1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 ** 34 ** The aDefer[] array is used by the sorter-references optimization. For 35 ** example, assuming there is no index that can be used for the ORDER BY, 36 ** for the query: 37 ** 38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10; 39 ** 40 ** it may be more efficient to add just the "a" values to the sorter, and 41 ** retrieve the associated "bigblob" values directly from table t1 as the 42 ** 10 smallest "a" values are extracted from the sorter. 43 ** 44 ** When the sorter-reference optimization is used, there is one entry in the 45 ** aDefer[] array for each database table that may be read as values are 46 ** extracted from the sorter. 47 */ 48 typedef struct SortCtx SortCtx; 49 struct SortCtx { 50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 52 int iECursor; /* Cursor number for the sorter */ 53 int regReturn; /* Register holding block-output return address */ 54 int labelBkOut; /* Start label for the block-output subroutine */ 55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 56 int labelDone; /* Jump here when done, ex: LIMIT reached */ 57 int labelOBLopt; /* Jump here when sorter is full */ 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 60 u8 nDefer; /* Number of valid entries in aDefer[] */ 61 struct DeferredCsr { 62 Table *pTab; /* Table definition */ 63 int iCsr; /* Cursor number for table */ 64 int nKey; /* Number of PK columns for table pTab (>=1) */ 65 } aDefer[4]; 66 #endif 67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */ 68 }; 69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 70 71 /* 72 ** Delete all the content of a Select structure. Deallocate the structure 73 ** itself depending on the value of bFree 74 ** 75 ** If bFree==1, call sqlite3DbFree() on the p object. 76 ** If bFree==0, Leave the first Select object unfreed 77 */ 78 static void clearSelect(sqlite3 *db, Select *p, int bFree){ 79 assert( db!=0 ); 80 while( p ){ 81 Select *pPrior = p->pPrior; 82 sqlite3ExprListDelete(db, p->pEList); 83 sqlite3SrcListDelete(db, p->pSrc); 84 sqlite3ExprDelete(db, p->pWhere); 85 sqlite3ExprListDelete(db, p->pGroupBy); 86 sqlite3ExprDelete(db, p->pHaving); 87 sqlite3ExprListDelete(db, p->pOrderBy); 88 sqlite3ExprDelete(db, p->pLimit); 89 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith); 90 #ifndef SQLITE_OMIT_WINDOWFUNC 91 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){ 92 sqlite3WindowListDelete(db, p->pWinDefn); 93 } 94 while( p->pWin ){ 95 assert( p->pWin->ppThis==&p->pWin ); 96 sqlite3WindowUnlinkFromSelect(p->pWin); 97 } 98 #endif 99 if( bFree ) sqlite3DbNNFreeNN(db, p); 100 p = pPrior; 101 bFree = 1; 102 } 103 } 104 105 /* 106 ** Initialize a SelectDest structure. 107 */ 108 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 109 pDest->eDest = (u8)eDest; 110 pDest->iSDParm = iParm; 111 pDest->iSDParm2 = 0; 112 pDest->zAffSdst = 0; 113 pDest->iSdst = 0; 114 pDest->nSdst = 0; 115 } 116 117 118 /* 119 ** Allocate a new Select structure and return a pointer to that 120 ** structure. 121 */ 122 Select *sqlite3SelectNew( 123 Parse *pParse, /* Parsing context */ 124 ExprList *pEList, /* which columns to include in the result */ 125 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 126 Expr *pWhere, /* the WHERE clause */ 127 ExprList *pGroupBy, /* the GROUP BY clause */ 128 Expr *pHaving, /* the HAVING clause */ 129 ExprList *pOrderBy, /* the ORDER BY clause */ 130 u32 selFlags, /* Flag parameters, such as SF_Distinct */ 131 Expr *pLimit /* LIMIT value. NULL means not used */ 132 ){ 133 Select *pNew, *pAllocated; 134 Select standin; 135 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) ); 136 if( pNew==0 ){ 137 assert( pParse->db->mallocFailed ); 138 pNew = &standin; 139 } 140 if( pEList==0 ){ 141 pEList = sqlite3ExprListAppend(pParse, 0, 142 sqlite3Expr(pParse->db,TK_ASTERISK,0)); 143 } 144 pNew->pEList = pEList; 145 pNew->op = TK_SELECT; 146 pNew->selFlags = selFlags; 147 pNew->iLimit = 0; 148 pNew->iOffset = 0; 149 pNew->selId = ++pParse->nSelect; 150 pNew->addrOpenEphm[0] = -1; 151 pNew->addrOpenEphm[1] = -1; 152 pNew->nSelectRow = 0; 153 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc)); 154 pNew->pSrc = pSrc; 155 pNew->pWhere = pWhere; 156 pNew->pGroupBy = pGroupBy; 157 pNew->pHaving = pHaving; 158 pNew->pOrderBy = pOrderBy; 159 pNew->pPrior = 0; 160 pNew->pNext = 0; 161 pNew->pLimit = pLimit; 162 pNew->pWith = 0; 163 #ifndef SQLITE_OMIT_WINDOWFUNC 164 pNew->pWin = 0; 165 pNew->pWinDefn = 0; 166 #endif 167 if( pParse->db->mallocFailed ) { 168 clearSelect(pParse->db, pNew, pNew!=&standin); 169 pAllocated = 0; 170 }else{ 171 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 172 } 173 return pAllocated; 174 } 175 176 177 /* 178 ** Delete the given Select structure and all of its substructures. 179 */ 180 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 181 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1); 182 } 183 184 /* 185 ** Return a pointer to the right-most SELECT statement in a compound. 186 */ 187 static Select *findRightmost(Select *p){ 188 while( p->pNext ) p = p->pNext; 189 return p; 190 } 191 192 /* 193 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 194 ** type of join. Return an integer constant that expresses that type 195 ** in terms of the following bit values: 196 ** 197 ** JT_INNER 198 ** JT_CROSS 199 ** JT_OUTER 200 ** JT_NATURAL 201 ** JT_LEFT 202 ** JT_RIGHT 203 ** 204 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 205 ** 206 ** If an illegal or unsupported join type is seen, then still return 207 ** a join type, but put an error in the pParse structure. 208 ** 209 ** These are the valid join types: 210 ** 211 ** 212 ** pA pB pC Return Value 213 ** ------- ----- ----- ------------ 214 ** CROSS - - JT_CROSS 215 ** INNER - - JT_INNER 216 ** LEFT - - JT_LEFT|JT_OUTER 217 ** LEFT OUTER - JT_LEFT|JT_OUTER 218 ** RIGHT - - JT_RIGHT|JT_OUTER 219 ** RIGHT OUTER - JT_RIGHT|JT_OUTER 220 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER 221 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER 222 ** NATURAL INNER - JT_NATURAL|JT_INNER 223 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER 224 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER 225 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER 226 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER 227 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT 228 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT 229 ** 230 ** To preserve historical compatibly, SQLite also accepts a variety 231 ** of other non-standard and in many cases non-sensical join types. 232 ** This routine makes as much sense at it can from the nonsense join 233 ** type and returns a result. Examples of accepted nonsense join types 234 ** include but are not limited to: 235 ** 236 ** INNER CROSS JOIN -> same as JOIN 237 ** NATURAL CROSS JOIN -> same as NATURAL JOIN 238 ** OUTER LEFT JOIN -> same as LEFT JOIN 239 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN 240 ** LEFT RIGHT JOIN -> same as FULL JOIN 241 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN 242 ** CROSS CROSS CROSS JOIN -> same as JOIN 243 ** 244 ** The only restrictions on the join type name are: 245 ** 246 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT", 247 ** or "FULL". 248 ** 249 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT, 250 ** or "FULL". 251 ** 252 ** * If "OUTER" is present then there must also be one of 253 ** "LEFT", "RIGHT", or "FULL" 254 */ 255 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 256 int jointype = 0; 257 Token *apAll[3]; 258 Token *p; 259 /* 0123456789 123456789 123456789 123 */ 260 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 261 static const struct { 262 u8 i; /* Beginning of keyword text in zKeyText[] */ 263 u8 nChar; /* Length of the keyword in characters */ 264 u8 code; /* Join type mask */ 265 } aKeyword[] = { 266 /* (0) natural */ { 0, 7, JT_NATURAL }, 267 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER }, 268 /* (2) outer */ { 10, 5, JT_OUTER }, 269 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER }, 270 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 271 /* (5) inner */ { 23, 5, JT_INNER }, 272 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS }, 273 }; 274 int i, j; 275 apAll[0] = pA; 276 apAll[1] = pB; 277 apAll[2] = pC; 278 for(i=0; i<3 && apAll[i]; i++){ 279 p = apAll[i]; 280 for(j=0; j<ArraySize(aKeyword); j++){ 281 if( p->n==aKeyword[j].nChar 282 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 283 jointype |= aKeyword[j].code; 284 break; 285 } 286 } 287 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 288 if( j>=ArraySize(aKeyword) ){ 289 jointype |= JT_ERROR; 290 break; 291 } 292 } 293 if( 294 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 295 (jointype & JT_ERROR)!=0 || 296 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER 297 ){ 298 const char *zSp1 = " "; 299 const char *zSp2 = " "; 300 if( pB==0 ){ zSp1++; } 301 if( pC==0 ){ zSp2++; } 302 sqlite3ErrorMsg(pParse, "unknown join type: " 303 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC); 304 jointype = JT_INNER; 305 } 306 return jointype; 307 } 308 309 /* 310 ** Return the index of a column in a table. Return -1 if the column 311 ** is not contained in the table. 312 */ 313 int sqlite3ColumnIndex(Table *pTab, const char *zCol){ 314 int i; 315 u8 h = sqlite3StrIHash(zCol); 316 Column *pCol; 317 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){ 318 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i; 319 } 320 return -1; 321 } 322 323 /* 324 ** Mark a subquery result column as having been used. 325 */ 326 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){ 327 assert( pItem!=0 ); 328 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) ); 329 if( pItem->fg.isNestedFrom ){ 330 ExprList *pResults; 331 assert( pItem->pSelect!=0 ); 332 pResults = pItem->pSelect->pEList; 333 assert( pResults!=0 ); 334 assert( iCol>=0 && iCol<pResults->nExpr ); 335 pResults->a[iCol].fg.bUsed = 1; 336 } 337 } 338 339 /* 340 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a 341 ** table that has a column named zCol. The search is left-to-right. 342 ** The first match found is returned. 343 ** 344 ** When found, set *piTab and *piCol to the table index and column index 345 ** of the matching column and return TRUE. 346 ** 347 ** If not found, return FALSE. 348 */ 349 static int tableAndColumnIndex( 350 SrcList *pSrc, /* Array of tables to search */ 351 int iStart, /* First member of pSrc->a[] to check */ 352 int iEnd, /* Last member of pSrc->a[] to check */ 353 const char *zCol, /* Name of the column we are looking for */ 354 int *piTab, /* Write index of pSrc->a[] here */ 355 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 356 int bIgnoreHidden /* Ignore hidden columns */ 357 ){ 358 int i; /* For looping over tables in pSrc */ 359 int iCol; /* Index of column matching zCol */ 360 361 assert( iEnd<pSrc->nSrc ); 362 assert( iStart>=0 ); 363 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 364 365 for(i=iStart; i<=iEnd; i++){ 366 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol); 367 if( iCol>=0 368 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0) 369 ){ 370 if( piTab ){ 371 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol); 372 *piTab = i; 373 *piCol = iCol; 374 } 375 return 1; 376 } 377 } 378 return 0; 379 } 380 381 /* 382 ** Set the EP_OuterON property on all terms of the given expression. 383 ** And set the Expr.w.iJoin to iTable for every term in the 384 ** expression. 385 ** 386 ** The EP_OuterON property is used on terms of an expression to tell 387 ** the OUTER JOIN processing logic that this term is part of the 388 ** join restriction specified in the ON or USING clause and not a part 389 ** of the more general WHERE clause. These terms are moved over to the 390 ** WHERE clause during join processing but we need to remember that they 391 ** originated in the ON or USING clause. 392 ** 393 ** The Expr.w.iJoin tells the WHERE clause processing that the 394 ** expression depends on table w.iJoin even if that table is not 395 ** explicitly mentioned in the expression. That information is needed 396 ** for cases like this: 397 ** 398 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 399 ** 400 ** The where clause needs to defer the handling of the t1.x=5 401 ** term until after the t2 loop of the join. In that way, a 402 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 403 ** defer the handling of t1.x=5, it will be processed immediately 404 ** after the t1 loop and rows with t1.x!=5 will never appear in 405 ** the output, which is incorrect. 406 */ 407 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){ 408 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON ); 409 while( p ){ 410 ExprSetProperty(p, joinFlag); 411 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 412 ExprSetVVAProperty(p, EP_NoReduce); 413 p->w.iJoin = iTable; 414 if( p->op==TK_FUNCTION ){ 415 assert( ExprUseXList(p) ); 416 if( p->x.pList ){ 417 int i; 418 for(i=0; i<p->x.pList->nExpr; i++){ 419 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag); 420 } 421 } 422 } 423 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag); 424 p = p->pRight; 425 } 426 } 427 428 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN 429 ** is simplified into an ordinary JOIN, and when an ON expression is 430 ** "pushed down" into the WHERE clause of a subquery. 431 ** 432 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into 433 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then 434 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree. 435 ** 436 ** If nullable is true, that means that Expr p might evaluate to NULL even 437 ** if it is a reference to a NOT NULL column. This can happen, for example, 438 ** if the table that p references is on the left side of a RIGHT JOIN. 439 ** If nullable is true, then take care to not remove the EP_CanBeNull bit. 440 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c 441 */ 442 static void unsetJoinExpr(Expr *p, int iTable, int nullable){ 443 while( p ){ 444 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){ 445 ExprClearProperty(p, EP_OuterON|EP_InnerON); 446 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON); 447 } 448 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){ 449 ExprClearProperty(p, EP_CanBeNull); 450 } 451 if( p->op==TK_FUNCTION ){ 452 assert( ExprUseXList(p) ); 453 if( p->x.pList ){ 454 int i; 455 for(i=0; i<p->x.pList->nExpr; i++){ 456 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable); 457 } 458 } 459 } 460 unsetJoinExpr(p->pLeft, iTable, nullable); 461 p = p->pRight; 462 } 463 } 464 465 /* 466 ** This routine processes the join information for a SELECT statement. 467 ** 468 ** * A NATURAL join is converted into a USING join. After that, we 469 ** do not need to be concerned with NATURAL joins and we only have 470 ** think about USING joins. 471 ** 472 ** * ON and USING clauses result in extra terms being added to the 473 ** WHERE clause to enforce the specified constraints. The extra 474 ** WHERE clause terms will be tagged with EP_OuterON or 475 ** EP_InnerON so that we know that they originated in ON/USING. 476 ** 477 ** The terms of a FROM clause are contained in the Select.pSrc structure. 478 ** The left most table is the first entry in Select.pSrc. The right-most 479 ** table is the last entry. The join operator is held in the entry to 480 ** the right. Thus entry 1 contains the join operator for the join between 481 ** entries 0 and 1. Any ON or USING clauses associated with the join are 482 ** also attached to the right entry. 483 ** 484 ** This routine returns the number of errors encountered. 485 */ 486 static int sqlite3ProcessJoin(Parse *pParse, Select *p){ 487 SrcList *pSrc; /* All tables in the FROM clause */ 488 int i, j; /* Loop counters */ 489 SrcItem *pLeft; /* Left table being joined */ 490 SrcItem *pRight; /* Right table being joined */ 491 492 pSrc = p->pSrc; 493 pLeft = &pSrc->a[0]; 494 pRight = &pLeft[1]; 495 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 496 Table *pRightTab = pRight->pTab; 497 u32 joinType; 498 499 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue; 500 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON; 501 502 /* If this is a NATURAL join, synthesize an approprate USING clause 503 ** to specify which columns should be joined. 504 */ 505 if( pRight->fg.jointype & JT_NATURAL ){ 506 IdList *pUsing = 0; 507 if( pRight->fg.isUsing || pRight->u3.pOn ){ 508 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 509 "an ON or USING clause", 0); 510 return 1; 511 } 512 for(j=0; j<pRightTab->nCol; j++){ 513 char *zName; /* Name of column in the right table */ 514 515 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue; 516 zName = pRightTab->aCol[j].zCnName; 517 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){ 518 pUsing = sqlite3IdListAppend(pParse, pUsing, 0); 519 if( pUsing ){ 520 assert( pUsing->nId>0 ); 521 assert( pUsing->a[pUsing->nId-1].zName==0 ); 522 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName); 523 } 524 } 525 } 526 if( pUsing ){ 527 pRight->fg.isUsing = 1; 528 pRight->fg.isSynthUsing = 1; 529 pRight->u3.pUsing = pUsing; 530 } 531 if( pParse->nErr ) return 1; 532 } 533 534 /* Create extra terms on the WHERE clause for each column named 535 ** in the USING clause. Example: If the two tables to be joined are 536 ** A and B and the USING clause names X, Y, and Z, then add this 537 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 538 ** Report an error if any column mentioned in the USING clause is 539 ** not contained in both tables to be joined. 540 */ 541 if( pRight->fg.isUsing ){ 542 IdList *pList = pRight->u3.pUsing; 543 sqlite3 *db = pParse->db; 544 assert( pList!=0 ); 545 for(j=0; j<pList->nId; j++){ 546 char *zName; /* Name of the term in the USING clause */ 547 int iLeft; /* Table on the left with matching column name */ 548 int iLeftCol; /* Column number of matching column on the left */ 549 int iRightCol; /* Column number of matching column on the right */ 550 Expr *pE1; /* Reference to the column on the LEFT of the join */ 551 Expr *pE2; /* Reference to the column on the RIGHT of the join */ 552 Expr *pEq; /* Equality constraint. pE1 == pE2 */ 553 554 zName = pList->a[j].zName; 555 iRightCol = sqlite3ColumnIndex(pRightTab, zName); 556 if( iRightCol<0 557 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol, 558 pRight->fg.isSynthUsing)==0 559 ){ 560 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 561 "not present in both tables", zName); 562 return 1; 563 } 564 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 565 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 566 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 567 /* This branch runs if the query contains one or more RIGHT or FULL 568 ** JOINs. If only a single table on the left side of this join 569 ** contains the zName column, then this branch is a no-op. 570 ** But if there are two or more tables on the left side 571 ** of the join, construct a coalesce() function that gathers all 572 ** such tables. Raise an error if more than one of those references 573 ** to zName is not also within a prior USING clause. 574 ** 575 ** We really ought to raise an error if there are two or more 576 ** non-USING references to zName on the left of an INNER or LEFT 577 ** JOIN. But older versions of SQLite do not do that, so we avoid 578 ** adding a new error so as to not break legacy applications. 579 */ 580 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */ 581 static const Token tkCoalesce = { "coalesce", 8 }; 582 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol, 583 pRight->fg.isSynthUsing)!=0 ){ 584 if( pSrc->a[iLeft].fg.isUsing==0 585 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0 586 ){ 587 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()", 588 zName); 589 break; 590 } 591 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 592 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol); 593 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol); 594 } 595 if( pFuncArgs ){ 596 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1); 597 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0); 598 } 599 } 600 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol); 601 sqlite3SrcItemColumnUsed(pRight, iRightCol); 602 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2); 603 assert( pE2!=0 || pEq==0 ); 604 if( pEq ){ 605 ExprSetProperty(pEq, joinType); 606 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 607 ExprSetVVAProperty(pEq, EP_NoReduce); 608 pEq->w.iJoin = pE2->iTable; 609 } 610 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq); 611 } 612 } 613 614 /* Add the ON clause to the end of the WHERE clause, connected by 615 ** an AND operator. 616 */ 617 else if( pRight->u3.pOn ){ 618 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType); 619 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn); 620 pRight->u3.pOn = 0; 621 pRight->fg.isOn = 1; 622 } 623 } 624 return 0; 625 } 626 627 /* 628 ** An instance of this object holds information (beyond pParse and pSelect) 629 ** needed to load the next result row that is to be added to the sorter. 630 */ 631 typedef struct RowLoadInfo RowLoadInfo; 632 struct RowLoadInfo { 633 int regResult; /* Store results in array of registers here */ 634 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */ 635 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 636 ExprList *pExtra; /* Extra columns needed by sorter refs */ 637 int regExtraResult; /* Where to load the extra columns */ 638 #endif 639 }; 640 641 /* 642 ** This routine does the work of loading query data into an array of 643 ** registers so that it can be added to the sorter. 644 */ 645 static void innerLoopLoadRow( 646 Parse *pParse, /* Statement under construction */ 647 Select *pSelect, /* The query being coded */ 648 RowLoadInfo *pInfo /* Info needed to complete the row load */ 649 ){ 650 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult, 651 0, pInfo->ecelFlags); 652 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 653 if( pInfo->pExtra ){ 654 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0); 655 sqlite3ExprListDelete(pParse->db, pInfo->pExtra); 656 } 657 #endif 658 } 659 660 /* 661 ** Code the OP_MakeRecord instruction that generates the entry to be 662 ** added into the sorter. 663 ** 664 ** Return the register in which the result is stored. 665 */ 666 static int makeSorterRecord( 667 Parse *pParse, 668 SortCtx *pSort, 669 Select *pSelect, 670 int regBase, 671 int nBase 672 ){ 673 int nOBSat = pSort->nOBSat; 674 Vdbe *v = pParse->pVdbe; 675 int regOut = ++pParse->nMem; 676 if( pSort->pDeferredRowLoad ){ 677 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad); 678 } 679 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut); 680 return regOut; 681 } 682 683 /* 684 ** Generate code that will push the record in registers regData 685 ** through regData+nData-1 onto the sorter. 686 */ 687 static void pushOntoSorter( 688 Parse *pParse, /* Parser context */ 689 SortCtx *pSort, /* Information about the ORDER BY clause */ 690 Select *pSelect, /* The whole SELECT statement */ 691 int regData, /* First register holding data to be sorted */ 692 int regOrigData, /* First register holding data before packing */ 693 int nData, /* Number of elements in the regData data array */ 694 int nPrefixReg /* No. of reg prior to regData available for use */ 695 ){ 696 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ 697 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); 698 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ 699 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ 700 int regBase; /* Regs for sorter record */ 701 int regRecord = 0; /* Assembled sorter record */ 702 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ 703 int op; /* Opcode to add sorter record to sorter */ 704 int iLimit; /* LIMIT counter */ 705 int iSkip = 0; /* End of the sorter insert loop */ 706 707 assert( bSeq==0 || bSeq==1 ); 708 709 /* Three cases: 710 ** (1) The data to be sorted has already been packed into a Record 711 ** by a prior OP_MakeRecord. In this case nData==1 and regData 712 ** will be completely unrelated to regOrigData. 713 ** (2) All output columns are included in the sort record. In that 714 ** case regData==regOrigData. 715 ** (3) Some output columns are omitted from the sort record due to 716 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the 717 ** SQLITE_ECEL_OMITREF optimization, or due to the 718 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases 719 ** regOrigData is 0 to prevent this routine from trying to copy 720 ** values that might not yet exist. 721 */ 722 assert( nData==1 || regData==regOrigData || regOrigData==0 ); 723 724 if( nPrefixReg ){ 725 assert( nPrefixReg==nExpr+bSeq ); 726 regBase = regData - nPrefixReg; 727 }else{ 728 regBase = pParse->nMem + 1; 729 pParse->nMem += nBase; 730 } 731 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); 732 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; 733 pSort->labelDone = sqlite3VdbeMakeLabel(pParse); 734 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, 735 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0)); 736 if( bSeq ){ 737 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 738 } 739 if( nPrefixReg==0 && nData>0 ){ 740 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); 741 } 742 if( nOBSat>0 ){ 743 int regPrevKey; /* The first nOBSat columns of the previous row */ 744 int addrFirst; /* Address of the OP_IfNot opcode */ 745 int addrJmp; /* Address of the OP_Jump opcode */ 746 VdbeOp *pOp; /* Opcode that opens the sorter */ 747 int nKey; /* Number of sorting key columns, including OP_Sequence */ 748 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 749 750 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 751 regPrevKey = pParse->nMem+1; 752 pParse->nMem += pSort->nOBSat; 753 nKey = nExpr - pSort->nOBSat + bSeq; 754 if( bSeq ){ 755 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); 756 }else{ 757 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); 758 } 759 VdbeCoverage(v); 760 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 761 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 762 if( pParse->db->mallocFailed ) return; 763 pOp->p2 = nKey + nData; 764 pKI = pOp->p4.pKeyInfo; 765 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */ 766 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 767 testcase( pKI->nAllField > pKI->nKeyField+2 ); 768 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat, 769 pKI->nAllField-pKI->nKeyField-1); 770 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */ 771 addrJmp = sqlite3VdbeCurrentAddr(v); 772 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 773 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse); 774 pSort->regReturn = ++pParse->nMem; 775 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 776 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 777 if( iLimit ){ 778 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); 779 VdbeCoverage(v); 780 } 781 sqlite3VdbeJumpHere(v, addrFirst); 782 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); 783 sqlite3VdbeJumpHere(v, addrJmp); 784 } 785 if( iLimit ){ 786 /* At this point the values for the new sorter entry are stored 787 ** in an array of registers. They need to be composed into a record 788 ** and inserted into the sorter if either (a) there are currently 789 ** less than LIMIT+OFFSET items or (b) the new record is smaller than 790 ** the largest record currently in the sorter. If (b) is true and there 791 ** are already LIMIT+OFFSET items in the sorter, delete the largest 792 ** entry before inserting the new one. This way there are never more 793 ** than LIMIT+OFFSET items in the sorter. 794 ** 795 ** If the new record does not need to be inserted into the sorter, 796 ** jump to the next iteration of the loop. If the pSort->labelOBLopt 797 ** value is not zero, then it is a label of where to jump. Otherwise, 798 ** just bypass the row insert logic. See the header comment on the 799 ** sqlite3WhereOrderByLimitOptLabel() function for additional info. 800 */ 801 int iCsr = pSort->iECursor; 802 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4); 803 VdbeCoverage(v); 804 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0); 805 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE, 806 iCsr, 0, regBase+nOBSat, nExpr-nOBSat); 807 VdbeCoverage(v); 808 sqlite3VdbeAddOp1(v, OP_Delete, iCsr); 809 } 810 if( regRecord==0 ){ 811 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase); 812 } 813 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 814 op = OP_SorterInsert; 815 }else{ 816 op = OP_IdxInsert; 817 } 818 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord, 819 regBase+nOBSat, nBase-nOBSat); 820 if( iSkip ){ 821 sqlite3VdbeChangeP2(v, iSkip, 822 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v)); 823 } 824 } 825 826 /* 827 ** Add code to implement the OFFSET 828 */ 829 static void codeOffset( 830 Vdbe *v, /* Generate code into this VM */ 831 int iOffset, /* Register holding the offset counter */ 832 int iContinue /* Jump here to skip the current record */ 833 ){ 834 if( iOffset>0 ){ 835 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); 836 VdbeComment((v, "OFFSET")); 837 } 838 } 839 840 /* 841 ** Add code that will check to make sure the array of registers starting at 842 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and 843 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies 844 ** are available. Which is used depends on the value of parameter eTnctType, 845 ** as follows: 846 ** 847 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP: 848 ** Build an ephemeral table that contains all entries seen before and 849 ** skip entries which have been seen before. 850 ** 851 ** Parameter iTab is the cursor number of an ephemeral table that must 852 ** be opened before the VM code generated by this routine is executed. 853 ** The ephemeral cursor table is queried for a record identical to the 854 ** record formed by the current array of registers. If one is found, 855 ** jump to VM address addrRepeat. Otherwise, insert a new record into 856 ** the ephemeral cursor and proceed. 857 ** 858 ** The returned value in this case is a copy of parameter iTab. 859 ** 860 ** WHERE_DISTINCT_ORDERED: 861 ** In this case rows are being delivered sorted order. The ephermal 862 ** table is not required. Instead, the current set of values 863 ** is compared against previous row. If they match, the new row 864 ** is not distinct and control jumps to VM address addrRepeat. Otherwise, 865 ** the VM program proceeds with processing the new row. 866 ** 867 ** The returned value in this case is the register number of the first 868 ** in an array of registers used to store the previous result row so that 869 ** it can be compared to the next. The caller must ensure that this 870 ** register is initialized to NULL. (The fixDistinctOpenEph() routine 871 ** will take care of this initialization.) 872 ** 873 ** WHERE_DISTINCT_UNIQUE: 874 ** In this case it has already been determined that the rows are distinct. 875 ** No special action is required. The return value is zero. 876 ** 877 ** Parameter pEList is the list of expressions used to generated the 878 ** contents of each row. It is used by this routine to determine (a) 879 ** how many elements there are in the array of registers and (b) the 880 ** collation sequences that should be used for the comparisons if 881 ** eTnctType is WHERE_DISTINCT_ORDERED. 882 */ 883 static int codeDistinct( 884 Parse *pParse, /* Parsing and code generating context */ 885 int eTnctType, /* WHERE_DISTINCT_* value */ 886 int iTab, /* A sorting index used to test for distinctness */ 887 int addrRepeat, /* Jump to here if not distinct */ 888 ExprList *pEList, /* Expression for each element */ 889 int regElem /* First element */ 890 ){ 891 int iRet = 0; 892 int nResultCol = pEList->nExpr; 893 Vdbe *v = pParse->pVdbe; 894 895 switch( eTnctType ){ 896 case WHERE_DISTINCT_ORDERED: { 897 int i; 898 int iJump; /* Jump destination */ 899 int regPrev; /* Previous row content */ 900 901 /* Allocate space for the previous row */ 902 iRet = regPrev = pParse->nMem+1; 903 pParse->nMem += nResultCol; 904 905 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 906 for(i=0; i<nResultCol; i++){ 907 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 908 if( i<nResultCol-1 ){ 909 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i); 910 VdbeCoverage(v); 911 }else{ 912 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i); 913 VdbeCoverage(v); 914 } 915 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 916 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 917 } 918 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); 919 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1); 920 break; 921 } 922 923 case WHERE_DISTINCT_UNIQUE: { 924 /* nothing to do */ 925 break; 926 } 927 928 default: { 929 int r1 = sqlite3GetTempReg(pParse); 930 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol); 931 VdbeCoverage(v); 932 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1); 933 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol); 934 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 935 sqlite3ReleaseTempReg(pParse, r1); 936 iRet = iTab; 937 break; 938 } 939 } 940 941 return iRet; 942 } 943 944 /* 945 ** This routine runs after codeDistinct(). It makes necessary 946 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct() 947 ** routine made use of. This processing must be done separately since 948 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually 949 ** laid down. 950 ** 951 ** WHERE_DISTINCT_NOOP: 952 ** WHERE_DISTINCT_UNORDERED: 953 ** 954 ** No adjustments necessary. This function is a no-op. 955 ** 956 ** WHERE_DISTINCT_UNIQUE: 957 ** 958 ** The ephemeral table is not needed. So change the 959 ** OP_OpenEphemeral opcode into an OP_Noop. 960 ** 961 ** WHERE_DISTINCT_ORDERED: 962 ** 963 ** The ephemeral table is not needed. But we do need register 964 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral 965 ** into an OP_Null on the iVal register. 966 */ 967 static void fixDistinctOpenEph( 968 Parse *pParse, /* Parsing and code generating context */ 969 int eTnctType, /* WHERE_DISTINCT_* value */ 970 int iVal, /* Value returned by codeDistinct() */ 971 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */ 972 ){ 973 if( pParse->nErr==0 974 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED) 975 ){ 976 Vdbe *v = pParse->pVdbe; 977 sqlite3VdbeChangeToNoop(v, iOpenEphAddr); 978 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){ 979 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1); 980 } 981 if( eTnctType==WHERE_DISTINCT_ORDERED ){ 982 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared 983 ** bit on the first register of the previous value. This will cause the 984 ** OP_Ne added in codeDistinct() to always fail on the first iteration of 985 ** the loop even if the first row is all NULLs. */ 986 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr); 987 pOp->opcode = OP_Null; 988 pOp->p1 = 1; 989 pOp->p2 = iVal; 990 } 991 } 992 } 993 994 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 995 /* 996 ** This function is called as part of inner-loop generation for a SELECT 997 ** statement with an ORDER BY that is not optimized by an index. It 998 ** determines the expressions, if any, that the sorter-reference 999 ** optimization should be used for. The sorter-reference optimization 1000 ** is used for SELECT queries like: 1001 ** 1002 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10 1003 ** 1004 ** If the optimization is used for expression "bigblob", then instead of 1005 ** storing values read from that column in the sorter records, the PK of 1006 ** the row from table t1 is stored instead. Then, as records are extracted from 1007 ** the sorter to return to the user, the required value of bigblob is 1008 ** retrieved directly from table t1. If the values are very large, this 1009 ** can be more efficient than storing them directly in the sorter records. 