xref: /sqlite-3.40.0/src/select.c (revision 6117272e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
14 */
15 #include "sqliteInt.h"
16 
17 /*
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
21 */
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24   u8 isTnct;      /* True if the DISTINCT keyword is present */
25   u8 eTnctType;   /* One of the WHERE_DISTINCT_* operators */
26   int tabTnct;    /* Ephemeral table used for DISTINCT processing */
27   int addrTnct;   /* Address of OP_OpenEphemeral opcode for tabTnct */
28 };
29 
30 /*
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
33 */
34 typedef struct SortCtx SortCtx;
35 struct SortCtx {
36   ExprList *pOrderBy;   /* The ORDER BY (or GROUP BY clause) */
37   int nOBSat;           /* Number of ORDER BY terms satisfied by indices */
38   int iECursor;         /* Cursor number for the sorter */
39   int regReturn;        /* Register holding block-output return address */
40   int labelBkOut;       /* Start label for the block-output subroutine */
41   int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
42   u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
43 };
44 #define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */
45 
46 /*
47 ** Delete all the content of a Select structure but do not deallocate
48 ** the select structure itself.
49 */
50 static void clearSelect(sqlite3 *db, Select *p){
51   sqlite3ExprListDelete(db, p->pEList);
52   sqlite3SrcListDelete(db, p->pSrc);
53   sqlite3ExprDelete(db, p->pWhere);
54   sqlite3ExprListDelete(db, p->pGroupBy);
55   sqlite3ExprDelete(db, p->pHaving);
56   sqlite3ExprListDelete(db, p->pOrderBy);
57   sqlite3SelectDelete(db, p->pPrior);
58   sqlite3ExprDelete(db, p->pLimit);
59   sqlite3ExprDelete(db, p->pOffset);
60   sqlite3WithDelete(db, p->pWith);
61 }
62 
63 /*
64 ** Initialize a SelectDest structure.
65 */
66 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
67   pDest->eDest = (u8)eDest;
68   pDest->iSDParm = iParm;
69   pDest->affSdst = 0;
70   pDest->iSdst = 0;
71   pDest->nSdst = 0;
72 }
73 
74 
75 /*
76 ** Allocate a new Select structure and return a pointer to that
77 ** structure.
78 */
79 Select *sqlite3SelectNew(
80   Parse *pParse,        /* Parsing context */
81   ExprList *pEList,     /* which columns to include in the result */
82   SrcList *pSrc,        /* the FROM clause -- which tables to scan */
83   Expr *pWhere,         /* the WHERE clause */
84   ExprList *pGroupBy,   /* the GROUP BY clause */
85   Expr *pHaving,        /* the HAVING clause */
86   ExprList *pOrderBy,   /* the ORDER BY clause */
87   u16 selFlags,         /* Flag parameters, such as SF_Distinct */
88   Expr *pLimit,         /* LIMIT value.  NULL means not used */
89   Expr *pOffset         /* OFFSET value.  NULL means no offset */
90 ){
91   Select *pNew;
92   Select standin;
93   sqlite3 *db = pParse->db;
94   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
95   assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
96   if( pNew==0 ){
97     assert( db->mallocFailed );
98     pNew = &standin;
99     memset(pNew, 0, sizeof(*pNew));
100   }
101   if( pEList==0 ){
102     pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
103   }
104   pNew->pEList = pEList;
105   if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
106   pNew->pSrc = pSrc;
107   pNew->pWhere = pWhere;
108   pNew->pGroupBy = pGroupBy;
109   pNew->pHaving = pHaving;
110   pNew->pOrderBy = pOrderBy;
111   pNew->selFlags = selFlags;
112   pNew->op = TK_SELECT;
113   pNew->pLimit = pLimit;
114   pNew->pOffset = pOffset;
115   assert( pOffset==0 || pLimit!=0 );
116   pNew->addrOpenEphm[0] = -1;
117   pNew->addrOpenEphm[1] = -1;
118   if( db->mallocFailed ) {
119     clearSelect(db, pNew);
120     if( pNew!=&standin ) sqlite3DbFree(db, pNew);
121     pNew = 0;
122   }else{
123     assert( pNew->pSrc!=0 || pParse->nErr>0 );
124   }
125   assert( pNew!=&standin );
126   return pNew;
127 }
128 
129 /*
130 ** Delete the given Select structure and all of its substructures.
131 */
132 void sqlite3SelectDelete(sqlite3 *db, Select *p){
133   if( p ){
134     clearSelect(db, p);
135     sqlite3DbFree(db, p);
136   }
137 }
138 
139 /*
140 ** Return a pointer to the right-most SELECT statement in a compound.
141 */
142 static Select *findRightmost(Select *p){
143   while( p->pNext ) p = p->pNext;
144   return p;
145 }
146 
147 /*
148 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
149 ** type of join.  Return an integer constant that expresses that type
150 ** in terms of the following bit values:
151 **
152 **     JT_INNER
153 **     JT_CROSS
154 **     JT_OUTER
155 **     JT_NATURAL
156 **     JT_LEFT
157 **     JT_RIGHT
158 **
159 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
160 **
161 ** If an illegal or unsupported join type is seen, then still return
162 ** a join type, but put an error in the pParse structure.
163 */
164 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
165   int jointype = 0;
166   Token *apAll[3];
167   Token *p;
168                              /*   0123456789 123456789 123456789 123 */
169   static const char zKeyText[] = "naturaleftouterightfullinnercross";
170   static const struct {
171     u8 i;        /* Beginning of keyword text in zKeyText[] */
172     u8 nChar;    /* Length of the keyword in characters */
173     u8 code;     /* Join type mask */
174   } aKeyword[] = {
175     /* natural */ { 0,  7, JT_NATURAL                },
176     /* left    */ { 6,  4, JT_LEFT|JT_OUTER          },
177     /* outer   */ { 10, 5, JT_OUTER                  },
178     /* right   */ { 14, 5, JT_RIGHT|JT_OUTER         },
179     /* full    */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
180     /* inner   */ { 23, 5, JT_INNER                  },
181     /* cross   */ { 28, 5, JT_INNER|JT_CROSS         },
182   };
183   int i, j;
184   apAll[0] = pA;
185   apAll[1] = pB;
186   apAll[2] = pC;
187   for(i=0; i<3 && apAll[i]; i++){
188     p = apAll[i];
189     for(j=0; j<ArraySize(aKeyword); j++){
190       if( p->n==aKeyword[j].nChar
191           && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
192         jointype |= aKeyword[j].code;
193         break;
194       }
195     }
196     testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
197     if( j>=ArraySize(aKeyword) ){
198       jointype |= JT_ERROR;
199       break;
200     }
201   }
202   if(
203      (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
204      (jointype & JT_ERROR)!=0
205   ){
206     const char *zSp = " ";
207     assert( pB!=0 );
208     if( pC==0 ){ zSp++; }
209     sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
210        "%T %T%s%T", pA, pB, zSp, pC);
211     jointype = JT_INNER;
212   }else if( (jointype & JT_OUTER)!=0
213          && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
214     sqlite3ErrorMsg(pParse,
215       "RIGHT and FULL OUTER JOINs are not currently supported");
216     jointype = JT_INNER;
217   }
218   return jointype;
219 }
220 
221 /*
222 ** Return the index of a column in a table.  Return -1 if the column
223 ** is not contained in the table.
224 */
225 static int columnIndex(Table *pTab, const char *zCol){
226   int i;
227   for(i=0; i<pTab->nCol; i++){
228     if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
229   }
230   return -1;
231 }
232 
233 /*
234 ** Search the first N tables in pSrc, from left to right, looking for a
235 ** table that has a column named zCol.
236 **
237 ** When found, set *piTab and *piCol to the table index and column index
238 ** of the matching column and return TRUE.
239 **
240 ** If not found, return FALSE.
241 */
242 static int tableAndColumnIndex(
243   SrcList *pSrc,       /* Array of tables to search */
244   int N,               /* Number of tables in pSrc->a[] to search */
245   const char *zCol,    /* Name of the column we are looking for */
246   int *piTab,          /* Write index of pSrc->a[] here */
247   int *piCol           /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
248 ){
249   int i;               /* For looping over tables in pSrc */
250   int iCol;            /* Index of column matching zCol */
251 
252   assert( (piTab==0)==(piCol==0) );  /* Both or neither are NULL */
253   for(i=0; i<N; i++){
254     iCol = columnIndex(pSrc->a[i].pTab, zCol);
255     if( iCol>=0 ){
256       if( piTab ){
257         *piTab = i;
258         *piCol = iCol;
259       }
260       return 1;
261     }
262   }
263   return 0;
264 }
265 
266 /*
267 ** This function is used to add terms implied by JOIN syntax to the
268 ** WHERE clause expression of a SELECT statement. The new term, which
269 ** is ANDed with the existing WHERE clause, is of the form:
270 **
271 **    (tab1.col1 = tab2.col2)
272 **
273 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
274 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
275 ** column iColRight of tab2.
276 */
277 static void addWhereTerm(
278   Parse *pParse,                  /* Parsing context */
279   SrcList *pSrc,                  /* List of tables in FROM clause */
280   int iLeft,                      /* Index of first table to join in pSrc */
281   int iColLeft,                   /* Index of column in first table */
282   int iRight,                     /* Index of second table in pSrc */
283   int iColRight,                  /* Index of column in second table */
284   int isOuterJoin,                /* True if this is an OUTER join */
285   Expr **ppWhere                  /* IN/OUT: The WHERE clause to add to */
286 ){
287   sqlite3 *db = pParse->db;
288   Expr *pE1;
289   Expr *pE2;
290   Expr *pEq;
291 
292   assert( iLeft<iRight );
293   assert( pSrc->nSrc>iRight );
294   assert( pSrc->a[iLeft].pTab );
295   assert( pSrc->a[iRight].pTab );
296 
297   pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
298   pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
299 
300   pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0);
301   if( pEq && isOuterJoin ){
302     ExprSetProperty(pEq, EP_FromJoin);
303     assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
304     ExprSetVVAProperty(pEq, EP_NoReduce);
305     pEq->iRightJoinTable = (i16)pE2->iTable;
306   }
307   *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq);
308 }
309 
310 /*
311 ** Set the EP_FromJoin property on all terms of the given expression.
312 ** And set the Expr.iRightJoinTable to iTable for every term in the
313 ** expression.
314 **
315 ** The EP_FromJoin property is used on terms of an expression to tell
316 ** the LEFT OUTER JOIN processing logic that this term is part of the
317 ** join restriction specified in the ON or USING clause and not a part
318 ** of the more general WHERE clause.  These terms are moved over to the
319 ** WHERE clause during join processing but we need to remember that they
320 ** originated in the ON or USING clause.
321 **
322 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
323 ** expression depends on table iRightJoinTable even if that table is not
324 ** explicitly mentioned in the expression.  That information is needed
325 ** for cases like this:
326 **
327 **    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
328 **
329 ** The where clause needs to defer the handling of the t1.x=5
330 ** term until after the t2 loop of the join.  In that way, a
331 ** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
332 ** defer the handling of t1.x=5, it will be processed immediately
333 ** after the t1 loop and rows with t1.x!=5 will never appear in
334 ** the output, which is incorrect.
335 */
336 static void setJoinExpr(Expr *p, int iTable){
337   while( p ){
338     ExprSetProperty(p, EP_FromJoin);
339     assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
340     ExprSetVVAProperty(p, EP_NoReduce);
341     p->iRightJoinTable = (i16)iTable;
342     setJoinExpr(p->pLeft, iTable);
343     p = p->pRight;
344   }
345 }
346 
347 /*
348 ** This routine processes the join information for a SELECT statement.
349 ** ON and USING clauses are converted into extra terms of the WHERE clause.
350 ** NATURAL joins also create extra WHERE clause terms.
351 **
352 ** The terms of a FROM clause are contained in the Select.pSrc structure.
353 ** The left most table is the first entry in Select.pSrc.  The right-most
354 ** table is the last entry.  The join operator is held in the entry to
355 ** the left.  Thus entry 0 contains the join operator for the join between
356 ** entries 0 and 1.  Any ON or USING clauses associated with the join are
357 ** also attached to the left entry.
358 **
359 ** This routine returns the number of errors encountered.
360 */
361 static int sqliteProcessJoin(Parse *pParse, Select *p){
362   SrcList *pSrc;                  /* All tables in the FROM clause */
363   int i, j;                       /* Loop counters */
364   struct SrcList_item *pLeft;     /* Left table being joined */
365   struct SrcList_item *pRight;    /* Right table being joined */
366 
367   pSrc = p->pSrc;
368   pLeft = &pSrc->a[0];
369   pRight = &pLeft[1];
370   for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
371     Table *pLeftTab = pLeft->pTab;
372     Table *pRightTab = pRight->pTab;
373     int isOuter;
374 
375     if( NEVER(pLeftTab==0 || pRightTab==0) ) continue;
376     isOuter = (pRight->jointype & JT_OUTER)!=0;
377 
378     /* When the NATURAL keyword is present, add WHERE clause terms for
379     ** every column that the two tables have in common.
380     */
381     if( pRight->jointype & JT_NATURAL ){
382       if( pRight->pOn || pRight->pUsing ){
383         sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
384            "an ON or USING clause", 0);
385         return 1;
386       }
387       for(j=0; j<pRightTab->nCol; j++){
388         char *zName;   /* Name of column in the right table */
389         int iLeft;     /* Matching left table */
390         int iLeftCol;  /* Matching column in the left table */
391 
392         zName = pRightTab->aCol[j].zName;
393         if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){
394           addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
395                        isOuter, &p->pWhere);
396         }
397       }
398     }
399 
400     /* Disallow both ON and USING clauses in the same join
401     */
402     if( pRight->pOn && pRight->pUsing ){
403       sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
404         "clauses in the same join");
405       return 1;
406     }
407 
408     /* Add the ON clause to the end of the WHERE clause, connected by
409     ** an AND operator.
410     */
411     if( pRight->pOn ){
412       if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
413       p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
414       pRight->pOn = 0;
415     }
416 
417     /* Create extra terms on the WHERE clause for each column named
418     ** in the USING clause.  Example: If the two tables to be joined are
419     ** A and B and the USING clause names X, Y, and Z, then add this
420     ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
421     ** Report an error if any column mentioned in the USING clause is
422     ** not contained in both tables to be joined.
423     */
424     if( pRight->pUsing ){
425       IdList *pList = pRight->pUsing;
426       for(j=0; j<pList->nId; j++){
427         char *zName;     /* Name of the term in the USING clause */
428         int iLeft;       /* Table on the left with matching column name */
429         int iLeftCol;    /* Column number of matching column on the left */
430         int iRightCol;   /* Column number of matching column on the right */
431 
432         zName = pList->a[j].zName;
433         iRightCol = columnIndex(pRightTab, zName);
434         if( iRightCol<0
435          || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol)
436         ){
437           sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
438             "not present in both tables", zName);
439           return 1;
440         }
441         addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
442                      isOuter, &p->pWhere);
443       }
444     }
445   }
446   return 0;
447 }
448 
449 /* Forward reference */
450 static KeyInfo *keyInfoFromExprList(
451   Parse *pParse,       /* Parsing context */
452   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
453   int iStart,          /* Begin with this column of pList */
454   int nExtra           /* Add this many extra columns to the end */
455 );
456 
457 /*
458 ** Insert code into "v" that will push the record in register regData
459 ** into the sorter.
460 */
461 static void pushOntoSorter(
462   Parse *pParse,         /* Parser context */
463   SortCtx *pSort,        /* Information about the ORDER BY clause */
464   Select *pSelect,       /* The whole SELECT statement */
465   int regData            /* Register holding data to be sorted */
466 ){
467   Vdbe *v = pParse->pVdbe;
468   int nExpr = pSort->pOrderBy->nExpr;
469   int regRecord = ++pParse->nMem;
470   int regBase = pParse->nMem+1;
471   int nOBSat = pSort->nOBSat;
472   int op;
473 
474   pParse->nMem += nExpr+2;        /* nExpr+2 registers allocated at regBase */
475   sqlite3ExprCacheClear(pParse);
476   sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, 0);
477   sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
478   sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
479   sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nExpr+2-nOBSat,regRecord);
480   if( nOBSat>0 ){
481     int regPrevKey;   /* The first nOBSat columns of the previous row */
482     int addrFirst;    /* Address of the OP_IfNot opcode */
483     int addrJmp;      /* Address of the OP_Jump opcode */
484     VdbeOp *pOp;      /* Opcode that opens the sorter */
485     int nKey;         /* Number of sorting key columns, including OP_Sequence */
486     KeyInfo *pKI;     /* Original KeyInfo on the sorter table */
487 
488     regPrevKey = pParse->nMem+1;
489     pParse->nMem += pSort->nOBSat;
490     nKey = nExpr - pSort->nOBSat + 1;
491     addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); VdbeCoverage(v);
492     sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
493     pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
494     if( pParse->db->mallocFailed ) return;
495     pOp->p2 = nKey + 1;
496     pKI = pOp->p4.pKeyInfo;
497     memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
498     sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
499     pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);
500     addrJmp = sqlite3VdbeCurrentAddr(v);
501     sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
502     pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
503     pSort->regReturn = ++pParse->nMem;
504     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
505     sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
506     sqlite3VdbeJumpHere(v, addrFirst);
507     sqlite3VdbeAddOp3(v, OP_Move, regBase, regPrevKey, pSort->nOBSat);
508     sqlite3VdbeJumpHere(v, addrJmp);
509   }
510   if( pSort->sortFlags & SORTFLAG_UseSorter ){
511     op = OP_SorterInsert;
512   }else{
513     op = OP_IdxInsert;
514   }
515   sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
516   if( pSelect->iLimit ){
517     int addr1, addr2;
518     int iLimit;
519     if( pSelect->iOffset ){
520       iLimit = pSelect->iOffset+1;
521     }else{
522       iLimit = pSelect->iLimit;
523     }
524     addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
525     sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
526     addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
527     sqlite3VdbeJumpHere(v, addr1);
528     sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
529     sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
530     sqlite3VdbeJumpHere(v, addr2);
531   }
532 }
533 
534 /*
535 ** Add code to implement the OFFSET
536 */
537 static void codeOffset(
538   Vdbe *v,          /* Generate code into this VM */
539   int iOffset,      /* Register holding the offset counter */
540   int iContinue     /* Jump here to skip the current record */
541 ){
542   if( iOffset>0 ){
543     int addr;
544     sqlite3VdbeAddOp2(v, OP_AddImm, iOffset, -1);
545     addr = sqlite3VdbeAddOp1(v, OP_IfNeg, iOffset); VdbeCoverage(v);
546     sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
547     VdbeComment((v, "skip OFFSET records"));
548     sqlite3VdbeJumpHere(v, addr);
549   }
550 }
551 
552 /*
553 ** Add code that will check to make sure the N registers starting at iMem
554 ** form a distinct entry.  iTab is a sorting index that holds previously
555 ** seen combinations of the N values.  A new entry is made in iTab
556 ** if the current N values are new.
557 **
558 ** A jump to addrRepeat is made and the N+1 values are popped from the
559 ** stack if the top N elements are not distinct.
560 */
561 static void codeDistinct(
562   Parse *pParse,     /* Parsing and code generating context */
563   int iTab,          /* A sorting index used to test for distinctness */
564   int addrRepeat,    /* Jump to here if not distinct */
565   int N,             /* Number of elements */
566   int iMem           /* First element */
567 ){
568   Vdbe *v;
569   int r1;
570 
571   v = pParse->pVdbe;
572   r1 = sqlite3GetTempReg(pParse);
573   sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
574   sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
575   sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
576   sqlite3ReleaseTempReg(pParse, r1);
577 }
578 
579 #ifndef SQLITE_OMIT_SUBQUERY
580 /*
581 ** Generate an error message when a SELECT is used within a subexpression
582 ** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
583 ** column.  We do this in a subroutine because the error used to occur
584 ** in multiple places.  (The error only occurs in one place now, but we
585 ** retain the subroutine to minimize code disruption.)
586 */
587 static int checkForMultiColumnSelectError(
588   Parse *pParse,       /* Parse context. */
589   SelectDest *pDest,   /* Destination of SELECT results */
590   int nExpr            /* Number of result columns returned by SELECT */
591 ){
592   int eDest = pDest->eDest;
593   if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
594     sqlite3ErrorMsg(pParse, "only a single result allowed for "
595        "a SELECT that is part of an expression");
596     return 1;
597   }else{
598     return 0;
599   }
600 }
601 #endif
602 
603 /*
604 ** This routine generates the code for the inside of the inner loop
605 ** of a SELECT.
606 **
607 ** If srcTab is negative, then the pEList expressions
608 ** are evaluated in order to get the data for this row.  If srcTab is
609 ** zero or more, then data is pulled from srcTab and pEList is used only
610 ** to get number columns and the datatype for each column.
611 */
612 static void selectInnerLoop(
613   Parse *pParse,          /* The parser context */
614   Select *p,              /* The complete select statement being coded */
615   ExprList *pEList,       /* List of values being extracted */
616   int srcTab,             /* Pull data from this table */
617   SortCtx *pSort,         /* If not NULL, info on how to process ORDER BY */
618   DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
619   SelectDest *pDest,      /* How to dispose of the results */
620   int iContinue,          /* Jump here to continue with next row */
621   int iBreak              /* Jump here to break out of the inner loop */
622 ){
623   Vdbe *v = pParse->pVdbe;
624   int i;
625   int hasDistinct;        /* True if the DISTINCT keyword is present */
626   int regResult;              /* Start of memory holding result set */
627   int eDest = pDest->eDest;   /* How to dispose of results */
628   int iParm = pDest->iSDParm; /* First argument to disposal method */
629   int nResultCol;             /* Number of result columns */
630 
631   assert( v );
632   assert( pEList!=0 );
633   hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
634   if( pSort && pSort->pOrderBy==0 ) pSort = 0;
635   if( pSort==0 && !hasDistinct ){
636     assert( iContinue!=0 );
637     codeOffset(v, p->iOffset, iContinue);
638   }
639 
640   /* Pull the requested columns.
641   */
642   nResultCol = pEList->nExpr;
643 
644   if( pDest->iSdst==0 ){
645     pDest->iSdst = pParse->nMem+1;
646     pParse->nMem += nResultCol;
647   }else if( pDest->iSdst+nResultCol > pParse->nMem ){
648     /* This is an error condition that can result, for example, when a SELECT
649     ** on the right-hand side of an INSERT contains more result columns than
650     ** there are columns in the table on the left.  The error will be caught
651     ** and reported later.  But we need to make sure enough memory is allocated
652     ** to avoid other spurious errors in the meantime. */
653     pParse->nMem += nResultCol;
654   }
655   pDest->nSdst = nResultCol;
656   regResult = pDest->iSdst;
657   if( srcTab>=0 ){
658     for(i=0; i<nResultCol; i++){
659       sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
660       VdbeComment((v, "%s", pEList->a[i].zName));
661     }
662   }else if( eDest!=SRT_Exists ){
663     /* If the destination is an EXISTS(...) expression, the actual
664     ** values returned by the SELECT are not required.
665     */
666     sqlite3ExprCodeExprList(pParse, pEList, regResult,
667                   (eDest==SRT_Output||eDest==SRT_Coroutine)?SQLITE_ECEL_DUP:0);
668   }
669 
670   /* If the DISTINCT keyword was present on the SELECT statement
671   ** and this row has been seen before, then do not make this row
672   ** part of the result.
673   */
674   if( hasDistinct ){
675     switch( pDistinct->eTnctType ){
676       case WHERE_DISTINCT_ORDERED: {
677         VdbeOp *pOp;            /* No longer required OpenEphemeral instr. */
678         int iJump;              /* Jump destination */
679         int regPrev;            /* Previous row content */
680 
681         /* Allocate space for the previous row */
682         regPrev = pParse->nMem+1;
683         pParse->nMem += nResultCol;
684 
685         /* Change the OP_OpenEphemeral coded earlier to an OP_Null
686         ** sets the MEM_Cleared bit on the first register of the
687         ** previous value.  This will cause the OP_Ne below to always
688         ** fail on the first iteration of the loop even if the first
689         ** row is all NULLs.
