags & SQLITE_EnableView)==0 5498 && pTab->pSchema!=db->aDb[1].pSchema 5499 ){ 5500 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5501 pTab->zName); 5502 } 5503 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5504 } 5505 #ifndef SQLITE_OMIT_VIRTUALTABLE 5506 else if( ALWAYS(IsVirtual(pTab)) 5507 && pFrom->fg.fromDDL 5508 && ALWAYS(pTab->u.vtab.p!=0) 5509 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5510 ){ 5511 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5512 pTab->zName); 5513 } 5514 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5515 #endif 5516 nCol = pTab->nCol; 5517 pTab->nCol = -1; 5518 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5519 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5520 pWalker->eCode = eCodeOrig; 5521 pTab->nCol = nCol; 5522 } 5523 #endif 5524 } 5525 5526 /* Locate the index named by the INDEXED BY clause, if any. */ 5527 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5528 return WRC_Abort; 5529 } 5530 } 5531 5532 /* Process NATURAL keywords, and ON and USING clauses of joins. 5533 */ 5534 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 5535 return WRC_Abort; 5536 } 5537 5538 /* For every "*" that occurs in the column list, insert the names of 5539 ** all columns in all tables. And for every TABLE.* insert the names 5540 ** of all columns in TABLE. The parser inserted a special expression 5541 ** with the TK_ASTERISK operator for each "*" that it found in the column 5542 ** list. The following code just has to locate the TK_ASTERISK 5543 ** expressions and expand each one to the list of all columns in 5544 ** all tables. 5545 ** 5546 ** The first loop just checks to see if there are any "*" operators 5547 ** that need expanding. 5548 */ 5549 for(k=0; k<pEList->nExpr; k++){ 5550 pE = pEList->a[k].pExpr; 5551 if( pE->op==TK_ASTERISK ) break; 5552 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5553 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5554 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5555 elistFlags |= pE->flags; 5556 } 5557 if( k<pEList->nExpr ){ 5558 /* 5559 ** If we get here it means the result set contains one or more "*" 5560 ** operators that need to be expanded. Loop through each expression 5561 ** in the result set and expand them one by one. 5562 */ 5563 struct ExprList_item *a = pEList->a; 5564 ExprList *pNew = 0; 5565 int flags = pParse->db->flags; 5566 int longNames = (flags & SQLITE_FullColNames)!=0 5567 && (flags & SQLITE_ShortColNames)==0; 5568 5569 for(k=0; k<pEList->nExpr; k++){ 5570 pE = a[k].pExpr; 5571 elistFlags |= pE->flags; 5572 pRight = pE->pRight; 5573 assert( pE->op!=TK_DOT || pRight!=0 ); 5574 if( pE->op!=TK_ASTERISK 5575 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5576 ){ 5577 /* This particular expression does not need to be expanded. 5578 */ 5579 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5580 if( pNew ){ 5581 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5582 pNew->a[pNew->nExpr-1].eEName = a[k].eEName; 5583 a[k].zEName = 0; 5584 } 5585 a[k].pExpr = 0; 5586 }else{ 5587 /* This expression is a "*" or a "TABLE.*" and needs to be 5588 ** expanded. */ 5589 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5590 char *zTName = 0; /* text of name of TABLE */ 5591 if( pE->op==TK_DOT ){ 5592 assert( pE->pLeft!=0 ); 5593 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5594 zTName = pE->pLeft->u.zToken; 5595 } 5596 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5597 Table *pTab = pFrom->pTab; 5598 Select *pSub = pFrom->pSelect; 5599 char *zTabName = pFrom->zAlias; 5600 const char *zSchemaName = 0; 5601 int iDb; 5602 if( zTabName==0 ){ 5603 zTabName = pTab->zName; 5604 } 5605 if( db->mallocFailed ) break; 5606 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 5607 pSub = 0; 5608 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5609 continue; 5610 } 5611 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5612 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5613 } 5614 for(j=0; j<pTab->nCol; j++){ 5615 char *zName = pTab->aCol[j].zCnName; 5616 char *zColname; /* The computed column name */ 5617 char *zToFree; /* Malloced string that needs to be freed */ 5618 Token sColname; /* Computed column name as a token */ 5619 5620 assert( zName ); 5621 if( zTName && pSub 5622 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0 5623 ){ 5624 continue; 5625 } 5626 5627 /* If a column is marked as 'hidden', omit it from the expanded 5628 ** result-set list unless the SELECT has the SF_IncludeHidden 5629 ** bit set. 5630 */ 5631 if( (p->selFlags & SF_IncludeHidden)==0 5632 && IsHiddenColumn(&pTab->aCol[j]) 5633 ){ 5634 continue; 5635 } 5636 tableSeen = 1; 5637 5638 if( i>0 && zTName==0 ){ 5639 if( (pFrom->fg.jointype & JT_NATURAL)!=0 5640 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1) 5641 ){ 5642 /* In a NATURAL join, omit the join columns from the 5643 ** table to the right of the join */ 5644 continue; 5645 } 5646 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 5647 /* In a join with a USING clause, omit columns in the 5648 ** using clause from the table on the right. */ 5649 continue; 5650 } 5651 } 5652 pRight = sqlite3Expr(db, TK_ID, zName); 5653 zColname = zName; 5654 zToFree = 0; 5655 if( longNames || pTabList->nSrc>1 ){ 5656 Expr *pLeft; 5657 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5658 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5659 if( zSchemaName ){ 5660 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5661 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5662 } 5663 if( longNames ){ 5664 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5665 zToFree = zColname; 5666 } 5667 }else{ 5668 pExpr = pRight; 5669 } 5670 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5671 sqlite3TokenInit(&sColname, zColname); 5672 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 5673 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5674 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5675 sqlite3DbFree(db, pX->zEName); 5676 if( pSub ){ 5677 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName); 5678 testcase( pX->zEName==0 ); 5679 }else{ 5680 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5681 zSchemaName, zTabName, zColname); 5682 testcase( pX->zEName==0 ); 5683 } 5684 pX->eEName = ENAME_TAB; 5685 } 5686 sqlite3DbFree(db, zToFree); 5687 } 5688 } 5689 if( !tableSeen ){ 5690 if( zTName ){ 5691 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 5692 }else{ 5693 sqlite3ErrorMsg(pParse, "no tables specified"); 5694 } 5695 } 5696 } 5697 } 5698 sqlite3ExprListDelete(db, pEList); 5699 p->pEList = pNew; 5700 } 5701 if( p->pEList ){ 5702 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 5703 sqlite3ErrorMsg(pParse, "too many columns in result set"); 5704 return WRC_Abort; 5705 } 5706 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 5707 p->selFlags |= SF_ComplexResult; 5708 } 5709 } 5710 return WRC_Continue; 5711 } 5712 5713 #if SQLITE_DEBUG 5714 /* 5715 ** Always assert. This xSelectCallback2 implementation proves that the 5716 ** xSelectCallback2 is never invoked. 5717 */ 5718 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 5719 UNUSED_PARAMETER2(NotUsed, NotUsed2); 5720 assert( 0 ); 5721 } 5722 #endif 5723 /* 5724 ** This routine "expands" a SELECT statement and all of its subqueries. 5725 ** For additional information on what it means to "expand" a SELECT 5726 ** statement, see the comment on the selectExpand worker callback above. 5727 ** 5728 ** Expanding a SELECT statement is the first step in processing a 5729 ** SELECT statement. The SELECT statement must be expanded before 5730 ** name resolution is performed. 5731 ** 5732 ** If anything goes wrong, an error message is written into pParse. 5733 ** The calling function can detect the problem by looking at pParse->nErr 5734 ** and/or pParse->db->mallocFailed. 5735 */ 5736 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 5737 Walker w; 5738 w.xExprCallback = sqlite3ExprWalkNoop; 5739 w.pParse = pParse; 5740 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 5741 w.xSelectCallback = convertCompoundSelectToSubquery; 5742 w.xSelectCallback2 = 0; 5743 sqlite3WalkSelect(&w, pSelect); 5744 } 5745 w.xSelectCallback = selectExpander; 5746 w.xSelectCallback2 = sqlite3SelectPopWith; 5747 w.eCode = 0; 5748 sqlite3WalkSelect(&w, pSelect); 5749 } 5750 5751 5752 #ifndef SQLITE_OMIT_SUBQUERY 5753 /* 5754 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 5755 ** interface. 5756 ** 5757 ** For each FROM-clause subquery, add Column.zType and Column.zColl 5758 ** information to the Table structure that represents the result set 5759 ** of that subquery. 5760 ** 5761 ** The Table structure that represents the result set was constructed 5762 ** by selectExpander() but the type and collation information was omitted 5763 ** at that point because identifiers had not yet been resolved. This 5764 ** routine is called after identifier resolution. 