1010 ** 1011 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList 1012 ** for which the sorter-reference optimization should be enabled. 1013 ** Additionally, the pSort->aDefer[] array is populated with entries 1014 ** for all cursors required to evaluate all selected expressions. Finally. 1015 ** output variable (*ppExtra) is set to an expression list containing 1016 ** expressions for all extra PK values that should be stored in the 1017 ** sorter records. 1018 */ 1019 static void selectExprDefer( 1020 Parse *pParse, /* Leave any error here */ 1021 SortCtx *pSort, /* Sorter context */ 1022 ExprList *pEList, /* Expressions destined for sorter */ 1023 ExprList **ppExtra /* Expressions to append to sorter record */ 1024 ){ 1025 int i; 1026 int nDefer = 0; 1027 ExprList *pExtra = 0; 1028 for(i=0; i<pEList->nExpr; i++){ 1029 struct ExprList_item *pItem = &pEList->a[i]; 1030 if( pItem->u.x.iOrderByCol==0 ){ 1031 Expr *pExpr = pItem->pExpr; 1032 Table *pTab; 1033 if( pExpr->op==TK_COLUMN 1034 && pExpr->iColumn>=0 1035 && ALWAYS( ExprUseYTab(pExpr) ) 1036 && (pTab = pExpr->y.pTab)!=0 1037 && IsOrdinaryTable(pTab) 1038 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0 1039 ){ 1040 int j; 1041 for(j=0; j<nDefer; j++){ 1042 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; 1043 } 1044 if( j==nDefer ){ 1045 if( nDefer==ArraySize(pSort->aDefer) ){ 1046 continue; 1047 }else{ 1048 int nKey = 1; 1049 int k; 1050 Index *pPk = 0; 1051 if( !HasRowid(pTab) ){ 1052 pPk = sqlite3PrimaryKeyIndex(pTab); 1053 nKey = pPk->nKeyCol; 1054 } 1055 for(k=0; k<nKey; k++){ 1056 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); 1057 if( pNew ){ 1058 pNew->iTable = pExpr->iTable; 1059 assert( ExprUseYTab(pNew) ); 1060 pNew->y.pTab = pExpr->y.pTab; 1061 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; 1062 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); 1063 } 1064 } 1065 pSort->aDefer[nDefer].pTab = pExpr->y.pTab; 1066 pSort->aDefer[nDefer].iCsr = pExpr->iTable; 1067 pSort->aDefer[nDefer].nKey = nKey; 1068 nDefer++; 1069 } 1070 } 1071 pItem->fg.bSorterRef = 1; 1072 } 1073 } 1074 } 1075 pSort->nDefer = (u8)nDefer; 1076 *ppExtra = pExtra; 1077 } 1078 #endif 1079 1080 /* 1081 ** This routine generates the code for the inside of the inner loop 1082 ** of a SELECT. 1083 ** 1084 ** If srcTab is negative, then the p->pEList expressions 1085 ** are evaluated in order to get the data for this row. If srcTab is 1086 ** zero or more, then data is pulled from srcTab and p->pEList is used only 1087 ** to get the number of columns and the collation sequence for each column. 1088 */ 1089 static void selectInnerLoop( 1090 Parse *pParse, /* The parser context */ 1091 Select *p, /* The complete select statement being coded */ 1092 int srcTab, /* Pull data from this table if non-negative */ 1093 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 1094 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 1095 SelectDest *pDest, /* How to dispose of the results */ 1096 int iContinue, /* Jump here to continue with next row */ 1097 int iBreak /* Jump here to break out of the inner loop */ 1098 ){ 1099 Vdbe *v = pParse->pVdbe; 1100 int i; 1101 int hasDistinct; /* True if the DISTINCT keyword is present */ 1102 int eDest = pDest->eDest; /* How to dispose of results */ 1103 int iParm = pDest->iSDParm; /* First argument to disposal method */ 1104 int nResultCol; /* Number of result columns */ 1105 int nPrefixReg = 0; /* Number of extra registers before regResult */ 1106 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */ 1107 1108 /* Usually, regResult is the first cell in an array of memory cells 1109 ** containing the current result row. In this case regOrig is set to the 1110 ** same value. However, if the results are being sent to the sorter, the 1111 ** values for any expressions that are also part of the sort-key are omitted 1112 ** from this array. In this case regOrig is set to zero. */ 1113 int regResult; /* Start of memory holding current results */ 1114 int regOrig; /* Start of memory holding full result (or 0) */ 1115 1116 assert( v ); 1117 assert( p->pEList!=0 ); 1118 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 1119 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 1120 if( pSort==0 && !hasDistinct ){ 1121 assert( iContinue!=0 ); 1122 codeOffset(v, p->iOffset, iContinue); 1123 } 1124 1125 /* Pull the requested columns. 1126 */ 1127 nResultCol = p->pEList->nExpr; 1128 1129 if( pDest->iSdst==0 ){ 1130 if( pSort ){ 1131 nPrefixReg = pSort->pOrderBy->nExpr; 1132 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; 1133 pParse->nMem += nPrefixReg; 1134 } 1135 pDest->iSdst = pParse->nMem+1; 1136 pParse->nMem += nResultCol; 1137 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 1138 /* This is an error condition that can result, for example, when a SELECT 1139 ** on the right-hand side of an INSERT contains more result columns than 1140 ** there are columns in the table on the left. The error will be caught 1141 ** and reported later. But we need to make sure enough memory is allocated 1142 ** to avoid other spurious errors in the meantime. */ 1143 pParse->nMem += nResultCol; 1144 } 1145 pDest->nSdst = nResultCol; 1146 regOrig = regResult = pDest->iSdst; 1147 if( srcTab>=0 ){ 1148 for(i=0; i<nResultCol; i++){ 1149 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 1150 VdbeComment((v, "%s", p->pEList->a[i].zEName)); 1151 } 1152 }else if( eDest!=SRT_Exists ){ 1153 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1154 ExprList *pExtra = 0; 1155 #endif 1156 /* If the destination is an EXISTS(...) expression, the actual 1157 ** values returned by the SELECT are not required. 1158 */ 1159 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */ 1160 ExprList *pEList; 1161 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ 1162 ecelFlags = SQLITE_ECEL_DUP; 1163 }else{ 1164 ecelFlags = 0; 1165 } 1166 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){ 1167 /* For each expression in p->pEList that is a copy of an expression in 1168 ** the ORDER BY clause (pSort->pOrderBy), set the associated 1169 ** iOrderByCol value to one more than the index of the ORDER BY 1170 ** expression within the sort-key that pushOntoSorter() will generate. 1171 ** This allows the p->pEList field to be omitted from the sorted record, 1172 ** saving space and CPU cycles. */ 1173 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF); 1174 1175 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){ 1176 int j; 1177 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){ 1178 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat; 1179 } 1180 } 1181 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1182 selectExprDefer(pParse, pSort, p->pEList, &pExtra); 1183 if( pExtra && pParse->db->mallocFailed==0 ){ 1184 /* If there are any extra PK columns to add to the sorter records, 1185 ** allocate extra memory cells and adjust the OpenEphemeral 1186 ** instruction to account for the larger records. This is only 1187 ** required if there are one or more WITHOUT ROWID tables with 1188 ** composite primary keys in the SortCtx.aDefer[] array. */ 1189 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 1190 pOp->p2 += (pExtra->nExpr - pSort->nDefer); 1191 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer); 1192 pParse->nMem += pExtra->nExpr; 1193 } 1194 #endif 1195 1196 /* Adjust nResultCol to account for columns that are omitted 1197 ** from the sorter by the optimizations in this branch */ 1198 pEList = p->pEList; 1199 for(i=0; i<pEList->nExpr; i++){ 1200 if( pEList->a[i].u.x.iOrderByCol>0 1201 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1202 || pEList->a[i].fg.bSorterRef 1203 #endif 1204 ){ 1205 nResultCol--; 1206 regOrig = 0; 1207 } 1208 } 1209 1210 testcase( regOrig ); 1211 testcase( eDest==SRT_Set ); 1212 testcase( eDest==SRT_Mem ); 1213 testcase( eDest==SRT_Coroutine ); 1214 testcase( eDest==SRT_Output ); 1215 assert( eDest==SRT_Set || eDest==SRT_Mem 1216 || eDest==SRT_Coroutine || eDest==SRT_Output 1217 || eDest==SRT_Upfrom ); 1218 } 1219 sRowLoadInfo.regResult = regResult; 1220 sRowLoadInfo.ecelFlags = ecelFlags; 1221 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1222 sRowLoadInfo.pExtra = pExtra; 1223 sRowLoadInfo.regExtraResult = regResult + nResultCol; 1224 if( pExtra ) nResultCol += pExtra->nExpr; 1225 #endif 1226 if( p->iLimit 1227 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0 1228 && nPrefixReg>0 1229 ){ 1230 assert( pSort!=0 ); 1231 assert( hasDistinct==0 ); 1232 pSort->pDeferredRowLoad = &sRowLoadInfo; 1233 regOrig = 0; 1234 }else{ 1235 innerLoopLoadRow(pParse, p, &sRowLoadInfo); 1236 } 1237 } 1238 1239 /* If the DISTINCT keyword was present on the SELECT statement 1240 ** and this row has been seen before, then do not make this row 1241 ** part of the result. 1242 */ 1243 if( hasDistinct ){ 1244 int eType = pDistinct->eTnctType; 1245 int iTab = pDistinct->tabTnct; 1246 assert( nResultCol==p->pEList->nExpr ); 1247 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult); 1248 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct); 1249 if( pSort==0 ){ 1250 codeOffset(v, p->iOffset, iContinue); 1251 } 1252 } 1253 1254 switch( eDest ){ 1255 /* In this mode, write each query result to the key of the temporary 1256 ** table iParm. 1257 */ 1258 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1259 case SRT_Union: { 1260 int r1; 1261 r1 = sqlite3GetTempReg(pParse); 1262 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 1263 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1264 sqlite3ReleaseTempReg(pParse, r1); 1265 break; 1266 } 1267 1268 /* Construct a record from the query result, but instead of 1269 ** saving that record, use it as a key to delete elements from 1270 ** the temporary table iParm. 1271 */ 1272 case SRT_Except: { 1273 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 1274 break; 1275 } 1276 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1277 1278 /* Store the result as data using a unique key. 1279 */ 1280 case SRT_Fifo: 1281 case SRT_DistFifo: 1282 case SRT_Table: 1283 case SRT_EphemTab: { 1284 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); 1285 testcase( eDest==SRT_Table ); 1286 testcase( eDest==SRT_EphemTab ); 1287 testcase( eDest==SRT_Fifo ); 1288 testcase( eDest==SRT_DistFifo ); 1289 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); 1290 #ifndef SQLITE_OMIT_CTE 1291 if( eDest==SRT_DistFifo ){ 1292 /* If the destination is DistFifo, then cursor (iParm+1) is open 1293 ** on an ephemeral index. If the current row is already present 1294 ** in the index, do not write it to the output. If not, add the 1295 ** current row to the index and proceed with writing it to the 1296 ** output table as well. */ 1297 int addr = sqlite3VdbeCurrentAddr(v) + 4; 1298 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); 1299 VdbeCoverage(v); 1300 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol); 1301 assert( pSort==0 ); 1302 } 1303 #endif 1304 if( pSort ){ 1305 assert( regResult==regOrig ); 1306 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg); 1307 }else{ 1308 int r2 = sqlite3GetTempReg(pParse); 1309 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 1310 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 1311 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1312 sqlite3ReleaseTempReg(pParse, r2); 1313 } 1314 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); 1315 break; 1316 } 1317 1318 case SRT_Upfrom: { 1319 if( pSort ){ 1320 pushOntoSorter( 1321 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1322 }else{ 1323 int i2 = pDest->iSDParm2; 1324 int r1 = sqlite3GetTempReg(pParse); 1325 1326 /* If the UPDATE FROM join is an aggregate that matches no rows, it 1327 ** might still be trying to return one row, because that is what 1328 ** aggregates do. Don't record that empty row in the output table. */ 1329 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v); 1330 1331 sqlite3VdbeAddOp3(v, OP_MakeRecord, 1332 regResult+(i2<0), nResultCol-(i2<0), r1); 1333 if( i2<0 ){ 1334 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult); 1335 }else{ 1336 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2); 1337 } 1338 } 1339 break; 1340 } 1341 1342 #ifndef SQLITE_OMIT_SUBQUERY 1343 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 1344 ** then there should be a single item on the stack. Write this 1345 ** item into the set table with bogus data. 1346 */ 1347 case SRT_Set: { 1348 if( pSort ){ 1349 /* At first glance you would think we could optimize out the 1350 ** ORDER BY in this case since the order of entries in the set 1351 ** does not matter. But there might be a LIMIT clause, in which 1352 ** case the order does matter */ 1353 pushOntoSorter( 1354 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1355 }else{ 1356 int r1 = sqlite3GetTempReg(pParse); 1357 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol ); 1358 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol, 1359 r1, pDest->zAffSdst, nResultCol); 1360 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol); 1361 sqlite3ReleaseTempReg(pParse, r1); 1362 } 1363 break; 1364 } 1365 1366 1367 /* If any row exist in the result set, record that fact and abort. 1368 */ 1369 case SRT_Exists: { 1370 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 1371 /* The LIMIT clause will terminate the loop for us */ 1372 break; 1373 } 1374 1375 /* If this is a scalar select that is part of an expression, then 1376 ** store the results in the appropriate memory cell or array of 1377 ** memory cells and break out of the scan loop. 1378 */ 1379 case SRT_Mem: { 1380 if( pSort ){ 1381 assert( nResultCol<=pDest->nSdst ); 1382 pushOntoSorter( 1383 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg); 1384 }else{ 1385 assert( nResultCol==pDest->nSdst ); 1386 assert( regResult==iParm ); 1387 /* The LIMIT clause will jump out of the loop for us */ 1388 } 1389 break; 1390 } 1391 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 1392 1393 case SRT_Coroutine: /* Send data to a co-routine */ 1394 case SRT_Output: { /* Return the results */ 1395 testcase( eDest==SRT_Coroutine ); 1396 testcase( eDest==SRT_Output ); 1397 if( pSort ){ 1398 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol, 1399 nPrefixReg); 1400 }else if( eDest==SRT_Coroutine ){ 1401 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1402 }else{ 1403 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 1404 } 1405 break; 1406 } 1407 1408 #ifndef SQLITE_OMIT_CTE 1409 /* Write the results into a priority queue that is order according to 1410 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 1411 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 1412 ** pSO->nExpr columns, then make sure all keys are unique by adding a 1413 ** final OP_Sequence column. The last column is the record as a blob. 1414 */ 1415 case SRT_DistQueue: 1416 case SRT_Queue: { 1417 int nKey; 1418 int r1, r2, r3; 1419 int addrTest = 0; 1420 ExprList *pSO; 1421 pSO = pDest->pOrderBy; 1422 assert( pSO ); 1423 nKey = pSO->nExpr; 1424 r1 = sqlite3GetTempReg(pParse); 1425 r2 = sqlite3GetTempRange(pParse, nKey+2); 1426 r3 = r2+nKey+1; 1427 if( eDest==SRT_DistQueue ){ 1428 /* If the destination is DistQueue, then cursor (iParm+1) is open 1429 ** on a second ephemeral index that holds all values every previously 1430 ** added to the queue. */ 1431 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 1432 regResult, nResultCol); 1433 VdbeCoverage(v); 1434 } 1435 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 1436 if( eDest==SRT_DistQueue ){ 1437 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 1438 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1439 } 1440 for(i=0; i<nKey; i++){ 1441 sqlite3VdbeAddOp2(v, OP_SCopy, 1442 regResult + pSO->a[i].u.x.iOrderByCol - 1, 1443 r2+i); 1444 } 1445 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 1446 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 1447 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2); 1448 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 1449 sqlite3ReleaseTempReg(pParse, r1); 1450 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 1451 break; 1452 } 1453 #endif /* SQLITE_OMIT_CTE */ 1454 1455 1456 1457 #if !defined(SQLITE_OMIT_TRIGGER) 1458 /* Discard the results. This is used for SELECT statements inside 1459 ** the body of a TRIGGER. The purpose of such selects is to call 1460 ** user-defined functions that have side effects. We do not care 1461 ** about the actual results of the select. 1462 */ 1463 default: { 1464 assert( eDest==SRT_Discard ); 1465 break; 1466 } 1467 #endif 1468 } 1469 1470 /* Jump to the end of the loop if the LIMIT is reached. Except, if 1471 ** there is a sorter, in which case the sorter has already limited 1472 ** the output for us. 1473 */ 1474 if( pSort==0 && p->iLimit ){ 1475 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 1476 } 1477 } 1478 1479 /* 1480 ** Allocate a KeyInfo object sufficient for an index of N key columns and 1481 ** X extra columns. 1482 */ 1483 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 1484 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*); 1485 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra); 1486 if( p ){ 1487 p->aSortFlags = (u8*)&p->aColl[N+X]; 1488 p->nKeyField = (u16)N; 1489 p->nAllField = (u16)(N+X); 1490 p->enc = ENC(db); 1491 p->db = db; 1492 p->nRef = 1; 1493 memset(&p[1], 0, nExtra); 1494 }else{ 1495 return (KeyInfo*)sqlite3OomFault(db); 1496 } 1497 return p; 1498 } 1499 1500 /* 1501 ** Deallocate a KeyInfo object 1502 */ 1503 void sqlite3KeyInfoUnref(KeyInfo *p){ 1504 if( p ){ 1505 assert( p->db!=0 ); 1506 assert( p->nRef>0 ); 1507 p->nRef--; 1508 if( p->nRef==0 ) sqlite3DbNNFreeNN(p->db, p); 1509 } 1510 } 1511 1512 /* 1513 ** Make a new pointer to a KeyInfo object 1514 */ 1515 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 1516 if( p ){ 1517 assert( p->nRef>0 ); 1518 p->nRef++; 1519 } 1520 return p; 1521 } 1522 1523 #ifdef SQLITE_DEBUG 1524 /* 1525 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 1526 ** can only be changed if this is just a single reference to the object. 1527 ** 1528 ** This routine is used only inside of assert() statements. 1529 */ 1530 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 1531 #endif /* SQLITE_DEBUG */ 1532 1533 /* 1534 ** Given an expression list, generate a KeyInfo structure that records 1535 ** the collating sequence for each expression in that expression list. 1536 ** 1537 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 1538 ** KeyInfo structure is appropriate for initializing a virtual index to 1539 ** implement that clause. If the ExprList is the result set of a SELECT 1540 ** then the KeyInfo structure is appropriate for initializing a virtual 1541 ** index to implement a DISTINCT test. 1542 ** 1543 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1544 ** function is responsible for seeing that this structure is eventually 1545 ** freed. 1546 */ 1547 KeyInfo *sqlite3KeyInfoFromExprList( 1548 Parse *pParse, /* Parsing context */ 1549 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 1550 int iStart, /* Begin with this column of pList */ 1551 int nExtra /* Add this many extra columns to the end */ 1552 ){ 1553 int nExpr; 1554 KeyInfo *pInfo; 1555 struct ExprList_item *pItem; 1556 sqlite3 *db = pParse->db; 1557 int i; 1558 1559 nExpr = pList->nExpr; 1560 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); 1561 if( pInfo ){ 1562 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1563 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1564 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr); 1565 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags; 1566 } 1567 } 1568 return pInfo; 1569 } 1570 1571 /* 1572 ** Name of the connection operator, used for error messages. 1573 */ 1574 const char *sqlite3SelectOpName(int id){ 1575 char *z; 1576 switch( id ){ 1577 case TK_ALL: z = "UNION ALL"; break; 1578 case TK_INTERSECT: z = "INTERSECT"; break; 1579 case TK_EXCEPT: z = "EXCEPT"; break; 1580 default: z = "UNION"; break; 1581 } 1582 return z; 1583 } 1584 1585 #ifndef SQLITE_OMIT_EXPLAIN 1586 /* 1587 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1588 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1589 ** where the caption is of the form: 1590 ** 1591 ** "USE TEMP B-TREE FOR xxx" 1592 ** 1593 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1594 ** is determined by the zUsage argument. 1595 */ 1596 static void explainTempTable(Parse *pParse, const char *zUsage){ 1597 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage)); 1598 } 1599 1600 /* 1601 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1602 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1603 ** in sqlite3Select() to assign values to structure member variables that 1604 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1605 ** code with #ifndef directives. 1606 */ 1607 # define explainSetInteger(a, b) a = b 1608 1609 #else 1610 /* No-op versions of the explainXXX() functions and macros. */ 1611 # define explainTempTable(y,z) 1612 # define explainSetInteger(y,z) 1613 #endif 1614 1615 1616 /* 1617 ** If the inner loop was generated using a non-null pOrderBy argument, 1618 ** then the results were placed in a sorter. After the loop is terminated 1619 ** we need to run the sorter and output the results. The following 1620 ** routine generates the code needed to do that. 1621 */ 1622 static void generateSortTail( 1623 Parse *pParse, /* Parsing context */ 1624 Select *p, /* The SELECT statement */ 1625 SortCtx *pSort, /* Information on the ORDER BY clause */ 1626 int nColumn, /* Number of columns of data */ 1627 SelectDest *pDest /* Write the sorted results here */ 1628 ){ 1629 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1630 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ 1631 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */ 1632 int addr; /* Top of output loop. Jump for Next. */ 1633 int addrOnce = 0; 1634 int iTab; 1635 ExprList *pOrderBy = pSort->pOrderBy; 1636 int eDest = pDest->eDest; 1637 int iParm = pDest->iSDParm; 1638 int regRow; 1639 int regRowid; 1640 int iCol; 1641 int nKey; /* Number of key columns in sorter record */ 1642 int iSortTab; /* Sorter cursor to read from */ 1643 int i; 1644 int bSeq; /* True if sorter record includes seq. no. */ 1645 int nRefKey = 0; 1646 struct ExprList_item *aOutEx = p->pEList->a; 1647 1648 assert( addrBreak<0 ); 1649 if( pSort->labelBkOut ){ 1650 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1651 sqlite3VdbeGoto(v, addrBreak); 1652 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1653 } 1654 1655 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1656 /* Open any cursors needed for sorter-reference expressions */ 1657 for(i=0; i<pSort->nDefer; i++){ 1658 Table *pTab = pSort->aDefer[i].pTab; 1659 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1660 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead); 1661 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey); 1662 } 1663 #endif 1664 1665 iTab = pSort->iECursor; 1666 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){ 1667 if( eDest==SRT_Mem && p->iOffset ){ 1668 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst); 1669 } 1670 regRowid = 0; 1671 regRow = pDest->iSdst; 1672 }else{ 1673 regRowid = sqlite3GetTempReg(pParse); 1674 if( eDest==SRT_EphemTab || eDest==SRT_Table ){ 1675 regRow = sqlite3GetTempReg(pParse); 1676 nColumn = 0; 1677 }else{ 1678 regRow = sqlite3GetTempRange(pParse, nColumn); 1679 } 1680 } 1681 nKey = pOrderBy->nExpr - pSort->nOBSat; 1682 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1683 int regSortOut = ++pParse->nMem; 1684 iSortTab = pParse->nTab++; 1685 if( pSort->labelBkOut ){ 1686 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1687 } 1688 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, 1689 nKey+1+nColumn+nRefKey); 1690 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1691 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1692 VdbeCoverage(v); 1693 assert( p->iLimit==0 && p->iOffset==0 ); 1694 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); 1695 bSeq = 0; 1696 }else{ 1697 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1698 codeOffset(v, p->iOffset, addrContinue); 1699 iSortTab = iTab; 1700 bSeq = 1; 1701 if( p->iOffset>0 ){ 1702 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); 1703 } 1704 } 1705 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){ 1706 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1707 if( aOutEx[i].fg.bSorterRef ) continue; 1708 #endif 1709 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++; 1710 } 1711 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1712 if( pSort->nDefer ){ 1713 int iKey = iCol+1; 1714 int regKey = sqlite3GetTempRange(pParse, nRefKey); 1715 1716 for(i=0; i<pSort->nDefer; i++){ 1717 int iCsr = pSort->aDefer[i].iCsr; 1718 Table *pTab = pSort->aDefer[i].pTab; 1719 int nKey = pSort->aDefer[i].nKey; 1720 1721 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1722 if( HasRowid(pTab) ){ 1723 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey); 1724 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr, 1725 sqlite3VdbeCurrentAddr(v)+1, regKey); 1726 }else{ 1727 int k; 1728 int iJmp; 1729 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey ); 1730 for(k=0; k<nKey; k++){ 1731 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k); 1732 } 1733 iJmp = sqlite3VdbeCurrentAddr(v); 1734 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey); 1735 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey); 1736 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr); 1737 } 1738 } 1739 sqlite3ReleaseTempRange(pParse, regKey, nRefKey); 1740 } 1741 #endif 1742 for(i=nColumn-1; i>=0; i--){ 1743 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 1744 if( aOutEx[i].fg.bSorterRef ){ 1745 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i); 1746 }else 1747 #endif 1748 { 1749 int iRead; 1750 if( aOutEx[i].u.x.iOrderByCol ){ 1751 iRead = aOutEx[i].u.x.iOrderByCol-1; 1752 }else{ 1753 iRead = iCol--; 1754 } 1755 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i); 1756 VdbeComment((v, "%s", aOutEx[i].zEName)); 1757 } 1758 } 1759 switch( eDest ){ 1760 case SRT_Table: 1761 case SRT_EphemTab: { 1762 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow); 1763 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1764 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1765 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1766 break; 1767 } 1768 #ifndef SQLITE_OMIT_SUBQUERY 1769 case SRT_Set: { 1770 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) ); 1771 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid, 1772 pDest->zAffSdst, nColumn); 1773 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn); 1774 break; 1775 } 1776 case SRT_Mem: { 1777 /* The LIMIT clause will terminate the loop for us */ 1778 break; 1779 } 1780 #endif 1781 case SRT_Upfrom: { 1782 int i2 = pDest->iSDParm2; 1783 int r1 = sqlite3GetTempReg(pParse); 1784 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1); 1785 if( i2<0 ){ 1786 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow); 1787 }else{ 1788 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2); 1789 } 1790 break; 1791 } 1792 default: { 1793 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1794 testcase( eDest==SRT_Output ); 1795 testcase( eDest==SRT_Coroutine ); 1796 if( eDest==SRT_Output ){ 1797 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1798 }else{ 1799 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1800 } 1801 break; 1802 } 1803 } 1804 if( regRowid ){ 1805 if( eDest==SRT_Set ){ 1806 sqlite3ReleaseTempRange(pParse, regRow, nColumn); 1807 }else{ 1808 sqlite3ReleaseTempReg(pParse, regRow); 1809 } 1810 sqlite3ReleaseTempReg(pParse, regRowid); 1811 } 1812 /* The bottom of the loop 1813 */ 1814 sqlite3VdbeResolveLabel(v, addrContinue); 1815 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1816 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1817 }else{ 1818 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1819 } 1820 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1821 sqlite3VdbeResolveLabel(v, addrBreak); 1822 } 1823 1824 /* 1825 ** Return a pointer to a string containing the 'declaration type' of the 1826 ** expression pExpr. The string may be treated as static by the caller. 1827 ** 1828 ** The declaration type is the exact datatype definition extracted from the 1829 ** original CREATE TABLE statement if the expression is a column. The 1830 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1831 ** is considered a column can be complex in the presence of subqueries. The 1832 ** result-set expression in all of the following SELECT statements is 1833 ** considered a column by this function. 1834 ** 1835 ** SELECT col FROM tbl; 1836 ** SELECT (SELECT col FROM tbl; 1837 ** SELECT (SELECT col FROM tbl); 1838 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1839 ** 1840 ** The declaration type for any expression other than a column is NULL. 1841 ** 1842 ** This routine has either 3 or 6 parameters depending on whether or not 1843 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1844 */ 1845 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1846 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E) 1847 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1848 # define columnType(A,B,C,D,E) columnTypeImpl(A,B) 1849 #endif 1850 static const char *columnTypeImpl( 1851 NameContext *pNC, 1852 #ifndef SQLITE_ENABLE_COLUMN_METADATA 1853 Expr *pExpr 1854 #else 1855 Expr *pExpr, 1856 const char **pzOrigDb, 1857 const char **pzOrigTab, 1858 const char **pzOrigCol 1859 #endif 1860 ){ 1861 char const *zType = 0; 1862 int j; 1863 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1864 char const *zOrigDb = 0; 1865 char const *zOrigTab = 0; 1866 char const *zOrigCol = 0; 1867 #endif 1868 1869 assert( pExpr!=0 ); 1870 assert( pNC->pSrcList!=0 ); 1871 switch( pExpr->op ){ 1872 case TK_COLUMN: { 1873 /* The expression is a column. Locate the table the column is being 1874 ** extracted from in NameContext.pSrcList. This table may be real 1875 ** database table or a subquery. 1876 */ 1877 Table *pTab = 0; /* Table structure column is extracted from */ 1878 Select *pS = 0; /* Select the column is extracted from */ 1879 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1880 while( pNC && !pTab ){ 1881 SrcList *pTabList = pNC->pSrcList; 1882 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1883 if( j<pTabList->nSrc ){ 1884 pTab = pTabList->a[j].pTab; 1885 pS = pTabList->a[j].pSelect; 1886 }else{ 1887 pNC = pNC->pNext; 1888 } 1889 } 1890 1891 if( pTab==0 ){ 1892 /* At one time, code such as "SELECT new.x" within a trigger would 1893 ** cause this condition to run. Since then, we have restructured how 1894 ** trigger code is generated and so this condition is no longer 1895 ** possible. However, it can still be true for statements like 1896 ** the following: 1897 ** 1898 ** CREATE TABLE t1(col INTEGER); 1899 ** SELECT (SELECT t1.col) FROM FROM t1; 1900 ** 1901 ** when columnType() is called on the expression "t1.col" in the 1902 ** sub-select. In this case, set the column type to NULL, even 1903 ** though it should really be "INTEGER". 1904 ** 1905 ** This is not a problem, as the column type of "t1.col" is never 1906 ** used. When columnType() is called on the expression 1907 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1908 ** branch below. */ 1909 break; 1910 } 1911 1912 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab ); 1913 if( pS ){ 1914 /* The "table" is actually a sub-select or a view in the FROM clause 1915 ** of the SELECT statement. Return the declaration type and origin 1916 ** data for the result-set column of the sub-select. 1917 */ 1918 if( iCol<pS->pEList->nExpr 1919 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 1920 && iCol>=0 1921 #else 1922 && ALWAYS(iCol>=0) 1923 #endif 1924 ){ 1925 /* If iCol is less than zero, then the expression requests the 1926 ** rowid of the sub-select or view. This expression is legal (see 1927 ** test case misc2.2.2) - it always evaluates to NULL. 1928 */ 1929 NameContext sNC; 1930 Expr *p = pS->pEList->a[iCol].pExpr; 1931 sNC.pSrcList = pS->pSrc; 1932 sNC.pNext = pNC; 1933 sNC.pParse = pNC->pParse; 1934 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol); 1935 } 1936 }else{ 1937 /* A real table or a CTE table */ 1938 assert( !pS ); 1939 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1940 if( iCol<0 ) iCol = pTab->iPKey; 1941 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1942 if( iCol<0 ){ 1943 zType = "INTEGER"; 1944 zOrigCol = "rowid"; 1945 }else{ 1946 zOrigCol = pTab->aCol[iCol].zCnName; 1947 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1948 } 1949 zOrigTab = pTab->zName; 1950 if( pNC->pParse && pTab->pSchema ){ 1951 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1952 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName; 1953 } 1954 #else 1955 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) ); 1956 if( iCol<0 ){ 1957 zType = "INTEGER"; 1958 }else{ 1959 zType = sqlite3ColumnType(&pTab->aCol[iCol],0); 1960 } 1961 #endif 1962 } 1963 break; 1964 } 1965 #ifndef SQLITE_OMIT_SUBQUERY 1966 case TK_SELECT: { 1967 /* The expression is a sub-select. Return the declaration type and 1968 ** origin info for the single column in the result set of the SELECT 1969 ** statement. 1970 */ 1971 NameContext sNC; 1972 Select *pS; 1973 Expr *p; 1974 assert( ExprUseXSelect(pExpr) ); 1975 pS = pExpr->x.pSelect; 1976 p = pS->pEList->a[0].pExpr; 1977 sNC.pSrcList = pS->pSrc; 1978 sNC.pNext = pNC; 1979 sNC.pParse = pNC->pParse; 1980 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 1981 break; 1982 } 1983 #endif 1984 } 1985 1986 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1987 if( pzOrigDb ){ 1988 assert( pzOrigTab && pzOrigCol ); 1989 *pzOrigDb = zOrigDb; 1990 *pzOrigTab = zOrigTab; 1991 *pzOrigCol = zOrigCol; 1992 } 1993 #endif 1994 return zType; 1995 } 1996 1997 /* 1998 ** Generate code that will tell the VDBE the declaration types of columns 1999 ** in the result set. 2000 */ 2001 static void generateColumnTypes( 2002 Parse *pParse, /* Parser context */ 2003 SrcList *pTabList, /* List of tables */ 2004 ExprList *pEList /* Expressions defining the result set */ 2005 ){ 2006 #ifndef SQLITE_OMIT_DECLTYPE 2007 Vdbe *v = pParse->pVdbe; 2008 int i; 2009 NameContext sNC; 2010 sNC.pSrcList = pTabList; 2011 sNC.pParse = pParse; 2012 sNC.pNext = 0; 2013 for(i=0; i<pEList->nExpr; i++){ 2014 Expr *p = pEList->a[i].pExpr; 2015 const char *zType; 2016 #ifdef SQLITE_ENABLE_COLUMN_METADATA 2017 const char *zOrigDb = 0; 2018 const char *zOrigTab = 0; 2019 const char *zOrigCol = 0; 2020 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); 2021 2022 /* The vdbe must make its own copy of the column-type and other 2023 ** column specific strings, in case the schema is reset before this 2024 ** virtual machine is deleted. 