690         */
691         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
692         pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
693         pOp->opcode = OP_Null;
694         pOp->p1 = 1;
695         pOp->p2 = regPrev;
696 
697         iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
698         for(i=0; i<nResultCol; i++){
699           CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
700           if( i<nResultCol-1 ){
701             sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
702             VdbeCoverage(v);
703           }else{
704             sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
705             VdbeCoverage(v);
706            }
707           sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
708           sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
709         }
710         assert( sqlite3VdbeCurrentAddr(v)==iJump );
711         sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
712         break;
713       }
714 
715       case WHERE_DISTINCT_UNIQUE: {
716         sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
717         break;
718       }
719 
720       default: {
721         assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
722         codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, regResult);
723         break;
724       }
725     }
726     if( pSort==0 ){
727       codeOffset(v, p->iOffset, iContinue);
728     }
729   }
730 
731   switch( eDest ){
732     /* In this mode, write each query result to the key of the temporary
733     ** table iParm.
734     */
735 #ifndef SQLITE_OMIT_COMPOUND_SELECT
736     case SRT_Union: {
737       int r1;
738       r1 = sqlite3GetTempReg(pParse);
739       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
740       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
741       sqlite3ReleaseTempReg(pParse, r1);
742       break;
743     }
744 
745     /* Construct a record from the query result, but instead of
746     ** saving that record, use it as a key to delete elements from
747     ** the temporary table iParm.
748     */
749     case SRT_Except: {
750       sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
751       break;
752     }
753 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
754 
755     /* Store the result as data using a unique key.
756     */
757     case SRT_Fifo:
758     case SRT_DistFifo:
759     case SRT_Table:
760     case SRT_EphemTab: {
761       int r1 = sqlite3GetTempReg(pParse);
762       testcase( eDest==SRT_Table );
763       testcase( eDest==SRT_EphemTab );
764       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
765 #ifndef SQLITE_OMIT_CTE
766       if( eDest==SRT_DistFifo ){
767         /* If the destination is DistFifo, then cursor (iParm+1) is open
768         ** on an ephemeral index. If the current row is already present
769         ** in the index, do not write it to the output. If not, add the
770         ** current row to the index and proceed with writing it to the
771         ** output table as well.  */
772         int addr = sqlite3VdbeCurrentAddr(v) + 4;
773         sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); VdbeCoverage(v);
774         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1);
775         assert( pSort==0 );
776       }
777 #endif
778       if( pSort ){
779         pushOntoSorter(pParse, pSort, p, r1);
780       }else{
781         int r2 = sqlite3GetTempReg(pParse);
782         sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
783         sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
784         sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
785         sqlite3ReleaseTempReg(pParse, r2);
786       }
787       sqlite3ReleaseTempReg(pParse, r1);
788       break;
789     }
790 
791 #ifndef SQLITE_OMIT_SUBQUERY
792     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
793     ** then there should be a single item on the stack.  Write this
794     ** item into the set table with bogus data.
795     */
796     case SRT_Set: {
797       assert( nResultCol==1 );
798       pDest->affSdst =
799                   sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
800       if( pSort ){
801         /* At first glance you would think we could optimize out the
802         ** ORDER BY in this case since the order of entries in the set
803         ** does not matter.  But there might be a LIMIT clause, in which
804         ** case the order does matter */
805         pushOntoSorter(pParse, pSort, p, regResult);
806       }else{
807         int r1 = sqlite3GetTempReg(pParse);
808         sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1);
809         sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
810         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
811         sqlite3ReleaseTempReg(pParse, r1);
812       }
813       break;
814     }
815 
816     /* If any row exist in the result set, record that fact and abort.
817     */
818     case SRT_Exists: {
819       sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
820       /* The LIMIT clause will terminate the loop for us */
821       break;
822     }
823 
824     /* If this is a scalar select that is part of an expression, then
825     ** store the results in the appropriate memory cell and break out
826     ** of the scan loop.
827     */
828     case SRT_Mem: {
829       assert( nResultCol==1 );
830       if( pSort ){
831         pushOntoSorter(pParse, pSort, p, regResult);
832       }else{
833         sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
834         /* The LIMIT clause will jump out of the loop for us */
835       }
836       break;
837     }
838 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
839 
840     case SRT_Coroutine:       /* Send data to a co-routine */
841     case SRT_Output: {        /* Return the results */
842       testcase( eDest==SRT_Coroutine );
843       testcase( eDest==SRT_Output );
844       if( pSort ){
845         int r1 = sqlite3GetTempReg(pParse);
846         sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
847         pushOntoSorter(pParse, pSort, p, r1);
848         sqlite3ReleaseTempReg(pParse, r1);
849       }else if( eDest==SRT_Coroutine ){
850         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
851       }else{
852         sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
853         sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol);
854       }
855       break;
856     }
857 
858 #ifndef SQLITE_OMIT_CTE
859     /* Write the results into a priority queue that is order according to
860     ** pDest->pOrderBy (in pSO).  pDest->iSDParm (in iParm) is the cursor for an
861     ** index with pSO->nExpr+2 columns.  Build a key using pSO for the first
862     ** pSO->nExpr columns, then make sure all keys are unique by adding a
863     ** final OP_Sequence column.  The last column is the record as a blob.
864     */
865     case SRT_DistQueue:
866     case SRT_Queue: {
867       int nKey;
868       int r1, r2, r3;
869       int addrTest = 0;
870       ExprList *pSO;
871       pSO = pDest->pOrderBy;
872       assert( pSO );
873       nKey = pSO->nExpr;
874       r1 = sqlite3GetTempReg(pParse);
875       r2 = sqlite3GetTempRange(pParse, nKey+2);
876       r3 = r2+nKey+1;
877       if( eDest==SRT_DistQueue ){
878         /* If the destination is DistQueue, then cursor (iParm+1) is open
879         ** on a second ephemeral index that holds all values every previously
880         ** added to the queue. */
881         addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
882                                         regResult, nResultCol);
883         VdbeCoverage(v);
884       }
885       sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
886       if( eDest==SRT_DistQueue ){
887         sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
888         sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
889       }
890       for(i=0; i<nKey; i++){
891         sqlite3VdbeAddOp2(v, OP_SCopy,
892                           regResult + pSO->a[i].u.x.iOrderByCol - 1,
893                           r2+i);
894       }
895       sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
896       sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
897       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
898       if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
899       sqlite3ReleaseTempReg(pParse, r1);
900       sqlite3ReleaseTempRange(pParse, r2, nKey+2);
901       break;
902     }
903 #endif /* SQLITE_OMIT_CTE */
904 
905 
906 
907 #if !defined(SQLITE_OMIT_TRIGGER)
908     /* Discard the results.  This is used for SELECT statements inside
909     ** the body of a TRIGGER.  The purpose of such selects is to call
910     ** user-defined functions that have side effects.  We do not care
911     ** about the actual results of the select.
912     */
913     default: {
914       assert( eDest==SRT_Discard );
915       break;
916     }
917 #endif
918   }
919 
920   /* Jump to the end of the loop if the LIMIT is reached.  Except, if
921   ** there is a sorter, in which case the sorter has already limited
922   ** the output for us.
923   */
924   if( pSort==0 && p->iLimit ){
925     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
926   }
927 }
928 
929 /*
930 ** Allocate a KeyInfo object sufficient for an index of N key columns and
931 ** X extra columns.
932 */
933 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
934   KeyInfo *p = sqlite3DbMallocZero(0,
935                    sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1));
936   if( p ){
937     p->aSortOrder = (u8*)&p->aColl[N+X];
938     p->nField = (u16)N;
939     p->nXField = (u16)X;
940     p->enc = ENC(db);
941     p->db = db;
942     p->nRef = 1;
943   }else{
944     db->mallocFailed = 1;
945   }
946   return p;
947 }
948 
949 /*
950 ** Deallocate a KeyInfo object
951 */
952 void sqlite3KeyInfoUnref(KeyInfo *p){
953   if( p ){
954     assert( p->nRef>0 );
955     p->nRef--;
956     if( p->nRef==0 ) sqlite3DbFree(0, p);
957   }
958 }
959 
960 /*
961 ** Make a new pointer to a KeyInfo object
962 */
963 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
964   if( p ){
965     assert( p->nRef>0 );
966     p->nRef++;
967   }
968   return p;
969 }
970 
971 #ifdef SQLITE_DEBUG
972 /*
973 ** Return TRUE if a KeyInfo object can be change.  The KeyInfo object
974 ** can only be changed if this is just a single reference to the object.
975 **
976 ** This routine is used only inside of assert() statements.
977 */
978 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
979 #endif /* SQLITE_DEBUG */
980 
981 /*
982 ** Given an expression list, generate a KeyInfo structure that records
983 ** the collating sequence for each expression in that expression list.
984 **
985 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
986 ** KeyInfo structure is appropriate for initializing a virtual index to
987 ** implement that clause.  If the ExprList is the result set of a SELECT
988 ** then the KeyInfo structure is appropriate for initializing a virtual
989 ** index to implement a DISTINCT test.
990 **
991 ** Space to hold the KeyInfo structure is obtain from malloc.  The calling
992 ** function is responsible for seeing that this structure is eventually
993 ** freed.
994 */
995 static KeyInfo *keyInfoFromExprList(
996   Parse *pParse,       /* Parsing context */
997   ExprList *pList,     /* Form the KeyInfo object from this ExprList */
998   int iStart,          /* Begin with this column of pList */
999   int nExtra           /* Add this many extra columns to the end */
1000 ){
1001   int nExpr;
1002   KeyInfo *pInfo;
1003   struct ExprList_item *pItem;
1004   sqlite3 *db = pParse->db;
1005   int i;
1006 
1007   nExpr = pList->nExpr;
1008   pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
1009   if( pInfo ){
1010     assert( sqlite3KeyInfoIsWriteable(pInfo) );
1011     for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1012       CollSeq *pColl;
1013       pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
1014       if( !pColl ) pColl = db->pDfltColl;
1015       pInfo->aColl[i-iStart] = pColl;
1016       pInfo->aSortOrder[i-iStart] = pItem->sortOrder;
1017     }
1018   }
1019   return pInfo;
1020 }
1021 
1022 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1023 /*
1024 ** Name of the connection operator, used for error messages.
1025 */
1026 static const char *selectOpName(int id){
1027   char *z;
1028   switch( id ){
1029     case TK_ALL:       z = "UNION ALL";   break;
1030     case TK_INTERSECT: z = "INTERSECT";   break;
1031     case TK_EXCEPT:    z = "EXCEPT";      break;
1032     default:           z = "UNION";       break;
1033   }
1034   return z;
1035 }
1036 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1037 
1038 #ifndef SQLITE_OMIT_EXPLAIN
1039 /*
1040 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1041 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1042 ** where the caption is of the form:
1043 **
1044 **   "USE TEMP B-TREE FOR xxx"
1045 **
1046 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1047 ** is determined by the zUsage argument.
1048 */
1049 static void explainTempTable(Parse *pParse, const char *zUsage){
1050   if( pParse->explain==2 ){
1051     Vdbe *v = pParse->pVdbe;
1052     char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage);
1053     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1054   }
1055 }
1056 
1057 /*
1058 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1059 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1060 ** in sqlite3Select() to assign values to structure member variables that
1061 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1062 ** code with #ifndef directives.
1063 */
1064 # define explainSetInteger(a, b) a = b
1065 
1066 #else
1067 /* No-op versions of the explainXXX() functions and macros. */
1068 # define explainTempTable(y,z)
1069 # define explainSetInteger(y,z)
1070 #endif
1071 
1072 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1073 /*
1074 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1075 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1076 ** where the caption is of one of the two forms:
1077 **
1078 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1079 **   "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1080 **
1081 ** where iSub1 and iSub2 are the integers passed as the corresponding
1082 ** function parameters, and op is the text representation of the parameter
1083 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1084 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1085 ** false, or the second form if it is true.
1086 */
1087 static void explainComposite(
1088   Parse *pParse,                  /* Parse context */
1089   int op,                         /* One of TK_UNION, TK_EXCEPT etc. */
1090   int iSub1,                      /* Subquery id 1 */
1091   int iSub2,                      /* Subquery id 2 */
1092   int bUseTmp                     /* True if a temp table was used */
1093 ){
1094   assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL );
1095   if( pParse->explain==2 ){
1096     Vdbe *v = pParse->pVdbe;
1097     char *zMsg = sqlite3MPrintf(
1098         pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2,
1099         bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op)
1100     );
1101     sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1102   }
1103 }
1104 #else
1105 /* No-op versions of the explainXXX() functions and macros. */
1106 # define explainComposite(v,w,x,y,z)
1107 #endif
1108 
1109 /*
1110 ** If the inner loop was generated using a non-null pOrderBy argument,
1111 ** then the results were placed in a sorter.  After the loop is terminated
1112 ** we need to run the sorter and output the results.  The following
1113 ** routine generates the code needed to do that.
1114 */
1115 static void generateSortTail(
1116   Parse *pParse,    /* Parsing context */
1117   Select *p,        /* The SELECT statement */
1118   SortCtx *pSort,   /* Information on the ORDER BY clause */
1119   int nColumn,      /* Number of columns of data */
1120   SelectDest *pDest /* Write the sorted results here */
1121 ){
1122   Vdbe *v = pParse->pVdbe;                     /* The prepared statement */
1123   int addrBreak = sqlite3VdbeMakeLabel(v);     /* Jump here to exit loop */
1124   int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
1125   int addr;
1126   int addrOnce = 0;
1127   int iTab;
1128   int pseudoTab = 0;
1129   ExprList *pOrderBy = pSort->pOrderBy;
1130   int eDest = pDest->eDest;
1131   int iParm = pDest->iSDParm;
1132   int regRow;
1133   int regRowid;
1134   int nKey;
1135 
1136   if( pSort->labelBkOut ){
1137     sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1138     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrBreak);
1139     sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1140     addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1141   }
1142   iTab = pSort->iECursor;
1143   regRow = sqlite3GetTempReg(pParse);
1144   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1145     pseudoTab = pParse->nTab++;
1146     sqlite3VdbeAddOp3(v, OP_OpenPseudo, pseudoTab, regRow, nColumn);
1147     regRowid = 0;
1148   }else{
1149     regRowid = sqlite3GetTempReg(pParse);
1150   }
1151   nKey = pOrderBy->nExpr - pSort->nOBSat;
1152   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1153     int regSortOut = ++pParse->nMem;
1154     int ptab2 = pParse->nTab++;
1155     sqlite3VdbeAddOp3(v, OP_OpenPseudo, ptab2, regSortOut, nKey+2);
1156     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1157     addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1158     VdbeCoverage(v);
1159     codeOffset(v, p->iOffset, addrContinue);
1160     sqlite3VdbeAddOp2(v, OP_SorterData, iTab, regSortOut);
1161     sqlite3VdbeAddOp3(v, OP_Column, ptab2, nKey+1, regRow);
1162     sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1163   }else{
1164     if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1165     addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1166     codeOffset(v, p->iOffset, addrContinue);
1167     sqlite3VdbeAddOp3(v, OP_Column, iTab, nKey+1, regRow);
1168   }
1169   switch( eDest ){
1170     case SRT_Table:
1171     case SRT_EphemTab: {
1172       testcase( eDest==SRT_Table );
1173       testcase( eDest==SRT_EphemTab );
1174       sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1175       sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1176       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1177       break;
1178     }
1179 #ifndef SQLITE_OMIT_SUBQUERY
1180     case SRT_Set: {
1181       assert( nColumn==1 );
1182       sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid,
1183                         &pDest->affSdst, 1);
1184       sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
1185       sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
1186       break;
1187     }
1188     case SRT_Mem: {
1189       assert( nColumn==1 );
1190       sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
1191       /* The LIMIT clause will terminate the loop for us */
1192       break;
1193     }
1194 #endif
1195     default: {
1196       int i;
1197       assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1198       testcase( eDest==SRT_Output );
1199       testcase( eDest==SRT_Coroutine );
1200       for(i=0; i<nColumn; i++){
1201         assert( regRow!=pDest->iSdst+i );
1202         sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
1203         if( i==0 ){
1204           sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
1205         }
1206       }
1207       if( eDest==SRT_Output ){
1208         sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1209         sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
1210       }else{
1211         sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1212       }
1213       break;
1214     }
1215   }
1216   sqlite3ReleaseTempReg(pParse, regRow);
1217   sqlite3ReleaseTempReg(pParse, regRowid);
1218 
1219   /* The bottom of the loop
1220   */
1221   sqlite3VdbeResolveLabel(v, addrContinue);
1222   if( pSort->sortFlags & SORTFLAG_UseSorter ){
1223     sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1224   }else{
1225     sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1226   }
1227   if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1228   sqlite3VdbeResolveLabel(v, addrBreak);
1229   if( eDest==SRT_Output || eDest==SRT_Coroutine ){
1230     sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
1231   }
1232 }
1233 
1234 /*
1235 ** Return a pointer to a string containing the 'declaration type' of the
1236 ** expression pExpr. The string may be treated as static by the caller.
1237 **
1238 ** Also try to estimate the size of the returned value and return that
1239 ** result in *pEstWidth.
1240 **
1241 ** The declaration type is the exact datatype definition extracted from the
1242 ** original CREATE TABLE statement if the expression is a column. The
1243 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1244 ** is considered a column can be complex in the presence of subqueries. The
1245 ** result-set expression in all of the following SELECT statements is
1246 ** considered a column by this function.
1247 **
1248 **   SELECT col FROM tbl;
1249 **   SELECT (SELECT col FROM tbl;
1250 **   SELECT (SELECT col FROM tbl);
1251 **   SELECT abc FROM (SELECT col AS abc FROM tbl);
1252 **
1253 ** The declaration type for any expression other than a column is NULL.
1254 **
1255 ** This routine has either 3 or 6 parameters depending on whether or not
1256 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1257 */
1258 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1259 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1260 static const char *columnTypeImpl(
1261   NameContext *pNC,
1262   Expr *pExpr,
1263   const char **pzOrigDb,
1264   const char **pzOrigTab,
1265   const char **pzOrigCol,
1266   u8 *pEstWidth
1267 ){
1268   char const *zOrigDb = 0;
1269   char const *zOrigTab = 0;
1270   char const *zOrigCol = 0;
1271 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1272 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1273 static const char *columnTypeImpl(
1274   NameContext *pNC,
1275   Expr *pExpr,
1276   u8 *pEstWidth
1277 ){
1278 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1279   char const *zType = 0;
1280   int j;
1281   u8 estWidth = 1;
1282 
1283   if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
1284   switch( pExpr->op ){
1285     case TK_AGG_COLUMN:
1286     case TK_COLUMN: {
1287       /* The expression is a column. Locate the table the column is being
1288       ** extracted from in NameContext.pSrcList. This table may be real
1289       ** database table or a subquery.
1290       */
1291       Table *pTab = 0;            /* Table structure column is extracted from */
1292       Select *pS = 0;             /* Select the column is extracted from */
1293       int iCol = pExpr->iColumn;  /* Index of column in pTab */
1294       testcase( pExpr->op==TK_AGG_COLUMN );
1295       testcase( pExpr->op==TK_COLUMN );
1296       while( pNC && !pTab ){
1297         SrcList *pTabList = pNC->pSrcList;
1298         for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1299         if( j<pTabList->nSrc ){
1300           pTab = pTabList->a[j].pTab;
1301           pS = pTabList->a[j].pSelect;
1302         }else{
1303           pNC = pNC->pNext;
1304         }
1305       }
1306 
1307       if( pTab==0 ){
1308         /* At one time, code such as "SELECT new.x" within a trigger would
1309         ** cause this condition to run.  Since then, we have restructured how
1310         ** trigger code is generated and so this condition is no longer
1311         ** possible. However, it can still be true for statements like
1312         ** the following:
1313         **
1314         **   CREATE TABLE t1(col INTEGER);
1315         **   SELECT (SELECT t1.col) FROM FROM t1;
1316         **
1317         ** when columnType() is called on the expression "t1.col" in the
1318         ** sub-select. In this case, set the column type to NULL, even
1319         ** though it should really be "INTEGER".
1320         **
1321         ** This is not a problem, as the column type of "t1.col" is never
1322         ** used. When columnType() is called on the expression
1323         ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1324         ** branch below.  */
1325         break;
1326       }
1327 
1328       assert( pTab && pExpr->pTab==pTab );
1329       if( pS ){
1330         /* The "table" is actually a sub-select or a view in the FROM clause
1331         ** of the SELECT statement. Return the declaration type and origin
1332         ** data for the result-set column of the sub-select.
1333         */
1334         if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){
1335           /* If iCol is less than zero, then the expression requests the
1336           ** rowid of the sub-select or view. This expression is legal (see
1337           ** test case misc2.2.2) - it always evaluates to NULL.
1338           */
1339           NameContext sNC;
1340           Expr *p = pS->pEList->a[iCol].pExpr;
1341           sNC.pSrcList = pS->pSrc;
1342           sNC.pNext = pNC;
1343           sNC.pParse = pNC->pParse;
1344           zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth);
1345         }
1346       }else if( pTab->pSchema ){
1347         /* A real table */
1348         assert( !pS );
1349         if( iCol<0 ) iCol = pTab->iPKey;
1350         assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1351 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1352         if( iCol<0 ){
1353           zType = "INTEGER";
1354           zOrigCol = "rowid";
1355         }else{
1356           zType = pTab->aCol[iCol].zType;
1357           zOrigCol = pTab->aCol[iCol].zName;
1358           estWidth = pTab->aCol[iCol].szEst;
1359         }
1360         zOrigTab = pTab->zName;
1361         if( pNC->pParse ){
1362           int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1363           zOrigDb = pNC->pParse->db->aDb[iDb].zName;
1364         }
1365 #else
1366         if( iCol<0 ){
1367           zType = "INTEGER";
1368         }else{
1369           zType = pTab->aCol[iCol].zType;
1370           estWidth = pTab->aCol[iCol].szEst;
1371         }
1372 #endif
1373       }
1374       break;
1375     }
1376 #ifndef SQLITE_OMIT_SUBQUERY
1377     case TK_SELECT: {
1378       /* The expression is a sub-select. Return the declaration type and
1379       ** origin info for the single column in the result set of the SELECT
1380       ** statement.
1381       */
1382       NameContext sNC;
1383       Select *pS = pExpr->x.pSelect;
1384       Expr *p = pS->pEList->a[0].pExpr;
1385       assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1386       sNC.pSrcList = pS->pSrc;
1387       sNC.pNext = pNC;
1388       sNC.pParse = pNC->pParse;
1389       zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth);
1390       break;
1391     }
1392 #endif
1393   }
1394 
1395 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1396   if( pzOrigDb ){
1397     assert( pzOrigTab && pzOrigCol );
1398     *pzOrigDb = zOrigDb;
1399     *pzOrigTab = zOrigTab;
1400     *pzOrigCol = zOrigCol;
1401   }
1402 #endif
1403   if( pEstWidth ) *pEstWidth = estWidth;
1404   return zType;
1405 }
1406 
1407 /*
1408 ** Generate code that will tell the VDBE the declaration types of columns
1409 ** in the result set.
1410 */
1411 static void generateColumnTypes(
1412   Parse *pParse,      /* Parser context */
1413   SrcList *pTabList,  /* List of tables */
1414   ExprList *pEList    /* Expressions defining the result set */
1415 ){
1416 #ifndef SQLITE_OMIT_DECLTYPE
1417   Vdbe *v = pParse->pVdbe;
1418   int i;
1419   NameContext sNC;
1420   sNC.pSrcList = pTabList;
1421   sNC.pParse = pParse;
1422   for(i=0; i<pEList->nExpr; i++){
1423     Expr *p = pEList->a[i].pExpr;
1424     const char *zType;
1425 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1426     const char *zOrigDb = 0;
1427     const char *zOrigTab = 0;
1428     const char *zOrigCol = 0;
1429     zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0);
1430 
1431     /* The vdbe must make its own copy of the column-type and other
1432     ** column specific strings, in case the schema is reset before this
1433     ** virtual machine is deleted.
1434     */
1435     sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1436     sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1437     sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1438 #else
1439     zType = columnType(&sNC, p, 0, 0, 0, 0);
1440 #endif
1441     sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1442   }
1443 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1444 }
1445 
1446 /*
1447 ** Generate code that will tell the VDBE the names of columns
1448 ** in the result set.  This information is used to provide the
1449 ** azCol[] values in the callback.