5765 */ 5766 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 5767 Parse *pParse; 5768 int i; 5769 SrcList *pTabList; 5770 SrcItem *pFrom; 5771 5772 assert( p->selFlags & SF_Resolved ); 5773 if( p->selFlags & SF_HasTypeInfo ) return; 5774 p->selFlags |= SF_HasTypeInfo; 5775 pParse = pWalker->pParse; 5776 pTabList = p->pSrc; 5777 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5778 Table *pTab = pFrom->pTab; 5779 assert( pTab!=0 ); 5780 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 5781 /* A sub-query in the FROM clause of a SELECT */ 5782 Select *pSel = pFrom->pSelect; 5783 if( pSel ){ 5784 while( pSel->pPrior ) pSel = pSel->pPrior; 5785 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 5786 SQLITE_AFF_NONE); 5787 } 5788 } 5789 } 5790 } 5791 #endif 5792 5793 5794 /* 5795 ** This routine adds datatype and collating sequence information to 5796 ** the Table structures of all FROM-clause subqueries in a 5797 ** SELECT statement. 5798 ** 5799 ** Use this routine after name resolution. 5800 */ 5801 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 5802 #ifndef SQLITE_OMIT_SUBQUERY 5803 Walker w; 5804 w.xSelectCallback = sqlite3SelectWalkNoop; 5805 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 5806 w.xExprCallback = sqlite3ExprWalkNoop; 5807 w.pParse = pParse; 5808 sqlite3WalkSelect(&w, pSelect); 5809 #endif 5810 } 5811 5812 5813 /* 5814 ** This routine sets up a SELECT statement for processing. The 5815 ** following is accomplished: 5816 ** 5817 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 5818 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 5819 ** * ON and USING clauses are shifted into WHERE statements 5820 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 5821 ** * Identifiers in expression are matched to tables. 5822 ** 5823 ** This routine acts recursively on all subqueries within the SELECT. 5824 */ 5825 void sqlite3SelectPrep( 5826 Parse *pParse, /* The parser context */ 5827 Select *p, /* The SELECT statement being coded. */ 5828 NameContext *pOuterNC /* Name context for container */ 5829 ){ 5830 assert( p!=0 || pParse->db->mallocFailed ); 5831 if( pParse->db->mallocFailed ) return; 5832 if( p->selFlags & SF_HasTypeInfo ) return; 5833 sqlite3SelectExpand(pParse, p); 5834 if( pParse->nErr || pParse->db->mallocFailed ) return; 5835 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 5836 if( pParse->nErr || pParse->db->mallocFailed ) return; 5837 sqlite3SelectAddTypeInfo(pParse, p); 5838 } 5839 5840 /* 5841 ** Reset the aggregate accumulator. 5842 ** 5843 ** The aggregate accumulator is a set of memory cells that hold 5844 ** intermediate results while calculating an aggregate. This 5845 ** routine generates code that stores NULLs in all of those memory 5846 ** cells. 5847 */ 5848 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 5849 Vdbe *v = pParse->pVdbe; 5850 int i; 5851 struct AggInfo_func *pFunc; 5852 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 5853 if( nReg==0 ) return; 5854 if( pParse->nErr || pParse->db->mallocFailed ) return; 5855 #ifdef SQLITE_DEBUG 5856 /* Verify that all AggInfo registers are within the range specified by 5857 ** AggInfo.mnReg..AggInfo.mxReg */ 5858 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 5859 for(i=0; i<pAggInfo->nColumn; i++){ 5860 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 5861 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 5862 } 5863 for(i=0; i<pAggInfo->nFunc; i++){ 5864 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 5865 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 5866 } 5867 #endif 5868 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 5869 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 5870 if( pFunc->iDistinct>=0 ){ 5871 Expr *pE = pFunc->pFExpr; 5872 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 5873 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 5874 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 5875 "argument"); 5876 pFunc->iDistinct = -1; 5877 }else{ 5878 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 5879 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 5880 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 5881 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 5882 pFunc->pFunc->zName)); 5883 } 5884 } 5885 } 5886 } 5887 5888 /* 5889 ** Invoke the OP_AggFinalize opcode for every aggregate function 5890 ** in the AggInfo structure. 5891 */ 5892 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 5893 Vdbe *v = pParse->pVdbe; 5894 int i; 5895 struct AggInfo_func *pF; 5896 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5897 ExprList *pList = pF->pFExpr->x.pList; 5898 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5899 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 5900 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5901 } 5902 } 5903 5904 5905 /* 5906 ** Update the accumulator memory cells for an aggregate based on 5907 ** the current cursor position. 5908 ** 5909 ** If regAcc is non-zero and there are no min() or max() aggregates 5910 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 5911 ** registers if register regAcc contains 0. The caller will take care 5912 ** of setting and clearing regAcc. 5913 */ 5914 static void updateAccumulator( 5915 Parse *pParse, 5916 int regAcc, 5917 AggInfo *pAggInfo, 5918 int eDistinctType 5919 ){ 5920 Vdbe *v = pParse->pVdbe; 5921 int i; 5922 int regHit = 0; 5923 int addrHitTest = 0; 5924 struct AggInfo_func *pF; 5925 struct AggInfo_col *pC; 5926 5927 pAggInfo->directMode = 1; 5928 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 5929 int nArg; 5930 int addrNext = 0; 5931 int regAgg; 5932 ExprList *pList = pF->pFExpr->x.pList; 5933 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) ); 5934 assert( !IsWindowFunc(pF->pFExpr) ); 5935 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 5936 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 5937 if( pAggInfo->nAccumulator 5938 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 5939 && regAcc 5940 ){ 5941 /* If regAcc==0, there there exists some min() or max() function 5942 ** without a FILTER clause that will ensure the magnet registers 5943 ** are populated. */ 5944 if( regHit==0 ) regHit = ++pParse->nMem; 5945 /* If this is the first row of the group (regAcc contains 0), clear the 5946 ** "magnet" register regHit so that the accumulator registers 5947 ** are populated if the FILTER clause jumps over the the 5948 ** invocation of min() or max() altogether. Or, if this is not 5949 ** the first row (regAcc contains 1), set the magnet register so that 5950 ** the accumulators are not populated unless the min()/max() is invoked 5951 ** and indicates that they should be. */ 5952 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 5953 } 5954 addrNext = sqlite3VdbeMakeLabel(pParse); 5955 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 5956 } 5957 if( pList ){ 5958 nArg = pList->nExpr; 5959 regAgg = sqlite3GetTempRange(pParse, nArg); 5960 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 5961 }else{ 5962 nArg = 0; 5963 regAgg = 0; 5964 } 5965 if( pF->iDistinct>=0 && pList ){ 5966 if( addrNext==0 ){ 5967 addrNext = sqlite3VdbeMakeLabel(pParse); 5968 } 5969 pF->iDistinct = codeDistinct(pParse, eDistinctType, 5970 pF->iDistinct, addrNext, pList, regAgg); 5971 } 5972 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 5973 CollSeq *pColl = 0; 5974 struct ExprList_item *pItem; 5975 int j; 5976 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 5977 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 5978 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 5979 } 5980 if( !pColl ){ 5981 pColl = pParse->db->pDfltColl; 5982 } 5983 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 5984 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 5985 } 5986 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 5987 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 5988 sqlite3VdbeChangeP5(v, (u8)nArg); 5989 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 5990 if( addrNext ){ 5991 sqlite3VdbeResolveLabel(v, addrNext); 5992 } 5993 } 5994 if( regHit==0 && pAggInfo->nAccumulator ){ 5995 regHit = regAcc; 5996 } 5997 if( regHit ){ 5998 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 5999 } 6000 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6001 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6002 } 6003 6004 pAggInfo->directMode = 0; 6005 if( addrHitTest ){ 6006 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6007 } 6008 } 6009 6010 /* 6011 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6012 ** count(*) query ("SELECT count(*) FROM pTab"). 6013 */ 6014 #ifndef SQLITE_OMIT_EXPLAIN 6015 static void explainSimpleCount( 6016 Parse *pParse, /* Parse context */ 6017 Table *pTab, /* Table being queried */ 6018 Index *pIdx /* Index used to optimize scan, or NULL */ 6019 ){ 6020 if( pParse->explain==2 ){ 6021 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6022 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6023 pTab->zName, 6024 bCover ? " USING COVERING INDEX " : "", 6025 bCover ? pIdx->zName : "" 6026 ); 6027 } 6028 } 6029 #else 6030 # define explainSimpleCount(a,b,c) 6031 #endif 6032 6033 /* 6034 ** sqlite3WalkExpr() callback used by havingToWhere(). 