xref: /sqlite-3.40.0/src/select.c (revision 640574f6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 **
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
37 **
38 **     SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
39 **
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
43 **
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
47 */
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
51   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
52   int iECursor;         /* Cursor number for the sorter */
53   int regReturn;        /* Register holding block-output return address */
54   int labelBkOut;       /* Start label for the block-output subroutine */
55   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56   int labelDone;        /* Jump here when done, ex: LIMIT reached */
57   int labelOBLopt;      /* Jump here when sorter is full */
58   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60   u8 nDefer;            /* Number of valid entries in aDefer[] */
61   struct DeferredCsr {
62     Table *pTab;        /* Table definition */
63     int iCsr;           /* Cursor number for table */
64     int nKey;           /* Number of PK columns for table pTab (>=1) */
65   } aDefer[4];
66 #endif
67   struct RowLoadInfo *pDeferredRowLoad;  /* Deferred row loading info or NULL */
68 };
69 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
70 
71 /*
72 ** Delete all the content of a Select structure.  Deallocate the structure
73 ** itself depending on the value of bFree
74 **
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
77 */
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79   while( p ){
80     Select *pPrior = p->pPrior;
81     sqlite3ExprListDelete(db, p->pEList);
82     sqlite3SrcListDelete(db, p->pSrc);
83     sqlite3ExprDelete(db, p->pWhere);
84     sqlite3ExprListDelete(db, p->pGroupBy);
85     sqlite3ExprDelete(db, p->pHaving);
86     sqlite3ExprListDelete(db, p->pOrderBy);
87     sqlite3ExprDelete(db, p->pLimit);
88     if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90     if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91       sqlite3WindowListDelete(db, p->pWinDefn);
92     }
93     while( p->pWin ){
94       assert( p->pWin->ppThis==&p->pWin );
95       sqlite3WindowUnlinkFromSelect(p->pWin);
96     }
97 #endif
98     if( bFree ) sqlite3DbFreeNN(db, p);
99     p = pPrior;
100     bFree = 1;
101   }
102 }
103 
104 /*
105 ** Initialize a SelectDest structure.
106 */
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108   pDest->eDest = (u8)eDest;
109   pDest->iSDParm = iParm;
110   pDest->iSDParm2 = 0;
111   pDest->zAffSdst = 0;
112   pDest->iSdst = 0;
113   pDest->nSdst = 0;
114 }
115 
116 
117 /*
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
120 */
121 Select *sqlite3SelectNew(
122   Parse *pParse,        /* Parsing context */
123   ExprList *pEList,     /* which columns to include in the result */
124   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
125   Expr *pWhere,         /* the WHERE clause */
126   ExprList *pGroupBy,   /* the GROUP BY clause */
127   Expr *pHaving,        /* the HAVING clause */
128   ExprList *pOrderBy,   /* the ORDER BY clause */
129   u32 selFlags,         /* Flag parameters, such as SF_Distinct */
130   Expr *pLimit          /* LIMIT value.  NULL means not used */
131 ){
132   Select *pNew, *pAllocated;
133   Select standin;
134   pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135   if( pNew==0 ){
136     assert( pParse->db->mallocFailed );
137     pNew = &standin;
138   }
139   if( pEList==0 ){
140     pEList = sqlite3ExprListAppend(pParse, 0,
141                                    sqlite3Expr(pParse->db,TK_ASTERISK,0));
142   }
143   pNew->pEList = pEList;
144   pNew->op = TK_SELECT;
145   pNew->selFlags = selFlags;
146   pNew->iLimit = 0;
147   pNew->iOffset = 0;
148   pNew->selId = ++pParse->nSelect;
149   pNew->addrOpenEphm[0] = -1;
150   pNew->addrOpenEphm[1] = -1;
151   pNew->nSelectRow = 0;
152   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153   pNew->pSrc = pSrc;
154   pNew->pWhere = pWhere;
155   pNew->pGroupBy = pGroupBy;
156   pNew->pHaving = pHaving;
157   pNew->pOrderBy = pOrderBy;
158   pNew->pPrior = 0;
159   pNew->pNext = 0;
160   pNew->pLimit = pLimit;
161   pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163   pNew->pWin = 0;
164   pNew->pWinDefn = 0;
165 #endif
166   if( pParse->db->mallocFailed ) {
167     clearSelect(pParse->db, pNew, pNew!=&standin);
168     pAllocated = 0;
169   }else{
170     assert( pNew->pSrc!=0 || pParse->nErr>0 );
171   }
172   return pAllocated;
173 }
174 
175 
176 /*
177 ** Delete the given Select structure and all of its substructures.
178 */
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180   if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
181 }
182 
183 /*
184 ** Return a pointer to the right-most SELECT statement in a compound.
185 */
186 static Select *findRightmost(Select *p){
187   while( p->pNext ) p = p->pNext;
188   return p;
189 }
190 
191 /*
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join.  Return an integer constant that expresses that type
194 ** in terms of the following bit values:
195 **
196 **     JT_INNER
197 **     JT_CROSS
198 **     JT_OUTER
199 **     JT_NATURAL
200 **     JT_LEFT
201 **     JT_RIGHT
202 **
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
204 **
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
207 */
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209   int jointype = 0;
210   Token *apAll[3];
211   Token *p;
212                              /*   0123456789 123456789 123456789 123 */
213   static const char zKeyText[] = "naturaleftouterightfullinnercross";
214   static const struct {
215     u8 i;        /* Beginning of keyword text in zKeyText[] */
216     u8 nChar;    /* Length of the keyword in characters */
217     u8 code;     /* Join type mask */
218   } aKeyword[] = {
219     /* natural */ { 0,  7, JT_NATURAL                },
220     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
221     /* outer   */ { 10, 5, JT_OUTER                  },
222     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
223     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224     /* inner   */ { 23, 5, JT_INNER                  },
225     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
226   };
227   int i, j;
228   apAll[0] = pA;
229   apAll[1] = pB;
230   apAll[2] = pC;
231   for(i=0; i<3 && apAll[i]; i++){
232     p = apAll[i];
233     for(j=0; j<ArraySize(aKeyword); j++){
234       if( p->n==aKeyword[j].nChar
235           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236         jointype |= aKeyword[j].code;
237         break;
238       }
239     }
240     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241     if( j>=ArraySize(aKeyword) ){
242       jointype |= JT_ERROR;
243       break;
244     }
245   }
246   if(
247      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248      (jointype & JT_ERROR)!=0
249   ){
250     const char *zSp = " ";
251     assert( pB!=0 );
252     if( pC==0 ){ zSp++; }
253     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254        "%T %T%s%T", pA, pB, zSp, pC);
255     jointype = JT_INNER;
256   }else if( (jointype & JT_OUTER)!=0
257          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258     sqlite3ErrorMsg(pParse,
259       "RIGHT and FULL OUTER JOINs are not currently supported");
260     jointype = JT_INNER;
261   }
262   return jointype;
263 }
264 
265 /*
266 ** Return the index of a column in a table.  Return -1 if the column
267 ** is not contained in the table.
268 */
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270   int i;
271   u8 h = sqlite3StrIHash(zCol);
272   Column *pCol;
273   for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274     if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
275   }
276   return -1;
277 }
278 
279 /*
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
282 **
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
285 **
286 ** If not found, return FALSE.
287 */
288 static int tableAndColumnIndex(
289   SrcList *pSrc,       /* Array of tables to search */
290   int N,               /* Number of tables in pSrc->a[] to search */
291   const char *zCol,    /* Name of the column we are looking for */
292   int *piTab,          /* Write index of pSrc->a[] here */
293   int *piCol,          /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294   int bIgnoreHidden    /* True to ignore hidden columns */
295 ){
296   int i;               /* For looping over tables in pSrc */
297   int iCol;            /* Index of column matching zCol */
298 
299   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
300   for(i=0; i<N; i++){
301     iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302     if( iCol>=0
303      && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
304     ){
305       if( piTab ){
306         *piTab = i;
307         *piCol = iCol;
308       }
309       return 1;
310     }
311   }
312   return 0;
313 }
314 
315 /*
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
319 **
320 **    (tab1.col1 = tab2.col2)
321 **
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
325 */
326 static void addWhereTerm(
327   Parse *pParse,                  /* Parsing context */
328   SrcList *pSrc,                  /* List of tables in FROM clause */
329   int iLeft,                      /* Index of first table to join in pSrc */
330   int iColLeft,                   /* Index of column in first table */
331   int iRight,                     /* Index of second table in pSrc */
332   int iColRight,                  /* Index of column in second table */
333   int isOuterJoin,                /* True if this is an OUTER join */
334   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
335 ){
336   sqlite3 *db = pParse->db;
337   Expr *pE1;
338   Expr *pE2;
339   Expr *pEq;
340 
341   assert( iLeft<iRight );
342   assert( pSrc->nSrc>iRight );
343   assert( pSrc->a[iLeft].pTab );
344   assert( pSrc->a[iRight].pTab );
345 
346   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
348 
349   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350   assert( pE2!=0 || pEq==0 );  /* Due to db->mallocFailed test
351                                ** in sqlite3DbMallocRawNN() called from
352                                ** sqlite3PExpr(). */
353   if( pEq && isOuterJoin ){
354     ExprSetProperty(pEq, EP_FromJoin);
355     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
356     ExprSetVVAProperty(pEq, EP_NoReduce);
357     pEq->iRightJoinTable = pE2->iTable;
358   }
359   *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
360 }
361 
362 /*
363 ** Set the EP_FromJoin property on all terms of the given expression.
364 ** And set the Expr.iRightJoinTable to iTable for every term in the
365 ** expression.
366 **
367 ** The EP_FromJoin property is used on terms of an expression to tell
368 ** the LEFT OUTER JOIN processing logic that this term is part of the
369 ** join restriction specified in the ON or USING clause and not a part
370 ** of the more general WHERE clause.  These terms are moved over to the
371 ** WHERE clause during join processing but we need to remember that they
372 ** originated in the ON or USING clause.
373 **
374 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
375 ** expression depends on table iRightJoinTable even if that table is not
376 ** explicitly mentioned in the expression.  That information is needed
377 ** for cases like this:
378 **
379 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
380 **
381 ** The where clause needs to defer the handling of the t1.x=5
382 ** term until after the t2 loop of the join.  In that way, a
383 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
384 ** defer the handling of t1.x=5, it will be processed immediately
385 ** after the t1 loop and rows with t1.x!=5 will never appear in
386 ** the output, which is incorrect.
387 */
388 void sqlite3SetJoinExpr(Expr *p, int iTable){
389   while( p ){
390     ExprSetProperty(p, EP_FromJoin);
391     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
392     ExprSetVVAProperty(p, EP_NoReduce);
393     p->iRightJoinTable = iTable;
394     if( p->op==TK_FUNCTION && p->x.pList ){
395       int i;
396       for(i=0; i<p->x.pList->nExpr; i++){
397         sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
398       }
399     }
400     sqlite3SetJoinExpr(p->pLeft, iTable);
401     p = p->pRight;
402   }
403 }
404 
405 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
406 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
407 ** an ordinary term that omits the EP_FromJoin mark.
408 **
409 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
410 */
411 static void unsetJoinExpr(Expr *p, int iTable){
412   while( p ){
413     if( ExprHasProperty(p, EP_FromJoin)
414      && (iTable<0 || p->iRightJoinTable==iTable) ){
415       ExprClearProperty(p, EP_FromJoin);
416     }
417     if( p->op==TK_COLUMN && p->iTable==iTable ){
418       ExprClearProperty(p, EP_CanBeNull);
419     }
420     if( p->op==TK_FUNCTION && p->x.pList ){
421       int i;
422       for(i=0; i<p->x.pList->nExpr; i++){
423         unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
424       }
425     }
426     unsetJoinExpr(p->pLeft, iTable);
427     p = p->pRight;
428   }
429 }
430 
431 /*
432 ** This routine processes the join information for a SELECT statement.
433 ** ON and USING clauses are converted into extra terms of the WHERE clause.
434 ** NATURAL joins also create extra WHERE clause terms.
435 **
436 ** The terms of a FROM clause are contained in the Select.pSrc structure.
437 ** The left most table is the first entry in Select.pSrc.  The right-most
438 ** table is the last entry.  The join operator is held in the entry to
439 ** the left.  Thus entry 0 contains the join operator for the join between
440 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
441 ** also attached to the left entry.
442 **
443 ** This routine returns the number of errors encountered.
444 */
445 static int sqliteProcessJoin(Parse *pParse, Select *p){
446   SrcList *pSrc;                  /* All tables in the FROM clause */
447   int i, j;                       /* Loop counters */
448   SrcItem *pLeft;                 /* Left table being joined */
449   SrcItem *pRight;                /* Right table being joined */
450 
451   pSrc = p->pSrc;
452   pLeft = &pSrc->a[0];
453   pRight = &pLeft[1];
454   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
455     Table *pRightTab = pRight->pTab;
456     int isOuter;
457 
458     if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
459     isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
460 
461     /* When the NATURAL keyword is present, add WHERE clause terms for
462     ** every column that the two tables have in common.
463     */
464     if( pRight->fg.jointype & JT_NATURAL ){
465       if( pRight->pOn || pRight->pUsing ){
466         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
467            "an ON or USING clause", 0);
468         return 1;
469       }
470       for(j=0; j<pRightTab->nCol; j++){
471         char *zName;   /* Name of column in the right table */
472         int iLeft;     /* Matching left table */
473         int iLeftCol;  /* Matching column in the left table */
474 
475         if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
476         zName = pRightTab->aCol[j].zCnName;
477         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
478           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
479                 isOuter, &p->pWhere);
480         }
481       }
482     }
483 
484     /* Disallow both ON and USING clauses in the same join
485     */
486     if( pRight->pOn && pRight->pUsing ){
487       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
488         "clauses in the same join");
489       return 1;
490     }
491 
492     /* Add the ON clause to the end of the WHERE clause, connected by
493     ** an AND operator.
494     */
495     if( pRight->pOn ){
496       if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
497       p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
498       pRight->pOn = 0;
499     }
500 
501     /* Create extra terms on the WHERE clause for each column named
502     ** in the USING clause.  Example: If the two tables to be joined are
503     ** A and B and the USING clause names X, Y, and Z, then add this
504     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
505     ** Report an error if any column mentioned in the USING clause is
506     ** not contained in both tables to be joined.
507     */
508     if( pRight->pUsing ){
509       IdList *pList = pRight->pUsing;
510       for(j=0; j<pList->nId; j++){
511         char *zName;     /* Name of the term in the USING clause */
512         int iLeft;       /* Table on the left with matching column name */
513         int iLeftCol;    /* Column number of matching column on the left */
514         int iRightCol;   /* Column number of matching column on the right */
515 
516         zName = pList->a[j].zName;
517         iRightCol = sqlite3ColumnIndex(pRightTab, zName);
518         if( iRightCol<0
519          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
520         ){
521           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
522             "not present in both tables", zName);
523           return 1;
524         }
525         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
526                      isOuter, &p->pWhere);
527       }
528     }
529   }
530   return 0;
531 }
532 
533 /*
534 ** An instance of this object holds information (beyond pParse and pSelect)
535 ** needed to load the next result row that is to be added to the sorter.
536 */
537 typedef struct RowLoadInfo RowLoadInfo;
538 struct RowLoadInfo {
539   int regResult;               /* Store results in array of registers here */
540   u8 ecelFlags;                /* Flag argument to ExprCodeExprList() */
541 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
542   ExprList *pExtra;            /* Extra columns needed by sorter refs */
543   int regExtraResult;          /* Where to load the extra columns */
544 #endif
545 };
546 
547 /*
548 ** This routine does the work of loading query data into an array of
549 ** registers so that it can be added to the sorter.
550 */
551 static void innerLoopLoadRow(
552   Parse *pParse,             /* Statement under construction */
553   Select *pSelect,           /* The query being coded */
554   RowLoadInfo *pInfo         /* Info needed to complete the row load */
555 ){
556   sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
557                           0, pInfo->ecelFlags);
558 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
559   if( pInfo->pExtra ){
560     sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
561     sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
562   }
563 #endif
564 }
565 
566 /*
567 ** Code the OP_MakeRecord instruction that generates the entry to be
568 ** added into the sorter.
569 **
570 ** Return the register in which the result is stored.
571 */
572 static int makeSorterRecord(
573   Parse *pParse,
574   SortCtx *pSort,
575   Select *pSelect,
576   int regBase,
577   int nBase
578 ){
579   int nOBSat = pSort->nOBSat;
580   Vdbe *v = pParse->pVdbe;
581   int regOut = ++pParse->nMem;
582   if( pSort->pDeferredRowLoad ){
583     innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
584   }
585   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
586   return regOut;
587 }
588 
589 /*
590 ** Generate code that will push the record in registers regData
591 ** through regData+nData-1 onto the sorter.
592 */
593 static void pushOntoSorter(
594   Parse *pParse,         /* Parser context */
595   SortCtx *pSort,        /* Information about the ORDER BY clause */
596   Select *pSelect,       /* The whole SELECT statement */
597   int regData,           /* First register holding data to be sorted */
598   int regOrigData,       /* First register holding data before packing */
599   int nData,             /* Number of elements in the regData data array */
600   int nPrefixReg         /* No. of reg prior to regData available for use */
601 ){
602   Vdbe *v = pParse->pVdbe;                         /* Stmt under construction */
603   int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
604   int nExpr = pSort->pOrderBy->nExpr;              /* No. of ORDER BY terms */
605   int nBase = nExpr + bSeq + nData;                /* Fields in sorter record */
606   int regBase;                                     /* Regs for sorter record */
607   int regRecord = 0;                               /* Assembled sorter record */
608   int nOBSat = pSort->nOBSat;                      /* ORDER BY terms to skip */
609   int op;                            /* Opcode to add sorter record to sorter */
610   int iLimit;                        /* LIMIT counter */
611   int iSkip = 0;                     /* End of the sorter insert loop */
612 
613   assert( bSeq==0 || bSeq==1 );
614 
615   /* Three cases:
616   **   (1) The data to be sorted has already been packed into a Record
617   **       by a prior OP_MakeRecord.  In this case nData==1 and regData
618   **       will be completely unrelated to regOrigData.
619   **   (2) All output columns are included in the sort record.  In that
620   **       case regData==regOrigData.
621   **   (3) Some output columns are omitted from the sort record due to
622   **       the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
623   **       SQLITE_ECEL_OMITREF optimization, or due to the
624   **       SortCtx.pDeferredRowLoad optimiation.  In any of these cases
625   **       regOrigData is 0 to prevent this routine from trying to copy
626   **       values that might not yet exist.
627   */
628   assert( nData==1 || regData==regOrigData || regOrigData==0 );
629 
630   if( nPrefixReg ){
631     assert( nPrefixReg==nExpr+bSeq );
632     regBase = regData - nPrefixReg;
633   }else{
634     regBase = pParse->nMem + 1;
635     pParse->nMem += nBase;
636   }
637   assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
638   iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
639   pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
640   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
641                           SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
642   if( bSeq ){
643     sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
644   }
645   if( nPrefixReg==0 && nData>0 ){
646     sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
647   }
648   if( nOBSat>0 ){
649     int regPrevKey;   /* The first nOBSat columns of the previous row */
650     int addrFirst;    /* Address of the OP_IfNot opcode */
651     int addrJmp;      /* Address of the OP_Jump opcode */
652     VdbeOp *pOp;      /* Opcode that opens the sorter */
653     int nKey;         /* Number of sorting key columns, including OP_Sequence */
654     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
655 
656     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
657     regPrevKey = pParse->nMem+1;
658     pParse->nMem += pSort->nOBSat;
659     nKey = nExpr - pSort->nOBSat + bSeq;
660     if( bSeq ){
661       addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
662     }else{
663       addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
664     }
665     VdbeCoverage(v);
666     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
667     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
668     if( pParse->db->mallocFailed ) return;
669     pOp->p2 = nKey + nData;
670     pKI = pOp->p4.pKeyInfo;
671     memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
672     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
673     testcase( pKI->nAllField > pKI->nKeyField+2 );
674     pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
675                                            pKI->nAllField-pKI->nKeyField-1);
676     pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
677     addrJmp = sqlite3VdbeCurrentAddr(v);
678     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
679     pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
680     pSort->regReturn = ++pParse->nMem;
681     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
682     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
683     if( iLimit ){
684       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
685       VdbeCoverage(v);
686     }
687     sqlite3VdbeJumpHere(v, addrFirst);
688     sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
689     sqlite3VdbeJumpHere(v, addrJmp);
690   }
691   if( iLimit ){
692     /* At this point the values for the new sorter entry are stored
693     ** in an array of registers. They need to be composed into a record
694     ** and inserted into the sorter if either (a) there are currently
695     ** less than LIMIT+OFFSET items or (b) the new record is smaller than
696     ** the largest record currently in the sorter. If (b) is true and there
697     ** are already LIMIT+OFFSET items in the sorter, delete the largest
698     ** entry before inserting the new one. This way there are never more
699     ** than LIMIT+OFFSET items in the sorter.
700     **
701     ** If the new record does not need to be inserted into the sorter,
702     ** jump to the next iteration of the loop. If the pSort->labelOBLopt
703     ** value is not zero, then it is a label of where to jump.  Otherwise,
704     ** just bypass the row insert logic.  See the header comment on the
705     ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
706     */
707     int iCsr = pSort->iECursor;
708     sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
709     VdbeCoverage(v);
710     sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
711     iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
712                                  iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
713     VdbeCoverage(v);
714     sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
715   }
716   if( regRecord==0 ){
717     regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
718   }
719   if( pSort->sortFlags & SORTFLAG_UseSorter ){
720     op = OP_SorterInsert;
721   }else{
722     op = OP_IdxInsert;
723   }
724   sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
725                        regBase+nOBSat, nBase-nOBSat);
726   if( iSkip ){
727     sqlite3VdbeChangeP2(v, iSkip,
728          pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
729   }
730 }
731 
732 /*
733 ** Add code to implement the OFFSET
734 */
735 static void codeOffset(
736   Vdbe *v,          /* Generate code into this VM */
737   int iOffset,      /* Register holding the offset counter */
738   int iContinue     /* Jump here to skip the current record */
739 ){
740   if( iOffset>0 ){
741     sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
742     VdbeComment((v, "OFFSET"));
743   }
744 }
745 
746 /*
747 ** Add code that will check to make sure the array of registers starting at
748 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
749 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
750 ** are available. Which is used depends on the value of parameter eTnctType,
751 ** as follows:
752 **
753 **   WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
754 **     Build an ephemeral table that contains all entries seen before and
755 **     skip entries which have been seen before.
756 **
757 **     Parameter iTab is the cursor number of an ephemeral table that must
758 **     be opened before the VM code generated by this routine is executed.
759 **     The ephemeral cursor table is queried for a record identical to the
760 **     record formed by the current array of registers. If one is found,
761 **     jump to VM address addrRepeat. Otherwise, insert a new record into
762 **     the ephemeral cursor and proceed.
763 **
764 **     The returned value in this case is a copy of parameter iTab.
765 **
766 **   WHERE_DISTINCT_ORDERED:
767 **     In this case rows are being delivered sorted order. The ephermal
768 **     table is not required. Instead, the current set of values
769 **     is compared against previous row. If they match, the new row
770 **     is not distinct and control jumps to VM address addrRepeat. Otherwise,
771 **     the VM program proceeds with processing the new row.
772 **
773 **     The returned value in this case is the register number of the first
774 **     in an array of registers used to store the previous result row so that
775 **     it can be compared to the next. The caller must ensure that this
776 **     register is initialized to NULL.  (The fixDistinctOpenEph() routine
777 **     will take care of this initialization.)
778 **
779 **   WHERE_DISTINCT_UNIQUE:
780 **     In this case it has already been determined that the rows are distinct.
781 **     No special action is required. The return value is zero.
782 **
783 ** Parameter pEList is the list of expressions used to generated the
784 ** contents of each row. It is used by this routine to determine (a)
785 ** how many elements there are in the array of registers and (b) the
786 ** collation sequences that should be used for the comparisons if
787 ** eTnctType is WHERE_DISTINCT_ORDERED.
788 */
789 static int codeDistinct(
790   Parse *pParse,     /* Parsing and code generating context */
791   int eTnctType,     /* WHERE_DISTINCT_* value */
792   int iTab,          /* A sorting index used to test for distinctness */
793   int addrRepeat,    /* Jump to here if not distinct */
794   ExprList *pEList,  /* Expression for each element */
795   int regElem        /* First element */
796 ){
797   int iRet = 0;
798   int nResultCol = pEList->nExpr;
799   Vdbe *v = pParse->pVdbe;
800 
801   switch( eTnctType ){
802     case WHERE_DISTINCT_ORDERED: {
803       int i;
804       int iJump;              /* Jump destination */
805       int regPrev;            /* Previous row content */
806 
807       /* Allocate space for the previous row */
808       iRet = regPrev = pParse->nMem+1;
809       pParse->nMem += nResultCol;
810 
811       iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
812       for(i=0; i<nResultCol; i++){
813         CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
814         if( i<nResultCol-1 ){
815           sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
816           VdbeCoverage(v);
817         }else{
818           sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
819           VdbeCoverage(v);
820          }
821         sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
822         sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
823       }
824       assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
825       sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
826       break;
827     }
828 
829     case WHERE_DISTINCT_UNIQUE: {
830       /* nothing to do */
831       break;
832     }
833 
834     default: {
835       int r1 = sqlite3GetTempReg(pParse);
836       sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
837       VdbeCoverage(v);
838       sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
839       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
840       sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
841       sqlite3ReleaseTempReg(pParse, r1);
842       iRet = iTab;
843       break;
844     }
845   }
846 
847   return iRet;
848 }
849 
850 /*
851 ** This routine runs after codeDistinct().  It makes necessary
852 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
853 ** routine made use of.  This processing must be done separately since
854 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
855 ** laid down.
856 **
857 ** WHERE_DISTINCT_NOOP:
858 ** WHERE_DISTINCT_UNORDERED:
859 **
860 **     No adjustments necessary.  This function is a no-op.
861 **
862 ** WHERE_DISTINCT_UNIQUE:
863 **
864 **     The ephemeral table is not needed.  So change the
865 **     OP_OpenEphemeral opcode into an OP_Noop.
866 **
867 ** WHERE_DISTINCT_ORDERED:
868 **
869 **     The ephemeral table is not needed.  But we do need register
870 **     iVal to be initialized to NULL.  So change the OP_OpenEphemeral
871 **     into an OP_Null on the iVal register.
872 */
873 static void fixDistinctOpenEph(
874   Parse *pParse,     /* Parsing and code generating context */
875   int eTnctType,     /* WHERE_DISTINCT_* value */
876   int iVal,          /* Value returned by codeDistinct() */
877   int iOpenEphAddr   /* Address of OP_OpenEphemeral instruction for iTab */
878 ){
879   if( pParse->nErr==0
880    && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
881   ){
882     Vdbe *v = pParse->pVdbe;
883     sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
884     if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
885       sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
886     }
887     if( eTnctType==WHERE_DISTINCT_ORDERED ){
888       /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
889       ** bit on the first register of the previous value.  This will cause the
890       ** OP_Ne added in codeDistinct() to always fail on the first iteration of
891       ** the loop even if the first row is all NULLs.  */
892       VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
893       pOp->opcode = OP_Null;
894       pOp->p1 = 1;
895       pOp->p2 = iVal;
896     }
897   }
898 }
899 
900 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
901 /*
902 ** This function is called as part of inner-loop generation for a SELECT
903 ** statement with an ORDER BY that is not optimized by an index. It
904 ** determines the expressions, if any, that the sorter-reference
905 ** optimization should be used for. The sorter-reference optimization
906 ** is used for SELECT queries like:
907 **
908 **   SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
909 **
910 ** If the optimization is used for expression "bigblob", then instead of
911 ** storing values read from that column in the sorter records, the PK of
912 ** the row from table t1 is stored instead. Then, as records are extracted from
913 ** the sorter to return to the user, the required value of bigblob is
914 ** retrieved directly from table t1. If the values are very large, this
915 ** can be more efficient than storing them directly in the sorter records.
916 **
917 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
918 ** for which the sorter-reference optimization should be enabled.
919 ** Additionally, the pSort->aDefer[] array is populated with entries
920 ** for all cursors required to evaluate all selected expressions. Finally.
921 ** output variable (*ppExtra) is set to an expression list containing
922 ** expressions for all extra PK values that should be stored in the
923 ** sorter records.
924 */
925 static void selectExprDefer(
926   Parse *pParse,                  /* Leave any error here */
927   SortCtx *pSort,                 /* Sorter context */
928   ExprList *pEList,               /* Expressions destined for sorter */
929   ExprList **ppExtra              /* Expressions to append to sorter record */
930 ){
931   int i;
932   int nDefer = 0;
933   ExprList *pExtra = 0;
934   for(i=0; i<pEList->nExpr; i++){
935     struct ExprList_item *pItem = &pEList->a[i];
936     if( pItem->u.x.iOrderByCol==0 ){
937       Expr *pExpr = pItem->pExpr;
938       Table *pTab = pExpr->y.pTab;
939       if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
940        && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
941       ){
942         int j;
943         for(j=0; j<nDefer; j++){
944           if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
945         }
946         if( j==nDefer ){
947           if( nDefer==ArraySize(pSort->aDefer) ){
948             continue;
949           }else{
950             int nKey = 1;
951             int k;
952             Index *pPk = 0;
953             if( !HasRowid(pTab) ){
954               pPk = sqlite3PrimaryKeyIndex(pTab);
955               nKey = pPk->nKeyCol;
956             }
957             for(k=0; k<nKey; k++){
958               Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
959               if( pNew ){
960                 pNew->iTable = pExpr->iTable;
961                 pNew->y.pTab = pExpr->y.pTab;
962                 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
963                 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
964               }
965             }
966             pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
967             pSort->aDefer[nDefer].iCsr = pExpr->iTable;
968             pSort->aDefer[nDefer].nKey = nKey;
969             nDefer++;
970           }
971         }
972         pItem->bSorterRef = 1;
973       }
974     }
975   }
976   pSort->nDefer = (u8)nDefer;
977   *ppExtra = pExtra;
978 }
979 #endif
980 
981 /*
982 ** This routine generates the code for the inside of the inner loop
983 ** of a SELECT.
984 **
985 ** If srcTab is negative, then the p->pEList expressions
986 ** are evaluated in order to get the data for this row.  If srcTab is
987 ** zero or more, then data is pulled from srcTab and p->pEList is used only
988 ** to get the number of columns and the collation sequence for each column.
989 */
990 static void selectInnerLoop(
991   Parse *pParse,          /* The parser context */
992   Select *p,              /* The complete select statement being coded */
993   int srcTab,             /* Pull data from this table if non-negative */
994   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
995   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
996   SelectDest *pDest,      /* How to dispose of the results */
997   int iContinue,          /* Jump here to continue with next row */
998   int iBreak              /* Jump here to break out of the inner loop */
999 ){
1000   Vdbe *v = pParse->pVdbe;
1001   int i;
1002   int hasDistinct;            /* True if the DISTINCT keyword is present */
1003   int eDest = pDest->eDest;   /* How to dispose of results */
1004   int iParm = pDest->iSDParm; /* First argument to disposal method */
1005   int nResultCol;             /* Number of result columns */
1006   int nPrefixReg = 0;         /* Number of extra registers before regResult */
1007   RowLoadInfo sRowLoadInfo;   /* Info for deferred row loading */
1008 
1009   /* Usually, regResult is the first cell in an array of memory cells
1010   ** containing the current result row. In this case regOrig is set to the
1011   ** same value. However, if the results are being sent to the sorter, the
1012   ** values for any expressions that are also part of the sort-key are omitted
1013   ** from this array. In this case regOrig is set to zero.  */
1014   int regResult;              /* Start of memory holding current results */
1015   int regOrig;                /* Start of memory holding full result (or 0) */
1016 
1017   assert( v );
1018   assert( p->pEList!=0 );
1019   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1020   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1021   if( pSort==0 && !hasDistinct ){
1022     assert( iContinue!=0 );
1023     codeOffset(v, p->iOffset, iContinue);
1024   }
1025 
1026   /* Pull the requested columns.