1450 */
1451 static void generateColumnNames(
1452   Parse *pParse,      /* Parser context */
1453   SrcList *pTabList,  /* List of tables */
1454   ExprList *pEList    /* Expressions defining the result set */
1455 ){
1456   Vdbe *v = pParse->pVdbe;
1457   int i, j;
1458   sqlite3 *db = pParse->db;
1459   int fullNames, shortNames;
1460 
1461 #ifndef SQLITE_OMIT_EXPLAIN
1462   /* If this is an EXPLAIN, skip this step */
1463   if( pParse->explain ){
1464     return;
1465   }
1466 #endif
1467 
1468   if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;
1469   pParse->colNamesSet = 1;
1470   fullNames = (db->flags & SQLITE_FullColNames)!=0;
1471   shortNames = (db->flags & SQLITE_ShortColNames)!=0;
1472   sqlite3VdbeSetNumCols(v, pEList->nExpr);
1473   for(i=0; i<pEList->nExpr; i++){
1474     Expr *p;
1475     p = pEList->a[i].pExpr;
1476     if( NEVER(p==0) ) continue;
1477     if( pEList->a[i].zName ){
1478       char *zName = pEList->a[i].zName;
1479       sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1480     }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
1481       Table *pTab;
1482       char *zCol;
1483       int iCol = p->iColumn;
1484       for(j=0; ALWAYS(j<pTabList->nSrc); j++){
1485         if( pTabList->a[j].iCursor==p->iTable ) break;
1486       }
1487       assert( j<pTabList->nSrc );
1488       pTab = pTabList->a[j].pTab;
1489       if( iCol<0 ) iCol = pTab->iPKey;
1490       assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1491       if( iCol<0 ){
1492         zCol = "rowid";
1493       }else{
1494         zCol = pTab->aCol[iCol].zName;
1495       }
1496       if( !shortNames && !fullNames ){
1497         sqlite3VdbeSetColName(v, i, COLNAME_NAME,
1498             sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC);
1499       }else if( fullNames ){
1500         char *zName = 0;
1501         zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1502         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1503       }else{
1504         sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1505       }
1506     }else{
1507       const char *z = pEList->a[i].zSpan;
1508       z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1509       sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1510     }
1511   }
1512   generateColumnTypes(pParse, pTabList, pEList);
1513 }
1514 
1515 /*
1516 ** Given a an expression list (which is really the list of expressions
1517 ** that form the result set of a SELECT statement) compute appropriate
1518 ** column names for a table that would hold the expression list.
1519 **
1520 ** All column names will be unique.
1521 **
1522 ** Only the column names are computed.  Column.zType, Column.zColl,
1523 ** and other fields of Column are zeroed.
1524 **
1525 ** Return SQLITE_OK on success.  If a memory allocation error occurs,
1526 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1527 */
1528 static int selectColumnsFromExprList(
1529   Parse *pParse,          /* Parsing context */
1530   ExprList *pEList,       /* Expr list from which to derive column names */
1531   i16 *pnCol,             /* Write the number of columns here */
1532   Column **paCol          /* Write the new column list here */
1533 ){
1534   sqlite3 *db = pParse->db;   /* Database connection */
1535   int i, j;                   /* Loop counters */
1536   int cnt;                    /* Index added to make the name unique */
1537   Column *aCol, *pCol;        /* For looping over result columns */
1538   int nCol;                   /* Number of columns in the result set */
1539   Expr *p;                    /* Expression for a single result column */
1540   char *zName;                /* Column name */
1541   int nName;                  /* Size of name in zName[] */
1542 
1543   if( pEList ){
1544     nCol = pEList->nExpr;
1545     aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1546     testcase( aCol==0 );
1547   }else{
1548     nCol = 0;
1549     aCol = 0;
1550   }
1551   *pnCol = nCol;
1552   *paCol = aCol;
1553 
1554   for(i=0, pCol=aCol; i<nCol; i++, pCol++){
1555     /* Get an appropriate name for the column
1556     */
1557     p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
1558     if( (zName = pEList->a[i].zName)!=0 ){
1559       /* If the column contains an "AS <name>" phrase, use <name> as the name */
1560       zName = sqlite3DbStrDup(db, zName);
1561     }else{
1562       Expr *pColExpr = p;  /* The expression that is the result column name */
1563       Table *pTab;         /* Table associated with this expression */
1564       while( pColExpr->op==TK_DOT ){
1565         pColExpr = pColExpr->pRight;
1566         assert( pColExpr!=0 );
1567       }
1568       if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
1569         /* For columns use the column name name */
1570         int iCol = pColExpr->iColumn;
1571         pTab = pColExpr->pTab;
1572         if( iCol<0 ) iCol = pTab->iPKey;
1573         zName = sqlite3MPrintf(db, "%s",
1574                  iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
1575       }else if( pColExpr->op==TK_ID ){
1576         assert( !ExprHasProperty(pColExpr, EP_IntValue) );
1577         zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
1578       }else{
1579         /* Use the original text of the column expression as its name */
1580         zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
1581       }
1582     }
1583     if( db->mallocFailed ){
1584       sqlite3DbFree(db, zName);
1585       break;
1586     }
1587 
1588     /* Make sure the column name is unique.  If the name is not unique,
1589     ** append a integer to the name so that it becomes unique.
1590     */
1591     nName = sqlite3Strlen30(zName);
1592     for(j=cnt=0; j<i; j++){
1593       if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
1594         char *zNewName;
1595         int k;
1596         for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
1597         if( k>=0 && zName[k]==':' ) nName = k;
1598         zName[nName] = 0;
1599         zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
1600         sqlite3DbFree(db, zName);
1601         zName = zNewName;
1602         j = -1;
1603         if( zName==0 ) break;
1604       }
1605     }
1606     pCol->zName = zName;
1607   }
1608   if( db->mallocFailed ){
1609     for(j=0; j<i; j++){
1610       sqlite3DbFree(db, aCol[j].zName);
1611     }
1612     sqlite3DbFree(db, aCol);
1613     *paCol = 0;
1614     *pnCol = 0;
1615     return SQLITE_NOMEM;
1616   }
1617   return SQLITE_OK;
1618 }
1619 
1620 /*
1621 ** Add type and collation information to a column list based on
1622 ** a SELECT statement.
1623 **
1624 ** The column list presumably came from selectColumnNamesFromExprList().
1625 ** The column list has only names, not types or collations.  This
1626 ** routine goes through and adds the types and collations.
1627 **
1628 ** This routine requires that all identifiers in the SELECT
1629 ** statement be resolved.
1630 */
1631 static void selectAddColumnTypeAndCollation(
1632   Parse *pParse,        /* Parsing contexts */
1633   Table *pTab,          /* Add column type information to this table */
1634   Select *pSelect       /* SELECT used to determine types and collations */
1635 ){
1636   sqlite3 *db = pParse->db;
1637   NameContext sNC;
1638   Column *pCol;
1639   CollSeq *pColl;
1640   int i;
1641   Expr *p;
1642   struct ExprList_item *a;
1643   u64 szAll = 0;
1644 
1645   assert( pSelect!=0 );
1646   assert( (pSelect->selFlags & SF_Resolved)!=0 );
1647   assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
1648   if( db->mallocFailed ) return;
1649   memset(&sNC, 0, sizeof(sNC));
1650   sNC.pSrcList = pSelect->pSrc;
1651   a = pSelect->pEList->a;
1652   for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
1653     p = a[i].pExpr;
1654     pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p,0,0,0, &pCol->szEst));
1655     szAll += pCol->szEst;
1656     pCol->affinity = sqlite3ExprAffinity(p);
1657     if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_NONE;
1658     pColl = sqlite3ExprCollSeq(pParse, p);
1659     if( pColl ){
1660       pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
1661     }
1662   }
1663   pTab->szTabRow = sqlite3LogEst(szAll*4);
1664 }
1665 
1666 /*
1667 ** Given a SELECT statement, generate a Table structure that describes
1668 ** the result set of that SELECT.
1669 */
1670 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
1671   Table *pTab;
1672   sqlite3 *db = pParse->db;
1673   int savedFlags;
1674 
1675   savedFlags = db->flags;
1676   db->flags &= ~SQLITE_FullColNames;
1677   db->flags |= SQLITE_ShortColNames;
1678   sqlite3SelectPrep(pParse, pSelect, 0);
1679   if( pParse->nErr ) return 0;
1680   while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1681   db->flags = savedFlags;
1682   pTab = sqlite3DbMallocZero(db, sizeof(Table) );
1683   if( pTab==0 ){
1684     return 0;
1685   }
1686   /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1687   ** is disabled */
1688   assert( db->lookaside.bEnabled==0 );
1689   pTab->nRef = 1;
1690   pTab->zName = 0;
1691   pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1692   selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
1693   selectAddColumnTypeAndCollation(pParse, pTab, pSelect);
1694   pTab->iPKey = -1;
1695   if( db->mallocFailed ){
1696     sqlite3DeleteTable(db, pTab);
1697     return 0;
1698   }
1699   return pTab;
1700 }
1701 
1702 /*
1703 ** Get a VDBE for the given parser context.  Create a new one if necessary.
1704 ** If an error occurs, return NULL and leave a message in pParse.
1705 */
1706 Vdbe *sqlite3GetVdbe(Parse *pParse){
1707   Vdbe *v = pParse->pVdbe;
1708   if( v==0 ){
1709     v = pParse->pVdbe = sqlite3VdbeCreate(pParse);
1710     if( v ) sqlite3VdbeAddOp0(v, OP_Init);
1711     if( pParse->pToplevel==0
1712      && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
1713     ){
1714       pParse->okConstFactor = 1;
1715     }
1716 
1717   }
1718   return v;
1719 }
1720 
1721 
1722 /*
1723 ** Compute the iLimit and iOffset fields of the SELECT based on the
1724 ** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
1725 ** that appear in the original SQL statement after the LIMIT and OFFSET
1726 ** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset
1727 ** are the integer memory register numbers for counters used to compute
1728 ** the limit and offset.  If there is no limit and/or offset, then
1729 ** iLimit and iOffset are negative.
1730 **
1731 ** This routine changes the values of iLimit and iOffset only if
1732 ** a limit or offset is defined by pLimit and pOffset.  iLimit and
1733 ** iOffset should have been preset to appropriate default values (zero)
1734 ** prior to calling this routine.
1735 **
1736 ** The iOffset register (if it exists) is initialized to the value
1737 ** of the OFFSET.  The iLimit register is initialized to LIMIT.  Register
1738 ** iOffset+1 is initialized to LIMIT+OFFSET.
1739 **
1740 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1741 ** redefined.  The UNION ALL operator uses this property to force
1742 ** the reuse of the same limit and offset registers across multiple
1743 ** SELECT statements.
1744 */
1745 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
1746   Vdbe *v = 0;
1747   int iLimit = 0;
1748   int iOffset;
1749   int addr1, n;
1750   if( p->iLimit ) return;
1751 
1752   /*
1753   ** "LIMIT -1" always shows all rows.  There is some
1754   ** controversy about what the correct behavior should be.
1755   ** The current implementation interprets "LIMIT 0" to mean
1756   ** no rows.
1757   */
1758   sqlite3ExprCacheClear(pParse);
1759   assert( p->pOffset==0 || p->pLimit!=0 );
1760   if( p->pLimit ){
1761     p->iLimit = iLimit = ++pParse->nMem;
1762     v = sqlite3GetVdbe(pParse);
1763     assert( v!=0 );
1764     if( sqlite3ExprIsInteger(p->pLimit, &n) ){
1765       sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
1766       VdbeComment((v, "LIMIT counter"));
1767       if( n==0 ){
1768         sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
1769       }else if( n>=0 && p->nSelectRow>(u64)n ){
1770         p->nSelectRow = n;
1771       }
1772     }else{
1773       sqlite3ExprCode(pParse, p->pLimit, iLimit);
1774       sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
1775       VdbeComment((v, "LIMIT counter"));
1776       sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
1777     }
1778     if( p->pOffset ){
1779       p->iOffset = iOffset = ++pParse->nMem;
1780       pParse->nMem++;   /* Allocate an extra register for limit+offset */
1781       sqlite3ExprCode(pParse, p->pOffset, iOffset);
1782       sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
1783       VdbeComment((v, "OFFSET counter"));
1784       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); VdbeCoverage(v);
1785       sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
1786       sqlite3VdbeJumpHere(v, addr1);
1787       sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
1788       VdbeComment((v, "LIMIT+OFFSET"));
1789       addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); VdbeCoverage(v);
1790       sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
1791       sqlite3VdbeJumpHere(v, addr1);
1792     }
1793   }
1794 }
1795 
1796 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1797 /*
1798 ** Return the appropriate collating sequence for the iCol-th column of
1799 ** the result set for the compound-select statement "p".  Return NULL if
1800 ** the column has no default collating sequence.
1801 **
1802 ** The collating sequence for the compound select is taken from the
1803 ** left-most term of the select that has a collating sequence.
1804 */
1805 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
1806   CollSeq *pRet;
1807   if( p->pPrior ){
1808     pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
1809   }else{
1810     pRet = 0;
1811   }
1812   assert( iCol>=0 );
1813   if( pRet==0 && iCol<p->pEList->nExpr ){
1814     pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
1815   }
1816   return pRet;
1817 }
1818 
1819 /*
1820 ** The select statement passed as the second parameter is a compound SELECT
1821 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1822 ** structure suitable for implementing the ORDER BY.
1823 **
1824 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1825 ** function is responsible for ensuring that this structure is eventually
1826 ** freed.
1827 */
1828 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
1829   ExprList *pOrderBy = p->pOrderBy;
1830   int nOrderBy = p->pOrderBy->nExpr;
1831   sqlite3 *db = pParse->db;
1832   KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
1833   if( pRet ){
1834     int i;
1835     for(i=0; i<nOrderBy; i++){
1836       struct ExprList_item *pItem = &pOrderBy->a[i];
1837       Expr *pTerm = pItem->pExpr;
1838       CollSeq *pColl;
1839 
1840       if( pTerm->flags & EP_Collate ){
1841         pColl = sqlite3ExprCollSeq(pParse, pTerm);
1842       }else{
1843         pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
1844         if( pColl==0 ) pColl = db->pDfltColl;
1845         pOrderBy->a[i].pExpr =
1846           sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
1847       }
1848       assert( sqlite3KeyInfoIsWriteable(pRet) );
1849       pRet->aColl[i] = pColl;
1850       pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder;
1851     }
1852   }
1853 
1854   return pRet;
1855 }
1856 
1857 #ifndef SQLITE_OMIT_CTE
1858 /*
1859 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1860 ** query of the form:
1861 **
1862 **   <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1863 **                         \___________/             \_______________/
1864 **                           p->pPrior                      p
1865 **
1866 **
1867 ** There is exactly one reference to the recursive-table in the FROM clause
1868 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1869 **
1870 ** The setup-query runs once to generate an initial set of rows that go
1871 ** into a Queue table.  Rows are extracted from the Queue table one by
1872 ** one.  Each row extracted from Queue is output to pDest.  Then the single
1873 ** extracted row (now in the iCurrent table) becomes the content of the
1874 ** recursive-table for a recursive-query run.  The output of the recursive-query
1875 ** is added back into the Queue table.  Then another row is extracted from Queue
1876 ** and the iteration continues until the Queue table is empty.
1877 **
1878 ** If the compound query operator is UNION then no duplicate rows are ever
1879 ** inserted into the Queue table.  The iDistinct table keeps a copy of all rows
1880 ** that have ever been inserted into Queue and causes duplicates to be
1881 ** discarded.  If the operator is UNION ALL, then duplicates are allowed.
1882 **
1883 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1884 ** ORDER BY order and the first entry is extracted for each cycle.  Without
1885 ** an ORDER BY, the Queue table is just a FIFO.
1886 **
1887 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1888 ** have been output to pDest.  A LIMIT of zero means to output no rows and a
1889 ** negative LIMIT means to output all rows.  If there is also an OFFSET clause
1890 ** with a positive value, then the first OFFSET outputs are discarded rather
1891 ** than being sent to pDest.  The LIMIT count does not begin until after OFFSET
1892 ** rows have been skipped.
1893 */
1894 static void generateWithRecursiveQuery(
1895   Parse *pParse,        /* Parsing context */
1896   Select *p,            /* The recursive SELECT to be coded */
1897   SelectDest *pDest     /* What to do with query results */
1898 ){
1899   SrcList *pSrc = p->pSrc;      /* The FROM clause of the recursive query */
1900   int nCol = p->pEList->nExpr;  /* Number of columns in the recursive table */
1901   Vdbe *v = pParse->pVdbe;      /* The prepared statement under construction */
1902   Select *pSetup = p->pPrior;   /* The setup query */
1903   int addrTop;                  /* Top of the loop */
1904   int addrCont, addrBreak;      /* CONTINUE and BREAK addresses */
1905   int iCurrent = 0;             /* The Current table */
1906   int regCurrent;               /* Register holding Current table */
1907   int iQueue;                   /* The Queue table */
1908   int iDistinct = 0;            /* To ensure unique results if UNION */
1909   int eDest = SRT_Fifo;         /* How to write to Queue */
1910   SelectDest destQueue;         /* SelectDest targetting the Queue table */
1911   int i;                        /* Loop counter */
1912   int rc;                       /* Result code */
1913   ExprList *pOrderBy;           /* The ORDER BY clause */
1914   Expr *pLimit, *pOffset;       /* Saved LIMIT and OFFSET */
1915   int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */
1916 
1917   /* Obtain authorization to do a recursive query */
1918   if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
1919 
1920   /* Process the LIMIT and OFFSET clauses, if they exist */
1921   addrBreak = sqlite3VdbeMakeLabel(v);
1922   computeLimitRegisters(pParse, p, addrBreak);
1923   pLimit = p->pLimit;
1924   pOffset = p->pOffset;
1925   regLimit = p->iLimit;
1926   regOffset = p->iOffset;
1927   p->pLimit = p->pOffset = 0;
1928   p->iLimit = p->iOffset = 0;
1929   pOrderBy = p->pOrderBy;
1930 
1931   /* Locate the cursor number of the Current table */
1932   for(i=0; ALWAYS(i<pSrc->nSrc); i++){
1933     if( pSrc->a[i].isRecursive ){
1934       iCurrent = pSrc->a[i].iCursor;
1935       break;
1936     }
1937   }
1938 
1939   /* Allocate cursors numbers for Queue and Distinct.  The cursor number for
1940   ** the Distinct table must be exactly one greater than Queue in order
1941   ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1942   iQueue = pParse->nTab++;
1943   if( p->op==TK_UNION ){
1944     eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
1945     iDistinct = pParse->nTab++;
1946   }else{
1947     eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
1948   }
1949   sqlite3SelectDestInit(&destQueue, eDest, iQueue);
1950 
1951   /* Allocate cursors for Current, Queue, and Distinct. */
1952   regCurrent = ++pParse->nMem;
1953   sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
1954   if( pOrderBy ){
1955     KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
1956     sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
1957                       (char*)pKeyInfo, P4_KEYINFO);
1958     destQueue.pOrderBy = pOrderBy;
1959   }else{
1960     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
1961   }
1962   VdbeComment((v, "Queue table"));
1963   if( iDistinct ){
1964     p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
1965     p->selFlags |= SF_UsesEphemeral;
1966   }
1967 
1968   /* Detach the ORDER BY clause from the compound SELECT */
1969   p->pOrderBy = 0;
1970 
1971   /* Store the results of the setup-query in Queue. */
1972   pSetup->pNext = 0;
1973   rc = sqlite3Select(pParse, pSetup, &destQueue);
1974   pSetup->pNext = p;
1975   if( rc ) goto end_of_recursive_query;
1976 
1977   /* Find the next row in the Queue and output that row */
1978   addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
1979 
1980   /* Transfer the next row in Queue over to Current */
1981   sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
1982   if( pOrderBy ){
1983     sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
1984   }else{
1985     sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
1986   }
1987   sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
1988 
1989   /* Output the single row in Current */
1990   addrCont = sqlite3VdbeMakeLabel(v);
1991   codeOffset(v, regOffset, addrCont);
1992   selectInnerLoop(pParse, p, p->pEList, iCurrent,
1993       0, 0, pDest, addrCont, addrBreak);
1994   if( regLimit ){
1995     sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
1996     VdbeCoverage(v);
1997   }
1998   sqlite3VdbeResolveLabel(v, addrCont);
1999 
2000   /* Execute the recursive SELECT taking the single row in Current as
2001   ** the value for the recursive-table. Store the results in the Queue.
2002   */
2003   p->pPrior = 0;
2004   sqlite3Select(pParse, p, &destQueue);
2005   assert( p->pPrior==0 );
2006   p->pPrior = pSetup;
2007 
2008   /* Keep running the loop until the Queue is empty */
2009   sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
2010   sqlite3VdbeResolveLabel(v, addrBreak);
2011 
2012 end_of_recursive_query:
2013   sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2014   p->pOrderBy = pOrderBy;
2015   p->pLimit = pLimit;
2016   p->pOffset = pOffset;
2017   return;
2018 }
2019 #endif /* SQLITE_OMIT_CTE */
2020 
2021 /* Forward references */
2022 static int multiSelectOrderBy(
2023   Parse *pParse,        /* Parsing context */
2024   Select *p,            /* The right-most of SELECTs to be coded */
2025   SelectDest *pDest     /* What to do with query results */
2026 );
2027 
2028 
2029 /*
2030 ** This routine is called to process a compound query form from
2031 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2032 ** INTERSECT
2033 **
2034 ** "p" points to the right-most of the two queries.  the query on the
2035 ** left is p->pPrior.  The left query could also be a compound query
2036 ** in which case this routine will be called recursively.
2037 **
2038 ** The results of the total query are to be written into a destination
2039 ** of type eDest with parameter iParm.
2040 **
2041 ** Example 1:  Consider a three-way compound SQL statement.
2042 **
2043 **     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2044 **
2045 ** This statement is parsed up as follows:
2046 **
2047 **     SELECT c FROM t3
2048 **      |
2049 **      `----->  SELECT b FROM t2
2050 **                |
2051 **                `------>  SELECT a FROM t1
2052 **
2053 ** The arrows in the diagram above represent the Select.pPrior pointer.
2054 ** So if this routine is called with p equal to the t3 query, then
2055 ** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
2056 **
2057 ** Notice that because of the way SQLite parses compound SELECTs, the
2058 ** individual selects always group from left to right.
2059 */
2060 static int multiSelect(
2061   Parse *pParse,        /* Parsing context */
2062   Select *p,            /* The right-most of SELECTs to be coded */
2063   SelectDest *pDest     /* What to do with query results */
2064 ){
2065   int rc = SQLITE_OK;   /* Success code from a subroutine */
2066   Select *pPrior;       /* Another SELECT immediately to our left */
2067   Vdbe *v;              /* Generate code to this VDBE */
2068   SelectDest dest;      /* Alternative data destination */
2069   Select *pDelete = 0;  /* Chain of simple selects to delete */
2070   sqlite3 *db;          /* Database connection */
2071 #ifndef SQLITE_OMIT_EXPLAIN
2072   int iSub1 = 0;        /* EQP id of left-hand query */
2073   int iSub2 = 0;        /* EQP id of right-hand query */
2074 #endif
2075 
2076   /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
2077   ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2078   */
2079   assert( p && p->pPrior );  /* Calling function guarantees this much */
2080   assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2081   db = pParse->db;
2082   pPrior = p->pPrior;
2083   dest = *pDest;
2084   if( pPrior->pOrderBy ){
2085     sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
2086       selectOpName(p->op));
2087     rc = 1;
2088     goto multi_select_end;
2089   }
2090   if( pPrior->pLimit ){
2091     sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
2092       selectOpName(p->op));
2093     rc = 1;
2094     goto multi_select_end;
2095   }
2096 
2097   v = sqlite3GetVdbe(pParse);
2098   assert( v!=0 );  /* The VDBE already created by calling function */
2099 
2100   /* Create the destination temporary table if necessary
2101   */
2102   if( dest.eDest==SRT_EphemTab ){
2103     assert( p->pEList );
2104     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2105     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
2106     dest.eDest = SRT_Table;
2107   }
2108 
2109   /* Make sure all SELECTs in the statement have the same number of elements
2110   ** in their result sets.