2025 */ 2026 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 2027 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 2028 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 2029 #else 2030 zType = columnType(&sNC, p, 0, 0, 0); 2031 #endif 2032 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 2033 } 2034 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 2035 } 2036 2037 2038 /* 2039 ** Compute the column names for a SELECT statement. 2040 ** 2041 ** The only guarantee that SQLite makes about column names is that if the 2042 ** column has an AS clause assigning it a name, that will be the name used. 2043 ** That is the only documented guarantee. However, countless applications 2044 ** developed over the years have made baseless assumptions about column names 2045 ** and will break if those assumptions changes. Hence, use extreme caution 2046 ** when modifying this routine to avoid breaking legacy. 2047 ** 2048 ** See Also: sqlite3ColumnsFromExprList() 2049 ** 2050 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are 2051 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all 2052 ** applications should operate this way. Nevertheless, we need to support the 2053 ** other modes for legacy: 2054 ** 2055 ** short=OFF, full=OFF: Column name is the text of the expression has it 2056 ** originally appears in the SELECT statement. In 2057 ** other words, the zSpan of the result expression. 2058 ** 2059 ** short=ON, full=OFF: (This is the default setting). If the result 2060 ** refers directly to a table column, then the 2061 ** result column name is just the table column 2062 ** name: COLUMN. Otherwise use zSpan. 2063 ** 2064 ** full=ON, short=ANY: If the result refers directly to a table column, 2065 ** then the result column name with the table name 2066 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan. 2067 */ 2068 void sqlite3GenerateColumnNames( 2069 Parse *pParse, /* Parser context */ 2070 Select *pSelect /* Generate column names for this SELECT statement */ 2071 ){ 2072 Vdbe *v = pParse->pVdbe; 2073 int i; 2074 Table *pTab; 2075 SrcList *pTabList; 2076 ExprList *pEList; 2077 sqlite3 *db = pParse->db; 2078 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */ 2079 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */ 2080 2081 #ifndef SQLITE_OMIT_EXPLAIN 2082 /* If this is an EXPLAIN, skip this step */ 2083 if( pParse->explain ){ 2084 return; 2085 } 2086 #endif 2087 2088 if( pParse->colNamesSet ) return; 2089 /* Column names are determined by the left-most term of a compound select */ 2090 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2091 SELECTTRACE(1,pParse,pSelect,("generating column names\n")); 2092 pTabList = pSelect->pSrc; 2093 pEList = pSelect->pEList; 2094 assert( v!=0 ); 2095 assert( pTabList!=0 ); 2096 pParse->colNamesSet = 1; 2097 fullName = (db->flags & SQLITE_FullColNames)!=0; 2098 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; 2099 sqlite3VdbeSetNumCols(v, pEList->nExpr); 2100 for(i=0; i<pEList->nExpr; i++){ 2101 Expr *p = pEList->a[i].pExpr; 2102 2103 assert( p!=0 ); 2104 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ 2105 assert( p->op!=TK_COLUMN 2106 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */ 2107 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){ 2108 /* An AS clause always takes first priority */ 2109 char *zName = pEList->a[i].zEName; 2110 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 2111 }else if( srcName && p->op==TK_COLUMN ){ 2112 char *zCol; 2113 int iCol = p->iColumn; 2114 pTab = p->y.pTab; 2115 assert( pTab!=0 ); 2116 if( iCol<0 ) iCol = pTab->iPKey; 2117 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 2118 if( iCol<0 ){ 2119 zCol = "rowid"; 2120 }else{ 2121 zCol = pTab->aCol[iCol].zCnName; 2122 } 2123 if( fullName ){ 2124 char *zName = 0; 2125 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 2126 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 2127 }else{ 2128 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 2129 } 2130 }else{ 2131 const char *z = pEList->a[i].zEName; 2132 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 2133 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 2134 } 2135 } 2136 generateColumnTypes(pParse, pTabList, pEList); 2137 } 2138 2139 /* 2140 ** Given an expression list (which is really the list of expressions 2141 ** that form the result set of a SELECT statement) compute appropriate 2142 ** column names for a table that would hold the expression list. 2143 ** 2144 ** All column names will be unique. 2145 ** 2146 ** Only the column names are computed. Column.zType, Column.zColl, 2147 ** and other fields of Column are zeroed. 2148 ** 2149 ** Return SQLITE_OK on success. If a memory allocation error occurs, 2150 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 2151 ** 2152 ** The only guarantee that SQLite makes about column names is that if the 2153 ** column has an AS clause assigning it a name, that will be the name used. 2154 ** That is the only documented guarantee. However, countless applications 2155 ** developed over the years have made baseless assumptions about column names 2156 ** and will break if those assumptions changes. Hence, use extreme caution 2157 ** when modifying this routine to avoid breaking legacy. 2158 ** 2159 ** See Also: sqlite3GenerateColumnNames() 2160 */ 2161 int sqlite3ColumnsFromExprList( 2162 Parse *pParse, /* Parsing context */ 2163 ExprList *pEList, /* Expr list from which to derive column names */ 2164 i16 *pnCol, /* Write the number of columns here */ 2165 Column **paCol /* Write the new column list here */ 2166 ){ 2167 sqlite3 *db = pParse->db; /* Database connection */ 2168 int i, j; /* Loop counters */ 2169 u32 cnt; /* Index added to make the name unique */ 2170 Column *aCol, *pCol; /* For looping over result columns */ 2171 int nCol; /* Number of columns in the result set */ 2172 char *zName; /* Column name */ 2173 int nName; /* Size of name in zName[] */ 2174 Hash ht; /* Hash table of column names */ 2175 Table *pTab; 2176 2177 sqlite3HashInit(&ht); 2178 if( pEList ){ 2179 nCol = pEList->nExpr; 2180 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 2181 testcase( aCol==0 ); 2182 if( NEVER(nCol>32767) ) nCol = 32767; 2183 }else{ 2184 nCol = 0; 2185 aCol = 0; 2186 } 2187 assert( nCol==(i16)nCol ); 2188 *pnCol = nCol; 2189 *paCol = aCol; 2190 2191 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ 2192 struct ExprList_item *pX = &pEList->a[i]; 2193 struct ExprList_item *pCollide; 2194 /* Get an appropriate name for the column 2195 */ 2196 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){ 2197 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 2198 }else{ 2199 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr); 2200 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){ 2201 pColExpr = pColExpr->pRight; 2202 assert( pColExpr!=0 ); 2203 } 2204 if( pColExpr->op==TK_COLUMN 2205 && ALWAYS( ExprUseYTab(pColExpr) ) 2206 && ALWAYS( pColExpr->y.pTab!=0 ) 2207 ){ 2208 /* For columns use the column name name */ 2209 int iCol = pColExpr->iColumn; 2210 pTab = pColExpr->y.pTab; 2211 if( iCol<0 ) iCol = pTab->iPKey; 2212 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid"; 2213 }else if( pColExpr->op==TK_ID ){ 2214 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 2215 zName = pColExpr->u.zToken; 2216 }else{ 2217 /* Use the original text of the column expression as its name */ 2218 assert( zName==pX->zEName ); /* pointer comparison intended */ 2219 } 2220 } 2221 if( zName && !sqlite3IsTrueOrFalse(zName) ){ 2222 zName = sqlite3DbStrDup(db, zName); 2223 }else{ 2224 zName = sqlite3MPrintf(db,"column%d",i+1); 2225 } 2226 2227 /* Make sure the column name is unique. If the name is not unique, 2228 ** append an integer to the name so that it becomes unique. 2229 */ 2230 cnt = 0; 2231 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){ 2232 if( pCollide->fg.bUsingTerm ){ 2233 pCol->colFlags |= COLFLAG_NOEXPAND; 2234 } 2235 nName = sqlite3Strlen30(zName); 2236 if( nName>0 ){ 2237 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} 2238 if( zName[j]==':' ) nName = j; 2239 } 2240 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); 2241 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); 2242 } 2243 pCol->zCnName = zName; 2244 pCol->hName = sqlite3StrIHash(zName); 2245 if( pX->fg.bNoExpand ){ 2246 pCol->colFlags |= COLFLAG_NOEXPAND; 2247 } 2248 sqlite3ColumnPropertiesFromName(0, pCol); 2249 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){ 2250 sqlite3OomFault(db); 2251 } 2252 } 2253 sqlite3HashClear(&ht); 2254 if( db->mallocFailed ){ 2255 for(j=0; j<i; j++){ 2256 sqlite3DbFree(db, aCol[j].zCnName); 2257 } 2258 sqlite3DbFree(db, aCol); 2259 *paCol = 0; 2260 *pnCol = 0; 2261 return SQLITE_NOMEM_BKPT; 2262 } 2263 return SQLITE_OK; 2264 } 2265 2266 /* 2267 ** Add type and collation information to a column list based on 2268 ** a SELECT statement. 2269 ** 2270 ** The column list presumably came from selectColumnNamesFromExprList(). 2271 ** The column list has only names, not types or collations. This 2272 ** routine goes through and adds the types and collations. 2273 ** 2274 ** This routine requires that all identifiers in the SELECT 2275 ** statement be resolved. 2276 */ 2277 void sqlite3SelectAddColumnTypeAndCollation( 2278 Parse *pParse, /* Parsing contexts */ 2279 Table *pTab, /* Add column type information to this table */ 2280 Select *pSelect, /* SELECT used to determine types and collations */ 2281 char aff /* Default affinity for columns */ 2282 ){ 2283 sqlite3 *db = pParse->db; 2284 NameContext sNC; 2285 Column *pCol; 2286 CollSeq *pColl; 2287 int i; 2288 Expr *p; 2289 struct ExprList_item *a; 2290 2291 assert( pSelect!=0 ); 2292 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 2293 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 2294 if( db->mallocFailed ) return; 2295 memset(&sNC, 0, sizeof(sNC)); 2296 sNC.pSrcList = pSelect->pSrc; 2297 a = pSelect->pEList->a; 2298 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 2299 const char *zType; 2300 i64 n, m; 2301 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT); 2302 p = a[i].pExpr; 2303 zType = columnType(&sNC, p, 0, 0, 0); 2304 /* pCol->szEst = ... // Column size est for SELECT tables never used */ 2305 pCol->affinity = sqlite3ExprAffinity(p); 2306 if( zType ){ 2307 m = sqlite3Strlen30(zType); 2308 n = sqlite3Strlen30(pCol->zCnName); 2309 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2); 2310 if( pCol->zCnName ){ 2311 memcpy(&pCol->zCnName[n+1], zType, m+1); 2312 pCol->colFlags |= COLFLAG_HASTYPE; 2313 }else{ 2314 testcase( pCol->colFlags & COLFLAG_HASTYPE ); 2315 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL); 2316 } 2317 } 2318 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff; 2319 pColl = sqlite3ExprCollSeq(pParse, p); 2320 if( pColl ){ 2321 assert( pTab->pIndex==0 ); 2322 sqlite3ColumnSetColl(db, pCol, pColl->zName); 2323 } 2324 } 2325 pTab->szTabRow = 1; /* Any non-zero value works */ 2326 } 2327 2328 /* 2329 ** Given a SELECT statement, generate a Table structure that describes 2330 ** the result set of that SELECT. 2331 */ 2332 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){ 2333 Table *pTab; 2334 sqlite3 *db = pParse->db; 2335 u64 savedFlags; 2336 2337 savedFlags = db->flags; 2338 db->flags &= ~(u64)SQLITE_FullColNames; 2339 db->flags |= SQLITE_ShortColNames; 2340 sqlite3SelectPrep(pParse, pSelect, 0); 2341 db->flags = savedFlags; 2342 if( pParse->nErr ) return 0; 2343 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 2344 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 2345 if( pTab==0 ){ 2346 return 0; 2347 } 2348 pTab->nTabRef = 1; 2349 pTab->zName = 0; 2350 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 2351 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 2352 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff); 2353 pTab->iPKey = -1; 2354 if( db->mallocFailed ){ 2355 sqlite3DeleteTable(db, pTab); 2356 return 0; 2357 } 2358 return pTab; 2359 } 2360 2361 /* 2362 ** Get a VDBE for the given parser context. Create a new one if necessary. 2363 ** If an error occurs, return NULL and leave a message in pParse. 2364 */ 2365 Vdbe *sqlite3GetVdbe(Parse *pParse){ 2366 if( pParse->pVdbe ){ 2367 return pParse->pVdbe; 2368 } 2369 if( pParse->pToplevel==0 2370 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 2371 ){ 2372 pParse->okConstFactor = 1; 2373 } 2374 return sqlite3VdbeCreate(pParse); 2375 } 2376 2377 2378 /* 2379 ** Compute the iLimit and iOffset fields of the SELECT based on the 2380 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions 2381 ** that appear in the original SQL statement after the LIMIT and OFFSET 2382 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 2383 ** are the integer memory register numbers for counters used to compute 2384 ** the limit and offset. If there is no limit and/or offset, then 2385 ** iLimit and iOffset are negative. 2386 ** 2387 ** This routine changes the values of iLimit and iOffset only if 2388 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit 2389 ** and iOffset should have been preset to appropriate default values (zero) 2390 ** prior to calling this routine. 2391 ** 2392 ** The iOffset register (if it exists) is initialized to the value 2393 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 2394 ** iOffset+1 is initialized to LIMIT+OFFSET. 2395 ** 2396 ** Only if pLimit->pLeft!=0 do the limit registers get 2397 ** redefined. The UNION ALL operator uses this property to force 2398 ** the reuse of the same limit and offset registers across multiple 2399 ** SELECT statements. 2400 */ 2401 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 2402 Vdbe *v = 0; 2403 int iLimit = 0; 2404 int iOffset; 2405 int n; 2406 Expr *pLimit = p->pLimit; 2407 2408 if( p->iLimit ) return; 2409 2410 /* 2411 ** "LIMIT -1" always shows all rows. There is some 2412 ** controversy about what the correct behavior should be. 2413 ** The current implementation interprets "LIMIT 0" to mean 2414 ** no rows. 2415 */ 2416 if( pLimit ){ 2417 assert( pLimit->op==TK_LIMIT ); 2418 assert( pLimit->pLeft!=0 ); 2419 p->iLimit = iLimit = ++pParse->nMem; 2420 v = sqlite3GetVdbe(pParse); 2421 assert( v!=0 ); 2422 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){ 2423 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 2424 VdbeComment((v, "LIMIT counter")); 2425 if( n==0 ){ 2426 sqlite3VdbeGoto(v, iBreak); 2427 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){ 2428 p->nSelectRow = sqlite3LogEst((u64)n); 2429 p->selFlags |= SF_FixedLimit; 2430 } 2431 }else{ 2432 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit); 2433 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 2434 VdbeComment((v, "LIMIT counter")); 2435 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); 2436 } 2437 if( pLimit->pRight ){ 2438 p->iOffset = iOffset = ++pParse->nMem; 2439 pParse->nMem++; /* Allocate an extra register for limit+offset */ 2440 sqlite3ExprCode(pParse, pLimit->pRight, iOffset); 2441 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 2442 VdbeComment((v, "OFFSET counter")); 2443 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset); 2444 VdbeComment((v, "LIMIT+OFFSET")); 2445 } 2446 } 2447 } 2448 2449 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2450 /* 2451 ** Return the appropriate collating sequence for the iCol-th column of 2452 ** the result set for the compound-select statement "p". Return NULL if 2453 ** the column has no default collating sequence. 2454 ** 2455 ** The collating sequence for the compound select is taken from the 2456 ** left-most term of the select that has a collating sequence. 2457 */ 2458 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 2459 CollSeq *pRet; 2460 if( p->pPrior ){ 2461 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 2462 }else{ 2463 pRet = 0; 2464 } 2465 assert( iCol>=0 ); 2466 /* iCol must be less than p->pEList->nExpr. Otherwise an error would 2467 ** have been thrown during name resolution and we would not have gotten 2468 ** this far */ 2469 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ 2470 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 2471 } 2472 return pRet; 2473 } 2474 2475 /* 2476 ** The select statement passed as the second parameter is a compound SELECT 2477 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 2478 ** structure suitable for implementing the ORDER BY. 2479 ** 2480 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 2481 ** function is responsible for ensuring that this structure is eventually 2482 ** freed. 2483 */ 2484 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 2485 ExprList *pOrderBy = p->pOrderBy; 2486 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0; 2487 sqlite3 *db = pParse->db; 2488 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 2489 if( pRet ){ 2490 int i; 2491 for(i=0; i<nOrderBy; i++){ 2492 struct ExprList_item *pItem = &pOrderBy->a[i]; 2493 Expr *pTerm = pItem->pExpr; 2494 CollSeq *pColl; 2495 2496 if( pTerm->flags & EP_Collate ){ 2497 pColl = sqlite3ExprCollSeq(pParse, pTerm); 2498 }else{ 2499 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 2500 if( pColl==0 ) pColl = db->pDfltColl; 2501 pOrderBy->a[i].pExpr = 2502 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 2503 } 2504 assert( sqlite3KeyInfoIsWriteable(pRet) ); 2505 pRet->aColl[i] = pColl; 2506 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags; 2507 } 2508 } 2509 2510 return pRet; 2511 } 2512 2513 #ifndef SQLITE_OMIT_CTE 2514 /* 2515 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 2516 ** query of the form: 2517 ** 2518 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 2519 ** \___________/ \_______________/ 2520 ** p->pPrior p 2521 ** 2522 ** 2523 ** There is exactly one reference to the recursive-table in the FROM clause 2524 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. 2525 ** 2526 ** The setup-query runs once to generate an initial set of rows that go 2527 ** into a Queue table. Rows are extracted from the Queue table one by 2528 ** one. Each row extracted from Queue is output to pDest. Then the single 2529 ** extracted row (now in the iCurrent table) becomes the content of the 2530 ** recursive-table for a recursive-query run. The output of the recursive-query 2531 ** is added back into the Queue table. Then another row is extracted from Queue 2532 ** and the iteration continues until the Queue table is empty. 2533 ** 2534 ** If the compound query operator is UNION then no duplicate rows are ever 2535 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 2536 ** that have ever been inserted into Queue and causes duplicates to be 2537 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 2538 ** 2539 ** If the query has an ORDER BY, then entries in the Queue table are kept in 2540 ** ORDER BY order and the first entry is extracted for each cycle. Without 2541 ** an ORDER BY, the Queue table is just a FIFO. 2542 ** 2543 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 2544 ** have been output to pDest. A LIMIT of zero means to output no rows and a 2545 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 2546 ** with a positive value, then the first OFFSET outputs are discarded rather 2547 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 2548 ** rows have been skipped. 2549 */ 2550 static void generateWithRecursiveQuery( 2551 Parse *pParse, /* Parsing context */ 2552 Select *p, /* The recursive SELECT to be coded */ 2553 SelectDest *pDest /* What to do with query results */ 2554 ){ 2555 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 2556 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 2557 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 2558 Select *pSetup; /* The setup query */ 2559 Select *pFirstRec; /* Left-most recursive term */ 2560 int addrTop; /* Top of the loop */ 2561 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 2562 int iCurrent = 0; /* The Current table */ 2563 int regCurrent; /* Register holding Current table */ 2564 int iQueue; /* The Queue table */ 2565 int iDistinct = 0; /* To ensure unique results if UNION */ 2566 int eDest = SRT_Fifo; /* How to write to Queue */ 2567 SelectDest destQueue; /* SelectDest targetting the Queue table */ 2568 int i; /* Loop counter */ 2569 int rc; /* Result code */ 2570 ExprList *pOrderBy; /* The ORDER BY clause */ 2571 Expr *pLimit; /* Saved LIMIT and OFFSET */ 2572 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 2573 2574 #ifndef SQLITE_OMIT_WINDOWFUNC 2575 if( p->pWin ){ 2576 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); 2577 return; 2578 } 2579 #endif 2580 2581 /* Obtain authorization to do a recursive query */ 2582 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 2583 2584 /* Process the LIMIT and OFFSET clauses, if they exist */ 2585 addrBreak = sqlite3VdbeMakeLabel(pParse); 2586 p->nSelectRow = 320; /* 4 billion rows */ 2587 computeLimitRegisters(pParse, p, addrBreak); 2588 pLimit = p->pLimit; 2589 regLimit = p->iLimit; 2590 regOffset = p->iOffset; 2591 p->pLimit = 0; 2592 p->iLimit = p->iOffset = 0; 2593 pOrderBy = p->pOrderBy; 2594 2595 /* Locate the cursor number of the Current table */ 2596 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 2597 if( pSrc->a[i].fg.isRecursive ){ 2598 iCurrent = pSrc->a[i].iCursor; 2599 break; 2600 } 2601 } 2602 2603 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 2604 ** the Distinct table must be exactly one greater than Queue in order 2605 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 2606 iQueue = pParse->nTab++; 2607 if( p->op==TK_UNION ){ 2608 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 2609 iDistinct = pParse->nTab++; 2610 }else{ 2611 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 2612 } 2613 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 2614 2615 /* Allocate cursors for Current, Queue, and Distinct. */ 2616 regCurrent = ++pParse->nMem; 2617 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 2618 if( pOrderBy ){ 2619 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 2620 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 2621 (char*)pKeyInfo, P4_KEYINFO); 2622 destQueue.pOrderBy = pOrderBy; 2623 }else{ 2624 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 2625 } 2626 VdbeComment((v, "Queue table")); 2627 if( iDistinct ){ 2628 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 2629 p->selFlags |= SF_UsesEphemeral; 2630 } 2631 2632 /* Detach the ORDER BY clause from the compound SELECT */ 2633 p->pOrderBy = 0; 2634 2635 /* Figure out how many elements of the compound SELECT are part of the 2636 ** recursive query. Make sure no recursive elements use aggregate 2637 ** functions. Mark the recursive elements as UNION ALL even if they 2638 ** are really UNION because the distinctness will be enforced by the 2639 ** iDistinct table. pFirstRec is left pointing to the left-most 2640 ** recursive term of the CTE. 2641 */ 2642 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){ 2643 if( pFirstRec->selFlags & SF_Aggregate ){ 2644 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); 2645 goto end_of_recursive_query; 2646 } 2647 pFirstRec->op = TK_ALL; 2648 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break; 2649 } 2650 2651 /* Store the results of the setup-query in Queue. */ 2652 pSetup = pFirstRec->pPrior; 2653 pSetup->pNext = 0; 2654 ExplainQueryPlan((pParse, 1, "SETUP")); 2655 rc = sqlite3Select(pParse, pSetup, &destQueue); 2656 pSetup->pNext = p; 2657 if( rc ) goto end_of_recursive_query; 2658 2659 /* Find the next row in the Queue and output that row */ 2660 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 2661 2662 /* Transfer the next row in Queue over to Current */ 2663 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 2664 if( pOrderBy ){ 2665 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 2666 }else{ 2667 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 2668 } 2669 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 2670 2671 /* Output the single row in Current */ 2672 addrCont = sqlite3VdbeMakeLabel(pParse); 2673 codeOffset(v, regOffset, addrCont); 2674 selectInnerLoop(pParse, p, iCurrent, 2675 0, 0, pDest, addrCont, addrBreak); 2676 if( regLimit ){ 2677 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); 2678 VdbeCoverage(v); 2679 } 2680 sqlite3VdbeResolveLabel(v, addrCont); 2681 2682 /* Execute the recursive SELECT taking the single row in Current as 2683 ** the value for the recursive-table. Store the results in the Queue. 2684 */ 2685 pFirstRec->pPrior = 0; 2686 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP")); 2687 sqlite3Select(pParse, p, &destQueue); 2688 assert( pFirstRec->pPrior==0 ); 2689 pFirstRec->pPrior = pSetup; 2690 2691 /* Keep running the loop until the Queue is empty */ 2692 sqlite3VdbeGoto(v, addrTop); 2693 sqlite3VdbeResolveLabel(v, addrBreak); 2694 2695 end_of_recursive_query: 2696 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2697 p->pOrderBy = pOrderBy; 2698 p->pLimit = pLimit; 2699 return; 2700 } 2701 #endif /* SQLITE_OMIT_CTE */ 2702 2703 /* Forward references */ 2704 static int multiSelectOrderBy( 2705 Parse *pParse, /* Parsing context */ 2706 Select *p, /* The right-most of SELECTs to be coded */ 2707 SelectDest *pDest /* What to do with query results */ 2708 ); 2709 2710 /* 2711 ** Handle the special case of a compound-select that originates from a 2712 ** VALUES clause. By handling this as a special case, we avoid deep 2713 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT 2714 ** on a VALUES clause. 2715 ** 2716 ** Because the Select object originates from a VALUES clause: 2717 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1 2718 ** (2) All terms are UNION ALL 2719 ** (3) There is no ORDER BY clause 2720 ** 2721 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES 2722 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))"). 2723 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case. 2724 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES. 2725 */ 2726 static int multiSelectValues( 2727 Parse *pParse, /* Parsing context */ 2728 Select *p, /* The right-most of SELECTs to be coded */ 2729 SelectDest *pDest /* What to do with query results */ 2730 ){ 2731 int nRow = 1; 2732 int rc = 0; 2733 int bShowAll = p->pLimit==0; 2734 assert( p->selFlags & SF_MultiValue ); 2735 do{ 2736 assert( p->selFlags & SF_Values ); 2737 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); 2738 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); 2739 #ifndef SQLITE_OMIT_WINDOWFUNC 2740 if( p->pWin ) return -1; 2741 #endif 2742 if( p->pPrior==0 ) break; 2743 assert( p->pPrior->pNext==p ); 2744 p = p->pPrior; 2745 nRow += bShowAll; 2746 }while(1); 2747 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow, 2748 nRow==1 ? "" : "S")); 2749 while( p ){ 2750 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1); 2751 if( !bShowAll ) break; 2752 p->nSelectRow = nRow; 2753 p = p->pNext; 2754 } 2755 return rc; 2756 } 2757 2758 /* 2759 ** Return true if the SELECT statement which is known to be the recursive 2760 ** part of a recursive CTE still has its anchor terms attached. If the 2761 ** anchor terms have already been removed, then return false. 2762 */ 2763 static int hasAnchor(Select *p){ 2764 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; } 2765 return p!=0; 2766 } 2767 2768 /* 2769 ** This routine is called to process a compound query form from 2770 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2771 ** INTERSECT 2772 ** 2773 ** "p" points to the right-most of the two queries. the query on the 2774 ** left is p->pPrior. The left query could also be a compound query 2775 ** in which case this routine will be called recursively. 2776 ** 2777 ** The results of the total query are to be written into a destination 2778 ** of type eDest with parameter iParm. 2779 ** 2780 ** Example 1: Consider a three-way compound SQL statement. 2781 ** 2782 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2783 ** 2784 ** This statement is parsed up as follows: 2785 ** 2786 ** SELECT c FROM t3 2787 ** | 2788 ** `-----> SELECT b FROM t2 2789 ** | 2790 ** `------> SELECT a FROM t1 2791 ** 2792 ** The arrows in the diagram above represent the Select.pPrior pointer. 2793 ** So if this routine is called with p equal to the t3 query, then 2794 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2795 ** 2796 ** Notice that because of the way SQLite parses compound SELECTs, the 2797 ** individual selects always group from left to right. 2798 */ 2799 static int multiSelect( 2800 Parse *pParse, /* Parsing context */ 2801 Select *p, /* The right-most of SELECTs to be coded */ 2802 SelectDest *pDest /* What to do with query results */ 2803 ){ 2804 int rc = SQLITE_OK; /* Success code from a subroutine */ 2805 Select *pPrior; /* Another SELECT immediately to our left */ 2806 Vdbe *v; /* Generate code to this VDBE */ 2807 SelectDest dest; /* Alternative data destination */ 2808 Select *pDelete = 0; /* Chain of simple selects to delete */ 2809 sqlite3 *db; /* Database connection */ 2810 2811 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2812 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2813 */ 2814 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2815 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2816 assert( p->selFlags & SF_Compound ); 2817 db = pParse->db; 2818 pPrior = p->pPrior; 2819 dest = *pDest; 2820 assert( pPrior->pOrderBy==0 ); 2821 assert( pPrior->pLimit==0 ); 2822 2823 v = sqlite3GetVdbe(pParse); 2824 assert( v!=0 ); /* The VDBE already created by calling function */ 2825 2826 /* Create the destination temporary table if necessary 2827 */ 2828 if( dest.eDest==SRT_EphemTab ){ 2829 assert( p->pEList ); 2830 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2831 dest.eDest = SRT_Table; 2832 } 2833 2834 /* Special handling for a compound-select that originates as a VALUES clause. 2835 */ 2836 if( p->selFlags & SF_MultiValue ){ 2837 rc = multiSelectValues(pParse, p, &dest); 2838 if( rc>=0 ) goto multi_select_end; 2839 rc = SQLITE_OK; 2840 } 2841 2842 /* Make sure all SELECTs in the statement have the same number of elements 2843 ** in their result sets. 2844 */ 2845 assert( p->pEList && pPrior->pEList ); 2846 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); 2847 2848 #ifndef SQLITE_OMIT_CTE 2849 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){ 2850 generateWithRecursiveQuery(pParse, p, &dest); 2851 }else 2852 #endif 2853 2854 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2855 */ 2856 if( p->pOrderBy ){ 2857 return multiSelectOrderBy(pParse, p, pDest); 2858 }else{ 2859 2860 #ifndef SQLITE_OMIT_EXPLAIN 2861 if( pPrior->pPrior==0 ){ 2862 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY")); 2863 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY")); 2864 } 2865 #endif 2866 2867 /* Generate code for the left and right SELECT statements. 2868 */ 2869 switch( p->op ){ 2870 case TK_ALL: { 2871 int addr = 0; 2872 int nLimit = 0; /* Initialize to suppress harmless compiler warning */ 2873 assert( !pPrior->pLimit ); 2874 pPrior->iLimit = p->iLimit; 2875 pPrior->iOffset = p->iOffset; 2876 pPrior->pLimit = p->pLimit; 2877 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n")); 2878 rc = sqlite3Select(pParse, pPrior, &dest); 2879 pPrior->pLimit = 0; 2880 if( rc ){ 2881 goto multi_select_end; 2882 } 2883 p->pPrior = 0; 2884 p->iLimit = pPrior->iLimit; 2885 p->iOffset = pPrior->iOffset; 2886 if( p->iLimit ){ 2887 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); 2888 VdbeComment((v, "Jump ahead if LIMIT reached")); 2889 if( p->iOffset ){ 2890 sqlite3VdbeAddOp3(v, OP_OffsetLimit, 2891 p->iLimit, p->iOffset+1, p->iOffset); 2892 } 2893 } 2894 ExplainQueryPlan((pParse, 1, "UNION ALL")); 2895 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n")); 2896 rc = sqlite3Select(pParse, p, &dest); 2897 testcase( rc!=SQLITE_OK ); 2898 pDelete = p->pPrior; 2899 p->pPrior = pPrior; 2900 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2901 if( p->pLimit 2902 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit) 2903 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit) 2904 ){ 2905 p->nSelectRow = sqlite3LogEst((u64)nLimit); 2906 } 2907 if( addr ){ 2908 sqlite3VdbeJumpHere(v, addr); 2909 } 2910 break; 2911 } 2912 case TK_EXCEPT: 2913 case TK_UNION: { 2914 int unionTab; /* Cursor number of the temp table holding result */ 2915 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2916 int priorOp; /* The SRT_ operation to apply to prior selects */ 2917 Expr *pLimit; /* Saved values of p->nLimit */ 2918 int addr; 2919 SelectDest uniondest; 2920 2921 testcase( p->op==TK_EXCEPT ); 2922 testcase( p->op==TK_UNION ); 2923 priorOp = SRT_Union; 2924 if( dest.eDest==priorOp ){ 2925 /* We can reuse a temporary table generated by a SELECT to our 2926 ** right. 2927 */ 2928 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2929 unionTab = dest.iSDParm; 2930 }else{ 2931 /* We will need to create our own temporary table to hold the 2932 ** intermediate results. 2933 */ 2934 unionTab = pParse->nTab++; 2935 assert( p->pOrderBy==0 ); 2936 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2937 assert( p->addrOpenEphm[0] == -1 ); 2938 p->addrOpenEphm[0] = addr; 2939 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2940 assert( p->pEList ); 2941 } 2942 2943 2944 /* Code the SELECT statements to our left 2945 */ 2946 assert( !pPrior->pOrderBy ); 2947 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2948 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n")); 2949 rc = sqlite3Select(pParse, pPrior, &uniondest); 2950 if( rc ){ 2951 goto multi_select_end; 2952 } 2953 2954 /* Code the current SELECT statement 2955 */ 2956 if( p->op==TK_EXCEPT ){ 2957 op = SRT_Except; 2958 }else{ 2959 assert( p->op==TK_UNION ); 2960 op = SRT_Union; 2961 } 2962 p->pPrior = 0; 2963 pLimit = p->pLimit; 2964 p->pLimit = 0; 2965 uniondest.eDest = op; 2966 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 2967 sqlite3SelectOpName(p->op))); 2968 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n")); 2969 rc = sqlite3Select(pParse, p, &uniondest); 2970 testcase( rc!=SQLITE_OK ); 2971 assert( p->pOrderBy==0 ); 2972 pDelete = p->pPrior; 2973 p->pPrior = pPrior; 2974 p->pOrderBy = 0; 2975 if( p->op==TK_UNION ){ 2976 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 2977 } 2978 sqlite3ExprDelete(db, p->pLimit); 2979 p->pLimit = pLimit; 2980 p->iLimit = 0; 2981 p->iOffset = 0; 2982 2983 /* Convert the data in the temporary table into whatever form 2984 ** it is that we currently need. 2985 */ 2986 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2987 assert( p->pEList || db->mallocFailed ); 2988 if( dest.eDest!=priorOp && db->mallocFailed==0 ){ 2989 int iCont, iBreak, iStart; 2990 iBreak = sqlite3VdbeMakeLabel(pParse); 2991 iCont = sqlite3VdbeMakeLabel(pParse); 2992 computeLimitRegisters(pParse, p, iBreak); 2993 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2994 iStart = sqlite3VdbeCurrentAddr(v); 2995 selectInnerLoop(pParse, p, unionTab, 2996 0, 0, &dest, iCont, iBreak); 2997 sqlite3VdbeResolveLabel(v, iCont); 2998 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2999 sqlite3VdbeResolveLabel(v, iBreak); 3000 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 3001 } 3002 break; 3003 } 3004 default: assert( p->op==TK_INTERSECT ); { 3005 int tab1, tab2; 3006 int iCont, iBreak, iStart; 3007 Expr *pLimit; 3008 int addr; 3009 SelectDest intersectdest; 3010 int r1; 3011 3012 /* INTERSECT is different from the others since it requires 3013 ** two temporary tables. Hence it has its own case. Begin 3014 ** by allocating the tables we will need. 3015 */ 3016 tab1 = pParse->nTab++; 3017 tab2 = pParse->nTab++; 3018 assert( p->pOrderBy==0 ); 3019 3020 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 3021 assert( p->addrOpenEphm[0] == -1 ); 3022 p->addrOpenEphm[0] = addr; 3023 findRightmost(p)->selFlags |= SF_UsesEphemeral; 3024 assert( p->pEList ); 3025 3026 /* Code the SELECTs to our left into temporary table "tab1". 