1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains C code routines that are called by the parser 13 ** to handle SELECT statements in SQLite. 14 */ 15 #include "sqliteInt.h" 16 17 /* 18 ** An instance of the following object is used to record information about 19 ** how to process the DISTINCT keyword, to simplify passing that information 20 ** into the selectInnerLoop() routine. 21 */ 22 typedef struct DistinctCtx DistinctCtx; 23 struct DistinctCtx { 24 u8 isTnct; /* True if the DISTINCT keyword is present */ 25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ 26 int tabTnct; /* Ephemeral table used for DISTINCT processing */ 27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ 28 }; 29 30 /* 31 ** An instance of the following object is used to record information about 32 ** the ORDER BY (or GROUP BY) clause of query is being coded. 33 */ 34 typedef struct SortCtx SortCtx; 35 struct SortCtx { 36 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ 37 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ 38 int iECursor; /* Cursor number for the sorter */ 39 int regReturn; /* Register holding block-output return address */ 40 int labelBkOut; /* Start label for the block-output subroutine */ 41 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ 42 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ 43 }; 44 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ 45 46 /* 47 ** Delete all the content of a Select structure but do not deallocate 48 ** the select structure itself. 49 */ 50 static void clearSelect(sqlite3 *db, Select *p){ 51 sqlite3ExprListDelete(db, p->pEList); 52 sqlite3SrcListDelete(db, p->pSrc); 53 sqlite3ExprDelete(db, p->pWhere); 54 sqlite3ExprListDelete(db, p->pGroupBy); 55 sqlite3ExprDelete(db, p->pHaving); 56 sqlite3ExprListDelete(db, p->pOrderBy); 57 sqlite3SelectDelete(db, p->pPrior); 58 sqlite3ExprDelete(db, p->pLimit); 59 sqlite3ExprDelete(db, p->pOffset); 60 sqlite3WithDelete(db, p->pWith); 61 } 62 63 /* 64 ** Initialize a SelectDest structure. 65 */ 66 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ 67 pDest->eDest = (u8)eDest; 68 pDest->iSDParm = iParm; 69 pDest->affSdst = 0; 70 pDest->iSdst = 0; 71 pDest->nSdst = 0; 72 } 73 74 75 /* 76 ** Allocate a new Select structure and return a pointer to that 77 ** structure. 78 */ 79 Select *sqlite3SelectNew( 80 Parse *pParse, /* Parsing context */ 81 ExprList *pEList, /* which columns to include in the result */ 82 SrcList *pSrc, /* the FROM clause -- which tables to scan */ 83 Expr *pWhere, /* the WHERE clause */ 84 ExprList *pGroupBy, /* the GROUP BY clause */ 85 Expr *pHaving, /* the HAVING clause */ 86 ExprList *pOrderBy, /* the ORDER BY clause */ 87 u16 selFlags, /* Flag parameters, such as SF_Distinct */ 88 Expr *pLimit, /* LIMIT value. NULL means not used */ 89 Expr *pOffset /* OFFSET value. NULL means no offset */ 90 ){ 91 Select *pNew; 92 Select standin; 93 sqlite3 *db = pParse->db; 94 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 95 assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */ 96 if( pNew==0 ){ 97 assert( db->mallocFailed ); 98 pNew = &standin; 99 memset(pNew, 0, sizeof(*pNew)); 100 } 101 if( pEList==0 ){ 102 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0)); 103 } 104 pNew->pEList = pEList; 105 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); 106 pNew->pSrc = pSrc; 107 pNew->pWhere = pWhere; 108 pNew->pGroupBy = pGroupBy; 109 pNew->pHaving = pHaving; 110 pNew->pOrderBy = pOrderBy; 111 pNew->selFlags = selFlags; 112 pNew->op = TK_SELECT; 113 pNew->pLimit = pLimit; 114 pNew->pOffset = pOffset; 115 assert( pOffset==0 || pLimit!=0 ); 116 pNew->addrOpenEphm[0] = -1; 117 pNew->addrOpenEphm[1] = -1; 118 if( db->mallocFailed ) { 119 clearSelect(db, pNew); 120 if( pNew!=&standin ) sqlite3DbFree(db, pNew); 121 pNew = 0; 122 }else{ 123 assert( pNew->pSrc!=0 || pParse->nErr>0 ); 124 } 125 assert( pNew!=&standin ); 126 return pNew; 127 } 128 129 /* 130 ** Delete the given Select structure and all of its substructures. 131 */ 132 void sqlite3SelectDelete(sqlite3 *db, Select *p){ 133 if( p ){ 134 clearSelect(db, p); 135 sqlite3DbFree(db, p); 136 } 137 } 138 139 /* 140 ** Return a pointer to the right-most SELECT statement in a compound. 141 */ 142 static Select *findRightmost(Select *p){ 143 while( p->pNext ) p = p->pNext; 144 return p; 145 } 146 147 /* 148 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the 149 ** type of join. Return an integer constant that expresses that type 150 ** in terms of the following bit values: 151 ** 152 ** JT_INNER 153 ** JT_CROSS 154 ** JT_OUTER 155 ** JT_NATURAL 156 ** JT_LEFT 157 ** JT_RIGHT 158 ** 159 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. 160 ** 161 ** If an illegal or unsupported join type is seen, then still return 162 ** a join type, but put an error in the pParse structure. 163 */ 164 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ 165 int jointype = 0; 166 Token *apAll[3]; 167 Token *p; 168 /* 0123456789 123456789 123456789 123 */ 169 static const char zKeyText[] = "naturaleftouterightfullinnercross"; 170 static const struct { 171 u8 i; /* Beginning of keyword text in zKeyText[] */ 172 u8 nChar; /* Length of the keyword in characters */ 173 u8 code; /* Join type mask */ 174 } aKeyword[] = { 175 /* natural */ { 0, 7, JT_NATURAL }, 176 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, 177 /* outer */ { 10, 5, JT_OUTER }, 178 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, 179 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, 180 /* inner */ { 23, 5, JT_INNER }, 181 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, 182 }; 183 int i, j; 184 apAll[0] = pA; 185 apAll[1] = pB; 186 apAll[2] = pC; 187 for(i=0; i<3 && apAll[i]; i++){ 188 p = apAll[i]; 189 for(j=0; j<ArraySize(aKeyword); j++){ 190 if( p->n==aKeyword[j].nChar 191 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ 192 jointype |= aKeyword[j].code; 193 break; 194 } 195 } 196 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); 197 if( j>=ArraySize(aKeyword) ){ 198 jointype |= JT_ERROR; 199 break; 200 } 201 } 202 if( 203 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || 204 (jointype & JT_ERROR)!=0 205 ){ 206 const char *zSp = " "; 207 assert( pB!=0 ); 208 if( pC==0 ){ zSp++; } 209 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " 210 "%T %T%s%T", pA, pB, zSp, pC); 211 jointype = JT_INNER; 212 }else if( (jointype & JT_OUTER)!=0 213 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ 214 sqlite3ErrorMsg(pParse, 215 "RIGHT and FULL OUTER JOINs are not currently supported"); 216 jointype = JT_INNER; 217 } 218 return jointype; 219 } 220 221 /* 222 ** Return the index of a column in a table. Return -1 if the column 223 ** is not contained in the table. 224 */ 225 static int columnIndex(Table *pTab, const char *zCol){ 226 int i; 227 for(i=0; i<pTab->nCol; i++){ 228 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; 229 } 230 return -1; 231 } 232 233 /* 234 ** Search the first N tables in pSrc, from left to right, looking for a 235 ** table that has a column named zCol. 236 ** 237 ** When found, set *piTab and *piCol to the table index and column index 238 ** of the matching column and return TRUE. 239 ** 240 ** If not found, return FALSE. 241 */ 242 static int tableAndColumnIndex( 243 SrcList *pSrc, /* Array of tables to search */ 244 int N, /* Number of tables in pSrc->a[] to search */ 245 const char *zCol, /* Name of the column we are looking for */ 246 int *piTab, /* Write index of pSrc->a[] here */ 247 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ 248 ){ 249 int i; /* For looping over tables in pSrc */ 250 int iCol; /* Index of column matching zCol */ 251 252 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ 253 for(i=0; i<N; i++){ 254 iCol = columnIndex(pSrc->a[i].pTab, zCol); 255 if( iCol>=0 ){ 256 if( piTab ){ 257 *piTab = i; 258 *piCol = iCol; 259 } 260 return 1; 261 } 262 } 263 return 0; 264 } 265 266 /* 267 ** This function is used to add terms implied by JOIN syntax to the 268 ** WHERE clause expression of a SELECT statement. The new term, which 269 ** is ANDed with the existing WHERE clause, is of the form: 270 ** 271 ** (tab1.col1 = tab2.col2) 272 ** 273 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the 274 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is 275 ** column iColRight of tab2. 276 */ 277 static void addWhereTerm( 278 Parse *pParse, /* Parsing context */ 279 SrcList *pSrc, /* List of tables in FROM clause */ 280 int iLeft, /* Index of first table to join in pSrc */ 281 int iColLeft, /* Index of column in first table */ 282 int iRight, /* Index of second table in pSrc */ 283 int iColRight, /* Index of column in second table */ 284 int isOuterJoin, /* True if this is an OUTER join */ 285 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ 286 ){ 287 sqlite3 *db = pParse->db; 288 Expr *pE1; 289 Expr *pE2; 290 Expr *pEq; 291 292 assert( iLeft<iRight ); 293 assert( pSrc->nSrc>iRight ); 294 assert( pSrc->a[iLeft].pTab ); 295 assert( pSrc->a[iRight].pTab ); 296 297 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); 298 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); 299 300 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); 301 if( pEq && isOuterJoin ){ 302 ExprSetProperty(pEq, EP_FromJoin); 303 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); 304 ExprSetVVAProperty(pEq, EP_NoReduce); 305 pEq->iRightJoinTable = (i16)pE2->iTable; 306 } 307 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); 308 } 309 310 /* 311 ** Set the EP_FromJoin property on all terms of the given expression. 312 ** And set the Expr.iRightJoinTable to iTable for every term in the 313 ** expression. 314 ** 315 ** The EP_FromJoin property is used on terms of an expression to tell 316 ** the LEFT OUTER JOIN processing logic that this term is part of the 317 ** join restriction specified in the ON or USING clause and not a part 318 ** of the more general WHERE clause. These terms are moved over to the 319 ** WHERE clause during join processing but we need to remember that they 320 ** originated in the ON or USING clause. 321 ** 322 ** The Expr.iRightJoinTable tells the WHERE clause processing that the 323 ** expression depends on table iRightJoinTable even if that table is not 324 ** explicitly mentioned in the expression. That information is needed 325 ** for cases like this: 326 ** 327 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 328 ** 329 ** The where clause needs to defer the handling of the t1.x=5 330 ** term until after the t2 loop of the join. In that way, a 331 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not 332 ** defer the handling of t1.x=5, it will be processed immediately 333 ** after the t1 loop and rows with t1.x!=5 will never appear in 334 ** the output, which is incorrect. 335 */ 336 static void setJoinExpr(Expr *p, int iTable){ 337 while( p ){ 338 ExprSetProperty(p, EP_FromJoin); 339 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); 340 ExprSetVVAProperty(p, EP_NoReduce); 341 p->iRightJoinTable = (i16)iTable; 342 setJoinExpr(p->pLeft, iTable); 343 p = p->pRight; 344 } 345 } 346 347 /* 348 ** This routine processes the join information for a SELECT statement. 349 ** ON and USING clauses are converted into extra terms of the WHERE clause. 350 ** NATURAL joins also create extra WHERE clause terms. 351 ** 352 ** The terms of a FROM clause are contained in the Select.pSrc structure. 353 ** The left most table is the first entry in Select.pSrc. The right-most 354 ** table is the last entry. The join operator is held in the entry to 355 ** the left. Thus entry 0 contains the join operator for the join between 356 ** entries 0 and 1. Any ON or USING clauses associated with the join are 357 ** also attached to the left entry. 358 ** 359 ** This routine returns the number of errors encountered. 360 */ 361 static int sqliteProcessJoin(Parse *pParse, Select *p){ 362 SrcList *pSrc; /* All tables in the FROM clause */ 363 int i, j; /* Loop counters */ 364 struct SrcList_item *pLeft; /* Left table being joined */ 365 struct SrcList_item *pRight; /* Right table being joined */ 366 367 pSrc = p->pSrc; 368 pLeft = &pSrc->a[0]; 369 pRight = &pLeft[1]; 370 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ 371 Table *pLeftTab = pLeft->pTab; 372 Table *pRightTab = pRight->pTab; 373 int isOuter; 374 375 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; 376 isOuter = (pRight->jointype & JT_OUTER)!=0; 377 378 /* When the NATURAL keyword is present, add WHERE clause terms for 379 ** every column that the two tables have in common. 380 */ 381 if( pRight->jointype & JT_NATURAL ){ 382 if( pRight->pOn || pRight->pUsing ){ 383 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " 384 "an ON or USING clause", 0); 385 return 1; 386 } 387 for(j=0; j<pRightTab->nCol; j++){ 388 char *zName; /* Name of column in the right table */ 389 int iLeft; /* Matching left table */ 390 int iLeftCol; /* Matching column in the left table */ 391 392 zName = pRightTab->aCol[j].zName; 393 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ 394 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, 395 isOuter, &p->pWhere); 396 } 397 } 398 } 399 400 /* Disallow both ON and USING clauses in the same join 401 */ 402 if( pRight->pOn && pRight->pUsing ){ 403 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " 404 "clauses in the same join"); 405 return 1; 406 } 407 408 /* Add the ON clause to the end of the WHERE clause, connected by 409 ** an AND operator. 410 */ 411 if( pRight->pOn ){ 412 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); 413 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); 414 pRight->pOn = 0; 415 } 416 417 /* Create extra terms on the WHERE clause for each column named 418 ** in the USING clause. Example: If the two tables to be joined are 419 ** A and B and the USING clause names X, Y, and Z, then add this 420 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z 421 ** Report an error if any column mentioned in the USING clause is 422 ** not contained in both tables to be joined. 423 */ 424 if( pRight->pUsing ){ 425 IdList *pList = pRight->pUsing; 426 for(j=0; j<pList->nId; j++){ 427 char *zName; /* Name of the term in the USING clause */ 428 int iLeft; /* Table on the left with matching column name */ 429 int iLeftCol; /* Column number of matching column on the left */ 430 int iRightCol; /* Column number of matching column on the right */ 431 432 zName = pList->a[j].zName; 433 iRightCol = columnIndex(pRightTab, zName); 434 if( iRightCol<0 435 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) 436 ){ 437 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " 438 "not present in both tables", zName); 439 return 1; 440 } 441 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, 442 isOuter, &p->pWhere); 443 } 444 } 445 } 446 return 0; 447 } 448 449 /* Forward reference */ 450 static KeyInfo *keyInfoFromExprList( 451 Parse *pParse, /* Parsing context */ 452 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 453 int iStart, /* Begin with this column of pList */ 454 int nExtra /* Add this many extra columns to the end */ 455 ); 456 457 /* 458 ** Insert code into "v" that will push the record in register regData 459 ** into the sorter. 460 */ 461 static void pushOntoSorter( 462 Parse *pParse, /* Parser context */ 463 SortCtx *pSort, /* Information about the ORDER BY clause */ 464 Select *pSelect, /* The whole SELECT statement */ 465 int regData /* Register holding data to be sorted */ 466 ){ 467 Vdbe *v = pParse->pVdbe; 468 int nExpr = pSort->pOrderBy->nExpr; 469 int regRecord = ++pParse->nMem; 470 int regBase = pParse->nMem+1; 471 int nOBSat = pSort->nOBSat; 472 int op; 473 474 pParse->nMem += nExpr+2; /* nExpr+2 registers allocated at regBase */ 475 sqlite3ExprCacheClear(pParse); 476 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, 0); 477 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); 478 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); 479 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nExpr+2-nOBSat,regRecord); 480 if( nOBSat>0 ){ 481 int regPrevKey; /* The first nOBSat columns of the previous row */ 482 int addrFirst; /* Address of the OP_IfNot opcode */ 483 int addrJmp; /* Address of the OP_Jump opcode */ 484 VdbeOp *pOp; /* Opcode that opens the sorter */ 485 int nKey; /* Number of sorting key columns, including OP_Sequence */ 486 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ 487 488 regPrevKey = pParse->nMem+1; 489 pParse->nMem += pSort->nOBSat; 490 nKey = nExpr - pSort->nOBSat + 1; 491 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); VdbeCoverage(v); 492 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); 493 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); 494 if( pParse->db->mallocFailed ) return; 495 pOp->p2 = nKey + 1; 496 pKI = pOp->p4.pKeyInfo; 497 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ 498 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); 499 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1); 500 addrJmp = sqlite3VdbeCurrentAddr(v); 501 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); 502 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); 503 pSort->regReturn = ++pParse->nMem; 504 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 505 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); 506 sqlite3VdbeJumpHere(v, addrFirst); 507 sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat); 508 sqlite3VdbeJumpHere(v, addrJmp); 509 } 510 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 511 op = OP_SorterInsert; 512 }else{ 513 op = OP_IdxInsert; 514 } 515 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); 516 if( pSelect->iLimit ){ 517 int addr1, addr2; 518 int iLimit; 519 if( pSelect->iOffset ){ 520 iLimit = pSelect->iOffset+1; 521 }else{ 522 iLimit = pSelect->iLimit; 523 } 524 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v); 525 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); 526 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); 527 sqlite3VdbeJumpHere(v, addr1); 528 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); 529 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); 530 sqlite3VdbeJumpHere(v, addr2); 531 } 532 } 533 534 /* 535 ** Add code to implement the OFFSET 536 */ 537 static void codeOffset( 538 Vdbe *v, /* Generate code into this VM */ 539 int iOffset, /* Register holding the offset counter */ 540 int iContinue /* Jump here to skip the current record */ 541 ){ 542 if( iOffset>0 ){ 543 int addr; 544 sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1); 545 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v); 546 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); 547 VdbeComment((v, "skip OFFSET records")); 548 sqlite3VdbeJumpHere(v, addr); 549 } 550 } 551 552 /* 553 ** Add code that will check to make sure the N registers starting at iMem 554 ** form a distinct entry. iTab is a sorting index that holds previously 555 ** seen combinations of the N values. A new entry is made in iTab 556 ** if the current N values are new. 557 ** 558 ** A jump to addrRepeat is made and the N+1 values are popped from the 559 ** stack if the top N elements are not distinct. 560 */ 561 static void codeDistinct( 562 Parse *pParse, /* Parsing and code generating context */ 563 int iTab, /* A sorting index used to test for distinctness */ 564 int addrRepeat, /* Jump to here if not distinct */ 565 int N, /* Number of elements */ 566 int iMem /* First element */ 567 ){ 568 Vdbe *v; 569 int r1; 570 571 v = pParse->pVdbe; 572 r1 = sqlite3GetTempReg(pParse); 573 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); 574 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); 575 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); 576 sqlite3ReleaseTempReg(pParse, r1); 577 } 578 579 #ifndef SQLITE_OMIT_SUBQUERY 580 /* 581 ** Generate an error message when a SELECT is used within a subexpression 582 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result 583 ** column. We do this in a subroutine because the error used to occur 584 ** in multiple places. (The error only occurs in one place now, but we 585 ** retain the subroutine to minimize code disruption.) 586 */ 587 static int checkForMultiColumnSelectError( 588 Parse *pParse, /* Parse context. */ 589 SelectDest *pDest, /* Destination of SELECT results */ 590 int nExpr /* Number of result columns returned by SELECT */ 591 ){ 592 int eDest = pDest->eDest; 593 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ 594 sqlite3ErrorMsg(pParse, "only a single result allowed for " 595 "a SELECT that is part of an expression"); 596 return 1; 597 }else{ 598 return 0; 599 } 600 } 601 #endif 602 603 /* 604 ** This routine generates the code for the inside of the inner loop 605 ** of a SELECT. 606 ** 607 ** If srcTab is negative, then the pEList expressions 608 ** are evaluated in order to get the data for this row. If srcTab is 609 ** zero or more, then data is pulled from srcTab and pEList is used only 610 ** to get number columns and the datatype for each column. 611 */ 612 static void selectInnerLoop( 613 Parse *pParse, /* The parser context */ 614 Select *p, /* The complete select statement being coded */ 615 ExprList *pEList, /* List of values being extracted */ 616 int srcTab, /* Pull data from this table */ 617 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ 618 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ 619 SelectDest *pDest, /* How to dispose of the results */ 620 int iContinue, /* Jump here to continue with next row */ 621 int iBreak /* Jump here to break out of the inner loop */ 622 ){ 623 Vdbe *v = pParse->pVdbe; 624 int i; 625 int hasDistinct; /* True if the DISTINCT keyword is present */ 626 int regResult; /* Start of memory holding result set */ 627 int eDest = pDest->eDest; /* How to dispose of results */ 628 int iParm = pDest->iSDParm; /* First argument to disposal method */ 629 int nResultCol; /* Number of result columns */ 630 631 assert( v ); 632 assert( pEList!=0 ); 633 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; 634 if( pSort && pSort->pOrderBy==0 ) pSort = 0; 635 if( pSort==0 && !hasDistinct ){ 636 assert( iContinue!=0 ); 637 codeOffset(v, p->iOffset, iContinue); 638 } 639 640 /* Pull the requested columns. 641 */ 642 nResultCol = pEList->nExpr; 643 644 if( pDest->iSdst==0 ){ 645 pDest->iSdst = pParse->nMem+1; 646 pParse->nMem += nResultCol; 647 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ 648 /* This is an error condition that can result, for example, when a SELECT 649 ** on the right-hand side of an INSERT contains more result columns than 650 ** there are columns in the table on the left. The error will be caught 651 ** and reported later. But we need to make sure enough memory is allocated 652 ** to avoid other spurious errors in the meantime. */ 653 pParse->nMem += nResultCol; 654 } 655 pDest->nSdst = nResultCol; 656 regResult = pDest->iSdst; 657 if( srcTab>=0 ){ 658 for(i=0; i<nResultCol; i++){ 659 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); 660 VdbeComment((v, "%s", pEList->a[i].zName)); 661 } 662 }else if( eDest!=SRT_Exists ){ 663 /* If the destination is an EXISTS(...) expression, the actual 664 ** values returned by the SELECT are not required. 665 */ 666 sqlite3ExprCodeExprList(pParse, pEList, regResult, 667 (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0); 668 } 669 670 /* If the DISTINCT keyword was present on the SELECT statement 671 ** and this row has been seen before, then do not make this row 672 ** part of the result. 673 */ 674 if( hasDistinct ){ 675 switch( pDistinct->eTnctType ){ 676 case WHERE_DISTINCT_ORDERED: { 677 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ 678 int iJump; /* Jump destination */ 679 int regPrev; /* Previous row content */ 680 681 /* Allocate space for the previous row */ 682 regPrev = pParse->nMem+1; 683 pParse->nMem += nResultCol; 684 685 /* Change the OP_OpenEphemeral coded earlier to an OP_Null 686 ** sets the MEM_Cleared bit on the first register of the 687 ** previous value. This will cause the OP_Ne below to always 688 ** fail on the first iteration of the loop even if the first 689 ** row is all NULLs. 