1027   */
1028   nResultCol = p->pEList->nExpr;
1029 
1030   if( pDest->iSdst==0 ){
1031     if( pSort ){
1032       nPrefixReg = pSort->pOrderBy->nExpr;
1033       if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1034       pParse->nMem += nPrefixReg;
1035     }
1036     pDest->iSdst = pParse->nMem+1;
1037     pParse->nMem += nResultCol;
1038   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1039     /* This is an error condition that can result, for example, when a SELECT
1040     ** on the right-hand side of an INSERT contains more result columns than
1041     ** there are columns in the table on the left.  The error will be caught
1042     ** and reported later.  But we need to make sure enough memory is allocated
1043     ** to avoid other spurious errors in the meantime. */
1044     pParse->nMem += nResultCol;
1045   }
1046   pDest->nSdst = nResultCol;
1047   regOrig = regResult = pDest->iSdst;
1048   if( srcTab>=0 ){
1049     for(i=0; i<nResultCol; i++){
1050       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1051       VdbeComment((v, "%s", p->pEList->a[i].zEName));
1052     }
1053   }else if( eDest!=SRT_Exists ){
1054 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1055     ExprList *pExtra = 0;
1056 #endif
1057     /* If the destination is an EXISTS(...) expression, the actual
1058     ** values returned by the SELECT are not required.
1059     */
1060     u8 ecelFlags;    /* "ecel" is an abbreviation of "ExprCodeExprList" */
1061     ExprList *pEList;
1062     if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1063       ecelFlags = SQLITE_ECEL_DUP;
1064     }else{
1065       ecelFlags = 0;
1066     }
1067     if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1068       /* For each expression in p->pEList that is a copy of an expression in
1069       ** the ORDER BY clause (pSort->pOrderBy), set the associated
1070       ** iOrderByCol value to one more than the index of the ORDER BY
1071       ** expression within the sort-key that pushOntoSorter() will generate.
1072       ** This allows the p->pEList field to be omitted from the sorted record,
1073       ** saving space and CPU cycles.  */
1074       ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1075 
1076       for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1077         int j;
1078         if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1079           p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1080         }
1081       }
1082 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1083       selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1084       if( pExtra && pParse->db->mallocFailed==0 ){
1085         /* If there are any extra PK columns to add to the sorter records,
1086         ** allocate extra memory cells and adjust the OpenEphemeral
1087         ** instruction to account for the larger records. This is only
1088         ** required if there are one or more WITHOUT ROWID tables with
1089         ** composite primary keys in the SortCtx.aDefer[] array.  */
1090         VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1091         pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1092         pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1093         pParse->nMem += pExtra->nExpr;
1094       }
1095 #endif
1096 
1097       /* Adjust nResultCol to account for columns that are omitted
1098       ** from the sorter by the optimizations in this branch */
1099       pEList = p->pEList;
1100       for(i=0; i<pEList->nExpr; i++){
1101         if( pEList->a[i].u.x.iOrderByCol>0
1102 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1103          || pEList->a[i].bSorterRef
1104 #endif
1105         ){
1106           nResultCol--;
1107           regOrig = 0;
1108         }
1109       }
1110 
1111       testcase( regOrig );
1112       testcase( eDest==SRT_Set );
1113       testcase( eDest==SRT_Mem );
1114       testcase( eDest==SRT_Coroutine );
1115       testcase( eDest==SRT_Output );
1116       assert( eDest==SRT_Set || eDest==SRT_Mem
1117            || eDest==SRT_Coroutine || eDest==SRT_Output
1118            || eDest==SRT_Upfrom );
1119     }
1120     sRowLoadInfo.regResult = regResult;
1121     sRowLoadInfo.ecelFlags = ecelFlags;
1122 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1123     sRowLoadInfo.pExtra = pExtra;
1124     sRowLoadInfo.regExtraResult = regResult + nResultCol;
1125     if( pExtra ) nResultCol += pExtra->nExpr;
1126 #endif
1127     if( p->iLimit
1128      && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1129      && nPrefixReg>0
1130     ){
1131       assert( pSort!=0 );
1132       assert( hasDistinct==0 );
1133       pSort->pDeferredRowLoad = &sRowLoadInfo;
1134       regOrig = 0;
1135     }else{
1136       innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1137     }
1138   }
1139 
1140   /* If the DISTINCT keyword was present on the SELECT statement
1141   ** and this row has been seen before, then do not make this row
1142   ** part of the result.
1143   */
1144   if( hasDistinct ){
1145     int eType = pDistinct->eTnctType;
1146     int iTab = pDistinct->tabTnct;
1147     assert( nResultCol==p->pEList->nExpr );
1148     iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1149     fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1150     if( pSort==0 ){
1151       codeOffset(v, p->iOffset, iContinue);
1152     }
1153   }
1154 
1155   switch( eDest ){
1156     /* In this mode, write each query result to the key of the temporary
1157     ** table iParm.
1158     */
1159 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1160     case SRT_Union: {
1161       int r1;
1162       r1 = sqlite3GetTempReg(pParse);
1163       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1164       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1165       sqlite3ReleaseTempReg(pParse, r1);
1166       break;
1167     }
1168 
1169     /* Construct a record from the query result, but instead of
1170     ** saving that record, use it as a key to delete elements from
1171     ** the temporary table iParm.
1172     */
1173     case SRT_Except: {
1174       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1175       break;
1176     }
1177 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1178 
1179     /* Store the result as data using a unique key.
1180     */
1181     case SRT_Fifo:
1182     case SRT_DistFifo:
1183     case SRT_Table:
1184     case SRT_EphemTab: {
1185       int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1186       testcase( eDest==SRT_Table );
1187       testcase( eDest==SRT_EphemTab );
1188       testcase( eDest==SRT_Fifo );
1189       testcase( eDest==SRT_DistFifo );
1190       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1191 #ifndef SQLITE_OMIT_CTE
1192       if( eDest==SRT_DistFifo ){
1193         /* If the destination is DistFifo, then cursor (iParm+1) is open
1194         ** on an ephemeral index. If the current row is already present
1195         ** in the index, do not write it to the output. If not, add the
1196         ** current row to the index and proceed with writing it to the
1197         ** output table as well.  */
1198         int addr = sqlite3VdbeCurrentAddr(v) + 4;
1199         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1200         VdbeCoverage(v);
1201         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1202         assert( pSort==0 );
1203       }
1204 #endif
1205       if( pSort ){
1206         assert( regResult==regOrig );
1207         pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1208       }else{
1209         int r2 = sqlite3GetTempReg(pParse);
1210         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1211         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1212         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1213         sqlite3ReleaseTempReg(pParse, r2);
1214       }
1215       sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1216       break;
1217     }
1218 
1219     case SRT_Upfrom: {
1220       if( pSort ){
1221         pushOntoSorter(
1222             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1223       }else{
1224         int i2 = pDest->iSDParm2;
1225         int r1 = sqlite3GetTempReg(pParse);
1226 
1227         /* If the UPDATE FROM join is an aggregate that matches no rows, it
1228         ** might still be trying to return one row, because that is what
1229         ** aggregates do.  Don't record that empty row in the output table. */
1230         sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1231 
1232         sqlite3VdbeAddOp3(v, OP_MakeRecord,
1233                           regResult+(i2<0), nResultCol-(i2<0), r1);
1234         if( i2<0 ){
1235           sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1236         }else{
1237           sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1238         }
1239       }
1240       break;
1241     }
1242 
1243 #ifndef SQLITE_OMIT_SUBQUERY
1244     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1245     ** then there should be a single item on the stack.  Write this
1246     ** item into the set table with bogus data.
1247     */
1248     case SRT_Set: {
1249       if( pSort ){
1250         /* At first glance you would think we could optimize out the
1251         ** ORDER BY in this case since the order of entries in the set
1252         ** does not matter.  But there might be a LIMIT clause, in which
1253         ** case the order does matter */
1254         pushOntoSorter(
1255             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1256       }else{
1257         int r1 = sqlite3GetTempReg(pParse);
1258         assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1259         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1260             r1, pDest->zAffSdst, nResultCol);
1261         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1262         sqlite3ReleaseTempReg(pParse, r1);
1263       }
1264       break;
1265     }
1266 
1267 
1268     /* If any row exist in the result set, record that fact and abort.
1269     */
1270     case SRT_Exists: {
1271       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1272       /* The LIMIT clause will terminate the loop for us */
1273       break;
1274     }
1275 
1276     /* If this is a scalar select that is part of an expression, then
1277     ** store the results in the appropriate memory cell or array of
1278     ** memory cells and break out of the scan loop.
1279     */
1280     case SRT_Mem: {
1281       if( pSort ){
1282         assert( nResultCol<=pDest->nSdst );
1283         pushOntoSorter(
1284             pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1285       }else{
1286         assert( nResultCol==pDest->nSdst );
1287         assert( regResult==iParm );
1288         /* The LIMIT clause will jump out of the loop for us */
1289       }
1290       break;
1291     }
1292 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1293 
1294     case SRT_Coroutine:       /* Send data to a co-routine */
1295     case SRT_Output: {        /* Return the results */
1296       testcase( eDest==SRT_Coroutine );
1297       testcase( eDest==SRT_Output );
1298       if( pSort ){
1299         pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1300                        nPrefixReg);
1301       }else if( eDest==SRT_Coroutine ){
1302         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1303       }else{
1304         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1305       }
1306       break;
1307     }
1308 
1309 #ifndef SQLITE_OMIT_CTE
1310     /* Write the results into a priority queue that is order according to
1311     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
1312     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
1313     ** pSO->nExpr columns, then make sure all keys are unique by adding a
1314     ** final OP_Sequence column.  The last column is the record as a blob.
1315     */
1316     case SRT_DistQueue:
1317     case SRT_Queue: {
1318       int nKey;
1319       int r1, r2, r3;
1320       int addrTest = 0;
1321       ExprList *pSO;
1322       pSO = pDest->pOrderBy;
1323       assert( pSO );
1324       nKey = pSO->nExpr;
1325       r1 = sqlite3GetTempReg(pParse);
1326       r2 = sqlite3GetTempRange(pParse, nKey+2);
1327       r3 = r2+nKey+1;
1328       if( eDest==SRT_DistQueue ){
1329         /* If the destination is DistQueue, then cursor (iParm+1) is open
1330         ** on a second ephemeral index that holds all values every previously
1331         ** added to the queue. */
1332         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1333                                         regResult, nResultCol);
1334         VdbeCoverage(v);
1335       }
1336       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1337       if( eDest==SRT_DistQueue ){
1338         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1339         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1340       }
1341       for(i=0; i<nKey; i++){
1342         sqlite3VdbeAddOp2(v, OP_SCopy,
1343                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
1344                           r2+i);
1345       }
1346       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1347       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1348       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1349       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1350       sqlite3ReleaseTempReg(pParse, r1);
1351       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1352       break;
1353     }
1354 #endif /* SQLITE_OMIT_CTE */
1355 
1356 
1357 
1358 #if !defined(SQLITE_OMIT_TRIGGER)
1359     /* Discard the results.  This is used for SELECT statements inside
1360     ** the body of a TRIGGER.  The purpose of such selects is to call
1361     ** user-defined functions that have side effects.  We do not care
1362     ** about the actual results of the select.
1363     */
1364     default: {
1365       assert( eDest==SRT_Discard );
1366       break;
1367     }
1368 #endif
1369   }
1370 
1371   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
1372   ** there is a sorter, in which case the sorter has already limited
1373   ** the output for us.
1374   */
1375   if( pSort==0 && p->iLimit ){
1376     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1377   }
1378 }
1379 
1380 /*
1381 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1382 ** X extra columns.
1383 */
1384 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1385   int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1386   KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1387   if( p ){
1388     p->aSortFlags = (u8*)&p->aColl[N+X];
1389     p->nKeyField = (u16)N;
1390     p->nAllField = (u16)(N+X);
1391     p->enc = ENC(db);
1392     p->db = db;
1393     p->nRef = 1;
1394     memset(&p[1], 0, nExtra);
1395   }else{
1396     sqlite3OomFault(db);
1397   }
1398   return p;
1399 }
1400 
1401 /*
1402 ** Deallocate a KeyInfo object
1403 */
1404 void sqlite3KeyInfoUnref(KeyInfo *p){
1405   if( p ){
1406     assert( p->nRef>0 );
1407     p->nRef--;
1408     if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1409   }
1410 }
1411 
1412 /*
1413 ** Make a new pointer to a KeyInfo object
1414 */
1415 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1416   if( p ){
1417     assert( p->nRef>0 );
1418     p->nRef++;
1419   }
1420   return p;
1421 }
1422 
1423 #ifdef SQLITE_DEBUG
1424 /*
1425 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
1426 ** can only be changed if this is just a single reference to the object.
1427 **
1428 ** This routine is used only inside of assert() statements.
1429 */
1430 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1431 #endif /* SQLITE_DEBUG */
1432 
1433 /*
1434 ** Given an expression list, generate a KeyInfo structure that records
1435 ** the collating sequence for each expression in that expression list.
1436 **
1437 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1438 ** KeyInfo structure is appropriate for initializing a virtual index to
1439 ** implement that clause.  If the ExprList is the result set of a SELECT
1440 ** then the KeyInfo structure is appropriate for initializing a virtual
1441 ** index to implement a DISTINCT test.
1442 **
1443 ** Space to hold the KeyInfo structure is obtained from malloc.  The calling
1444 ** function is responsible for seeing that this structure is eventually
1445 ** freed.
1446 */
1447 KeyInfo *sqlite3KeyInfoFromExprList(
1448   Parse *pParse,       /* Parsing context */
1449   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
1450   int iStart,          /* Begin with this column of pList */
1451   int nExtra           /* Add this many extra columns to the end */
1452 ){
1453   int nExpr;
1454   KeyInfo *pInfo;
1455   struct ExprList_item *pItem;
1456   sqlite3 *db = pParse->db;
1457   int i;
1458 
1459   nExpr = pList->nExpr;
1460   pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1461   if( pInfo ){
1462     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1463     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1464       pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1465       pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1466     }
1467   }
1468   return pInfo;
1469 }
1470 
1471 /*
1472 ** Name of the connection operator, used for error messages.
1473 */
1474 const char *sqlite3SelectOpName(int id){
1475   char *z;
1476   switch( id ){
1477     case TK_ALL:       z = "UNION ALL";   break;
1478     case TK_INTERSECT: z = "INTERSECT";   break;
1479     case TK_EXCEPT:    z = "EXCEPT";      break;
1480     default:           z = "UNION";       break;
1481   }
1482   return z;
1483 }
1484 
1485 #ifndef SQLITE_OMIT_EXPLAIN
1486 /*
1487 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1488 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1489 ** where the caption is of the form:
1490 **
1491 **   "USE TEMP B-TREE FOR xxx"
1492 **
1493 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1494 ** is determined by the zUsage argument.
1495 */
1496 static void explainTempTable(Parse *pParse, const char *zUsage){
1497   ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1498 }
1499 
1500 /*
1501 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1502 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1503 ** in sqlite3Select() to assign values to structure member variables that
1504 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1505 ** code with #ifndef directives.
1506 */
1507 # define explainSetInteger(a, b) a = b
1508 
1509 #else
1510 /* No-op versions of the explainXXX() functions and macros. */
1511 # define explainTempTable(y,z)
1512 # define explainSetInteger(y,z)
1513 #endif
1514 
1515 
1516 /*
1517 ** If the inner loop was generated using a non-null pOrderBy argument,
1518 ** then the results were placed in a sorter.  After the loop is terminated
1519 ** we need to run the sorter and output the results.  The following
1520 ** routine generates the code needed to do that.
1521 */
1522 static void generateSortTail(
1523   Parse *pParse,    /* Parsing context */
1524   Select *p,        /* The SELECT statement */
1525   SortCtx *pSort,   /* Information on the ORDER BY clause */
1526   int nColumn,      /* Number of columns of data */
1527   SelectDest *pDest /* Write the sorted results here */
1528 ){
1529   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1530   int addrBreak = pSort->labelDone;            /* Jump here to exit loop */
1531   int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1532   int addr;                       /* Top of output loop. Jump for Next. */
1533   int addrOnce = 0;
1534   int iTab;
1535   ExprList *pOrderBy = pSort->pOrderBy;
1536   int eDest = pDest->eDest;
1537   int iParm = pDest->iSDParm;
1538   int regRow;
1539   int regRowid;
1540   int iCol;
1541   int nKey;                       /* Number of key columns in sorter record */
1542   int iSortTab;                   /* Sorter cursor to read from */
1543   int i;
1544   int bSeq;                       /* True if sorter record includes seq. no. */
1545   int nRefKey = 0;
1546   struct ExprList_item *aOutEx = p->pEList->a;
1547 
1548   assert( addrBreak<0 );
1549   if( pSort->labelBkOut ){
1550     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1551     sqlite3VdbeGoto(v, addrBreak);
1552     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1553   }
1554 
1555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1556   /* Open any cursors needed for sorter-reference expressions */
1557   for(i=0; i<pSort->nDefer; i++){
1558     Table *pTab = pSort->aDefer[i].pTab;
1559     int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1560     sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1561     nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1562   }
1563 #endif
1564 
1565   iTab = pSort->iECursor;
1566   if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1567     regRowid = 0;
1568     regRow = pDest->iSdst;
1569   }else{
1570     regRowid = sqlite3GetTempReg(pParse);
1571     if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1572       regRow = sqlite3GetTempReg(pParse);
1573       nColumn = 0;
1574     }else{
1575       regRow = sqlite3GetTempRange(pParse, nColumn);
1576     }
1577   }
1578   nKey = pOrderBy->nExpr - pSort->nOBSat;
1579   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1580     int regSortOut = ++pParse->nMem;
1581     iSortTab = pParse->nTab++;
1582     if( pSort->labelBkOut ){
1583       addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1584     }
1585     sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1586         nKey+1+nColumn+nRefKey);
1587     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1588     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1589     VdbeCoverage(v);
1590     codeOffset(v, p->iOffset, addrContinue);
1591     sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1592     bSeq = 0;
1593   }else{
1594     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1595     codeOffset(v, p->iOffset, addrContinue);
1596     iSortTab = iTab;
1597     bSeq = 1;
1598   }
1599   for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1601     if( aOutEx[i].bSorterRef ) continue;
1602 #endif
1603     if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1604   }
1605 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1606   if( pSort->nDefer ){
1607     int iKey = iCol+1;
1608     int regKey = sqlite3GetTempRange(pParse, nRefKey);
1609 
1610     for(i=0; i<pSort->nDefer; i++){
1611       int iCsr = pSort->aDefer[i].iCsr;
1612       Table *pTab = pSort->aDefer[i].pTab;
1613       int nKey = pSort->aDefer[i].nKey;
1614 
1615       sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1616       if( HasRowid(pTab) ){
1617         sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1618         sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1619             sqlite3VdbeCurrentAddr(v)+1, regKey);
1620       }else{
1621         int k;
1622         int iJmp;
1623         assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1624         for(k=0; k<nKey; k++){
1625           sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1626         }
1627         iJmp = sqlite3VdbeCurrentAddr(v);
1628         sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1629         sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1630         sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1631       }
1632     }
1633     sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1634   }
1635 #endif
1636   for(i=nColumn-1; i>=0; i--){
1637 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1638     if( aOutEx[i].bSorterRef ){
1639       sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1640     }else
1641 #endif
1642     {
1643       int iRead;
1644       if( aOutEx[i].u.x.iOrderByCol ){
1645         iRead = aOutEx[i].u.x.iOrderByCol-1;
1646       }else{
1647         iRead = iCol--;
1648       }
1649       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1650       VdbeComment((v, "%s", aOutEx[i].zEName));
1651     }
1652   }
1653   switch( eDest ){
1654     case SRT_Table:
1655     case SRT_EphemTab: {
1656       sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1657       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1658       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1659       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1660       break;
1661     }
1662 #ifndef SQLITE_OMIT_SUBQUERY
1663     case SRT_Set: {
1664       assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1665       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1666                         pDest->zAffSdst, nColumn);
1667       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1668       break;
1669     }
1670     case SRT_Mem: {
1671       /* The LIMIT clause will terminate the loop for us */
1672       break;
1673     }
1674 #endif
1675     case SRT_Upfrom: {
1676       int i2 = pDest->iSDParm2;
1677       int r1 = sqlite3GetTempReg(pParse);
1678       sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1679       if( i2<0 ){
1680         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1681       }else{
1682         sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1683       }
1684       break;
1685     }
1686     default: {
1687       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1688       testcase( eDest==SRT_Output );
1689       testcase( eDest==SRT_Coroutine );
1690       if( eDest==SRT_Output ){
1691         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1692       }else{
1693         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1694       }
1695       break;
1696     }
1697   }
1698   if( regRowid ){
1699     if( eDest==SRT_Set ){
1700       sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1701     }else{
1702       sqlite3ReleaseTempReg(pParse, regRow);
1703     }
1704     sqlite3ReleaseTempReg(pParse, regRowid);
1705   }
1706   /* The bottom of the loop
1707   */
1708   sqlite3VdbeResolveLabel(v, addrContinue);
1709   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1710     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1711   }else{
1712     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1713   }
1714   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1715   sqlite3VdbeResolveLabel(v, addrBreak);
1716 }
1717 
1718 /*
1719 ** Return a pointer to a string containing the 'declaration type' of the
1720 ** expression pExpr. The string may be treated as static by the caller.
1721 **
1722 ** Also try to estimate the size of the returned value and return that
1723 ** result in *pEstWidth.
1724 **
1725 ** The declaration type is the exact datatype definition extracted from the
1726 ** original CREATE TABLE statement if the expression is a column. The
1727 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1728 ** is considered a column can be complex in the presence of subqueries. The
1729 ** result-set expression in all of the following SELECT statements is
1730 ** considered a column by this function.
1731 **
1732 **   SELECT col FROM tbl;
1733 **   SELECT (SELECT col FROM tbl;
1734 **   SELECT (SELECT col FROM tbl);
1735 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1736 **
1737 ** The declaration type for any expression other than a column is NULL.
1738 **
1739 ** This routine has either 3 or 6 parameters depending on whether or not
1740 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1741 */
1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1743 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1744 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1745 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1746 #endif
1747 static const char *columnTypeImpl(
1748   NameContext *pNC,
1749 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1750   Expr *pExpr
1751 #else
1752   Expr *pExpr,
1753   const char **pzOrigDb,
1754   const char **pzOrigTab,
1755   const char **pzOrigCol
1756 #endif
1757 ){
1758   char const *zType = 0;
1759   int j;
1760 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1761   char const *zOrigDb = 0;
1762   char const *zOrigTab = 0;
1763   char const *zOrigCol = 0;
1764 #endif
1765 
1766   assert( pExpr!=0 );
1767   assert( pNC->pSrcList!=0 );
1768   switch( pExpr->op ){
1769     case TK_COLUMN: {
1770       /* The expression is a column. Locate the table the column is being
1771       ** extracted from in NameContext.pSrcList. This table may be real
1772       ** database table or a subquery.
1773       */
1774       Table *pTab = 0;            /* Table structure column is extracted from */
1775       Select *pS = 0;             /* Select the column is extracted from */
1776       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1777       while( pNC && !pTab ){
1778         SrcList *pTabList = pNC->pSrcList;
1779         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1780         if( j<pTabList->nSrc ){
1781           pTab = pTabList->a[j].pTab;
1782           pS = pTabList->a[j].pSelect;
1783         }else{
1784           pNC = pNC->pNext;
1785         }
1786       }
1787 
1788       if( pTab==0 ){
1789         /* At one time, code such as "SELECT new.x" within a trigger would
1790         ** cause this condition to run.  Since then, we have restructured how
1791         ** trigger code is generated and so this condition is no longer
1792         ** possible. However, it can still be true for statements like
1793         ** the following:
1794         **
1795         **   CREATE TABLE t1(col INTEGER);
1796         **   SELECT (SELECT t1.col) FROM FROM t1;
1797         **
1798         ** when columnType() is called on the expression "t1.col" in the
1799         ** sub-select. In this case, set the column type to NULL, even
1800         ** though it should really be "INTEGER".
1801         **
1802         ** This is not a problem, as the column type of "t1.col" is never
1803         ** used. When columnType() is called on the expression
1804         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1805         ** branch below.  */
1806         break;
1807       }
1808 
1809       assert( pTab && pExpr->y.pTab==pTab );
1810       if( pS ){
1811         /* The "table" is actually a sub-select or a view in the FROM clause
1812         ** of the SELECT statement. Return the declaration type and origin
1813         ** data for the result-set column of the sub-select.
1814         */
1815         if( iCol<pS->pEList->nExpr
1816 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1817          && iCol>=0
1818 #else
1819          && ALWAYS(iCol>=0)
1820 #endif
1821         ){
1822           /* If iCol is less than zero, then the expression requests the
1823           ** rowid of the sub-select or view. This expression is legal (see
1824           ** test case misc2.2.2) - it always evaluates to NULL.
1825           */
1826           NameContext sNC;
1827           Expr *p = pS->pEList->a[iCol].pExpr;
1828           sNC.pSrcList = pS->pSrc;
1829           sNC.pNext = pNC;
1830           sNC.pParse = pNC->pParse;
1831           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1832         }
1833       }else{
1834         /* A real table or a CTE table */
1835         assert( !pS );
1836 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1837         if( iCol<0 ) iCol = pTab->iPKey;
1838         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1839         if( iCol<0 ){
1840           zType = "INTEGER";
1841           zOrigCol = "rowid";
1842         }else{
1843           zOrigCol = pTab->aCol[iCol].zCnName;
1844           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1845         }
1846         zOrigTab = pTab->zName;
1847         if( pNC->pParse && pTab->pSchema ){
1848           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1849           zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1850         }
1851 #else
1852         assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1853         if( iCol<0 ){
1854           zType = "INTEGER";
1855         }else{
1856           zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1857         }
1858 #endif
1859       }
1860       break;
1861     }
1862 #ifndef SQLITE_OMIT_SUBQUERY
1863     case TK_SELECT: {
1864       /* The expression is a sub-select. Return the declaration type and
1865       ** origin info for the single column in the result set of the SELECT
1866       ** statement.
1867       */
1868       NameContext sNC;
1869       Select *pS = pExpr->x.pSelect;
1870       Expr *p = pS->pEList->a[0].pExpr;
1871       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1872       sNC.pSrcList = pS->pSrc;
1873       sNC.pNext = pNC;
1874       sNC.pParse = pNC->pParse;
1875       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1876       break;
1877     }
1878 #endif
1879   }
1880 
1881 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1882   if( pzOrigDb ){
1883     assert( pzOrigTab && pzOrigCol );
1884     *pzOrigDb = zOrigDb;
1885     *pzOrigTab = zOrigTab;
1886     *pzOrigCol = zOrigCol;
1887   }
1888 #endif
1889   return zType;
1890 }
1891 
1892 /*
1893 ** Generate code that will tell the VDBE the declaration types of columns
1894 ** in the result set.
1895 */
1896 static void generateColumnTypes(
1897   Parse *pParse,      /* Parser context */
1898   SrcList *pTabList,  /* List of tables */
1899   ExprList *pEList    /* Expressions defining the result set */
1900 ){
1901 #ifndef SQLITE_OMIT_DECLTYPE
1902   Vdbe *v = pParse->pVdbe;
1903   int i;
1904   NameContext sNC;
1905   sNC.pSrcList = pTabList;
1906   sNC.pParse = pParse;
1907   sNC.pNext = 0;
1908   for(i=0; i<pEList->nExpr; i++){
1909     Expr *p = pEList->a[i].pExpr;
1910     const char *zType;
1911 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1912     const char *zOrigDb = 0;
1913     const char *zOrigTab = 0;
1914     const char *zOrigCol = 0;
1915     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1916 
1917     /* The vdbe must make its own copy of the column-type and other
1918     ** column specific strings, in case the schema is reset before this
1919     ** virtual machine is deleted.
1920     */
1921     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1922     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1923     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1924 #else
1925     zType = columnType(&sNC, p, 0, 0, 0);
1926 #endif
1927     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1928   }
1929 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1930 }
1931 
1932 
1933 /*
1934 ** Compute the column names for a SELECT statement.
1935 **
1936 ** The only guarantee that SQLite makes about column names is that if the
1937 ** column has an AS clause assigning it a name, that will be the name used.
1938 ** That is the only documented guarantee.  However, countless applications
1939 ** developed over the years have made baseless assumptions about column names
1940 ** and will break if those assumptions changes.  Hence, use extreme caution
1941 ** when modifying this routine to avoid breaking legacy.
1942 **
1943 ** See Also: sqlite3ColumnsFromExprList()
1944 **
1945 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1946 ** deprecated.  The default setting is short=ON, full=OFF.  99.9% of all
1947 ** applications should operate this way.  Nevertheless, we need to support the
1948 ** other modes for legacy:
1949 **
1950 **    short=OFF, full=OFF:      Column name is the text of the expression has it
1951 **                              originally appears in the SELECT statement.  In
1952 **                              other words, the zSpan of the result expression.
1953 **
1954 **    short=ON, full=OFF:       (This is the default setting).  If the result
1955 **                              refers directly to a table column, then the
1956 **                              result column name is just the table column
1957 **                              name: COLUMN.  Otherwise use zSpan.
1958 **
1959 **    full=ON, short=ANY:       If the result refers directly to a table column,
1960 **                              then the result column name with the table name
1961 **                              prefix, ex: TABLE.COLUMN.  Otherwise use zSpan.
1962 */
1963 void sqlite3GenerateColumnNames(
1964   Parse *pParse,      /* Parser context */
1965   Select *pSelect     /* Generate column names for this SELECT statement */
1966 ){
1967   Vdbe *v = pParse->pVdbe;
1968   int i;
1969   Table *pTab;
1970   SrcList *pTabList;
1971   ExprList *pEList;
1972   sqlite3 *db = pParse->db;
1973   int fullName;    /* TABLE.COLUMN if no AS clause and is a direct table ref */
1974   int srcName;     /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1975 
1976 #ifndef SQLITE_OMIT_EXPLAIN
1977   /* If this is an EXPLAIN, skip this step */
1978   if( pParse->explain ){
1979     return;
1980   }
1981 #endif
1982 
1983   if( pParse->colNamesSet ) return;
1984   /* Column names are determined by the left-most term of a compound select */
1985   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1986   SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1987   pTabList = pSelect->pSrc;
1988   pEList = pSelect->pEList;
1989   assert( v!=0 );
1990   assert( pTabList!=0 );
1991   pParse->colNamesSet = 1;
1992   fullName = (db->flags & SQLITE_FullColNames)!=0;
1993   srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1994   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1995   for(i=0; i<pEList->nExpr; i++){
1996     Expr *p = pEList->a[i].pExpr;
1997 
1998     assert( p!=0 );
1999     assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
2000     assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
2001     if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
2002       /* An AS clause always takes first priority */
2003       char *zName = pEList->a[i].zEName;
2004       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2005     }else if( srcName && p->op==TK_COLUMN ){
2006       char *zCol;
2007       int iCol = p->iColumn;
2008       pTab = p->y.pTab;
2009       assert( pTab!=0 );
2010       if( iCol<0 ) iCol = pTab->iPKey;
2011       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2012       if( iCol<0 ){
2013         zCol = "rowid";
2014       }else{
2015         zCol = pTab->aCol[iCol].zCnName;
2016       }
2017       if( fullName ){
2018         char *zName = 0;
2019         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2020         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2021       }else{
2022         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2023       }
2024     }else{
2025       const char *z = pEList->a[i].zEName;
2026       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2027       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2028     }
2029   }
2030   generateColumnTypes(pParse, pTabList, pEList);
2031 }
2032 
2033 /*
2034 ** Given an expression list (which is really the list of expressions
2035 ** that form the result set of a SELECT statement) compute appropriate
2036 ** column names for a table that would hold the expression list.