2111   */
2112   assert( p->pEList && pPrior->pEList );
2113   if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
2114     if( p->selFlags & SF_Values ){
2115       sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2116     }else{
2117       sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2118         " do not have the same number of result columns", selectOpName(p->op));
2119     }
2120     rc = 1;
2121     goto multi_select_end;
2122   }
2123 
2124 #ifndef SQLITE_OMIT_CTE
2125   if( p->selFlags & SF_Recursive ){
2126     generateWithRecursiveQuery(pParse, p, &dest);
2127   }else
2128 #endif
2129 
2130   /* Compound SELECTs that have an ORDER BY clause are handled separately.
2131   */
2132   if( p->pOrderBy ){
2133     return multiSelectOrderBy(pParse, p, pDest);
2134   }else
2135 
2136   /* Generate code for the left and right SELECT statements.
2137   */
2138   switch( p->op ){
2139     case TK_ALL: {
2140       int addr = 0;
2141       int nLimit;
2142       assert( !pPrior->pLimit );
2143       pPrior->iLimit = p->iLimit;
2144       pPrior->iOffset = p->iOffset;
2145       pPrior->pLimit = p->pLimit;
2146       pPrior->pOffset = p->pOffset;
2147       explainSetInteger(iSub1, pParse->iNextSelectId);
2148       rc = sqlite3Select(pParse, pPrior, &dest);
2149       p->pLimit = 0;
2150       p->pOffset = 0;
2151       if( rc ){
2152         goto multi_select_end;
2153       }
2154       p->pPrior = 0;
2155       p->iLimit = pPrior->iLimit;
2156       p->iOffset = pPrior->iOffset;
2157       if( p->iLimit ){
2158         addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
2159         VdbeComment((v, "Jump ahead if LIMIT reached"));
2160       }
2161       explainSetInteger(iSub2, pParse->iNextSelectId);
2162       rc = sqlite3Select(pParse, p, &dest);
2163       testcase( rc!=SQLITE_OK );
2164       pDelete = p->pPrior;
2165       p->pPrior = pPrior;
2166       p->nSelectRow += pPrior->nSelectRow;
2167       if( pPrior->pLimit
2168        && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
2169        && nLimit>0 && p->nSelectRow > (u64)nLimit
2170       ){
2171         p->nSelectRow = nLimit;
2172       }
2173       if( addr ){
2174         sqlite3VdbeJumpHere(v, addr);
2175       }
2176       break;
2177     }
2178     case TK_EXCEPT:
2179     case TK_UNION: {
2180       int unionTab;    /* Cursor number of the temporary table holding result */
2181       u8 op = 0;       /* One of the SRT_ operations to apply to self */
2182       int priorOp;     /* The SRT_ operation to apply to prior selects */
2183       Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
2184       int addr;
2185       SelectDest uniondest;
2186 
2187       testcase( p->op==TK_EXCEPT );
2188       testcase( p->op==TK_UNION );
2189       priorOp = SRT_Union;
2190       if( dest.eDest==priorOp ){
2191         /* We can reuse a temporary table generated by a SELECT to our
2192         ** right.
2193         */
2194         assert( p->pLimit==0 );      /* Not allowed on leftward elements */
2195         assert( p->pOffset==0 );     /* Not allowed on leftward elements */
2196         unionTab = dest.iSDParm;
2197       }else{
2198         /* We will need to create our own temporary table to hold the
2199         ** intermediate results.
2200         */
2201         unionTab = pParse->nTab++;
2202         assert( p->pOrderBy==0 );
2203         addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2204         assert( p->addrOpenEphm[0] == -1 );
2205         p->addrOpenEphm[0] = addr;
2206         findRightmost(p)->selFlags |= SF_UsesEphemeral;
2207         assert( p->pEList );
2208       }
2209 
2210       /* Code the SELECT statements to our left
2211       */
2212       assert( !pPrior->pOrderBy );
2213       sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2214       explainSetInteger(iSub1, pParse->iNextSelectId);
2215       rc = sqlite3Select(pParse, pPrior, &uniondest);
2216       if( rc ){
2217         goto multi_select_end;
2218       }
2219 
2220       /* Code the current SELECT statement
2221       */
2222       if( p->op==TK_EXCEPT ){
2223         op = SRT_Except;
2224       }else{
2225         assert( p->op==TK_UNION );
2226         op = SRT_Union;
2227       }
2228       p->pPrior = 0;
2229       pLimit = p->pLimit;
2230       p->pLimit = 0;
2231       pOffset = p->pOffset;
2232       p->pOffset = 0;
2233       uniondest.eDest = op;
2234       explainSetInteger(iSub2, pParse->iNextSelectId);
2235       rc = sqlite3Select(pParse, p, &uniondest);
2236       testcase( rc!=SQLITE_OK );
2237       /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2238       ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2239       sqlite3ExprListDelete(db, p->pOrderBy);
2240       pDelete = p->pPrior;
2241       p->pPrior = pPrior;
2242       p->pOrderBy = 0;
2243       if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow;
2244       sqlite3ExprDelete(db, p->pLimit);
2245       p->pLimit = pLimit;
2246       p->pOffset = pOffset;
2247       p->iLimit = 0;
2248       p->iOffset = 0;
2249 
2250       /* Convert the data in the temporary table into whatever form
2251       ** it is that we currently need.
2252       */
2253       assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2254       if( dest.eDest!=priorOp ){
2255         int iCont, iBreak, iStart;
2256         assert( p->pEList );
2257         if( dest.eDest==SRT_Output ){
2258           Select *pFirst = p;
2259           while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2260           generateColumnNames(pParse, 0, pFirst->pEList);
2261         }
2262         iBreak = sqlite3VdbeMakeLabel(v);
2263         iCont = sqlite3VdbeMakeLabel(v);
2264         computeLimitRegisters(pParse, p, iBreak);
2265         sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2266         iStart = sqlite3VdbeCurrentAddr(v);
2267         selectInnerLoop(pParse, p, p->pEList, unionTab,
2268                         0, 0, &dest, iCont, iBreak);
2269         sqlite3VdbeResolveLabel(v, iCont);
2270         sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2271         sqlite3VdbeResolveLabel(v, iBreak);
2272         sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2273       }
2274       break;
2275     }
2276     default: assert( p->op==TK_INTERSECT ); {
2277       int tab1, tab2;
2278       int iCont, iBreak, iStart;
2279       Expr *pLimit, *pOffset;
2280       int addr;
2281       SelectDest intersectdest;
2282       int r1;
2283 
2284       /* INTERSECT is different from the others since it requires
2285       ** two temporary tables.  Hence it has its own case.  Begin
2286       ** by allocating the tables we will need.
2287       */
2288       tab1 = pParse->nTab++;
2289       tab2 = pParse->nTab++;
2290       assert( p->pOrderBy==0 );
2291 
2292       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2293       assert( p->addrOpenEphm[0] == -1 );
2294       p->addrOpenEphm[0] = addr;
2295       findRightmost(p)->selFlags |= SF_UsesEphemeral;
2296       assert( p->pEList );
2297 
2298       /* Code the SELECTs to our left into temporary table "tab1".
2299       */
2300       sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2301       explainSetInteger(iSub1, pParse->iNextSelectId);
2302       rc = sqlite3Select(pParse, pPrior, &intersectdest);
2303       if( rc ){
2304         goto multi_select_end;
2305       }
2306 
2307       /* Code the current SELECT into temporary table "tab2"
2308       */
2309       addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2310       assert( p->addrOpenEphm[1] == -1 );
2311       p->addrOpenEphm[1] = addr;
2312       p->pPrior = 0;
2313       pLimit = p->pLimit;
2314       p->pLimit = 0;
2315       pOffset = p->pOffset;
2316       p->pOffset = 0;
2317       intersectdest.iSDParm = tab2;
2318       explainSetInteger(iSub2, pParse->iNextSelectId);
2319       rc = sqlite3Select(pParse, p, &intersectdest);
2320       testcase( rc!=SQLITE_OK );
2321       pDelete = p->pPrior;
2322       p->pPrior = pPrior;
2323       if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2324       sqlite3ExprDelete(db, p->pLimit);
2325       p->pLimit = pLimit;
2326       p->pOffset = pOffset;
2327 
2328       /* Generate code to take the intersection of the two temporary
2329       ** tables.
2330       */
2331       assert( p->pEList );
2332       if( dest.eDest==SRT_Output ){
2333         Select *pFirst = p;
2334         while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2335         generateColumnNames(pParse, 0, pFirst->pEList);
2336       }
2337       iBreak = sqlite3VdbeMakeLabel(v);
2338       iCont = sqlite3VdbeMakeLabel(v);
2339       computeLimitRegisters(pParse, p, iBreak);
2340       sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2341       r1 = sqlite3GetTempReg(pParse);
2342       iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
2343       sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v);
2344       sqlite3ReleaseTempReg(pParse, r1);
2345       selectInnerLoop(pParse, p, p->pEList, tab1,
2346                       0, 0, &dest, iCont, iBreak);
2347       sqlite3VdbeResolveLabel(v, iCont);
2348       sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2349       sqlite3VdbeResolveLabel(v, iBreak);
2350       sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2351       sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2352       break;
2353     }
2354   }
2355 
2356   explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL);
2357 
2358   /* Compute collating sequences used by
2359   ** temporary tables needed to implement the compound select.
2360   ** Attach the KeyInfo structure to all temporary tables.
2361   **
2362   ** This section is run by the right-most SELECT statement only.
2363   ** SELECT statements to the left always skip this part.  The right-most
2364   ** SELECT might also skip this part if it has no ORDER BY clause and
2365   ** no temp tables are required.
2366   */
2367   if( p->selFlags & SF_UsesEphemeral ){
2368     int i;                        /* Loop counter */
2369     KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
2370     Select *pLoop;                /* For looping through SELECT statements */
2371     CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
2372     int nCol;                     /* Number of columns in result set */
2373 
2374     assert( p->pNext==0 );
2375     nCol = p->pEList->nExpr;
2376     pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2377     if( !pKeyInfo ){
2378       rc = SQLITE_NOMEM;
2379       goto multi_select_end;
2380     }
2381     for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2382       *apColl = multiSelectCollSeq(pParse, p, i);
2383       if( 0==*apColl ){
2384         *apColl = db->pDfltColl;
2385       }
2386     }
2387 
2388     for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2389       for(i=0; i<2; i++){
2390         int addr = pLoop->addrOpenEphm[i];
2391         if( addr<0 ){
2392           /* If [0] is unused then [1] is also unused.  So we can
2393           ** always safely abort as soon as the first unused slot is found */
2394           assert( pLoop->addrOpenEphm[1]<0 );
2395           break;
2396         }
2397         sqlite3VdbeChangeP2(v, addr, nCol);
2398         sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2399                             P4_KEYINFO);
2400         pLoop->addrOpenEphm[i] = -1;
2401       }
2402     }
2403     sqlite3KeyInfoUnref(pKeyInfo);
2404   }
2405 
2406 multi_select_end:
2407   pDest->iSdst = dest.iSdst;
2408   pDest->nSdst = dest.nSdst;
2409   sqlite3SelectDelete(db, pDelete);
2410   return rc;
2411 }
2412 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2413 
2414 /*
2415 ** Code an output subroutine for a coroutine implementation of a
2416 ** SELECT statment.
2417 **
2418 ** The data to be output is contained in pIn->iSdst.  There are
2419 ** pIn->nSdst columns to be output.  pDest is where the output should
2420 ** be sent.
2421 **
2422 ** regReturn is the number of the register holding the subroutine
2423 ** return address.
2424 **
2425 ** If regPrev>0 then it is the first register in a vector that
2426 ** records the previous output.  mem[regPrev] is a flag that is false
2427 ** if there has been no previous output.  If regPrev>0 then code is
2428 ** generated to suppress duplicates.  pKeyInfo is used for comparing
2429 ** keys.
2430 **
2431 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2432 ** iBreak.
2433 */
2434 static int generateOutputSubroutine(
2435   Parse *pParse,          /* Parsing context */
2436   Select *p,              /* The SELECT statement */
2437   SelectDest *pIn,        /* Coroutine supplying data */
2438   SelectDest *pDest,      /* Where to send the data */
2439   int regReturn,          /* The return address register */
2440   int regPrev,            /* Previous result register.  No uniqueness if 0 */
2441   KeyInfo *pKeyInfo,      /* For comparing with previous entry */
2442   int iBreak              /* Jump here if we hit the LIMIT */
2443 ){
2444   Vdbe *v = pParse->pVdbe;
2445   int iContinue;
2446   int addr;
2447 
2448   addr = sqlite3VdbeCurrentAddr(v);
2449   iContinue = sqlite3VdbeMakeLabel(v);
2450 
2451   /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2452   */
2453   if( regPrev ){
2454     int j1, j2;
2455     j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2456     j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2457                               (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2458     sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); VdbeCoverage(v);
2459     sqlite3VdbeJumpHere(v, j1);
2460     sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2461     sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2462   }
2463   if( pParse->db->mallocFailed ) return 0;
2464 
2465   /* Suppress the first OFFSET entries if there is an OFFSET clause
2466   */
2467   codeOffset(v, p->iOffset, iContinue);
2468 
2469   switch( pDest->eDest ){
2470     /* Store the result as data using a unique key.
2471     */
2472     case SRT_Table:
2473     case SRT_EphemTab: {
2474       int r1 = sqlite3GetTempReg(pParse);
2475       int r2 = sqlite3GetTempReg(pParse);
2476       testcase( pDest->eDest==SRT_Table );
2477       testcase( pDest->eDest==SRT_EphemTab );
2478       sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
2479       sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
2480       sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
2481       sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
2482       sqlite3ReleaseTempReg(pParse, r2);
2483       sqlite3ReleaseTempReg(pParse, r1);
2484       break;
2485     }
2486 
2487 #ifndef SQLITE_OMIT_SUBQUERY
2488     /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2489     ** then there should be a single item on the stack.  Write this
2490     ** item into the set table with bogus data.
2491     */
2492     case SRT_Set: {
2493       int r1;
2494       assert( pIn->nSdst==1 );
2495       pDest->affSdst =
2496          sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
2497       r1 = sqlite3GetTempReg(pParse);
2498       sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1);
2499       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
2500       sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
2501       sqlite3ReleaseTempReg(pParse, r1);
2502       break;
2503     }
2504 
2505 #if 0  /* Never occurs on an ORDER BY query */
2506     /* If any row exist in the result set, record that fact and abort.
2507     */
2508     case SRT_Exists: {
2509       sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
2510       /* The LIMIT clause will terminate the loop for us */
2511       break;
2512     }
2513 #endif
2514 
2515     /* If this is a scalar select that is part of an expression, then
2516     ** store the results in the appropriate memory cell and break out
2517     ** of the scan loop.
2518     */
2519     case SRT_Mem: {
2520       assert( pIn->nSdst==1 );
2521       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
2522       /* The LIMIT clause will jump out of the loop for us */
2523       break;
2524     }
2525 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2526 
2527     /* The results are stored in a sequence of registers
2528     ** starting at pDest->iSdst.  Then the co-routine yields.
2529     */
2530     case SRT_Coroutine: {
2531       if( pDest->iSdst==0 ){
2532         pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
2533         pDest->nSdst = pIn->nSdst;
2534       }
2535       sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
2536       sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
2537       break;
2538     }
2539 
2540     /* If none of the above, then the result destination must be
2541     ** SRT_Output.  This routine is never called with any other
2542     ** destination other than the ones handled above or SRT_Output.
2543     **
2544     ** For SRT_Output, results are stored in a sequence of registers.
2545     ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2546     ** return the next row of result.
2547     */
2548     default: {
2549       assert( pDest->eDest==SRT_Output );
2550       sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
2551       sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
2552       break;
2553     }
2554   }
2555 
2556   /* Jump to the end of the loop if the LIMIT is reached.
2557   */
2558   if( p->iLimit ){
2559     sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
2560   }
2561 
2562   /* Generate the subroutine return
2563   */
2564   sqlite3VdbeResolveLabel(v, iContinue);
2565   sqlite3VdbeAddOp1(v, OP_Return, regReturn);
2566 
2567   return addr;
2568 }
2569 
2570 /*
2571 ** Alternative compound select code generator for cases when there
2572 ** is an ORDER BY clause.
2573 **
2574 ** We assume a query of the following form:
2575 **
2576 **      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
2577 **
2578 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
2579 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2580 ** co-routines.  Then run the co-routines in parallel and merge the results
2581 ** into the output.  In addition to the two coroutines (called selectA and
2582 ** selectB) there are 7 subroutines:
2583 **
2584 **    outA:    Move the output of the selectA coroutine into the output
2585 **             of the compound query.
2586 **
2587 **    outB:    Move the output of the selectB coroutine into the output
2588 **             of the compound query.  (Only generated for UNION and
2589 **             UNION ALL.  EXCEPT and INSERTSECT never output a row that
2590 **             appears only in B.)
2591 **
2592 **    AltB:    Called when there is data from both coroutines and A<B.
2593 **
2594 **    AeqB:    Called when there is data from both coroutines and A==B.
2595 **
2596 **    AgtB:    Called when there is data from both coroutines and A>B.
2597 **
2598 **    EofA:    Called when data is exhausted from selectA.
2599 **
2600 **    EofB:    Called when data is exhausted from selectB.
2601 **
2602 ** The implementation of the latter five subroutines depend on which
2603 ** <operator> is used:
2604 **
2605 **
2606 **             UNION ALL         UNION            EXCEPT          INTERSECT
2607 **          -------------  -----------------  --------------  -----------------
2608 **   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
2609 **
2610 **   AeqB:   outA, nextA         nextA             nextA         outA, nextA
2611 **
2612 **   AgtB:   outB, nextB      outB, nextB          nextB            nextB
2613 **
2614 **   EofA:   outB, nextB      outB, nextB          halt             halt
2615 **
2616 **   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
2617 **
2618 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2619 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2620 ** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
2621 ** following nextX causes a jump to the end of the select processing.
2622 **
2623 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2624 ** within the output subroutine.  The regPrev register set holds the previously
2625 ** output value.  A comparison is made against this value and the output
2626 ** is skipped if the next results would be the same as the previous.
2627 **
2628 ** The implementation plan is to implement the two coroutines and seven
2629 ** subroutines first, then put the control logic at the bottom.  Like this:
2630 **
2631 **          goto Init
2632 **     coA: coroutine for left query (A)
2633 **     coB: coroutine for right query (B)
2634 **    outA: output one row of A
2635 **    outB: output one row of B (UNION and UNION ALL only)
2636 **    EofA: ...
2637 **    EofB: ...
2638 **    AltB: ...
2639 **    AeqB: ...
2640 **    AgtB: ...
2641 **    Init: initialize coroutine registers
2642 **          yield coA
2643 **          if eof(A) goto EofA
2644 **          yield coB
2645 **          if eof(B) goto EofB
2646 **    Cmpr: Compare A, B
2647 **          Jump AltB, AeqB, AgtB
2648 **     End: ...
2649 **
2650 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2651 ** actually called using Gosub and they do not Return.  EofA and EofB loop
2652 ** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
2653 ** and AgtB jump to either L2 or to one of EofA or EofB.
2654 */
2655 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2656 static int multiSelectOrderBy(
2657   Parse *pParse,        /* Parsing context */
2658   Select *p,            /* The right-most of SELECTs to be coded */
2659   SelectDest *pDest     /* What to do with query results */
2660 ){
2661   int i, j;             /* Loop counters */
2662   Select *pPrior;       /* Another SELECT immediately to our left */
2663   Vdbe *v;              /* Generate code to this VDBE */
2664   SelectDest destA;     /* Destination for coroutine A */
2665   SelectDest destB;     /* Destination for coroutine B */
2666   int regAddrA;         /* Address register for select-A coroutine */
2667   int regAddrB;         /* Address register for select-B coroutine */
2668   int addrSelectA;      /* Address of the select-A coroutine */
2669   int addrSelectB;      /* Address of the select-B coroutine */
2670   int regOutA;          /* Address register for the output-A subroutine */
2671   int regOutB;          /* Address register for the output-B subroutine */
2672   int addrOutA;         /* Address of the output-A subroutine */
2673   int addrOutB = 0;     /* Address of the output-B subroutine */
2674   int addrEofA;         /* Address of the select-A-exhausted subroutine */
2675   int addrEofA_noB;     /* Alternate addrEofA if B is uninitialized */
2676   int addrEofB;         /* Address of the select-B-exhausted subroutine */
2677   int addrAltB;         /* Address of the A<B subroutine */
2678   int addrAeqB;         /* Address of the A==B subroutine */
2679   int addrAgtB;         /* Address of the A>B subroutine */
2680   int regLimitA;        /* Limit register for select-A */
2681   int regLimitB;        /* Limit register for select-A */
2682   int regPrev;          /* A range of registers to hold previous output */
2683   int savedLimit;       /* Saved value of p->iLimit */
2684   int savedOffset;      /* Saved value of p->iOffset */
2685   int labelCmpr;        /* Label for the start of the merge algorithm */
2686   int labelEnd;         /* Label for the end of the overall SELECT stmt */
2687   int j1;               /* Jump instructions that get retargetted */
2688   int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2689   KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
2690   KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
2691   sqlite3 *db;          /* Database connection */
2692   ExprList *pOrderBy;   /* The ORDER BY clause */
2693   int nOrderBy;         /* Number of terms in the ORDER BY clause */
2694   int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
2695 #ifndef SQLITE_OMIT_EXPLAIN
2696   int iSub1;            /* EQP id of left-hand query */
2697   int iSub2;            /* EQP id of right-hand query */
2698 #endif
2699 
2700   assert( p->pOrderBy!=0 );
2701   assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
2702   db = pParse->db;
2703   v = pParse->pVdbe;
2704   assert( v!=0 );       /* Already thrown the error if VDBE alloc failed */
2705   labelEnd = sqlite3VdbeMakeLabel(v);
2706   labelCmpr = sqlite3VdbeMakeLabel(v);
2707 
2708 
2709   /* Patch up the ORDER BY clause
2710   */
2711   op = p->op;
2712   pPrior = p->pPrior;
2713   assert( pPrior->pOrderBy==0 );
2714   pOrderBy = p->pOrderBy;
2715   assert( pOrderBy );
2716   nOrderBy = pOrderBy->nExpr;
2717 
2718   /* For operators other than UNION ALL we have to make sure that
2719   ** the ORDER BY clause covers every term of the result set.  Add
2720   ** terms to the ORDER BY clause as necessary.
2721   */
2722   if( op!=TK_ALL ){
2723     for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
2724       struct ExprList_item *pItem;
2725       for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
2726         assert( pItem->u.x.iOrderByCol>0 );
2727         if( pItem->u.x.iOrderByCol==i ) break;
2728       }
2729       if( j==nOrderBy ){
2730         Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
2731         if( pNew==0 ) return SQLITE_NOMEM;
2732         pNew->flags |= EP_IntValue;
2733         pNew->u.iValue = i;
2734         pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
2735         if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
2736       }
2737     }
2738   }
2739 
2740   /* Compute the comparison permutation and keyinfo that is used with
2741   ** the permutation used to determine if the next
2742   ** row of results comes from selectA or selectB.  Also add explicit
2743   ** collations to the ORDER BY clause terms so that when the subqueries
2744   ** to the right and the left are evaluated, they use the correct
2745   ** collation.
2746   */
2747   aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
2748   if( aPermute ){
2749     struct ExprList_item *pItem;
2750     for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
2751       assert( pItem->u.x.iOrderByCol>0
2752           && pItem->u.x.iOrderByCol<=p->pEList->nExpr );
2753       aPermute[i] = pItem->u.x.iOrderByCol - 1;
2754     }
2755     pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
2756   }else{
2757     pKeyMerge = 0;
2758   }
2759 
2760   /* Reattach the ORDER BY clause to the query.