690 */ 691 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 692 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); 693 pOp->opcode = OP_Null; 694 pOp->p1 = 1; 695 pOp->p2 = regPrev; 696 697 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; 698 for(i=0; i<nResultCol; i++){ 699 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); 700 if( i<nResultCol-1 ){ 701 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); 702 VdbeCoverage(v); 703 }else{ 704 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); 705 VdbeCoverage(v); 706 } 707 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); 708 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); 709 } 710 assert( sqlite3VdbeCurrentAddr(v)==iJump ); 711 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); 712 break; 713 } 714 715 case WHERE_DISTINCT_UNIQUE: { 716 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); 717 break; 718 } 719 720 default: { 721 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); 722 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult); 723 break; 724 } 725 } 726 if( pSort==0 ){ 727 codeOffset(v, p->iOffset, iContinue); 728 } 729 } 730 731 switch( eDest ){ 732 /* In this mode, write each query result to the key of the temporary 733 ** table iParm. 734 */ 735 #ifndef SQLITE_OMIT_COMPOUND_SELECT 736 case SRT_Union: { 737 int r1; 738 r1 = sqlite3GetTempReg(pParse); 739 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 740 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 741 sqlite3ReleaseTempReg(pParse, r1); 742 break; 743 } 744 745 /* Construct a record from the query result, but instead of 746 ** saving that record, use it as a key to delete elements from 747 ** the temporary table iParm. 748 */ 749 case SRT_Except: { 750 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); 751 break; 752 } 753 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 754 755 /* Store the result as data using a unique key. 756 */ 757 case SRT_Fifo: 758 case SRT_DistFifo: 759 case SRT_Table: 760 case SRT_EphemTab: { 761 int r1 = sqlite3GetTempReg(pParse); 762 testcase( eDest==SRT_Table ); 763 testcase( eDest==SRT_EphemTab ); 764 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 765 #ifndef SQLITE_OMIT_CTE 766 if( eDest==SRT_DistFifo ){ 767 /* If the destination is DistFifo, then cursor (iParm+1) is open 768 ** on an ephemeral index. If the current row is already present 769 ** in the index, do not write it to the output. If not, add the 770 ** current row to the index and proceed with writing it to the 771 ** output table as well. */ 772 int addr = sqlite3VdbeCurrentAddr(v) + 4; 773 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v); 774 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); 775 assert( pSort==0 ); 776 } 777 #endif 778 if( pSort ){ 779 pushOntoSorter(pParse, pSort, p, r1); 780 }else{ 781 int r2 = sqlite3GetTempReg(pParse); 782 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); 783 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); 784 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 785 sqlite3ReleaseTempReg(pParse, r2); 786 } 787 sqlite3ReleaseTempReg(pParse, r1); 788 break; 789 } 790 791 #ifndef SQLITE_OMIT_SUBQUERY 792 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 793 ** then there should be a single item on the stack. Write this 794 ** item into the set table with bogus data. 795 */ 796 case SRT_Set: { 797 assert( nResultCol==1 ); 798 pDest->affSdst = 799 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); 800 if( pSort ){ 801 /* At first glance you would think we could optimize out the 802 ** ORDER BY in this case since the order of entries in the set 803 ** does not matter. But there might be a LIMIT clause, in which 804 ** case the order does matter */ 805 pushOntoSorter(pParse, pSort, p, regResult); 806 }else{ 807 int r1 = sqlite3GetTempReg(pParse); 808 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); 809 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); 810 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 811 sqlite3ReleaseTempReg(pParse, r1); 812 } 813 break; 814 } 815 816 /* If any row exist in the result set, record that fact and abort. 817 */ 818 case SRT_Exists: { 819 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); 820 /* The LIMIT clause will terminate the loop for us */ 821 break; 822 } 823 824 /* If this is a scalar select that is part of an expression, then 825 ** store the results in the appropriate memory cell and break out 826 ** of the scan loop. 827 */ 828 case SRT_Mem: { 829 assert( nResultCol==1 ); 830 if( pSort ){ 831 pushOntoSorter(pParse, pSort, p, regResult); 832 }else{ 833 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); 834 /* The LIMIT clause will jump out of the loop for us */ 835 } 836 break; 837 } 838 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 839 840 case SRT_Coroutine: /* Send data to a co-routine */ 841 case SRT_Output: { /* Return the results */ 842 testcase( eDest==SRT_Coroutine ); 843 testcase( eDest==SRT_Output ); 844 if( pSort ){ 845 int r1 = sqlite3GetTempReg(pParse); 846 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); 847 pushOntoSorter(pParse, pSort, p, r1); 848 sqlite3ReleaseTempReg(pParse, r1); 849 }else if( eDest==SRT_Coroutine ){ 850 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 851 }else{ 852 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); 853 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); 854 } 855 break; 856 } 857 858 #ifndef SQLITE_OMIT_CTE 859 /* Write the results into a priority queue that is order according to 860 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an 861 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first 862 ** pSO->nExpr columns, then make sure all keys are unique by adding a 863 ** final OP_Sequence column. The last column is the record as a blob. 864 */ 865 case SRT_DistQueue: 866 case SRT_Queue: { 867 int nKey; 868 int r1, r2, r3; 869 int addrTest = 0; 870 ExprList *pSO; 871 pSO = pDest->pOrderBy; 872 assert( pSO ); 873 nKey = pSO->nExpr; 874 r1 = sqlite3GetTempReg(pParse); 875 r2 = sqlite3GetTempRange(pParse, nKey+2); 876 r3 = r2+nKey+1; 877 if( eDest==SRT_DistQueue ){ 878 /* If the destination is DistQueue, then cursor (iParm+1) is open 879 ** on a second ephemeral index that holds all values every previously 880 ** added to the queue. */ 881 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, 882 regResult, nResultCol); 883 VdbeCoverage(v); 884 } 885 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); 886 if( eDest==SRT_DistQueue ){ 887 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); 888 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 889 } 890 for(i=0; i<nKey; i++){ 891 sqlite3VdbeAddOp2(v, OP_SCopy, 892 regResult + pSO->a[i].u.x.iOrderByCol - 1, 893 r2+i); 894 } 895 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); 896 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); 897 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); 898 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); 899 sqlite3ReleaseTempReg(pParse, r1); 900 sqlite3ReleaseTempRange(pParse, r2, nKey+2); 901 break; 902 } 903 #endif /* SQLITE_OMIT_CTE */ 904 905 906 907 #if !defined(SQLITE_OMIT_TRIGGER) 908 /* Discard the results. This is used for SELECT statements inside 909 ** the body of a TRIGGER. The purpose of such selects is to call 910 ** user-defined functions that have side effects. We do not care 911 ** about the actual results of the select. 912 */ 913 default: { 914 assert( eDest==SRT_Discard ); 915 break; 916 } 917 #endif 918 } 919 920 /* Jump to the end of the loop if the LIMIT is reached. Except, if 921 ** there is a sorter, in which case the sorter has already limited 922 ** the output for us. 923 */ 924 if( pSort==0 && p->iLimit ){ 925 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 926 } 927 } 928 929 /* 930 ** Allocate a KeyInfo object sufficient for an index of N key columns and 931 ** X extra columns. 932 */ 933 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ 934 KeyInfo *p = sqlite3DbMallocZero(0, 935 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); 936 if( p ){ 937 p->aSortOrder = (u8*)&p->aColl[N+X]; 938 p->nField = (u16)N; 939 p->nXField = (u16)X; 940 p->enc = ENC(db); 941 p->db = db; 942 p->nRef = 1; 943 }else{ 944 db->mallocFailed = 1; 945 } 946 return p; 947 } 948 949 /* 950 ** Deallocate a KeyInfo object 951 */ 952 void sqlite3KeyInfoUnref(KeyInfo *p){ 953 if( p ){ 954 assert( p->nRef>0 ); 955 p->nRef--; 956 if( p->nRef==0 ) sqlite3DbFree(0, p); 957 } 958 } 959 960 /* 961 ** Make a new pointer to a KeyInfo object 962 */ 963 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ 964 if( p ){ 965 assert( p->nRef>0 ); 966 p->nRef++; 967 } 968 return p; 969 } 970 971 #ifdef SQLITE_DEBUG 972 /* 973 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object 974 ** can only be changed if this is just a single reference to the object. 975 ** 976 ** This routine is used only inside of assert() statements. 977 */ 978 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } 979 #endif /* SQLITE_DEBUG */ 980 981 /* 982 ** Given an expression list, generate a KeyInfo structure that records 983 ** the collating sequence for each expression in that expression list. 984 ** 985 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting 986 ** KeyInfo structure is appropriate for initializing a virtual index to 987 ** implement that clause. If the ExprList is the result set of a SELECT 988 ** then the KeyInfo structure is appropriate for initializing a virtual 989 ** index to implement a DISTINCT test. 990 ** 991 ** Space to hold the KeyInfo structure is obtain from malloc. The calling 992 ** function is responsible for seeing that this structure is eventually 993 ** freed. 994 */ 995 static KeyInfo *keyInfoFromExprList( 996 Parse *pParse, /* Parsing context */ 997 ExprList *pList, /* Form the KeyInfo object from this ExprList */ 998 int iStart, /* Begin with this column of pList */ 999 int nExtra /* Add this many extra columns to the end */ 1000 ){ 1001 int nExpr; 1002 KeyInfo *pInfo; 1003 struct ExprList_item *pItem; 1004 sqlite3 *db = pParse->db; 1005 int i; 1006 1007 nExpr = pList->nExpr; 1008 pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1); 1009 if( pInfo ){ 1010 assert( sqlite3KeyInfoIsWriteable(pInfo) ); 1011 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ 1012 CollSeq *pColl; 1013 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 1014 if( !pColl ) pColl = db->pDfltColl; 1015 pInfo->aColl[i-iStart] = pColl; 1016 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; 1017 } 1018 } 1019 return pInfo; 1020 } 1021 1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1023 /* 1024 ** Name of the connection operator, used for error messages. 1025 */ 1026 static const char *selectOpName(int id){ 1027 char *z; 1028 switch( id ){ 1029 case TK_ALL: z = "UNION ALL"; break; 1030 case TK_INTERSECT: z = "INTERSECT"; break; 1031 case TK_EXCEPT: z = "EXCEPT"; break; 1032 default: z = "UNION"; break; 1033 } 1034 return z; 1035 } 1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 1037 1038 #ifndef SQLITE_OMIT_EXPLAIN 1039 /* 1040 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1041 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1042 ** where the caption is of the form: 1043 ** 1044 ** "USE TEMP B-TREE FOR xxx" 1045 ** 1046 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which 1047 ** is determined by the zUsage argument. 1048 */ 1049 static void explainTempTable(Parse *pParse, const char *zUsage){ 1050 if( pParse->explain==2 ){ 1051 Vdbe *v = pParse->pVdbe; 1052 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); 1053 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1054 } 1055 } 1056 1057 /* 1058 ** Assign expression b to lvalue a. A second, no-op, version of this macro 1059 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code 1060 ** in sqlite3Select() to assign values to structure member variables that 1061 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the 1062 ** code with #ifndef directives. 1063 */ 1064 # define explainSetInteger(a, b) a = b 1065 1066 #else 1067 /* No-op versions of the explainXXX() functions and macros. */ 1068 # define explainTempTable(y,z) 1069 # define explainSetInteger(y,z) 1070 #endif 1071 1072 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) 1073 /* 1074 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function 1075 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, 1076 ** where the caption is of one of the two forms: 1077 ** 1078 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" 1079 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" 1080 ** 1081 ** where iSub1 and iSub2 are the integers passed as the corresponding 1082 ** function parameters, and op is the text representation of the parameter 1083 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, 1084 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is 1085 ** false, or the second form if it is true. 1086 */ 1087 static void explainComposite( 1088 Parse *pParse, /* Parse context */ 1089 int op, /* One of TK_UNION, TK_EXCEPT etc. */ 1090 int iSub1, /* Subquery id 1 */ 1091 int iSub2, /* Subquery id 2 */ 1092 int bUseTmp /* True if a temp table was used */ 1093 ){ 1094 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); 1095 if( pParse->explain==2 ){ 1096 Vdbe *v = pParse->pVdbe; 1097 char *zMsg = sqlite3MPrintf( 1098 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, 1099 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) 1100 ); 1101 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); 1102 } 1103 } 1104 #else 1105 /* No-op versions of the explainXXX() functions and macros. */ 1106 # define explainComposite(v,w,x,y,z) 1107 #endif 1108 1109 /* 1110 ** If the inner loop was generated using a non-null pOrderBy argument, 1111 ** then the results were placed in a sorter. After the loop is terminated 1112 ** we need to run the sorter and output the results. The following 1113 ** routine generates the code needed to do that. 1114 */ 1115 static void generateSortTail( 1116 Parse *pParse, /* Parsing context */ 1117 Select *p, /* The SELECT statement */ 1118 SortCtx *pSort, /* Information on the ORDER BY clause */ 1119 int nColumn, /* Number of columns of data */ 1120 SelectDest *pDest /* Write the sorted results here */ 1121 ){ 1122 Vdbe *v = pParse->pVdbe; /* The prepared statement */ 1123 int addrBreak = sqlite3VdbeMakeLabel(v); /* Jump here to exit loop */ 1124 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ 1125 int addr; 1126 int addrOnce = 0; 1127 int iTab; 1128 int pseudoTab = 0; 1129 ExprList *pOrderBy = pSort->pOrderBy; 1130 int eDest = pDest->eDest; 1131 int iParm = pDest->iSDParm; 1132 int regRow; 1133 int regRowid; 1134 int nKey; 1135 1136 if( pSort->labelBkOut ){ 1137 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); 1138 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak); 1139 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); 1140 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1141 } 1142 iTab = pSort->iECursor; 1143 regRow = sqlite3GetTempReg(pParse); 1144 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1145 pseudoTab = pParse->nTab++; 1146 sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn); 1147 regRowid = 0; 1148 }else{ 1149 regRowid = sqlite3GetTempReg(pParse); 1150 } 1151 nKey = pOrderBy->nExpr - pSort->nOBSat; 1152 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1153 int regSortOut = ++pParse->nMem; 1154 int ptab2 = pParse->nTab++; 1155 sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, nKey+2); 1156 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1157 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); 1158 VdbeCoverage(v); 1159 codeOffset(v, p->iOffset, addrContinue); 1160 sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut); 1161 sqlite3VdbeAddOp3(v, OP_Column, ptab2, nKey+1, regRow); 1162 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1163 }else{ 1164 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); 1165 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); 1166 codeOffset(v, p->iOffset, addrContinue); 1167 sqlite3VdbeAddOp3(v, OP_Column, iTab, nKey+1, regRow); 1168 } 1169 switch( eDest ){ 1170 case SRT_Table: 1171 case SRT_EphemTab: { 1172 testcase( eDest==SRT_Table ); 1173 testcase( eDest==SRT_EphemTab ); 1174 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); 1175 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); 1176 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 1177 break; 1178 } 1179 #ifndef SQLITE_OMIT_SUBQUERY 1180 case SRT_Set: { 1181 assert( nColumn==1 ); 1182 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, 1183 &pDest->affSdst, 1); 1184 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); 1185 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); 1186 break; 1187 } 1188 case SRT_Mem: { 1189 assert( nColumn==1 ); 1190 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); 1191 /* The LIMIT clause will terminate the loop for us */ 1192 break; 1193 } 1194 #endif 1195 default: { 1196 int i; 1197 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 1198 testcase( eDest==SRT_Output ); 1199 testcase( eDest==SRT_Coroutine ); 1200 for(i=0; i<nColumn; i++){ 1201 assert( regRow!=pDest->iSdst+i ); 1202 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i); 1203 if( i==0 ){ 1204 sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 1205 } 1206 } 1207 if( eDest==SRT_Output ){ 1208 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); 1209 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); 1210 }else{ 1211 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 1212 } 1213 break; 1214 } 1215 } 1216 sqlite3ReleaseTempReg(pParse, regRow); 1217 sqlite3ReleaseTempReg(pParse, regRowid); 1218 1219 /* The bottom of the loop 1220 */ 1221 sqlite3VdbeResolveLabel(v, addrContinue); 1222 if( pSort->sortFlags & SORTFLAG_UseSorter ){ 1223 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); 1224 }else{ 1225 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); 1226 } 1227 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); 1228 sqlite3VdbeResolveLabel(v, addrBreak); 1229 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ 1230 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); 1231 } 1232 } 1233 1234 /* 1235 ** Return a pointer to a string containing the 'declaration type' of the 1236 ** expression pExpr. The string may be treated as static by the caller. 1237 ** 1238 ** Also try to estimate the size of the returned value and return that 1239 ** result in *pEstWidth. 1240 ** 1241 ** The declaration type is the exact datatype definition extracted from the 1242 ** original CREATE TABLE statement if the expression is a column. The 1243 ** declaration type for a ROWID field is INTEGER. Exactly when an expression 1244 ** is considered a column can be complex in the presence of subqueries. The 1245 ** result-set expression in all of the following SELECT statements is 1246 ** considered a column by this function. 1247 ** 1248 ** SELECT col FROM tbl; 1249 ** SELECT (SELECT col FROM tbl; 1250 ** SELECT (SELECT col FROM tbl); 1251 ** SELECT abc FROM (SELECT col AS abc FROM tbl); 1252 ** 1253 ** The declaration type for any expression other than a column is NULL. 1254 ** 1255 ** This routine has either 3 or 6 parameters depending on whether or not 1256 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. 1257 */ 1258 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1259 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) 1260 static const char *columnTypeImpl( 1261 NameContext *pNC, 1262 Expr *pExpr, 1263 const char **pzOrigDb, 1264 const char **pzOrigTab, 1265 const char **pzOrigCol, 1266 u8 *pEstWidth 1267 ){ 1268 char const *zOrigDb = 0; 1269 char const *zOrigTab = 0; 1270 char const *zOrigCol = 0; 1271 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1272 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) 1273 static const char *columnTypeImpl( 1274 NameContext *pNC, 1275 Expr *pExpr, 1276 u8 *pEstWidth 1277 ){ 1278 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */ 1279 char const *zType = 0; 1280 int j; 1281 u8 estWidth = 1; 1282 1283 if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0; 1284 switch( pExpr->op ){ 1285 case TK_AGG_COLUMN: 1286 case TK_COLUMN: { 1287 /* The expression is a column. Locate the table the column is being 1288 ** extracted from in NameContext.pSrcList. This table may be real 1289 ** database table or a subquery. 1290 */ 1291 Table *pTab = 0; /* Table structure column is extracted from */ 1292 Select *pS = 0; /* Select the column is extracted from */ 1293 int iCol = pExpr->iColumn; /* Index of column in pTab */ 1294 testcase( pExpr->op==TK_AGG_COLUMN ); 1295 testcase( pExpr->op==TK_COLUMN ); 1296 while( pNC && !pTab ){ 1297 SrcList *pTabList = pNC->pSrcList; 1298 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); 1299 if( j<pTabList->nSrc ){ 1300 pTab = pTabList->a[j].pTab; 1301 pS = pTabList->a[j].pSelect; 1302 }else{ 1303 pNC = pNC->pNext; 1304 } 1305 } 1306 1307 if( pTab==0 ){ 1308 /* At one time, code such as "SELECT new.x" within a trigger would 1309 ** cause this condition to run. Since then, we have restructured how 1310 ** trigger code is generated and so this condition is no longer 1311 ** possible. However, it can still be true for statements like 1312 ** the following: 1313 ** 1314 ** CREATE TABLE t1(col INTEGER); 1315 ** SELECT (SELECT t1.col) FROM FROM t1; 1316 ** 1317 ** when columnType() is called on the expression "t1.col" in the 1318 ** sub-select. In this case, set the column type to NULL, even 1319 ** though it should really be "INTEGER". 1320 ** 1321 ** This is not a problem, as the column type of "t1.col" is never 1322 ** used. When columnType() is called on the expression 1323 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT 1324 ** branch below. */ 1325 break; 1326 } 1327 1328 assert( pTab && pExpr->pTab==pTab ); 1329 if( pS ){ 1330 /* The "table" is actually a sub-select or a view in the FROM clause 1331 ** of the SELECT statement. Return the declaration type and origin 1332 ** data for the result-set column of the sub-select. 1333 */ 1334 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ 1335 /* If iCol is less than zero, then the expression requests the 1336 ** rowid of the sub-select or view. This expression is legal (see 1337 ** test case misc2.2.2) - it always evaluates to NULL. 1338 */ 1339 NameContext sNC; 1340 Expr *p = pS->pEList->a[iCol].pExpr; 1341 sNC.pSrcList = pS->pSrc; 1342 sNC.pNext = pNC; 1343 sNC.pParse = pNC->pParse; 1344 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); 1345 } 1346 }else if( pTab->pSchema ){ 1347 /* A real table */ 1348 assert( !pS ); 1349 if( iCol<0 ) iCol = pTab->iPKey; 1350 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1351 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1352 if( iCol<0 ){ 1353 zType = "INTEGER"; 1354 zOrigCol = "rowid"; 1355 }else{ 1356 zType = pTab->aCol[iCol].zType; 1357 zOrigCol = pTab->aCol[iCol].zName; 1358 estWidth = pTab->aCol[iCol].szEst; 1359 } 1360 zOrigTab = pTab->zName; 1361 if( pNC->pParse ){ 1362 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); 1363 zOrigDb = pNC->pParse->db->aDb[iDb].zName; 1364 } 1365 #else 1366 if( iCol<0 ){ 1367 zType = "INTEGER"; 1368 }else{ 1369 zType = pTab->aCol[iCol].zType; 1370 estWidth = pTab->aCol[iCol].szEst; 1371 } 1372 #endif 1373 } 1374 break; 1375 } 1376 #ifndef SQLITE_OMIT_SUBQUERY 1377 case TK_SELECT: { 1378 /* The expression is a sub-select. Return the declaration type and 1379 ** origin info for the single column in the result set of the SELECT 1380 ** statement. 