2037 **
2038 ** All column names will be unique.
2039 **
2040 ** Only the column names are computed.  Column.zType, Column.zColl,
2041 ** and other fields of Column are zeroed.
2042 **
2043 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
2044 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2045 **
2046 ** The only guarantee that SQLite makes about column names is that if the
2047 ** column has an AS clause assigning it a name, that will be the name used.
2048 ** That is the only documented guarantee.  However, countless applications
2049 ** developed over the years have made baseless assumptions about column names
2050 ** and will break if those assumptions changes.  Hence, use extreme caution
2051 ** when modifying this routine to avoid breaking legacy.
2052 **
2053 ** See Also: sqlite3GenerateColumnNames()
2054 */
2055 int sqlite3ColumnsFromExprList(
2056   Parse *pParse,          /* Parsing context */
2057   ExprList *pEList,       /* Expr list from which to derive column names */
2058   i16 *pnCol,             /* Write the number of columns here */
2059   Column **paCol          /* Write the new column list here */
2060 ){
2061   sqlite3 *db = pParse->db;   /* Database connection */
2062   int i, j;                   /* Loop counters */
2063   u32 cnt;                    /* Index added to make the name unique */
2064   Column *aCol, *pCol;        /* For looping over result columns */
2065   int nCol;                   /* Number of columns in the result set */
2066   char *zName;                /* Column name */
2067   int nName;                  /* Size of name in zName[] */
2068   Hash ht;                    /* Hash table of column names */
2069   Table *pTab;
2070 
2071   sqlite3HashInit(&ht);
2072   if( pEList ){
2073     nCol = pEList->nExpr;
2074     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2075     testcase( aCol==0 );
2076     if( NEVER(nCol>32767) ) nCol = 32767;
2077   }else{
2078     nCol = 0;
2079     aCol = 0;
2080   }
2081   assert( nCol==(i16)nCol );
2082   *pnCol = nCol;
2083   *paCol = aCol;
2084 
2085   for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2086     /* Get an appropriate name for the column
2087     */
2088     if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2089       /* If the column contains an "AS <name>" phrase, use <name> as the name */
2090     }else{
2091       Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2092       while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2093         pColExpr = pColExpr->pRight;
2094         assert( pColExpr!=0 );
2095       }
2096       if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2097         /* For columns use the column name name */
2098         int iCol = pColExpr->iColumn;
2099         if( iCol<0 ) iCol = pTab->iPKey;
2100         zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2101       }else if( pColExpr->op==TK_ID ){
2102         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2103         zName = pColExpr->u.zToken;
2104       }else{
2105         /* Use the original text of the column expression as its name */
2106         zName = pEList->a[i].zEName;
2107       }
2108     }
2109     if( zName && !sqlite3IsTrueOrFalse(zName) ){
2110       zName = sqlite3DbStrDup(db, zName);
2111     }else{
2112       zName = sqlite3MPrintf(db,"column%d",i+1);
2113     }
2114 
2115     /* Make sure the column name is unique.  If the name is not unique,
2116     ** append an integer to the name so that it becomes unique.
2117     */
2118     cnt = 0;
2119     while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2120       nName = sqlite3Strlen30(zName);
2121       if( nName>0 ){
2122         for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2123         if( zName[j]==':' ) nName = j;
2124       }
2125       zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2126       if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2127     }
2128     pCol->zCnName = zName;
2129     pCol->hName = sqlite3StrIHash(zName);
2130     sqlite3ColumnPropertiesFromName(0, pCol);
2131     if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2132       sqlite3OomFault(db);
2133     }
2134   }
2135   sqlite3HashClear(&ht);
2136   if( db->mallocFailed ){
2137     for(j=0; j<i; j++){
2138       sqlite3DbFree(db, aCol[j].zCnName);
2139     }
2140     sqlite3DbFree(db, aCol);
2141     *paCol = 0;
2142     *pnCol = 0;
2143     return SQLITE_NOMEM_BKPT;
2144   }
2145   return SQLITE_OK;
2146 }
2147 
2148 /*
2149 ** Add type and collation information to a column list based on
2150 ** a SELECT statement.
2151 **
2152 ** The column list presumably came from selectColumnNamesFromExprList().
2153 ** The column list has only names, not types or collations.  This
2154 ** routine goes through and adds the types and collations.
2155 **
2156 ** This routine requires that all identifiers in the SELECT
2157 ** statement be resolved.
2158 */
2159 void sqlite3SelectAddColumnTypeAndCollation(
2160   Parse *pParse,        /* Parsing contexts */
2161   Table *pTab,          /* Add column type information to this table */
2162   Select *pSelect,      /* SELECT used to determine types and collations */
2163   char aff              /* Default affinity for columns */
2164 ){
2165   sqlite3 *db = pParse->db;
2166   NameContext sNC;
2167   Column *pCol;
2168   CollSeq *pColl;
2169   int i;
2170   Expr *p;
2171   struct ExprList_item *a;
2172 
2173   assert( pSelect!=0 );
2174   assert( (pSelect->selFlags & SF_Resolved)!=0 );
2175   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2176   if( db->mallocFailed ) return;
2177   memset(&sNC, 0, sizeof(sNC));
2178   sNC.pSrcList = pSelect->pSrc;
2179   a = pSelect->pEList->a;
2180   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2181     const char *zType;
2182     int n, m;
2183     pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2184     p = a[i].pExpr;
2185     zType = columnType(&sNC, p, 0, 0, 0);
2186     /* pCol->szEst = ... // Column size est for SELECT tables never used */
2187     pCol->affinity = sqlite3ExprAffinity(p);
2188     if( zType ){
2189       m = sqlite3Strlen30(zType);
2190       n = sqlite3Strlen30(pCol->zCnName);
2191       pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2192       if( pCol->zCnName ){
2193         memcpy(&pCol->zCnName[n+1], zType, m+1);
2194         pCol->colFlags |= COLFLAG_HASTYPE;
2195       }
2196     }
2197     if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2198     pColl = sqlite3ExprCollSeq(pParse, p);
2199     if( pColl ){
2200       assert( pTab->pIndex==0 );
2201       sqlite3ColumnSetColl(db, pCol, pColl->zName);
2202     }
2203   }
2204   pTab->szTabRow = 1; /* Any non-zero value works */
2205 }
2206 
2207 /*
2208 ** Given a SELECT statement, generate a Table structure that describes
2209 ** the result set of that SELECT.
2210 */
2211 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2212   Table *pTab;
2213   sqlite3 *db = pParse->db;
2214   u64 savedFlags;
2215 
2216   savedFlags = db->flags;
2217   db->flags &= ~(u64)SQLITE_FullColNames;
2218   db->flags |= SQLITE_ShortColNames;
2219   sqlite3SelectPrep(pParse, pSelect, 0);
2220   db->flags = savedFlags;
2221   if( pParse->nErr ) return 0;
2222   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2223   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2224   if( pTab==0 ){
2225     return 0;
2226   }
2227   pTab->nTabRef = 1;
2228   pTab->zName = 0;
2229   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2230   sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2231   sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2232   pTab->iPKey = -1;
2233   if( db->mallocFailed ){
2234     sqlite3DeleteTable(db, pTab);
2235     return 0;
2236   }
2237   return pTab;
2238 }
2239 
2240 /*
2241 ** Get a VDBE for the given parser context.  Create a new one if necessary.
2242 ** If an error occurs, return NULL and leave a message in pParse.
2243 */
2244 Vdbe *sqlite3GetVdbe(Parse *pParse){
2245   if( pParse->pVdbe ){
2246     return pParse->pVdbe;
2247   }
2248   if( pParse->pToplevel==0
2249    && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2250   ){
2251     pParse->okConstFactor = 1;
2252   }
2253   return sqlite3VdbeCreate(pParse);
2254 }
2255 
2256 
2257 /*
2258 ** Compute the iLimit and iOffset fields of the SELECT based on the
2259 ** pLimit expressions.  pLimit->pLeft and pLimit->pRight hold the expressions
2260 ** that appear in the original SQL statement after the LIMIT and OFFSET
2261 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
2262 ** are the integer memory register numbers for counters used to compute
2263 ** the limit and offset.  If there is no limit and/or offset, then
2264 ** iLimit and iOffset are negative.
2265 **
2266 ** This routine changes the values of iLimit and iOffset only if
2267 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight.  iLimit
2268 ** and iOffset should have been preset to appropriate default values (zero)
2269 ** prior to calling this routine.
2270 **
2271 ** The iOffset register (if it exists) is initialized to the value
2272 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
2273 ** iOffset+1 is initialized to LIMIT+OFFSET.
2274 **
2275 ** Only if pLimit->pLeft!=0 do the limit registers get
2276 ** redefined.  The UNION ALL operator uses this property to force
2277 ** the reuse of the same limit and offset registers across multiple
2278 ** SELECT statements.
2279 */
2280 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2281   Vdbe *v = 0;
2282   int iLimit = 0;
2283   int iOffset;
2284   int n;
2285   Expr *pLimit = p->pLimit;
2286 
2287   if( p->iLimit ) return;
2288 
2289   /*
2290   ** "LIMIT -1" always shows all rows.  There is some
2291   ** controversy about what the correct behavior should be.
2292   ** The current implementation interprets "LIMIT 0" to mean
2293   ** no rows.
2294   */
2295   if( pLimit ){
2296     assert( pLimit->op==TK_LIMIT );
2297     assert( pLimit->pLeft!=0 );
2298     p->iLimit = iLimit = ++pParse->nMem;
2299     v = sqlite3GetVdbe(pParse);
2300     assert( v!=0 );
2301     if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2302       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2303       VdbeComment((v, "LIMIT counter"));
2304       if( n==0 ){
2305         sqlite3VdbeGoto(v, iBreak);
2306       }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2307         p->nSelectRow = sqlite3LogEst((u64)n);
2308         p->selFlags |= SF_FixedLimit;
2309       }
2310     }else{
2311       sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2312       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2313       VdbeComment((v, "LIMIT counter"));
2314       sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2315     }
2316     if( pLimit->pRight ){
2317       p->iOffset = iOffset = ++pParse->nMem;
2318       pParse->nMem++;   /* Allocate an extra register for limit+offset */
2319       sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2320       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2321       VdbeComment((v, "OFFSET counter"));
2322       sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2323       VdbeComment((v, "LIMIT+OFFSET"));
2324     }
2325   }
2326 }
2327 
2328 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2329 /*
2330 ** Return the appropriate collating sequence for the iCol-th column of
2331 ** the result set for the compound-select statement "p".  Return NULL if
2332 ** the column has no default collating sequence.
2333 **
2334 ** The collating sequence for the compound select is taken from the
2335 ** left-most term of the select that has a collating sequence.
2336 */
2337 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2338   CollSeq *pRet;
2339   if( p->pPrior ){
2340     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2341   }else{
2342     pRet = 0;
2343   }
2344   assert( iCol>=0 );
2345   /* iCol must be less than p->pEList->nExpr.  Otherwise an error would
2346   ** have been thrown during name resolution and we would not have gotten
2347   ** this far */
2348   if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2349     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2350   }
2351   return pRet;
2352 }
2353 
2354 /*
2355 ** The select statement passed as the second parameter is a compound SELECT
2356 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2357 ** structure suitable for implementing the ORDER BY.
2358 **
2359 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2360 ** function is responsible for ensuring that this structure is eventually
2361 ** freed.
2362 */
2363 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2364   ExprList *pOrderBy = p->pOrderBy;
2365   int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2366   sqlite3 *db = pParse->db;
2367   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2368   if( pRet ){
2369     int i;
2370     for(i=0; i<nOrderBy; i++){
2371       struct ExprList_item *pItem = &pOrderBy->a[i];
2372       Expr *pTerm = pItem->pExpr;
2373       CollSeq *pColl;
2374 
2375       if( pTerm->flags & EP_Collate ){
2376         pColl = sqlite3ExprCollSeq(pParse, pTerm);
2377       }else{
2378         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2379         if( pColl==0 ) pColl = db->pDfltColl;
2380         pOrderBy->a[i].pExpr =
2381           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2382       }
2383       assert( sqlite3KeyInfoIsWriteable(pRet) );
2384       pRet->aColl[i] = pColl;
2385       pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2386     }
2387   }
2388 
2389   return pRet;
2390 }
2391 
2392 #ifndef SQLITE_OMIT_CTE
2393 /*
2394 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2395 ** query of the form:
2396 **
2397 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2398 **                         \___________/             \_______________/
2399 **                           p->pPrior                      p
2400 **
2401 **
2402 ** There is exactly one reference to the recursive-table in the FROM clause
2403 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2404 **
2405 ** The setup-query runs once to generate an initial set of rows that go
2406 ** into a Queue table.  Rows are extracted from the Queue table one by
2407 ** one.  Each row extracted from Queue is output to pDest.  Then the single
2408 ** extracted row (now in the iCurrent table) becomes the content of the
2409 ** recursive-table for a recursive-query run.  The output of the recursive-query
2410 ** is added back into the Queue table.  Then another row is extracted from Queue
2411 ** and the iteration continues until the Queue table is empty.
2412 **
2413 ** If the compound query operator is UNION then no duplicate rows are ever
2414 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
2415 ** that have ever been inserted into Queue and causes duplicates to be
2416 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
2417 **
2418 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2419 ** ORDER BY order and the first entry is extracted for each cycle.  Without
2420 ** an ORDER BY, the Queue table is just a FIFO.
2421 **
2422 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2423 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
2424 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
2425 ** with a positive value, then the first OFFSET outputs are discarded rather
2426 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
2427 ** rows have been skipped.
2428 */
2429 static void generateWithRecursiveQuery(
2430   Parse *pParse,        /* Parsing context */
2431   Select *p,            /* The recursive SELECT to be coded */
2432   SelectDest *pDest     /* What to do with query results */
2433 ){
2434   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
2435   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
2436   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
2437   Select *pSetup;               /* The setup query */
2438   Select *pFirstRec;            /* Left-most recursive term */
2439   int addrTop;                  /* Top of the loop */
2440   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
2441   int iCurrent = 0;             /* The Current table */
2442   int regCurrent;               /* Register holding Current table */
2443   int iQueue;                   /* The Queue table */
2444   int iDistinct = 0;            /* To ensure unique results if UNION */
2445   int eDest = SRT_Fifo;         /* How to write to Queue */
2446   SelectDest destQueue;         /* SelectDest targetting the Queue table */
2447   int i;                        /* Loop counter */
2448   int rc;                       /* Result code */
2449   ExprList *pOrderBy;           /* The ORDER BY clause */
2450   Expr *pLimit;                 /* Saved LIMIT and OFFSET */
2451   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
2452 
2453 #ifndef SQLITE_OMIT_WINDOWFUNC
2454   if( p->pWin ){
2455     sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2456     return;
2457   }
2458 #endif
2459 
2460   /* Obtain authorization to do a recursive query */
2461   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2462 
2463   /* Process the LIMIT and OFFSET clauses, if they exist */
2464   addrBreak = sqlite3VdbeMakeLabel(pParse);
2465   p->nSelectRow = 320;  /* 4 billion rows */
2466   computeLimitRegisters(pParse, p, addrBreak);
2467   pLimit = p->pLimit;
2468   regLimit = p->iLimit;
2469   regOffset = p->iOffset;
2470   p->pLimit = 0;
2471   p->iLimit = p->iOffset = 0;
2472   pOrderBy = p->pOrderBy;
2473 
2474   /* Locate the cursor number of the Current table */
2475   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2476     if( pSrc->a[i].fg.isRecursive ){
2477       iCurrent = pSrc->a[i].iCursor;
2478       break;
2479     }
2480   }
2481 
2482   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
2483   ** the Distinct table must be exactly one greater than Queue in order
2484   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2485   iQueue = pParse->nTab++;
2486   if( p->op==TK_UNION ){
2487     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2488     iDistinct = pParse->nTab++;
2489   }else{
2490     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2491   }
2492   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2493 
2494   /* Allocate cursors for Current, Queue, and Distinct. */
2495   regCurrent = ++pParse->nMem;
2496   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2497   if( pOrderBy ){
2498     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2499     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2500                       (char*)pKeyInfo, P4_KEYINFO);
2501     destQueue.pOrderBy = pOrderBy;
2502   }else{
2503     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2504   }
2505   VdbeComment((v, "Queue table"));
2506   if( iDistinct ){
2507     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2508     p->selFlags |= SF_UsesEphemeral;
2509   }
2510 
2511   /* Detach the ORDER BY clause from the compound SELECT */
2512   p->pOrderBy = 0;
2513 
2514   /* Figure out how many elements of the compound SELECT are part of the
2515   ** recursive query.  Make sure no recursive elements use aggregate
2516   ** functions.  Mark the recursive elements as UNION ALL even if they
2517   ** are really UNION because the distinctness will be enforced by the
2518   ** iDistinct table.  pFirstRec is left pointing to the left-most
2519   ** recursive term of the CTE.
2520   */
2521   for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2522     if( pFirstRec->selFlags & SF_Aggregate ){
2523       sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2524       goto end_of_recursive_query;
2525     }
2526     pFirstRec->op = TK_ALL;
2527     if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2528   }
2529 
2530   /* Store the results of the setup-query in Queue. */
2531   pSetup = pFirstRec->pPrior;
2532   pSetup->pNext = 0;
2533   ExplainQueryPlan((pParse, 1, "SETUP"));
2534   rc = sqlite3Select(pParse, pSetup, &destQueue);
2535   pSetup->pNext = p;
2536   if( rc ) goto end_of_recursive_query;
2537 
2538   /* Find the next row in the Queue and output that row */
2539   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2540 
2541   /* Transfer the next row in Queue over to Current */
2542   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2543   if( pOrderBy ){
2544     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2545   }else{
2546     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2547   }
2548   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2549 
2550   /* Output the single row in Current */
2551   addrCont = sqlite3VdbeMakeLabel(pParse);
2552   codeOffset(v, regOffset, addrCont);
2553   selectInnerLoop(pParse, p, iCurrent,
2554       0, 0, pDest, addrCont, addrBreak);
2555   if( regLimit ){
2556     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2557     VdbeCoverage(v);
2558   }
2559   sqlite3VdbeResolveLabel(v, addrCont);
2560 
2561   /* Execute the recursive SELECT taking the single row in Current as
2562   ** the value for the recursive-table. Store the results in the Queue.
2563   */
2564   pFirstRec->pPrior = 0;
2565   ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2566   sqlite3Select(pParse, p, &destQueue);
2567   assert( pFirstRec->pPrior==0 );
2568   pFirstRec->pPrior = pSetup;
2569 
2570   /* Keep running the loop until the Queue is empty */
2571   sqlite3VdbeGoto(v, addrTop);
2572   sqlite3VdbeResolveLabel(v, addrBreak);
2573 
2574 end_of_recursive_query:
2575   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2576   p->pOrderBy = pOrderBy;
2577   p->pLimit = pLimit;
2578   return;
2579 }
2580 #endif /* SQLITE_OMIT_CTE */
2581 
2582 /* Forward references */
2583 static int multiSelectOrderBy(
2584   Parse *pParse,        /* Parsing context */
2585   Select *p,            /* The right-most of SELECTs to be coded */
2586   SelectDest *pDest     /* What to do with query results */
2587 );
2588 
2589 /*
2590 ** Handle the special case of a compound-select that originates from a
2591 ** VALUES clause.  By handling this as a special case, we avoid deep
2592 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2593 ** on a VALUES clause.
2594 **
2595 ** Because the Select object originates from a VALUES clause:
2596 **   (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2597 **   (2) All terms are UNION ALL
2598 **   (3) There is no ORDER BY clause
2599 **
2600 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2601 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2602 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2603 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2604 */
2605 static int multiSelectValues(
2606   Parse *pParse,        /* Parsing context */
2607   Select *p,            /* The right-most of SELECTs to be coded */
2608   SelectDest *pDest     /* What to do with query results */
2609 ){
2610   int nRow = 1;
2611   int rc = 0;
2612   int bShowAll = p->pLimit==0;
2613   assert( p->selFlags & SF_MultiValue );
2614   do{
2615     assert( p->selFlags & SF_Values );
2616     assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2617     assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2618 #ifndef SQLITE_OMIT_WINDOWFUNC
2619     if( p->pWin ) return -1;
2620 #endif
2621     if( p->pPrior==0 ) break;
2622     assert( p->pPrior->pNext==p );
2623     p = p->pPrior;
2624     nRow += bShowAll;
2625   }while(1);
2626   ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2627                     nRow==1 ? "" : "S"));
2628   while( p ){
2629     selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2630     if( !bShowAll ) break;
2631     p->nSelectRow = nRow;
2632     p = p->pNext;
2633   }
2634   return rc;
2635 }
2636 
2637 /*
2638 ** Return true if the SELECT statement which is known to be the recursive
2639 ** part of a recursive CTE still has its anchor terms attached.  If the
2640 ** anchor terms have already been removed, then return false.
2641 */
2642 static int hasAnchor(Select *p){
2643   while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2644   return p!=0;
2645 }
2646 
2647 /*
2648 ** This routine is called to process a compound query form from
2649 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2650 ** INTERSECT
2651 **
2652 ** "p" points to the right-most of the two queries.  the query on the
2653 ** left is p->pPrior.  The left query could also be a compound query
2654 ** in which case this routine will be called recursively.
2655 **
2656 ** The results of the total query are to be written into a destination
2657 ** of type eDest with parameter iParm.
2658 **
2659 ** Example 1:  Consider a three-way compound SQL statement.
2660 **
2661 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2662 **
2663 ** This statement is parsed up as follows:
2664 **
2665 **     SELECT c FROM t3
2666 **      |
2667 **      `----->  SELECT b FROM t2
2668 **                |
2669 **                `------>  SELECT a FROM t1
2670 **
2671 ** The arrows in the diagram above represent the Select.pPrior pointer.
2672 ** So if this routine is called with p equal to the t3 query, then
2673 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2674 **
2675 ** Notice that because of the way SQLite parses compound SELECTs, the
2676 ** individual selects always group from left to right.
2677 */
2678 static int multiSelect(
2679   Parse *pParse,        /* Parsing context */
2680   Select *p,            /* The right-most of SELECTs to be coded */
2681   SelectDest *pDest     /* What to do with query results */
2682 ){
2683   int rc = SQLITE_OK;   /* Success code from a subroutine */
2684   Select *pPrior;       /* Another SELECT immediately to our left */
2685   Vdbe *v;              /* Generate code to this VDBE */
2686   SelectDest dest;      /* Alternative data destination */
2687   Select *pDelete = 0;  /* Chain of simple selects to delete */
2688   sqlite3 *db;          /* Database connection */
2689 
2690   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2691   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2692   */
2693   assert( p && p->pPrior );  /* Calling function guarantees this much */
2694   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2695   assert( p->selFlags & SF_Compound );
2696   db = pParse->db;
2697   pPrior = p->pPrior;
2698   dest = *pDest;
2699   assert( pPrior->pOrderBy==0 );
2700   assert( pPrior->pLimit==0 );
2701 
2702   v = sqlite3GetVdbe(pParse);
2703   assert( v!=0 );  /* The VDBE already created by calling function */
2704 
2705   /* Create the destination temporary table if necessary
2706   */
2707   if( dest.eDest==SRT_EphemTab ){
2708     assert( p->pEList );
2709     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2710     dest.eDest = SRT_Table;
2711   }
2712 
2713   /* Special handling for a compound-select that originates as a VALUES clause.
2714   */
2715   if( p->selFlags & SF_MultiValue ){
2716     rc = multiSelectValues(pParse, p, &dest);
2717     if( rc>=0 ) goto multi_select_end;
2718     rc = SQLITE_OK;
2719   }
2720 
2721   /* Make sure all SELECTs in the statement have the same number of elements
2722   ** in their result sets.
2723   */
2724   assert( p->pEList && pPrior->pEList );
2725   assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2726 
2727 #ifndef SQLITE_OMIT_CTE
2728   if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2729     generateWithRecursiveQuery(pParse, p, &dest);
2730   }else
2731 #endif
2732 
2733   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2734   */
2735   if( p->pOrderBy ){
2736     return multiSelectOrderBy(pParse, p, pDest);
2737   }else{
2738 
2739 #ifndef SQLITE_OMIT_EXPLAIN
2740     if( pPrior->pPrior==0 ){
2741       ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2742       ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2743     }
2744 #endif
2745 
2746     /* Generate code for the left and right SELECT statements.
2747     */
2748     switch( p->op ){
2749       case TK_ALL: {
2750         int addr = 0;
2751         int nLimit = 0;  /* Initialize to suppress harmless compiler warning */
2752         assert( !pPrior->pLimit );
2753         pPrior->iLimit = p->iLimit;
2754         pPrior->iOffset = p->iOffset;
2755         pPrior->pLimit = p->pLimit;
2756         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2757         rc = sqlite3Select(pParse, pPrior, &dest);
2758         pPrior->pLimit = 0;
2759         if( rc ){
2760           goto multi_select_end;
2761         }
2762         p->pPrior = 0;
2763         p->iLimit = pPrior->iLimit;
2764         p->iOffset = pPrior->iOffset;
2765         if( p->iLimit ){
2766           addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2767           VdbeComment((v, "Jump ahead if LIMIT reached"));
2768           if( p->iOffset ){
2769             sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2770                               p->iLimit, p->iOffset+1, p->iOffset);
2771           }
2772         }
2773         ExplainQueryPlan((pParse, 1, "UNION ALL"));
2774         SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2775         rc = sqlite3Select(pParse, p, &dest);
2776         testcase( rc!=SQLITE_OK );
2777         pDelete = p->pPrior;
2778         p->pPrior = pPrior;
2779         p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2780         if( p->pLimit
2781          && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2782          && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2783         ){
2784           p->nSelectRow = sqlite3LogEst((u64)nLimit);
2785         }
2786         if( addr ){
2787           sqlite3VdbeJumpHere(v, addr);
2788         }
2789         break;
2790       }
2791       case TK_EXCEPT:
2792       case TK_UNION: {
2793         int unionTab;    /* Cursor number of the temp table holding result */
2794         u8 op = 0;       /* One of the SRT_ operations to apply to self */
2795         int priorOp;     /* The SRT_ operation to apply to prior selects */
2796         Expr *pLimit;    /* Saved values of p->nLimit  */
2797         int addr;
2798         SelectDest uniondest;
2799 
2800         testcase( p->op==TK_EXCEPT );
2801         testcase( p->op==TK_UNION );
2802         priorOp = SRT_Union;
2803         if( dest.eDest==priorOp ){
2804           /* We can reuse a temporary table generated by a SELECT to our
2805           ** right.
2806           */
2807           assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2808           unionTab = dest.iSDParm;
2809         }else{
2810           /* We will need to create our own temporary table to hold the
2811           ** intermediate results.
2812           */
2813           unionTab = pParse->nTab++;
2814           assert( p->pOrderBy==0 );
2815           addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2816           assert( p->addrOpenEphm[0] == -1 );
2817           p->addrOpenEphm[0] = addr;
2818           findRightmost(p)->selFlags |= SF_UsesEphemeral;
2819           assert( p->pEList );
2820         }
2821 
2822 
2823         /* Code the SELECT statements to our left
2824         */
2825         assert( !pPrior->pOrderBy );
2826         sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2827         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2828         rc = sqlite3Select(pParse, pPrior, &uniondest);
2829         if( rc ){
2830           goto multi_select_end;
2831         }
2832 
2833         /* Code the current SELECT statement
2834         */
2835         if( p->op==TK_EXCEPT ){
2836           op = SRT_Except;
2837         }else{
2838           assert( p->op==TK_UNION );
2839           op = SRT_Union;
2840         }
2841         p->pPrior = 0;
2842         pLimit = p->pLimit;
2843         p->pLimit = 0;
2844         uniondest.eDest = op;
2845         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2846                           sqlite3SelectOpName(p->op)));
2847         SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2848         rc = sqlite3Select(pParse, p, &uniondest);
2849         testcase( rc!=SQLITE_OK );
2850         assert( p->pOrderBy==0 );
2851         pDelete = p->pPrior;
2852         p->pPrior = pPrior;
2853         p->pOrderBy = 0;
2854         if( p->op==TK_UNION ){
2855           p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2856         }
2857         sqlite3ExprDelete(db, p->pLimit);
2858         p->pLimit = pLimit;
2859         p->iLimit = 0;
2860         p->iOffset = 0;
2861 
2862         /* Convert the data in the temporary table into whatever form
2863         ** it is that we currently need.
2864         */
2865         assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2866         assert( p->pEList || db->mallocFailed );
2867         if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2868           int iCont, iBreak, iStart;
2869           iBreak = sqlite3VdbeMakeLabel(pParse);
2870           iCont = sqlite3VdbeMakeLabel(pParse);
2871           computeLimitRegisters(pParse, p, iBreak);
2872           sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2873           iStart = sqlite3VdbeCurrentAddr(v);
2874           selectInnerLoop(pParse, p, unionTab,
2875                           0, 0, &dest, iCont, iBreak);
2876           sqlite3VdbeResolveLabel(v, iCont);
2877           sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2878           sqlite3VdbeResolveLabel(v, iBreak);
2879           sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2880         }
2881         break;
2882       }
2883       default: assert( p->op==TK_INTERSECT ); {
2884         int tab1, tab2;
2885         int iCont, iBreak, iStart;
2886         Expr *pLimit;
2887         int addr;
2888         SelectDest intersectdest;
2889         int r1;
2890 
2891         /* INTERSECT is different from the others since it requires
2892         ** two temporary tables.  Hence it has its own case.  Begin
2893         ** by allocating the tables we will need.
2894         */
2895         tab1 = pParse->nTab++;
2896         tab2 = pParse->nTab++;
2897         assert( p->pOrderBy==0 );
2898 
2899         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2900         assert( p->addrOpenEphm[0] == -1 );
2901         p->addrOpenEphm[0] = addr;
2902         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2903         assert( p->pEList );
2904 
2905         /* Code the SELECTs to our left into temporary table "tab1".
2906         */
2907         sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2908         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2909         rc = sqlite3Select(pParse, pPrior, &intersectdest);
2910         if( rc ){
2911           goto multi_select_end;
2912         }
2913 
2914         /* Code the current SELECT into temporary table "tab2"
2915         */
2916         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2917         assert( p->addrOpenEphm[1] == -1 );
2918         p->addrOpenEphm[1] = addr;
2919         p->pPrior = 0;
2920         pLimit = p->pLimit;
2921         p->pLimit = 0;
2922         intersectdest.iSDParm = tab2;
2923         ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2924                           sqlite3SelectOpName(p->op)));
2925         SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2926         rc = sqlite3Select(pParse, p, &intersectdest);
2927         testcase( rc!=SQLITE_OK );
2928         pDelete = p->pPrior;
2929         p->pPrior = pPrior;
2930         if( p->nSelectRow>pPrior->nSelectRow ){
2931           p->nSelectRow = pPrior->nSelectRow;
2932         }
2933         sqlite3ExprDelete(db, p->pLimit);
2934         p->pLimit = pLimit;
2935 
2936         /* Generate code to take the intersection of the two temporary
2937         ** tables.
2938         */
2939         if( rc ) break;
2940         assert( p->pEList );
2941         iBreak = sqlite3VdbeMakeLabel(pParse);
2942         iCont = sqlite3VdbeMakeLabel(pParse);
2943         computeLimitRegisters(pParse, p, iBreak);
2944         sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2945         r1 = sqlite3GetTempReg(pParse);
2946         iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2947         sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2948         VdbeCoverage(v);
2949         sqlite3ReleaseTempReg(pParse, r1);
2950         selectInnerLoop(pParse, p, tab1,
2951                         0, 0, &dest, iCont, iBreak);
2952         sqlite3VdbeResolveLabel(v, iCont);
2953         sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2954         sqlite3VdbeResolveLabel(v, iBreak);
2955         sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2956         sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2957         break;
2958       }
2959     }
2960 
2961   #ifndef SQLITE_OMIT_EXPLAIN
2962     if( p->pNext==0 ){
2963       ExplainQueryPlanPop(pParse);
2964     }
2965   #endif
2966   }
2967   if( pParse->nErr ) goto multi_select_end;
2968 
2969   /* Compute collating sequences used by
2970   ** temporary tables needed to implement the compound select.