6035 ** 6036 ** If the node passed to the callback is a TK_AND node, return 6037 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6038 ** 6039 ** Otherwise, return WRC_Prune. In this case, also check if the 6040 ** sub-expression matches the criteria for being moved to the WHERE 6041 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6042 ** within the HAVING expression with a constant "1". 6043 */ 6044 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6045 if( pExpr->op!=TK_AND ){ 6046 Select *pS = pWalker->u.pSelect; 6047 /* This routine is called before the HAVING clause of the current 6048 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6049 ** here, it indicates that the expression is a correlated reference to a 6050 ** column from an outer aggregate query, or an aggregate function that 6051 ** belongs to an outer query. Do not move the expression to the WHERE 6052 ** clause in this obscure case, as doing so may corrupt the outer Select 6053 ** statements AggInfo structure. */ 6054 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6055 && ExprAlwaysFalse(pExpr)==0 6056 && pExpr->pAggInfo==0 6057 ){ 6058 sqlite3 *db = pWalker->pParse->db; 6059 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6060 if( pNew ){ 6061 Expr *pWhere = pS->pWhere; 6062 SWAP(Expr, *pNew, *pExpr); 6063 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6064 pS->pWhere = pNew; 6065 pWalker->eCode = 1; 6066 } 6067 } 6068 return WRC_Prune; 6069 } 6070 return WRC_Continue; 6071 } 6072 6073 /* 6074 ** Transfer eligible terms from the HAVING clause of a query, which is 6075 ** processed after grouping, to the WHERE clause, which is processed before 6076 ** grouping. For example, the query: 6077 ** 6078 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6079 ** 6080 ** can be rewritten as: 6081 ** 6082 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6083 ** 6084 ** A term of the HAVING expression is eligible for transfer if it consists 6085 ** entirely of constants and expressions that are also GROUP BY terms that 6086 ** use the "BINARY" collation sequence. 6087 */ 6088 static void havingToWhere(Parse *pParse, Select *p){ 6089 Walker sWalker; 6090 memset(&sWalker, 0, sizeof(sWalker)); 6091 sWalker.pParse = pParse; 6092 sWalker.xExprCallback = havingToWhereExprCb; 6093 sWalker.u.pSelect = p; 6094 sqlite3WalkExpr(&sWalker, p->pHaving); 6095 #if SELECTTRACE_ENABLED 6096 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){ 6097 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6098 sqlite3TreeViewSelect(0, p, 0); 6099 } 6100 #endif 6101 } 6102 6103 /* 6104 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6105 ** If it is, then return the SrcList_item for the prior view. If it is not, 6106 ** then return 0. 6107 */ 6108 static SrcItem *isSelfJoinView( 6109 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6110 SrcItem *pThis /* Search for prior reference to this subquery */ 6111 ){ 6112 SrcItem *pItem; 6113 assert( pThis->pSelect!=0 ); 6114 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6115 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6116 Select *pS1; 6117 if( pItem->pSelect==0 ) continue; 6118 if( pItem->fg.viaCoroutine ) continue; 6119 if( pItem->zName==0 ) continue; 6120 assert( pItem->pTab!=0 ); 6121 assert( pThis->pTab!=0 ); 6122 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6123 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6124 pS1 = pItem->pSelect; 6125 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6126 /* The query flattener left two different CTE tables with identical 6127 ** names in the same FROM clause. */ 6128 continue; 6129 } 6130 if( pItem->pSelect->selFlags & SF_PushDown ){ 6131 /* The view was modified by some other optimization such as 6132 ** pushDownWhereTerms() */ 6133 continue; 6134 } 6135 return pItem; 6136 } 6137 return 0; 6138 } 6139 6140 /* 6141 ** Deallocate a single AggInfo object 6142 */ 6143 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6144 sqlite3DbFree(db, p->aCol); 6145 sqlite3DbFree(db, p->aFunc); 6146 sqlite3DbFreeNN(db, p); 6147 } 6148 6149 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6150 /* 6151 ** Attempt to transform a query of the form 6152 ** 6153 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6154 ** 6155 ** Into this: 6156 ** 6157 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6158 ** 6159 ** The transformation only works if all of the following are true: 6160 ** 6161 ** * The subquery is a UNION ALL of two or more terms 6162 ** * The subquery does not have a LIMIT clause 6163 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6164 ** * The outer query is a simple count(*) with no WHERE clause or other 6165 ** extraneous syntax. 6166 ** 6167 ** Return TRUE if the optimization is undertaken. 6168 */ 6169 static int countOfViewOptimization(Parse *pParse, Select *p){ 6170 Select *pSub, *pPrior; 6171 Expr *pExpr; 6172 Expr *pCount; 6173 sqlite3 *db; 6174 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6175 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6176 if( p->pWhere ) return 0; 6177 if( p->pGroupBy ) return 0; 6178 pExpr = p->pEList->a[0].pExpr; 6179 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6180 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6181 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6182 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6183 pSub = p->pSrc->a[0].pSelect; 6184 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6185 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6186 do{ 6187 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6188 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6189 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6190 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6191 pSub = pSub->pPrior; /* Repeat over compound */ 6192 }while( pSub ); 6193 6194 /* If we reach this point then it is OK to perform the transformation */ 6195 6196 db = pParse->db; 6197 pCount = pExpr; 6198 pExpr = 0; 6199 pSub = p->pSrc->a[0].pSelect; 6200 p->pSrc->a[0].pSelect = 0; 6201 sqlite3SrcListDelete(db, p->pSrc); 6202 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6203 while( pSub ){ 6204 Expr *pTerm; 6205 pPrior = pSub->pPrior; 6206 pSub->pPrior = 0; 6207 pSub->pNext = 0; 6208 pSub->selFlags |= SF_Aggregate; 6209 pSub->selFlags &= ~SF_Compound; 6210 pSub->nSelectRow = 0; 6211 sqlite3ExprListDelete(db, pSub->pEList); 6212 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6213 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6214 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6215 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6216 if( pExpr==0 ){ 6217 pExpr = pTerm; 6218 }else{ 6219 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6220 } 6221 pSub = pPrior; 6222 } 6223 p->pEList->a[0].pExpr = pExpr; 6224 p->selFlags &= ~SF_Aggregate; 6225 6226 #if SELECTTRACE_ENABLED 6227 if( sqlite3SelectTrace & 0x400 ){ 6228 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6229 sqlite3TreeViewSelect(0, p, 0); 6230 } 6231 #endif 6232 return 1; 6233 } 6234 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6235 6236 /* 6237 ** Generate code for the SELECT statement given in the p argument. 6238 ** 6239 ** The results are returned according to the SelectDest structure. 6240 ** See comments in sqliteInt.h for further information. 6241 ** 6242 ** This routine returns the number of errors. If any errors are 6243 ** encountered, then an appropriate error message is left in 6244 ** pParse->zErrMsg. 6245 ** 6246 ** This routine does NOT free the Select structure passed in. The 6247 ** calling function needs to do that. 6248 */ 6249 int sqlite3Select( 6250 Parse *pParse, /* The parser context */ 6251 Select *p, /* The SELECT statement being coded. */ 6252 SelectDest *pDest /* What to do with the query results */ 6253 ){ 6254 int i, j; /* Loop counters */ 6255 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6256 Vdbe *v; /* The virtual machine under construction */ 6257 int isAgg; /* True for select lists like "count(*)" */ 6258 ExprList *pEList = 0; /* List of columns to extract. */ 6259 SrcList *pTabList; /* List of tables to select from */ 6260 Expr *pWhere; /* The WHERE clause. May be NULL */ 6261 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6262 Expr *pHaving; /* The HAVING clause. May be NULL */ 6263 AggInfo *pAggInfo = 0; /* Aggregate information */ 6264 int rc = 1; /* Value to return from this function */ 6265 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6266 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6267 int iEnd; /* Address of the end of the query */ 6268 sqlite3 *db; /* The database connection */ 6269 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6270 u8 minMaxFlag; /* Flag for min/max queries */ 6271 6272 db = pParse->db; 6273 v = sqlite3GetVdbe(pParse); 6274 if( p==0 || db->mallocFailed || pParse->nErr ){ 6275 return 1; 6276 } 6277 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6278 #if SELECTTRACE_ENABLED 6279 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6280 if( sqlite3SelectTrace & 0x100 ){ 6281 sqlite3TreeViewSelect(0, p, 0); 6282 } 6283 #endif 6284 6285 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6286 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6287 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6288 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6289 if( IgnorableDistinct(pDest) ){ 6290 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6291 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6292 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6293 /* All of these destinations are also able to ignore the ORDER BY clause */ 6294 if( p->pOrderBy ){ 6295 #if SELECTTRACE_ENABLED 6296 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6297 if( sqlite3SelectTrace & 0x100 ){ 6298 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6299 } 6300 #endif 6301 sqlite3ParserAddCleanup(pParse, 6302 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6303 p->pOrderBy); 6304 testcase( pParse->earlyCleanup ); 6305 p->pOrderBy = 0; 6306 } 6307 p->selFlags &= ~SF_Distinct; 6308 p->selFlags |= SF_NoopOrderBy; 6309 } 6310 sqlite3SelectPrep(pParse, p, 0); 6311 if( pParse->nErr || db->mallocFailed ){ 6312 goto select_end; 6313 } 6314 assert( p->pEList!