1381 */ 1382 NameContext sNC; 1383 Select *pS = pExpr->x.pSelect; 1384 Expr *p = pS->pEList->a[0].pExpr; 1385 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); 1386 sNC.pSrcList = pS->pSrc; 1387 sNC.pNext = pNC; 1388 sNC.pParse = pNC->pParse; 1389 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); 1390 break; 1391 } 1392 #endif 1393 } 1394 1395 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1396 if( pzOrigDb ){ 1397 assert( pzOrigTab && pzOrigCol ); 1398 *pzOrigDb = zOrigDb; 1399 *pzOrigTab = zOrigTab; 1400 *pzOrigCol = zOrigCol; 1401 } 1402 #endif 1403 if( pEstWidth ) *pEstWidth = estWidth; 1404 return zType; 1405 } 1406 1407 /* 1408 ** Generate code that will tell the VDBE the declaration types of columns 1409 ** in the result set. 1410 */ 1411 static void generateColumnTypes( 1412 Parse *pParse, /* Parser context */ 1413 SrcList *pTabList, /* List of tables */ 1414 ExprList *pEList /* Expressions defining the result set */ 1415 ){ 1416 #ifndef SQLITE_OMIT_DECLTYPE 1417 Vdbe *v = pParse->pVdbe; 1418 int i; 1419 NameContext sNC; 1420 sNC.pSrcList = pTabList; 1421 sNC.pParse = pParse; 1422 for(i=0; i<pEList->nExpr; i++){ 1423 Expr *p = pEList->a[i].pExpr; 1424 const char *zType; 1425 #ifdef SQLITE_ENABLE_COLUMN_METADATA 1426 const char *zOrigDb = 0; 1427 const char *zOrigTab = 0; 1428 const char *zOrigCol = 0; 1429 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); 1430 1431 /* The vdbe must make its own copy of the column-type and other 1432 ** column specific strings, in case the schema is reset before this 1433 ** virtual machine is deleted. 1434 */ 1435 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); 1436 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); 1437 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); 1438 #else 1439 zType = columnType(&sNC, p, 0, 0, 0, 0); 1440 #endif 1441 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); 1442 } 1443 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ 1444 } 1445 1446 /* 1447 ** Generate code that will tell the VDBE the names of columns 1448 ** in the result set. This information is used to provide the 1449 ** azCol[] values in the callback. 1450 */ 1451 static void generateColumnNames( 1452 Parse *pParse, /* Parser context */ 1453 SrcList *pTabList, /* List of tables */ 1454 ExprList *pEList /* Expressions defining the result set */ 1455 ){ 1456 Vdbe *v = pParse->pVdbe; 1457 int i, j; 1458 sqlite3 *db = pParse->db; 1459 int fullNames, shortNames; 1460 1461 #ifndef SQLITE_OMIT_EXPLAIN 1462 /* If this is an EXPLAIN, skip this step */ 1463 if( pParse->explain ){ 1464 return; 1465 } 1466 #endif 1467 1468 if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return; 1469 pParse->colNamesSet = 1; 1470 fullNames = (db->flags & SQLITE_FullColNames)!=0; 1471 shortNames = (db->flags & SQLITE_ShortColNames)!=0; 1472 sqlite3VdbeSetNumCols(v, pEList->nExpr); 1473 for(i=0; i<pEList->nExpr; i++){ 1474 Expr *p; 1475 p = pEList->a[i].pExpr; 1476 if( NEVER(p==0) ) continue; 1477 if( pEList->a[i].zName ){ 1478 char *zName = pEList->a[i].zName; 1479 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); 1480 }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ 1481 Table *pTab; 1482 char *zCol; 1483 int iCol = p->iColumn; 1484 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ 1485 if( pTabList->a[j].iCursor==p->iTable ) break; 1486 } 1487 assert( j<pTabList->nSrc ); 1488 pTab = pTabList->a[j].pTab; 1489 if( iCol<0 ) iCol = pTab->iPKey; 1490 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); 1491 if( iCol<0 ){ 1492 zCol = "rowid"; 1493 }else{ 1494 zCol = pTab->aCol[iCol].zName; 1495 } 1496 if( !shortNames && !fullNames ){ 1497 sqlite3VdbeSetColName(v, i, COLNAME_NAME, 1498 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); 1499 }else if( fullNames ){ 1500 char *zName = 0; 1501 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); 1502 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); 1503 }else{ 1504 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); 1505 } 1506 }else{ 1507 const char *z = pEList->a[i].zSpan; 1508 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); 1509 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); 1510 } 1511 } 1512 generateColumnTypes(pParse, pTabList, pEList); 1513 } 1514 1515 /* 1516 ** Given a an expression list (which is really the list of expressions 1517 ** that form the result set of a SELECT statement) compute appropriate 1518 ** column names for a table that would hold the expression list. 1519 ** 1520 ** All column names will be unique. 1521 ** 1522 ** Only the column names are computed. Column.zType, Column.zColl, 1523 ** and other fields of Column are zeroed. 1524 ** 1525 ** Return SQLITE_OK on success. If a memory allocation error occurs, 1526 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. 1527 */ 1528 static int selectColumnsFromExprList( 1529 Parse *pParse, /* Parsing context */ 1530 ExprList *pEList, /* Expr list from which to derive column names */ 1531 i16 *pnCol, /* Write the number of columns here */ 1532 Column **paCol /* Write the new column list here */ 1533 ){ 1534 sqlite3 *db = pParse->db; /* Database connection */ 1535 int i, j; /* Loop counters */ 1536 int cnt; /* Index added to make the name unique */ 1537 Column *aCol, *pCol; /* For looping over result columns */ 1538 int nCol; /* Number of columns in the result set */ 1539 Expr *p; /* Expression for a single result column */ 1540 char *zName; /* Column name */ 1541 int nName; /* Size of name in zName[] */ 1542 1543 if( pEList ){ 1544 nCol = pEList->nExpr; 1545 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); 1546 testcase( aCol==0 ); 1547 }else{ 1548 nCol = 0; 1549 aCol = 0; 1550 } 1551 *pnCol = nCol; 1552 *paCol = aCol; 1553 1554 for(i=0, pCol=aCol; i<nCol; i++, pCol++){ 1555 /* Get an appropriate name for the column 1556 */ 1557 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); 1558 if( (zName = pEList->a[i].zName)!=0 ){ 1559 /* If the column contains an "AS <name>" phrase, use <name> as the name */ 1560 zName = sqlite3DbStrDup(db, zName); 1561 }else{ 1562 Expr *pColExpr = p; /* The expression that is the result column name */ 1563 Table *pTab; /* Table associated with this expression */ 1564 while( pColExpr->op==TK_DOT ){ 1565 pColExpr = pColExpr->pRight; 1566 assert( pColExpr!=0 ); 1567 } 1568 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ 1569 /* For columns use the column name name */ 1570 int iCol = pColExpr->iColumn; 1571 pTab = pColExpr->pTab; 1572 if( iCol<0 ) iCol = pTab->iPKey; 1573 zName = sqlite3MPrintf(db, "%s", 1574 iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); 1575 }else if( pColExpr->op==TK_ID ){ 1576 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); 1577 zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken); 1578 }else{ 1579 /* Use the original text of the column expression as its name */ 1580 zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan); 1581 } 1582 } 1583 if( db->mallocFailed ){ 1584 sqlite3DbFree(db, zName); 1585 break; 1586 } 1587 1588 /* Make sure the column name is unique. If the name is not unique, 1589 ** append a integer to the name so that it becomes unique. 1590 */ 1591 nName = sqlite3Strlen30(zName); 1592 for(j=cnt=0; j<i; j++){ 1593 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ 1594 char *zNewName; 1595 int k; 1596 for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){} 1597 if( k>=0 && zName[k]==':' ) nName = k; 1598 zName[nName] = 0; 1599 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); 1600 sqlite3DbFree(db, zName); 1601 zName = zNewName; 1602 j = -1; 1603 if( zName==0 ) break; 1604 } 1605 } 1606 pCol->zName = zName; 1607 } 1608 if( db->mallocFailed ){ 1609 for(j=0; j<i; j++){ 1610 sqlite3DbFree(db, aCol[j].zName); 1611 } 1612 sqlite3DbFree(db, aCol); 1613 *paCol = 0; 1614 *pnCol = 0; 1615 return SQLITE_NOMEM; 1616 } 1617 return SQLITE_OK; 1618 } 1619 1620 /* 1621 ** Add type and collation information to a column list based on 1622 ** a SELECT statement. 1623 ** 1624 ** The column list presumably came from selectColumnNamesFromExprList(). 1625 ** The column list has only names, not types or collations. This 1626 ** routine goes through and adds the types and collations. 1627 ** 1628 ** This routine requires that all identifiers in the SELECT 1629 ** statement be resolved. 1630 */ 1631 static void selectAddColumnTypeAndCollation( 1632 Parse *pParse, /* Parsing contexts */ 1633 Table *pTab, /* Add column type information to this table */ 1634 Select *pSelect /* SELECT used to determine types and collations */ 1635 ){ 1636 sqlite3 *db = pParse->db; 1637 NameContext sNC; 1638 Column *pCol; 1639 CollSeq *pColl; 1640 int i; 1641 Expr *p; 1642 struct ExprList_item *a; 1643 u64 szAll = 0; 1644 1645 assert( pSelect!=0 ); 1646 assert( (pSelect->selFlags & SF_Resolved)!=0 ); 1647 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); 1648 if( db->mallocFailed ) return; 1649 memset(&sNC, 0, sizeof(sNC)); 1650 sNC.pSrcList = pSelect->pSrc; 1651 a = pSelect->pEList->a; 1652 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ 1653 p = a[i].pExpr; 1654 pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst)); 1655 szAll += pCol->szEst; 1656 pCol->affinity = sqlite3ExprAffinity(p); 1657 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE; 1658 pColl = sqlite3ExprCollSeq(pParse, p); 1659 if( pColl ){ 1660 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); 1661 } 1662 } 1663 pTab->szTabRow = sqlite3LogEst(szAll*4); 1664 } 1665 1666 /* 1667 ** Given a SELECT statement, generate a Table structure that describes 1668 ** the result set of that SELECT. 1669 */ 1670 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ 1671 Table *pTab; 1672 sqlite3 *db = pParse->db; 1673 int savedFlags; 1674 1675 savedFlags = db->flags; 1676 db->flags &= ~SQLITE_FullColNames; 1677 db->flags |= SQLITE_ShortColNames; 1678 sqlite3SelectPrep(pParse, pSelect, 0); 1679 if( pParse->nErr ) return 0; 1680 while( pSelect->pPrior ) pSelect = pSelect->pPrior; 1681 db->flags = savedFlags; 1682 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); 1683 if( pTab==0 ){ 1684 return 0; 1685 } 1686 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside 1687 ** is disabled */ 1688 assert( db->lookaside.bEnabled==0 ); 1689 pTab->nRef = 1; 1690 pTab->zName = 0; 1691 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 1692 selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); 1693 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); 1694 pTab->iPKey = -1; 1695 if( db->mallocFailed ){ 1696 sqlite3DeleteTable(db, pTab); 1697 return 0; 1698 } 1699 return pTab; 1700 } 1701 1702 /* 1703 ** Get a VDBE for the given parser context. Create a new one if necessary. 1704 ** If an error occurs, return NULL and leave a message in pParse. 1705 */ 1706 Vdbe *sqlite3GetVdbe(Parse *pParse){ 1707 Vdbe *v = pParse->pVdbe; 1708 if( v==0 ){ 1709 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); 1710 if( v ) sqlite3VdbeAddOp0(v, OP_Init); 1711 if( pParse->pToplevel==0 1712 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) 1713 ){ 1714 pParse->okConstFactor = 1; 1715 } 1716 1717 } 1718 return v; 1719 } 1720 1721 1722 /* 1723 ** Compute the iLimit and iOffset fields of the SELECT based on the 1724 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions 1725 ** that appear in the original SQL statement after the LIMIT and OFFSET 1726 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset 1727 ** are the integer memory register numbers for counters used to compute 1728 ** the limit and offset. If there is no limit and/or offset, then 1729 ** iLimit and iOffset are negative. 1730 ** 1731 ** This routine changes the values of iLimit and iOffset only if 1732 ** a limit or offset is defined by pLimit and pOffset. iLimit and 1733 ** iOffset should have been preset to appropriate default values (zero) 1734 ** prior to calling this routine. 1735 ** 1736 ** The iOffset register (if it exists) is initialized to the value 1737 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register 1738 ** iOffset+1 is initialized to LIMIT+OFFSET. 1739 ** 1740 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get 1741 ** redefined. The UNION ALL operator uses this property to force 1742 ** the reuse of the same limit and offset registers across multiple 1743 ** SELECT statements. 1744 */ 1745 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ 1746 Vdbe *v = 0; 1747 int iLimit = 0; 1748 int iOffset; 1749 int addr1, n; 1750 if( p->iLimit ) return; 1751 1752 /* 1753 ** "LIMIT -1" always shows all rows. There is some 1754 ** controversy about what the correct behavior should be. 1755 ** The current implementation interprets "LIMIT 0" to mean 1756 ** no rows. 1757 */ 1758 sqlite3ExprCacheClear(pParse); 1759 assert( p->pOffset==0 || p->pLimit!=0 ); 1760 if( p->pLimit ){ 1761 p->iLimit = iLimit = ++pParse->nMem; 1762 v = sqlite3GetVdbe(pParse); 1763 assert( v!=0 ); 1764 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ 1765 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); 1766 VdbeComment((v, "LIMIT counter")); 1767 if( n==0 ){ 1768 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); 1769 }else if( n>=0 && p->nSelectRow>(u64)n ){ 1770 p->nSelectRow = n; 1771 } 1772 }else{ 1773 sqlite3ExprCode(pParse, p->pLimit, iLimit); 1774 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); 1775 VdbeComment((v, "LIMIT counter")); 1776 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v); 1777 } 1778 if( p->pOffset ){ 1779 p->iOffset = iOffset = ++pParse->nMem; 1780 pParse->nMem++; /* Allocate an extra register for limit+offset */ 1781 sqlite3ExprCode(pParse, p->pOffset, iOffset); 1782 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); 1783 VdbeComment((v, "OFFSET counter")); 1784 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v); 1785 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); 1786 sqlite3VdbeJumpHere(v, addr1); 1787 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); 1788 VdbeComment((v, "LIMIT+OFFSET")); 1789 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v); 1790 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); 1791 sqlite3VdbeJumpHere(v, addr1); 1792 } 1793 } 1794 } 1795 1796 #ifndef SQLITE_OMIT_COMPOUND_SELECT 1797 /* 1798 ** Return the appropriate collating sequence for the iCol-th column of 1799 ** the result set for the compound-select statement "p". Return NULL if 1800 ** the column has no default collating sequence. 1801 ** 1802 ** The collating sequence for the compound select is taken from the 1803 ** left-most term of the select that has a collating sequence. 1804 */ 1805 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ 1806 CollSeq *pRet; 1807 if( p->pPrior ){ 1808 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); 1809 }else{ 1810 pRet = 0; 1811 } 1812 assert( iCol>=0 ); 1813 if( pRet==0 && iCol<p->pEList->nExpr ){ 1814 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); 1815 } 1816 return pRet; 1817 } 1818 1819 /* 1820 ** The select statement passed as the second parameter is a compound SELECT 1821 ** with an ORDER BY clause. This function allocates and returns a KeyInfo 1822 ** structure suitable for implementing the ORDER BY. 1823 ** 1824 ** Space to hold the KeyInfo structure is obtained from malloc. The calling 1825 ** function is responsible for ensuring that this structure is eventually 1826 ** freed. 1827 */ 1828 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ 1829 ExprList *pOrderBy = p->pOrderBy; 1830 int nOrderBy = p->pOrderBy->nExpr; 1831 sqlite3 *db = pParse->db; 1832 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); 1833 if( pRet ){ 1834 int i; 1835 for(i=0; i<nOrderBy; i++){ 1836 struct ExprList_item *pItem = &pOrderBy->a[i]; 1837 Expr *pTerm = pItem->pExpr; 1838 CollSeq *pColl; 1839 1840 if( pTerm->flags & EP_Collate ){ 1841 pColl = sqlite3ExprCollSeq(pParse, pTerm); 1842 }else{ 1843 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); 1844 if( pColl==0 ) pColl = db->pDfltColl; 1845 pOrderBy->a[i].pExpr = 1846 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); 1847 } 1848 assert( sqlite3KeyInfoIsWriteable(pRet) ); 1849 pRet->aColl[i] = pColl; 1850 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; 1851 } 1852 } 1853 1854 return pRet; 1855 } 1856 1857 #ifndef SQLITE_OMIT_CTE 1858 /* 1859 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE 1860 ** query of the form: 1861 ** 1862 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) 1863 ** \___________/ \_______________/ 1864 ** p->pPrior p 1865 ** 1866 ** 1867 ** There is exactly one reference to the recursive-table in the FROM clause 1868 ** of recursive-query, marked with the SrcList->a[].isRecursive flag. 1869 ** 1870 ** The setup-query runs once to generate an initial set of rows that go 1871 ** into a Queue table. Rows are extracted from the Queue table one by 1872 ** one. Each row extracted from Queue is output to pDest. Then the single 1873 ** extracted row (now in the iCurrent table) becomes the content of the 1874 ** recursive-table for a recursive-query run. The output of the recursive-query 1875 ** is added back into the Queue table. Then another row is extracted from Queue 1876 ** and the iteration continues until the Queue table is empty. 1877 ** 1878 ** If the compound query operator is UNION then no duplicate rows are ever 1879 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows 1880 ** that have ever been inserted into Queue and causes duplicates to be 1881 ** discarded. If the operator is UNION ALL, then duplicates are allowed. 1882 ** 1883 ** If the query has an ORDER BY, then entries in the Queue table are kept in 1884 ** ORDER BY order and the first entry is extracted for each cycle. Without 1885 ** an ORDER BY, the Queue table is just a FIFO. 1886 ** 1887 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows 1888 ** have been output to pDest. A LIMIT of zero means to output no rows and a 1889 ** negative LIMIT means to output all rows. If there is also an OFFSET clause 1890 ** with a positive value, then the first OFFSET outputs are discarded rather 1891 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET 1892 ** rows have been skipped. 1893 */ 1894 static void generateWithRecursiveQuery( 1895 Parse *pParse, /* Parsing context */ 1896 Select *p, /* The recursive SELECT to be coded */ 1897 SelectDest *pDest /* What to do with query results */ 1898 ){ 1899 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ 1900 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ 1901 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ 1902 Select *pSetup = p->pPrior; /* The setup query */ 1903 int addrTop; /* Top of the loop */ 1904 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ 1905 int iCurrent = 0; /* The Current table */ 1906 int regCurrent; /* Register holding Current table */ 1907 int iQueue; /* The Queue table */ 1908 int iDistinct = 0; /* To ensure unique results if UNION */ 1909 int eDest = SRT_Fifo; /* How to write to Queue */ 1910 SelectDest destQueue; /* SelectDest targetting the Queue table */ 1911 int i; /* Loop counter */ 1912 int rc; /* Result code */ 1913 ExprList *pOrderBy; /* The ORDER BY clause */ 1914 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ 1915 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ 1916 1917 /* Obtain authorization to do a recursive query */ 1918 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; 1919 1920 /* Process the LIMIT and OFFSET clauses, if they exist */ 1921 addrBreak = sqlite3VdbeMakeLabel(v); 1922 computeLimitRegisters(pParse, p, addrBreak); 1923 pLimit = p->pLimit; 1924 pOffset = p->pOffset; 1925 regLimit = p->iLimit; 1926 regOffset = p->iOffset; 1927 p->pLimit = p->pOffset = 0; 1928 p->iLimit = p->iOffset = 0; 1929 pOrderBy = p->pOrderBy; 1930 1931 /* Locate the cursor number of the Current table */ 1932 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ 1933 if( pSrc->a[i].isRecursive ){ 1934 iCurrent = pSrc->a[i].iCursor; 1935 break; 1936 } 1937 } 1938 1939 /* Allocate cursors numbers for Queue and Distinct. The cursor number for 1940 ** the Distinct table must be exactly one greater than Queue in order 1941 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ 1942 iQueue = pParse->nTab++; 1943 if( p->op==TK_UNION ){ 1944 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; 1945 iDistinct = pParse->nTab++; 1946 }else{ 1947 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; 1948 } 1949 sqlite3SelectDestInit(&destQueue, eDest, iQueue); 1950 1951 /* Allocate cursors for Current, Queue, and Distinct. */ 1952 regCurrent = ++pParse->nMem; 1953 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); 1954 if( pOrderBy ){ 1955 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); 1956 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, 1957 (char*)pKeyInfo, P4_KEYINFO); 1958 destQueue.pOrderBy = pOrderBy; 1959 }else{ 1960 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); 1961 } 1962 VdbeComment((v, "Queue table")); 1963 if( iDistinct ){ 1964 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); 1965 p->selFlags |= SF_UsesEphemeral; 1966 } 1967 1968 /* Detach the ORDER BY clause from the compound SELECT */ 1969 p->pOrderBy = 0; 1970 1971 /* Store the results of the setup-query in Queue. */ 1972 pSetup->pNext = 0; 1973 rc = sqlite3Select(pParse, pSetup, &destQueue); 1974 pSetup->pNext = p; 1975 if( rc ) goto end_of_recursive_query; 1976 1977 /* Find the next row in the Queue and output that row */ 1978 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); 1979 1980 /* Transfer the next row in Queue over to Current */ 1981 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ 1982 if( pOrderBy ){ 1983 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); 1984 }else{ 1985 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); 1986 } 1987 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); 1988 1989 /* Output the single row in Current */ 1990 addrCont = sqlite3VdbeMakeLabel(v); 1991 codeOffset(v, regOffset, addrCont); 1992 selectInnerLoop(pParse, p, p->pEList, iCurrent, 1993 0, 0, pDest, addrCont, addrBreak); 1994 if( regLimit ){ 1995 sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1); 1996 VdbeCoverage(v); 1997 } 1998 sqlite3VdbeResolveLabel(v, addrCont); 1999 2000 /* Execute the recursive SELECT taking the single row in Current as 2001 ** the value for the recursive-table. Store the results in the Queue. 2002 */ 2003 p->pPrior = 0; 2004 sqlite3Select(pParse, p, &destQueue); 2005 assert( p->pPrior==0 ); 2006 p->pPrior = pSetup; 2007 2008 /* Keep running the loop until the Queue is empty */ 2009 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); 2010 sqlite3VdbeResolveLabel(v, addrBreak); 2011 2012 end_of_recursive_query: 2013 sqlite3ExprListDelete(pParse->db, p->pOrderBy); 2014 p->pOrderBy = pOrderBy; 2015 p->pLimit = pLimit; 2016 p->pOffset = pOffset; 2017 return; 2018 } 2019 #endif /* SQLITE_OMIT_CTE */ 2020 2021 /* Forward references */ 2022 static int multiSelectOrderBy( 2023 Parse *pParse, /* Parsing context */ 2024 Select *p, /* The right-most of SELECTs to be coded */ 2025 SelectDest *pDest /* What to do with query results */ 2026 ); 2027 2028 2029 /* 2030 ** This routine is called to process a compound query form from 2031 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or 2032 ** INTERSECT 2033 ** 2034 ** "p" points to the right-most of the two queries. the query on the 2035 ** left is p->pPrior. The left query could also be a compound query 2036 ** in which case this routine will be called recursively. 2037 ** 2038 ** The results of the total query are to be written into a destination 2039 ** of type eDest with parameter iParm. 2040 ** 2041 ** Example 1: Consider a three-way compound SQL statement. 2042 ** 2043 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 2044 ** 2045 ** This statement is parsed up as follows: 2046 ** 2047 ** SELECT c FROM t3 2048 ** | 2049 ** `-----> SELECT b FROM t2 2050 ** | 2051 ** `------> SELECT a FROM t1 2052 ** 2053 ** The arrows in the diagram above represent the Select.pPrior pointer. 2054 ** So if this routine is called with p equal to the t3 query, then 2055 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. 2056 ** 2057 ** Notice that because of the way SQLite parses compound SELECTs, the 2058 ** individual selects always group from left to right. 2059 */ 2060 static int multiSelect( 2061 Parse *pParse, /* Parsing context */ 2062 Select *p, /* The right-most of SELECTs to be coded */ 2063 SelectDest *pDest /* What to do with query results */ 2064 ){ 2065 int rc = SQLITE_OK; /* Success code from a subroutine */ 2066 Select *pPrior; /* Another SELECT immediately to our left */ 2067 Vdbe *v; /* Generate code to this VDBE */ 2068 SelectDest dest; /* Alternative data destination */ 2069 Select *pDelete = 0; /* Chain of simple selects to delete */ 2070 sqlite3 *db; /* Database connection */ 2071 #ifndef SQLITE_OMIT_EXPLAIN 2072 int iSub1 = 0; /* EQP id of left-hand query */ 2073 int iSub2 = 0; /* EQP id of right-hand query */ 2074 #endif 2075 2076 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only 2077 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. 