3027 */ 3028 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 3029 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n")); 3030 rc = sqlite3Select(pParse, pPrior, &intersectdest); 3031 if( rc ){ 3032 goto multi_select_end; 3033 } 3034 3035 /* Code the current SELECT into temporary table "tab2" 3036 */ 3037 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 3038 assert( p->addrOpenEphm[1] == -1 ); 3039 p->addrOpenEphm[1] = addr; 3040 p->pPrior = 0; 3041 pLimit = p->pLimit; 3042 p->pLimit = 0; 3043 intersectdest.iSDParm = tab2; 3044 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE", 3045 sqlite3SelectOpName(p->op))); 3046 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n")); 3047 rc = sqlite3Select(pParse, p, &intersectdest); 3048 testcase( rc!=SQLITE_OK ); 3049 pDelete = p->pPrior; 3050 p->pPrior = pPrior; 3051 if( p->nSelectRow>pPrior->nSelectRow ){ 3052 p->nSelectRow = pPrior->nSelectRow; 3053 } 3054 sqlite3ExprDelete(db, p->pLimit); 3055 p->pLimit = pLimit; 3056 3057 /* Generate code to take the intersection of the two temporary 3058 ** tables. 3059 */ 3060 if( rc ) break; 3061 assert( p->pEList ); 3062 iBreak = sqlite3VdbeMakeLabel(pParse); 3063 iCont = sqlite3VdbeMakeLabel(pParse); 3064 computeLimitRegisters(pParse, p, iBreak); 3065 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 3066 r1 = sqlite3GetTempReg(pParse); 3067 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1); 3068 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); 3069 VdbeCoverage(v); 3070 sqlite3ReleaseTempReg(pParse, r1); 3071 selectInnerLoop(pParse, p, tab1, 3072 0, 0, &dest, iCont, iBreak); 3073 sqlite3VdbeResolveLabel(v, iCont); 3074 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 3075 sqlite3VdbeResolveLabel(v, iBreak); 3076 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 3077 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 3078 break; 3079 } 3080 } 3081 3082 #ifndef SQLITE_OMIT_EXPLAIN 3083 if( p->pNext==0 ){ 3084 ExplainQueryPlanPop(pParse); 3085 } 3086 #endif 3087 } 3088 if( pParse->nErr ) goto multi_select_end; 3089 3090 /* Compute collating sequences used by 3091 ** temporary tables needed to implement the compound select. 3092 ** Attach the KeyInfo structure to all temporary tables. 3093 ** 3094 ** This section is run by the right-most SELECT statement only. 3095 ** SELECT statements to the left always skip this part. The right-most 3096 ** SELECT might also skip this part if it has no ORDER BY clause and 3097 ** no temp tables are required. 3098 */ 3099 if( p->selFlags & SF_UsesEphemeral ){ 3100 int i; /* Loop counter */ 3101 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 3102 Select *pLoop; /* For looping through SELECT statements */ 3103 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 3104 int nCol; /* Number of columns in result set */ 3105 3106 assert( p->pNext==0 ); 3107 assert( p->pEList!=0 ); 3108 nCol = p->pEList->nExpr; 3109 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 3110 if( !pKeyInfo ){ 3111 rc = SQLITE_NOMEM_BKPT; 3112 goto multi_select_end; 3113 } 3114 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 3115 *apColl = multiSelectCollSeq(pParse, p, i); 3116 if( 0==*apColl ){ 3117 *apColl = db->pDfltColl; 3118 } 3119 } 3120 3121 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 3122 for(i=0; i<2; i++){ 3123 int addr = pLoop->addrOpenEphm[i]; 3124 if( addr<0 ){ 3125 /* If [0] is unused then [1] is also unused. So we can 3126 ** always safely abort as soon as the first unused slot is found */ 3127 assert( pLoop->addrOpenEphm[1]<0 ); 3128 break; 3129 } 3130 sqlite3VdbeChangeP2(v, addr, nCol); 3131 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 3132 P4_KEYINFO); 3133 pLoop->addrOpenEphm[i] = -1; 3134 } 3135 } 3136 sqlite3KeyInfoUnref(pKeyInfo); 3137 } 3138 3139 multi_select_end: 3140 pDest->iSdst = dest.iSdst; 3141 pDest->nSdst = dest.nSdst; 3142 if( pDelete ){ 3143 sqlite3ParserAddCleanup(pParse, 3144 (void(*)(sqlite3*,void*))sqlite3SelectDelete, 3145 pDelete); 3146 } 3147 return rc; 3148 } 3149 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 3150 3151 /* 3152 ** Error message for when two or more terms of a compound select have different 3153 ** size result sets. 3154 */ 3155 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ 3156 if( p->selFlags & SF_Values ){ 3157 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 3158 }else{ 3159 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 3160 " do not have the same number of result columns", 3161 sqlite3SelectOpName(p->op)); 3162 } 3163 } 3164 3165 /* 3166 ** Code an output subroutine for a coroutine implementation of a 3167 ** SELECT statment. 3168 ** 3169 ** The data to be output is contained in pIn->iSdst. There are 3170 ** pIn->nSdst columns to be output. pDest is where the output should 3171 ** be sent. 3172 ** 3173 ** regReturn is the number of the register holding the subroutine 3174 ** return address. 3175 ** 3176 ** If regPrev>0 then it is the first register in a vector that 3177 ** records the previous output. mem[regPrev] is a flag that is false 3178 ** if there has been no previous output. If regPrev>0 then code is 3179 ** generated to suppress duplicates. pKeyInfo is used for comparing 3180 ** keys. 3181 ** 3182 ** If the LIMIT found in p->iLimit is reached, jump immediately to 3183 ** iBreak. 3184 */ 3185 static int generateOutputSubroutine( 3186 Parse *pParse, /* Parsing context */ 3187 Select *p, /* The SELECT statement */ 3188 SelectDest *pIn, /* Coroutine supplying data */ 3189 SelectDest *pDest, /* Where to send the data */ 3190 int regReturn, /* The return address register */ 3191 int regPrev, /* Previous result register. No uniqueness if 0 */ 3192 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 3193 int iBreak /* Jump here if we hit the LIMIT */ 3194 ){ 3195 Vdbe *v = pParse->pVdbe; 3196 int iContinue; 3197 int addr; 3198 3199 addr = sqlite3VdbeCurrentAddr(v); 3200 iContinue = sqlite3VdbeMakeLabel(pParse); 3201 3202 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 3203 */ 3204 if( regPrev ){ 3205 int addr1, addr2; 3206 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 3207 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 3208 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 3209 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); 3210 sqlite3VdbeJumpHere(v, addr1); 3211 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 3212 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 3213 } 3214 if( pParse->db->mallocFailed ) return 0; 3215 3216 /* Suppress the first OFFSET entries if there is an OFFSET clause 3217 */ 3218 codeOffset(v, p->iOffset, iContinue); 3219 3220 assert( pDest->eDest!=SRT_Exists ); 3221 assert( pDest->eDest!=SRT_Table ); 3222 switch( pDest->eDest ){ 3223 /* Store the result as data using a unique key. 3224 */ 3225 case SRT_EphemTab: { 3226 int r1 = sqlite3GetTempReg(pParse); 3227 int r2 = sqlite3GetTempReg(pParse); 3228 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 3229 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 3230 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 3231 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 3232 sqlite3ReleaseTempReg(pParse, r2); 3233 sqlite3ReleaseTempReg(pParse, r1); 3234 break; 3235 } 3236 3237 #ifndef SQLITE_OMIT_SUBQUERY 3238 /* If we are creating a set for an "expr IN (SELECT ...)". 3239 */ 3240 case SRT_Set: { 3241 int r1; 3242 testcase( pIn->nSdst>1 ); 3243 r1 = sqlite3GetTempReg(pParse); 3244 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, 3245 r1, pDest->zAffSdst, pIn->nSdst); 3246 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1, 3247 pIn->iSdst, pIn->nSdst); 3248 sqlite3ReleaseTempReg(pParse, r1); 3249 break; 3250 } 3251 3252 /* If this is a scalar select that is part of an expression, then 3253 ** store the results in the appropriate memory cell and break out 3254 ** of the scan loop. Note that the select might return multiple columns 3255 ** if it is the RHS of a row-value IN operator. 3256 */ 3257 case SRT_Mem: { 3258 testcase( pIn->nSdst>1 ); 3259 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst); 3260 /* The LIMIT clause will jump out of the loop for us */ 3261 break; 3262 } 3263 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 3264 3265 /* The results are stored in a sequence of registers 3266 ** starting at pDest->iSdst. Then the co-routine yields. 3267 */ 3268 case SRT_Coroutine: { 3269 if( pDest->iSdst==0 ){ 3270 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 3271 pDest->nSdst = pIn->nSdst; 3272 } 3273 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); 3274 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 3275 break; 3276 } 3277 3278 /* If none of the above, then the result destination must be 3279 ** SRT_Output. This routine is never called with any other 3280 ** destination other than the ones handled above or SRT_Output. 3281 ** 3282 ** For SRT_Output, results are stored in a sequence of registers. 3283 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 3284 ** return the next row of result. 3285 */ 3286 default: { 3287 assert( pDest->eDest==SRT_Output ); 3288 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 3289 break; 3290 } 3291 } 3292 3293 /* Jump to the end of the loop if the LIMIT is reached. 3294 */ 3295 if( p->iLimit ){ 3296 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); 3297 } 3298 3299 /* Generate the subroutine return 3300 */ 3301 sqlite3VdbeResolveLabel(v, iContinue); 3302 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 3303 3304 return addr; 3305 } 3306 3307 /* 3308 ** Alternative compound select code generator for cases when there 3309 ** is an ORDER BY clause. 3310 ** 3311 ** We assume a query of the following form: 3312 ** 3313 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 3314 ** 3315 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 3316 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 3317 ** co-routines. Then run the co-routines in parallel and merge the results 3318 ** into the output. In addition to the two coroutines (called selectA and 3319 ** selectB) there are 7 subroutines: 3320 ** 3321 ** outA: Move the output of the selectA coroutine into the output 3322 ** of the compound query. 3323 ** 3324 ** outB: Move the output of the selectB coroutine into the output 3325 ** of the compound query. (Only generated for UNION and 3326 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 3327 ** appears only in B.) 3328 ** 3329 ** AltB: Called when there is data from both coroutines and A<B. 3330 ** 3331 ** AeqB: Called when there is data from both coroutines and A==B. 3332 ** 3333 ** AgtB: Called when there is data from both coroutines and A>B. 3334 ** 3335 ** EofA: Called when data is exhausted from selectA. 3336 ** 3337 ** EofB: Called when data is exhausted from selectB. 3338 ** 3339 ** The implementation of the latter five subroutines depend on which 3340 ** <operator> is used: 3341 ** 3342 ** 3343 ** UNION ALL UNION EXCEPT INTERSECT 3344 ** ------------- ----------------- -------------- ----------------- 3345 ** AltB: outA, nextA outA, nextA outA, nextA nextA 3346 ** 3347 ** AeqB: outA, nextA nextA nextA outA, nextA 3348 ** 3349 ** AgtB: outB, nextB outB, nextB nextB nextB 3350 ** 3351 ** EofA: outB, nextB outB, nextB halt halt 3352 ** 3353 ** EofB: outA, nextA outA, nextA outA, nextA halt 3354 ** 3355 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 3356 ** causes an immediate jump to EofA and an EOF on B following nextB causes 3357 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 3358 ** following nextX causes a jump to the end of the select processing. 3359 ** 3360 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 3361 ** within the output subroutine. The regPrev register set holds the previously 3362 ** output value. A comparison is made against this value and the output 3363 ** is skipped if the next results would be the same as the previous. 3364 ** 3365 ** The implementation plan is to implement the two coroutines and seven 3366 ** subroutines first, then put the control logic at the bottom. Like this: 3367 ** 3368 ** goto Init 3369 ** coA: coroutine for left query (A) 3370 ** coB: coroutine for right query (B) 3371 ** outA: output one row of A 3372 ** outB: output one row of B (UNION and UNION ALL only) 3373 ** EofA: ... 3374 ** EofB: ... 3375 ** AltB: ... 3376 ** AeqB: ... 3377 ** AgtB: ... 3378 ** Init: initialize coroutine registers 3379 ** yield coA 3380 ** if eof(A) goto EofA 3381 ** yield coB 3382 ** if eof(B) goto EofB 3383 ** Cmpr: Compare A, B 3384 ** Jump AltB, AeqB, AgtB 3385 ** End: ... 3386 ** 3387 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 3388 ** actually called using Gosub and they do not Return. EofA and EofB loop 3389 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 3390 ** and AgtB jump to either L2 or to one of EofA or EofB. 3391 */ 3392 #ifndef SQLITE_OMIT_COMPOUND_SELECT 3393 static int multiSelectOrderBy( 3394 Parse *pParse, /* Parsing context */ 3395 Select *p, /* The right-most of SELECTs to be coded */ 3396 SelectDest *pDest /* What to do with query results */ 3397 ){ 3398 int i, j; /* Loop counters */ 3399 Select *pPrior; /* Another SELECT immediately to our left */ 3400 Select *pSplit; /* Left-most SELECT in the right-hand group */ 3401 int nSelect; /* Number of SELECT statements in the compound */ 3402 Vdbe *v; /* Generate code to this VDBE */ 3403 SelectDest destA; /* Destination for coroutine A */ 3404 SelectDest destB; /* Destination for coroutine B */ 3405 int regAddrA; /* Address register for select-A coroutine */ 3406 int regAddrB; /* Address register for select-B coroutine */ 3407 int addrSelectA; /* Address of the select-A coroutine */ 3408 int addrSelectB; /* Address of the select-B coroutine */ 3409 int regOutA; /* Address register for the output-A subroutine */ 3410 int regOutB; /* Address register for the output-B subroutine */ 3411 int addrOutA; /* Address of the output-A subroutine */ 3412 int addrOutB = 0; /* Address of the output-B subroutine */ 3413 int addrEofA; /* Address of the select-A-exhausted subroutine */ 3414 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 3415 int addrEofB; /* Address of the select-B-exhausted subroutine */ 3416 int addrAltB; /* Address of the A<B subroutine */ 3417 int addrAeqB; /* Address of the A==B subroutine */ 3418 int addrAgtB; /* Address of the A>B subroutine */ 3419 int regLimitA; /* Limit register for select-A */ 3420 int regLimitB; /* Limit register for select-A */ 3421 int regPrev; /* A range of registers to hold previous output */ 3422 int savedLimit; /* Saved value of p->iLimit */ 3423 int savedOffset; /* Saved value of p->iOffset */ 3424 int labelCmpr; /* Label for the start of the merge algorithm */ 3425 int labelEnd; /* Label for the end of the overall SELECT stmt */ 3426 int addr1; /* Jump instructions that get retargetted */ 3427 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 3428 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 3429 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 3430 sqlite3 *db; /* Database connection */ 3431 ExprList *pOrderBy; /* The ORDER BY clause */ 3432 int nOrderBy; /* Number of terms in the ORDER BY clause */ 3433 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */ 3434 3435 assert( p->pOrderBy!=0 ); 3436 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 3437 db = pParse->db; 3438 v = pParse->pVdbe; 3439 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 3440 labelEnd = sqlite3VdbeMakeLabel(pParse); 3441 labelCmpr = sqlite3VdbeMakeLabel(pParse); 3442 3443 3444 /* Patch up the ORDER BY clause 3445 */ 3446 op = p->op; 3447 assert( p->pPrior->pOrderBy==0 ); 3448 pOrderBy = p->pOrderBy; 3449 assert( pOrderBy ); 3450 nOrderBy = pOrderBy->nExpr; 3451 3452 /* For operators other than UNION ALL we have to make sure that 3453 ** the ORDER BY clause covers every term of the result set. Add 3454 ** terms to the ORDER BY clause as necessary. 3455 */ 3456 if( op!=TK_ALL ){ 3457 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 3458 struct ExprList_item *pItem; 3459 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 3460 assert( pItem!=0 ); 3461 assert( pItem->u.x.iOrderByCol>0 ); 3462 if( pItem->u.x.iOrderByCol==i ) break; 3463 } 3464 if( j==nOrderBy ){ 3465 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 3466 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 3467 pNew->flags |= EP_IntValue; 3468 pNew->u.iValue = i; 3469 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 3470 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 3471 } 3472 } 3473 } 3474 3475 /* Compute the comparison permutation and keyinfo that is used with 3476 ** the permutation used to determine if the next 3477 ** row of results comes from selectA or selectB. Also add explicit 3478 ** collations to the ORDER BY clause terms so that when the subqueries 3479 ** to the right and the left are evaluated, they use the correct 3480 ** collation. 3481 */ 3482 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1)); 3483 if( aPermute ){ 3484 struct ExprList_item *pItem; 3485 aPermute[0] = nOrderBy; 3486 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){ 3487 assert( pItem!=0 ); 3488 assert( pItem->u.x.iOrderByCol>0 ); 3489 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 3490 aPermute[i] = pItem->u.x.iOrderByCol - 1; 3491 } 3492 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 3493 }else{ 3494 pKeyMerge = 0; 3495 } 3496 3497 /* Allocate a range of temporary registers and the KeyInfo needed 3498 ** for the logic that removes duplicate result rows when the 3499 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 3500 */ 3501 if( op==TK_ALL ){ 3502 regPrev = 0; 3503 }else{ 3504 int nExpr = p->pEList->nExpr; 3505 assert( nOrderBy>=nExpr || db->mallocFailed ); 3506 regPrev = pParse->nMem+1; 3507 pParse->nMem += nExpr+1; 3508 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 3509 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 3510 if( pKeyDup ){ 3511 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 3512 for(i=0; i<nExpr; i++){ 3513 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 3514 pKeyDup->aSortFlags[i] = 0; 3515 } 3516 } 3517 } 3518 3519 /* Separate the left and the right query from one another 3520 */ 3521 nSelect = 1; 3522 if( (op==TK_ALL || op==TK_UNION) 3523 && OptimizationEnabled(db, SQLITE_BalancedMerge) 3524 ){ 3525 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){ 3526 nSelect++; 3527 assert( pSplit->pPrior->pNext==pSplit ); 3528 } 3529 } 3530 if( nSelect<=3 ){ 3531 pSplit = p; 3532 }else{ 3533 pSplit = p; 3534 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; } 3535 } 3536 pPrior = pSplit->pPrior; 3537 assert( pPrior!=0 ); 3538 pSplit->pPrior = 0; 3539 pPrior->pNext = 0; 3540 assert( p->pOrderBy == pOrderBy ); 3541 assert( pOrderBy!=0 || db->mallocFailed ); 3542 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 3543 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 3544 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 3545 3546 /* Compute the limit registers */ 3547 computeLimitRegisters(pParse, p, labelEnd); 3548 if( p->iLimit && op==TK_ALL ){ 3549 regLimitA = ++pParse->nMem; 3550 regLimitB = ++pParse->nMem; 3551 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 3552 regLimitA); 3553 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 3554 }else{ 3555 regLimitA = regLimitB = 0; 3556 } 3557 sqlite3ExprDelete(db, p->pLimit); 3558 p->pLimit = 0; 3559 3560 regAddrA = ++pParse->nMem; 3561 regAddrB = ++pParse->nMem; 3562 regOutA = ++pParse->nMem; 3563 regOutB = ++pParse->nMem; 3564 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 3565 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 3566 3567 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op))); 3568 3569 /* Generate a coroutine to evaluate the SELECT statement to the 3570 ** left of the compound operator - the "A" select. 3571 */ 3572 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 3573 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 3574 VdbeComment((v, "left SELECT")); 3575 pPrior->iLimit = regLimitA; 3576 ExplainQueryPlan((pParse, 1, "LEFT")); 3577 sqlite3Select(pParse, pPrior, &destA); 3578 sqlite3VdbeEndCoroutine(v, regAddrA); 3579 sqlite3VdbeJumpHere(v, addr1); 3580 3581 /* Generate a coroutine to evaluate the SELECT statement on 3582 ** the right - the "B" select 3583 */ 3584 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 3585 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 3586 VdbeComment((v, "right SELECT")); 3587 savedLimit = p->iLimit; 3588 savedOffset = p->iOffset; 3589 p->iLimit = regLimitB; 3590 p->iOffset = 0; 3591 ExplainQueryPlan((pParse, 1, "RIGHT")); 3592 sqlite3Select(pParse, p, &destB); 3593 p->iLimit = savedLimit; 3594 p->iOffset = savedOffset; 3595 sqlite3VdbeEndCoroutine(v, regAddrB); 3596 3597 /* Generate a subroutine that outputs the current row of the A 3598 ** select as the next output row of the compound select. 3599 */ 3600 VdbeNoopComment((v, "Output routine for A")); 3601 addrOutA = generateOutputSubroutine(pParse, 3602 p, &destA, pDest, regOutA, 3603 regPrev, pKeyDup, labelEnd); 3604 3605 /* Generate a subroutine that outputs the current row of the B 3606 ** select as the next output row of the compound select. 3607 */ 3608 if( op==TK_ALL || op==TK_UNION ){ 3609 VdbeNoopComment((v, "Output routine for B")); 3610 addrOutB = generateOutputSubroutine(pParse, 3611 p, &destB, pDest, regOutB, 3612 regPrev, pKeyDup, labelEnd); 3613 } 3614 sqlite3KeyInfoUnref(pKeyDup); 3615 3616 /* Generate a subroutine to run when the results from select A 3617 ** are exhausted and only data in select B remains. 3618 */ 3619 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 3620 addrEofA_noB = addrEofA = labelEnd; 3621 }else{ 3622 VdbeNoopComment((v, "eof-A subroutine")); 3623 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3624 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 3625 VdbeCoverage(v); 3626 sqlite3VdbeGoto(v, addrEofA); 3627 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow); 3628 } 3629 3630 /* Generate a subroutine to run when the results from select B 3631 ** are exhausted and only data in select A remains. 3632 */ 3633 if( op==TK_INTERSECT ){ 3634 addrEofB = addrEofA; 3635 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 3636 }else{ 3637 VdbeNoopComment((v, "eof-B subroutine")); 3638 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3639 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 3640 sqlite3VdbeGoto(v, addrEofB); 3641 } 3642 3643 /* Generate code to handle the case of A<B 3644 */ 3645 VdbeNoopComment((v, "A-lt-B subroutine")); 3646 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 3647 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3648 sqlite3VdbeGoto(v, labelCmpr); 3649 3650 /* Generate code to handle the case of A==B 3651 */ 3652 if( op==TK_ALL ){ 3653 addrAeqB = addrAltB; 3654 }else if( op==TK_INTERSECT ){ 3655 addrAeqB = addrAltB; 3656 addrAltB++; 3657 }else{ 3658 VdbeNoopComment((v, "A-eq-B subroutine")); 3659 addrAeqB = 3660 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 3661 sqlite3VdbeGoto(v, labelCmpr); 3662 } 3663 3664 /* Generate code to handle the case of A>B 3665 */ 3666 VdbeNoopComment((v, "A-gt-B subroutine")); 3667 addrAgtB = sqlite3VdbeCurrentAddr(v); 3668 if( op==TK_ALL || op==TK_UNION ){ 3669 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 3670 } 3671 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3672 sqlite3VdbeGoto(v, labelCmpr); 3673 3674 /* This code runs once to initialize everything. 3675 */ 3676 sqlite3VdbeJumpHere(v, addr1); 3677 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 3678 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 3679 3680 /* Implement the main merge loop 3681 */ 3682 sqlite3VdbeResolveLabel(v, labelCmpr); 3683 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 3684 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 3685 (char*)pKeyMerge, P4_KEYINFO); 3686 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 3687 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 3688 3689 /* Jump to the this point in order to terminate the query. 3690 */ 3691 sqlite3VdbeResolveLabel(v, labelEnd); 3692 3693 /* Reassemble the compound query so that it will be freed correctly 3694 ** by the calling function */ 3695 if( pSplit->pPrior ){ 3696 sqlite3ParserAddCleanup(pParse, 3697 (void(*)(sqlite3*,void*))sqlite3SelectDelete, pSplit->pPrior); 3698 } 3699 pSplit->pPrior = pPrior; 3700 pPrior->pNext = pSplit; 3701 sqlite3ExprListDelete(db, pPrior->pOrderBy); 3702 pPrior->pOrderBy = 0; 3703 3704 /*** TBD: Insert subroutine calls to close cursors on incomplete 3705 **** subqueries ****/ 3706 ExplainQueryPlanPop(pParse); 3707 return pParse->nErr!=0; 3708 } 3709 #endif 3710 3711 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3712 3713 /* An instance of the SubstContext object describes an substitution edit 3714 ** to be performed on a parse tree. 3715 ** 3716 ** All references to columns in table iTable are to be replaced by corresponding 3717 ** expressions in pEList. 3718 ** 3719 ** ## About "isOuterJoin": 3720 ** 3721 ** The isOuterJoin column indicates that the replacement will occur into a 3722 ** position in the parent that NULL-able due to an OUTER JOIN. Either the 3723 ** target slot in the parent is the right operand of a LEFT JOIN, or one of 3724 ** the left operands of a RIGHT JOIN. In either case, we need to potentially 3725 ** bypass the substituted expression with OP_IfNullRow. 3726 ** 3727 ** Suppose the original expression is an integer constant. Even though the table 3728 ** has the nullRow flag set, because the expression is an integer constant, 3729 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode 3730 ** that checks to see if the nullRow flag is set on the table. If the nullRow 3731 ** flag is set, then the value in the register is set to NULL and the original 3732 ** expression is bypassed. If the nullRow flag is not set, then the original 3733 ** expression runs to populate the register. 3734 ** 3735 ** Example where this is needed: 3736 ** 3737 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT); 3738 ** CREATE TABLE t2(x INT UNIQUE); 3739 ** 3740 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x; 3741 ** 3742 ** When the subquery on the right side of the LEFT JOIN is flattened, we 3743 ** have to add OP_IfNullRow in front of the OP_Integer that implements the 3744 ** "m" value of the subquery so that a NULL will be loaded instead of 59 3745 ** when processing a non-matched row of the left. 3746 */ 3747 typedef struct SubstContext { 3748 Parse *pParse; /* The parsing context */ 3749 int iTable; /* Replace references to this table */ 3750 int iNewTable; /* New table number */ 3751 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */ 3752 ExprList *pEList; /* Replacement expressions */ 3753 } SubstContext; 3754 3755 /* Forward Declarations */ 3756 static void substExprList(SubstContext*, ExprList*); 3757 static void substSelect(SubstContext*, Select*, int); 3758 3759 /* 3760 ** Scan through the expression pExpr. Replace every reference to 3761 ** a column in table number iTable with a copy of the iColumn-th 3762 ** entry in pEList. (But leave references to the ROWID column 3763 ** unchanged.) 3764 ** 3765 ** This routine is part of the flattening procedure. A subquery 3766 ** whose result set is defined by pEList appears as entry in the 3767 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 3768 ** FORM clause entry is iTable. This routine makes the necessary 3769 ** changes to pExpr so that it refers directly to the source table 3770 ** of the subquery rather the result set of the subquery. 3771 */ 3772 static Expr *substExpr( 3773 SubstContext *pSubst, /* Description of the substitution */ 3774 Expr *pExpr /* Expr in which substitution occurs */ 3775 ){ 3776 if( pExpr==0 ) return 0; 3777 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON) 3778 && pExpr->w.iJoin==pSubst->iTable 3779 ){ 3780 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 3781 pExpr->w.iJoin = pSubst->iNewTable; 3782 } 3783 if( pExpr->op==TK_COLUMN 3784 && pExpr->iTable==pSubst->iTable 3785 && !ExprHasProperty(pExpr, EP_FixedCol) 3786 ){ 3787 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 3788 if( pExpr->iColumn<0 ){ 3789 pExpr->op = TK_NULL; 3790 }else 3791 #endif 3792 { 3793 Expr *pNew; 3794 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr; 3795 Expr ifNullRow; 3796 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr ); 3797 assert( pExpr->pRight==0 ); 3798 if( sqlite3ExprIsVector(pCopy) ){ 3799 sqlite3VectorErrorMsg(pSubst->pParse, pCopy); 3800 }else{ 3801 sqlite3 *db = pSubst->pParse->db; 3802 if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){ 3803 memset(&ifNullRow, 0, sizeof(ifNullRow)); 3804 ifNullRow.op = TK_IF_NULL_ROW; 3805 ifNullRow.pLeft = pCopy; 3806 ifNullRow.iTable = pSubst->iNewTable; 3807 ifNullRow.iColumn = -99; 3808 ifNullRow.flags = EP_IfNullRow; 3809 pCopy = &ifNullRow; 3810 } 3811 testcase( ExprHasProperty(pCopy, EP_Subquery) ); 3812 pNew = sqlite3ExprDup(db, pCopy, 0); 3813 if( db->mallocFailed ){ 3814 sqlite3ExprDelete(db, pNew); 3815 return pExpr; 3816 } 3817 if( pSubst->isOuterJoin ){ 3818 ExprSetProperty(pNew, EP_CanBeNull); 3819 } 3820 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){ 3821 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin, 3822 pExpr->flags & (EP_OuterON|EP_InnerON)); 3823 } 3824 sqlite3ExprDelete(db, pExpr); 3825 pExpr = pNew; 3826 if( pExpr->op==TK_TRUEFALSE ){ 3827 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr); 3828 pExpr->op = TK_INTEGER; 3829 ExprSetProperty(pExpr, EP_IntValue); 3830 } 3831 3832 /* Ensure that the expression now has an implicit collation sequence, 3833 ** just as it did when it was a column of a view or sub-query. */ 3834 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){ 3835 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr); 3836 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr, 3837 (pColl ? pColl->zName : "BINARY") 3838 ); 3839 } 3840 ExprClearProperty(pExpr, EP_Collate); 3841 } 3842 } 3843 }else{ 3844 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){ 3845 pExpr->iTable = pSubst->iNewTable; 3846 } 3847 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft); 3848 pExpr->pRight = substExpr(pSubst, pExpr->pRight); 3849 if( ExprUseXSelect(pExpr) ){ 3850 substSelect(pSubst, pExpr->x.pSelect, 1); 3851 }else{ 3852 substExprList(pSubst, pExpr->x.pList); 3853 } 3854 #ifndef SQLITE_OMIT_WINDOWFUNC 3855 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 3856 Window *pWin = pExpr->y.pWin; 3857 pWin->pFilter = substExpr(pSubst, pWin->pFilter); 3858 substExprList(pSubst, pWin->pPartition); 3859 substExprList(pSubst, pWin->pOrderBy); 3860 } 3861 #endif 3862 } 3863 return pExpr; 3864 } 3865 static void substExprList( 3866 SubstContext *pSubst, /* Description of the substitution */ 3867 ExprList *pList /* List to scan and in which to make substitutes */ 3868 ){ 3869 int i; 3870 if( pList==0 ) return; 3871 for(i=0; i<pList->nExpr; i++){ 3872 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr); 3873 } 3874 } 3875 static void substSelect( 3876 SubstContext *pSubst, /* Description of the substitution */ 3877 Select *p, /* SELECT statement in which to make substitutions */ 3878 int doPrior /* Do substitutes on p->pPrior too */ 3879 ){ 3880 SrcList *pSrc; 3881 SrcItem *pItem; 3882 int i; 3883 if( !p ) return; 3884 do{ 3885 substExprList(pSubst, p->pEList); 3886 substExprList(pSubst, p->pGroupBy); 3887 substExprList(pSubst, p->pOrderBy); 3888 p->pHaving = substExpr(pSubst, p->pHaving); 3889 p->pWhere = substExpr(pSubst, p->pWhere); 3890 pSrc = p->pSrc; 3891 assert( pSrc!=0 ); 3892 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3893 substSelect(pSubst, pItem->pSelect, 1); 3894 if( pItem->fg.isTabFunc ){ 3895 substExprList(pSubst, pItem->u1.pFuncArg); 3896 } 3897 } 3898 }while( doPrior && (p = p->pPrior)!=0 ); 3899 } 3900 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3901 3902 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3903 /* 3904 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM 3905 ** clause of that SELECT. 3906 ** 3907 ** This routine scans the entire SELECT statement and recomputes the 3908 ** pSrcItem->colUsed mask. 3909 */ 3910 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){ 3911 SrcItem *pItem; 3912 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 3913 pItem = pWalker->u.pSrcItem; 3914 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue; 3915 if( pExpr->iColumn<0 ) return WRC_Continue; 3916 pItem->colUsed |= sqlite3ExprColUsed(pExpr); 3917 return WRC_Continue; 3918 } 3919 static void recomputeColumnsUsed( 3920 Select *pSelect, /* The complete SELECT statement */ 3921 SrcItem *pSrcItem /* Which FROM clause item to recompute */ 3922 ){ 3923 Walker w; 3924 if( NEVER(pSrcItem->pTab==0) ) return; 3925 memset(&w, 0, sizeof(w)); 3926 w.xExprCallback = recomputeColumnsUsedExpr; 3927 w.xSelectCallback = sqlite3SelectWalkNoop; 3928 w.u.pSrcItem = pSrcItem; 3929 pSrcItem->colUsed = 0; 3930 sqlite3WalkSelect(&w, pSelect); 3931 } 3932 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3933 3934 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3935 /* 3936 ** Assign new cursor numbers to each of the items in pSrc. For each 3937 ** new cursor number assigned, set an entry in the aCsrMap[] array 3938 ** to map the old cursor number to the new: 3939 ** 3940 ** aCsrMap[iOld+1] = iNew; 3941 ** 3942 ** The array is guaranteed by the caller to be large enough for all 3943 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size. 3944 ** 3945 ** If pSrc contains any sub-selects, call this routine recursively 3946 ** on the FROM clause of each such sub-select, with iExcept set to -1. 3947 */ 3948 static void srclistRenumberCursors( 3949 Parse *pParse, /* Parse context */ 3950 int *aCsrMap, /* Array to store cursor mappings in */ 3951 SrcList *pSrc, /* FROM clause to renumber */ 3952 int iExcept /* FROM clause item to skip */ 3953 ){ 3954 int i; 3955 SrcItem *pItem; 3956 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){ 3957 if( i!=iExcept ){ 3958 Select *p; 3959 assert( pItem->iCursor < aCsrMap[0] ); 3960 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){ 3961 aCsrMap[pItem->iCursor+1] = pParse->nTab++; 3962 } 3963 pItem->iCursor = aCsrMap[pItem->iCursor+1]; 3964 for(p=pItem->pSelect; p; p=p->pPrior){ 3965 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1); 3966 } 3967 } 3968 } 3969 } 3970 3971 /* 3972 ** *piCursor is a cursor number. Change it if it needs to be mapped. 3973 */ 3974 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){ 3975 int *aCsrMap = pWalker->u.aiCol; 3976 int iCsr = *piCursor; 3977 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){ 3978 *piCursor = aCsrMap[iCsr+1]; 3979 } 3980 } 3981 3982 /* 3983 ** Expression walker callback used by renumberCursors() to update 3984 ** Expr objects to match newly assigned cursor numbers. 