=0 ); 6315 #if SELECTTRACE_ENABLED 6316 if( sqlite3SelectTrace & 0x104 ){ 6317 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6318 sqlite3TreeViewSelect(0, p, 0); 6319 } 6320 #endif 6321 6322 /* If the SF_UFSrcCheck flag is set, then this function is being called 6323 ** as part of populating the temp table for an UPDATE...FROM statement. 6324 ** In this case, it is an error if the target object (pSrc->a[0]) name 6325 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6326 ** 6327 ** Postgres disallows this case too. The reason is that some other 6328 ** systems handle this case differently, and not all the same way, 6329 ** which is just confusing. To avoid this, we follow PG's lead and 6330 ** disallow it altogether. */ 6331 if( p->selFlags & SF_UFSrcCheck ){ 6332 SrcItem *p0 = &p->pSrc->a[0]; 6333 for(i=1; i<p->pSrc->nSrc; i++){ 6334 SrcItem *p1 = &p->pSrc->a[i]; 6335 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6336 sqlite3ErrorMsg(pParse, 6337 "target object/alias may not appear in FROM clause: %s", 6338 p0->zAlias ? p0->zAlias : p0->pTab->zName 6339 ); 6340 goto select_end; 6341 } 6342 } 6343 6344 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6345 ** and leaving this flag set can cause errors if a compound sub-query 6346 ** in p->pSrc is flattened into this query and this function called 6347 ** again as part of compound SELECT processing. */ 6348 p->selFlags &= ~SF_UFSrcCheck; 6349 } 6350 6351 if( pDest->eDest==SRT_Output ){ 6352 sqlite3GenerateColumnNames(pParse, p); 6353 } 6354 6355 #ifndef SQLITE_OMIT_WINDOWFUNC 6356 if( sqlite3WindowRewrite(pParse, p) ){ 6357 assert( db->mallocFailed || pParse->nErr>0 ); 6358 goto select_end; 6359 } 6360 #if SELECTTRACE_ENABLED 6361 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){ 6362 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6363 sqlite3TreeViewSelect(0, p, 0); 6364 } 6365 #endif 6366 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6367 pTabList = p->pSrc; 6368 isAgg = (p->selFlags & SF_Aggregate)!=0; 6369 memset(&sSort, 0, sizeof(sSort)); 6370 sSort.pOrderBy = p->pOrderBy; 6371 6372 /* Try to do various optimizations (flattening subqueries, and strength 6373 ** reduction of join operators) in the FROM clause up into the main query 6374 */ 6375 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6376 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6377 SrcItem *pItem = &pTabList->a[i]; 6378 Select *pSub = pItem->pSelect; 6379 Table *pTab = pItem->pTab; 6380 6381 /* The expander should have already created transient Table objects 6382 ** even for FROM clause elements such as subqueries that do not correspond 6383 ** to a real table */ 6384 assert( pTab!=0 ); 6385 6386 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6387 ** of the LEFT JOIN used in the WHERE clause. 6388 */ 6389 if( (pItem->fg.jointype & JT_LEFT)!=0 6390 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6391 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6392 ){ 6393 SELECTTRACE(0x100,pParse,p, 6394 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6395 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6396 unsetJoinExpr(p->pWhere, pItem->iCursor); 6397 } 6398 6399 /* No futher action if this term of the FROM clause is no a subquery */ 6400 if( pSub==0 ) continue; 6401 6402 /* Catch mismatch in the declared columns of a view and the number of 6403 ** columns in the SELECT on the RHS */ 6404 if( pTab->nCol!=pSub->pEList->nExpr ){ 6405 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6406 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6407 goto select_end; 6408 } 6409 6410 /* Do not try to flatten an aggregate subquery. 6411 ** 6412 ** Flattening an aggregate subquery is only possible if the outer query 6413 ** is not a join. But if the outer query is not a join, then the subquery 6414 ** will be implemented as a co-routine and there is no advantage to 6415 ** flattening in that case. 6416 */ 6417 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6418 assert( pSub->pGroupBy==0 ); 6419 6420 /* If a FROM-clause subquery has an ORDER BY clause that is not 6421 ** really doing anything, then delete it now so that it does not 6422 ** interfere with query flattening. See the discussion at 6423 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6424 ** 6425 ** Beware of these cases where the ORDER BY clause may not be safely 6426 ** omitted: 6427 ** 6428 ** (1) There is also a LIMIT clause 6429 ** (2) The subquery was added to help with window-function 6430 ** processing 6431 ** (3) The subquery is in the FROM clause of an UPDATE 6432 ** (4) The outer query uses an aggregate function other than 6433 ** the built-in count(), min(), or max(). 6434 ** (5) The ORDER BY isn't going to accomplish anything because 6435 ** one of: 6436 ** (a) The outer query has a different ORDER BY clause 6437 ** (b) The subquery is part of a join 6438 ** See forum post 062d576715d277c8 6439 */ 6440 if( pSub->pOrderBy!=0 6441 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6442 && pSub->pLimit==0 /* Condition (1) */ 6443 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6444 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6445 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6446 ){ 6447 SELECTTRACE(0x100,pParse,p, 6448 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6449 sqlite3ExprListDelete(db, pSub->pOrderBy); 6450 pSub->pOrderBy = 0; 6451 } 6452 6453 /* If the outer query contains a "complex" result set (that is, 6454 ** if the result set of the outer query uses functions or subqueries) 6455 ** and if the subquery contains an ORDER BY clause and if 6456 ** it will be implemented as a co-routine, then do not flatten. This 6457 ** restriction allows SQL constructs like this: 6458 ** 6459 ** SELECT expensive_function(x) 6460 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6461 ** 6462 ** The expensive_function() is only computed on the 10 rows that 6463 ** are output, rather than every row of the table. 6464 ** 6465 ** The requirement that the outer query have a complex result set 6466 ** means that flattening does occur on simpler SQL constraints without 6467 ** the expensive_function() like: 6468 ** 6469 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6470 */ 6471 if( pSub->pOrderBy!=0 6472 && i==0 6473 && (p->selFlags & SF_ComplexResult)!=0 6474 && (pTabList->nSrc==1 6475 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) 6476 ){ 6477 continue; 6478 } 6479 6480 if( flattenSubquery(pParse, p, i, isAgg) ){ 6481 if( pParse->nErr ) goto select_end; 6482 /* This subquery can be absorbed into its parent. */ 6483 i = -1; 6484 } 6485 pTabList = p->pSrc; 6486 if( db->mallocFailed ) goto select_end; 6487 if( !IgnorableOrderby(pDest) ){ 6488 sSort.pOrderBy = p->pOrderBy; 6489 } 6490 } 6491 #endif 6492 6493 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6494 /* Handle compound SELECT statements using the separate multiSelect() 6495 ** procedure. 6496 */ 6497 if( p->pPrior ){ 6498 rc = multiSelect(pParse, p, pDest); 6499 #if SELECTTRACE_ENABLED 6500 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6501 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6502 sqlite3TreeViewSelect(0, p, 0); 6503 } 6504 #endif 6505 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6506 return rc; 6507 } 6508 #endif 6509 6510 /* Do the WHERE-clause constant propagation optimization if this is 6511 ** a join. No need to speed time on this operation for non-join queries 6512 ** as the equivalent optimization will be handled by query planner in 6513 ** sqlite3WhereBegin(). 6514 */ 6515 if( p->pWhere!