2078 */ 2079 assert( p && p->pPrior ); /* Calling function guarantees this much */ 2080 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); 2081 db = pParse->db; 2082 pPrior = p->pPrior; 2083 dest = *pDest; 2084 if( pPrior->pOrderBy ){ 2085 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", 2086 selectOpName(p->op)); 2087 rc = 1; 2088 goto multi_select_end; 2089 } 2090 if( pPrior->pLimit ){ 2091 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", 2092 selectOpName(p->op)); 2093 rc = 1; 2094 goto multi_select_end; 2095 } 2096 2097 v = sqlite3GetVdbe(pParse); 2098 assert( v!=0 ); /* The VDBE already created by calling function */ 2099 2100 /* Create the destination temporary table if necessary 2101 */ 2102 if( dest.eDest==SRT_EphemTab ){ 2103 assert( p->pEList ); 2104 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); 2105 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 2106 dest.eDest = SRT_Table; 2107 } 2108 2109 /* Make sure all SELECTs in the statement have the same number of elements 2110 ** in their result sets. 2111 */ 2112 assert( p->pEList && pPrior->pEList ); 2113 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ 2114 if( p->selFlags & SF_Values ){ 2115 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); 2116 }else{ 2117 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" 2118 " do not have the same number of result columns", selectOpName(p->op)); 2119 } 2120 rc = 1; 2121 goto multi_select_end; 2122 } 2123 2124 #ifndef SQLITE_OMIT_CTE 2125 if( p->selFlags & SF_Recursive ){ 2126 generateWithRecursiveQuery(pParse, p, &dest); 2127 }else 2128 #endif 2129 2130 /* Compound SELECTs that have an ORDER BY clause are handled separately. 2131 */ 2132 if( p->pOrderBy ){ 2133 return multiSelectOrderBy(pParse, p, pDest); 2134 }else 2135 2136 /* Generate code for the left and right SELECT statements. 2137 */ 2138 switch( p->op ){ 2139 case TK_ALL: { 2140 int addr = 0; 2141 int nLimit; 2142 assert( !pPrior->pLimit ); 2143 pPrior->iLimit = p->iLimit; 2144 pPrior->iOffset = p->iOffset; 2145 pPrior->pLimit = p->pLimit; 2146 pPrior->pOffset = p->pOffset; 2147 explainSetInteger(iSub1, pParse->iNextSelectId); 2148 rc = sqlite3Select(pParse, pPrior, &dest); 2149 p->pLimit = 0; 2150 p->pOffset = 0; 2151 if( rc ){ 2152 goto multi_select_end; 2153 } 2154 p->pPrior = 0; 2155 p->iLimit = pPrior->iLimit; 2156 p->iOffset = pPrior->iOffset; 2157 if( p->iLimit ){ 2158 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v); 2159 VdbeComment((v, "Jump ahead if LIMIT reached")); 2160 } 2161 explainSetInteger(iSub2, pParse->iNextSelectId); 2162 rc = sqlite3Select(pParse, p, &dest); 2163 testcase( rc!=SQLITE_OK ); 2164 pDelete = p->pPrior; 2165 p->pPrior = pPrior; 2166 p->nSelectRow += pPrior->nSelectRow; 2167 if( pPrior->pLimit 2168 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) 2169 && nLimit>0 && p->nSelectRow > (u64)nLimit 2170 ){ 2171 p->nSelectRow = nLimit; 2172 } 2173 if( addr ){ 2174 sqlite3VdbeJumpHere(v, addr); 2175 } 2176 break; 2177 } 2178 case TK_EXCEPT: 2179 case TK_UNION: { 2180 int unionTab; /* Cursor number of the temporary table holding result */ 2181 u8 op = 0; /* One of the SRT_ operations to apply to self */ 2182 int priorOp; /* The SRT_ operation to apply to prior selects */ 2183 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ 2184 int addr; 2185 SelectDest uniondest; 2186 2187 testcase( p->op==TK_EXCEPT ); 2188 testcase( p->op==TK_UNION ); 2189 priorOp = SRT_Union; 2190 if( dest.eDest==priorOp ){ 2191 /* We can reuse a temporary table generated by a SELECT to our 2192 ** right. 2193 */ 2194 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ 2195 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ 2196 unionTab = dest.iSDParm; 2197 }else{ 2198 /* We will need to create our own temporary table to hold the 2199 ** intermediate results. 2200 */ 2201 unionTab = pParse->nTab++; 2202 assert( p->pOrderBy==0 ); 2203 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); 2204 assert( p->addrOpenEphm[0] == -1 ); 2205 p->addrOpenEphm[0] = addr; 2206 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2207 assert( p->pEList ); 2208 } 2209 2210 /* Code the SELECT statements to our left 2211 */ 2212 assert( !pPrior->pOrderBy ); 2213 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); 2214 explainSetInteger(iSub1, pParse->iNextSelectId); 2215 rc = sqlite3Select(pParse, pPrior, &uniondest); 2216 if( rc ){ 2217 goto multi_select_end; 2218 } 2219 2220 /* Code the current SELECT statement 2221 */ 2222 if( p->op==TK_EXCEPT ){ 2223 op = SRT_Except; 2224 }else{ 2225 assert( p->op==TK_UNION ); 2226 op = SRT_Union; 2227 } 2228 p->pPrior = 0; 2229 pLimit = p->pLimit; 2230 p->pLimit = 0; 2231 pOffset = p->pOffset; 2232 p->pOffset = 0; 2233 uniondest.eDest = op; 2234 explainSetInteger(iSub2, pParse->iNextSelectId); 2235 rc = sqlite3Select(pParse, p, &uniondest); 2236 testcase( rc!=SQLITE_OK ); 2237 /* Query flattening in sqlite3Select() might refill p->pOrderBy. 2238 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ 2239 sqlite3ExprListDelete(db, p->pOrderBy); 2240 pDelete = p->pPrior; 2241 p->pPrior = pPrior; 2242 p->pOrderBy = 0; 2243 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; 2244 sqlite3ExprDelete(db, p->pLimit); 2245 p->pLimit = pLimit; 2246 p->pOffset = pOffset; 2247 p->iLimit = 0; 2248 p->iOffset = 0; 2249 2250 /* Convert the data in the temporary table into whatever form 2251 ** it is that we currently need. 2252 */ 2253 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); 2254 if( dest.eDest!=priorOp ){ 2255 int iCont, iBreak, iStart; 2256 assert( p->pEList ); 2257 if( dest.eDest==SRT_Output ){ 2258 Select *pFirst = p; 2259 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2260 generateColumnNames(pParse, 0, pFirst->pEList); 2261 } 2262 iBreak = sqlite3VdbeMakeLabel(v); 2263 iCont = sqlite3VdbeMakeLabel(v); 2264 computeLimitRegisters(pParse, p, iBreak); 2265 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); 2266 iStart = sqlite3VdbeCurrentAddr(v); 2267 selectInnerLoop(pParse, p, p->pEList, unionTab, 2268 0, 0, &dest, iCont, iBreak); 2269 sqlite3VdbeResolveLabel(v, iCont); 2270 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); 2271 sqlite3VdbeResolveLabel(v, iBreak); 2272 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); 2273 } 2274 break; 2275 } 2276 default: assert( p->op==TK_INTERSECT ); { 2277 int tab1, tab2; 2278 int iCont, iBreak, iStart; 2279 Expr *pLimit, *pOffset; 2280 int addr; 2281 SelectDest intersectdest; 2282 int r1; 2283 2284 /* INTERSECT is different from the others since it requires 2285 ** two temporary tables. Hence it has its own case. Begin 2286 ** by allocating the tables we will need. 2287 */ 2288 tab1 = pParse->nTab++; 2289 tab2 = pParse->nTab++; 2290 assert( p->pOrderBy==0 ); 2291 2292 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); 2293 assert( p->addrOpenEphm[0] == -1 ); 2294 p->addrOpenEphm[0] = addr; 2295 findRightmost(p)->selFlags |= SF_UsesEphemeral; 2296 assert( p->pEList ); 2297 2298 /* Code the SELECTs to our left into temporary table "tab1". 2299 */ 2300 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); 2301 explainSetInteger(iSub1, pParse->iNextSelectId); 2302 rc = sqlite3Select(pParse, pPrior, &intersectdest); 2303 if( rc ){ 2304 goto multi_select_end; 2305 } 2306 2307 /* Code the current SELECT into temporary table "tab2" 2308 */ 2309 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); 2310 assert( p->addrOpenEphm[1] == -1 ); 2311 p->addrOpenEphm[1] = addr; 2312 p->pPrior = 0; 2313 pLimit = p->pLimit; 2314 p->pLimit = 0; 2315 pOffset = p->pOffset; 2316 p->pOffset = 0; 2317 intersectdest.iSDParm = tab2; 2318 explainSetInteger(iSub2, pParse->iNextSelectId); 2319 rc = sqlite3Select(pParse, p, &intersectdest); 2320 testcase( rc!=SQLITE_OK ); 2321 pDelete = p->pPrior; 2322 p->pPrior = pPrior; 2323 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2324 sqlite3ExprDelete(db, p->pLimit); 2325 p->pLimit = pLimit; 2326 p->pOffset = pOffset; 2327 2328 /* Generate code to take the intersection of the two temporary 2329 ** tables. 2330 */ 2331 assert( p->pEList ); 2332 if( dest.eDest==SRT_Output ){ 2333 Select *pFirst = p; 2334 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2335 generateColumnNames(pParse, 0, pFirst->pEList); 2336 } 2337 iBreak = sqlite3VdbeMakeLabel(v); 2338 iCont = sqlite3VdbeMakeLabel(v); 2339 computeLimitRegisters(pParse, p, iBreak); 2340 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); 2341 r1 = sqlite3GetTempReg(pParse); 2342 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); 2343 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); 2344 sqlite3ReleaseTempReg(pParse, r1); 2345 selectInnerLoop(pParse, p, p->pEList, tab1, 2346 0, 0, &dest, iCont, iBreak); 2347 sqlite3VdbeResolveLabel(v, iCont); 2348 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); 2349 sqlite3VdbeResolveLabel(v, iBreak); 2350 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); 2351 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); 2352 break; 2353 } 2354 } 2355 2356 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); 2357 2358 /* Compute collating sequences used by 2359 ** temporary tables needed to implement the compound select. 2360 ** Attach the KeyInfo structure to all temporary tables. 2361 ** 2362 ** This section is run by the right-most SELECT statement only. 2363 ** SELECT statements to the left always skip this part. The right-most 2364 ** SELECT might also skip this part if it has no ORDER BY clause and 2365 ** no temp tables are required. 2366 */ 2367 if( p->selFlags & SF_UsesEphemeral ){ 2368 int i; /* Loop counter */ 2369 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ 2370 Select *pLoop; /* For looping through SELECT statements */ 2371 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ 2372 int nCol; /* Number of columns in result set */ 2373 2374 assert( p->pNext==0 ); 2375 nCol = p->pEList->nExpr; 2376 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); 2377 if( !pKeyInfo ){ 2378 rc = SQLITE_NOMEM; 2379 goto multi_select_end; 2380 } 2381 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ 2382 *apColl = multiSelectCollSeq(pParse, p, i); 2383 if( 0==*apColl ){ 2384 *apColl = db->pDfltColl; 2385 } 2386 } 2387 2388 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ 2389 for(i=0; i<2; i++){ 2390 int addr = pLoop->addrOpenEphm[i]; 2391 if( addr<0 ){ 2392 /* If [0] is unused then [1] is also unused. So we can 2393 ** always safely abort as soon as the first unused slot is found */ 2394 assert( pLoop->addrOpenEphm[1]<0 ); 2395 break; 2396 } 2397 sqlite3VdbeChangeP2(v, addr, nCol); 2398 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), 2399 P4_KEYINFO); 2400 pLoop->addrOpenEphm[i] = -1; 2401 } 2402 } 2403 sqlite3KeyInfoUnref(pKeyInfo); 2404 } 2405 2406 multi_select_end: 2407 pDest->iSdst = dest.iSdst; 2408 pDest->nSdst = dest.nSdst; 2409 sqlite3SelectDelete(db, pDelete); 2410 return rc; 2411 } 2412 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ 2413 2414 /* 2415 ** Code an output subroutine for a coroutine implementation of a 2416 ** SELECT statment. 2417 ** 2418 ** The data to be output is contained in pIn->iSdst. There are 2419 ** pIn->nSdst columns to be output. pDest is where the output should 2420 ** be sent. 2421 ** 2422 ** regReturn is the number of the register holding the subroutine 2423 ** return address. 2424 ** 2425 ** If regPrev>0 then it is the first register in a vector that 2426 ** records the previous output. mem[regPrev] is a flag that is false 2427 ** if there has been no previous output. If regPrev>0 then code is 2428 ** generated to suppress duplicates. pKeyInfo is used for comparing 2429 ** keys. 2430 ** 2431 ** If the LIMIT found in p->iLimit is reached, jump immediately to 2432 ** iBreak. 2433 */ 2434 static int generateOutputSubroutine( 2435 Parse *pParse, /* Parsing context */ 2436 Select *p, /* The SELECT statement */ 2437 SelectDest *pIn, /* Coroutine supplying data */ 2438 SelectDest *pDest, /* Where to send the data */ 2439 int regReturn, /* The return address register */ 2440 int regPrev, /* Previous result register. No uniqueness if 0 */ 2441 KeyInfo *pKeyInfo, /* For comparing with previous entry */ 2442 int iBreak /* Jump here if we hit the LIMIT */ 2443 ){ 2444 Vdbe *v = pParse->pVdbe; 2445 int iContinue; 2446 int addr; 2447 2448 addr = sqlite3VdbeCurrentAddr(v); 2449 iContinue = sqlite3VdbeMakeLabel(v); 2450 2451 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 2452 */ 2453 if( regPrev ){ 2454 int j1, j2; 2455 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); 2456 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, 2457 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 2458 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v); 2459 sqlite3VdbeJumpHere(v, j1); 2460 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); 2461 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); 2462 } 2463 if( pParse->db->mallocFailed ) return 0; 2464 2465 /* Suppress the first OFFSET entries if there is an OFFSET clause 2466 */ 2467 codeOffset(v, p->iOffset, iContinue); 2468 2469 switch( pDest->eDest ){ 2470 /* Store the result as data using a unique key. 2471 */ 2472 case SRT_Table: 2473 case SRT_EphemTab: { 2474 int r1 = sqlite3GetTempReg(pParse); 2475 int r2 = sqlite3GetTempReg(pParse); 2476 testcase( pDest->eDest==SRT_Table ); 2477 testcase( pDest->eDest==SRT_EphemTab ); 2478 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); 2479 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); 2480 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); 2481 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); 2482 sqlite3ReleaseTempReg(pParse, r2); 2483 sqlite3ReleaseTempReg(pParse, r1); 2484 break; 2485 } 2486 2487 #ifndef SQLITE_OMIT_SUBQUERY 2488 /* If we are creating a set for an "expr IN (SELECT ...)" construct, 2489 ** then there should be a single item on the stack. Write this 2490 ** item into the set table with bogus data. 2491 */ 2492 case SRT_Set: { 2493 int r1; 2494 assert( pIn->nSdst==1 ); 2495 pDest->affSdst = 2496 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); 2497 r1 = sqlite3GetTempReg(pParse); 2498 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); 2499 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); 2500 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); 2501 sqlite3ReleaseTempReg(pParse, r1); 2502 break; 2503 } 2504 2505 #if 0 /* Never occurs on an ORDER BY query */ 2506 /* If any row exist in the result set, record that fact and abort. 2507 */ 2508 case SRT_Exists: { 2509 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm); 2510 /* The LIMIT clause will terminate the loop for us */ 2511 break; 2512 } 2513 #endif 2514 2515 /* If this is a scalar select that is part of an expression, then 2516 ** store the results in the appropriate memory cell and break out 2517 ** of the scan loop. 2518 */ 2519 case SRT_Mem: { 2520 assert( pIn->nSdst==1 ); 2521 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); 2522 /* The LIMIT clause will jump out of the loop for us */ 2523 break; 2524 } 2525 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ 2526 2527 /* The results are stored in a sequence of registers 2528 ** starting at pDest->iSdst. Then the co-routine yields. 2529 */ 2530 case SRT_Coroutine: { 2531 if( pDest->iSdst==0 ){ 2532 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); 2533 pDest->nSdst = pIn->nSdst; 2534 } 2535 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst); 2536 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); 2537 break; 2538 } 2539 2540 /* If none of the above, then the result destination must be 2541 ** SRT_Output. This routine is never called with any other 2542 ** destination other than the ones handled above or SRT_Output. 2543 ** 2544 ** For SRT_Output, results are stored in a sequence of registers. 2545 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to 2546 ** return the next row of result. 2547 */ 2548 default: { 2549 assert( pDest->eDest==SRT_Output ); 2550 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); 2551 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); 2552 break; 2553 } 2554 } 2555 2556 /* Jump to the end of the loop if the LIMIT is reached. 2557 */ 2558 if( p->iLimit ){ 2559 sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v); 2560 } 2561 2562 /* Generate the subroutine return 2563 */ 2564 sqlite3VdbeResolveLabel(v, iContinue); 2565 sqlite3VdbeAddOp1(v, OP_Return, regReturn); 2566 2567 return addr; 2568 } 2569 2570 /* 2571 ** Alternative compound select code generator for cases when there 2572 ** is an ORDER BY clause. 2573 ** 2574 ** We assume a query of the following form: 2575 ** 2576 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> 2577 ** 2578 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea 2579 ** is to code both <selectA> and <selectB> with the ORDER BY clause as 2580 ** co-routines. Then run the co-routines in parallel and merge the results 2581 ** into the output. In addition to the two coroutines (called selectA and 2582 ** selectB) there are 7 subroutines: 2583 ** 2584 ** outA: Move the output of the selectA coroutine into the output 2585 ** of the compound query. 2586 ** 2587 ** outB: Move the output of the selectB coroutine into the output 2588 ** of the compound query. (Only generated for UNION and 2589 ** UNION ALL. EXCEPT and INSERTSECT never output a row that 2590 ** appears only in B.) 2591 ** 2592 ** AltB: Called when there is data from both coroutines and A<B. 2593 ** 2594 ** AeqB: Called when there is data from both coroutines and A==B. 2595 ** 2596 ** AgtB: Called when there is data from both coroutines and A>B. 2597 ** 2598 ** EofA: Called when data is exhausted from selectA. 2599 ** 2600 ** EofB: Called when data is exhausted from selectB. 2601 ** 2602 ** The implementation of the latter five subroutines depend on which 2603 ** <operator> is used: 2604 ** 2605 ** 2606 ** UNION ALL UNION EXCEPT INTERSECT 2607 ** ------------- ----------------- -------------- ----------------- 2608 ** AltB: outA, nextA outA, nextA outA, nextA nextA 2609 ** 2610 ** AeqB: outA, nextA nextA nextA outA, nextA 2611 ** 2612 ** AgtB: outB, nextB outB, nextB nextB nextB 2613 ** 2614 ** EofA: outB, nextB outB, nextB halt halt 2615 ** 2616 ** EofB: outA, nextA outA, nextA outA, nextA halt 2617 ** 2618 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA 2619 ** causes an immediate jump to EofA and an EOF on B following nextB causes 2620 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or 2621 ** following nextX causes a jump to the end of the select processing. 2622 ** 2623 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled 2624 ** within the output subroutine. The regPrev register set holds the previously 2625 ** output value. A comparison is made against this value and the output 2626 ** is skipped if the next results would be the same as the previous. 2627 ** 2628 ** The implementation plan is to implement the two coroutines and seven 2629 ** subroutines first, then put the control logic at the bottom. Like this: 2630 ** 2631 ** goto Init 2632 ** coA: coroutine for left query (A) 2633 ** coB: coroutine for right query (B) 2634 ** outA: output one row of A 2635 ** outB: output one row of B (UNION and UNION ALL only) 2636 ** EofA: ... 2637 ** EofB: ... 2638 ** AltB: ... 2639 ** AeqB: ... 2640 ** AgtB: ... 2641 ** Init: initialize coroutine registers 2642 ** yield coA 2643 ** if eof(A) goto EofA 2644 ** yield coB 2645 ** if eof(B) goto EofB 2646 ** Cmpr: Compare A, B 2647 ** Jump AltB, AeqB, AgtB 2648 ** End: ... 2649 ** 2650 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not 2651 ** actually called using Gosub and they do not Return. EofA and EofB loop 2652 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, 2653 ** and AgtB jump to either L2 or to one of EofA or EofB. 2654 */ 2655 #ifndef SQLITE_OMIT_COMPOUND_SELECT 2656 static int multiSelectOrderBy( 2657 Parse *pParse, /* Parsing context */ 2658 Select *p, /* The right-most of SELECTs to be coded */ 2659 SelectDest *pDest /* What to do with query results */ 2660 ){ 2661 int i, j; /* Loop counters */ 2662 Select *pPrior; /* Another SELECT immediately to our left */ 2663 Vdbe *v; /* Generate code to this VDBE */ 2664 SelectDest destA; /* Destination for coroutine A */ 2665 SelectDest destB; /* Destination for coroutine B */ 2666 int regAddrA; /* Address register for select-A coroutine */ 2667 int regAddrB; /* Address register for select-B coroutine */ 2668 int addrSelectA; /* Address of the select-A coroutine */ 2669 int addrSelectB; /* Address of the select-B coroutine */ 2670 int regOutA; /* Address register for the output-A subroutine */ 2671 int regOutB; /* Address register for the output-B subroutine */ 2672 int addrOutA; /* Address of the output-A subroutine */ 2673 int addrOutB = 0; /* Address of the output-B subroutine */ 2674 int addrEofA; /* Address of the select-A-exhausted subroutine */ 2675 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ 2676 int addrEofB; /* Address of the select-B-exhausted subroutine */ 2677 int addrAltB; /* Address of the A<B subroutine */ 2678 int addrAeqB; /* Address of the A==B subroutine */ 2679 int addrAgtB; /* Address of the A>B subroutine */ 2680 int regLimitA; /* Limit register for select-A */ 2681 int regLimitB; /* Limit register for select-A */ 2682 int regPrev; /* A range of registers to hold previous output */ 2683 int savedLimit; /* Saved value of p->iLimit */ 2684 int savedOffset; /* Saved value of p->iOffset */ 2685 int labelCmpr; /* Label for the start of the merge algorithm */ 2686 int labelEnd; /* Label for the end of the overall SELECT stmt */ 2687 int j1; /* Jump instructions that get retargetted */ 2688 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ 2689 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ 2690 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ 2691 sqlite3 *db; /* Database connection */ 2692 ExprList *pOrderBy; /* The ORDER BY clause */ 2693 int nOrderBy; /* Number of terms in the ORDER BY clause */ 2694 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ 2695 #ifndef SQLITE_OMIT_EXPLAIN 2696 int iSub1; /* EQP id of left-hand query */ 2697 int iSub2; /* EQP id of right-hand query */ 2698 #endif 2699 2700 assert( p->pOrderBy!=0 ); 2701 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ 2702 db = pParse->db; 2703 v = pParse->pVdbe; 2704 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ 2705 labelEnd = sqlite3VdbeMakeLabel(v); 2706 labelCmpr = sqlite3VdbeMakeLabel(v); 2707 2708 2709 /* Patch up the ORDER BY clause 2710 */ 2711 op = p->op; 2712 pPrior = p->pPrior; 2713 assert( pPrior->pOrderBy==0 ); 2714 pOrderBy = p->pOrderBy; 2715 assert( pOrderBy ); 2716 nOrderBy = pOrderBy->nExpr; 2717 2718 /* For operators other than UNION ALL we have to make sure that 2719 ** the ORDER BY clause covers every term of the result set. Add 2720 ** terms to the ORDER BY clause as necessary. 2721 */ 2722 if( op!=TK_ALL ){ 2723 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ 2724 struct ExprList_item *pItem; 2725 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ 2726 assert( pItem->u.x.iOrderByCol>0 ); 2727 if( pItem->u.x.iOrderByCol==i ) break; 2728 } 2729 if( j==nOrderBy ){ 2730 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); 2731 if( pNew==0 ) return SQLITE_NOMEM; 2732 pNew->flags |= EP_IntValue; 2733 pNew->u.iValue = i; 2734 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); 2735 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; 2736 } 2737 } 2738 } 2739 2740 /* Compute the comparison permutation and keyinfo that is used with 2741 ** the permutation used to determine if the next 2742 ** row of results comes from selectA or selectB. Also add explicit 2743 ** collations to the ORDER BY clause terms so that when the subqueries 2744 ** to the right and the left are evaluated, they use the correct 2745 ** collation. 