2761   */
2762   p->pOrderBy = pOrderBy;
2763   pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
2764 
2765   /* Allocate a range of temporary registers and the KeyInfo needed
2766   ** for the logic that removes duplicate result rows when the
2767   ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2768   */
2769   if( op==TK_ALL ){
2770     regPrev = 0;
2771   }else{
2772     int nExpr = p->pEList->nExpr;
2773     assert( nOrderBy>=nExpr || db->mallocFailed );
2774     regPrev = pParse->nMem+1;
2775     pParse->nMem += nExpr+1;
2776     sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
2777     pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
2778     if( pKeyDup ){
2779       assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
2780       for(i=0; i<nExpr; i++){
2781         pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
2782         pKeyDup->aSortOrder[i] = 0;
2783       }
2784     }
2785   }
2786 
2787   /* Separate the left and the right query from one another
2788   */
2789   p->pPrior = 0;
2790   pPrior->pNext = 0;
2791   sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
2792   if( pPrior->pPrior==0 ){
2793     sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
2794   }
2795 
2796   /* Compute the limit registers */
2797   computeLimitRegisters(pParse, p, labelEnd);
2798   if( p->iLimit && op==TK_ALL ){
2799     regLimitA = ++pParse->nMem;
2800     regLimitB = ++pParse->nMem;
2801     sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
2802                                   regLimitA);
2803     sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
2804   }else{
2805     regLimitA = regLimitB = 0;
2806   }
2807   sqlite3ExprDelete(db, p->pLimit);
2808   p->pLimit = 0;
2809   sqlite3ExprDelete(db, p->pOffset);
2810   p->pOffset = 0;
2811 
2812   regAddrA = ++pParse->nMem;
2813   regAddrB = ++pParse->nMem;
2814   regOutA = ++pParse->nMem;
2815   regOutB = ++pParse->nMem;
2816   sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
2817   sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
2818 
2819   /* Generate a coroutine to evaluate the SELECT statement to the
2820   ** left of the compound operator - the "A" select.
2821   */
2822   addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
2823   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
2824   VdbeComment((v, "left SELECT"));
2825   pPrior->iLimit = regLimitA;
2826   explainSetInteger(iSub1, pParse->iNextSelectId);
2827   sqlite3Select(pParse, pPrior, &destA);
2828   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA);
2829   sqlite3VdbeJumpHere(v, j1);
2830 
2831   /* Generate a coroutine to evaluate the SELECT statement on
2832   ** the right - the "B" select
2833   */
2834   addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
2835   j1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
2836   VdbeComment((v, "right SELECT"));
2837   savedLimit = p->iLimit;
2838   savedOffset = p->iOffset;
2839   p->iLimit = regLimitB;
2840   p->iOffset = 0;
2841   explainSetInteger(iSub2, pParse->iNextSelectId);
2842   sqlite3Select(pParse, p, &destB);
2843   p->iLimit = savedLimit;
2844   p->iOffset = savedOffset;
2845   sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB);
2846 
2847   /* Generate a subroutine that outputs the current row of the A
2848   ** select as the next output row of the compound select.
2849   */
2850   VdbeNoopComment((v, "Output routine for A"));
2851   addrOutA = generateOutputSubroutine(pParse,
2852                  p, &destA, pDest, regOutA,
2853                  regPrev, pKeyDup, labelEnd);
2854 
2855   /* Generate a subroutine that outputs the current row of the B
2856   ** select as the next output row of the compound select.
2857   */
2858   if( op==TK_ALL || op==TK_UNION ){
2859     VdbeNoopComment((v, "Output routine for B"));
2860     addrOutB = generateOutputSubroutine(pParse,
2861                  p, &destB, pDest, regOutB,
2862                  regPrev, pKeyDup, labelEnd);
2863   }
2864   sqlite3KeyInfoUnref(pKeyDup);
2865 
2866   /* Generate a subroutine to run when the results from select A
2867   ** are exhausted and only data in select B remains.
2868   */
2869   if( op==TK_EXCEPT || op==TK_INTERSECT ){
2870     addrEofA_noB = addrEofA = labelEnd;
2871   }else{
2872     VdbeNoopComment((v, "eof-A subroutine"));
2873     addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2874     addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
2875                                      VdbeCoverage(v);
2876     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
2877     p->nSelectRow += pPrior->nSelectRow;
2878   }
2879 
2880   /* Generate a subroutine to run when the results from select B
2881   ** are exhausted and only data in select A remains.
2882   */
2883   if( op==TK_INTERSECT ){
2884     addrEofB = addrEofA;
2885     if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
2886   }else{
2887     VdbeNoopComment((v, "eof-B subroutine"));
2888     addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2889     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
2890     sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
2891   }
2892 
2893   /* Generate code to handle the case of A<B
2894   */
2895   VdbeNoopComment((v, "A-lt-B subroutine"));
2896   addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
2897   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2898   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2899 
2900   /* Generate code to handle the case of A==B
2901   */
2902   if( op==TK_ALL ){
2903     addrAeqB = addrAltB;
2904   }else if( op==TK_INTERSECT ){
2905     addrAeqB = addrAltB;
2906     addrAltB++;
2907   }else{
2908     VdbeNoopComment((v, "A-eq-B subroutine"));
2909     addrAeqB =
2910     sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
2911     sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2912   }
2913 
2914   /* Generate code to handle the case of A>B
2915   */
2916   VdbeNoopComment((v, "A-gt-B subroutine"));
2917   addrAgtB = sqlite3VdbeCurrentAddr(v);
2918   if( op==TK_ALL || op==TK_UNION ){
2919     sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
2920   }
2921   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2922   sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
2923 
2924   /* This code runs once to initialize everything.
2925   */
2926   sqlite3VdbeJumpHere(v, j1);
2927   sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
2928   sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
2929 
2930   /* Implement the main merge loop
2931   */
2932   sqlite3VdbeResolveLabel(v, labelCmpr);
2933   sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
2934   sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
2935                          (char*)pKeyMerge, P4_KEYINFO);
2936   sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
2937   sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
2938 
2939   /* Jump to the this point in order to terminate the query.
2940   */
2941   sqlite3VdbeResolveLabel(v, labelEnd);
2942 
2943   /* Set the number of output columns
2944   */
2945   if( pDest->eDest==SRT_Output ){
2946     Select *pFirst = pPrior;
2947     while( pFirst->pPrior ) pFirst = pFirst->pPrior;
2948     generateColumnNames(pParse, 0, pFirst->pEList);
2949   }
2950 
2951   /* Reassembly the compound query so that it will be freed correctly
2952   ** by the calling function */
2953   if( p->pPrior ){
2954     sqlite3SelectDelete(db, p->pPrior);
2955   }
2956   p->pPrior = pPrior;
2957   pPrior->pNext = p;
2958 
2959   /*** TBD:  Insert subroutine calls to close cursors on incomplete
2960   **** subqueries ****/
2961   explainComposite(pParse, p->op, iSub1, iSub2, 0);
2962   return SQLITE_OK;
2963 }
2964 #endif
2965 
2966 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
2967 /* Forward Declarations */
2968 static void substExprList(sqlite3*, ExprList*, int, ExprList*);
2969 static void substSelect(sqlite3*, Select *, int, ExprList *);
2970 
2971 /*
2972 ** Scan through the expression pExpr.  Replace every reference to
2973 ** a column in table number iTable with a copy of the iColumn-th
2974 ** entry in pEList.  (But leave references to the ROWID column
2975 ** unchanged.)
2976 **
2977 ** This routine is part of the flattening procedure.  A subquery
2978 ** whose result set is defined by pEList appears as entry in the
2979 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
2980 ** FORM clause entry is iTable.  This routine make the necessary
2981 ** changes to pExpr so that it refers directly to the source table
2982 ** of the subquery rather the result set of the subquery.
2983 */
2984 static Expr *substExpr(
2985   sqlite3 *db,        /* Report malloc errors to this connection */
2986   Expr *pExpr,        /* Expr in which substitution occurs */
2987   int iTable,         /* Table to be substituted */
2988   ExprList *pEList    /* Substitute expressions */
2989 ){
2990   if( pExpr==0 ) return 0;
2991   if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
2992     if( pExpr->iColumn<0 ){
2993       pExpr->op = TK_NULL;
2994     }else{
2995       Expr *pNew;
2996       assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
2997       assert( pExpr->pLeft==0 && pExpr->pRight==0 );
2998       pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0);
2999       sqlite3ExprDelete(db, pExpr);
3000       pExpr = pNew;
3001     }
3002   }else{
3003     pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
3004     pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
3005     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3006       substSelect(db, pExpr->x.pSelect, iTable, pEList);
3007     }else{
3008       substExprList(db, pExpr->x.pList, iTable, pEList);
3009     }
3010   }
3011   return pExpr;
3012 }
3013 static void substExprList(
3014   sqlite3 *db,         /* Report malloc errors here */
3015   ExprList *pList,     /* List to scan and in which to make substitutes */
3016   int iTable,          /* Table to be substituted */
3017   ExprList *pEList     /* Substitute values */
3018 ){
3019   int i;
3020   if( pList==0 ) return;
3021   for(i=0; i<pList->nExpr; i++){
3022     pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
3023   }
3024 }
3025 static void substSelect(
3026   sqlite3 *db,         /* Report malloc errors here */
3027   Select *p,           /* SELECT statement in which to make substitutions */
3028   int iTable,          /* Table to be replaced */
3029   ExprList *pEList     /* Substitute values */
3030 ){
3031   SrcList *pSrc;
3032   struct SrcList_item *pItem;
3033   int i;
3034   if( !p ) return;
3035   substExprList(db, p->pEList, iTable, pEList);
3036   substExprList(db, p->pGroupBy, iTable, pEList);
3037   substExprList(db, p->pOrderBy, iTable, pEList);
3038   p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
3039   p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
3040   substSelect(db, p->pPrior, iTable, pEList);
3041   pSrc = p->pSrc;
3042   assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3043   if( ALWAYS(pSrc) ){
3044     for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3045       substSelect(db, pItem->pSelect, iTable, pEList);
3046     }
3047   }
3048 }
3049 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3050 
3051 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3052 /*
3053 ** This routine attempts to flatten subqueries as a performance optimization.
3054 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3055 **
3056 ** To understand the concept of flattening, consider the following
3057 ** query:
3058 **
3059 **     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3060 **
3061 ** The default way of implementing this query is to execute the
3062 ** subquery first and store the results in a temporary table, then
3063 ** run the outer query on that temporary table.  This requires two
3064 ** passes over the data.  Furthermore, because the temporary table
3065 ** has no indices, the WHERE clause on the outer query cannot be
3066 ** optimized.
3067 **
3068 ** This routine attempts to rewrite queries such as the above into
3069 ** a single flat select, like this:
3070 **
3071 **     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3072 **
3073 ** The code generated for this simpification gives the same result
3074 ** but only has to scan the data once.  And because indices might
3075 ** exist on the table t1, a complete scan of the data might be
3076 ** avoided.
3077 **
3078 ** Flattening is only attempted if all of the following are true:
3079 **
3080 **   (1)  The subquery and the outer query do not both use aggregates.
3081 **
3082 **   (2)  The subquery is not an aggregate or the outer query is not a join.
3083 **
3084 **   (3)  The subquery is not the right operand of a left outer join
3085 **        (Originally ticket #306.  Strengthened by ticket #3300)
3086 **
3087 **   (4)  The subquery is not DISTINCT.
3088 **
3089 **  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
3090 **        sub-queries that were excluded from this optimization. Restriction
3091 **        (4) has since been expanded to exclude all DISTINCT subqueries.
3092 **
3093 **   (6)  The subquery does not use aggregates or the outer query is not
3094 **        DISTINCT.
3095 **
3096 **   (7)  The subquery has a FROM clause.  TODO:  For subqueries without
3097 **        A FROM clause, consider adding a FROM close with the special
3098 **        table sqlite_once that consists of a single row containing a
3099 **        single NULL.
3100 **
3101 **   (8)  The subquery does not use LIMIT or the outer query is not a join.
3102 **
3103 **   (9)  The subquery does not use LIMIT or the outer query does not use
3104 **        aggregates.
3105 **
3106 **  (10)  The subquery does not use aggregates or the outer query does not
3107 **        use LIMIT.
3108 **
3109 **  (11)  The subquery and the outer query do not both have ORDER BY clauses.
3110 **
3111 **  (**)  Not implemented.  Subsumed into restriction (3).  Was previously
3112 **        a separate restriction deriving from ticket #350.
3113 **
3114 **  (13)  The subquery and outer query do not both use LIMIT.
3115 **
3116 **  (14)  The subquery does not use OFFSET.
3117 **
3118 **  (15)  The outer query is not part of a compound select or the
3119 **        subquery does not have a LIMIT clause.
3120 **        (See ticket #2339 and ticket [02a8e81d44]).
3121 **
3122 **  (16)  The outer query is not an aggregate or the subquery does
3123 **        not contain ORDER BY.  (Ticket #2942)  This used to not matter
3124 **        until we introduced the group_concat() function.
3125 **
3126 **  (17)  The sub-query is not a compound select, or it is a UNION ALL
3127 **        compound clause made up entirely of non-aggregate queries, and
3128 **        the parent query:
3129 **
3130 **          * is not itself part of a compound select,
3131 **          * is not an aggregate or DISTINCT query, and
3132 **          * is not a join
3133 **
3134 **        The parent and sub-query may contain WHERE clauses. Subject to
3135 **        rules (11), (13) and (14), they may also contain ORDER BY,
3136 **        LIMIT and OFFSET clauses.  The subquery cannot use any compound
3137 **        operator other than UNION ALL because all the other compound
3138 **        operators have an implied DISTINCT which is disallowed by
3139 **        restriction (4).
3140 **
3141 **        Also, each component of the sub-query must return the same number
3142 **        of result columns. This is actually a requirement for any compound
3143 **        SELECT statement, but all the code here does is make sure that no
3144 **        such (illegal) sub-query is flattened. The caller will detect the
3145 **        syntax error and return a detailed message.
3146 **
3147 **  (18)  If the sub-query is a compound select, then all terms of the
3148 **        ORDER by clause of the parent must be simple references to
3149 **        columns of the sub-query.
3150 **
3151 **  (19)  The subquery does not use LIMIT or the outer query does not
3152 **        have a WHERE clause.
3153 **
3154 **  (20)  If the sub-query is a compound select, then it must not use
3155 **        an ORDER BY clause.  Ticket #3773.  We could relax this constraint
3156 **        somewhat by saying that the terms of the ORDER BY clause must
3157 **        appear as unmodified result columns in the outer query.  But we
3158 **        have other optimizations in mind to deal with that case.
3159 **
3160 **  (21)  The subquery does not use LIMIT or the outer query is not
3161 **        DISTINCT.  (See ticket [752e1646fc]).
3162 **
3163 **  (22)  The subquery is not a recursive CTE.
3164 **
3165 **  (23)  The parent is not a recursive CTE, or the sub-query is not a
3166 **        compound query. This restriction is because transforming the
3167 **        parent to a compound query confuses the code that handles
3168 **        recursive queries in multiSelect().
3169 **
3170 **
3171 ** In this routine, the "p" parameter is a pointer to the outer query.
3172 ** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
3173 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3174 **
3175 ** If flattening is not attempted, this routine is a no-op and returns 0.
3176 ** If flattening is attempted this routine returns 1.
3177 **
3178 ** All of the expression analysis must occur on both the outer query and
3179 ** the subquery before this routine runs.
3180 */
3181 static int flattenSubquery(
3182   Parse *pParse,       /* Parsing context */
3183   Select *p,           /* The parent or outer SELECT statement */
3184   int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
3185   int isAgg,           /* True if outer SELECT uses aggregate functions */
3186   int subqueryIsAgg    /* True if the subquery uses aggregate functions */
3187 ){
3188   const char *zSavedAuthContext = pParse->zAuthContext;
3189   Select *pParent;
3190   Select *pSub;       /* The inner query or "subquery" */
3191   Select *pSub1;      /* Pointer to the rightmost select in sub-query */
3192   SrcList *pSrc;      /* The FROM clause of the outer query */
3193   SrcList *pSubSrc;   /* The FROM clause of the subquery */
3194   ExprList *pList;    /* The result set of the outer query */
3195   int iParent;        /* VDBE cursor number of the pSub result set temp table */
3196   int i;              /* Loop counter */
3197   Expr *pWhere;                    /* The WHERE clause */
3198   struct SrcList_item *pSubitem;   /* The subquery */
3199   sqlite3 *db = pParse->db;
3200 
3201   /* Check to see if flattening is permitted.  Return 0 if not.
3202   */
3203   assert( p!=0 );
3204   assert( p->pPrior==0 );  /* Unable to flatten compound queries */
3205   if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3206   pSrc = p->pSrc;
3207   assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3208   pSubitem = &pSrc->a[iFrom];
3209   iParent = pSubitem->iCursor;
3210   pSub = pSubitem->pSelect;
3211   assert( pSub!=0 );
3212   if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
3213   if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
3214   pSubSrc = pSub->pSrc;
3215   assert( pSubSrc );
3216   /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3217   ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
3218   ** because they could be computed at compile-time.  But when LIMIT and OFFSET
3219   ** became arbitrary expressions, we were forced to add restrictions (13)
3220   ** and (14). */
3221   if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
3222   if( pSub->pOffset ) return 0;                          /* Restriction (14) */
3223   if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3224     return 0;                                            /* Restriction (15) */
3225   }
3226   if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
3227   if( pSub->selFlags & SF_Distinct ) return 0;           /* Restriction (5)  */
3228   if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3229      return 0;         /* Restrictions (8)(9) */
3230   }
3231   if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
3232      return 0;         /* Restriction (6)  */
3233   }
3234   if( p->pOrderBy && pSub->pOrderBy ){
3235      return 0;                                           /* Restriction (11) */
3236   }
3237   if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
3238   if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
3239   if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3240      return 0;         /* Restriction (21) */
3241   }
3242   if( pSub->selFlags & SF_Recursive ) return 0;          /* Restriction (22)  */
3243   if( (p->selFlags & SF_Recursive) && pSub->pPrior ) return 0;       /* (23)  */
3244 
3245   /* OBSOLETE COMMENT 1:
3246   ** Restriction 3:  If the subquery is a join, make sure the subquery is
3247   ** not used as the right operand of an outer join.  Examples of why this
3248   ** is not allowed:
3249   **
3250   **         t1 LEFT OUTER JOIN (t2 JOIN t3)
3251   **
3252   ** If we flatten the above, we would get
3253   **
3254   **         (t1 LEFT OUTER JOIN t2) JOIN t3
3255   **
3256   ** which is not at all the same thing.
3257   **
3258   ** OBSOLETE COMMENT 2:
3259   ** Restriction 12:  If the subquery is the right operand of a left outer
3260   ** join, make sure the subquery has no WHERE clause.
3261   ** An examples of why this is not allowed:
3262   **
3263   **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3264   **
3265   ** If we flatten the above, we would get
3266   **
3267   **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3268   **
3269   ** But the t2.x>0 test will always fail on a NULL row of t2, which
3270   ** effectively converts the OUTER JOIN into an INNER JOIN.
3271   **
3272   ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3273   ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3274   ** is fraught with danger.  Best to avoid the whole thing.  If the
3275   ** subquery is the right term of a LEFT JOIN, then do not flatten.
3276   */
3277   if( (pSubitem->jointype & JT_OUTER)!=0 ){
3278     return 0;
3279   }
3280 
3281   /* Restriction 17: If the sub-query is a compound SELECT, then it must
3282   ** use only the UNION ALL operator. And none of the simple select queries
3283   ** that make up the compound SELECT are allowed to be aggregate or distinct
3284   ** queries.
3285   */
3286   if( pSub->pPrior ){
3287     if( pSub->pOrderBy ){
3288       return 0;  /* Restriction 20 */
3289     }
3290     if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3291       return 0;
3292     }
3293     for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3294       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3295       testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3296       assert( pSub->pSrc!=0 );
3297       if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
3298        || (pSub1->pPrior && pSub1->op!=TK_ALL)
3299        || pSub1->pSrc->nSrc<1
3300        || pSub->pEList->nExpr!=pSub1->pEList->nExpr
3301       ){
3302         return 0;
3303       }
3304       testcase( pSub1->pSrc->nSrc>1 );
3305     }
3306 
3307     /* Restriction 18. */
3308     if( p->pOrderBy ){
3309       int ii;
3310       for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3311         if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3312       }
3313     }
3314   }
3315 
3316   /***** If we reach this point, flattening is permitted. *****/
3317 
3318   /* Authorize the subquery */
3319   pParse->zAuthContext = pSubitem->zName;
3320   TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3321   testcase( i==SQLITE_DENY );
3322   pParse->zAuthContext = zSavedAuthContext;
3323 
3324   /* If the sub-query is a compound SELECT statement, then (by restrictions
3325   ** 17 and 18 above) it must be a UNION ALL and the parent query must
3326   ** be of the form:
3327   **
3328   **     SELECT <expr-list> FROM (<sub-query>) <where-clause>
3329   **
3330   ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3331   ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3332   ** OFFSET clauses and joins them to the left-hand-side of the original
3333   ** using UNION ALL operators. In this case N is the number of simple
3334   ** select statements in the compound sub-query.
3335   **
3336   ** Example:
3337   **
3338   **     SELECT a+1 FROM (
3339   **        SELECT x FROM tab
3340   **        UNION ALL
3341   **        SELECT y FROM tab
3342   **        UNION ALL
3343   **        SELECT abs(z*2) FROM tab2
3344   **     ) WHERE a!=5 ORDER BY 1
3345   **
3346   ** Transformed into:
3347   **
3348   **     SELECT x+1 FROM tab WHERE x+1!=5
3349   **     UNION ALL
3350   **     SELECT y+1 FROM tab WHERE y+1!=5
3351   **     UNION ALL
3352   **     SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3353   **     ORDER BY 1
3354   **
3355   ** We call this the "compound-subquery flattening".
3356   */
3357   for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
3358     Select *pNew;
3359     ExprList *pOrderBy = p->pOrderBy;
3360     Expr *pLimit = p->pLimit;
3361     Expr *pOffset = p->pOffset;
3362     Select *pPrior = p->pPrior;
3363     p->pOrderBy = 0;
3364     p->pSrc = 0;
3365     p->pPrior = 0;
3366     p->pLimit = 0;
3367     p->pOffset = 0;
3368     pNew = sqlite3SelectDup(db, p, 0);
3369     p->pOffset = pOffset;
3370     p->pLimit = pLimit;
3371     p->pOrderBy = pOrderBy;
3372     p->pSrc = pSrc;
3373     p->op = TK_ALL;
3374     if( pNew==0 ){
3375       p->pPrior = pPrior;
3376     }else{
3377       pNew->pPrior = pPrior;
3378       if( pPrior ) pPrior->pNext = pNew;
3379       pNew->pNext = p;
3380       p->pPrior = pNew;
3381     }
3382     if( db->mallocFailed ) return 1;
3383   }
3384 
3385   /* Begin flattening the iFrom-th entry of the FROM clause
3386   ** in the outer query.
3387   */
3388   pSub = pSub1 = pSubitem->pSelect;
3389 
3390   /* Delete the transient table structure associated with the
3391   ** subquery
3392   */
3393   sqlite3DbFree(db, pSubitem->zDatabase);
3394   sqlite3DbFree(db, pSubitem->zName);
3395   sqlite3DbFree(db, pSubitem->zAlias);
3396   pSubitem->zDatabase = 0;
3397   pSubitem->zName = 0;
3398   pSubitem->zAlias = 0;
3399   pSubitem->pSelect = 0;
3400 
3401   /* Defer deleting the Table object associated with the
3402   ** subquery until code generation is
3403   ** complete, since there may still exist Expr.pTab entries that
3404   ** refer to the subquery even after flattening.  Ticket #3346.
3405   **
3406   ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3407   */
3408   if( ALWAYS(pSubitem->pTab!=0) ){
3409     Table *pTabToDel = pSubitem->pTab;
3410     if( pTabToDel->nRef==1 ){
3411       Parse *pToplevel = sqlite3ParseToplevel(pParse);
3412       pTabToDel->pNextZombie = pToplevel->pZombieTab;
3413       pToplevel->pZombieTab = pTabToDel;
3414     }else{
3415       pTabToDel->nRef--;
3416     }
3417     pSubitem->pTab = 0;
3418   }
3419 
3420   /* The following loop runs once for each term in a compound-subquery
3421   ** flattening (as described above).  If we are doing a different kind
3422   ** of flattening - a flattening other than a compound-subquery flattening -
3423   ** then this loop only runs once.