=0 6516 && p->pWhere->op==TK_AND 6517 && OptimizationEnabled(db, SQLITE_PropagateConst) 6518 && propagateConstants(pParse, p) 6519 ){ 6520 #if SELECTTRACE_ENABLED 6521 if( sqlite3SelectTrace & 0x100 ){ 6522 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6523 sqlite3TreeViewSelect(0, p, 0); 6524 } 6525 #endif 6526 }else{ 6527 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6528 } 6529 6530 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6531 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6532 && countOfViewOptimization(pParse, p) 6533 ){ 6534 if( db->mallocFailed ) goto select_end; 6535 pEList = p->pEList; 6536 pTabList = p->pSrc; 6537 } 6538 #endif 6539 6540 /* For each term in the FROM clause, do two things: 6541 ** (1) Authorized unreferenced tables 6542 ** (2) Generate code for all sub-queries 6543 */ 6544 for(i=0; i<pTabList->nSrc; i++){ 6545 SrcItem *pItem = &pTabList->a[i]; 6546 SrcItem *pPrior; 6547 SelectDest dest; 6548 Select *pSub; 6549 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6550 const char *zSavedAuthContext; 6551 #endif 6552 6553 /* Issue SQLITE_READ authorizations with a fake column name for any 6554 ** tables that are referenced but from which no values are extracted. 6555 ** Examples of where these kinds of null SQLITE_READ authorizations 6556 ** would occur: 6557 ** 6558 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6559 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6560 ** 6561 ** The fake column name is an empty string. It is possible for a table to 6562 ** have a column named by the empty string, in which case there is no way to 6563 ** distinguish between an unreferenced table and an actual reference to the 6564 ** "" column. The original design was for the fake column name to be a NULL, 6565 ** which would be unambiguous. But legacy authorization callbacks might 6566 ** assume the column name is non-NULL and segfault. The use of an empty 6567 ** string for the fake column name seems safer. 6568 */ 6569 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6570 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6571 } 6572 6573 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6574 /* Generate code for all sub-queries in the FROM clause 6575 */ 6576 pSub = pItem->pSelect; 6577 if( pSub==0 ) continue; 6578 6579 /* The code for a subquery should only be generated once. */ 6580 assert( pItem->addrFillSub==0 ); 6581 6582 /* Increment Parse.nHeight by the height of the largest expression 6583 ** tree referred to by this, the parent select. The child select 6584 ** may contain expression trees of at most 6585 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6586 ** more conservative than necessary, but much easier than enforcing 6587 ** an exact limit. 6588 */ 6589 pParse->nHeight += sqlite3SelectExprHeight(p); 6590 6591 /* Make copies of constant WHERE-clause terms in the outer query down 6592 ** inside the subquery. This can help the subquery to run more efficiently. 6593 */ 6594 if( OptimizationEnabled(db, SQLITE_PushDown) 6595 && (pItem->fg.isCte==0 6596 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6597 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor, 6598 (pItem->fg.jointype & JT_OUTER)!=0) 6599 ){ 6600 #if SELECTTRACE_ENABLED 6601 if( sqlite3SelectTrace & 0x100 ){ 6602 SELECTTRACE(0x100,pParse,p, 6603 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6604 sqlite3TreeViewSelect(0, p, 0); 6605 } 6606 #endif 6607 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6608 }else{ 6609 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6610 } 6611 6612 zSavedAuthContext = pParse->zAuthContext; 6613 pParse->zAuthContext = pItem->zName; 6614 6615 /* Generate code to implement the subquery 6616 ** 6617 ** The subquery is implemented as a co-routine if: 6618 ** (1) the subquery is guaranteed to be the outer loop (so that 6619 ** it does not need to be computed more than once), and 6620 ** (2) the subquery is not a CTE that should be materialized 6621 ** 6622 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine 6623 ** implementation? 6624 */ 6625 if( i==0 6626 && (pTabList->nSrc==1 6627 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */ 6628 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6629 ){ 6630 /* Implement a co-routine that will return a single row of the result 6631 ** set on each invocation. 6632 */ 6633 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6634 6635 pItem->regReturn = ++pParse->nMem; 6636 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6637 VdbeComment((v, "%!S", pItem)); 6638 pItem->addrFillSub = addrTop; 6639 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6640 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6641 sqlite3Select(pParse, pSub, &dest); 6642 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6643 pItem->fg.viaCoroutine = 1; 6644 pItem->regResult = dest.iSdst; 6645 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6646 sqlite3VdbeJumpHere(v, addrTop-1); 6647 sqlite3ClearTempRegCache(pParse); 6648 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 6649 /* This is a CTE for which materialization code has already been 6650 ** generated. Invoke the subroutine to compute the materialization, 6651 ** the make the pItem->iCursor be a copy of the ephemerial table that 6652 ** holds the result of the materialization. */ 6653 CteUse *pCteUse = pItem->u2.pCteUse; 6654 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 6655 if( pItem->iCursor!=pCteUse->iCur ){ 6656 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 6657 VdbeComment((v, "%!S", pItem)); 6658 } 6659 pSub->nSelectRow = pCteUse->nRowEst; 6660 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 6661 /* This view has already been materialized by a prior entry in 6662 ** this same FROM clause. Reuse it. */ 6663 if( pPrior->addrFillSub ){ 6664 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 6665 } 6666 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 6667 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 6668 }else{ 6669 /* Materialize the view. If the view is not correlated, generate a 6670 ** subroutine to do the materialization so that subsequent uses of 6671 ** the same view can reuse the materialization. */ 6672 int topAddr; 6673 int onceAddr = 0; 6674 int retAddr; 6675 6676 pItem->regReturn = ++pParse->nMem; 6677 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 6678 pItem->addrFillSub = topAddr+1; 6679 if( pItem->fg.isCorrelated==0 ){ 6680 /* If the subquery is not correlated and if we are not inside of 6681 ** a trigger, then we only need to compute the value of the subquery 6682 ** once. */ 6683 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6684 VdbeComment((v, "materialize %!S", pItem)); 6685 }else{ 6686 VdbeNoopComment((v, "materialize %!S", pItem)); 6687 } 6688 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 6689 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 6690 sqlite3Select(pParse, pSub, &dest); 6691 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6692 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 6693 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 6694 VdbeComment((v, "end %!S", pItem)); 6695 sqlite3VdbeChangeP1(v, topAddr, retAddr); 6696 sqlite3ClearTempRegCache(pParse); 6697 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 6698 CteUse *pCteUse = pItem->u2.pCteUse; 6699 pCteUse->addrM9e = pItem->addrFillSub; 6700 pCteUse->regRtn = pItem->regReturn; 6701 pCteUse->iCur = pItem->iCursor; 6702 pCteUse->nRowEst = pSub->nSelectRow; 6703 } 6704 } 6705 if( db->mallocFailed ) goto select_end; 6706 pParse->nHeight -= sqlite3SelectExprHeight(p); 6707 pParse->zAuthContext = zSavedAuthContext; 6708 #endif 6709 } 6710 6711 /* Various elements of the SELECT copied into local variables for 6712 ** convenience */ 6713 pEList = p->pEList; 6714 pWhere = p->pWhere; 6715 pGroupBy = p->pGroupBy; 6716 pHaving = p->pHaving; 6717 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 6718 6719 #if SELECTTRACE_ENABLED 6720 if( sqlite3SelectTrace & 0x400 ){ 6721 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 6722 sqlite3TreeViewSelect(0, p, 0); 6723 } 6724 #endif 6725 6726 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 6727 ** if the select-list is the same as the ORDER BY list, then this query 6728 ** can be rewritten as a GROUP BY. In other words, this: 6729 ** 6730 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 6731 ** 6732 ** is transformed to: 6733 ** 6734 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 6735 ** 6736 ** The second form is preferred as a single index (or temp-table) may be 6737 ** used for both the ORDER BY and DISTINCT processing. As originally 6738 ** written the query must use a temp-table for at least one of the ORDER 6739 ** BY and DISTINCT, and an index or separate temp-table for the other. 6740 */ 6741 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 6742 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 6743 #ifndef SQLITE_OMIT_WINDOWFUNC 6744 && p->pWin==0 6745 #endif 6746 ){ 6747 p->selFlags &= ~SF_Distinct; 6748 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 6749 p->selFlags |= SF_Aggregate; 6750 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 6751 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 6752 ** original setting of the SF_Distinct flag, not the current setting */ 6753 assert( sDistinct.isTnct ); 6754 6755 #if SELECTTRACE_ENABLED 6756 if( sqlite3SelectTrace & 0x400 ){ 6757 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 6758 sqlite3TreeViewSelect(0, p, 0); 6759 } 6760 #endif 6761 } 6762 6763 /* If there is an ORDER BY clause, then create an ephemeral index to 6764 ** do the sorting. But this sorting ephemeral index might end up 6765 ** being unused if the data can be extracted in pre-sorted order. 