2746 */ 2747 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); 2748 if( aPermute ){ 2749 struct ExprList_item *pItem; 2750 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ 2751 assert( pItem->u.x.iOrderByCol>0 2752 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); 2753 aPermute[i] = pItem->u.x.iOrderByCol - 1; 2754 } 2755 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); 2756 }else{ 2757 pKeyMerge = 0; 2758 } 2759 2760 /* Reattach the ORDER BY clause to the query. 2761 */ 2762 p->pOrderBy = pOrderBy; 2763 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); 2764 2765 /* Allocate a range of temporary registers and the KeyInfo needed 2766 ** for the logic that removes duplicate result rows when the 2767 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). 2768 */ 2769 if( op==TK_ALL ){ 2770 regPrev = 0; 2771 }else{ 2772 int nExpr = p->pEList->nExpr; 2773 assert( nOrderBy>=nExpr || db->mallocFailed ); 2774 regPrev = pParse->nMem+1; 2775 pParse->nMem += nExpr+1; 2776 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); 2777 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); 2778 if( pKeyDup ){ 2779 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); 2780 for(i=0; i<nExpr; i++){ 2781 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); 2782 pKeyDup->aSortOrder[i] = 0; 2783 } 2784 } 2785 } 2786 2787 /* Separate the left and the right query from one another 2788 */ 2789 p->pPrior = 0; 2790 pPrior->pNext = 0; 2791 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); 2792 if( pPrior->pPrior==0 ){ 2793 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); 2794 } 2795 2796 /* Compute the limit registers */ 2797 computeLimitRegisters(pParse, p, labelEnd); 2798 if( p->iLimit && op==TK_ALL ){ 2799 regLimitA = ++pParse->nMem; 2800 regLimitB = ++pParse->nMem; 2801 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, 2802 regLimitA); 2803 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); 2804 }else{ 2805 regLimitA = regLimitB = 0; 2806 } 2807 sqlite3ExprDelete(db, p->pLimit); 2808 p->pLimit = 0; 2809 sqlite3ExprDelete(db, p->pOffset); 2810 p->pOffset = 0; 2811 2812 regAddrA = ++pParse->nMem; 2813 regAddrB = ++pParse->nMem; 2814 regOutA = ++pParse->nMem; 2815 regOutB = ++pParse->nMem; 2816 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); 2817 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); 2818 2819 /* Generate a coroutine to evaluate the SELECT statement to the 2820 ** left of the compound operator - the "A" select. 2821 */ 2822 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; 2823 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); 2824 VdbeComment((v, "left SELECT")); 2825 pPrior->iLimit = regLimitA; 2826 explainSetInteger(iSub1, pParse->iNextSelectId); 2827 sqlite3Select(pParse, pPrior, &destA); 2828 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); 2829 sqlite3VdbeJumpHere(v, j1); 2830 2831 /* Generate a coroutine to evaluate the SELECT statement on 2832 ** the right - the "B" select 2833 */ 2834 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; 2835 j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); 2836 VdbeComment((v, "right SELECT")); 2837 savedLimit = p->iLimit; 2838 savedOffset = p->iOffset; 2839 p->iLimit = regLimitB; 2840 p->iOffset = 0; 2841 explainSetInteger(iSub2, pParse->iNextSelectId); 2842 sqlite3Select(pParse, p, &destB); 2843 p->iLimit = savedLimit; 2844 p->iOffset = savedOffset; 2845 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); 2846 2847 /* Generate a subroutine that outputs the current row of the A 2848 ** select as the next output row of the compound select. 2849 */ 2850 VdbeNoopComment((v, "Output routine for A")); 2851 addrOutA = generateOutputSubroutine(pParse, 2852 p, &destA, pDest, regOutA, 2853 regPrev, pKeyDup, labelEnd); 2854 2855 /* Generate a subroutine that outputs the current row of the B 2856 ** select as the next output row of the compound select. 2857 */ 2858 if( op==TK_ALL || op==TK_UNION ){ 2859 VdbeNoopComment((v, "Output routine for B")); 2860 addrOutB = generateOutputSubroutine(pParse, 2861 p, &destB, pDest, regOutB, 2862 regPrev, pKeyDup, labelEnd); 2863 } 2864 sqlite3KeyInfoUnref(pKeyDup); 2865 2866 /* Generate a subroutine to run when the results from select A 2867 ** are exhausted and only data in select B remains. 2868 */ 2869 if( op==TK_EXCEPT || op==TK_INTERSECT ){ 2870 addrEofA_noB = addrEofA = labelEnd; 2871 }else{ 2872 VdbeNoopComment((v, "eof-A subroutine")); 2873 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2874 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); 2875 VdbeCoverage(v); 2876 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); 2877 p->nSelectRow += pPrior->nSelectRow; 2878 } 2879 2880 /* Generate a subroutine to run when the results from select B 2881 ** are exhausted and only data in select A remains. 2882 */ 2883 if( op==TK_INTERSECT ){ 2884 addrEofB = addrEofA; 2885 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; 2886 }else{ 2887 VdbeNoopComment((v, "eof-B subroutine")); 2888 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2889 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); 2890 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); 2891 } 2892 2893 /* Generate code to handle the case of A<B 2894 */ 2895 VdbeNoopComment((v, "A-lt-B subroutine")); 2896 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); 2897 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2898 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2899 2900 /* Generate code to handle the case of A==B 2901 */ 2902 if( op==TK_ALL ){ 2903 addrAeqB = addrAltB; 2904 }else if( op==TK_INTERSECT ){ 2905 addrAeqB = addrAltB; 2906 addrAltB++; 2907 }else{ 2908 VdbeNoopComment((v, "A-eq-B subroutine")); 2909 addrAeqB = 2910 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); 2911 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2912 } 2913 2914 /* Generate code to handle the case of A>B 2915 */ 2916 VdbeNoopComment((v, "A-gt-B subroutine")); 2917 addrAgtB = sqlite3VdbeCurrentAddr(v); 2918 if( op==TK_ALL || op==TK_UNION ){ 2919 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); 2920 } 2921 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2922 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); 2923 2924 /* This code runs once to initialize everything. 2925 */ 2926 sqlite3VdbeJumpHere(v, j1); 2927 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); 2928 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); 2929 2930 /* Implement the main merge loop 2931 */ 2932 sqlite3VdbeResolveLabel(v, labelCmpr); 2933 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); 2934 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, 2935 (char*)pKeyMerge, P4_KEYINFO); 2936 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); 2937 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); 2938 2939 /* Jump to the this point in order to terminate the query. 2940 */ 2941 sqlite3VdbeResolveLabel(v, labelEnd); 2942 2943 /* Set the number of output columns 2944 */ 2945 if( pDest->eDest==SRT_Output ){ 2946 Select *pFirst = pPrior; 2947 while( pFirst->pPrior ) pFirst = pFirst->pPrior; 2948 generateColumnNames(pParse, 0, pFirst->pEList); 2949 } 2950 2951 /* Reassembly the compound query so that it will be freed correctly 2952 ** by the calling function */ 2953 if( p->pPrior ){ 2954 sqlite3SelectDelete(db, p->pPrior); 2955 } 2956 p->pPrior = pPrior; 2957 pPrior->pNext = p; 2958 2959 /*** TBD: Insert subroutine calls to close cursors on incomplete 2960 **** subqueries ****/ 2961 explainComposite(pParse, p->op, iSub1, iSub2, 0); 2962 return SQLITE_OK; 2963 } 2964 #endif 2965 2966 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 2967 /* Forward Declarations */ 2968 static void substExprList(sqlite3*, ExprList*, int, ExprList*); 2969 static void substSelect(sqlite3*, Select *, int, ExprList *); 2970 2971 /* 2972 ** Scan through the expression pExpr. Replace every reference to 2973 ** a column in table number iTable with a copy of the iColumn-th 2974 ** entry in pEList. (But leave references to the ROWID column 2975 ** unchanged.) 2976 ** 2977 ** This routine is part of the flattening procedure. A subquery 2978 ** whose result set is defined by pEList appears as entry in the 2979 ** FROM clause of a SELECT such that the VDBE cursor assigned to that 2980 ** FORM clause entry is iTable. This routine make the necessary 2981 ** changes to pExpr so that it refers directly to the source table 2982 ** of the subquery rather the result set of the subquery. 2983 */ 2984 static Expr *substExpr( 2985 sqlite3 *db, /* Report malloc errors to this connection */ 2986 Expr *pExpr, /* Expr in which substitution occurs */ 2987 int iTable, /* Table to be substituted */ 2988 ExprList *pEList /* Substitute expressions */ 2989 ){ 2990 if( pExpr==0 ) return 0; 2991 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ 2992 if( pExpr->iColumn<0 ){ 2993 pExpr->op = TK_NULL; 2994 }else{ 2995 Expr *pNew; 2996 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); 2997 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); 2998 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); 2999 sqlite3ExprDelete(db, pExpr); 3000 pExpr = pNew; 3001 } 3002 }else{ 3003 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); 3004 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); 3005 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 3006 substSelect(db, pExpr->x.pSelect, iTable, pEList); 3007 }else{ 3008 substExprList(db, pExpr->x.pList, iTable, pEList); 3009 } 3010 } 3011 return pExpr; 3012 } 3013 static void substExprList( 3014 sqlite3 *db, /* Report malloc errors here */ 3015 ExprList *pList, /* List to scan and in which to make substitutes */ 3016 int iTable, /* Table to be substituted */ 3017 ExprList *pEList /* Substitute values */ 3018 ){ 3019 int i; 3020 if( pList==0 ) return; 3021 for(i=0; i<pList->nExpr; i++){ 3022 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); 3023 } 3024 } 3025 static void substSelect( 3026 sqlite3 *db, /* Report malloc errors here */ 3027 Select *p, /* SELECT statement in which to make substitutions */ 3028 int iTable, /* Table to be replaced */ 3029 ExprList *pEList /* Substitute values */ 3030 ){ 3031 SrcList *pSrc; 3032 struct SrcList_item *pItem; 3033 int i; 3034 if( !p ) return; 3035 substExprList(db, p->pEList, iTable, pEList); 3036 substExprList(db, p->pGroupBy, iTable, pEList); 3037 substExprList(db, p->pOrderBy, iTable, pEList); 3038 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); 3039 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); 3040 substSelect(db, p->pPrior, iTable, pEList); 3041 pSrc = p->pSrc; 3042 assert( pSrc ); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */ 3043 if( ALWAYS(pSrc) ){ 3044 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ 3045 substSelect(db, pItem->pSelect, iTable, pEList); 3046 } 3047 } 3048 } 3049 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3050 3051 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 3052 /* 3053 ** This routine attempts to flatten subqueries as a performance optimization. 3054 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. 3055 ** 3056 ** To understand the concept of flattening, consider the following 3057 ** query: 3058 ** 3059 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 3060 ** 3061 ** The default way of implementing this query is to execute the 3062 ** subquery first and store the results in a temporary table, then 3063 ** run the outer query on that temporary table. This requires two 3064 ** passes over the data. Furthermore, because the temporary table 3065 ** has no indices, the WHERE clause on the outer query cannot be 3066 ** optimized. 3067 ** 3068 ** This routine attempts to rewrite queries such as the above into 3069 ** a single flat select, like this: 3070 ** 3071 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 3072 ** 3073 ** The code generated for this simpification gives the same result 3074 ** but only has to scan the data once. And because indices might 3075 ** exist on the table t1, a complete scan of the data might be 3076 ** avoided. 3077 ** 3078 ** Flattening is only attempted if all of the following are true: 3079 ** 3080 ** (1) The subquery and the outer query do not both use aggregates. 3081 ** 3082 ** (2) The subquery is not an aggregate or the outer query is not a join. 3083 ** 3084 ** (3) The subquery is not the right operand of a left outer join 3085 ** (Originally ticket #306. Strengthened by ticket #3300) 3086 ** 3087 ** (4) The subquery is not DISTINCT. 3088 ** 3089 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT 3090 ** sub-queries that were excluded from this optimization. Restriction 3091 ** (4) has since been expanded to exclude all DISTINCT subqueries. 3092 ** 3093 ** (6) The subquery does not use aggregates or the outer query is not 3094 ** DISTINCT. 3095 ** 3096 ** (7) The subquery has a FROM clause. TODO: For subqueries without 3097 ** A FROM clause, consider adding a FROM close with the special 3098 ** table sqlite_once that consists of a single row containing a 3099 ** single NULL. 3100 ** 3101 ** (8) The subquery does not use LIMIT or the outer query is not a join. 3102 ** 3103 ** (9) The subquery does not use LIMIT or the outer query does not use 3104 ** aggregates. 3105 ** 3106 ** (10) The subquery does not use aggregates or the outer query does not 3107 ** use LIMIT. 3108 ** 3109 ** (11) The subquery and the outer query do not both have ORDER BY clauses. 3110 ** 3111 ** (**) Not implemented. Subsumed into restriction (3). Was previously 3112 ** a separate restriction deriving from ticket #350. 3113 ** 3114 ** (13) The subquery and outer query do not both use LIMIT. 3115 ** 3116 ** (14) The subquery does not use OFFSET. 3117 ** 3118 ** (15) The outer query is not part of a compound select or the 3119 ** subquery does not have a LIMIT clause. 3120 ** (See ticket #2339 and ticket [02a8e81d44]). 3121 ** 3122 ** (16) The outer query is not an aggregate or the subquery does 3123 ** not contain ORDER BY. (Ticket #2942) This used to not matter 3124 ** until we introduced the group_concat() function. 3125 ** 3126 ** (17) The sub-query is not a compound select, or it is a UNION ALL 3127 ** compound clause made up entirely of non-aggregate queries, and 3128 ** the parent query: 3129 ** 3130 ** * is not itself part of a compound select, 3131 ** * is not an aggregate or DISTINCT query, and 3132 ** * is not a join 3133 ** 3134 ** The parent and sub-query may contain WHERE clauses. Subject to 3135 ** rules (11), (13) and (14), they may also contain ORDER BY, 3136 ** LIMIT and OFFSET clauses. The subquery cannot use any compound 3137 ** operator other than UNION ALL because all the other compound 3138 ** operators have an implied DISTINCT which is disallowed by 3139 ** restriction (4). 3140 ** 3141 ** Also, each component of the sub-query must return the same number 3142 ** of result columns. This is actually a requirement for any compound 3143 ** SELECT statement, but all the code here does is make sure that no 3144 ** such (illegal) sub-query is flattened. The caller will detect the 3145 ** syntax error and return a detailed message. 3146 ** 3147 ** (18) If the sub-query is a compound select, then all terms of the 3148 ** ORDER by clause of the parent must be simple references to 3149 ** columns of the sub-query. 3150 ** 3151 ** (19) The subquery does not use LIMIT or the outer query does not 3152 ** have a WHERE clause. 3153 ** 3154 ** (20) If the sub-query is a compound select, then it must not use 3155 ** an ORDER BY clause. Ticket #3773. We could relax this constraint 3156 ** somewhat by saying that the terms of the ORDER BY clause must 3157 ** appear as unmodified result columns in the outer query. But we 3158 ** have other optimizations in mind to deal with that case. 3159 ** 3160 ** (21) The subquery does not use LIMIT or the outer query is not 3161 ** DISTINCT. (See ticket [752e1646fc]). 3162 ** 3163 ** (22) The subquery is not a recursive CTE. 3164 ** 3165 ** (23) The parent is not a recursive CTE, or the sub-query is not a 3166 ** compound query. This restriction is because transforming the 3167 ** parent to a compound query confuses the code that handles 3168 ** recursive queries in multiSelect(). 3169 ** 3170 ** 3171 ** In this routine, the "p" parameter is a pointer to the outer query. 3172 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query 3173 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. 3174 ** 3175 ** If flattening is not attempted, this routine is a no-op and returns 0. 3176 ** If flattening is attempted this routine returns 1. 3177 ** 3178 ** All of the expression analysis must occur on both the outer query and 3179 ** the subquery before this routine runs. 3180 */ 3181 static int flattenSubquery( 3182 Parse *pParse, /* Parsing context */ 3183 Select *p, /* The parent or outer SELECT statement */ 3184 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ 3185 int isAgg, /* True if outer SELECT uses aggregate functions */ 3186 int subqueryIsAgg /* True if the subquery uses aggregate functions */ 3187 ){ 3188 const char *zSavedAuthContext = pParse->zAuthContext; 3189 Select *pParent; 3190 Select *pSub; /* The inner query or "subquery" */ 3191 Select *pSub1; /* Pointer to the rightmost select in sub-query */ 3192 SrcList *pSrc; /* The FROM clause of the outer query */ 3193 SrcList *pSubSrc; /* The FROM clause of the subquery */ 3194 ExprList *pList; /* The result set of the outer query */ 3195 int iParent; /* VDBE cursor number of the pSub result set temp table */ 3196 int i; /* Loop counter */ 3197 Expr *pWhere; /* The WHERE clause */ 3198 struct SrcList_item *pSubitem; /* The subquery */ 3199 sqlite3 *db = pParse->db; 3200 3201 /* Check to see if flattening is permitted. Return 0 if not. 3202 */ 3203 assert( p!=0 ); 3204 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ 3205 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; 3206 pSrc = p->pSrc; 3207 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); 3208 pSubitem = &pSrc->a[iFrom]; 3209 iParent = pSubitem->iCursor; 3210 pSub = pSubitem->pSelect; 3211 assert( pSub!=0 ); 3212 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ 3213 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ 3214 pSubSrc = pSub->pSrc; 3215 assert( pSubSrc ); 3216 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, 3217 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET 3218 ** because they could be computed at compile-time. But when LIMIT and OFFSET 3219 ** became arbitrary expressions, we were forced to add restrictions (13) 3220 ** and (14). */ 3221 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ 3222 if( pSub->pOffset ) return 0; /* Restriction (14) */ 3223 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ 3224 return 0; /* Restriction (15) */ 3225 } 3226 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ 3227 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ 3228 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ 3229 return 0; /* Restrictions (8)(9) */ 3230 } 3231 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ 3232 return 0; /* Restriction (6) */ 3233 } 3234 if( p->pOrderBy && pSub->pOrderBy ){ 3235 return 0; /* Restriction (11) */ 3236 } 3237 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ 3238 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ 3239 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ 3240 return 0; /* Restriction (21) */ 3241 } 3242 if( pSub->selFlags & SF_Recursive ) return 0; /* Restriction (22) */ 3243 if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0; /* (23) */ 3244 3245 /* OBSOLETE COMMENT 1: 3246 ** Restriction 3: If the subquery is a join, make sure the subquery is 3247 ** not used as the right operand of an outer join. Examples of why this 3248 ** is not allowed: 3249 ** 3250 ** t1 LEFT OUTER JOIN (t2 JOIN t3) 3251 ** 3252 ** If we flatten the above, we would get 3253 ** 3254 ** (t1 LEFT OUTER JOIN t2) JOIN t3 3255 ** 3256 ** which is not at all the same thing. 3257 ** 3258 ** OBSOLETE COMMENT 2: 3259 ** Restriction 12: If the subquery is the right operand of a left outer 3260 ** join, make sure the subquery has no WHERE clause. 3261 ** An examples of why this is not allowed: 3262 ** 3263 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) 3264 ** 3265 ** If we flatten the above, we would get 3266 ** 3267 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 3268 ** 3269 ** But the t2.x>0 test will always fail on a NULL row of t2, which 3270 ** effectively converts the OUTER JOIN into an INNER JOIN. 3271 ** 3272 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: 3273 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN 3274 ** is fraught with danger. Best to avoid the whole thing. If the 3275 ** subquery is the right term of a LEFT JOIN, then do not flatten. 3276 */ 3277 if( (pSubitem->jointype & JT_OUTER)!=0 ){ 3278 return 0; 3279 } 3280 3281 /* Restriction 17: If the sub-query is a compound SELECT, then it must 3282 ** use only the UNION ALL operator. And none of the simple select queries 3283 ** that make up the compound SELECT are allowed to be aggregate or distinct 3284 ** queries. 3285 */ 3286 if( pSub->pPrior ){ 3287 if( pSub->pOrderBy ){ 3288 return 0; /* Restriction 20 */ 3289 } 3290 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ 3291 return 0; 3292 } 3293 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ 3294 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); 3295 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); 3296 assert( pSub->pSrc!=0 ); 3297 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 3298 || (pSub1->pPrior && pSub1->op!=TK_ALL) 3299 || pSub1->pSrc->nSrc<1 3300 || pSub->pEList->nExpr!=pSub1->pEList->nExpr 3301 ){ 3302 return 0; 3303 } 3304 testcase( pSub1->pSrc->nSrc>1 ); 3305 } 3306 3307 /* Restriction 18. */ 3308 if( p->pOrderBy ){ 3309 int ii; 3310 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ 3311 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; 3312 } 3313 } 3314 } 3315 3316 /***** If we reach this point, flattening is permitted. *****/ 3317 3318 /* Authorize the subquery */ 3319 pParse->zAuthContext = pSubitem->zName; 3320 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); 3321 testcase( i==SQLITE_DENY ); 3322 pParse->zAuthContext = zSavedAuthContext; 3323 3324 /* If the sub-query is a compound SELECT statement, then (by restrictions 3325 ** 17 and 18 above) it must be a UNION ALL and the parent query must 3326 ** be of the form: 3327 ** 3328 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> 3329 ** 3330 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block 3331 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or 3332 ** OFFSET clauses and joins them to the left-hand-side of the original 3333 ** using UNION ALL operators. In this case N is the number of simple 3334 ** select statements in the compound sub-query. 3335 ** 3336 ** Example: 3337 ** 3338 ** SELECT a+1 FROM ( 3339 ** SELECT x FROM tab 3340 ** UNION ALL 3341 ** SELECT y FROM tab 3342 ** UNION ALL 3343 ** SELECT abs(z*2) FROM tab2 3344 ** ) WHERE a!=5 ORDER BY 1 3345 ** 3346 ** Transformed into: 3347 ** 3348 ** SELECT x+1 FROM tab WHERE x+1!=5 3349 ** UNION ALL 3350 ** SELECT y+1 FROM tab WHERE y+1!=5 3351 ** UNION ALL 3352 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 3353 ** ORDER BY 1 3354 ** 3355 ** We call this the "compound-subquery flattening". 3356 */ 3357 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ 3358 Select *pNew; 3359 ExprList *pOrderBy = p->pOrderBy; 3360 Expr *pLimit = p->pLimit; 3361 Expr *pOffset = p->pOffset; 3362 Select *pPrior = p->pPrior; 3363 p->pOrderBy = 0; 3364 p->pSrc = 0; 3365 p->pPrior = 0; 3366 p->pLimit = 0; 3367 p->pOffset = 0; 3368 pNew = sqlite3SelectDup(db, p, 0); 3369 p->pOffset = pOffset; 3370 p->pLimit = pLimit; 3371 p->pOrderBy = pOrderBy; 3372 p->pSrc = pSrc; 3373 p->op = TK_ALL; 3374 if( pNew==0 ){ 3375 p->pPrior = pPrior; 3376 }else{ 3377 pNew->pPrior = pPrior; 3378 if( pPrior ) pPrior->pNext = pNew; 3379 pNew->pNext = p; 3380 p->pPrior = pNew; 3381 } 3382 if( db->mallocFailed ) return 1; 3383 } 3384 3385 /* Begin flattening the iFrom-th entry of the FROM clause 3386 ** in the outer query. 