2971   ** Attach the KeyInfo structure to all temporary tables.
2972   **
2973   ** This section is run by the right-most SELECT statement only.
2974   ** SELECT statements to the left always skip this part.  The right-most
2975   ** SELECT might also skip this part if it has no ORDER BY clause and
2976   ** no temp tables are required.
2977   */
2978   if( p->selFlags & SF_UsesEphemeral ){
2979     int i;                        /* Loop counter */
2980     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2981     Select *pLoop;                /* For looping through SELECT statements */
2982     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2983     int nCol;                     /* Number of columns in result set */
2984 
2985     assert( p->pNext==0 );
2986     assert( p->pEList!=0 );
2987     nCol = p->pEList->nExpr;
2988     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2989     if( !pKeyInfo ){
2990       rc = SQLITE_NOMEM_BKPT;
2991       goto multi_select_end;
2992     }
2993     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2994       *apColl = multiSelectCollSeq(pParse, p, i);
2995       if( 0==*apColl ){
2996         *apColl = db->pDfltColl;
2997       }
2998     }
2999 
3000     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3001       for(i=0; i<2; i++){
3002         int addr = pLoop->addrOpenEphm[i];
3003         if( addr<0 ){
3004           /* If [0] is unused then [1] is also unused.  So we can
3005           ** always safely abort as soon as the first unused slot is found */
3006           assert( pLoop->addrOpenEphm[1]<0 );
3007           break;
3008         }
3009         sqlite3VdbeChangeP2(v, addr, nCol);
3010         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3011                             P4_KEYINFO);
3012         pLoop->addrOpenEphm[i] = -1;
3013       }
3014     }
3015     sqlite3KeyInfoUnref(pKeyInfo);
3016   }
3017 
3018 multi_select_end:
3019   pDest->iSdst = dest.iSdst;
3020   pDest->nSdst = dest.nSdst;
3021   if( pDelete ){
3022     sqlite3ParserAddCleanup(pParse,
3023         (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3024         pDelete);
3025   }
3026   return rc;
3027 }
3028 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3029 
3030 /*
3031 ** Error message for when two or more terms of a compound select have different
3032 ** size result sets.
3033 */
3034 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3035   if( p->selFlags & SF_Values ){
3036     sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3037   }else{
3038     sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3039       " do not have the same number of result columns",
3040       sqlite3SelectOpName(p->op));
3041   }
3042 }
3043 
3044 /*
3045 ** Code an output subroutine for a coroutine implementation of a
3046 ** SELECT statment.
3047 **
3048 ** The data to be output is contained in pIn->iSdst.  There are
3049 ** pIn->nSdst columns to be output.  pDest is where the output should
3050 ** be sent.
3051 **
3052 ** regReturn is the number of the register holding the subroutine
3053 ** return address.
3054 **
3055 ** If regPrev>0 then it is the first register in a vector that
3056 ** records the previous output.  mem[regPrev] is a flag that is false
3057 ** if there has been no previous output.  If regPrev>0 then code is
3058 ** generated to suppress duplicates.  pKeyInfo is used for comparing
3059 ** keys.
3060 **
3061 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3062 ** iBreak.
3063 */
3064 static int generateOutputSubroutine(
3065   Parse *pParse,          /* Parsing context */
3066   Select *p,              /* The SELECT statement */
3067   SelectDest *pIn,        /* Coroutine supplying data */
3068   SelectDest *pDest,      /* Where to send the data */
3069   int regReturn,          /* The return address register */
3070   int regPrev,            /* Previous result register.  No uniqueness if 0 */
3071   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
3072   int iBreak              /* Jump here if we hit the LIMIT */
3073 ){
3074   Vdbe *v = pParse->pVdbe;
3075   int iContinue;
3076   int addr;
3077 
3078   addr = sqlite3VdbeCurrentAddr(v);
3079   iContinue = sqlite3VdbeMakeLabel(pParse);
3080 
3081   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3082   */
3083   if( regPrev ){
3084     int addr1, addr2;
3085     addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3086     addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3087                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3088     sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3089     sqlite3VdbeJumpHere(v, addr1);
3090     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3091     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3092   }
3093   if( pParse->db->mallocFailed ) return 0;
3094 
3095   /* Suppress the first OFFSET entries if there is an OFFSET clause
3096   */
3097   codeOffset(v, p->iOffset, iContinue);
3098 
3099   assert( pDest->eDest!=SRT_Exists );
3100   assert( pDest->eDest!=SRT_Table );
3101   switch( pDest->eDest ){
3102     /* Store the result as data using a unique key.
3103     */
3104     case SRT_EphemTab: {
3105       int r1 = sqlite3GetTempReg(pParse);
3106       int r2 = sqlite3GetTempReg(pParse);
3107       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3108       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3109       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3110       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3111       sqlite3ReleaseTempReg(pParse, r2);
3112       sqlite3ReleaseTempReg(pParse, r1);
3113       break;
3114     }
3115 
3116 #ifndef SQLITE_OMIT_SUBQUERY
3117     /* If we are creating a set for an "expr IN (SELECT ...)".
3118     */
3119     case SRT_Set: {
3120       int r1;
3121       testcase( pIn->nSdst>1 );
3122       r1 = sqlite3GetTempReg(pParse);
3123       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3124           r1, pDest->zAffSdst, pIn->nSdst);
3125       sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3126                            pIn->iSdst, pIn->nSdst);
3127       sqlite3ReleaseTempReg(pParse, r1);
3128       break;
3129     }
3130 
3131     /* If this is a scalar select that is part of an expression, then
3132     ** store the results in the appropriate memory cell and break out
3133     ** of the scan loop.  Note that the select might return multiple columns
3134     ** if it is the RHS of a row-value IN operator.
3135     */
3136     case SRT_Mem: {
3137       testcase( pIn->nSdst>1 );
3138       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3139       /* The LIMIT clause will jump out of the loop for us */
3140       break;
3141     }
3142 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3143 
3144     /* The results are stored in a sequence of registers
3145     ** starting at pDest->iSdst.  Then the co-routine yields.
3146     */
3147     case SRT_Coroutine: {
3148       if( pDest->iSdst==0 ){
3149         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3150         pDest->nSdst = pIn->nSdst;
3151       }
3152       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3153       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3154       break;
3155     }
3156 
3157     /* If none of the above, then the result destination must be
3158     ** SRT_Output.  This routine is never called with any other
3159     ** destination other than the ones handled above or SRT_Output.
3160     **
3161     ** For SRT_Output, results are stored in a sequence of registers.
3162     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3163     ** return the next row of result.
3164     */
3165     default: {
3166       assert( pDest->eDest==SRT_Output );
3167       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3168       break;
3169     }
3170   }
3171 
3172   /* Jump to the end of the loop if the LIMIT is reached.
3173   */
3174   if( p->iLimit ){
3175     sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3176   }
3177 
3178   /* Generate the subroutine return
3179   */
3180   sqlite3VdbeResolveLabel(v, iContinue);
3181   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3182 
3183   return addr;
3184 }
3185 
3186 /*
3187 ** Alternative compound select code generator for cases when there
3188 ** is an ORDER BY clause.
3189 **
3190 ** We assume a query of the following form:
3191 **
3192 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
3193 **
3194 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
3195 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3196 ** co-routines.  Then run the co-routines in parallel and merge the results
3197 ** into the output.  In addition to the two coroutines (called selectA and
3198 ** selectB) there are 7 subroutines:
3199 **
3200 **    outA:    Move the output of the selectA coroutine into the output
3201 **             of the compound query.
3202 **
3203 **    outB:    Move the output of the selectB coroutine into the output
3204 **             of the compound query.  (Only generated for UNION and
3205 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
3206 **             appears only in B.)
3207 **
3208 **    AltB:    Called when there is data from both coroutines and A<B.
3209 **
3210 **    AeqB:    Called when there is data from both coroutines and A==B.
3211 **
3212 **    AgtB:    Called when there is data from both coroutines and A>B.
3213 **
3214 **    EofA:    Called when data is exhausted from selectA.
3215 **
3216 **    EofB:    Called when data is exhausted from selectB.
3217 **
3218 ** The implementation of the latter five subroutines depend on which
3219 ** <operator> is used:
3220 **
3221 **
3222 **             UNION ALL         UNION            EXCEPT          INTERSECT
3223 **          -------------  -----------------  --------------  -----------------
3224 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
3225 **
3226 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
3227 **
3228 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
3229 **
3230 **   EofA:   outB, nextB      outB, nextB          halt             halt
3231 **
3232 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
3233 **
3234 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3235 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3236 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
3237 ** following nextX causes a jump to the end of the select processing.
3238 **
3239 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3240 ** within the output subroutine.  The regPrev register set holds the previously
3241 ** output value.  A comparison is made against this value and the output
3242 ** is skipped if the next results would be the same as the previous.
3243 **
3244 ** The implementation plan is to implement the two coroutines and seven
3245 ** subroutines first, then put the control logic at the bottom.  Like this:
3246 **
3247 **          goto Init
3248 **     coA: coroutine for left query (A)
3249 **     coB: coroutine for right query (B)
3250 **    outA: output one row of A
3251 **    outB: output one row of B (UNION and UNION ALL only)
3252 **    EofA: ...
3253 **    EofB: ...
3254 **    AltB: ...
3255 **    AeqB: ...
3256 **    AgtB: ...
3257 **    Init: initialize coroutine registers
3258 **          yield coA
3259 **          if eof(A) goto EofA
3260 **          yield coB
3261 **          if eof(B) goto EofB
3262 **    Cmpr: Compare A, B
3263 **          Jump AltB, AeqB, AgtB
3264 **     End: ...
3265 **
3266 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3267 ** actually called using Gosub and they do not Return.  EofA and EofB loop
3268 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
3269 ** and AgtB jump to either L2 or to one of EofA or EofB.
3270 */
3271 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3272 static int multiSelectOrderBy(
3273   Parse *pParse,        /* Parsing context */
3274   Select *p,            /* The right-most of SELECTs to be coded */
3275   SelectDest *pDest     /* What to do with query results */
3276 ){
3277   int i, j;             /* Loop counters */
3278   Select *pPrior;       /* Another SELECT immediately to our left */
3279   Vdbe *v;              /* Generate code to this VDBE */
3280   SelectDest destA;     /* Destination for coroutine A */
3281   SelectDest destB;     /* Destination for coroutine B */
3282   int regAddrA;         /* Address register for select-A coroutine */
3283   int regAddrB;         /* Address register for select-B coroutine */
3284   int addrSelectA;      /* Address of the select-A coroutine */
3285   int addrSelectB;      /* Address of the select-B coroutine */
3286   int regOutA;          /* Address register for the output-A subroutine */
3287   int regOutB;          /* Address register for the output-B subroutine */
3288   int addrOutA;         /* Address of the output-A subroutine */
3289   int addrOutB = 0;     /* Address of the output-B subroutine */
3290   int addrEofA;         /* Address of the select-A-exhausted subroutine */
3291   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
3292   int addrEofB;         /* Address of the select-B-exhausted subroutine */
3293   int addrAltB;         /* Address of the A<B subroutine */
3294   int addrAeqB;         /* Address of the A==B subroutine */
3295   int addrAgtB;         /* Address of the A>B subroutine */
3296   int regLimitA;        /* Limit register for select-A */
3297   int regLimitB;        /* Limit register for select-A */
3298   int regPrev;          /* A range of registers to hold previous output */
3299   int savedLimit;       /* Saved value of p->iLimit */
3300   int savedOffset;      /* Saved value of p->iOffset */
3301   int labelCmpr;        /* Label for the start of the merge algorithm */
3302   int labelEnd;         /* Label for the end of the overall SELECT stmt */
3303   int addr1;            /* Jump instructions that get retargetted */
3304   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3305   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3306   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
3307   sqlite3 *db;          /* Database connection */
3308   ExprList *pOrderBy;   /* The ORDER BY clause */
3309   int nOrderBy;         /* Number of terms in the ORDER BY clause */
3310   u32 *aPermute;        /* Mapping from ORDER BY terms to result set columns */
3311 
3312   assert( p->pOrderBy!=0 );
3313   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
3314   db = pParse->db;
3315   v = pParse->pVdbe;
3316   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
3317   labelEnd = sqlite3VdbeMakeLabel(pParse);
3318   labelCmpr = sqlite3VdbeMakeLabel(pParse);
3319 
3320 
3321   /* Patch up the ORDER BY clause
3322   */
3323   op = p->op;
3324   pPrior = p->pPrior;
3325   assert( pPrior->pOrderBy==0 );
3326   pOrderBy = p->pOrderBy;
3327   assert( pOrderBy );
3328   nOrderBy = pOrderBy->nExpr;
3329 
3330   /* For operators other than UNION ALL we have to make sure that
3331   ** the ORDER BY clause covers every term of the result set.  Add
3332   ** terms to the ORDER BY clause as necessary.
3333   */
3334   if( op!=TK_ALL ){
3335     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3336       struct ExprList_item *pItem;
3337       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3338         assert( pItem!=0 );
3339         assert( pItem->u.x.iOrderByCol>0 );
3340         if( pItem->u.x.iOrderByCol==i ) break;
3341       }
3342       if( j==nOrderBy ){
3343         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3344         if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3345         pNew->flags |= EP_IntValue;
3346         pNew->u.iValue = i;
3347         p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3348         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3349       }
3350     }
3351   }
3352 
3353   /* Compute the comparison permutation and keyinfo that is used with
3354   ** the permutation used to determine if the next
3355   ** row of results comes from selectA or selectB.  Also add explicit
3356   ** collations to the ORDER BY clause terms so that when the subqueries
3357   ** to the right and the left are evaluated, they use the correct
3358   ** collation.
3359   */
3360   aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3361   if( aPermute ){
3362     struct ExprList_item *pItem;
3363     aPermute[0] = nOrderBy;
3364     for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3365       assert( pItem!=0 );
3366       assert( pItem->u.x.iOrderByCol>0 );
3367       assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3368       aPermute[i] = pItem->u.x.iOrderByCol - 1;
3369     }
3370     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3371   }else{
3372     pKeyMerge = 0;
3373   }
3374 
3375   /* Reattach the ORDER BY clause to the query.
3376   */
3377   p->pOrderBy = pOrderBy;
3378   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3379 
3380   /* Allocate a range of temporary registers and the KeyInfo needed
3381   ** for the logic that removes duplicate result rows when the
3382   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3383   */
3384   if( op==TK_ALL ){
3385     regPrev = 0;
3386   }else{
3387     int nExpr = p->pEList->nExpr;
3388     assert( nOrderBy>=nExpr || db->mallocFailed );
3389     regPrev = pParse->nMem+1;
3390     pParse->nMem += nExpr+1;
3391     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3392     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3393     if( pKeyDup ){
3394       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3395       for(i=0; i<nExpr; i++){
3396         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3397         pKeyDup->aSortFlags[i] = 0;
3398       }
3399     }
3400   }
3401 
3402   /* Separate the left and the right query from one another
3403   */
3404   p->pPrior = 0;
3405   pPrior->pNext = 0;
3406   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3407   if( pPrior->pPrior==0 ){
3408     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3409   }
3410 
3411   /* Compute the limit registers */
3412   computeLimitRegisters(pParse, p, labelEnd);
3413   if( p->iLimit && op==TK_ALL ){
3414     regLimitA = ++pParse->nMem;
3415     regLimitB = ++pParse->nMem;
3416     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3417                                   regLimitA);
3418     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3419   }else{
3420     regLimitA = regLimitB = 0;
3421   }
3422   sqlite3ExprDelete(db, p->pLimit);
3423   p->pLimit = 0;
3424 
3425   regAddrA = ++pParse->nMem;
3426   regAddrB = ++pParse->nMem;
3427   regOutA = ++pParse->nMem;
3428   regOutB = ++pParse->nMem;
3429   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3430   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3431 
3432   ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3433 
3434   /* Generate a coroutine to evaluate the SELECT statement to the
3435   ** left of the compound operator - the "A" select.
3436   */
3437   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3438   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3439   VdbeComment((v, "left SELECT"));
3440   pPrior->iLimit = regLimitA;
3441   ExplainQueryPlan((pParse, 1, "LEFT"));
3442   sqlite3Select(pParse, pPrior, &destA);
3443   sqlite3VdbeEndCoroutine(v, regAddrA);
3444   sqlite3VdbeJumpHere(v, addr1);
3445 
3446   /* Generate a coroutine to evaluate the SELECT statement on
3447   ** the right - the "B" select
3448   */
3449   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3450   addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3451   VdbeComment((v, "right SELECT"));
3452   savedLimit = p->iLimit;
3453   savedOffset = p->iOffset;
3454   p->iLimit = regLimitB;
3455   p->iOffset = 0;
3456   ExplainQueryPlan((pParse, 1, "RIGHT"));
3457   sqlite3Select(pParse, p, &destB);
3458   p->iLimit = savedLimit;
3459   p->iOffset = savedOffset;
3460   sqlite3VdbeEndCoroutine(v, regAddrB);
3461 
3462   /* Generate a subroutine that outputs the current row of the A
3463   ** select as the next output row of the compound select.
3464   */
3465   VdbeNoopComment((v, "Output routine for A"));
3466   addrOutA = generateOutputSubroutine(pParse,
3467                  p, &destA, pDest, regOutA,
3468                  regPrev, pKeyDup, labelEnd);
3469 
3470   /* Generate a subroutine that outputs the current row of the B
3471   ** select as the next output row of the compound select.
3472   */
3473   if( op==TK_ALL || op==TK_UNION ){
3474     VdbeNoopComment((v, "Output routine for B"));
3475     addrOutB = generateOutputSubroutine(pParse,
3476                  p, &destB, pDest, regOutB,
3477                  regPrev, pKeyDup, labelEnd);
3478   }
3479   sqlite3KeyInfoUnref(pKeyDup);
3480 
3481   /* Generate a subroutine to run when the results from select A
3482   ** are exhausted and only data in select B remains.
3483   */
3484   if( op==TK_EXCEPT || op==TK_INTERSECT ){
3485     addrEofA_noB = addrEofA = labelEnd;
3486   }else{
3487     VdbeNoopComment((v, "eof-A subroutine"));
3488     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3489     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3490                                      VdbeCoverage(v);
3491     sqlite3VdbeGoto(v, addrEofA);
3492     p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3493   }
3494 
3495   /* Generate a subroutine to run when the results from select B
3496   ** are exhausted and only data in select A remains.
3497   */
3498   if( op==TK_INTERSECT ){
3499     addrEofB = addrEofA;
3500     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3501   }else{
3502     VdbeNoopComment((v, "eof-B subroutine"));
3503     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3504     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3505     sqlite3VdbeGoto(v, addrEofB);
3506   }
3507 
3508   /* Generate code to handle the case of A<B
3509   */
3510   VdbeNoopComment((v, "A-lt-B subroutine"));
3511   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3512   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3513   sqlite3VdbeGoto(v, labelCmpr);
3514 
3515   /* Generate code to handle the case of A==B
3516   */
3517   if( op==TK_ALL ){
3518     addrAeqB = addrAltB;
3519   }else if( op==TK_INTERSECT ){
3520     addrAeqB = addrAltB;
3521     addrAltB++;
3522   }else{
3523     VdbeNoopComment((v, "A-eq-B subroutine"));
3524     addrAeqB =
3525     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3526     sqlite3VdbeGoto(v, labelCmpr);
3527   }
3528 
3529   /* Generate code to handle the case of A>B
3530   */
3531   VdbeNoopComment((v, "A-gt-B subroutine"));
3532   addrAgtB = sqlite3VdbeCurrentAddr(v);
3533   if( op==TK_ALL || op==TK_UNION ){
3534     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3535   }
3536   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3537   sqlite3VdbeGoto(v, labelCmpr);
3538 
3539   /* This code runs once to initialize everything.
3540   */
3541   sqlite3VdbeJumpHere(v, addr1);
3542   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3543   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3544 
3545   /* Implement the main merge loop
3546   */
3547   sqlite3VdbeResolveLabel(v, labelCmpr);
3548   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3549   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3550                          (char*)pKeyMerge, P4_KEYINFO);
3551   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3552   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3553 
3554   /* Jump to the this point in order to terminate the query.
3555   */
3556   sqlite3VdbeResolveLabel(v, labelEnd);
3557 
3558   /* Reassembly the compound query so that it will be freed correctly
3559   ** by the calling function */
3560   if( p->pPrior ){
3561     sqlite3SelectDelete(db, p->pPrior);
3562   }
3563   p->pPrior = pPrior;
3564   pPrior->pNext = p;
3565 
3566   sqlite3ExprListDelete(db, pPrior->pOrderBy);
3567   pPrior->pOrderBy = 0;
3568 
3569   /*** TBD:  Insert subroutine calls to close cursors on incomplete
3570   **** subqueries ****/
3571   ExplainQueryPlanPop(pParse);
3572   return pParse->nErr!=0;
3573 }
3574 #endif
3575 
3576 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3577 
3578 /* An instance of the SubstContext object describes an substitution edit
3579 ** to be performed on a parse tree.
3580 **
3581 ** All references to columns in table iTable are to be replaced by corresponding
3582 ** expressions in pEList.
3583 */
3584 typedef struct SubstContext {
3585   Parse *pParse;            /* The parsing context */
3586   int iTable;               /* Replace references to this table */
3587   int iNewTable;            /* New table number */
3588   int isLeftJoin;           /* Add TK_IF_NULL_ROW opcodes on each replacement */
3589   ExprList *pEList;         /* Replacement expressions */
3590 } SubstContext;
3591 
3592 /* Forward Declarations */
3593 static void substExprList(SubstContext*, ExprList*);
3594 static void substSelect(SubstContext*, Select*, int);
3595 
3596 /*
3597 ** Scan through the expression pExpr.  Replace every reference to
3598 ** a column in table number iTable with a copy of the iColumn-th
3599 ** entry in pEList.  (But leave references to the ROWID column
3600 ** unchanged.)
3601 **
3602 ** This routine is part of the flattening procedure.  A subquery
3603 ** whose result set is defined by pEList appears as entry in the
3604 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3605 ** FORM clause entry is iTable.  This routine makes the necessary
3606 ** changes to pExpr so that it refers directly to the source table
3607 ** of the subquery rather the result set of the subquery.
3608 */
3609 static Expr *substExpr(
3610   SubstContext *pSubst,  /* Description of the substitution */
3611   Expr *pExpr            /* Expr in which substitution occurs */
3612 ){
3613   if( pExpr==0 ) return 0;
3614   if( ExprHasProperty(pExpr, EP_FromJoin)
3615    && pExpr->iRightJoinTable==pSubst->iTable
3616   ){
3617     pExpr->iRightJoinTable = pSubst->iNewTable;
3618   }
3619   if( pExpr->op==TK_COLUMN
3620    && pExpr->iTable==pSubst->iTable
3621    && !ExprHasProperty(pExpr, EP_FixedCol)
3622   ){
3623 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3624     if( pExpr->iColumn<0 ){
3625       pExpr->op = TK_NULL;
3626     }else
3627 #endif
3628     {
3629       Expr *pNew;
3630       Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3631       Expr ifNullRow;
3632       assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3633       assert( pExpr->pRight==0 );
3634       if( sqlite3ExprIsVector(pCopy) ){
3635         sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3636       }else{
3637         sqlite3 *db = pSubst->pParse->db;
3638         if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3639           memset(&ifNullRow, 0, sizeof(ifNullRow));
3640           ifNullRow.op = TK_IF_NULL_ROW;
3641           ifNullRow.pLeft = pCopy;
3642           ifNullRow.iTable = pSubst->iNewTable;
3643           ifNullRow.flags = EP_IfNullRow;
3644           pCopy = &ifNullRow;
3645         }
3646         testcase( ExprHasProperty(pCopy, EP_Subquery) );
3647         pNew = sqlite3ExprDup(db, pCopy, 0);
3648         if( db->mallocFailed ){
3649           sqlite3ExprDelete(db, pNew);
3650           return pExpr;
3651         }
3652         if( pSubst->isLeftJoin ){
3653           ExprSetProperty(pNew, EP_CanBeNull);
3654         }
3655         if( ExprHasProperty(pExpr,EP_FromJoin) ){
3656           sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3657         }
3658         sqlite3ExprDelete(db, pExpr);
3659         pExpr = pNew;
3660 
3661         /* Ensure that the expression now has an implicit collation sequence,
3662         ** just as it did when it was a column of a view or sub-query. */
3663         if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3664           CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3665           pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3666               (pColl ? pColl->zName : "BINARY")
3667           );
3668         }
3669         ExprClearProperty(pExpr, EP_Collate);
3670       }
3671     }
3672   }else{
3673     if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3674       pExpr->iTable = pSubst->iNewTable;
3675     }
3676     pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3677     pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3678     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3679       substSelect(pSubst, pExpr->x.pSelect, 1);
3680     }else{
3681       substExprList(pSubst, pExpr->x.pList);
3682     }
3683 #ifndef SQLITE_OMIT_WINDOWFUNC
3684     if( ExprHasProperty(pExpr, EP_WinFunc) ){
3685       Window *pWin = pExpr->y.pWin;
3686       pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3687       substExprList(pSubst, pWin->pPartition);
3688       substExprList(pSubst, pWin->pOrderBy);
3689     }
3690 #endif
3691   }
3692   return pExpr;
3693 }
3694 static void substExprList(
3695   SubstContext *pSubst, /* Description of the substitution */
3696   ExprList *pList       /* List to scan and in which to make substitutes */
3697 ){
3698   int i;
3699   if( pList==0 ) return;
3700   for(i=0; i<pList->nExpr; i++){
3701     pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3702   }
3703 }
3704 static void substSelect(
3705   SubstContext *pSubst, /* Description of the substitution */
3706   Select *p,            /* SELECT statement in which to make substitutions */
3707   int doPrior           /* Do substitutes on p->pPrior too */
3708 ){
3709   SrcList *pSrc;
3710   SrcItem *pItem;
3711   int i;
3712   if( !p ) return;
3713   do{
3714     substExprList(pSubst, p->pEList);
3715     substExprList(pSubst, p->pGroupBy);
3716     substExprList(pSubst, p->pOrderBy);
3717     p->pHaving = substExpr(pSubst, p->pHaving);
3718     p->pWhere = substExpr(pSubst, p->pWhere);
3719     pSrc = p->pSrc;
3720     assert( pSrc!=0 );
3721     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3722       substSelect(pSubst, pItem->pSelect, 1);
3723       if( pItem->fg.isTabFunc ){
3724         substExprList(pSubst, pItem->u1.pFuncArg);
3725       }
3726     }
3727   }while( doPrior && (p = p->pPrior)!=0 );
3728 }
3729 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3730 
3731 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3732 /*
3733 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3734 ** clause of that SELECT.
3735 **
3736 ** This routine scans the entire SELECT statement and recomputes the
3737 ** pSrcItem->colUsed mask.
3738 */
3739 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3740   SrcItem *pItem;
3741   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3742   pItem = pWalker->u.pSrcItem;
3743   if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3744   if( pExpr->iColumn<0 ) return WRC_Continue;
3745   pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3746   return WRC_Continue;
3747 }
3748 static void recomputeColumnsUsed(
3749   Select *pSelect,                 /* The complete SELECT statement */
3750   SrcItem *pSrcItem                /* Which FROM clause item to recompute */
3751 ){
3752   Walker w;
3753   if( NEVER(pSrcItem->pTab==0) ) return;
3754   memset(&w, 0, sizeof(w));
3755   w.xExprCallback = recomputeColumnsUsedExpr;
3756   w.xSelectCallback = sqlite3SelectWalkNoop;
3757   w.u.pSrcItem = pSrcItem;
3758   pSrcItem->colUsed = 0;
3759   sqlite3WalkSelect(&w, pSelect);
3760 }
3761 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3762 
3763 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3764 /*
3765 ** Assign new cursor numbers to each of the items in pSrc. For each
3766 ** new cursor number assigned, set an entry in the aCsrMap[] array
3767 ** to map the old cursor number to the new:
3768 **
3769 **     aCsrMap[iOld+1] = iNew;
3770 **
3771 ** The array is guaranteed by the caller to be large enough for all
3772 ** existing cursor numbers in pSrc.  aCsrMap[0] is the array size.
3773 **
3774 ** If pSrc contains any sub-selects, call this routine recursively
3775 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3776 */
3777 static void srclistRenumberCursors(
3778   Parse *pParse,                  /* Parse context */
3779   int *aCsrMap,                   /* Array to store cursor mappings in */
3780   SrcList *pSrc,                  /* FROM clause to renumber */
3781   int iExcept                     /* FROM clause item to skip */
3782 ){
3783   int i;
3784   SrcItem *pItem;
3785   for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3786     if( i!=iExcept ){
3787       Select *p;
3788       assert( pItem->iCursor < aCsrMap[0] );
3789       if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3790         aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3791       }
3792       pItem->iCursor = aCsrMap[pItem->iCursor+1];
3793       for(p=pItem->pSelect; p; p=p->pPrior){
3794         srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3795       }
3796     }
3797   }
3798 }
3799 
3800 /*
3801 ** *piCursor is a cursor number.  Change it if it needs to be mapped.
3802 */
3803 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3804   int *aCsrMap = pWalker->u.aiCol;
3805   int iCsr = *piCursor;
3806   if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3807     *piCursor = aCsrMap[iCsr+1];
3808   }
3809 }
3810 
3811 /*
3812 ** Expression walker callback used by renumberCursors() to update
3813 ** Expr objects to match newly assigned cursor numbers.
3814 */
3815 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3816   int op = pExpr->op;
3817   if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3818     renumberCursorDoMapping(pWalker, &pExpr->iTable);
3819   }
3820   if( ExprHasProperty(pExpr, EP_FromJoin) ){
3821     renumberCursorDoMapping(pWalker, &pExpr->iRightJoinTable);
3822   }
3823   return WRC_Continue;
3824 }
3825 
3826 /*
3827 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3828 ** of the SELECT statement passed as the second argument, and to each
3829 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3830 ** Except, do not assign a new cursor number to the iExcept'th element in
3831 ** the FROM clause of (*p). Update all expressions and other references
3832 ** to refer to the new cursor numbers.
3833 **
3834 ** Argument aCsrMap is an array that may be used for temporary working
3835 ** space. Two guarantees are made by the caller:
3836 **
3837 **   * the array is larger than the largest cursor number used within the
3838 **     select statement passed as an argument, and
3839 **
3840 **   * the array entries for all cursor numbers that do *not* appear in
3841 **     FROM clauses of the select statement as described above are
3842 **     initialized to zero.
3843 */
3844 static void renumberCursors(
3845   Parse *pParse,                  /* Parse context */
3846   Select *p,                      /* Select to renumber cursors within */
3847   int iExcept,                    /* FROM clause item to skip */
3848   int *aCsrMap                    /* Working space */
3849 ){
3850   Walker w;
3851   srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3852   memset(&w, 0, sizeof(w));
3853   w.u.aiCol = aCsrMap;
3854   w.xExprCallback = renumberCursorsCb;
3855   w.xSelectCallback = sqlite3SelectWalkNoop;
3856   sqlite3WalkSelect(&w, p);
3857 }
3858 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3859 
3860 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3861 /*
3862 ** This routine attempts to flatten subqueries as a performance optimization.
3863 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3864 **
3865 ** To understand the concept of flattening, consider the following
3866 ** query:
3867 **
3868 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3869 **
3870 ** The default way of implementing this query is to execute the
3871 ** subquery first and store the results in a temporary table, then
3872 ** run the outer query on that temporary table.  This requires two
3873 ** passes over the data.  Furthermore, because the temporary table
3874 ** has no indices, the WHERE clause on the outer query cannot be
3875 ** optimized.