6766 ** If that is the case, then the OP_OpenEphemeral instruction will be 6767 ** changed to an OP_Noop once we figure out that the sorting index is 6768 ** not needed. The sSort.addrSortIndex variable is used to facilitate 6769 ** that change. 6770 */ 6771 if( sSort.pOrderBy ){ 6772 KeyInfo *pKeyInfo; 6773 pKeyInfo = sqlite3KeyInfoFromExprList( 6774 pParse, sSort.pOrderBy, 0, pEList->nExpr); 6775 sSort.iECursor = pParse->nTab++; 6776 sSort.addrSortIndex = 6777 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6778 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 6779 (char*)pKeyInfo, P4_KEYINFO 6780 ); 6781 }else{ 6782 sSort.addrSortIndex = -1; 6783 } 6784 6785 /* If the output is destined for a temporary table, open that table. 6786 */ 6787 if( pDest->eDest==SRT_EphemTab ){ 6788 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 6789 } 6790 6791 /* Set the limiter. 6792 */ 6793 iEnd = sqlite3VdbeMakeLabel(pParse); 6794 if( (p->selFlags & SF_FixedLimit)==0 ){ 6795 p->nSelectRow = 320; /* 4 billion rows */ 6796 } 6797 computeLimitRegisters(pParse, p, iEnd); 6798 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 6799 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 6800 sSort.sortFlags |= SORTFLAG_UseSorter; 6801 } 6802 6803 /* Open an ephemeral index to use for the distinct set. 6804 */ 6805 if( p->selFlags & SF_Distinct ){ 6806 sDistinct.tabTnct = pParse->nTab++; 6807 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6808 sDistinct.tabTnct, 0, 0, 6809 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 6810 P4_KEYINFO); 6811 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 6812 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 6813 }else{ 6814 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 6815 } 6816 6817 if( !isAgg && pGroupBy==0 ){ 6818 /* No aggregate functions and no GROUP BY clause */ 6819 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 6820 | (p->selFlags & SF_FixedLimit); 6821 #ifndef SQLITE_OMIT_WINDOWFUNC 6822 Window *pWin = p->pWin; /* Main window object (or NULL) */ 6823 if( pWin ){ 6824 sqlite3WindowCodeInit(pParse, p); 6825 } 6826 #endif 6827 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 6828 6829 6830 /* Begin the database scan. */ 6831 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 6832 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 6833 p->pEList, wctrlFlags, p->nSelectRow); 6834 if( pWInfo==0 ) goto select_end; 6835 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 6836 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 6837 } 6838 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 6839 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 6840 } 6841 if( sSort.pOrderBy ){ 6842 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 6843 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 6844 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 6845 sSort.pOrderBy = 0; 6846 } 6847 } 6848 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 6849 6850 /* If sorting index that was created by a prior OP_OpenEphemeral 6851 ** instruction ended up not being needed, then change the OP_OpenEphemeral 6852 ** into an OP_Noop. 6853 */ 6854 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 6855 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 6856 } 6857 6858 assert( p->pEList==pEList ); 6859 #ifndef SQLITE_OMIT_WINDOWFUNC 6860 if( pWin ){ 6861 int addrGosub = sqlite3VdbeMakeLabel(pParse); 6862 int iCont = sqlite3VdbeMakeLabel(pParse); 6863 int iBreak = sqlite3VdbeMakeLabel(pParse); 6864 int regGosub = ++pParse->nMem; 6865 6866 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 6867 6868 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 6869 sqlite3VdbeResolveLabel(v, addrGosub); 6870 VdbeNoopComment((v, "inner-loop subroutine")); 6871 sSort.labelOBLopt = 0; 6872 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 6873 sqlite3VdbeResolveLabel(v, iCont); 6874 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 6875 VdbeComment((v, "end inner-loop subroutine")); 6876 sqlite3VdbeResolveLabel(v, iBreak); 6877 }else 6878 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6879 { 6880 /* Use the standard inner loop. */ 6881 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 6882 sqlite3WhereContinueLabel(pWInfo), 6883 sqlite3WhereBreakLabel(pWInfo)); 6884 6885 /* End the database scan loop. 6886 */ 6887 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 6888 sqlite3WhereEnd(pWInfo); 6889 } 6890 }else{ 6891 /* This case when there exist aggregate functions or a GROUP BY clause 6892 ** or both */ 6893 NameContext sNC; /* Name context for processing aggregate information */ 6894 int iAMem; /* First Mem address for storing current GROUP BY */ 6895 int iBMem; /* First Mem address for previous GROUP BY */ 6896 int iUseFlag; /* Mem address holding flag indicating that at least 6897 ** one row of the input to the aggregator has been 6898 ** processed */ 6899 int iAbortFlag; /* Mem address which causes query abort if positive */ 6900 int groupBySort; /* Rows come from source in GROUP BY order */ 6901 int addrEnd; /* End of processing for this SELECT */ 6902 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 6903 int sortOut = 0; /* Output register from the sorter */ 6904 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 6905 6906 /* Remove any and all aliases between the result set and the 6907 ** GROUP BY clause. 6908 */ 6909 if( pGroupBy ){ 6910 int k; /* Loop counter */ 6911 struct ExprList_item *pItem; /* For looping over expression in a list */ 6912 6913 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 6914 pItem->u.x.iAlias = 0; 6915 } 6916 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 6917 pItem->u.x.iAlias = 0; 6918 } 6919 assert( 66==sqlite3LogEst(100) ); 6920 if( p->nSelectRow>66 ) p->nSelectRow = 66; 6921 6922 /* If there is both a GROUP BY and an ORDER BY clause and they are 6923 ** identical, then it may be possible to disable the ORDER BY clause 6924 ** on the grounds that the GROUP BY will cause elements to come out 6925 ** in the correct order. It also may not - the GROUP BY might use a 6926 ** database index that causes rows to be grouped together as required 6927 ** but not actually sorted. Either way, record the fact that the 6928 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 6929 ** variable. */ 6930 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 6931 int ii; 6932 /* The GROUP BY processing doesn't care whether rows are delivered in 6933 ** ASC or DESC order - only that each group is returned contiguously. 6934 ** So set the ASC/DESC flags in the GROUP BY to match those in the 6935 ** ORDER BY to maximize the chances of rows being delivered in an 6936 ** order that makes the ORDER BY redundant. */ 6937 for(ii=0; ii<pGroupBy->nExpr; ii++){ 6938 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC; 6939 pGroupBy->a[ii].sortFlags = sortFlags; 6940 } 6941 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 6942 orderByGrp = 1; 6943 } 6944 } 6945 }else{ 6946 assert( 0==sqlite3LogEst(1) ); 6947 p->nSelectRow = 0; 6948 } 6949 6950 /* Create a label to jump to when we want to abort the query */ 6951 addrEnd = sqlite3VdbeMakeLabel(pParse); 6952 6953 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 6954 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 6955 ** SELECT statement. 6956 */ 6957 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 6958 if( pAggInfo ){ 6959 sqlite3ParserAddCleanup(pParse, 6960 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 6961 testcase( pParse->earlyCleanup ); 6962 } 6963 if( db->mallocFailed ){ 6964 goto select_end; 6965 } 6966 pAggInfo->selId = p->selId; 6967 memset(&sNC, 0, sizeof(sNC)); 6968 sNC.pParse = pParse; 6969 sNC.pSrcList = pTabList; 6970 sNC.uNC.pAggInfo = pAggInfo; 6971 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 6972 pAggInfo->mnReg = pParse->nMem+1; 6973 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 6974 pAggInfo->pGroupBy = pGroupBy; 6975 sqlite3ExprAnalyzeAggList(&sNC, pEList); 6976 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 6977 if( pHaving ){ 6978 if( pGroupBy ){ 6979 assert( pWhere==p->pWhere ); 6980 assert( pHaving==p->pHaving ); 6981 assert( pGroupBy==p->pGroupBy ); 6982 havingToWhere(pParse, p); 6983 pWhere = p->pWhere; 6984 } 6985 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 6986 } 6987 pAggInfo->nAccumulator = pAggInfo->nColumn; 6988 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 6989 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 6990 }else{ 6991 minMaxFlag = WHERE_ORDERBY_NORMAL; 6992 } 6993 for(i=0; i<pAggInfo->nFunc; i++){ 6994 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 6995 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); 6996 sNC.ncFlags |= NC_InAggFunc; 6997 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 