3985 */ 3986 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){ 3987 int op = pExpr->op; 3988 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){ 3989 renumberCursorDoMapping(pWalker, &pExpr->iTable); 3990 } 3991 if( ExprHasProperty(pExpr, EP_OuterON) ){ 3992 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin); 3993 } 3994 return WRC_Continue; 3995 } 3996 3997 /* 3998 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc) 3999 ** of the SELECT statement passed as the second argument, and to each 4000 ** cursor in the FROM clause of any FROM clause sub-selects, recursively. 4001 ** Except, do not assign a new cursor number to the iExcept'th element in 4002 ** the FROM clause of (*p). Update all expressions and other references 4003 ** to refer to the new cursor numbers. 4004 ** 4005 ** Argument aCsrMap is an array that may be used for temporary working 4006 ** space. Two guarantees are made by the caller: 4007 ** 4008 ** * the array is larger than the largest cursor number used within the 4009 ** select statement passed as an argument, and 4010 ** 4011 ** * the array entries for all cursor numbers that do *not* appear in 4012 ** FROM clauses of the select statement as described above are 4013 ** initialized to zero. 4014 */ 4015 static void renumberCursors( 4016 Parse *pParse, /* Parse context */ 4017 Select *p, /* Select to renumber cursors within */ 4018 int iExcept, /* FROM clause item to skip */ 4019 int *aCsrMap /* Working space */ 4020 ){ 4021 Walker w; 4022 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept); 4023 memset(&w, 0, sizeof(w)); 4024 w.u.aiCol = aCsrMap; 4025 w.xExprCallback = renumberCursorsCb; 4026 w.xSelectCallback = sqlite3SelectWalkNoop; 4027 sqlite3WalkSelect(&w, p); 4028 } 4029 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4030 4031 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4032 /* 4033 ** This routine attempts to flatten subqueries as a performance optimization. 4034 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 4035 ** 4036 ** To understand the concept of flattening, consider the following 4037 ** query: 4038 ** 4039 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 4040 ** 4041 ** The default way of implementing this query is to execute the 4042 ** subquery first and store the results in a temporary table, then 4043 ** run the outer query on that temporary table. This requires two 4044 ** passes over the data. Furthermore, because the temporary table 4045 ** has no indices, the WHERE clause on the outer query cannot be 4046 ** optimized. 4047 ** 4048 ** This routine attempts to rewrite queries such as the above into 4049 ** a single flat select, like this: 4050 ** 4051 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 4052 ** 4053 ** The code generated for this simplification gives the same result 4054 ** but only has to scan the data once. And because indices might 4055 ** exist on the table t1, a complete scan of the data might be 4056 ** avoided. 4057 ** 4058 ** Flattening is subject to the following constraints: 4059 ** 4060 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4061 ** The subquery and the outer query cannot both be aggregates. 4062 ** 4063 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4064 ** (2) If the subquery is an aggregate then 4065 ** (2a) the outer query must not be a join and 4066 ** (2b) the outer query must not use subqueries 4067 ** other than the one FROM-clause subquery that is a candidate 4068 ** for flattening. (This is due to ticket [2f7170d73bf9abf80] 4069 ** from 2015-02-09.) 4070 ** 4071 ** (3) If the subquery is the right operand of a LEFT JOIN then 4072 ** (3a) the subquery may not be a join and 4073 ** (3b) the FROM clause of the subquery may not contain a virtual 4074 ** table and 4075 ** (**) Was: "The outer query may not have a GROUP BY." This case 4076 ** is now managed correctly 4077 ** (3d) the outer query may not be DISTINCT. 4078 ** See also (26) for restrictions on RIGHT JOIN. 4079 ** 4080 ** (4) The subquery can not be DISTINCT. 4081 ** 4082 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 4083 ** sub-queries that were excluded from this optimization. Restriction 4084 ** (4) has since been expanded to exclude all DISTINCT subqueries. 4085 ** 4086 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4087 ** If the subquery is aggregate, the outer query may not be DISTINCT. 4088 ** 4089 ** (7) The subquery must have a FROM clause. TODO: For subqueries without 4090 ** A FROM clause, consider adding a FROM clause with the special 4091 ** table sqlite_once that consists of a single row containing a 4092 ** single NULL. 4093 ** 4094 ** (8) If the subquery uses LIMIT then the outer query may not be a join. 4095 ** 4096 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate. 4097 ** 4098 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we 4099 ** accidently carried the comment forward until 2014-09-15. Original 4100 ** constraint: "If the subquery is aggregate then the outer query 4101 ** may not use LIMIT." 4102 ** 4103 ** (11) The subquery and the outer query may not both have ORDER BY clauses. 4104 ** 4105 ** (**) Not implemented. Subsumed into restriction (3). Was previously 4106 ** a separate restriction deriving from ticket #350. 4107 ** 4108 ** (13) The subquery and outer query may not both use LIMIT. 4109 ** 4110 ** (14) The subquery may not use OFFSET. 4111 ** 4112 ** (15) If the outer query is part of a compound select, then the 4113 ** subquery may not use LIMIT. 4114 ** (See ticket #2339 and ticket [02a8e81d44]). 4115 ** 4116 ** (16) If the outer query is aggregate, then the subquery may not 4117 ** use ORDER BY. (Ticket #2942) This used to not matter 4118 ** until we introduced the group_concat() function. 4119 ** 4120 ** (17) If the subquery is a compound select, then 4121 ** (17a) all compound operators must be a UNION ALL, and 4122 ** (17b) no terms within the subquery compound may be aggregate 4123 ** or DISTINCT, and 4124 ** (17c) every term within the subquery compound must have a FROM clause 4125 ** (17d) the outer query may not be 4126 ** (17d1) aggregate, or 4127 ** (17d2) DISTINCT 4128 ** (17e) the subquery may not contain window functions, and 4129 ** (17f) the subquery must not be the RHS of a LEFT JOIN. 4130 ** (17g) either the subquery is the first element of the outer 4131 ** query or there are no RIGHT or FULL JOINs in any arm 4132 ** of the subquery. (This is a duplicate of condition (27b).) 4133 ** 4134 ** The parent and sub-query may contain WHERE clauses. Subject to 4135 ** rules (11), (13) and (14), they may also contain ORDER BY, 4136 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 4137 ** operator other than UNION ALL because all the other compound 4138 ** operators have an implied DISTINCT which is disallowed by 4139 ** restriction (4). 4140 ** 4141 ** Also, each component of the sub-query must return the same number 4142 ** of result columns. This is actually a requirement for any compound 4143 ** SELECT statement, but all the code here does is make sure that no 4144 ** such (illegal) sub-query is flattened. The caller will detect the 4145 ** syntax error and return a detailed message. 4146 ** 4147 ** (18) If the sub-query is a compound select, then all terms of the 4148 ** ORDER BY clause of the parent must be copies of a term returned 4149 ** by the parent query. 4150 ** 4151 ** (19) If the subquery uses LIMIT then the outer query may not 4152 ** have a WHERE clause. 4153 ** 4154 ** (20) If the sub-query is a compound select, then it must not use 4155 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 4156 ** somewhat by saying that the terms of the ORDER BY clause must 4157 ** appear as unmodified result columns in the outer query. But we 4158 ** have other optimizations in mind to deal with that case. 4159 ** 4160 ** (21) If the subquery uses LIMIT then the outer query may not be 4161 ** DISTINCT. (See ticket [752e1646fc]). 4162 ** 4163 ** (22) The subquery may not be a recursive CTE. 4164 ** 4165 ** (23) If the outer query is a recursive CTE, then the sub-query may not be 4166 ** a compound query. This restriction is because transforming the 4167 ** parent to a compound query confuses the code that handles 4168 ** recursive queries in multiSelect(). 4169 ** 4170 ** (**) We no longer attempt to flatten aggregate subqueries. Was: 4171 ** The subquery may not be an aggregate that uses the built-in min() or 4172 ** or max() functions. (Without this restriction, a query like: 4173 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily 4174 ** return the value X for which Y was maximal.) 4175 ** 4176 ** (25) If either the subquery or the parent query contains a window 4177 ** function in the select list or ORDER BY clause, flattening 4178 ** is not attempted. 4179 ** 4180 ** (26) The subquery may not be the right operand of a RIGHT JOIN. 4181 ** See also (3) for restrictions on LEFT JOIN. 4182 ** 4183 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it 4184 ** is the first element of the parent query. Two subcases: 4185 ** (27a) the subquery is not a compound query. 4186 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs 4187 ** in any arm of the compound query. (See also (17g).) 4188 ** 4189 ** (28) The subquery is not a MATERIALIZED CTE. 4190 ** 4191 ** 4192 ** In this routine, the "p" parameter is a pointer to the outer query. 4193 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 4194 ** uses aggregates. 4195 ** 4196 ** If flattening is not attempted, this routine is a no-op and returns 0. 4197 ** If flattening is attempted this routine returns 1. 4198 ** 4199 ** All of the expression analysis must occur on both the outer query and 4200 ** the subquery before this routine runs. 4201 */ 4202 static int flattenSubquery( 4203 Parse *pParse, /* Parsing context */ 4204 Select *p, /* The parent or outer SELECT statement */ 4205 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 4206 int isAgg /* True if outer SELECT uses aggregate functions */ 4207 ){ 4208 const char *zSavedAuthContext = pParse->zAuthContext; 4209 Select *pParent; /* Current UNION ALL term of the other query */ 4210 Select *pSub; /* The inner query or "subquery" */ 4211 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 4212 SrcList *pSrc; /* The FROM clause of the outer query */ 4213 SrcList *pSubSrc; /* The FROM clause of the subquery */ 4214 int iParent; /* VDBE cursor number of the pSub result set temp table */ 4215 int iNewParent = -1;/* Replacement table for iParent */ 4216 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */ 4217 int i; /* Loop counter */ 4218 Expr *pWhere; /* The WHERE clause */ 4219 SrcItem *pSubitem; /* The subquery */ 4220 sqlite3 *db = pParse->db; 4221 Walker w; /* Walker to persist agginfo data */ 4222 int *aCsrMap = 0; 4223 4224 /* Check to see if flattening is permitted. Return 0 if not. 4225 */ 4226 assert( p!=0 ); 4227 assert( p->pPrior==0 ); 4228 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 4229 pSrc = p->pSrc; 4230 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 4231 pSubitem = &pSrc->a[iFrom]; 4232 iParent = pSubitem->iCursor; 4233 pSub = pSubitem->pSelect; 4234 assert( pSub!=0 ); 4235 4236 #ifndef SQLITE_OMIT_WINDOWFUNC 4237 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */ 4238 #endif 4239 4240 pSubSrc = pSub->pSrc; 4241 assert( pSubSrc ); 4242 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 4243 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET 4244 ** because they could be computed at compile-time. But when LIMIT and OFFSET 4245 ** became arbitrary expressions, we were forced to add restrictions (13) 4246 ** and (14). */ 4247 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 4248 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */ 4249 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 4250 return 0; /* Restriction (15) */ 4251 } 4252 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 4253 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */ 4254 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 4255 return 0; /* Restrictions (8)(9) */ 4256 } 4257 if( p->pOrderBy && pSub->pOrderBy ){ 4258 return 0; /* Restriction (11) */ 4259 } 4260 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 4261 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 4262 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 4263 return 0; /* Restriction (21) */ 4264 } 4265 if( pSub->selFlags & (SF_Recursive) ){ 4266 return 0; /* Restrictions (22) */ 4267 } 4268 4269 /* 4270 ** If the subquery is the right operand of a LEFT JOIN, then the 4271 ** subquery may not be a join itself (3a). Example of why this is not 4272 ** allowed: 4273 ** 4274 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 4275 ** 4276 ** If we flatten the above, we would get 4277 ** 4278 ** (t1 LEFT OUTER JOIN t2) JOIN t3 4279 ** 4280 ** which is not at all the same thing. 4281 ** 4282 ** See also tickets #306, #350, and #3300. 4283 */ 4284 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){ 4285 if( pSubSrc->nSrc>1 /* (3a) */ 4286 || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */ 4287 || (p->selFlags & SF_Distinct)!=0 /* (3d) */ 4288 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */ 4289 ){ 4290 return 0; 4291 } 4292 isOuterJoin = 1; 4293 } 4294 4295 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */ 4296 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 4297 return 0; /* Restriction (27a) */ 4298 } 4299 if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){ 4300 return 0; /* (28) */ 4301 } 4302 4303 /* Restriction (17): If the sub-query is a compound SELECT, then it must 4304 ** use only the UNION ALL operator. And none of the simple select queries 4305 ** that make up the compound SELECT are allowed to be aggregate or distinct 4306 ** queries. 4307 */ 4308 if( pSub->pPrior ){ 4309 if( pSub->pOrderBy ){ 4310 return 0; /* Restriction (20) */ 4311 } 4312 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){ 4313 return 0; /* (17d1), (17d2), or (17f) */ 4314 } 4315 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 4316 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 4317 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 4318 assert( pSub->pSrc!=0 ); 4319 assert( (pSub->selFlags & SF_Recursive)==0 ); 4320 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); 4321 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */ 4322 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */ 4323 || pSub1->pSrc->nSrc<1 /* (17c) */ 4324 #ifndef SQLITE_OMIT_WINDOWFUNC 4325 || pSub1->pWin /* (17e) */ 4326 #endif 4327 ){ 4328 return 0; 4329 } 4330 if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){ 4331 /* Without this restriction, the JT_LTORJ flag would end up being 4332 ** omitted on left-hand tables of the right join that is being 4333 ** flattened. */ 4334 return 0; /* Restrictions (17g), (27b) */ 4335 } 4336 testcase( pSub1->pSrc->nSrc>1 ); 4337 } 4338 4339 /* Restriction (18). */ 4340 if( p->pOrderBy ){ 4341 int ii; 4342 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 4343 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 4344 } 4345 } 4346 4347 /* Restriction (23) */ 4348 if( (p->selFlags & SF_Recursive) ) return 0; 4349 4350 if( pSrc->nSrc>1 ){ 4351 if( pParse->nSelect>500 ) return 0; 4352 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0; 4353 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int)); 4354 if( aCsrMap ) aCsrMap[0] = pParse->nTab; 4355 } 4356 } 4357 4358 /***** If we reach this point, flattening is permitted. *****/ 4359 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n", 4360 pSub->selId, pSub, iFrom)); 4361 4362 /* Authorize the subquery */ 4363 pParse->zAuthContext = pSubitem->zName; 4364 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 4365 testcase( i==SQLITE_DENY ); 4366 pParse->zAuthContext = zSavedAuthContext; 4367 4368 /* Delete the transient structures associated with thesubquery */ 4369 pSub1 = pSubitem->pSelect; 4370 sqlite3DbFree(db, pSubitem->zDatabase); 4371 sqlite3DbFree(db, pSubitem->zName); 4372 sqlite3DbFree(db, pSubitem->zAlias); 4373 pSubitem->zDatabase = 0; 4374 pSubitem->zName = 0; 4375 pSubitem->zAlias = 0; 4376 pSubitem->pSelect = 0; 4377 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 ); 4378 4379 /* If the sub-query is a compound SELECT statement, then (by restrictions 4380 ** 17 and 18 above) it must be a UNION ALL and the parent query must 4381 ** be of the form: 4382 ** 4383 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 4384 ** 4385 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 4386 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 4387 ** OFFSET clauses and joins them to the left-hand-side of the original 4388 ** using UNION ALL operators. In this case N is the number of simple 4389 ** select statements in the compound sub-query. 4390 ** 4391 ** Example: 4392 ** 4393 ** SELECT a+1 FROM ( 4394 ** SELECT x FROM tab 4395 ** UNION ALL 4396 ** SELECT y FROM tab 4397 ** UNION ALL 4398 ** SELECT abs(z*2) FROM tab2 4399 ** ) WHERE a!=5 ORDER BY 1 4400 ** 4401 ** Transformed into: 4402 ** 4403 ** SELECT x+1 FROM tab WHERE x+1!=5 4404 ** UNION ALL 4405 ** SELECT y+1 FROM tab WHERE y+1!=5 4406 ** UNION ALL 4407 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 4408 ** ORDER BY 1 4409 ** 4410 ** We call this the "compound-subquery flattening". 4411 */ 4412 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 4413 Select *pNew; 4414 ExprList *pOrderBy = p->pOrderBy; 4415 Expr *pLimit = p->pLimit; 4416 Select *pPrior = p->pPrior; 4417 Table *pItemTab = pSubitem->pTab; 4418 pSubitem->pTab = 0; 4419 p->pOrderBy = 0; 4420 p->pPrior = 0; 4421 p->pLimit = 0; 4422 pNew = sqlite3SelectDup(db, p, 0); 4423 p->pLimit = pLimit; 4424 p->pOrderBy = pOrderBy; 4425 p->op = TK_ALL; 4426 pSubitem->pTab = pItemTab; 4427 if( pNew==0 ){ 4428 p->pPrior = pPrior; 4429 }else{ 4430 pNew->selId = ++pParse->nSelect; 4431 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){ 4432 renumberCursors(pParse, pNew, iFrom, aCsrMap); 4433 } 4434 pNew->pPrior = pPrior; 4435 if( pPrior ) pPrior->pNext = pNew; 4436 pNew->pNext = p; 4437 p->pPrior = pNew; 4438 SELECTTRACE(2,pParse,p,("compound-subquery flattener" 4439 " creates %u as peer\n",pNew->selId)); 4440 } 4441 assert( pSubitem->pSelect==0 ); 4442 } 4443 sqlite3DbFree(db, aCsrMap); 4444 if( db->mallocFailed ){ 4445 pSubitem->pSelect = pSub1; 4446 return 1; 4447 } 4448 4449 /* Defer deleting the Table object associated with the 4450 ** subquery until code generation is 4451 ** complete, since there may still exist Expr.pTab entries that 4452 ** refer to the subquery even after flattening. Ticket #3346. 4453 ** 4454 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 4455 */ 4456 if( ALWAYS(pSubitem->pTab!=0) ){ 4457 Table *pTabToDel = pSubitem->pTab; 4458 if( pTabToDel->nTabRef==1 ){ 4459 Parse *pToplevel = sqlite3ParseToplevel(pParse); 4460 sqlite3ParserAddCleanup(pToplevel, 4461 (void(*)(sqlite3*,void*))sqlite3DeleteTable, 4462 pTabToDel); 4463 testcase( pToplevel->earlyCleanup ); 4464 }else{ 4465 pTabToDel->nTabRef--; 4466 } 4467 pSubitem->pTab = 0; 4468 } 4469 4470 /* The following loop runs once for each term in a compound-subquery 4471 ** flattening (as described above). If we are doing a different kind 4472 ** of flattening - a flattening other than a compound-subquery flattening - 4473 ** then this loop only runs once. 4474 ** 4475 ** This loop moves all of the FROM elements of the subquery into the 4476 ** the FROM clause of the outer query. Before doing this, remember 4477 ** the cursor number for the original outer query FROM element in 4478 ** iParent. The iParent cursor will never be used. Subsequent code 4479 ** will scan expressions looking for iParent references and replace 4480 ** those references with expressions that resolve to the subquery FROM 4481 ** elements we are now copying in. 4482 */ 4483 pSub = pSub1; 4484 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 4485 int nSubSrc; 4486 u8 jointype = 0; 4487 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ; 4488 assert( pSub!=0 ); 4489 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 4490 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 4491 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 4492 4493 if( pParent==p ){ 4494 jointype = pSubitem->fg.jointype; /* First time through the loop */ 4495 } 4496 4497 /* The subquery uses a single slot of the FROM clause of the outer 4498 ** query. If the subquery has more than one element in its FROM clause, 4499 ** then expand the outer query to make space for it to hold all elements 4500 ** of the subquery. 4501 ** 4502 ** Example: 4503 ** 4504 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 4505 ** 4506 ** The outer query has 3 slots in its FROM clause. One slot of the 4507 ** outer query (the middle slot) is used by the subquery. The next 4508 ** block of code will expand the outer query FROM clause to 4 slots. 4509 ** The middle slot is expanded to two slots in order to make space 4510 ** for the two elements in the FROM clause of the subquery. 4511 */ 4512 if( nSubSrc>1 ){ 4513 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1); 4514 if( pSrc==0 ) break; 4515 pParent->pSrc = pSrc; 4516 } 4517 4518 /* Transfer the FROM clause terms from the subquery into the 4519 ** outer query. 4520 */ 4521 for(i=0; i<nSubSrc; i++){ 4522 SrcItem *pItem = &pSrc->a[i+iFrom]; 4523 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing); 4524 assert( pItem->fg.isTabFunc==0 ); 4525 *pItem = pSubSrc->a[i]; 4526 pItem->fg.jointype |= ltorj; 4527 iNewParent = pSubSrc->a[i].iCursor; 4528 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 4529 } 4530 pSrc->a[iFrom].fg.jointype &= JT_LTORJ; 4531 pSrc->a[iFrom].fg.jointype |= jointype | ltorj; 4532 4533 /* Now begin substituting subquery result set expressions for 4534 ** references to the iParent in the outer query. 4535 ** 4536 ** Example: 4537 ** 4538 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 4539 ** \ \_____________ subquery __________/ / 4540 ** \_____________________ outer query ______________________________/ 4541 ** 4542 ** We look at every expression in the outer query and every place we see 4543 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 4544 */ 4545 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){ 4546 /* At this point, any non-zero iOrderByCol values indicate that the 4547 ** ORDER BY column expression is identical to the iOrderByCol'th 4548 ** expression returned by SELECT statement pSub. Since these values 4549 ** do not necessarily correspond to columns in SELECT statement pParent, 4550 ** zero them before transfering the ORDER BY clause. 4551 ** 4552 ** Not doing this may cause an error if a subsequent call to this 4553 ** function attempts to flatten a compound sub-query into pParent 4554 ** (the only way this can happen is if the compound sub-query is 4555 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ 4556 ExprList *pOrderBy = pSub->pOrderBy; 4557 for(i=0; i<pOrderBy->nExpr; i++){ 4558 pOrderBy->a[i].u.x.iOrderByCol = 0; 4559 } 4560 assert( pParent->pOrderBy==0 ); 4561 pParent->pOrderBy = pOrderBy; 4562 pSub->pOrderBy = 0; 4563 } 4564 pWhere = pSub->pWhere; 4565 pSub->pWhere = 0; 4566 if( isOuterJoin>0 ){ 4567 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON); 4568 } 4569 if( pWhere ){ 4570 if( pParent->pWhere ){ 4571 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere); 4572 }else{ 4573 pParent->pWhere = pWhere; 4574 } 4575 } 4576 if( db->mallocFailed==0 ){ 4577 SubstContext x; 4578 x.pParse = pParse; 4579 x.iTable = iParent; 4580 x.iNewTable = iNewParent; 4581 x.isOuterJoin = isOuterJoin; 4582 x.pEList = pSub->pEList; 4583 substSelect(&x, pParent, 0); 4584 } 4585 4586 /* The flattened query is a compound if either the inner or the 4587 ** outer query is a compound. */ 4588 pParent->selFlags |= pSub->selFlags & SF_Compound; 4589 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */ 4590 4591 /* 4592 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 4593 ** 4594 ** One is tempted to try to add a and b to combine the limits. But this 4595 ** does not work if either limit is negative. 4596 */ 4597 if( pSub->pLimit ){ 4598 pParent->pLimit = pSub->pLimit; 4599 pSub->pLimit = 0; 4600 } 4601 4602 /* Recompute the SrcList_item.colUsed masks for the flattened 4603 ** tables. */ 4604 for(i=0; i<nSubSrc; i++){ 4605 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]); 4606 } 4607 } 4608 4609 /* Finially, delete what is left of the subquery and return 4610 ** success. 4611 */ 4612 sqlite3AggInfoPersistWalkerInit(&w, pParse); 4613 sqlite3WalkSelect(&w,pSub1); 4614 sqlite3SelectDelete(db, pSub1); 4615 4616 #if TREETRACE_ENABLED 4617 if( sqlite3TreeTrace & 0x100 ){ 4618 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); 4619 sqlite3TreeViewSelect(0, p, 0); 4620 } 4621 #endif 4622 4623 return 1; 4624 } 4625 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4626 4627 /* 4628 ** A structure to keep track of all of the column values that are fixed to 4629 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. 4630 */ 4631 typedef struct WhereConst WhereConst; 4632 struct WhereConst { 4633 Parse *pParse; /* Parsing context */ 4634 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */ 4635 int nConst; /* Number for COLUMN=CONSTANT terms */ 4636 int nChng; /* Number of times a constant is propagated */ 4637 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */ 4638 u32 mExcludeOn; /* Which ON expressions to exclude from considertion. 4639 ** Either EP_OuterON or EP_InnerON|EP_OuterON */ 4640 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ 4641 }; 4642 4643 /* 4644 ** Add a new entry to the pConst object. Except, do not add duplicate 4645 ** pColumn entires. Also, do not add if doing so would not be appropriate. 4646 ** 4647 ** The caller guarantees the pColumn is a column and pValue is a constant. 4648 ** This routine has to do some additional checks before completing the 4649 ** insert. 4650 */ 4651 static void constInsert( 4652 WhereConst *pConst, /* The WhereConst into which we are inserting */ 4653 Expr *pColumn, /* The COLUMN part of the constraint */ 4654 Expr *pValue, /* The VALUE part of the constraint */ 4655 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */ 4656 ){ 4657 int i; 4658 assert( pColumn->op==TK_COLUMN ); 4659 assert( sqlite3ExprIsConstant(pValue) ); 4660 4661 if( ExprHasProperty(pColumn, EP_FixedCol) ) return; 4662 if( sqlite3ExprAffinity(pValue)!=0 ) return; 4663 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){ 4664 return; 4665 } 4666 4667 /* 2018-10-25 ticket [cf5ed20f] 4668 ** Make sure the same pColumn is not inserted more than once */ 4669 for(i=0; i<pConst->nConst; i++){ 4670 const Expr *pE2 = pConst->apExpr[i*2]; 4671 assert( pE2->op==TK_COLUMN ); 4672 if( pE2->iTable==pColumn->iTable 4673 && pE2->iColumn==pColumn->iColumn 4674 ){ 4675 return; /* Already present. Return without doing anything. */ 4676 } 4677 } 4678 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4679 pConst->bHasAffBlob = 1; 4680 } 4681 4682 pConst->nConst++; 4683 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, 4684 pConst->nConst*2*sizeof(Expr*)); 4685 if( pConst->apExpr==0 ){ 4686 pConst->nConst = 0; 4687 }else{ 4688 pConst->apExpr[pConst->nConst*2-2] = pColumn; 4689 pConst->apExpr[pConst->nConst*2-1] = pValue; 4690 } 4691 } 4692 4693 /* 4694 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE 4695 ** is a constant expression and where the term must be true because it 4696 ** is part of the AND-connected terms of the expression. For each term 4697 ** found, add it to the pConst structure. 4698 */ 4699 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){ 4700 Expr *pRight, *pLeft; 4701 if( NEVER(pExpr==0) ) return; 4702 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){ 4703 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4704 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4705 return; 4706 } 4707 if( pExpr->op==TK_AND ){ 4708 findConstInWhere(pConst, pExpr->pRight); 4709 findConstInWhere(pConst, pExpr->pLeft); 4710 return; 4711 } 4712 if( pExpr->op!=TK_EQ ) return; 4713 pRight = pExpr->pRight; 4714 pLeft = pExpr->pLeft; 4715 assert( pRight!=0 ); 4716 assert( pLeft!=0 ); 4717 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){ 4718 constInsert(pConst,pRight,pLeft,pExpr); 4719 } 4720 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){ 4721 constInsert(pConst,pLeft,pRight,pExpr); 4722 } 4723 } 4724 4725 /* 4726 ** This is a helper function for Walker callback propagateConstantExprRewrite(). 4727 ** 4728 ** Argument pExpr is a candidate expression to be replaced by a value. If 4729 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst, 4730 ** then overwrite it with the corresponding value. Except, do not do so 4731 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr 4732 ** is SQLITE_AFF_BLOB. 4733 */ 4734 static int propagateConstantExprRewriteOne( 4735 WhereConst *pConst, 4736 Expr *pExpr, 4737 int bIgnoreAffBlob 4738 ){ 4739 int i; 4740 if( pConst->pOomFault[0] ) return WRC_Prune; 4741 if( pExpr->op!=TK_COLUMN ) return WRC_Continue; 4742 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){ 4743 testcase( ExprHasProperty(pExpr, EP_FixedCol) ); 4744 testcase( ExprHasProperty(pExpr, EP_OuterON) ); 4745 testcase( ExprHasProperty(pExpr, EP_InnerON) ); 4746 return WRC_Continue; 4747 } 4748 for(i=0; i<pConst->nConst; i++){ 4749 Expr *pColumn = pConst->apExpr[i*2]; 4750 if( pColumn==pExpr ) continue; 4751 if( pColumn->iTable!=pExpr->iTable ) continue; 4752 if( pColumn->iColumn!=pExpr->iColumn ) continue; 4753 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){ 4754 break; 4755 } 4756 /* A match is found. Add the EP_FixedCol property */ 4757 pConst->nChng++; 4758 ExprClearProperty(pExpr, EP_Leaf); 4759 ExprSetProperty(pExpr, EP_FixedCol); 4760 assert( pExpr->pLeft==0 ); 4761 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0); 4762 if( pConst->pParse->db->mallocFailed ) return WRC_Prune; 4763 break; 4764 } 4765 return WRC_Prune; 4766 } 4767 4768 /* 4769 ** This is a Walker expression callback. pExpr is a node from the WHERE 4770 ** clause of a SELECT statement. This function examines pExpr to see if 4771 ** any substitutions based on the contents of pWalker->u.pConst should 4772 ** be made to pExpr or its immediate children. 4773 ** 4774 ** A substitution is made if: 4775 ** 4776 ** + pExpr is a column with an affinity other than BLOB that matches 4777 ** one of the columns in pWalker->u.pConst, or 4778 ** 4779 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that 4780 ** uses an affinity other than TEXT and one of its immediate 4781 ** children is a column that matches one of the columns in 4782 ** pWalker->u.pConst. 4783 */ 4784 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){ 4785 WhereConst *pConst = pWalker->u.pConst; 4786 assert( TK_GT==TK_EQ+1 ); 4787 assert( TK_LE==TK_EQ+2 ); 4788 assert( TK_LT==TK_EQ+3 ); 4789 assert( TK_GE==TK_EQ+4 ); 4790 if( pConst->bHasAffBlob ){ 4791 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE) 4792 || pExpr->op==TK_IS 4793 ){ 4794 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0); 4795 if( pConst->pOomFault[0] ) return WRC_Prune; 4796 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){ 4797 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0); 4798 } 4799 } 4800 } 4801 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob); 4802 } 4803 4804 /* 4805 ** The WHERE-clause constant propagation optimization. 4806 ** 4807 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or 4808 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not 4809 ** part of a ON clause from a LEFT JOIN, then throughout the query 4810 ** replace all other occurrences of COLUMN with CONSTANT. 4811 ** 4812 ** For example, the query: 4813 ** 4814 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b 4815 ** 4816 ** Is transformed into 4817 ** 4818 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39 4819 ** 4820 ** Return true if any transformations where made and false if not. 4821 ** 4822 ** Implementation note: Constant propagation is tricky due to affinity 4823 ** and collating sequence interactions. Consider this example: 4824 ** 4825 ** CREATE TABLE t1(a INT,b TEXT); 4826 ** INSERT INTO t1 VALUES(123,'0123'); 4827 ** SELECT * FROM t1 WHERE a=123 AND b=a; 4828 ** SELECT * FROM t1 WHERE a=123 AND b=123; 4829 ** 4830 ** The two SELECT statements above should return different answers. b=a 4831 ** is alway true because the comparison uses numeric affinity, but b=123 4832 ** is false because it uses text affinity and '0123' is not the same as '123'. 4833 ** To work around this, the expression tree is not actually changed from 4834 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol 4835 ** and the "123" value is hung off of the pLeft pointer. Code generator 4836 ** routines know to generate the constant "123" instead of looking up the 4837 ** column value. Also, to avoid collation problems, this optimization is 4838 ** only attempted if the "a=123" term uses the default BINARY collation. 4839 ** 4840 ** 2021-05-25 forum post 6a06202608: Another troublesome case is... 4841 ** 4842 ** CREATE TABLE t1(x); 4843 ** INSERT INTO t1 VALUES(10.0); 4844 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10; 4845 ** 4846 ** The query should return no rows, because the t1.x value is '10.0' not '10' 4847 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE 4848 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10", 4849 ** resulting in a false positive. To avoid this, constant propagation for 4850 ** columns with BLOB affinity is only allowed if the constant is used with 4851 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct 4852 ** type conversions to occur. See logic associated with the bHasAffBlob flag 4853 ** for details. 4854 */ 4855 static int propagateConstants( 4856 Parse *pParse, /* The parsing context */ 4857 Select *p /* The query in which to propagate constants */ 4858 ){ 4859 WhereConst x; 4860 Walker w; 4861 int nChng = 0; 4862 x.pParse = pParse; 4863 x.pOomFault = &pParse->db->mallocFailed; 4864 do{ 4865 x.nConst = 0; 4866 x.nChng = 0; 4867 x.apExpr = 0; 4868 x.bHasAffBlob = 0; 4869 if( ALWAYS(p->pSrc!=0) 4870 && p->pSrc->nSrc>0 4871 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 4872 ){ 4873 /* Do not propagate constants on any ON clause if there is a 4874 ** RIGHT JOIN anywhere in the query */ 4875 x.mExcludeOn = EP_InnerON | EP_OuterON; 4876 }else{ 4877 /* Do not propagate constants through the ON clause of a LEFT JOIN */ 4878 x.mExcludeOn = EP_OuterON; 4879 } 4880 findConstInWhere(&x, p->pWhere); 4881 if( x.nConst ){ 4882 memset(&w, 0, sizeof(w)); 4883 w.pParse = pParse; 4884 w.xExprCallback = propagateConstantExprRewrite; 4885 w.xSelectCallback = sqlite3SelectWalkNoop; 4886 w.xSelectCallback2 = 0; 4887 w.walkerDepth = 0; 4888 w.u.pConst = &x; 4889 sqlite3WalkExpr(&w, p->pWhere); 4890 sqlite3DbFree(x.pParse->db, x.apExpr); 4891 nChng += x.nChng; 4892 } 4893 }while( x.nChng ); 4894 return nChng; 4895 } 4896 4897 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4898 # if !defined(SQLITE_OMIT_WINDOWFUNC) 4899 /* 4900 ** This function is called to determine whether or not it is safe to 4901 ** push WHERE clause expression pExpr down to FROM clause sub-query 4902 ** pSubq, which contains at least one window function. Return 1 4903 ** if it is safe and the expression should be pushed down, or 0 4904 ** otherwise. 4905 ** 4906 ** It is only safe to push the expression down if it consists only 4907 ** of constants and copies of expressions that appear in the PARTITION 4908 ** BY clause of all window function used by the sub-query. It is safe 4909 ** to filter out entire partitions, but not rows within partitions, as 4910 ** this may change the results of the window functions. 