3876 **
3877 ** This routine attempts to rewrite queries such as the above into
3878 ** a single flat select, like this:
3879 **
3880 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3881 **
3882 ** The code generated for this simplification gives the same result
3883 ** but only has to scan the data once.  And because indices might
3884 ** exist on the table t1, a complete scan of the data might be
3885 ** avoided.
3886 **
3887 ** Flattening is subject to the following constraints:
3888 **
3889 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3890 **        The subquery and the outer query cannot both be aggregates.
3891 **
3892 **  (**)  We no longer attempt to flatten aggregate subqueries. Was:
3893 **        (2) If the subquery is an aggregate then
3894 **        (2a) the outer query must not be a join and
3895 **        (2b) the outer query must not use subqueries
3896 **             other than the one FROM-clause subquery that is a candidate
3897 **             for flattening.  (This is due to ticket [2f7170d73bf9abf80]
3898 **             from 2015-02-09.)
3899 **
3900 **   (3)  If the subquery is the right operand of a LEFT JOIN then
3901 **        (3a) the subquery may not be a join and
3902 **        (3b) the FROM clause of the subquery may not contain a virtual
3903 **             table and
3904 **        (3c) the outer query may not be an aggregate.
3905 **        (3d) the outer query may not be DISTINCT.
3906 **
3907 **   (4)  The subquery can not be DISTINCT.
3908 **
3909 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3910 **        sub-queries that were excluded from this optimization. Restriction
3911 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3912 **
3913 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3914 **        If the subquery is aggregate, the outer query may not be DISTINCT.
3915 **
3916 **   (7)  The subquery must have a FROM clause.  TODO:  For subqueries without
3917 **        A FROM clause, consider adding a FROM clause with the special
3918 **        table sqlite_once that consists of a single row containing a
3919 **        single NULL.
3920 **
3921 **   (8)  If the subquery uses LIMIT then the outer query may not be a join.
3922 **
3923 **   (9)  If the subquery uses LIMIT then the outer query may not be aggregate.
3924 **
3925 **  (**)  Restriction (10) was removed from the code on 2005-02-05 but we
3926 **        accidently carried the comment forward until 2014-09-15.  Original
3927 **        constraint: "If the subquery is aggregate then the outer query
3928 **        may not use LIMIT."
3929 **
3930 **  (11)  The subquery and the outer query may not both have ORDER BY clauses.
3931 **
3932 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3933 **        a separate restriction deriving from ticket #350.
3934 **
3935 **  (13)  The subquery and outer query may not both use LIMIT.
3936 **
3937 **  (14)  The subquery may not use OFFSET.
3938 **
3939 **  (15)  If the outer query is part of a compound select, then the
3940 **        subquery may not use LIMIT.
3941 **        (See ticket #2339 and ticket [02a8e81d44]).
3942 **
3943 **  (16)  If the outer query is aggregate, then the subquery may not
3944 **        use ORDER BY.  (Ticket #2942)  This used to not matter
3945 **        until we introduced the group_concat() function.
3946 **
3947 **  (17)  If the subquery is a compound select, then
3948 **        (17a) all compound operators must be a UNION ALL, and
3949 **        (17b) no terms within the subquery compound may be aggregate
3950 **              or DISTINCT, and
3951 **        (17c) every term within the subquery compound must have a FROM clause
3952 **        (17d) the outer query may not be
3953 **              (17d1) aggregate, or
3954 **              (17d2) DISTINCT
3955 **        (17e) the subquery may not contain window functions, and
3956 **        (17f) the subquery must not be the RHS of a LEFT JOIN.
3957 **
3958 **        The parent and sub-query may contain WHERE clauses. Subject to
3959 **        rules (11), (13) and (14), they may also contain ORDER BY,
3960 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3961 **        operator other than UNION ALL because all the other compound
3962 **        operators have an implied DISTINCT which is disallowed by
3963 **        restriction (4).
3964 **
3965 **        Also, each component of the sub-query must return the same number
3966 **        of result columns. This is actually a requirement for any compound
3967 **        SELECT statement, but all the code here does is make sure that no
3968 **        such (illegal) sub-query is flattened. The caller will detect the
3969 **        syntax error and return a detailed message.
3970 **
3971 **  (18)  If the sub-query is a compound select, then all terms of the
3972 **        ORDER BY clause of the parent must be copies of a term returned
3973 **        by the parent query.
3974 **
3975 **  (19)  If the subquery uses LIMIT then the outer query may not
3976 **        have a WHERE clause.
3977 **
3978 **  (20)  If the sub-query is a compound select, then it must not use
3979 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3980 **        somewhat by saying that the terms of the ORDER BY clause must
3981 **        appear as unmodified result columns in the outer query.  But we
3982 **        have other optimizations in mind to deal with that case.
3983 **
3984 **  (21)  If the subquery uses LIMIT then the outer query may not be
3985 **        DISTINCT.  (See ticket [752e1646fc]).
3986 **
3987 **  (22)  The subquery may not be a recursive CTE.
3988 **
3989 **  (23)  If the outer query is a recursive CTE, then the sub-query may not be
3990 **        a compound query.  This restriction is because transforming the
3991 **        parent to a compound query confuses the code that handles
3992 **        recursive queries in multiSelect().
3993 **
3994 **  (**)  We no longer attempt to flatten aggregate subqueries.  Was:
3995 **        The subquery may not be an aggregate that uses the built-in min() or
3996 **        or max() functions.  (Without this restriction, a query like:
3997 **        "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3998 **        return the value X for which Y was maximal.)
3999 **
4000 **  (25)  If either the subquery or the parent query contains a window
4001 **        function in the select list or ORDER BY clause, flattening
4002 **        is not attempted.
4003 **
4004 **
4005 ** In this routine, the "p" parameter is a pointer to the outer query.
4006 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
4007 ** uses aggregates.
4008 **
4009 ** If flattening is not attempted, this routine is a no-op and returns 0.
4010 ** If flattening is attempted this routine returns 1.
4011 **
4012 ** All of the expression analysis must occur on both the outer query and
4013 ** the subquery before this routine runs.
4014 */
4015 static int flattenSubquery(
4016   Parse *pParse,       /* Parsing context */
4017   Select *p,           /* The parent or outer SELECT statement */
4018   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
4019   int isAgg            /* True if outer SELECT uses aggregate functions */
4020 ){
4021   const char *zSavedAuthContext = pParse->zAuthContext;
4022   Select *pParent;    /* Current UNION ALL term of the other query */
4023   Select *pSub;       /* The inner query or "subquery" */
4024   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
4025   SrcList *pSrc;      /* The FROM clause of the outer query */
4026   SrcList *pSubSrc;   /* The FROM clause of the subquery */
4027   int iParent;        /* VDBE cursor number of the pSub result set temp table */
4028   int iNewParent = -1;/* Replacement table for iParent */
4029   int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4030   int i;              /* Loop counter */
4031   Expr *pWhere;                    /* The WHERE clause */
4032   SrcItem *pSubitem;               /* The subquery */
4033   sqlite3 *db = pParse->db;
4034   Walker w;                        /* Walker to persist agginfo data */
4035   int *aCsrMap = 0;
4036 
4037   /* Check to see if flattening is permitted.  Return 0 if not.
4038   */
4039   assert( p!=0 );
4040   assert( p->pPrior==0 );
4041   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4042   pSrc = p->pSrc;
4043   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4044   pSubitem = &pSrc->a[iFrom];
4045   iParent = pSubitem->iCursor;
4046   pSub = pSubitem->pSelect;
4047   assert( pSub!=0 );
4048 
4049 #ifndef SQLITE_OMIT_WINDOWFUNC
4050   if( p->pWin || pSub->pWin ) return 0;                  /* Restriction (25) */
4051 #endif
4052 
4053   pSubSrc = pSub->pSrc;
4054   assert( pSubSrc );
4055   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4056   ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4057   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
4058   ** became arbitrary expressions, we were forced to add restrictions (13)
4059   ** and (14). */
4060   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
4061   if( pSub->pLimit && pSub->pLimit->pRight ) return 0;   /* Restriction (14) */
4062   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4063     return 0;                                            /* Restriction (15) */
4064   }
4065   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
4066   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (4)  */
4067   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4068      return 0;         /* Restrictions (8)(9) */
4069   }
4070   if( p->pOrderBy && pSub->pOrderBy ){
4071      return 0;                                           /* Restriction (11) */
4072   }
4073   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
4074   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
4075   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4076      return 0;         /* Restriction (21) */
4077   }
4078   if( pSub->selFlags & (SF_Recursive) ){
4079     return 0; /* Restrictions (22) */
4080   }
4081 
4082   /*
4083   ** If the subquery is the right operand of a LEFT JOIN, then the
4084   ** subquery may not be a join itself (3a). Example of why this is not
4085   ** allowed:
4086   **
4087   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
4088   **
4089   ** If we flatten the above, we would get
4090   **
4091   **         (t1 LEFT OUTER JOIN t2) JOIN t3
4092   **
4093   ** which is not at all the same thing.
4094   **
4095   ** If the subquery is the right operand of a LEFT JOIN, then the outer
4096   ** query cannot be an aggregate. (3c)  This is an artifact of the way
4097   ** aggregates are processed - there is no mechanism to determine if
4098   ** the LEFT JOIN table should be all-NULL.
4099   **
4100   ** See also tickets #306, #350, and #3300.
4101   */
4102   if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4103     isLeftJoin = 1;
4104     if( pSubSrc->nSrc>1                   /* (3a) */
4105      || isAgg                             /* (3b) */
4106      || IsVirtual(pSubSrc->a[0].pTab)     /* (3c) */
4107      || (p->selFlags & SF_Distinct)!=0    /* (3d) */
4108     ){
4109       return 0;
4110     }
4111   }
4112 #ifdef SQLITE_EXTRA_IFNULLROW
4113   else if( iFrom>0 && !isAgg ){
4114     /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4115     ** every reference to any result column from subquery in a join, even
4116     ** though they are not necessary.  This will stress-test the OP_IfNullRow
4117     ** opcode. */
4118     isLeftJoin = -1;
4119   }
4120 #endif
4121 
4122   /* Restriction (17): If the sub-query is a compound SELECT, then it must
4123   ** use only the UNION ALL operator. And none of the simple select queries
4124   ** that make up the compound SELECT are allowed to be aggregate or distinct
4125   ** queries.
4126   */
4127   if( pSub->pPrior ){
4128     if( pSub->pOrderBy ){
4129       return 0;  /* Restriction (20) */
4130     }
4131     if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4132       return 0; /* (17d1), (17d2), or (17f) */
4133     }
4134     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4135       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4136       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4137       assert( pSub->pSrc!=0 );
4138       assert( (pSub->selFlags & SF_Recursive)==0 );
4139       assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4140       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0    /* (17b) */
4141        || (pSub1->pPrior && pSub1->op!=TK_ALL)                 /* (17a) */
4142        || pSub1->pSrc->nSrc<1                                  /* (17c) */
4143 #ifndef SQLITE_OMIT_WINDOWFUNC
4144        || pSub1->pWin                                          /* (17e) */
4145 #endif
4146       ){
4147         return 0;
4148       }
4149       testcase( pSub1->pSrc->nSrc>1 );
4150     }
4151 
4152     /* Restriction (18). */
4153     if( p->pOrderBy ){
4154       int ii;
4155       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4156         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4157       }
4158     }
4159 
4160     /* Restriction (23) */
4161     if( (p->selFlags & SF_Recursive) ) return 0;
4162 
4163     if( pSrc->nSrc>1 ){
4164       if( pParse->nSelect>500 ) return 0;
4165       aCsrMap = sqlite3DbMallocZero(db, (pParse->nTab+1)*sizeof(int));
4166       if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4167     }
4168   }
4169 
4170   /***** If we reach this point, flattening is permitted. *****/
4171   SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4172                    pSub->selId, pSub, iFrom));
4173 
4174   /* Authorize the subquery */
4175   pParse->zAuthContext = pSubitem->zName;
4176   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4177   testcase( i==SQLITE_DENY );
4178   pParse->zAuthContext = zSavedAuthContext;
4179 
4180   /* Delete the transient structures associated with thesubquery */
4181   pSub1 = pSubitem->pSelect;
4182   sqlite3DbFree(db, pSubitem->zDatabase);
4183   sqlite3DbFree(db, pSubitem->zName);
4184   sqlite3DbFree(db, pSubitem->zAlias);
4185   pSubitem->zDatabase = 0;
4186   pSubitem->zName = 0;
4187   pSubitem->zAlias = 0;
4188   pSubitem->pSelect = 0;
4189   assert( pSubitem->pOn==0 );
4190 
4191   /* If the sub-query is a compound SELECT statement, then (by restrictions
4192   ** 17 and 18 above) it must be a UNION ALL and the parent query must
4193   ** be of the form:
4194   **
4195   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
4196   **
4197   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4198   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4199   ** OFFSET clauses and joins them to the left-hand-side of the original
4200   ** using UNION ALL operators. In this case N is the number of simple
4201   ** select statements in the compound sub-query.
4202   **
4203   ** Example:
4204   **
4205   **     SELECT a+1 FROM (
4206   **        SELECT x FROM tab
4207   **        UNION ALL
4208   **        SELECT y FROM tab
4209   **        UNION ALL
4210   **        SELECT abs(z*2) FROM tab2
4211   **     ) WHERE a!=5 ORDER BY 1
4212   **
4213   ** Transformed into:
4214   **
4215   **     SELECT x+1 FROM tab WHERE x+1!=5
4216   **     UNION ALL
4217   **     SELECT y+1 FROM tab WHERE y+1!=5
4218   **     UNION ALL
4219   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4220   **     ORDER BY 1
4221   **
4222   ** We call this the "compound-subquery flattening".
4223   */
4224   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4225     Select *pNew;
4226     ExprList *pOrderBy = p->pOrderBy;
4227     Expr *pLimit = p->pLimit;
4228     Select *pPrior = p->pPrior;
4229     Table *pItemTab = pSubitem->pTab;
4230     pSubitem->pTab = 0;
4231     p->pOrderBy = 0;
4232     p->pPrior = 0;
4233     p->pLimit = 0;
4234     pNew = sqlite3SelectDup(db, p, 0);
4235     p->pLimit = pLimit;
4236     p->pOrderBy = pOrderBy;
4237     p->op = TK_ALL;
4238     pSubitem->pTab = pItemTab;
4239     if( pNew==0 ){
4240       p->pPrior = pPrior;
4241     }else{
4242       pNew->selId = ++pParse->nSelect;
4243       if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4244         renumberCursors(pParse, pNew, iFrom, aCsrMap);
4245       }
4246       pNew->pPrior = pPrior;
4247       if( pPrior ) pPrior->pNext = pNew;
4248       pNew->pNext = p;
4249       p->pPrior = pNew;
4250       SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4251                               " creates %u as peer\n",pNew->selId));
4252     }
4253     assert( pSubitem->pSelect==0 );
4254   }
4255   sqlite3DbFree(db, aCsrMap);
4256   if( db->mallocFailed ){
4257     pSubitem->pSelect = pSub1;
4258     return 1;
4259   }
4260 
4261   /* Defer deleting the Table object associated with the
4262   ** subquery until code generation is
4263   ** complete, since there may still exist Expr.pTab entries that
4264   ** refer to the subquery even after flattening.  Ticket #3346.
4265   **
4266   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4267   */
4268   if( ALWAYS(pSubitem->pTab!=0) ){
4269     Table *pTabToDel = pSubitem->pTab;
4270     if( pTabToDel->nTabRef==1 ){
4271       Parse *pToplevel = sqlite3ParseToplevel(pParse);
4272       sqlite3ParserAddCleanup(pToplevel,
4273          (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4274          pTabToDel);
4275       testcase( pToplevel->earlyCleanup );
4276     }else{
4277       pTabToDel->nTabRef--;
4278     }
4279     pSubitem->pTab = 0;
4280   }
4281 
4282   /* The following loop runs once for each term in a compound-subquery
4283   ** flattening (as described above).  If we are doing a different kind
4284   ** of flattening - a flattening other than a compound-subquery flattening -
4285   ** then this loop only runs once.
4286   **
4287   ** This loop moves all of the FROM elements of the subquery into the
4288   ** the FROM clause of the outer query.  Before doing this, remember
4289   ** the cursor number for the original outer query FROM element in
4290   ** iParent.  The iParent cursor will never be used.  Subsequent code
4291   ** will scan expressions looking for iParent references and replace
4292   ** those references with expressions that resolve to the subquery FROM
4293   ** elements we are now copying in.
4294   */
4295   pSub = pSub1;
4296   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4297     int nSubSrc;
4298     u8 jointype = 0;
4299     assert( pSub!=0 );
4300     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
4301     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
4302     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
4303 
4304     if( pParent==p ){
4305       jointype = pSubitem->fg.jointype;     /* First time through the loop */
4306     }
4307 
4308     /* The subquery uses a single slot of the FROM clause of the outer
4309     ** query.  If the subquery has more than one element in its FROM clause,
4310     ** then expand the outer query to make space for it to hold all elements
4311     ** of the subquery.
4312     **
4313     ** Example:
4314     **
4315     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4316     **
4317     ** The outer query has 3 slots in its FROM clause.  One slot of the
4318     ** outer query (the middle slot) is used by the subquery.  The next
4319     ** block of code will expand the outer query FROM clause to 4 slots.
4320     ** The middle slot is expanded to two slots in order to make space
4321     ** for the two elements in the FROM clause of the subquery.
4322     */
4323     if( nSubSrc>1 ){
4324       pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4325       if( pSrc==0 ) break;
4326       pParent->pSrc = pSrc;
4327     }
4328 
4329     /* Transfer the FROM clause terms from the subquery into the
4330     ** outer query.
4331     */
4332     for(i=0; i<nSubSrc; i++){
4333       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4334       assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4335       pSrc->a[i+iFrom] = pSubSrc->a[i];
4336       iNewParent = pSubSrc->a[i].iCursor;
4337       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4338     }
4339     pSrc->a[iFrom].fg.jointype = jointype;
4340 
4341     /* Now begin substituting subquery result set expressions for
4342     ** references to the iParent in the outer query.
4343     **
4344     ** Example:
4345     **
4346     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4347     **   \                     \_____________ subquery __________/          /
4348     **    \_____________________ outer query ______________________________/
4349     **
4350     ** We look at every expression in the outer query and every place we see
4351     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4352     */
4353     if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4354       /* At this point, any non-zero iOrderByCol values indicate that the
4355       ** ORDER BY column expression is identical to the iOrderByCol'th
4356       ** expression returned by SELECT statement pSub. Since these values
4357       ** do not necessarily correspond to columns in SELECT statement pParent,
4358       ** zero them before transfering the ORDER BY clause.
4359       **
4360       ** Not doing this may cause an error if a subsequent call to this
4361       ** function attempts to flatten a compound sub-query into pParent
4362       ** (the only way this can happen is if the compound sub-query is
4363       ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
4364       ExprList *pOrderBy = pSub->pOrderBy;
4365       for(i=0; i<pOrderBy->nExpr; i++){
4366         pOrderBy->a[i].u.x.iOrderByCol = 0;
4367       }
4368       assert( pParent->pOrderBy==0 );
4369       pParent->pOrderBy = pOrderBy;
4370       pSub->pOrderBy = 0;
4371     }
4372     pWhere = pSub->pWhere;
4373     pSub->pWhere = 0;
4374     if( isLeftJoin>0 ){
4375       sqlite3SetJoinExpr(pWhere, iNewParent);
4376     }
4377     if( pWhere ){
4378       if( pParent->pWhere ){
4379         pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4380       }else{
4381         pParent->pWhere = pWhere;
4382       }
4383     }
4384     if( db->mallocFailed==0 ){
4385       SubstContext x;
4386       x.pParse = pParse;
4387       x.iTable = iParent;
4388       x.iNewTable = iNewParent;
4389       x.isLeftJoin = isLeftJoin;
4390       x.pEList = pSub->pEList;
4391       substSelect(&x, pParent, 0);
4392     }
4393 
4394     /* The flattened query is a compound if either the inner or the
4395     ** outer query is a compound. */
4396     pParent->selFlags |= pSub->selFlags & SF_Compound;
4397     assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4398 
4399     /*
4400     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4401     **
4402     ** One is tempted to try to add a and b to combine the limits.  But this
4403     ** does not work if either limit is negative.
4404     */
4405     if( pSub->pLimit ){
4406       pParent->pLimit = pSub->pLimit;
4407       pSub->pLimit = 0;
4408     }
4409 
4410     /* Recompute the SrcList_item.colUsed masks for the flattened
4411     ** tables. */
4412     for(i=0; i<nSubSrc; i++){
4413       recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4414     }
4415   }
4416 
4417   /* Finially, delete what is left of the subquery and return
4418   ** success.
4419   */
4420   sqlite3AggInfoPersistWalkerInit(&w, pParse);
4421   sqlite3WalkSelect(&w,pSub1);
4422   sqlite3SelectDelete(db, pSub1);
4423 
4424 #if SELECTTRACE_ENABLED
4425   if( sqlite3SelectTrace & 0x100 ){
4426     SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4427     sqlite3TreeViewSelect(0, p, 0);
4428   }
4429 #endif
4430 
4431   return 1;
4432 }
4433 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4434 
4435 /*
4436 ** A structure to keep track of all of the column values that are fixed to
4437 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4438 */
4439 typedef struct WhereConst WhereConst;
4440 struct WhereConst {
4441   Parse *pParse;   /* Parsing context */
4442   u8 *pOomFault;   /* Pointer to pParse->db->mallocFailed */
4443   int nConst;      /* Number for COLUMN=CONSTANT terms */
4444   int nChng;       /* Number of times a constant is propagated */
4445   int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4446   Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
4447 };
4448 
4449 /*
4450 ** Add a new entry to the pConst object.  Except, do not add duplicate
4451 ** pColumn entires.  Also, do not add if doing so would not be appropriate.
4452 **
4453 ** The caller guarantees the pColumn is a column and pValue is a constant.
4454 ** This routine has to do some additional checks before completing the
4455 ** insert.
4456 */
4457 static void constInsert(
4458   WhereConst *pConst,  /* The WhereConst into which we are inserting */
4459   Expr *pColumn,       /* The COLUMN part of the constraint */
4460   Expr *pValue,        /* The VALUE part of the constraint */
4461   Expr *pExpr          /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4462 ){
4463   int i;
4464   assert( pColumn->op==TK_COLUMN );
4465   assert( sqlite3ExprIsConstant(pValue) );
4466 
4467   if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4468   if( sqlite3ExprAffinity(pValue)!=0 ) return;
4469   if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4470     return;
4471   }
4472 
4473   /* 2018-10-25 ticket [cf5ed20f]
4474   ** Make sure the same pColumn is not inserted more than once */
4475   for(i=0; i<pConst->nConst; i++){
4476     const Expr *pE2 = pConst->apExpr[i*2];
4477     assert( pE2->op==TK_COLUMN );
4478     if( pE2->iTable==pColumn->iTable
4479      && pE2->iColumn==pColumn->iColumn
4480     ){
4481       return;  /* Already present.  Return without doing anything. */
4482     }
4483   }
4484   if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4485     pConst->bHasAffBlob = 1;
4486   }
4487 
4488   pConst->nConst++;
4489   pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4490                          pConst->nConst*2*sizeof(Expr*));
4491   if( pConst->apExpr==0 ){
4492     pConst->nConst = 0;
4493   }else{
4494     pConst->apExpr[pConst->nConst*2-2] = pColumn;
4495     pConst->apExpr[pConst->nConst*2-1] = pValue;
4496   }
4497 }
4498 
4499 /*
4500 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4501 ** is a constant expression and where the term must be true because it
4502 ** is part of the AND-connected terms of the expression.  For each term
4503 ** found, add it to the pConst structure.
4504 */
4505 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4506   Expr *pRight, *pLeft;
4507   if( NEVER(pExpr==0) ) return;
4508   if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4509   if( pExpr->op==TK_AND ){
4510     findConstInWhere(pConst, pExpr->pRight);
4511     findConstInWhere(pConst, pExpr->pLeft);
4512     return;
4513   }
4514   if( pExpr->op!=TK_EQ ) return;
4515   pRight = pExpr->pRight;
4516   pLeft = pExpr->pLeft;
4517   assert( pRight!=0 );
4518   assert( pLeft!=0 );
4519   if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4520     constInsert(pConst,pRight,pLeft,pExpr);
4521   }
4522   if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4523     constInsert(pConst,pLeft,pRight,pExpr);
4524   }
4525 }
4526 
4527 /*
4528 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4529 **
4530 ** Argument pExpr is a candidate expression to be replaced by a value. If
4531 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4532 ** then overwrite it with the corresponding value. Except, do not do so
4533 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4534 ** is SQLITE_AFF_BLOB.
4535 */
4536 static int propagateConstantExprRewriteOne(
4537   WhereConst *pConst,
4538   Expr *pExpr,
4539   int bIgnoreAffBlob
4540 ){
4541   int i;
4542   if( pConst->pOomFault[0] ) return WRC_Prune;
4543   if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4544   if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4545     testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4546     testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4547     return WRC_Continue;
4548   }
4549   for(i=0; i<pConst->nConst; i++){
4550     Expr *pColumn = pConst->apExpr[i*2];
4551     if( pColumn==pExpr ) continue;
4552     if( pColumn->iTable!=pExpr->iTable ) continue;
4553     if( pColumn->iColumn!=pExpr->iColumn ) continue;
4554     if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4555       break;
4556     }
4557     /* A match is found.  Add the EP_FixedCol property */
4558     pConst->nChng++;
4559     ExprClearProperty(pExpr, EP_Leaf);
4560     ExprSetProperty(pExpr, EP_FixedCol);
4561     assert( pExpr->pLeft==0 );
4562     pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4563     if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4564     break;
4565   }
4566   return WRC_Prune;
4567 }
4568 
4569 /*
4570 ** This is a Walker expression callback. pExpr is a node from the WHERE
4571 ** clause of a SELECT statement. This function examines pExpr to see if
4572 ** any substitutions based on the contents of pWalker->u.pConst should
4573 ** be made to pExpr or its immediate children.
4574 **
4575 ** A substitution is made if:
4576 **
4577 **   + pExpr is a column with an affinity other than BLOB that matches
4578 **     one of the columns in pWalker->u.pConst, or
4579 **
4580 **   + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4581 **     uses an affinity other than TEXT and one of its immediate
4582 **     children is a column that matches one of the columns in
4583 **     pWalker->u.pConst.
4584 */
4585 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4586   WhereConst *pConst = pWalker->u.pConst;
4587   assert( TK_GT==TK_EQ+1 );
4588   assert( TK_LE==TK_EQ+2 );
4589   assert( TK_LT==TK_EQ+3 );
4590   assert( TK_GE==TK_EQ+4 );
4591   if( pConst->bHasAffBlob ){
4592     if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4593      || pExpr->op==TK_IS
4594     ){
4595       propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4596       if( pConst->pOomFault[0] ) return WRC_Prune;
4597       if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4598         propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4599       }
4600     }
4601   }
4602   return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4603 }
4604 
4605 /*
4606 ** The WHERE-clause constant propagation optimization.
4607 **
4608 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4609 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4610 ** part of a ON clause from a LEFT JOIN, then throughout the query
4611 ** replace all other occurrences of COLUMN with CONSTANT.
4612 **
4613 ** For example, the query:
4614 **
4615 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4616 **
4617 ** Is transformed into
4618 **
4619 **      SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4620 **
4621 ** Return true if any transformations where made and false if not.
4622 **
4623 ** Implementation note:  Constant propagation is tricky due to affinity
4624 ** and collating sequence interactions.  Consider this example:
4625 **
4626 **    CREATE TABLE t1(a INT,b TEXT);
4627 **    INSERT INTO t1 VALUES(123,'0123');
4628 **    SELECT * FROM t1 WHERE a=123 AND b=a;
4629 **    SELECT * FROM t1 WHERE a=123 AND b=123;
4630 **
4631 ** The two SELECT statements above should return different answers.  b=a
4632 ** is alway true because the comparison uses numeric affinity, but b=123
4633 ** is false because it uses text affinity and '0123' is not the same as '123'.
4634 ** To work around this, the expression tree is not actually changed from
4635 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4636 ** and the "123" value is hung off of the pLeft pointer.  Code generator
4637 ** routines know to generate the constant "123" instead of looking up the
4638 ** column value.  Also, to avoid collation problems, this optimization is
4639 ** only attempted if the "a=123" term uses the default BINARY collation.
4640 **
4641 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4642 **
4643 **    CREATE TABLE t1(x);
4644 **    INSERT INTO t1 VALUES(10.0);
4645 **    SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4646 **
4647 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4648 ** and '10.0' is not LIKE '10'.  But if we are not careful, the first WHERE
4649 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4650 ** resulting in a false positive.  To avoid this, constant propagation for
4651 ** columns with BLOB affinity is only allowed if the constant is used with
4652 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4653 ** type conversions to occur.  See logic associated with the bHasAffBlob flag
4654 ** for details.
4655 */
4656 static int propagateConstants(
4657   Parse *pParse,   /* The parsing context */
4658   Select *p        /* The query in which to propagate constants */
4659 ){
4660   WhereConst x;
4661   Walker w;
4662   int nChng = 0;
4663   x.pParse = pParse;
4664   x.pOomFault = &pParse->db->mallocFailed;
4665   do{
4666     x.nConst = 0;
4667     x.nChng = 0;
4668     x.apExpr = 0;
4669     x.bHasAffBlob = 0;
4670     findConstInWhere(&x, p->pWhere);
4671     if( x.nConst ){
4672       memset(&w, 0, sizeof(w));
4673       w.pParse = pParse;
4674       w.xExprCallback = propagateConstantExprRewrite;
4675       w.xSelectCallback = sqlite3SelectWalkNoop;
4676       w.xSelectCallback2 = 0;
4677       w.walkerDepth = 0;
4678       w.u.pConst = &x;
4679       sqlite3WalkExpr(&w, p->pWhere);
4680       sqlite3DbFree(x.pParse->db, x.apExpr);
4681       nChng += x.nChng;
4682     }
4683   }while( x.nChng );
4684   return nChng;
4685 }
4686 
4687 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4688 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4689 /*
4690 ** This function is called to determine whether or not it is safe to
4691 ** push WHERE clause expression pExpr down to FROM clause sub-query
4692 ** pSubq, which contains at least one window function. Return 1
4693 ** if it is safe and the expression should be pushed down, or 0
4694 ** otherwise.
4695 **
4696 ** It is only safe to push the expression down if it consists only
4697 ** of constants and copies of expressions that appear in the PARTITION
4698 ** BY clause of all window function used by the sub-query. It is safe
4699 ** to filter out entire partitions, but not rows within partitions, as
4700 ** this may change the results of the window functions.
4701 **
4702 ** At the time this function is called it is guaranteed that
4703 **
4704 **   * the sub-query uses only one distinct window frame, and
4705 **   * that the window frame has a PARTITION BY clase.
4706 */
4707 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4708   assert( pSubq->pWin->pPartition );
4709   assert( (pSubq->selFlags & SF_MultiPart)==0 );
4710   assert( pSubq->pPrior==0 );
4711   return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4712 }
4713 # endif /* SQLITE_OMIT_WINDOWFUNC */
4714 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4715 
4716 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4717 /*
4718 ** Make copies of relevant WHERE clause terms of the outer query into
4719 ** the WHERE clause of subquery.  Example:
4720 **
4721 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4722 **
4723 ** Transformed into:
4724 **
4725 **    SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4726 **     WHERE x=5 AND y=10;
4727 **
4728 ** The hope is that the terms added to the inner query will make it more
4729 ** efficient.
4730 **
4731 ** Do not attempt this optimization if:
4732 **
4733 **   (1) (** This restriction was removed on 2017-09-29.  We used to
4734 **           disallow this optimization for aggregate subqueries, but now
4735 **           it is allowed by putting the extra terms on the HAVING clause.