3387 */ 3388 pSub = pSub1 = pSubitem->pSelect; 3389 3390 /* Delete the transient table structure associated with the 3391 ** subquery 3392 */ 3393 sqlite3DbFree(db, pSubitem->zDatabase); 3394 sqlite3DbFree(db, pSubitem->zName); 3395 sqlite3DbFree(db, pSubitem->zAlias); 3396 pSubitem->zDatabase = 0; 3397 pSubitem->zName = 0; 3398 pSubitem->zAlias = 0; 3399 pSubitem->pSelect = 0; 3400 3401 /* Defer deleting the Table object associated with the 3402 ** subquery until code generation is 3403 ** complete, since there may still exist Expr.pTab entries that 3404 ** refer to the subquery even after flattening. Ticket #3346. 3405 ** 3406 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. 3407 */ 3408 if( ALWAYS(pSubitem->pTab!=0) ){ 3409 Table *pTabToDel = pSubitem->pTab; 3410 if( pTabToDel->nRef==1 ){ 3411 Parse *pToplevel = sqlite3ParseToplevel(pParse); 3412 pTabToDel->pNextZombie = pToplevel->pZombieTab; 3413 pToplevel->pZombieTab = pTabToDel; 3414 }else{ 3415 pTabToDel->nRef--; 3416 } 3417 pSubitem->pTab = 0; 3418 } 3419 3420 /* The following loop runs once for each term in a compound-subquery 3421 ** flattening (as described above). If we are doing a different kind 3422 ** of flattening - a flattening other than a compound-subquery flattening - 3423 ** then this loop only runs once. 3424 ** 3425 ** This loop moves all of the FROM elements of the subquery into the 3426 ** the FROM clause of the outer query. Before doing this, remember 3427 ** the cursor number for the original outer query FROM element in 3428 ** iParent. The iParent cursor will never be used. Subsequent code 3429 ** will scan expressions looking for iParent references and replace 3430 ** those references with expressions that resolve to the subquery FROM 3431 ** elements we are now copying in. 3432 */ 3433 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ 3434 int nSubSrc; 3435 u8 jointype = 0; 3436 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ 3437 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ 3438 pSrc = pParent->pSrc; /* FROM clause of the outer query */ 3439 3440 if( pSrc ){ 3441 assert( pParent==p ); /* First time through the loop */ 3442 jointype = pSubitem->jointype; 3443 }else{ 3444 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ 3445 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); 3446 if( pSrc==0 ){ 3447 assert( db->mallocFailed ); 3448 break; 3449 } 3450 } 3451 3452 /* The subquery uses a single slot of the FROM clause of the outer 3453 ** query. If the subquery has more than one element in its FROM clause, 3454 ** then expand the outer query to make space for it to hold all elements 3455 ** of the subquery. 3456 ** 3457 ** Example: 3458 ** 3459 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; 3460 ** 3461 ** The outer query has 3 slots in its FROM clause. One slot of the 3462 ** outer query (the middle slot) is used by the subquery. The next 3463 ** block of code will expand the out query to 4 slots. The middle 3464 ** slot is expanded to two slots in order to make space for the 3465 ** two elements in the FROM clause of the subquery. 3466 */ 3467 if( nSubSrc>1 ){ 3468 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); 3469 if( db->mallocFailed ){ 3470 break; 3471 } 3472 } 3473 3474 /* Transfer the FROM clause terms from the subquery into the 3475 ** outer query. 3476 */ 3477 for(i=0; i<nSubSrc; i++){ 3478 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); 3479 pSrc->a[i+iFrom] = pSubSrc->a[i]; 3480 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); 3481 } 3482 pSrc->a[iFrom].jointype = jointype; 3483 3484 /* Now begin substituting subquery result set expressions for 3485 ** references to the iParent in the outer query. 3486 ** 3487 ** Example: 3488 ** 3489 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; 3490 ** \ \_____________ subquery __________/ / 3491 ** \_____________________ outer query ______________________________/ 3492 ** 3493 ** We look at every expression in the outer query and every place we see 3494 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". 3495 */ 3496 pList = pParent->pEList; 3497 for(i=0; i<pList->nExpr; i++){ 3498 if( pList->a[i].zName==0 ){ 3499 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); 3500 sqlite3Dequote(zName); 3501 pList->a[i].zName = zName; 3502 } 3503 } 3504 substExprList(db, pParent->pEList, iParent, pSub->pEList); 3505 if( isAgg ){ 3506 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); 3507 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3508 } 3509 if( pSub->pOrderBy ){ 3510 assert( pParent->pOrderBy==0 ); 3511 pParent->pOrderBy = pSub->pOrderBy; 3512 pSub->pOrderBy = 0; 3513 }else if( pParent->pOrderBy ){ 3514 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); 3515 } 3516 if( pSub->pWhere ){ 3517 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); 3518 }else{ 3519 pWhere = 0; 3520 } 3521 if( subqueryIsAgg ){ 3522 assert( pParent->pHaving==0 ); 3523 pParent->pHaving = pParent->pWhere; 3524 pParent->pWhere = pWhere; 3525 pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList); 3526 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 3527 sqlite3ExprDup(db, pSub->pHaving, 0)); 3528 assert( pParent->pGroupBy==0 ); 3529 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); 3530 }else{ 3531 pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList); 3532 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); 3533 } 3534 3535 /* The flattened query is distinct if either the inner or the 3536 ** outer query is distinct. 3537 */ 3538 pParent->selFlags |= pSub->selFlags & SF_Distinct; 3539 3540 /* 3541 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; 3542 ** 3543 ** One is tempted to try to add a and b to combine the limits. But this 3544 ** does not work if either limit is negative. 3545 */ 3546 if( pSub->pLimit ){ 3547 pParent->pLimit = pSub->pLimit; 3548 pSub->pLimit = 0; 3549 } 3550 } 3551 3552 /* Finially, delete what is left of the subquery and return 3553 ** success. 3554 */ 3555 sqlite3SelectDelete(db, pSub1); 3556 3557 return 1; 3558 } 3559 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ 3560 3561 /* 3562 ** Based on the contents of the AggInfo structure indicated by the first 3563 ** argument, this function checks if the following are true: 3564 ** 3565 ** * the query contains just a single aggregate function, 3566 ** * the aggregate function is either min() or max(), and 3567 ** * the argument to the aggregate function is a column value. 3568 ** 3569 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX 3570 ** is returned as appropriate. Also, *ppMinMax is set to point to the 3571 ** list of arguments passed to the aggregate before returning. 3572 ** 3573 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and 3574 ** WHERE_ORDERBY_NORMAL is returned. 3575 */ 3576 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ 3577 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ 3578 3579 *ppMinMax = 0; 3580 if( pAggInfo->nFunc==1 ){ 3581 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ 3582 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ 3583 3584 assert( pExpr->op==TK_AGG_FUNCTION ); 3585 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ 3586 const char *zFunc = pExpr->u.zToken; 3587 if( sqlite3StrICmp(zFunc, "min")==0 ){ 3588 eRet = WHERE_ORDERBY_MIN; 3589 *ppMinMax = pEList; 3590 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ 3591 eRet = WHERE_ORDERBY_MAX; 3592 *ppMinMax = pEList; 3593 } 3594 } 3595 } 3596 3597 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); 3598 return eRet; 3599 } 3600 3601 /* 3602 ** The select statement passed as the first argument is an aggregate query. 3603 ** The second argment is the associated aggregate-info object. This 3604 ** function tests if the SELECT is of the form: 3605 ** 3606 ** SELECT count(*) FROM <tbl> 3607 ** 3608 ** where table is a database table, not a sub-select or view. If the query 3609 ** does match this pattern, then a pointer to the Table object representing 3610 ** <tbl> is returned. Otherwise, 0 is returned. 3611 */ 3612 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ 3613 Table *pTab; 3614 Expr *pExpr; 3615 3616 assert( !p->pGroupBy ); 3617 3618 if( p->pWhere || p->pEList->nExpr!=1 3619 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect 3620 ){ 3621 return 0; 3622 } 3623 pTab = p->pSrc->a[0].pTab; 3624 pExpr = p->pEList->a[0].pExpr; 3625 assert( pTab && !pTab->pSelect && pExpr ); 3626 3627 if( IsVirtual(pTab) ) return 0; 3628 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; 3629 if( NEVER(pAggInfo->nFunc==0) ) return 0; 3630 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; 3631 if( pExpr->flags&EP_Distinct ) return 0; 3632 3633 return pTab; 3634 } 3635 3636 /* 3637 ** If the source-list item passed as an argument was augmented with an 3638 ** INDEXED BY clause, then try to locate the specified index. If there 3639 ** was such a clause and the named index cannot be found, return 3640 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate 3641 ** pFrom->pIndex and return SQLITE_OK. 3642 */ 3643 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ 3644 if( pFrom->pTab && pFrom->zIndex ){ 3645 Table *pTab = pFrom->pTab; 3646 char *zIndex = pFrom->zIndex; 3647 Index *pIdx; 3648 for(pIdx=pTab->pIndex; 3649 pIdx && sqlite3StrICmp(pIdx->zName, zIndex); 3650 pIdx=pIdx->pNext 3651 ); 3652 if( !pIdx ){ 3653 sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); 3654 pParse->checkSchema = 1; 3655 return SQLITE_ERROR; 3656 } 3657 pFrom->pIndex = pIdx; 3658 } 3659 return SQLITE_OK; 3660 } 3661 /* 3662 ** Detect compound SELECT statements that use an ORDER BY clause with 3663 ** an alternative collating sequence. 3664 ** 3665 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... 3666 ** 3667 ** These are rewritten as a subquery: 3668 ** 3669 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) 3670 ** ORDER BY ... COLLATE ... 3671 ** 3672 ** This transformation is necessary because the multiSelectOrderBy() routine 3673 ** above that generates the code for a compound SELECT with an ORDER BY clause 3674 ** uses a merge algorithm that requires the same collating sequence on the 3675 ** result columns as on the ORDER BY clause. See ticket 3676 ** http://www.sqlite.org/src/info/6709574d2a 3677 ** 3678 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. 3679 ** The UNION ALL operator works fine with multiSelectOrderBy() even when 3680 ** there are COLLATE terms in the ORDER BY. 3681 */ 3682 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ 3683 int i; 3684 Select *pNew; 3685 Select *pX; 3686 sqlite3 *db; 3687 struct ExprList_item *a; 3688 SrcList *pNewSrc; 3689 Parse *pParse; 3690 Token dummy; 3691 3692 if( p->pPrior==0 ) return WRC_Continue; 3693 if( p->pOrderBy==0 ) return WRC_Continue; 3694 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} 3695 if( pX==0 ) return WRC_Continue; 3696 a = p->pOrderBy->a; 3697 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ 3698 if( a[i].pExpr->flags & EP_Collate ) break; 3699 } 3700 if( i<0 ) return WRC_Continue; 3701 3702 /* If we reach this point, that means the transformation is required. */ 3703 3704 pParse = pWalker->pParse; 3705 db = pParse->db; 3706 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); 3707 if( pNew==0 ) return WRC_Abort; 3708 memset(&dummy, 0, sizeof(dummy)); 3709 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); 3710 if( pNewSrc==0 ) return WRC_Abort; 3711 *pNew = *p; 3712 p->pSrc = pNewSrc; 3713 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0)); 3714 p->op = TK_SELECT; 3715 p->pWhere = 0; 3716 pNew->pGroupBy = 0; 3717 pNew->pHaving = 0; 3718 pNew->pOrderBy = 0; 3719 p->pPrior = 0; 3720 p->pNext = 0; 3721 p->selFlags &= ~SF_Compound; 3722 assert( pNew->pPrior!=0 ); 3723 pNew->pPrior->pNext = pNew; 3724 pNew->pLimit = 0; 3725 pNew->pOffset = 0; 3726 return WRC_Continue; 3727 } 3728 3729 #ifndef SQLITE_OMIT_CTE 3730 /* 3731 ** Argument pWith (which may be NULL) points to a linked list of nested 3732 ** WITH contexts, from inner to outermost. If the table identified by 3733 ** FROM clause element pItem is really a common-table-expression (CTE) 3734 ** then return a pointer to the CTE definition for that table. Otherwise 3735 ** return NULL. 3736 ** 3737 ** If a non-NULL value is returned, set *ppContext to point to the With 3738 ** object that the returned CTE belongs to. 3739 */ 3740 static struct Cte *searchWith( 3741 With *pWith, /* Current outermost WITH clause */ 3742 struct SrcList_item *pItem, /* FROM clause element to resolve */ 3743 With **ppContext /* OUT: WITH clause return value belongs to */ 3744 ){ 3745 const char *zName; 3746 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ 3747 With *p; 3748 for(p=pWith; p; p=p->pOuter){ 3749 int i; 3750 for(i=0; i<p->nCte; i++){ 3751 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ 3752 *ppContext = p; 3753 return &p->a[i]; 3754 } 3755 } 3756 } 3757 } 3758 return 0; 3759 } 3760 3761 /* The code generator maintains a stack of active WITH clauses 3762 ** with the inner-most WITH clause being at the top of the stack. 3763 ** 3764 ** This routine pushes the WITH clause passed as the second argument 3765 ** onto the top of the stack. If argument bFree is true, then this 3766 ** WITH clause will never be popped from the stack. In this case it 3767 ** should be freed along with the Parse object. In other cases, when 3768 ** bFree==0, the With object will be freed along with the SELECT 3769 ** statement with which it is associated. 3770 */ 3771 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ 3772 assert( bFree==0 || pParse->pWith==0 ); 3773 if( pWith ){ 3774 pWith->pOuter = pParse->pWith; 3775 pParse->pWith = pWith; 3776 pParse->bFreeWith = bFree; 3777 } 3778 } 3779 3780 /* 3781 ** This function checks if argument pFrom refers to a CTE declared by 3782 ** a WITH clause on the stack currently maintained by the parser. And, 3783 ** if currently processing a CTE expression, if it is a recursive 3784 ** reference to the current CTE. 3785 ** 3786 ** If pFrom falls into either of the two categories above, pFrom->pTab 3787 ** and other fields are populated accordingly. The caller should check 3788 ** (pFrom->pTab!=0) to determine whether or not a successful match 3789 ** was found. 3790 ** 3791 ** Whether or not a match is found, SQLITE_OK is returned if no error 3792 ** occurs. If an error does occur, an error message is stored in the 3793 ** parser and some error code other than SQLITE_OK returned. 3794 */ 3795 static int withExpand( 3796 Walker *pWalker, 3797 struct SrcList_item *pFrom 3798 ){ 3799 Parse *pParse = pWalker->pParse; 3800 sqlite3 *db = pParse->db; 3801 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ 3802 With *pWith; /* WITH clause that pCte belongs to */ 3803 3804 assert( pFrom->pTab==0 ); 3805 3806 pCte = searchWith(pParse->pWith, pFrom, &pWith); 3807 if( pCte ){ 3808 Table *pTab; 3809 ExprList *pEList; 3810 Select *pSel; 3811 Select *pLeft; /* Left-most SELECT statement */ 3812 int bMayRecursive; /* True if compound joined by UNION [ALL] */ 3813 With *pSavedWith; /* Initial value of pParse->pWith */ 3814 3815 /* If pCte->zErr is non-NULL at this point, then this is an illegal 3816 ** recursive reference to CTE pCte. Leave an error in pParse and return 3817 ** early. If pCte->zErr is NULL, then this is not a recursive reference. 3818 ** In this case, proceed. */ 3819 if( pCte->zErr ){ 3820 sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName); 3821 return SQLITE_ERROR; 3822 } 3823 3824 assert( pFrom->pTab==0 ); 3825 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 3826 if( pTab==0 ) return WRC_Abort; 3827 pTab->nRef = 1; 3828 pTab->zName = sqlite3DbStrDup(db, pCte->zName); 3829 pTab->iPKey = -1; 3830 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 3831 pTab->tabFlags |= TF_Ephemeral; 3832 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); 3833 if( db->mallocFailed ) return SQLITE_NOMEM; 3834 assert( pFrom->pSelect ); 3835 3836 /* Check if this is a recursive CTE. */ 3837 pSel = pFrom->pSelect; 3838 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); 3839 if( bMayRecursive ){ 3840 int i; 3841 SrcList *pSrc = pFrom->pSelect->pSrc; 3842 for(i=0; i<pSrc->nSrc; i++){ 3843 struct SrcList_item *pItem = &pSrc->a[i]; 3844 if( pItem->zDatabase==0 3845 && pItem->zName!=0 3846 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) 3847 ){ 3848 pItem->pTab = pTab; 3849 pItem->isRecursive = 1; 3850 pTab->nRef++; 3851 pSel->selFlags |= SF_Recursive; 3852 } 3853 } 3854 } 3855 3856 /* Only one recursive reference is permitted. */ 3857 if( pTab->nRef>2 ){ 3858 sqlite3ErrorMsg( 3859 pParse, "multiple references to recursive table: %s", pCte->zName 3860 ); 3861 return SQLITE_ERROR; 3862 } 3863 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); 3864 3865 pCte->zErr = "circular reference: %s"; 3866 pSavedWith = pParse->pWith; 3867 pParse->pWith = pWith; 3868 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); 3869 3870 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); 3871 pEList = pLeft->pEList; 3872 if( pCte->pCols ){ 3873 if( pEList->nExpr!=pCte->pCols->nExpr ){ 3874 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", 3875 pCte->zName, pEList->nExpr, pCte->pCols->nExpr 3876 ); 3877 pParse->pWith = pSavedWith; 3878 return SQLITE_ERROR; 3879 } 3880 pEList = pCte->pCols; 3881 } 3882 3883 selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); 3884 if( bMayRecursive ){ 3885 if( pSel->selFlags & SF_Recursive ){ 3886 pCte->zErr = "multiple recursive references: %s"; 3887 }else{ 3888 pCte->zErr = "recursive reference in a subquery: %s"; 3889 } 3890 sqlite3WalkSelect(pWalker, pSel); 3891 } 3892 pCte->zErr = 0; 3893 pParse->pWith = pSavedWith; 3894 } 3895 3896 return SQLITE_OK; 3897 } 3898 #endif 3899 3900 #ifndef SQLITE_OMIT_CTE 3901 /* 3902 ** If the SELECT passed as the second argument has an associated WITH 3903 ** clause, pop it from the stack stored as part of the Parse object. 3904 ** 3905 ** This function is used as the xSelectCallback2() callback by 3906 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table 3907 ** names and other FROM clause elements. 3908 */ 3909 static void selectPopWith(Walker *pWalker, Select *p){ 3910 Parse *pParse = pWalker->pParse; 3911 With *pWith = findRightmost(p)->pWith; 3912 if( pWith!=0 ){ 3913 assert( pParse->pWith==pWith ); 3914 pParse->pWith = pWith->pOuter; 3915 } 3916 } 3917 #else 3918 #define selectPopWith 0 3919 #endif 3920 3921 /* 3922 ** This routine is a Walker callback for "expanding" a SELECT statement. 3923 ** "Expanding" means to do the following: 3924 ** 3925 ** (1) Make sure VDBE cursor numbers have been assigned to every 3926 ** element of the FROM clause. 3927 ** 3928 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that 3929 ** defines FROM clause. When views appear in the FROM clause, 3930 ** fill pTabList->a[].pSelect with a copy of the SELECT statement 3931 ** that implements the view. A copy is made of the view's SELECT 3932 ** statement so that we can freely modify or delete that statement 3933 ** without worrying about messing up the presistent representation 3934 ** of the view. 3935 ** 3936 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword 3937 ** on joins and the ON and USING clause of joins. 3938 ** 3939 ** (4) Scan the list of columns in the result set (pEList) looking 3940 ** for instances of the "*" operator or the TABLE.* operator. 3941 ** If found, expand each "*" to be every column in every table 3942 ** and TABLE.* to be every column in TABLE. 3943 ** 3944 */ 3945 static int selectExpander(Walker *pWalker, Select *p){ 3946 Parse *pParse = pWalker->pParse; 3947 int i, j, k; 3948 SrcList *pTabList; 3949 ExprList *pEList; 3950 struct SrcList_item *pFrom; 3951 sqlite3 *db = pParse->db; 3952 Expr *pE, *pRight, *pExpr; 3953 u16 selFlags = p->selFlags; 3954 3955 p->selFlags |= SF_Expanded; 3956 if( db->mallocFailed ){ 3957 return WRC_Abort; 3958 } 3959 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ 3960 return WRC_Prune; 3961 } 3962 pTabList = p->pSrc; 3963 pEList = p->pEList; 3964 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); 3965 3966 /* Make sure cursor numbers have been assigned to all entries in 3967 ** the FROM clause of the SELECT statement. 3968 */ 3969 sqlite3SrcListAssignCursors(pParse, pTabList); 3970 3971 /* Look up every table named in the FROM clause of the select. If 3972 ** an entry of the FROM clause is a subquery instead of a table or view, 3973 ** then create a transient table structure to describe the subquery. 3974 */ 3975 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 3976 Table *pTab; 3977 assert( pFrom->isRecursive==0 || pFrom->pTab ); 3978 if( pFrom->isRecursive ) continue; 3979 if( pFrom->pTab!=0 ){ 3980 /* This statement has already been prepared. There is no need 3981 ** to go further. */ 3982 assert( i==0 ); 3983 #ifndef SQLITE_OMIT_CTE 3984 selectPopWith(pWalker, p); 3985 #endif 3986 return WRC_Prune; 3987 } 3988 #ifndef SQLITE_OMIT_CTE 3989 if( withExpand(pWalker, pFrom) ) return WRC_Abort; 3990 if( pFrom->pTab ) {} else 3991 #endif 3992 if( pFrom->zName==0 ){ 3993 #ifndef SQLITE_OMIT_SUBQUERY 3994 Select *pSel = pFrom->pSelect; 3995 /* A sub-query in the FROM clause of a SELECT */ 3996 assert( pSel!=0 ); 3997 assert( pFrom->pTab==0 ); 3998 sqlite3WalkSelect(pWalker, pSel); 3999 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); 4000 if( pTab==0 ) return WRC_Abort; 4001 pTab->nRef = 1; 4002 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); 4003 while( pSel->pPrior ){ pSel = pSel->pPrior; } 4004 selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); 4005 pTab->iPKey = -1; 4006 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); 4007 pTab->tabFlags |= TF_Ephemeral; 4008 #endif 4009 }else{ 4010 /* An ordinary table or view name in the FROM clause */ 4011 assert( pFrom->pTab==0 ); 4012 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); 4013 if( pTab==0 ) return WRC_Abort; 4014 if( pTab->nRef==0xffff ){ 4015 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", 4016 pTab->zName); 4017 pFrom->pTab = 0; 4018 return WRC_Abort; 4019 } 4020 pTab->nRef++; 4021 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) 4022 if( pTab->pSelect || IsVirtual(pTab) ){ 4023 /* We reach here if the named table is a really a view */ 4024 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; 4025 assert( pFrom->pSelect==0 ); 4026 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); 4027 sqlite3WalkSelect(pWalker, pFrom->pSelect); 4028 } 4029 #endif 4030 } 4031 4032 /* Locate the index named by the INDEXED BY clause, if any. */ 4033 if( sqlite3IndexedByLookup(pParse, pFrom) ){ 4034 return WRC_Abort; 4035 } 4036 } 4037 4038 /* Process NATURAL keywords, and ON and USING clauses of joins. 4039 */ 4040 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ 4041 return WRC_Abort; 4042 } 4043 4044 /* For every "*" that occurs in the column list, insert the names of 4045 ** all columns in all tables. And for every TABLE.* insert the names 4046 ** of all columns in TABLE. The parser inserted a special expression 4047 ** with the TK_ALL operator for each "*" that it found in the column list. 4048 ** The following code just has to locate the TK_ALL expressions and expand 4049 ** each one to the list of all columns in all tables. 4050 ** 4051 ** The first loop just checks to see if there are any "*" operators 4052 ** that need expanding. 4053 */ 4054 for(k=0; k<pEList->nExpr; k++){ 4055 pE = pEList->a[k].pExpr; 4056 if( pE->op==TK_ALL ) break; 4057 assert( pE->op!=TK_DOT || pE->pRight!=0 ); 4058 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); 4059 if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break; 4060 } 4061 if( k<pEList->nExpr ){ 4062 /* 4063 ** If we get here it means the result set contains one or more "*" 4064 ** operators that need to be expanded. Loop through each expression 4065 ** in the result set and expand them one by one. 4066 */ 4067 struct ExprList_item *a = pEList->a; 4068 ExprList *pNew = 0; 4069 int flags = pParse->db->flags; 4070 int longNames = (flags & SQLITE_FullColNames)!=0 4071 && (flags & SQLITE_ShortColNames)==0; 4072 4073 /* When processing FROM-clause subqueries, it is always the case 4074 ** that full_column_names=OFF and short_column_names=ON. The 4075 ** sqlite3ResultSetOfSelect() routine makes it so. */ 4076 assert( (p->selFlags & SF_NestedFrom)==0 4077 || ((flags & SQLITE_FullColNames)==0 && 4078 (flags & SQLITE_ShortColNames)!