4911 ** 4912 ** At the time this function is called it is guaranteed that 4913 ** 4914 ** * the sub-query uses only one distinct window frame, and 4915 ** * that the window frame has a PARTITION BY clase. 4916 */ 4917 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){ 4918 assert( pSubq->pWin->pPartition ); 4919 assert( (pSubq->selFlags & SF_MultiPart)==0 ); 4920 assert( pSubq->pPrior==0 ); 4921 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition); 4922 } 4923 # endif /* SQLITE_OMIT_WINDOWFUNC */ 4924 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 4925 4926 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4927 /* 4928 ** Make copies of relevant WHERE clause terms of the outer query into 4929 ** the WHERE clause of subquery. Example: 4930 ** 4931 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; 4932 ** 4933 ** Transformed into: 4934 ** 4935 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) 4936 ** WHERE x=5 AND y=10; 4937 ** 4938 ** The hope is that the terms added to the inner query will make it more 4939 ** efficient. 4940 ** 4941 ** Do not attempt this optimization if: 4942 ** 4943 ** (1) (** This restriction was removed on 2017-09-29. We used to 4944 ** disallow this optimization for aggregate subqueries, but now 4945 ** it is allowed by putting the extra terms on the HAVING clause. 4946 ** The added HAVING clause is pointless if the subquery lacks 4947 ** a GROUP BY clause. But such a HAVING clause is also harmless 4948 ** so there does not appear to be any reason to add extra logic 4949 ** to suppress it. **) 4950 ** 4951 ** (2) The inner query is the recursive part of a common table expression. 4952 ** 4953 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE 4954 ** clause would change the meaning of the LIMIT). 4955 ** 4956 ** (4) The inner query is the right operand of a LEFT JOIN and the 4957 ** expression to be pushed down does not come from the ON clause 4958 ** on that LEFT JOIN. 4959 ** 4960 ** (5) The WHERE clause expression originates in the ON or USING clause 4961 ** of a LEFT JOIN where iCursor is not the right-hand table of that 4962 ** left join. An example: 4963 ** 4964 ** SELECT * 4965 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa 4966 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2) 4967 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2); 4968 ** 4969 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9). 4970 ** But if the (b2=2) term were to be pushed down into the bb subquery, 4971 ** then the (1,1,NULL) row would be suppressed. 4972 ** 4973 ** (6) Window functions make things tricky as changes to the WHERE clause 4974 ** of the inner query could change the window over which window 4975 ** functions are calculated. Therefore, do not attempt the optimization 4976 ** if: 4977 ** 4978 ** (6a) The inner query uses multiple incompatible window partitions. 4979 ** 4980 ** (6b) The inner query is a compound and uses window-functions. 4981 ** 4982 ** (6c) The WHERE clause does not consist entirely of constants and 4983 ** copies of expressions found in the PARTITION BY clause of 4984 ** all window-functions used by the sub-query. It is safe to 4985 ** filter out entire partitions, as this does not change the 4986 ** window over which any window-function is calculated. 4987 ** 4988 ** (7) The inner query is a Common Table Expression (CTE) that should 4989 ** be materialized. (This restriction is implemented in the calling 4990 ** routine.) 4991 ** 4992 ** Return 0 if no changes are made and non-zero if one or more WHERE clause 4993 ** terms are duplicated into the subquery. 4994 */ 4995 static int pushDownWhereTerms( 4996 Parse *pParse, /* Parse context (for malloc() and error reporting) */ 4997 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ 4998 Expr *pWhere, /* The WHERE clause of the outer query */ 4999 SrcItem *pSrc /* The subquery term of the outer FROM clause */ 5000 ){ 5001 Expr *pNew; 5002 int nChng = 0; 5003 if( pWhere==0 ) return 0; 5004 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0; 5005 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0; 5006 5007 #ifndef SQLITE_OMIT_WINDOWFUNC 5008 if( pSubq->pPrior ){ 5009 Select *pSel; 5010 for(pSel=pSubq; pSel; pSel=pSel->pPrior){ 5011 if( pSel->pWin ) return 0; /* restriction (6b) */ 5012 } 5013 }else{ 5014 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0; 5015 } 5016 #endif 5017 5018 #ifdef SQLITE_DEBUG 5019 /* Only the first term of a compound can have a WITH clause. But make 5020 ** sure no other terms are marked SF_Recursive in case something changes 5021 ** in the future. 5022 */ 5023 { 5024 Select *pX; 5025 for(pX=pSubq; pX; pX=pX->pPrior){ 5026 assert( (pX->selFlags & (SF_Recursive))==0 ); 5027 } 5028 } 5029 #endif 5030 5031 if( pSubq->pLimit!=0 ){ 5032 return 0; /* restriction (3) */ 5033 } 5034 while( pWhere->op==TK_AND ){ 5035 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc); 5036 pWhere = pWhere->pLeft; 5037 } 5038 5039 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */ 5040 if( isLeftJoin 5041 && (ExprHasProperty(pWhere,EP_OuterON)==0 5042 || pWhere->w.iJoin!=iCursor) 5043 ){ 5044 return 0; /* restriction (4) */ 5045 } 5046 if( ExprHasProperty(pWhere,EP_OuterON) 5047 && pWhere->w.iJoin!=iCursor 5048 ){ 5049 return 0; /* restriction (5) */ 5050 } 5051 #endif 5052 5053 if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){ 5054 nChng++; 5055 pSubq->selFlags |= SF_PushDown; 5056 while( pSubq ){ 5057 SubstContext x; 5058 pNew = sqlite3ExprDup(pParse->db, pWhere, 0); 5059 unsetJoinExpr(pNew, -1, 1); 5060 x.pParse = pParse; 5061 x.iTable = pSrc->iCursor; 5062 x.iNewTable = pSrc->iCursor; 5063 x.isOuterJoin = 0; 5064 x.pEList = pSubq->pEList; 5065 pNew = substExpr(&x, pNew); 5066 #ifndef SQLITE_OMIT_WINDOWFUNC 5067 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){ 5068 /* Restriction 6c has prevented push-down in this case */ 5069 sqlite3ExprDelete(pParse->db, pNew); 5070 nChng--; 5071 break; 5072 } 5073 #endif 5074 if( pSubq->selFlags & SF_Aggregate ){ 5075 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew); 5076 }else{ 5077 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew); 5078 } 5079 pSubq = pSubq->pPrior; 5080 } 5081 } 5082 return nChng; 5083 } 5084 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 5085 5086 /* 5087 ** The pFunc is the only aggregate function in the query. Check to see 5088 ** if the query is a candidate for the min/max optimization. 5089 ** 5090 ** If the query is a candidate for the min/max optimization, then set 5091 ** *ppMinMax to be an ORDER BY clause to be used for the optimization 5092 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on 5093 ** whether pFunc is a min() or max() function. 5094 ** 5095 ** If the query is not a candidate for the min/max optimization, return 5096 ** WHERE_ORDERBY_NORMAL (which must be zero). 5097 ** 5098 ** This routine must be called after aggregate functions have been 5099 ** located but before their arguments have been subjected to aggregate 5100 ** analysis. 5101 */ 5102 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){ 5103 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 5104 ExprList *pEList; /* Arguments to agg function */ 5105 const char *zFunc; /* Name of aggregate function pFunc */ 5106 ExprList *pOrderBy; 5107 u8 sortFlags = 0; 5108 5109 assert( *ppMinMax==0 ); 5110 assert( pFunc->op==TK_AGG_FUNCTION ); 5111 assert( !IsWindowFunc(pFunc) ); 5112 assert( ExprUseXList(pFunc) ); 5113 pEList = pFunc->x.pList; 5114 if( pEList==0 5115 || pEList->nExpr!=1 5116 || ExprHasProperty(pFunc, EP_WinFunc) 5117 || OptimizationDisabled(db, SQLITE_MinMaxOpt) 5118 ){ 5119 return eRet; 5120 } 5121 assert( !ExprHasProperty(pFunc, EP_IntValue) ); 5122 zFunc = pFunc->u.zToken; 5123 if( sqlite3StrICmp(zFunc, "min")==0 ){ 5124 eRet = WHERE_ORDERBY_MIN; 5125 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){ 5126 sortFlags = KEYINFO_ORDER_BIGNULL; 5127 } 5128 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 5129 eRet = WHERE_ORDERBY_MAX; 5130 sortFlags = KEYINFO_ORDER_DESC; 5131 }else{ 5132 return eRet; 5133 } 5134 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0); 5135 assert( pOrderBy!=0 || db->mallocFailed ); 5136 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags; 5137 return eRet; 5138 } 5139 5140 /* 5141 ** The select statement passed as the first argument is an aggregate query. 5142 ** The second argument is the associated aggregate-info object. This 5143 ** function tests if the SELECT is of the form: 5144 ** 5145 ** SELECT count(*) FROM <tbl> 5146 ** 5147 ** where table is a database table, not a sub-select or view. If the query 5148 ** does match this pattern, then a pointer to the Table object representing 5149 ** <tbl> is returned. Otherwise, NULL is returned. 5150 ** 5151 ** This routine checks to see if it is safe to use the count optimization. 5152 ** A correct answer is still obtained (though perhaps more slowly) if 5153 ** this routine returns NULL when it could have returned a table pointer. 5154 ** But returning the pointer when NULL should have been returned can 5155 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL. 5156 */ 5157 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 5158 Table *pTab; 5159 Expr *pExpr; 5160 5161 assert( !p->pGroupBy ); 5162 5163 if( p->pWhere 5164 || p->pEList->nExpr!=1 5165 || p->pSrc->nSrc!=1 5166 || p->pSrc->a[0].pSelect 5167 || pAggInfo->nFunc!=1 5168 || p->pHaving 5169 ){ 5170 return 0; 5171 } 5172 pTab = p->pSrc->a[0].pTab; 5173 assert( pTab!=0 ); 5174 assert( !IsView(pTab) ); 5175 if( !IsOrdinaryTable(pTab) ) return 0; 5176 pExpr = p->pEList->a[0].pExpr; 5177 assert( pExpr!=0 ); 5178 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 5179 if( pExpr->pAggInfo!=pAggInfo ) return 0; 5180 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 5181 assert( pAggInfo->aFunc[0].pFExpr==pExpr ); 5182 testcase( ExprHasProperty(pExpr, EP_Distinct) ); 5183 testcase( ExprHasProperty(pExpr, EP_WinFunc) ); 5184 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0; 5185 5186 return pTab; 5187 } 5188 5189 /* 5190 ** If the source-list item passed as an argument was augmented with an 5191 ** INDEXED BY clause, then try to locate the specified index. If there 5192 ** was such a clause and the named index cannot be found, return 5193 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 5194 ** pFrom->pIndex and return SQLITE_OK. 5195 */ 5196 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){ 5197 Table *pTab = pFrom->pTab; 5198 char *zIndexedBy = pFrom->u1.zIndexedBy; 5199 Index *pIdx; 5200 assert( pTab!=0 ); 5201 assert( pFrom->fg.isIndexedBy!=0 ); 5202 5203 for(pIdx=pTab->pIndex; 5204 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); 5205 pIdx=pIdx->pNext 5206 ); 5207 if( !pIdx ){ 5208 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); 5209 pParse->checkSchema = 1; 5210 return SQLITE_ERROR; 5211 } 5212 assert( pFrom->fg.isCte==0 ); 5213 pFrom->u2.pIBIndex = pIdx; 5214 return SQLITE_OK; 5215 } 5216 5217 /* 5218 ** Detect compound SELECT statements that use an ORDER BY clause with 5219 ** an alternative collating sequence. 5220 ** 5221 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 5222 ** 5223 ** These are rewritten as a subquery: 5224 ** 5225 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 5226 ** ORDER BY ... COLLATE ... 5227 ** 5228 ** This transformation is necessary because the multiSelectOrderBy() routine 5229 ** above that generates the code for a compound SELECT with an ORDER BY clause 5230 ** uses a merge algorithm that requires the same collating sequence on the 5231 ** result columns as on the ORDER BY clause. See ticket 5232 ** http://www.sqlite.org/src/info/6709574d2a 5233 ** 5234 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 5235 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 5236 ** there are COLLATE terms in the ORDER BY. 5237 */ 5238 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 5239 int i; 5240 Select *pNew; 5241 Select *pX; 5242 sqlite3 *db; 5243 struct ExprList_item *a; 5244 SrcList *pNewSrc; 5245 Parse *pParse; 5246 Token dummy; 5247 5248 if( p->pPrior==0 ) return WRC_Continue; 5249 if( p->pOrderBy==0 ) return WRC_Continue; 5250 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 5251 if( pX==0 ) return WRC_Continue; 5252 a = p->pOrderBy->a; 5253 #ifndef SQLITE_OMIT_WINDOWFUNC 5254 /* If iOrderByCol is already non-zero, then it has already been matched 5255 ** to a result column of the SELECT statement. This occurs when the 5256 ** SELECT is rewritten for window-functions processing and then passed 5257 ** to sqlite3SelectPrep() and similar a second time. The rewriting done 5258 ** by this function is not required in this case. */ 5259 if( a[0].u.x.iOrderByCol ) return WRC_Continue; 5260 #endif 5261 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 5262 if( a[i].pExpr->flags & EP_Collate ) break; 5263 } 5264 if( i<0 ) return WRC_Continue; 5265 5266 /* If we reach this point, that means the transformation is required. */ 5267 5268 pParse = pWalker->pParse; 5269 db = pParse->db; 5270 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 5271 if( pNew==0 ) return WRC_Abort; 5272 memset(&dummy, 0, sizeof(dummy)); 5273 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0); 5274 if( pNewSrc==0 ) return WRC_Abort; 5275 *pNew = *p; 5276 p->pSrc = pNewSrc; 5277 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); 5278 p->op = TK_SELECT; 5279 p->pWhere = 0; 5280 pNew->pGroupBy = 0; 5281 pNew->pHaving = 0; 5282 pNew->pOrderBy = 0; 5283 p->pPrior = 0; 5284 p->pNext = 0; 5285 p->pWith = 0; 5286 #ifndef SQLITE_OMIT_WINDOWFUNC 5287 p->pWinDefn = 0; 5288 #endif 5289 p->selFlags &= ~SF_Compound; 5290 assert( (p->selFlags & SF_Converted)==0 ); 5291 p->selFlags |= SF_Converted; 5292 assert( pNew->pPrior!=0 ); 5293 pNew->pPrior->pNext = pNew; 5294 pNew->pLimit = 0; 5295 return WRC_Continue; 5296 } 5297 5298 /* 5299 ** Check to see if the FROM clause term pFrom has table-valued function 5300 ** arguments. If it does, leave an error message in pParse and return 5301 ** non-zero, since pFrom is not allowed to be a table-valued function. 5302 */ 5303 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){ 5304 if( pFrom->fg.isTabFunc ){ 5305 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); 5306 return 1; 5307 } 5308 return 0; 5309 } 5310 5311 #ifndef SQLITE_OMIT_CTE 5312 /* 5313 ** Argument pWith (which may be NULL) points to a linked list of nested 5314 ** WITH contexts, from inner to outermost. If the table identified by 5315 ** FROM clause element pItem is really a common-table-expression (CTE) 5316 ** then return a pointer to the CTE definition for that table. Otherwise 5317 ** return NULL. 5318 ** 5319 ** If a non-NULL value is returned, set *ppContext to point to the With 5320 ** object that the returned CTE belongs to. 5321 */ 5322 static struct Cte *searchWith( 5323 With *pWith, /* Current innermost WITH clause */ 5324 SrcItem *pItem, /* FROM clause element to resolve */ 5325 With **ppContext /* OUT: WITH clause return value belongs to */ 5326 ){ 5327 const char *zName = pItem->zName; 5328 With *p; 5329 assert( pItem->zDatabase==0 ); 5330 assert( zName!=0 ); 5331 for(p=pWith; p; p=p->pOuter){ 5332 int i; 5333 for(i=0; i<p->nCte; i++){ 5334 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 5335 *ppContext = p; 5336 return &p->a[i]; 5337 } 5338 } 5339 if( p->bView ) break; 5340 } 5341 return 0; 5342 } 5343 5344 /* The code generator maintains a stack of active WITH clauses 5345 ** with the inner-most WITH clause being at the top of the stack. 5346 ** 5347 ** This routine pushes the WITH clause passed as the second argument 5348 ** onto the top of the stack. If argument bFree is true, then this 5349 ** WITH clause will never be popped from the stack but should instead 5350 ** be freed along with the Parse object. In other cases, when 5351 ** bFree==0, the With object will be freed along with the SELECT 5352 ** statement with which it is associated. 5353 ** 5354 ** This routine returns a copy of pWith. Or, if bFree is true and 5355 ** the pWith object is destroyed immediately due to an OOM condition, 5356 ** then this routine return NULL. 5357 ** 5358 ** If bFree is true, do not continue to use the pWith pointer after 5359 ** calling this routine, Instead, use only the return value. 5360 */ 5361 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 5362 if( pWith ){ 5363 if( bFree ){ 5364 pWith = (With*)sqlite3ParserAddCleanup(pParse, 5365 (void(*)(sqlite3*,void*))sqlite3WithDelete, 5366 pWith); 5367 if( pWith==0 ) return 0; 5368 } 5369 if( pParse->nErr==0 ){ 5370 assert( pParse->pWith!=pWith ); 5371 pWith->pOuter = pParse->pWith; 5372 pParse->pWith = pWith; 5373 } 5374 } 5375 return pWith; 5376 } 5377 5378 /* 5379 ** This function checks if argument pFrom refers to a CTE declared by 5380 ** a WITH clause on the stack currently maintained by the parser (on the 5381 ** pParse->pWith linked list). And if currently processing a CTE 5382 ** CTE expression, through routine checks to see if the reference is 5383 ** a recursive reference to the CTE. 5384 ** 5385 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab 5386 ** and other fields are populated accordingly. 5387 ** 5388 ** Return 0 if no match is found. 5389 ** Return 1 if a match is found. 5390 ** Return 2 if an error condition is detected. 5391 */ 5392 static int resolveFromTermToCte( 5393 Parse *pParse, /* The parsing context */ 5394 Walker *pWalker, /* Current tree walker */ 5395 SrcItem *pFrom /* The FROM clause term to check */ 5396 ){ 5397 Cte *pCte; /* Matched CTE (or NULL if no match) */ 5398 With *pWith; /* The matching WITH */ 5399 5400 assert( pFrom->pTab==0 ); 5401 if( pParse->pWith==0 ){ 5402 /* There are no WITH clauses in the stack. No match is possible */ 5403 return 0; 5404 } 5405 if( pParse->nErr ){ 5406 /* Prior errors might have left pParse->pWith in a goofy state, so 5407 ** go no further. */ 5408 return 0; 5409 } 5410 if( pFrom->zDatabase!=0 ){ 5411 /* The FROM term contains a schema qualifier (ex: main.t1) and so 5412 ** it cannot possibly be a CTE reference. */ 5413 return 0; 5414 } 5415 if( pFrom->fg.notCte ){ 5416 /* The FROM term is specifically excluded from matching a CTE. 5417 ** (1) It is part of a trigger that used to have zDatabase but had 5418 ** zDatabase removed by sqlite3FixTriggerStep(). 5419 ** (2) This is the first term in the FROM clause of an UPDATE. 5420 */ 5421 return 0; 5422 } 5423 pCte = searchWith(pParse->pWith, pFrom, &pWith); 5424 if( pCte ){ 5425 sqlite3 *db = pParse->db; 5426 Table *pTab; 5427 ExprList *pEList; 5428 Select *pSel; 5429 Select *pLeft; /* Left-most SELECT statement */ 5430 Select *pRecTerm; /* Left-most recursive term */ 5431 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 5432 With *pSavedWith; /* Initial value of pParse->pWith */ 5433 int iRecTab = -1; /* Cursor for recursive table */ 5434 CteUse *pCteUse; 5435 5436 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal 5437 ** recursive reference to CTE pCte. Leave an error in pParse and return 5438 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. 5439 ** In this case, proceed. */ 5440 if( pCte->zCteErr ){ 5441 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); 5442 return 2; 5443 } 5444 if( cannotBeFunction(pParse, pFrom) ) return 2; 5445 5446 assert( pFrom->pTab==0 ); 5447 pTab = sqlite3DbMallocZero(db, sizeof(Table)); 5448 if( pTab==0 ) return 2; 5449 pCteUse = pCte->pUse; 5450 if( pCteUse==0 ){ 5451 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0])); 5452 if( pCteUse==0 5453 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0 5454 ){ 5455 sqlite3DbFree(db, pTab); 5456 return 2; 5457 } 5458 pCteUse->eM10d = pCte->eM10d; 5459 } 5460 pFrom->pTab = pTab; 5461 pTab->nTabRef = 1; 5462 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 5463 pTab->iPKey = -1; 5464 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5465 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5466 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 5467 if( db->mallocFailed ) return 2; 5468 pFrom->pSelect->selFlags |= SF_CopyCte; 5469 assert( pFrom->pSelect ); 5470 if( pFrom->fg.isIndexedBy ){ 5471 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy); 5472 return 2; 5473 } 5474 pFrom->fg.isCte = 1; 5475 pFrom->u2.pCteUse = pCteUse; 5476 pCteUse->nUse++; 5477 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){ 5478 pCteUse->eM10d = M10d_Yes; 5479 } 5480 5481 /* Check if this is a recursive CTE. */ 5482 pRecTerm = pSel = pFrom->pSelect; 5483 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 5484 while( bMayRecursive && pRecTerm->op==pSel->op ){ 5485 int i; 5486 SrcList *pSrc = pRecTerm->pSrc; 5487 assert( pRecTerm->pPrior!=0 ); 5488 for(i=0; i<pSrc->nSrc; i++){ 5489 SrcItem *pItem = &pSrc->a[i]; 5490 if( pItem->zDatabase==0 5491 && pItem->zName!=0 5492 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 5493 ){ 5494 pItem->pTab = pTab; 5495 pTab->nTabRef++; 5496 pItem->fg.isRecursive = 1; 5497 if( pRecTerm->selFlags & SF_Recursive ){ 5498 sqlite3ErrorMsg(pParse, 5499 "multiple references to recursive table: %s", pCte->zName 5500 ); 5501 return 2; 5502 } 5503 pRecTerm->selFlags |= SF_Recursive; 5504 if( iRecTab<0 ) iRecTab = pParse->nTab++; 5505 pItem->iCursor = iRecTab; 5506 } 5507 } 5508 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break; 5509 pRecTerm = pRecTerm->pPrior; 5510 } 5511 5512 pCte->zCteErr = "circular reference: %s"; 5513 pSavedWith = pParse->pWith; 5514 pParse->pWith = pWith; 5515 if( pSel->selFlags & SF_Recursive ){ 5516 int rc; 5517 assert( pRecTerm!=0 ); 5518 assert( (pRecTerm->selFlags & SF_Recursive)==0 ); 5519 assert( pRecTerm->pNext!=0 ); 5520 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 ); 5521 assert( pRecTerm->pWith==0 ); 5522 pRecTerm->pWith = pSel->pWith; 5523 rc = sqlite3WalkSelect(pWalker, pRecTerm); 5524 pRecTerm->pWith = 0; 5525 if( rc ){ 5526 pParse->pWith = pSavedWith; 5527 return 2; 5528 } 5529 }else{ 5530 if( sqlite3WalkSelect(pWalker, pSel) ){ 5531 pParse->pWith = pSavedWith; 5532 return 2; 5533 } 5534 } 5535 pParse->pWith = pWith; 5536 5537 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 5538 pEList = pLeft->pEList; 5539 if( pCte->pCols ){ 5540 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ 5541 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 5542 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 5543 ); 5544 pParse->pWith = pSavedWith; 5545 return 2; 5546 } 5547 pEList = pCte->pCols; 5548 } 5549 5550 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 5551 if( bMayRecursive ){ 5552 if( pSel->selFlags & SF_Recursive ){ 5553 pCte->zCteErr = "multiple recursive references: %s"; 5554 }else{ 5555 pCte->zCteErr = "recursive reference in a subquery: %s"; 5556 } 5557 sqlite3WalkSelect(pWalker, pSel); 5558 } 5559 pCte->zCteErr = 0; 5560 pParse->pWith = pSavedWith; 5561 return 1; /* Success */ 5562 } 5563 return 0; /* No match */ 5564 } 5565 #endif 5566 5567 #ifndef SQLITE_OMIT_CTE 5568 /* 5569 ** If the SELECT passed as the second argument has an associated WITH 5570 ** clause, pop it from the stack stored as part of the Parse object. 5571 ** 5572 ** This function is used as the xSelectCallback2() callback by 5573 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 5574 ** names and other FROM clause elements. 5575 */ 5576 void sqlite3SelectPopWith(Walker *pWalker, Select *p){ 5577 Parse *pParse = pWalker->pParse; 5578 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){ 5579 With *pWith = findRightmost(p)->pWith; 5580 if( pWith!=0 ){ 5581 assert( pParse->pWith==pWith || pParse->nErr ); 5582 pParse->pWith = pWith->pOuter; 5583 } 5584 } 5585 } 5586 #endif 5587 5588 /* 5589 ** The SrcList_item structure passed as the second argument represents a 5590 ** sub-query in the FROM clause of a SELECT statement. This function 5591 ** allocates and populates the SrcList_item.pTab object. If successful, 5592 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered, 5593 ** SQLITE_NOMEM. 5594 */ 5595 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){ 5596 Select *pSel = pFrom->pSelect; 5597 Table *pTab; 5598 5599 assert( pSel ); 5600 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table)); 5601 if( pTab==0 ) return SQLITE_NOMEM; 5602 pTab->nTabRef = 1; 5603 if( pFrom->zAlias ){ 5604 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias); 5605 }else{ 5606 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom); 5607 } 5608 while( pSel->pPrior ){ pSel = pSel->pPrior; } 5609 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); 5610 pTab->iPKey = -1; 5611 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 5612 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW 5613 /* The usual case - do not allow ROWID on a subquery */ 5614 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; 5615 #else 5616 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */ 5617 #endif 5618 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK; 5619 } 5620 5621 5622 /* 5623 ** Check the N SrcItem objects to the right of pBase. (N might be zero!) 5624 ** If any of those SrcItem objects have a USING clause containing zName 5625 ** then return true. 5626 ** 5627 ** If N is zero, or none of the N SrcItem objects to the right of pBase 5628 ** contains a USING clause, or if none of the USING clauses contain zName, 5629 ** then return false. 5630 */ 5631 static int inAnyUsingClause( 5632 const char *zName, /* Name we are looking for */ 5633 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */ 5634 int N /* How many SrcItems to check */ 5635 ){ 5636 while( N>0 ){ 5637 N--; 5638 pBase++; 5639 if( pBase->fg.isUsing==0 ) continue; 5640 if( NEVER(pBase->u3.pUsing==0) ) continue; 5641 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1; 5642 } 5643 return 0; 5644 } 5645 5646 5647 /* 5648 ** This routine is a Walker callback for "expanding" a SELECT statement. 5649 ** "Expanding" means to do the following: 5650 ** 5651 ** (1) Make sure VDBE cursor numbers have been assigned to every 5652 ** element of the FROM clause. 5653 ** 5654 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 5655 ** defines FROM clause. When views appear in the FROM clause, 5656 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 5657 ** that implements the view. A copy is made of the view's SELECT 5658 ** statement so that we can freely modify or delete that statement 5659 ** without worrying about messing up the persistent representation 5660 ** of the view. 5661 ** 5662 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword 5663 ** on joins and the ON and USING clause of joins. 5664 ** 5665 ** (4) Scan the list of columns in the result set (pEList) looking 5666 ** for instances of the "*" operator or the TABLE.* operator. 5667 ** If found, expand each "*" to be every column in every table 5668 ** and TABLE.* to be every column in TABLE. 5669 ** 5670 */ 5671 static int selectExpander(Walker *pWalker, Select *p){ 5672 Parse *pParse = pWalker->pParse; 5673 int i, j, k, rc; 5674 SrcList *pTabList; 5675 ExprList *pEList; 5676 SrcItem *pFrom; 5677 sqlite3 *db = pParse->db; 5678 Expr *pE, *pRight, *pExpr; 5679 u16 selFlags = p->selFlags; 5680 u32 elistFlags = 0; 5681 5682 p->selFlags |= SF_Expanded; 5683 if( db->mallocFailed ){ 5684 return WRC_Abort; 5685 } 5686 assert( p->pSrc!=0 ); 5687 if( (selFlags & SF_Expanded)!=0 ){ 5688 return WRC_Prune; 5689 } 5690 if( pWalker->eCode ){ 5691 /* Renumber selId because it has been copied from a view */ 5692 p->selId = ++pParse->nSelect; 5693 } 5694 pTabList = p->pSrc; 5695 pEList = p->pEList; 5696 if( pParse->pWith && (p->selFlags & SF_View) ){ 5697 if( p->pWith==0 ){ 5698 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With)); 5699 if( p->pWith==0 ){ 5700 return WRC_Abort; 5701 } 5702 } 5703 p->pWith->bView = 1; 5704 } 5705 sqlite3WithPush(pParse, p->pWith, 0); 5706 5707 /* Make sure cursor numbers have been assigned to all entries in 5708 ** the FROM clause of the SELECT statement. 5709 */ 5710 sqlite3SrcListAssignCursors(pParse, pTabList); 5711 5712 /* Look up every table named in the FROM clause of the select. If 5713 ** an entry of the FROM clause is a subquery instead of a table or view, 5714 ** then create a transient table structure to describe the subquery. 5715 */ 5716 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5717 Table *pTab; 5718 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); 5719 if( pFrom->pTab ) continue; 5720 assert( pFrom->fg.isRecursive==0 ); 5721 if( pFrom->zName==0 ){ 5722 #ifndef SQLITE_OMIT_SUBQUERY 5723 Select *pSel = pFrom->pSelect; 5724 /* A sub-query in the FROM clause of a SELECT */ 5725 assert( pSel!=0 ); 5726 assert( pFrom->pTab==0 ); 5727 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; 5728 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort; 5729 #endif 5730 #ifndef SQLITE_OMIT_CTE 5731 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){ 5732 if( rc>1 ) return WRC_Abort; 5733 pTab = pFrom->pTab; 5734 assert( pTab!=0 ); 5735 #endif 5736 }else{ 5737 /* An ordinary table or view name in the FROM clause */ 5738 assert( pFrom->pTab==0 ); 5739 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 5740 if( pTab==0 ) return WRC_Abort; 5741 if( pTab->nTabRef>=0xffff ){ 5742 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 5743 pTab->zName); 5744 pFrom->pTab = 0; 5745 return WRC_Abort; 5746 } 5747 pTab->nTabRef++; 5748 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ 5749 return WRC_Abort; 5750 } 5751 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) 5752 if( !IsOrdinaryTable(pTab) ){ 5753 i16 nCol; 5754 u8 eCodeOrig = pWalker->eCode; 5755 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 5756 assert( pFrom->pSelect==0 ); 5757 if( IsView(pTab) ){ 5758 if( (db->flags & SQLITE_EnableView)==0 5759 && pTab->pSchema!=db->aDb[1].pSchema 5760 ){ 5761 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited", 5762 pTab->zName); 5763 } 5764 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0); 5765 } 5766 #ifndef SQLITE_OMIT_VIRTUALTABLE 5767 else if( ALWAYS(IsVirtual(pTab)) 5768 && pFrom->fg.fromDDL 5769 && ALWAYS(pTab->u.vtab.p!=0) 5770 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0) 5771 ){ 5772 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"", 5773 pTab->zName); 5774 } 5775 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 ); 5776 #endif 5777 nCol = pTab->nCol; 5778 pTab->nCol = -1; 5779 pWalker->eCode = 1; /* Turn on Select.selId renumbering */ 5780 sqlite3WalkSelect(pWalker, pFrom->pSelect); 5781 pWalker->eCode = eCodeOrig; 5782 pTab->nCol = nCol; 5783 } 5784 #endif 5785 } 5786 5787 /* Locate the index named by the INDEXED BY clause, if any. */ 5788 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){ 5789 return WRC_Abort; 5790 } 5791 } 5792 5793 /* Process NATURAL keywords, and ON and USING clauses of joins. 5794 */ 5795 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 5796 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){ 5797 return WRC_Abort; 5798 } 5799 5800 /* For every "*" that occurs in the column list, insert the names of 5801 ** all columns in all tables. And for every TABLE.* insert the names 5802 ** of all columns in TABLE. The parser inserted a special expression 5803 ** with the TK_ASTERISK operator for each "*" that it found in the column 5804 ** list. The following code just has to locate the TK_ASTERISK 5805 ** expressions and expand each one to the list of all columns in 5806 ** all tables. 5807 ** 5808 ** The first loop just checks to see if there are any "*" operators 5809 ** that need expanding. 5810 */ 5811 for(k=0; k<pEList->nExpr; k++){ 5812 pE = pEList->a[k].pExpr; 5813 if( pE->op==TK_ASTERISK ) break; 5814 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 5815 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 5816 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; 5817 elistFlags |= pE->flags; 5818 } 5819 if( k<pEList->nExpr ){ 5820 /* 5821 ** If we get here it means the result set contains one or more "*" 5822 ** operators that need to be expanded. Loop through each expression 5823 ** in the result set and expand them one by one. 5824 */ 5825 struct ExprList_item *a = pEList->a; 5826 ExprList *pNew = 0; 5827 int flags = pParse->db->flags; 5828 int longNames = (flags & SQLITE_FullColNames)!=0 5829 && (flags & SQLITE_ShortColNames)==0; 5830 5831 for(k=0; k<pEList->nExpr; k++){ 5832 pE = a[k].pExpr; 5833 elistFlags |= pE->flags; 5834 pRight = pE->pRight; 5835 assert( pE->op!=TK_DOT || pRight!=0 ); 5836 if( pE->op!=TK_ASTERISK 5837 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) 5838 ){ 5839 /* This particular expression does not need to be expanded. 5840 */ 5841 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 5842 if( pNew ){ 5843 pNew->a[pNew->nExpr-1].zEName = a[k].zEName; 5844 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName; 5845 a[k].zEName = 0; 5846 } 5847 a[k].pExpr = 0; 5848 }else{ 5849 /* This expression is a "*" or a "TABLE.*" and needs to be 5850 ** expanded. */ 5851 int tableSeen = 0; /* Set to 1 when TABLE matches */ 5852 char *zTName = 0; /* text of name of TABLE */ 5853 if( pE->op==TK_DOT ){ 5854 assert( pE->pLeft!=0 ); 5855 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 5856 zTName = pE->pLeft->u.zToken; 5857 } 5858 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 5859 Table *pTab = pFrom->pTab; /* Table for this data source */ 5860 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */ 5861 char *zTabName; /* AS name for this data source */ 5862 const char *zSchemaName = 0; /* Schema name for this data source */ 5863 int iDb; /* Schema index for this data src */ 5864 IdList *pUsing; /* USING clause for pFrom[1] */ 5865 5866 if( (zTabName = pFrom->zAlias)==0 ){ 5867 zTabName = pTab->zName; 5868 } 5869 if( db->mallocFailed ) break; 5870 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) ); 5871 if( pFrom->fg.isNestedFrom ){ 5872 assert( pFrom->pSelect!=0 ); 5873 pNestedFrom = pFrom->pSelect->pEList; 5874 assert( pNestedFrom!=0 ); 5875 assert( pNestedFrom->nExpr==pTab->nCol ); 5876 }else{ 5877 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 5878 continue; 5879 } 5880 pNestedFrom = 0; 5881 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5882 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*"; 5883 } 5884 if( i+1<pTabList->nSrc 5885 && pFrom[1].fg.isUsing 5886 && (selFlags & SF_NestedFrom)!=0 5887 ){ 5888 int ii; 5889 pUsing = pFrom[1].u3.pUsing; 5890 for(ii=0; ii<pUsing->nId; ii++){ 5891 const char *zUName = pUsing->a[ii].zName; 5892 pRight = sqlite3Expr(db, TK_ID, zUName); 5893 pNew = sqlite3ExprListAppend(pParse, pNew, pRight); 5894 if( pNew ){ 5895 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 5896 assert( pX->zEName==0 ); 5897 pX->zEName = sqlite3MPrintf(db,"..%s", zUName); 5898 pX->fg.eEName = ENAME_TAB; 5899 pX->fg.bUsingTerm = 1; 5900 } 5901 } 5902 }else{ 5903 pUsing = 0; 5904 } 5905 for(j=0; j<pTab->nCol; j++){ 5906 char *zName = pTab->aCol[j].zCnName; 5907 struct ExprList_item *pX; /* Newly added ExprList term */ 5908 5909 assert( zName ); 5910 if( zTName 5911 && pNestedFrom 5912 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0 5913 ){ 5914 continue; 5915 } 5916 5917 /* If a column is marked as 'hidden', omit it from the expanded 5918 ** result-set list unless the SELECT has the SF_IncludeHidden 5919 ** bit set. 5920 */ 5921 if( (p->selFlags & SF_IncludeHidden)==0 5922 && IsHiddenColumn(&pTab->aCol[j]) 5923 ){ 5924 continue; 5925 } 5926 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 5927 && zTName==0 5928 && (selFlags & (SF_NestedFrom))==0 5929 ){ 5930 continue; 5931 } 5932 tableSeen = 1; 5933 5934 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){ 5935 if( pFrom->fg.isUsing 5936 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0 5937 ){ 5938 /* In a join with a USING clause, omit columns in the 5939 ** using clause from the table on the right. */ 5940 continue; 5941 } 5942 } 5943 pRight = sqlite3Expr(db, TK_ID, zName); 5944 if( (pTabList->nSrc>1 5945 && ( (pFrom->fg.jointype & JT_LTORJ)==0 5946 || (selFlags & SF_NestedFrom)!