4736 **           The added HAVING clause is pointless if the subquery lacks
4737 **           a GROUP BY clause.  But such a HAVING clause is also harmless
4738 **           so there does not appear to be any reason to add extra logic
4739 **           to suppress it. **)
4740 **
4741 **   (2) The inner query is the recursive part of a common table expression.
4742 **
4743 **   (3) The inner query has a LIMIT clause (since the changes to the WHERE
4744 **       clause would change the meaning of the LIMIT).
4745 **
4746 **   (4) The inner query is the right operand of a LEFT JOIN and the
4747 **       expression to be pushed down does not come from the ON clause
4748 **       on that LEFT JOIN.
4749 **
4750 **   (5) The WHERE clause expression originates in the ON or USING clause
4751 **       of a LEFT JOIN where iCursor is not the right-hand table of that
4752 **       left join.  An example:
4753 **
4754 **           SELECT *
4755 **           FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4756 **           JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4757 **           LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4758 **
4759 **       The correct answer is three rows:  (1,1,NULL),(2,2,8),(2,2,9).
4760 **       But if the (b2=2) term were to be pushed down into the bb subquery,
4761 **       then the (1,1,NULL) row would be suppressed.
4762 **
4763 **   (6) Window functions make things tricky as changes to the WHERE clause
4764 **       of the inner query could change the window over which window
4765 **       functions are calculated. Therefore, do not attempt the optimization
4766 **       if:
4767 **
4768 **     (6a) The inner query uses multiple incompatible window partitions.
4769 **
4770 **     (6b) The inner query is a compound and uses window-functions.
4771 **
4772 **     (6c) The WHERE clause does not consist entirely of constants and
4773 **          copies of expressions found in the PARTITION BY clause of
4774 **          all window-functions used by the sub-query. It is safe to
4775 **          filter out entire partitions, as this does not change the
4776 **          window over which any window-function is calculated.
4777 **
4778 **   (7) The inner query is a Common Table Expression (CTE) that should
4779 **       be materialized.  (This restriction is implemented in the calling
4780 **       routine.)
4781 **
4782 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4783 ** terms are duplicated into the subquery.
4784 */
4785 static int pushDownWhereTerms(
4786   Parse *pParse,        /* Parse context (for malloc() and error reporting) */
4787   Select *pSubq,        /* The subquery whose WHERE clause is to be augmented */
4788   Expr *pWhere,         /* The WHERE clause of the outer query */
4789   int iCursor,          /* Cursor number of the subquery */
4790   int isLeftJoin        /* True if pSubq is the right term of a LEFT JOIN */
4791 ){
4792   Expr *pNew;
4793   int nChng = 0;
4794   if( pWhere==0 ) return 0;
4795   if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4796 
4797 #ifndef SQLITE_OMIT_WINDOWFUNC
4798   if( pSubq->pPrior ){
4799     Select *pSel;
4800     for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4801       if( pSel->pWin ) return 0;    /* restriction (6b) */
4802     }
4803   }else{
4804     if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4805   }
4806 #endif
4807 
4808 #ifdef SQLITE_DEBUG
4809   /* Only the first term of a compound can have a WITH clause.  But make
4810   ** sure no other terms are marked SF_Recursive in case something changes
4811   ** in the future.
4812   */
4813   {
4814     Select *pX;
4815     for(pX=pSubq; pX; pX=pX->pPrior){
4816       assert( (pX->selFlags & (SF_Recursive))==0 );
4817     }
4818   }
4819 #endif
4820 
4821   if( pSubq->pLimit!=0 ){
4822     return 0; /* restriction (3) */
4823   }
4824   while( pWhere->op==TK_AND ){
4825     nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4826                                 iCursor, isLeftJoin);
4827     pWhere = pWhere->pLeft;
4828   }
4829   if( isLeftJoin
4830    && (ExprHasProperty(pWhere,EP_FromJoin)==0
4831          || pWhere->iRightJoinTable!=iCursor)
4832   ){
4833     return 0; /* restriction (4) */
4834   }
4835   if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4836     return 0; /* restriction (5) */
4837   }
4838   if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4839     nChng++;
4840     pSubq->selFlags |= SF_PushDown;
4841     while( pSubq ){
4842       SubstContext x;
4843       pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4844       unsetJoinExpr(pNew, -1);
4845       x.pParse = pParse;
4846       x.iTable = iCursor;
4847       x.iNewTable = iCursor;
4848       x.isLeftJoin = 0;
4849       x.pEList = pSubq->pEList;
4850       pNew = substExpr(&x, pNew);
4851 #ifndef SQLITE_OMIT_WINDOWFUNC
4852       if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4853         /* Restriction 6c has prevented push-down in this case */
4854         sqlite3ExprDelete(pParse->db, pNew);
4855         nChng--;
4856         break;
4857       }
4858 #endif
4859       if( pSubq->selFlags & SF_Aggregate ){
4860         pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4861       }else{
4862         pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4863       }
4864       pSubq = pSubq->pPrior;
4865     }
4866   }
4867   return nChng;
4868 }
4869 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4870 
4871 /*
4872 ** The pFunc is the only aggregate function in the query.  Check to see
4873 ** if the query is a candidate for the min/max optimization.
4874 **
4875 ** If the query is a candidate for the min/max optimization, then set
4876 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4877 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4878 ** whether pFunc is a min() or max() function.
4879 **
4880 ** If the query is not a candidate for the min/max optimization, return
4881 ** WHERE_ORDERBY_NORMAL (which must be zero).
4882 **
4883 ** This routine must be called after aggregate functions have been
4884 ** located but before their arguments have been subjected to aggregate
4885 ** analysis.
4886 */
4887 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4888   int eRet = WHERE_ORDERBY_NORMAL;      /* Return value */
4889   ExprList *pEList = pFunc->x.pList;    /* Arguments to agg function */
4890   const char *zFunc;                    /* Name of aggregate function pFunc */
4891   ExprList *pOrderBy;
4892   u8 sortFlags = 0;
4893 
4894   assert( *ppMinMax==0 );
4895   assert( pFunc->op==TK_AGG_FUNCTION );
4896   assert( !IsWindowFunc(pFunc) );
4897   if( pEList==0
4898    || pEList->nExpr!=1
4899    || ExprHasProperty(pFunc, EP_WinFunc)
4900    || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4901   ){
4902     return eRet;
4903   }
4904   zFunc = pFunc->u.zToken;
4905   if( sqlite3StrICmp(zFunc, "min")==0 ){
4906     eRet = WHERE_ORDERBY_MIN;
4907     if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4908       sortFlags = KEYINFO_ORDER_BIGNULL;
4909     }
4910   }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4911     eRet = WHERE_ORDERBY_MAX;
4912     sortFlags = KEYINFO_ORDER_DESC;
4913   }else{
4914     return eRet;
4915   }
4916   *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4917   assert( pOrderBy!=0 || db->mallocFailed );
4918   if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4919   return eRet;
4920 }
4921 
4922 /*
4923 ** The select statement passed as the first argument is an aggregate query.
4924 ** The second argument is the associated aggregate-info object. This
4925 ** function tests if the SELECT is of the form:
4926 **
4927 **   SELECT count(*) FROM <tbl>
4928 **
4929 ** where table is a database table, not a sub-select or view. If the query
4930 ** does match this pattern, then a pointer to the Table object representing
4931 ** <tbl> is returned. Otherwise, 0 is returned.
4932 */
4933 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4934   Table *pTab;
4935   Expr *pExpr;
4936 
4937   assert( !p->pGroupBy );
4938 
4939   if( p->pWhere || p->pEList->nExpr!=1
4940    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4941   ){
4942     return 0;
4943   }
4944   pTab = p->pSrc->a[0].pTab;
4945   pExpr = p->pEList->a[0].pExpr;
4946   assert( pTab && !IsView(pTab) && pExpr );
4947 
4948   if( IsVirtual(pTab) ) return 0;
4949   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4950   if( NEVER(pAggInfo->nFunc==0) ) return 0;
4951   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4952   if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4953 
4954   return pTab;
4955 }
4956 
4957 /*
4958 ** If the source-list item passed as an argument was augmented with an
4959 ** INDEXED BY clause, then try to locate the specified index. If there
4960 ** was such a clause and the named index cannot be found, return
4961 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4962 ** pFrom->pIndex and return SQLITE_OK.
4963 */
4964 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
4965   Table *pTab = pFrom->pTab;
4966   char *zIndexedBy = pFrom->u1.zIndexedBy;
4967   Index *pIdx;
4968   assert( pTab!=0 );
4969   assert( pFrom->fg.isIndexedBy!=0 );
4970 
4971   for(pIdx=pTab->pIndex;
4972       pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4973       pIdx=pIdx->pNext
4974   );
4975   if( !pIdx ){
4976     sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4977     pParse->checkSchema = 1;
4978     return SQLITE_ERROR;
4979   }
4980   pFrom->u2.pIBIndex = pIdx;
4981   return SQLITE_OK;
4982 }
4983 
4984 /*
4985 ** Detect compound SELECT statements that use an ORDER BY clause with
4986 ** an alternative collating sequence.
4987 **
4988 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4989 **
4990 ** These are rewritten as a subquery:
4991 **
4992 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4993 **     ORDER BY ... COLLATE ...
4994 **
4995 ** This transformation is necessary because the multiSelectOrderBy() routine
4996 ** above that generates the code for a compound SELECT with an ORDER BY clause
4997 ** uses a merge algorithm that requires the same collating sequence on the
4998 ** result columns as on the ORDER BY clause.  See ticket
4999 ** http://www.sqlite.org/src/info/6709574d2a
5000 **
5001 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5002 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5003 ** there are COLLATE terms in the ORDER BY.
5004 */
5005 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5006   int i;
5007   Select *pNew;
5008   Select *pX;
5009   sqlite3 *db;
5010   struct ExprList_item *a;
5011   SrcList *pNewSrc;
5012   Parse *pParse;
5013   Token dummy;
5014 
5015   if( p->pPrior==0 ) return WRC_Continue;
5016   if( p->pOrderBy==0 ) return WRC_Continue;
5017   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5018   if( pX==0 ) return WRC_Continue;
5019   a = p->pOrderBy->a;
5020 #ifndef SQLITE_OMIT_WINDOWFUNC
5021   /* If iOrderByCol is already non-zero, then it has already been matched
5022   ** to a result column of the SELECT statement. This occurs when the
5023   ** SELECT is rewritten for window-functions processing and then passed
5024   ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5025   ** by this function is not required in this case. */
5026   if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5027 #endif
5028   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5029     if( a[i].pExpr->flags & EP_Collate ) break;
5030   }
5031   if( i<0 ) return WRC_Continue;
5032 
5033   /* If we reach this point, that means the transformation is required. */
5034 
5035   pParse = pWalker->pParse;
5036   db = pParse->db;
5037   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5038   if( pNew==0 ) return WRC_Abort;
5039   memset(&dummy, 0, sizeof(dummy));
5040   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
5041   if( pNewSrc==0 ) return WRC_Abort;
5042   *pNew = *p;
5043   p->pSrc = pNewSrc;
5044   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5045   p->op = TK_SELECT;
5046   p->pWhere = 0;
5047   pNew->pGroupBy = 0;
5048   pNew->pHaving = 0;
5049   pNew->pOrderBy = 0;
5050   p->pPrior = 0;
5051   p->pNext = 0;
5052   p->pWith = 0;
5053 #ifndef SQLITE_OMIT_WINDOWFUNC
5054   p->pWinDefn = 0;
5055 #endif
5056   p->selFlags &= ~SF_Compound;
5057   assert( (p->selFlags & SF_Converted)==0 );
5058   p->selFlags |= SF_Converted;
5059   assert( pNew->pPrior!=0 );
5060   pNew->pPrior->pNext = pNew;
5061   pNew->pLimit = 0;
5062   return WRC_Continue;
5063 }
5064 
5065 /*
5066 ** Check to see if the FROM clause term pFrom has table-valued function
5067 ** arguments.  If it does, leave an error message in pParse and return
5068 ** non-zero, since pFrom is not allowed to be a table-valued function.
5069 */
5070 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5071   if( pFrom->fg.isTabFunc ){
5072     sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5073     return 1;
5074   }
5075   return 0;
5076 }
5077 
5078 #ifndef SQLITE_OMIT_CTE
5079 /*
5080 ** Argument pWith (which may be NULL) points to a linked list of nested
5081 ** WITH contexts, from inner to outermost. If the table identified by
5082 ** FROM clause element pItem is really a common-table-expression (CTE)
5083 ** then return a pointer to the CTE definition for that table. Otherwise
5084 ** return NULL.
5085 **
5086 ** If a non-NULL value is returned, set *ppContext to point to the With
5087 ** object that the returned CTE belongs to.
5088 */
5089 static struct Cte *searchWith(
5090   With *pWith,                    /* Current innermost WITH clause */
5091   SrcItem *pItem,                 /* FROM clause element to resolve */
5092   With **ppContext                /* OUT: WITH clause return value belongs to */
5093 ){
5094   const char *zName = pItem->zName;
5095   With *p;
5096   assert( pItem->zDatabase==0 );
5097   assert( zName!=0 );
5098   for(p=pWith; p; p=p->pOuter){
5099     int i;
5100     for(i=0; i<p->nCte; i++){
5101       if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5102         *ppContext = p;
5103         return &p->a[i];
5104       }
5105     }
5106     if( p->bView ) break;
5107   }
5108   return 0;
5109 }
5110 
5111 /* The code generator maintains a stack of active WITH clauses
5112 ** with the inner-most WITH clause being at the top of the stack.
5113 **
5114 ** This routine pushes the WITH clause passed as the second argument
5115 ** onto the top of the stack. If argument bFree is true, then this
5116 ** WITH clause will never be popped from the stack but should instead
5117 ** be freed along with the Parse object. In other cases, when
5118 ** bFree==0, the With object will be freed along with the SELECT
5119 ** statement with which it is associated.
5120 **
5121 ** This routine returns a copy of pWith.  Or, if bFree is true and
5122 ** the pWith object is destroyed immediately due to an OOM condition,
5123 ** then this routine return NULL.
5124 **
5125 ** If bFree is true, do not continue to use the pWith pointer after
5126 ** calling this routine,  Instead, use only the return value.
5127 */
5128 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5129   if( pWith ){
5130     if( bFree ){
5131       pWith = (With*)sqlite3ParserAddCleanup(pParse,
5132                       (void(*)(sqlite3*,void*))sqlite3WithDelete,
5133                       pWith);
5134       if( pWith==0 ) return 0;
5135     }
5136     if( pParse->nErr==0 ){
5137       assert( pParse->pWith!=pWith );
5138       pWith->pOuter = pParse->pWith;
5139       pParse->pWith = pWith;
5140     }
5141   }
5142   return pWith;
5143 }
5144 
5145 /*
5146 ** This function checks if argument pFrom refers to a CTE declared by
5147 ** a WITH clause on the stack currently maintained by the parser (on the
5148 ** pParse->pWith linked list).  And if currently processing a CTE
5149 ** CTE expression, through routine checks to see if the reference is
5150 ** a recursive reference to the CTE.
5151 **
5152 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5153 ** and other fields are populated accordingly.
5154 **
5155 ** Return 0 if no match is found.
5156 ** Return 1 if a match is found.
5157 ** Return 2 if an error condition is detected.
5158 */
5159 static int resolveFromTermToCte(
5160   Parse *pParse,                  /* The parsing context */
5161   Walker *pWalker,                /* Current tree walker */
5162   SrcItem *pFrom                  /* The FROM clause term to check */
5163 ){
5164   Cte *pCte;               /* Matched CTE (or NULL if no match) */
5165   With *pWith;             /* The matching WITH */
5166 
5167   assert( pFrom->pTab==0 );
5168   if( pParse->pWith==0 ){
5169     /* There are no WITH clauses in the stack.  No match is possible */
5170     return 0;
5171   }
5172   if( pParse->nErr ){
5173     /* Prior errors might have left pParse->pWith in a goofy state, so
5174     ** go no further. */
5175     return 0;
5176   }
5177   if( pFrom->zDatabase!=0 ){
5178     /* The FROM term contains a schema qualifier (ex: main.t1) and so
5179     ** it cannot possibly be a CTE reference. */
5180     return 0;
5181   }
5182   if( pFrom->fg.notCte ){
5183     /* The FROM term is specifically excluded from matching a CTE.
5184     **   (1)  It is part of a trigger that used to have zDatabase but had
5185     **        zDatabase removed by sqlite3FixTriggerStep().
5186     **   (2)  This is the first term in the FROM clause of an UPDATE.
5187     */
5188     return 0;
5189   }
5190   pCte = searchWith(pParse->pWith, pFrom, &pWith);
5191   if( pCte ){
5192     sqlite3 *db = pParse->db;
5193     Table *pTab;
5194     ExprList *pEList;
5195     Select *pSel;
5196     Select *pLeft;                /* Left-most SELECT statement */
5197     Select *pRecTerm;             /* Left-most recursive term */
5198     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
5199     With *pSavedWith;             /* Initial value of pParse->pWith */
5200     int iRecTab = -1;             /* Cursor for recursive table */
5201     CteUse *pCteUse;
5202 
5203     /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5204     ** recursive reference to CTE pCte. Leave an error in pParse and return
5205     ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5206     ** In this case, proceed.  */
5207     if( pCte->zCteErr ){
5208       sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5209       return 2;
5210     }
5211     if( cannotBeFunction(pParse, pFrom) ) return 2;
5212 
5213     assert( pFrom->pTab==0 );
5214     pTab = sqlite3DbMallocZero(db, sizeof(Table));
5215     if( pTab==0 ) return 2;
5216     pCteUse = pCte->pUse;
5217     if( pCteUse==0 ){
5218       pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5219       if( pCteUse==0
5220        || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5221       ){
5222         sqlite3DbFree(db, pTab);
5223         return 2;
5224       }
5225       pCteUse->eM10d = pCte->eM10d;
5226     }
5227     pFrom->pTab = pTab;
5228     pTab->nTabRef = 1;
5229     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5230     pTab->iPKey = -1;
5231     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5232     pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5233     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5234     if( db->mallocFailed ) return 2;
5235     pFrom->pSelect->selFlags |= SF_CopyCte;
5236     assert( pFrom->pSelect );
5237     pFrom->fg.isCte = 1;
5238     pFrom->u2.pCteUse = pCteUse;
5239     pCteUse->nUse++;
5240     if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5241       pCteUse->eM10d = M10d_Yes;
5242     }
5243 
5244     /* Check if this is a recursive CTE. */
5245     pRecTerm = pSel = pFrom->pSelect;
5246     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5247     while( bMayRecursive && pRecTerm->op==pSel->op ){
5248       int i;
5249       SrcList *pSrc = pRecTerm->pSrc;
5250       assert( pRecTerm->pPrior!=0 );
5251       for(i=0; i<pSrc->nSrc; i++){
5252         SrcItem *pItem = &pSrc->a[i];
5253         if( pItem->zDatabase==0
5254          && pItem->zName!=0
5255          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5256         ){
5257           pItem->pTab = pTab;
5258           pTab->nTabRef++;
5259           pItem->fg.isRecursive = 1;
5260           if( pRecTerm->selFlags & SF_Recursive ){
5261             sqlite3ErrorMsg(pParse,
5262                "multiple references to recursive table: %s", pCte->zName
5263             );
5264             return 2;
5265           }
5266           pRecTerm->selFlags |= SF_Recursive;
5267           if( iRecTab<0 ) iRecTab = pParse->nTab++;
5268           pItem->iCursor = iRecTab;
5269         }
5270       }
5271       if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5272       pRecTerm = pRecTerm->pPrior;
5273     }
5274 
5275     pCte->zCteErr = "circular reference: %s";
5276     pSavedWith = pParse->pWith;
5277     pParse->pWith = pWith;
5278     if( pSel->selFlags & SF_Recursive ){
5279       int rc;
5280       assert( pRecTerm!=0 );
5281       assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5282       assert( pRecTerm->pNext!=0 );
5283       assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5284       assert( pRecTerm->pWith==0 );
5285       pRecTerm->pWith = pSel->pWith;
5286       rc = sqlite3WalkSelect(pWalker, pRecTerm);
5287       pRecTerm->pWith = 0;
5288       if( rc ){
5289         pParse->pWith = pSavedWith;
5290         return 2;
5291       }
5292     }else{
5293       if( sqlite3WalkSelect(pWalker, pSel) ){
5294         pParse->pWith = pSavedWith;
5295         return 2;
5296       }
5297     }
5298     pParse->pWith = pWith;
5299 
5300     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5301     pEList = pLeft->pEList;
5302     if( pCte->pCols ){
5303       if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5304         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5305             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5306         );
5307         pParse->pWith = pSavedWith;
5308         return 2;
5309       }
5310       pEList = pCte->pCols;
5311     }
5312 
5313     sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5314     if( bMayRecursive ){
5315       if( pSel->selFlags & SF_Recursive ){
5316         pCte->zCteErr = "multiple recursive references: %s";
5317       }else{
5318         pCte->zCteErr = "recursive reference in a subquery: %s";
5319       }
5320       sqlite3WalkSelect(pWalker, pSel);
5321     }
5322     pCte->zCteErr = 0;
5323     pParse->pWith = pSavedWith;
5324     return 1;  /* Success */
5325   }
5326   return 0;  /* No match */
5327 }
5328 #endif
5329 
5330 #ifndef SQLITE_OMIT_CTE
5331 /*
5332 ** If the SELECT passed as the second argument has an associated WITH
5333 ** clause, pop it from the stack stored as part of the Parse object.
5334 **
5335 ** This function is used as the xSelectCallback2() callback by
5336 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5337 ** names and other FROM clause elements.
5338 */
5339 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5340   Parse *pParse = pWalker->pParse;
5341   if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5342     With *pWith = findRightmost(p)->pWith;
5343     if( pWith!=0 ){
5344       assert( pParse->pWith==pWith || pParse->nErr );
5345       pParse->pWith = pWith->pOuter;
5346     }
5347   }
5348 }
5349 #endif
5350 
5351 /*
5352 ** The SrcList_item structure passed as the second argument represents a
5353 ** sub-query in the FROM clause of a SELECT statement. This function
5354 ** allocates and populates the SrcList_item.pTab object. If successful,
5355 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5356 ** SQLITE_NOMEM.
5357 */
5358 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5359   Select *pSel = pFrom->pSelect;
5360   Table *pTab;
5361 
5362   assert( pSel );
5363   pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5364   if( pTab==0 ) return SQLITE_NOMEM;
5365   pTab->nTabRef = 1;
5366   if( pFrom->zAlias ){
5367     pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5368   }else{
5369     pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5370   }
5371   while( pSel->pPrior ){ pSel = pSel->pPrior; }
5372   sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5373   pTab->iPKey = -1;
5374   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5375 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5376   /* The usual case - do not allow ROWID on a subquery */
5377   pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5378 #else
5379   pTab->tabFlags |= TF_Ephemeral;  /* Legacy compatibility mode */
5380 #endif
5381 
5382 
5383   return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5384 }
5385 
5386 /*
5387 ** This routine is a Walker callback for "expanding" a SELECT statement.
5388 ** "Expanding" means to do the following:
5389 **
5390 **    (1)  Make sure VDBE cursor numbers have been assigned to every
5391 **         element of the FROM clause.
5392 **
5393 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
5394 **         defines FROM clause.  When views appear in the FROM clause,
5395 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
5396 **         that implements the view.  A copy is made of the view's SELECT
5397 **         statement so that we can freely modify or delete that statement
5398 **         without worrying about messing up the persistent representation
5399 **         of the view.
5400 **
5401 **    (3)  Add terms to the WHERE clause to accommodate the NATURAL keyword
5402 **         on joins and the ON and USING clause of joins.
5403 **
5404 **    (4)  Scan the list of columns in the result set (pEList) looking
5405 **         for instances of the "*" operator or the TABLE.* operator.
5406 **         If found, expand each "*" to be every column in every table
5407 **         and TABLE.* to be every column in TABLE.
5408 **
5409 */
5410 static int selectExpander(Walker *pWalker, Select *p){
5411   Parse *pParse = pWalker->pParse;
5412   int i, j, k, rc;
5413   SrcList *pTabList;
5414   ExprList *pEList;
5415   SrcItem *pFrom;
5416   sqlite3 *db = pParse->db;
5417   Expr *pE, *pRight, *pExpr;
5418   u16 selFlags = p->selFlags;
5419   u32 elistFlags = 0;
5420 
5421   p->selFlags |= SF_Expanded;
5422   if( db->mallocFailed  ){
5423     return WRC_Abort;
5424   }
5425   assert( p->pSrc!=0 );
5426   if( (selFlags & SF_Expanded)!=0 ){
5427     return WRC_Prune;
5428   }
5429   if( pWalker->eCode ){
5430     /* Renumber selId because it has been copied from a view */
5431     p->selId = ++pParse->nSelect;
5432   }
5433   pTabList = p->pSrc;
5434   pEList = p->pEList;
5435   if( pParse->pWith && (p->selFlags & SF_View) ){
5436     if( p->pWith==0 ){
5437       p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5438       if( p->pWith==0 ){
5439         return WRC_Abort;
5440       }
5441     }
5442     p->pWith->bView = 1;
5443   }
5444   sqlite3WithPush(pParse, p->pWith, 0);
5445 
5446   /* Make sure cursor numbers have been assigned to all entries in
5447   ** the FROM clause of the SELECT statement.
5448   */
5449   sqlite3SrcListAssignCursors(pParse, pTabList);
5450 
5451   /* Look up every table named in the FROM clause of the select.  If
5452   ** an entry of the FROM clause is a subquery instead of a table or view,
5453   ** then create a transient table structure to describe the subquery.
5454   */
5455   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5456     Table *pTab;
5457     assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5458     if( pFrom->pTab ) continue;
5459     assert( pFrom->fg.isRecursive==0 );
5460     if( pFrom->zName==0 ){
5461 #ifndef SQLITE_OMIT_SUBQUERY
5462       Select *pSel = pFrom->pSelect;
5463       /* A sub-query in the FROM clause of a SELECT */
5464       assert( pSel!=0 );
5465       assert( pFrom->pTab==0 );
5466       if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5467       if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5468 #endif
5469 #ifndef SQLITE_OMIT_CTE
5470     }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5471       if( rc>1 ) return WRC_Abort;
5472       pTab = pFrom->pTab;
5473       assert( pTab!=0 );
5474 #endif
5475     }else{
5476       /* An ordinary table or view name in the FROM clause */
5477       assert( pFrom->pTab==0 );
5478       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5479       if( pTab==0 ) return WRC_Abort;
5480       if( pTab->nTabRef>=0xffff ){
5481         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5482            pTab->zName);
5483         pFrom->pTab = 0;
5484         return WRC_Abort;
5485       }
5486       pTab->nTabRef++;
5487       if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5488         return WRC_Abort;
5489       }
5490 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5491       if( !IsOrdinaryTable(pTab) ){
5492         i16 nCol;
5493         u8 eCodeOrig = pWalker->eCode;
5494         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5495         assert( pFrom->pSelect==0 );
5496         if( IsView(pTab) ){
5497           if( (db->flags & SQLITE_EnableView)==0
5498            && pTab->pSchema!=db->aDb[1].pSchema
5499           ){
5500             sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5501               pTab->zName);
5502           }
5503           pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5504         }
5505 #ifndef SQLITE_OMIT_VIRTUALTABLE
5506         else if( ALWAYS(IsVirtual(pTab))
5507          && pFrom->fg.fromDDL
5508          && ALWAYS(pTab->u.vtab.p!=0)
5509          && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5510         ){
5511           sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5512                                   pTab->zName);
5513         }
5514         assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5515 #endif
5516         nCol = pTab->nCol;
5517         pTab->nCol = -1;
5518         pWalker->eCode = 1;  /* Turn on Select.selId renumbering */
5519         sqlite3WalkSelect(pWalker, pFrom->pSelect);
5520         pWalker->eCode = eCodeOrig;
5521         pTab->nCol = nCol;
5522       }
5523 #endif
5524     }
5525 
5526     /* Locate the index named by the INDEXED BY clause, if any. */
5527     if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5528       return WRC_Abort;
5529     }
5530   }
5531 
5532   /* Process NATURAL keywords, and ON and USING clauses of joins.
5533   */
5534   if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5535     return WRC_Abort;
5536   }
5537 
5538   /* For every "*" that occurs in the column list, insert the names of
5539   ** all columns in all tables.  And for every TABLE.* insert the names
5540   ** of all columns in TABLE.  The parser inserted a special expression
5541   ** with the TK_ASTERISK operator for each "*" that it found in the column
5542   ** list.  The following code just has to locate the TK_ASTERISK
5543   ** expressions and expand each one to the list of all columns in
5544   ** all tables.
5545   **
5546   ** The first loop just checks to see if there are any "*" operators
5547   ** that need expanding.
5548   */
5549   for(k=0; k<pEList->nExpr; k++){
5550     pE = pEList->a[k].pExpr;
5551     if( pE->op==TK_ASTERISK ) break;
5552     assert( pE->op!=TK_DOT || pE->pRight!=0 );
5553     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5554     if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5555     elistFlags |= pE->flags;
5556   }
5557   if( k<pEList->nExpr ){
5558     /*
5559     ** If we get here it means the result set contains one or more "*"
5560     ** operators that need to be expanded.  Loop through each expression
5561     ** in the result set and expand them one by one.
5562     */
5563     struct ExprList_item *a = pEList->a;
5564     ExprList *pNew = 0;
5565     int flags = pParse->db->flags;
5566     int longNames = (flags & SQLITE_FullColNames)!=0
5567                       && (flags & SQLITE_ShortColNames)==0;
5568 
5569     for(k=0; k<pEList->nExpr; k++){
5570       pE = a[k].pExpr;
5571       elistFlags |= pE->flags;
5572       pRight = pE->pRight;
5573       assert( pE->op!=TK_DOT || pRight!=0 );
5574       if( pE->op!=TK_ASTERISK
5575        && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5576       ){
5577         /* This particular expression does not need to be expanded.
5578         */
5579         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5580         if( pNew ){
5581           pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5582           pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5583           a[k].zEName = 0;
5584         }
5585         a[k].pExpr = 0;
5586       }else{
5587         /* This expression is a "*" or a "TABLE.*" and needs to be
5588         ** expanded. */
5589         int tableSeen = 0;      /* Set to 1 when TABLE matches */
5590         char *zTName = 0;       /* text of name of TABLE */
5591         if( pE->op==TK_DOT ){
5592           assert( pE->pLeft!=0 );
5593           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5594           zTName = pE->pLeft->u.zToken;
5595         }
5596         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5597           Table *pTab = pFrom->pTab;
5598           Select *pSub = pFrom->pSelect;
5599           char *zTabName = pFrom->zAlias;
5600           const char *zSchemaName = 0;
5601           int iDb;
5602           if( zTabName==0 ){
5603             zTabName = pTab->zName;
5604           }
5605           if( db->mallocFailed ) break;
5606           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5607             pSub = 0;
5608             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5609               continue;
5610             }
5611             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5612             zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5613           }
5614           for(j=0; j<pTab->nCol; j++){
5615             char *zName = pTab->aCol[j].zCnName;
5616             char *zColname;  /* The computed column name */
5617             char *zToFree;   /* Malloced string that needs to be freed */
5618             Token sColname;  /* Computed column name as a token */
5619 
5620             assert( zName );
5621             if( zTName && pSub
5622              && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5623             ){
5624               continue;
5625             }
5626 
5627             /* If a column is marked as 'hidden', omit it from the expanded
5628             ** result-set list unless the SELECT has the SF_IncludeHidden
5629             ** bit set.