6998 #ifndef SQLITE_OMIT_WINDOWFUNC 6999 assert( !IsWindowFunc(pExpr) ); 7000 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7001 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7002 } 7003 #endif 7004 sNC.ncFlags &= ~NC_InAggFunc; 7005 } 7006 pAggInfo->mxReg = pParse->nMem; 7007 if( db->mallocFailed ) goto select_end; 7008 #if SELECTTRACE_ENABLED 7009 if( sqlite3SelectTrace & 0x400 ){ 7010 int ii; 7011 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7012 sqlite3TreeViewSelect(0, p, 0); 7013 if( minMaxFlag ){ 7014 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7015 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7016 } 7017 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7018 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n", 7019 ii, pAggInfo->aCol[ii].iMem); 7020 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7021 } 7022 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7023 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7024 ii, pAggInfo->aFunc[ii].iMem); 7025 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7026 } 7027 } 7028 #endif 7029 7030 7031 /* Processing for aggregates with GROUP BY is very different and 7032 ** much more complex than aggregates without a GROUP BY. 7033 */ 7034 if( pGroupBy ){ 7035 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7036 int addr1; /* A-vs-B comparision jump */ 7037 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7038 int regOutputRow; /* Return address register for output subroutine */ 7039 int addrSetAbort; /* Set the abort flag and return */ 7040 int addrTopOfLoop; /* Top of the input loop */ 7041 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7042 int addrReset; /* Subroutine for resetting the accumulator */ 7043 int regReset; /* Return address register for reset subroutine */ 7044 ExprList *pDistinct = 0; 7045 u16 distFlag = 0; 7046 int eDist = WHERE_DISTINCT_NOOP; 7047 7048 if( pAggInfo->nFunc==1 7049 && pAggInfo->aFunc[0].iDistinct>=0 7050 && pAggInfo->aFunc[0].pFExpr->x.pList 7051 ){ 7052 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7053 pExpr = sqlite3ExprDup(db, pExpr, 0); 7054 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7055 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7056 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7057 } 7058 7059 /* If there is a GROUP BY clause we might need a sorting index to 7060 ** implement it. Allocate that sorting index now. If it turns out 7061 ** that we do not need it after all, the OP_SorterOpen instruction 7062 ** will be converted into a Noop. 7063 */ 7064 pAggInfo->sortingIdx = pParse->nTab++; 7065 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7066 0, pAggInfo->nColumn); 7067 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7068 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7069 0, (char*)pKeyInfo, P4_KEYINFO); 7070 7071 /* Initialize memory locations used by GROUP BY aggregate processing 7072 */ 7073 iUseFlag = ++pParse->nMem; 7074 iAbortFlag = ++pParse->nMem; 7075 regOutputRow = ++pParse->nMem; 7076 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7077 regReset = ++pParse->nMem; 7078 addrReset = sqlite3VdbeMakeLabel(pParse); 7079 iAMem = pParse->nMem + 1; 7080 pParse->nMem += pGroupBy->nExpr; 7081 iBMem = pParse->nMem + 1; 7082 pParse->nMem += pGroupBy->nExpr; 7083 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7084 VdbeComment((v, "clear abort flag")); 7085 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7086 7087 /* Begin a loop that will extract all source rows in GROUP BY order. 7088 ** This might involve two separate loops with an OP_Sort in between, or 7089 ** it might be a single loop that uses an index to extract information 7090 ** in the right order to begin with. 7091 */ 7092 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7093 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7094 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7095 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7096 ); 7097 if( pWInfo==0 ){ 7098 sqlite3ExprListDelete(db, pDistinct); 7099 goto select_end; 7100 } 7101 eDist = sqlite3WhereIsDistinct(pWInfo); 7102 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7103 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7104 /* The optimizer is able to deliver rows in group by order so 7105 ** we do not have to sort. The OP_OpenEphemeral table will be 7106 ** cancelled later because we still need to use the pKeyInfo 7107 */ 7108 groupBySort = 0; 7109 }else{ 7110 /* Rows are coming out in undetermined order. We have to push 7111 ** each row into a sorting index, terminate the first loop, 7112 ** then loop over the sorting index in order to get the output 7113 ** in sorted order 7114 */ 7115 int regBase; 7116 int regRecord; 7117 int nCol; 7118 int nGroupBy; 7119 7120 explainTempTable(pParse, 7121 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7122 "DISTINCT" : "GROUP BY"); 7123 7124 groupBySort = 1; 7125 nGroupBy = pGroupBy->nExpr; 7126 nCol = nGroupBy; 7127 j = nGroupBy; 7128 for(i=0; i<pAggInfo->nColumn; i++){ 7129 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7130 nCol++; 7131 j++; 7132 } 7133 } 7134 regBase = sqlite3GetTempRange(pParse, nCol); 7135 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7136 j = nGroupBy; 7137 for(i=0; i<pAggInfo->nColumn; i++){ 7138 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7139 if( pCol->iSorterColumn>=j ){ 7140 int r1 = j + regBase; 7141 sqlite3ExprCodeGetColumnOfTable(v, 7142 pCol->pTab, pCol->iTable, pCol->iColumn, r1); 7143 j++; 7144 } 7145 } 7146 regRecord = sqlite3GetTempReg(pParse); 7147 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7148 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7149 sqlite3ReleaseTempReg(pParse, regRecord); 7150 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7151 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7152 sqlite3WhereEnd(pWInfo); 7153 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7154 sortOut = sqlite3GetTempReg(pParse); 7155 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7156 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7157 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7158 pAggInfo->useSortingIdx = 1; 7159 } 7160 7161 /* If the index or temporary table used by the GROUP BY sort 7162 ** will naturally deliver rows in the order required by the ORDER BY 7163 ** clause, cancel the ephemeral table open coded earlier. 7164 ** 7165 ** This is an optimization - the correct answer should result regardless. 7166 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7167 ** disable this optimization for testing purposes. */ 7168 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7169 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7170 ){ 7171 sSort.pOrderBy = 0; 7172 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7173 } 7174 7175 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7176 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7177 ** Then compare the current GROUP BY terms against the GROUP BY terms 7178 ** from the previous row currently stored in a0, a1, a2... 7179 */ 7180 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7181 if( groupBySort ){ 7182 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7183 sortOut, sortPTab); 7184 } 7185 for(j=0; j<pGroupBy->nExpr; j++){ 7186 if( groupBySort ){ 7187 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7188 }else{ 7189 pAggInfo->directMode = 1; 7190 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7191 } 7192 } 7193 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7194 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7195 addr1 = sqlite3VdbeCurrentAddr(v); 7196 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7197 7198 /* Generate code that runs whenever the GROUP BY changes. 7199 ** Changes in the GROUP BY are detected by the previous code 7200 ** block. If there were no changes, this block is skipped. 7201 ** 7202 ** This code copies current group by terms in b0,b1,b2,... 7203 ** over to a0,a1,a2. It then calls the output subroutine 7204 ** and resets the aggregate accumulator registers in preparation 7205 ** for the next GROUP BY batch. 7206 */ 7207 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7208 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7209 VdbeComment((v, "output one row")); 7210 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7211 VdbeComment((v, "check abort flag")); 7212 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7213 VdbeComment((v, "reset accumulator")); 7214 7215 /* Update the aggregate accumulators based on the content of 7216 ** the current row 7217 */ 7218 sqlite3VdbeJumpHere(v, addr1); 7219 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7220 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7221 VdbeComment((v, "indicate data in accumulator")); 7222 7223 /* End of the loop 7224 */ 7225 if( groupBySort ){ 7226 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7227 VdbeCoverage(v); 7228 }else{ 7229 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7230 sqlite3WhereEnd(pWInfo); 7231 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7232 } 7233 sqlite3ExprListDelete(db, pDistinct); 7234 7235 /* Output the final row of result 7236 */ 7237 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7238 VdbeComment((v, "output final row")); 7239 7240 /* Jump over the subroutines 7241 */ 7242 sqlite3VdbeGoto(v, addrEnd); 7243 7244 /* Generate a subroutine that outputs a single row of the result 7245 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7246 ** is less than or equal to zero, the subroutine is a no-op. If 7247 ** the processing calls for the query to abort, this subroutine 7248 ** increments the iAbortFlag memory location before returning in 7249 ** order to signal the caller to abort. 