=0 5947 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1) 5948 ) 5949 ) 5950 || IN_RENAME_OBJECT 5951 ){ 5952 Expr *pLeft; 5953 pLeft = sqlite3Expr(db, TK_ID, zTabName); 5954 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 5955 if( IN_RENAME_OBJECT && pE->pLeft ){ 5956 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft); 5957 } 5958 if( zSchemaName ){ 5959 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 5960 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr); 5961 } 5962 }else{ 5963 pExpr = pRight; 5964 } 5965 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 5966 if( pNew==0 ){ 5967 break; /* OOM */ 5968 } 5969 pX = &pNew->a[pNew->nExpr-1]; 5970 assert( pX->zEName==0 ); 5971 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){ 5972 if( pNestedFrom ){ 5973 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName); 5974 testcase( pX->zEName==0 ); 5975 }else{ 5976 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s", 5977 zSchemaName, zTabName, zName); 5978 testcase( pX->zEName==0 ); 5979 } 5980 pX->fg.eEName = ENAME_TAB; 5981 if( (pFrom->fg.isUsing 5982 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0) 5983 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0) 5984 || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0 5985 ){ 5986 pX->fg.bNoExpand = 1; 5987 } 5988 }else if( longNames ){ 5989 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 5990 pX->fg.eEName = ENAME_NAME; 5991 }else{ 5992 pX->zEName = sqlite3DbStrDup(db, zName); 5993 pX->fg.eEName = ENAME_NAME; 5994 } 5995 } 5996 } 5997 if( !tableSeen ){ 5998 if( zTName ){ 5999 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 6000 }else{ 6001 sqlite3ErrorMsg(pParse, "no tables specified"); 6002 } 6003 } 6004 } 6005 } 6006 sqlite3ExprListDelete(db, pEList); 6007 p->pEList = pNew; 6008 } 6009 if( p->pEList ){ 6010 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 6011 sqlite3ErrorMsg(pParse, "too many columns in result set"); 6012 return WRC_Abort; 6013 } 6014 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){ 6015 p->selFlags |= SF_ComplexResult; 6016 } 6017 } 6018 #if TREETRACE_ENABLED 6019 if( sqlite3TreeTrace & 0x100 ){ 6020 SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n")); 6021 sqlite3TreeViewSelect(0, p, 0); 6022 } 6023 #endif 6024 return WRC_Continue; 6025 } 6026 6027 #if SQLITE_DEBUG 6028 /* 6029 ** Always assert. This xSelectCallback2 implementation proves that the 6030 ** xSelectCallback2 is never invoked. 6031 */ 6032 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){ 6033 UNUSED_PARAMETER2(NotUsed, NotUsed2); 6034 assert( 0 ); 6035 } 6036 #endif 6037 /* 6038 ** This routine "expands" a SELECT statement and all of its subqueries. 6039 ** For additional information on what it means to "expand" a SELECT 6040 ** statement, see the comment on the selectExpand worker callback above. 6041 ** 6042 ** Expanding a SELECT statement is the first step in processing a 6043 ** SELECT statement. The SELECT statement must be expanded before 6044 ** name resolution is performed. 6045 ** 6046 ** If anything goes wrong, an error message is written into pParse. 6047 ** The calling function can detect the problem by looking at pParse->nErr 6048 ** and/or pParse->db->mallocFailed. 6049 */ 6050 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 6051 Walker w; 6052 w.xExprCallback = sqlite3ExprWalkNoop; 6053 w.pParse = pParse; 6054 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){ 6055 w.xSelectCallback = convertCompoundSelectToSubquery; 6056 w.xSelectCallback2 = 0; 6057 sqlite3WalkSelect(&w, pSelect); 6058 } 6059 w.xSelectCallback = selectExpander; 6060 w.xSelectCallback2 = sqlite3SelectPopWith; 6061 w.eCode = 0; 6062 sqlite3WalkSelect(&w, pSelect); 6063 } 6064 6065 6066 #ifndef SQLITE_OMIT_SUBQUERY 6067 /* 6068 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 6069 ** interface. 6070 ** 6071 ** For each FROM-clause subquery, add Column.zType and Column.zColl 6072 ** information to the Table structure that represents the result set 6073 ** of that subquery. 6074 ** 6075 ** The Table structure that represents the result set was constructed 6076 ** by selectExpander() but the type and collation information was omitted 6077 ** at that point because identifiers had not yet been resolved. This 6078 ** routine is called after identifier resolution. 6079 */ 6080 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 6081 Parse *pParse; 6082 int i; 6083 SrcList *pTabList; 6084 SrcItem *pFrom; 6085 6086 assert( p->selFlags & SF_Resolved ); 6087 if( p->selFlags & SF_HasTypeInfo ) return; 6088 p->selFlags |= SF_HasTypeInfo; 6089 pParse = pWalker->pParse; 6090 pTabList = p->pSrc; 6091 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 6092 Table *pTab = pFrom->pTab; 6093 assert( pTab!=0 ); 6094 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ 6095 /* A sub-query in the FROM clause of a SELECT */ 6096 Select *pSel = pFrom->pSelect; 6097 if( pSel ){ 6098 while( pSel->pPrior ) pSel = pSel->pPrior; 6099 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel, 6100 SQLITE_AFF_NONE); 6101 } 6102 } 6103 } 6104 } 6105 #endif 6106 6107 6108 /* 6109 ** This routine adds datatype and collating sequence information to 6110 ** the Table structures of all FROM-clause subqueries in a 6111 ** SELECT statement. 6112 ** 6113 ** Use this routine after name resolution. 6114 */ 6115 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 6116 #ifndef SQLITE_OMIT_SUBQUERY 6117 Walker w; 6118 w.xSelectCallback = sqlite3SelectWalkNoop; 6119 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 6120 w.xExprCallback = sqlite3ExprWalkNoop; 6121 w.pParse = pParse; 6122 sqlite3WalkSelect(&w, pSelect); 6123 #endif 6124 } 6125 6126 6127 /* 6128 ** This routine sets up a SELECT statement for processing. The 6129 ** following is accomplished: 6130 ** 6131 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 6132 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 6133 ** * ON and USING clauses are shifted into WHERE statements 6134 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 6135 ** * Identifiers in expression are matched to tables. 6136 ** 6137 ** This routine acts recursively on all subqueries within the SELECT. 6138 */ 6139 void sqlite3SelectPrep( 6140 Parse *pParse, /* The parser context */ 6141 Select *p, /* The SELECT statement being coded. */ 6142 NameContext *pOuterNC /* Name context for container */ 6143 ){ 6144 assert( p!=0 || pParse->db->mallocFailed ); 6145 assert( pParse->db->pParse==pParse ); 6146 if( pParse->db->mallocFailed ) return; 6147 if( p->selFlags & SF_HasTypeInfo ) return; 6148 sqlite3SelectExpand(pParse, p); 6149 if( pParse->nErr ) return; 6150 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 6151 if( pParse->nErr ) return; 6152 sqlite3SelectAddTypeInfo(pParse, p); 6153 } 6154 6155 /* 6156 ** Reset the aggregate accumulator. 6157 ** 6158 ** The aggregate accumulator is a set of memory cells that hold 6159 ** intermediate results while calculating an aggregate. This 6160 ** routine generates code that stores NULLs in all of those memory 6161 ** cells. 6162 */ 6163 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 6164 Vdbe *v = pParse->pVdbe; 6165 int i; 6166 struct AggInfo_func *pFunc; 6167 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 6168 assert( pParse->db->pParse==pParse ); 6169 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 ); 6170 if( nReg==0 ) return; 6171 if( pParse->nErr ) return; 6172 #ifdef SQLITE_DEBUG 6173 /* Verify that all AggInfo registers are within the range specified by 6174 ** AggInfo.mnReg..AggInfo.mxReg */ 6175 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 6176 for(i=0; i<pAggInfo->nColumn; i++){ 6177 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 6178 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 6179 } 6180 for(i=0; i<pAggInfo->nFunc; i++){ 6181 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 6182 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 6183 } 6184 #endif 6185 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 6186 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 6187 if( pFunc->iDistinct>=0 ){ 6188 Expr *pE = pFunc->pFExpr; 6189 assert( ExprUseXList(pE) ); 6190 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 6191 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 6192 "argument"); 6193 pFunc->iDistinct = -1; 6194 }else{ 6195 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0); 6196 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 6197 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO); 6198 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)", 6199 pFunc->pFunc->zName)); 6200 } 6201 } 6202 } 6203 } 6204 6205 /* 6206 ** Invoke the OP_AggFinalize opcode for every aggregate function 6207 ** in the AggInfo structure. 6208 */ 6209 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 6210 Vdbe *v = pParse->pVdbe; 6211 int i; 6212 struct AggInfo_func *pF; 6213 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6214 ExprList *pList; 6215 assert( ExprUseXList(pF->pFExpr) ); 6216 pList = pF->pFExpr->x.pList; 6217 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0); 6218 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6219 } 6220 } 6221 6222 6223 /* 6224 ** Update the accumulator memory cells for an aggregate based on 6225 ** the current cursor position. 6226 ** 6227 ** If regAcc is non-zero and there are no min() or max() aggregates 6228 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator 6229 ** registers if register regAcc contains 0. The caller will take care 6230 ** of setting and clearing regAcc. 6231 */ 6232 static void updateAccumulator( 6233 Parse *pParse, 6234 int regAcc, 6235 AggInfo *pAggInfo, 6236 int eDistinctType 6237 ){ 6238 Vdbe *v = pParse->pVdbe; 6239 int i; 6240 int regHit = 0; 6241 int addrHitTest = 0; 6242 struct AggInfo_func *pF; 6243 struct AggInfo_col *pC; 6244 6245 pAggInfo->directMode = 1; 6246 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 6247 int nArg; 6248 int addrNext = 0; 6249 int regAgg; 6250 ExprList *pList; 6251 assert( ExprUseXList(pF->pFExpr) ); 6252 assert( !IsWindowFunc(pF->pFExpr) ); 6253 pList = pF->pFExpr->x.pList; 6254 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){ 6255 Expr *pFilter = pF->pFExpr->y.pWin->pFilter; 6256 if( pAggInfo->nAccumulator 6257 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) 6258 && regAcc 6259 ){ 6260 /* If regAcc==0, there there exists some min() or max() function 6261 ** without a FILTER clause that will ensure the magnet registers 6262 ** are populated. */ 6263 if( regHit==0 ) regHit = ++pParse->nMem; 6264 /* If this is the first row of the group (regAcc contains 0), clear the 6265 ** "magnet" register regHit so that the accumulator registers 6266 ** are populated if the FILTER clause jumps over the the 6267 ** invocation of min() or max() altogether. Or, if this is not 6268 ** the first row (regAcc contains 1), set the magnet register so that 6269 ** the accumulators are not populated unless the min()/max() is invoked 6270 ** and indicates that they should be. */ 6271 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit); 6272 } 6273 addrNext = sqlite3VdbeMakeLabel(pParse); 6274 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL); 6275 } 6276 if( pList ){ 6277 nArg = pList->nExpr; 6278 regAgg = sqlite3GetTempRange(pParse, nArg); 6279 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); 6280 }else{ 6281 nArg = 0; 6282 regAgg = 0; 6283 } 6284 if( pF->iDistinct>=0 && pList ){ 6285 if( addrNext==0 ){ 6286 addrNext = sqlite3VdbeMakeLabel(pParse); 6287 } 6288 pF->iDistinct = codeDistinct(pParse, eDistinctType, 6289 pF->iDistinct, addrNext, pList, regAgg); 6290 } 6291 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 6292 CollSeq *pColl = 0; 6293 struct ExprList_item *pItem; 6294 int j; 6295 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 6296 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 6297 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 6298 } 6299 if( !pColl ){ 6300 pColl = pParse->db->pDfltColl; 6301 } 6302 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 6303 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 6304 } 6305 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem); 6306 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF); 6307 sqlite3VdbeChangeP5(v, (u8)nArg); 6308 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 6309 if( addrNext ){ 6310 sqlite3VdbeResolveLabel(v, addrNext); 6311 } 6312 } 6313 if( regHit==0 && pAggInfo->nAccumulator ){ 6314 regHit = regAcc; 6315 } 6316 if( regHit ){ 6317 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 6318 } 6319 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 6320 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem); 6321 } 6322 6323 pAggInfo->directMode = 0; 6324 if( addrHitTest ){ 6325 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest); 6326 } 6327 } 6328 6329 /* 6330 ** Add a single OP_Explain instruction to the VDBE to explain a simple 6331 ** count(*) query ("SELECT count(*) FROM pTab"). 6332 */ 6333 #ifndef SQLITE_OMIT_EXPLAIN 6334 static void explainSimpleCount( 6335 Parse *pParse, /* Parse context */ 6336 Table *pTab, /* Table being queried */ 6337 Index *pIdx /* Index used to optimize scan, or NULL */ 6338 ){ 6339 if( pParse->explain==2 ){ 6340 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); 6341 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s", 6342 pTab->zName, 6343 bCover ? " USING COVERING INDEX " : "", 6344 bCover ? pIdx->zName : "" 6345 ); 6346 } 6347 } 6348 #else 6349 # define explainSimpleCount(a,b,c) 6350 #endif 6351 6352 /* 6353 ** sqlite3WalkExpr() callback used by havingToWhere(). 6354 ** 6355 ** If the node passed to the callback is a TK_AND node, return 6356 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes. 6357 ** 6358 ** Otherwise, return WRC_Prune. In this case, also check if the 6359 ** sub-expression matches the criteria for being moved to the WHERE 6360 ** clause. If so, add it to the WHERE clause and replace the sub-expression 6361 ** within the HAVING expression with a constant "1". 6362 */ 6363 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){ 6364 if( pExpr->op!=TK_AND ){ 6365 Select *pS = pWalker->u.pSelect; 6366 /* This routine is called before the HAVING clause of the current 6367 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set 6368 ** here, it indicates that the expression is a correlated reference to a 6369 ** column from an outer aggregate query, or an aggregate function that 6370 ** belongs to an outer query. Do not move the expression to the WHERE 6371 ** clause in this obscure case, as doing so may corrupt the outer Select 6372 ** statements AggInfo structure. */ 6373 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy) 6374 && ExprAlwaysFalse(pExpr)==0 6375 && pExpr->pAggInfo==0 6376 ){ 6377 sqlite3 *db = pWalker->pParse->db; 6378 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1"); 6379 if( pNew ){ 6380 Expr *pWhere = pS->pWhere; 6381 SWAP(Expr, *pNew, *pExpr); 6382 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew); 6383 pS->pWhere = pNew; 6384 pWalker->eCode = 1; 6385 } 6386 } 6387 return WRC_Prune; 6388 } 6389 return WRC_Continue; 6390 } 6391 6392 /* 6393 ** Transfer eligible terms from the HAVING clause of a query, which is 6394 ** processed after grouping, to the WHERE clause, which is processed before 6395 ** grouping. For example, the query: 6396 ** 6397 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=? 6398 ** 6399 ** can be rewritten as: 6400 ** 6401 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=? 6402 ** 6403 ** A term of the HAVING expression is eligible for transfer if it consists 6404 ** entirely of constants and expressions that are also GROUP BY terms that 6405 ** use the "BINARY" collation sequence. 6406 */ 6407 static void havingToWhere(Parse *pParse, Select *p){ 6408 Walker sWalker; 6409 memset(&sWalker, 0, sizeof(sWalker)); 6410 sWalker.pParse = pParse; 6411 sWalker.xExprCallback = havingToWhereExprCb; 6412 sWalker.u.pSelect = p; 6413 sqlite3WalkExpr(&sWalker, p->pHaving); 6414 #if TREETRACE_ENABLED 6415 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){ 6416 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n")); 6417 sqlite3TreeViewSelect(0, p, 0); 6418 } 6419 #endif 6420 } 6421 6422 /* 6423 ** Check to see if the pThis entry of pTabList is a self-join of a prior view. 6424 ** If it is, then return the SrcList_item for the prior view. If it is not, 6425 ** then return 0. 6426 */ 6427 static SrcItem *isSelfJoinView( 6428 SrcList *pTabList, /* Search for self-joins in this FROM clause */ 6429 SrcItem *pThis /* Search for prior reference to this subquery */ 6430 ){ 6431 SrcItem *pItem; 6432 assert( pThis->pSelect!=0 ); 6433 if( pThis->pSelect->selFlags & SF_PushDown ) return 0; 6434 for(pItem = pTabList->a; pItem<pThis; pItem++){ 6435 Select *pS1; 6436 if( pItem->pSelect==0 ) continue; 6437 if( pItem->fg.viaCoroutine ) continue; 6438 if( pItem->zName==0 ) continue; 6439 assert( pItem->pTab!=0 ); 6440 assert( pThis->pTab!=0 ); 6441 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue; 6442 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue; 6443 pS1 = pItem->pSelect; 6444 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){ 6445 /* The query flattener left two different CTE tables with identical 6446 ** names in the same FROM clause. */ 6447 continue; 6448 } 6449 if( pItem->pSelect->selFlags & SF_PushDown ){ 6450 /* The view was modified by some other optimization such as 6451 ** pushDownWhereTerms() */ 6452 continue; 6453 } 6454 return pItem; 6455 } 6456 return 0; 6457 } 6458 6459 /* 6460 ** Deallocate a single AggInfo object 6461 */ 6462 static void agginfoFree(sqlite3 *db, AggInfo *p){ 6463 sqlite3DbFree(db, p->aCol); 6464 sqlite3DbFree(db, p->aFunc); 6465 sqlite3DbFreeNN(db, p); 6466 } 6467 6468 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6469 /* 6470 ** Attempt to transform a query of the form 6471 ** 6472 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2) 6473 ** 6474 ** Into this: 6475 ** 6476 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2) 6477 ** 6478 ** The transformation only works if all of the following are true: 6479 ** 6480 ** * The subquery is a UNION ALL of two or more terms 6481 ** * The subquery does not have a LIMIT clause 6482 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries 6483 ** * The outer query is a simple count(*) with no WHERE clause or other 6484 ** extraneous syntax. 6485 ** 6486 ** Return TRUE if the optimization is undertaken. 6487 */ 6488 static int countOfViewOptimization(Parse *pParse, Select *p){ 6489 Select *pSub, *pPrior; 6490 Expr *pExpr; 6491 Expr *pCount; 6492 sqlite3 *db; 6493 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */ 6494 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */ 6495 if( p->pWhere ) return 0; 6496 if( p->pGroupBy ) return 0; 6497 pExpr = p->pEList->a[0].pExpr; 6498 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */ 6499 assert( ExprUseUToken(pExpr) ); 6500 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */ 6501 assert( ExprUseXList(pExpr) ); 6502 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */ 6503 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */ 6504 pSub = p->pSrc->a[0].pSelect; 6505 if( pSub==0 ) return 0; /* The FROM is a subquery */ 6506 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */ 6507 do{ 6508 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */ 6509 if( pSub->pWhere ) return 0; /* No WHERE clause */ 6510 if( pSub->pLimit ) return 0; /* No LIMIT clause */ 6511 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */ 6512 pSub = pSub->pPrior; /* Repeat over compound */ 6513 }while( pSub ); 6514 6515 /* If we reach this point then it is OK to perform the transformation */ 6516 6517 db = pParse->db; 6518 pCount = pExpr; 6519 pExpr = 0; 6520 pSub = p->pSrc->a[0].pSelect; 6521 p->pSrc->a[0].pSelect = 0; 6522 sqlite3SrcListDelete(db, p->pSrc); 6523 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc)); 6524 while( pSub ){ 6525 Expr *pTerm; 6526 pPrior = pSub->pPrior; 6527 pSub->pPrior = 0; 6528 pSub->pNext = 0; 6529 pSub->selFlags |= SF_Aggregate; 6530 pSub->selFlags &= ~SF_Compound; 6531 pSub->nSelectRow = 0; 6532 sqlite3ExprListDelete(db, pSub->pEList); 6533 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount; 6534 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm); 6535 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 6536 sqlite3PExprAddSelect(pParse, pTerm, pSub); 6537 if( pExpr==0 ){ 6538 pExpr = pTerm; 6539 }else{ 6540 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr); 6541 } 6542 pSub = pPrior; 6543 } 6544 p->pEList->a[0].pExpr = pExpr; 6545 p->selFlags &= ~SF_Aggregate; 6546 6547 #if TREETRACE_ENABLED 6548 if( sqlite3TreeTrace & 0x400 ){ 6549 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n")); 6550 sqlite3TreeViewSelect(0, p, 0); 6551 } 6552 #endif 6553 return 1; 6554 } 6555 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */ 6556 6557 /* 6558 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same 6559 ** as pSrcItem but has the same alias as p0, then return true. 6560 ** Otherwise return false. 6561 */ 6562 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){ 6563 int i; 6564 for(i=0; i<pSrc->nSrc; i++){ 6565 SrcItem *p1 = &pSrc->a[i]; 6566 if( p1==p0 ) continue; 6567 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){ 6568 return 1; 6569 } 6570 if( p1->pSelect 6571 && (p1->pSelect->selFlags & SF_NestedFrom)!=0 6572 && sameSrcAlias(p0, p1->pSelect->pSrc) 6573 ){ 6574 return 1; 6575 } 6576 } 6577 return 0; 6578 } 6579 6580 /* 6581 ** Generate code for the SELECT statement given in the p argument. 6582 ** 6583 ** The results are returned according to the SelectDest structure. 6584 ** See comments in sqliteInt.h for further information. 6585 ** 6586 ** This routine returns the number of errors. If any errors are 6587 ** encountered, then an appropriate error message is left in 6588 ** pParse->zErrMsg. 6589 ** 6590 ** This routine does NOT free the Select structure passed in. The 6591 ** calling function needs to do that. 6592 */ 6593 int sqlite3Select( 6594 Parse *pParse, /* The parser context */ 6595 Select *p, /* The SELECT statement being coded. */ 6596 SelectDest *pDest /* What to do with the query results */ 6597 ){ 6598 int i, j; /* Loop counters */ 6599 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 6600 Vdbe *v; /* The virtual machine under construction */ 6601 int isAgg; /* True for select lists like "count(*)" */ 6602 ExprList *pEList = 0; /* List of columns to extract. */ 6603 SrcList *pTabList; /* List of tables to select from */ 6604 Expr *pWhere; /* The WHERE clause. May be NULL */ 6605 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 6606 Expr *pHaving; /* The HAVING clause. May be NULL */ 6607 AggInfo *pAggInfo = 0; /* Aggregate information */ 6608 int rc = 1; /* Value to return from this function */ 6609 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 6610 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 6611 int iEnd; /* Address of the end of the query */ 6612 sqlite3 *db; /* The database connection */ 6613 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */ 6614 u8 minMaxFlag; /* Flag for min/max queries */ 6615 6616 db = pParse->db; 6617 assert( pParse==db->pParse ); 6618 v = sqlite3GetVdbe(pParse); 6619 if( p==0 || pParse->nErr ){ 6620 return 1; 6621 } 6622 assert( db->mallocFailed==0 ); 6623 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 6624 #if TREETRACE_ENABLED 6625 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain)); 6626 if( sqlite3TreeTrace & 0x10100 ){ 6627 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){ 6628 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d", 6629 __FILE__, __LINE__); 6630 } 6631 sqlite3ShowSelect(p); 6632 } 6633 #endif 6634 6635 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 6636 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 6637 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 6638 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 6639 if( IgnorableDistinct(pDest) ){ 6640 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 6641 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 6642 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo ); 6643 /* All of these destinations are also able to ignore the ORDER BY clause */ 6644 if( p->pOrderBy ){ 6645 #if TREETRACE_ENABLED 6646 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n")); 6647 if( sqlite3TreeTrace & 0x100 ){ 6648 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY"); 6649 } 6650 #endif 6651 sqlite3ParserAddCleanup(pParse, 6652 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6653 p->pOrderBy); 6654 testcase( pParse->earlyCleanup ); 6655 p->pOrderBy = 0; 6656 } 6657 p->selFlags &= ~SF_Distinct; 6658 p->selFlags |= SF_NoopOrderBy; 6659 } 6660 sqlite3SelectPrep(pParse, p, 0); 6661 if( pParse->nErr ){ 6662 goto select_end; 6663 } 6664 assert( db->mallocFailed==0 ); 6665 assert( p->pEList!=0 ); 6666 #if TREETRACE_ENABLED 6667 if( sqlite3TreeTrace & 0x104 ){ 6668 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n")); 6669 sqlite3TreeViewSelect(0, p, 0); 6670 } 6671 #endif 6672 6673 /* If the SF_UFSrcCheck flag is set, then this function is being called 6674 ** as part of populating the temp table for an UPDATE...FROM statement. 6675 ** In this case, it is an error if the target object (pSrc->a[0]) name 6676 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). 6677 ** 6678 ** Postgres disallows this case too. The reason is that some other 6679 ** systems handle this case differently, and not all the same way, 6680 ** which is just confusing. To avoid this, we follow PG's lead and 6681 ** disallow it altogether. */ 6682 if( p->selFlags & SF_UFSrcCheck ){ 6683 SrcItem *p0 = &p->pSrc->a[0]; 6684 if( sameSrcAlias(p0, p->pSrc) ){ 6685 sqlite3ErrorMsg(pParse, 6686 "target object/alias may not appear in FROM clause: %s", 6687 p0->zAlias ? p0->zAlias : p0->pTab->zName 6688 ); 6689 goto select_end; 6690 } 6691 6692 /* Clear the SF_UFSrcCheck flag. The check has already been performed, 6693 ** and leaving this flag set can cause errors if a compound sub-query 6694 ** in p->pSrc is flattened into this query and this function called 6695 ** again as part of compound SELECT processing. */ 6696 p->selFlags &= ~SF_UFSrcCheck; 6697 } 6698 6699 if( pDest->eDest==SRT_Output ){ 6700 sqlite3GenerateColumnNames(pParse, p); 6701 } 6702 6703 #ifndef SQLITE_OMIT_WINDOWFUNC 6704 if( sqlite3WindowRewrite(pParse, p) ){ 6705 assert( pParse->nErr ); 6706 goto select_end; 6707 } 6708 #if TREETRACE_ENABLED 6709 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){ 6710 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n")); 6711 sqlite3TreeViewSelect(0, p, 0); 6712 } 6713 #endif 6714 #endif /* SQLITE_OMIT_WINDOWFUNC */ 6715 pTabList = p->pSrc; 6716 isAgg = (p->selFlags & SF_Aggregate)!=0; 6717 memset(&sSort, 0, sizeof(sSort)); 6718 sSort.pOrderBy = p->pOrderBy; 6719 6720 /* Try to do various optimizations (flattening subqueries, and strength 6721 ** reduction of join operators) in the FROM clause up into the main query 6722 */ 6723 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6724 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 6725 SrcItem *pItem = &pTabList->a[i]; 6726 Select *pSub = pItem->pSelect; 6727 Table *pTab = pItem->pTab; 6728 6729 /* The expander should have already created transient Table objects 6730 ** even for FROM clause elements such as subqueries that do not correspond 6731 ** to a real table */ 6732 assert( pTab!=0 ); 6733 6734 /* Convert LEFT JOIN into JOIN if there are terms of the right table 6735 ** of the LEFT JOIN used in the WHERE clause. 6736 */ 6737 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT 6738 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor) 6739 && OptimizationEnabled(db, SQLITE_SimplifyJoin) 6740 ){ 6741 SELECTTRACE(0x100,pParse,p, 6742 ("LEFT-JOIN simplifies to JOIN on term %d\n",i)); 6743 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER); 6744 assert( pItem->iCursor>=0 ); 6745 unsetJoinExpr(p->pWhere, pItem->iCursor, 6746 pTabList->a[0].fg.jointype & JT_LTORJ); 6747 } 6748 6749 /* No futher action if this term of the FROM clause is no a subquery */ 6750 if( pSub==0 ) continue; 6751 6752 /* Catch mismatch in the declared columns of a view and the number of 6753 ** columns in the SELECT on the RHS */ 6754 if( pTab->nCol!=pSub->pEList->nExpr ){ 6755 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", 6756 pTab->nCol, pTab->zName, pSub->pEList->nExpr); 6757 goto select_end; 6758 } 6759 6760 /* Do not try to flatten an aggregate subquery. 6761 ** 6762 ** Flattening an aggregate subquery is only possible if the outer query 6763 ** is not a join. But if the outer query is not a join, then the subquery 6764 ** will be implemented as a co-routine and there is no advantage to 6765 ** flattening in that case. 6766 */ 6767 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue; 6768 assert( pSub->pGroupBy==0 ); 6769 6770 /* If a FROM-clause subquery has an ORDER BY clause that is not 6771 ** really doing anything, then delete it now so that it does not 6772 ** interfere with query flattening. See the discussion at 6773 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a 6774 ** 6775 ** Beware of these cases where the ORDER BY clause may not be safely 6776 ** omitted: 6777 ** 6778 ** (1) There is also a LIMIT clause 6779 ** (2) The subquery was added to help with window-function 6780 ** processing 6781 ** (3) The subquery is in the FROM clause of an UPDATE 6782 ** (4) The outer query uses an aggregate function other than 6783 ** the built-in count(), min(), or max(). 6784 ** (5) The ORDER BY isn't going to accomplish anything because 6785 ** one of: 6786 ** (a) The outer query has a different ORDER BY clause 6787 ** (b) The subquery is part of a join 6788 ** See forum post 062d576715d277c8 6789 */ 6790 if( pSub->pOrderBy!=0 6791 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */ 6792 && pSub->pLimit==0 /* Condition (1) */ 6793 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */ 6794 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */ 6795 && OptimizationEnabled(db, SQLITE_OmitOrderBy) 6796 ){ 6797 SELECTTRACE(0x100,pParse,p, 6798 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1)); 6799 sqlite3ParserAddCleanup(pParse, 6800 (void(*)(sqlite3*,void*))sqlite3ExprListDelete, 6801 pSub->pOrderBy); 6802 pSub->pOrderBy = 0; 6803 } 6804 6805 /* If the outer query contains a "complex" result set (that is, 6806 ** if the result set of the outer query uses functions or subqueries) 6807 ** and if the subquery contains an ORDER BY clause and if 6808 ** it will be implemented as a co-routine, then do not flatten. This 6809 ** restriction allows SQL constructs like this: 6810 ** 6811 ** SELECT expensive_function(x) 6812 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6813 ** 6814 ** The expensive_function() is only computed on the 10 rows that 6815 ** are output, rather than every row of the table. 6816 ** 6817 ** The requirement that the outer query have a complex result set 6818 ** means that flattening does occur on simpler SQL constraints without 6819 ** the expensive_function() like: 6820 ** 6821 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10); 6822 */ 6823 if( pSub->pOrderBy!=0 6824 && i==0 6825 && (p->selFlags & SF_ComplexResult)!=0 6826 && (pTabList->nSrc==1 6827 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) 6828 ){ 6829 continue; 6830 } 6831 6832 if( flattenSubquery(pParse, p, i, isAgg) ){ 6833 if( pParse->nErr ) goto select_end; 6834 /* This subquery can be absorbed into its parent. */ 6835 i = -1; 6836 } 6837 pTabList = p->pSrc; 6838 if( db->mallocFailed ) goto select_end; 6839 if( !IgnorableOrderby(pDest) ){ 6840 sSort.pOrderBy = p->pOrderBy; 6841 } 6842 } 6843 #endif 6844 6845 #ifndef SQLITE_OMIT_COMPOUND_SELECT 6846 /* Handle compound SELECT statements using the separate multiSelect() 6847 ** procedure. 6848 */ 6849 if( p->pPrior ){ 6850 rc = multiSelect(pParse, p, pDest); 6851 #if TREETRACE_ENABLED 6852 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n")); 6853 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 6854 sqlite3TreeViewSelect(0, p, 0); 6855 } 6856 #endif 6857 if( p->pNext==0 ) ExplainQueryPlanPop(pParse); 6858 return rc; 6859 } 6860 #endif 6861 6862 /* Do the WHERE-clause constant propagation optimization if this is 6863 ** a join. No need to speed time on this operation for non-join queries 6864 ** as the equivalent optimization will be handled by query planner in 6865 ** sqlite3WhereBegin(). 6866 */ 6867 if( p->pWhere!=0 6868 && p->pWhere->op==TK_AND 6869 && OptimizationEnabled(db, SQLITE_PropagateConst) 6870 && propagateConstants(pParse, p) 6871 ){ 6872 #if TREETRACE_ENABLED 6873 if( sqlite3TreeTrace & 0x100 ){ 6874 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n")); 6875 sqlite3TreeViewSelect(0, p, 0); 6876 } 6877 #endif 6878 }else{ 6879 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n")); 6880 } 6881 6882 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION 6883 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView) 6884 && countOfViewOptimization(pParse, p) 6885 ){ 6886 if( db->mallocFailed ) goto select_end; 6887 pEList = p->pEList; 6888 pTabList = p->pSrc; 6889 } 6890 #endif 6891 6892 /* For each term in the FROM clause, do two things: 6893 ** (1) Authorized unreferenced tables 6894 ** (2) Generate code for all sub-queries 6895 */ 6896 for(i=0; i<pTabList->nSrc; i++){ 6897 SrcItem *pItem = &pTabList->a[i]; 6898 SrcItem *pPrior; 6899 SelectDest dest; 6900 Select *pSub; 6901 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6902 const char *zSavedAuthContext; 6903 #endif 6904 6905 /* Issue SQLITE_READ authorizations with a fake column name for any 6906 ** tables that are referenced but from which no values are extracted. 6907 ** Examples of where these kinds of null SQLITE_READ authorizations 6908 ** would occur: 6909 ** 6910 ** SELECT count(*) FROM t1; -- SQLITE_READ t1."" 6911 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2."" 6912 ** 6913 ** The fake column name is an empty string. It is possible for a table to 6914 ** have a column named by the empty string, in which case there is no way to 6915 ** distinguish between an unreferenced table and an actual reference to the 6916 ** "" column. The original design was for the fake column name to be a NULL, 6917 ** which would be unambiguous. But legacy authorization callbacks might 6918 ** assume the column name is non-NULL and segfault. The use of an empty 6919 ** string for the fake column name seems safer. 6920 */ 6921 if( pItem->colUsed==0 && pItem->zName!