5630             */
5631             if( (p->selFlags & SF_IncludeHidden)==0
5632              && IsHiddenColumn(&pTab->aCol[j])
5633             ){
5634               continue;
5635             }
5636             tableSeen = 1;
5637 
5638             if( i>0 && zTName==0 ){
5639               if( (pFrom->fg.jointype & JT_NATURAL)!=0
5640                 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5641               ){
5642                 /* In a NATURAL join, omit the join columns from the
5643                 ** table to the right of the join */
5644                 continue;
5645               }
5646               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5647                 /* In a join with a USING clause, omit columns in the
5648                 ** using clause from the table on the right. */
5649                 continue;
5650               }
5651             }
5652             pRight = sqlite3Expr(db, TK_ID, zName);
5653             zColname = zName;
5654             zToFree = 0;
5655             if( longNames || pTabList->nSrc>1 ){
5656               Expr *pLeft;
5657               pLeft = sqlite3Expr(db, TK_ID, zTabName);
5658               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5659               if( zSchemaName ){
5660                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5661                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5662               }
5663               if( longNames ){
5664                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5665                 zToFree = zColname;
5666               }
5667             }else{
5668               pExpr = pRight;
5669             }
5670             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5671             sqlite3TokenInit(&sColname, zColname);
5672             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5673             if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5674               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5675               sqlite3DbFree(db, pX->zEName);
5676               if( pSub ){
5677                 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5678                 testcase( pX->zEName==0 );
5679               }else{
5680                 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5681                                            zSchemaName, zTabName, zColname);
5682                 testcase( pX->zEName==0 );
5683               }
5684               pX->eEName = ENAME_TAB;
5685             }
5686             sqlite3DbFree(db, zToFree);
5687           }
5688         }
5689         if( !tableSeen ){
5690           if( zTName ){
5691             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5692           }else{
5693             sqlite3ErrorMsg(pParse, "no tables specified");
5694           }
5695         }
5696       }
5697     }
5698     sqlite3ExprListDelete(db, pEList);
5699     p->pEList = pNew;
5700   }
5701   if( p->pEList ){
5702     if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5703       sqlite3ErrorMsg(pParse, "too many columns in result set");
5704       return WRC_Abort;
5705     }
5706     if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5707       p->selFlags |= SF_ComplexResult;
5708     }
5709   }
5710   return WRC_Continue;
5711 }
5712 
5713 #if SQLITE_DEBUG
5714 /*
5715 ** Always assert.  This xSelectCallback2 implementation proves that the
5716 ** xSelectCallback2 is never invoked.
5717 */
5718 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5719   UNUSED_PARAMETER2(NotUsed, NotUsed2);
5720   assert( 0 );
5721 }
5722 #endif
5723 /*
5724 ** This routine "expands" a SELECT statement and all of its subqueries.
5725 ** For additional information on what it means to "expand" a SELECT
5726 ** statement, see the comment on the selectExpand worker callback above.
5727 **
5728 ** Expanding a SELECT statement is the first step in processing a
5729 ** SELECT statement.  The SELECT statement must be expanded before
5730 ** name resolution is performed.
5731 **
5732 ** If anything goes wrong, an error message is written into pParse.
5733 ** The calling function can detect the problem by looking at pParse->nErr
5734 ** and/or pParse->db->mallocFailed.
5735 */
5736 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5737   Walker w;
5738   w.xExprCallback = sqlite3ExprWalkNoop;
5739   w.pParse = pParse;
5740   if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5741     w.xSelectCallback = convertCompoundSelectToSubquery;
5742     w.xSelectCallback2 = 0;
5743     sqlite3WalkSelect(&w, pSelect);
5744   }
5745   w.xSelectCallback = selectExpander;
5746   w.xSelectCallback2 = sqlite3SelectPopWith;
5747   w.eCode = 0;
5748   sqlite3WalkSelect(&w, pSelect);
5749 }
5750 
5751 
5752 #ifndef SQLITE_OMIT_SUBQUERY
5753 /*
5754 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5755 ** interface.
5756 **
5757 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5758 ** information to the Table structure that represents the result set
5759 ** of that subquery.
5760 **
5761 ** The Table structure that represents the result set was constructed
5762 ** by selectExpander() but the type and collation information was omitted
5763 ** at that point because identifiers had not yet been resolved.  This
5764 ** routine is called after identifier resolution.
5765 */
5766 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5767   Parse *pParse;
5768   int i;
5769   SrcList *pTabList;
5770   SrcItem *pFrom;
5771 
5772   assert( p->selFlags & SF_Resolved );
5773   if( p->selFlags & SF_HasTypeInfo ) return;
5774   p->selFlags |= SF_HasTypeInfo;
5775   pParse = pWalker->pParse;
5776   pTabList = p->pSrc;
5777   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5778     Table *pTab = pFrom->pTab;
5779     assert( pTab!=0 );
5780     if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5781       /* A sub-query in the FROM clause of a SELECT */
5782       Select *pSel = pFrom->pSelect;
5783       if( pSel ){
5784         while( pSel->pPrior ) pSel = pSel->pPrior;
5785         sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5786                                                SQLITE_AFF_NONE);
5787       }
5788     }
5789   }
5790 }
5791 #endif
5792 
5793 
5794 /*
5795 ** This routine adds datatype and collating sequence information to
5796 ** the Table structures of all FROM-clause subqueries in a
5797 ** SELECT statement.
5798 **
5799 ** Use this routine after name resolution.
5800 */
5801 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5802 #ifndef SQLITE_OMIT_SUBQUERY
5803   Walker w;
5804   w.xSelectCallback = sqlite3SelectWalkNoop;
5805   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5806   w.xExprCallback = sqlite3ExprWalkNoop;
5807   w.pParse = pParse;
5808   sqlite3WalkSelect(&w, pSelect);
5809 #endif
5810 }
5811 
5812 
5813 /*
5814 ** This routine sets up a SELECT statement for processing.  The
5815 ** following is accomplished:
5816 **
5817 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
5818 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
5819 **     *  ON and USING clauses are shifted into WHERE statements
5820 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
5821 **     *  Identifiers in expression are matched to tables.
5822 **
5823 ** This routine acts recursively on all subqueries within the SELECT.
5824 */
5825 void sqlite3SelectPrep(
5826   Parse *pParse,         /* The parser context */
5827   Select *p,             /* The SELECT statement being coded. */
5828   NameContext *pOuterNC  /* Name context for container */
5829 ){
5830   assert( p!=0 || pParse->db->mallocFailed );
5831   if( pParse->db->mallocFailed ) return;
5832   if( p->selFlags & SF_HasTypeInfo ) return;
5833   sqlite3SelectExpand(pParse, p);
5834   if( pParse->nErr || pParse->db->mallocFailed ) return;
5835   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5836   if( pParse->nErr || pParse->db->mallocFailed ) return;
5837   sqlite3SelectAddTypeInfo(pParse, p);
5838 }
5839 
5840 /*
5841 ** Reset the aggregate accumulator.
5842 **
5843 ** The aggregate accumulator is a set of memory cells that hold
5844 ** intermediate results while calculating an aggregate.  This
5845 ** routine generates code that stores NULLs in all of those memory
5846 ** cells.
5847 */
5848 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5849   Vdbe *v = pParse->pVdbe;
5850   int i;
5851   struct AggInfo_func *pFunc;
5852   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5853   if( nReg==0 ) return;
5854   if( pParse->nErr || pParse->db->mallocFailed ) return;
5855 #ifdef SQLITE_DEBUG
5856   /* Verify that all AggInfo registers are within the range specified by
5857   ** AggInfo.mnReg..AggInfo.mxReg */
5858   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5859   for(i=0; i<pAggInfo->nColumn; i++){
5860     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5861          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5862   }
5863   for(i=0; i<pAggInfo->nFunc; i++){
5864     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5865          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5866   }
5867 #endif
5868   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5869   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5870     if( pFunc->iDistinct>=0 ){
5871       Expr *pE = pFunc->pFExpr;
5872       assert( !ExprHasProperty(pE, EP_xIsSelect) );
5873       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5874         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5875            "argument");
5876         pFunc->iDistinct = -1;
5877       }else{
5878         KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5879         pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5880             pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5881         ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5882                           pFunc->pFunc->zName));
5883       }
5884     }
5885   }
5886 }
5887 
5888 /*
5889 ** Invoke the OP_AggFinalize opcode for every aggregate function
5890 ** in the AggInfo structure.
5891 */
5892 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5893   Vdbe *v = pParse->pVdbe;
5894   int i;
5895   struct AggInfo_func *pF;
5896   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5897     ExprList *pList = pF->pFExpr->x.pList;
5898     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5899     sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5900     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5901   }
5902 }
5903 
5904 
5905 /*
5906 ** Update the accumulator memory cells for an aggregate based on
5907 ** the current cursor position.
5908 **
5909 ** If regAcc is non-zero and there are no min() or max() aggregates
5910 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5911 ** registers if register regAcc contains 0. The caller will take care
5912 ** of setting and clearing regAcc.
5913 */
5914 static void updateAccumulator(
5915   Parse *pParse,
5916   int regAcc,
5917   AggInfo *pAggInfo,
5918   int eDistinctType
5919 ){
5920   Vdbe *v = pParse->pVdbe;
5921   int i;
5922   int regHit = 0;
5923   int addrHitTest = 0;
5924   struct AggInfo_func *pF;
5925   struct AggInfo_col *pC;
5926 
5927   pAggInfo->directMode = 1;
5928   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5929     int nArg;
5930     int addrNext = 0;
5931     int regAgg;
5932     ExprList *pList = pF->pFExpr->x.pList;
5933     assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5934     assert( !IsWindowFunc(pF->pFExpr) );
5935     if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5936       Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5937       if( pAggInfo->nAccumulator
5938        && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5939        && regAcc
5940       ){
5941         /* If regAcc==0, there there exists some min() or max() function
5942         ** without a FILTER clause that will ensure the magnet registers
5943         ** are populated. */
5944         if( regHit==0 ) regHit = ++pParse->nMem;
5945         /* If this is the first row of the group (regAcc contains 0), clear the
5946         ** "magnet" register regHit so that the accumulator registers
5947         ** are populated if the FILTER clause jumps over the the
5948         ** invocation of min() or max() altogether. Or, if this is not
5949         ** the first row (regAcc contains 1), set the magnet register so that
5950         ** the accumulators are not populated unless the min()/max() is invoked
5951         ** and indicates that they should be.  */
5952         sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5953       }
5954       addrNext = sqlite3VdbeMakeLabel(pParse);
5955       sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5956     }
5957     if( pList ){
5958       nArg = pList->nExpr;
5959       regAgg = sqlite3GetTempRange(pParse, nArg);
5960       sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5961     }else{
5962       nArg = 0;
5963       regAgg = 0;
5964     }
5965     if( pF->iDistinct>=0 && pList ){
5966       if( addrNext==0 ){
5967         addrNext = sqlite3VdbeMakeLabel(pParse);
5968       }
5969       pF->iDistinct = codeDistinct(pParse, eDistinctType,
5970           pF->iDistinct, addrNext, pList, regAgg);
5971     }
5972     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5973       CollSeq *pColl = 0;
5974       struct ExprList_item *pItem;
5975       int j;
5976       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
5977       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5978         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5979       }
5980       if( !pColl ){
5981         pColl = pParse->db->pDfltColl;
5982       }
5983       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5984       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5985     }
5986     sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5987     sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5988     sqlite3VdbeChangeP5(v, (u8)nArg);
5989     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5990     if( addrNext ){
5991       sqlite3VdbeResolveLabel(v, addrNext);
5992     }
5993   }
5994   if( regHit==0 && pAggInfo->nAccumulator ){
5995     regHit = regAcc;
5996   }
5997   if( regHit ){
5998     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5999   }
6000   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6001     sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6002   }
6003 
6004   pAggInfo->directMode = 0;
6005   if( addrHitTest ){
6006     sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6007   }
6008 }
6009 
6010 /*
6011 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6012 ** count(*) query ("SELECT count(*) FROM pTab").
6013 */
6014 #ifndef SQLITE_OMIT_EXPLAIN
6015 static void explainSimpleCount(
6016   Parse *pParse,                  /* Parse context */
6017   Table *pTab,                    /* Table being queried */
6018   Index *pIdx                     /* Index used to optimize scan, or NULL */
6019 ){
6020   if( pParse->explain==2 ){
6021     int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6022     sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6023         pTab->zName,
6024         bCover ? " USING COVERING INDEX " : "",
6025         bCover ? pIdx->zName : ""
6026     );
6027   }
6028 }
6029 #else
6030 # define explainSimpleCount(a,b,c)
6031 #endif
6032 
6033 /*
6034 ** sqlite3WalkExpr() callback used by havingToWhere().
6035 **
6036 ** If the node passed to the callback is a TK_AND node, return
6037 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6038 **
6039 ** Otherwise, return WRC_Prune. In this case, also check if the
6040 ** sub-expression matches the criteria for being moved to the WHERE
6041 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6042 ** within the HAVING expression with a constant "1".
6043 */
6044 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6045   if( pExpr->op!=TK_AND ){
6046     Select *pS = pWalker->u.pSelect;
6047     /* This routine is called before the HAVING clause of the current
6048     ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6049     ** here, it indicates that the expression is a correlated reference to a
6050     ** column from an outer aggregate query, or an aggregate function that
6051     ** belongs to an outer query. Do not move the expression to the WHERE
6052     ** clause in this obscure case, as doing so may corrupt the outer Select
6053     ** statements AggInfo structure.  */
6054     if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6055      && ExprAlwaysFalse(pExpr)==0
6056      && pExpr->pAggInfo==0
6057     ){
6058       sqlite3 *db = pWalker->pParse->db;
6059       Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6060       if( pNew ){
6061         Expr *pWhere = pS->pWhere;
6062         SWAP(Expr, *pNew, *pExpr);
6063         pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6064         pS->pWhere = pNew;
6065         pWalker->eCode = 1;
6066       }
6067     }
6068     return WRC_Prune;
6069   }
6070   return WRC_Continue;
6071 }
6072 
6073 /*
6074 ** Transfer eligible terms from the HAVING clause of a query, which is
6075 ** processed after grouping, to the WHERE clause, which is processed before
6076 ** grouping. For example, the query:
6077 **
6078 **   SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6079 **
6080 ** can be rewritten as:
6081 **
6082 **   SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6083 **
6084 ** A term of the HAVING expression is eligible for transfer if it consists
6085 ** entirely of constants and expressions that are also GROUP BY terms that
6086 ** use the "BINARY" collation sequence.
6087 */
6088 static void havingToWhere(Parse *pParse, Select *p){
6089   Walker sWalker;
6090   memset(&sWalker, 0, sizeof(sWalker));
6091   sWalker.pParse = pParse;
6092   sWalker.xExprCallback = havingToWhereExprCb;
6093   sWalker.u.pSelect = p;
6094   sqlite3WalkExpr(&sWalker, p->pHaving);
6095 #if SELECTTRACE_ENABLED
6096   if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
6097     SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6098     sqlite3TreeViewSelect(0, p, 0);
6099   }
6100 #endif
6101 }
6102 
6103 /*
6104 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6105 ** If it is, then return the SrcList_item for the prior view.  If it is not,
6106 ** then return 0.
6107 */
6108 static SrcItem *isSelfJoinView(
6109   SrcList *pTabList,           /* Search for self-joins in this FROM clause */
6110   SrcItem *pThis               /* Search for prior reference to this subquery */
6111 ){
6112   SrcItem *pItem;
6113   assert( pThis->pSelect!=0 );
6114   if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6115   for(pItem = pTabList->a; pItem<pThis; pItem++){
6116     Select *pS1;
6117     if( pItem->pSelect==0 ) continue;
6118     if( pItem->fg.viaCoroutine ) continue;
6119     if( pItem->zName==0 ) continue;
6120     assert( pItem->pTab!=0 );
6121     assert( pThis->pTab!=0 );
6122     if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6123     if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6124     pS1 = pItem->pSelect;
6125     if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6126       /* The query flattener left two different CTE tables with identical
6127       ** names in the same FROM clause. */
6128       continue;
6129     }
6130     if( pItem->pSelect->selFlags & SF_PushDown ){
6131       /* The view was modified by some other optimization such as
6132       ** pushDownWhereTerms() */
6133       continue;
6134     }
6135     return pItem;
6136   }
6137   return 0;
6138 }
6139 
6140 /*
6141 ** Deallocate a single AggInfo object
6142 */
6143 static void agginfoFree(sqlite3 *db, AggInfo *p){
6144   sqlite3DbFree(db, p->aCol);
6145   sqlite3DbFree(db, p->aFunc);
6146   sqlite3DbFreeNN(db, p);
6147 }
6148 
6149 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6150 /*
6151 ** Attempt to transform a query of the form
6152 **
6153 **    SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6154 **
6155 ** Into this:
6156 **
6157 **    SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6158 **
6159 ** The transformation only works if all of the following are true:
6160 **
6161 **   *  The subquery is a UNION ALL of two or more terms
6162 **   *  The subquery does not have a LIMIT clause
6163 **   *  There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6164 **   *  The outer query is a simple count(*) with no WHERE clause or other
6165 **      extraneous syntax.
6166 **
6167 ** Return TRUE if the optimization is undertaken.
6168 */
6169 static int countOfViewOptimization(Parse *pParse, Select *p){
6170   Select *pSub, *pPrior;
6171   Expr *pExpr;
6172   Expr *pCount;
6173   sqlite3 *db;
6174   if( (p->selFlags & SF_Aggregate)==0 ) return 0;   /* This is an aggregate */
6175   if( p->pEList->nExpr!=1 ) return 0;               /* Single result column */
6176   if( p->pWhere ) return 0;
6177   if( p->pGroupBy ) return 0;
6178   pExpr = p->pEList->a[0].pExpr;
6179   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;        /* Result is an aggregate */
6180   if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0;  /* Is count() */
6181   if( pExpr->x.pList!=0 ) return 0;                 /* Must be count(*) */
6182   if( p->pSrc->nSrc!=1 ) return 0;                  /* One table in FROM  */
6183   pSub = p->pSrc->a[0].pSelect;
6184   if( pSub==0 ) return 0;                           /* The FROM is a subquery */
6185   if( pSub->pPrior==0 ) return 0;                   /* Must be a compound ry */
6186   do{
6187     if( pSub->op!=TK_ALL && pSub->pPrior ) return 0;  /* Must be UNION ALL */
6188     if( pSub->pWhere ) return 0;                      /* No WHERE clause */
6189     if( pSub->pLimit ) return 0;                      /* No LIMIT clause */
6190     if( pSub->selFlags & SF_Aggregate ) return 0;     /* Not an aggregate */
6191     pSub = pSub->pPrior;                              /* Repeat over compound */
6192   }while( pSub );
6193 
6194   /* If we reach this point then it is OK to perform the transformation */
6195 
6196   db = pParse->db;
6197   pCount = pExpr;
6198   pExpr = 0;
6199   pSub = p->pSrc->a[0].pSelect;
6200   p->pSrc->a[0].pSelect = 0;
6201   sqlite3SrcListDelete(db, p->pSrc);
6202   p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6203   while( pSub ){
6204     Expr *pTerm;
6205     pPrior = pSub->pPrior;
6206     pSub->pPrior = 0;
6207     pSub->pNext = 0;
6208     pSub->selFlags |= SF_Aggregate;
6209     pSub->selFlags &= ~SF_Compound;
6210     pSub->nSelectRow = 0;
6211     sqlite3ExprListDelete(db, pSub->pEList);
6212     pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6213     pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6214     pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6215     sqlite3PExprAddSelect(pParse, pTerm, pSub);
6216     if( pExpr==0 ){
6217       pExpr = pTerm;
6218     }else{
6219       pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6220     }
6221     pSub = pPrior;
6222   }
6223   p->pEList->a[0].pExpr = pExpr;
6224   p->selFlags &= ~SF_Aggregate;
6225 
6226 #if SELECTTRACE_ENABLED
6227   if( sqlite3SelectTrace & 0x400 ){
6228     SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6229     sqlite3TreeViewSelect(0, p, 0);
6230   }
6231 #endif
6232   return 1;
6233 }
6234 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6235 
6236 /*
6237 ** Generate code for the SELECT statement given in the p argument.
6238 **
6239 ** The results are returned according to the SelectDest structure.
6240 ** See comments in sqliteInt.h for further information.
6241 **
6242 ** This routine returns the number of errors.  If any errors are
6243 ** encountered, then an appropriate error message is left in
6244 ** pParse->zErrMsg.
6245 **
6246 ** This routine does NOT free the Select structure passed in.  The
6247 ** calling function needs to do that.
6248 */
6249 int sqlite3Select(
6250   Parse *pParse,         /* The parser context */
6251   Select *p,             /* The SELECT statement being coded. */
6252   SelectDest *pDest      /* What to do with the query results */
6253 ){
6254   int i, j;              /* Loop counters */
6255   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
6256   Vdbe *v;               /* The virtual machine under construction */
6257   int isAgg;             /* True for select lists like "count(*)" */
6258   ExprList *pEList = 0;  /* List of columns to extract. */
6259   SrcList *pTabList;     /* List of tables to select from */
6260   Expr *pWhere;          /* The WHERE clause.  May be NULL */
6261   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
6262   Expr *pHaving;         /* The HAVING clause.  May be NULL */
6263   AggInfo *pAggInfo = 0; /* Aggregate information */
6264   int rc = 1;            /* Value to return from this function */
6265   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6266   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
6267   int iEnd;              /* Address of the end of the query */
6268   sqlite3 *db;           /* The database connection */
6269   ExprList *pMinMaxOrderBy = 0;  /* Added ORDER BY for min/max queries */
6270   u8 minMaxFlag;                 /* Flag for min/max queries */
6271 
6272   db = pParse->db;
6273   v = sqlite3GetVdbe(pParse);
6274   if( p==0 || db->mallocFailed || pParse->nErr ){
6275     return 1;
6276   }
6277   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6278 #if SELECTTRACE_ENABLED
6279   SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6280   if( sqlite3SelectTrace & 0x100 ){
6281     sqlite3TreeViewSelect(0, p, 0);
6282   }
6283 #endif
6284 
6285   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6286   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6287   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6288   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6289   if( IgnorableDistinct(pDest) ){
6290     assert(pDest->eDest==SRT_Exists     || pDest->eDest==SRT_Union ||
6291            pDest->eDest==SRT_Except     || pDest->eDest==SRT_Discard ||
6292            pDest->eDest==SRT_DistQueue  || pDest->eDest==SRT_DistFifo );
6293     /* All of these destinations are also able to ignore the ORDER BY clause */
6294     if( p->pOrderBy ){
6295 #if SELECTTRACE_ENABLED
6296       SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6297       if( sqlite3SelectTrace & 0x100 ){
6298         sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6299       }
6300 #endif
6301       sqlite3ParserAddCleanup(pParse,
6302         (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6303         p->pOrderBy);
6304       testcase( pParse->earlyCleanup );
6305       p->pOrderBy = 0;
6306     }
6307     p->selFlags &= ~SF_Distinct;
6308     p->selFlags |= SF_NoopOrderBy;
6309   }
6310   sqlite3SelectPrep(pParse, p, 0);
6311   if( pParse->nErr || db->mallocFailed ){
6312     goto select_end;
6313   }
6314   assert( p->pEList!=0 );
6315 #if SELECTTRACE_ENABLED
6316   if( sqlite3SelectTrace & 0x104 ){
6317     SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6318     sqlite3TreeViewSelect(0, p, 0);
6319   }
6320 #endif
6321 
6322   /* If the SF_UFSrcCheck flag is set, then this function is being called
6323   ** as part of populating the temp table for an UPDATE...FROM statement.
6324   ** In this case, it is an error if the target object (pSrc->a[0]) name
6325   ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6326   **
6327   ** Postgres disallows this case too. The reason is that some other
6328   ** systems handle this case differently, and not all the same way,
6329   ** which is just confusing. To avoid this, we follow PG's lead and
6330   ** disallow it altogether.  */
6331   if( p->selFlags & SF_UFSrcCheck ){
6332     SrcItem *p0 = &p->pSrc->a[0];
6333     for(i=1; i<p->pSrc->nSrc; i++){
6334       SrcItem *p1 = &p->pSrc->a[i];
6335       if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6336         sqlite3ErrorMsg(pParse,
6337             "target object/alias may not appear in FROM clause: %s",
6338             p0->zAlias ? p0->zAlias : p0->pTab->zName
6339         );
6340         goto select_end;
6341       }
6342     }
6343 
6344     /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6345     ** and leaving this flag set can cause errors if a compound sub-query
6346     ** in p->pSrc is flattened into this query and this function called
6347     ** again as part of compound SELECT processing.  */
6348     p->selFlags &= ~SF_UFSrcCheck;
6349   }
6350 
6351   if( pDest->eDest==SRT_Output ){
6352     sqlite3GenerateColumnNames(pParse, p);
6353   }
6354 
6355 #ifndef SQLITE_OMIT_WINDOWFUNC
6356   if( sqlite3WindowRewrite(pParse, p) ){
6357     assert( db->mallocFailed || pParse->nErr>0 );
6358     goto select_end;
6359   }
6360 #if SELECTTRACE_ENABLED
6361   if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6362     SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6363     sqlite3TreeViewSelect(0, p, 0);
6364   }
6365 #endif
6366 #endif /* SQLITE_OMIT_WINDOWFUNC */
6367   pTabList = p->pSrc;
6368   isAgg = (p->selFlags & SF_Aggregate)!=0;
6369   memset(&sSort, 0, sizeof(sSort));
6370   sSort.pOrderBy = p->pOrderBy;
6371 
6372   /* Try to do various optimizations (flattening subqueries, and strength
6373   ** reduction of join operators) in the FROM clause up into the main query
6374   */
6375 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6376   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6377     SrcItem *pItem = &pTabList->a[i];
6378     Select *pSub = pItem->pSelect;
6379     Table *pTab = pItem->pTab;
6380 
6381     /* The expander should have already created transient Table objects
6382     ** even for FROM clause elements such as subqueries that do not correspond
6383     ** to a real table */
6384     assert( pTab!=0 );
6385 
6386     /* Convert LEFT JOIN into JOIN if there are terms of the right table
6387     ** of the LEFT JOIN used in the WHERE clause.
6388     */
6389     if( (pItem->fg.jointype & JT_LEFT)!=0
6390      && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6391      && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6392     ){
6393       SELECTTRACE(0x100,pParse,p,
6394                 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6395       pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6396       unsetJoinExpr(p->pWhere, pItem->iCursor);
6397     }
6398 
6399     /* No futher action if this term of the FROM clause is no a subquery */
6400     if( pSub==0 ) continue;
6401 
6402     /* Catch mismatch in the declared columns of a view and the number of
6403     ** columns in the SELECT on the RHS */
6404     if( pTab->nCol!=pSub->pEList->nExpr ){
6405       sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6406                       pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6407       goto select_end;
6408     }
6409 
6410     /* Do not try to flatten an aggregate subquery.
6411     **
6412     ** Flattening an aggregate subquery is only possible if the outer query
6413     ** is not a join.  But if the outer query is not a join, then the subquery
6414     ** will be implemented as a co-routine and there is no advantage to
6415     ** flattening in that case.
6416     */
6417     if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6418     assert( pSub->pGroupBy==0 );
6419 
6420     /* If a FROM-clause subquery has an ORDER BY clause that is not
6421     ** really doing anything, then delete it now so that it does not
6422     ** interfere with query flattening.  See the discussion at
6423     ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6424     **
6425     ** Beware of these cases where the ORDER BY clause may not be safely
6426     ** omitted:
6427     **
6428     **    (1)   There is also a LIMIT clause
6429     **    (2)   The subquery was added to help with window-function
6430     **          processing
6431     **    (3)   The subquery is in the FROM clause of an UPDATE
6432     **    (4)   The outer query uses an aggregate function other than
6433     **          the built-in count(), min(), or max().
6434     **    (5)   The ORDER BY isn't going to accomplish anything because
6435     **          one of:
6436     **            (a)  The outer query has a different ORDER BY clause
6437     **            (b)  The subquery is part of a join
6438     **          See forum post 062d576715d277c8
6439     */
6440     if( pSub->pOrderBy!=0
6441      && (p->pOrderBy!=0 || pTabList->nSrc>1)      /* Condition (5) */
6442      && pSub->pLimit==0                           /* Condition (1) */
6443      && (pSub->selFlags & SF_OrderByReqd)==0      /* Condition (2) */
6444      && (p->selFlags & SF_OrderByReqd)==0         /* Condition (3) and (4) */
6445      && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6446     ){
6447       SELECTTRACE(0x100,pParse,p,
6448                 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6449       sqlite3ExprListDelete(db, pSub->pOrderBy);
6450       pSub->pOrderBy = 0;
6451     }
6452 
6453     /* If the outer query contains a "complex" result set (that is,
6454     ** if the result set of the outer query uses functions or subqueries)
6455     ** and if the subquery contains an ORDER BY clause and if
6456     ** it will be implemented as a co-routine, then do not flatten.  This
6457     ** restriction allows SQL constructs like this:
6458     **
6459     **  SELECT expensive_function(x)
6460     **    FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6461     **
6462     ** The expensive_function() is only computed on the 10 rows that
6463     ** are output, rather than every row of the table.
6464     **
6465     ** The requirement that the outer query have a complex result set
6466     ** means that flattening does occur on simpler SQL constraints without
6467     ** the expensive_function() like:
6468     **
6469     **  SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6470     */
6471     if( pSub->pOrderBy!=0
6472      && i==0
6473      && (p->selFlags & SF_ComplexResult)!=0
6474      && (pTabList->nSrc==1
6475          || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6476     ){
6477       continue;
6478     }
6479 
6480     if( flattenSubquery(pParse, p, i, isAgg) ){
6481       if( pParse->nErr ) goto select_end;
6482       /* This subquery can be absorbed into its parent. */
6483       i = -1;
6484     }
6485     pTabList = p->pSrc;
6486     if( db->mallocFailed ) goto select_end;
6487     if( !IgnorableOrderby(pDest) ){
6488       sSort.pOrderBy = p->pOrderBy;
6489     }
6490   }
6491 #endif
6492 
6493 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6494   /* Handle compound SELECT statements using the separate multiSelect()
6495   ** procedure.
6496   */
6497   if( p->pPrior ){
6498     rc = multiSelect(pParse, p, pDest);
6499 #if SELECTTRACE_ENABLED
6500     SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6501     if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6502       sqlite3TreeViewSelect(0, p, 0);
6503     }
6504 #endif
6505     if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6506     return rc;
6507   }
6508 #endif
6509 
6510   /* Do the WHERE-clause constant propagation optimization if this is
6511   ** a join.  No need to speed time on this operation for non-join queries
6512   ** as the equivalent optimization will be handled by query planner in
6513   ** sqlite3WhereBegin().
6514   */
6515   if( p->pWhere!=0
6516    && p->pWhere->op==TK_AND
6517    && OptimizationEnabled(db, SQLITE_PropagateConst)
6518    && propagateConstants(pParse, p)
6519   ){
6520 #if SELECTTRACE_ENABLED
6521     if( sqlite3SelectTrace & 0x100 ){
6522       SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6523       sqlite3TreeViewSelect(0, p, 0);
6524     }
6525 #endif
6526   }else{
6527     SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6528   }
6529 
6530 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6531   if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6532    && countOfViewOptimization(pParse, p)
6533   ){
6534     if( db->mallocFailed ) goto select_end;
6535     pEList = p->pEList;
6536     pTabList = p->pSrc;
6537   }
6538 #endif
6539 
6540   /* For each term in the FROM clause, do two things:
6541   ** (1) Authorized unreferenced tables
6542   ** (2) Generate code for all sub-queries
6543   */
6544   for(i=0; i<pTabList->nSrc; i++){
6545     SrcItem *pItem = &pTabList->a[i];
6546     SrcItem *pPrior;
6547     SelectDest dest;
6548     Select *pSub;
6549 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6550     const char *zSavedAuthContext;
6551 #endif
6552 
6553     /* Issue SQLITE_READ authorizations with a fake column name for any
6554     ** tables that are referenced but from which no values are extracted.