7250 */ 7251 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7252 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7253 VdbeComment((v, "set abort flag")); 7254 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7255 sqlite3VdbeResolveLabel(v, addrOutputRow); 7256 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7257 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7258 VdbeCoverage(v); 7259 VdbeComment((v, "Groupby result generator entry point")); 7260 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7261 finalizeAggFunctions(pParse, pAggInfo); 7262 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7263 selectInnerLoop(pParse, p, -1, &sSort, 7264 &sDistinct, pDest, 7265 addrOutputRow+1, addrSetAbort); 7266 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7267 VdbeComment((v, "end groupby result generator")); 7268 7269 /* Generate a subroutine that will reset the group-by accumulator 7270 */ 7271 sqlite3VdbeResolveLabel(v, addrReset); 7272 resetAccumulator(pParse, pAggInfo); 7273 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7274 VdbeComment((v, "indicate accumulator empty")); 7275 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7276 7277 if( eDist!=WHERE_DISTINCT_NOOP ){ 7278 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7279 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7280 } 7281 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7282 else { 7283 Table *pTab; 7284 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7285 /* If isSimpleCount() returns a pointer to a Table structure, then 7286 ** the SQL statement is of the form: 7287 ** 7288 ** SELECT count(*) FROM <tbl> 7289 ** 7290 ** where the Table structure returned represents table <tbl>. 7291 ** 7292 ** This statement is so common that it is optimized specially. The 7293 ** OP_Count instruction is executed either on the intkey table that 7294 ** contains the data for table <tbl> or on one of its indexes. It 7295 ** is better to execute the op on an index, as indexes are almost 7296 ** always spread across less pages than their corresponding tables. 7297 */ 7298 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7299 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7300 Index *pIdx; /* Iterator variable */ 7301 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7302 Index *pBest = 0; /* Best index found so far */ 7303 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7304 7305 sqlite3CodeVerifySchema(pParse, iDb); 7306 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7307 7308 /* Search for the index that has the lowest scan cost. 7309 ** 7310 ** (2011-04-15) Do not do a full scan of an unordered index. 7311 ** 7312 ** (2013-10-03) Do not count the entries in a partial index. 7313 ** 7314 ** In practice the KeyInfo structure will not be used. It is only 7315 ** passed to keep OP_OpenRead happy. 7316 */ 7317 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7318 if( !p->pSrc->a[0].fg.notIndexed ){ 7319 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7320 if( pIdx->bUnordered==0 7321 && pIdx->szIdxRow<pTab->szTabRow 7322 && pIdx->pPartIdxWhere==0 7323 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7324 ){ 7325 pBest = pIdx; 7326 } 7327 } 7328 } 7329 if( pBest ){ 7330 iRoot = pBest->tnum; 7331 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7332 } 7333 7334 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7335 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7336 if( pKeyInfo ){ 7337 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7338 } 7339 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7340 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7341 explainSimpleCount(pParse, pTab, pBest); 7342 }else{ 7343 int regAcc = 0; /* "populate accumulators" flag */ 7344 ExprList *pDistinct = 0; 7345 u16 distFlag = 0; 7346 int eDist; 7347 7348 /* If there are accumulator registers but no min() or max() functions 7349 ** without FILTER clauses, allocate register regAcc. Register regAcc 7350 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7351 ** The code generated by updateAccumulator() uses this to ensure 7352 ** that the accumulator registers are (a) updated only once if 7353 ** there are no min() or max functions or (b) always updated for the 7354 ** first row visited by the aggregate, so that they are updated at 7355 ** least once even if the FILTER clause means the min() or max() 7356 ** function visits zero rows. */ 7357 if( pAggInfo->nAccumulator ){ 7358 for(i=0; i<pAggInfo->nFunc; i++){ 7359 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7360 continue; 7361 } 7362 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7363 break; 7364 } 7365 } 7366 if( i==pAggInfo->nFunc ){ 7367 regAcc = ++pParse->nMem; 7368 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7369 } 7370 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7371 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7372 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7373 } 7374 7375 /* This case runs if the aggregate has no GROUP BY clause. The 7376 ** processing is much simpler since there is only a single row 7377 ** of output. 7378 */ 7379 assert( p->pGroupBy==0 ); 7380 resetAccumulator(pParse, pAggInfo); 7381 7382 /* If this query is a candidate for the min/max optimization, then 7383 ** minMaxFlag will have been previously set to either 7384 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7385 ** be an appropriate ORDER BY expression for the optimization. 7386 */ 7387 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7388 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7389 7390 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7391 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7392 pDistinct, minMaxFlag|distFlag, 0); 7393 if( pWInfo==0 ){ 7394 goto select_end; 7395 } 7396 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7397 eDist = sqlite3WhereIsDistinct(pWInfo); 7398 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7399 if( eDist!=WHERE_DISTINCT_NOOP ){ 7400 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7401 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7402 } 7403 7404 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7405 if( minMaxFlag ){ 7406 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7407 } 7408 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7409 sqlite3WhereEnd(pWInfo); 7410 finalizeAggFunctions(pParse, pAggInfo); 7411 } 7412 7413 sSort.pOrderBy = 0; 7414 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7415 selectInnerLoop(pParse, p, -1, 0, 0, 7416 pDest, addrEnd, addrEnd); 7417 } 7418 sqlite3VdbeResolveLabel(v, addrEnd); 7419 7420 } /* endif aggregate query */ 7421 7422 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7423 explainTempTable(pParse, "DISTINCT"); 7424 } 7425 7426 /* If there is an ORDER BY clause, then we need to sort the results 7427 ** and send them to the callback one by one. 7428 */ 7429 if( sSort.pOrderBy ){ 7430 explainTempTable(pParse, 7431 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7432 assert( p->pEList==pEList ); 7433 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7434 } 7435 7436 /* Jump here to skip this query 7437 */ 7438 sqlite3VdbeResolveLabel(v, iEnd); 7439 7440 /* The SELECT has been coded. If there is an error in the Parse structure, 7441 ** set the return code to 1. Otherwise 0. */ 7442 rc = (pParse->nErr>0); 7443 7444 /* Control jumps to here if an error is encountered above, or upon 7445 ** successful coding of the SELECT. 7446 */ 7447 select_end: 7448 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7449 pParse->nErr += db->mallocFailed; 7450 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7451 #ifdef SQLITE_DEBUG 7452 if( pAggInfo && !db->mallocFailed ){ 7453 for(i=0; i<pAggInfo->nColumn; i++){ 7454 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7455 assert( pExpr!=0 ); 7456 assert( pExpr->pAggInfo==pAggInfo ); 7457 assert( pExpr->iAgg==i ); 7458 } 7459 for(i=0; i<pAggInfo->nFunc; i++){ 7460 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7461 assert( pExpr!=0 ); 7462 assert( pExpr->pAggInfo==pAggInfo ); 7463 assert( pExpr->iAgg==i ); 7464 } 7465 } 7466 #endif 7467 7468 #if SELECTTRACE_ENABLED 7469 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7470 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7471 sqlite3TreeViewSelect(0, p, 0); 7472 } 7473 #endif 7474 ExplainQueryPlanPop(pParse); 7475 return rc; 7476 } 7477