=0) ); 4079 4080 for(k=0; k<pEList->nExpr; k++){ 4081 pE = a[k].pExpr; 4082 pRight = pE->pRight; 4083 assert( pE->op!=TK_DOT || pRight!=0 ); 4084 if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){ 4085 /* This particular expression does not need to be expanded. 4086 */ 4087 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); 4088 if( pNew ){ 4089 pNew->a[pNew->nExpr-1].zName = a[k].zName; 4090 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; 4091 a[k].zName = 0; 4092 a[k].zSpan = 0; 4093 } 4094 a[k].pExpr = 0; 4095 }else{ 4096 /* This expression is a "*" or a "TABLE.*" and needs to be 4097 ** expanded. */ 4098 int tableSeen = 0; /* Set to 1 when TABLE matches */ 4099 char *zTName = 0; /* text of name of TABLE */ 4100 if( pE->op==TK_DOT ){ 4101 assert( pE->pLeft!=0 ); 4102 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); 4103 zTName = pE->pLeft->u.zToken; 4104 } 4105 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4106 Table *pTab = pFrom->pTab; 4107 Select *pSub = pFrom->pSelect; 4108 char *zTabName = pFrom->zAlias; 4109 const char *zSchemaName = 0; 4110 int iDb; 4111 if( zTabName==0 ){ 4112 zTabName = pTab->zName; 4113 } 4114 if( db->mallocFailed ) break; 4115 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ 4116 pSub = 0; 4117 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ 4118 continue; 4119 } 4120 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4121 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; 4122 } 4123 for(j=0; j<pTab->nCol; j++){ 4124 char *zName = pTab->aCol[j].zName; 4125 char *zColname; /* The computed column name */ 4126 char *zToFree; /* Malloced string that needs to be freed */ 4127 Token sColname; /* Computed column name as a token */ 4128 4129 assert( zName ); 4130 if( zTName && pSub 4131 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 4132 ){ 4133 continue; 4134 } 4135 4136 /* If a column is marked as 'hidden' (currently only possible 4137 ** for virtual tables), do not include it in the expanded 4138 ** result-set list. 4139 */ 4140 if( IsHiddenColumn(&pTab->aCol[j]) ){ 4141 assert(IsVirtual(pTab)); 4142 continue; 4143 } 4144 tableSeen = 1; 4145 4146 if( i>0 && zTName==0 ){ 4147 if( (pFrom->jointype & JT_NATURAL)!=0 4148 && tableAndColumnIndex(pTabList, i, zName, 0, 0) 4149 ){ 4150 /* In a NATURAL join, omit the join columns from the 4151 ** table to the right of the join */ 4152 continue; 4153 } 4154 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ 4155 /* In a join with a USING clause, omit columns in the 4156 ** using clause from the table on the right. */ 4157 continue; 4158 } 4159 } 4160 pRight = sqlite3Expr(db, TK_ID, zName); 4161 zColname = zName; 4162 zToFree = 0; 4163 if( longNames || pTabList->nSrc>1 ){ 4164 Expr *pLeft; 4165 pLeft = sqlite3Expr(db, TK_ID, zTabName); 4166 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 4167 if( zSchemaName ){ 4168 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); 4169 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); 4170 } 4171 if( longNames ){ 4172 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); 4173 zToFree = zColname; 4174 } 4175 }else{ 4176 pExpr = pRight; 4177 } 4178 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); 4179 sColname.z = zColname; 4180 sColname.n = sqlite3Strlen30(zColname); 4181 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); 4182 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ 4183 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; 4184 if( pSub ){ 4185 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); 4186 testcase( pX->zSpan==0 ); 4187 }else{ 4188 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", 4189 zSchemaName, zTabName, zColname); 4190 testcase( pX->zSpan==0 ); 4191 } 4192 pX->bSpanIsTab = 1; 4193 } 4194 sqlite3DbFree(db, zToFree); 4195 } 4196 } 4197 if( !tableSeen ){ 4198 if( zTName ){ 4199 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); 4200 }else{ 4201 sqlite3ErrorMsg(pParse, "no tables specified"); 4202 } 4203 } 4204 } 4205 } 4206 sqlite3ExprListDelete(db, pEList); 4207 p->pEList = pNew; 4208 } 4209 #if SQLITE_MAX_COLUMN 4210 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ 4211 sqlite3ErrorMsg(pParse, "too many columns in result set"); 4212 } 4213 #endif 4214 return WRC_Continue; 4215 } 4216 4217 /* 4218 ** No-op routine for the parse-tree walker. 4219 ** 4220 ** When this routine is the Walker.xExprCallback then expression trees 4221 ** are walked without any actions being taken at each node. Presumably, 4222 ** when this routine is used for Walker.xExprCallback then 4223 ** Walker.xSelectCallback is set to do something useful for every 4224 ** subquery in the parser tree. 4225 */ 4226 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ 4227 UNUSED_PARAMETER2(NotUsed, NotUsed2); 4228 return WRC_Continue; 4229 } 4230 4231 /* 4232 ** This routine "expands" a SELECT statement and all of its subqueries. 4233 ** For additional information on what it means to "expand" a SELECT 4234 ** statement, see the comment on the selectExpand worker callback above. 4235 ** 4236 ** Expanding a SELECT statement is the first step in processing a 4237 ** SELECT statement. The SELECT statement must be expanded before 4238 ** name resolution is performed. 4239 ** 4240 ** If anything goes wrong, an error message is written into pParse. 4241 ** The calling function can detect the problem by looking at pParse->nErr 4242 ** and/or pParse->db->mallocFailed. 4243 */ 4244 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ 4245 Walker w; 4246 memset(&w, 0, sizeof(w)); 4247 w.xExprCallback = exprWalkNoop; 4248 w.pParse = pParse; 4249 if( pParse->hasCompound ){ 4250 w.xSelectCallback = convertCompoundSelectToSubquery; 4251 sqlite3WalkSelect(&w, pSelect); 4252 } 4253 w.xSelectCallback = selectExpander; 4254 w.xSelectCallback2 = selectPopWith; 4255 sqlite3WalkSelect(&w, pSelect); 4256 } 4257 4258 4259 #ifndef SQLITE_OMIT_SUBQUERY 4260 /* 4261 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() 4262 ** interface. 4263 ** 4264 ** For each FROM-clause subquery, add Column.zType and Column.zColl 4265 ** information to the Table structure that represents the result set 4266 ** of that subquery. 4267 ** 4268 ** The Table structure that represents the result set was constructed 4269 ** by selectExpander() but the type and collation information was omitted 4270 ** at that point because identifiers had not yet been resolved. This 4271 ** routine is called after identifier resolution. 4272 */ 4273 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ 4274 Parse *pParse; 4275 int i; 4276 SrcList *pTabList; 4277 struct SrcList_item *pFrom; 4278 4279 assert( p->selFlags & SF_Resolved ); 4280 if( (p->selFlags & SF_HasTypeInfo)==0 ){ 4281 p->selFlags |= SF_HasTypeInfo; 4282 pParse = pWalker->pParse; 4283 pTabList = p->pSrc; 4284 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ 4285 Table *pTab = pFrom->pTab; 4286 if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){ 4287 /* A sub-query in the FROM clause of a SELECT */ 4288 Select *pSel = pFrom->pSelect; 4289 if( pSel ){ 4290 while( pSel->pPrior ) pSel = pSel->pPrior; 4291 selectAddColumnTypeAndCollation(pParse, pTab, pSel); 4292 } 4293 } 4294 } 4295 } 4296 } 4297 #endif 4298 4299 4300 /* 4301 ** This routine adds datatype and collating sequence information to 4302 ** the Table structures of all FROM-clause subqueries in a 4303 ** SELECT statement. 4304 ** 4305 ** Use this routine after name resolution. 4306 */ 4307 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ 4308 #ifndef SQLITE_OMIT_SUBQUERY 4309 Walker w; 4310 memset(&w, 0, sizeof(w)); 4311 w.xSelectCallback2 = selectAddSubqueryTypeInfo; 4312 w.xExprCallback = exprWalkNoop; 4313 w.pParse = pParse; 4314 sqlite3WalkSelect(&w, pSelect); 4315 #endif 4316 } 4317 4318 4319 /* 4320 ** This routine sets up a SELECT statement for processing. The 4321 ** following is accomplished: 4322 ** 4323 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. 4324 ** * Ephemeral Table objects are created for all FROM-clause subqueries. 4325 ** * ON and USING clauses are shifted into WHERE statements 4326 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. 4327 ** * Identifiers in expression are matched to tables. 4328 ** 4329 ** This routine acts recursively on all subqueries within the SELECT. 4330 */ 4331 void sqlite3SelectPrep( 4332 Parse *pParse, /* The parser context */ 4333 Select *p, /* The SELECT statement being coded. */ 4334 NameContext *pOuterNC /* Name context for container */ 4335 ){ 4336 sqlite3 *db; 4337 if( NEVER(p==0) ) return; 4338 db = pParse->db; 4339 if( db->mallocFailed ) return; 4340 if( p->selFlags & SF_HasTypeInfo ) return; 4341 sqlite3SelectExpand(pParse, p); 4342 if( pParse->nErr || db->mallocFailed ) return; 4343 sqlite3ResolveSelectNames(pParse, p, pOuterNC); 4344 if( pParse->nErr || db->mallocFailed ) return; 4345 sqlite3SelectAddTypeInfo(pParse, p); 4346 } 4347 4348 /* 4349 ** Reset the aggregate accumulator. 4350 ** 4351 ** The aggregate accumulator is a set of memory cells that hold 4352 ** intermediate results while calculating an aggregate. This 4353 ** routine generates code that stores NULLs in all of those memory 4354 ** cells. 4355 */ 4356 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4357 Vdbe *v = pParse->pVdbe; 4358 int i; 4359 struct AggInfo_func *pFunc; 4360 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; 4361 if( nReg==0 ) return; 4362 #ifdef SQLITE_DEBUG 4363 /* Verify that all AggInfo registers are within the range specified by 4364 ** AggInfo.mnReg..AggInfo.mxReg */ 4365 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); 4366 for(i=0; i<pAggInfo->nColumn; i++){ 4367 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg 4368 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); 4369 } 4370 for(i=0; i<pAggInfo->nFunc; i++){ 4371 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg 4372 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); 4373 } 4374 #endif 4375 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); 4376 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ 4377 if( pFunc->iDistinct>=0 ){ 4378 Expr *pE = pFunc->pExpr; 4379 assert( !ExprHasProperty(pE, EP_xIsSelect) ); 4380 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ 4381 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " 4382 "argument"); 4383 pFunc->iDistinct = -1; 4384 }else{ 4385 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); 4386 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, 4387 (char*)pKeyInfo, P4_KEYINFO); 4388 } 4389 } 4390 } 4391 } 4392 4393 /* 4394 ** Invoke the OP_AggFinalize opcode for every aggregate function 4395 ** in the AggInfo structure. 4396 */ 4397 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ 4398 Vdbe *v = pParse->pVdbe; 4399 int i; 4400 struct AggInfo_func *pF; 4401 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4402 ExprList *pList = pF->pExpr->x.pList; 4403 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4404 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, 4405 (void*)pF->pFunc, P4_FUNCDEF); 4406 } 4407 } 4408 4409 /* 4410 ** Update the accumulator memory cells for an aggregate based on 4411 ** the current cursor position. 4412 */ 4413 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ 4414 Vdbe *v = pParse->pVdbe; 4415 int i; 4416 int regHit = 0; 4417 int addrHitTest = 0; 4418 struct AggInfo_func *pF; 4419 struct AggInfo_col *pC; 4420 4421 pAggInfo->directMode = 1; 4422 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ 4423 int nArg; 4424 int addrNext = 0; 4425 int regAgg; 4426 ExprList *pList = pF->pExpr->x.pList; 4427 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); 4428 if( pList ){ 4429 nArg = pList->nExpr; 4430 regAgg = sqlite3GetTempRange(pParse, nArg); 4431 sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP); 4432 }else{ 4433 nArg = 0; 4434 regAgg = 0; 4435 } 4436 if( pF->iDistinct>=0 ){ 4437 addrNext = sqlite3VdbeMakeLabel(v); 4438 assert( nArg==1 ); 4439 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); 4440 } 4441 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ 4442 CollSeq *pColl = 0; 4443 struct ExprList_item *pItem; 4444 int j; 4445 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ 4446 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ 4447 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); 4448 } 4449 if( !pColl ){ 4450 pColl = pParse->db->pDfltColl; 4451 } 4452 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; 4453 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); 4454 } 4455 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, 4456 (void*)pF->pFunc, P4_FUNCDEF); 4457 sqlite3VdbeChangeP5(v, (u8)nArg); 4458 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); 4459 sqlite3ReleaseTempRange(pParse, regAgg, nArg); 4460 if( addrNext ){ 4461 sqlite3VdbeResolveLabel(v, addrNext); 4462 sqlite3ExprCacheClear(pParse); 4463 } 4464 } 4465 4466 /* Before populating the accumulator registers, clear the column cache. 4467 ** Otherwise, if any of the required column values are already present 4468 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value 4469 ** to pC->iMem. But by the time the value is used, the original register 4470 ** may have been used, invalidating the underlying buffer holding the 4471 ** text or blob value. See ticket [883034dcb5]. 4472 ** 4473 ** Another solution would be to change the OP_SCopy used to copy cached 4474 ** values to an OP_Copy. 4475 */ 4476 if( regHit ){ 4477 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); 4478 } 4479 sqlite3ExprCacheClear(pParse); 4480 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ 4481 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); 4482 } 4483 pAggInfo->directMode = 0; 4484 sqlite3ExprCacheClear(pParse); 4485 if( addrHitTest ){ 4486 sqlite3VdbeJumpHere(v, addrHitTest); 4487 } 4488 } 4489 4490 /* 4491 ** Add a single OP_Explain instruction to the VDBE to explain a simple 4492 ** count(*) query ("SELECT count(*) FROM pTab"). 4493 */ 4494 #ifndef SQLITE_OMIT_EXPLAIN 4495 static void explainSimpleCount( 4496 Parse *pParse, /* Parse context */ 4497 Table *pTab, /* Table being queried */ 4498 Index *pIdx /* Index used to optimize scan, or NULL */ 4499 ){ 4500 if( pParse->explain==2 ){ 4501 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", 4502 pTab->zName, 4503 pIdx ? " USING COVERING INDEX " : "", 4504 pIdx ? pIdx->zName : "" 4505 ); 4506 sqlite3VdbeAddOp4( 4507 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC 4508 ); 4509 } 4510 } 4511 #else 4512 # define explainSimpleCount(a,b,c) 4513 #endif 4514 4515 /* 4516 ** Generate code for the SELECT statement given in the p argument. 4517 ** 4518 ** The results are returned according to the SelectDest structure. 4519 ** See comments in sqliteInt.h for further information. 4520 ** 4521 ** This routine returns the number of errors. If any errors are 4522 ** encountered, then an appropriate error message is left in 4523 ** pParse->zErrMsg. 4524 ** 4525 ** This routine does NOT free the Select structure passed in. The 4526 ** calling function needs to do that. 4527 */ 4528 int sqlite3Select( 4529 Parse *pParse, /* The parser context */ 4530 Select *p, /* The SELECT statement being coded. */ 4531 SelectDest *pDest /* What to do with the query results */ 4532 ){ 4533 int i, j; /* Loop counters */ 4534 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ 4535 Vdbe *v; /* The virtual machine under construction */ 4536 int isAgg; /* True for select lists like "count(*)" */ 4537 ExprList *pEList; /* List of columns to extract. */ 4538 SrcList *pTabList; /* List of tables to select from */ 4539 Expr *pWhere; /* The WHERE clause. May be NULL */ 4540 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ 4541 Expr *pHaving; /* The HAVING clause. May be NULL */ 4542 int rc = 1; /* Value to return from this function */ 4543 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ 4544 SortCtx sSort; /* Info on how to code the ORDER BY clause */ 4545 AggInfo sAggInfo; /* Information used by aggregate queries */ 4546 int iEnd; /* Address of the end of the query */ 4547 sqlite3 *db; /* The database connection */ 4548 4549 #ifndef SQLITE_OMIT_EXPLAIN 4550 int iRestoreSelectId = pParse->iSelectId; 4551 pParse->iSelectId = pParse->iNextSelectId++; 4552 #endif 4553 4554 db = pParse->db; 4555 if( p==0 || db->mallocFailed || pParse->nErr ){ 4556 return 1; 4557 } 4558 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; 4559 memset(&sAggInfo, 0, sizeof(sAggInfo)); 4560 4561 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); 4562 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); 4563 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); 4564 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); 4565 if( IgnorableOrderby(pDest) ){ 4566 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 4567 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || 4568 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || 4569 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); 4570 /* If ORDER BY makes no difference in the output then neither does 4571 ** DISTINCT so it can be removed too. */ 4572 sqlite3ExprListDelete(db, p->pOrderBy); 4573 p->pOrderBy = 0; 4574 p->selFlags &= ~SF_Distinct; 4575 } 4576 sqlite3SelectPrep(pParse, p, 0); 4577 memset(&sSort, 0, sizeof(sSort)); 4578 sSort.pOrderBy = p->pOrderBy; 4579 pTabList = p->pSrc; 4580 pEList = p->pEList; 4581 if( pParse->nErr || db->mallocFailed ){ 4582 goto select_end; 4583 } 4584 isAgg = (p->selFlags & SF_Aggregate)!=0; 4585 assert( pEList!=0 ); 4586 4587 /* Begin generating code. 4588 */ 4589 v = sqlite3GetVdbe(pParse); 4590 if( v==0 ) goto select_end; 4591 4592 /* If writing to memory or generating a set 4593 ** only a single column may be output. 4594 */ 4595 #ifndef SQLITE_OMIT_SUBQUERY 4596 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ 4597 goto select_end; 4598 } 4599 #endif 4600 4601 /* Generate code for all sub-queries in the FROM clause 4602 */ 4603 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) 4604 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ 4605 struct SrcList_item *pItem = &pTabList->a[i]; 4606 SelectDest dest; 4607 Select *pSub = pItem->pSelect; 4608 int isAggSub; 4609 4610 if( pSub==0 ) continue; 4611 4612 /* Sometimes the code for a subquery will be generated more than 4613 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, 4614 ** for example. In that case, do not regenerate the code to manifest 4615 ** a view or the co-routine to implement a view. The first instance 4616 ** is sufficient, though the subroutine to manifest the view does need 4617 ** to be invoked again. */ 4618 if( pItem->addrFillSub ){ 4619 if( pItem->viaCoroutine==0 ){ 4620 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); 4621 } 4622 continue; 4623 } 4624 4625 /* Increment Parse.nHeight by the height of the largest expression 4626 ** tree referred to by this, the parent select. The child select 4627 ** may contain expression trees of at most 4628 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit 4629 ** more conservative than necessary, but much easier than enforcing 4630 ** an exact limit. 4631 */ 4632 pParse->nHeight += sqlite3SelectExprHeight(p); 4633 4634 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; 4635 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ 4636 /* This subquery can be absorbed into its parent. */ 4637 if( isAggSub ){ 4638 isAgg = 1; 4639 p->selFlags |= SF_Aggregate; 4640 } 4641 i = -1; 4642 }else if( pTabList->nSrc==1 4643 && OptimizationEnabled(db, SQLITE_SubqCoroutine) 4644 ){ 4645 /* Implement a co-routine that will return a single row of the result 4646 ** set on each invocation. 4647 */ 4648 int addrTop = sqlite3VdbeCurrentAddr(v)+1; 4649 pItem->regReturn = ++pParse->nMem; 4650 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); 4651 VdbeComment((v, "%s", pItem->pTab->zName)); 4652 pItem->addrFillSub = addrTop; 4653 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); 4654 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4655 sqlite3Select(pParse, pSub, &dest); 4656 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4657 pItem->viaCoroutine = 1; 4658 pItem->regResult = dest.iSdst; 4659 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); 4660 sqlite3VdbeJumpHere(v, addrTop-1); 4661 sqlite3ClearTempRegCache(pParse); 4662 }else{ 4663 /* Generate a subroutine that will fill an ephemeral table with 4664 ** the content of this subquery. pItem->addrFillSub will point 4665 ** to the address of the generated subroutine. pItem->regReturn 4666 ** is a register allocated to hold the subroutine return address 4667 */ 4668 int topAddr; 4669 int onceAddr = 0; 4670 int retAddr; 4671 assert( pItem->addrFillSub==0 ); 4672 pItem->regReturn = ++pParse->nMem; 4673 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); 4674 pItem->addrFillSub = topAddr+1; 4675 if( pItem->isCorrelated==0 ){ 4676 /* If the subquery is not correlated and if we are not inside of 4677 ** a trigger, then we only need to compute the value of the subquery 4678 ** once. */ 4679 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); 4680 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4681 }else{ 4682 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); 4683 } 4684 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); 4685 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); 4686 sqlite3Select(pParse, pSub, &dest); 4687 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); 4688 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); 4689 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); 4690 VdbeComment((v, "end %s", pItem->pTab->zName)); 4691 sqlite3VdbeChangeP1(v, topAddr, retAddr); 4692 sqlite3ClearTempRegCache(pParse); 4693 } 4694 if( /*pParse->nErr ||*/ db->mallocFailed ){ 4695 goto select_end; 4696 } 4697 pParse->nHeight -= sqlite3SelectExprHeight(p); 4698 pTabList = p->pSrc; 4699 if( !IgnorableOrderby(pDest) ){ 4700 sSort.pOrderBy = p->pOrderBy; 4701 } 4702 } 4703 pEList = p->pEList; 4704 #endif 4705 pWhere = p->pWhere; 4706 pGroupBy = p->pGroupBy; 4707 pHaving = p->pHaving; 4708 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; 4709 4710 #ifndef SQLITE_OMIT_COMPOUND_SELECT 4711 /* If there is are a sequence of queries, do the earlier ones first. 4712 */ 4713 if( p->pPrior ){ 4714 rc = multiSelect(pParse, p, pDest); 4715 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 4716 return rc; 4717 } 4718 #endif 4719 4720 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 4721 ** if the select-list is the same as the ORDER BY list, then this query 4722 ** can be rewritten as a GROUP BY. In other words, this: 4723 ** 4724 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz 4725 ** 4726 ** is transformed to: 4727 ** 4728 ** SELECT xyz FROM ... GROUP BY xyz 4729 ** 4730 ** The second form is preferred as a single index (or temp-table) may be 4731 ** used for both the ORDER BY and DISTINCT processing. As originally 4732 ** written the query must use a temp-table for at least one of the ORDER 4733 ** BY and DISTINCT, and an index or separate temp-table for the other. 4734 */ 4735 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 4736 && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0 4737 ){ 4738 p->selFlags &= ~SF_Distinct; 4739 p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); 4740 pGroupBy = p->pGroupBy; 4741 sSort.pOrderBy = 0; 4742 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, 4743 ** the sDistinct.isTnct is still set. Hence, isTnct represents the 4744 ** original setting of the SF_Distinct flag, not the current setting */ 4745 assert( sDistinct.isTnct ); 4746 } 4747 4748 /* If there is an ORDER BY clause, then this sorting 4749 ** index might end up being unused if the data can be 4750 ** extracted in pre-sorted order. If that is the case, then the 4751 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once 4752 ** we figure out that the sorting index is not needed. The addrSortIndex 4753 ** variable is used to facilitate that change. 4754 */ 4755 if( sSort.pOrderBy ){ 4756 KeyInfo *pKeyInfo; 4757 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0); 4758 sSort.iECursor = pParse->nTab++; 4759 sSort.addrSortIndex = 4760 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4761 sSort.iECursor, sSort.pOrderBy->nExpr+2, 0, 4762 (char*)pKeyInfo, P4_KEYINFO); 4763 }else{ 4764 sSort.addrSortIndex = -1; 4765 } 4766 4767 /* If the output is destined for a temporary table, open that table. 