3424   **
3425   ** This loop moves all of the FROM elements of the subquery into the
3426   ** the FROM clause of the outer query.  Before doing this, remember
3427   ** the cursor number for the original outer query FROM element in
3428   ** iParent.  The iParent cursor will never be used.  Subsequent code
3429   ** will scan expressions looking for iParent references and replace
3430   ** those references with expressions that resolve to the subquery FROM
3431   ** elements we are now copying in.
3432   */
3433   for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
3434     int nSubSrc;
3435     u8 jointype = 0;
3436     pSubSrc = pSub->pSrc;     /* FROM clause of subquery */
3437     nSubSrc = pSubSrc->nSrc;  /* Number of terms in subquery FROM clause */
3438     pSrc = pParent->pSrc;     /* FROM clause of the outer query */
3439 
3440     if( pSrc ){
3441       assert( pParent==p );  /* First time through the loop */
3442       jointype = pSubitem->jointype;
3443     }else{
3444       assert( pParent!=p );  /* 2nd and subsequent times through the loop */
3445       pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
3446       if( pSrc==0 ){
3447         assert( db->mallocFailed );
3448         break;
3449       }
3450     }
3451 
3452     /* The subquery uses a single slot of the FROM clause of the outer
3453     ** query.  If the subquery has more than one element in its FROM clause,
3454     ** then expand the outer query to make space for it to hold all elements
3455     ** of the subquery.
3456     **
3457     ** Example:
3458     **
3459     **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3460     **
3461     ** The outer query has 3 slots in its FROM clause.  One slot of the
3462     ** outer query (the middle slot) is used by the subquery.  The next
3463     ** block of code will expand the out query to 4 slots.  The middle
3464     ** slot is expanded to two slots in order to make space for the
3465     ** two elements in the FROM clause of the subquery.
3466     */
3467     if( nSubSrc>1 ){
3468       pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
3469       if( db->mallocFailed ){
3470         break;
3471       }
3472     }
3473 
3474     /* Transfer the FROM clause terms from the subquery into the
3475     ** outer query.
3476     */
3477     for(i=0; i<nSubSrc; i++){
3478       sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
3479       pSrc->a[i+iFrom] = pSubSrc->a[i];
3480       memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
3481     }
3482     pSrc->a[iFrom].jointype = jointype;
3483 
3484     /* Now begin substituting subquery result set expressions for
3485     ** references to the iParent in the outer query.
3486     **
3487     ** Example:
3488     **
3489     **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3490     **   \                     \_____________ subquery __________/          /
3491     **    \_____________________ outer query ______________________________/
3492     **
3493     ** We look at every expression in the outer query and every place we see
3494     ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3495     */
3496     pList = pParent->pEList;
3497     for(i=0; i<pList->nExpr; i++){
3498       if( pList->a[i].zName==0 ){
3499         char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
3500         sqlite3Dequote(zName);
3501         pList->a[i].zName = zName;
3502       }
3503     }
3504     substExprList(db, pParent->pEList, iParent, pSub->pEList);
3505     if( isAgg ){
3506       substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
3507       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3508     }
3509     if( pSub->pOrderBy ){
3510       assert( pParent->pOrderBy==0 );
3511       pParent->pOrderBy = pSub->pOrderBy;
3512       pSub->pOrderBy = 0;
3513     }else if( pParent->pOrderBy ){
3514       substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
3515     }
3516     if( pSub->pWhere ){
3517       pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
3518     }else{
3519       pWhere = 0;
3520     }
3521     if( subqueryIsAgg ){
3522       assert( pParent->pHaving==0 );
3523       pParent->pHaving = pParent->pWhere;
3524       pParent->pWhere = pWhere;
3525       pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
3526       pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving,
3527                                   sqlite3ExprDup(db, pSub->pHaving, 0));
3528       assert( pParent->pGroupBy==0 );
3529       pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
3530     }else{
3531       pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
3532       pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
3533     }
3534 
3535     /* The flattened query is distinct if either the inner or the
3536     ** outer query is distinct.
3537     */
3538     pParent->selFlags |= pSub->selFlags & SF_Distinct;
3539 
3540     /*
3541     ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3542     **
3543     ** One is tempted to try to add a and b to combine the limits.  But this
3544     ** does not work if either limit is negative.
3545     */
3546     if( pSub->pLimit ){
3547       pParent->pLimit = pSub->pLimit;
3548       pSub->pLimit = 0;
3549     }
3550   }
3551 
3552   /* Finially, delete what is left of the subquery and return
3553   ** success.
3554   */
3555   sqlite3SelectDelete(db, pSub1);
3556 
3557   return 1;
3558 }
3559 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3560 
3561 /*
3562 ** Based on the contents of the AggInfo structure indicated by the first
3563 ** argument, this function checks if the following are true:
3564 **
3565 **    * the query contains just a single aggregate function,
3566 **    * the aggregate function is either min() or max(), and
3567 **    * the argument to the aggregate function is a column value.
3568 **
3569 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3570 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3571 ** list of arguments passed to the aggregate before returning.
3572 **
3573 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3574 ** WHERE_ORDERBY_NORMAL is returned.
3575 */
3576 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){
3577   int eRet = WHERE_ORDERBY_NORMAL;          /* Return value */
3578 
3579   *ppMinMax = 0;
3580   if( pAggInfo->nFunc==1 ){
3581     Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */
3582     ExprList *pEList = pExpr->x.pList;      /* Arguments to agg function */
3583 
3584     assert( pExpr->op==TK_AGG_FUNCTION );
3585     if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){
3586       const char *zFunc = pExpr->u.zToken;
3587       if( sqlite3StrICmp(zFunc, "min")==0 ){
3588         eRet = WHERE_ORDERBY_MIN;
3589         *ppMinMax = pEList;
3590       }else if( sqlite3StrICmp(zFunc, "max")==0 ){
3591         eRet = WHERE_ORDERBY_MAX;
3592         *ppMinMax = pEList;
3593       }
3594     }
3595   }
3596 
3597   assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 );
3598   return eRet;
3599 }
3600 
3601 /*
3602 ** The select statement passed as the first argument is an aggregate query.
3603 ** The second argment is the associated aggregate-info object. This
3604 ** function tests if the SELECT is of the form:
3605 **
3606 **   SELECT count(*) FROM <tbl>
3607 **
3608 ** where table is a database table, not a sub-select or view. If the query
3609 ** does match this pattern, then a pointer to the Table object representing
3610 ** <tbl> is returned. Otherwise, 0 is returned.
3611 */
3612 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
3613   Table *pTab;
3614   Expr *pExpr;
3615 
3616   assert( !p->pGroupBy );
3617 
3618   if( p->pWhere || p->pEList->nExpr!=1
3619    || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
3620   ){
3621     return 0;
3622   }
3623   pTab = p->pSrc->a[0].pTab;
3624   pExpr = p->pEList->a[0].pExpr;
3625   assert( pTab && !pTab->pSelect && pExpr );
3626 
3627   if( IsVirtual(pTab) ) return 0;
3628   if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
3629   if( NEVER(pAggInfo->nFunc==0) ) return 0;
3630   if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
3631   if( pExpr->flags&EP_Distinct ) return 0;
3632 
3633   return pTab;
3634 }
3635 
3636 /*
3637 ** If the source-list item passed as an argument was augmented with an
3638 ** INDEXED BY clause, then try to locate the specified index. If there
3639 ** was such a clause and the named index cannot be found, return
3640 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3641 ** pFrom->pIndex and return SQLITE_OK.
3642 */
3643 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
3644   if( pFrom->pTab && pFrom->zIndex ){
3645     Table *pTab = pFrom->pTab;
3646     char *zIndex = pFrom->zIndex;
3647     Index *pIdx;
3648     for(pIdx=pTab->pIndex;
3649         pIdx && sqlite3StrICmp(pIdx->zName, zIndex);
3650         pIdx=pIdx->pNext
3651     );
3652     if( !pIdx ){
3653       sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0);
3654       pParse->checkSchema = 1;
3655       return SQLITE_ERROR;
3656     }
3657     pFrom->pIndex = pIdx;
3658   }
3659   return SQLITE_OK;
3660 }
3661 /*
3662 ** Detect compound SELECT statements that use an ORDER BY clause with
3663 ** an alternative collating sequence.
3664 **
3665 **    SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3666 **
3667 ** These are rewritten as a subquery:
3668 **
3669 **    SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3670 **     ORDER BY ... COLLATE ...
3671 **
3672 ** This transformation is necessary because the multiSelectOrderBy() routine
3673 ** above that generates the code for a compound SELECT with an ORDER BY clause
3674 ** uses a merge algorithm that requires the same collating sequence on the
3675 ** result columns as on the ORDER BY clause.  See ticket
3676 ** http://www.sqlite.org/src/info/6709574d2a
3677 **
3678 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3679 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3680 ** there are COLLATE terms in the ORDER BY.
3681 */
3682 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
3683   int i;
3684   Select *pNew;
3685   Select *pX;
3686   sqlite3 *db;
3687   struct ExprList_item *a;
3688   SrcList *pNewSrc;
3689   Parse *pParse;
3690   Token dummy;
3691 
3692   if( p->pPrior==0 ) return WRC_Continue;
3693   if( p->pOrderBy==0 ) return WRC_Continue;
3694   for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
3695   if( pX==0 ) return WRC_Continue;
3696   a = p->pOrderBy->a;
3697   for(i=p->pOrderBy->nExpr-1; i>=0; i--){
3698     if( a[i].pExpr->flags & EP_Collate ) break;
3699   }
3700   if( i<0 ) return WRC_Continue;
3701 
3702   /* If we reach this point, that means the transformation is required. */
3703 
3704   pParse = pWalker->pParse;
3705   db = pParse->db;
3706   pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
3707   if( pNew==0 ) return WRC_Abort;
3708   memset(&dummy, 0, sizeof(dummy));
3709   pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
3710   if( pNewSrc==0 ) return WRC_Abort;
3711   *pNew = *p;
3712   p->pSrc = pNewSrc;
3713   p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
3714   p->op = TK_SELECT;
3715   p->pWhere = 0;
3716   pNew->pGroupBy = 0;
3717   pNew->pHaving = 0;
3718   pNew->pOrderBy = 0;
3719   p->pPrior = 0;
3720   p->pNext = 0;
3721   p->selFlags &= ~SF_Compound;
3722   assert( pNew->pPrior!=0 );
3723   pNew->pPrior->pNext = pNew;
3724   pNew->pLimit = 0;
3725   pNew->pOffset = 0;
3726   return WRC_Continue;
3727 }
3728 
3729 #ifndef SQLITE_OMIT_CTE
3730 /*
3731 ** Argument pWith (which may be NULL) points to a linked list of nested
3732 ** WITH contexts, from inner to outermost. If the table identified by
3733 ** FROM clause element pItem is really a common-table-expression (CTE)
3734 ** then return a pointer to the CTE definition for that table. Otherwise
3735 ** return NULL.
3736 **
3737 ** If a non-NULL value is returned, set *ppContext to point to the With
3738 ** object that the returned CTE belongs to.
3739 */
3740 static struct Cte *searchWith(
3741   With *pWith,                    /* Current outermost WITH clause */
3742   struct SrcList_item *pItem,     /* FROM clause element to resolve */
3743   With **ppContext                /* OUT: WITH clause return value belongs to */
3744 ){
3745   const char *zName;
3746   if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
3747     With *p;
3748     for(p=pWith; p; p=p->pOuter){
3749       int i;
3750       for(i=0; i<p->nCte; i++){
3751         if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
3752           *ppContext = p;
3753           return &p->a[i];
3754         }
3755       }
3756     }
3757   }
3758   return 0;
3759 }
3760 
3761 /* The code generator maintains a stack of active WITH clauses
3762 ** with the inner-most WITH clause being at the top of the stack.
3763 **
3764 ** This routine pushes the WITH clause passed as the second argument
3765 ** onto the top of the stack. If argument bFree is true, then this
3766 ** WITH clause will never be popped from the stack. In this case it
3767 ** should be freed along with the Parse object. In other cases, when
3768 ** bFree==0, the With object will be freed along with the SELECT
3769 ** statement with which it is associated.
3770 */
3771 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
3772   assert( bFree==0 || pParse->pWith==0 );
3773   if( pWith ){
3774     pWith->pOuter = pParse->pWith;
3775     pParse->pWith = pWith;
3776     pParse->bFreeWith = bFree;
3777   }
3778 }
3779 
3780 /*
3781 ** This function checks if argument pFrom refers to a CTE declared by
3782 ** a WITH clause on the stack currently maintained by the parser. And,
3783 ** if currently processing a CTE expression, if it is a recursive
3784 ** reference to the current CTE.
3785 **
3786 ** If pFrom falls into either of the two categories above, pFrom->pTab
3787 ** and other fields are populated accordingly. The caller should check
3788 ** (pFrom->pTab!=0) to determine whether or not a successful match
3789 ** was found.
3790 **
3791 ** Whether or not a match is found, SQLITE_OK is returned if no error
3792 ** occurs. If an error does occur, an error message is stored in the
3793 ** parser and some error code other than SQLITE_OK returned.
3794 */
3795 static int withExpand(
3796   Walker *pWalker,
3797   struct SrcList_item *pFrom
3798 ){
3799   Parse *pParse = pWalker->pParse;
3800   sqlite3 *db = pParse->db;
3801   struct Cte *pCte;               /* Matched CTE (or NULL if no match) */
3802   With *pWith;                    /* WITH clause that pCte belongs to */
3803 
3804   assert( pFrom->pTab==0 );
3805 
3806   pCte = searchWith(pParse->pWith, pFrom, &pWith);
3807   if( pCte ){
3808     Table *pTab;
3809     ExprList *pEList;
3810     Select *pSel;
3811     Select *pLeft;                /* Left-most SELECT statement */
3812     int bMayRecursive;            /* True if compound joined by UNION [ALL] */
3813     With *pSavedWith;             /* Initial value of pParse->pWith */
3814 
3815     /* If pCte->zErr is non-NULL at this point, then this is an illegal
3816     ** recursive reference to CTE pCte. Leave an error in pParse and return
3817     ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3818     ** In this case, proceed.  */
3819     if( pCte->zErr ){
3820       sqlite3ErrorMsg(pParse, pCte->zErr, pCte->zName);
3821       return SQLITE_ERROR;
3822     }
3823 
3824     assert( pFrom->pTab==0 );
3825     pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
3826     if( pTab==0 ) return WRC_Abort;
3827     pTab->nRef = 1;
3828     pTab->zName = sqlite3DbStrDup(db, pCte->zName);
3829     pTab->iPKey = -1;
3830     pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
3831     pTab->tabFlags |= TF_Ephemeral;
3832     pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
3833     if( db->mallocFailed ) return SQLITE_NOMEM;
3834     assert( pFrom->pSelect );
3835 
3836     /* Check if this is a recursive CTE. */
3837     pSel = pFrom->pSelect;
3838     bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
3839     if( bMayRecursive ){
3840       int i;
3841       SrcList *pSrc = pFrom->pSelect->pSrc;
3842       for(i=0; i<pSrc->nSrc; i++){
3843         struct SrcList_item *pItem = &pSrc->a[i];
3844         if( pItem->zDatabase==0
3845          && pItem->zName!=0
3846          && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
3847           ){
3848           pItem->pTab = pTab;
3849           pItem->isRecursive = 1;
3850           pTab->nRef++;
3851           pSel->selFlags |= SF_Recursive;
3852         }
3853       }
3854     }
3855 
3856     /* Only one recursive reference is permitted. */
3857     if( pTab->nRef>2 ){
3858       sqlite3ErrorMsg(
3859           pParse, "multiple references to recursive table: %s", pCte->zName
3860       );
3861       return SQLITE_ERROR;
3862     }
3863     assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));
3864 
3865     pCte->zErr = "circular reference: %s";
3866     pSavedWith = pParse->pWith;
3867     pParse->pWith = pWith;
3868     sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
3869 
3870     for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
3871     pEList = pLeft->pEList;
3872     if( pCte->pCols ){
3873       if( pEList->nExpr!=pCte->pCols->nExpr ){
3874         sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
3875             pCte->zName, pEList->nExpr, pCte->pCols->nExpr
3876         );
3877         pParse->pWith = pSavedWith;
3878         return SQLITE_ERROR;
3879       }
3880       pEList = pCte->pCols;
3881     }
3882 
3883     selectColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
3884     if( bMayRecursive ){
3885       if( pSel->selFlags & SF_Recursive ){
3886         pCte->zErr = "multiple recursive references: %s";
3887       }else{
3888         pCte->zErr = "recursive reference in a subquery: %s";
3889       }
3890       sqlite3WalkSelect(pWalker, pSel);
3891     }
3892     pCte->zErr = 0;
3893     pParse->pWith = pSavedWith;
3894   }
3895 
3896   return SQLITE_OK;
3897 }
3898 #endif
3899 
3900 #ifndef SQLITE_OMIT_CTE
3901 /*
3902 ** If the SELECT passed as the second argument has an associated WITH
3903 ** clause, pop it from the stack stored as part of the Parse object.
3904 **
3905 ** This function is used as the xSelectCallback2() callback by
3906 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3907 ** names and other FROM clause elements.
3908 */
3909 static void selectPopWith(Walker *pWalker, Select *p){
3910   Parse *pParse = pWalker->pParse;
3911   With *pWith = findRightmost(p)->pWith;
3912   if( pWith!=0 ){
3913     assert( pParse->pWith==pWith );
3914     pParse->pWith = pWith->pOuter;
3915   }
3916 }
3917 #else
3918 #define selectPopWith 0
3919 #endif
3920 
3921 /*
3922 ** This routine is a Walker callback for "expanding" a SELECT statement.
3923 ** "Expanding" means to do the following:
3924 **
3925 **    (1)  Make sure VDBE cursor numbers have been assigned to every
3926 **         element of the FROM clause.
3927 **
3928 **    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that
3929 **         defines FROM clause.  When views appear in the FROM clause,
3930 **         fill pTabList->a[].pSelect with a copy of the SELECT statement
3931 **         that implements the view.  A copy is made of the view's SELECT
3932 **         statement so that we can freely modify or delete that statement
3933 **         without worrying about messing up the presistent representation
3934 **         of the view.
3935 **
3936 **    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
3937 **         on joins and the ON and USING clause of joins.
3938 **
3939 **    (4)  Scan the list of columns in the result set (pEList) looking
3940 **         for instances of the "*" operator or the TABLE.* operator.
3941 **         If found, expand each "*" to be every column in every table
3942 **         and TABLE.* to be every column in TABLE.
3943 **
3944 */
3945 static int selectExpander(Walker *pWalker, Select *p){
3946   Parse *pParse = pWalker->pParse;
3947   int i, j, k;
3948   SrcList *pTabList;
3949   ExprList *pEList;
3950   struct SrcList_item *pFrom;
3951   sqlite3 *db = pParse->db;
3952   Expr *pE, *pRight, *pExpr;
3953   u16 selFlags = p->selFlags;
3954 
3955   p->selFlags |= SF_Expanded;
3956   if( db->mallocFailed  ){
3957     return WRC_Abort;
3958   }
3959   if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
3960     return WRC_Prune;
3961   }
3962   pTabList = p->pSrc;
3963   pEList = p->pEList;
3964   sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
3965 
3966   /* Make sure cursor numbers have been assigned to all entries in
3967   ** the FROM clause of the SELECT statement.
3968   */
3969   sqlite3SrcListAssignCursors(pParse, pTabList);
3970 
3971   /* Look up every table named in the FROM clause of the select.  If
3972   ** an entry of the FROM clause is a subquery instead of a table or view,
3973   ** then create a transient table structure to describe the subquery.
3974   */
3975   for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
3976     Table *pTab;
3977     assert( pFrom->isRecursive==0 || pFrom->pTab );
3978     if( pFrom->isRecursive ) continue;
3979     if( pFrom->pTab!=0 ){
3980       /* This statement has already been prepared.  There is no need
3981       ** to go further. */
3982       assert( i==0 );
3983 #ifndef SQLITE_OMIT_CTE
3984       selectPopWith(pWalker, p);
3985 #endif
3986       return WRC_Prune;
3987     }
3988 #ifndef SQLITE_OMIT_CTE
3989     if( withExpand(pWalker, pFrom) ) return WRC_Abort;
3990     if( pFrom->pTab ) {} else
3991 #endif
3992     if( pFrom->zName==0 ){
3993 #ifndef SQLITE_OMIT_SUBQUERY
3994       Select *pSel = pFrom->pSelect;
3995       /* A sub-query in the FROM clause of a SELECT */
3996       assert( pSel!=0 );
3997       assert( pFrom->pTab==0 );
3998       sqlite3WalkSelect(pWalker, pSel);
3999       pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4000       if( pTab==0 ) return WRC_Abort;
4001       pTab->nRef = 1;
4002       pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
4003       while( pSel->pPrior ){ pSel = pSel->pPrior; }
4004       selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
4005       pTab->iPKey = -1;
4006       pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4007       pTab->tabFlags |= TF_Ephemeral;
4008 #endif
4009     }else{
4010       /* An ordinary table or view name in the FROM clause */
4011       assert( pFrom->pTab==0 );
4012       pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
4013       if( pTab==0 ) return WRC_Abort;
4014       if( pTab->nRef==0xffff ){
4015         sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
4016            pTab->zName);
4017         pFrom->pTab = 0;
4018         return WRC_Abort;
4019       }
4020       pTab->nRef++;
4021 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4022       if( pTab->pSelect || IsVirtual(pTab) ){
4023         /* We reach here if the named table is a really a view */
4024         if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
4025         assert( pFrom->pSelect==0 );
4026         pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
4027         sqlite3WalkSelect(pWalker, pFrom->pSelect);
4028       }
4029 #endif
4030     }
4031 
4032     /* Locate the index named by the INDEXED BY clause, if any. */
4033     if( sqlite3IndexedByLookup(pParse, pFrom) ){
4034       return WRC_Abort;
4035     }
4036   }
4037 
4038   /* Process NATURAL keywords, and ON and USING clauses of joins.
4039   */
4040   if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
4041     return WRC_Abort;
4042   }
4043 
4044   /* For every "*" that occurs in the column list, insert the names of
4045   ** all columns in all tables.  And for every TABLE.* insert the names
4046   ** of all columns in TABLE.  The parser inserted a special expression
4047   ** with the TK_ALL operator for each "*" that it found in the column list.
4048   ** The following code just has to locate the TK_ALL expressions and expand
4049   ** each one to the list of all columns in all tables.
4050   **
4051   ** The first loop just checks to see if there are any "*" operators
4052   ** that need expanding.
4053   */
4054   for(k=0; k<pEList->nExpr; k++){
4055     pE = pEList->a[k].pExpr;
4056     if( pE->op==TK_ALL ) break;
4057     assert( pE->op!=TK_DOT || pE->pRight!=0 );
4058     assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
4059     if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
4060   }
4061   if( k<pEList->nExpr ){
4062     /*
4063     ** If we get here it means the result set contains one or more "*"
4064     ** operators that need to be expanded.  Loop through each expression
4065     ** in the result set and expand them one by one.
4066     */
4067     struct ExprList_item *a = pEList->a;
4068     ExprList *pNew = 0;
4069     int flags = pParse->db->flags;
4070     int longNames = (flags & SQLITE_FullColNames)!=0
4071                       && (flags & SQLITE_ShortColNames)==0;
4072 
4073     /* When processing FROM-clause subqueries, it is always the case
4074     ** that full_column_names=OFF and short_column_names=ON.  The
4075     ** sqlite3ResultSetOfSelect() routine makes it so. */
4076     assert( (p->selFlags & SF_NestedFrom)==0
4077           || ((flags & SQLITE_FullColNames)==0 &&
4078               (flags & SQLITE_ShortColNames)!=0) );
4079 
4080     for(k=0; k<pEList->nExpr; k++){
4081       pE = a[k].pExpr;
4082       pRight = pE->pRight;
4083       assert( pE->op!=TK_DOT || pRight!=0 );
4084       if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){
4085         /* This particular expression does not need to be expanded.