6555     ** Examples of where these kinds of null SQLITE_READ authorizations
6556     ** would occur:
6557     **
6558     **     SELECT count(*) FROM t1;   -- SQLITE_READ t1.""
6559     **     SELECT t1.* FROM t1, t2;   -- SQLITE_READ t2.""
6560     **
6561     ** The fake column name is an empty string.  It is possible for a table to
6562     ** have a column named by the empty string, in which case there is no way to
6563     ** distinguish between an unreferenced table and an actual reference to the
6564     ** "" column. The original design was for the fake column name to be a NULL,
6565     ** which would be unambiguous.  But legacy authorization callbacks might
6566     ** assume the column name is non-NULL and segfault.  The use of an empty
6567     ** string for the fake column name seems safer.
6568     */
6569     if( pItem->colUsed==0 && pItem->zName!=0 ){
6570       sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6571     }
6572 
6573 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6574     /* Generate code for all sub-queries in the FROM clause
6575     */
6576     pSub = pItem->pSelect;
6577     if( pSub==0 ) continue;
6578 
6579     /* The code for a subquery should only be generated once. */
6580     assert( pItem->addrFillSub==0 );
6581 
6582     /* Increment Parse.nHeight by the height of the largest expression
6583     ** tree referred to by this, the parent select. The child select
6584     ** may contain expression trees of at most
6585     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6586     ** more conservative than necessary, but much easier than enforcing
6587     ** an exact limit.
6588     */
6589     pParse->nHeight += sqlite3SelectExprHeight(p);
6590 
6591     /* Make copies of constant WHERE-clause terms in the outer query down
6592     ** inside the subquery.  This can help the subquery to run more efficiently.
6593     */
6594     if( OptimizationEnabled(db, SQLITE_PushDown)
6595      && (pItem->fg.isCte==0
6596          || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6597      && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6598                            (pItem->fg.jointype & JT_OUTER)!=0)
6599     ){
6600 #if SELECTTRACE_ENABLED
6601       if( sqlite3SelectTrace & 0x100 ){
6602         SELECTTRACE(0x100,pParse,p,
6603             ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6604         sqlite3TreeViewSelect(0, p, 0);
6605       }
6606 #endif
6607       assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6608     }else{
6609       SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6610     }
6611 
6612     zSavedAuthContext = pParse->zAuthContext;
6613     pParse->zAuthContext = pItem->zName;
6614 
6615     /* Generate code to implement the subquery
6616     **
6617     ** The subquery is implemented as a co-routine if:
6618     **    (1)  the subquery is guaranteed to be the outer loop (so that
6619     **         it does not need to be computed more than once), and
6620     **    (2)  the subquery is not a CTE that should be materialized
6621     **
6622     ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6623     ** implementation?
6624     */
6625     if( i==0
6626      && (pTabList->nSrc==1
6627             || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)  /* (1) */
6628      && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)  /* (2) */
6629     ){
6630       /* Implement a co-routine that will return a single row of the result
6631       ** set on each invocation.
6632       */
6633       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6634 
6635       pItem->regReturn = ++pParse->nMem;
6636       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6637       VdbeComment((v, "%!S", pItem));
6638       pItem->addrFillSub = addrTop;
6639       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6640       ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6641       sqlite3Select(pParse, pSub, &dest);
6642       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6643       pItem->fg.viaCoroutine = 1;
6644       pItem->regResult = dest.iSdst;
6645       sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6646       sqlite3VdbeJumpHere(v, addrTop-1);
6647       sqlite3ClearTempRegCache(pParse);
6648     }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6649       /* This is a CTE for which materialization code has already been
6650       ** generated.  Invoke the subroutine to compute the materialization,
6651       ** the make the pItem->iCursor be a copy of the ephemerial table that
6652       ** holds the result of the materialization. */
6653       CteUse *pCteUse = pItem->u2.pCteUse;
6654       sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6655       if( pItem->iCursor!=pCteUse->iCur ){
6656         sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6657         VdbeComment((v, "%!S", pItem));
6658       }
6659       pSub->nSelectRow = pCteUse->nRowEst;
6660     }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6661       /* This view has already been materialized by a prior entry in
6662       ** this same FROM clause.  Reuse it. */
6663       if( pPrior->addrFillSub ){
6664         sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6665       }
6666       sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6667       pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6668     }else{
6669       /* Materialize the view.  If the view is not correlated, generate a
6670       ** subroutine to do the materialization so that subsequent uses of
6671       ** the same view can reuse the materialization. */
6672       int topAddr;
6673       int onceAddr = 0;
6674       int retAddr;
6675 
6676       pItem->regReturn = ++pParse->nMem;
6677       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6678       pItem->addrFillSub = topAddr+1;
6679       if( pItem->fg.isCorrelated==0 ){
6680         /* If the subquery is not correlated and if we are not inside of
6681         ** a trigger, then we only need to compute the value of the subquery
6682         ** once. */
6683         onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6684         VdbeComment((v, "materialize %!S", pItem));
6685       }else{
6686         VdbeNoopComment((v, "materialize %!S", pItem));
6687       }
6688       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6689       ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6690       sqlite3Select(pParse, pSub, &dest);
6691       pItem->pTab->nRowLogEst = pSub->nSelectRow;
6692       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6693       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6694       VdbeComment((v, "end %!S", pItem));
6695       sqlite3VdbeChangeP1(v, topAddr, retAddr);
6696       sqlite3ClearTempRegCache(pParse);
6697       if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6698         CteUse *pCteUse = pItem->u2.pCteUse;
6699         pCteUse->addrM9e = pItem->addrFillSub;
6700         pCteUse->regRtn = pItem->regReturn;
6701         pCteUse->iCur = pItem->iCursor;
6702         pCteUse->nRowEst = pSub->nSelectRow;
6703       }
6704     }
6705     if( db->mallocFailed ) goto select_end;
6706     pParse->nHeight -= sqlite3SelectExprHeight(p);
6707     pParse->zAuthContext = zSavedAuthContext;
6708 #endif
6709   }
6710 
6711   /* Various elements of the SELECT copied into local variables for
6712   ** convenience */
6713   pEList = p->pEList;
6714   pWhere = p->pWhere;
6715   pGroupBy = p->pGroupBy;
6716   pHaving = p->pHaving;
6717   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6718 
6719 #if SELECTTRACE_ENABLED
6720   if( sqlite3SelectTrace & 0x400 ){
6721     SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6722     sqlite3TreeViewSelect(0, p, 0);
6723   }
6724 #endif
6725 
6726   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6727   ** if the select-list is the same as the ORDER BY list, then this query
6728   ** can be rewritten as a GROUP BY. In other words, this:
6729   **
6730   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
6731   **
6732   ** is transformed to:
6733   **
6734   **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6735   **
6736   ** The second form is preferred as a single index (or temp-table) may be
6737   ** used for both the ORDER BY and DISTINCT processing. As originally
6738   ** written the query must use a temp-table for at least one of the ORDER
6739   ** BY and DISTINCT, and an index or separate temp-table for the other.
6740   */
6741   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6742    && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6743 #ifndef SQLITE_OMIT_WINDOWFUNC
6744    && p->pWin==0
6745 #endif
6746   ){
6747     p->selFlags &= ~SF_Distinct;
6748     pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6749     p->selFlags |= SF_Aggregate;
6750     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6751     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
6752     ** original setting of the SF_Distinct flag, not the current setting */
6753     assert( sDistinct.isTnct );
6754 
6755 #if SELECTTRACE_ENABLED
6756     if( sqlite3SelectTrace & 0x400 ){
6757       SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6758       sqlite3TreeViewSelect(0, p, 0);
6759     }
6760 #endif
6761   }
6762 
6763   /* If there is an ORDER BY clause, then create an ephemeral index to
6764   ** do the sorting.  But this sorting ephemeral index might end up
6765   ** being unused if the data can be extracted in pre-sorted order.
6766   ** If that is the case, then the OP_OpenEphemeral instruction will be
6767   ** changed to an OP_Noop once we figure out that the sorting index is
6768   ** not needed.  The sSort.addrSortIndex variable is used to facilitate
6769   ** that change.
6770   */
6771   if( sSort.pOrderBy ){
6772     KeyInfo *pKeyInfo;
6773     pKeyInfo = sqlite3KeyInfoFromExprList(
6774         pParse, sSort.pOrderBy, 0, pEList->nExpr);
6775     sSort.iECursor = pParse->nTab++;
6776     sSort.addrSortIndex =
6777       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6778           sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6779           (char*)pKeyInfo, P4_KEYINFO
6780       );
6781   }else{
6782     sSort.addrSortIndex = -1;
6783   }
6784 
6785   /* If the output is destined for a temporary table, open that table.
6786   */
6787   if( pDest->eDest==SRT_EphemTab ){
6788     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6789   }
6790 
6791   /* Set the limiter.
6792   */
6793   iEnd = sqlite3VdbeMakeLabel(pParse);
6794   if( (p->selFlags & SF_FixedLimit)==0 ){
6795     p->nSelectRow = 320;  /* 4 billion rows */
6796   }
6797   computeLimitRegisters(pParse, p, iEnd);
6798   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6799     sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6800     sSort.sortFlags |= SORTFLAG_UseSorter;
6801   }
6802 
6803   /* Open an ephemeral index to use for the distinct set.
6804   */
6805   if( p->selFlags & SF_Distinct ){
6806     sDistinct.tabTnct = pParse->nTab++;
6807     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6808                        sDistinct.tabTnct, 0, 0,
6809                        (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6810                        P4_KEYINFO);
6811     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6812     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6813   }else{
6814     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6815   }
6816 
6817   if( !isAgg && pGroupBy==0 ){
6818     /* No aggregate functions and no GROUP BY clause */
6819     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6820                    | (p->selFlags & SF_FixedLimit);
6821 #ifndef SQLITE_OMIT_WINDOWFUNC
6822     Window *pWin = p->pWin;      /* Main window object (or NULL) */
6823     if( pWin ){
6824       sqlite3WindowCodeInit(pParse, p);
6825     }
6826 #endif
6827     assert( WHERE_USE_LIMIT==SF_FixedLimit );
6828 
6829 
6830     /* Begin the database scan. */
6831     SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6832     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6833                                p->pEList, wctrlFlags, p->nSelectRow);
6834     if( pWInfo==0 ) goto select_end;
6835     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6836       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6837     }
6838     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6839       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6840     }
6841     if( sSort.pOrderBy ){
6842       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6843       sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6844       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6845         sSort.pOrderBy = 0;
6846       }
6847     }
6848     SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6849 
6850     /* If sorting index that was created by a prior OP_OpenEphemeral
6851     ** instruction ended up not being needed, then change the OP_OpenEphemeral
6852     ** into an OP_Noop.
6853     */
6854     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6855       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6856     }
6857 
6858     assert( p->pEList==pEList );
6859 #ifndef SQLITE_OMIT_WINDOWFUNC
6860     if( pWin ){
6861       int addrGosub = sqlite3VdbeMakeLabel(pParse);
6862       int iCont = sqlite3VdbeMakeLabel(pParse);
6863       int iBreak = sqlite3VdbeMakeLabel(pParse);
6864       int regGosub = ++pParse->nMem;
6865 
6866       sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6867 
6868       sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6869       sqlite3VdbeResolveLabel(v, addrGosub);
6870       VdbeNoopComment((v, "inner-loop subroutine"));
6871       sSort.labelOBLopt = 0;
6872       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6873       sqlite3VdbeResolveLabel(v, iCont);
6874       sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6875       VdbeComment((v, "end inner-loop subroutine"));
6876       sqlite3VdbeResolveLabel(v, iBreak);
6877     }else
6878 #endif /* SQLITE_OMIT_WINDOWFUNC */
6879     {
6880       /* Use the standard inner loop. */
6881       selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6882           sqlite3WhereContinueLabel(pWInfo),
6883           sqlite3WhereBreakLabel(pWInfo));
6884 
6885       /* End the database scan loop.
6886       */
6887       SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6888       sqlite3WhereEnd(pWInfo);
6889     }
6890   }else{
6891     /* This case when there exist aggregate functions or a GROUP BY clause
6892     ** or both */
6893     NameContext sNC;    /* Name context for processing aggregate information */
6894     int iAMem;          /* First Mem address for storing current GROUP BY */
6895     int iBMem;          /* First Mem address for previous GROUP BY */
6896     int iUseFlag;       /* Mem address holding flag indicating that at least
6897                         ** one row of the input to the aggregator has been
6898                         ** processed */
6899     int iAbortFlag;     /* Mem address which causes query abort if positive */
6900     int groupBySort;    /* Rows come from source in GROUP BY order */
6901     int addrEnd;        /* End of processing for this SELECT */
6902     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
6903     int sortOut = 0;    /* Output register from the sorter */
6904     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6905 
6906     /* Remove any and all aliases between the result set and the
6907     ** GROUP BY clause.
6908     */
6909     if( pGroupBy ){
6910       int k;                        /* Loop counter */
6911       struct ExprList_item *pItem;  /* For looping over expression in a list */
6912 
6913       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6914         pItem->u.x.iAlias = 0;
6915       }
6916       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6917         pItem->u.x.iAlias = 0;
6918       }
6919       assert( 66==sqlite3LogEst(100) );
6920       if( p->nSelectRow>66 ) p->nSelectRow = 66;
6921 
6922       /* If there is both a GROUP BY and an ORDER BY clause and they are
6923       ** identical, then it may be possible to disable the ORDER BY clause
6924       ** on the grounds that the GROUP BY will cause elements to come out
6925       ** in the correct order. It also may not - the GROUP BY might use a
6926       ** database index that causes rows to be grouped together as required
6927       ** but not actually sorted. Either way, record the fact that the
6928       ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6929       ** variable.  */
6930       if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6931         int ii;
6932         /* The GROUP BY processing doesn't care whether rows are delivered in
6933         ** ASC or DESC order - only that each group is returned contiguously.
6934         ** So set the ASC/DESC flags in the GROUP BY to match those in the
6935         ** ORDER BY to maximize the chances of rows being delivered in an
6936         ** order that makes the ORDER BY redundant.  */
6937         for(ii=0; ii<pGroupBy->nExpr; ii++){
6938           u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6939           pGroupBy->a[ii].sortFlags = sortFlags;
6940         }
6941         if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6942           orderByGrp = 1;
6943         }
6944       }
6945     }else{
6946       assert( 0==sqlite3LogEst(1) );
6947       p->nSelectRow = 0;
6948     }
6949 
6950     /* Create a label to jump to when we want to abort the query */
6951     addrEnd = sqlite3VdbeMakeLabel(pParse);
6952 
6953     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6954     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6955     ** SELECT statement.
6956     */
6957     pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6958     if( pAggInfo ){
6959       sqlite3ParserAddCleanup(pParse,
6960           (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6961       testcase( pParse->earlyCleanup );
6962     }
6963     if( db->mallocFailed ){
6964       goto select_end;
6965     }
6966     pAggInfo->selId = p->selId;
6967     memset(&sNC, 0, sizeof(sNC));
6968     sNC.pParse = pParse;
6969     sNC.pSrcList = pTabList;
6970     sNC.uNC.pAggInfo = pAggInfo;
6971     VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6972     pAggInfo->mnReg = pParse->nMem+1;
6973     pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6974     pAggInfo->pGroupBy = pGroupBy;
6975     sqlite3ExprAnalyzeAggList(&sNC, pEList);
6976     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6977     if( pHaving ){
6978       if( pGroupBy ){
6979         assert( pWhere==p->pWhere );
6980         assert( pHaving==p->pHaving );
6981         assert( pGroupBy==p->pGroupBy );
6982         havingToWhere(pParse, p);
6983         pWhere = p->pWhere;
6984       }
6985       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6986     }
6987     pAggInfo->nAccumulator = pAggInfo->nColumn;
6988     if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6989       minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6990     }else{
6991       minMaxFlag = WHERE_ORDERBY_NORMAL;
6992     }
6993     for(i=0; i<pAggInfo->nFunc; i++){
6994       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6995       assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6996       sNC.ncFlags |= NC_InAggFunc;
6997       sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6998 #ifndef SQLITE_OMIT_WINDOWFUNC
6999       assert( !IsWindowFunc(pExpr) );
7000       if( ExprHasProperty(pExpr, EP_WinFunc) ){
7001         sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7002       }
7003 #endif
7004       sNC.ncFlags &= ~NC_InAggFunc;
7005     }
7006     pAggInfo->mxReg = pParse->nMem;
7007     if( db->mallocFailed ) goto select_end;
7008 #if SELECTTRACE_ENABLED
7009     if( sqlite3SelectTrace & 0x400 ){
7010       int ii;
7011       SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7012       sqlite3TreeViewSelect(0, p, 0);
7013       if( minMaxFlag ){
7014         sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7015         sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7016       }
7017       for(ii=0; ii<pAggInfo->nColumn; ii++){
7018         sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7019             ii, pAggInfo->aCol[ii].iMem);
7020         sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7021       }
7022       for(ii=0; ii<pAggInfo->nFunc; ii++){
7023         sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7024             ii, pAggInfo->aFunc[ii].iMem);
7025         sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7026       }
7027     }
7028 #endif
7029 
7030 
7031     /* Processing for aggregates with GROUP BY is very different and
7032     ** much more complex than aggregates without a GROUP BY.
7033     */
7034     if( pGroupBy ){
7035       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
7036       int addr1;          /* A-vs-B comparision jump */
7037       int addrOutputRow;  /* Start of subroutine that outputs a result row */
7038       int regOutputRow;   /* Return address register for output subroutine */
7039       int addrSetAbort;   /* Set the abort flag and return */
7040       int addrTopOfLoop;  /* Top of the input loop */
7041       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7042       int addrReset;      /* Subroutine for resetting the accumulator */
7043       int regReset;       /* Return address register for reset subroutine */
7044       ExprList *pDistinct = 0;
7045       u16 distFlag = 0;
7046       int eDist = WHERE_DISTINCT_NOOP;
7047 
7048       if( pAggInfo->nFunc==1
7049        && pAggInfo->aFunc[0].iDistinct>=0
7050        && pAggInfo->aFunc[0].pFExpr->x.pList
7051       ){
7052         Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7053         pExpr = sqlite3ExprDup(db, pExpr, 0);
7054         pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7055         pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7056         distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7057       }
7058 
7059       /* If there is a GROUP BY clause we might need a sorting index to
7060       ** implement it.  Allocate that sorting index now.  If it turns out
7061       ** that we do not need it after all, the OP_SorterOpen instruction
7062       ** will be converted into a Noop.
7063       */
7064       pAggInfo->sortingIdx = pParse->nTab++;
7065       pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7066                                             0, pAggInfo->nColumn);
7067       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7068           pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7069           0, (char*)pKeyInfo, P4_KEYINFO);
7070 
7071       /* Initialize memory locations used by GROUP BY aggregate processing
7072       */
7073       iUseFlag = ++pParse->nMem;
7074       iAbortFlag = ++pParse->nMem;
7075       regOutputRow = ++pParse->nMem;
7076       addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7077       regReset = ++pParse->nMem;
7078       addrReset = sqlite3VdbeMakeLabel(pParse);
7079       iAMem = pParse->nMem + 1;
7080       pParse->nMem += pGroupBy->nExpr;
7081       iBMem = pParse->nMem + 1;
7082       pParse->nMem += pGroupBy->nExpr;
7083       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7084       VdbeComment((v, "clear abort flag"));
7085       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7086 
7087       /* Begin a loop that will extract all source rows in GROUP BY order.
7088       ** This might involve two separate loops with an OP_Sort in between, or
7089       ** it might be a single loop that uses an index to extract information
7090       ** in the right order to begin with.
7091       */
7092       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7093       SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7094       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7095           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7096       );
7097       if( pWInfo==0 ){
7098         sqlite3ExprListDelete(db, pDistinct);
7099         goto select_end;
7100       }
7101       eDist = sqlite3WhereIsDistinct(pWInfo);
7102       SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7103       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7104         /* The optimizer is able to deliver rows in group by order so
7105         ** we do not have to sort.  The OP_OpenEphemeral table will be
7106         ** cancelled later because we still need to use the pKeyInfo
7107         */
7108         groupBySort = 0;
7109       }else{
7110         /* Rows are coming out in undetermined order.  We have to push
7111         ** each row into a sorting index, terminate the first loop,
7112         ** then loop over the sorting index in order to get the output
7113         ** in sorted order
7114         */
7115         int regBase;
7116         int regRecord;
7117         int nCol;
7118         int nGroupBy;
7119 
7120         explainTempTable(pParse,
7121             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7122                     "DISTINCT" : "GROUP BY");
7123 
7124         groupBySort = 1;
7125         nGroupBy = pGroupBy->nExpr;
7126         nCol = nGroupBy;
7127         j = nGroupBy;
7128         for(i=0; i<pAggInfo->nColumn; i++){
7129           if( pAggInfo->aCol[i].iSorterColumn>=j ){
7130             nCol++;
7131             j++;
7132           }
7133         }
7134         regBase = sqlite3GetTempRange(pParse, nCol);
7135         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7136         j = nGroupBy;
7137         for(i=0; i<pAggInfo->nColumn; i++){
7138           struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7139           if( pCol->iSorterColumn>=j ){
7140             int r1 = j + regBase;
7141             sqlite3ExprCodeGetColumnOfTable(v,
7142                                pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7143             j++;
7144           }
7145         }
7146         regRecord = sqlite3GetTempReg(pParse);
7147         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7148         sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7149         sqlite3ReleaseTempReg(pParse, regRecord);
7150         sqlite3ReleaseTempRange(pParse, regBase, nCol);
7151         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7152         sqlite3WhereEnd(pWInfo);
7153         pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7154         sortOut = sqlite3GetTempReg(pParse);
7155         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7156         sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7157         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7158         pAggInfo->useSortingIdx = 1;
7159       }
7160 
7161       /* If the index or temporary table used by the GROUP BY sort
7162       ** will naturally deliver rows in the order required by the ORDER BY
7163       ** clause, cancel the ephemeral table open coded earlier.
7164       **
7165       ** This is an optimization - the correct answer should result regardless.
7166       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7167       ** disable this optimization for testing purposes.  */
7168       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7169        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7170       ){
7171         sSort.pOrderBy = 0;
7172         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7173       }
7174 
7175       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7176       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7177       ** Then compare the current GROUP BY terms against the GROUP BY terms
7178       ** from the previous row currently stored in a0, a1, a2...
7179       */
7180       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7181       if( groupBySort ){
7182         sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7183                           sortOut, sortPTab);
7184       }
7185       for(j=0; j<pGroupBy->nExpr; j++){
7186         if( groupBySort ){
7187           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7188         }else{
7189           pAggInfo->directMode = 1;
7190           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7191         }
7192       }
7193       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7194                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7195       addr1 = sqlite3VdbeCurrentAddr(v);
7196       sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7197 
7198       /* Generate code that runs whenever the GROUP BY changes.
7199       ** Changes in the GROUP BY are detected by the previous code
7200       ** block.  If there were no changes, this block is skipped.
7201       **
7202       ** This code copies current group by terms in b0,b1,b2,...
7203       ** over to a0,a1,a2.  It then calls the output subroutine
7204       ** and resets the aggregate accumulator registers in preparation
7205       ** for the next GROUP BY batch.
7206       */
7207       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7208       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7209       VdbeComment((v, "output one row"));
7210       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7211       VdbeComment((v, "check abort flag"));
7212       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7213       VdbeComment((v, "reset accumulator"));
7214 
7215       /* Update the aggregate accumulators based on the content of
7216       ** the current row
7217       */
7218       sqlite3VdbeJumpHere(v, addr1);
7219       updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7220       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7221       VdbeComment((v, "indicate data in accumulator"));
7222 
7223       /* End of the loop
7224       */
7225       if( groupBySort ){
7226         sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7227         VdbeCoverage(v);
7228       }else{
7229         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7230         sqlite3WhereEnd(pWInfo);
7231         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7232       }
7233       sqlite3ExprListDelete(db, pDistinct);
7234 
7235       /* Output the final row of result
7236       */
7237       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7238       VdbeComment((v, "output final row"));
7239 
7240       /* Jump over the subroutines
7241       */
7242       sqlite3VdbeGoto(v, addrEnd);
7243 
7244       /* Generate a subroutine that outputs a single row of the result
7245       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
7246       ** is less than or equal to zero, the subroutine is a no-op.  If
7247       ** the processing calls for the query to abort, this subroutine
7248       ** increments the iAbortFlag memory location before returning in
7249       ** order to signal the caller to abort.
7250       */
7251       addrSetAbort = sqlite3VdbeCurrentAddr(v);
7252       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7253       VdbeComment((v, "set abort flag"));
7254       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7255       sqlite3VdbeResolveLabel(v, addrOutputRow);
7256       addrOutputRow = sqlite3VdbeCurrentAddr(v);
7257       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7258       VdbeCoverage(v);
7259       VdbeComment((v, "Groupby result generator entry point"));
7260       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7261       finalizeAggFunctions(pParse, pAggInfo);
7262       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7263       selectInnerLoop(pParse, p, -1, &sSort,
7264                       &sDistinct, pDest,
7265                       addrOutputRow+1, addrSetAbort);
7266       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7267       VdbeComment((v, "end groupby result generator"));
7268 
7269       /* Generate a subroutine that will reset the group-by accumulator
7270       */
7271       sqlite3VdbeResolveLabel(v, addrReset);
7272       resetAccumulator(pParse, pAggInfo);
7273       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7274       VdbeComment((v, "indicate accumulator empty"));
7275       sqlite3VdbeAddOp1(v, OP_Return, regReset);
7276 
7277       if( eDist!=WHERE_DISTINCT_NOOP ){
7278         struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7279         fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7280       }
7281     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
7282     else {
7283       Table *pTab;
7284       if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7285         /* If isSimpleCount() returns a pointer to a Table structure, then
7286         ** the SQL statement is of the form:
7287         **
7288         **   SELECT count(*) FROM <tbl>
7289         **
7290         ** where the Table structure returned represents table <tbl>.
7291         **
7292         ** This statement is so common that it is optimized specially. The
7293         ** OP_Count instruction is executed either on the intkey table that
7294         ** contains the data for table <tbl> or on one of its indexes. It
7295         ** is better to execute the op on an index, as indexes are almost
7296         ** always spread across less pages than their corresponding tables.
7297         */
7298         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7299         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
7300         Index *pIdx;                         /* Iterator variable */
7301         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
7302         Index *pBest = 0;                    /* Best index found so far */
7303         Pgno iRoot = pTab->tnum;             /* Root page of scanned b-tree */
7304 
7305         sqlite3CodeVerifySchema(pParse, iDb);
7306         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7307 
7308         /* Search for the index that has the lowest scan cost.
7309         **
7310         ** (2011-04-15) Do not do a full scan of an unordered index.
7311         **
7312         ** (2013-10-03) Do not count the entries in a partial index.
7313         **
7314         ** In practice the KeyInfo structure will not be used. It is only
7315         ** passed to keep OP_OpenRead happy.
7316         */
7317         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7318         if( !p->pSrc->a[0].fg.notIndexed ){
7319           for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7320             if( pIdx->bUnordered==0
7321              && pIdx->szIdxRow<pTab->szTabRow
7322              && pIdx->pPartIdxWhere==0
7323              && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7324             ){
7325               pBest = pIdx;
7326             }
7327           }
7328         }
7329         if( pBest ){
7330           iRoot = pBest->tnum;
7331           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7332         }
7333 
7334         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7335         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7336         if( pKeyInfo ){
7337           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7338         }
7339         sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7340         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7341         explainSimpleCount(pParse, pTab, pBest);
7342       }else{
7343         int regAcc = 0;           /* "populate accumulators" flag */
7344         ExprList *pDistinct = 0;
7345         u16 distFlag = 0;
7346         int eDist;
7347 
7348         /* If there are accumulator registers but no min() or max() functions
7349         ** without FILTER clauses, allocate register regAcc. Register regAcc
7350         ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7351         ** The code generated by updateAccumulator() uses this to ensure
7352         ** that the accumulator registers are (a) updated only once if
7353         ** there are no min() or max functions or (b) always updated for the
7354         ** first row visited by the aggregate, so that they are updated at
7355         ** least once even if the FILTER clause means the min() or max()
7356         ** function visits zero rows.  */
7357         if( pAggInfo->nAccumulator ){
7358           for(i=0; i<pAggInfo->nFunc; i++){
7359             if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7360               continue;
7361             }
7362             if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7363               break;
7364             }
7365           }
7366           if( i==pAggInfo->nFunc ){
7367             regAcc = ++pParse->nMem;
7368             sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7369           }
7370         }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7371           pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7372           distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7373         }
7374 
7375         /* This case runs if the aggregate has no GROUP BY clause.  The
7376         ** processing is much simpler since there is only a single row
7377         ** of output.
7378         */
7379         assert( p->pGroupBy==0 );
7380         resetAccumulator(pParse, pAggInfo);
7381 
7382         /* If this query is a candidate for the min/max optimization, then
7383         ** minMaxFlag will have been previously set to either
7384         ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7385         ** be an appropriate ORDER BY expression for the optimization.
7386         */
7387         assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7388         assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7389 
7390         SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7391         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7392                                    pDistinct, minMaxFlag|distFlag, 0);
7393         if( pWInfo==0 ){
7394           goto select_end;
7395         }
7396         SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7397         eDist = sqlite3WhereIsDistinct(pWInfo);
7398         updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7399         if( eDist!=WHERE_DISTINCT_NOOP ){
7400           struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7401           fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7402         }
7403 
7404         if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7405         if( minMaxFlag ){
7406           sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7407         }
7408         SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7409         sqlite3WhereEnd(pWInfo);
7410         finalizeAggFunctions(pParse, pAggInfo);
7411       }
7412 
7413       sSort.pOrderBy = 0;
7414       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7415       selectInnerLoop(pParse, p, -1, 0, 0,
7416                       pDest, addrEnd, addrEnd);
7417     }
7418     sqlite3VdbeResolveLabel(v, addrEnd);
7419 
7420   } /* endif aggregate query */
7421 
7422   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7423     explainTempTable(pParse, "DISTINCT");
7424   }
7425 
7426   /* If there is an ORDER BY clause, then we need to sort the results
7427   ** and send them to the callback one by one.
7428   */
7429   if( sSort.pOrderBy ){
7430     explainTempTable(pParse,
7431                      sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7432     assert( p->pEList==pEList );
7433     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7434   }
7435 
7436   /* Jump here to skip this query
7437   */
7438   sqlite3VdbeResolveLabel(v, iEnd);
7439 
7440   /* The SELECT has been coded. If there is an error in the Parse structure,
7441   ** set the return code to 1. Otherwise 0. */
7442   rc = (pParse->nErr>0);
7443 
7444   /* Control jumps to here if an error is encountered above, or upon
7445   ** successful coding of the SELECT.
7446   */
7447 select_end:
7448   assert( db->mallocFailed==0 || db->mallocFailed==1 );
7449   pParse->nErr += db->mallocFailed;
7450   sqlite3ExprListDelete(db, pMinMaxOrderBy);
7451 #ifdef SQLITE_DEBUG
7452   if( pAggInfo && !db->mallocFailed ){
7453     for(i=0; i<pAggInfo->nColumn; i++){
7454       Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7455       assert( pExpr!=0 );
7456       assert( pExpr->pAggInfo==pAggInfo );
7457       assert( pExpr->iAgg==i );
7458     }
7459     for(i=0; i<pAggInfo->nFunc; i++){
7460       Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7461       assert( pExpr!=0 );
7462       assert( pExpr->pAggInfo==pAggInfo );
7463       assert( pExpr->iAgg==i );
7464     }
7465   }
7466 #endif
7467 
7468 #if SELECTTRACE_ENABLED
7469   SELECTTRACE(0x1,pParse,p,("end processing\n"));
7470   if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7471     sqlite3TreeViewSelect(0, p, 0);
7472   }
7473 #endif
7474   ExplainQueryPlanPop(pParse);
7475   return rc;
7476 }
7477