=0 ){ 6922 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase); 6923 } 6924 6925 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 6926 /* Generate code for all sub-queries in the FROM clause 6927 */ 6928 pSub = pItem->pSelect; 6929 if( pSub==0 ) continue; 6930 6931 /* The code for a subquery should only be generated once. */ 6932 assert( pItem->addrFillSub==0 ); 6933 6934 /* Increment Parse.nHeight by the height of the largest expression 6935 ** tree referred to by this, the parent select. The child select 6936 ** may contain expression trees of at most 6937 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 6938 ** more conservative than necessary, but much easier than enforcing 6939 ** an exact limit. 6940 */ 6941 pParse->nHeight += sqlite3SelectExprHeight(p); 6942 6943 /* Make copies of constant WHERE-clause terms in the outer query down 6944 ** inside the subquery. This can help the subquery to run more efficiently. 6945 */ 6946 if( OptimizationEnabled(db, SQLITE_PushDown) 6947 && (pItem->fg.isCte==0 6948 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2)) 6949 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem) 6950 ){ 6951 #if TREETRACE_ENABLED 6952 if( sqlite3TreeTrace & 0x100 ){ 6953 SELECTTRACE(0x100,pParse,p, 6954 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId)); 6955 sqlite3TreeViewSelect(0, p, 0); 6956 } 6957 #endif 6958 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 ); 6959 }else{ 6960 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n")); 6961 } 6962 6963 zSavedAuthContext = pParse->zAuthContext; 6964 pParse->zAuthContext = pItem->zName; 6965 6966 /* Generate code to implement the subquery 6967 ** 6968 ** The subquery is implemented as a co-routine if all of the following are 6969 ** true: 6970 ** 6971 ** (1) the subquery is guaranteed to be the outer loop (so that 6972 ** it does not need to be computed more than once), and 6973 ** (2) the subquery is not a CTE that should be materialized 6974 ** (3) the subquery is not part of a left operand for a RIGHT JOIN 6975 */ 6976 if( i==0 6977 && (pTabList->nSrc==1 6978 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */ 6979 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */ 6980 && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */ 6981 ){ 6982 /* Implement a co-routine that will return a single row of the result 6983 ** set on each invocation. 6984 */ 6985 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 6986 6987 pItem->regReturn = ++pParse->nMem; 6988 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 6989 VdbeComment((v, "%!S", pItem)); 6990 pItem->addrFillSub = addrTop; 6991 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 6992 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem)); 6993 sqlite3Select(pParse, pSub, &dest); 6994 pItem->pTab->nRowLogEst = pSub->nSelectRow; 6995 pItem->fg.viaCoroutine = 1; 6996 pItem->regResult = dest.iSdst; 6997 sqlite3VdbeEndCoroutine(v, pItem->regReturn); 6998 sqlite3VdbeJumpHere(v, addrTop-1); 6999 sqlite3ClearTempRegCache(pParse); 7000 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){ 7001 /* This is a CTE for which materialization code has already been 7002 ** generated. Invoke the subroutine to compute the materialization, 7003 ** the make the pItem->iCursor be a copy of the ephemerial table that 7004 ** holds the result of the materialization. */ 7005 CteUse *pCteUse = pItem->u2.pCteUse; 7006 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e); 7007 if( pItem->iCursor!=pCteUse->iCur ){ 7008 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur); 7009 VdbeComment((v, "%!S", pItem)); 7010 } 7011 pSub->nSelectRow = pCteUse->nRowEst; 7012 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){ 7013 /* This view has already been materialized by a prior entry in 7014 ** this same FROM clause. Reuse it. */ 7015 if( pPrior->addrFillSub ){ 7016 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub); 7017 } 7018 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor); 7019 pSub->nSelectRow = pPrior->pSelect->nSelectRow; 7020 }else{ 7021 /* Materialize the view. If the view is not correlated, generate a 7022 ** subroutine to do the materialization so that subsequent uses of 7023 ** the same view can reuse the materialization. */ 7024 int topAddr; 7025 int onceAddr = 0; 7026 7027 pItem->regReturn = ++pParse->nMem; 7028 topAddr = sqlite3VdbeAddOp0(v, OP_Goto); 7029 pItem->addrFillSub = topAddr+1; 7030 pItem->fg.isMaterialized = 1; 7031 if( pItem->fg.isCorrelated==0 ){ 7032 /* If the subquery is not correlated and if we are not inside of 7033 ** a trigger, then we only need to compute the value of the subquery 7034 ** once. */ 7035 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 7036 VdbeComment((v, "materialize %!S", pItem)); 7037 }else{ 7038 VdbeNoopComment((v, "materialize %!S", pItem)); 7039 } 7040 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 7041 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem)); 7042 sqlite3Select(pParse, pSub, &dest); 7043 pItem->pTab->nRowLogEst = pSub->nSelectRow; 7044 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 7045 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1); 7046 VdbeComment((v, "end %!S", pItem)); 7047 sqlite3VdbeJumpHere(v, topAddr); 7048 sqlite3ClearTempRegCache(pParse); 7049 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){ 7050 CteUse *pCteUse = pItem->u2.pCteUse; 7051 pCteUse->addrM9e = pItem->addrFillSub; 7052 pCteUse->regRtn = pItem->regReturn; 7053 pCteUse->iCur = pItem->iCursor; 7054 pCteUse->nRowEst = pSub->nSelectRow; 7055 } 7056 } 7057 if( db->mallocFailed ) goto select_end; 7058 pParse->nHeight -= sqlite3SelectExprHeight(p); 7059 pParse->zAuthContext = zSavedAuthContext; 7060 #endif 7061 } 7062 7063 /* Various elements of the SELECT copied into local variables for 7064 ** convenience */ 7065 pEList = p->pEList; 7066 pWhere = p->pWhere; 7067 pGroupBy = p->pGroupBy; 7068 pHaving = p->pHaving; 7069 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 7070 7071 #if TREETRACE_ENABLED 7072 if( sqlite3TreeTrace & 0x400 ){ 7073 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); 7074 sqlite3TreeViewSelect(0, p, 0); 7075 } 7076 #endif 7077 7078 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 7079 ** if the select-list is the same as the ORDER BY list, then this query 7080 ** can be rewritten as a GROUP BY. In other words, this: 7081 ** 7082 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 7083 ** 7084 ** is transformed to: 7085 ** 7086 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz 7087 ** 7088 ** The second form is preferred as a single index (or temp-table) may be 7089 ** used for both the ORDER BY and DISTINCT processing. As originally 7090 ** written the query must use a temp-table for at least one of the ORDER 7091 ** BY and DISTINCT, and an index or separate temp-table for the other. 7092 */ 7093 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 7094 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 7095 #ifndef SQLITE_OMIT_WINDOWFUNC 7096 && p->pWin==0 7097 #endif 7098 ){ 7099 p->selFlags &= ~SF_Distinct; 7100 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); 7101 p->selFlags |= SF_Aggregate; 7102 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 7103 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 7104 ** original setting of the SF_Distinct flag, not the current setting */ 7105 assert( sDistinct.isTnct ); 7106 sDistinct.isTnct = 2; 7107 7108 #if TREETRACE_ENABLED 7109 if( sqlite3TreeTrace & 0x400 ){ 7110 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n")); 7111 sqlite3TreeViewSelect(0, p, 0); 7112 } 7113 #endif 7114 } 7115 7116 /* If there is an ORDER BY clause, then create an ephemeral index to 7117 ** do the sorting. But this sorting ephemeral index might end up 7118 ** being unused if the data can be extracted in pre-sorted order. 7119 ** If that is the case, then the OP_OpenEphemeral instruction will be 7120 ** changed to an OP_Noop once we figure out that the sorting index is 7121 ** not needed. The sSort.addrSortIndex variable is used to facilitate 7122 ** that change. 7123 */ 7124 if( sSort.pOrderBy ){ 7125 KeyInfo *pKeyInfo; 7126 pKeyInfo = sqlite3KeyInfoFromExprList( 7127 pParse, sSort.pOrderBy, 0, pEList->nExpr); 7128 sSort.iECursor = pParse->nTab++; 7129 sSort.addrSortIndex = 7130 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7131 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, 7132 (char*)pKeyInfo, P4_KEYINFO 7133 ); 7134 }else{ 7135 sSort.addrSortIndex = -1; 7136 } 7137 7138 /* If the output is destined for a temporary table, open that table. 7139 */ 7140 if( pDest->eDest==SRT_EphemTab ){ 7141 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 7142 if( p->selFlags & SF_NestedFrom ){ 7143 /* Delete or NULL-out result columns that will never be used */ 7144 int ii; 7145 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){ 7146 sqlite3ExprDelete(db, pEList->a[ii].pExpr); 7147 sqlite3DbFree(db, pEList->a[ii].zEName); 7148 pEList->nExpr--; 7149 } 7150 for(ii=0; ii<pEList->nExpr; ii++){ 7151 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL; 7152 } 7153 } 7154 } 7155 7156 /* Set the limiter. 7157 */ 7158 iEnd = sqlite3VdbeMakeLabel(pParse); 7159 if( (p->selFlags & SF_FixedLimit)==0 ){ 7160 p->nSelectRow = 320; /* 4 billion rows */ 7161 } 7162 if( p->pLimit ) computeLimitRegisters(pParse, p, iEnd); 7163 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 7164 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); 7165 sSort.sortFlags |= SORTFLAG_UseSorter; 7166 } 7167 7168 /* Open an ephemeral index to use for the distinct set. 7169 */ 7170 if( p->selFlags & SF_Distinct ){ 7171 sDistinct.tabTnct = pParse->nTab++; 7172 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 7173 sDistinct.tabTnct, 0, 0, 7174 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0), 7175 P4_KEYINFO); 7176 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 7177 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 7178 }else{ 7179 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 7180 } 7181 7182 if( !isAgg && pGroupBy==0 ){ 7183 /* No aggregate functions and no GROUP BY clause */ 7184 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0) 7185 | (p->selFlags & SF_FixedLimit); 7186 #ifndef SQLITE_OMIT_WINDOWFUNC 7187 Window *pWin = p->pWin; /* Main window object (or NULL) */ 7188 if( pWin ){ 7189 sqlite3WindowCodeInit(pParse, p); 7190 } 7191 #endif 7192 assert( WHERE_USE_LIMIT==SF_FixedLimit ); 7193 7194 7195 /* Begin the database scan. */ 7196 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7197 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 7198 p->pEList, p, wctrlFlags, p->nSelectRow); 7199 if( pWInfo==0 ) goto select_end; 7200 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 7201 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 7202 } 7203 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 7204 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 7205 } 7206 if( sSort.pOrderBy ){ 7207 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 7208 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo); 7209 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 7210 sSort.pOrderBy = 0; 7211 } 7212 } 7213 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7214 7215 /* If sorting index that was created by a prior OP_OpenEphemeral 7216 ** instruction ended up not being needed, then change the OP_OpenEphemeral 7217 ** into an OP_Noop. 7218 */ 7219 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 7220 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7221 } 7222 7223 assert( p->pEList==pEList ); 7224 #ifndef SQLITE_OMIT_WINDOWFUNC 7225 if( pWin ){ 7226 int addrGosub = sqlite3VdbeMakeLabel(pParse); 7227 int iCont = sqlite3VdbeMakeLabel(pParse); 7228 int iBreak = sqlite3VdbeMakeLabel(pParse); 7229 int regGosub = ++pParse->nMem; 7230 7231 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); 7232 7233 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 7234 sqlite3VdbeResolveLabel(v, addrGosub); 7235 VdbeNoopComment((v, "inner-loop subroutine")); 7236 sSort.labelOBLopt = 0; 7237 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); 7238 sqlite3VdbeResolveLabel(v, iCont); 7239 sqlite3VdbeAddOp1(v, OP_Return, regGosub); 7240 VdbeComment((v, "end inner-loop subroutine")); 7241 sqlite3VdbeResolveLabel(v, iBreak); 7242 }else 7243 #endif /* SQLITE_OMIT_WINDOWFUNC */ 7244 { 7245 /* Use the standard inner loop. */ 7246 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, 7247 sqlite3WhereContinueLabel(pWInfo), 7248 sqlite3WhereBreakLabel(pWInfo)); 7249 7250 /* End the database scan loop. 7251 */ 7252 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7253 sqlite3WhereEnd(pWInfo); 7254 } 7255 }else{ 7256 /* This case when there exist aggregate functions or a GROUP BY clause 7257 ** or both */ 7258 NameContext sNC; /* Name context for processing aggregate information */ 7259 int iAMem; /* First Mem address for storing current GROUP BY */ 7260 int iBMem; /* First Mem address for previous GROUP BY */ 7261 int iUseFlag; /* Mem address holding flag indicating that at least 7262 ** one row of the input to the aggregator has been 7263 ** processed */ 7264 int iAbortFlag; /* Mem address which causes query abort if positive */ 7265 int groupBySort; /* Rows come from source in GROUP BY order */ 7266 int addrEnd; /* End of processing for this SELECT */ 7267 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 7268 int sortOut = 0; /* Output register from the sorter */ 7269 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 7270 7271 /* Remove any and all aliases between the result set and the 7272 ** GROUP BY clause. 7273 */ 7274 if( pGroupBy ){ 7275 int k; /* Loop counter */ 7276 struct ExprList_item *pItem; /* For looping over expression in a list */ 7277 7278 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 7279 pItem->u.x.iAlias = 0; 7280 } 7281 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 7282 pItem->u.x.iAlias = 0; 7283 } 7284 assert( 66==sqlite3LogEst(100) ); 7285 if( p->nSelectRow>66 ) p->nSelectRow = 66; 7286 7287 /* If there is both a GROUP BY and an ORDER BY clause and they are 7288 ** identical, then it may be possible to disable the ORDER BY clause 7289 ** on the grounds that the GROUP BY will cause elements to come out 7290 ** in the correct order. It also may not - the GROUP BY might use a 7291 ** database index that causes rows to be grouped together as required 7292 ** but not actually sorted. Either way, record the fact that the 7293 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 7294 ** variable. */ 7295 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){ 7296 int ii; 7297 /* The GROUP BY processing doesn't care whether rows are delivered in 7298 ** ASC or DESC order - only that each group is returned contiguously. 7299 ** So set the ASC/DESC flags in the GROUP BY to match those in the 7300 ** ORDER BY to maximize the chances of rows being delivered in an 7301 ** order that makes the ORDER BY redundant. */ 7302 for(ii=0; ii<pGroupBy->nExpr; ii++){ 7303 u8 sortFlags; 7304 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC; 7305 pGroupBy->a[ii].fg.sortFlags = sortFlags; 7306 } 7307 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 7308 orderByGrp = 1; 7309 } 7310 } 7311 }else{ 7312 assert( 0==sqlite3LogEst(1) ); 7313 p->nSelectRow = 0; 7314 } 7315 7316 /* Create a label to jump to when we want to abort the query */ 7317 addrEnd = sqlite3VdbeMakeLabel(pParse); 7318 7319 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 7320 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 7321 ** SELECT statement. 7322 */ 7323 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) ); 7324 if( pAggInfo ){ 7325 sqlite3ParserAddCleanup(pParse, 7326 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo); 7327 testcase( pParse->earlyCleanup ); 7328 } 7329 if( db->mallocFailed ){ 7330 goto select_end; 7331 } 7332 pAggInfo->selId = p->selId; 7333 memset(&sNC, 0, sizeof(sNC)); 7334 sNC.pParse = pParse; 7335 sNC.pSrcList = pTabList; 7336 sNC.uNC.pAggInfo = pAggInfo; 7337 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; ) 7338 pAggInfo->mnReg = pParse->nMem+1; 7339 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; 7340 pAggInfo->pGroupBy = pGroupBy; 7341 sqlite3ExprAnalyzeAggList(&sNC, pEList); 7342 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 7343 if( pHaving ){ 7344 if( pGroupBy ){ 7345 assert( pWhere==p->pWhere ); 7346 assert( pHaving==p->pHaving ); 7347 assert( pGroupBy==p->pGroupBy ); 7348 havingToWhere(pParse, p); 7349 pWhere = p->pWhere; 7350 } 7351 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 7352 } 7353 pAggInfo->nAccumulator = pAggInfo->nColumn; 7354 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){ 7355 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy); 7356 }else{ 7357 minMaxFlag = WHERE_ORDERBY_NORMAL; 7358 } 7359 for(i=0; i<pAggInfo->nFunc; i++){ 7360 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7361 assert( ExprUseXList(pExpr) ); 7362 sNC.ncFlags |= NC_InAggFunc; 7363 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList); 7364 #ifndef SQLITE_OMIT_WINDOWFUNC 7365 assert( !IsWindowFunc(pExpr) ); 7366 if( ExprHasProperty(pExpr, EP_WinFunc) ){ 7367 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter); 7368 } 7369 #endif 7370 sNC.ncFlags &= ~NC_InAggFunc; 7371 } 7372 pAggInfo->mxReg = pParse->nMem; 7373 if( db->mallocFailed ) goto select_end; 7374 #if TREETRACE_ENABLED 7375 if( sqlite3TreeTrace & 0x400 ){ 7376 int ii; 7377 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo)); 7378 sqlite3TreeViewSelect(0, p, 0); 7379 if( minMaxFlag ){ 7380 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag); 7381 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY"); 7382 } 7383 for(ii=0; ii<pAggInfo->nColumn; ii++){ 7384 struct AggInfo_col *pCol = &pAggInfo->aCol[ii]; 7385 sqlite3DebugPrintf( 7386 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d" 7387 " iSorterColumn=%d\n", 7388 ii, pCol->pTab ? pCol->pTab->zName : "NULL", 7389 pCol->iTable, pCol->iColumn, pCol->iMem, 7390 pCol->iSorterColumn); 7391 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0); 7392 } 7393 for(ii=0; ii<pAggInfo->nFunc; ii++){ 7394 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n", 7395 ii, pAggInfo->aFunc[ii].iMem); 7396 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0); 7397 } 7398 } 7399 #endif 7400 7401 7402 /* Processing for aggregates with GROUP BY is very different and 7403 ** much more complex than aggregates without a GROUP BY. 7404 */ 7405 if( pGroupBy ){ 7406 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 7407 int addr1; /* A-vs-B comparision jump */ 7408 int addrOutputRow; /* Start of subroutine that outputs a result row */ 7409 int regOutputRow; /* Return address register for output subroutine */ 7410 int addrSetAbort; /* Set the abort flag and return */ 7411 int addrTopOfLoop; /* Top of the input loop */ 7412 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 7413 int addrReset; /* Subroutine for resetting the accumulator */ 7414 int regReset; /* Return address register for reset subroutine */ 7415 ExprList *pDistinct = 0; 7416 u16 distFlag = 0; 7417 int eDist = WHERE_DISTINCT_NOOP; 7418 7419 if( pAggInfo->nFunc==1 7420 && pAggInfo->aFunc[0].iDistinct>=0 7421 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0) 7422 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr)) 7423 && pAggInfo->aFunc[0].pFExpr->x.pList!=0 7424 ){ 7425 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr; 7426 pExpr = sqlite3ExprDup(db, pExpr, 0); 7427 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0); 7428 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr); 7429 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7430 } 7431 7432 /* If there is a GROUP BY clause we might need a sorting index to 7433 ** implement it. Allocate that sorting index now. If it turns out 7434 ** that we do not need it after all, the OP_SorterOpen instruction 7435 ** will be converted into a Noop. 7436 */ 7437 pAggInfo->sortingIdx = pParse->nTab++; 7438 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy, 7439 0, pAggInfo->nColumn); 7440 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 7441 pAggInfo->sortingIdx, pAggInfo->nSortingColumn, 7442 0, (char*)pKeyInfo, P4_KEYINFO); 7443 7444 /* Initialize memory locations used by GROUP BY aggregate processing 7445 */ 7446 iUseFlag = ++pParse->nMem; 7447 iAbortFlag = ++pParse->nMem; 7448 regOutputRow = ++pParse->nMem; 7449 addrOutputRow = sqlite3VdbeMakeLabel(pParse); 7450 regReset = ++pParse->nMem; 7451 addrReset = sqlite3VdbeMakeLabel(pParse); 7452 iAMem = pParse->nMem + 1; 7453 pParse->nMem += pGroupBy->nExpr; 7454 iBMem = pParse->nMem + 1; 7455 pParse->nMem += pGroupBy->nExpr; 7456 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 7457 VdbeComment((v, "clear abort flag")); 7458 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 7459 7460 /* Begin a loop that will extract all source rows in GROUP BY order. 7461 ** This might involve two separate loops with an OP_Sort in between, or 7462 ** it might be a single loop that uses an index to extract information 7463 ** in the right order to begin with. 7464 */ 7465 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7466 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7467 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct, 7468 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY) 7469 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0 7470 ); 7471 if( pWInfo==0 ){ 7472 sqlite3ExprListDelete(db, pDistinct); 7473 goto select_end; 7474 } 7475 eDist = sqlite3WhereIsDistinct(pWInfo); 7476 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7477 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 7478 /* The optimizer is able to deliver rows in group by order so 7479 ** we do not have to sort. The OP_OpenEphemeral table will be 7480 ** cancelled later because we still need to use the pKeyInfo 7481 */ 7482 groupBySort = 0; 7483 }else{ 7484 /* Rows are coming out in undetermined order. We have to push 7485 ** each row into a sorting index, terminate the first loop, 7486 ** then loop over the sorting index in order to get the output 7487 ** in sorted order 7488 */ 7489 int regBase; 7490 int regRecord; 7491 int nCol; 7492 int nGroupBy; 7493 7494 explainTempTable(pParse, 7495 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 7496 "DISTINCT" : "GROUP BY"); 7497 7498 groupBySort = 1; 7499 nGroupBy = pGroupBy->nExpr; 7500 nCol = nGroupBy; 7501 j = nGroupBy; 7502 for(i=0; i<pAggInfo->nColumn; i++){ 7503 if( pAggInfo->aCol[i].iSorterColumn>=j ){ 7504 nCol++; 7505 j++; 7506 } 7507 } 7508 regBase = sqlite3GetTempRange(pParse, nCol); 7509 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); 7510 j = nGroupBy; 7511 pAggInfo->directMode = 1; 7512 for(i=0; i<pAggInfo->nColumn; i++){ 7513 struct AggInfo_col *pCol = &pAggInfo->aCol[i]; 7514 if( pCol->iSorterColumn>=j ){ 7515 sqlite3ExprCode(pParse, pCol->pCExpr, j + regBase); 7516 j++; 7517 } 7518 } 7519 pAggInfo->directMode = 0; 7520 regRecord = sqlite3GetTempReg(pParse); 7521 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 7522 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord); 7523 sqlite3ReleaseTempReg(pParse, regRecord); 7524 sqlite3ReleaseTempRange(pParse, regBase, nCol); 7525 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7526 sqlite3WhereEnd(pWInfo); 7527 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++; 7528 sortOut = sqlite3GetTempReg(pParse); 7529 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 7530 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd); 7531 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 7532 pAggInfo->useSortingIdx = 1; 7533 } 7534 7535 /* If the index or temporary table used by the GROUP BY sort 7536 ** will naturally deliver rows in the order required by the ORDER BY 7537 ** clause, cancel the ephemeral table open coded earlier. 7538 ** 7539 ** This is an optimization - the correct answer should result regardless. 7540 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 7541 ** disable this optimization for testing purposes. */ 7542 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 7543 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 7544 ){ 7545 sSort.pOrderBy = 0; 7546 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 7547 } 7548 7549 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 7550 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 7551 ** Then compare the current GROUP BY terms against the GROUP BY terms 7552 ** from the previous row currently stored in a0, a1, a2... 7553 */ 7554 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 7555 if( groupBySort ){ 7556 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx, 7557 sortOut, sortPTab); 7558 } 7559 for(j=0; j<pGroupBy->nExpr; j++){ 7560 if( groupBySort ){ 7561 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 7562 }else{ 7563 pAggInfo->directMode = 1; 7564 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 7565 } 7566 } 7567 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 7568 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 7569 addr1 = sqlite3VdbeCurrentAddr(v); 7570 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); 7571 7572 /* Generate code that runs whenever the GROUP BY changes. 7573 ** Changes in the GROUP BY are detected by the previous code 7574 ** block. If there were no changes, this block is skipped. 7575 ** 7576 ** This code copies current group by terms in b0,b1,b2,... 7577 ** over to a0,a1,a2. It then calls the output subroutine 7578 ** and resets the aggregate accumulator registers in preparation 7579 ** for the next GROUP BY batch. 7580 */ 7581 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 7582 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7583 VdbeComment((v, "output one row")); 7584 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 7585 VdbeComment((v, "check abort flag")); 7586 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 7587 VdbeComment((v, "reset accumulator")); 7588 7589 /* Update the aggregate accumulators based on the content of 7590 ** the current row 7591 */ 7592 sqlite3VdbeJumpHere(v, addr1); 7593 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist); 7594 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 7595 VdbeComment((v, "indicate data in accumulator")); 7596 7597 /* End of the loop 7598 */ 7599 if( groupBySort ){ 7600 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop); 7601 VdbeCoverage(v); 7602 }else{ 7603 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7604 sqlite3WhereEnd(pWInfo); 7605 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 7606 } 7607 sqlite3ExprListDelete(db, pDistinct); 7608 7609 /* Output the final row of result 7610 */ 7611 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 7612 VdbeComment((v, "output final row")); 7613 7614 /* Jump over the subroutines 7615 */ 7616 sqlite3VdbeGoto(v, addrEnd); 7617 7618 /* Generate a subroutine that outputs a single row of the result 7619 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 7620 ** is less than or equal to zero, the subroutine is a no-op. If 7621 ** the processing calls for the query to abort, this subroutine 7622 ** increments the iAbortFlag memory location before returning in 7623 ** order to signal the caller to abort. 7624 */ 7625 addrSetAbort = sqlite3VdbeCurrentAddr(v); 7626 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 7627 VdbeComment((v, "set abort flag")); 7628 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7629 sqlite3VdbeResolveLabel(v, addrOutputRow); 7630 addrOutputRow = sqlite3VdbeCurrentAddr(v); 7631 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); 7632 VdbeCoverage(v); 7633 VdbeComment((v, "Groupby result generator entry point")); 7634 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7635 finalizeAggFunctions(pParse, pAggInfo); 7636 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 7637 selectInnerLoop(pParse, p, -1, &sSort, 7638 &sDistinct, pDest, 7639 addrOutputRow+1, addrSetAbort); 7640 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 7641 VdbeComment((v, "end groupby result generator")); 7642 7643 /* Generate a subroutine that will reset the group-by accumulator 7644 */ 7645 sqlite3VdbeResolveLabel(v, addrReset); 7646 resetAccumulator(pParse, pAggInfo); 7647 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 7648 VdbeComment((v, "indicate accumulator empty")); 7649 sqlite3VdbeAddOp1(v, OP_Return, regReset); 7650 7651 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){ 7652 struct AggInfo_func *pF = &pAggInfo->aFunc[0]; 7653 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7654 } 7655 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 7656 else { 7657 Table *pTab; 7658 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){ 7659 /* If isSimpleCount() returns a pointer to a Table structure, then 7660 ** the SQL statement is of the form: 7661 ** 7662 ** SELECT count(*) FROM <tbl> 7663 ** 7664 ** where the Table structure returned represents table <tbl>. 7665 ** 7666 ** This statement is so common that it is optimized specially. The 7667 ** OP_Count instruction is executed either on the intkey table that 7668 ** contains the data for table <tbl> or on one of its indexes. It 7669 ** is better to execute the op on an index, as indexes are almost 7670 ** always spread across less pages than their corresponding tables. 7671 */ 7672 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 7673 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 7674 Index *pIdx; /* Iterator variable */ 7675 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 7676 Index *pBest = 0; /* Best index found so far */ 7677 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */ 7678 7679 sqlite3CodeVerifySchema(pParse, iDb); 7680 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 7681 7682 /* Search for the index that has the lowest scan cost. 7683 ** 7684 ** (2011-04-15) Do not do a full scan of an unordered index. 7685 ** 7686 ** (2013-10-03) Do not count the entries in a partial index. 7687 ** 7688 ** In practice the KeyInfo structure will not be used. It is only 7689 ** passed to keep OP_OpenRead happy. 7690 */ 7691 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 7692 if( !p->pSrc->a[0].fg.notIndexed ){ 7693 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 7694 if( pIdx->bUnordered==0 7695 && pIdx->szIdxRow<pTab->szTabRow 7696 && pIdx->pPartIdxWhere==0 7697 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 7698 ){ 7699 pBest = pIdx; 7700 } 7701 } 7702 } 7703 if( pBest ){ 7704 iRoot = pBest->tnum; 7705 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 7706 } 7707 7708 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 7709 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1); 7710 if( pKeyInfo ){ 7711 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 7712 } 7713 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem); 7714 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 7715 explainSimpleCount(pParse, pTab, pBest); 7716 }else{ 7717 int regAcc = 0; /* "populate accumulators" flag */ 7718 ExprList *pDistinct = 0; 7719 u16 distFlag = 0; 7720 int eDist; 7721 7722 /* If there are accumulator registers but no min() or max() functions 7723 ** without FILTER clauses, allocate register regAcc. Register regAcc 7724 ** will contain 0 the first time the inner loop runs, and 1 thereafter. 7725 ** The code generated by updateAccumulator() uses this to ensure 7726 ** that the accumulator registers are (a) updated only once if 7727 ** there are no min() or max functions or (b) always updated for the 7728 ** first row visited by the aggregate, so that they are updated at 7729 ** least once even if the FILTER clause means the min() or max() 7730 ** function visits zero rows. */ 7731 if( pAggInfo->nAccumulator ){ 7732 for(i=0; i<pAggInfo->nFunc; i++){ 7733 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){ 7734 continue; 7735 } 7736 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){ 7737 break; 7738 } 7739 } 7740 if( i==pAggInfo->nFunc ){ 7741 regAcc = ++pParse->nMem; 7742 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc); 7743 } 7744 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){ 7745 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) ); 7746 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList; 7747 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0; 7748 } 7749 7750 /* This case runs if the aggregate has no GROUP BY clause. The 7751 ** processing is much simpler since there is only a single row 7752 ** of output. 7753 */ 7754 assert( p->pGroupBy==0 ); 7755 resetAccumulator(pParse, pAggInfo); 7756 7757 /* If this query is a candidate for the min/max optimization, then 7758 ** minMaxFlag will have been previously set to either 7759 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will 7760 ** be an appropriate ORDER BY expression for the optimization. 7761 */ 7762 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 ); 7763 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 ); 7764 7765 SELECTTRACE(1,pParse,p,("WhereBegin\n")); 7766 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy, 7767 pDistinct, 0, minMaxFlag|distFlag, 0); 7768 if( pWInfo==0 ){ 7769 goto select_end; 7770 } 7771 SELECTTRACE(1,pParse,p,("WhereBegin returns\n")); 7772 eDist = sqlite3WhereIsDistinct(pWInfo); 7773 updateAccumulator(pParse, regAcc, pAggInfo, eDist); 7774 if( eDist!=WHERE_DISTINCT_NOOP ){ 7775 struct AggInfo_func *pF = pAggInfo->aFunc; 7776 if( pF ){ 7777 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr); 7778 } 7779 } 7780 7781 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc); 7782 if( minMaxFlag ){ 7783 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo); 7784 } 7785 SELECTTRACE(1,pParse,p,("WhereEnd\n")); 7786 sqlite3WhereEnd(pWInfo); 7787 finalizeAggFunctions(pParse, pAggInfo); 7788 } 7789 7790 sSort.pOrderBy = 0; 7791 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 7792 selectInnerLoop(pParse, p, -1, 0, 0, 7793 pDest, addrEnd, addrEnd); 7794 } 7795 sqlite3VdbeResolveLabel(v, addrEnd); 7796 7797 } /* endif aggregate query */ 7798 7799 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 7800 explainTempTable(pParse, "DISTINCT"); 7801 } 7802 7803 /* If there is an ORDER BY clause, then we need to sort the results 7804 ** and send them to the callback one by one. 7805 */ 7806 if( sSort.pOrderBy ){ 7807 explainTempTable(pParse, 7808 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 7809 assert( p->pEList==pEList ); 7810 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 7811 } 7812 7813 /* Jump here to skip this query 7814 */ 7815 sqlite3VdbeResolveLabel(v, iEnd); 7816 7817 /* The SELECT has been coded. If there is an error in the Parse structure, 7818 ** set the return code to 1. Otherwise 0. */ 7819 rc = (pParse->nErr>0); 7820 7821 /* Control jumps to here if an error is encountered above, or upon 7822 ** successful coding of the SELECT. 7823 */ 7824 select_end: 7825 assert( db->mallocFailed==0 || db->mallocFailed==1 ); 7826 assert( db->mallocFailed==0 || pParse->nErr!=0 ); 7827 sqlite3ExprListDelete(db, pMinMaxOrderBy); 7828 #ifdef SQLITE_DEBUG 7829 if( pAggInfo && !db->mallocFailed ){ 7830 for(i=0; i<pAggInfo->nColumn; i++){ 7831 Expr *pExpr = pAggInfo->aCol[i].pCExpr; 7832 assert( pExpr!=0 ); 7833 assert( pExpr->pAggInfo==pAggInfo ); 7834 assert( pExpr->iAgg==i ); 7835 } 7836 for(i=0; i<pAggInfo->nFunc; i++){ 7837 Expr *pExpr = pAggInfo->aFunc[i].pFExpr; 7838 assert( pExpr!=0 ); 7839 assert( pExpr->pAggInfo==pAggInfo ); 7840 assert( pExpr->iAgg==i ); 7841 } 7842 } 7843 #endif 7844 7845 #if TREETRACE_ENABLED 7846 SELECTTRACE(0x1,pParse,p,("end processing\n")); 7847 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){ 7848 sqlite3TreeViewSelect(0, p, 0); 7849 } 7850 #endif 7851 ExplainQueryPlanPop(pParse); 7852 return rc; 7853 } 7854