4086         */
4087         pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
4088         if( pNew ){
4089           pNew->a[pNew->nExpr-1].zName = a[k].zName;
4090           pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
4091           a[k].zName = 0;
4092           a[k].zSpan = 0;
4093         }
4094         a[k].pExpr = 0;
4095       }else{
4096         /* This expression is a "*" or a "TABLE.*" and needs to be
4097         ** expanded. */
4098         int tableSeen = 0;      /* Set to 1 when TABLE matches */
4099         char *zTName = 0;       /* text of name of TABLE */
4100         if( pE->op==TK_DOT ){
4101           assert( pE->pLeft!=0 );
4102           assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
4103           zTName = pE->pLeft->u.zToken;
4104         }
4105         for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4106           Table *pTab = pFrom->pTab;
4107           Select *pSub = pFrom->pSelect;
4108           char *zTabName = pFrom->zAlias;
4109           const char *zSchemaName = 0;
4110           int iDb;
4111           if( zTabName==0 ){
4112             zTabName = pTab->zName;
4113           }
4114           if( db->mallocFailed ) break;
4115           if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
4116             pSub = 0;
4117             if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
4118               continue;
4119             }
4120             iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4121             zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*";
4122           }
4123           for(j=0; j<pTab->nCol; j++){
4124             char *zName = pTab->aCol[j].zName;
4125             char *zColname;  /* The computed column name */
4126             char *zToFree;   /* Malloced string that needs to be freed */
4127             Token sColname;  /* Computed column name as a token */
4128 
4129             assert( zName );
4130             if( zTName && pSub
4131              && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
4132             ){
4133               continue;
4134             }
4135 
4136             /* If a column is marked as 'hidden' (currently only possible
4137             ** for virtual tables), do not include it in the expanded
4138             ** result-set list.
4139             */
4140             if( IsHiddenColumn(&pTab->aCol[j]) ){
4141               assert(IsVirtual(pTab));
4142               continue;
4143             }
4144             tableSeen = 1;
4145 
4146             if( i>0 && zTName==0 ){
4147               if( (pFrom->jointype & JT_NATURAL)!=0
4148                 && tableAndColumnIndex(pTabList, i, zName, 0, 0)
4149               ){
4150                 /* In a NATURAL join, omit the join columns from the
4151                 ** table to the right of the join */
4152                 continue;
4153               }
4154               if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
4155                 /* In a join with a USING clause, omit columns in the
4156                 ** using clause from the table on the right. */
4157                 continue;
4158               }
4159             }
4160             pRight = sqlite3Expr(db, TK_ID, zName);
4161             zColname = zName;
4162             zToFree = 0;
4163             if( longNames || pTabList->nSrc>1 ){
4164               Expr *pLeft;
4165               pLeft = sqlite3Expr(db, TK_ID, zTabName);
4166               pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
4167               if( zSchemaName ){
4168                 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
4169                 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0);
4170               }
4171               if( longNames ){
4172                 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
4173                 zToFree = zColname;
4174               }
4175             }else{
4176               pExpr = pRight;
4177             }
4178             pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
4179             sColname.z = zColname;
4180             sColname.n = sqlite3Strlen30(zColname);
4181             sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
4182             if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){
4183               struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
4184               if( pSub ){
4185                 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan);
4186                 testcase( pX->zSpan==0 );
4187               }else{
4188                 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s",
4189                                            zSchemaName, zTabName, zColname);
4190                 testcase( pX->zSpan==0 );
4191               }
4192               pX->bSpanIsTab = 1;
4193             }
4194             sqlite3DbFree(db, zToFree);
4195           }
4196         }
4197         if( !tableSeen ){
4198           if( zTName ){
4199             sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
4200           }else{
4201             sqlite3ErrorMsg(pParse, "no tables specified");
4202           }
4203         }
4204       }
4205     }
4206     sqlite3ExprListDelete(db, pEList);
4207     p->pEList = pNew;
4208   }
4209 #if SQLITE_MAX_COLUMN
4210   if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
4211     sqlite3ErrorMsg(pParse, "too many columns in result set");
4212   }
4213 #endif
4214   return WRC_Continue;
4215 }
4216 
4217 /*
4218 ** No-op routine for the parse-tree walker.
4219 **
4220 ** When this routine is the Walker.xExprCallback then expression trees
4221 ** are walked without any actions being taken at each node.  Presumably,
4222 ** when this routine is used for Walker.xExprCallback then
4223 ** Walker.xSelectCallback is set to do something useful for every
4224 ** subquery in the parser tree.
4225 */
4226 static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
4227   UNUSED_PARAMETER2(NotUsed, NotUsed2);
4228   return WRC_Continue;
4229 }
4230 
4231 /*
4232 ** This routine "expands" a SELECT statement and all of its subqueries.
4233 ** For additional information on what it means to "expand" a SELECT
4234 ** statement, see the comment on the selectExpand worker callback above.
4235 **
4236 ** Expanding a SELECT statement is the first step in processing a
4237 ** SELECT statement.  The SELECT statement must be expanded before
4238 ** name resolution is performed.
4239 **
4240 ** If anything goes wrong, an error message is written into pParse.
4241 ** The calling function can detect the problem by looking at pParse->nErr
4242 ** and/or pParse->db->mallocFailed.
4243 */
4244 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
4245   Walker w;
4246   memset(&w, 0, sizeof(w));
4247   w.xExprCallback = exprWalkNoop;
4248   w.pParse = pParse;
4249   if( pParse->hasCompound ){
4250     w.xSelectCallback = convertCompoundSelectToSubquery;
4251     sqlite3WalkSelect(&w, pSelect);
4252   }
4253   w.xSelectCallback = selectExpander;
4254   w.xSelectCallback2 = selectPopWith;
4255   sqlite3WalkSelect(&w, pSelect);
4256 }
4257 
4258 
4259 #ifndef SQLITE_OMIT_SUBQUERY
4260 /*
4261 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4262 ** interface.
4263 **
4264 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4265 ** information to the Table structure that represents the result set
4266 ** of that subquery.
4267 **
4268 ** The Table structure that represents the result set was constructed
4269 ** by selectExpander() but the type and collation information was omitted
4270 ** at that point because identifiers had not yet been resolved.  This
4271 ** routine is called after identifier resolution.
4272 */
4273 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
4274   Parse *pParse;
4275   int i;
4276   SrcList *pTabList;
4277   struct SrcList_item *pFrom;
4278 
4279   assert( p->selFlags & SF_Resolved );
4280   if( (p->selFlags & SF_HasTypeInfo)==0 ){
4281     p->selFlags |= SF_HasTypeInfo;
4282     pParse = pWalker->pParse;
4283     pTabList = p->pSrc;
4284     for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
4285       Table *pTab = pFrom->pTab;
4286       if( ALWAYS(pTab!=0) && (pTab->tabFlags & TF_Ephemeral)!=0 ){
4287         /* A sub-query in the FROM clause of a SELECT */
4288         Select *pSel = pFrom->pSelect;
4289         if( pSel ){
4290           while( pSel->pPrior ) pSel = pSel->pPrior;
4291           selectAddColumnTypeAndCollation(pParse, pTab, pSel);
4292         }
4293       }
4294     }
4295   }
4296 }
4297 #endif
4298 
4299 
4300 /*
4301 ** This routine adds datatype and collating sequence information to
4302 ** the Table structures of all FROM-clause subqueries in a
4303 ** SELECT statement.
4304 **
4305 ** Use this routine after name resolution.
4306 */
4307 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
4308 #ifndef SQLITE_OMIT_SUBQUERY
4309   Walker w;
4310   memset(&w, 0, sizeof(w));
4311   w.xSelectCallback2 = selectAddSubqueryTypeInfo;
4312   w.xExprCallback = exprWalkNoop;
4313   w.pParse = pParse;
4314   sqlite3WalkSelect(&w, pSelect);
4315 #endif
4316 }
4317 
4318 
4319 /*
4320 ** This routine sets up a SELECT statement for processing.  The
4321 ** following is accomplished:
4322 **
4323 **     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
4324 **     *  Ephemeral Table objects are created for all FROM-clause subqueries.
4325 **     *  ON and USING clauses are shifted into WHERE statements
4326 **     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
4327 **     *  Identifiers in expression are matched to tables.
4328 **
4329 ** This routine acts recursively on all subqueries within the SELECT.
4330 */
4331 void sqlite3SelectPrep(
4332   Parse *pParse,         /* The parser context */
4333   Select *p,             /* The SELECT statement being coded. */
4334   NameContext *pOuterNC  /* Name context for container */
4335 ){
4336   sqlite3 *db;
4337   if( NEVER(p==0) ) return;
4338   db = pParse->db;
4339   if( db->mallocFailed ) return;
4340   if( p->selFlags & SF_HasTypeInfo ) return;
4341   sqlite3SelectExpand(pParse, p);
4342   if( pParse->nErr || db->mallocFailed ) return;
4343   sqlite3ResolveSelectNames(pParse, p, pOuterNC);
4344   if( pParse->nErr || db->mallocFailed ) return;
4345   sqlite3SelectAddTypeInfo(pParse, p);
4346 }
4347 
4348 /*
4349 ** Reset the aggregate accumulator.
4350 **
4351 ** The aggregate accumulator is a set of memory cells that hold
4352 ** intermediate results while calculating an aggregate.  This
4353 ** routine generates code that stores NULLs in all of those memory
4354 ** cells.
4355 */
4356 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
4357   Vdbe *v = pParse->pVdbe;
4358   int i;
4359   struct AggInfo_func *pFunc;
4360   int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
4361   if( nReg==0 ) return;
4362 #ifdef SQLITE_DEBUG
4363   /* Verify that all AggInfo registers are within the range specified by
4364   ** AggInfo.mnReg..AggInfo.mxReg */
4365   assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
4366   for(i=0; i<pAggInfo->nColumn; i++){
4367     assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
4368          && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
4369   }
4370   for(i=0; i<pAggInfo->nFunc; i++){
4371     assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
4372          && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
4373   }
4374 #endif
4375   sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
4376   for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
4377     if( pFunc->iDistinct>=0 ){
4378       Expr *pE = pFunc->pExpr;
4379       assert( !ExprHasProperty(pE, EP_xIsSelect) );
4380       if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
4381         sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
4382            "argument");
4383         pFunc->iDistinct = -1;
4384       }else{
4385         KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0);
4386         sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
4387                           (char*)pKeyInfo, P4_KEYINFO);
4388       }
4389     }
4390   }
4391 }
4392 
4393 /*
4394 ** Invoke the OP_AggFinalize opcode for every aggregate function
4395 ** in the AggInfo structure.
4396 */
4397 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
4398   Vdbe *v = pParse->pVdbe;
4399   int i;
4400   struct AggInfo_func *pF;
4401   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4402     ExprList *pList = pF->pExpr->x.pList;
4403     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4404     sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
4405                       (void*)pF->pFunc, P4_FUNCDEF);
4406   }
4407 }
4408 
4409 /*
4410 ** Update the accumulator memory cells for an aggregate based on
4411 ** the current cursor position.
4412 */
4413 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
4414   Vdbe *v = pParse->pVdbe;
4415   int i;
4416   int regHit = 0;
4417   int addrHitTest = 0;
4418   struct AggInfo_func *pF;
4419   struct AggInfo_col *pC;
4420 
4421   pAggInfo->directMode = 1;
4422   for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
4423     int nArg;
4424     int addrNext = 0;
4425     int regAgg;
4426     ExprList *pList = pF->pExpr->x.pList;
4427     assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) );
4428     if( pList ){
4429       nArg = pList->nExpr;
4430       regAgg = sqlite3GetTempRange(pParse, nArg);
4431       sqlite3ExprCodeExprList(pParse, pList, regAgg, SQLITE_ECEL_DUP);
4432     }else{
4433       nArg = 0;
4434       regAgg = 0;
4435     }
4436     if( pF->iDistinct>=0 ){
4437       addrNext = sqlite3VdbeMakeLabel(v);
4438       assert( nArg==1 );
4439       codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
4440     }
4441     if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4442       CollSeq *pColl = 0;
4443       struct ExprList_item *pItem;
4444       int j;
4445       assert( pList!=0 );  /* pList!=0 if pF->pFunc has NEEDCOLL */
4446       for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
4447         pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
4448       }
4449       if( !pColl ){
4450         pColl = pParse->db->pDfltColl;
4451       }
4452       if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
4453       sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
4454     }
4455     sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
4456                       (void*)pF->pFunc, P4_FUNCDEF);
4457     sqlite3VdbeChangeP5(v, (u8)nArg);
4458     sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
4459     sqlite3ReleaseTempRange(pParse, regAgg, nArg);
4460     if( addrNext ){
4461       sqlite3VdbeResolveLabel(v, addrNext);
4462       sqlite3ExprCacheClear(pParse);
4463     }
4464   }
4465 
4466   /* Before populating the accumulator registers, clear the column cache.
4467   ** Otherwise, if any of the required column values are already present
4468   ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4469   ** to pC->iMem. But by the time the value is used, the original register
4470   ** may have been used, invalidating the underlying buffer holding the
4471   ** text or blob value. See ticket [883034dcb5].
4472   **
4473   ** Another solution would be to change the OP_SCopy used to copy cached
4474   ** values to an OP_Copy.
4475   */
4476   if( regHit ){
4477     addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
4478   }
4479   sqlite3ExprCacheClear(pParse);
4480   for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
4481     sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
4482   }
4483   pAggInfo->directMode = 0;
4484   sqlite3ExprCacheClear(pParse);
4485   if( addrHitTest ){
4486     sqlite3VdbeJumpHere(v, addrHitTest);
4487   }
4488 }
4489 
4490 /*
4491 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4492 ** count(*) query ("SELECT count(*) FROM pTab").
4493 */
4494 #ifndef SQLITE_OMIT_EXPLAIN
4495 static void explainSimpleCount(
4496   Parse *pParse,                  /* Parse context */
4497   Table *pTab,                    /* Table being queried */
4498   Index *pIdx                     /* Index used to optimize scan, or NULL */
4499 ){
4500   if( pParse->explain==2 ){
4501     char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
4502         pTab->zName,
4503         pIdx ? " USING COVERING INDEX " : "",
4504         pIdx ? pIdx->zName : ""
4505     );
4506     sqlite3VdbeAddOp4(
4507         pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
4508     );
4509   }
4510 }
4511 #else
4512 # define explainSimpleCount(a,b,c)
4513 #endif
4514 
4515 /*
4516 ** Generate code for the SELECT statement given in the p argument.
4517 **
4518 ** The results are returned according to the SelectDest structure.
4519 ** See comments in sqliteInt.h for further information.
4520 **
4521 ** This routine returns the number of errors.  If any errors are
4522 ** encountered, then an appropriate error message is left in
4523 ** pParse->zErrMsg.
4524 **
4525 ** This routine does NOT free the Select structure passed in.  The
4526 ** calling function needs to do that.
4527 */
4528 int sqlite3Select(
4529   Parse *pParse,         /* The parser context */
4530   Select *p,             /* The SELECT statement being coded. */
4531   SelectDest *pDest      /* What to do with the query results */
4532 ){
4533   int i, j;              /* Loop counters */
4534   WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
4535   Vdbe *v;               /* The virtual machine under construction */
4536   int isAgg;             /* True for select lists like "count(*)" */
4537   ExprList *pEList;      /* List of columns to extract. */
4538   SrcList *pTabList;     /* List of tables to select from */
4539   Expr *pWhere;          /* The WHERE clause.  May be NULL */
4540   ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
4541   Expr *pHaving;         /* The HAVING clause.  May be NULL */
4542   int rc = 1;            /* Value to return from this function */
4543   DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
4544   SortCtx sSort;         /* Info on how to code the ORDER BY clause */
4545   AggInfo sAggInfo;      /* Information used by aggregate queries */
4546   int iEnd;              /* Address of the end of the query */
4547   sqlite3 *db;           /* The database connection */
4548 
4549 #ifndef SQLITE_OMIT_EXPLAIN
4550   int iRestoreSelectId = pParse->iSelectId;
4551   pParse->iSelectId = pParse->iNextSelectId++;
4552 #endif
4553 
4554   db = pParse->db;
4555   if( p==0 || db->mallocFailed || pParse->nErr ){
4556     return 1;
4557   }
4558   if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
4559   memset(&sAggInfo, 0, sizeof(sAggInfo));
4560 
4561   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
4562   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
4563   assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
4564   assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
4565   if( IgnorableOrderby(pDest) ){
4566     assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
4567            pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
4568            pDest->eDest==SRT_Queue  || pDest->eDest==SRT_DistFifo ||
4569            pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo);
4570     /* If ORDER BY makes no difference in the output then neither does
4571     ** DISTINCT so it can be removed too. */
4572     sqlite3ExprListDelete(db, p->pOrderBy);
4573     p->pOrderBy = 0;
4574     p->selFlags &= ~SF_Distinct;
4575   }
4576   sqlite3SelectPrep(pParse, p, 0);
4577   memset(&sSort, 0, sizeof(sSort));
4578   sSort.pOrderBy = p->pOrderBy;
4579   pTabList = p->pSrc;
4580   pEList = p->pEList;
4581   if( pParse->nErr || db->mallocFailed ){
4582     goto select_end;
4583   }
4584   isAgg = (p->selFlags & SF_Aggregate)!=0;
4585   assert( pEList!=0 );
4586 
4587   /* Begin generating code.
4588   */
4589   v = sqlite3GetVdbe(pParse);
4590   if( v==0 ) goto select_end;
4591 
4592   /* If writing to memory or generating a set
4593   ** only a single column may be output.
4594   */
4595 #ifndef SQLITE_OMIT_SUBQUERY
4596   if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
4597     goto select_end;
4598   }
4599 #endif
4600 
4601   /* Generate code for all sub-queries in the FROM clause
4602   */
4603 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4604   for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
4605     struct SrcList_item *pItem = &pTabList->a[i];
4606     SelectDest dest;
4607     Select *pSub = pItem->pSelect;
4608     int isAggSub;
4609 
4610     if( pSub==0 ) continue;
4611 
4612     /* Sometimes the code for a subquery will be generated more than
4613     ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4614     ** for example.  In that case, do not regenerate the code to manifest
4615     ** a view or the co-routine to implement a view.  The first instance
4616     ** is sufficient, though the subroutine to manifest the view does need
4617     ** to be invoked again. */
4618     if( pItem->addrFillSub ){
4619       if( pItem->viaCoroutine==0 ){
4620         sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub);
4621       }
4622       continue;
4623     }
4624 
4625     /* Increment Parse.nHeight by the height of the largest expression
4626     ** tree referred to by this, the parent select. The child select
4627     ** may contain expression trees of at most
4628     ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4629     ** more conservative than necessary, but much easier than enforcing
4630     ** an exact limit.
4631     */
4632     pParse->nHeight += sqlite3SelectExprHeight(p);
4633 
4634     isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
4635     if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
4636       /* This subquery can be absorbed into its parent. */
4637       if( isAggSub ){
4638         isAgg = 1;
4639         p->selFlags |= SF_Aggregate;
4640       }
4641       i = -1;
4642     }else if( pTabList->nSrc==1
4643            && OptimizationEnabled(db, SQLITE_SubqCoroutine)
4644     ){
4645       /* Implement a co-routine that will return a single row of the result
4646       ** set on each invocation.
4647       */
4648       int addrTop = sqlite3VdbeCurrentAddr(v)+1;
4649       pItem->regReturn = ++pParse->nMem;
4650       sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
4651       VdbeComment((v, "%s", pItem->pTab->zName));
4652       pItem->addrFillSub = addrTop;
4653       sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
4654       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4655       sqlite3Select(pParse, pSub, &dest);
4656       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4657       pItem->viaCoroutine = 1;
4658       pItem->regResult = dest.iSdst;
4659       sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn);
4660       sqlite3VdbeJumpHere(v, addrTop-1);
4661       sqlite3ClearTempRegCache(pParse);
4662     }else{
4663       /* Generate a subroutine that will fill an ephemeral table with
4664       ** the content of this subquery.  pItem->addrFillSub will point
4665       ** to the address of the generated subroutine.  pItem->regReturn
4666       ** is a register allocated to hold the subroutine return address
4667       */
4668       int topAddr;
4669       int onceAddr = 0;
4670       int retAddr;
4671       assert( pItem->addrFillSub==0 );
4672       pItem->regReturn = ++pParse->nMem;
4673       topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
4674       pItem->addrFillSub = topAddr+1;
4675       if( pItem->isCorrelated==0 ){
4676         /* If the subquery is not correlated and if we are not inside of
4677         ** a trigger, then we only need to compute the value of the subquery
4678         ** once. */
4679         onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
4680         VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
4681       }else{
4682         VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
4683       }
4684       sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
4685       explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId);
4686       sqlite3Select(pParse, pSub, &dest);
4687       pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow);
4688       if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
4689       retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
4690       VdbeComment((v, "end %s", pItem->pTab->zName));
4691       sqlite3VdbeChangeP1(v, topAddr, retAddr);
4692       sqlite3ClearTempRegCache(pParse);
4693     }
4694     if( /*pParse->nErr ||*/ db->mallocFailed ){
4695       goto select_end;
4696     }
4697     pParse->nHeight -= sqlite3SelectExprHeight(p);
4698     pTabList = p->pSrc;
4699     if( !IgnorableOrderby(pDest) ){
4700       sSort.pOrderBy = p->pOrderBy;
4701     }
4702   }
4703   pEList = p->pEList;
4704 #endif
4705   pWhere = p->pWhere;
4706   pGroupBy = p->pGroupBy;
4707   pHaving = p->pHaving;
4708   sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
4709 
4710 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4711   /* If there is are a sequence of queries, do the earlier ones first.
4712   */
4713   if( p->pPrior ){
4714     rc = multiSelect(pParse, p, pDest);
4715     explainSetInteger(pParse->iSelectId, iRestoreSelectId);
4716     return rc;
4717   }
4718 #endif
4719 
4720   /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4721   ** if the select-list is the same as the ORDER BY list, then this query
4722   ** can be rewritten as a GROUP BY. In other words, this:
4723   **
4724   **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
4725   **
4726   ** is transformed to:
4727   **
4728   **     SELECT xyz FROM ... GROUP BY xyz
4729   **
4730   ** The second form is preferred as a single index (or temp-table) may be
4731   ** used for both the ORDER BY and DISTINCT processing. As originally
4732   ** written the query must use a temp-table for at least one of the ORDER
4733   ** BY and DISTINCT, and an index or separate temp-table for the other.
4734   */
4735   if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
4736    && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
4737   ){
4738     p->selFlags &= ~SF_Distinct;
4739     p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
4740     pGroupBy = p->pGroupBy;
4741     sSort.pOrderBy = 0;
4742     /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4743     ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
4744     ** original setting of the SF_Distinct flag, not the current setting */
4745     assert( sDistinct.isTnct );
4746   }
4747 
4748   /* If there is an ORDER BY clause, then this sorting
4749   ** index might end up being unused if the data can be
4750   ** extracted in pre-sorted order.  If that is the case, then the
4751   ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4752   ** we figure out that the sorting index is not needed.  The addrSortIndex
4753   ** variable is used to facilitate that change.
4754   */
4755   if( sSort.pOrderBy ){
4756     KeyInfo *pKeyInfo;
4757     pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
4758     sSort.iECursor = pParse->nTab++;
4759     sSort.addrSortIndex =
4760       sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4761                            sSort.iECursor, sSort.pOrderBy->nExpr+2, 0,
4762                            (char*)pKeyInfo, P4_KEYINFO);
4763   }else{
4764     sSort.addrSortIndex = -1;
4765   }
4766 
4767   /* If the output is destined for a temporary table, open that table.
4768   */
4769   if( pDest->eDest==SRT_EphemTab ){
4770     sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
4771   }
4772 
4773   /* Set the limiter.
4774   */
4775   iEnd = sqlite3VdbeMakeLabel(v);
4776   p->nSelectRow = LARGEST_INT64;
4777   computeLimitRegisters(pParse, p, iEnd);
4778   if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
4779     sqlite3VdbeGetOp(v, sSort.addrSortIndex)->opcode = OP_SorterOpen;
4780     sSort.sortFlags |= SORTFLAG_UseSorter;
4781   }
4782 
4783   /* Open a virtual index to use for the distinct set.