4768 */ 4769 if( pDest->eDest==SRT_EphemTab ){ 4770 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); 4771 } 4772 4773 /* Set the limiter. 4774 */ 4775 iEnd = sqlite3VdbeMakeLabel(v); 4776 p->nSelectRow = LARGEST_INT64; 4777 computeLimitRegisters(pParse, p, iEnd); 4778 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ 4779 sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen; 4780 sSort.sortFlags |= SORTFLAG_UseSorter; 4781 } 4782 4783 /* Open a virtual index to use for the distinct set. 4784 */ 4785 if( p->selFlags & SF_Distinct ){ 4786 sDistinct.tabTnct = pParse->nTab++; 4787 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 4788 sDistinct.tabTnct, 0, 0, 4789 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), 4790 P4_KEYINFO); 4791 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); 4792 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; 4793 }else{ 4794 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; 4795 } 4796 4797 if( !isAgg && pGroupBy==0 ){ 4798 /* No aggregate functions and no GROUP BY clause */ 4799 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); 4800 4801 /* Begin the database scan. */ 4802 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, 4803 p->pEList, wctrlFlags, 0); 4804 if( pWInfo==0 ) goto select_end; 4805 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ 4806 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); 4807 } 4808 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ 4809 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); 4810 } 4811 if( sSort.pOrderBy ){ 4812 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); 4813 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ 4814 sSort.pOrderBy = 0; 4815 } 4816 } 4817 4818 /* If sorting index that was created by a prior OP_OpenEphemeral 4819 ** instruction ended up not being needed, then change the OP_OpenEphemeral 4820 ** into an OP_Noop. 4821 */ 4822 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ 4823 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 4824 } 4825 4826 /* Use the standard inner loop. */ 4827 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, 4828 sqlite3WhereContinueLabel(pWInfo), 4829 sqlite3WhereBreakLabel(pWInfo)); 4830 4831 /* End the database scan loop. 4832 */ 4833 sqlite3WhereEnd(pWInfo); 4834 }else{ 4835 /* This case when there exist aggregate functions or a GROUP BY clause 4836 ** or both */ 4837 NameContext sNC; /* Name context for processing aggregate information */ 4838 int iAMem; /* First Mem address for storing current GROUP BY */ 4839 int iBMem; /* First Mem address for previous GROUP BY */ 4840 int iUseFlag; /* Mem address holding flag indicating that at least 4841 ** one row of the input to the aggregator has been 4842 ** processed */ 4843 int iAbortFlag; /* Mem address which causes query abort if positive */ 4844 int groupBySort; /* Rows come from source in GROUP BY order */ 4845 int addrEnd; /* End of processing for this SELECT */ 4846 int sortPTab = 0; /* Pseudotable used to decode sorting results */ 4847 int sortOut = 0; /* Output register from the sorter */ 4848 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ 4849 4850 /* Remove any and all aliases between the result set and the 4851 ** GROUP BY clause. 4852 */ 4853 if( pGroupBy ){ 4854 int k; /* Loop counter */ 4855 struct ExprList_item *pItem; /* For looping over expression in a list */ 4856 4857 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ 4858 pItem->u.x.iAlias = 0; 4859 } 4860 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ 4861 pItem->u.x.iAlias = 0; 4862 } 4863 if( p->nSelectRow>100 ) p->nSelectRow = 100; 4864 }else{ 4865 p->nSelectRow = 1; 4866 } 4867 4868 4869 /* If there is both a GROUP BY and an ORDER BY clause and they are 4870 ** identical, then it may be possible to disable the ORDER BY clause 4871 ** on the grounds that the GROUP BY will cause elements to come out 4872 ** in the correct order. It also may not - the GROUP BY may use a 4873 ** database index that causes rows to be grouped together as required 4874 ** but not actually sorted. Either way, record the fact that the 4875 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp 4876 ** variable. */ 4877 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ 4878 orderByGrp = 1; 4879 } 4880 4881 /* Create a label to jump to when we want to abort the query */ 4882 addrEnd = sqlite3VdbeMakeLabel(v); 4883 4884 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in 4885 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the 4886 ** SELECT statement. 4887 */ 4888 memset(&sNC, 0, sizeof(sNC)); 4889 sNC.pParse = pParse; 4890 sNC.pSrcList = pTabList; 4891 sNC.pAggInfo = &sAggInfo; 4892 sAggInfo.mnReg = pParse->nMem+1; 4893 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; 4894 sAggInfo.pGroupBy = pGroupBy; 4895 sqlite3ExprAnalyzeAggList(&sNC, pEList); 4896 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); 4897 if( pHaving ){ 4898 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); 4899 } 4900 sAggInfo.nAccumulator = sAggInfo.nColumn; 4901 for(i=0; i<sAggInfo.nFunc; i++){ 4902 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); 4903 sNC.ncFlags |= NC_InAggFunc; 4904 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); 4905 sNC.ncFlags &= ~NC_InAggFunc; 4906 } 4907 sAggInfo.mxReg = pParse->nMem; 4908 if( db->mallocFailed ) goto select_end; 4909 4910 /* Processing for aggregates with GROUP BY is very different and 4911 ** much more complex than aggregates without a GROUP BY. 4912 */ 4913 if( pGroupBy ){ 4914 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ 4915 int j1; /* A-vs-B comparision jump */ 4916 int addrOutputRow; /* Start of subroutine that outputs a result row */ 4917 int regOutputRow; /* Return address register for output subroutine */ 4918 int addrSetAbort; /* Set the abort flag and return */ 4919 int addrTopOfLoop; /* Top of the input loop */ 4920 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ 4921 int addrReset; /* Subroutine for resetting the accumulator */ 4922 int regReset; /* Return address register for reset subroutine */ 4923 4924 /* If there is a GROUP BY clause we might need a sorting index to 4925 ** implement it. Allocate that sorting index now. If it turns out 4926 ** that we do not need it after all, the OP_SorterOpen instruction 4927 ** will be converted into a Noop. 4928 */ 4929 sAggInfo.sortingIdx = pParse->nTab++; 4930 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0); 4931 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 4932 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 4933 0, (char*)pKeyInfo, P4_KEYINFO); 4934 4935 /* Initialize memory locations used by GROUP BY aggregate processing 4936 */ 4937 iUseFlag = ++pParse->nMem; 4938 iAbortFlag = ++pParse->nMem; 4939 regOutputRow = ++pParse->nMem; 4940 addrOutputRow = sqlite3VdbeMakeLabel(v); 4941 regReset = ++pParse->nMem; 4942 addrReset = sqlite3VdbeMakeLabel(v); 4943 iAMem = pParse->nMem + 1; 4944 pParse->nMem += pGroupBy->nExpr; 4945 iBMem = pParse->nMem + 1; 4946 pParse->nMem += pGroupBy->nExpr; 4947 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); 4948 VdbeComment((v, "clear abort flag")); 4949 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); 4950 VdbeComment((v, "indicate accumulator empty")); 4951 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); 4952 4953 /* Begin a loop that will extract all source rows in GROUP BY order. 4954 ** This might involve two separate loops with an OP_Sort in between, or 4955 ** it might be a single loop that uses an index to extract information 4956 ** in the right order to begin with. 4957 */ 4958 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 4959 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 4960 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 4961 ); 4962 if( pWInfo==0 ) goto select_end; 4963 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ 4964 /* The optimizer is able to deliver rows in group by order so 4965 ** we do not have to sort. The OP_OpenEphemeral table will be 4966 ** cancelled later because we still need to use the pKeyInfo 4967 */ 4968 groupBySort = 0; 4969 }else{ 4970 /* Rows are coming out in undetermined order. We have to push 4971 ** each row into a sorting index, terminate the first loop, 4972 ** then loop over the sorting index in order to get the output 4973 ** in sorted order 4974 */ 4975 int regBase; 4976 int regRecord; 4977 int nCol; 4978 int nGroupBy; 4979 4980 explainTempTable(pParse, 4981 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? 4982 "DISTINCT" : "GROUP BY"); 4983 4984 groupBySort = 1; 4985 nGroupBy = pGroupBy->nExpr; 4986 nCol = nGroupBy + 1; 4987 j = nGroupBy+1; 4988 for(i=0; i<sAggInfo.nColumn; i++){ 4989 if( sAggInfo.aCol[i].iSorterColumn>=j ){ 4990 nCol++; 4991 j++; 4992 } 4993 } 4994 regBase = sqlite3GetTempRange(pParse, nCol); 4995 sqlite3ExprCacheClear(pParse); 4996 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); 4997 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); 4998 j = nGroupBy+1; 4999 for(i=0; i<sAggInfo.nColumn; i++){ 5000 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; 5001 if( pCol->iSorterColumn>=j ){ 5002 int r1 = j + regBase; 5003 int r2; 5004 5005 r2 = sqlite3ExprCodeGetColumn(pParse, 5006 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); 5007 if( r1!=r2 ){ 5008 sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); 5009 } 5010 j++; 5011 } 5012 } 5013 regRecord = sqlite3GetTempReg(pParse); 5014 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); 5015 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); 5016 sqlite3ReleaseTempReg(pParse, regRecord); 5017 sqlite3ReleaseTempRange(pParse, regBase, nCol); 5018 sqlite3WhereEnd(pWInfo); 5019 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; 5020 sortOut = sqlite3GetTempReg(pParse); 5021 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); 5022 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); 5023 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); 5024 sAggInfo.useSortingIdx = 1; 5025 sqlite3ExprCacheClear(pParse); 5026 5027 } 5028 5029 /* If the index or temporary table used by the GROUP BY sort 5030 ** will naturally deliver rows in the order required by the ORDER BY 5031 ** clause, cancel the ephemeral table open coded earlier. 5032 ** 5033 ** This is an optimization - the correct answer should result regardless. 5034 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to 5035 ** disable this optimization for testing purposes. */ 5036 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) 5037 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) 5038 ){ 5039 sSort.pOrderBy = 0; 5040 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); 5041 } 5042 5043 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... 5044 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) 5045 ** Then compare the current GROUP BY terms against the GROUP BY terms 5046 ** from the previous row currently stored in a0, a1, a2... 5047 */ 5048 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); 5049 sqlite3ExprCacheClear(pParse); 5050 if( groupBySort ){ 5051 sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut); 5052 } 5053 for(j=0; j<pGroupBy->nExpr; j++){ 5054 if( groupBySort ){ 5055 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); 5056 if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE); 5057 }else{ 5058 sAggInfo.directMode = 1; 5059 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); 5060 } 5061 } 5062 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, 5063 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); 5064 j1 = sqlite3VdbeCurrentAddr(v); 5065 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v); 5066 5067 /* Generate code that runs whenever the GROUP BY changes. 5068 ** Changes in the GROUP BY are detected by the previous code 5069 ** block. If there were no changes, this block is skipped. 5070 ** 5071 ** This code copies current group by terms in b0,b1,b2,... 5072 ** over to a0,a1,a2. It then calls the output subroutine 5073 ** and resets the aggregate accumulator registers in preparation 5074 ** for the next GROUP BY batch. 5075 */ 5076 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); 5077 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5078 VdbeComment((v, "output one row")); 5079 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); 5080 VdbeComment((v, "check abort flag")); 5081 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); 5082 VdbeComment((v, "reset accumulator")); 5083 5084 /* Update the aggregate accumulators based on the content of 5085 ** the current row 5086 */ 5087 sqlite3VdbeJumpHere(v, j1); 5088 updateAccumulator(pParse, &sAggInfo); 5089 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); 5090 VdbeComment((v, "indicate data in accumulator")); 5091 5092 /* End of the loop 5093 */ 5094 if( groupBySort ){ 5095 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); 5096 VdbeCoverage(v); 5097 }else{ 5098 sqlite3WhereEnd(pWInfo); 5099 sqlite3VdbeChangeToNoop(v, addrSortingIdx); 5100 } 5101 5102 /* Output the final row of result 5103 */ 5104 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); 5105 VdbeComment((v, "output final row")); 5106 5107 /* Jump over the subroutines 5108 */ 5109 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); 5110 5111 /* Generate a subroutine that outputs a single row of the result 5112 ** set. This subroutine first looks at the iUseFlag. If iUseFlag 5113 ** is less than or equal to zero, the subroutine is a no-op. If 5114 ** the processing calls for the query to abort, this subroutine 5115 ** increments the iAbortFlag memory location before returning in 5116 ** order to signal the caller to abort. 5117 */ 5118 addrSetAbort = sqlite3VdbeCurrentAddr(v); 5119 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); 5120 VdbeComment((v, "set abort flag")); 5121 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5122 sqlite3VdbeResolveLabel(v, addrOutputRow); 5123 addrOutputRow = sqlite3VdbeCurrentAddr(v); 5124 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v); 5125 VdbeComment((v, "Groupby result generator entry point")); 5126 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5127 finalizeAggFunctions(pParse, &sAggInfo); 5128 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); 5129 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, 5130 &sDistinct, pDest, 5131 addrOutputRow+1, addrSetAbort); 5132 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); 5133 VdbeComment((v, "end groupby result generator")); 5134 5135 /* Generate a subroutine that will reset the group-by accumulator 5136 */ 5137 sqlite3VdbeResolveLabel(v, addrReset); 5138 resetAccumulator(pParse, &sAggInfo); 5139 sqlite3VdbeAddOp1(v, OP_Return, regReset); 5140 5141 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ 5142 else { 5143 ExprList *pDel = 0; 5144 #ifndef SQLITE_OMIT_BTREECOUNT 5145 Table *pTab; 5146 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ 5147 /* If isSimpleCount() returns a pointer to a Table structure, then 5148 ** the SQL statement is of the form: 5149 ** 5150 ** SELECT count(*) FROM <tbl> 5151 ** 5152 ** where the Table structure returned represents table <tbl>. 5153 ** 5154 ** This statement is so common that it is optimized specially. The 5155 ** OP_Count instruction is executed either on the intkey table that 5156 ** contains the data for table <tbl> or on one of its indexes. It 5157 ** is better to execute the op on an index, as indexes are almost 5158 ** always spread across less pages than their corresponding tables. 5159 */ 5160 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 5161 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ 5162 Index *pIdx; /* Iterator variable */ 5163 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ 5164 Index *pBest = 0; /* Best index found so far */ 5165 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ 5166 5167 sqlite3CodeVerifySchema(pParse, iDb); 5168 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5169 5170 /* Search for the index that has the lowest scan cost. 5171 ** 5172 ** (2011-04-15) Do not do a full scan of an unordered index. 5173 ** 5174 ** (2013-10-03) Do not count the entries in a partial index. 5175 ** 5176 ** In practice the KeyInfo structure will not be used. It is only 5177 ** passed to keep OP_OpenRead happy. 5178 */ 5179 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); 5180 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5181 if( pIdx->bUnordered==0 5182 && pIdx->szIdxRow<pTab->szTabRow 5183 && pIdx->pPartIdxWhere==0 5184 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) 5185 ){ 5186 pBest = pIdx; 5187 } 5188 } 5189 if( pBest ){ 5190 iRoot = pBest->tnum; 5191 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); 5192 } 5193 5194 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ 5195 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); 5196 if( pKeyInfo ){ 5197 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); 5198 } 5199 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); 5200 sqlite3VdbeAddOp1(v, OP_Close, iCsr); 5201 explainSimpleCount(pParse, pTab, pBest); 5202 }else 5203 #endif /* SQLITE_OMIT_BTREECOUNT */ 5204 { 5205 /* Check if the query is of one of the following forms: 5206 ** 5207 ** SELECT min(x) FROM ... 5208 ** SELECT max(x) FROM ... 5209 ** 5210 ** If it is, then ask the code in where.c to attempt to sort results 5211 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 5212 ** If where.c is able to produce results sorted in this order, then 5213 ** add vdbe code to break out of the processing loop after the 5214 ** first iteration (since the first iteration of the loop is 5215 ** guaranteed to operate on the row with the minimum or maximum 5216 ** value of x, the only row required). 5217 ** 5218 ** A special flag must be passed to sqlite3WhereBegin() to slightly 5219 ** modify behavior as follows: 5220 ** 5221 ** + If the query is a "SELECT min(x)", then the loop coded by 5222 ** where.c should not iterate over any values with a NULL value 5223 ** for x. 5224 ** 5225 ** + The optimizer code in where.c (the thing that decides which 5226 ** index or indices to use) should place a different priority on 5227 ** satisfying the 'ORDER BY' clause than it does in other cases. 5228 ** Refer to code and comments in where.c for details. 5229 */ 5230 ExprList *pMinMax = 0; 5231 u8 flag = WHERE_ORDERBY_NORMAL; 5232 5233 assert( p->pGroupBy==0 ); 5234 assert( flag==0 ); 5235 if( p->pHaving==0 ){ 5236 flag = minMaxQuery(&sAggInfo, &pMinMax); 5237 } 5238 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); 5239 5240 if( flag ){ 5241 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); 5242 pDel = pMinMax; 5243 if( pMinMax && !db->mallocFailed ){ 5244 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; 5245 pMinMax->a[0].pExpr->op = TK_COLUMN; 5246 } 5247 } 5248 5249 /* This case runs if the aggregate has no GROUP BY clause. The 5250 ** processing is much simpler since there is only a single row 5251 ** of output. 5252 */ 5253 resetAccumulator(pParse, &sAggInfo); 5254 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); 5255 if( pWInfo==0 ){ 5256 sqlite3ExprListDelete(db, pDel); 5257 goto select_end; 5258 } 5259 updateAccumulator(pParse, &sAggInfo); 5260 assert( pMinMax==0 || pMinMax->nExpr==1 ); 5261 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ 5262 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo)); 5263 VdbeComment((v, "%s() by index", 5264 (flag==WHERE_ORDERBY_MIN?"min":"max"))); 5265 } 5266 sqlite3WhereEnd(pWInfo); 5267 finalizeAggFunctions(pParse, &sAggInfo); 5268 } 5269 5270 sSort.pOrderBy = 0; 5271 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); 5272 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, 5273 pDest, addrEnd, addrEnd); 5274 sqlite3ExprListDelete(db, pDel); 5275 } 5276 sqlite3VdbeResolveLabel(v, addrEnd); 5277 5278 } /* endif aggregate query */ 5279 5280 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ 5281 explainTempTable(pParse, "DISTINCT"); 5282 } 5283 5284 /* If there is an ORDER BY clause, then we need to sort the results 5285 ** and send them to the callback one by one. 5286 */ 5287 if( sSort.pOrderBy ){ 5288 explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); 5289 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); 5290 } 5291 5292 /* Jump here to skip this query 5293 */ 5294 sqlite3VdbeResolveLabel(v, iEnd); 5295 5296 /* The SELECT was successfully coded. Set the return code to 0 5297 ** to indicate no errors. 5298 */ 5299 rc = 0; 5300 5301 /* Control jumps to here if an error is encountered above, or upon 5302 ** successful coding of the SELECT. 5303 */ 5304 select_end: 5305 explainSetInteger(pParse->iSelectId, iRestoreSelectId); 5306 5307 /* Identify column names if results of the SELECT are to be output. 5308 */ 5309 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ 5310 generateColumnNames(pParse, pTabList, pEList); 5311 } 5312 5313 sqlite3DbFree(db, sAggInfo.aCol); 5314 sqlite3DbFree(db, sAggInfo.aFunc); 5315 return rc; 5316 } 5317 5318 #if defined(SQLITE_ENABLE_TREE_EXPLAIN) 5319 /* 5320 ** Generate a human-readable description of a the Select object. 5321 */ 5322 static void explainOneSelect(Vdbe *pVdbe, Select *p){ 5323 sqlite3ExplainPrintf(pVdbe, "SELECT "); 5324 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ 5325 if( p->selFlags & SF_Distinct ){ 5326 sqlite3ExplainPrintf(pVdbe, "DISTINCT "); 5327 } 5328 if( p->selFlags & SF_Aggregate ){ 5329 sqlite3ExplainPrintf(pVdbe, "agg_flag "); 5330 } 5331 sqlite3ExplainNL(pVdbe); 5332 sqlite3ExplainPrintf(pVdbe, " "); 5333 } 5334 sqlite3ExplainExprList(pVdbe, p->pEList); 5335 sqlite3ExplainNL(pVdbe); 5336 if( p->pSrc && p->pSrc->nSrc ){ 5337 int i; 5338 sqlite3ExplainPrintf(pVdbe, "FROM "); 5339 sqlite3ExplainPush(pVdbe); 5340 for(i=0; i<p->pSrc->nSrc; i++){ 5341 struct SrcList_item *pItem = &p->pSrc->a[i]; 5342 sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor); 5343 if( pItem->pSelect ){ 5344 sqlite3ExplainSelect(pVdbe, pItem->pSelect); 5345 if( pItem->pTab ){ 5346 sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName); 5347 } 5348 }else if( pItem->zName ){ 5349 sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName); 5350 } 5351 if( pItem->zAlias ){ 5352 sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias); 5353 } 5354 if( pItem->jointype & JT_LEFT ){ 5355 sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN"); 5356 } 5357 sqlite3ExplainNL(pVdbe); 5358 } 5359 sqlite3ExplainPop(pVdbe); 5360 } 5361 if( p->pWhere ){ 5362 sqlite3ExplainPrintf(pVdbe, "WHERE "); 5363 sqlite3ExplainExpr(pVdbe, p->pWhere); 5364 sqlite3ExplainNL(pVdbe); 5365 } 5366 if( p->pGroupBy ){ 5367 sqlite3ExplainPrintf(pVdbe, "GROUPBY "); 5368 sqlite3ExplainExprList(pVdbe, p->pGroupBy); 5369 sqlite3ExplainNL(pVdbe); 5370 } 5371 if( p->pHaving ){ 5372 sqlite3ExplainPrintf(pVdbe, "HAVING "); 5373 sqlite3ExplainExpr(pVdbe, p->pHaving); 5374 sqlite3ExplainNL(pVdbe); 5375 } 5376 if( p->pOrderBy ){ 5377 sqlite3ExplainPrintf(pVdbe, "ORDERBY "); 5378 sqlite3ExplainExprList(pVdbe, p->pOrderBy); 5379 sqlite3ExplainNL(pVdbe); 5380 } 5381 if( p->pLimit ){ 5382 sqlite3ExplainPrintf(pVdbe, "LIMIT "); 5383 sqlite3ExplainExpr(pVdbe, p->pLimit); 5384 sqlite3ExplainNL(pVdbe); 5385 } 5386 if( p->pOffset ){ 5387 sqlite3ExplainPrintf(pVdbe, "OFFSET "); 5388 sqlite3ExplainExpr(pVdbe, p->pOffset); 5389 sqlite3ExplainNL(pVdbe); 5390 } 5391 } 5392 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){ 5393 if( p==0 ){ 5394 sqlite3ExplainPrintf(pVdbe, "(null-select)"); 5395 return; 5396 } 5397 sqlite3ExplainPush(pVdbe); 5398 while( p ){ 5399 explainOneSelect(pVdbe, p); 5400 p = p->pNext; 5401 if( p==0 ) break; 5402 sqlite3ExplainNL(pVdbe); 5403 sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op)); 5404 } 5405 sqlite3ExplainPrintf(pVdbe, "END"); 5406 sqlite3ExplainPop(pVdbe); 5407 } 5408 5409 /* End of the structure debug printing code 5410 *****************************************************************************/ 5411 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */ 5412