4784   */
4785   if( p->selFlags & SF_Distinct ){
4786     sDistinct.tabTnct = pParse->nTab++;
4787     sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
4788                                 sDistinct.tabTnct, 0, 0,
4789                                 (char*)keyInfoFromExprList(pParse, p->pEList,0,0),
4790                                 P4_KEYINFO);
4791     sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
4792     sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
4793   }else{
4794     sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
4795   }
4796 
4797   if( !isAgg && pGroupBy==0 ){
4798     /* No aggregate functions and no GROUP BY clause */
4799     u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0);
4800 
4801     /* Begin the database scan. */
4802     pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
4803                                p->pEList, wctrlFlags, 0);
4804     if( pWInfo==0 ) goto select_end;
4805     if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
4806       p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
4807     }
4808     if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
4809       sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
4810     }
4811     if( sSort.pOrderBy ){
4812       sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
4813       if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
4814         sSort.pOrderBy = 0;
4815       }
4816     }
4817 
4818     /* If sorting index that was created by a prior OP_OpenEphemeral
4819     ** instruction ended up not being needed, then change the OP_OpenEphemeral
4820     ** into an OP_Noop.
4821     */
4822     if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
4823       sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
4824     }
4825 
4826     /* Use the standard inner loop. */
4827     selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest,
4828                     sqlite3WhereContinueLabel(pWInfo),
4829                     sqlite3WhereBreakLabel(pWInfo));
4830 
4831     /* End the database scan loop.
4832     */
4833     sqlite3WhereEnd(pWInfo);
4834   }else{
4835     /* This case when there exist aggregate functions or a GROUP BY clause
4836     ** or both */
4837     NameContext sNC;    /* Name context for processing aggregate information */
4838     int iAMem;          /* First Mem address for storing current GROUP BY */
4839     int iBMem;          /* First Mem address for previous GROUP BY */
4840     int iUseFlag;       /* Mem address holding flag indicating that at least
4841                         ** one row of the input to the aggregator has been
4842                         ** processed */
4843     int iAbortFlag;     /* Mem address which causes query abort if positive */
4844     int groupBySort;    /* Rows come from source in GROUP BY order */
4845     int addrEnd;        /* End of processing for this SELECT */
4846     int sortPTab = 0;   /* Pseudotable used to decode sorting results */
4847     int sortOut = 0;    /* Output register from the sorter */
4848     int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
4849 
4850     /* Remove any and all aliases between the result set and the
4851     ** GROUP BY clause.
4852     */
4853     if( pGroupBy ){
4854       int k;                        /* Loop counter */
4855       struct ExprList_item *pItem;  /* For looping over expression in a list */
4856 
4857       for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
4858         pItem->u.x.iAlias = 0;
4859       }
4860       for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
4861         pItem->u.x.iAlias = 0;
4862       }
4863       if( p->nSelectRow>100 ) p->nSelectRow = 100;
4864     }else{
4865       p->nSelectRow = 1;
4866     }
4867 
4868 
4869     /* If there is both a GROUP BY and an ORDER BY clause and they are
4870     ** identical, then it may be possible to disable the ORDER BY clause
4871     ** on the grounds that the GROUP BY will cause elements to come out
4872     ** in the correct order. It also may not - the GROUP BY may use a
4873     ** database index that causes rows to be grouped together as required
4874     ** but not actually sorted. Either way, record the fact that the
4875     ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
4876     ** variable.  */
4877     if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
4878       orderByGrp = 1;
4879     }
4880 
4881     /* Create a label to jump to when we want to abort the query */
4882     addrEnd = sqlite3VdbeMakeLabel(v);
4883 
4884     /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4885     ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4886     ** SELECT statement.
4887     */
4888     memset(&sNC, 0, sizeof(sNC));
4889     sNC.pParse = pParse;
4890     sNC.pSrcList = pTabList;
4891     sNC.pAggInfo = &sAggInfo;
4892     sAggInfo.mnReg = pParse->nMem+1;
4893     sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
4894     sAggInfo.pGroupBy = pGroupBy;
4895     sqlite3ExprAnalyzeAggList(&sNC, pEList);
4896     sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
4897     if( pHaving ){
4898       sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
4899     }
4900     sAggInfo.nAccumulator = sAggInfo.nColumn;
4901     for(i=0; i<sAggInfo.nFunc; i++){
4902       assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) );
4903       sNC.ncFlags |= NC_InAggFunc;
4904       sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList);
4905       sNC.ncFlags &= ~NC_InAggFunc;
4906     }
4907     sAggInfo.mxReg = pParse->nMem;
4908     if( db->mallocFailed ) goto select_end;
4909 
4910     /* Processing for aggregates with GROUP BY is very different and
4911     ** much more complex than aggregates without a GROUP BY.
4912     */
4913     if( pGroupBy ){
4914       KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
4915       int j1;             /* A-vs-B comparision jump */
4916       int addrOutputRow;  /* Start of subroutine that outputs a result row */
4917       int regOutputRow;   /* Return address register for output subroutine */
4918       int addrSetAbort;   /* Set the abort flag and return */
4919       int addrTopOfLoop;  /* Top of the input loop */
4920       int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
4921       int addrReset;      /* Subroutine for resetting the accumulator */
4922       int regReset;       /* Return address register for reset subroutine */
4923 
4924       /* If there is a GROUP BY clause we might need a sorting index to
4925       ** implement it.  Allocate that sorting index now.  If it turns out
4926       ** that we do not need it after all, the OP_SorterOpen instruction
4927       ** will be converted into a Noop.
4928       */
4929       sAggInfo.sortingIdx = pParse->nTab++;
4930       pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
4931       addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
4932           sAggInfo.sortingIdx, sAggInfo.nSortingColumn,
4933           0, (char*)pKeyInfo, P4_KEYINFO);
4934 
4935       /* Initialize memory locations used by GROUP BY aggregate processing
4936       */
4937       iUseFlag = ++pParse->nMem;
4938       iAbortFlag = ++pParse->nMem;
4939       regOutputRow = ++pParse->nMem;
4940       addrOutputRow = sqlite3VdbeMakeLabel(v);
4941       regReset = ++pParse->nMem;
4942       addrReset = sqlite3VdbeMakeLabel(v);
4943       iAMem = pParse->nMem + 1;
4944       pParse->nMem += pGroupBy->nExpr;
4945       iBMem = pParse->nMem + 1;
4946       pParse->nMem += pGroupBy->nExpr;
4947       sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
4948       VdbeComment((v, "clear abort flag"));
4949       sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
4950       VdbeComment((v, "indicate accumulator empty"));
4951       sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
4952 
4953       /* Begin a loop that will extract all source rows in GROUP BY order.
4954       ** This might involve two separate loops with an OP_Sort in between, or
4955       ** it might be a single loop that uses an index to extract information
4956       ** in the right order to begin with.
4957       */
4958       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
4959       pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
4960           WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
4961       );
4962       if( pWInfo==0 ) goto select_end;
4963       if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
4964         /* The optimizer is able to deliver rows in group by order so
4965         ** we do not have to sort.  The OP_OpenEphemeral table will be
4966         ** cancelled later because we still need to use the pKeyInfo
4967         */
4968         groupBySort = 0;
4969       }else{
4970         /* Rows are coming out in undetermined order.  We have to push
4971         ** each row into a sorting index, terminate the first loop,
4972         ** then loop over the sorting index in order to get the output
4973         ** in sorted order
4974         */
4975         int regBase;
4976         int regRecord;
4977         int nCol;
4978         int nGroupBy;
4979 
4980         explainTempTable(pParse,
4981             (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
4982                     "DISTINCT" : "GROUP BY");
4983 
4984         groupBySort = 1;
4985         nGroupBy = pGroupBy->nExpr;
4986         nCol = nGroupBy + 1;
4987         j = nGroupBy+1;
4988         for(i=0; i<sAggInfo.nColumn; i++){
4989           if( sAggInfo.aCol[i].iSorterColumn>=j ){
4990             nCol++;
4991             j++;
4992           }
4993         }
4994         regBase = sqlite3GetTempRange(pParse, nCol);
4995         sqlite3ExprCacheClear(pParse);
4996         sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
4997         sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
4998         j = nGroupBy+1;
4999         for(i=0; i<sAggInfo.nColumn; i++){
5000           struct AggInfo_col *pCol = &sAggInfo.aCol[i];
5001           if( pCol->iSorterColumn>=j ){
5002             int r1 = j + regBase;
5003             int r2;
5004 
5005             r2 = sqlite3ExprCodeGetColumn(pParse,
5006                                pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
5007             if( r1!=r2 ){
5008               sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
5009             }
5010             j++;
5011           }
5012         }
5013         regRecord = sqlite3GetTempReg(pParse);
5014         sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
5015         sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
5016         sqlite3ReleaseTempReg(pParse, regRecord);
5017         sqlite3ReleaseTempRange(pParse, regBase, nCol);
5018         sqlite3WhereEnd(pWInfo);
5019         sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++;
5020         sortOut = sqlite3GetTempReg(pParse);
5021         sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
5022         sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd);
5023         VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
5024         sAggInfo.useSortingIdx = 1;
5025         sqlite3ExprCacheClear(pParse);
5026 
5027       }
5028 
5029       /* If the index or temporary table used by the GROUP BY sort
5030       ** will naturally deliver rows in the order required by the ORDER BY
5031       ** clause, cancel the ephemeral table open coded earlier.
5032       **
5033       ** This is an optimization - the correct answer should result regardless.
5034       ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5035       ** disable this optimization for testing purposes.  */
5036       if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
5037        && (groupBySort || sqlite3WhereIsSorted(pWInfo))
5038       ){
5039         sSort.pOrderBy = 0;
5040         sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
5041       }
5042 
5043       /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5044       ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5045       ** Then compare the current GROUP BY terms against the GROUP BY terms
5046       ** from the previous row currently stored in a0, a1, a2...
5047       */
5048       addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
5049       sqlite3ExprCacheClear(pParse);
5050       if( groupBySort ){
5051         sqlite3VdbeAddOp2(v, OP_SorterData, sAggInfo.sortingIdx, sortOut);
5052       }
5053       for(j=0; j<pGroupBy->nExpr; j++){
5054         if( groupBySort ){
5055           sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
5056           if( j==0 ) sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
5057         }else{
5058           sAggInfo.directMode = 1;
5059           sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
5060         }
5061       }
5062       sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
5063                           (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
5064       j1 = sqlite3VdbeCurrentAddr(v);
5065       sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); VdbeCoverage(v);
5066 
5067       /* Generate code that runs whenever the GROUP BY changes.
5068       ** Changes in the GROUP BY are detected by the previous code
5069       ** block.  If there were no changes, this block is skipped.
5070       **
5071       ** This code copies current group by terms in b0,b1,b2,...
5072       ** over to a0,a1,a2.  It then calls the output subroutine
5073       ** and resets the aggregate accumulator registers in preparation
5074       ** for the next GROUP BY batch.
5075       */
5076       sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
5077       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5078       VdbeComment((v, "output one row"));
5079       sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
5080       VdbeComment((v, "check abort flag"));
5081       sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
5082       VdbeComment((v, "reset accumulator"));
5083 
5084       /* Update the aggregate accumulators based on the content of
5085       ** the current row
5086       */
5087       sqlite3VdbeJumpHere(v, j1);
5088       updateAccumulator(pParse, &sAggInfo);
5089       sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
5090       VdbeComment((v, "indicate data in accumulator"));
5091 
5092       /* End of the loop
5093       */
5094       if( groupBySort ){
5095         sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop);
5096         VdbeCoverage(v);
5097       }else{
5098         sqlite3WhereEnd(pWInfo);
5099         sqlite3VdbeChangeToNoop(v, addrSortingIdx);
5100       }
5101 
5102       /* Output the final row of result
5103       */
5104       sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
5105       VdbeComment((v, "output final row"));
5106 
5107       /* Jump over the subroutines
5108       */
5109       sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
5110 
5111       /* Generate a subroutine that outputs a single row of the result
5112       ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
5113       ** is less than or equal to zero, the subroutine is a no-op.  If
5114       ** the processing calls for the query to abort, this subroutine
5115       ** increments the iAbortFlag memory location before returning in
5116       ** order to signal the caller to abort.
5117       */
5118       addrSetAbort = sqlite3VdbeCurrentAddr(v);
5119       sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
5120       VdbeComment((v, "set abort flag"));
5121       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5122       sqlite3VdbeResolveLabel(v, addrOutputRow);
5123       addrOutputRow = sqlite3VdbeCurrentAddr(v);
5124       sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); VdbeCoverage(v);
5125       VdbeComment((v, "Groupby result generator entry point"));
5126       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5127       finalizeAggFunctions(pParse, &sAggInfo);
5128       sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
5129       selectInnerLoop(pParse, p, p->pEList, -1, &sSort,
5130                       &sDistinct, pDest,
5131                       addrOutputRow+1, addrSetAbort);
5132       sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
5133       VdbeComment((v, "end groupby result generator"));
5134 
5135       /* Generate a subroutine that will reset the group-by accumulator
5136       */
5137       sqlite3VdbeResolveLabel(v, addrReset);
5138       resetAccumulator(pParse, &sAggInfo);
5139       sqlite3VdbeAddOp1(v, OP_Return, regReset);
5140 
5141     } /* endif pGroupBy.  Begin aggregate queries without GROUP BY: */
5142     else {
5143       ExprList *pDel = 0;
5144 #ifndef SQLITE_OMIT_BTREECOUNT
5145       Table *pTab;
5146       if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){
5147         /* If isSimpleCount() returns a pointer to a Table structure, then
5148         ** the SQL statement is of the form:
5149         **
5150         **   SELECT count(*) FROM <tbl>
5151         **
5152         ** where the Table structure returned represents table <tbl>.
5153         **
5154         ** This statement is so common that it is optimized specially. The
5155         ** OP_Count instruction is executed either on the intkey table that
5156         ** contains the data for table <tbl> or on one of its indexes. It
5157         ** is better to execute the op on an index, as indexes are almost
5158         ** always spread across less pages than their corresponding tables.
5159         */
5160         const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5161         const int iCsr = pParse->nTab++;     /* Cursor to scan b-tree */
5162         Index *pIdx;                         /* Iterator variable */
5163         KeyInfo *pKeyInfo = 0;               /* Keyinfo for scanned index */
5164         Index *pBest = 0;                    /* Best index found so far */
5165         int iRoot = pTab->tnum;              /* Root page of scanned b-tree */
5166 
5167         sqlite3CodeVerifySchema(pParse, iDb);
5168         sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5169 
5170         /* Search for the index that has the lowest scan cost.
5171         **
5172         ** (2011-04-15) Do not do a full scan of an unordered index.
5173         **
5174         ** (2013-10-03) Do not count the entries in a partial index.
5175         **
5176         ** In practice the KeyInfo structure will not be used. It is only
5177         ** passed to keep OP_OpenRead happy.
5178         */
5179         if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
5180         for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5181           if( pIdx->bUnordered==0
5182            && pIdx->szIdxRow<pTab->szTabRow
5183            && pIdx->pPartIdxWhere==0
5184            && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
5185           ){
5186             pBest = pIdx;
5187           }
5188         }
5189         if( pBest ){
5190           iRoot = pBest->tnum;
5191           pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
5192         }
5193 
5194         /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5195         sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1);
5196         if( pKeyInfo ){
5197           sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
5198         }
5199         sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem);
5200         sqlite3VdbeAddOp1(v, OP_Close, iCsr);
5201         explainSimpleCount(pParse, pTab, pBest);
5202       }else
5203 #endif /* SQLITE_OMIT_BTREECOUNT */
5204       {
5205         /* Check if the query is of one of the following forms:
5206         **
5207         **   SELECT min(x) FROM ...
5208         **   SELECT max(x) FROM ...
5209         **
5210         ** If it is, then ask the code in where.c to attempt to sort results
5211         ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5212         ** If where.c is able to produce results sorted in this order, then
5213         ** add vdbe code to break out of the processing loop after the
5214         ** first iteration (since the first iteration of the loop is
5215         ** guaranteed to operate on the row with the minimum or maximum
5216         ** value of x, the only row required).
5217         **
5218         ** A special flag must be passed to sqlite3WhereBegin() to slightly
5219         ** modify behavior as follows:
5220         **
5221         **   + If the query is a "SELECT min(x)", then the loop coded by
5222         **     where.c should not iterate over any values with a NULL value
5223         **     for x.
5224         **
5225         **   + The optimizer code in where.c (the thing that decides which
5226         **     index or indices to use) should place a different priority on
5227         **     satisfying the 'ORDER BY' clause than it does in other cases.
5228         **     Refer to code and comments in where.c for details.
5229         */
5230         ExprList *pMinMax = 0;
5231         u8 flag = WHERE_ORDERBY_NORMAL;
5232 
5233         assert( p->pGroupBy==0 );
5234         assert( flag==0 );
5235         if( p->pHaving==0 ){
5236           flag = minMaxQuery(&sAggInfo, &pMinMax);
5237         }
5238         assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) );
5239 
5240         if( flag ){
5241           pMinMax = sqlite3ExprListDup(db, pMinMax, 0);
5242           pDel = pMinMax;
5243           if( pMinMax && !db->mallocFailed ){
5244             pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0;
5245             pMinMax->a[0].pExpr->op = TK_COLUMN;
5246           }
5247         }
5248 
5249         /* This case runs if the aggregate has no GROUP BY clause.  The
5250         ** processing is much simpler since there is only a single row
5251         ** of output.
5252         */
5253         resetAccumulator(pParse, &sAggInfo);
5254         pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
5255         if( pWInfo==0 ){
5256           sqlite3ExprListDelete(db, pDel);
5257           goto select_end;
5258         }
5259         updateAccumulator(pParse, &sAggInfo);
5260         assert( pMinMax==0 || pMinMax->nExpr==1 );
5261         if( sqlite3WhereIsOrdered(pWInfo)>0 ){
5262           sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
5263           VdbeComment((v, "%s() by index",
5264                 (flag==WHERE_ORDERBY_MIN?"min":"max")));
5265         }
5266         sqlite3WhereEnd(pWInfo);
5267         finalizeAggFunctions(pParse, &sAggInfo);
5268       }
5269 
5270       sSort.pOrderBy = 0;
5271       sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
5272       selectInnerLoop(pParse, p, p->pEList, -1, 0, 0,
5273                       pDest, addrEnd, addrEnd);
5274       sqlite3ExprListDelete(db, pDel);
5275     }
5276     sqlite3VdbeResolveLabel(v, addrEnd);
5277 
5278   } /* endif aggregate query */
5279 
5280   if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
5281     explainTempTable(pParse, "DISTINCT");
5282   }
5283 
5284   /* If there is an ORDER BY clause, then we need to sort the results
5285   ** and send them to the callback one by one.
5286   */
5287   if( sSort.pOrderBy ){
5288     explainTempTable(pParse, sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5289     generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
5290   }
5291 
5292   /* Jump here to skip this query
5293   */
5294   sqlite3VdbeResolveLabel(v, iEnd);
5295 
5296   /* The SELECT was successfully coded.   Set the return code to 0
5297   ** to indicate no errors.
5298   */
5299   rc = 0;
5300 
5301   /* Control jumps to here if an error is encountered above, or upon
5302   ** successful coding of the SELECT.
5303   */
5304 select_end:
5305   explainSetInteger(pParse->iSelectId, iRestoreSelectId);
5306 
5307   /* Identify column names if results of the SELECT are to be output.
5308   */
5309   if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
5310     generateColumnNames(pParse, pTabList, pEList);
5311   }
5312 
5313   sqlite3DbFree(db, sAggInfo.aCol);
5314   sqlite3DbFree(db, sAggInfo.aFunc);
5315   return rc;
5316 }
5317 
5318 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
5319 /*
5320 ** Generate a human-readable description of a the Select object.
5321 */
5322 static void explainOneSelect(Vdbe *pVdbe, Select *p){
5323   sqlite3ExplainPrintf(pVdbe, "SELECT ");
5324   if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
5325     if( p->selFlags & SF_Distinct ){
5326       sqlite3ExplainPrintf(pVdbe, "DISTINCT ");
5327     }
5328     if( p->selFlags & SF_Aggregate ){
5329       sqlite3ExplainPrintf(pVdbe, "agg_flag ");
5330     }
5331     sqlite3ExplainNL(pVdbe);
5332     sqlite3ExplainPrintf(pVdbe, "   ");
5333   }
5334   sqlite3ExplainExprList(pVdbe, p->pEList);
5335   sqlite3ExplainNL(pVdbe);
5336   if( p->pSrc && p->pSrc->nSrc ){
5337     int i;
5338     sqlite3ExplainPrintf(pVdbe, "FROM ");
5339     sqlite3ExplainPush(pVdbe);
5340     for(i=0; i<p->pSrc->nSrc; i++){
5341       struct SrcList_item *pItem = &p->pSrc->a[i];
5342       sqlite3ExplainPrintf(pVdbe, "{%d,*} = ", pItem->iCursor);
5343       if( pItem->pSelect ){
5344         sqlite3ExplainSelect(pVdbe, pItem->pSelect);
5345         if( pItem->pTab ){
5346           sqlite3ExplainPrintf(pVdbe, " (tabname=%s)", pItem->pTab->zName);
5347         }
5348       }else if( pItem->zName ){
5349         sqlite3ExplainPrintf(pVdbe, "%s", pItem->zName);
5350       }
5351       if( pItem->zAlias ){
5352         sqlite3ExplainPrintf(pVdbe, " (AS %s)", pItem->zAlias);
5353       }
5354       if( pItem->jointype & JT_LEFT ){
5355         sqlite3ExplainPrintf(pVdbe, " LEFT-JOIN");
5356       }
5357       sqlite3ExplainNL(pVdbe);
5358     }
5359     sqlite3ExplainPop(pVdbe);
5360   }
5361   if( p->pWhere ){
5362     sqlite3ExplainPrintf(pVdbe, "WHERE ");
5363     sqlite3ExplainExpr(pVdbe, p->pWhere);
5364     sqlite3ExplainNL(pVdbe);
5365   }
5366   if( p->pGroupBy ){
5367     sqlite3ExplainPrintf(pVdbe, "GROUPBY ");
5368     sqlite3ExplainExprList(pVdbe, p->pGroupBy);
5369     sqlite3ExplainNL(pVdbe);
5370   }
5371   if( p->pHaving ){
5372     sqlite3ExplainPrintf(pVdbe, "HAVING ");
5373     sqlite3ExplainExpr(pVdbe, p->pHaving);
5374     sqlite3ExplainNL(pVdbe);
5375   }
5376   if( p->pOrderBy ){
5377     sqlite3ExplainPrintf(pVdbe, "ORDERBY ");
5378     sqlite3ExplainExprList(pVdbe, p->pOrderBy);
5379     sqlite3ExplainNL(pVdbe);
5380   }
5381   if( p->pLimit ){
5382     sqlite3ExplainPrintf(pVdbe, "LIMIT ");
5383     sqlite3ExplainExpr(pVdbe, p->pLimit);
5384     sqlite3ExplainNL(pVdbe);
5385   }
5386   if( p->pOffset ){
5387     sqlite3ExplainPrintf(pVdbe, "OFFSET ");
5388     sqlite3ExplainExpr(pVdbe, p->pOffset);
5389     sqlite3ExplainNL(pVdbe);
5390   }
5391 }
5392 void sqlite3ExplainSelect(Vdbe *pVdbe, Select *p){
5393   if( p==0 ){
5394     sqlite3ExplainPrintf(pVdbe, "(null-select)");
5395     return;
5396   }
5397   sqlite3ExplainPush(pVdbe);
5398   while( p ){
5399     explainOneSelect(pVdbe, p);
5400     p = p->pNext;
5401     if( p==0 ) break;
5402     sqlite3ExplainNL(pVdbe);
5403     sqlite3ExplainPrintf(pVdbe, "%s\n", selectOpName(p->op));
5404   }
5405   sqlite3ExplainPrintf(pVdbe, "END");
5406   sqlite3ExplainPop(pVdbe);
5407 }
5408 
5409 /* End of the structure debug printing code
5410 *****************************************************************************/
5411 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
5412